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ABSTRACT

Nucleic acid nanotechnology is a field of nanoscale engineering where the sequences of deoxyribonucleic

acid (DNA) and ribonucleic acid (RNA) molecules are carefully designed to create self–assembled nanostruc-

tures with higher spatial resolution than is available to top–down fabrication methods. In the 40 year history

of the field, the structures created have scaled from small tile–like structures constructed from a few hundred

individual nucleotides to micron–scale structures assembled from millions of nucleotides using the technique

of “DNA origami”. One of the key drivers of advancement in any modern engineering field is the parallel

development of software which facilitates the design of components and performs in silico simulation of the

target structure to determine its structural properties, dynamic behavior, and identify defects. For nucleic acid

nanotechnology, the design software CaDNAno and simulation software oxDNA are the most popular choices

for design and simulation, respectively. In this dissertation I will present my work on the oxDNA software

ecosystem, including an analysis toolkit, a web–based graphical interface, and a new molecular visualization

tool which doubles as a free–form design editor that covers some of the weaknesses of CaDNAno’s lattice–

based design paradigm. Finally, as a demonstration of the utility of these new tools I show oxDNA simulation

and subsequent analysis of a nanoscale leaf–spring engine capable of converting chemical energy into dy-

namic motion. OxDNA simulations were used to investigate the effects of design choices on the behavior of

the system and rationalize experimental results.
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Chapter 1

INTRODUCTION

1.1 Engineering at the Nanoscale

1.1.1 The Promise and Challenges of Nanotechnology

Human achievement has long been measured by the things we build, from the first stone tools and early

irrigation to modern wonders like smartphones, particle accelerators and high–speed rail systems. Every

engineering project requires an intimate understanding of the materials used in construction. Prehistoric

peoples used obsidian, flint and jasper for their stone tools due to their ability to hold a cutting edge and the

ease of shaping them through knapping. Though they did not understand the molecular structures that impart

these features, their macroscale usefulness was clear to stone age engineers. Today, with modern chemical

and physical techniques, we can peer down to the scale of individual atoms and marvel at the diverse and

complex structures that make up the fundamental structures of all things. The obvious question then arises

— how can we build and control at the molecular scale to create novel materials and functionalities?

“Nanotechnology”, the discipline of building at the nanometer scale is an engineering challenge. Recent

developments in the field have given us such technological marvels as the cheap, miniaturized electronics that

have led to a proliferation of “smart” everything, liposome–based drug delivery platforms which are core to

modern cancer therapies and the delivery vehicle in mRNA vaccines, extremely high surface–area catalysts

used in chemical production, and the food we consume often contains additives which are nanostructured to

enhance delivery efficience and come in packaging made of nanocomposite materials which are frequently

used in packaging to maintain freshness and impart diagnostic function in food and agricultural products1

(Figure 1).

Many people point to Richard Feynman’s 1959 talk “There’s Plenty of Room at the Bottom”8 as the guiding

inspiration for the field. In it he identified the potential of the field — namely the ability to craft custom

molecules and the incredible information density which could be achieved by writing and reading information

at a molecular scale. Things certainly have shrunk a lot since 1959; the tools and methods for engineering at
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Figure 1. Examples of functional nanomaterials. (a) TEM image of a low–pitch field–effect transistor.

Transistors are the basic information processing unit in all digital computers. (b) TEM image of Moderna’s

lipid nanoparticle–based mRNA vaccine against SARS–CoV–2. The lipid nanoparticles facilitate cellular

uptake allowing production of the antigen from the mRNA cargo. (c) SEM image of a Pd/Fe3O4 catalyst used

in biphenol production. Note the large surface area created by aggregation of nanoparticles. (d) TEM image

of a β–carotene nanoemulsion. This type of emulsion are used as a food additive to increase delivery of
lipophilic food additives2. Images re–used with permission (a) Copyright 2020 IEEE3. (b) Used under a

creative commons license. Obtained from4 which adapted the figure from5. (c) Copyright Elsevier 20196,

(d) Copyright Elsevier 20087

the nanometer and sub–nanometer scale we have today are technological marvels in their own right, but yet

many challenges still remain in building down at the bottom.

It can be difficult to conceptualize how small a nanometer is. One of the thinnest things we experience

on the daily basis, our own hair, is on average, 75 µm, or 7500 nm in diameter. This is Feynman’s main

point, there isn’t just space to engineer below the realms of our human perception, but there’s vast amounts

of space to engineer down there. Building at bottom of matter isn’t a trivial proposition, however. At the

nanoscale, traditional tools we use for construction are no longer viable:

1. Grabbing and manipulating an individual component is extremely difficult. There are a number of tech-
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niques including optical tweezers9, atomic force microscopy (AFM)10, and microlithography (electron

beam or photolithography)11 which have been used to successfully construct nanodevices. However,

these techniques generally require extremely expensive and sensitive equipment, and the throughput

is relatively low (the major exception are semiconductor manufactures which have developed robust

methods to mass produce computer chips using photolithography at multibillion dollar fabrication facil-

ities12)

2. Nanoparticles, especially those biological in origin or used in biotechnological applications exist in

an aqueous environment. At the nanoscale, the physics of fluids are totally different than at the

macroscale13. One of the most striking differences between our day–to–day experience with water

and what micro- and nanoscale objects experience is related to inertia, namely that for small objects,

friction from the surrounding medium dominates inertial forces. This ratio between friction and inertia,

the “Reynolds number”, affects what types of motion are relevant for control of an object. Only cyclic

motions, rather than linear motions are capable of driving overall translation for very small objects14.

3. In addition to the problem of drag on directed motion introduced by the solvent, at the nanoscale

thermally–driven motion, especially collisions with solvent molecules provide constant dynamics which

affect material properties15. At the atomic scale, each atom is fluctuating with respect to its neigh-

bors due to thermal fluctuations, making precise positioning impossible16. Many nanoscale objects of

relevance, especially those discussed here are polymer chains, which due to their linear structure expe-

rience large conformational changes in response to relatively small angular displacements of individual

elements. Due to constant collisions with fluid, flexible polymers undergo constant fluctuation and sub-

tle changes in local interactions between individual monomers and between monomers and solvent can

lead to large changes in global conformation dynamics17.

4. Particle aggregation is also a serious consideration when engineering at the nanoscale. Aggregation

reduces surface area, which can be detrimental for nanoparticle function, especially for those used in

surface–based catalysis18 or precise structural engineering19 The reasons for this behavior are com-

plex, including assembly defects, Van der Waals forces between surface atoms, and entropically–driven

hydrophobic interactions arising from displacement of ordered solvent molecules20. Controlling these

behaviors requires careful consideration of nanoparticle concentration, surface design, and solvent pH.

As scientists and engineers learn to work at the nanoscale, one of the key determinants of success will

be computational technologies which allow for in silico design and prediction of nanoparticle structure and

behavior. Because of the differences in behavior and manufacturing detailed in the previous section, these
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tools must be specifically tailored for the nanoscopic regime. In any engineering discipline there are two

invaluable types of software: Computer Aided Design (CAD) tools and simulation engines. CAD tools let users

build using higher–level abstractions and re–use a common toolkits of parts, allowing efficient fabrication

and standardization. Simulations are important for prototyping structures, allowing engineers to predict the

behaviors and verify the structural integrity of designs prior to fabrication which can be expensive in both

time and materials. Simulations allow parallelization of design iteration and can provide a level of resolution

through the modeling of physical behaviors that cannot be achieved through experimental characterization.

Currently, with nanoscale science still in its infancy, the tools used, particular for design, are still in flux

and undergoing constant development. There have been some attempts to create multi–material, generalized

CAD tools21,22, however none have gained common adoption due to lack of utility and poor user interfaces.

As nanotechnology as a field advances, the need for more advanced and user–friendly design and simulation

options will grow as we learn how to create more complex and feature–rich nanostructures.

1.1.2 The Atoms that Make up Everything

When designing nanomaterials, the constituent atoms define both the end function and the construction

process. Nanomaterials can be broken down into four broad categories: information processing (electronic

and optical materials), catalysis, structural, and biomedical. The most advanced applications are currently

in the semiconductor transistor space where advanced optical lithography fabrication is able to create multi–

layered structures out of silicon and metal oxides at the tens of nanometer scale. Transistors are able to

selectively permit and deny the flow of electrons, allowing information processing. Similarly, there is active

research into the creation of plasmonic23 and photonic24 materials which are able to direct electromagnetic

fields and photons in predefined manners and have myriad applications ranging from electronic–like optical

transistors25, to surface plasmon resonance spectroscopy26 which has become a standard method for detecting

molecular interactions in biological research. Catalytic nanomaterials take advantage of the high surface area

created by nanoscale structures to increase the number of catalytic units significantly above what would

be available to macroscale–structured materials. For engineered applications, these are most often metallic

structures27, however it can be argued that the enzymes that perform catalysis in living systems are also

nanomaterials, with angstrom–scale placement of electrophillic and nucleophillic groups to catalyze specific

organic reactions. On the structural side, polymer hydrogels, cytoskeletal mimetics, and enzyme scaffolds are

all types of engineered nanoscale materials which provide support ordering for other nanoscale components.
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As previously mentioned regarding proteins, the internal mechanisms of cells are naturally occurring active

nanostructures which fit into all of the aformentioned categories. DNA, RNA and associated transcription

factors perform computing, enzymes perform catalysis, actin, tubulin and membranes with associated proteins

create structural motifs which range in scale from nanoscale pits and pores to microscale cellular morphology.

Engineered nanomaterials which can interface with biology are of high research interest. The functions of

these materials range from basic biophysics, to diagnostics, to drug delivery to prosthetics. One of the

most impressive features of biological nanostructures is that they are entirely self–assembled. Unlike modern

semiconductors which are built using the “top–down” method of optical lithography, all the structures observed

in biological systems assemble from the “bottom–up,” emerging from interactions between relatively few types

of atoms. One of the key features in biology’s ability to create highly diverse structures is the use of polymers

which fold into a defined 3D structure. Polymers havemultiple advantages over monomeric units when it comes

to self–assembling structures: they overcome the “diffusion problem” which arises when low concentrations

of molecules need to be able to find each other in order to begin to assembly by having very high local

concentration of the monomeric units and by facilitating diffusion of other molecules along the contour length

of the polymer28 allowing interaction and assembly of both intra- and intermolecular complexes; they also

allow the combinitoric assembly of relatively few types of monomers into highly diverse structures and data–

containing motifs. This “aperiodic crystal” as postulated by Schrödinger29 which is simultaneously ordered

— it has a rigid sequence of units drawn from a limited pool of constituents, but does not have a repeating

structure is common to all three major groups of biological macromolecules, nucleic acids, amino acids, and

polysaccharides.

1.1.3 DNA Nanotechnology

Biologists are very familiar with thinking about DNA as the carrier of genetic information within living

systems. All the information required to build a living organism can be found in the sequence of adenine (A),

thymine (T), guanine (G) and cytosine (C) bases (for a human, that’s a bit more than 3 billion base pairs33).

However, one of the other features of DNA is its consistent structure: the B–form double helix34. The double

helix forms from the interplay of molecular structures within the DNA molecule. The pi–pi stacking between

neighboring bases forces a shorter inter–base distance than would be ideal for the more extended sugar–
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Figure 2. Cellular components are nanomachines (a) Chromosome organization within the nucleus

imaged by GPSeq and Hi-C30. Each colored strand represents a chromasome and each bead corresponds to

1 million base pairs. DNA is an extremely dense information storage medium which undergoes constant

regulation, remodeling, and copying by associated proteins and RNA. (b) The structure of the two ribosomal

subunits. The ribosome is a nanoscale RNA/protein structure which catalyzes the peptidiyl transferase

reaction responsible for building all proteins. (c) Protein structure of the myosin motor domain. Myosin

proteins “walk” along actin fillaments inside cells, delivering cargo and moving actin fillaments. The collective

action of millions of myosin proteins gives rise to muscle contractions. Images re–used with permission (a)

Copyright 2020 Springer Nature30. (b) Copyright 2002 Elsevier31. (c) Copyright 2022 Elsevier32

phosphate covalent backbone. This causes the two molecules to wind around each other in a right–handed

helix with a pitch of 3.57 nm (Figure 5a).

In 1982, Nadrian Seeman identified that through careful design and synthesis of DNA sequences, it would

be possible to coax DNA to self–assemble into arbitrary structures composed of immobile junctions35. In

biology, DNA forms “Holliday junctions” during genetic recombination events36. These junctions eventually

resolve back to linear duplexes through strand displacement as both arms of the junction share the same

sequence. Seeman realized that by synthesizing oligionucleotide strands which would form junctions with

distinct sequences on each arm, they would become immobile; furthermore, by chaining multiple of these

junctions together, rigid structures could be created out of DNA. The original goal of this method was to

crystallize the DNA lattices and use them as a substrate for difficult–to–crystallize proteins to aid in solving

their structure crystallographically. Though the ability to tether proteins with sufficient rigidity in a DNA lattice

has not yet been realized, DNA nanotechnology has become one of the most popular methods for assembling
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nanostructures because of the relative inexpensive nature of the components (custom DNA oligo synthesis is

down to cents per base[37]), the robustness of the assembly methods, the ability to position other components

with ∼ 2 nm resolution and the intrinsic biocompatibility of using DNA as a material.

