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ABSTRACT 

Composites are replacing conventional materials in aerospace applications due to their 

light weight, non-corrosiveness, and high specific strength. This thesis aims to 

characterize the input data for IM7-8552 unidirectional composite to support MAT213, 

an orthotropic elasto-plastic damage material model and MAT_186, a mixed mode 

cohesive zone model used to model delamination. MAT_213 in conjunction with 

MAT_186 can be used to predict the behavior of composite under crush and impact loads 

including delamination. MAT_213 requires twelve sets of stress-strain curves, direction-

dependent material constants, and flow rule coefficients as input. All the necessary inputs 

are obtained through the post-processing of a total of twelve distinct quasi-static and 

room temperature (QS-RT) experiments. MAT_186 is driven by a set of Mode I and 

Mode II fracture parameters and traction separation laws, a constitutive law that derives 

the relationship between stresses and relative displacements at integration points of 

cohesive elements. Obtaining cohesive law parameters experimentally is a tedious 

process as it requires close monitoring of the crack length during the test, which is a 

difficult task to achieve with accuracy even after using sophisticated equipment such as 

Digital Image Correlation (DIC). In this thesis, a numerical inverse analysis method to 

precisely predict these parameters by using finite element analysis with cohesive zone 

modeling and response surface methodology (RSM) is proposed. Three steps comprise 

RSM. The process in Step 1 involves calculating the root mean square error between the 

finite element and experimental load-displacement curves to produce the response 

surface. In step 2, the response surface is fitted with a second-order polynomial using the 

Levenberg-Marquardt algorithm. In step 3, an optimization problem is solved by 
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minimizing the fitted function to find the optimum cohesive zone parameters. Finally, the 

obtained input for MAT_213 and MAT_186 material models is validated by performing a 

quasi-isotropic tension test simulation.  
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1. INTRODUCTION 

1.1. BACKGROUND AND LITERATURE REVIEW 

Composite materials have become increasingly popular over the past few decades, as 

they possess a range of unique properties, including high specific strength, non-

corrosiveness, stiffness, and fatigue resistance, which make them superior to 

conventional materials. In the aerospace industry, composites are extensively used to 

manufacture airplane fuselages, wings, and engine components. Similarly, in the 

automotive industry, they are employed in the production of car bodies, chassis, and other 

structural components. The sporting goods industry also utilizes composite materials to 

create items such as tennis rackets, golf clubs, and bicycle frames, taking advantage of 

their exceptional strength and light weight. Additionally, composite materials are used in 

the medical industry to manufacture prosthetics and implants, owing to their 

biocompatibility, strength, and stiffness. Wind energy also benefits from composite 

materials, with wind turbine blades being constructed from these materials due to their 

light weight and high strength, which results in efficient energy production. Moreover, 

composites offer several advantages, including design flexibility, resistance to corrosion, 

and lower maintenance costs. Even though composites have attractive features, the use of 

composites is limited. One of the reasons is – composites when used in structural systems 

such as aerospace and automotive are subjected to variety of loading conditions. Among 

these, impact loading conditions are the most critical. Under impact loads composites 

undergo deformation, damage, and failure. All these components influence the future 

response of the composite. Therefore, there is a need for a numerical tool to predict the 
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behavior of composites under impact and crush loadings. Under the joint effort of NASA 

and FAA a generalized orthotropic elasto-plastic damage material model (OEPDMM) is 

developed and implemented in a commercial transient dynamic finite element software 

LS-DYNA as MAT_213. This material model is driven completely by experimental data. 

One key feature of MAT_213 is that it allows the user the flexibility to define how 

material behaves since the input to this material model is given in a tabular form. 

MAT_213 has three sub-models-deformation, damage, and failure. Along with predicting 

linear deformations, MAT_213 can also predict non-linear deformations, damage, and 

failure. The required input to drive deformation, damage and failure include twelve sets 

of stress-strain curves, direction-dependent material constants, and flow rule coefficients. 

All the necessary inputs are obtained through the post-processing of a total of 12 distinct 

quasi-static and room temperature (QS-RT) experiments. This thesis provides a 

framework to generate MAT_213 input data for IM7-8552 unidirectional carbon/epoxy 

composite.  

Along with deformations, composites sustain significant internal damage when subjected 

to impact and crush loads. This internal damage is primarily the result of delamination 

caused by high normal, tangential stresses and stress concentrations generated by impact 

loads. This causes the interfaces of the laminate to de-bond. Delamination significantly 

reduces the structure's stiffness and strength. Moreover, it cannot be visually inspected 

because it occurs in the inter laminar layers. Understanding the mechanisms of 

delamination in composite laminates is therefore essential for preventing catastrophic 

structural failure. Therefore, in recent decades, a significant amount of focus has been 

placed on the development of models to predict delamination. There are three different 
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modes in delamination, including mode I or opening mode, mode II or shearing mode, 

and mode III or tearing mode. Among these damage modes, mode I, mode II and mixed 

mode (derived from combination of mode I and mode II) are the most commonly 

occurring delamination modes in laminated composited. Various numerical modeling 

techniques like Virtual Crack Closing Technique (VCCT), Extended Finite Element 

Method, Multiscale Reduced Order Modeling (ROM), Random Lattice Method (RLM), 

and Cohesive Zone Modeling (CZM) can be used for modeling delamination. L. 

F.Alessandro Fascetti [1] discusses each one of these methods highlighting their salient 

features, advantages, challenges and applications in detail. Because of its low 

computational time and accuracy, CZM has been widely used and is most effective in 

modeling delamination in laminated composite materials. Moreover, CZM is relatively 

easy to implement, and it is incorporated in almost all commercial finite element 

software. LS-DYNA, a nonlinear transient dynamic finite element code, is used in our 

current study to build and analyze finite element models. LS-DYNA’s MAT186, a mixed 

mode cohesive zone model was used to model delamination.  

The cohesive zone model is governed by the traction separation law (TSL), a constitutive 

law that derives the relationship between stresses and relative displacements at 

integration points of cohesive elements. Generally, traction separation law is defined by 

using two or more fracture parameters. The number of parameters is dictated by the shape 

of the traction separation law, which in turn is determined by the type of interface 

fracture mechanism. Peak traction (σmax), critical energy release rate (GC), also known as 

fracture toughness, and penalty stiffness (k) are three parameters shared by all TSLs. 

Figure. 1.1 shows a simple bilinear traction separation law. The x and y axis of the 
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traction separation law represents stress (σ) and displacement (δ) respectively, while the 

area under the curve represents the fracture energy (GC). A general traction separation 

law consists of three stages. The initial, undamaged linear region of the first stage has a 

stiffness (k) on the order of 106 – 107 N/mm2. These range of values are selected to 

provide reliable results [2], [3]. The subsequent softening stages are damage initiation 

and evolution. Damage initiation indicates when the damage evolution begins, which 

occurs after maximum traction is attained. Damage evolution describes the rate at which 

the composite's stiffness degrades [4]. Linear, multilinear, exponential, trapezoidal, and 

tabular softening curves are used based on the experience of an analyst performing 

fracture simulations to match the experimental load displacement curve or by predicting 

the shape by determining the mechanism of fracture and how the material behaves while 

conducting fracture tests on the specimens. N. Dourado et al. [2] utilized bilinear 

cohesive law (BCL) to characterize mode II delamination for two carbon/epoxy 

composites. The Bilinear cohesive laws obtained were quite different for both the 

composites. A trapezoidal law with bilinear cohesive law was used by M.F.S.F. de Moura 

et al.[3] to characterize fracture properties for mode II loading of a hybrid laminate. They 

assumed this shape of the law to account for the ductile behavior observed during the 

experiments. S.M. Jensen et al. [5] characterized multilinear cohesive law for mode I 

delamination in a glass epoxy unidirectional composite. J.C.S. Azevedo et al. [6] 

employed linear cohesive laws to identify mode II delamination behavior of three 

different adhesive joints.  
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Figure 1.1: General Bi-linear Traction Separation Law 

Various researchers have used various methods to characterize the traction separations 

law parameters. Double cantilever beam (DCB) test is typically used by many researchers 

to characterize mode I cohesive law parameters ([4], [7], [8], [9]). While mode II fracture 

properties are characterized by using end notched flexure (ENF) ([2], [3], [6], [7]). Using 

DCB and ENF test data both mode I and mode II critical energy release rates can be 

computed directly. However, obtaining other parameters shown in Figure. 1.1 is often 

difficult and typically determined by calibration of finite element models with 

experimental results. Some researchers have characterized these properties completely 

from the DCB and ENF experimental data ([7],[10]). Some researchers have used 

analytical techniques [11], or inverse methods ([2], [5], [12], [13]) by comparing the FE 

model results with experimental results by tuning the cohesive law parameters. In this 

work both mode I and mode II cohesive law parameters are obtained by using DCB and 

ENF finite element model along with the experimental load-displacement result from 

DCB and ENF coupon tests.  Response surface methodology (RSM) and optimization 
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techniques are employed to obtain both optimal mode I and mode II fracture properties 

and traction separation laws.  

1.2. THESIS OBJECTIVES 

There is a need for a robust numerical model to predict the behavior of composite 

materials subjected to impact and crush loadings seen in aerospace applications. 

OEPDMM, generalized orthotropic composite tabulated plasticity damage material 

model is implemented in LS-DYNA ®, a commercially available nonlinear transient 

dynamic finite element code as MAT_213. MAT_213 can be used to simulate 

deformation, damage and failure in composite materials. MAT_213 is restricted to model 

composite lamina and not the interlaminar zone present in composite materials. However, 

MAT_213 in conjunction with a cohesive zone model can be used to build representative 

finite element models. The interlaminar zone is constructed by connecting the composite 

laminas by cohesive zone elements (CZE). MAT_213 offers flexibility to the analyst as 

all of the required input is provided in the form of tabulated data which includes twelve 

sets of stress-strain curves, direction-dependent material constants, and flow rule 

coefficients. All the necessary inputs are obtained through the post-processing of a total 

of 12 distinct quasi-static and room temperature (QS-RT) experiments. MAT_186, a 

cohesive zone material model in LS-DYNA is utilized to model the interlaminar zone. 

MAT_186 is driven by traction separation law, which describes the tractions that develop 

in the element as a function of deformation. The thesis focuses on the procedures to 

generate input data for MAT213 and MAT186 for a unidirectional composite material 

IM7-8552. The primary objectives are presented below. 
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1. Use the experimental results from tests performed on IM7-8552 unidirectional 

carbon fiber/epoxy resin composite to generate the input cards for MAT_213 

material model.  

2. Perform single and multi-element finite element verification test simulations to 

match the experimental stress-strain input curves and to ensure compatibility and 

proper functioning of MAT_213.  

