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ABSTRACT

A pneumonia-like illness emerged late in 2019 (coined COVID-19), caused by SARS-

CoV-2, causing a devastating global pandemic on a scale never before seen since

the 1918/1919 influenza pandemic. This dissertation contributes in providing deeper

qualitative insights into the transmission dynamics and control of the disease in the

United States. A basic mathematical model, which incorporates the key pertinent

epidemiological features of SARS-CoV-2 and fitted using observed COVID-19 data,

was designed and used to assess the population-level impacts of vaccination and face

mask usage in mitigating the burden of the pandemic in the United States. Conditions

for the existence and asymptotic stability of the various equilibria of the model were

derived. The model was shown to undergo a vaccine-induced backward bifurcation

when the associated reproduction number is less than one. Conditions for achieving

vaccine-derived herd immunity were derived for three of the four FDA-approved vac-

cines (namely Pfizer, Moderna and Johnson & Johnson vaccine), and the vaccination

coverage level needed to achieve it decreases with increasing coverage of moderately-

and highly-effective face masks. It was also shown that using face masks as a singular

intervention strategy could lead to the elimination of the pandemic if moderate or

highly-effective masks are prioritized and pandemic elimination prospects are greatly

enhanced if the vaccination program is combined with a face mask use strategy that

emphasizes the use of moderate to highly-effective masks with at least moderate cov-

erage. The model was extended in Chapter 3 to allow for the assessment of the

impacts of waning and boosting of vaccine-derived and natural immunity against

the BA.1 Omicron variant of SARS-CoV-2. It was shown that vaccine-derived herd

immunity can be achieved in the United States via a vaccination-boosting strategy

which entails fully vaccinating at least 72% of the susceptible populace. Boosting

of vaccine-derived immunity was shown to be more beneficial than boosting of nat-
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ural immunity. Overall, this study showed that the prospects of the elimination of

the pandemic in the United States were highly promising using the two intervention

measures.
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Chapter 1

INTRODUCTION

1.1 General Overview

A pneumonia-like illness of an unknown etiology emerged out of Wuhan city of China

late in December 2019 (Srivastava et al., 2020). Genomic sequencing analysis revealed

that the disease is a member of the family of coronaviruses, caused by SARS-CoV-2

(Wang et al., 2020). Within a few days and weeks, the disease (tagged COVID-

19) rapidly spread across China and to almost every part of the world. The World

Health Organization (WHO) declared COVID-19 to be a global pandemic on March

11, 2020 (Ohannessian et al., 2020). The COVID-19 pandemic continues to inflict

unprecedented burden globally. It has, as of March 16, 2023, caused over 682 million

confirmed cases and over 6.8 million deaths globally (Figures 1.1 and 1.2 depict a

map for the global cumulative confirmed cases and deaths, respectively (Dong et al.,

2020; Worldometer., 2023)). The COVID-19 pandemic has become the greatest pub-

lic health and socio-economic challenge humans have faced since the 1918 influenza

pandemic (Liang et al., 2021; Ngonghala et al., 2020b; Brozak et al., 2021).
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Figure 1.1: Global Map of Confirmed COVID-19 Cumulative Cases, as of March
9th, 2023. Map was Generated Using the Cumulative COVID-19 Case Data from the
Johns Hopkins University Github (Dong et al., 2020).

Figure 1.2: Global Map of COVID-19 Cumulative Deaths, as of March 9th, 2023.
Map was Generated Using the Cumulative Mortality Data from the Johns Hopkins
University Github (Dong et al., 2020).
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The United States suffers the brunt of the global burden of COVID-19, with nearly

105 million confirmed cases and over 1.1 million deaths (see Figures 1.3 and 1.4 for the

map of the cumulative confirmed cases and deaths for the United States, respectively

(Dong et al., 2020; Worldometer., 2023)).

Figure 1.3: Map of Confirmed COVID-19 Cumulative Cases for the United States,
as of March 9th, 2023, Generated Using the Cumulative Confirmed Case Data from
the Johns Hopkins University Github (Dong et al., 2020).

This dissertation is based on using mathematical modeling approaches, together with

rigorous analysis, data analytics and computation, to gain insight into (and under-

standing on) the transmission dynamics and control of COVID-19 in the United

States. Emphasis is on the assessment of the population-level impacts of various

public health interventions, such as vaccination and the use of face mask in public.

1.2 Basic Background of COVID-19

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and

birds (Pal et al., 2020). Specifically, these viruses cause respiratory tract infections
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Figure 1.4: Map of COVID-19 Cumulative Deaths for the United States, as of March
9th, 2023, Generated Using the Cumulative Mortality Data from the Johns Hopkins
University Github (Dong et al., 2020).

in humans (Van der Hoek, 2007). The structure of coronavirus particles (depicted

in Figure 1.5) consist of long stranded RNA viral genomes (the largest known viral

RNA genome (Li et al., 2020)) which are bounded by a protective capsid (a lattice of

repeated protein molecules, called nucleocapsid). The viral genome and the capsid are

enveloped into the center of the particle (Jonathan et al., 2020). The core particle of

the coronavirus (i.e., the RNA genome) is further surrounded by an outer membrane,

which is made from a layer of lipids (fats) (Scripps Research, 2020). These outer

membranes derive from the cells in which the virus was last assembled but are mod-

ified to contain specific viral proteins, including membrane, envelope and the spike

proteins (regarded as the key set of the proteins in the outer membrane (Jonathan

et al., 2020)). It should be mentioned that the word “corona” is Latin for “crown”,

which refers to the appearance that Coronaviruses get from the spike proteins stick-

ing out of them (Chorba, 2020). These spike proteins, which act as the grappling

hooks that sticks tightly to, and cracks, the host cells, and eventually enters into the

host cells by binding to a viral receptor known as Angiotensin Converting Enzyme
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Figure 1.5: Structure of COVID-19 (spike protein). Source: Jonathan et al. (2020).

2 (ACE2) (Scripps Research, 2020; Zheng et al., 2022; Jonathan et al., 2020). This

triggers the human immune response, namely the innate and the adaptive immune

responses. The innate immune response (which includes both the humoral and T cell-

mediated immune response) is the first line of host defense against the virus, and is

triggered within minutes to hours of viral entry into the host’s target cell. The adap-

tive immune response (which develops antibodies and white blood cells to attack and

remember the virus, making it easier to fight with it again) removes any remaining

virus and create a memory for fighting future infections (Billingsley, 2020). When

SARS-CoV-2 virus enters a host cell, the pathogen recognition receptors (PRRs) of

the innate immune response rapidly identifies and recognizes the external pathogen

(i.e., the virus) (Zheng et al., 2022; Qi et al., 2022; Shah et al., 2020). Upon this

recognition, the adaptive immune response kicks in, and plays a key role in curtailing

or neutralizing the spread of the SARS-CoV-2 virus within the host (Zheng et al.,

2022; Qi et al., 2022; Shah et al., 2020). Specific antibodies generated by the humoral

immune response are significant in neutralizing the SARS-CoV-2 virus and have the

potential to help activated immune T cells to destroy the virus-infected cells (Zheng
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et al., 2022; Qi et al., 2022; Shah et al., 2020).

Figure 1.6: Diagrammatic Representation of the Theory Behind the Twin Mammals
(i.e., Bats and Pangolins) and Emergence of COVID-19 in Humans. Source: Anjum
(2020).

Two theories have been advanced as to the origin of SARS-CoV-2, the causative agent

of COVID-19. The first is that the virus primarily emerged via a zoonotic transfer

from wild animals or from consumption of meat of wild animals sold at the Huanan

Seafood Wholesale Market in Wuhan city (Figure 1.6) (Wang et al., 2020). Bats

and many other non-human primates in the wild are implicated for the emergence

of many of the deadly infectious diseases of humans, including SARS-CoV-2 (Figure

1.7). The second is that it came from a leak from the Wuhan Institute of Virology

(Ruiz-Medina et al., 2022; Maxmen et al., 2022; Alanagreh et al., 2020; Yuan et al.,

2020). SARS-CoV-2 is genetically similar to the severe acute respiratory syndrome

(SARS-CoV-1), which emerged out of the Guandong province of China in 2002 and

the middle eastern respiratory syndrome (MERS), which emerged from Saudi Arabia
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Figure 1.7: Transmission Pathways of Bat-borne Viral Diseases. MERS: Egyptian
Tomb Bat → Dromedary Camel → Humans; SARS: Horseshoe Bats → Palm Civet →
Humans; Sads: Horseshoe Bats → Swine; SARS-CoV-2: Horseshoe Bats → Unknown
Intermediate Host → Humans; Nipah Virus (NiV): Fruit Bats → Swine → Humans;
Ebola Virus: Angora Dog Bat (Mops Condylurus) → Unknown Intermediate Host →
Humans. Source: Yuan et al. (2020).

and Jordan (Peiris and Poon, 2021) (the biology, burden and global distribution of

these three members of the family of coronaviruses are compared in Table 1.1). SARS-

CoV-2, the causative agent of the COVID-19 pandemic, is primarily transmitted from

human-to-human through inhalation of respiratory droplets from both symptomatic

and asymptomatically-infectious humans (van den Driessche and Watmough, 2000;

Yin and Wunderink, 2018; Ngonghala et al., 2020a). The incubation period of the

disease is estimated to be between 2 and 14 days, and majority of the COVID-19
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SARS-CoV MERS-CoV COVID-19

Origin China Saudi Arabia China

Duration 2002 − 2003 2012 − to date Dec. 2019 − to date

Reservoir Bats & civet Bats/camels Bats (Pangolins)

Countries 29 27 220

Incubation period 2 − 7 days 5 days 2 − 14 days

Confirmed cases 8,000 2,519 682,465,296

Global deaths 744 866 ≈ 6.8 million

Case fatality ratio 9.5% 34.4% ≈ 99.9%

Table 1.1: Comparing Recent Coronaviruses: SARS-CoV, MERS-CoV and COVID-
19. Sources: Open Literature (Wikipedia) and (Worldometer., 2023).

infected individuals show mild or no clinical symptoms (Ngonghala et al., 2020a;

Brozak et al., 2021). Most common symptoms of the disease often resemble those

of seasonal influenza, which typically include fever, difficulty breathing, fatigue, sore

throat, and body aches (Brozak et al., 2021; Mancuso et al., 2021; Ngonghala et al.,

2020a). The elderly and those with underlying medical conditions (co-morbidities)

such as people with diabetes, hypertension, obesity, kidney disease and other condi-

tions that suppress or compromise the immune system, younger people who are in

close contact with the infected individuals, and frontline healthcare workers are also

at high risk of acquiring COVID-19 (World Health Organization, 2020; Brozak et al.,

2021; Ngonghala et al., 2020a; Gumel et al., 2021a).

1.3 Public Health Interventions

Two main types of interventions, namely non-pharmaceutical (NPI) and pharmaceu-

tical, are used to control and mitigate the burden of the COVID-19 pandemic, as

briefly described below.
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1.3.1 Non-pharmaceutical interventions

Prior to the development, and subsequent FDA-EUA of a number of safe and effective

vaccines for use in humans in December 2020, the control and mitigation strategies

against COVID-19 have been limited to, and focused on, the use of NPIs (Eikenberry

et al., 2020; Ngonghala et al., 2020a,b; Gumel et al., 2021a). In particular, since

the novel coronavirus is a respiratory disease, which is transmitted among people

through respiratory droplets produced when an infected individual coughs, sneezes,

or talks, the implementation of strict social-distancing and lockdown measures has

proven to be effective in limiting the spread of the pandemic (Ngonghala et al., 2020a;

Bourouiba, 2020; Ngonghala et al., 2020b). Another major public health strategy for

controlling the spread of COVID-19 is by contact-tracing, which involves the iden-

tification of individuals who had close contact with a confirmed SARS-CoV-2 case

within a certain time frame (e.g., two days prior to the onset of symptoms (Bi et al.,

2020)), interviewing, testing, and isolating or hospitalizing them if they have the dis-

ease (Michaud and Kates, 2020).

The use of face masks (i.e., respiratory protection) in public, hand-washing with san-

itizers and quarantine of the detected cases of COVID-19 are some other important

NPIs. The use of face masks in public, which was generally considered to be the most

significant NPI for effectively curtailing COVID-19, has historically been a common

practice to combat the transmission and the spread of respiratory diseases, dating

back to at least the 1918 pandemic caused by the H1N1 influenza A virus (Lucking-

ham, 1984; Bootsma and Ferguson, 2007; Morens et al., 2009). Furthermore, the use

of face masks may have been instrumental in limiting the community spread of the

2002/2003 SARS epidemic in many Asian counties (particularly in China, Singapore,

Hong Kong and Taiwan) (Wu et al., 2004; Lau et al., 2004). Numerous research
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studies have shown that the community wide compliance of face masks has been used

as the most effective NPI in curbing the COVID-19 pandemic (Wang et al., 2020;

Eikenberry et al., 2020; Ngonghala et al., 2020b, 2021b, 2023; Gumel et al., 2021b).

Face masks have dual purposes. If worn by a susceptible individual, they provide

efficacy against the acquisition of infection (i.e., primary protection). On the other

hand, if the wearer is already infected, masks offer efficacy against their ability to

transmit the disease to the susceptible individuals (i.e., secondary protection) (Aiello

et al., 2010, 2012; MacIntyre et al., 2009; Eikenberry et al., 2020).

Broadly, several categories of face masks exist based on their protective efficacy and

Figure 1.8: Different Types of Face Masks (with Their Pros and Cons) Used During
the COVID-19 Pandemic. Source: Infection Control (2020).

their fitting. Face masks are mainly classified in following three categories (as shown

in Figure 1.8); i.e., (a) cloth or fabric masks; which are loose fitting devices with

protective efficacy ranging from 0 to 50% (Eikenberry et al., 2020; Lindsley et al.,

2021; Ngonghala et al., 2021b), (b) surgical or procedure masks; which are also loose

fitting devices with protective efficacy about 70% (Ngonghala et al., 2021b, 2023))
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and (c) respirators (N95 masks); which are considered as tight-fitting respiratory pro-

tective devices that meet or exceed the National Institute for Occupational Safety and

Health (NIOSH) N95 standard and have protective efficacy around 100% (Lindsley

et al., 2021; Qian et al., 1998; Ngonghala et al., 2021b). However, face masks and

surgical masks are designed to be used as a source control and only have outward

efficacy (i.e., protecting the transmission of the disease from the mask wearers to the

those around them and not the protection of mask wearers from the infected indi-

viduals) whereas the respirators have both inward (i.e., primary protection against

catching the infection) and outward efficacy (i.e., source control) (Ngonghala et al.,

2021b). Furthermore, it is worth mentioning that fitting of all the mask types dis-

cussed above (which are also shown in Figure 1.8), directly co-relates with the mask-

ing efficacy (Ngonghala et al., 2021b). Poorly fitted device can eventually lead to

decreased filtration efficiency, regardless of the masking type (O’Kelly et al., 2021;

Ngonghala et al., 2021b). Furthermore, the design of face masks and surgical masks

cannot ensure the tight seal and, thus, enable significant filter bypass. However, the

construction and design of the respirators ensure tight seal (when properly fitted)

that leads to the whooping reduction of 100-fold in the concentration of particles

inside the device compared with particles outside of the device (Bergman et al., 2012;

Ngonghala et al., 2021b).

1.3.2 Pharmaceutical interventions

To limit and curtail the burden of COVID-19 pandemic in the United States, the

United States Food and Drug Authority (FDA) has authorized and deployed the

following pharmaceutical interventions, which have been mainly classified into two
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categories, namely treatments and vaccines, as briefly described below.

(A) Treatments

The United States Food and Drug Administration (FDA) has authorized three antivi-

ral drugs and monoclonal antibodies (mABs) for the treatment of COVID-infected

individuals, showing mild-to-moderate symptoms of the disease ( Centers for Disease

Control and Prevention, 2022). Following are the FDA approved pharmaceutical in-

terventions available in the United States for the treatment of individuals, who are

likely to develop severe symptoms of COVID-19 and eventually can get very sick with

the SARS-CoV-2 virus.

(A1): Antiviral drugs Treatment

The United States Food and Drug Administration (FDA) approved the first antivi-

ral drug (remdesivir ; sold under the brand name Veklury, developed by the bio-

pharmaceutical company Gilead Sciences) on October 22, 2020, for use to treat

COVID-19 patients (Cohen and Kupferschmidt, 2020). This drug is administered

via injection through the vein. Due to its limited supply, it was only reserved for use

to treat the infected individuals in hospital who display severe symptoms of COVID-

19 (Gumel et al., 2021b). Furthermore, the overall treatment cost associated with

this antiviral medication is quite high (costing around $390 per vial, this is equivalent

to $2,340 for a 5-day course of treatment, or $4,680 for a 10-day course of treatment

(Margaret Labban, 2020)).

In late December of 2021, the FDA issued Emergency Use Authorization (EUA) to

two antiviral drugs, namely, Paxlovid, consists of two separate medications packaged

together (i.e., Nirmatrelvir with Ritonavi, developed by Pfizer Inc.), be orally taken

by individuals, 12 years of age and older weighing at least 40 kg and Molnupiravir

(sold under the brand name Lagevrio, developed by Merck Inc.), be orally taken by
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individuals, 18 years of age and older (Centers for Disease Control and Protection,

2022; Centers for Disease Control and Prevention, 2022). Each of these drugs is

used to treat mild-to-moderate COVID-19 in individuals (must be taken within five

days after symptoms begin) who are at high risk for progression to severe COVID-

19, including hospitalization or death (Food and Drug Administration and others,

2022). Both of these antiviral drugs primarily work by altering the genetic code of

SARS-CoV-2 and inhibiting it from replicating (Ngonghala et al., 2023). Generally,

all the FDA approved antivirals for the treatment of COVID-19 work by targeting

specific parts of the SARS-CoV-2 virus to curtail its multiplying effect in the human

body. Paxlovid, which is administered as three tablets (i.e., 2 nirmatrelvir tablets,

150 mg and 1 ritonavir tablet, 100 mg) taken together orally twice daily (i.e., morn-

ing and evening, same time each day) for five days, is estimated to reduce the risk of

hospitalization or death by 88% (Centers for Disease Control and Protection, 2022).

Molnupiravir, which is administered as four 200 milligram capsules taken orally ev-

ery 12 hours for five days, is effective in reducing hospitalization or death by 31%

(Ngonghala et al., 2023). Furthermore, the FDA EUA states that Molnupiravir is not

recommended for use in pregnant patients (National Institute of Health, 2022).

(A2): Monoclonal Antibody Treatment

On February 11th, 2022, the United States Food and Drug Administration (FDA)

issued an EUA for a new monoclonal antibody (named Bebtelovimab, developed by

AbCellera and Eli Lilly) for the treatment of the Omicron variant of COVID-19 (for

individuals having mild-to-moderate symptoms) ( U.S. Food and Drug Authority,

2022). Monoclonal antibody treatment works by helping the immune system to rec-

ognize and respond more effectively to the SAR-CoV-2 virus ( Centers for Disease

Control and Prevention, 2022). Bebtelovimab contains man made antibodies (not the
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original SARS-CoV-2 virus) that bind to the spike protein of the SARS-CoV-2 virus

and thus block the virus from entering the human body ( Centers for Disease Control

and Prevention, 2022). Bebtelovimab, which is administered for ages 12 years and

older, as a single Intravenous (IV) injection, which must be taken within 7 days of

onset of symptoms ( U.S. Department of Health & Human Services, 2022). Further-

more, there is no cost associated with the antibodies themselves, but there may be

treatment fees ( U.S. Department of Health & Human Services, 2022).

(B) Vaccines

The most-awaited breakthrough and game-changer in the fight against COVID-19

was announced on December 11, 2020, when the FDA gave emergency use autho-

rization (EUA) for the first vaccine against the pandemic (Pfizer, 2020; Self et al.,

2021). This vaccine, developed by Pfizer-BioNtech and based on the delivery of RNA

(mRNA) encoding the SARS-CoV-2 spike protein (Mancuso et al., 2021), was ini-

tially administered in a two-dose regimen 3 to 8 weeks apart. It showed 95% efficacy

against symptomatic COVID-19 in clinical trials. The Pfizer vaccine was initially

approved for use for people 16 years of age and older, but later also approved for use

for infants and other children under the age of 16 (Katella, 2021). A week later (De-

cember 18, 2020), the FDA gave an EUA for another vaccine, developed by Moderna

Inc. (Mahase, 2020; Self et al., 2021). This vaccine, also based on mRNA technology,

is administered in a two-dose regimen 4 to 8 weeks apart (and it showed efficacy of

about 94.1% in initial clinical trials) (Mancuso et al., 2021; Katella, 2021). The Mod-

erna vaccine is also approved for use in people 6 months and older (Katella, 2021).

The Janssen vaccine, developed by Johnson & Johnson, received FDA EUA on Febru-

ary 27, 2021. It is administered as a single dose (it showed 67% efficacy in preventing

moderate to severe COVID-19 14 days post-vaccination, in clinical trials (Mancuso
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et al., 2021; Safdar et al., 2023; Katella, 2021)). Unlike the mRNA-based Pfizer and

Moderna vaccines, the Johnson & Johnson vaccine was developed based on using

adenovirus vector encoding the SARS-CoV-2 spike protein.

The most recent vaccine to receive FDA EUA on July 13, 2022, is the Novavax

COVID-19 Vaccine (available with brand names Nuvaxovid and Covovax). Unlike

the mRNA and vector vaccines, this is a protein adjuvant (i.e., an ingredient used to

strengthen the immune response). It is administered in individuals 18 years of age

and older. Two doses of the vaccine administered 3 to 8 weeks apart showed 90% ef-

ficacy against lab-confirmed, symptomatic infection and 100% against moderate and

severe disease in Phase 3 trial (Dunkle et al., 2022). Table 1.2 compares the different

features of the aforementioned four vaccines being deployed and administered in the

United States. The table given below discusses the various classes of vaccines (or

vaccine types) being administered in the United States.

Developer Pfizer-BioNTech Moderna J & J Novavax

Platform mRNA-based mRNA-based adenovirus vector protein adjuvant

Shell life cold freezer (−94F) standard freezer standard freezer refrigerator

FDA-EUA 12/11/2020 12/18/2020 02/27/2021 06/13/2022

Efficacy 95% 94.1% 67% 90%

Doses 3 (8 weeks apart) 4 (8 weeks apart) single dose 3 (8 weeks apart)

Age group 6 months & older 6 months & older 18 years & older 12 years & older

Cost/dose ≈ $20 ≈ $20− $25 ≈ $10 ≈ $16

Table 1.2: Comparative Summary of the COVID-19 Vaccines Currently Used in The
United States (Katella, 2021). Notation: J&J Represents the Johnson & Johnson
Vaccine.

(B1): mRNA vaccines

Numerous studies have shown that researchers have been studying and working on

messenger RNA (abbreviated as mRNA) vaccines for decades (Schlake et al., 2012;
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Dolgin et al., 2021; Centers for Disease Control and Prevention, 2020), and that

mRNA vaccines have been studied in the past, for instance, in the context of in-

fluenza, Zika, rabies, and cytomegalovirus (CMV) (Centers for Disease Control and

Prevention, 2020). The two mRNA vaccines developed against COVID-19 (i.e., the

Pfizer and Moderna vaccines) work by sending instructions through a small piece of

mRNA (i.e., a protein found on the outer surface of virus) to the host cells in the

body for making copies of a spike protein (like the spikes, as shown in Figure 1.5).

In response, it triggers the immune response in our bodies which immediately rec-

ognizes that this is a foreign pathogen, and the immune system reacts by activating

immune cells and producing antibodies (i.e., a specialized protein) (Jain et al., 2021).

The antibodies produced through this process remain active in our bodies even after

the original protein (that was inserted in the body) was attacked and destroyed by

these antibodies. The developed antibodies recognize and attack the real SARS CoV-

2 spike protein, if an individual becomes exposed to the actual SARS-CoV-2 virus.

(Katella, 2021; Centers for Disease Control and Prevention, 2020).

(B2): Adenovirus vaccine

Adenovirus vector vaccine (on which the Johnson & Johnson vaccine is based on) is

a carrier vaccine and works by sending a “harmless” adenovirus (i.e., a virus that

cause common illnesses like fevers and coughs) as a shell to carry genetic code on

the spike proteins to the cells (Katella, 2021). The genetic code being delivered to

the cells is a message that will instruct the cells to temporarily make a few copies

of the spike protein just to activate the immune system (American Society of Gene

plus Cell Therapy, 2021; Centers for Disease Control and Prevention, 2020). The

adenovirus vaccine cannot make the vaccinated individual to become sick because

the genetic code sent to the cells are not given enough instructions to build the full
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virus (Katella, 2021; American Society of Gene plus Cell Therapy, 2021). Once the

genetic code is inside the cells, the cells produce a spike protein to train the body’s

immune system to produce antibodies and activates T-cells (i.e. memory cells) to

protect against an actual COVID-19 infection (Katella, 2021; Centers for Disease

Control and Prevention, 2020).

(B3): Protein adjuvant vaccine

The protein adjuvant (sub-unit) vaccine (on which the Novavax vaccine is based on)

works by sending the spike protein of the coronavirus itself, but formulated as a

nano-particle (i.e., the harmless spike protein), which cannot cause disease (Katella,

2021). This stimulates the immune system to produce antibodies and T-cell immune

responses to protect against SARS-CoV-2 infection (Katella, 2021; Centers for Dis-

ease Control and Prevention, 2020).

Booster vaccine doses

Numerous research studies have shown that the protection efficacy of all the anti-

COVID vaccines wanes over time (Gumel et al., 2021b; Ngonghala et al., 2023; Saf-

dar et al., 2023; Curley, 2021). Center for Disease Control and Prevention (CDC)

recommended the booster doses to overcome this waning effect of mRNA vaccines

(McConeghy, 2022; Ferdinands et al., 2022). Booster dose is an additional admin-

istration of the vaccine given to those individuals who have completed the primary

vaccination series. Booster doses are further classified into two categories (based

on their effectiveness against the strains of SARS-CoV-2) (Washam, 2022), namely

monovalent and bivalent, as briefly described below.

(a): Monovalent boosters

On November 19th, 2021, the first booster dose was recommended by CDC (i.e., an
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extra dose of vaccine administered after the primary dose) specifically for those in-

dividuals who are at highest risk of serious disease and for the frontline healthcare

workers (Pacific and Hasan, 2021). In late March 2022, the FDA authorized a second

booster shot of COVID-19 vaccines for vulnerable populations in the United States

(i.e., for people 50 years of age and older, and for individuals with certain immuno-

compromising conditions who are at higher risk of severe disease, hospitalization and

death) (Safdar et al., 2023). These boosters are called “monovalent”, because they

were designed to protect against the original virus that causes COVID-19. They also

provide some protection against the Omicron variant (Centers for Disease Control

and Prevention and others, 2022).

(b): Bivalent boosters

Bivalent boosters (which protect against both the original SARS-CoV-2 variant and

the Omicron variants BA.4 and BA.5) was authorized by FDA in August 2022 and

became available from September 2, 2022 (Centers for Disease Control and Preven-

tion and others, 2022). Most adults (i.e., 18 years and older) should get an updated

Pfizer-BioNTech or Moderna bivalent booster at least 2 months after their primary

Pfizer, Moderna or Novavax, two dose vaccine series, or at least 2 months after 1st

dose of Johnson & Johnson vaccine (Katella, 2021; Centers for Disease Control and

Prevention and others, 2022).

Emergence of SARS-CoV-2 Variants

Despite the rapid development and deployment of the effective vaccines, the efficacy

of all the vaccines are threatened by the emergence of deadly and highly-contagious

SARS-CoV-2 variants of concern (notably the Alpha, Beta, Gamma, Delta and Omi-

cron variants, as tabulated with their lineages and date of first detection, in Table

1.3) (Mahase, 2021; Gómez-Carballa et al., 2021; Karim and Karim, 2021; Koyama
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et al., 2020). Furthermore, numerous clinical studies have shown that the efficacy

of the SARS-CoV-2 vaccines wane over time (Ngonghala et al., 2023; Safdar et al.,

2023; Ngonghala et al., 2021b; Gumel et al., 2021b). To overcome the waning effect of

vaccine-derived immunity, the FDA approved the administration of booster vaccine

doses, for three of the four FDA-EUA vaccines (Pfizer vaccine, Moderna vaccine and

Johnson & Johnson vaccine), during August-November of 2021. Booster vaccine was

approved for Novavax in October of 2022. Primarily, the booster dose (for persons

aged 18 years and above) were approved because of waning vaccine effectiveness over

time (Fast et al., 2021).