After the initial idea and realization of assembly using DNA tiles38, the field mostly focused on creating

small polyhedra39–41 and unbounded crystalline assemblies42, primarily focused on creating ordered arrays

of substrates43, and massively parallel automata–based computing44–46 which give more structure to the

“molecular computing” idea developed by Leonard Adleman in 199447. The next major leap in the field came

in 2006 when Paul Rothemund developed the technique of “DNA origami” wherein a single long strand of DNA

(often a M13 bacteriophage genome due to the ease of culturing them for large quantities of single–stranded

DNA) is folded by numerous shorter “staple” oligonucleotide strands a few dozen nucleotides in length which

bridge 2–4 domains on the M13 scaffold46. This allowed DNA nanostructures to scale to significantly larger

2D48,49 and 3D50–52 fully–addressible structures, which when carefully designed to assemble into complexes,

are able to create micrometer–scale structures which are still able to precisely positions guest molecules

with the same nanometer precision of the smaller DNA sequences53–55. In addition by combining structural

DNA nanotechnology with molecular computing, it is possible to create dynamic structures which react to the

environment56.

The maturation of the field has led to a rapid increase in the number of applications of DNA origami.

Much effort in the field has been put into developing DNA nanostrucuture–based therapeutics57, including

precision drug delivery platforms58–60, immunotherapy61–63, and gene therapy (particularly silencing using

antisense oliginucleotides)64–66. Nanoelectronics assembled from DNA are currently at a less mature state than

biomedical applications, however, there has been progress using DNA structures to position carbon nanotubes

in the structure of a field–effect transistor with a pitch 3-4x smaller than the finest structures achievable by

top–down photolithography67,68. Some of the most advanced usage of DNA nanostructures is in the area of

basic biological research which does not require overcoming regulatory or scaled–up manufacturing hurdles

in order to reach the application stage. These include measurements of piconewton scale forces acting on

proteins69,70, cell membranes71 and DNA72–74; as well as the effect that antigen spacing have on both single

antibodies75 as well as whole B–cells during immune system activation76. These applications benefit from the

ability of DNA nanostructures to position functional groups, most often proteins, at precisely defined spacing

and apply them to either in vitro or in vivo biological systems.
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Figure 3. The evolution of DNA nanotechnology (a) AFM image of Serpinski’s Triangle algorithmically

assembled from DNA by the Winfree lab in 2004. Each DNA tile encoded binding rules which allowed

algorithmic growth of the structure. (b) In 2019, the Winfree lab demonstrated a reprogrammable 6-bit DNA

computer. They demonstrated numerous algorithms and cellular atomata programmed into self–assembling

DNA “tapes” which could be seen under AFM. (c) Paul Rothemund’s original 2D DNA origami structures from

2006 visualized with AFM. (d) Cryo EM structures of Multi–origami 3D virus–trapping nanocapsules created

by the Dietz lab in 2021. They demonstrated multifarious assembly of individual units into multiple different

3D geometries with varying cavity sizes. Images re–used with permission. (a) Used under a creative

commons license from46. (b) Copyright 2019 Springer Nature77. (c) Copyright 2006 Springer Nature78. (d)

Copyright 2021 Springer Nature79.

1.1.4 RNA Nanotechnology

There has also been parallel advancement in RNA nanotechnology. Like DNA, RNA is also made up of a

sequence comprised of four chemically distinct bases. Three of them (A, G and C) have the same nucleoside

group as corresponding DNA bases, while T is replaced by uracil (U) which is able to form canonical base

pairs with both A and G. Besides the substitution of T for U, the only difference between DNA and RNA is the

presence of a hydroxyl group at the 2’ position of the sugar groups in the backbone. This subtle change at the

atomic level leads to a quite dramatic change in polymer structure and a much more diverse and active set of

chemical features. At the structural level, rather than forming a B–form helix like DNA, RNA’s most common

structural motif is the A–form double helix, which has an overall wider structure, longer helical pitch, and a

narrow and deep major groove but shallow and wide minor groove. This change is caused by a steric clash
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between the 2’ OH group and the 5’ neighboring base if the ribose sugar is in a 2’–endo conformation, forcing

the sugar into the 3’–endo conformation80(Figure 5b).

The hydroxyl group also makes RNA substantially more reactive than DNA. This both contributes to its

wider functional roles in biology, most notably the peptidyl transferase center of the ribosome (Figure 2b)

which is responsible for catalyzing peptide bond formation when assembling proteins, one of the fundamental

chemical reactions that make life as we know it possible81 and self–splicing introns82, which are able to self–

regulate exon splicing and recombination83. This feature also makes it significantly more difficult to work with

in a laboratory setting because interactions between the 2’ hydroxyl and the phosphate backbone autocatalyze

a hydrolysis reaction which cleaves the RNA strand. This reaction is further accelerated at high pH and in the

presence of magnesium ions84, which are commonly used in designed nanostructures to screen the charges

of the polyanionic phosphate backbone, facilitating the tight packing of helices. There are also the problem of

ribonucleases, which many organisms, including humans, secrete into the outside environment as a first line

of defense against RNA viruses, necessitating careful handling of RNA solutions.

Design of larger RNA structures is also a challenge. Because of the expense of synthesizing many short

RNA strands, creating RNA origami analagous to DNA origami with a single long scaffold and many staples is

cost–prohibitive. On the other hand, for small numbers of sequence, RNA can become significantly cheaper

than DNA as many copies of an RNA sequence can be prepared from a single DNA template using in vitro

transcription reactions85. For this reason, most engineered RNA structures tend to be made of relatively few

strands. It is still possible to create larger RNA structures: by using in vitro transcription it is possible to

express single RNA strands with thousands of bases which, through creative sequence design, can fold into

larger “RNA origami” of similar dimensions to their multistranded DNA counterparts86,87.

Despite these challenges, the promise of RNA nanotechnology is high. Because of RNA’s catalytic power

and more diverse biological roles, the number of potential applications for designed RNA structures is possibly

greater than that of DNA. One of the areas of greatest interest is short interfering RNA (siRNA) therapeu-

tics, which can arbitrarily knock down expression of target genes88, including those expressed by viruses or

causative of chronic medical conditions. Beyond the siRNA itself, using structured carriers to deliver multiple

siRNAs in tandem or using active RNA structures capable of performing computing in order to achieve higher

precision delivery are applications where RNA nanotechnology may find a home89.
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1.1.5 DNA and RNA Nanostructure Design Software

One of the key developments that allowed this growth in complexity was the creation of design software

focused on DNA nanotechnology. While it is convenient to think of DNA helices as rods, the helical nature of

the molecule itself means that crossovers between neighboring helices can only happen at particular base pair

intervals (approximately 10.5 for DNA and 11 for RNA). This, along with the still–developing understanding

that the routing of staple and scaffold strands through the structure can have a significant impact on correctly

folded product yield90, necessitate CAD tools which assist DNA and RNA engineers in designing the global

topology of nanostructures.

The first tools for DNA design were command–line based tools which lacked a graphical interface91,92.

These were mostly used to produce images for publications and had some rudimentary sequence generation.

The first generation of graphical DNA CAD tools came in the 2000s with GIDEON93 and Tiamat94(Figure 4a).

These tools provided a 3D editing interface which allowed intuitive creation and connection of DNA (and RNA

in the case of Tiamat) duplexes and single–stranded regions. While GIDEON has fallen out of favor, Tiamat is

still used by some groups despite having compatibility issues with modern operating systems and has been

used to design large and complex DNA origami structures54,95,96.

The next tool released, which remains the most popular, was CaDNAno97 (Figure 4b). CaDNAno was

the first “lattice–based” design tool, where designs are constrained to parallel helices on either square or

hexagonal lattices. This constraint limits the potential design space, but creates a useful abstract language

for defining, addressing and routing scaffold and staple strands. Because the helices are parallel, idealized

crossover positions can be identified by the software, removing one of the most tedious and prone to user error

parts of DNA nanostructure design. This also allows designers to break from the ideal and purposefully create

bent and curved structures with confidence51. CaDNAno revolutionized the DNA design field, however still

has some limitations. Primarily, that it constrains DNA designs to parallel lattices. These blocky structures

have high structural rigidity and can be assembled into larger structures via either sticky–end cohesion98

or blunt–end stacking79,99, but any non–lattice bound components need to be designed by hand and added

to the exported sequence list. The fact that all the helices are parallel can also make structures with 3D

geometries more difficult to visualize and work with due to large numbers of connections between individual

DNA bundles98,100.

Recently, there has been an explosion in the number of design tools as the field continues to focus on larger

and more complex structures101. These tools can broadly be grouped into three categories: CaDNAno–like,
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automatic routing algorithms, and freeform design tools. In the CaDNAno–like field, the two other programs

are Scadnano102, a browser–based re–implementation of CaDNAno with a more advanced scripting interface

to further automate the creation of complex structures and ENS Nano103, a design tool which attempts to fix

CaDNAno’s problem with multi–bundle structures by allowing non–parallel lattices and dynamic relaxation to

position the lattices in 3D space.

Automatic scaffold routing tools try to automate the design of nanostructures even further. For these

programs, the user begins by defining a polyhedral mesh and then the program attempts to algorithmically

fit a DNA origami structure to the mesh. There are three program suites which perform this fitting, first is the

BScOR/vHelix package104,105. BScOR contains multiple options for converting closed–surface polygons and

flat line drawings into triangulated meshes with mostly single–duplex edges and multiway junctions at the

vertexes. The output can then be free–form edited by vHelix, a plugin for the 3D modelling software, Maya.

The next group is the Athena suite106, which includes the fitting algorithms DAEDALUS107, for 3D wireframes

with edges that are an integer number of full turns in length, PERDIX108 for 2D wireframes with arbitrary edge

lengths, TALOS109, for 3D wireframes with 6–helix bundle edges, and METIS110 for 2D structures with 6–helix

bundle edges. These algorithms are focused on optimizing the rigidity of the resulting structure. The final

option for routing DNA nanostructures through a mesh is MagicDNA111 (Figure 4c), a Matlab program which

converts 3D space–filling models into CaDNAno–like bundles of parallel helices. MagicDNA also includes the

ability to make structures with sizes that exceed the length of a single scaffold strand and to customize the

connections between neighboring helix bundles.

While all the previously–mentioned software packages have focused exclusively on DNA, in the free–

form design space the software tools have moved away from Tiamat’s vision of fully free–form DNA design

towards a focus on tweaking designs produced by other tools and including non–DNA components into the

structure. Adenita112 and its in–browser re–implementation, Catana113 are programs which focus on multiscale

representations of DNA and protein structures. They are able to both visualize and edit structures using

a CaDNAno–like flat lattice interface, as well as position the lattices in 3D space and perform off–lattice

edits. These tools are also able to visualize both proteins and DNA at either a bead–per–nucleotide coarse–

grained resolution or fully atomically (though the enormous size of DNA nanostructures often renders fully

atomistic visualizations unusably slow). OxView114 (Figure 4d), which will be covered in detail in chapter

2, is a visualization and editing tool designed for the coarse–grained DNA, RNA and protein modeling tool

oxDNA/RNA. While its primary function is to visualize simulation results, it is also a fully–featured editor able
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Figure 4. Examples of design tool interfaces (a) Tiamat94 was used to design a DNA gridiron structure116.

(b) CaDNAno97 was used to design a DNA octahedron used in crystal lattice assemblies117. (c) MagicDNA

was used to design a multi–scaffold design in the shape of an airplane as a demonstration of its

multi–scaffold routing algorithm111. (d) OxView’s114 free–form design tools used to prepare an oxDNA

simulation of a DNA tetrahedron41 created following the protocol described in118. Design files for (a) and (c)

retrieved from Nanobase119

to perform free–form modifications of structures and has proven particularly powerful for combining structures

designed using different design tools and preparing them for oxDNA simulation.

Currently, no design tool has taken over as the “ultimate DNA design tool” the way SolidWorks is the

definitive design tool for macroscale structural materials. Part of this is simply because the field is relatively

new and the capabilities and complexity of designs continues to evolve; however, it is also because no tool has

been simultaneously fully–featured and intuitive enough to capture the whole field. None of the previously

mentioned apps are sufficiently complicated that many of their features couldn’t be combined into a slick user

interface at some point in the future, perhaps also introducing support for protein design using Rosetta115

as well as for the many small molecules, nanoparticles and inorganic nanomaterials which provide function

beyond what is possible for DNA and RNA alone.
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1.2 The oxDNA and oxRNA Models

1.2.1 Molecular Models: Applications and Methods

When working at the nanoscale, the interactions of individual monomers and their constituent atoms have

a significant impact on the overall structure due to the nanoscopic scale of the construction. However, the

ability to visualize nanostructures is limited both by technology and fundamental physics. In ideal conditions,

microscopy techniques such as atomic force microscopy120 and scanning tunneling electron microscopy121 can

see individual atoms, but these techniques work best for atoms or clusters of atoms deposited on a surface.