3. Use DCB and ENF finite element models along with the response surface 

methodology to get the optimal mode I and mode II fracture properties and 

traction separation laws.  

4. Perform a quasi-isotropic tension test simulation using the generated input for 

MAT_213 and MAT_186 and compare the simulation results with the 

experimental results in order to validate the characterized input.  
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2. MAT_213 OVERVIEW AND COHESIVE ZONE MODEL 

MAT_213 is an orthotropic elasto-plastic material model (OEPDMM) material model 

available in LS-DYNA ®, a commercially available nonlinear transient dynamic finite 

element code suitable for impact and crush simulations. The material model has three key 

components: deformation, damage, and failure. The deformation sub-model captures both 

linear and nonlinear deformations using classical plasticity formulation. The damage sub-

model considers the decrease in the material's elastic stiffness as plastic strain increases. 

The failure sub-model predicts when the material loses its load-carrying capacity. The 

OEPDMM approach relies exclusively on tabulated experimental data from material 

characterization tests that are physically meaningful. The data includes stress-strain 

curves at various temperatures and strain rates for the deformation sub-model, damage 

parameter-total strain curves for the damage sub-model, and failure data for different 

failure theories used in the computer code to drive the failure sub-model. The material 

model has several features, such as tension/compression asymmetry, temperature effects, 

strain rate effects, and stochastic variation of material properties. Table 1.1 presents a 

comparison between MAT_213 and other material models in LS-DYNA, highlighting the 

key features of each. Full details about the theory and development of MAT_213 can be 

found in articles by several authors ([14], [15], [16], [17], [18], [19], [13], [20]). An 

abbreviated summary of the MAT_213 material model theory is presented in this chapter.  
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Table 1 Comparison of MAT213 Key Features with Other Material Models in LS-
DYNA.  

Table taken from [21]. (= Included,  = Not Included, and  = Partially Included) 
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2.1. DEFORMATION SUB-MODEL  

The deformation sub-model employs classical plasticity theory, with plasticity initiation 

determined by a general quadratic three-dimensional orthotropic yield function derived 

from the Tsai-Wu failure model, expressed as: 

 

11 11 1111 12 13

22 22 2212 22 23

33 33 3313 23 33
1 2 3

12 12 44 12

23 23 55 23

31 31 66 31

0 0 0

0 0 0

0 0 0
( ) 0 0 0

0 00 0 0

0 00 0 0

0 00 0 0

T
F F F

F F F

F F F
f a F F F

F

F

F

  
  
  


  
  
  

     
     
     
     

       
     
     
     
          









 
 

  (2.1) 

Where, the stresses in different coordinate directions are denoted by  ij . The yield 

function coefficients ( iF  's and ijF 's) vary depending on the current state of yield stress 

in each direction. To monitor the changes in yield stresses, the model requires twelve sets 

of stress-strain curves, including tension and comp ression tests in the 1, 2, and 3 

directions, as well as shear and off-axis tension or compression tests in the 1-2, 2-3, and 

3-1 planes. 

Yield function coefficients corresponding to principal material directions and principal 

material planes are determined as the function of yield stresses which are given by: 
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In Eq. 2.2,  ij  are the current values of yield stresses in the normal and shear 

directions. T and C denote tensile and compressive yield stress respectively. The off-axis 

coefficients can be computed from 45o tests in various coordinate directions and are given 

as  
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12F is derived from the 45° off-axis tension test conducted in the 1-2 plane. Similarly, 

23F and 13F can be determined by performing 45° off-axis tests in the 2-3 and 1-3 planes, 

respectively. A non-associative flow rule is used to compute the evolution of components 

of plastic strains which is given as: 

p h
d d 




ε
σ

 (2.6) 

 
The plastic potential function for the flow is given as: 
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h
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    


  
 (2.7) 

 
 
Where,  ij  are current values of stresses and ijH are the flow rule coefficients that are 

constants and depend on the ratios of various plastic Poisson’s ratios. The simplified 

plastic potential function along with Eq. 2.6 can be used to relate plastic Poisson’s ratios 

as follows,  
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(2.9) 

 

The Eq. 2.7 along with the unidirectional tests in the PMD’s are useful in developing 

procedures to characterize the flow rule coefficients. The procedure for characterizing 

flow rule coefficients for IM7-8552 composite will be discussed in chapter 3.  

2.2. DAMAGE SUB-MODEL  

Damage model handles the degradation of elastic stiffness prior to failure. The damage 

model is essential since the non-linear behavior exhibited by fiber reinforced composites 

materials are due to the combination of both plasticity, handled by deformation sub-

model, and microscopic damage which can be noticed by varying unloading moduli. 

Damage model relates true stress space to effective stress space. True stress space is 

related directly to what is measured experimentally. Effective stress space is related to 

undamaged material where all non-linearity is caused by plasticity. The true stress is 

related to effective stress through a damage tensor M as  

: effσ M σ  (2.10) 
 

The full damage tensor is shown in Eq. 2.11. The use of full damage tensor will lead to 

the prediction of multiaxial stress in effective state a uniaxial stress state is present in the 

true space. This leads to a non-physical problem. Therefore, a semi coupled directionality 

tensor is used in the current implementation as shown by Eq. 2.10.  
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 (2.12) 

 
 
The M coefficients are determined by the damage parameters set by the user as input 
curves where 0 ≤ M ≤ 1.  
 
M is related to damage parameters as given in Eq. 2.13.  
 

 11 22 33 12 23 13, , , , ,kk kk kk kk kk kk
kk kkM M d d d d d d  (2.13) 

 
Where, kl

ijd indicates the damage induced in ij direction has manifested the reduction of 

stiffness in the kl direction. More information regarding the damage model can be found 

in [14], [15], [16], [17], [18], [19], [13], [20].  

 
2.3. FAILURE SUB-MODEL 

Failure model determines when the element is eroded. There are three different failure 

models implemented in MAT_213 and can be used one at a time. These are Tsai-Wu 

Failure Criteria (TWFC), Puck Failure Criteria (PFC) and Generalized Tabulated Failure 

Criteria (GTFC). The number of parameters required for each of the implemented failure 
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criteria are different. TWFC and PFC are based on the failure model established by [22] 

and [23] respectively. The failure states in GTFC are based on strain rather than stress. 

For each failure state, there are specific failure surfaces that are defined in terms of the 

equivalent failure strain and failure angle space. Figure. 2.1 shows the in-plane failure 

surface where 
F A IL

eq

IP
  is the function of failure angle, IP . The equivalent failure strain and 

the failure angle are computed at each time step using Eq. 2.14 and 2.15 respectively. 

More details about GTFC can be found in [18], [19].  

2 2 2
11 22 122eq

IP       (2.14) 

 
 

1 22

2 2
22 12

cosIP


 


 
 
  

 (2.15) 

 

 
 

Figure 2.1 General form of In-plane Failure Surface 

2.4. COHESIVE ZONE MODEL  

The composites materials consist of several laminas bonded together to form a laminate. 

The interface where two or more laminas are bonded is inherently weaker than the rest of 

the composite, this makes delamination one of the critical failure modes in composites. 

When composites are subjected to impact and crush loading, delamination can occur. 

FAIL

eq

IP


IP0 90 18090 180 
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Since delamination is essentially the propagation of a crack in a medium, fracture 

mechanics is an appealing method for describing the phenomenon. Under dynamic 

loading, the assumptions of linear fracture mechanics (LEFM) [24] are easily violated. 

Instead, the nonlinear concept of cohesive fracture mechanics, first introduced by 

Dugdale [25] and Barenblatt [26], can be used. Modeling the interfaces present in 

composite materials within the framework of finite element (FE) analysis with cohesive 

zone models (CZM) has made extensive use of the principles of cohesive fracture 

mechanics. Chapter 1 discusses the literature review for CZM in detail. To summarize 

CZM allows the analyst to define the interface between composite laminates as a 

component. The constitutive relationship governing the CZM is in the form of a traction 

separation law. Figure. 1.1 shows an example of bilinear traction separation law. where 

max  is the maximum allowable traction, 0  is the separation when softening begins, f  

is the separation when the material ultimately fails, and k is the initial penalty stiffness. 

In the current version of MAT_213, there are no provisions for handling interlaminar 

failure. However, MAT_213 can be used with CZM’s or tiebreak contact definitions to 

accurately predict the composite behavior. In this thesis, MAT_186 is used to model the 

cohesive zone model. MAT_186 requires an arbitrary shaped normalized traction 

separation laws as input. The material mode consists of three cohesive formulations for 

mixed-model interaction that are irreversible in nature. These formulations are 

distinguished based on the value of the effective separation parameter TES. When TES 

equals 0, the model follows a power law. When TES equals 1, it adheres to the 

Benzeggagh-Kenane law. When TES equals 2, a separation parameter is employed to 

capture the interaction between the relative displacements in the normal (mode I) and 
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tangential (mode II) directions. The three formulations share a common trait in which the 

traction separation behavior of the model is primarily determined by certain parameters 

for normal (mode I) - namely, C
IG and max,I , and for tangential (mode II) - namely, C

IIG  

and max,II - as well as an arbitrary shaped traction-separation law that applies to both 

modes. Figure. 2.2 depicts the mixed mode traction separation law. 

 

Figure. 2.2. Mixed Mode Traction Separation Law (From LS-Dyna manual volume 2) 

The failure separations for both mode I and mode II are calculated using Eq. 2.16 and Eq. 

2.17 respectively. 

1 max,

C
F I
I

TSLC I

G

A



  (2.16) 

2 max,

C
F II
II

TSLC II

G

A



  (2.17) 

 

Where, 1TSLCA  denote the area under the traction-separation curve in mode I, and 2TSLCA

denote the area under the traction-separation curve in mode II. 

Power law: In power law, the total mixed mode relative displacement is given as 
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2 2
m I II    , where 3I   is the separation in mode I and 2 2

1 2II     is the 

separation in the tangential direction.  

In this formulation the effective separation parameter TES is set to 0, which means that 

the interaction between the surfaces follows a power law relationship. The ultimate 

mixed mode displacement F  for power law is given by Eq. 2.18.   
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XMUXMUXMU

TSLC I TSLC IIF
C C
I II

A A

G G

  
 


   
      
     

 (2.18) 

 

Benzeggagh-Kenane law:  In this formulation the effective separation parameter TES is 

set to 1. The ultimate mixed mode displacement F  for power law is given by Eq. 2.19.  