VoC Lineage (location) Date of first detection

Original A (China) December 31, 2019

Alpha B.1.1.7 (UK) September 20, 2020

Beta B. 1.135 (South Africa) May, 2020

Delta B.1.617.2 (India) October 5, 2020

Gamma P.1 or B.1.1.28.1 (Brazil) November, 2020

Omicron B.1.1.529 (South Africa) November 24, 2021

BA.2 (UK/India/Denmark) December, 2021

BA.5 (South Africa) January, 2022

XBB.1.5 (United States) October, 2022

Table 1.3: Lineage and Date of First Detection of Main Variants of Concern (VoC)
for COVID-19 (He et al., 2021; Parums, 2021; Yale Medicine, 2023).

1.4 Outline of the Dissertation

This dissertation contains two main technical chapters (i.e., Chapters 2 and 3), while

Chapter 1 provides a comprehensive introduction of the dissertation. Below is a brief
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description of the content of each of the two technical chapters.

Chapter 2 of this dissertation contains material on modeling the population-level im-

pact of three of the four anti-COVID vaccines approved by the United States Food and

Drug Administration (FDA), namely the Pfizer, Moderna and the Johnson & Johnson

vaccines (U.S. Food and Drug Administration and others, 2009, 2021b; Pfizer, 2020),

on the transmission dynamics and control of the SARS-CoV-2 pandemic in the United

States. To achieve the objectives of this chapter, a new basic model is formulated for

the spread of COVID-19 in the presence of vaccination. The basic model, which takes

the form of a 9-dimensional deterministic system of nonlinear differential equations,

is rigorously analysed to gain insight into its dynamical features. The basic model

was fitted using observed daily case data for the period where the Omicron BA.1

variant of SARS-CoV-2 first emerged in the United States (i.e., starting from the fall

of 2021) (Dong et al., 2020). The model is shown to undergo a vaccine-induced back-

ward bifurcation, where two stable equilibria co-exists when the control reproduction

number of the model is less than one. Two main sufficient conditions for the existence

of the backward bifurcation were identified. When the two sufficient conditions are

violated (so that backward bifurcation does not occur), the analyses revealed that

the disease-free equilibrium of the model is globally-asymptotically stable when the

associated control reproduction number of the model is less than one.

A theoretical expression for the vaccine-induced herd immunity threshold is also de-

rived. It is shown that the basic model has a unique endemic equilibrium, for a

special case, whenever the associated reproduction number exceeds one. This equilib-

rium is shown, using a Krasnasolskii sub-linearity approach (Hethcote and Thieme,

1985; Safi and Gumel, 2010; Melesse and Gumel, 2010; Esteva et al., 2009), to be

locally-asymptotically stable when it exists. Numerical simulations are carried out
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to determine the optimal vaccination coverage level needed to achieve herd immunity

for the various vaccine types. Extensive numerical simulations are also carried out

to assess the community-wide impact of masking as a singular intervention and the

combined impact of vaccination with a public face mask use strategy, as measured in

terms of reduction (of both) in the value of control reproduction number and on the

daily number of new COVID-19 cases in the United States. Detailed global sensitivity

analysis of the parameters of the model is also carried out to identify the parameters

that have the most effect or influence on the dynamics of the disease (with respect to

a chosen response function).

Chapter 3 of this dissertation is based on modeling the impact of waning and boost-

ing of natural and vaccine-derived immunity against the BA.1 Omicron variant in

the United States. This work is motivated by the fact that the efficacy of each of

aforementioned FDA-approved SARS-CoV-2 vaccines wanes over time (Gumel et al.,

2021b; Ngonghala et al., 2021b, 2023; Safdar et al., 2023). Consequently, the FDA

approved the administration of booster doses, for each of the three FDA-approved

vaccines, during the period between August and November of 2021 (Fast et al., 2021).

As of March 9, 2023, at least 69.3% of the population of the United States is fully-

vaccinated with any of the approved vaccines (Center for Disaster Philanthropy, 2023)

(and approximately 16.3% have received a bivalent booster shot, i.e., the highest level

of protection against the virus (Centers for Disease Control and Prevention, 2023a;

Center for Disaster Philanthropy, 2023)).

The objective of this chapter is to use mathematical modeling approaches to asses

the population-level impact of waning and boosting of both the natural and vaccine-

derived immunity on the transmission dynamics and control of the pandemic in the

United States. To achieve this objective, the basic model developed in Chapter 2
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was extended to explicitly account for the waning and boosting of the two immunity

types. In addition to conducting the rigorous analysis of the model, the extended

model was fitted using available case data for COVID-19 (starting from the onset of

the Omicron variant) in the United States.
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Chapter 2

BASIC VACCINATION MODEL AGAINST COVID-19

2.1 Introduction

COVID-19, the pneumonia-like illness that emerged out of Wuhan city in China late

in December of 2019, has caused a devastating pandemic on a scale never before seen

since the 1918/1919 influenza pandemic (Liang et al., 2021; Safdar and Gumel, 2023).

It has, as of March 19, 2023, caused over 682 million confirmed cases and over 6.8

million deaths globally (Worldometer., 2023; Dong et al., 2020). The United States

suffers the highest burden of the pandemic globally (with over 105 million confirmed

cases and over 1.1 million deaths, as of March 19, 2023) (Worldometer., 2023) (the in-

dex case for COVID-19 was reported in the United States on January 21, 2020 (Haynes

et al., 2020; Safdar and Gumel, 2023)). For most parts of the year 2020, the control

and mitigation efforts against SARS-CoV-2 in the United States were restricted to

the use of non-pharmaceutical interventions, such as social-distancing, quarantine of

suspected cases, isolation of those with symptoms of SARS-CoV-2, the use of face

coverings (i.e., face masks), community lockdowns, contact-tracing, etc. (Ngonghala

et al., 2020a,b, 2021a; Eikenberry et al., 2020; Ngonghala et al., 2021b; Safdar and

Gumel, 2023), until the Food and Drug Administration (FDA) provided Emergency

Use Authorization (EUA) to two safe and highly-efficacious vaccines (developed by

Pfizer Inc. and Moderna Inc., respectively) in December of 2020 (Pfizer, 2020; Food

et al., 2020; Safdar and Gumel, 2023). Each of these two FDA-EUA vaccines was

primarily administered in a two-dose regimen, within three to four weeks apart, and

each offered an estimated protective efficacy against symptomatic COVID-19 infec-
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tion of about 95% (Mahase, 2020; Self et al., 2021; Safdar and Gumel, 2023). Another

vaccine, developed by Johnson & Johnson (administered as a single dose), received

FDA-EUA in late February 2021 (U.S. Food and Drug Administration and others,

2021b) (this vaccine has an estimated 75% efficacy in preventing severe/critical illness

caused by COVID-19 (Sargent et al., 2021)). The rapid development and deployment

of effective anti-COVID vaccines has played a vital role in minimizing and mitigating

the burden of the pandemic, in jurisdictions with high coverage of these vaccines,

around the world (Polack et al., 2020; Bar-On et al., 2021; Safdar and Gumel, 2023).

This chapter focuses on using mathematical modeling approaches, coupled with data

rigorous qualitative and data analytics together with computation, to assess the

population-level impacts of the aforementioned three FDA-EUA vaccines on curtailing

and mitigating the burden of the SARS-CoV-2 pandemic in the United States. Nu-

merous clinical studies have shown that the efficacy of all the FDA-approved SARS-

CoV-2 vaccines wane over time (with estimated waning time of about 9 months)

(Gumel et al., 2021b; Dan et al., 2021; Safdar et al., 2023; Ngonghala et al., 2023;

Curley, 2021; Safdar and Gumel, 2023). Consequently, this chapter will specifically

assess the population-level impact of the vaccination program (based on the three

FDA-EUA vaccines), keeping in mind the waning efficacies of the approved vaccines,

on the dynamics of the current predominant SARS-CoV-2 variant (Omicron) in the

United States. The population-level impact of the use of face masks, as a singular

intervention and its combination with vaccination, will also be assessed (Safdar and

Gumel, 2023).

Numerous mathematical models, of various types (such as compartmental (Ngong-

hala et al., 2020a; Eikenberry et al., 2020; Iboi et al., 2020b; Ngonghala et al., 2020b;
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Gumel et al., 2021a; Ngonghala et al., 2021a; Schneider et al., 2020), agents-based

(Ferguson et al., 2020; Wilder et al., 2020; Cuevas, 2020), network (Xue et al., 2020;

Thurner et al., 2020; Firth et al., 2020) and statistical models (Srivastava and Chow-

ell, 2020; Tariq et al., 2020; IHME COVID-19 health service utilization forecasting

team, 2020)) have been formulated and used to gain insight and understanding into

the transmission dynamics and control of the COVID-19 pandemic (with majority

of these models being of the form of compartmental deterministic systems of non-

linear differential equations (Ngonghala et al., 2020a; Eikenberry et al., 2020; Iboi

et al., 2020b; Ngonghala et al., 2020b; Gumel et al., 2021a; Ngonghala et al., 2023)).

In this chapter, a deterministic model will also be developed and used to study the

dynamics of the COVID-19 pandemic. The model (which is relatively basic) will

be rigorously analysed to, among others, derive the threshold vaccination coverage

needed to achieve herd immunity in the United States (the determination of this

threshold provides the sufficient condition, in parameter space, for effectively curtail-

ing and eliminating the pandemic in a population) (Safdar and Gumel, 2023). Since

the United States has been experiencing the brunt of the burden of the COVID-19

pandemic globally (i.e., the United States has so far recorded the highest number of

confirmed cases and mortality) (Worldometer., 2023; Dong et al., 2020), the emphasis

of this chapter is on studying the dynamics of the COVID-19 pandemic (i.e., the cur-

rent predominant Omicron variant) in the United States. Consequently, the model to

be developed in this chapter will be parameterized using the daily new case data for

the COVID-19 pandemic during the onset of the Omicron variant in the United States

(Safdar and Gumel, 2023). The model will also be used to asses the population-level

impact of the use of face masks (of various types and efficacy) on the disease dynam-

ics. The chapter is organized as follows. The model for COVID-19 pandemic, in the

presence of an imperfect vaccine, is formulated in Section 2.2. In addition to fitting
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the model using the daily new case data, the basic qualitative properties of the model

are also presented in this section. The model is rigorously analyzed, with respect

to the existence and asymptotic stability properties of its equilibria (disease-free and

endemic), in Section 2.3. Rigorous analysis for, and numerical illustration of, the

existence of the dynamic phenomenon of backward bifurcation in the model are also

provided. Conditions for achieving community-wide vaccine-derived herd immunity

are derived and global parameter sensitivity analyses are also carried out in this sec-

tion. Numerical simulations are reported in Section 2.4. The results of this chapter

are discussed and summarized in Section 2.5 (Safdar and Gumel, 2023).

2.2 Formulation of Vaccination Model for COVID-19

To develop the vaccination model for the transmission dynamics of COVID-19 in a

population, the total population at time t, denoted by N(t), is sub-divided into the

mutually-exclusive compartments of susceptible individuals (S(t)), fully-vaccinated

individuals (V ((t)), exposed or latent individuals (i.e., newly-infected individuals

who are not yet infectious; E(t)), pre-symptomatic infectious individuals (Ip(t)),

symptomatically-infectious individuals (Is(t)), asymptomatically-infectious individ-

uals (Ia(t)), hospitalized individuals (Ih(t)), recovered individuals with natural im-

munity (Rn(t)) and recovered individuals with natural plus vaccine-derived immunity

(Rnv(t)), so that (Safdar and Gumel, 2023):

N(t) = S(t) + V (t) + E(t) + Ip(t) + Is(t) + Ia(t) + Ih(t) +Rn(t) +Rnv(t).

The model for COVID-19 dynamics in a population, that incorporates the use of

any of the aforementioned imperfect vaccines, is given by the following deterministic

system of nonlinear differential equations (where, a dot represents differentiation with

respect to time t) (Safdar et al., 2023). The flow diagram of the vaccination model is
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depicted in Figure 2.1, and the description of the state variables and parameters of

the vaccination model are tabulated in Tables 2.1 and 2.2, respectively (Safdar and

Gumel, 2023):

Ṡ = Π+ ωvV − (λ+ ξv + µ)S,

V̇ = ξvS − [(1− εv)λ+ ωv + µ]V,

Ė = λ[S + (1− εv)V + (1− εn)Rn + (1− εnv)Rnv]− (σE + µ)E,

İp = σEE − (σp + δp + µ)Ip,

İs = rσpIp − (ϕs + γs + δs + µ)Is,

İa = (1− r)σpIp − (γa + δa + µ)Ia,

İh = ϕsIs − (γh + δh + µ)Ih,

Ṙn = γsIs + γaIa + γhIh − [(1− εn)λ+ ξv + µ]Rn,

Ṙnv = ξvRn − [(1− εnv)λ+ µ]Rnv,

(2.1)

where, the infection rate (or force of infection), λ, is given by (Safdar and Gumel,

2023):

λ =
(βpIp + βsIs + βaIa + βhIh)

N
, (2.2)

with βp, βs, βa and βh representing, respectively, the effective contact rates for pre-

symptomatic (Ip), symptomatic (Is), asymptomatic (Ia) and hospitalized (Ih) infec-

tious individuals. In the vaccination model (2.1), Π is the rate of recruitment of

individuals into the population, ωv is the vaccine waning rate for fully-vaccinated

individuals (i.e., the rate at which individuals in the V class revert to the wholly-

susceptible class, S), λ is the infection rate (defined in Equation (2.2)), ξv is the per

capita vaccination rate and µ is the natural death rate. The parameter 0 < εv < 1
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Figure 2.1: Flow diagram of the vaccination model (2.1) (Safdar and Gumel, 2023).

is the average protective efficacy of the vaccine for fully-vaccinated susceptible in-

dividuals (i.e., vaccine efficacy for individuals in the V class), while 0 ≤ εn < 1 is

the efficacy of natural immunity to prevent recovered individuals (in the Rn class)

from acquiring future SARS-CoV-2 infection and 0 < εnv ≤ 1 is the efficacy of natu-

ral and vaccine-derived immunity to prevent future SARS-CoV-2 infection of recov-

ered individuals (in the Rnv, class) (Safdar and Gumel, 2023). Exposed individuals

progress to the pre-symptomatic stage at the rate σE, and pre-symptomatic indi-

viduals progress to either become symptomatically-infectious, at a rate rσp (where,

0 ≤ r ≤ 1 is the proportion of these individuals that show clinical symptoms), or

become asymptomatically-infectious, at the rate (1− r)σp. Symptomatic individuals

are hospitalized at a rate ϕs, and infectious individuals in stage Ik recover at a rate

γk (with k = {s, a, h}). Finally, disease-induced mortality occur in the Ij class at a
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rate δj (j = {p, s, a, h}) (Safdar et al., 2023; Safdar and Gumel, 2023).

Some of the main assumptions made in formulating the vaccination model (2.1) are

(Safdar and Gumel, 2023):

(a) A homogeneously-mixed population: it is assumed that the population is well-

mixed, so that every member of the community is equally likely to mix with

(and acquire infection from or transmit infection to) every other member of the

community.

(b) Vaccinated susceptible individuals (in the V class) are assumed to have received

the full required doses (i.e., two doses for the Pfizer or the Moderna vaccine,

one dose for the Johnson & Johnson vaccine), and that enough time has elapsed

for the body to develop the full vaccine-derived immunity.

(c) The three SARS-CoV-2 vaccines that received FDA Emergency Use Authoriza-

tion (i.e., the Pfizer, Moderna and Johnson & Johnson vaccines) are imperfect

(Food and Drug Administration and others, 2020; U.S. Food and Drug Ad-

ministration and others, 2009, 2021b) (i.e., the vaccines offer partial protective

immunity with efficacy 0 < εv < 1), which wanes over time (at a rate ωv)

(Curley, 2021; Gumel et al., 2021b)). In other words, vaccinated individuals

can experience breakthrough infection (Oliver et al., 2020; U.S. Food and Drug

Administration and others, 2021a).

(d) It is assumed that vaccine-derived immunity may wane over time in vaccinated

individuals (V ), resulting, ultimately, in reverting to the wholly-susceptible class

(S) (Gumel et al., 2021b).

(e) It is assumed, for mathematical tractability, that recovered individuals in the

Rn and Rnv classes do not lose their natural (infection-acquired) immunity. This
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assumption is relaxed in the model to be developed in Chapter 3.

(f) Vaccination is only offered to wholly-susceptible individuals or those who recov-

ered naturally but their natural immunity has waned completely or recovered

individuals who had acquired both natural and vaccine-derived immunity but

their immunity has completely waned over time (i.e., the vaccines are not ad-

ministered to individuals who are currently infected with SARS-CoV-2).

(g) It is assumed that presymptomatically-infectious individuals do not recover

while at this class (owing to the short average duration in this compartment).

They recover only after transitioning to the symptomatic infectious class (at

the rate rσp) or to the asymptomatically-infectious class (at the rate (1− r)σp).

It is also assumed that individuals in the presymptomatic and asymptomatic

infectious classes do not die from SARS-CoV-2 infection (so that δp and δa are

set to zero in the numerical simulations) ( Mayo Clinic, 2022; Tan et al., 2021;

Vermund and Pitzer, 2021).

The vaccination model (2.1) extends numerous other (relatively basic) models for

COVID-19 dynamics that incorporate the use of a vaccine, such as those in Gumel

et al. (2021a); Iboi et al. (2020b), by inter alia (Safdar and Gumel, 2023):

(a) Adding an epidemiological class for pre-symptomatic infectious individuals (the

vaccination model in Gumel et al. (2021a) does not explicitly account for disease

transmission by pre-symptomatic infectious individuals).

(b) Incorporating two classes for recovered individuals based on immunity status

(i.e., recovered individuals with either natural or vaccine-derived immunity).

Only one recovered compartment is considered in Gumel et al. (2021a); Iboi
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State variables Description

S Population of unvaccinated (wholly)-susceptible individuals

V Population of fully-vaccinated susceptible individuals

E Population of exposed (newly-infected) individuals

Ip Population of pre-symptomatic infectious individuals

Is Population of infectious individuals with clinical symptoms of

the disease

Ia Population of asymptomatically-infectious individuals

Ih Population of hospitalized individuals

Rn Population of recovered individuals with natural immunity

(i.e., unvaccinated)

Rnv Population of recovered individuals with both natural and

vaccine-derived immunity

Table 2.1: Description of the State Variables of the Vaccination Model (2.1) (Safdar
et al., 2023; Safdar and Gumel, 2023).

et al. (2020b).

(c) Allowing for the re-infection of recovered individuals. This is not considered

in Gumel et al. (2021a); Iboi et al. (2020b). Furthermore, this study will con-

tribute to the literature on the rigorous analyses of relatively basic vaccination

models for COVID-19 by giving rigorous results for the existence and asymp-

totic stability of an endemic equilibrium of the (special case of) vaccination

model (2.1).
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Parameter Description

Π Recruitment rate

βp(βs)(βa)(βh) Effective contact rate for individuals in the Ip(Is)(Ia)(Ih)

compartment

ξv Per capita vaccination rate

µ Natural death rate

r Proportion of pre-symptomatic individuals who show clinical

symptoms of the disease

ωv Waning rate of fully-vaccinated individuals

εv Vaccine efficacy for fully-vaccinated individuals

εn Efficacy of natural immunity to prevent re-infection of

recovered individuals in the Rn class

εnv Efficacy of natural and vaccine derived immunity to prevent

re-infection of recovered individuals in the Rnv class

σE Progression rate from exposed class to pre-symptomatic class

σp Progression rate from pre-symptomatic class to either

symptomatic or asymptomatic class

γk(k = {s, a, h}) Recovery rate for individuals in the Is, Ia and Ih class,

respectively

ϕs Hospitalization rate of individuals with clinical symptoms of

the disease

δj(j = {p, s, a, h}) Disease-induced mortality rate for individuals in the Ip, Is, Ia

and Ih class, respectively

Table 2.2: Description of the Parameters of the Vaccination Model (2.1) (Safdar
et al., 2023; Safdar and Gumel, 2023).
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2.2.1 Data fitting and parameter estimation

The vaccination model (2.1) contains 22 parameters. Although the values of some

of these parameters are known from the literature (as tabulated in Table 2.3), and

the values of some other parameters are unknown. Specifically, the values of the ef-

fective contact rate parameters (βp, βa, βa and βh) are unknown. We fit the model

with available data for COVID-19 for the United States, and use the fitted model to

estimate the best values for the four unknown parameters. For fitting purposes, we

use the daily new case data for the United States, obtained from the Johns Hopkins

University COVID-19 repository (Dong et al., 2020), for the period between Novem-

ber 28, 2021 (when the Omicron variant first emerged in the United States) to March

23, 2022 (Safdar and Gumel, 2023). The data fitting is done by splitting the data into

two segments. The first segment of the data, from November 28, 2021 to February

23, 2022 (i.e., the region to the left of the dashed vertical cyan line in Figure 2.2),

was used to fit the model (2.1) and to estimate the unknown parameters (Safdar

et al., 2023; Ngonghala et al., 2023). The second segment (from February 24, 2022 to

March 23, 2022) was used to cross validate the model (Safdar et al., 2023; Ngonghala

et al., 2023). The model fitting was done using a standard nonlinear least squares

approach, which involves using the inbuilt MATLAB’s minimization function (i.e.,

lsqcurvefit) to minimize the sum of the squared differences between each observed

daily new cases data points and the corresponding daily new cases points obtained

from the vaccination model (2.1) (i.e., rσpIp) (Safdar and Gumel, 2023).

Bootstrapping technique was used for the parameter estimation with 95% confidence

intervals (Chowell, 2017; Ngonghala et al., 2020a; Banks et al., 2009; Safdar and

Gumel, 2023). The process of bootstrapping involves producing a large collection of

simulated data sets from a given data set by sampling from this given data set with
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replacement and then using each generated data set for the parameter estimation

(Ngonghala et al., 2023, 2021b; Safdar and Gumel, 2023). The inbuilt bootstrapping

function in MATLAB R2019b (i.e., bootstrp) was used to generate 10,000 bootstrap

replicates to sample the residuals from the initial parameter estimation. Furthermore,

the bootstrap data sets are generated by adding the re-sampled residuals to the best

fit curve (Ngonghala et al., 2023; Safdar and Gumel, 2023). Finally, the vaccination

model (2.1) was then fitted to each bootstrap data set to create the bootstrap dis-

tribution of the estimated parameters. The inbuilt MATLAB R2019b function (i.e.,

prctile) is used for the bootstrap distribution to estimate the 95% credible intervals

of the estimated parameters. Furthermore, it is significant to mention that fitting

the model (2.1) to the daily new confirmed case data is much accurate data fitting

approach which avoid mistakes that arise when cumulative case data is used for fit-

ting the deterministic models (King et al., 2015; Ngonghala et al., 2023; Safdar and

Gumel, 2023). The values of the unknown parameters, which are estimated from the

model fitting, are presented in Table 2.4.

The results obtained from fitting the vaccination model (2.1) with the observed daily

new case data, depicted in Figure 2.2, show a very good fit for the model output (blue

curve) and the observed daily new case data (red dots) (Safdar et al., 2023). This fig-

ure also shows a very good fit for the cross validation component of the fitting (green

curve) of Figure 2.2. This segment of Figure 2.2 shows that the vaccination model

(2.1) cross validates the observed daily new case data for the period from February

23, 2022 to March 23, 2022 perfectly (solid green curve) (Safdar et al., 2023; Safdar

and Gumel, 2023). The cross-validated model was used to make prediction for the

trajectory of the pandemic for a five-week period after the cross validation period

(March 24, 2022; as highlighted by the region to the right of the dashed vertical black

line), as illustrated by the solid magenta curve in Figure 2.2 (Safdar et al., 2023;
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Safdar and Gumel, 2023).

Figure 2.2: Time Series Illustration of the Least Squares Fit of the Vaccination
Model (2.1), Showing the Model’s Output for the Daily New Cases in the United
States (Blue Curve) Compared to the Observed Confirmed Daily New Cases for the
United States (Red Dots) from November 28, 2021 to February 23, 2022 (Segment to
the Left of The Dashed Vertical Cyan Line), Using the Fixed and Estimated (Fitted)
Baseline Parameter Values given in Tables 2.3 and 2.4, Respectively. The Segment
from February 24, 2022 To April 30, 2022 (i.e., Solid Green and Magenta Curves or
the Entire Segment to The Right of the Dashed Cyan Vertical Line) Illustrates the
Performance of the Vaccination Model (2.1) in Predicting the Daily New COVID-19
Cases in the United States (Safdar et al., 2023; Safdar and Gumel, 2023).

2.2.2 Basic qualitative properties

Before carrying out the asymptotic analysis and numerical simulations of the vaccina-

tion model (2.1), it is instructive to explore its basic qualitative features with respect

to its well-posedness (i.e., with respect to the non-negativity, boundedness and in-

variance of its solutions). First of all, since the vaccination model (2.1) monitors

the temporal dynamics of human populations, all its parameters are non-negative.
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Parameter Baseline Value Source

σE 1/5 day−1 Ngonghala et al. (2023)

σp 1/2 day−1 Linton et al. (2020)

r 0.095 (dimensionless) Weintraub (2022)

(1− r) 0.905 (dimensionless) Weintraub (2022)

γs 1/10 day−1 Gumel et al. (2021b); Mancuso et al. (2021)

γa 1/5 day−1 Kissler et al. (2020)

γh 1/8 day−1 Kissler et al. (2020)

ωv 1/274 day−1 Curley (2021)

ϕs 1/5 day−1 Linton et al. (2020)

ξv 1.9 × 10−5 day−1 Ngonghala et al. (2023)

Π 11,400 day−1 Ngonghala et al. (2021b)

µ 3.4 × 10−5 day−1 Ngonghala et al. (2021b)

δs 4.9804 × 10−5 day−1 Safdar et al. (2023)

δh 5.0 × 10−5 day−1 Ngonghala et al. (2021b)

δp 0 day−1 Tan et al. (2021); Mayo Clinic (2022)

δa 0 day−1 Vermund and Pitzer (2021); Mayo Clinic (2022)

εv 0.85 (dimensionless) Safdar et al. (2023)

εn 0.85 (dimensionless) Safdar et al. (2023)

εnv 0.95 (dimensionless) Safdar et al. (2023)

Table 2.3: Baseline Values of the Fixed Parameters of the Vaccination Model (2.1)
(Safdar et al., 2023; Safdar and Gumel, 2023).
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Parameter Estimated Value 95% Confidence Interval

βp 0.2309 day−1 [0.2177− 0.2474] day−1

βs 9.9986× 10−4 day−1 [1.0× 10−4 − 9.9× 10−4] day−1

βa 0.5429 day−1 [0.5342− 0.5523] day−1

βh 4.9989 ×10−5 day−1 [1.0×10−6 − 4.9× 10−5] day−1

Table 2.4: Baseline Values of the Four Fitted (Estimated) Parameters (and Their
Confidence Intervals (CIs)) of the Vaccination Model (2.1), Obtained by Fitting the
Model with the Observed Daily New Case COVID-19 Data for the United States for
the Period November 28, 2021 to February 23, 2022 (Safdar et al., 2023; Safdar and
Gumel, 2023).

It is convenient to define the following biologically-feasible region for the vaccination

model (2.1) (Safdar and Gumel, 2023):

Ω =

{
(S, V, E, Ip, Is, Ia, Ih, Rn, Rnv) ∈ R9

+ : N(t) ≤ Π

µ

}
,

where, N(t) is the total population. It should be stated that since the vaccination

model (2.1) monitors human populations, all its initial conditions are non-negative

(i.e., S(0) > 0, V (0) ≥ 0, E(0) ≥ 0, Ip(0) ≥ 0, Is(0) ≥ 0, Ia(0) ≥ 0, Ih(0) ≥ 0,

Rn(0) ≥ 0, Rnv(0) ≥ 0). Furthermore, for the model to be mathematically- and

biologically-meaningful, it is necessary that all solutions of the model remain non-

negative for all non-negative initial conditions. That is, initial solutions of the model

that start in the region Ω remain in Ω for all time t > 0 (i.e., Ω is positively-invariant

with respect to the vaccination model (2.1)). This result is rigorously established

below (Safdar and Gumel, 2023).

Theorem 2.2.1. Let the initial data for the vaccination model (2.1) be S(0) >

0, V (0) ≥ 0, E(0) ≥ 0, Ip(0) ≥ 0, Is(0) ≥ 0, Ia(0) ≥ 0, Ih(0) ≥ 0, Rn(0) ≥ 0, Rnv(0) ≥

0. Then the solutions of the vaccination model (2.1) with positive initial data, will

remain positive for all time t > 0.
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Proof. Let t1 = sup{t > 0 : S(t) > 0, V (t) > 0, E(t) > 0, Ip(t) > 0, Is(t) > 0, Ia(t) >

0, Ih(t) > 0, Rn(t) > 0, Rnv(t) > 0 ∈ [0, t]}. Thus, t1 > 0. It follows from the first

equation of the vaccination model (2.1) that

dS

dt
= Π+ ωvV (t)− (λ+ ξv + µ)S(t) ≥ Π− (λ+ ξv + µ)S(t),

which can be re-written as:

d

dt

[
S(t)exp

{∫ t

0

λ(u)du+ (ξv + µ)t
}]

≥ Π exp
{∫ t

0

λ(u)du+ (ξv + µ)t
}
.