Nucleic acid structures are far too complex, topologically complicated, and flexible to visualize at the atomic

resolution using these techniques. AFM and transmission electron microscopy (TEM) are commonly used

to visualize structures, which results in somewhat blurry images where individual helices can be resolved,

but not the nucleotides within the helix122. The other problem with AFM and TEM is that they both require

the imaging target to be on the surface of either a mica or carbon grid, which due to charge interactions

between the nanostructures and the surface and the loss of water molecules under vacuum in the case of TEM,

cause 3D structures to collapse onto the surface, making these techniques most suitable for 2D structures

and extremely rigid 3D structures such as helix bundles. This limitation is somewhat alleviated by cryogenic

electron microscopy (cryo EM)123, where samples are frozen in vitreous ice prior to TEMmicroscopy, which both

avoids surface effects and allows for 3D reconstruction of the nucleic acid structure through class–averaging

of single particle images, resulting in 3D images with low nanometer to angstrom resolution124. Cryo EM

requires expensive and specialized equipment and large numbers of images (hundreds of thousands to millions

of structures) for high–resolution reconstruction, so is only available to well–equipped labs, however due to

its resolution and utility it remains the highest standard of experimental data in nucleic acid nanotechnology.

In silico modelling of structures offers an alternative to microscopy techniques for understanding the dy-

namics of molecular structures at high resolution. While the models of atomic interaction are never perfect, as

the great statistician George Box famously said, “all models are wrong but some are useful”125. For modelling

structural dynamics of macromolecules, scientists have developed various models ranging from molecular

models which dynamically model the interactions between constituent atoms to mathematical models of poly-

mer dynamics which explain bulk properties of polymer chains of various types.

For DNA and RNA nanotechnology, there are two commonly employed types of models, finite–element

models and molecular models. The simplest are finite–element models of DNA structure126,127 which are able
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to predict the overall average structure and flexibility of a given design. These algorithms work by breaking

down the structure into a series of quantized elements — base pair steps, crossovers, and single stranded

regions which are relaxed from an initial configuration by iterativley adjusting each element’s properties until

convergence is achieved. These methods are very fast, taking only a few minutes to predict the overall

structure and equilibrium dynamics of a full–sized DNA origami structure. However they are known to struggle

with structures with multi–state dynamics and large numbers of single–stranded regions due to the difficult

nature of correctly modeling the structural properties of single–stranded nucleic acids.

The second option for computational modeling of structures is either fully–atomistic or coarse–grained

molecular modeling where the structural dynamics of the molecule are modeled using physical rules called

a “force field”, a mathematical description of the interactions between the individual particles in the system

which gives the potential energy for a state. The core theory that molecular simulation works off is the “ergodic

hypothesis” which states that given sufficient time, a system will visit all accessible parts of its “phase space”

and that all microstates within phase space are found occupied with equal probability. This means that the

time average of an “order parameter”, a measurable quantity, will eventually converge to the phase space

average. Furthermore, when a studied system is at thermal equilibrium with the outside world, the so–called

“canonical ensemble”, many microstates involve reconfigurations in the “heat bath” of the external world,

resulting in many microstates with the same energy, Ei. The probability of encountering any particular state

is proportional to the exponential of the potential energy of that state divided by the temperature:

p(xi) =
1

Z
exp

(
−Ei

kBT

)
(1.1)

Where Z is the “canonical partition function”, — the sum of all possible energy states:

Z =
∑
i

exp

(
−Ei

kBT

)
(1.2)

This is the “Boltzmann Distribution”128, which explains why low energy states are the most common and higher

energy states become more frequent as the temperature rises — there are more reconfigurations of the heat

bath which allow states of a particular energy to exist129.

The ergodic hypothesis has a suggestive consequence, namely that sampling from allowed states with a

probability distribution which follows the Boltzmann distribution or allowing a system to time–evolve using

integration of the force field under newtonian mechanics should produce the same result. The former method,

so called the “Metropolis Monte–Carlo” (MC, also Markov Chain Monte–Carlo (MCMC)) method130, does exactly

this. At each step in the simulation, a change to the arrangement of particles is suggested, often within some

radius of the previous step’s configuration, the change in energy of the system is then computed from the
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force field and if ∆E < 0, the move is accepted automatically while if ∆E > 0, the move is accepted with

probability

exp

(
−∆E

kBT

)
(1.3)

which is simply the quotient of the probabilities of states i and j with ∆E = Ej − Ei.

The alternative is known as “molecular dynamics” (MD), where the system is allowed to evolve via new-

tonian mechanics under the direction of the force field. This is done by calculating the forces on a particle, fi,

by taking the derivative of the force field, V , with respect to the vector position of particle i, ri

fi = −∂V

∂ri
(1.4)

Which can then be used apply an acceleration to particle i by Newton’s Second Law, f = ma. And allowing

the system to evolve linearly for a small amount of time, ∆t before recalculating the force field and again

applying accelerations to each particle. The most computationally efficient method of computing a molecular

dynamics trajectory is the “velocity Verlet scheme”, which computes the position, ri, and the velocity, vi for

each particle at time t+∆t:

ri(t+∆t) = ri(t) + vi∆t+
fi(t)

2m
∆t2 (1.5)

vi(t+∆t) = vi(t) +
fi(t) + fi(t+∆t)

2m
∆t (1.6)

Which comes from a Taylor expansion of the positions, resulting in a fast algorithm which is precise up to

O(∆t4)131.

The major advantage of MD over MC is that MD is trivially parallelizeable while MC is not. Since the two

methods sample the same underlying distribution, which one to choose is largely a factor of system size. At

small system sizes, MC can outperform MD because of the larger distortions to the overall configuration at

each simulation step and can be further accelerated for systems of strongly interacting particles (such as DNA

and RNA) by using the “virtual move Monte Carlo” algorithm132 which proposes moves of groups of particles

rather than each particle individually as in traditional MC simulations. However, at large system sizes, due

to the advances in highly parallel computing on modern GPUs, MD simulations outperform MC simulations by

many orders of magnitude133. MD simulations also have the advantage of, in certain cases, being able to have

a correspondence to experimental timescales and kinetic reaction rates due to the continuous nature of the

simulations.

Force fields generally depend on the relative positions of the particles and can either by pairwise, depending

on each pair of particles, or many–body interactions, depending simultaneously on multiple particle positions

(the most common many–body interactions are rotational and torsional potentials which constrain the angles
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between groups of particles). Many force fields have been developed over the years with increasing levels

of refinement, and accuracy. Of course, more complex and detailed force fields require more computational

power and so their use either requires advancement in computational technology or working with smaller

numbers of particles. For highly complex quantum force fields, the number of atoms able to be studied

remains quite small; for example, one recent study of SARS–CoV–2 M protein inhibition modeled only 75 atoms

quantum mechanically while analyzing the mechanism of the interaction134. At the classical fully atomistic

level, a state of the art RNA force field running on specialized hardware was able to simulate the melting and

re–forming of a 14–nucleotide hairpin, which contains 455 atoms135. A full–sized DNA orgiami wherein every

nucleotide in the M13 scaffold is paired contains a bit more than 460 000 atoms, 3 orders of magnitude larger

than the RNA hairpin.

Due to the enormous numbers of particles in a DNA origami, fully atomistic simulations are often infeasible

due to the amount of time required to model that many atoms. To remedy this, many “coarse–grained”

simulation methods focused on DNA and RNA have been developed over the years. These models abstract

the roughly 30 atoms in each nucleotide into a lower number of coarse–grained particles. This has the

effect of decreasing the number of degrees of freedom and therefore increasing the computational efficiency

of the model, allowing the same hardware to model larger system sizes and longer timescales. Coarse–

graining inherently results in a decrease in accuracy of the model, so it is important to choose a model which

accurately reproduces the specific features of interest for the studied molecules. There are two approaches

to generating coarse–grained models, bottom–up or top–down (also called empirical parameterization). In

bottom–up approaches136 to DNA such as IMC DNA137, Fan Bonds138, or Sugar Model139, a model of DNA is

built by averaging the contributions observed in fully atomistic models from multiple atoms into a single “super

atom”. These models have the advantage of being able to represent different parts of the DNA molecule with

different levels of resolution. For example, the Sugar Model represents the deoxyribose sugar with more super

atoms than the phosphate or nucleoside groups, which allows it to capture the effects of changes in sugar

pucker which is responsible for the A–form to B–form helix transition139.

Examples of empirically parameterized DNA models include oxDNA140–143 and mrDNA144. These models

are developed by designing a super atom with specific interaction sites, and then tuning the interactions

between super atoms to reproduce experimentally measured structural properties of DNA. The oxDNA model

is by far the most popular of the aformentioned DNA models, having been used in nearly 200 papers since its

original publication145. It was parameterized to capture the helical structure of B–form with accurate geometry,

persistence length and melting temperatures. It was later found that though they were not part of the initial

16



parameterization dataset, accurate kinetics of DNA strand displacement was also an emergent property of the

model, solidifying its status as a fast but relatively accurate representation of DNA structure and dynamics146.

1.2.2 Coarse–Graining DNA, RNA and Proteins

The oxDNA model uses a single rigid, anisotropic bead per nucleotide. Each bead has three interaction

sites, the backbone site where it connects to neighboring beads on the same strand, the stacking site, which

captures the pi–pi stacking of nucleosides, and the base pairing site which captures the hydrogen bonding

responsible for canonical (Franklin–Watson–Crick) base pairing. The backbone is represented as a finite exten-

sible nonlinear elastic (FENE) potential147, which behaves like a classical Hookian spring near its equilibrium

length but becomes more nonlinear as the distance between neighboring particles diverges from the ideal

length. Stacking and hydrogen bonding are represented by Morse potentials148, which is an asymmetric

harmonic well which has a distance beyond which it smoothly goes to 0, allowing bonds to both form and

break. Excluded volume interactions between non–neighboring nucleotides is in the form of a Lennard–Jones

potential149, which prevents nucleotides from passing through each other and provides some stiffness to

single–stranded DNA regions. Electrostatic interactions between backbone sites are given by a Debye–Hückel

(DH) potential150 parameterized to monovalent (Na+) salt ion concentrations151. It should be noted that most

DNA nanostructures are folded at high Mg2+ concentrations rather than Na+; however, the effects of Mg2+

are highly localized, non–uniform and poorly understood. For structurally constrained DNA junctions, high

(> 0.5 M) Na+ concentrations give similar structural results to the Mg2+ concentrations used in experiments.

Finally, a simple quadratic well is applied between diagonally adjacent beads in duplexes as a “cross–stacking”

interaction which helps to improve the accuracy of the stacking interactions. In total the oxDNA force field

can be written as a sum of pairwise interaction terms between bonded and non–bonded nucleotides:

VoxDNA/RNA =
∑

bonded

(Vbackbone + Vstacking + Vexcludedvolume)+

∑
non–bonded

(VHB + Vcrossstacking + Vexcludedvolume + Vcoaxialstacking + VDH)

(1.7)

OxDNA includes both an average–sequence and sequence–dependent parameterization depending on

whether the user would like to study the behavior of a DNA design with or without considering the effect

of sequence143. In the average–sequence model, all nucleotides are treated as having the same interaction
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Figure 5. Structure of DNA and RNA helices. (a) Fully atomistic detailed view of the DNA B–form double

helix. Each monomer along the strands is either A, T, G or C, which have specific base pairing shown in the

inset. Pi–pi stacking interactions between the carbon–nitrogen rings of neighboring bases gives rise to the

helical structure because these interactions are shorter than the sugar–phosphate covalent backbone (thick

orange line). (b) Structure of A–form and B–form helices shown in fully atomistic wireframe models. RNA

forms an A–form helix, while DNA forms a B–form helix. Note the difference in helix width and groove

geometry which help to differentiate RNA from DNA for interactions with proteins in a biological context. (c)

Idealized A–form and B–form helices for the oxRNA and oxDNA models created using oxView. In these

coarse–grained models, the 30–40 atoms in each base is replaced with a single, anisotropic bead with

emperical interaction potentials which reproduce the geometry and mechanics of RNA and DNA molecules.

(a) used under a GPL–3 license. Created by Wikipedia user Zephyris. (b) Used under a CC BY-SA 4.0 license.

Created by Wikipedia user Mauroesgurroto.

potential. In the sequence–dependent model, each dinucleotide step (i.e an AT–TA stack of base pairs is

different from TA–AT) has thermodynamics given by the Santa–Lucia model152.

One of the most expensive parts of fully atomistic simulations is modeling solvent molecules. In any

biomolecular simulation, the number of water molecules required to fully hydrate the molecule of interest far
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outnumbers the number of atoms in the molecule itself. This is one of the largest sources of inefficiencies in

molecular simulation, however must be included in order to capture the many roles that water plays in molec-

ular interactions including mediating structural interactions153, and entropic effects of structured water154.

In empicially paramterized coarse–grained models, these interactions are generally implicitly included in the

force field since they are contributors to the overall structural behavior of the molecule of interest, however

this fails to capture the thermodynamic effects of water, namely maintaining the temperature and pressure

of the molecule, which diverges from the set point due to the buildup of the error terms from Verlet integra-

tion. To remedy this, molecular simulations include “thermostats” which modulate velocities in the simulation

to maintain a constant temperature (and similarly “barostats” for pressure). In fully atomistic models, the

thermostat generally acts only on the water molecules and the temperature of the molecule is then enforced

by collisions with the water molecules. In coarse–grained simulations where water is implicit, the thermostat

must act directly on the particles of the studied system.

OxDNA implements multiple thermostat types, however the two of relevance here are Andersen–like155,156

and Bussi–Donadio–Parrinello (Berendensen–like)157 thermostats. In an Andersen thermostat, temperature

is maintained by randomly resampling particle velocities from a Boltzmann distribution at a particular tem-

perature after a fixed number of steps. This thermostat has been shown to correctly reproduce the canonical

ensemble for a fixed temperature and is the most popular thermostat for production simulation runs. In a

Bussi–Donadio–Parrinello thermostat, velocities are randomly rescaled such that the overall distribution of

velocities matches the Boltzmann distribution at a given temperature. The probability of rescaling is set by a

coupling factor τ , which sets how often, on average, each particle has its velocity rescaled. Bussi–Donadio–

Parrinello thermostats with low τ are particularly well–suited to relaxation of structures where overstretched

bonds and overlapping particles can result in extremely high forces and thus high particle velocities158.