/II I    is the mode mixity. Larger the value of XMU, the larger the fracture 

toughness of mixed mode situations will be.  
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3. GENERATION OF MAT_213 INPUT CARDS FOR IM7-8552 COMPOSITE 

MAT_213 relies entirely on the data obtained from the experiments as their primary 

source of input. Table 3.1 has a list of all experiments conducted with unidirectional IM7-

8552 composite test coupons to feed data into MAT_213. In order to capture both elastic 

and plastic deformation, MAT_213 requires 12 sets of stress-strain curves, direction-

dependent material constants, and flow rule coefficients as input. All of the necessary 

inputs are obtained through the post-processing of a total of 12 distinct quasi-static and 

room temperature (QS-RT) experiments. These experiments include three principal 

material direction (PMD) tension and compression tests, as well as three principal 

material plane (PMP) shear and off axis 45 tests. For the purpose of determining the 

IM7-8552 composite's density, a specific gravity test was carried out. Experiments were 

conducted at ASU, and additional information about test procedures and experimental 

results is available in [20]. The subsequent sections describe the postprocessing 

procedures used to generate data for MAT_213 input cards using IM7-8552 experimental 

results. 

Table 2. Summary of Experiment Performed to Characterize Composite IM7-8552 [15]. 

S.N. Test Description ASTM Standard 
Resulting Input used to build or 
calibrate input deck for material 

model 
MAT_213 

1 Tension 1-direction 
ASTM D3039 

11
T vs 11

T ,  11
T

y
 , 12 12, p   

2 Tension 2-direction 22
T vs 22

T ,  22
T

y
 , 21 21, ,p   

3 Tension 3-direction _ 33
T vs 33

T ,  33
T

y
 , 32 31 32 31, , ,p p     

4 Compression 1-direction ASTM D6641 
&  

ASTM D3410 

11
C vs 11

C ,  11
C

y
  

5 Compression 2-direction 22
C vs 22

C ,  22
C

y
  
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6 Compression 3-direction ASTM D7291 33
C vs 33

C ,  33
C

y
  

7 Shear 1-2 plane 
ASTM 

D5379/D5379
M-12 

12 vs 12 ,  12 y
  

8 Shear 2-3 plane 23 vs 23 ,  23 y
  

9 Shear 1-3 plane 13 vs 13 ,  13 y
  

10 Off-axis (45°, 1-2 plane) ASTM D3039 
45
12 vs 45

12 ,  45
12 y
  

11 Off-axis (45°, 2-3 plane) 
ASTM D7291 

45
23 vs 45

23 ,  45
23 y
  

12 Off-axis (45°, 1-3 plane) 
45
13 vs 45

13 ,  45
13 y
  

13 Specific Gravity ASTM D792-13 composite  

3.1. GENERATION OF MODEL CURVES 

The model curve is an average curve that has been generated by averaging the stress 

strain results from multiple experimental replicates of a specific test. Model curves were 

generated for all 12 sets of stress-strain curves. In order to determine the end point of 

each model curve, the replicate with the lowest total strain value was identified and used 

as a cut-off point.  
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(c) 

Figure 3.1. Stress-Strain from Tension Test, (a) 1- direction, (b) 2-direction, and (c) 3-

direction. 

Figures. 3.1, 3.2, 3.3, 3.4 show all 12 sets of experimental stress strain results and their 

corresponding model curves. Figure. 3.1 and Figure. 3.2 display stress- strain for three 

principal material direction tension and compression tests, along with the corresponding 

model curves. Figure. 3.3 and Figure. 3.4 show stress-strain curves for three principal 

material plane shear and off-axis tests, respectively. Model curves are represented as 

solid black lines and are used as tabulated MAT_213 input in all the models utilized in 

this thesis. 

0

2,500

5,000

7,500

10,000

0 0.002 0.004 0.006 0.008 0.01

St
re

ss
 (p

si
)

Strain (in/in)

Tension 3-direction

IM7T13-2
IM7T13-4
IM7T13-5
Model_Curve

0

35,000

70,000

105,000

140,000

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

St
re

ss
 (p

si
)

Strain (in/in)

Compression 1-direction

IM7C1-1

IM7C1-3
IM7C1-4

Model_Curve

0

10,000

20,000

30,000

40,000

0.000 0.010 0.020 0.030 0.040 0.050

St
re

ss
 (p

si
)

Strain (in/in)

Compression 2-direction

IM7C2-2

IM7C2-4

IM7C2-5

Model_Curve



 21 

(a) (b) 

 
(c) 

Figure 3.2. Stress-Strain from Compression Test, (a) 1- direction, (b) 2-direction, and (c) 

3-direction. 
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(c) 

Figure 3.3. Stress-Strain curves from Shear Test, (a) 1-2 plane, (b) 2-3 plane, and (c) 1-3 

plane. 

 
3.2. CALCULATION OF ELASTIC MODULI 

Elastic moduli aE , bE , cE , abG , bcG , and caG are the required input in cards 1 and 2 of 

MAT_213. aE , bE , cE is taken as the slope of the initial portion of the stress-strain curve 

from either compression and tension tests in principal material directions a, b and c 

respectively. Similarly abG , bcG , and caG can be calculated as the slope of the linear 

portion of shear stress-tensorial strain curves in principal material planes a-b, b-c and c-a 

respectively. In Figure. 3.5, principal material directions and planes for a unidirectional 

composite laminate are depicted. Figure. 3.6 shows an illustrative example to calculate 

bE using stress-strain model curve from compression test in 2-direction. Table 3.2 shows 

the summary of Young’s moduli computed using the outlined procedure.  

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 0.005 0.01 0.015 0.02 0.025

Sh
ea

r S
tr

es
s (

ps
i)

Tensorial Shear Strain (rad)

Shear 1-3 Plane

IM7S13-2

IM7S13-3

IM7S13-4

Model_Curve



 23 

(a) (b) 

 
(c) 

Figure 3.4. Stress-Strain Curves from Off-axis Test, (a) 1-2 plane, (b) 2-3 plane, and (c) 
1-3 plane 

 

 
Figure 3.5. Single Ply of Unidirectional Composite Laminate Showing Principal Material  
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directions and planes 
 

 
 

Figure 3.6. Single ply of Unidirectional Composite Laminate Showing Principal Material 

Directions and Planes 

Table 3. Summary of Young’s Moduli for IM7-8552 Composite 
Young Modulus psi 

aE  2.260e7 

bE  1.299e6 

cE  1.299e6 

abG  6.22e5 

bcG  4.14e5 

caG  6.22e5 

 
3.3. CALCULATION OF ELASTIC AND PLASTIC POISSON’S RATIOS 

The elastic Poisson's ratios are the primary inputs in MAT_213 card 1 and are obtained 

from the stress-strain data generated by uniaxial tension and compression tests. While the 

plastic Poisson's ratios are not directly utilized in MAT_213, they are used to determine 

the flow rule coefficients  11 22 33 12 23 13 44 55 66, , , , , , , ,H H H H H H H H H featured in cards 5 

and 6 of the input deck. 
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To demonstrate the computation of the elastic and plastic Poisson's ratios in the 3-2 

plane, a tension test data in the 2-3 plane is considered. To compute the elastic Poisson's 

ratio, the initial step involves identifying the yield strain value from the stress-total strain 

data, as illustrated in Figure. 3.7. This is achieved by drawing a straight-line tangent to 

the initial linear portion of the stress-total strain curve. The yield strain value is then 

determined by identifying the point where the linear portion of the curve terminates.  

 

Figure 3.7. Example of Obtaining Yield Strain 

Prior to the yield strain, all longitudinal and transverse strains are entirely elastic. To 

compute the elastic Poisson's ratio, a regression line is constructed using the longitudinal 

strain and negative transverse strain data before the yield strain. The slope of this 

regression line represents the elastic Poisson's ratio. Figure. 3.8 illustrates the calculation 

of 32 .   
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Figure. 3.8. Example of Calculating Elastic Poisson’s Ratio from Tension Test Data 

To compute the plastic Poisson's ratio, longitudinal and transverse plastic strains are 

calculated for all stress values after the yield strain, using Eq. 3.1 and Eq. 3.2, 

respectively. In these equations, the superscript t denotes the total strain after the yield 

strain, while the superscript y refers to the yield strain. 

33 33 33: P t yLongitudinal      (3.1) 

22 22 22: P t yTransverse      (3.2) 

 

Finally, plastic Poisson’s ratio 32
P  is calculated by taking the slope of the regression line 

through longitudinal strain and transverse plastic strain data. Even though the slope of the 

regression line changes, an average value of 0.361 was considered. Figure. 3.9 illustrated 

the computation of 32
P .  
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Figure 3.9. Example of Calculating Plastic Poisson’s Ratio from Tension Test Data 

3.4.  CALCULATION OF FRC'S USING MAT213FRC COMPUTER PROGRAM 

Flow rule coefficients are inputs of MAT_213 cards 6 and 7. Flow rule coefficients are 

used to describe the generation of plastic strains in the material through a non-associated 

flow rule given in Eq. 2.6. Experimental data can be used to fully characterize the flow 

rule coefficients introduced in Section 2. This thesis outlines the procedure for 

determining the flow rule coefficients for a unidirectional composite, IM7-8552. In the 

case of a unidirectional composite, the plastic strains in the fiber directions are always 

zero for all stress values, as carbon fibers exhibit linear elastic behavior. Therefor 

11 12 13, ,H H H  values can be set to zero. Hence, plastic potential function can be simplified 

as shown in the Eq. 3.3. Flow rule coefficients are related to plastic Poisson’s ratios as 

shown in Eq. 2.9. One cannot solve Eq. 2.9 because it is rank deficient. The common 

solution to this problem is assuming one of the coefficients values. The value of 22H  is 

often assumed. This assumption leads to 2 direction tension or compression stress plastic 
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strain response being the representative effective stress-effective plastic strain  h   

response of the material.  

   
2 2 2 2 2 2

22 22 33 33 23 22 33 44 12 55 23 66 132h H H H H H H             (3.3) 
 

IM7-8552 composite exhibit isotropy in 2-3 plane and hence Eq. 3.3 can be further 

simplified as shown in Eq. (3.4). 

2 2 2 2 2 2
22 22 33 23 22 33 44 12 13 55 23( ) 2 ( )h H H H H             (3.4) 

 

Under plane stress condition in 1-2 plane, Eq. 3.5 can be expressed as  

2 2 2
22 22 44 12h H H    (3.5) 

 

The results from 1-2 plane tension or compression test can be used to determine the 

values of 22H  and 44H . In this procedure 2-direction compression curve is chosen as the 

master curve because compression tests performed on composites provide better insight 

into the plasticity of the material since the ultimate failure happens well after yielding. In 

order to calculate 44H , Shear test in 1-2 plane is taken as the fitting curve.  