Hence,

S(t1)exp
{∫ t1

0

λ(u)du+ (ξv + µ)t1

}
− S(0) ≥ Π

∫ t1

0

exp
{∫ x

0

λ(ν)dν + (ψL + µ)x
}
dx,

so that

S(t1) ≥ exp
{
−
∫ t1

0

λ(u)du− (ξv + µ)t1

}[
S(0) + Π exp

{∫ x

0

λ(ν)dν + (ξv + µ)x
}
dx

]
> 0,

Similarly, it can be shown that all the remaining state variables of the vaccination

model (2.1) are non-negative (for all non-negative initial conditions) for t ≥ 0. Con-

sequently, all the solutions of the vaccination model (2.1), with non-negative initial

conditions, remain non-negative for all time t > 0.

Theorem 2.2.2. Consider the vaccination model (2.1) with non-negative initial con-

ditions. The region Ω is positively-invariant and attracts all solutions of the model

(2.1).

Proof. Adding all the equations of the model (2.1) gives (Safdar et al., 2023; Safdar

and Gumel, 2023):

Ṅ = Π− µN − δpIp − δsIs − δaIa − δhIh. (2.3)

Since all the parameters of the (2.1) are non-negative, it follows from (2.3) that:
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Ṅ ≤ Π− µN. (2.4)

Hence, if N(t) >
Π

µ
, then Ṅ < 0. Furthermore, by applying a standard comparison

theorem (Lakshmikantham and Vatsala, 1999; Gumel et al., 2021b; Safdar et al.,

2023) on (2.4), the following inequality holds:

N(t) ≤ N(0)e−µt +
Π

µ

(
1− e−µt

)
.

Hence, if N(0) ≤ Π

µ
, then N(t) ≤ Π

µ
. If N(0) >

Π

µ
(which means that N(0) is outside

Ω) then N(t) >
Π

µ
, for all t > 0 but with lim

t→∞
N(t) (and this type of solution trajectory

strives to enter the region Ω) (Gumel et al., 2021b). Therefore, every solution of the

vaccination model (2.1) with initial conditions in Ω remains in Ω for all time t. In

other words, the region Ω is positively-invariant and attracts all initial solutions of

the vaccination model (2.1) (Safdar et al., 2023; Safdar and Gumel, 2023).

The epidemiological consequence of Theorem 2.2.2 is that it is sufficient to consider

the dynamics of the flow generated by the vaccination model (2.1) in the invariant and

bounded region Ω (since the model (2.1) is well-posed epidemiologically and mathe-

matically in the feasible region Ω (Hethcote, 2000)). The existence and asymptotic

stability properties of the equilibria of the model (2.1) will now be explored (Safdar

and Gumel, 2023).

2.3 Existence and Asymptotic Stability of Equilibria

In this section, the vaccination model (2.1) will be rigorously analyzed to explore the

conditions for the existence and asymptotic stability of its equilibria.
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2.3.1 Disease-Free Equilibrium

The vaccination model (2.1) has a unique disease-free equilibrium (DFE) given by

(Safdar and Gumel, 2023):

E0 =
(
S∗, V ∗, E∗, I∗p , I

∗
s , I

∗
a , I

∗
h, R

∗
n, R

∗
nv

)
=

(
Π(µ+ ωv)

µ (µ+ ξv + ωv)
,

Πξv
µ (µ+ ξv + ωv)

, 0, 0, 0, 0, 0, 0, 0

)
.

Local asymptotic stability of DFE

The asymptotic stability property of the DFE (E0) will be explored using the next gen-

eration operator method (van den Driessche and Watmough, 2002; Diekmann et al.,

1990). Specifically, using the notation in (van den Driessche and Watmough, 2002),

it follows that the associated non-negative matrix of new infection terms (F ) and the

M-matrix of the linear transition terms (V ) are given, respectively, by (Safdar et al.,

2023; Safdar and Gumel, 2023):

F =



0 f11 f12 f13 f14

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and V =



K1 0 0 0 0

−σE K2 0 0 0

0 −rσp K3 0 0

0 −(1− r)σp 0 K4 0

0 0 −ϕs 0 K5


, (2.5)

where,

f11 = βp

[
S∗ + (1− εv)V

∗

N∗

]
, f12 = βs

[
S∗ + (1− εv)V

∗

N∗

]
, f13 = βa

[
S∗ + (1− εv)V

∗

N∗

]
,

f14 = βh

[
S∗ + (1− εv)V

∗

N∗

]
, K1 = σE + µ,K2 = σp + µ+ δp, K3 = ϕs + γs + µ+ δs,

K4 = γa + µ+ δa, and K5 = γh + µ+ δh.

Let fv represent the proportion of wholly-susceptible individuals that are fully-vaccinated

at disease-free equilibrium. In other words,
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fv =
V ∗

N∗ =
ξv

µ+ ξv + ωv

. (2.6)

It follows, based on the computation of the next generation matrices above (van den

Driessche and Watmough, 2002; Diekmann et al., 1990), that the vaccination repro-

duction number (or the control reproduction number) of the vaccination model (2.1),

denoted by Rcv, is given by (where, ρ is the spectral radius) (Safdar and Gumel,

2023):

Rcv = ρ(FV −1) = R0

(
1− εv

V ∗

N∗

)
= R0 (1− εvfv) , (2.7)

where, fv is as defined in Equation (2.6) and

R0 = Rcv|εv=V=0, (2.8)

is the basic reproduction number of the vaccination model (2.1). It can be shown (by

applying the next generation operator method on the model (2.1) in the absence of

vaccination) that (Safdar and Gumel, 2023):

R0 = R0p + R0s + R0a + R0h, (2.9)

where,

R0p = βp

(
S∗

N∗

)(
σE

σE + µ

)(
1

σp + δp + µ

)
,

R0s = βs

(
S∗

N∗

)(
σE

σE + µ

)(
rσp

σp + δp + µ

)(
1

ϕs + γs + δs + µ

)
,

R0a = βa

(
S∗

N∗

)(
σE

σE + µ

)(
(1− r)σp

σp + δp + µ

)(
1

γa + δa + µ

)
,

and,

R0h = βh

(
S∗

N∗

)(
σE

σE + µ

)(
rσp

σp + δp + µ

)(
ϕs

ϕs + γs + δs + µ

)(
1

γh + δh + µ

)
,
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are the constituent reproduction numbers for the transmission of the disease by in-

fectious individuals in the pre-symptomatic, symptomatic, asymptomatic and hospi-

talized classes, respectively. It is worth stating that, while the basic reproduction

number (R0) measures the average number of new SARS-CoV-2 cases generated by

a typical infectious individual if introduced in a completely-susceptible population,

the control reproduction number (Rcv) measures the average number of new SARS-

CoV-2 cases generated by a typical infectious individual introduced into a population

where a certain proportion of the wholly-susceptible population is fully-vaccinated

(with any of the three aforementioned FDA-approved vaccines) (Safdar and Gumel,

2023).

The asymptotic stability result below follows from Theorem 2 of (van den Driessche

and Watmough, 2002):

Theorem 2.3.1. The disease-free equilibrium (E0) of the vaccination model (2.1) is

locally-asymptotically stable (LAS) if Rcv < 1, and unstable if Rcv > 1.

The epidemiological implication of Theorem 2.3.1 is that a small influx of SARS-CoV-

2 cases will not generate a large outbreak in the community if the control reproduction

number (Rcv) is brought to, and maintained at, a value less than unity (Safdar et al.,

2023; Safdar and Gumel, 2023). In other words, the vaccination program implemented

in the United States can lead to the effective control of the SARS-CoV-2 pandemic

if it can result in reducing (and maintaining) the control reproduction number to a

value less than one, provided the initial number of infectious individuals introduced

into the population is small enough (Safdar and Gumel, 2023).
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Existence of backward bifurcation

Certain epidemiological mechanisms associated with the spread and control of in-

fectious diseases are known to induce backward bifurcation, a dynamic phenomenon

characterised by the co-existence of two stable attractors (namely the stable disease-

free equilibrium and a stable endemic equilibrium) when the associated reproduction

number of the model is less than one (Safdar and Gumel, 2023; Gumel, 2012; Iboi

et al., 2018; Iboi and Gumel, 2018; Garba et al., 2008; Garba and Gumel, 2010;

Blayneh et al., 2010). The epidemiological implication of the presence of a backward

bifurcation in the transmission dynamics of an infectious disease is that bringing (and

maintaining) the reproduction number of the model to a value less than one, while

necessary, may not be sufficient to lead to the elimination of the disease (Safdar and

Gumel, 2023; Gumel, 2012; Iboi et al., 2018; Iboi and Gumel, 2018). One common

cause of backward bifurcation in disease transmission models is the use of an imper-

fect vaccine (Gumel, 2012; Elbasha and Gumel, 2006; Elbasha et al., 2011). Since

the vaccination model (2.1) uses an imperfect vaccine, it is instructive to explore the

likelihood (or derive the conditions for the occurrence) of a backward bifurcation in

its transmission dynamics. This is done below. In particular, we claim the following

result (Safdar and Gumel, 2023):

Theorem 2.3.2. The vaccination model (2.1) undergoes a backward bifurcation at

Rcv = 1 whenever the associated bifurcation coefficients (denoted by a and b and given

by Equations (A.6) and (A.7) in Appendix A), are positive (or, equivalently, when

Inequality (A.10) holds).

The proof of Theorem 2.3.2, based on using the center manifold theory (Safdar and

Gumel, 2023; Carr, 2012; van den Driessche and Watmough, 2002; Gumel and Song,

2008; Castillo-Chavez and Song, 2004; Dushoff et al., 1998), is given in Appendix A.
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Figure 2.3 depicts the associated backward bifurcation diagram for the vaccination

model (2.1). It should be mentioned that, for computational convenience (in gener-

ating the bifurcation diagrams), we set, without loss of generality, the eigenvectors

v1 and v3 in Equation (A.2) (given in Appendix A) to one. Similarly, we set the

eigenvectors w1, w7 and w9 in Equation (A.3) to unity (Safdar and Gumel, 2023).

The epidemiological implication of Theorem 2.3.2 is that the ability of the interven-

tion and mitigation programs implemented (vaccination and face mask usage in this

case) to bring (and maintain) the control reproduction number, Rcv, to a value less

than one, while necessary, is no longer sufficient for the elimination of the SARS-

CoV-2 pandemic in the community. Such control (within the bistability region in

Figure 2.3) is now dependent on the size of the initial sub-populations of the model.

Specifically, initial conditions of the model (2.1) that lie below the stable manifold of

the saddle point (the separatrix which separates the basin of attraction of the stable

endemic equilibrium and that of the stable disease-free equilibrium) will converge to

the disease-free equilibrium, while those that lie above the separatrix will converge

to an endemic equilibrium point (Safdar and Gumel, 2023). It follows from Figure

2.3 that, in order to be outside the backward bifurcation region, the intervention and

mitigation measures implemented in the community would need to be ramped up to

further reduce the control reproduction number below one (and outside the bistability

region). Thus, the presence of a backward bifurcation in the transmission dynamics

of a disease makes its effective control more difficult (since it imposes greater require-

ment in terms of the efficacy and coverage of interventions) (Safdar and Gumel, 2023;

Gumel and Song, 2008; Gumel, 2012).

To ensure that the effective control of the disease (or its elimination) is independent

of the initial sizes of the sub-populations of the model, it is necessary that the disease-
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Figure 2.3: Backward Bifurcation Diagram for the Vaccination Model (2.1), Showing the the
Profiles of the Population of (a) Pre-symptomatically-infectious Individuals (Ip), (b) Symptomatic
Individuals (Is), (c) Asymptomatically-infectious Individuals (Ia) and (d) Hospitalized Individuals
(Ih), as a Function of the Bifurcation Parameter βp. Parameter Values Used Are: Π = 20, 000, ωv =
0.00004, µ = 0.001, ξv = 0.002, εv = 0.8, εn = 0.08, εnv = 0.08, σE = 0.2, σp = 0.98, ϕs = 0.95, γs =
0.12, γa = 0.12, γh = 0.12, δp = 0.0095, δa = 0.0095, δs = 0.015, δh = 0.015, r = 0.9921, d1 = 1.5, d2 =
0.75, d3 = 1. With This Arbitrary Set of Parameter Values, the Values of the Associated Backward
Bifurcation Coefficients (Denoted by a and b, and given in Appendix A) Are a = 6.3833×10−6 > 0
and b = 0.17481 > 0, Respectively. Furthermore, β∗

p = 0.24010 and Rcv = 1. Apart from the
efficacies (i.e., εv, εn and εnv), Scaling Factors (i.e., d1, d2 and d3) and the Proportion “r” , which
are dimensionless, all the other parameters have unit of per day (Safdar and Gumel, 2023).
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free equilibrium is proved to be globally-asymptotically stable when the reproduction

number of the model is less than one. This is explored in Section 2.3.1 below, for two

special cases of the vaccination model (2.1) (Safdar and Gumel, 2023).

Global asymptotic stability of DFE: special cases

In this section, the result in Theorem 2.3.1 are extended to prove the global asymp-

totic stability of the DFE for two special cases of the vaccination model (2.1), as

follows (Safdar et al., 2023; Safdar and Gumel, 2023).

Special case 1:

Consider, first of all, the special case of the model (2.1) where the vaccines admin-

istered in the population are assumed to offer perfect protective efficacy against the

original strain of the pandemic. That is, consider the model (2.1) with εv = 1.

This assumption is plausible, for instance, in the case of the Pfizer or Moderna vac-

cine (with each being almost 95% effective against the original SARS-CoV-2 strain)

(Pearson, 2021; Mancuso et al., 2021). Furthermore, for mathematical tractability, it

is assumed, for this special case, that natural immunity is perfect against re-infection

(so that εn = εnv = 1). For this special case of the vaccination model (2.1), it can be

seen that the associated next generation matrix of new infection terms, denoted by

F̃ , is given by (note that, for this special case, the next generation matrix of linear

transition terms, V , remains the same, as defined by Equation (2.5). Furthermore,

N∗ = Π/µ) (Safdar and Gumel, 2023):
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F̃ =



0 βp

(
S∗

N∗

)
βs

(
S∗

N∗

)
βa

(
S∗

N∗

)
βh

(
S∗

N∗

)
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (2.10)

The control reproduction number of this special case of the basic model, denoted by

R̃cv, is given by:

R̃cv = ρ(F̃ V −1) = Rcv|εv=1. (2.11)

We claim the following result (Safdar and Gumel, 2023):

Theorem 2.3.3. Consider the special case of the vaccination model (2.1) with εv =

εn = εnv = 1 and R̃cv ≤ 1 − fv < 1 (with fv as defined in Eqaution (2.6)). The

disease-free equilibrium of the special case of the model (E0) is globally-asymptotically

stable in Ω whenever R̃cv < 1.

The proof of Theorem 2.3.3, based on using Lyapunov function (Gumel et al., 2021a;

Brozak et al., 2021; Iboi et al., 2020a), is given in Appendix B. The result of Theo-

rem 2.3.3 is numerically illustrated in Figure 2.4, where all initial conditions of the

special case of the model converged to the disease-free equilibrium when the associ-

ated control reproduction number, R̃cv, is less than one (Safdar and Gumel, 2023).

The epidemiological implication of Theorem 2.3.3 is that, for the special case of the

vaccination model (2.1) with εv = εn = εnv = 1, the COVID-19 pandemic can be

eliminated in the United States if the threshold quantity, R̃cv, can be brought to (and

maintained at) a value less than one. In other words, for the aforementioned special

case of the model, having R̃cv < 1 is necessary and sufficient for the effective control
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(or elimination) of the pandemic in the United States. Hence, implementing a vacci-

nation program that can bring (and maintain) R̃cv to a value less than one will result

in the elimination of the pandemic in the United States (Safdar and Gumel, 2023).

It is worth mentioning that substituting εv = εn = εnv = 1 into the expressions for

Figure 2.4: Simulations of the Special Case of the Vaccination Model (2.1), for the
Average Number of Daily New Cases in the United States as a Function of Time
(in Days), Showing Convergence of Initial Conditions to the Disease-free Equilibrium

(DFE) When R̃cv < 1. The Values of the Parameters Used In These Simulations
Are as given by Their Baseline Values given in Tables 2.3 and 2.4, with βa = 0.1542
Day−1. With This Set of Parameter Values, R̃cv = 0.3824 < 1 (Safdar and Gumel,
2023).

the backward bifurcation coefficients (a and b) in Appendix A, and simplifying, shows

that a = −2.7089 × 10−14 < 0 and b = 3.1 × 10−9 > 0, as tabulated in Table 2.5.

Thus, it follows from Item (i) of Theorem 4.1 in (Castillo-Chavez and Song, 2004)

that, unlike the full model (2.1), the special case of the model with εv = εn = εnv = 1

will not undergo backward bifurcation at R̃cv = 1 (this is in line with the global

asymptotic stability result proved for the disease-free equilibrium of the special case
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of the model in Theorem 2.3.3) (Safdar and Gumel, 2023). In fact, this special case

of the model undergoes a forward bifurcation at R̃cv = 1 (as depicted in Figure 2.5),

and no endemic equilibrium exists when R̃cv < 1. Hence, this study shows identifies

a sufficient condition for the emergence of the dynamic behavior of backward bifur-

cation in the transmission dynamics of SARS-CoV-2, namely the imperfect nature of

the vaccine-derived and natural immunity (to prevent the acquisition of SARS-CoV-2

infection by vaccinated susceptible individuals, and the re-infection of recovered in-

dividuals) (Safdar and Gumel, 2023).

Table 2.5 shows that when the baseline values of the efficacies of the vaccine-derived

immunity (εv = 0.85), natural immunity (εn = 0.85) and natural and vaccine-derived

immunity (εnv = 0.95), given in Table 2.3, are substituted into the expressions for the

associated backward bifurcation coefficients (a and b in Appendix A), the values of

these coefficients become a = 3.41948 × 10−7 > 0 and b = 0.09911 > 0, respectively

(see Table 2.5). In other words, it follows from Item (i) of Theorem 4.1 in (Castillo-

Chavez and Song, 2004) that backward bifurcation will occur if the baseline values

of the parameters of the model (2.1), tabulated in Table 2.3, are used (Safdar and

Gumel, 2023). Thus, this study shows that backward bifurcation is, indeed, a real-

istic feature in the transmission dynamics of SARS-CoV-2 in a population that uses

imperfect vaccines and where natural (and combined natural and vaccine-derived)

immunity do not offer perfect protection against re-infection. Table 2.5 further shows

that the likelihood of a backward bifurcation occurring increases as the values of the

parameters related to the vaccine-derived (εv) and natural immunity (εn and εnv)

increase towards one (note that the likelihood of backward bifurcation decreases with

decreasing values of the bifurcation coefficients, a and b; and backward bifurcation

does not occur when the coefficient a further decreases to values less than zero, in

line with Item (i) of Theorem 4.1 in (Castillo-Chavez and Song, 2004)). In other
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words, this study shows that the phenomenon of backward bifurcation is more likely

to occur in the community if vaccines with lower protective efficacy are used and if

the efficacy of natural and combined natural and vaccine-derived immunity to prevent

re-infection in the community are low (Safdar and Gumel, 2023).

Immunity efficacy Value of bifurcation coefficient, a Value of bifurcation coefficient, b Value of β∗
p

εv = 0.50, εn = 0.50, εnv = 0.50 9.72721 × 10−7 > 0 0.03303 > 0 0.21395

εv = 0.85, εn = 0.85, εnv = 0.95 3.41948 × 10−7 > 0 0.09911 > 0 0.23200

εv = 0.90, εn = 0.90, εnv = 0.95 2.33118 × 10−7 > 0 0.06607 > 0 0.23450

εv = 0.95, εn = 0.95, εnv = 0.95 1.19874 × 10−7 > 0 0.03307 > 0 0.23750

εv = 1.00, εn = 1.00, εnv = 1.00 −2.7231 × 10−14 < 0 3.1 × 10−9 > 0 0.24010

Table 2.5: Effect of Efficacies of Vaccine-derived (εv), Natural (εn) and Combined
Natural and Vaccine-derived (εnv) on the Likelihood of the Occurrence of Backward
Bifurcation in the Vaccination Model (2.1), as Measured by the Values of the Associ-
ated Backward Bifurcation Coefficients, a and b (given in Appendix A and the Values
of β∗

p . Parameter Values (Chosen Arbitrarily for Illustrative Purposes) Used in Gener-
ating This Table Are: Π = 20, 000, ωv = 0.00037, µ = 0.000034, ξv = 0.0004277, σE =
0.2, σp = 0.5, ϕs = 0.15, γs = 0.2, γa = 0.125, γh = 0.12, δp = 0, δa = 0, δs =
0.0000498, δh = 0.00005, r = 0.152, d1 = 1.5, d2 = 0.75, d3 = 1, βs = d1 × βp, βa =
d2 × βp, βh = d3 × βp and Various Values of εv, εn and εnv. This Set of Parameter
Values Is Used to Compute the Corresponding Values of the Bifurcation Parameter,
β∗
p . Furthermore, for This Set of Parameter Values, R̃cv = 1. Apart from the Effica-

cies (i.e., εv, εn and εnv), Scaling Factors (i.e., d1, d2 and d3) and the Proportion “r”,
Which Are Dimensionless, All the Other Parameters Have Unit of per Day (Safdar
and Gumel, 2023).
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Figure 2.5: Forward Bifurcation Diagram for the Vaccination Model (2.1), Showing the the
Profiles of the Population of (a) Pre-symptomatically-infectious Individuals (Ip), (b) Symptomatic
Individuals (Is), (c) Asymptomatically-infectious Individuals (Ia) and (d) Hospitalized Individuals
(Ih), as a Function of the Bifurcation Parameter βp. Parameter Values Used Are: Π = 20000, ωv =
0.00037, βp = 0.24010, βs = 0.36022, βa = 0.18011, βh = 0.24010, µ = 0.000034, ξv = 0.0004277, εv =
1, εn = 1, εnv = 1, σE = 0.2, σp = 0.5, ϕs = 0.15, γs = 0.2, γa = 0.125, γh = 0.12, δp = 0, δa =
0, δs = 0.0000498, δh = 0.00005, r = 0.152, d1 = 1.5, d2 = 0.75, d3 = 1. With This Arbitrary Set
of Parameter Values, the Values of the Associated Backward Bifurcation Coefficients (Denoted by
a and b, and given in Appendix A Are a = −2.7231 × 10−14 > 0 and b = 3.1 × 10−9 > 0,
Respectively. Furthermore, β∗

p = 0.24010 and R̃cv = 1. Apart from the Efficacies (i.e., εv, εn and
εnv), Scaling Factors (i.e., d1, d2 and d3) and the Proportion “r”, Which Are Dimensionless, All the
Other Parameters Have Unit of per Day (Safdar and Gumel, 2023).
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Special case 2:

The global asymptotic stability of the disease-free equilibrium of the vaccination

model (2.1) can also be established for another special case of the model in the absence

of disease-induced mortality and recovered individuals do not acquire SARS-CoV-2

re-infection. That is, we consider the special case of the vaccination model (2.1) with

δp = δs = δa = δh = 0 and εn = εnv = 1. The assumption for having negligible

disease-induced mortality is reasonable owing to the fact that (a) this study focuses

on the SARS-CoV-2 dynamics in the United States during the period when Omicron

is the predominant variant (i.e., starting from November 28, 2021) and (b) Omicron

is far less fatal than the SARS-CoV-2 variants that preceded it (particularly Delta)

(Safdar et al., 2023; Ngonghala et al., 2023; Safdar and Gumel, 2023).

Setting δp = δs = δa = δh = 0 into the vaccination model (2.1), and adding all the

resulting equations, shows that
dN

dt
= Π − µN , from which it follows that N(t) →

Π

µ
as t → ∞. From now on, the total population at time t, N(t), will be replaced

by its limiting value, N∗ = Π/µ (i.e., the standard incidence formulation for the

infection rate is now replaced by a mass action incidence). Consider the following

feasible region for this (second) special case of the vaccination model (2.1) (Safdar

and Gumel, 2023):

Ω∗∗ = {(S, V, E, Ip, Is, Ia, Ih, Rn, Rnv) ∈ Ω : S ≤ S∗, V ≤ V ∗} . (2.12)

It can be shown that the region Ω∗∗ is positively-invariant and attracting with re-

spect to this second special case of the vaccination model (2.1) (see Appendix C for

the proof). Furthermore, it is convenient to define the following threshold quantity

(Safdar and Gumel, 2023):
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R̂cv = Rcv|δp=δs=δa=δh=0. (2.13)

We claim the following result (Safdar and Gumel, 2023):

Theorem 2.3.4. Consider the special case of the vaccination model (2.1) in the

absence of disease-induced mortality (i.e., δp = δs = δa = δh = 0) and no re-infection

of recovered individuals (i.e., εn = εnv = 1). The disease-free equilibrium of this

special case of the model (E0) is globally-asymptotically stable in Ω∗∗ whenever R̂cv < 1.

The proof of Theorem 2.3.4, based on using a comparison theorem, is given in Ap-

pendix C.

2.3.2 Existence and Stability of Endemic Equilibria: Special Case

In this section, the possible existence and asymptotic stability of endemic (positive)

equilibria (i.e., equilibria where at least one of the infected components is positive)

of the vaccination model (2.1) will be explored for a special case. Specifically, the

special case of the model (2.1) is considered where protective efficacy of the vaccines

against primary infection and re-infection is 100% (i.e., εv = εn = εnv = 1), no

waning of vaccine-derived immunity (i.e., ωv = 0) and no disease-induced mortality

(i.e., δp = δs = δa = δh = 0). For this special case of the vaccination model (2.1), the

associated vaccination reproduction number is defined as follows (Safdar and Gumel,

2023):

R̃v = Rcv|δp=δs=δa=δh=0, εv=1. (2.14)
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Existence

Let E1 = (S∗∗, V ∗∗, E∗∗, I∗∗p , I∗∗s , I∗∗a , I∗∗h , R∗∗
n , R∗∗

nv) represents any arbitrary (positive)

endemic equilibrium point (EEP) of the vaccination model (2.1), with N∗∗ = S∗∗ +

V ∗∗+E∗∗+I∗∗p +I∗∗s +I∗∗a +I∗∗h +R∗∗
n +R∗∗

nv. Consider the vaccination model (2.1) with

εv = εn = εnv = 1 and ωv = δp = δs = δa = δh = 0 and R̃v > 1. Solving the equations

of this special case of the vaccination model at steady-state, and simplifying, gives

the following steady-state expressions (Safdar and Gumel, 2023):

S∗∗ =
Π

λ∗∗ + c1
, V ∗∗ =

ξvS
∗∗

c2
, E∗∗ =

λ∗∗S∗∗

c3
, I∗∗p =

σEλ
∗∗S∗∗

c3c4
,

I∗∗s =
rσpσEλ

∗∗S∗∗

c3c4c5
, I∗∗a =

(1− r)σpσEλ
∗∗S∗∗

c3c4c6
, (2.15)

I∗∗h =
ϕsrσpσEλ

∗∗S∗∗

c3c4c5c7
, R∗∗

n =
σEλ

∗∗S∗∗P1

c3
, R∗∗

nv =
ξvσEλ

∗∗S∗∗P1

µc3
,

where,

c1 = ξv + µ, c2 = ωv + µ, c3 = σE + µ, c4 = σp + µ, c5 = ϕs + γs + µ, c6 = γa + µ,

c7 = γh + µ, P1 =
rσp

c5
+

(1− r)σp

c6
+

ϕsrσp

c5c7
,

P2 = 1 + P1 +
ξv
c2

+
1

c3
+

σE

c3c4

{
1 +

rσp

c5
+

(1− r)σp

c6
+

rϕsσp

c5c6

}
+ P1σE

(
1

c3
+

ξv
µc3

)
,

with,

λ∗∗ =
(βpI

∗∗
p + βsI

∗∗
s + βaI

∗∗
a + βhI

∗∗
h )

N∗∗ . (2.16)

It follows, by substituting the expressions for I∗∗p , I∗∗s , I∗∗a and I∗∗h from Equation

(2.15) into Equation (2.16) and extensive algebraic algebraic manipulations, that

(Safdar and Gumel, 2023):

λ∗∗ =
(R̃v − 1)

P2

, (2.17)
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from which it follows that λ∗∗ > 0 whenever R̃v > 1. Hence, the special case of

the model has a unique endemic equilibrium point (EEP) whenever R̃v > 1. The

components of this unique endemic equilibrium point can be obtained by substituting

Equation (2.17) into the expressions for S∗∗, V ∗∗, E∗∗, I∗∗p , I∗∗s , I∗∗a , I∗∗h , R∗∗
n and R∗∗

nv,

given in Equation (2.15). Thus, we have proved the following result (Safdar and

Gumel, 2023):

Theorem 2.3.5. The special case of the vaccination model (2.1), with εv = εn =

εnv = 1 and ωv = δp = δs = δa = δh = 0, has a unique endemic (positive) equilibrium,

given by E1, whenever R̃v > 1.