The oxDNA simulation engine was later extended to be able to simulate RNA with the oxRNA force field159.

The form of the super atoms and force field are essentially the same as for the oxDNA force field, however the

parameters of the force field are modified such that the nucleotides form an A–form helix instead (Figure 5),

the persistence length is closer to that of RNA and the thermodynamics of the sequence–dependent model

reproduce the Turner Model160 rather than the Santa–Lucia model. The oxRNA model also includes support

for G–U “wobble” base pairs.

Recently, a highly coarse–grained representation of proteins was added to the oxDNA and oxRNA force

fields161. The model represents proteins as anisotropic network models (ANMs) where each amino acid is

represented by a single super atom at the site of the Cα atom. Interactions between amino acids are imple-
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mented as harmonic springs with spring constants and equilibrium lengths parameterized on a per–protein

basis based on B–factors from crystal structures. The proteins interact with the DNA only through excluded

volume (Lennard–Jones) interactions. This model is not meant to be highly accurate for protein dynamics, but

to assist researchers designing DNA– and RNA–protein hybrid nanostructures understand the relative sizes of

nucleic acid and protein structures and to give a rough idea of the forces that protein fluctuations apply to

DNA/RNA structures.

1.2.3 Limitations of the Model

This coarse–grained approximation of DNA and RNA structure does have its limitations, however. Struc-

turally, since only Franklin–Watson–Crick base pairing and stacking interactions are parameterized, hydrogen

bonding interactions that use other edges of the nucleotide are excluded. This means that structures contain-

ing Hoogsteen– or sugar–edge bonds such as I–motifs, G–quadruplexes, triple helices and any RNA tertiary

interactions are not able to be simulated. As previously mentioned, another point of weakness is the pa-

rameterization of electrostatic interactions; magnesium interacts with DNA and RNA structures in highly a

non–uniform and site–specific manner162 and clear data on the effects of salt concentration on DNA and RNA

stability is only available for sodium buffers163. For constrained junctions, high sodium concentrations (0.5−1

M) result in very similar overall structures to the standard 5− 20 mM magnesium concentrations used in ex-

perimental setups164. This does, however have an effect on simulations of individual Holliday junctions, where

simulated junctions have a preference for the left–handed conformation while junctions in solution prefer the

right–handed conformation. The reasons for this include both the lack of magnesium at the junction point and

the simplification of the backbone structure165.

Finally, coarse–graining inherently decouples timescales of fluctuations in the simulation and oxDNA has

an artificially inflated diffusion constant to facilitate simulations of rare interaction events. Based on studies

of duplex hybridization, some rates are scaled to be as much as 100x faster than direct unit conversion

would suggest166. This makes determining exact correspondence between simulation and real time infeasible,

however relative rates between alternative designs or experimental conditions generally remain accurate.
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1.2.4 Choosing the Correct Simulation Methods

Choosing the correct simulation method for a particular task can be a challenge. The simplest option is an

equilibrium simulation where the system is simply allowed to evolve under the control of the force field. This

type of simulation is useful if the structure is relatively simple and the order parameters which need to be

determined are features like the overall flexibility of the structure, the ensemble of distances between a set

of nucleotides within the structure, or the equilibrium angle between two duplexes. If, however, the structure

is able to undergo some sort of dynamic transition, there is an energy barrier between two possible states, or

a full free–energy landscape for an order parameter is needed, “advanced sampling techniques” are needed

to more completely sample the order parameter of interest. There are four advanced sampling techniques

supported by the most up–to–date version of the oxDNA code.

The simplest of these techniques is “parallel tempering”167 where multiple simulations are run in parallel

at different temperatures. After a pre–determined number of steps, the simulations are paused and the

current configurations are exchanged between temperatures with a probability matching the Metropolis MC

criteria (see eq. 1.3). In this way, the simulation is able to explore more of phase space as more is accessible

at higher temperature. These structures from the high temperature simulations, when swapped into the

low temperature condition are often able to seed the lower temperature with energy minima that the low

temperature simulations would have taken an unreasonable amount of time to discover due to the intervening

energy barriers between them and the starting configuration. When the time comes for analysis, the shuffling

is reversed, providing trajectories for each parallel simulated system as it traversed the various temperatures.

Another technique which facilitates sampling across energy barriers is “forward flux sampling”168, which

is used to sample rates of transition between two states, A and B along a particular transition pathway. In

forward flux sampling, multiple parallel unbiased simulations are begun from the same initial configuration

and each are allowed to run until a pre–determined transition state in the order parameter, λ0 has been

observed a sufficient number of times. The simulations are then stopped and restarted from λ0. Simulations

that return to A are stopped and restarted at λ0 until sufficient instances of a second transition state, λ1

have been observed. This pattern continues until the transition from the final transition, λn to B, has been

observed the desired number of times. The rate of transition from A to B can then be computed from the

product of the transition rates between all of the intervening states.

The final two methods discussed here are “biased“ simulation methods where additional forces are added

to the simulations to force the system to fully sample a given energy landscape. In “umbrella sampling”169,
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a biasing force (this can be a physical force in MD or a modification to the acceptance probability in MC) is

applied to the system to force the simulation to explore only a small area around a particular value of an

order parameter (or coordinate in a multidimensional order parameter set). This is repeated in parallel for a

number of windows which cover all relevant values of the order parameter. After the simulation is completed,

the weighted historgram analysis method (WHAM)170 is used to unbias the simulation and compute the free

energy profile across the order parameter of interest.

In “metadynamics”171, a simulation is dynamically biased against values of the order parameter(s) of

interest that have already been observed. This has the effect of “filling” the free energy profile and can allow

efficient sampling of transition states and free energy profiles with multiple minima. This method is particularly

useful as it does not require the transition states to known a priori as in umbrella sampling, but instead tends

to find the lowest energy barrier between two neighboring states without any pre–knowledge of where that

transition is172.

1.3 Motivation For a Better oxDNA Software Environment

Though the oxDNA/RNA model has been successfully adopted by the computational and theoretical mem-

bers of the DNA and RNA nanotechnology community, there remain significant barriers to setting up simula-

tions and analyzing the results. This has prevented wider adoption, particularly by experimental groups who

would benefit from the analysis and intuition granted by simulations, but do not have the resources to dedicate

students full–time to working with the software. The problems with the usability of oxDNA are fourfold:

1. Limited options when converting from DNA/RNA design tools into the model and then relaxing the

converted structures to a simulation–ready state.

2. Difficulties compiling the simulation engine and correctly setting up the simulation parameters. This is

further exacerbated by the fact that oxDNA is a Unix command line application which itself is a barrier

to entry for those who are not already computer savvy, and this is before considering how to correctly

set up the necessary compilers and libraries used by the simulation engine.

3. Poor visualization options. Prior to the work outlined in chapter 2, visualization was limited to a converter

to UCSF Chimera173 which took upwards of half an hour to visualize an origami–sized structure and could

not visualize trajectories at all, and Cogli1, a C++ app built to support oxDNA, however it struggled to

load large trajectories and had poor documentation.

4. Outdated and confusing analysis tools. The oxDNA package comes with a directory of analysis tools
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featuring various functions used in simulation papers published by the maintainers of the code. These

tools, however tended to be highly specific and were not of interest beyond the original context. They

were also written in Python 2.7 which ended support at the beginning of 2020, necessitating an update.

Item 1 of the preceding list was tackled in ref174 and chapters 2 and 3 of this dissertation cover software

projects intended to remedy these deficiencies. Chapter 4 covers a demonstration of using oxDNA and the

tools developed in the previous chapters to study a complex nanodevice constructed from DNA. The software

projects include a new, more intuitive and performant visualizer for oxDNA trajectories, a library of analysis

tools that cover common use cases in molecular simulation and written in a modular an extensible manner

in modern Python, and a web interface for running oxDNA simulations which makes equilibrium sampling

simulations more accessible to non–experts.

A key feature of these tools is that they were written in such a way to encourage extensibility and hack-

ing. As software designers, we cannot predict all possible user demands, especially in a field as dynamic as

DNA/RNA nanotechnology. As such, these tools should make it easy to re–use their basic features to ask

new questions of simulated structures in addition to providing robust core functionality. This design principle

also makes them an excellent introduction to programming for simulation analysis that helps to educate and

prepare the next generation of scientists. The overarching goal of these projects is to allow the DNA and RNA

nanotechnology community to harness the power of simulations to improve their designs and rationalize their

results.

1.4 A Co–author’s Introduction to Chapter 4

Chapter 4 represents a large collaborative project in which the simulations I performed are only a part

of the final product. I chose to include this particular project over other first–author projects118,119 of mine

because it was the largest and most comprehensive simulation project I undertook during my PhD. It offers

a fantastic example of usage for the tools developed in chapter 2 both to build the structures for simulation

in the first place and as part of the analysis of the more than 3 TB of simulation trajectories produced as part

of the project. The simulations were indispensable in rationalizing experimental results due to the power of

oxDNA simulations to explore structures at nucleotide resolution and in 3D. This revealed many features of

the nanoengine that were not fully understood from the experimental characterization including the intrinsic

twist of the structure, the role of plectoneme formation on RNA polymerase processivity, and the effect non–

designed hairpin strucutres had on both the equilibrium and dynamic behavior of the structure. Furthermore
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the ability to tweak the force field to exclude hydrogen bonding interactions from parts of the structure allowed

us to explore the effects of the hairpin structures in great detail and propose a solution which could be followed

in future research on structures of this type.

My contributions to the text are the sections on molecular dynamics, the remainder of the text was mostly

written by Mathias Centola and Michael Famulok. I have included the introduction and the sections on na-

noengine design and driver–follower experiments as they are relevant for understanding the results of the

molecular dynamics experiments.
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Chapter 2

SOFTWARE TOOLS FOR PREPARATION, VISUALIZATION, AND ANALYSIS OF OXDNA/RNA SIMULATIONS

This chapter was published in E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang, P. Šulc, Design,

optimization and analysis of large DNA and RNA nanostructures through interactive visualization,

editing and molecular simulation Nucleic Acids Research 48(12), e72 (2020)

Abstract

This work seeks to remedy two deficiencies in the current nucleic acid nanotechnology software envi-

ronment: the lack of both a fast and user–friendly visualization tool and a standard for structural analyses

of simulated systems. We introduce here oxView, a web browser–based visualizer that can load structures

with over 1 million nucleotides, create videos from simulation trajectories, and allow users to perform ba-

sic edits to DNA and RNA designs. We additionally introduce open–source software tools for extracting

common structural parameters to characterize large DNA/RNA nanostructures simulated using the coarse–

grained modeling tool, oxDNA, which has grown in popularity in recent years and is frequently used to

prototype new nucleic acid nanostructural designs, model biophysics of DNA/RNA processes, and rationalize

experimental results. The newly introduced software tools facilitate the computational characterization of

DNA/RNA designs by providing multiple analysis scripts, including mean structures and structure flexibility

characterization, hydrogen bond fraying, and interduplex angles. The output of these tools can be loaded

into oxView, allowing users to interact with the simulated structure in a 3D graphical environment and modify

the structures to achieve the required properties. We demonstrate these newly developed tools by applying

them to design and analysis of a range of DNA/RNA nanostructures.

2.1 Introduction

The field of nucleic acid nanotechnology35 uses DNA and RNA as building blocks to construct nanoscale

structures and devices. Using the high programmability of pairing combinations between oligonucleotides, it

is possible to construct 2D and 3D nanostructures up to several thousand nucleotides. Over the past three

decades, designs of increasing complexity have been proposed, such as DNA/RNA tiles and arrays175, DNA

multi–bundle origamis99, wireframe nanostructures107,176 single–stranded tile (SST) nanostructures177, single–

stranded DNA (ssDNA) and RNA (ssRNA) origami structures86, and larger multi–origami tile assemblies53. The

nanostructures have promising applications ranging from photonic devices178 to drug delivery59.
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There are many available nucleic acid nanotechnology design tools, including CaDNAno97, Tiamat94, vHe-

lix104,105, Adenita112, MagicDNA111 and the CAD converters DAEDALUS107 and PERDIX108. CaDNAno is fre-

quently used to design very large structures on either a square or hexagonal lattice, which requires compo-

nents be made of parallel helices. Tiamat is an intuitive lattice–free design tool that supports both DNA and

RNA. MagicDNA is a Matlab–based tool that specializes in the design of large 3D structural components on a

3D cubic lattice using CaDNAno–like parallel DNA bundles as the base unit of each edge. VHelix and Adenita

are DNA design plugins for the commercial design platforms Maya and SAMSON. VHelix facilitates conversion

of polyhedral meshes to DNA sequences, with further free–form editing available in Maya. Adenita combines

the functionality of CAD converters with free–form design, allowing users to load structures from a variety of

sources with additional editing tools available in the SAMSON interface. DAEDALUS and PERDIX are software

that facilitate conversion of meshes designed in CAD software into DNA representations. Currently, the nan-

otechnology field lacks a universal method for assembling structures made in different design tools, especially

if small changes need to be made. Continued development of tools is thus necessary to integrate the previous

efforts and enable design of more complex DNA and RNA nanostructures. Additionally, with the exception of

Tiamat, all available tools focus only on DNA nanostructure designs.