The first step in deriving the values of 22H  and 44H , is converting both master and 

fitting curve from stress-total strain into stress – plastic strain using Eq. 3.4. Figure. 3.11 

(a) shows the resulting curves. 

p total y
xx xx xx     (3.6) 
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Figure 3.10. Compilation of In-plane Compression -2 direction and Shear in 1-2 plane 

Stress-Total Strain curves 

With the assumption that effective stress-effective plastic strain is analogous to a 

composite property, the optimal values of 22H  and 44H  will result in the fitting curves 

collapsing onto a single unique curve in the effective stress – effective plastic strain space 

( )h  . Since there are only two degrees of freedom in Eq. 3.5, an optimization problem 

can be solved to find the optimal values for 22H  and 44H with the only constraint being 

0iiH   . Using the user combination of 22H  and 44H , each fitting curve is converted 

into ( )h   space using Eq. (3.3) and Eq. (3.7) respectively. Now, from the resulting 

fitting curves average response ( )h   is computed using Eq. (3.9). Where N is the 

number of fitting curves.  
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(a) (b) 

 
Figure 3.11. (a)Compilation of In-Plane Compression -2 Direction and Shear in 1-2 Plane 

Curves: (a) Stress-Plastic Strain (b) Effective Stress-Effective Plastic Strain 
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


   
(3.8) 

To determine how far the current combinations of 22H  and 44H  are from optimal, the 

normalized root mean square error (NRMSE) is computed between the fitting curves and 

the average response as  

    2

1 1

max min

1 iM N

i j j
j i

h h
N

NRMSE
h h

 
 

  





 

 
(3.9) 

 
 
 

Where, Mi is the number of points considered along the curves where the computation is 

performed. The combination of 22H  and 44H  which minimizes the NRMSE is 

considered as the optimal solution. Figure. 3.11 (b) shows the fitting curves in ( )h   

space for a optimal combination of 22H  and 44H . 22 2.10526H   and 44 11.5789H   

were the optimal combination with a NRMSE of 0.000925993.  
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After computing 22H  and 44H , 23H can be computed by using Eq. (3.8). Where, 32
p  is 

the plastic Poisson’s ratio that was computed in the previous section. 

23 32 22
pH H   (3.10) 

 

The remaining flow rule coefficients 𝐻ହହ and 𝐻଺଺ can be computed by taking the 

compression in 2-direction curve as master curve and the results from shear 2-3 plane and 

shear 1-3 plane as fitting curves respectively. Figures. 3.12 (a) and 3.14 (b) depict the 

compilation of stress-plastic strain curves for 2-direction compression, with shear in the 

2-3 plane and shear in the 1-3 plane, respectively. Finally, an optimization problem is 

solved to find optimal 𝐻ସସ and 𝐻ହହ by keeping 22H constant from previous step such that 

the curves shown in Figures. 3.13 (a) and 3.14 (a) merge into a single curve. Figure. 3.15 

(b) and 3.16 (b) show the fitted curves. The optimal 𝐻ସସ and 𝐻ହହ found are 8.27586 and 

11.0526 respectively. All the optimal flow rule coefficient values are presented in Table 

4.  

The outlined procedure to compute the flow rule coefficients was performed using a C++ 

written object oriented computer program called MAT213FRC [27]. Figure. 3.13 shows 

the flowchart of the computer program. MAT213FRC, can be used to compute all 9 flow 

rule coefficients for a given set of experimental data using the procedure outlined before. 

The program requires two input files to run and generates two output files. The first input 

file contains the twelve experimental stress-strain that must be formatted using specific 

keywords. The second input file contains details of the experimental data as well as the 

fitting parameters and must be formatted. Figure. 3.14 shows the formatted contents from 

the first and second input file for this example. 
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(a) (b) 
Figure 3.12 (a) Compilation of In-Plane Compression -2 Direction and Shear in 2-3 Plane 

Curves: (a) Stress-Plastic Strain (b) Effective Stress-Effective Plastic Strain 

(a) (b) 
Figure 3.13 (a) Compilation of In-Plane Compression -2 Direction and Shear in 3-1 Plane 

Curves: (a) Stress-Plastic Strain (b) Effective Stress-Effective Plastic Strain 

Table 4. Optimal Flow Rule Coefficients Values for IM7-8552 Composite 
Coefficient Optimal Value 

11H  0.00 

22H  2.105 

33H  1.00 

44H  11.578 

55H  8.275 

66H  11.052 

12H  0.00 

23H  -0.7427 

13H  0.00 
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Figure 3.14. Flowchart of MAT213FRC Computer Program 

 

 

(a) (b) 

Figure 3.15. (a) Format of 2nd Input File (b) Format of 1st Input File  

MAT213FRC provides three methods for computing flow rule coefficients. The first 

method, called "fit 1 to 1," uses each of the six principal normal direction curves (i.e., 1-

direction tension, 2-direction tension, 3-direction tension, 1-direction compression, 2-
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direction compression, and 3-direction compression) as the master curves to 

independently generate six different sets of flow rule coefficients. The slave curves 

include three off-axis curves (i.e., 1-2 plane off-axis, 2-3 plane off-axis, and 1-3 plane 

off-axis) and three shear curves (i.e., 1-2 plane shear, 2-3 plane shear, and 1-3 plane 

shear). This method is useful when the user wants to generate flow rule coefficients 

independently for each principal stress direction. 

The second method in MAT213FRC is referred to as "Check user fit," which allows the 

user to evaluate the quality of the fit by selecting desired values for the flow rule 

coefficients and choosing any master and slave curve. This method provides an output 

that includes the NRMSE value for the selected fitting curves and the percentage of the 

original fitting curves used. This method is useful when the user wants to check the 

fitting quality of a specific set of flow rule coefficients. 

The third method in MAT213FRC, known as "fit many," was employed in the current 

study. This method enables the user to select desired fitting curves and specify lower and 

upper bounds for all nine flow rule coefficients, which serve as the search domain for 

these coefficients. The output of this method includes the optimal flow rule coefficients 

from the best fit, NRMSE values for the fitting curves, and the percentage and number of 

points used in the original curves. This method is particularly useful when the user wants 

to obtain flow rule coefficients by fitting many curves simultaneously. 
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(a) (b) 

Figure 3.16. Outputs from (a) Fit-Many Option, (b) Check-User Fit Option 

3.5. SINGLE ELEMENT VERIFICATION STUDY 

Single element study was used to verify compatibility of the generated inputs in the 

previous sections with MAT_213. In Single elements verification is an important step 

that is undertaken before attempting more complex finite element models. The 

verification is done using IM7-8552 unidirectional composite experimental stress-strain 

curves discussed section 3.1. OEPDMM sub models (deformation, damage sub-models) 

were activated. Verification was done for In-plane stress-strain input curves that include 

tension in both 1 and 2 directions, compression in both 1 and 2 directions and shear in 1-2 

plane.  

Finite element modeling: All single element finite element models were constructed using 

4-noded plane stress shell elements. The boundary conditions and the applied 

displacement are chosen such that the simulated stress and strain from the model 

resemble the corresponding input curve. Figure. 3.17 shows the applied boundary 

conditions and displacements for each of the single element shell models. The primary 

material directions are marked with the element with the fiber direction represented by a 

green line. Pin and roller supports are represented by a slashed triangle and slashed 
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triangle with circles respectively. Black arrows represent the direction of applied 

displacement.  

1-direction Tension 2-direction Tension  

 

1-direction Compression 

 

1-direction Compression 

 

1-2 Plane Shear 

Figure 3.17 Single Element Model Illustrations  
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Finite Element Results: Preliminary deformation only tension 1-direction model results 

did not agree with the model curves. This was due to the Rayleigh damping value in 

keyword *DAMPING_PART_STIFFNESS was set to 0.15. Similar observation was 

made in [28] and the correct results were obtained when a damping value of 0.05 was 

used. All single element models showed good agreement with the input stress-strain 

model curves except Shear in 1-2 plane. The configuration of boundary conditions and 

applied displacement shown in ‘Shear 1-2 Plane (1)’ in Figure. 3.17 did not induce a pure 

state of stress. Therefore, the results shown in Figure. 3.18 did not match the model 

curve. Correct results were obtained when biaxial loading configuration shown as ‘Shear 

1-2 Plane (2) in Figure. 3.17 was used. The single element results from all in-plane 

models are shown in Figure. 3.19.  The MAT_213 simulation curves are represented in 

orange and the model curves are represented in black. The obtained results closely match 

the model curves. Therefore, the compatibility of IM7-8552 composite input curves with 

the MAT_213 is verified.  

 

Figure 3.18. Comparison of Shear 1-2 Plane Stress-Strain Curve with MAT_213 

Simulation  
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Figure 3.19 Comparison of Stress-Strain Model Curves with the MAT_213 Stress-Strain 

Curves 
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4. CHARACTERIZATION OF TRACTION SEPERATION LAW 

PARAMETERS FOR IM7-8552 COMPOSITE & RESPONSE 

SURFACE METHODOLOGY. 

4.1. DCB AND ENF COUPON TESTS 

ASTM D5528 [23] and D7905 [24] were followed for specimen geometries and test 

procedures for DCB and ENF test, respectively. A schematic diagram of DCB and ENF 

specimens are shown in Figure. 4.1 and Figure. 4.2. To induce mode I loading in DCB 

specimens, piano hinges were bonded at the end of the specimens using 3M-DP420 two-

part toughened epoxy and held by spring loaded fixture on MTS exceed test frame. To 

induce mode II loading in ENF specimens, a standard three-point bend fixture on MTS 

exceed test frame was used. Both DCB and ENF experiments were performed on MTS 

exceed test frame using displacement rates at quasi-static condition 0.05 in/min and 0.025 

in/min respectively. The test frame load cell was used to measure the forces exerted 

during the experiments. The displacement fields of the specimens, including the region 

near to the crack tip, were monitored using two-dimensional digital image correlation 

(2D-DIC).  

A pre-cracking procedure recommended by ASTM standard was followed for both DCB 

and ENF in order to minimize the variation among the manufactured crack tip of different 

specimens. In order to conduct pre-crack cycle on DCB specimen, the specimen was 

loaded in mode I until the crack tip propagate approximately 0.2 in. In a similar fashion, 

to conduct a pre-crack cycle the ENF specimens were loaded in Mode II until the crack 

point propagated roughly 0.2 in. In addition, a compliance calibration was carried out on 
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the ENF specimens in accordance with the ASTM standard. Figure. 4.3 and Figure. 4.4 

shows the measured load-displacement curves from DCB and ENF tests respectively.  

 

 
Figure 4.1. Schematic Diagram of Prepared DCB Specimen 

 

 
Figure 4.2. Schematic Diagram of Prepared DCB Specimen 

 
Figure 4.3. Load vs Displacement Curves: DCB 
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Figure 4.4. Load vs Displacement Curves: ENF 

Khaled et. Al., 2019 [14] has presented a method to obtain the traction separation laws 

from DCB and ENF test for T800/F3900 composites by close monitoring the crack 

propagation during the experiment. The method requires drawing many extensometers in 

order to obtain crack tip opening data (CTOD) from the DIC postprocessing, which is a 

tedious process. There is no assurance that the CTOD values will be accurate after data is 

extracted from the extensometer in DIC. 