Figure 2.6: Simulations of the Special Case of the Vaccination Model (2.1), for the
Number of Daily New Cases in the United States as a Function of Time, Showing
Convergence of Initial Conditions to the Unique Endemic Equilibrium When R̃v > 1.
The Values of the Parameters Used in These Simulations Are as given by Their
Baseline Values given in Tables 2.3 and 2.4, with Π = 12000 Day−1, βp = 0.9909
Day−1, βs = 0.9986 Day−1, βa = 0.9942 Day−1, βh = 0.9989 Day−1 and γh = 0.02
Day−1 (so That, R̃v = 2.7444 > 1) (Safdar and Gumel, 2023).
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Local asymptotic stability

The local asymptotic property of the unique endemic equilibrium of the special case

of the model (2.1) (which exists whenever R̃v > 1, as shown in Theorem 2.3.5) will

now be explored. We claim the following result (Safdar and Gumel, 2023):

Theorem 2.3.6. The unique endemic equilibrium point (Ẽ1) of the special case of

the vaccination model (2.1), with εv = εn = εnv = 1 and ωv = δp = δs = δa = δh = 0

(which exists when R̃v > 1), is locally-asymptotically stable whenever R̃v > 1.

The proof of Theorem 2.3.6, based on using a Krasnoselskii sub-linearity argument

(Hethcote and Thieme, 1985; Safi and Gumel, 2010; Melesse and Gumel, 2010; Esteva

et al., 2009), is given in Appendix D. The epidemiological implication of Theorem

2.3.6 is that, for the special case of the vaccination model (2.1) with εv = εn =

εnv = 1 and ωv = δp = δs = δa = δh = 0, the disease will persist in the population

(when the associated reproduction R̃v exceeds one) if the initial sizes of the sub-

populations of the model are in the basin of attraction of the endemic equilibrium.

The epidemiological implication of Theorems 2.3.5 and 2.3.6 is that, for the special

case of the vaccination model (with εv = εn = εnv = 1 and ωv = δp = δs = δa = δh =

0), the disease will persist, if the initial population sizes are in the basin of attraction

of the unique endemic equilibrium, provided the value of the associated reproduction

threshold (R̃v) exceeds unity. Figure 2.6 depicts a time series of initial solutions of

the special case of the model for the case where R̃v > 1 showing convergence of all

the initial solutions to the unique endemic equilibrium, in line with Theorem 2.3.6

(Safdar and Gumel, 2023).
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2.3.3 Vaccine-Induced Herd Immunity Threshold

Herd immunity, which is a measure of the minimum percentage of the number of sus-

ceptible individuals in a community that need to be protected against the infection in

order to eliminate community transmission of an infectious disease, can be attained

through two main ways, namely natural immunity route (following natural recovery

from infection with the disease) or by vaccination (which is widely considered to be

the safest and the fastest way) (Safdar and Gumel, 2023; Anderson, 1992; Ander-

son and May, 1985). For vaccine-preventable diseases, such as COVID-19, it is not

practically possible to vaccinate every susceptible individual in the community due to

various reasons, such as infants, individuals who are pregnant, breastfeeding women,

individuals with certain underlying medical conditions, or those who are unwilling to

be vaccinated for COVID-19 due to some other reasons (Iboi et al., 2020b; Safdar

et al., 2023; Safdar and Gumel, 2023). Thus, it is critical to know what minimum

proportion of the susceptible population that need to be vaccinated in order to protect

those that cannot be vaccinated (so that vaccine-induced herd immunity is achieved

in the population). Specifically, we let V ∗

N∗ be the proportion of vaccinated susceptible

individuals at the disease-free steady-state (Safdar and Gumel, 2023).

To compute the herd immunity threshold associated with the vaccination model (2.1),

we set the vaccination reproduction number (Rcv; defined in Equation (2.7)) to one

and solve for fv. This gives:

fv =
1

εv

[(
1− 1

R0

)]
= f c

v (for R0 > 1). (2.18)

It follows from Equation (2.18) that Rcv < (>)1 if fv > (<)f c
v . Furthermore, Rcv = 1

whenever fv = f c
v . This result is summarized below (Safdar and Gumel, 2023):

Theorem 2.3.7. Vaccine-induced herd immunity (i.e., COVID-19 elimination) can
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be achieved in the United States, using any of the FDA-approved anti-COVID vac-

cines, if the vaccine-derived immunity resulted in fv > f c
v (i.e., if Rcv < 1). If fv < f c

v

(i.e., if Rcv > 1), then the vaccination program will fail to eliminate the pandemic.

Epidemiologically-speaking, Theorem 2.3.7 implies that the use of any of the approved

COVID-19 vaccines can lead to the elimination of the pandemic in the United States

if the proportion of susceptible individuals fully-vaccinated at steady-state reached or

exceeded the aforementioned critical threshold value. In other words, the SARS-CoV-

2 pandemic will be eliminated in the United States if fv > f c
v . On the contrary, the

vaccination program will fail to eliminate the pandemic if the proportion vaccinated

at the disease-free equilibrium falls below the aforementioned critical herd immunity

threshold (Safdar and Gumel, 2023).

Figure 2.7 depicts a contour plot of the vaccine reproduction number (Rcv), as a func-

tion of vaccine efficacy (εv) and vaccine coverage (fv) at the disease-free steady-state.

For these simulations, the value of each of the parameters of the model is main-

tained at baseline as tabulated in Tables 2.3 and 2.4. As expected, this figure shows

a decrease in the value of Rcv with increasing efficacy and coverage of the vaccine.

Furthermore, the contour plot shows that for the case where the overall average pro-

tective efficacy of the three vaccines is set at 85% (as tabulated in Table 2.3), at least

62% of the wholly-susceptible population needs to be fully-vaccinated at steady-state

to bring the vaccination reproduction number (Rcv) below one (Figure 2.7). However,

if the average vaccine efficacy of the three vaccines drops to 60% (which is plausible,

since data shows that the efficacy of the three vaccines against Omicron is much lower

than against other variants (Safdar and Gumel, 2023; Sidik, 2022; Safdar et al., 2023;

Tseng et al., 2022; Chemaitelly et al., 2022)), then the requirement for the achieving

the vaccine-derived herd immunity threshold in the United States drastically increases
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to 87%. In other words, based on the results depicted in Figure 2.7, shows that the

prospects of achieving vaccine-derived herd immunity in the United States, using the

aforementioned three vaccines (Pfizer, Moderna and Johnson & Johnson vaccine),

are promising provided the average vaccine efficacy against the predominant Omi-

cron variant is high enough (even if the vaccine coverage is moderate) (Safdar and

Gumel, 2023).

Figure 2.7: Contour Plot of the Vaccine Reproduction Number (Rcv) of the Model
(2.1), as a Function of Vaccine Coverage (fv) at Steady-state and Vaccine Efficacy
(εv), for the United States. The Values of the Parameters Used in These Simulations
Are as given by Their Baseline Values given in Tables 2.3 and 2.4 (Safdar and Gumel,
2023).

2.3.4 Global Parameter Sensitivity Analysis

The vaccination model (2.1) contains 22 parameters. Although baseline values of

these parameters are given mostly based on published study (as tabulated in Tables

2.3 and 2.4), uncertainties are expected to arise in the estimate of these parameter

values. It is, therefore, crucial to assess the impact of these uncertainties on the

outcome of the model simulations. It is also important to determine which of the 22

parameters have the most influence on the dynamics of the model (with respect to
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a certain chosen response function) (Safdar and Gumel, 2023). In this section, we

will use Latin Hypercube Sampling technique and partial rank correlation coefficients

(PRCCs) to quantify those parameters that have the highest impact on the value of

the chosen response function (Safdar and Gumel, 2023; Marino et al., 2008; Blower

and Dowlatabadi, 1994; McLeod et al., 2006). Parameter sensitivity analysis is a

quantitative measure for determining the extent to which a chosen response function

changes with respect to variations in the input variables (i.e., parameters of the model)

(Safdar and Gumel, 2023; Gumel et al., 2021a; Marino et al., 2008; Mancuso et al.,

2021). For the purpose of this chapter, the vaccination reproduction number of the

model (Rcv) is chosen as the response function. It should be mentioned that, since the

values of 4 of the 22 parameters of the vaccination model (namely the demographic

parameters Π and µ, and the disease-induced mortality rates of pre-symptomatic and

asymptomatic individuals, δp and δa) are reliably known (from census data and due

to the assumptions we made in Section 2.2 about the values of δa and δp), they are

excluded from the sensitivity analysis. In other words, the sensitivity analysis will

be based on the remaining 18 parameters of the vaccination model (2.1) (Safdar and

Gumel, 2023).

The process of carrying out the sensitivity analysis entails defining a range (lower and

upper bound) and distribution for each parameter of the model, and then splitting

each parameter range into 1,000 equal sub-intervals (Safdar and Gumel, 2023; Gumel

et al., 2021a; Mancuso et al., 2021). In this study, the range for each of the parameters

of the model considered in the sensitivity analysis is obtained by taking 20% to

the left and right of its respective baseline value given in Table 2.6 (Gumel et al.,

2021a). Furthermore, it is assumed, for statistical tractability, that all parameters in

the response function obey the uniform distribution (Gumel et al., 2021a; Mancuso
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Parameter Baseline Value Range PRCC: Rcv

βp 0.2309 day−1 0.18472− 0.27708 0.815*

βs 9.998× 10−4 day−1 0.00079− 0.00119 0.0153

βa 0.5429 day−1 0.43436− 0.65155 0.981*

βh 4.998× 10−5 day−1 3.9× 10−5 − 5.9× 10−5 -0.0223

σE 0.2000 day−1 0.16000− 0.24000 0.0094

σp 0.5000 day−1 0.40000− 0.60000 -0.820*

r 0.095 (dimensionless) 0.07600− 0.11400 -0.4670

γs 0.1000 day−1 0.08000− 0.12000 -0.852*

γa 0.2000 day−1 0.16000− 0.24000 0.0240

γh 0.1250 day−1 0.10000− 0.15000 -0.0355

ωv 0.0037 day−1 0.00291− 0.00437 0.0252

δs 4.980 ×10−5 day−1 3.9× 10−5 − 5.9× 10−5 0.0051

δh 5.0 ×10−5 day−1 4.0× 10−5 − 6.0× 10−5 0.0016

ξv 1.9 ×10−5 day−1 1.5× 10−5 − 2.2× 10−5 0.0105

ϕs 0.2000 day−1 0.16000− 0.24000 -0.956*

εv 0.8500 (dimensionless) 0.68000− 1.02000 -0.0478

εn 0.8500 (dimensionless) 0.68000− 1.02000 -0.0285

εnv 0.9500 (dimensionless) 0.76000− 1.14000 -0.0153

Table 2.6: Table of PRCC Values of the Parameters in the Expression for the Vac-
cination Reproduction Number, Rcv, of the Vaccination Model (2.1). PRCC Values
above 0.5 in Magnitude Are Highlighted with a ∗, Implying That These Parameters
Are Highly-correlated with the Response Function (i.e., They Significantly Impact
the Value of the Response Function, Rcv). Apart from the Efficacies (i.e., εv, εn and
εnv) and the Proportion “r”, Which Are Dimensionless, All the Other Parameters
and Their Ranges Have Unit of per Day (Safdar and Gumel, 2023).
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et al., 2021). Sets of parameter values are sampled (or drawn) from this space (i.e.,

parameter ranges) without replacement and used to form a 1000 × 18 matrix (or

hypercube). Each row of this matrix is used to compute the response function (Rcv)

and the PRCC values are then computed to assess the contributions of uncertainty

and variability in individual parameters to uncertainty and variability in the vaccine

reproduction number (Gumel et al., 2021a). Parameters with high PRCC values

close to -1 or +1 are said to be highly-correlated with the response function (Safdar

and Gumel, 2023; Gumel et al., 2021a; Marino et al., 2008). Those with negative

(positive) PRCC values are said to be negatively (positively) correlated with the

response function ( Rcv) (Safdar and Gumel, 2023; Gumel et al., 2021a).

Figure 2.8 shows the PRCC values of the 18 parameters of the vaccination model

(2.1), with respect to the chosen response function (Rcv), computed on Day 43 of

the onset of the Omicron variant in the United States (i.e., the PRCC values were

computed on January 9, 2022). This date was chosen (to compute a snapshot of the

PRCC values) because it corresponds to the time when the model predicted a peak

of the daily new cases (see the blue curve in Figure 2.2). The PRCC values are also

tabulated in Table 2.6. It can be seen from Figure 2.8 that the top five parameters

that have the most influence on the response function (Rcv) are (Safdar and Gumel,

2023):

(i) The effective contact rate for pre-symptomatically-infectious individuals (βp).

(ii) The effective contact rate for asymptomatically-infectious individuals (βa).

(iii) Progression rate of pre-symptomatic individuals (σp).

(iv) Recovery rate of symptomatic individuals (γs).

(v) Hospitalization rate of the individuals with clinical symptoms (ϕs).
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Hence, it follows from the parameter sensitivity analysis that implementing public

health intervention and mitigation strategies that target reducing the effective con-

tact rates for pre-symptomatic and asymptomatic individuals (βp and βa) will be very

effective in reducing the response function Rcv (and, consequently, reduce the burden

of the pandemic in the United States). The parameters βp and βa can be reduced by

implementing control strategies such as social-distancing, community lockdowns, use

of face masks in public, quarantine of suspected cases and isolation of those with clini-

cal symptoms of the disease (Safdar and Gumel, 2023; Gao et al., 2023). Furthermore,

strategies that increase the progression rate of pre-symptomatic individuals (σp), re-

covery rates of the individuals in the symptomatic class (γs), as well as increase the

detection and hospitalization of symptomatic cases (ϕs) will reduce the COVID-19

burden in the community. The progression rate of pre-symptomatic individuals (σp)

can be increased by contact-tracing of confirmed SARS-CoV-2 cases. The parameters

γs and ϕs can be increased by implementing control strategies such as the treatment

of confirmed SARS-CoV-2 cases and the rapid detection (via the use of effective and

large scale random diagnostic testing) and hospitalization of symptomatic cases (Saf-

dar and Gumel, 2023; Gao et al., 2023).

In conclusion, this study identifies five parameters (βp, βa, σp, γa and ϕs) that have the

greatest influence on the value of the vaccination reproduction number (Rcv), which

governs the persistence or effective control of the pandemic in the United States.

It is worth stating that this result is consistent with some of the results reported

in the SARS-CoV-2 modeling literature, such as those in Safdar and Gumel (2023);

Safdar et al. (2023); Gumel et al. (2021a); Moghadas et al. (2020); Ngonghala et al.

(2020b) which suggest that pre-symptomatic and asymptomatic individuals are the

main drivers of the COVID-19 pandemic. Hence, to effectively control the SARS-CoV-

2 pandemic, the public health control and mitigation strategies should be focused on
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effectively targeting the five identified parameters (Safdar and Gumel, 2023).

Figure 2.8: Partial Rank Correlation Coefficients (PRCCs) of the Parameters of the
Vaccination Model (2.1) with Respect to the Response Function (Rcv). Snapshot of
the PRCC Plot Generated on Day 43 of the Onset of the Omicron Variant in the
United States (i.e., When the Model Predicted a Peak of the Daily New Cases, as
Shown by the Blue Curve in Figure 2.2). Parameter Values Used in These Simulations
Are as given by the Baseline Values, and Their Corresponding Ranges, Tabulated in
Table 2.6 (Safdar and Gumel, 2023).

2.4 Numerical Simulations

Having rigorously analysed the qualitative dynamics of the vaccination model (2.1)

and carrying our detailed global sensitivity analysis of its parameters, the vaccination

model will now be numerically-simulated to assess the population-level impact of

control and mitigation strategies against the SARS-CoV-2 pandemic in the United

States. The main focus of these simulations is to assess the impacts of face mask usage

in public (as a singular intervention) and the combined impact of face mask usage

with vaccination (using any of the three vaccines, Pfizer, Moderna and Johnson &

Johnson, being administered in the United States) on limiting or curtailing the burden
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of the COVID-19 pandemic in the United States (Safdar and Gumel, 2023). Unless

otherwise stated, the simulations of the vaccination model (2.1) will be carried out

using the baseline values of the fixed and fitted parameters given in Tables 2.3 and

2.4.

2.4.1 Effect of Masking as a Singular Control and Mitigation Intervention

The use of face masks in public has played a very significant dual role of preventing

people from getting infected with COVID-19 (inward efficacy or respiratory protec-

tion), in addition to preventing those infected with COVID-19 from infecting others

(source control) (Eikenberry et al., 2020). As currently formulated, the vaccination

model (2.1) does not explicitly account for the impact of face mask usage in public. In

order to incorporate the usage of masking into the vaccination model, we re-scale the

community contact rate parameters (βp, βs, βa and βh) by a measure of face masks

effectiveness in prevention acquisition or transmission of infection. In particular, we

carried out the following parameter re-scaling (where, the symbol → means “replaced

by”) in the model (2.1) (Safdar and Gumel, 2023):

βp → βp(1−εmcm), βs → βs(1−εmcm), βa → βa(1−εmcm) and βa → βh(1−εmcm),

(2.19)

where, 0 ≤ εm ≤ 1 is the efficacy of the face mask to prevent transmission or ac-

quisition of infection and 0 ≤ cm ≤ 1 is the compliance in face masks usage in the

community. For the aforementioned masking scenario, the associated masking repro-

duction number, denoted by Rcm, is given by (where, Rcv is as defined in Equation

(2.7), but with the re-scaling (2.19) used in place of the infection rates) (Safdar and

Gumel, 2023):

Rcm = (1− εmcm)Rcv. (2.20)
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Figure 2.9: Simulations of the Re-scaled Version of the Vaccination Model (2.1)
to Assess the Effect of Face Mask Usage as a Singular Public Health Control and
Mitigation Intervention (I.E., No Vaccination). Contour Plots of the Masking Repro-
duction Number (Rcm) of the Re-scaled Version of the Model (2.1), as a Function of
Mask Coverage (cm) and Efficacy (εm), for the United States. The Other Parameter
Values Used in These Simulations Are as given by Their Respective Baseline Values
in Tables 2.3 and 2.4, with the Vaccine-related Parameters and State-variable (εv, ωv

and v(t)) Set to Zero (Safdar and Gumel, 2023).

The simulation results obtained, shown by the contour plots depicted in Figure 2.9,

show a marked decrease in the masking reproduction number (Rcm) with increasing

mask efficacy and compliance in mask usage. Using moderately efficacious face mask

in the community, such as a face mask with efficacy 70% (e.g., the surgical mask with

proper fitting), the simulation results show that at least 75% of the populace need

to be consistently wearing face mask in public to reduce (and maintain) the mask-

ing reproduction number (Rcm) to a value less than unity (it is worth recalling that

bringing the masking reproduction number of the re-scaled version of the vaccination

model (2.1) to a value less than unity is a necessary and sufficient condition for the

elimination of the disease, in line with Theorems 2.3.1, 2.3.3 and 2.3.4 for the global

asymptotic stability of the disease-free equilibrium of the model) (Safdar and Gumel,
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Figure 2.10: Simulations of the Re-scaled Version of the Vaccination Model, given
by (2.1) with the Re-scaling (2.19), to Assess the Effect of Face Mask Usage as a
Singular Public Health Control and Mitigation Intervention (i.e., No Vaccination) on
the Average Daily New Cases of SARS-CoV-2 in the United States. The Other Pa-
rameter Values Used in These Simulations Are as given by Their Respective Baseline
Values in Tables 2.3 and 2.4, with the Vaccine-related Parameters and State-variable
(εv, ωv and v(t)) Set to Zero (Safdar and Gumel, 2023).

2023). In other words, this study shows that the use of face mask as a singular inter-

vention can lead to the effective control (or elimination) of the SARS-CoV-2 pandemic

if at least 75% of the populace consistently wear a face mask of moderate efficacy (e.g.,

the surgical mask). If masks of higher efficacy (e.g., N95 mask or equivalent) is fa-

vored instead, our simulations show that such elimination can be achieved if 55% of

the populace consistently wear these masks in public. Hence, the community-wide

masking coverage needed to eliminate the disease decreasing with increasing efficacy

of the face mask type favored or prioritized in the community (Safdar and Gumel,

2023).

The re-scaled version of the vaccination model (2.1) (given by (2.1) with the re-scaling

(2.19)) is further simulated to assess the impact of face mask usage as a singular pub-
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lic health control and mitigation intervention (i.e., in the absence of vaccination) on

the daily new cases in the United States. To assess the singular impact of face mask

usage, these simulations are carried out for the special case of the re-scaled version

of the model with no vaccination (i.e., all the vaccine-related parameters and state-

variable of the re-scaled model are set to zero). Furthermore, for these simulations, we

set the face mask coverage in the community to be 50% (i.e., cm = 0.5) and consider

the scenario where only two mask types, namely surgical (with estimated efficacy of

70%, so that εv = 0.7) and N95 masks or equivalent (with estimated efficacy of 95%,

so that εv = 0.95) are prioritized in the community (Safdar and Gumel, 2023). The

simulation results for the two mask types, depicted in Figure 2.10, show a significant

decrease in the average daily new cases at the peak recorded under the baseline sce-

nario (i.e., compare the peaks for the yellow and green curves with the peak of the

blue curve, which represents the baseline scenario; note that, for the data used in

these simulations, the peak for the baseline scenario occurred on January 3, 2022).

For instance, under this scenario (in the absence of vaccination), if surgical masks

are prioritized (and with 50% coverage), about 53% of the daily cases recorded at

the peak under the baseline scenario will have been prevented (Figure 2.10, compare

the peaks of the blue and gold curves). Furthermore, if N95 masks or equivalent are

prioritized (with the same 50% coverage), about 75% of the daily new cases recorded

at the peak of the baseline scenario would have been averted (compare peaks of green

and blue curves in Figure 2.10) (Safdar and Gumel, 2023).

In summary, this study shows that the prospect of eliminating the SARS-CoV-2 pan-

demic using masking as a singular public health control and mitigation strategy is

promising, provided masks of moderate or high efficacy (with moderate to high cov-

erage) are prioritized. Specifically, this study showed, based on the current observed

data used in our simulations (i.e., based on the SARS-CoV-2 case data for the period
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November 28, 2021 to March 23, 2022 used to parameterize the model) i.e., from the

contour plot (Figure 2.9), that the SARS-CoV-2 pandemic can be eliminated in the

United States (i.e., suppressed from taking off) if approximately half the populace

were consistently wearing N95 mask (or equivalent) in public (if surgical masks were

prioritized, the coverage level needed to achieve such elimination increases to 75%)

(Safdar and Gumel, 2023). Although it may not be practical to expect humans to

always be wearing face masks in public, implementing masking as a singular strategy

is important for many reasons, including: (a) disease burden (i.e., severe disease,

hospitalization and death) can be significantly reduced and (b) buying time (by sup-

pressing the burden of the disease, and saving lives) before a safe and effective vaccine

becomes available. For this data set, if masking was started on Day 1 of the onset of

Omicron (i.e., November 28, 2021), these simulations showed that up to 53%− 75%

of the daily new cases recorded at the peak (this corresponds to 225000 − 425200)

will have been prevented (Safdar and Gumel, 2023).

2.4.2 Assessing the Combined Impact of Vaccination and Masks on Herd

Immunity Threshold

The re-scaled version of the vaccination model (2.1) is simulated (using the baseline

values of the fixed, fitted and assumed parameter values in Tables 2.3 and 2.4), to

assess the combined impact of vaccination (at baseline) and masking, on the dynamics

of COVID-19 in the United States. Figure 2.11 depicts contour plots of the masking

reproduction number (Rcm) of the modified version of model (2.1), as a function of

the average vaccine efficacy (εv) of the three vaccines (namely; Pfizer, Moderna and

Johnson & Johnson vaccine) against the acquisition of infection with Omicron and the

fraction of the United States population fully-vaccinated at steady-state (fv) (Safdar

and Gumel, 2023). Numerical simulations are carried out for the scenario when the
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baseline face mask usage in the community is increased by 20%, for various face mask

types. Figure 2.11(a) shows that if fabric or cloth masks (with low masking efficacy,

i.e., εm = 0.30) are prioritized, the herd immunity requirement corresponding to 62%

now reduces to 58%. However, if moderately effective procedure or surgical masks

(with εm = 0.70) are prioritized, the herd immunity requirement significantly reduces

to 52% (Figure 2.11(b)). Furthermore, the vaccine-derived herd immunity threshold

reduces drastically from 62% to 48% if highly effective N95 masks (with εm = 0.95)

are prioritized (Figure 2.11(c)). In summary, the contour plots in Figures 2.11(a)−(c)

show that the proportion of the individuals who need to be fully-vaccinated to achieve

herd immunity in the United States reduces with increasing coverage of face masks

in the community (from the baseline face mask usage). Furthermore, the level of

reduction achieved depends on the quality of the face masks used (specifically, greater

reduction in herd immunity level needed to eliminate the disease is achieved if the

high-quality N95 masks are prioritized, in comparison to the scenario where the cloth

masks or moderately effective surgical masks are prioritized) (Safdar and Gumel,

2023).

2.4.3 Assessing the Combined Impact of Vaccination and Masks on Daily New

Cases

The re-scaled version of the vaccination model (2.1) is further simulated, (using the

baseline values of the fixed, fitted and assumed parameter values in Tables 2.3 and 2.4)

to assess the combined impacts of mask coverage (cm), mask type (cloth masks with

masking efficacy of 30%, i.e., εm = 0.30, surgical masks with masking efficacy of 70%,

i.e., εm = 0.70 and N95 respirators with masking efficacy of 95%, i.e., εm = 0.95) and

vaccination (with average vaccine efficacy at the baseline level) on the daily number of

new COVID-19 cases in the United States. For the scenario when the mask coverage
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Figure 2.11: (a)−(c) Contour Plots of the Face Mask Reproduction Number (Rcm),
as a Function of Vaccine Efficacy (εv) and the Fraction Vaccinated at the Steady-
state (fv) for the Case When (a) Cloth Mask Is Prioritized and the Mask Coverage Is
Increased by 20% from the Baseline, (b) Surgical Mask Is Prioritized and the Coverage
in Its Usage Is Increased by 20% from the Baseline, (c) N95 Mask Is Prioritized and
the Coverage in Its Usage Is Increased by 20% from the Baseline. The Values of All
Other Parameters Used in the Simulations Are as given by The Baseline Values in
Tables 2.3 and 2.4 (Safdar and Gumel, 2023).

increases by 10% from its baseline value, the results obtained depicted in Figure

2.12(a), show that using the ineffective cloth masks will result to a 4.08% reduction

in the average number of new daily cases at the peak from the baseline (by comparing

the magenta and blue curves in Figure 2.12(a)). The reduction in the average number

of peak daily new cases is more significant if face masks of higher quality are prioritized

(Safdar and Gumel, 2023). Specifically, if the moderately-effective surgical masks are

prioritized, the simulation show that up to 9.79% reduction in peak level of the daily

new cases at the peak, in comparison to the peak baseline level (by comparing the

gold curve and blue curve in Figure 2.12(a)). The reduction increases significantly to

13.49% if the highly-effective N95 masks are prioritized (compare the blue and green

curves in Figure 2.12(a)). These reductions are more dramatic for the scenario when

the mask coverage increases by 20% from its baseline value. The results obtained,

depicted in Figure 2.12(b), show that using the ineffective cloth masks will result to

a 8.35% reduction in the average daily new cases at the peak, in comparison to the
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Figure 2.12: Simulations of the Model (2.1), Showing the Incremental Impact of
Mask Coverage (cm), Mask Type (Cloth Masks, with εm = 0.3; Surgical Masks, with
εm = 0.7; And N95 Respirators, with εm = 0.95) on the Daily New COVID-19 Cases
in the United States, as a Function Of Time. In Figure 2.12(a), the Mask Coverage
(cm) Is Increased by 10% and in Figure 2.12(b), the Mask Coverage (cm) Is Increased
by 20%, from Their Respective Baseline Values. The Values of the Other Parameters
Used in These Simulations Are as given in Tables 2.3 and 2.4 (Safdar and Gumel,
2023).

baseline (compare the magenta and blue curves in Figure 2.12(b)). The reduction

in the average daily new cases at the peak is more notable if moderately-effective

surgical masks are prioritized, the simulation show that up to 20.37% reduction in

peak daily new cases can be achieved, in comparison to the baseline (compare the

gold curve and blue curve in Figure 2.12(b)). This reduction in the average daily new

cases at the peak is more drastic, about 28.25% (in comparison to the baseline) if

the highly-effective N95 masks are prioritized (compare the green and blue curves in

Figure 2.12(b)) (Safdar and Gumel, 2023). In summary, the simulations in Figures

2.12(a) − (b) show that the reduction in the average number of daily new cases at

the peak (from the baseline) is significant if the face mask coverage in the community

is increased (from the baseline coverage level). Furthermore, the reduction in the
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average number of peak daily cases also depends on the quality of the face masks

used (specifically, drastic reduction in peak daily new cases is noted if the high-quality

N95 masks are prioritized, in comparison to the scenario where the cloth masks or

moderately effective surgical masks are prioritized) (Safdar and Gumel, 2023).