Molecular simulations have proved indispensable in the field of nucleic acid nanotechnology, providing

detailed information about bulk structural characteristics179,180, folding pathway kinetics181,182, conformational

space and kinetics of complex nanostructures165,183,184, and active devices such as DNA walkers183,185. Due

to the size of the designed nanostructures and the laboratory timescales involved, traditional fully atomistic

simulation methods are often infeasible for nucleic acid nanotechnology applications. To remedy this, several

coarse–grained models have been developed126,140,141,143,144,159,186–188, each of which with a unique focus on

a specific part of the DNA nanostructural design and characterization pipeline. In particular, the oxDNA/oxRNA

models have grown in popularity in recent years and have been used for studying DNA/RNA nanostructures

and devices165,186,189–191 as well as RNA/DNA biophysics141,192,193. The models represent each nucleotide as

a single rigid body, where the interactions between nucleotides are empirically parameterized to reproduce

basic structural, mechanical and thermodynamic properties of DNA and RNA (Figure 6).

However, the standalone simulation package only provides simulation trajectory with recorded 3D positions

of all nucleotides in the simulation. Users usually have to develop in–house evaluation tools that post–process

the simulation trajectory to extract desired properties of the studied nanostructures.

In this paper, we present two open–source tools to fill these unmet needs in the field of DNA/RNA nan-
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Figure 6. The oxDNA model. A DNA duplex as modeled in oxDNA with labels corresponding to the

potentials defining the force field. OxDNA is a coarse–grained model with each nucleotide represented as a

rigid body with specific interaction sites that approximate the geometry and interactions of the 20+ atoms

that make up each nucleotide. The coarse–grained force field is parameterized to reconstruct the structural

and dynamic properties of both single– and double–stranded DNA and RNA.

otechnology and illustrate their use for design and optimization of DNA and RNA nanostructures. The first tool

we introduce here is oxView, a browser–based visualization and editing platform for DNA and RNA structural

design and analysis of nanostructures simulated in oxDNA/oxRNA. The tool is able to accommodate nanos-

tructures containing over a million nucleotides, which is beyond the reach of most other visualization tools. It

allows the user to load multiple large nanostructures simultaneously and edit them by addition or deletion of

individual nucleotides or entire regions, providing a way to create new, more complex designs from smaller,

individually designed subunits, even from different design tools. All of the previously mentioned design tools

can be converted to the oxDNA format using either built–in tools (Adenita, MagicDNA, vHelix), the TacoxDNA

webserver174 (CaDNAno, Tiamat, vHelix), or by converting first to PDB using built–in tools and then to oxDNA

using TacoxDNA (DAEDALUS, PERDIX). The visualization tool is integrated with oxDNA/oxRNA simulations and

loads long simulation trajectories quickly (including files which are tens of gigabytes in size) for interactive

analysis and video export of nanostructure dynamics. It can also load data overlays from the analysis scripts

introduced in this paper, allowing users to interactively explore features such as hydrogen bond occupancy

and structure flexibility and then use this information to iteratively redesign nanostructures based on simu-

lation feedback using oxView. Finally, oxView implements rigid–body dynamics code so that individual parts

of the structures can be selected and interactively rearranged. The structure will then be relaxed on–the–fly

using rigid–body dynamics to a conformation which can be used as an initial structure in simulations.

The second tool introduced here is a set of standardized structure–agnostic geometry analysis scripts

for oxDNA/RNA which cover a number of common molecular simulation use cases. Many groups that work

with oxDNA/RNA have developed their own analysis tools in–house, resulting in many duplicate functionalities
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and scripts that are limited to single experiments. To facilitate the simulation–guided design of DNA/RNA

nanostructures and lower the barrier of entry into the simulation field, we have developed a toolkit that is easy

to use, generically applicable to numerous studied systems, and extensible. The tool set includes the following:

(i) calculation of mean structure and root–mean squared fluctuations to quantify structure flexibility; (ii)

hydrogen–bond occupancy to quantify fraying and bond breaking during the simulation; (iii) angle and distance

measurements between respective duplex regions in a nanostructure; (iv) a covariance–matrix based principle

component analysis tool for identification of nanostructure motion modes and (v) unsupervised clustering of

sampled configurations based on structural order parameters or global difference metrics.

We demonstrate the versatility of the analysis tools and visualization platform functionality by analyzing

simulations of previously published structure and a few novel designs. In particular, we study two RNA tiles,

a Holliday junction, the tethered multi–fluorophore structure, two wireframe DNA origamis, and a single–

stranded RNA origami nanostructure. We make no custom modifications to the analysis tools for each of the

designs to demonstrate their versatility and general utility for distinct nanostructures. The visualization and

analysis software developed in this work is freely available under a public license.

2.2 Materials and Methods

2.2.1 System and Software Requirements

The analysis tools were written and tested using the following dependencies: Python 3.7 (minimum version

3.6), NumPy 1.16194, MatPlotLib 3.0.3 (minimum version 3.0)195, BioPython 1.73196, SciKitLearn 0.21.2197

Pathos 0.2.3198, oxDNA 6985 (minimum version June 2019)143,185,186.

OxView will run as–is on any modern web browser with WebGL support; though, we note that Google

Chrome performs best at very large structure sizes. To make modifications to the code, the following depen-

dencies are required: JavaScript ES6, Typescript 2.9.0

2.2.2 Simulation Details

The oxDNA simulations of systems that were used in this work have been carried out using the standard

molecular dynamics and Monte Carlo approaches. The simulation parameters and file formats produced by

the simulations are described in appendix A.
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a)

b)

Figure 7. Screenshots from usage of oxView. a) 100 configurations from an oxDNA simulation of design

24 from108 merged into a single file and loaded into oxView; illustrating the ability to smoothly visualize over

106 nucleotides. The origami design has 11 382 nucleotides, resulting in a combined file containing
1 138 200 nucleotides, which renders as 5 691 000 individual objects in the scene. b) Using oxView to
assemble a simulation of the tethered multiflourophore (TMF) structure used in199. Each of the subunits is a

separate CaDNAno file converted into oxDNA format using174. The two subunits and the algorithmically

generated tether had to be ligated prior to simulation.

2.3 Results

2.3.1 OxView - Web Browser Visualization, Analysis and Editing of Nanostructures

We introduce oxView, a JavaScript app built on the Three.js visualization library to provide fast, user–

friendly, and flexible visualization capabilities with low technical overhead (Figure 7). OxView uses hardware

instancing to offload most calculation of object geometry to the computer’s GPU, allowing it to smoothly

visualize structures containing millions of nucleotides (Figure 7a). Standard Three.js scenes encounter a

bottleneck in the rate of CPU draw calls with only a few thousand objects on the screen. By using instanced

materials and custom properties written into the WebGL shaders, oxView bundles many objects with similar

geometries into a single draw call that calculates edges and vertices in the compiled shader code.
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Loading a simulation is as simple as dragging and dropping a trajectory/topology file pair onto a browser

window with the app running. Simulation trajectory files can be stepped through using onscreen buttons or

the keyboard, and the trajectory movie can also be downloaded as a video file. Available formats are .webm,

.gif, and .jpg/.png image archives.

In addition to visualization, oxView also has basic editing capabilities (Figure 7b) and Supplementary

video 2). Particles can be selected individually, or whole strands and systems can be selected as a whole.

Box selection, range selection (shift+click) and cluster selection are also available. Clustering can be done

automatically using a Density–Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm200 or

can be assigned manually from other selection methods. Briefly, DBSCAN compares distances between points

and classifies groups of points meeting a specified minimum size and within a specified mutual minimum

distance as members of the same cluster. It also characterizes points as central or peripheral, with central

points having at least the minimum number of neighbors in the cluster and peripheral points being within the

cutoff distance of one or more, but fewer than the specified number of central points. When manually selecting

nucleotides, holding the control key while making a selection will combine the new and previous selections.

Selected particles can be translated and rotated, and the topology can be edited via strand extension and

creation, nicking, deletion, and ligation. Edits can be undone and redone using the standard ctrl–z/ctrl–

shift–z keyboard shortcuts. Strand extensions will attempt to approximate either an A–form or B–form helix

depending on the parent nucleotide’s identity: RNA or DNA. The final edited version can be downloaded as an

oxDNA file pair for further simulation or as a CSV sequence list for experimental validation.

We envision this tool being used to prototype DNA/RNA nanostructural designs in an iterative process

before realization in the lab. The structure can be simulated for a short time, analyzed for defects, and then

iteratively modified in the viewer and returned to simulation to verify success. This tool is also useful as a

neutral ground between structures designed in other editing tools, allowing researchers to merge together

structures from many sources to realize a complex vision.

OxView also allows the creation of mutual trap external force files for oxDNA/RNA. These files define

artificial pairwise spring potentials between nucleotides that can be loaded in an oxDNA simulation and be

very helpful when simulating the relaxation of a complex structure, assembled from multiple components, or

when relaxing a structure imported from the CaDNAno format.
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2.3.1.1 Implementation Details

The underlying architecture of oxView has two parallel data streams. The first mirrors the physical arrange-

ment of nucleic acid monomers into strands, with each configuration/topology pair representing a system. This

data structure contains the topological information relating to particle identities, connectivity, and relation to

the system. Monomers, strands and systems all inherit from the Three.js Group object and are related through

an inheritance hierarchy, which allows interaction with structural units as a group. Additionally, each system

contains a set of data arrays that define the positions, orientations, sizes, and colors of every particle. These

arrays are passed into a custom implementation of the WebGL Lambert shader, where they are compiled on

the GPU and drawn as a single object. This scheme allows loading of over 1 million nucleotides into a single

scene (Figure 7a and Supplementary video 1).

Selection is handled through a GPU–picker, which avoids the need for computationally–expensive raycaster

intersection calculation. Briefly, each nucleotide has a mesh with a color corresponding to its global ID at the

same position as its backbone site which is rendered in an invisible scene. The color of this mesh can quickly

be determined via the x − y coordinates of the mouse on the screen. When the color is converted from the

hexadecimal color to the corresponding decimal value, it returns the ID of the nucleotide under the mouse

pointer. As the arrays passed to the shader are of constant–size, new nucleotides added to the scene after

initialization, are placed in a temporary system object with its own instancing arrays.

2.3.1.2 Data Overlays in oxView

Many of the simulation analysis scripts introduced in this work output overlay files that can be viewed in

oxView. This allows interactive visualization of different properties (such as flexibility, discussed in Figure 9) of

respective parts of the structure obtained from simulations. These are JSON–format files that define the name

of the overlay and the data. There are three types of overlays recognized by oxView. The most frequently used

is the color overlay. These files contain one value per particle. When dragged and dropped into oxView, along

with the corresponding configuration/topology pair, the color overlay file will create a superimposed colormap

on the structure based on the value associated with each particle. All 256–value colormaps from Matplotlib195

are available in addition to the default Three.js colormaps. The displayed colormap can be altered via a simple

API implemented in the browser console. In addition to per–nucleotide coloring, oxView can also read two

JSON formats corresponding to arrows drawn on the scene. The first is a three–component vector for each
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a) b) c)

Figure 8. Rigid–body dynamics of clusters. Snapshots from the automatic rigid–body relaxation of an

icosahedron, starting with the configuration converted from caDNAno a), through the intermediate b) where

the dynamics are applied, and c) the final resulting relaxed state.

nucleotide, which is produced by the principal component analysis script and draws a vector, emanating from

each particle, using the magnitude and orientation defined in the overlay file. The second format, which can

contain any number of vectors, takes pairs of three–component vectors and draws arrows of the corresponding

position and orientation on the scene.

2.3.1.3 Relaxing Structures Using Rigid Body Dynamics

There has been a recent push to develop software that converts structures designed in the various de-

sign tools to simulation formats174. Due to the lattice–based drawing platform with parallel helices used by

CaDNAno, exported structures can be very difficult to relax to a physically reasonable state in oxDNA. Initial

configurations imported from CaDNAno (shown in Figure 8a) will generally be planar with highly stretched

bonds between individual structural units. Thus, without 3D information on how to reorient the helices, nei-

ther MC nor MD simulations are able to find the relaxed arrangement. This can also lead to topological

impossibilities, where structures are knotted in a nonphysical manner. Additionally, starting simulations from

a state with very stretched bonds can result in numerical instabilities that crash the simulation. For origami

structures consisting of multiple origami blocks, connected by initially stretched backbone bonds, rigid–body

manipulation has previously been used to arrange the converted oxDNA structure into a more realistic initial

configuration201. The translation and rotation tools in oxView allow users to select and rearrange blocks of

nucleotides as rigid bodies. Furthermore, oxView also includes a rigid–body dynamics (RBD)202 mode, that
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automatically transforms groups of nucleotides based on a simple force field. It is also possible to drag and

rotate groups during RBD, allowing the user to nudge the design into the desired topology. Groups can either

be created manually via the selection interface or through the implemented DBSCAN algorithm200 that auto-

matically identifies and categorizes spatially separated groups of particles. The latter option works particularly

well with designs developed in CaDNAno.