In the next sections, an alternate method with response surface methodology has been 

presented to obtain the fracture properties for both mode 1 and mode 2 using results from 

DCB and ENF tests. 

4.2. DCB AND ENF FINITE ELEMENT MODELS 

Due to the difficulties in obtaining the fracture parameters experimentally, as briefly 

described in Section 4.1, it is possible to obtain both mode I and mode II fracture 
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parameters by performing an inverse analysis. Initially, the fracture parameters that need 

to be determined are obtained through a preliminary trial and error analysis to describe a 

cohesive zone model, which can be used in finite element analysis to capture the load 

displacement response from numerical DCB and ENF model. Then, the numerical load 

displacement curve is compared to the experimental load displacement curve determined 

in Section 2. The goal is to determine the optimal values of these parameters, i.e., the set 

of values that produces the best agreement between the numerical and experimental load–

displacement curves. This is accomplished systematically by using RSM and an 

optimization problem described in Section 4. 

Both DCB and ENF finite element models similar to those of the experiment are 

constructed and analyzed in LS-DYNA, a nonlinear transient dynamic finite element 

code, for inverse analysis. Based on the convergence and boundary condition analysis 

performed by Khaled et al [7], an element size of 2.54 mm (0.1 in) with an aspect ratio of 

1 was chosen for both the DCB and ENF models. The composite components were 

modeled using MAT_213, an orthotropic plasticity material model available in 

LS-DYNA. MAT_213's input consists of experimentally determined material properties, 

which include 12 tabulated stress-strain curves corresponding to quasi-static and room 

temperature conditions, as well as point-wise properties such as mass density and 

Poisson's ratios in the 1-2, 2-3, and 1-3 planes, respectively. The input data for MAT_213 

is obtained from Maurya et al. 2023 [15]. Material model MAT_186 available in LS-

DYNA is used to model a single layer of cohesive zone elements extending from the 

initial crack tip to the end of the specimen. The primary input parameters for MAT_186 

are mode I and mode II fracture properties that derive a constitutive law to determine the 
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relationship between stresses and relative displacements at integration points of cohesive 

elements. The mode I and mode II fracture properties include fracture toughness (GIC and 

GIIC), peak traction (σmax, I and σmax, II), and the normalized arbitrary-shaped traction 

separation law (TSLI and TSLII) as shown in Figure. 4.5. Lower indices "I" and "II" 

indicate modes I and II, respectively, while a lower indices "c" indicates the critical 

value. In all simulations, the ratios of kinetic energy, sliding energy, and internal energy 

were examined. The ratios of kinetic and sliding energy with respect to total energy were 

significantly lower than the ratio of internal energy. Thus, quasi-static behavior was 

accurately captured. 

 
 

Figure 4.5. General Traction Separation Law Curve Used in MAT-186 

 
In the DCB FE model, the geometry as depicted in Figure. 4.6(a) had the dimensions 5in 

x 0.1in x 0.17in. It has a 1.3-inch pre-crack region that extends from the specimen’s edge. 

Except for the width, the model geometry was based on the experimental specimens 

tested by Maurya et al [15]. To reduce computational time, the width of the model was 

reduced to 10% of its original width. The Composite parts were constructed using 8 node 
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fully integrated hexahedral solid elements with ELFORM 2. The direction of the fibers in 

each element was aligned with the global X axis. A single layer of cohesive elements 

with a thickness of 2.54 x 10-4 mm (10-5 in) was modeled at the center, spanning from the 

initial crack tip to the edge of the composite specimen, as highlighted in yellow in Figure. 

4.6(a). Additionally, the stainless-steel tabs were modeled with 8 node fully integrated 

hexahedral solid elements with ELFORM 2, standard steel properties were assigned. 

Nodal displacements (3 in/sec) were applied in the global y direction along a row of 

nodes on both the piano hinges 0.7in into the pre-crack region, which is highlighted in 

Figure. 4.6(b). All the nodes on the back face of the specimen as shown in Figure. 4.6(c) 

were constrained in translational degrees of freedom. The *DAMPING GLOBAL 

keyword in LS-DYNA was used to apply damping with a damping constant of 638.5. 

This value was determined based on the convergence and modal analysis performed by 

Khaled et al.[7]. 

 

 
(a) 
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(b) 

 
(c) 

Figure 4.6. FE Model of the DCB Specimen Showing (a) Dimensions of the Specimen 

and the Highlighted Yellow Line Describing the Location of the Cohesive Elements, (b) 

Nodes on the Piano Hinges were Displacements are Applied in the Global Y direction 

and (c) End Face of the Specimen were All the nodes are Constrained in the Translational 

Degrees of Freedom. 

A quadratic softening TSL, as shown in Figure. 4.7, was employed for the MAT-186 

input in the DCB FE model. A nonlinear softening law was selected to account for the 

large-scale fiber bridging seen in Mode 1. A.B. de Morais et al. [14] demonstrated that 

modeling mode I with a simple linear softening law was insufficient. The TSL used for 

DCB has two regions: an initial undamaged linear elastic region, followed by a non-linear 

damage region. The area under the damage region was assumed to be equal to the area of 

a parabolic spandrel for purposes of simplification. The complete characterization of the 

chosen TSL can be done by using 4 parameters, 
ICG , 

max,I , 
,o I and 

,f I , where 
ICG is the 
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area under the TSL, 
max,I is the peak traction in mode I, 

,o I is the damage initiation crack 

tip opening displacement (CTOD), and 
,f I  is the failure CTOD in mode I. 

ICG , 
max, I , 

,o I  

are independent parameters whereas 
,f I  is dependent parameter and can be calculated by 

using Eq. 4.3.  Independent parameters are used in the RSM as design variable in section 

4 to obtain optimal parameter values. ICG was used as a design variable in RSM even 

though the value was obtained experimentally to account for the inaccuracies due to 

linear elastic assumptions in the compliance method and various other experimental 

aspects such as crack tip rotations, shear deformations, and small-scale yielding to 

achieve a better ICG . 

 

Figure 4.7. The Mode I Traction Separation Law 

 
From Figure. 4.7, the area of parabolic spandrel (unhatched region) can be written as 

 max, ,

1

2s IC I o IA G     (4.1) 
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Also, from Figure. 4.7                         

 , , max,

1

3s f I o I IA      (4.2) 

 

Substituting area obtained from Eq. 4.1 in Eq. 4.2 we get     

, ,
max,

3 s
f I o I

I

A 


   (4.3) 

 

To generate data for RSM, lower and upper bounds must be specified for each of the 

three design variables. The bounds represent the boundary value of the design variables, 

which were determined through a preliminary analysis based on trial and error. The 

analysis involves tweaking the design variables by comparing the experimental load 

displacement curve to several simulation load-displacement curves. A middle bound was 

chosen for all design variables close to the optimal region presumed based on simulation 

results for boundary parameters. In Figure. 4.8, the simulation results for the boundary 

parameters are compared to the experimental curve whereas, Table 3.1 displays the 

bounds and corresponding design variable values. The reaction load was calculated as the 

sum of the nodal reaction forces across the width of the top beam. Since the specimen's 

width was scaled to 10% of its original width, the obtained total load was multiplied by a 

factor of 10. The simulation displacement was obtained by plotting the nodal 

displacement of the top beam's corner node in the global y-direction. 
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Figure 4.8. DCB Simulation Results for Boundary Parameters 

Table 5. DCB Design Variable Bounds  
Parameters Bounds 

Lower Middle Upper 

ICG (lb – in / in2) 1.2 1.85 3 

max,I  (lb / in2) 300 700 1100 

,o I  (in) 0.0012 0.0016 0.002 

 
 
In the ENF FE model, the dimensions of the geometry are depicted in Figure. 4.9 were 

6.5in x 0.5in x 0.25in. The ENF model, like the DCB model, has a 2.3-inch pre-crack 

region that extends from the specimen's edge. The model geometry was based on the 

experimental specimens tested by Maurya et al. [15], except for the width. The width of 

the model was reduced to 50 percent of its original width to reduce computation time. 8 

nodes of fully integrated hexahedral solid elements with ELFORM 2 were used to 

construct the composite parts. Each element's fiber orientation was aligned with the 

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Lo
ad

 (l
b)

Displacement (in)

Load Displacement

Experiment

Lower Bound

Upper Bound



 49 

global X axis. As depicted in Figure. 4.9, a single layer of cohesive elements with a 

thickness of 2.54 x 10-4 mm (10-5) was modeled in the center, spanning from the initial 

crack tip to the edge of the composite specimen (a). The support and loading fixtures 

were modeled as rigid bodies using LS-DYNA’s MAT_20 material model. The typical 

elastic properties of steel were used. The supporting fixtures were fully constrained in all 

translational and rotational degrees of freedom. The loading fixture was also constrained 

in all translational and rotational degrees of freedom except for translation in the global y 

direction. A prescribed global y displacement rate of 5 in/sec was applied to the loading 

fixture. Contacts were defined between the support fixtures or loading cell and the 

composite by using *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE definition 

in LS-DYNA. Static and dynamic friction coefficients were set to 0.1, based on values 

used by Khaled et al. [7].  

In the preliminary analysis, both linear and nonlinear softening laws were investigated for 

MAT_186 input in the ENF FE model. The results obtained showed little difference 

between the two softening laws. As depicted in Figure. 4.10, a linear softening TSL was 

chosen and used as an input in the MAT_186 cohesive zone model. Similar to DCB 

model, The TSL used for ENF model has two regions. An initial undamaged linear elastic 

region followed by a linear damage region. The area under the damage region is a right-

angle triangle. As with DCB model, 
IICG , 

max,II , 
,o II , and 

,f II  can be utilized to complete 

the characterization of the bi-linear TSL, where 
IICG  is the area under the TSL, 

max,II  is the 

peak traction in mode II, 
,o II  is the damage initiation CTOD, and 

,f II  is the failure 

CTOD in mode II. 
IICG , 

max,II , 
,o II  are independent parameters whereas 

,f II  is dependent 
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parameter and can be calculated by using Eq. 4.6.  Like DCB test, independent 

parameters are used in the RSM as design variable in section 4 to obtain mode II optimal 

cohesive law parameter values. 

 
Figure 4.9. FE Model of the ENF Specimen Showing Dimensions of the Specimen and 

the Highlighted Yellow Line Describing the Location of the Cohesive Zone Elements. 