2.5 Discussion and Conclusions

This chapter is based on the use of mathematical modeling approaches, coupled with

rigorous analysis and computation, to address the problem of the spread and control of

the novel 2019 coronavirus pandemic (COVID-19) in the United States. Specifically,

a mathematical model, which takes the form of a deterministic system of nonlinear

differential equations, is developed and used to assess the population-level impact of

three of the four FDA-approved anti-COVID vaccines (Pfizer, Moderna and John-

son & Johnson vaccines) on the transmission dynamics and control of the COVID-19

pandemic in the United States. The impact of face mask use strategy, implemented

as a singular intervention strategy or in combination with the vaccination program,

is also assessed (Safdar and Gumel, 2023).

The model was rigorously analysed (using techniques, tools and theories from nonlin-

ear dynamical systems) to study its qualitative dynamical features. Furthermore, the

model was parameterized by fitting it to the observed new daily COVID-19 case data

for the United States for the period from November, 28, 2021 to March 23, 2023 (this

period was chosen to coincide with the time the Omicron variant first emerged in the

United States). The model was specifically fitted using the segment of the data from

November, 28, 2021 to February 23, 2022, and use the remaining segment of the data

(i.e., the segment from February 24, 2022 to March 23, 2022) to cross validate the

model (Safdar and Gumel, 2023). The cross-validation showed that the vaccination

model predicts the case data for the time period from February 24, 2022 to March
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23, 2022 reasonably well.

The rigorous qualitative analysis of the vaccination model revealed that its unique

disease-free equilibrium is locally-asymptotically stable whenever the associated con-

trol reproduction number of the model (denoted by Rcv) is less than one. It was also

shown, using the theory of center manifold (La Salle, 1976; Carr, 2012)), that the

model undergoes the phenomenon of backward bifurcation when the control reproduc-

tion number of the model is less than 1 under certain conditions. The epidemiological

implication of the backward bifurcation phenomenon is that the usual epidemiological

requirement of having the control reproduction number of the model being less than

1, while necessary, is no longer sufficient for the elimination of the disease (Safdar and

Gumel, 2023). In the presence of a backward bifurcation situation, more control re-

sources need to be invested to further reduce the control reproduction number. Two

main sufficient conditions were identified for the presence of backward bifurcation

in the vaccination model presented, namely (a) imperfect vaccine-derived, natural

and combined vaccine-derived and natural immunity to protect against the acquisi-

tion of infection (of vaccinated susceptible individuals) and re-infection (of recovered

vaccinated or unvaccinated individuals) and (b) disease-induced mortality and re-

infection of recovered individuals. In other words, the phenomenon of backward

bifurcation does not occur when (i) the vaccine-derived and natural immunity (in-

cluding the combined vaccine-derived and natural immunity) are perfect (i.e., when

εv = εn = εnv = 1) and (ii) when the disease-induced mortality is negligible (i.e.,

δp = δs = δa = δh = 0) and recovered individuals do not acquire re-infection (i.e.,

εn = εnv = 1). In any of these two scenarios where backward bifurcation does not

occur, we proved the global asymptotic stability of the disease-free equilibrium when

the associated control reproduction number is less than one (in this case, the model

undergoes a forward bifurcation at the bifurcation point, where the associated con-
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trol reproduction number equals one) (Safdar and Gumel, 2023). The epidemiological

implication of the global asymptotic stability result for the disease-free equilibrium

of the model (for the aforementioned special cases of the model where backward bi-

furcation does not occur) is that the SARS-CoV-2 pandemic can be eliminated in

the United States if the the associated control reproduction number can be brought

to (and maintained at) a value less than one (in other words, in this case, bringing

and maintaining the associated control reproduction number to a value less than one

is necessary and sufficient for the elimination of the pandemic in the United States)

(Safdar and Gumel, 2023).

It is also showed that the model has a unique and locally-asymptotically stable en-

demic equilibrium for a special case (where the vaccine is assumed to offer perfect

protective efficacy against the acquisition of infection, no re-infection, no waning of

vaccine-derived immunity and disease-induced mortality is negligible) whenever the

associated control reproduction number exceeds one. The epidemiological implication

of this result is that, for this special case of the model, the disease will persist in the

population whenever the associated reproduction number is greater than one. An

explicit expression for the vaccine-induced herd immunity threshold for the United

States was derived. It was shown, using current data for new daily COVID-19 cases

in the United States, that, for the case where the three FDA-approved vaccines offer

average protective efficacy against the Omicron variant of about 85%, vaccine-derived

herd immunity will be achieved in the United States if at least 62% of the populace is

fully-vaccinated (Safdar and Gumel, 2023). However, if the average cross-protection

efficacy provided by the vaccines reduces slightly (e.g., to 60%), about 87% of the

population needs to be fully-vaccinated with either of the aforementioned vaccines to
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achieve the vaccine-derived herd immunity (Safdar and Gumel, 2023).

Furthermore, using global sensitivity analysis, we identified the parameters of the

model that have the most influence on the control reproduction number of the model,

Rcv (hence, disease burden in the community). Specifically, the top five PRCC-

ranked parameters identified, to be the effective contact rate for pre-symptomatically-

infectious individuals (βp), asymptomatically-infectious individuals (βa), the progres-

sion rate of pre-symptomatic individuals (σp), the recovery rate of symptomatic in-

dividuals (γs) and the hospitalization rate of the individuals with clinical symptoms

(ϕs) (Safdar and Gumel, 2023). The numerical PRCC values indicate that reduc-

tion of the infection rate of pre-symptomatic and asymptomatic individuals results

in the reduction of Rcv. The parameters βp and βa can be reduced by implement-

ing control strategies, such as social-distancing, community lockdowns, use of face

masks in public, quarantine and isolation of the confirmed cases of COVID-19. Fur-

thermore, by increasing the progression rate of pre-symptomatic individuals, recovery

rate of symptomatic individuals, and the increase in the detection and hospitalization

of symptomatic cases will ultimately reduce Rcv. The progression rate of the pre-

symptomatic individuals (σp) can be increased by implementing non-pharmaceutical

control invention, such as contact tracing. The parameters γs and ϕs can be increased

by implementing control strategies, such as treatment of the COVID-19 infected in-

dividuals and the detection and hospitalization of symptomatic cases by large scale

blanket testing in the community (Safdar and Gumel, 2023).

The model was adapted and used to assess the population-level impact of using face

mask in the community as a singular intervention strategy (i.e., in the absence of

vaccination) and also in combination with the vaccination program. It is also as-

sessed exclusively the impact of face masks as a singular public health control and
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mitigation intervention (i.e., with the vaccine-related parameters and state-variable

set to zero) on the herd immunity requirement and on the average daily new cases

in the United States. Under this scenario (i.e., with no vaccination), it is shown that

the prospect of COVID-19 elimination in the United States is enhanced if almost half

of the populace is consistently wearing N95 mask (if surgical masks were prioritized,

the coverage level needed to achieve such elimination increases to 75%). Further, we

simulate the model for the same scenario (i.e., in the absence of vaccination) to assess

the impact of masking on the peak daily new cases. Our simulations showed a sig-

nificant decrease in the peak daily new cases (i.e., up to 53%) if the implementation

of moderately-effective surgical masks (with 50% coverage) was started on Day 1 of

the onset of Omicron (i.e., end of November, 2021). Marked reductions in the peak

daily new cases were recorded (i.e., up to 75%) if N95 masks were prioritized for the

same scenario (i.e., if masking was started on Day 1 of the onset of Omicron and its

coverage is increased by 50% from the baseline) (Safdar and Gumel, 2023).

The re-scaled version of the vaccination model was also used to assess the population-

level impact of vaccination (at the baseline) combined with face mask usage for various

mask types. For the scenario when the baseline face mask usage in the community

is increased by 20% and moderately-effective surgical mask are prioritized, the sim-

ulations showed that at least 52% of the populace need to be fully vaccinated in

order to achieve vaccine-derived herd immunity. However, if highly-efficacious face

masks are prioritized (such as N95 mask), the numerical simulations showed that the

requirement for achieving the vaccine-derived herd immunity is reduced significantly

to 48%. Furthermore, for the same scenario ( i.e., baseline face mask usage is in-

creased by 20%), the simulations show that if the highly efficacious N95 masks are

prioritized then the average number of daily new cases at the peak are significantly

reduced from the baseline by about 28% (Safdar and Gumel, 2023). In summary, the
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theoretical and numerical simulation results generated from this chapter showed that

the prospects for the effective control and elimination of the COVID-19 pandemic

in the United States is significantly improved if vaccination is combined with a face

mask strategy (that prioritizes moderately effective and high-quality masks), partic-

ularly if the average efficacy of the three of the four FDA-approved vaccines being

administered in the United States (namely Pfizer, Moderna and Johnson & Johnson

vaccine) is high (i.e., ≈ 85%) (Safdar and Gumel, 2023).

It should be mentioned that in this chapter, the model presented is relatively a ba-

sic model for vaccination against the SARS-CoV-2 pandemic to illustrate the epi-

demiological concepts and features being highlighted. The model can be extended

to incorporate other important features associated with the vaccination and SARS-

CoV-2 immunity, such as allowing for waning of natural and the combined natural and

vaccine-derived immunity, boosting of immunity (especially vaccine-derived) (Safdar

et al., 2023; Ngonghala et al., 2023) and the effect of human behavior changes with

respect to control and mitigation interventions (particularly adherence to vaccination

and/or face mask usage) (Ngonghala et al., 2021b).
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Chapter 3

IMPACTS OF BOOSTING AND WANING OF IMMUNITY

3.1 Introduction

Numerous public health interventions, notably the use of three of the four FDA-

approved safe and very effective anti-COVID vaccines (namely, the Pfizer-BioNTech,

Moderna and Johnson & Johnson vaccines), and nonpharmaceutical interventions

(such as the use of face mask, community lockdowns and social-distancing) have

played a major role in effectively curtailing the COVID-19 pandemic in the United

States (U.S. Food and Drug Administration and others, 2009, 2021b; Pfizer, 2020;

Eikenberry et al., 2020; Ngonghala et al., 2020b; Bourouiba, 2020; Iboi et al., 2020a;

Ngonghala et al., 2023; Safdar et al., 2023). However, Despite the rapid development

and deployment of the effective vaccines, COVID-19 cases and mortality continued

to rise in the United States for most part of 2021 (and even during the early parts

of 2022). This is largely due to the emergence of SARS-CoV-2 variants of concern

(VoC), notably the Alpha, Beta, Gamma, Delta and Omicron variants (Ngonghala

et al., 2023; Mahase, 2021; Gómez-Carballa et al., 2021; Karim and Karim, 2021;

Duong, 2021; Koyama et al., 2020; Rahimi and Abadi, 2022). Specifically, the emer-

gence of the Omicron variant (B.1.1.529), in November of 2021, has dramatically

changed the trajectory of the pandemic in the United States and globally(Del Rio

et al., 2022). Omicron was believed to be at least three times more contagious than

Delta (Del Rio et al., 2022; Callaway et al., 2021) (albeit Delta remains the deadli-

est of all the SARS-CoV-2 variants that emerged (HAGEN, 2022; Hanan, 2022)). A

sub-variant of Omicron, BA.2 was first identified in the United States from a sample

79



collected on December 14, 2021, in New Jersey (Centers for Disease Control and Pre-

vention, 2022). It is believed to be more contagious than the original Omicron variant

(i.e., BA.1) (Rahimi and Abadi, 2022; Katella, 2022). From November 28, 2021 to the

end of 2021, the United States was recording over one million new cases of SARS-CoV-

2 daily (and caused by the Omicron variant (Katella, 2023)). Furthermore, multiple

subvariants of Omicron (including BA.5, BQ.1, and BQ.1.1) were identified as the

variants of concern in the United States during the year 2022 (Katella, 2023; Centers

for Disease Control and Prevention, 2023b). However, in late January of 2023, a new

Omicron subvariant called XBB.1.5 was identified as the most dominant subvariant

of the SARS-CoV-2 virus, causing about 50% of the infections in the United States

(Katella, 2023; Centers for Disease Control and Prevention, 2023b).

Various empirical studies have shown that the protective efficacy of each of the afore-

mentioned vaccines wane over time (Gumel et al., 2021b; Ngonghala et al., 2021b,

2023), necessitating the FDA to approve the administration of booster vaccines for

each of the three vaccines. Specifically, the FDA approved a booster dose for all per-

sons aged 18 years and older during the period August to November 2021 (Fast et al.,

2021). In late March 2022, the FDA authorized a second booster shot of COVID-19

vaccines for vulnerable populations in the United States (i.e., for people 50 years of

age and older, and for individuals with certain immuno-compromising conditions who

are at higher risk of severe disease, hospitalization and death) (Hause et al., 2022).

A second booster dose is equivalent to a fourth dose for people who received a Pfizer-

BioNTech or Moderna mRNA vaccine series or a third dose for those who received the

single-dose Johnson & Johnson vaccine. In August of 2022, the FDA authorized the

most updated booster doses (i.e., bivalent boosters) which protect against both the

original SARS-CoV-2 variant and the Omicron variants BA.4 and BA.5 (Centers for

Disease Control and Prevention and others, 2022). It was available from September
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2, 2022 and was administered to adults (i.e., 18 years and older) (Centers for Disease

Control and Prevention and others, 2022).

Despite the deployment of the aforementioned three highly-efficacious vaccines (which

were originally developed to combat against the original SARS-CoV-2 strain), COVID-

19 continues to be a public health challenge (causing more new cases and mortality,

albeit at significantly reduced burden, in comparison to the period during the peaks

of the pandemic in the United States). Consequently, the vaccination program is

complemented with other intervention and mitigation strategies, such as the use of

face masks (Eikenberry et al., 2020; Ngonghala et al., 2020a, 2021b) and antiviral

treatment (Jayk Bernal et al., 2021), aimed at effectively combating or eliminating

the pandemic in the United States.

The objective of this chapter is to design, analyse and parameterize a vaccination

model that accounts for the main limitations itemized in Chapter 2. Specifically, the

impact of waning and boosting of both the vaccine-derived and natural immunity,

on the dynamics of the Omicron variant of SARS-CoV-2 in the United States, will

be assessed. To achieve the objective of this chapter, the basic model developed in

Chapter 2 will be extended to account for the boosting and waning of the aforemen-

tioned immunity types. Data corresponding to the period starting from the onset of

the Omicron variant (November 2021) will be used to parameterize the model. The

rest of this chapter is organized as follows. The model is formulated in Section 3.2.

The basic qualitative features of the model are also derived. The model is rigorously

analysed, with respect to the existence and asymptotic stability of its disease-free

equilibrium, in Section 3.3. Expressions for vaccine-derived herd immunity thresh-

olds are also derived. The model is fitted with observed daily new case COVID-19

data in Section 3.4. The methodology for implementing the data fitting process and
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estimating the unknown parameters of the model is also described. Numerical simu-

lations of the model are carried out in Section 3.5.

3.2 Model Formulation

To formulate the model for the transmission dynamics of SARS-CoV-2 in the pres-

ence of boosting and waning of both vaccine-derived and natural immunity, we

split the total population at time t, denoted by N(t), into mutually exclusive com-

partments of unvaccinated susceptible individuals (S(t)), fully-vaccinated suscep-

tible individuals with high vaccine-derived immunity (V1(t)), vaccinated suscepti-

ble individuals with moderate vaccine-derived immunity (V2(t)) (Rella et al., 2021),

vaccinated susceptible individuals with low vaccine-derived immunity (V3(t)), ex-

posed individuals (i.e., newly-infected individuals who are not yet infectious; E(t)),

pre-symptomatic infectious individuals (Ip(t)), symptomatically-infectious individ-

uals (Is(t)), asymptomatically-infectious individuals (Ia(t)), hospitalized individuals

(Ih(t)), recovered individuals with high infection-acquired natural immunity (Rn1(t)),

recovered individuals with moderate infection-acquired natural immunity (Rn2(t)),

recovered individuals with low infection acquired natural immunity (Rn3(t)), recov-

ered individuals with high infection-acquired natural and vaccine-derived immunity

(Rnv1(t)), recovered individuals with moderate infection-acquired natural and vaccine-

derived immunity (Rnv2(t)) and recovered individuals with low infection-acquired nat-

ural and vaccine-derived immunity (Rnv3(t)). Thus,

N(t) = S(t) + E(t) +
3∑

i=1

[Vi(t) +Rni
(t) +Rnvi(t)] +

∑
{j=p,s,a,h}

Ij(t).

Numerous clinical studies show that the vaccine-derived immunity against SARS-

CoV-2 begin to wane after nine months of the receipt of the full vaccine doses (Ngong-

hala et al., 2023; Gumel et al., 2021b; Curley, 2021). Consequently, in our model for-
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mulation, individuals in the V1 class (who enjoy high level of the protective efficacy

of the vaccine) are those that are within nine months of receipt of full vaccine doses.

Furthermore, individuals in the V2 class are those who have received the full doses

between 9 months to a year ago (hence, the vaccine efficacy is moderate). Finally,

individuals in the V3 class are assumed to have received the full vaccine doses from

a year to two years ago (and the vaccine efficacy is low). This study allows for the

waning and boosting of vaccine-derived and natural immunity (boosting of natural

immunity is assumed to occur due to treatment or the use of other immune-boosting

supplements (Mrityunjaya et al., 2020; Alagawany et al., 2021)). The model is given

by the following deterministic system of nonlinear differential equations (a stream-

lined/abbreviated flow diagram of the model is depicted in Figure 3.1, and the state

variables and parameters of the model are described in Tables 3.1 and 3.2, respec-

tively) (Safdar et al., 2023):
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

Ṡ = Π+ ωv3V3 + ωn3Rn3 + ωnv3Rnv3 − (λ+ ξv + µ)S,

V̇1 = ξvS + ρv2V2 − [(1− εv1)λ+ ωv1 + µ]V1,

V̇2 = ωv1V1 + ρv3V3 − [(1− εv2)λ+ ωv2 + ρv2 + µ]V2,

V̇3 = ωv2V2 − [(1− εv3
)λ+ ωv3 + ρv3

+ µ]V3,

Ė = λS + λ

3∑
i=1

[(1− εvi)Vi(t) + (1− εni
)Rni

(t) + (1− εnvi
)Rnvi

(t)]

− (σE + µ)E,

İp = σEE − (σp + γp + µ+ δp)Ip,

İs = rσpIp − (ϕs + γs + µ+ δs)Is,

İa = (1− r)σpIp − (γa + µ+ δa)Ia,

İh = ϕsIs − (γh + µ+ δh)Ih,

Ṙn1 =
∑

j={p,s,a,h}

γjIj + ρn2Rn2 − [(1− εn1)λ+ ξv + ωn1 + µ]Rn1 ,

Ṙn2 = ωn1Rn1 + ρn3Rn3 − [(1− εn2)λ+ ξv + ωn2 + ρn2 + µ]Rn2 ,

Ṙn3
= ωn2

Rn2
− [(1− εn3

)λ+ ξv + ωn3
+ ρn3

+ µ]Rn3
,

Ṙnv1 = ξvRn1 + ρnv2Rnv2 − [(1− εnv1)λ+ ωnv1 + µ]Rnv1 ,

Ṙnv2
= ξvRn2

+ ωnv1
Rnv1

+ ρnv3
Rnv3

− [(1− εnv2
)λ+ ωnv2

+ ρnv2
+ µ]Rnv2

,

Ṙnv3
= ξvRn3

+ ωnv2
Rnv2

− [(1− εnv3
)λ+ ωnv3

+ ρnv3
+ µ]Rnv3

,

(3.1)

where,

λ = (β)

(
ηpIp + ηsIs + ηaIa + ηhIh

N

)
, (3.2)

is the infection rate. In (3.2), β is the effective contact rate for individuals and

ηj (with j = {p, s, a, h}) is the modification parameter for the heterogeneity in the

infectiousness of infected individuals in the presymptomatic (Ip), symptomatic (Is),
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asymptomatic (Ia) and hospitalized (Ih) class, respectively.

Figure 3.1: (a) Streamlined Flow Diagram of the Model (3.1). (b-I)−(b-IV) De-
pict Sub-flow Diagrams of the Model Illustrating the Transitions Within the Com-
partments for Fully Vaccinated (Vi) with High, Moderate and Low Vaccine-derived
Immunity, Infectious (Ij), Recovered with High, Moderate and Low Natural Im-
munity (Rni

) and Recovered with Both Natural and Vaccine-derived Immunity at
High, Moderate and Low Levels (Rnvi) Individuals, Respectively (for i = 1, 2, 3 and
j = {p, s, a, h}). The Streamlined Flow Diagram Is Drawn to Simplify and Enhance
the Readability of the General Structure of the Model (the Full Version of the Flow
Diagram of the Model Is given in Appendix E) (Safdar et al., 2023).

In the model (3.1), Π is the recruitment of individuals into the population, ωvi (i =

1, 2, 3) is the vaccine waning rate for vaccinated individuals in stage Vi, ωni
is the

waning natural immunity for recovered individuals in stage Rni
, ωnvi is the waning

rate of both vaccine-derived and natural immunity for individuals in stage Rnvi , λ is

the infection rate (defined in Equation (3.2)), ξv is the per capita vaccination rate and
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µ is the natural death rate. Vaccinated individuals in V2 and V3 classes receive booster

doses at the rate ρvi (i = 2, 3) and revert to the higher efficacy vaccination stage V1 and

V2, respectively. Similarly, recovered individuals in the Rn2 and Rn3 classes receive

immune booster at a rate ρn2 and ρn3, respectively (and revert, respectively, to stages

Rn1 and Rn2). Individuals in Rnv2 and Rnv3 (that have both the vaccine-derived and

natural immunity) receive a booster at a rate ρnv2 and ρnv3, respectively (and revert

to Rnv1 and Rnv2, respectively).

The parameter εvi is the average protective efficacy of the vaccine for vaccinated

susceptible individuals in stage Vi (i = 1, · · · , 3), while εni
(i = 1, · · · , 3) is the aver-

age efficacy of natural immunity to prevent recovered individuals (in the Rni class)

from acquiring future SARS-CoV-2 infection and εnvi (i = 1, · · · , 3) is the average

efficacy of natural and vaccine-derived immunity to prevent future SARS-CoV-2 in-

fection of recovered individuals (in the Rnvi , i = 1, 2, 3, classes). Exposed individuals

progress to the pre-symptomatic stage at the rate σE, and pre-symptomatic indi-

viduals progress to either become symptomatically-infectious, at a rate rσp (where,

0 ≤ r ≤ 1 is the proportion of these individuals that show clinical symptoms), or

become asymptomatically-infectious, at the rate (1− r)σp. Symptomatic individuals

are hospitalized at a rate ϕs, and infectious individuals in stage Ij recover at a rate

γj (with j = {p, s, a, h}). Finally, disease-induced mortality occur in the Ij, Is, Ia and

Ih classes at a rate δj (j = {p, s, a, h}). Some of the main assumptions made in the

formulation of the model (3.1) are (Safdar et al., 2023):

(a) A well-mixed population: individuals are indistinguishable, and every mem-

ber of the population is equally likely to mix with every other member of the

population.

(b) Vaccinated susceptible individuals (in the V1, V2 and V3 classes) are assumed
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to have received the full required doses (i.e., two doses for Pfizer or Moderna

vaccine, one dose for the Johnson & Johnson vaccine), and that enough time

has elapsed for the body to develop the full vaccine-derived immunity (which

is typically two weeks after receiving the booster dose (Andrews et al., 2022a;

Thompson, 2022)).

(c) The three SARS-CoV-2 vaccines that received FDA’s Emergency Use Autho-

rization (Pfizer, Moderna and Johnson & Johnson) are imperfect (U.S. Food and

Drug Administration and others, 2009; Food and Drug Administration and oth-

ers, 2020; U.S. Food and Drug Administration and others, 2021b). That is, the

vaccines offer partial protective immunity (with average efficacy 0 < εvi < 1),

which wanes over time (at a rate ωvi), for i = 1, · · · , 3 (Curley, 2021; Gumel

et al., 2021b). In other words, vaccinated individuals can experience break-

through infection (Oliver et al., 2020; U.S. Food and Drug Administration and

others, 2021a).

(d) We assume the gradual waning of both vaccine-derived and natural immunity

over time, resulting, ultimately, in reverting to the wholly-susceptible class S

(Gumel et al., 2021b). Moreover, the overall transitions from V1 to S, Rn1 to S

and Rnv1 to S hold gamma distribution (Childs et al., 2022).

(e) Vaccination is only offered to wholly-susceptible individuals or those who re-

covered naturally from COVID-19 infection but their natural immunity has

waned completely or those recovered individuals who had acquired natural plus

vaccine-derived immunity after recovering from COVID-19 infection but the im-

munity has completely waned over time. In other words, individuals who are

currently infected are not vaccinated.
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(f) Immunity level can be increased or strengthened, by using immunity boost-

ers (Centers for Disease Control and Prevention and others, 2021; Pacific and

Hasan, 2021; Mrityunjaya et al., 2020; Alagawany et al., 2021), for the individ-

uals in the Vi, Rni
and Rnvi (i = 1, · · · , 3) classes.

State variable Description

S Population of unvaccinated (wholly) susceptible individuals

V1 Population of vaccinated susceptible individuals with high vaccine-derived

immunity

V2 Population of vaccinated susceptible individuals with moderate vaccine-

derived immunity

V3 Population of vaccinated susceptible individuals with low vaccine-derived

immunity

E Population of exposed (newly-infected individuals)

Ip Population of pre-symptomatic infectious individuals

Is Population of infectious individuals with clinical symptoms of the disease

Ia Population of asymptomatically-infectious individuals

Ih Population of hospitalized individuals

Rn1 Population of recovered individuals with high natural immunity

Rn2
Population of recovered individuals with moderate natural immunity

Rn3 Population of recovered individuals with low natural immunity

Rnv1
Population of recovered individuals with high natural and vaccine-derived

immunity

Rnv2 Population of recovered individuals with moderate natural and vaccine-

derived immunity

Rnv3 Population of recovered individuals with low natural and vaccine-derived

immunity

Table 3.1: Description of the State Variables of the Model (3.1) (Safdar et al., 2023).

The model (3.1) extends numerous COVID-19 vaccination models in the literature,
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such as those in Alagoz et al. (2021); Ramos et al. (2021); Shoukat et al. (2022);

Gumel et al. (2021b,a); Mancuso et al. (2021), by, inter alia:

(a) Incorporating the gradual waning of vaccine-derived, natural and natural plus

vaccine-derived immunity (gradual waning of immunity was not considered in

Ngonghala et al. (2021b, 2023); Gumel et al. (2021b,a)).

(b) Accounting for the administration of booster doses in the population (this was

not considered in Mancuso et al. (2021); Gumel et al. (2021b); Ramos et al.

(2021); Gonzalez-Parra et al. (2021); Shoukat et al. (2022); Alagoz et al. (2021);

Gumel et al. (2021a)).

(c) Including two recovered populations to explicitly account for (and differentiate)

recovered individuals with natural immunity and those with both natural and

vaccine-derived immunity (this was not considered in Gumel et al. (2021a);

Ngonghala et al. (2023); Gumel et al. (2021b))

(d) Incorporating the reinfection and loss of immunity of the recovered individuals

(this was not considered in Gumel et al. (2021b); Mancuso et al. (2021); Gumel

et al. (2021a)).

Parameter Description

Π Recruitment rate

β Effective contact rate

ηj (j = {p, s, a, h}) Modification parameter for the infectiousness of the individuals in

Ip, Is, Ia, and Ih classes, respectively

ξv Vaccination rate

µ Natural death rate

r Proportion of individuals who show clinical symptoms of the disease

ωvi(i = 1, 2, 3) Waning rate of vaccinated individuals in stage Vi
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ωni
(i = 1, 2, 3) Waning rate of natural immunity for individuals in stage Rni

ωnvi
(i = 1, 2, 3) Waning rate of natural plus vaccine-derived immunity in

individuals in stage Rnvi

ρv2(ρv3) Boosting rate of vaccine-derived immunity for individuals in stage

V2(V3)

ρn2
(ρn3

) Boosting rate of natural immunity for individuals in Rn2
(Rn3

)

stage

ρnv2
(ρnv3

) Boosting rate of vaccine-derived and natural immunity of those in

stage Rnv2(Rnv3)

εvi(i = 1, 2, 3) Vaccine efficacy for individuals in V1, V2 and V3 class, respectively

εni
(i = 1, 2, 3) Efficacy of natural immunity to prevent infection of recovered

individuals in Rn1 , Rn2 and Rn3

εnvi
(i = 1, 2, 3) Efficacy of natural and vaccine derived immunity to prevent

infection of recovered individuals in Rnv1 , Rnv2 and Rnv3 stage

σE Progression rate from exposed individuals to pre-symptomatic stage

σp Progression rate of pre-symptomatic individuals to either

symptomatic or asymptomatic class

γj (j = {p, s, a, h}) Recovery rate for individuals in the Ip, Is, Ia and Ih class,

respectively

ϕs Hospitalization rate of individuals with clinical symptoms of the

disease

δj (j = {p, s, a, h}) Disease-induced mortality rate for individuals in the Ip, Is, Ia

and Ih class, respectively

Table 3.2: Description of the Parameters of the Model (3.1)(Safdar et al., 2023).