Each group is represented as a rigid body with a position and an orientation. The groups are held together

with spring forces at each shared backbone bond, with a magnitude of

fspr = cspr(l − lr),

where cspr is a spring constant, l is the current bond length and lr is the constant relaxed bond length. To

avoid overlaps, a simple linear repulsive force, of magnitude

frep = max

(
crep

(
1− d

ra + rb

)
, 0

)
is added between the center of each group, where crep is a repulsion constant, d is the distance between

the two centers of mass, and ra + rb is the sum of the group radii (the greatest distance they can be while

still overlapping). An example of the dynamics in action can be seen in Figure 8 and Supplementary Video 3,

where each side of a DNA icosahedron50 is automatically arranged into the intended shape.

2.3.2 General–Purpose Analysis Tools

Popular molecular simulation tools programs, such as GROMACS203, not only perform molecular simula-

tions, but also include analysis tools for common use–cases. The access to reliable and maintained tools,

as part of the distribution, allows for standardization between many researchers using the core tool, as well

as simplifying the learning curve for new researchers working with the tool. At this time, although there

are over a hundred publications using oxDNA/RNA, no standardized set of tools for structural analysis has

emerged. We present here a set of tools covering many common structure analyses: mean structure, root

mean squared fluctuations (RMSF), hydrogen bond occupancy, interaction energy, interduplex angles, con-

tact mapping, the distance between nucleotides, and principal component analysis of structure motion. These

are primarily written in Python, with some portions embedded in the oxDNA C++ code for enhanced speed.

Moreover, we provide additional utilities including a parallelization scheme for analyses, trajectory alignment,

and unsupervised clustering based on data outputs.

34



2.3.2.1 Mean Structure Determination and RMSFs

This package includes two methods for determining the mean structure. One utilizes the Biopython196

singular value decomposition (SVD)-based structure superimposer. This is a popular method204 that finds

a translation and rotation to superimpose two distinct conformations on top of each other to minimize the

the root mean square distance between their components. Either a user–defined or random configuration in

the trajectory is selected as the reference structure. In the example structures displayed here, this choice

was found to have little impact on the final outcome. Each configuration is then superimposed onto the

reference, and the average position of each nucleotide is calculated by taking the mean of each particle’s

coordinates in the aligned reference frame. The alignment can also be performed on a subset of particles

in the structure. These are assigned from a space–separated index file that can be produced by clicking the

‘Download Selected Base List’ button in oxView. Sometimes, a mean structure is undesirable because they are

frequently not physically possible state. To obtain a physically reasonable, but representative structure, this

package also includes a centroid–finding script which finds the structure in a trajectory that has the lowest

total RMSF to the a provided reference (such as a mean structure). To find the per–particle RMSF, a second

script uses the mean structure produced by the first script as the reference configuration for alignment. The

squares of the distances between the alignment and the mean structure for each nucleotide are then summed

and divided by the total number of configurations. The square root is then taken to find the RMSF per particle

in nanometers. The final output from this script is a .json format color overlay that can be loaded into oxView.

As noted in165, averaging methods that use full structure alignment work very well for rigid structures;

However, there are some caveats. Large planar structures frequently appear to have the smallest RMSF in a

ring midway between the center and the edge (Figure 9b). This does not correspond to lower flexibility, but

instead reveals an artifact of the single–value decomposition. If a structure can bend in two possible directions,

the stationary point in the oscillation will appear to have very low flexibility. Highly flexible regions tend to

collapse towards a center line, which is particularly problematic for rigid structures connected by a flexible

linker, exemplified by the interrupted duplex shown in Figure 5A. When the average structure is computed for

this design, the entire structure collapses into a linear blob that does not have any resemblance to any of the

individual configurations. This is because the average position for these flexible particles is drawn towards the

center. For such structures, another mean structure calculation based on interparticle distance is employed.

The second option for mean structure determination uses a common machine learning technique, multidi-
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a)

b)

Figure 9. Mean structures and RMSF. a) The mean and deviations scripts were used to compute the

mean structure and RMSFs of design 19 from108. In the initial report of these designs, they were

characterized by AFM, showing complete, flat structures. In the simulations here, the structures were stable;

however, the mean structure shows a significant right–handed global twist. b) To demonstrate the patterns

that appear in RMSF calculations, this is the mean structure of a single–stranded RNA origami86 with the

RMSF shown using a colormap with high spectral contrast. The center of the origami appears to have an

RMSF twice as high as the surrounding regions. This is simply an artifact of the alignment and not an

accurate characterization of particle motion.

mensional scaling (MDS)205, to reconstruct a mean structure from local contact maps. MDS is one of a class

of algorithms known collectively as manifold learning, which are traditionally used to perform dimensionality

reduction in high–dimensional datasets. MDS takes a set of pairwise distances between points in an arbitrary

number of dimensions, as an input. The algorithm then uses eigenvalue decomposition to find distances dij

in the embedded space that minimize

f(δ, d) =

N∑
i,j=1

(⟨δij⟩ − dij)
2,

where N is the number of data points, ⟨δi,j⟩ is the mean distance between centers of mass of nucleotides i and j

(averaged over the whole simulated trajectory) and di,j is their embedded distance
197. In the implementation

presented here, pairs of nucleotides, where average distance ⟨δi,j⟩ is longer than the cutoff of rcut = 2.07nm

(approximately the interhelix gap in an origami), are not considered in the embedding. The MDS–based

mean structure calculation uses the MDS algorithm206, implemented in the Python machine learning toolkit,
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a)

b)

c)

Figure 10. Improving mean structures of flexible designs. a) The initial configuration of a

50-nucleotide duplex interrupted with 5 nucleotide gaps, created using the editing tools in oxView. Each

individual configuration encountered during simulation displayed helical geometry. b) The mean structure

computed using SVD of the whole simulation. Because of the high backbone and rotational flexibility of this

structure, it collapses into a linear shape that has little correspondence to the double helix geometry that is

maintained throughout the simulation, c) The mean structure computed using MDS. In this case, since only

local contacts are used to construct the mean structure, the helical geometry is maintained. MDS comes at

the cost of losing nucleotide orientation information, however. Thus, the visualization only shows the center

of mass for each nucleotide.

SciKit–Learn197, to reconstruct these local distances into a three–dimensional embedded representation. This

method loses orientation data, and thus, nucleotides are simply visualized as spheres at their centers of mass

(Figure 10). Once a mean structure (in the embedded space) is calculated, the script then calculates the mean

deviation in distance between each particle and its nearest neighbors and outputs an oxView color overlay file

to quantify the flexibility.

We used the SVD–based mean structure script to study flexibility and curvature in large wireframe origami

structures108. In the original research, these structures were visualized using atomic force microscopy (AFM),

which tends to overestimate the flatness of structures due to electrostatic interactions between the mica sur-

face and the DNA origami176. Though the wireframes appear flat in the published AFM results, our simulations

suggest that in solution they would be more crumpled or have some degree of global helical twist. Particularly

striking is the helical shape of the mean structure of design number 19 from108 (shown in Figure 9a and

Supplementary video 4). OxDNA was parameterized to correctly reproduce the global twist of large 3D DNA

structures51,143, suggesting that this twist is likely significant while in solution. We note, however, that the

global twist of 2D DNA nanostructures in the bulk remains a topic of active research207, and more experimental

data is needed to establish a better comparison of oxDNA parametrization with experimentally determined

structures. Mean structures are also the best method to compare simulation results to cryo–EM maps. Both
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produce an averaged structure over thousands of individual snapshots. Thus, converting mean structures to

PDB format using existing conversion tools174 for use with cryo map fitting software, such as can be found in

Chimera173, is a method to correlate simulations and experimental data.

Because of the limitations of SVD–based mean structure calculation, the MDS approach was also used

to determine the mean structure and deviations. Unfortunately, because average distance data is noisy and

does not precisely map to a single configuration, this method does not work for structures larger than a few

thousand particles. In all tests of the algorithm at origami scales, every particle was placed at the origin, a

trivial solution that is a known issue of manifold learning methods. However, at smaller scales, this method

provides a reasonable mean structure, that respects the geometry of the double helix, and a measure of

deviation that reveals areas of flexibility without global artifacts due to fitting (Figure 11).

2.3.2.2 Geometric Parameters: Interduplex Angles and Distances

The simplest structural unit of nanotechnology structures is the duplex — antiparallel strands of sequen-

tially bonded nucleotides. We have implemented a script that automatically determines the duplexes present

in each configuration within a trajectory and fits a vector through the axis of the duplex. This is trivial for

DNA, where the center points of each base pair lie roughly co–linear and the axis can be defined by a linear

regression through the points in the center of the duplex. For RNA, the A–form helix is slightly more difficult

to characterize. The duplex is defined by the normal vector to an average plane fit through the displacements

along the backbones as described in159,208. This script creates a text file that contains information about all

duplexes found at each step. This can be visualized using a separate script, which uses the ID of nucleotides

at the edge of the duplex, found using oxView’s selection feature. This method can compare angles either

within or between structures.

Determining the angle between two duplexes can be useful in assessing design outcomes as well as

quantifying twist within nanostructures. The output from the angle script is a list of all duplexes found in each

configuration of the trajectory. This output can then be fed into the partnered visualization script along with

the starting nucleotide IDs of the duplex. The output will be the median, mean and standard deviation of

the angle between the two duplexes, as well as the fraction of analyzed configurations in which that pair of

duplexes are both present. This number is an indication of both how stable the structure is and whether or not

the chosen duplex is representative of the entire trajectory. The script will also provide a histogram and/or
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a)

b)

c)

Figure 11. Centroid structure and mean computed via multidimensional scaling. a) The centroid

structure (blue) observed during a simulation of a single–stranded RNA origami from86 overlaid on the

SVD–computed mean (yellow). This is the structure with the lowest RMSF to the mean structure. b) The

mean structure as computed both by SVD (yellow) and MDS (blue). Because MDS does not preserve

orientation data, the nucleotides are visualized simply as spheres at their center of mass, rather than having

distinct base/backbone sites. c) The deviation in local contacts from the mean structure calculated in b. This

measure shows most of the structure to be homogeneously stable, with higher flexibility at helix ends and at

junctions capable of sliding.
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trajectory of the angle over the course of the simulation. Here, we show an example of the angle script again

using the wireframe origami designs from108. Each origami has a designed junction angle corresponding to

the number of arms joined at each junction (Figure A2 in appendix A). Deviation from this designed angle is

a measure of strain and how non–planar the structure is in simulation. This can be particularly revealing in

combination with the mean structure, showing that an on–average flat structure has a significant degree of

flexibility over the course of the simulation.

The tethered multi–fluorophore (TMF) structure from199 was used as a demonstration of the distance script.

This structure is used to measure binding kinetics through the large change in radius of gyration induced by

binding and unbinding of compatible sequences near the ends of the double–stranded tether. End–to–end

distance of the tether in both the bound and unbound states are shown in Supplementary Figure S3 in the

Supplementary Materials. Knowing the end–to–end distance of this structure can be used in predicting the

radius of gyration for various states of the structure, which is useful in corroborating experimental results.

2.3.2.3 Base Pair Occupancy

The hydrogen bonds defining Watson-–Crick base–pairing are the single most important parameter defin-

ing DNA/RNA nanotechnology geometries. Since structures are designed towards a theoretical global free–

energy minimum that maximizes hydrogen bonds, deviations from the designed structures point to regions

of significant topological strain or that have found a kinetically trapped structure distinct from the intended

design. OxDNA/RNA defines hydrogen bonds between base–paired nucleotides as a base–pairing potential

between two base particle beads less than −0.1kbT , about 10%

of the magnitude of the equilibrium value of the base pairing potential of a base pair in a duplex. The script

compares the hydrogen bonds in a simulation with a provided list of pairs present in the intended design. The

fraction of the configurations in which the intended bonds are formed are reported as an oxView overlay file,

with color coding intensity corresponding to the fraction of the time where the bonds are formed. Bonding is

considered 0 for nucleotides without designed complements.
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a)

b)

Figure 12. Bond occupancy of an RNA tile. a) The hydrogen bond occupancy during an oxRNA

simulation, overlaid on a structure of an RNA tile. The structure was known to form poorly in the lab, and

the simulation revealed significant strain on one duplex. The structure used here is the centroid of a

trajectory based on the global fitting parameters discussed later. This was used as a visualization instead of

the mean structure, as the unpaired duplex made the structure so flexible that the mean structure collapsed.

b) The broken duplex from the structure in a was extended by one base pair, and the simulation was re–run.

Shown here are the hydrogen bond occupancies overlaid on the mean structure. In simulation, this

significantly improved rigidity.

2.3.2.4 Principal Component Analysis of Nanostructure Motion Modes

Principal component analysis (PCA) is a common method for analyzing molecular simulation data that

extracts the largest sources of deviation from the dataset209. First, using SVD, each configuration is aligned

to a mean configuration (produced by either SVD or MDS) to remove rotations and translations from the

data. Each nucleotide’s deviation from its reference position in x– y– and z–coordinates is stored as its

difference matrix. A covariance matrix is then constructed from the difference matrices, and the eigenvalues

and eigenvectors are found through eigenvalue decomposition. These are then sorted in descending order

with the highest eigenvalues representing the largest sources of variation in the structure. The eigenvectors

generated by PCA represent an orthogonal basis for the reconstruction of every structure visited during the

trajectory, and these reconstructions can then be used for clustering of distinct sampled conformations. Finally,
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Figure 13. Principal Component Analysis of a Holliday junction. Principal component analysis of a

Holliday junction visualized on oxView. Shown here is the top mode, which corresponds to a scissoring

motion in the junction, with the arm ends having significantly higher average displacement than the

crossover point.

the PCA script outputs a .json file for the oxView tool, which displays arrows on the structure corresponding

to the sum of a user–defined number of components weighted by their respective eigenvalues.