 
Figure 4.10. ENF Simulation Results for Boundary Parameters 

 

From Figure. 4.10: The area of the triangle (unhatched region) can be written as 
 

 max, ,

1

2T IIC II o IIA G     (4.4) 
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Also, from Figure. 4.10  
 

 , ,

1

2T f II o IIA     (4.5) 

 
Substituting the value of TA  obtained from Eq. 4.4 in Eq. 4.5 we get      

 

, ,
max,

2 T
f II o II

II

A 


   (4.6) 

 

Similar procedures were followed in the ENF model as in the DCB model to generate the 

data for RSM in Section 4. Lower, middle, and upper bounds were established by 

performing a trial-and-error-based preliminary analysis by comparing the experimental 

load displacement curve obtained in Section 2 with several simulation load displacement 

curves. Table 3.2 shows the bounds and the corresponding design variable values. Figure. 

4.11 compares the smoothed simulation results for the boundary parameters to the 

smoothed experimental curve. The reaction load was extracted from the contact defined 

between the support fixtures and composite parts. Since the model width was scaled to 

50% of the actual width, the obtained load values were multiplied by a factor of 2. 

Displacement results were obtained by plotting the nodal displacement of a load cell node 

in the global y direction. 

Table 6. ENF Design Variable Bounds  
Parameters Bounds 

Lower Middle Upper 

IICG  (lb – in / in2) 3 5 8 

max,II  (lb / in2) 1500 4000 6000 

,o II  (in) 0.0005 0.0015 0.0024 
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Figure 4.11. ENF Simulation Results for Boundary Parameters 

 

4.3. RESPONSE SURFACE METHODOLOGY 

Response Surface Methodology (RSM) is a mathematical and statistical technique 

utilized for process optimization and experiment design. It is used to evaluate the 

systematic relationship between a response variable and a set of predictor variables. 

Response variable is a quality characteristic whereas, predictor variables are parameters 

that affect the response variable. RSM can be effectively used to study the effect of 

multiple variables on a response, as well as to study the interaction between variables. 

RSM is also called as 3k factorial design where, “k” is the number of predictor variables 

and 3k refers to the fact that each predictor variable has three levels (lower, middle, and 

upper bounds).  

0

50

100

150

200

250

300

0 0.015 0.03 0.045 0.06 0.075

Lo
ad

 (l
b)

Displacement (in)

Load Displacement 

Lower Bound

EXP

Upper Bound



 53 

In our current study, RSM (3k factorial design) is utilized to obtain both mode I and mode 

II optimal cohesive law parameters. In our case, the independent design variables for both 

mode I and mode II are 
CG , 

max , and 
o . Since this is a 3K factorial design, the lower, 

middle, and upper bounds (Table 3.1 and Table 3.2) for all design variables obtained 

from both DCB and ENF tests in section 3 were used to generate 27 data points. Each 

data point represents a unique combination of the three independent variables. The 

combinations of all the data points are shown in Table 3.3. Each unique combination of 

design variables in 27 data points from both modes I and II was utilized to generate a 

unique traction separation law curve. Then, each TSL was utilized as an input for 

MAT_186 in the DCB and ENF models described in section 2, and finite element 

analysis was performed. This corresponded to a total of 27 simulations each for the DCB 

and ENF tests. Using the method outlined in Section 3, the load displacement response of 

each simulation was extracted. The subsequent sections 4.1 and 4.2, respectively, explain 

how to generate the response surface and determine the optimal design variables by 

fitting the response surface with a polynomial for both DCB and ENF tests respectively. 

 

Table 7. Design Variable Combination Using Low, Medium, and High bounds. 

Data Point 
Combinations 

GC σmax δo 

1 Low Low Low 
2 Low Low Medium 
3 Low Low High 
4 Low Medium Low 
5 Low Medium Medium 
6 Low Medium High 
7 Low High Low 
8 Low High Medium 
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9 Low High High 
10 Medium Low Low 
11 Medium Low Medium 
12 Medium Low High 
13 Medium Medium Low 
14 Medium Medium Medium 
15 Medium Medium High 
16 Medium High Low 
17 Medium High Medium 
18 Medium High High 
19 High Low Low 
20 High Low Medium 
21 High Low High 
22 High Medium Low 
23 High Medium Medium 
24 High Medium High 
25 High High Low 
26 High High Medium 
27 High High High 

 
4.3.1. DCB RSM 

RSM comprises 3 steps. 1st step is to generate response surface / objective function. 

Response surface can be a quality characteristic of a system. In our study, the load 

difference between the experimental and simulation load-displacement curve at several 

values of displacements was considered as a response variable. Displacements at which 

the load difference are evaluated are called as sample points. Figure. 4.12 illustrates the 

load difference at a sample point. All 27-load displacement results from DCB were 

discretized into 12 sample points. 12 number of sample points were sufficient to ensure 

that the error calculation between the two curves is accurate.  The location of the sample 

points was same for all the curves. At these sample points root mean squared error 
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(RMSE) was evaluated using Eq. 4.7. The RMSE obtained from all the 27 data points 

were used as the response surface / objective function.  

 

 
Figure 4.12. DCB Load Difference at a Sample Point 
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Figure. 4.13 depicts the DCB test simulation load displacement results from all 27 data 

points. All the simulations and experimental curves were smoothed before calculating the 

error function. A good amount of scatter in the load displacement responses was 

observed. Table 4.1 displays the objective/error function evaluated at each data point. 

Data point 12 and its combination of design variables yielded the best results, while data 

point 25 yielded the worst.  
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Figure 4.13. DCB 27 Simulations Results 

 
Table 8. DCB 27 Combinations with Calculated Error Function. 

Data Point GIIC σ max, II δo, II f(x) 

1 1.2 300 0.0012 5.242 

2 1.2 300 0.0016 5.102 

3 1.2 300 0.002 5.019 

4 1.2 700 0.0012 5.610 

5 1.2 700 0.0016 5.888 

6 1.2 700 0.002 5.440 

7 1.2 1100 0.0012 6.446 

8 1.2 1100 0.0016 5.881 

9 1.2 1100 0.002 5.992 

10 1.85 300 0.0012 2.049 

11 1.85 300 0.0016 2.213 

12 1.85 300 0.002 1.790 

13 1.85 700 0.0012 3.983 

14 1.85 700 0.0016 3.422 
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15 1.85 700 0.002 3.411 

16 1.85 1100 0.0012 4.159 

17 1.85 1100 0.0016 4.547 

18 1.85 1100 0.002 4.283 

19 3 300 0.0012 5.465 

20 3 300 0.0016 5.413 

21 3 300 0.002 5.675 

22 3 700 0.0012 7.414 

23 3 700 0.0016 7.389 

24 3 700 0.002 7.265 

25 3 1100 0.0012 8.423 

26 3 1100 0.0016 8.141 

27 3 1100 0.002 8.141 

 

After the response surface or the objective function is obtained, the next step in RSM is 

to fit the objective function with a second-order polynomial. This was achieved by using 

the Levenberg-Marquardt Algorithm (LMA), which is an optimization technique used to 

fit a polynomial with a set of data points. Eq. 4.8 shows the second-order polynomial 

considered. c0, c1, c2, c3, c4, c5, c6, c7, c8, and c9 are the coefficients to be determined by 

fitting the polynomial with the objective function whereas, variable x is 
ICG , variable y is 

max, I  and variable z is 
,o I . The objective of using LMA is to find the coefficient values 

that minimize least-squared error between the objective function and the fitting function. 

Eq. 4.9 shows the least squared problem solved using LMA where,  fit
if c  is the fitting 

function and  if x  is the error function which is taken from Table 4.1. To conduct LMA, 

Eigen test library (https://eigen.tuxfamily.org/) was used, which is an open C++ library 
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than can be used to perform linear algebra operations including LMA. Using the C++ 

program, the coefficients of the fitting function were obtained, which are shown in Eq. 

4.10.  

  2 2 2
0 1 2 3 4 5 6 7 8 9

fitf c c c x c y c z c x c y c z c xy c xz c yz           (4.8) 

 
  Find c to minimize, 
 

    
227

1

fit
i i

i

f c f x


  (4.9) 

 
2 2 217.8311 16.06 0.00329 214.458 3.76 0 64959.8

0.0011 148.55 0.

)

1 6

(

7

fit x y z x y z

xy xz yz

f c     


  


 (4.10) 

 
The final step in RSM is to obtain the optimal cohesive parameters (

ICG , 
max, I , 

,o I ) that 

will result in the desired response. This is achieved my minimizing the objective function 

by solving an optimization problem. The obtained cohesive zone parameters were 𝐺ூ஼ =

2.0534, max, 4198.09I  , and 𝛿௢,ூ = 0.001935 respectively. Traction separation law using 

the optimal cohesive parameters was constructed as shown Figure. 4.14, which was 

incorporated in cohesive zone model (MAT_186). Finite element analysis was conducted 

for DCB model as described in section 3.  The obtained results from optimal cohesive 

parameters, which are compared against the best combination and the experimental 

model curve, are shown in Figure. 4.15. The load-displacement response from using 

optimal cohesive parameters is represented by the blue color, whereas the best load 

displacement curve from datapoint 12 combination is represented by the green color. A 

good agreement with the experimental results in both pre-peak and post-peak regions is 

observed for both curves. However, much better post-peak results are captured by the 
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optimal curve. The optimal curve has an RMSE value of 1.70 pounds per sample point 

compared to the best curve that has an RMSE value of 1.79 pounds per sample point.  

 

Figure 4.14. DCB Traction Separation Law Constructed Using Optimal Cohesive Zone 

Parameters. 

 
Figure 4.15. ENF Optimal Load Displacement Curve Compared with the Best and 

Experimental Results. 
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4.3.2. ENF RSM 

The optimal mode II cohesive law parameters for ENF test were achieved using a similar 

methodology as that used for the DCB test. In order to facilitate 3k design, 27 

combinations of mode II cohesive law parameters were constructed using the lower, 

middle, and upper bounds shown in Table 3.2. Traction separation laws were constructed 

for all combinations except combinations 2, 3, 6, and 12, as invalid traction separation 

law was observed with ,o II  being greater than ,f II  for these combinations. As a result, 

data points 2, 3, 6, and 12 were omitted from the RSM data. Using the constructed 

traction separation laws, 23 ENF cohesive zone finite element models were constructed 

and analyzed. The ENF FE model details are described in detail in section 3. The result 

from these simulations shows a good scatter in load displacement responses as depicted 

in Figure. 4.16. Like in DCB, RMSE was computed using experimental and simulation 

load displacement curves to generate the objective function. The load displacement 

curves from each data point was smoothed and was discretized into 12 sample points. 