3.2.1 Basic Qualitative Properties of the Model

The basic qualitative properties of the model (3.1) are explored in this section. Specif-

ically, the positivity and boundedness of the solutions of the model are established.

First of all, since the model (3.1) monitors the temporal dynamics of human popula-
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tions, all its parameters are non-negative. Consider the following biologically-feasible

region for the model (3.1):

Ω =

{
(S, V1, V2, V3, E, Ip, Is, Ia, Ih, Rn1 , Rn2 , Rn3 , Rnv1 , Rnv2 , Rnv3) ∈ R15

+ : N(t) ≤ Π

µ

}
,

where, N(t) is the total population. Furthermore, let

X(0) = (S(0), Vi(0), E(0), Ip(0), Is(0), Ia(0), Ih(0), Rni(0), Rnvi(0))
T ,

with i = 1, 2, 3, be the vector of initial solutions of the model (3.1). We claim the

following result.

Theorem 3.2.1. Let the initial data for the model (3.1) be S(0) > 0, Vi(0) ≥

0, E(0) ≥ 0, Ip(0) ≥ 0, Is(0) ≥ 0, Ia(0) ≥ 0, Ih(0) ≥ 0, Rni(0) ≥ 0, Rnvi(0) ≥ 0,

with i = 1, 2, 3. Then the solutions of the model (3.1) with positive initial data, will

remain positive for all time t > 0.

Proof. Let t1 = sup{t > 0 : S(t) > 0, V1(0) > 0, V2(0) > 0, V3(0) > 0, E(0) >

0, Ip(0) > 0, Is(0) > 0, Ia(0) > 0, Ih(0) > 0, Rn1(0) > 0, Rn2(0) > 0, Rn3(0) >

0, Rnv1(0) > 0, Rnv2(0) > 0, Rnv3(0) > 0 ∈ [0, t]}. Thus, t1 > 0. It follows from

the first equation of the model (3.1) that

dS

dt
= Π+ ωv3V3(t) + ωn3

Rn3
(t) + ωnv3

Rnv3
(t)− (λ+ ξv + µ)S(t) ≥ Π− (λ+ ξv + µ)S(t),

which can be re-written as:

d

dt

[
S(t)exp

{∫ t

0

λ(u)du+ (ξv + µ)t
}]

≥ Π exp
{∫ t

0

λ(u)du+ (ξv + µ)t
}
.

Hence,

S(t1)exp
{∫ t1

0

λ(u)du+ (ξv + µ)t1

}
− S(0) ≥ Π

∫ t1

0

exp
{∫ x

0

λ(ν)dν + (ψL + µ)x
}
dx,

so that

S(t1) ≥ exp
{
−
∫ t1

0

λ(u)du− (ξv + µ)t1

}[
S(0) + Π exp

{∫ x

0

λ(ν)dν + (ξv + µ)x
}
dx

]
> 0,
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Similarly, it can be shown that all the remaining state variables of the vaccination

model (3.1) are non-negative (for all non-negative initial conditions) for t > 0. Con-

sequently, all the solutions of the vaccination model (3.1), with non-negative initial

conditions, remain non-negative for all time t > 0.

Theorem 3.2.2. Consider the model (3.1) with non-negative initial data, X(0). The

region Ω is positively-invariant and bounded with respect to the model (3.1).

Proof. Adding all the equations of the model (3.1) gives

Ṅ = Π− µN − δpIp − δsIs − δaIa − δhIh. (3.3)

It follows (noting the non-negativity of the parameters of the model (3.1)) from (3.3)

that

Ṅ ≤ Π− µN. (3.4)

Hence, if N > Π
µ
, then Ṅ < 0. Thus, it follows, by applying a standard comparison

theorem (Lakshmikantham et al., 1989; Gumel et al., 2021b; Safdar et al., 2023) on

(3.4), that:

N(t) ≤ N(0)e−µt +
Π

µ

(
1− e−µt

)
.

Furthermore, if N(0) ≤ Π
µ
, then N(t) ≤ Π

µ
. Thus, the solutions of the model (3.1)

are bounded. Therefore, every solution of the model (3.1) with initial conditions in

Ω remains in Ω for all time t. In other words, the region Ω is positively-invariant and

attracts all initial solutions of the model (3.1). Hence, it is sufficient to consider the

dynamics of the flow generated by (3.1) in Ω (where, the model is epidemiologically-

and mathematically well-posed) (Safdar et al., 2023).
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3.3 Asymptotic Stability of DFE

The consequence of Theorem 3.2.2 is that it is sufficient to consider the dynamics of

the flow generated by the system given in (3.1) in Ω, since the vaccination-waning-

boosting model (3.1) is epidemiologically and mathematically well-posed (Hethcote,

2000) there.

3.3.1 Local asymptotic stability

The disease-free equilibrium of the model (3.1) is given by:

E0 =
(
S∗, V ∗

1 , V
∗
2 , V

∗
3 , E

∗, I∗p , I
∗
s , I

∗
a , I

∗
h, R

∗
n1
, R∗

n2
, R∗

n3
, R∗

nv1
, R∗

nv2
, R∗

nv3

)
, (3.5)

where,

S∗ =
Π [µρv2A1 + A2 (µρv3 + A3A4)]

D1

,

V ∗
1 =

Πξv [ρv2A1 + µρv3 + A3A4]

D2

,

V ∗
2 =

Πξvωv1A1

D2

,

V ∗
3 =

Πξvωv1ωv2

D2

,

(3.6)

with,

A1 = µ+ ρv3 + ωv3 , A2 = µ+ ωv1 , A3 = µ+ ωv2 , A4 = µ+ ωv3 ,

B1 = µ+ ξv, B2 = µ+ ρv3 + ωv2 , B3 = µ+ ρv3 , B4 = µ+ ρv2 + ωv1 ,

B5 = µ+ ξv + ωv1 ,

D1 = µ[ξv ((A2) (B2) + ρv2 (A1) + ωv3 (µ+ ωv1 + ωv2)) + µρv2(A1)

+ (A2) (µρv3 + (A3) (A4))],

D2 = µ (B1) [(A2) (B2) + ρv2 (B3)] + µωv3 [(B1) (B4) + ωv2 (B5)] ,

and all other components (for the infected and recovered compartments of the model)

take the value zero.

Here, too, the asymptotic stability property of the DFE (E0) will be explored using
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the next generation operator method (van den Driessche and Watmough, 2002; Diek-

mann et al., 1990). It can be shown that the associated non-negative matrix of new

infection terms (F ) and the M-matrix of the linear transition terms (V ) are given,

respectively, by (Safdar et al., 2023):

F =



0 f1 f2 f3 f4

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and V =



K1 0 0 0 0

−σE K2 0 0 0

0 −rσp K3 0 0

0 −(1− r)σp 0 K4 0

0 0 −ϕ 0 K5


, (3.7)

where,

f1 = β ηp

(
S∗ + A∗

N∗

)
, f2 = β ηs

(
S∗ + A∗

N∗

)
, f3 = β ηa

(
S∗ + A∗

N∗

)
,

f4 = β ηh

(
S∗ + A∗

N∗

)
,

with (noting that N∗ = Π/µ),

A∗ = (1− εv1)V
∗
1 + (1− εv2)V

∗
2 + (1− εv3)V

∗
3 , K1 = σE + µ,K2 = σp + γp + µ+ δp,

K3 = ϕs + γs + µ+ δs, K4 = γa + µ+ δa and K5 = γh + µ+ δh.

Let (where, ρ is the spectral radius):

Rv = ρ(FV −1) =


βσE (S∗ + A∗)K

(N∗)

(
5∏

q=1

Kq

)
 , (3.8)

where,

K = K3K4K5ηp +K3K5ηaσp(1− r) +K4K5ηsrσp +K4ηhϕsrσp. (3.9)

The result below follows from Theorem 2 of (van den Driessche and Watmough, 2002).
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Theorem 3.3.1. The disease-free equilibrium (E0) of the model (3.1) is locally-

asymptotically stable if Rv < 1, and unstable if Rv > 1.

The threshold quantity Rv is the vaccination reproduction number of the model (3.1),

which measures the average number of new COVID-19 cases generated by a single

infectious individual introduced into a population where, a certain proportion is vac-

cinated. Here, too, the epidemiological consequence of Theorem (3.3.1) is that a small

influx of COVID-19 cases will not generate a large outbreak in the community if the

vaccination reproduction number (Rv) is maintained at a value less than unity. It is

worth noting that in the absence of vaccination and other public health interventions,

the vaccination reproduction number (Rv) reduces to the basic reproduction number

(denoted by R0). That is,

R0 = Rv|V ∗
1 =V ∗

2 =V ∗
3 =0 =


βσEK
5∏

q=1

Kq

 .

3.3.2 Global asymptotic stability: special cases

In this section, we will explore the global asymptotic stability of the disease-free equi-

librium of the model (3.1) for two special cases, as described below.

Special case 1:

Consider the special case of the model (3.1) where, the vaccine being used in the

community offers 100% protective efficacy against primary infection and re-infection

(i.e., εvi = εni
= εnvi = 1; for i = 1, 2, 3).

For the aforementioned special case of the model, it can be seen that the associated

next generation matrix of new infection terms, denoted by F̃ , is given by (that, for
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this special case, the next generation matrix of linear transition terms, V , remains

the same, as given in (3.7). Furthermore, N∗ = Π/µ) Safdar et al. (2023):

F̃ =



0 βηp

(
S∗

N∗

)
βηs

(
S∗

N∗

)
βηa

(
S∗

N∗

)
βηh

(
S∗

N∗

)
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

The control reproduction number of this special case of the model (3.1), denoted by

R̃v, is given by:

R̃v = ρ(F̃ V −1) = Rv|εv=1 =


βσES

∗K

(N∗)

(
5∏

q=1

Kq

)
 (with K as defined in Equation (3.9)).

(3.10)

We claim the following result:

Theorem 3.3.2. Consider the special case of the model (3.1) with εvi = εni
= εnvi =

1 and R̃v ≤ 1−
3∑

i=1

fvi < 1 for i = 1, 2, 3 (with fvi as defined in Equation (3.11)). The

disease-free equilibrium of the special case of the model (E0) is globally-asymptotically

stable in Ω whenever R̃v < 1.

The proof of Theorem 3.3.2, based on using linear Lyapunov function (Gumel et al.,

2021a; Brozak et al., 2021; Iboi et al., 2020a), is given in Appendix F. Epidemiologically-

speaking, Theorem 3.3.2 shows that, for the special case of the model (3.1) with

εvi = εni
= εnvi = 1 (for i = 1, 2, 3), the disease can be eliminated from the commu-

nity if the threshold quantity, R̃v, can be brought to (and maintained at) a value less
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than unity.

Special case 2:

The global asymptotic stability of the disease-free equilibrium of the model (3.1) can

also be established for another special case which entails setting the parameters re-

lated to disease-induced mortality (i.e., δp, δs, δa and δh = 0) and re-infection (i.e., εni

and εnvi = 1; with i = 1, 2, 3) to zero. Setting δp = δs = δa = δh = 0 in the model

(3.1), and adding all the equations of the model, shows that
dN

dt
= Π − µN , from

which it follows that N(t) → Π

µ
as t → ∞. From now on, we replace N(t) with its

limiting value, N∗ = Π/µ in the model (i.e., the standard incidence formulation for

the infection rate is now replaced by a mass action incidence). We claim the following

result:

Theorem 3.3.3. Consider the special case of the model (3.1) in the absence of

disease-induced mortality (i.e., δp = δs = δa = δh = 0) and no re-infection of re-

covered individuals (i.e., εni
= εnvi = 1, with i = 1, 2, 3). The disease-free equilibrium

of this special case of the model (E0) is globally-asymptotically stable in Ω∗∗ whenever

R̂v < 1.

The proof of Theorem 3.3.3, based on using a comparison theorem, is given in Ap-

pendix G (Safdar et al., 2023).

3.3.3 Vaccine-induced herd immunity threshold

The concept and importance of vaccine-induced (or vaccine-derived) herd immunity

threshold has been discussed in detail in Section 2.3.3 (for the case of a model with

a single vaccination class). Since vaccine-waning-boosting model (3.1) has three vac-

cination classes (V1, V2 and V3), accounting for the three levels of vaccine-derived

immunity (high, moderate and low), but we will compute the vaccine-derived herd
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immunity threshold for the United States with respect to the wholly-susceptible in-

dividuals who are fully vaccinated and moved to V1 class (as it represents the actual

fraction of individuals who initially received the full vaccine doses of any of the afore-

mentioned vaccines). Specifically, we let (Safdar et al., 2023)

fv1 =
V ∗
1

N∗ , fv2 =
V ∗
2

N∗ , fv3 =
V ∗
3

N∗ , with N∗ =
Π

µ
. (3.11)

Here, fv1 represents the proportion of susceptible members of the population that

have been fully-vaccinated (using any of the three FDA-approved vaccines considered

in this dissertation), while fvk (with k = 2, 3) represents the proportion of individuals

in the Vk class that have received the booster dose at the disease-free equilibrium

(E0). Using the definition (3.11) in Equation (3.8) gives:

Rv =


βσE[1− (εv1fv1 + εv2fv2 + εv3fv3)]K(

5∏
q=1

Kq

)
 ,

with K as defined in Equation (3.9).

This threshold quantity can be expressed in terms of the basic reproduction number

(R0) of the model, as:

Rv =

(
1−

3∑
i=1

εvifvi

)
R0. (3.12)

Setting Rv = 1 in Equation (3.12), and simplifying, gives:

3∑
i=1

εvifvi =

(
1− 1

R0

)
, (3.13)

from which we can solve for the fraction fully-vaccinated (those in V1 class), at steady-

state for the vaccinated class (denoted by fv1), in terms of the basic reproduction
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number, giving:

fv1 =
1

εv1

[(
1− 1

R0

)
− (εv2fv2 + εv3fv3)

]
= f c

v1
(for R0 > 1). (3.14)

It follows from Equation (3.14) that Rv < (>)1 if fv1 > (<)f c
v1
. Furthermore, Rv = 1

whenever fv1 = f c
v1
. This result is summarized below (Safdar et al., 2023):

Theorem 3.3.4. Vaccine-induced herd immunity (i.e., COVID-19 elimination) can

be achieved in the United States, using any of the three FDA-approved anti-COVID

vaccines, if the vaccination program can lead to the vaccination of susceptible indi-

viduals resulted in fv1 > f c
v1

(i.e., if Rv < 1). If fv1 < f c
v1

(i.e., if Rv > 1), then the

vaccination program will fail to eliminate the COVID-19 pandemic.

The epidemiological implication of Theorem 3.3.4 is that the use of any of the three

approved COVID-19 vaccines (considered in this dissertation) can lead to the elimina-

tion of the pandemic in the United States if the proportion of susceptible individuals

fully-vaccinated and with high level of vaccine-derived immunity (i.e., those in V1

class) at steady-state reached or exceeded the aforementioned critical threshold val-

ues. In other words, the SARS-CoV-2 pandemic is predicted to be eliminated in the

United States if fv1 > f c
v1
. On the contrary, the Vaccination program will fail to

eliminate the pandemic if the proportion vaccinated at the disease-free equilibrium

falls below the aforementioned critical herd immunity thresholds.

It should be mentioned that since the Pfizer and Moderna vaccines offer protective

efficacy of about 95% and 94%, respectively (Pearson, 2021), and the Johnson &

Johnson vaccine offers a protective efficacy of about 67% (Mancuso et al., 2021), we

set the average vaccine protective efficacy for individuals in the V1 class to be (Safdar

et al., 2023)

εv1 =
0.95 + 0.94 + 0.67

3
≈ 0.85. (3.15)
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It is worth mentioning that the expression (3.15), for the average vaccine protective

efficacy, is a dynamic quantity that depends on the actual combinations of SARS-

CoV-2 vaccines adopted in the community at time t (it should be mentioned that, in

deriving the estimate for εv1 in Equation (3.15), we used the values of the respective

efficacies of the three vaccines estimated in (Pearson, 2021; Mancuso et al., 2021)

during the period around October, 2020 to January, 2021). Table 3.5 summarizes

the assumed baseline efficacy levels for average vaccine-derived and natural immunity

to be used in our numerical simulations. Using the baseline values of the fixed and

fitted parameters in Tables 3.3 − 3.4, together with the baseline average vaccine-

derived and natural immunity protective efficacy levels in Table 3.5, it follows from

Equation (3.14) that the critical vaccine-derived herd immunity threshold for each of

the vaccinated compartment is given, by f c
v1

≈ 0.72. The value of f c
v1

is computed

by substituting the values of fv2 and fv3 from Equation (3.11) (i.e., fv2 = 0.01589

and fv3 = 0.00066, computed using the baseline parameter values in Tables 3.3 −

3.5). In other words, based on the parameterization of the model (3.1) with the

recent case data for Omicron BA.1 variant in the United States, population-level

herd immunity can be achieved in the United States if at least 72% of the wholly-

susceptible individuals are fully vaccinated (i.e., 72% of individuals in the S class are

fully-vaccinated and moved to the V1 class).

Figure 3.2 depicts contour plot of the vaccination reproduction number (Rv), as a

function of average vaccination efficacy (εv1) and coverage of fully-vaccinated indi-

viduals at steady-state (fv1). It follows from the above plot that, for the overall

vaccine-protective efficacy set at 85% (as stated above), at least 72% of the wholly-

susceptible population need to be vaccinated at steady-state to bring the vaccination

reproduction number (Rv) below one (Figure 3.2). Under this setting, the computed
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Figure 3.2: Contour Plot of the Vaccine Reproduction Number (Rv) of the Model
(3.1), as a Function of Vaccine Coverage at Steady-State (fv1) and Average Vaccine
Efficacy (εv1), for the United States. Vaccination of Wholly-susceptible Individuals
(S(t); fv1 Is Proportion of Wholly-susceptible Individuals Who Are Fully-vaccinated
at Steady-state). Parameter Values Used in These Simulations Are as given by Their
Respective Baseline Values in Tables 3.3 − 3.5 (Safdar et al., 2023).

value of the control reproduction number (Rv), obtained using the baseline parameter

values in Tables 3.3 − 3.5, is Rv ≈ 0.97. Similarly, the computed value of the basic re-

production number (R0) is R0 ≈ 2.59. In summary, the results depicted in Figure 3.2

show that population-level herd immunity can be achieved in the United States via

the implementation a vaccination program (based on using any of the three aforemen-

tioned approved vaccines) that emphasizes the full vaccination of a sizable proportion

of the susceptible pool (at least 72%). Overall, our study shows that, for the case

where the average protective immunity offered by the vaccines for fully-vaccinated

individuals in the V1 class is 85%, vaccine-derived herd immunity can be achieved

in the United States if at least 72% of the susceptible population is fully-vaccinated

(with any of the three aforementioned FDA-approved anti-COVID vaccines) (Safdar

et al., 2023).

It should be mentioned that for the case when the high level of the vaccine-induced
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efficacy for individuals in the V1 class is decreased to 65%, for instance (while the vac-

cine protective efficacy for individuals in the V2 and V3 classes remain at the baseline

level), our simulations showed that at least 93% of the wholly-susceptible population

need to be fully-vaccinated. Thus, this study shows that lower protective efficacy of

the vaccine (for fully-vaccinated individuals) incurs higher requirement for the vacci-

nation coverage of the susceptible population to achieve herd immunity. Vaccinating

93% of the wholly-susceptible population is, of course, not realistically feasible in

large populations, such as the United States. Hence, it is imperative that highly effi-

cacious vaccines are developed and used. In other words, using vaccines with higher

protective efficacy (e.g., vaccines with 85% protective efficacy, as computed in Equa-

tion (3.15)) incurs lower, and realistically attainable, requirement for the vaccination

coverage (about 72%). As of March 12, 2023, data from the CDC shows that about

69% of the United States population is fully-vaccinated (Centers for Disease Control

and Prevention, 2023a). Thus, this chapters shows that the prospect of achieving

vaccine-derived herd immunity using any of the three vaccines considered in this dis-

sertation (i.e., Pfizer vaccine, Moderna vaccine, and Johnson & Johnson vaccine) is

promising if the coverage is moderate enough, provided the average vaccine efficacy

offered by the aforementioned three vaccines is high enough.

3.4 Data Fitting and Parameter Estimation

In this section, the model (3.1) was fitted by using the available data for the observed

daily new COVID-19 cases for the United States (for the period November 28, 2021

– February 23, 2022). The model (3.1) has several parameters, some of which are

known from the literature (as tabulated in Table 3.3) and the remaining unknown

parameters are obtained by fitting the model (3.1) with the daily new case data ob-

tained from the Johns Hopkins University COVID-19 repository (Dong et al., 2020).

102



The model was fitted using a standard nonlinear least squares approach (as described

in Section 2.2.1). The unknown parameters which are estimated from the fitting are

presented in Table 3.4.

The overall methodology of the data fitting procedure is same as discussed in Section

2.2.1. The results obtained, depicted in Figure 3.3, shows a very good fit for the

model output (blue curve) and the observed daily new case data (red dots). The data

for the second segment of the data, for the period from February 24, 2022 to March

23, 2022, was used for the cross validation of the fitted data. This also shows a very

good fit for the model output (green curve) and for the remaining data points of the

observed data (red dots) of Figure 3.3. This segment of the Figure 3.3 clearly shows

that the model (3.1) cross validates the observed daily new case data for the period

from February 23, 2022 to March 23, 2022 perfectly (solid green curve). Furthermore,

we show, in this figure, the prediction of the model for the daily COVID-19 new cases

for approximately a five-week period after March 24, 2022 (i.e., the region to the right

of the dashed vertical black line), as illustrated by the solid magenta curve in Figure

3.3 (Safdar et al., 2023).
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Parameter Value Source

σE 1/5 day−1 Ngonghala et al. (2023)

σp 1/2 day−1 Linton et al. (2020)

r 0.095 (dimensionless) Weintraub (2022)

ϕs 1/5 day−1 Ngonghala et al. (2023)

γs 1/10 day−1 Gumel et al. (2021b); Mancuso et al. (2021)

γa 1/5 day−1 Gumel et al. (2021b); Mancuso et al. (2021)

γh 1/8 day−1 Gumel et al. (2021b); Mancuso et al. (2021)

ηp 5/4 (dimensionless) Gumel et al. (2021b)

ηs 1 (dimensionless) Gumel et al. (2021b)

ηa 3/2 (dimensionless) Gumel et al. (2021b)

ηh 3/4 (dimensionless) Gumel et al. (2021b)

ξv 1.9 × 10−5 day−1 Bosman et al. (2021)

Π 12000 day−1 Gumel et al. (2021b)

µ 3.4 × 10−5 day−1 Ngonghala et al. (2021b)

δp 0 day−1 Tan et al. (2021)

ωv1 1/274 day−1 Curley (2021)

ωv2 1/365 day−1 Curley (2021)

ωv3 1/365 day−1 Curley (2021)

ωn1 1/274 day−1 Curley (2021)

ωn2 1/365 day−1 Curley (2021)

ωn3 1/365 day−1 Curley (2021)

ωnv1 1/548 day−1 Assumed

ωnv2 1/730 day−1 Assumed

ωnv3 1/730 day−1 Assumed

ρv2 1/14 day−1 Gregory and Salenetri (2022); Thompson (2022)

ρv3 1/14 day−1 Gregory and Salenetri (2022); Thompson (2022)

ρn2 1/14 day−1 Gregory and Salenetri (2022)

ρn3 1/14 day−1 Gregory and Salenetri (2022)

δh 5.0 × 10−5 day−1 Ngonghala et al. (2021b)

δa 0 day−1 Desmon (2022)

Table 3.3: Baseline Values of the Fixed Parameters of the Model (3.1) (Safdar et al.,

2023).

Furthermore, in fitting the model to observed daily new case data for the United
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States, the average efficacies for individuals in the Vi classes (with i = 1, 2, 3) were set

to their respective values in Table 3.5. Specifically, the value of the average vaccine

efficacy for individuals in the V1 class (εv1) is set at 85% based on the expression

given in Equation (3.15). The estimate for the average vaccine efficacy for individu-

als in the V2 class (εv2) was adapted from the empirical studies in (Lin et al., 2022;

Andrews et al., 2022b). First of all, these studies show variations in the timing of

the attainment of the residual efficacy (after a few months of receipt of COVID-19

vaccination), which depend on the type of vaccine (Pfizer, Moderna or Johnson &

Johnson). Further, the studies showed that the vaccine-derived efficacy of the John-

son & Johnson vaccine dropped from the initial 74.8% to 59.4% after five months of

the receipt of the single-dose (Lin et al., 2022). Similarly, the protective efficacy of

the Pfizer vaccine decreased from 94.5% to 75.7% after 8 months of the receipt of the

full doses of the Pfizer vaccine (Andrews et al., 2022b). Finally, the efficacy of the

Moderna vaccine decreased from 95.5% to 84.3% after 5 months of full vaccination

(Andrews et al., 2022b). Based on these estimates, we considered it plausible to set

the average vaccine efficacy for individuals in the V2 class to be 50%.

Additionally, numerous empirical studies have shown that the effectiveness of the

Pfizer and Moderna vaccines against symptomatic COVID-19 is less than 20% for

the Omicron variant after the administration of the second dose of the vaccine (Sidik,

2022; Tan et al., 2022). Consequently, it deems reasonable to set the average vaccine-

derived efficacy for individuals in the V3 class to be about 20%. Moreover, an empirical

study showed that individuals who received the second booster dose of the Pfizer or

Moderna vaccine have their vaccine effectiveness against the acquisition of break-

through infection increased from 19% to 49% (Grewal et al., 2022). This is in line

with the assumption in our model formulation regarding the transition of individuals
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Figure 3.3: Time Series Illustration of the Least Squares Fit of the Model (3.1),
Showing the Model’s Output For The Daily New Cases in the United States (Blue
Curve) Compared to the Observed Daily Confirmed Cases for the United States (Red
Dots) from November 28, 2021 to February 23, 2022 (Segment to the Left of the
Dashed Vertical Cyan Line), Using the Fixed, Estimated and Assumed Baseline Pa-
rameter Values given in Tables 3.3, 3.4 and 3.5 Respectively. The Segment from
February 24, 2022 to April 30, 2022 (i.e., Solid Green and Magenta Curves or the
Entire Segment to the Right of the Dashed Cyan Vertical Line) Illustrates the Per-
formance of the Model (3.1) in Predicting the Daily New Cases in the United States
(Safdar et al., 2023).

from the V3 class (where, the average efficacy was set to be 20%) to the V2 class

(where, the average vaccine efficacy is set at 50%).

3.5 Numerical Simulations

The model (3.1) will now be simulated to assess the population-level impact of wan-

ing and boosting of vaccine-derived and natural immunity on the dynamics of the

Omicron variant in the United States. Unless otherwise stated, the simulations will

be carried out using the baseline values of the parameters tabulated in Tables 3.3 −

3.5.
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Parameter Estimated Value 95% Confidence Interval

β 0.2551 day−1 [0.2551− 0.2556] day−1

ρnv2 0.6999 day−1 [0.0769− 0.6999] day−1

ρnv3 0.0989 day−1 [0.0100− 0.0989] day−1

δs 4.9989 ×10−5 day−1 [1.0 ×10−6 − 4.9× 10−5] day−1

Table 3.4: Baseline Values of Fitted (Estimated) Parameters and Confidence Inter-
vals (CIs) of the Model (3.1), Obtained by Fitting the Model with the Observed Daily
New Case COVID-19 Data for the United States for the Period November 28th, 2021
to February 23rd, 2022 (Safdar et al., 2023).

Vaccine Efficacy of Vn class Vaccine Efficacy of Rn class Vaccine Efficacy of Rn class

εv1 = 0.85 εn1 = 0.85 εnv1 = 0.95

εv2 = 0.50 εn2 = 0.50 εnv2 = 0.50

εv3 = 0.20 εn3 = 0.20 εnv3 = 0.20

Table 3.5: Assumed Baseline Levels of the Parameters for the Efficacy of the Vaccine-
derived and Natural Immunity (Safdar et al., 2023).