To demonstrate the principal component analysis of DNA/RNA structures developed in this work, we ran

it on a simulation of a Holliday junction (Figure 13). As one would expect for this structure, PCA reveals

strong collective motion for the junction arms. The motion grows stronger at the ends of duplexes, while the

crossover point shows little motion.

2.3.2.5 Unsupervised Clustering of Configurations Encountered in Simulation

The trajectories produced in an oxDNA/RNA simulation can be tens of gigabytes in size and explore an

expansive amount of the configuration space available to the structure. In cases where multiple metastable

states are visited during the trajectory, aggregate structural data, such as mean structures or base pair occu-

pancy, might not be representative of the ensemble. This is due to the presence of these distinct metastable

states. Here, we once again use the DBSCAN clustering algorithm200, as implemented in SciKit Learn197, to

automatically extract clusters of geometrically distinct structures from large trajectories and save each cluster

as a separate file containing a collection of configurations that can be analyzed independently. The cluster-

ing algorithm can take any matrix of positions as an order parameter, whether that be principal component
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coefficients of each configuration, or simply the distance between two particles. The DBSCAN algorithm is

particularly good at clustering molecular simulation data where metastable states tend to form distinct clus-

ters separated by a large energy barrier, such that observing transition states is relatively rare and multiple

distinct densities are observed.

To demonstrate the utility of clustering using structural order parameters, we analyzed a simulation of an

RNA tile structure (Figure 14), that is known to form two distinct structural isomers in experiment (unpublished

results). In the simulation, two states were encountered, the correctly–folded structure, with three crossovers,

and an unfolded structure, in which the paranemic cohesion210 between two of the crossovers is lost, leaving

essentially a Holliday junction (Figure 14, cluster 2). There are many potential order parameters that can be

used to separate out these two structures. In this case, we chose to work with the most aggregate data: each

configuration’s position in principal component space.

The components produced by PCA (Figure A1 in Appendix A) represent a linearly independent basis for

describing structures relative to the provided mean structure. This also means that every configuration used

to compute the components can be mapped to a unique point in 3N − 6 dimensional space. When applying

DBSCAN to the positions of configurations in this space (described in detail in Appendix A), the distinct confor-

mational isomers can be separated without further processing. In addition to the two expected configurations,

this method also separated out another cluster (cluster 1 in Figure 14) of structures where the paranemic co-

hesion was correctly formed, but stacking was interrupted at the nick point, resulting in a non–planar kinked

structure. The overlay in Figure 14a shows the fractional hydrogen bond occupancy compared with the original

design. Of particular note is the large stretch of blue on the left side of cluster 2 where the bonds that form

the paranemic cohesion are missing. The clusters were further analyzed using the angle script, identifying

the distinct interduplex angles between each duplex in the structures (Figure 14b). These distributions show

the fully formed structure (cluster 0) as having the lowest angle between the left duplexes in the first panel

of Figure 9B and cluster 1 having a very defined angle between the central duplexes (Figure 14b, center).

2.3.2.6 Other Utilities

In addition to the specific structural measures discussed here, this package also contains additional utility

functions for processing and displaying data. The first are two scripts that utilize the SVD superimposer from

Biopython196 for improving visualizations. The superimposing script takes multiple configuration files that

share the same topology and returns them with their translations and rotations removed relative to the first
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a)

b)

Cluster 0 Cluster 1 Cluster 2

Figure 14. Unsupervised clustering to isolate isomers of an RNA tile a) The three clusters found in a

simulation of a single–stranded RNA tile. The mean structure of each cluster was determined using MDS, and

the hydrogen bond occupancy compared with the original design was used as an overlay. b) Histograms of

the angles found in each cluster showing the distinct structures found in each cluster. The black frame on the

tile snapshot indicates pairs of double–stranded RNA regions that were used to calculate the interstem angle.

configuration provided. We find this very helpful for comparing mean structures of similar designs or of the

same design under different simulation conditions. There is also an alignment script, which takes a trajectory

file and aligns all configurations to the first one in the file. This makes for a much smoother visualization

experience when exploring trajectories in oxView or when making movies of a trajectory.

We have found the alignment scripts to be very useful for producing figures and movies (see Supplementary

video 5 and Figure 11a) and for making comparisons between designs. These scripts are limited, however, by

the need to align discrete units. Therefore, the structures must have the same number of particles in mostly

the same position. Thus, the scripts are best used for comparing simulation conditions, changing sequences,

and changing crossover positions in designs.

There is also a utility that reports the energy contribution of every interaction in the model. This has

options of a text output to check specific values, as well as an oxView overlay showing the average energy

of all nucleotides over the course of a simulation. Checking the base pairing or stacking interactions of

specific nucleotides can be very helpful in identifying properties or defects in a given design. Additionally, we

have found the visualization option useful for identifying excluded volume clashes during relaxations of large

structures, as these cause extremely high total energies, which visually pop in oxView.

There are two further scripts that work with base pairs. One takes the current arrangement of base pairs
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in the structure and generates either the designed pairs file used by the base pair analysis script, or an oxDNA

mutual trap force file, which can be used to enforce a particular base pairing configuration during relaxation.

This can be particularly helpful when relaxing multi–component structures edited in oxView, as the forces

pulling stretched bonds back together can cause unwanted fraying of base pairs in otherwise stable structures.

The second script converts oxDNA force files into a designed pair file. The Tiamat converter from174 can

produce force files as part of the conversion process, and this script can convert those force files into the

format needed for the duplex angle script.

Finally, we provide a parallelization scheme for analyzing oxDNA trajectories. The parallelization module

breaks down a trajectory into a number of chunks equal to the number of CPUs you have available, and uses

the Pathos Multiprocessing library198 to map trajectory chunks, CPUs, and functions. If the user has enough

computational resources available, this facilitates analysis of even very large structures or long trajectories

in a matter of minutes. The implementation of parallel functions is standardized across all scripts used here,

and users are encouraged to follow the example given here in developing further analyses specific to their

own designs.

Most of the analysis discussed fall into the class of tasks known as “embarrassingly parallel”, where there

is no communication required between processes, and the final joining step is relatively easy. For all structure

analysis algorithms described here, each configuration can be calculated independently of all the others. The

only limitations to parallelization come from calculating split points in the trajectory and if a data trajectory is

required, combining the outputs together in the proper order. As an example, we benchmarked parallelizing

the computation of the mean structure of two structures: one with 423 nucleotides, and the other with 11 385.

In both cases, runtime decreased by more than a factor of 10 when run on 30 CPUs compared with a single

CPU, with diminishing returns past that point.

2.4 Discussion

We developed this collection of tools to remedy two gaps that we have perceived in the oxDNA software

environment. First is the lack of an all–in–one visualizer that loads files within a reasonable timeframe, has a

user–friendly UI, and performs edits on structures that could then be further simulated. All–atom simulations

have such tools in the form of VMD, Chimera and PyMol. While tools exist to convert between all–atom and

oxDNA formats, this is a cumbersome process that we felt could be remedied by the development of oxView.

The use of hardware instancing allows oxView to load structures of unprecedented sizes and facilitates our
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work on million–nucleotide oxDNA simulations of multi–origami structures. Furthermore, because oxView

is built using the open–source 3D library Three.js, opens the possibilities for features from other Three.js

projects to be added to oxView. For example, virtual reality oxDNA visualization was easily added by following

the Three.js WebXR examples. Similarly, it is easy to export the visualized scene to other 3D formats, such

as GLTF, for photorealistic rendering (Figure 6) or 3D printing (Figure A4 in Appendix A).

The features of oxView and simulation analysis tools are designed to help researchers in DNA and RNA

nanotechnology to prototype in silico their structures, simplify the design and optimization process, and better

understand the functioning of the designed structures. We demonstrated the utility and versatility of the

visualization and analysis tools on multiple DNA and RNA nanostructure designs, ranging in size from hundreds

to multiple thousands of nucleotides per structure. We also demonstrated that the tools can, in principle,

handle structures of sizes over a million nucleotides.

These tools, particularly mean structure calculation and hydrogen bond occupancy, provide significant

utility for iterative design of nanostructures. In many structures where unbounded growth is a goal, global

curvature of the nanostructure due to subtleties in crossover placement is a significant bottleneck, that is diffi-

cult to solve using rational design principles. We have found that the curvature of mean structures calculated

from oxDNA simulations (unpublished results) is a good predictor of lattice formation in the laboratory. We

also note that mean structures are the best proxy for comparing simulations with cryo–EM structures, which

have become important characterizations for 3D nanostructures in the nucleic acid nanotechnology field.

Hydrogen bond occupancy is a good proxy measure for the amount of stress built up in a structure. Even

with the speed and level of coarse–graining that oxDNA provides, modelling assembly pathways for large

structures remains out of reach for all but the most ambitious simulations166. Because of this limitation, we

perform simulations with the assumption that the structure forms as designed, and initiate the simulation

with all hydrogen bonds present. Designed pairs that become unbonded or find different partners, particularly

at junction points, are a good indication for points in the design that are stressed and would benefit from

iterative design. In general, we found that successfully published structures had near 100% bond occupancy,

while those that were proving difficult to obtain in the lab had regions with low occupancy.

We demonstrated the functionality and versatility of these tools by applying them to a range of DNA and

RNA nanostructures, such as DNA and RNA origamis, as well as optimizing and analyzing an RNA tile.

All software discussed here is open–source and freely available through our GitHub under the GNU Public

License. Pull requests, bug reports and feature suggestions are welcome, as we hope that these will pro-
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vide fundamental support long into the future. All tools that were introduced here are documented on their

respective GitHub repositories, with examples of use reproducing the figures in this paper.

2.5 Data Availability

The oxDNA simulation code is available online on the oxDNA webpage dna.physics.ox.ac.uk. OxView is

available as a web–based application on github.com/sulcgroup/oxdna-viewer. The analysis package can be

downloaded from github.com/sulcgroup/oxdna_analysis_tools.

2.6 Acknowledgements

We would like to thank R. Hariadi, C. Simmons, and X. Qi for the design files from their previous publications

used as examples in this work. We would like to thank members of the Šulc and Yan labs, specifically H. Liu,

J. Procyk, and L. Chen for their feedback and beta–testing of the tools presented here.

2.7 Funding

This work was supported by the National Science Foundation under grant No. 1931487. This project has

received funding from the European Union’s Horizon 2020 research and innovation programme under the

Marie Skłodowska–Curie grant agreement No 765703. The EU funding concerns the contribution of JB.

2.7.1 Conflict of Interest Statement.

None declared.

47

https://dna.physics.ox.ac.uk
https://github.com/sulcgroup/oxdna-viewer
https://github.com/sulcgroup/oxdna_analysis_tools


Chapter 3

ONLINE RESOURCES FOR CHARACTERIZING DNA AND RNA NANOSTRUCTURE DESIGNS

This chapter was published in E. Poppleton, R. Romero, A. Mallya, L. Rovigatti, P. Šulc, OxDNA.org:

A public webserver for coarse–grained simulations of DNA and RNA nanostructures Nucleic Acids

Research 49(W1), e72 (2021)

Abstract

OxDNA and oxRNA are popular coarse–grained models used by the DNA/RNA nanotechnology com-

munity to prototype, analyze and rationalize designed DNA and RNA nanostructures. Here we present

oxDNA.org, a graphical web interface for running, visualizing and analyzing oxDNA and oxRNA molecu-

lar dynamics simulations on a GPU–enabled high performance computing server. OxDNA.org automatically

generates simulation files, including a multi–step relaxation protocol for structures exported in non–physical

states from DNA/RNA design tools. Once the simulation is complete, oxDNA.org provides an interactive vi-

sualization and analysis interface using the browser–based visualizer oxView to facilitate the understanding

of simulation results for a user’s specific structure. This online tool significantly lowers the entry barrier of

integrating simulations in the nanostructure design pipeline for users who are not experts in the technical

aspects of molecular simulation. The webserver is freely available at oxdna.org.

3.1 Introduction

The field of nucleic acids nanotechnology uses DNA and RNA molecules as basic building blocks to construct

nanoscale structures and devices. DNA and RNA have been chosen due to their programmability, which exploits

the complementarity between corresponding bases (A–U/T, C–G) to design target nanostructures as overall

free–energy minima of systems composed of self–assembling single DNA or RNA strands. Over the past four

decades since its inception35, the field has lead to the production of increasingly larger and more complex self–

assembled structures with applications that include synthetic biology211, nanopatterning178, nanophotonics to

drug delivery56, diagnostics212, immunotherapy213, and vaccine development214. Experimental techniques,

such as fluorescent labeling, AFM and cryoEM are typically used to characterize the structures. However, the

resolution of the experiments is limited, and most structures are typically designed empirically through a

trial–and–error procedure, until the desired shape or structure property is achieved, which is time–consuming

and costly.
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Figure 15. The oxDNA model is a coarse–grained one–bead–per–nucleotide model of DNA with empirically

derived potentials between the beads which replicate the physical, mechanical and thermodynamic

properties of double- and single–stranded DNA molecules. The electrostatic repulsion between nucleotides is

implemented using Debye–Hückel potential. The oxRNA model uses similar nucleotide–level representation

for RNA molecules as oxDNA does for DNA.