Figure. 4.17 shows the load difference between the simulation and experimental load-

displacement curve evaluated at a sample point for an ENF test. Eq. 7. was used to 

calculate the RMSE for all the 23 simulation results and is displayed in Table 4.2. Data 

point 15 cohesive law parameter combination was the best with a RMSE of 13.49lb at 

each sample point whereas, data point 19 cohesive law parameter combination was the 

worst with a RMSE of 60.11lb at each sample point.  

After objective function is obtained, the next step is to fit the objective function with a 

second-order polynomial. Similar to DCB, Eq. 4.8. was taken as the fitting function and 

Levenberg-Marquardt Algorithm (LMA) was used to fit the polynomial with the 
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objective function to obtain the coefficient values. Eq. 4.9 was solved using LMA to find 

the coefficients shown in Eq. 4.11.  

2 2

2
9

( ) 111.164 31.8731 0.00474451 714.007 2.59859 0

2456720 0 156.107 2.245264

fitf c x y z x y

z xy xz c yz

      

  
 (4.11) 

 
Finally, an optimization problem was solved in order to get the optimal mode II cohesive 

law parameter by minimizing Eq. 4.11. The obtained parameters were 5.32276IICG  , 

max, 4198.43II   and , 0.00193954o II   respectively.  A TSL was constructed (Figure. 

4.18) and used in MAT_186 input in an ENF FE model described in section 3 to run the 

analysis. The blue color curve in Figure. 4.19 depicts the load displacement result 

attained using the optimal cohesive law parameters compared against the best curve in 

green (from data point 15) and experimental curve in red. The optimal curve was better 

with an RMSE of 13.05lb per sample point compared to the best curve which has an 

RMSE of 13.49lb per sample point. The mode II traction separation law was constructed 

using the obtained cohesive law parameters and was subsequently used in a flat-plate 

crush simulation for validation of the mode II fracture parameters. 
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Figure 4.16. 23 ENF Simulation Results 

Table 9. ENF 27 Data Point Combinations and Error Function 
Data Point GIIC σ max, II δo, II f(x) 

1 3 6000 0.0005 48.56 

2 3 6000 0.0015 - 

3 3 6000 0.0024 - 

4 3 4000 0.0005 40.96 

5 3 4000 0.0015 41.18 

6 3 4000 0.0024 - 

7 3 1500 0.0005 40.77 

8 3 1500 0.0015 35.45 

9 3 1500 0.0024 29.22 

10 5 6000 0.0005 29.59 

11 5 6000 0.0015 20.92 

12 5 6000 0.0024 - 

13 5 4000 0.0005 23.71 

14 5 4000 0.0015 13.79 

15 5 4000 0.0024 13.49 
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16 5 1500 0.0005 26.00 

17 5 1500 0.0015 27.44 

18 5 1500 0.0024 31.76 

19 8 6000 0.0005 60.11 

20 8 6000 0.0015 54.47 

21 8 6000 0.0024 45.12 

22 8 4000 0.0005 46.51 

23 8 4000 0.0015 40.89 

24 8 4000 0.0024 34.66 

25 8 1500 0.0005 23.70 

26 8 1500 0.0015 27.23 

27 8 1500 0.0024 31.99 

 

 
Figure 4.17. ENF Load difference at a Sample Point 
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Figure 4.18. ENF Traction Separation Law Constructed Using Optimal Cohesive Zone 

Parameters. 

 

 
Figure 4.19. ENF Optimal Load Displacement Curve Compared with the Best and 

Experimental Results. 
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4.4. ANOVA ANALYSIS WITH DCB AND ENF TEST 

Analysis of Variance (ANOVA) which is a robust statistical method, used here to obtain 

the important parameters and terms that significantly affect the traction separation law 

obtained from response surface methodology in previous section. To determine the 

effects of each parameter and their interaction on the traction separation law, a three-way 

ANOVA test was carried out using a combination of a full factorial and a polynomial of 

degree 2 model for both DCB and ENF tests. To conduct the three-way ANOVA test, the 

same set of data was used for response surface analysis given in Table 4.1 and Table 4.2. 

The ANOVA test was conducted on two separate instances. During the first instance 

(Analysis 1), all the necessary terms required for a complete factorial model along with a 

polynomial of degree 2 model was considered and all relevant terms were evaluated 

through ANOVA testing to determine significant factors. After identifying significant 

terms in the initial analysis and eliminating each insignificant term one at a time until all 

the remaining terms became significant, a second ANOVA test (Analysis 2) was 

conducted. 

The data was analyzed in JMP Pro [25] using the least squares method, which is 

functionally equivalent to performing multiple linear regression. The majority of 

statistical methods employ the utilization of P-Value as a means of conducting hypothesis 

testing. The P-Value represents the likelihood of the null hypothesis being accurate, while 

the complementary probability of (1-the P-Value) indicates the probability of the 

alternative hypothesis being valid. Here, null hypothesis (H0) and alternative hypothesis 

(H1) are as follows- 



 66 

H0 : No effect of different input variables or parameters and their interactions on the 

output. 

H1 : Significant effect of different input variables or parameters and their interactions on 

the output.  

So, smaller the p-values corresponding to any parameters represent more evidence that 

the null hypothesis is not true which means the effect of that parameter is significant on 

the output. The p-values are calculated by the F-distribution method which uses F-Value 

and corresponding degree of freedom of variables used in computing F-Value. F-Value of 

parameter “a” is computed by using Eqn. 4.12. All independent parameters were 

considered as continuous parameters in the analysis and the degree of freedom (D.O.F.) 

for continuous parameters is considered as 1. Table 5.1 has the degree of freedoms for 

both DCB and ENF tests. Most analysts consider statistically significant parameter if 

P-Value < 0.05 and statistically highly significant parameter if P-Value < 0.001. 

Table 10. Degree of Freedom for Error from JMP Pro. 
Test Analysis 1 Analysis 2 

DCB 16 21 

ENF 12 16 

 
 

   
 

/ . . .

/ . . .
a

a
error

Sum of Squares D O F
F Value

Sum of Squares D O F
   (4.12) 

 
Table 5.2 and 5.3 has all the results from three-way ANOVA test for DCB and ENF test 

respectively. Based on the P-Value from analysis 1 of DCB test, significant terms were 

selected. Here, all the terms containing CTOD  0 have P-Valve greater than 0.05 which 

is evident that CTOD does not play role of a significant parameter for DCB test. 
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Therefore, the terms containing 0 was removed from analysis 2. All terms have less than 

0.05 P-Value in analysis 2 except the ICG term. Term 2
max,I is significant and terms max,I , 

max,IC IG   and 2
ICG  are highly significant for the model to fit the DCB test data. After 

eliminating CTOD parameters, 32 design is sufficient for DCB test. Similarly, based on 

the P-Value from analysis 1 of ENF test, only terms max,IIC IIG  and 2
IICG are significant. 

Therefore, the terms which are highly insignificant are eliminated one by one until all the 

remaining terms became significant. Thus, terms max,II , 0,II , max,IIC IIG   and 

max, 0,II II  are significant and term 2
IICG is highly significant for the model to fit the ENF 

test data. After eliminating higher order insignificant terms, partial 3k design is sufficient 

for ENF test. In both DCB and ENF test, term ICG has P-Value greater than 0.05 but it is 

still not eliminated in the analysis 2. Because its higher order terms are significant and to 

consider the higher order terms in the analysis it is necessary to include all lower order 

terms. 

Figures 5.1 and 5.2 shows the actual data point versus predicted values. Black dot points 

represent actual data points and red line shows the line of best fit from model and shaded 

area shows the 95% confidence interval region. The observed confidence interval for the 

ENF test exhibits a wider spread region in comparison to that of the DCB test, indicating 

that the model is a better fit for the DCB test as opposed to the ENF test. However, P-

Value obtained from analysis 2 for both DCB and ENF test is below 0.001, indicating 

statistical significance. 
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Table 11. Effect Tests of Different Terms for DCB 

Terms 

Analysis 1 Analysis 2 

Sum of 

Squares 
F-Value P-Value 

Sum of 

Squares 
F-Value P-Value 

ICG  0.2877 3.6082 0.0757 0.2877 3.9868 0.0590 

max,I  18.0915 226.8605 <0.0001 18.0915 250.6651 <0.0001 

0,I  0.1749 2.1927 0.1581 - - - 

max,IC IG   1.9810 24.8410 <0.0001 1.9810 27.4476 <0.0001 

0,IC IG   0.0352 0.4414 0.5159 - - - 

max, 0,I I   0.0096 0.1202 0.7333 - - - 

max, 0,IC I IG     0.0194 0.2433 0.6285 - - - 

2
ICG  46.4144 582.0170 <0.0001 46.4144 643.0884 <0.0001 

2
max,I  0.5943 7.4522 0.0148 0.5943 8.2342 0.0092 

2
0,I  0.0006 0.0081 0.9293 - - - 

Error 1.2760 - - 1.515658 - - 

 

(a) (b) 
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Figure 4.20. Actual f(x) data points with predicted f(x) for DCB test considering (a) 
Analysis 1 (b) Analysis 2. 

 
Table 12. Effect Tests of Different Terms for ENF 

Terms 

Analysis 1 Analysis 2 

Sum of 

Squares 
F-Value P-Value 

Sum of 

Squares 
F-Value P-Value 

IICG  141.1829 3.3051 0.0941 156.8309 3.9638 0.0639 

max,II  152.5810 3.5720 0.0832 281.5371 7.1156 0.0169 

0,II  192.0030 4.4948 0.0555 217.1659 5.4887 0.0324 

max,IIC IIG   381.5401 8.9319 0.0113 426.6833 10.7841 0.0047 

0,IIC IIG   68.2443 1.5976 0.2302 - - - 

max, 0,II II   180.3825 4.2228 0.0623 193.5674 4.8923 0.0419 

max, 0,IIC II IIG     0.9980 0.0234 0.8811 - - - 

2
IICG  886.3676 20.7501 0.0007 1111.0593 28.0812 <0.0001 

2
max,II  22.7433 0.5324 0.4796 - - - 

2
0,II  1.0814 0.0253 0.8762 - - - 

Error 512.5963 - - 633.0562 - - 
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(a) (b) 
Figure 4.21. Actual f(x) data points with predicted f(x) for ENF test considering (a) 

Analysis 1 (b) Analysis 2. 
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5. VALIDATION STUDY 

5.1.1. QUAI-ISOTROPIC TENSION MODEL 

Quasi-isotropic tension model refers to tension test performed on a composite laminate 

with a stacking sequence 45ଶ/90ସ/ −45ସ/0ସ. The tested material is IM7-8552 

unidirectional carbon/epoxy composite. The experiment was conducted by [29], and the 

resulting experimental curve was digitized for the purpose of comparing it to simulation 

results. A finite element model with a geometry of (120mm x 33mm x 5.26) is shown in 

Figure. 5.1.  