3.5.1 Assessing the impact of waning of vaccine-derived immunity: with and

without boosting

To assess the impact of waning of vaccine-derived immunity for this scenario, the

model (3.1) is simulated using the following three (arbitrary) levels of the parameters

related to the waning of vaccine-derived immunity in the population (Safdar et al.,

2023):

(i) Low level of waning of vaccine-derived immunity: here, it is considered vaccine-

derived immunity to wane within 48 months (i.e., we set ωv1 = ωv2 = ωv3 =

0.0007 per day) but parameters related to natural immunity and combined

natural and vaccine-derived immunity are maintained at baseline level.

(ii) Baseline level of waning of vaccine-derived immunity: in this case, waning of

vaccine-derived immunity is set to occur within 9 months (so that, ωv1 = ωv2 =
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ωv3 = 0.0037 per day) but parameters related to natural immunity and combined

natural and vaccine-derived immunity are maintained at baseline level.

(iii) High level of waning of vaccine-derived immunity: in this scenario, it is assumed

that vaccine-derived immunity wanes within 3 months (i.e., ωv1 = ωv2 = ωv3 =

0.0110 per day), but parameters related to natural immunity and combined

natural and vaccine-derived immunity are maintained at baseline level.

For these simulations, all other parameters of the model (including those that involve

the waning of natural immunity, as stated above) are maintained at their baseline

values (given in Tables 3.3 − 3.5). Furthermore, these simulations are carried in the

absence and presence of boosting of vaccine-derived immunity (recall that boosting

of vaccine-derived immunity, maintained at baseline level, is achieved via the admin-

istration of the required doses of any of the approved SARS-CoV-2 booster vaccines

used in the United States).

The simulation results obtained, depicted in Figure 3.4. First of all, these simulations

also depict the fitting of the model’s output for the daily new cases with the observed

COVID-19 data (used in Section 3.4) for the baseline scenario (as shown by the blue

curves and the red dots in Figure 3.4). Furthermore, these simulations show that,

in the absence of boosting of vaccine-derived immunity, waning of vaccine-derived

immunity generally induces only a marginal impact on the average number of new

daily COVID-19 cases in the United States, for each of the three waning levels consid-

ered in our simulations, in comparison to the baseline scenario. For example, under

the fast waning scenario for vaccine-derived immunity (i.e., vaccine-derived immunity

wanes within three months, but natural immunity is maintained at its baseline level)

and no boosting of vaccine-derived immunity is implemented, the simulations show a

marginal (about 2%) increase in the peak level of the daily new cases, in comparison
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to the peak baseline level (this is evident by comparing the blue and magenta curves in

Figure 3.4(a), and the zoomed-in version of the segments of the curves near the peaks

shown in Figure 3.4(b)). For the slow waning scenario (i.e., if the vaccine-derived

immunity wanes within 48 months, but natural immunity is maintained at baseline

level), the increase in daily new cases at the peak (in comparison to the baseline)

reduces to about 1.4% (compare the blue and green curves in Figures 3.4(a) and (b)).

In the presence of boosting of vaccine-derived immunity (at baseline level), the sim-

ulations show a significant reduction in the average number of daily new cases at

the peak recorded under the above waning scenarios without boosting of vaccine-

derived immunity. For instance, for the case where vaccine-derived immunity wanes

within three months (but natural immunity is maintained at baseline level), boosting

of vaccine-derived immunity at the baseline level significantly reduces the increase

in daily new cases at the peak (by about 68%), in comparison to the corresponding

case without boosting of vaccine-derived immunity (compare the blue and magenta

curves in Figure 3.4(c), and the corresponding zoomed-in portions of the curves near

the peaks shown in Figure 3.4(d)). Furthermore, under the slow waning scenario,

boosting of vaccine-derived immunity at baseline level further increases the reduction

in the peak daily new cases (compare the green and blue curves in Figures 3.4(c) and

(d)).

The model (3.1) is further simulated to assess the impact of waning and boosting

of vaccine-derived immunity (for the case where natural immunity is maintained at

baseline) for the following two scenarios (Safdar et al., 2023):

Scenario (a): Waning near the baseline level and slow boosting. Here, it is

assumed that the waning of vaccine-derived immunity range between 6 to 12 months
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Figure 3.4: Simulations of the Model (3.1) to Assess the Population-level Impact
of Waning of Vaccine-derived Immunity in the Absence and Presence of Boosting
of Vaccine-derived Immunity (Maintained at Baseline Level). (a) − (d): Average
Number of New Daily Cases at the Peak in the Absence ((a) and (b)) and Presence
((c) and (d)) of Boosting of Vaccine-derived Immunity. Three Levels of Waning
of Vaccine-derived Immunity Were Considered: Vaccine-derived Immunity Wanes in
Three Months (Magenta Curves), Nine Months (Blue Curves) and Forty Eight Months
(Green Curves). Zoomed-in Versions of the Portions of the Curves near the Peaks
Depicted in Figures (a) and (c) Are Shown in Figures (b) and (d), Respectively. The
Values of the Other Parameters of the Model Used in These Simulations Are as given
in Tables 3.3 − 3.5 (Safdar et al., 2023).

(i.e., near the baseline level of 9 months) and the duration of boosting of vaccine-

derived immunity range from 20 days to 100 days.

Scenario (b): Waning near the baseline level and boosting near the base-
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line level. Under this scenario, vaccine-derived immunity wanes within the same 6

to 12 months period (as in Scenario (a)), but boosting of vaccine-derived immunity

is accelerated to be implemented within 8 to 20 days (i.e., near the baseline level of

14 days).

The results obtained are depicted in the form of heat maps for the vaccination repro-

duction number (Rv) of the model (3.1), as a function of the rates of waning (ωv) and

boosting (ρv) of vaccine-derived immunity in Figure 3.5. This figure shows that, for

the waning rate near the baseline value and slow boosting scenario (i.e., Scenario (a)),

the values of the vaccination reproduction number lie in the range Rv ∈ [0.99, 1.44]

(with a mean of Rv ≈ 1.21), suggesting that the disease will persist in the population

(this is in line with the theoretical result given in Theorem 3.3.1). In other words,

this result shows that waning at baseline level and slower boosting, in comparison to

waning and boosting at baseline levels, increases the prospect for disease persistence

in the population. For Scenario (b), the simulations (Figure 3.5(b)) show a marked

decrease in the range of the reproduction number, with Rv ∈ [0.95, 1.04] (with a mean

of Rv ≈ 0.99), suggesting possible elimination of the pandemic (in line with Theorems

2.3.1 − 3.3.1). Thus, boosting of vaccine-derived (near the baseline rate) enhances

the prospect for pandemic elimination.

In summary, while the simulations in this section show that waning of vaccine-derived

immunity generally induces only a marginal impact in the average number of new

cases at the peak of the COVID-19 pandemic, boosting of vaccine-derived immunity

(maintained at its baseline level) resulted in a dramatic reduction in the average

number of new cases at the peak, in comparison to the case where boosting is not

implemented. Furthermore, delay in boosting of vaccine-derived immunity, in com-
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Figure 3.5: Effect of Waning and Boosting of Vaccine-derived Immunity. Heat Maps
of the Vaccination Reproduction Number (Rv), as a Function of the Rates of Waning
(ωv) and Boosting (ρv) of Vaccine-derived Immunity. (a) Waning of Vaccine-derived
Immunity Range Between 6 to 12 Months, and Duration of Boosting of Vaccine-
derived Immunity Range from 20 Days to 100 Days (Slow Boosting). (b) Waning of
Vaccine-derived Immunity Range from 6 to 12 Months, While Duration of Boosting
of Vaccine-derived Immunity Range from 8 to 20 Days (Fast Boosting) (Safdar et al.,
2023).

parison to the baseline level of boosting, could alter the trajectory of the disease from

possible elimination (as measured by the vaccine reproduction number, Rv, taking a

value less than one) to persistence of the disease (as measured by the reproduction

number being greater than one).

3.5.2 Assessing the effect of waning of natural immunity: with and without

boosting

Natural immunity can be boosted via treatment or the use of other immune-boosting

supplements (Mrityunjaya et al., 2020; Alagawany et al., 2021). To assess the im-

pact of waning of natural immunity, the model (3.1) is simulated using the following

(arbitrarily-chosen) waning levels (Safdar et al., 2023):
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(i) Low level of waning of natural immunity: here, too, it is considered natural

immunity to wane within 48 months (i.e., we set ωn1 = ωn2 = ωn3 = 0.0007 per

day), but vaccine-derived immunity and combined natural and vaccine-derived

immunity are kept at baseline.

(ii) Baseline waning of natural immunity: in this case, waning of natural immunity

is set to occur within 9 months (so that, ωn1 = ωn2 = ωn3 = 0.0037 per day), but

vaccine-derived immunity and combined natural and vaccine-derived immunity

are kept at baseline.

(iii) High level of waning of natural immunity: here, too, natural immunity is as-

sumed to wane within 3 months (i.e., ωn1 = ωn2 = ωn3 = 0.0110 per day), but

vaccine-derived immunity and combined natural and vaccine-derived immunity

are kept at baseline.

For the simulations in this section, all other parameters (including those related to

the waning of vaccine-derived immunity and combined waning of natural and vaccine-

derived) are set to their baseline values (given in Tables 3.3 − 3.5). The simulation

results obtained, depicted in Figure 3.6, also showed that waning of the natural

immunity general only induces a marginal increase in the average number of new

daily COVID-19 cases in the United States, in comparison to the baseline scenario

(where, the waning of natural immunity is assumed to occur within 9 months). In

particular, if natural immunity wanes within three months and no boosting of natural

immunity is implemented, the average number of new daily cases at the peak increases

by about 3.7%, in comparison to the baseline scenario (compare the blue and magenta

curves in Figure 3.6(a), and the zoomed-in portions of the curves near the peaks,

depicted in Figure 3.6(b)). An additional marginal increase in the average number

of new daily cases at the peak is recorded under the slow waning scenario for the
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natural immunity, in comparison to the baseline scenario (compare the blue and

green curves in Figures 3.6(a) and (b)). However, if natural immunity is boosted (at

Figure 3.6: Simulations of the Model (3.1) to Assess the Population-level Impact
of Waning of Natural Immunity for the Case with and Without Boosting of Natural
Immunity (at the Baseline Level). (a)− (d): Average Number of New Daily Cases at
the Peak in the Absence ((a) and (b)) Presence ((c) and (d)) of Boosting of Natural
Immunity. Three Levels of Waning of Natural Immunity Were Considered: Natural
Immunity Wanes in Three Months (Magenta Curves), Nine Months (Blue Curves)
and Forty Eight Months (Green Curves). Zoomed-in Versions of the Portions of the
Curves near the Peaks Depicted in Figures (a) and (c) Are Shown in Figures (b) and
(d), Respectively. The Values of the Other Parameters of the Model Used in These
Simulations Are as given in Tables 3.3 − 3.5 (Safdar et al., 2023).

baseline level), our simulations show a marked reduction in the increase in the average

daily new cases recorded at the peak, in comparison to the corresponding scenario
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without boosting of the natural immunity. Specifically, when natural immunity wanes

within three months and boosting of natural immunity is implemented (maintained

at its baseline level), the increase in the average number of new daily cases at the

peak (in comparison to the baseline) reduces to about 2.1% (compare the blue and

magenta curves in Figure 3.6(c), and the zoomed-in portions near the peak depicted in

Figure 3.6(d)). This represents an approximately 45.3% reduction in the average daily

new cases at the peak, in comparison to the corresponding scenario where natural

immunity is not boosted. It should be mentioned that boosting of vaccine-derived

immunity (at baseline) plays a more significant role in reducing the average number

of new daily cases, in comparison to the corresponding boosting of natural immunity

(this can be seen by comparing the corresponding peaks in Figures 3.4 and 3.6).

In particular, while boosting of vaccine-derived immunity (at baseline) will lead to

about 68% reduction in the number of new daily cases at the peak, boosting of natural

immunity (at baseline) will lead to about 45% reduction in the number of new daily

cases at the peak). Further significant reductions in the average number of new daily

cases are recorded if the natural immunity wanes at a slower rate (compare the blue

and green curves in Figures 3.6(a) and (c) or (b) and (d), without and with boosting

of natural immunity).

In summary, like in the case of waning of vaccine-derived immunity discussed in

Section 3.5.1, the simulations in this section show that while the waning natural

immunity only causes a marginal increase in the average number of new cases at

the peak, boosting natural immunity (at baseline) resulted in a significant reduction

in the average number of new cases recorded at the peak, in comparison to the

scenario where a strategy for boosting of natural immunity is not implemented in the

community.
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3.6 Discussion and Conclusions

The COVID-19 pandemic, caused by SARS-CoV-2, has made a significant impact on

public health and the economy of almost every nation on earth since its emergence

in December of 2019. The United States became the epicenter of the pandemic since

late May, 2020 (recording the highest numbers of cumulative cases, hospitalizations

and deaths). As of March 19, 2023, the virus had caused over 105 million cumulative

daily new cases and over 1.1 million deaths in the United States (Worldometer.,

2023; Dong et al., 2020). The rapid development, deployment, and administration

of several safe and highly effective vaccines contributed significantly in curbing the

spread of the virus worldwide. Three of these vaccines (the Pfizer-BioNTech, Moderna

and Johnson & Johnson vaccines) have been approved by the FDA for use in the

United States. The effectiveness of these vaccines in combating COVID-19 has been

negatively affected by the emergence of various variants of SARS-CoV-2 (e.g., the

Delta and Omicron variants). In particular, the Omicron (B.1.1.529) variant was

declared a variant of concern by the World Health Organization in late November,

2021 (Thakur and Kanta Ratho, 2021), due to its exceptionally high transmissibility.

Although all the available vaccines were developed for the original SARS-CoV-2 virus

strain, they have been able to offer some level of cross-protection against other variants

of concern. Furthermore, multiple studies have shown that the efficacy of vaccine-

derived immunity wanes over time (Curley, 2021; Dan et al., 2021; Gumel et al.,

2021b; Ngonghala et al., 2023). In order to overcome the waning effect of vaccine-

derived immunity, booster vaccines were recommended by the CDC in November

2021 (Ferdinands et al., 2022; Centers for Disease Control and Prevention and others,

2021).

In this chapter, a novel mathematical model is developed to assess the population-
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level impact of the waning and boosting of vaccine-derived and natural immunity

against the Omicron BA.1 variant of SARS-CoV-2 in the United States. The model

was parameterized by fitting it to the observed cumulative COVID-19 case data for

the United States for the period from November, 28, 2021 to February 23, 2022 (Dong

et al., 2020). We used the remaining segment of the available data (i.e., the segment

from February 24, 2022 to March 23, 2022) to cross validate the model. This cross

validation, together with simulations involving the new daily COVID-19 cases, showed

a good match to the observed data.

The model was rigorously analyzed to gain qualitative insight into the dynamics and

burden of the diseases. The analysis showed that the disease-free equilibrium (DFE)

of the model is locally-asymptotically stable whenever the vaccination reproduction

number (denoted by Rv < 1) is below one. Using the baseline values of the fixed and

estimated parameters of the model, we computed the numerical value of Rv during

the period of the emergence and circulation of the Omicron variant (starting from late

November of 2021). The computed value was Rv = 0.97 (suggesting that Omicron was

on a downward trajectory towards elimination in the United States). The numerical

value of the basic reproduction number of the model (which is computed in the absence

of any control measure implemented) was R0 = 2.59. The computed value of R0 falls

within the estimated range of R0 values for Omicron presented in several modeling

studies (such as those in Ngonghala et al. (2023); Safdar et al. (2023); Elliott et al.

(2022a,b); Kim et al. (2022)). We showed that the disease-free equilibrium of the

model is globally-asymptotically for two special cases ((a) when the vaccines offer

100% protection against acquisition of infection and no reinfection and (b) disease-

induced mortality is negligible and reinfection does not occur) when the associated

vaccination reproduction number is less than one. The epidemiological implication

of this global asymptotic stability result is that the SARS-CoV-2 pandemic can be
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eliminated if the the associated vaccination reproduction number can be brought to

(and maintained at) a value less than one (in other words, having the value of this

reproduction threshold less than one is necessary and sufficient for the elimination of

the pandemic in the United States).

Explicit expression for the vaccine-induced herd immunity threshold was derived,

and it was showed, using current data for COVID-19 cases in the United States, that,

for the case where the three vaccines offer 85% average protective efficacy against

the Omicron variant, vaccine-derived herd immunity will be achieved in the United

States if about 72% of the wholly-susceptible population are fully vaccinated (with

three FDA-approved vaccines considered in this dissertation). On the other hand, if

the average protective efficacy offered by the three vaccines is reduced to a lower level,

such as 65% (as against 85% above), at least 93% of the wholly-susceptible population

need to be vaccinated to achieve herd immunity. Furthermore, if the average vaccine

efficacy offered by the aforementioned three vaccines drops to around 50% (or drops to

a much lower value, as presented by Bar-On et al. (2021), or as stated in several stud-

ies on the effectiveness of these vaccines against Omicron (Buchan et al., 2022; Tseng

et al., 2022; Chemaitelly et al., 2022; Sidik, 2022)), then almost 100% of the wholly-

susceptible population need to be vaccinated in order to achieve vaccine-derived herd

immunity in the United States. This very high level of vaccination coverage (i.e.,

vaccinating almost 100% of the susceptible population) is not realistically attainable,

especially in large populations such as the United States. Data related to COVID-19

from the United States Centers for Disease Control and Prevention show that, as

of March 9, 2023, about 69.3% of the United States population was fully-vaccinated

(Centers for Disease Control and Prevention, 2023a; Center for Disaster Philanthropy,

2023). Thus, the numerical simulations suggest that, for the scenario that the three
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vaccines offer the reasonably high average protective efficacy of 85% against acqui-

sition of infection, herd immunity can realistically achieved in the United States by

fully-vaccinating a moderate proportion (about 72%) of the wholly-susceptible.

We conducted extensive numerical simulations to assess the impact of waning and

boosting of vaccine-derived and natural immunity for each three arbitrarily selected

waning scenarios (slow, baseline, and fast). Based on these simulations, that in

the absence of boosting of vaccine-derived and natural immunity, waning of vaccine-

derived and natural immunity only causes a marginal increase in the average number

of daily cases (at the peak), in comparison to the baseline scenario. In other words, we

showed that waning of either vaccine-derived or natural immunity (or both) has only

marginal impact, for each of the three waning scenarios considered in this chapter,

on the dynamics of the SARS-CoV-2 pandemic (as measured in terms of increases in

the average number of daily new cases recorded at the peak, in comparison to the

case where baseline values of all the parameters of the model are used).

It was also showed that if fully-vaccinated individuals with moderate or low level of

vaccine-derived immunity are boosted (at baseline level), the effect of waning of im-

munity is a lot less pronounced, in comparison to the baseline scenario (in other words,

dramatic reductions in the increase in the average number of daily new cases at the

peak recorded under the three waning scenarios) are achieved if both immunity types

are boosted at baseline level, in comparison to the corresponding scenarios where the

immunity wanes but no boosting is implemented. It is further showed that boosting

of vaccine-derived immunity is more beneficial (in reducing average number of new

cases) than boosting of natural immunity. Specifically, for the fast waning scenario,

boosting of vaccine-derived immunity (at baseline level) resulted in an approximate

68% reduction in the average number of new daily cases at the peak, while boosting

119



of natural immunity resulted in about ≈ 45% reduction in the number of new daily

cases at the peak (in comparison to the corresponding scenarios without boosting).

Furthermore, in this chapter we showed that boosting of vaccine-derived immunity

(implemented near the baseline level) increased the prospects of altering the trajec-

tory of the COVID-19 pandemic from persistence to possible elimination (even for the

fast waning scenario of the vaccine derived-immunity) of the pandemic in the United

States. Thus, the implementation of vaccination-boosting strategy greatly enhances

the prospects of eliminating the COVID-19 pandemic in the United States.

In addition to the standard assumptions on which the model is built, some of the

limitations of the model developed in this chapter include the fact that we did not

explicitly account for the impact of other control interventions (notably, the use of face

masks, voluntary testing and detection of SARS-CoV-2 cases, isolation of confirmed

cases, etc.), which also play important roles in the battle against the COVID-19 pan-

demic. Further, the model developed in this chapter assumes that the population is

well-mixed and does not explicitly account for a number of heterogeneities, including

age and risk structure, which may be relevant to gain insight into the dynamics of the

disease. Furthermore, this chapter did not account for the effects of other SARS-CoV-

2 variants, including the BA.2, BA.5, BQ.1, and BQ.1.1 Omicron variants (which are

more contiguous than the original BA.1 Omicron variant) (Karim and Karim, 2021;

Katella, 2021; Centers for Disease Control and Prevention, 2023b; Katella, 2023).

Nonetheless, this chapter shows, overall, that the prospect for the effective control

and mitigation (and, consequently, elimination) of the COVID-19 pandemic in the

United States is very promising using a combined vaccination-boosting strategy, pro-

vide the vaccinate and boosting coverages are moderately high enough.
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dynamics of drug-resistant malaria”, Mathematical and Computer Modelling 50,
3-4, 611–630 (2009).

Esteva, L. and C. Vargas, “Influence of vertical and mechanical transmission on the
dynamics of dengue disease”, Mathematical Biosciences 167, 1, 51–64 (2000).

Fast, H. E., E. Zell, B. P. Murthy, N. Murthy, L. Meng, L. G. Scharf, C. L. Black,
L. Shaw, T. Chorba and L. Q. Harris, “Booster and additional primary dose
COVID-19 vaccinations among adults aged ≥ 65 years—United States, August
13, 2021–November 19, 2021”, Morbidity and Mortality Weekly Report 70, 50,
1735 (2021).

Ferdinands, J. M., S. Rao, B. E. Dixon, P. K. Mitchell, M. B. DeSilva, S. A. Irving,
N. Lewis, K. Natarajan, E. Stenehjem, S. J. Grannis et al., “Waning 2-dose and
3-dose effectiveness of mRNA vaccines against COVID-19–associated emergency
department and urgent care encounters and hospitalizations among adults during

125



periods of Delta and Omicron variant predominance—vision network, 10 states,
August 2021–January 2022”, Morbidity and Mortality Weekly Report 71, 7, 255
(2022).

Ferguson, N. M., D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin,
S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-Dannenburg et al., “Impact
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Gómez-Carballa, A., J. Pardo-Seco, X. Bello, F. Martinón-Torres and A. Salas, “Su-
perspreading in the emergence of COVID-19 variants”, Trends in Genetics 37, 12,
1069–1080 (2021).
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APPENDIX A

PROOF OF THEOREM 2.3.2
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Proof. The proof is based on the center manifold theory (Carr, 2012; van den Driess-

che and Watmough, 2002) and to apply this theory, it is convenient to introduce the

following change of variables: let S = x1, V = x2, E = x3, Ip = x4, Is = x5, Ia = x6,

Ih = x7, Rn = x8, Rnv = x9. Using this transformation, the vaccination model

(2.1) can be re-written in general form dX
dt

= (f1, f2, f3, f4, f5, f6, f7, f8, f9)
T , with

X = (x1, x2, x3, x4, x5, x6, x7, x8, x9)
T . Specifically, the model (2.1) can be written

in terms of the transformed variables as:

d x1

d t
= f1 = Π+ ωvx2 − λx1 − k1x1,

d x2

d t
= f2 = ξvx1 − (1− εv)λx2 − k2x2,

d x3

d t
= f3 = λx1 + (1− εv)λx2 + (1− εn)λx8 + (1− εnv)λx9 − k3x3,

d x4

d t
= f4 = σEx3 − k4x4,

d x5

d t
= f5 = rσpx4 − k5x5,

d x6

d t
= f6 = (1− r)σpx4 − k6x6,

d x7

d t
= f7 = ϕsx5 − k7x7,

d x8

d t
= f8 = γsx5 + γa x6 + γhx7 − (1− εn)λx8 − k8x8,

d x9

d t
= f9 = ξvx8 − (1− εnv)λx9 − k9x9,

(A.1)

with the force of infection under the aforementioned transformation now defined as:

λ =
(βp x4 + βs x5 + βa x6 + βh x7)

N
,

138



where,

N = x1 + x2 + x3 + x4 + x5 + x5 + x6 + x7 + x7 + x8 + x9, k1 = ξv + µ,

k2 = ωv + µ, k3 = σE + µ, k4 = σp + δp + µ, k5 = ϕs + γs + δs + µ,

k6 = γa + δa + µ, k7 = γh + δh + µ, k8 = ξv + µ, and k9 = µ.

The Jacobian of the system (A.1), evaluated at the DFE (E0), is given by:

J(E0) =



−k1 ωv 0 −βp J1 −βs J1 −βa J1 −βh J1 0 0

ξv −k2 0 −βp J2 −βs J2 −βa J2 −βh J2 0 0

0 0 −k3 −βp J3 −βs J3 −βa J3 −βh J3 0 0

0 0 σe −k4 0 0 0 0 0

0 0 0 r σp −k5 0 0 0 0

0 0 0 (1− r)σp 0 −k6 0 0 0

0 0 0 0 ϕs 0 −k7 0 0

0 0 0 0 γs γa γh −k8 0

0 0 0 0 0 0 0 ξv −k9



,

where, J1 =
ωv + µ

ωv + ξv + µ
, J2 =

(1− εv) ξv
ωv + ξv + µ

and J3 = J2 − J1.

Choosing βp as the bifurcation parameter, and solving for βp from Rcv = 1 (i.e., at

the bifurcation point) gives:

βp =
1

(1− εvfv)

(
σE

σE + µ

)(
1

σp + δp + µ

)
(Dp)

= β∗
p ,

where,

Dp =
{
1 + d1rσpB1 + d2(1− r)σpB2 + d3rσpB1B3

}
,

with,
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B1 =

(
1

ϕs + γs + δs + µ

)
, B2 =

(
1

γa + δa + µ

)
B3 =

(
1

γh + δh + µ

)
, d1 =

βs

βp

,

d2 =
βa

βp

and d3 =
βh

βp

.

Let Jβ∗
p
denotes the Jacobian of the system (A.1) evaluated at the DFE (E0). It

can be seen that the system (A.1), with βp = β∗
p , has a simple eigenvalue with zero

real part and all other eigenvalues having negative real part (Blayneh et al., 2010).

Hence, the center manifold theory (Carr, 2012; Castillo-Chavez and Song, 2004) can

be applied to analyze the dynamics of the vaccination model (2.1) near the bifurcation

point (where βp = β∗
p). To apply the theory (in particular, the approach in Castillo-

Chavez and Song (2004)), the following computations (associated with the left and

right eigenvectors of Jβ∗
p
, corresponding to the zero eigenvalue) are necessary.

Computation of left and right eigenvectors of Jβ∗
p

It can be seen that the left eigenvector of Jβ∗
p
, corresponding to the zero eigenvalue,

is given by:

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9], where (noting that J1, J2 and J3 are defined

above),

v1 > 0 (free), v3 > 0 (free), v8 = v9 = 0

v2 =
ωv v1
k2

, v4 =
k3 v3
σE

, v5 =
βs (−J1 v1 − J2 v2 + J3 v3)

k5
,

v6 =
βa (−J1 v1 − J2 v2 + J3 v3)

k6
, v7 =

βh (−J1 v1 − J2 v2 + J3 v3)

k7
.

(A.2)

Furthermore, the right eigenvector of Jβ∗
p
, corresponding to the zero eigenvalue, is

given by:

w = [w1, w2, w3, w4, w5, w6, w7, w8, w9]
T , where,
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w1 > 0 (free), w2 =
k1w1 + J1 (βp w4 + βs w5 + βa w6 + βhw7)

ωv

,

w3 =
k4w4

σE

, w4 =
k5w5

r σp

, w5 =
k7w7

ϕs

,

w6 =
(1− r)σp w4

k6
, w7 > 0 (free), w8 =

k9w9

ξv
, w9 > 0 (free).

(A.3)

For computational convenience, we set, without loss of generality, the components

of the left eigenvectors v1 and v3 in (A.2) to one. Similarly, we set the components

w1,w7 and w9, of the right eigenvector, given in (A.3) to unity.

Computation of backward bifurcation coefficients, a and b

The local bifurcation analysis near the bifurcation point (βp = β∗
p) is determined

by the signs of two bifurcation coefficients, denoted by a and b (Carr, 2012; Castillo-

Chavez and Song, 2004). Following (Castillo-Chavez and Song, 2004), the expressions

for these bifurcation coefficients are, respectively, given by:

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

(E0, β∗
p), (A.4)

and,

b =
n∑

k,i=1

vkwi
∂2fk

∂xi∂βp

(E0, β∗
p). (A.5)

It can be shown, by substituting the expressions for the eigenvectors (wk and vk;

k = 1, · · · , 9) given in (A.2) and (A.3) and the partial derivatives of the functions

fk (k = 1, · · · , 9) defined in (A.1) into the expressions (A.4) and (A.5), that the

bifurcation coefficients now become:

a =
1

Da

[
(Ca)

{
(P +Q+R)− (S + T + U)

}]
, (A.6)
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and,

b =
(d1w5 + d2w6 + d3w7 + w4)(X − Y )

ωv + ξv + µ
, (A.7)

where,

Da = Π(ωv + ξv + µ), Ca = 2µβp (w4 + d1w5 + d2w6 + d3w7),

and,

P = µ(v3w3 + v3w5 + v3w6 + v3w7 + v8 + v9 + v3w4 + v3w8εn + v3w9εnv),

Q = ξv(v3w3 + v3w5 + v3w6 + v3w7 + v8w8 + v9w9 + v1w1 + v3w4 + v3w2µ

+ v3w8εn + v3w9εnv + v2w1εv + v2w3εv + v2w4εv + v2w5εv + v2w6εv + v2w7εv

+ v2w8εv + v2w9εv),

R = ωv(v2w2 + v3w3 + v3w5 + v3w6 + v3w7 + v8w8 + v9w9 + v3w4 + v3w2εv

+ v3w8εn + v3w9εnv),

S = µ(w3v1 + w5v1 + w6v1 + w7v1 + w8v1 + w9v1 + v1w4 + v8w8εn + v9w9εnv

+ v2w2εv), (A.8)

T = ξv(v2w1 + v2w3 + v2w4 + v2w5 + v2w6 + v2w7 + v2w8 + v2w9 + v3w1εv + v3w3εv

+ v3w4εv + v3w5εv + v3w6εv + v3w7εv + v3w8εv + v3w9εv + v8w8εn + v9w9εnv),

U = ωv(v1w2 + v1w3 + v1w4 + v1w5 + v1w6 + v1w7 + v1w8 + v1w9 + v2w2εv

+ v8w8εn + v9w9εnv),

X = εvv2ξv + µv3 + wvv3 + v3ξv,

Y = εvv3ξv + µv1 + wvv1 + v2ξv,

βs = d1βp, βa = d2βp, βh = d3βp.

It follows from Item (i) of Theorem 4.1 of Castillo-Chavez and Song (2004) that the

vaccination model (2.1) will undergo a backward bifurcation at Rcv = 1 whenever the
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bifurcation coefficients, a and b (given by (A.6) and (A.7), respectively), are positive.

It can be shown that the bifurcation coefficient b is automatically positive as follows.

First of all, using the definitions for X and Y in (A.8), the quantity X − Y can be

simplified to (by using v1 = v3 = 1, as mentioned above):

X − Y = ξv(1− εv)(1− v2), (A.9)

which is positive since ξv > 0, 0 < εv < 1 and the eigenvector 0 < v2 < 1 (from

(A.2)). Thus, since X − Y > 0, d1 > 0, d2 > 0, d3 > 0 and the eigenvectors w4, w5, w6

and w7 are positive, it follows from Equation (A.7) that the bifurcation coefficient b is

automatically positive. Hence, since the bifurcation coefficient b is always positive, we

only need to show that the coefficient a is positive for backward bifurcation to occur.

In particular, it can be shown from Equation (A.6), and noting the definitions in

(A.8) and the expressions for the eigenvectors in (A.2) and (A.3), that the backward

bifurcation coefficients a is positive provided the following inequality holds:

P +Q+R > S + T + U. (A.10)

Thus, it follows from Item (i) of Theorem 4.1 of (Castillo-Chavez and Song, 2004)),

that the vaccination model (2.1) will undergo a backward bifurcation at Rcv = 1

whenever inequality (A.10) holds.
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Proof. Consider the vaccination model (2.1) with εv = εn = εnv = 1 and R̃cv ≤

1−fv < 1 (with fv as defined in Equation (2.6)). Furthermore, consider the following

linear Lyapunov function:

L = E + a1 Ip + a2 Is + a3 Ia + a4 Ih,

where,

a1 =
1

σp + δp + µ

[
βp + a2 r σp + a3 (1− r)σp

]
, a2 =

1

ϕs + γs + δs + µ
(a4 ϕs + βs) ,

a3 =
βa

γa + δa + µ
, and a4 =

βh

γh + δh + µ
.

The Lyapunov derivative is given by:

L̇ = Ė + a1İp + a2İs + a3İa + a4İh,

so that, upon substituting the equations for the respective derivatives of the model

(2.1):

L̇ =

[
βp

S

N
− a1 (σp + δp + µ) + a2rσ2 + a3(1− r)σ2

]
Ip

+

[
βs

S

N
− a2 (ϕs + γs + δs + µ) + a4ϕs

]
Is +

[
βa

S

N
− a3(γa + δa + µ)

]
Ia

+

[
βh

S

N
− a4(γh + δh + µ)

]
Ih + (σE + µ)

(
R̃cv

1− fv
− 1

)
E,

from which it follows that (noting that S(t) ≤ N(t) for all t in Ω),

L̇ ≤ (σE + µ)

(
R̃cv

1− fv
− 1

)
E.

Hence, L̇ ≤ 0 if R̃cv ≤ 1 − fv < 1, and L̇ = 0 if and only if E(t) = 0. Substituting

E(t) = 0 into the equations of the model (2.1) shows that:

(S(t), V (t), E(t), Ip(t), Is(t), Ia(t), Ih(t), Rn(t), Rnv(t)) → (S∗, V ∗, 0, 0, 0, 0, 0, 0, 0), as
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t → ∞ (where S∗ and V ∗ are as defined in Section 2.3.1). Furthermore, it can be

shown that the largest compact invariant set in {(S(t), V (t), E(t), Ip(t), Is(t), Ia(t),

Ih(t), Rn(t), Rnv(t)) ∈ Ω : L̇ = 0} is the disease-free equilibrium (ξ0). Hence, it fol-

lows, by LaSalle’s Invariance Principle (Hale, 1969), that the disease-free equilibrium

(ξ0) of the model (2.1) is globally-asymptotically stable in Ω whenever R̃cv < 1.
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Before proving the required main result of Theorem 2.3.4, it is necessary to establish

the following intermediate results.

Proof of positive invariance and attractivity of Ω∗∗

Since N(t) ≤ Π/µ for all t in Ω∗∗, it follows from the first equation of the vaccination

model (2.1) that:

dS

dt
≤ Π+ ωvV − (ξv + µ)S,

≤ Π+

(
Π

µ
− S

)
ωv − (ξv + µ)S,

≤ Π

µ
(µ+ ωv)− (µ+ ξv + ωv)S,

≤ (µ+ ξv + ωv) (S
∗ − S).

Hence, if S(t) > S∗, then
dS

dt
is negative. Thus, S(t) ≤ S∗ for all t, provided that

S(0) ≤ S∗. Using similar approach for the second equation of the vaccination model

(2.1), and using the above bound, leads to the following bound:

dV

dt
≤ ξvS

∗ − (ωv + µ)V,

≤ ξv

[
Π(µ+ ωv)

µ (µ+ ξv + ωv)

]
− (ωv + µ)V,

≤ (ωv + µ)(V ∗ − V ).

Following the same argument as above, we have V (t) ≤ V ∗ for all t, provided that

V (0) ≤ V ∗. It follows from these bounds that:

Ω∗∗ = {(S, V, E, Ip, Is, Ia, Ih, Rn, Rnv) ∈ Ω : S ≤ S∗, V ≤ V ∗} , (C.1)

is positively-invariant and attracts all initial solutions in Ω∗∗.
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Next generation matrices for the second special case of the model

For the aforementioned (second) special case of the model (2.1), the associated next

generation matrix of new infection terms, denoted by F , is as given in Equation (2.5),

and the associated next generation matrix of linear transition terms, denoted by V̂ ,

is given by:

V̂ =



K̂1 0 0 0 0

−σE K̂2 0 0 0

0 −rσp K̂3 0 0

0 −(1− r)σp 0 K̂4 0

0 0 −ϕs 0 K̂5


, (C.2)

with,

K̂1 = σE + µ, K̂2 = σp + µ, K̂3 = ϕs + γs + µ, K̂4 = γa + µ and K̂5 = γh + µ.

Proof of Theorem 2.3.4

Proof. Consider the vaccination model (2.1) with δp = δs = δa = δh = 0 and εn =

εnv = 1. We further assume that R̂cv < 1. The proof is also based on using a

comparison theorem (Lakshmikantham and Leela, 1969; Gumel et al., 2021b; Safdar

et al., 2023). Here, too, the equations for the infected compartments of the special

case of the model (2.1) can be re-written as:
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d

dt



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


= (F − V̂ )



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


− M̂



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


, (C.3)

where the matrices F and V̂ are as given in Equations (2.5) and (C.2), respectively,

and the matrix M̂ (with S∗ and V ∗ are as defined in Section 2.3.1) is given by:

M̂ = [(S∗ − S) + (1− εv)(V
∗ − V )]



0 βp βs βa βh

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


. (C.4)

Since S ≤ S∗, V ≤ V ∗ for all t > 0 in Ω∗∗ (as shown above), it follows that the

matrix M̂ , defined in Equation (C.4), is non-negative. Hence, Equation (C.3) can be

re-written in terms of the following inequality:

d

dt



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


≤ (F − V̂ )



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


. (C.5)

It should be recalled from the local asymptotic stable result for the disease-free equi-

librium of the vaccination model (2.1) (given in Theorem 2.3.1) that all eigenvalues

of the associated next generation matrix FV −1 are negative if Rcv < 1 (i.e., F − V is
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a stable matrix). It follows that the eigenvalues of the next generation matrix FV̂ −1,

associated with this special case of the model (2.1), are also negative if R̂cv < 1 (i.e.,

F − V̂ is also a stable matrix). Thus, the linearized differential inequality system

(C.5) is stable whenever ρ(FV̂ −1) < 1. Consequently (Sharomi and Gumel, 2011;

Gumel et al., 2006; Safdar et al., 2023; Ngonghala et al., 2023),

(E(t), Ip(t), Is(t), Ia(t), Ih(t)) → (0, 0, 0, 0, 0), as t → ∞.

Substituting E(t) = Ip(t) = Is(t) = Ia(t) = Ih(t) = 0 into the differential equations

for the rate of change of the Rn(t), Rnv(t), V (t) and S(t) compartments of the model

(2.1) shows that:

Rn(t) → 0, Rnv(t) → 0, V (t) → V ∗ and S(t) → S∗, as t → ∞.

Thus, the DFE (E0) of the second special case of the model (2.1) (with δp = δs =

δa = δh = 0 and εn = εnv = 1) is globally-asymptotically stable in Ω∗∗ whenever

R̂cv < 1.
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Proof. Consider the special case of the model (2.1) with εv = εn = εnv = 1 and

ωv = δp = δs = δa = δh = 0. Setting δp = δs = δa = δh = 0 into the model shows

that N(t) → N∗ = Π/µ as t → ∞. For the rest of the analysis in this appendix,

N(t) will be replaced by the limiting value, N∗. It should be recalled that it has

been shown (in Theorem 2.3.5) that this special case of the model has a unique

endemic equilibrium (denoted by Ẽ1) whenever the associated reproduction number,

denoted by R̃v, exceeds one. The proof of Theorem 2.3.6 will now be based on using

a Krasnoselskii sub-linearity trick introduced by Hethcote and Thieme (1985) (see

also Thieme (1985); Esteva and Vargas (2000); Esteva et al. (2009); Safi and Gumel

(2010); Melesse and Gumel (2010)). First of all, since N(t) = N∗, the following

relation holds:

S(t) = N∗ − [V (t) + E(t) + Ip(t) + Is(t) + Ia(t) + Ih(t) +Rn(t) +Rnv(t)] (D.1)

Substituting (D.1) into the model (2.1) gives the following reduced model:



V̇ = ξv(N
∗ − V − E − Ip − Is − Ia − Ih −Rn −Rnv)− (ωv + µ)V,

Ė = λ̃(N∗ − V − E − Ip − Is − Ia − Ih −Rn −Rnv)− (σE + µ)E,

İp = σEE − (σp + µ)Ip,

İs = rσpIp − (ϕs + γs + µ)Is,

İa = (1− r)σpIp − (γa + µ)Ia,

İh = ϕsIs − (γh + µ)Ih,

Ṙn = γsIs + γaIa + γhIh − (ξv + µ)Rn,

Ṙnv = ξvRn − µRnv.

(D.2)
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where the associated force of infection, λ̃, is given by:

λ̃ =

(
βpIp + βsIs + βaIa + βhIh

N∗

)
. (D.3)

The unique endemic equilibrium associated with the reduced system (D.2) now has

the form:

Ẽ1 = (V ∗∗, E∗∗, I∗∗p , I∗∗s , I∗∗a , I∗∗h , R∗∗
n , R∗∗

nv). (D.4)

Linearizing the reduced model (D.2), around the endemic equilibrium (Ẽ1), gives the

following linearized system:

V̇ = −(ξv + c2)V − ξvE − ξvIp − ξvIs − ξvIa − ξvIh − ξvRn − ξvRnv,

Ė = −b1V − (b1 + c3)E +
∑

j={p,s,a,h}(bj − b1)Ij − b1Rn − b1Rnv,

İp = σEE − c4Ip,

İs = rσpIp − c5Is,

İa = (1− r)σpIp − c6Ia,

İh = ϕsIs − c7Ih,

Ṙn = γsIs + γaIa + γhIh − c1Rn,

Ṙnv = ξvRn − µRnv.

(D.5)

where, b1 =
βpI

∗∗
p + βsI

∗∗
s + βaI

∗∗
a + βhI

∗∗
h

N∗ , bj =
βjS

∗∗

N∗ for j = {p, s, a, h} and ci(i =

1, · · · , 7) are as defined in Section 2.3.2. The Jacobian associated with the linearized
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system (D.5) is given by:

J(Ẽ1) =



−(ξv + c2) −ξv −ξv −ξv −ξv −ξv −ξv −ξv

−b1 −(b1 + c3) αp αs αa αh −b1 −b1

0 σE −c4 0 0 0 0 0

0 0 rσp −c5 0 0 0 0

0 0 (1− r)σp 0 −c6 0 0 0

0 0 0 ϕs 0 −c7 0 0

0 0 0 γs γa γh −c1 0

0 0 0 0 0 0 ξv −µ


with, αj = bj − b1 (for j = {p, s, a, h}). Suppose, now, that the linearized system

(D.5) has solution of the form (Esteva and Vargas, 2000; Esteva et al., 2009; Hethcote

and Thieme, 1985; Melesse and Gumel, 2010; Safi and Gumel, 2010; Thieme, 1985):

Z(t) = Z0e
θt, (D.6)

with Z0 ∈ C − {0}, where Z0 = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8), θ, Zi ∈ C (for i =

1, 2, ..., 8) and C denotes the complex numbers (Esteva and Vargas, 2000; Esteva

et al., 2009; Hethcote and Thieme, 1985; Melesse and Gumel, 2010; Safi and Gumel,

2010; Thieme, 1985). Substituting a solution of the form (D.6) into the linearized
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system (D.5) gives:

θZ1 = −(c1 + ξv)Z1 − ξv(Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8),

θZ2 = −b1Z1 − (b1 + c3)Z2 + αpZ3 + αsZ4 + αaZ5 + αhZ6 − b1Z7 − b1Z8,

θZ3 = σEZ2 − c4Z3,

θZ4 = rσpZ3 − c5Z4,

θZ5 = (1− r)σpZ3 − c6Z5,

θZ6 = ϕsZ4 − c7Z6,

θZ7 = γsZ4 + γaZ5 + γhZ6 − c1Z7,

θZ8 = ξvZ7 − µZ8.

(D.7)

System (D.7) can be simplified by moving all the negative terms in the last six equa-

tions of (D.7) to the respective left-hand sides (Esteva and Vargas, 2000; Esteva et al.,

2009; Hethcote and Thieme, 1985; Melesse and Gumel, 2010; Safi and Gumel, 2010;

Thieme, 1985). Further, the last six equations are then re-written in terms of Z1 and

substituted into the first two equations of (D.7), and all its negative terms are moved

to the left-hand side as well. Finally, after adding the first and second equations of

(D.7), and moving all the negative terms to the left-hand side. Doing all these lead

to the following system (Esteva and Vargas, 2000; Esteva et al., 2009; Hethcote and

Thieme, 1985; Melesse and Gumel, 2010; Safi and Gumel, 2010; Thieme, 1985):

[1 + F1(θ)]Z1 + [1 + F2(θ)]Z2 = (MZ)1 + (MZ)2,

[1 + F3(θ)]Z3 = (MZ)3, [1 + F4(θ)]Z4 = (MZ)4,

[1 + F5(θ)]Z5 = (MZ)5, [1 + F6(θ)]Z6 = (MZ)6,

[1 + F7(θ)]Z7 = (MZ)7, [1 + F8(θ)]Z8 = (MZ)8.

(D.8)
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where,

F1(θ) =
θ

ξv + c2
+

a1
ξv + c2

,

F2(θ) =
θ

ξv
+

a1 + c3
ξv

+
σE

(θ + k4)

(
1 +

a1
ξv

)
+

rσpσE

(θ + c4)(θ + c5)

(
1 +

a1
ξv

)
+

(1− r)σpσE

(θ + c4)(θ + c6)

(
1 +

a1
ξv

)
+

rϕsσpσE

(θ + c4)(θ + c5)(θ + c7)

(
1 +

a1
ξv

)
+

σE(γs + γa + γh)

(θ + c1)(θ + c4)

(
1 +

a1
ξv

)
+

σEξv(γs + γa + γh)

(θ + µ)(θ + c1)(θ + c4)

(
1 +

a1
ξv

)
,

F3(θ) =
θ

c4
, F4(θ) =

θ

c5
, F5(θ) =

θ

c6
, F6(θ) =

θ

c7
, F7(θ) =

θ

c1
, F8(θ) =

θ

µ
,

with,

M =



0 0 0 0 0 0 0 0

0 0
βpS

∗∗

k3N∗
βsS

∗∗

c3N∗
βaS

∗∗

c3N∗
βhS

∗∗

c3N∗ 0 0

0
σE

c4
0 0 0 0 0 0

0 0
rσp

c5
0 0 0 0 0

0 0
(1− r)σp

c6
0 0 0 0 0

0 0 0
ϕs

c7
0 0 0 0

0 0 0
γs
c1

γa
c1

γh
c1

0 0

0 0 0 0 0 0
ξv
µ

0



.

It can be verified that the endemic equilibrium, Ẽ1 = (V ∗∗, E∗∗, I∗∗p , I∗∗s , I∗∗a , I∗∗h , R∗∗
n ,

R∗∗
nv), satisfies Ẽ1 = MẼ1 (Esteva and Vargas, 2000; Esteva et al., 2009; Hethcote

and Thieme, 1985; Melesse and Gumel, 2010; Safi and Gumel, 2010; Thieme, 1985).

The notation (MZ)i (i = 1, 2, ..., 8) denotes the ith coordinate of the vector MZ, and

the matrix M has non-negative entries. If Z is a solution of (D.8), then it is possible

to find a minimal positive real number r such that (Esteva and Vargas, 2000; Esteva

et al., 2009; Hethcote and Thieme, 1985; Melesse and Gumel, 2010; Safi and Gumel,
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2010; Thieme, 1985)

∥Z∥ = rẼ1 (D.9)

where, ∥Z∥ = (∥Z1∥, ∥Z2∥, ∥Z3∥, ∥Z4∥, ∥Z5∥, ∥Z6∥, ∥Z7∥, ∥Z8∥) with lexicographic or-

der, and ∥.∥ is a norm in C. The main goal is to show that Re(θ) < 0. This is

illustrated via the method of contradiction, as follows. Suppose, now, that Re(θ) ≥ 0

and consider the following two cases.

Case 1: θ = 0

Setting θ = 0 in (D.7) reduces it to a homogeneous linear system in the variables

Zi (i = 1, ..., 8), with determinant given by:

∆ =

[
{µc1 (c2 + ξv) c3c4c5c6c7}

(
S∗∗(R̃v)

N∗ − 1

)]
− A2 (D.10)

where,

A2 = b1c2[σE (µ+ ξv) {c5c7 ((1− r)γaσp) + rc6σp (γhϕs + c7γs)}

+ µc1 {c4c5c6c7 + σE (c5c7(c6 + (1− r)σp) + rc6σp(c7 + ϕs))}] > 0.

To finally determine the sign of ∆, we need to determine the sign of

(
S∗∗(R̃v)

N∗ − 1

)
.

This is explored below. Solving Equation (D.2) at the endemic equilibrium Ẽ1 gives:

S∗∗

N∗ =
c3E

∗∗

βpI∗∗p + βsI∗∗s + βsI∗∗a + βhI∗∗s
. (D.11)

Substituting the expressions for E∗∗, I∗∗p , I∗∗s , I∗∗a and I∗∗h from Equation (2.15) into

Equation (D.11), and simplifying, gives (where R̃v is as defined in (2.14)):

S∗∗

N∗ =
1

R̃v

, (D.12)

so that
S∗∗

N∗ − 1

R̃v

= 0. Thus, Equation (D.10) now becomes (noting that A2 > 0):

∆ = −A2 < 0.
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Since the determinant (∆) is negative, it follows that the system (D.7) has a unique

solution, given by Z = 0 (which corresponds to the disease-free equilibrium, E0).

Case 2: θ ̸= 0.

Since we already assumed that Re(θ) > 0, the remaining task is to show that the

system has no non-trivial solution when Re(θ) > 0. Clearly, we have that Fj(θ) > 0,

for all j = {p, s, a, h}, which implies that |Fj(θ) + 1| > 1. We then define F (θ) =

min(|Fj(θ) + 1|), for j = {p, s, a, h}. Then, 1 < F (θ) and hence
r

F (θ)
< r. Since

r is a minimal positive real number such that ∥Z∥ ≤ rẼ1 (Safi and Gumel, 2010;

Melesse and Gumel, 2010; Esteva et al., 2009), which then implies that:

∥Z∥ >
r

F (θ)
Ẽ1. (D.13)

On the other hand, by taking the norm of both sides of the third equation in (D.7)

(Safi and Gumel, 2010; Melesse and Gumel, 2010; Esteva et al., 2009), and noting

that M is a non-negative matrix, gives:

F (θ)∥Z3∥ ≤ |1 + F3(θ)|∥Z3∥ = ∥(MZ)3∥ ≤ M∥Z3∥ ≤ rM(Ẽ1)3 = r(Ẽ1)3 = rI∗∗p

(D.14)

It follows from (D.14) that ∥Z3∥ ≤ r

F (θ)
I∗∗p , which contradicts (D.13), due to the

fact that r is minimal. Hence, Re(θ) < 0. Thus, all eigenvalues of the characteristic

equation associated with the linearized system (D.5) will have negative real part, so

that the unique endemic equilibrium, Ẽ1, of the system (D.2) is locally-asymptotically

stable whenever R̃v > 1, as required.
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APPENDIX E

FULL FLOW DIAGRAM OF THE MODEL (3.1)
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Figure E.1: Complete and Connected Flow Diagram of the Model (3.1).
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APPENDIX F

PROOF OF THEOREM 3.3.2
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Proof. Consider the model (3.1) with εvi = εni
= εnvi = 1 and R̃v ≤ 1 −

3∑
i=1

fvi < 1

(with fvi as defined in Equation (3.11)), for i = 1, 2, 3. Furthermore, consider the

following linear Lyapunov function:

L = E + a1 Ip + a2 Is + a3 Ia + a4 Ih,

where,

a1 =
1

σp + γp + δp + µ

[
β ηp + a2 r σp + a3 (1− r)σp

]
, a2 =

a4 ϕs + β ηs
ϕs + γs + δs + µ

,

a3 =
β ηa

γa + δa + µ
, and a4 =

β ηh
γh + δh + µ

.

It follows that the Lyapunov derivative is given by:

L̇ = Ė + a1İp + a2İs + a3İa + a4İh,

so that, upon substituting the equations for the respective derivatives of the model

(3.1):

L̇ =

[
β ηp

S

N
− a1 (σp + γp + δp + µ) + a2rσp + a3(1− r)σp

]
Ip

+

[
β ηs

S

N
− a2 (ϕs + γs + δs + µ) + a4ϕs

]
Is +

[
β ηa

S

N
− a3(γa + δa + µ)

]
Ia

+

[
β ηh

S

N
− a4(γh + δh + µ)

]
Ih + (σE + µ)

 R̃v

1−
3∑

i=1

fvi

− 1

E,

from which it follows that (noting that S(t) ≤ N(t) for all t in Ω),

L̇ ≤ (σE + µ)

 R̃v

1−
3∑

i=1

fvi

− 1

E.
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Hence, L̇ ≤ 0 if R̃v ≤ 1−
3∑

i=1

fvi < 1, and L̇ = 0 if and only if E(t) = 0. Substituting

E(t) = 0 into the equations of the model (3.1) show that (S(t), V1(t), V2(t),

V3(t), E(t), Ip(t), Is(t), Ia(t), Ih(t), Rn1(t), Rn2(t), Rn3(t), Rnv1(t), Rnv2(t), Rnv3(t)) →

(S∗, V ∗
1 , V

∗
2 , V

∗
3 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t → ∞ (where S∗, V ∗

1 , V
∗
2 and V ∗

3 are as

defined in Section 3.3.1). Furthermore, it can be shown that the largest compact

invariant set in {(S(t), Vi(t), E(t), Ip(t), Is(t), Ia(t), Ih(t), Rni
(t), Rnvi(t)) ∈ Ω : L̇ = 0}

(for i = 1, 2, 3) is the disease-free equilibrium (ξ0). Hence, it follows, by LaSalle’s

Invariance Principle (Hale, 1969), that the disease-free equilibrium (ξ0) of the model

(3.1) is globally-asymptotically stable in Ω whenever R̃v < 1.
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APPENDIX G

PROOF OF THEOREM 3.3.3
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Proof. Consider the special case of the model (3.1) with δp = δs = δa = δh = 0

and εni
= εnvi = 1 (for i = 1, 2, 3). Further, let R̂v < 1. For the aforementioned

(second) special case of the model (3.1), the associated next generation matrix of new

infection terms, denoted by F , is as given in Equation (3.3.1), and the associated

next generation matrix of linear transition terms, denoted by V̂ , is given by:

V̂ =



σE + µ 0 0 0 0

−σE σp + γp + µ 0 0 0

0 −r σp ϕs + γs + µ 0 0

0 −(1− r)σp 0 γa + µ 0

0 0 −ϕs 0 γh + µ


. (G.1)

The equations for the infected compartments of this special case of the model can be

re-written in terms of the next generation matrices:

d

dt



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


= (F − V̂ )



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


− M̂



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


, (G.2)

where the matrices F and V̂ are as defined in Equations (3.3.1) and (G.1), respectively,

and the matrix M̂ (with S∗, V ∗
1 , V

∗
2 and V ∗

3 are as defined in Section 3.3.1) is given

by:

M̂ = β[(S∗−S)+(1−εv1)(V ∗
1 −V1)+(1−εv2)(V ∗

2 −V2)+(1−εv3
)(V ∗

3 −V3)]



0 ηp ηs ηa ηh

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

(G.3)
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Since S ≤ S∗, V1 ≤ V ∗
1 , V2 ≤ V ∗

2 and V3 ≤ V ∗
3 for all t > 0 in Ω∗∗, it follows that

the matrix M̂ , defined in Equation (G.3), is non-negative. Hence, the Equation (G.2)

can be re-written in terms of the following inequality:

d

dt



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


≤ (F − V̂ )



E(t)

Ip(t)

Is(t)

Ia(t)

Ih(t)


. (G.4)

It should be recalled from the local asymptotic stable result for the disease-free equi-

librium of the vaccination model (3.1) (given in Theorem 3.3.1) that all eigenvalues

of the associated next generation matrix FV −1 are negative if Rv < 1 (i.e., F − V is

a stable matrix). It follows that the eigenvalues of the next generation matrix FV̂ −1,

associated with this special case of the model (3.1), are also negative if R̂v < 1 (i.e.,

F − V̂ is also a stable matrix). Thus, the linearized differential inequality system

(G.4) is stable whenever ρ(FV̂ −1) < 1. Consequently (Sharomi and Gumel, 2011;

Gumel et al., 2006; Safdar et al., 2023; Ngonghala et al., 2023),

(E(t), Ip(t), Is(t), Ia(t), Ih(t)) → (0, 0, 0, 0, 0), as t → ∞.

Substituting E(t) = Ip(t) = Is(t) = Ia(t) = Ih(t) = 0 into the differential equa-

tions for the rate of change of the Rni
(t), Rnvi(t), Vi(t) and S(t) (with i = 1, 2, 3)

compartments of the model (3.1) shows that:

Rni
(t) → 0, Rnvi(t) → 0, Vi(t) → V ∗

i and S(t) → S∗ (with i = 1, 2, 3), as t → ∞.

Thus, the DFE (E0) of the second special case of the model (3.1) (with δp = δs =
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δa = δh = 0 and εni
= εnvi = 1 (i = 1, 2, 3)) is globally-asymptotically stable in Ω∗∗

whenever R̂v < 1.
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