 

(a) 

 

(b) 

Figure 5.1. Quasi-Isotropic Tension Model, (a) Model Showing 8 Shell Layers (b) Model 

Showing Cohesive Zone Element In Between The Ply Layers 
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Finite Element Modeling: A total of eight shell layers was used to model the quasi-

isotropic tension model. Each shell layer represents the four adjacent piles in the same 

direction. The thickness of shell layer was 0.72mm (corresponding to the total depth of 

four adjacent layers). The ply layers were modeled using fully integrated shell elements. 

The size of element was set to 2.54mm x 2.54mm based on the recommendations from 

[28]. The boundary conditions are as shown in Figure 5.1.2. Nodal displacements were 

applied to one edge of the specimen and the opposite edge of the specimen was 

constrained only in the loading direction. Figure 5.2 shows the applied displacements and 

boundary conditions. Red arrows represent the direction of applied displacement.  

 

Figure 5.2 Quasi-Isotropic Tension Model Applied Displacement and Boundary 

Conditions 

In the current study two quasi-isotropic models are analyzed. In the first model, tiebreak 

contact definition *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE was defined 

between the plies to model delamination. In the second model, cohesive zone elements 

between the ply layers are used to model delamination using MAT_186. In both the 

models, MAT_213 was used to model the composite layers. In first model both the 

tiebreak parameters and MAT_213 input data was taken from [28]. In the second model, 

MAT_213 data generated in section 2 was used. The characterized mode I and mode II 
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fracture properties and traction separation laws characterized in chapter 4 were used as an 

input for MAT_186.  

 
Results: The results from both the quasi-isotropic tension models are as shown in figure 

5.3. The plot shows longitudinal stress – strain curves from both the models  compared 

against the experimental curve taken from [29]. The longitudinal stress was computed 

using Eq. 5.1. Where 𝐹ோ is reaction force at constrained nodes and 𝐴 is the area of the 

specimen. Longitudinal strain was calculated using Eq. 5.2. where, 𝛥𝐿 is the change in 

length in the direction of the applied loading and 𝐿 is the length of the specimen. 

σ = 
∑ ிೃ

஺
 (5.1) 

 

= 
௱௅

௅
 (5.2) 

 

 

Figure 5.3. Simulated Stress-Strain Curve Compared Against the Experimental Curve 
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The initial effective modulus from both the models corresponds well with the 

experimental results. Delamination, which is the initial drop in the load, was better 

captured in the CZE model compared to tiebreak. Delamination stress for CZE model 

was around 440 MPa (versus 460 MPa in the experiment), while the tiebreak model 

recorded a delamination stress around 365 MPa. Wisnom et al [29] reported that 

delamination initiated between 45 and 90 degree plies that was also captured in the CZE 

model. While exact agreement between the experiment and the simulations stress strain 

curves from both the models was not observed, the initial linear behavior, initial 

delamination load drop followed by failure at a higher load was captured in both the 

models. Table 5.1 summarizes the key metrics of the stress-strain curves from Figure 5.3. 

‘% Diff’ refers to the percentage difference between the experiment and simulation.  

Table 13. Key Features from Quasi-Isotropic Tension Model Simulation 
 Initial Modulus 

 
Delamination 

Initiation Stress 
Failure Stress 

Model Value 
(GPa) 

% Diff 
 

Value  
(MPa) 

% Diff 
 

Value 
(MPa) 

% Diff 
 

CZE 58.87 9.557% 440 -5.09% 572 6.87 % 

Tiebreak 55.5 3.66% 365 -24% 604 12.33% 

 

The results obtained from table 10 shows CZE model metrics have an error percentage 

less than ±10%. Typically this percentage error is considered acceptable for validation 

purposes [30]. It is worth mentioning that the exact match was not expected due to the 

use of plane stress elements instead of solid elements to have computational efficiency.  

The table clearly indicates that results obtained from CZM (MAT_186), whose input was 

obtained from regression analysis done in chapter 4 works well when compared to the 
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tiebreak model whose input was obtained from post-processing DIC data from 

experiments.  
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6. CONCLUSIONS 

Composites have many advantages over conventional materials due to their high specific 

strength, toughness, non-corrosiveness, and light weight. Therefore, they are widely used 

in aerospace and automotive applications. With the increasing use of composites there is 

also a need for a numerical tool that can be utilized in finite element simulations to 

predict the behavior of composites under dynamic loadings.  Under the joint effort of 

NASA and FAA, an advanced orthotropic elasto-plastic damage material model 

(OEPDMM) is built and implemented in LS-DYNA, a commercially available nonlinear 

transient dynamic finite element code as MAT_213. This material model can predict 

linear and nonlinear deformations, damage, and failure in composite systems. MAT_213 

has three sub models, that is deformation, damage, and failure. The model utilizes a 

generalized approach wherein no assumptions regarding the material behavior is made 

and tabulated input data in the form stress-strain curves obtained from quasi static room 

temperature (QS-RT) experiments. In this thesis a framework to generate the input for all 

deformation, damage and failure models is discussed including the computation of flow 

rule coefficients using MAT213 FRC computer program. To study the effects of the flow 

rule coefficients single element studies were performed by using T800-F3900 

unidirectional carbon fiber -epoxy composite. The studies showed that even with 

different sets of FRC’s, matching stress-strain curves were obtained. Characterized input 

data for IM7-8552 unidirectional carbon fiber-epoxy composite was used to build and 

analyze single element (SE) models. MAT_213 simulation stress-strain curves from SE 

models agreed with the user-defined input stress-strain curves. Hence, the generated input 

was compatible with MAT_213.  
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In addition to MAT_213 input data, the interlaminar properties for IM7-8552 composite 

required for MAT_186 cohesive zone model was characterized. MAT_186 input includes 

traction separation law (TSL) curves in both mode I and mode II fracture modes.  

Obtaining TSL solely from experiments requires close monitoring of the crack which is a 

tedious process to do even after using digital image correlation (DIC). A numerical 

inverse analysis method to precisely predict these parameters by using finite element 

analysis with cohesive zone modeling and response surface methodology (RSM) was 

used. Load displacement results from DCB and ENF experimental tests were used to 

compare with the DCB and ENF FE model results. The objective was to find the best 

combination of TSL parameters that enables the finite element analyses to fit the 

experimental load displacement curves. A nonlinear softening law was assumed for DCB 

to obtain mode I delamination cohesive law (TSL I). The law consists of an initial 

undamaged elastic response, followed by a non-linear softening branch. A nonlinear 

softening branch was used to account for the fiber bridging seen in the DCB experiments.   

Three parameters 𝐺ூ஼ , 𝜎௠௔௫,ூ and 𝛿଴,ூ (Critical energy release rate, peak traction and crack 

initiation CTOD) were used to define the mode I TSL law. In RSM, the root mean 

squared error between the FE and experimental load displacement curve was taken as an 

objective function. The objective function was then fitted with second order polynomial 

using Levenberg Marquardt Algorithm. Finally, the fitted equation was minimized to 

obtain optimal mode I fracture parameters. The optimal values for a 𝐺ூ஼ , 𝜎௠௔௫,ூ and 𝛿଴,ூ 

were 2.0534 (lb/in), 300 (psi), and 0.001935 (in) respectively. The FE load displacement 

result obtained using these parameters showed good agreement with the experimental 

load-displacement curve. A similar method using ENF model and experimental load 
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displacement curve along with RSM was followed to determine mode II traction 

separation law parameters. In the preliminary analysis, both linear and nonlinear 

softening laws were investigated for MAT_186 input in the ENF FE model. The results 

obtained showed little difference between the two softening laws. For simplicity purposes 

bilinear law was used. Similar to DCB, 𝐺ூூ஼ , 𝜎௠௔௫,ூூ and 𝛿଴,ூூ (Critical energy release rate, 

peak traction and crack initiation CTOD) was used to define the TSL. Root mean square 

error between the FE and experimental load displacement curve was used to define the 

objective function. Finally, the objective function was fitted with a second order 

polynomial in order to get a fitted function that was later minimized to obtain optimal 

mode II parameters. Optimal values for 𝐺ூூ஼ , 𝜎௠௔௫,ூூ and 𝛿଴,ூூwas 5.32 (lb/in), 4198.4 

(psi) and 0.001939 (in) respectively. The TSL generated from the optimal parameter had 

a longer hardening part compared to softening. During the preliminary ENF finite 

element simulations intended to determine the limits for fracture parameters, it was 

observed that certain combinations of fracture parameters produced favorable post-peak 

load displacement softening, but either underestimated or overestimated the initial 

stiffness and delamination initiation displacement. In contrast, combinations that 

produced better initial stiffness and delamination initiation displacement exhibited less 

post-peak softening than was observed experimentally. As a result, a decision had to be 

made, and the combinations that provided better delamination initiation displacement 

were chosen, as this measure is crucial when modeling delamination. Therefore, the 

optimal mode II combination resulted in satisfactory agreement between the FE and 

experimental load-displacement curves in the initial linear portion and delamination 

initiation displacement while underestimating the softening behavior.  
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Analysis of Variance (ANOVA) which is a robust statistical method, used here to obtain 

the important parameters and terms that significantly affect the traction separation law 

obtained from response surface methodology. A three-way ANOVA test was carried out 

using a combination of a full factorial and a polynomial of degree 2 model for both DCB 

and ENF tests. ANOVA analysis for DCB showed that the term containing CTOD  0

did not have any significant effect. Whereas terms max,I , max,IC IG   and 2
ICG  were 

highly significant for the model to fit the DCB test data. After eliminating the 

insignificant CTOD  0 terms 32 design was sufficient for DCB test. In ENF test, terms

max,II , 0,II , max,IIC IIG   and max, 0,II II  were significant and term 2
IICG was highly 

significant for the model to fit the ENF test data. After eliminating higher order 

insignificant terms, partial 3k design was sufficient for ENF test.  

In order to validate the optimal mode I and mode II fracture properties a quasi-isotropic 

tension test was performed using characterized data in a cohesive zone model (CZM), 

MAT_186 as an input to model delamination. The same model was also constructed 

using tiebreak to model delamination. The tiebreak input data was taken from Rudy 

Haluza’s PhD dissertation [28] which was completely characterized by post processing 

the DCB and ENF experimental results. The simulation results from both the models 

showed that CZM model compared well with the experimental results across all 

validation metrics: The metrics evaluated for validation were initial modulus, 

delamination initiation stress and failure stress. Although the fracture properties obtained 

from the outlined procedure in this thesis show promising results, it may be necessary to 

re-adjust the parameters for varying loading conditions, which requires further 
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investigation. This can be achieved by performing crush or impact simulations by using 

cohesive zone modeling.  
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