An alternative is provided by computer simulations, which can offer detailed insight into the function and

properties of DNA and RNA nanostructures. Using atomistic resolution models faces challenges due to the

size of the systems (ranging from hundreds to tens of thousands of nucleotides), and long timescales involved

in assembly as well as equilibrium states sampling for typical nanostructure designs. Hence, coarse–grained

models, which use simplified representations that group multiple atoms into a single particle with effective

parametrized interactions, have become increasingly popular to study nanostructures144,215. Finite element–

based computational studies of mechanical and structural properties of nanostructures126,127 have also been

developed. Among the most popular tools in the past few years have been the oxDNA and oxRNA models for

DNA and RNA nanotechnology modeling140,141,143,159. They represent each nucleotide as a single rigid body

with empirically designed interactions that are parameterized to reproduce basic structural, mechanical and

thermodynamic properties of both single–stranded and double–stranded DNA (Fig. 15). Where available, the

models have been found to be in good agreement with experimental data and have been used in over 130

articles in the past ten years. Applications range from studies of biophysical properties of DNA and RNA to

studies and rationalization of the function of DNA nanodevices, probing nanostructure design and simulations

of their assembly54,145,146,166,176,184,189,191,192,215–217.

However, there is a steep learning curve in using the simulation code. It requires access to GPU–equipped

servers, knowledge of command line environment and practical experience in setting up and evaluating molec-

ular dynamics (MD) simulations, which typically requires at least basic programming expertise as well. One

of the most common use cases of oxDNA and oxRNA is to prototype and test novel nanostructure designs in
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Figure 16. Workflow of the oxDNA.org pipeline

equilibrium sampling simulation. To ease the use of the tool and also make it accessible to a broader user

base, we introduce here a public webserver, oxDNA.org, with a GUI that integrates automated simulation

setup and subsequent evaluation in an intuitive user–friendly environment. We provide here the description

of the simulation setup and analysis workflow, as well as information about the models and the file formats

used. Further tutorials and examples of how to use the server are provided online.

3.2 Methods

3.2.1 Server Data Processing

OxDNA.org runs the public release of the oxDNA simulation code that implements the oxDNA2 and oxRNA

models. It facilitates user interaction via a graphical user interface (GUI) that automatically generates pa-

rameters for the simulation and simplifies post–processing. The data workflow used by oxDNA.org is shown

in Fig. 16. The details about the parametrization of the models and the computational implementation can

be found in previous work140–143,159. The oxDNA.org webserver brings together, for the first time, structure

relaxation, simulation, visualization and post–processing in a single GUI environment. Users provide the DNA

and RNA structure input files in the oxDNA format and are presented with the option to choose a limited

number of simulation parameters:

• Input files – An oxDNA configuration and topology file pair that define the structure that will be simulated
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• Job Name – The name you would like to give the job

• Interaction Type – Whether to use the oxDNA2 or oxRNA force field when running the simulation

• Salt Concentration – The monovalent ion concentration in molar. OxDNA uses the Debye–Hückel elec-

trostatic model to implicitly model reduction in backbone electrostatic repulsion due to the presence of

monovalent ions. Magnesium interacts with DNA and RNA in a non–uniform, site–specific manner and

therefore is not included in the oxDNA model. Previous studies165 have shown that high monovalent ion

concentration in the simulation produce results very similar to those found in experiments containing

standard levels of magnesium ions.

• Steps – The number of steps to run the simulation (running time = steps · timestep)

• Temperature – The temperature of the simulation (set with an Andersen–like thermostat).

• Relaxation – If checked a relaxation protocol will be run prior to the production simulation. The protocol

comprises a Monte–Carlo (MC) relaxation and an MD relaxation.

The following additional parameters are available for the relaxation protocol:

• MC Steps – The number of steps to run the MC relaxation for. This is mostly used to relax overlapping

particles and stretched bonds. If there are not many of these in the input structure, this can be shorter

than the default.

• MD Steps – The number of steps to run the MD relaxation for. If structures do not completely relax,

this step should be made longer.

• MD Timestep – The timestep of the MD relaxation. If structures fail to relax or explode during the

relaxation, it can be helpful to lower this value.

The following parameters are also available in the “advanced parameters” section for the production simula-

tion:

• Backend – Run using the CPU or CUDA (GPU) backend. For structures over a couple hundred nucleotides

the CUDA backend will be significantly faster. The server is equipped with 8 GPUs and 20 CPU cores, so

small structures should be run on CPU to leave GPU capacity for larger structures.

• Simulation Timestep – The timestep of integration for the MD simulation. This number should not be

set higher than 0.003 to avoid numerical instability.

• External Force File – The user may upload an external force file to add additional forces, for example, to

pull two separated strands into proximity to facilitate binding. The external force file can be produced

using the oxView visualization and analysis tool114 by selecting which nucleotides should be paired
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together. Alternatively, the force files can also be used to pin a specific nucleotide to a given position,

or to introduce a 2D plane in the simulation box, as documented in dna.physisc.ox.ac.uk.

• Average Sequence Model – By default, oxDNA and oxRNA uses the same (averaged) sequence strength

for A–T(U) and C–G base pairs and for stacking interactions. Switching this option will run the model

with sequence–dependent strengths for A–T and G–C bonds (or A–U, G–C and G–U for RNA) as well as

with sequence–dependent stacking interaction strengths.

• Mismatch Repulsion – The oxRNA force field is known to over–stabilize mismatches between paired

segments. This introduces an additional repulsion force between non–complementary bases to reduce

such incidents.

• Print Conf Interval – The frequency with which the simulation will print its current configuration to the

trajectory file. The default number was chosen to obtain configurations that are, on average, uncorre-

lated. OxDNA limits data output to 5 MB per second, so the maximum print rate depends on the size

of the structure.

• Print Energy Interval – The frequency with which the simulation will print its current energy to the

energy file.

The default parameters were chosen to provide a good balance between runtime and sampling and in most

cases will result in a trajectory with uncorrelated energies between subsequent configurations. The default

parameters will run a DNA simulation at 20◦ C and 1 M sodium concentration for 1e9 MD steps with a timestep

of integration of 0.001 simulation time units. Note that, due to the inherent nonlinearity in coarse–graining,

an exact time correspondence with experiments cannot be established166. Based on direct unit conversion

the default running time corresponds to 3.03 µs. However, the choice of the diffusion coefficient in the

simulation makes diffusion 100 times faster than what has been measured experimentally. Hence, the 1e9

steps corresponds roughly of up to 1 ms in real time. However, different processes might scale with different

ratios.

For structures exported from different DNA/RNA nanostructure design software, a relaxation step is often

required to achieve a physical configuration prior to starting the oxDNA simulation. For example, the respective

parts of the structures might be drawn on a lattice and the nucleotide positions in the design interface might

violate the possible length constraints imposed by covalent bonds. Other common problem with structures

directly exported from different design tools might be that some nucleotides are positioned too close to each

other, leading to steric clashes. An MD simulation cannot be directly started from such configurations, since

the large forces due to the unphysical conformations would lead to numerical instabilities. OxDNA.org hence
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implements the relaxation scheme described in158 where a short Monte–Carlo simulation is first performed to

reduce excluded–volume clashes and shorten stretched bonds. The structure is then relaxed using a longer MD

simulation with a highly–coupled Bussi–Donadio–Parrinello thermostat157 and a modified backbone potential

which reduces the possibility of numerical instabilities. The default relaxation parameters on the webserver

are very generous in order to facilitate most user submissions. Structures that are already in a near–physical

state can be run faster by reducing the number of steps in the relaxation, while some structures that are very

far from their expected configuration may require more aggressive methods beyond the scope of oxDNA.org

such as rigid–body dynamics114 (which can be performed in the oxView windows on oxDNA.org, however it

is more convenient to use the full–screen version on the main website), mrDNA144, or interactive relaxation

using oxServe218.

Simulations of a full–sized DNA origami (approx. 10 000 nucleotides) take about 3 days to run on

oxDNA.org with the default parameters, with runtime scaling approximately linearly with the total number

of nucleotides. Users are allowed to submit up to 4 simulations at a time, and the trajectories are kept on the

server for one week after completion. The trajectories are stored in a compressed 7zip format, however for

a origami–sized structure the files will still be approx 3 GB, so ensure sufficient time to download the results.

The server is currently equipped with 8 NVIDIA RTX 2080 Ti GPU cards with plans to expand capacity in the

future.

3.2.2 Software

The web frontend/backend uses a Flask (Python)/Angular 1.8 (JavaScript)/Boostrap(CSS+HTML) stack.

The main code of oxDNA is written in C++ and CUDA and can be downloaded from (dna.physics.ox.ac.uk).

OxView (sulcgroup.github.io/oxDNA-viewer/) is a single–page Three.js (JavaScript) application used for visual-

ization and editing of oxDNA structures. Analysis is performed using the Python–based oxDNA_analysis_tools

package (github.com/sulcgroup/oxDNA_analysis_tools). Examples of outputs are demonstrated in the follow-

ing section.
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Figure 17. Submitting a job on oxDNA.org. The Job submission interface showing the uploaded

structure in oxView and the parameter setting (A). The job status page where users can check the status of

their jobs as well as download the original input files as well as the output files and logs. Clicking on the job

name will take the user to the analysis page for that job (B).
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3.3 Results and Discussion

3.3.1 Input Files for the Server

The job submission form on oxDNA.org (Fig. 17) requires two files: configuration and topology. Both files

are described in detail in the oxDNA documentation on dna.physics.ox.ac.uk. Briefly, the configuration file

header has three lines that contain, respectively, the timestep, simulation box size, and total, potential and

kinetic energy per particle for the given configuration. Then, the file contains one line per nucleotide. Each line

contains nucleotide position, the normal particle orientation vectors a1 and a3 of the reference frame of the

nucleotide, and the velocity and angular velocity vectors. The topology file contains connectivity information

defining which particles are connected together to form strands as well as the nucleoside identity of each

particle. The first line of the topology file shows the total number of nucleotides and strands. Then, for each

nucleotide, its corresponding line in the topology file lists the strand id that the nucleotide is part of, the base

identity (A,C,G, T or U for RNA), the id of the nucleotide’s 3’ neighbor along the strand and then the id of the

nucletotide’s 5’ neighbor. The nucleotides in the topology file are listed 3’ to 5’ (note the backwards convention)

for each respective strands. If a nucleotide does not have a 3’ or 5’ neighbor, the id of the neighbor is listed

as -1. The ids of the strands start from 1, the ids of the nucleotides start from 0.

There are a variety of popular design tools in the DNA/RNA nanotechnology field94,97,106,111,112 that can be

used to create a starting configuration for an oxDNA simulation. Some (like Adenita, MagicDNA or vHelix) have

built–in exporters to the oxDNA format while others (caDNAno, Tiamat, or PDB format) can be converted using

TacoxDNA (tacoxDNA.sissa.it)174. OxDNA files can be edited using the oxView tool, either on the main web-

site (sulcgroup.github.io/oxDNA-viewer/) or in the small viewer window when submitting jobs on oxDNA.org.

Users may optionally include an external force file which defines an external potential that acts on certain

particles in the simulation. Most commonly used are mutual traps, which add an external spring potential of

a given stiffness and equilibrium length between two particles. These files can be generated using oxView or

oxDNA_analysis_tools or can be manually written based on the template provided in the documentation.

When submitting a job, users can either sign up for an account to keep track of all their submissions in

one place or submit anonymously, in which case the user should bookmark the job output link for later access.

Users who create an account may opt–in to emails when jobs complete and will receive email reminders about

stale files that will soon be removed from the server.
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Figure 18. Analyzing a completed job. The job analysis interface showing a few of the options available

to users when their simulation finishes. (A) In this example, a wireframe DNA origami from108 was

simulated and, when finished, the mean structure with RMSF and the end–to–end distances of two of the

edges were calculated. Clicking on the “view” options will open the structure in a separate oxView tab

allowing the user to interactively explore their results. (B).

3.3.2 Server Output Result

There are two pages of outputs from simulation jobs run on the server (Fig. 18). The first is a summary

table of all jobs run by the user which contains links to download the initial configuration and topology files

submitted, as well as the simulation input file and job logs generated by the server. The user can further view

or download the last configuration output by the simulation and download a zip archive containing the entire

simulation trajectory. By clicking on the job name, the user will be taken to the analysis page where they will

find many options for post–processing of their simulation trajectory. This page is a GUI implementation of

many of the scripts found in oxDNA_analysis_tools. The following scripts are available through the GUI:

• Mean and RMSF – Uses single value decomposition (SVD) alignment to calculate the mean position of

every nucleotide, then again analyzes the trajectory to get the root mean squared fluctuation (RMSF)

of each particle from its mean position.

• Align Trajectory – Uses SVD to align all frames in the trajectory to the first. Produces a clearer view
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of fluctuations when viewed or converted to a movie using oxView. This creates a trajectory file about

2/3 the size of the original, so is recommended prior to downloading.

• Distance – Calculates the distances between two lists of particles (the first particle id in “particles 1” is

compared with the first particle id in “particles 2” etc.) Results are provided as both a histogram and

line plot format in addition to as a text file.

• Energy – Creates plots out of the simulation energy file showing the average potential energy per particle.

Fluctuation around a constant value is the simplest way to determine whether or not a structure has

been properly equilibrated.

• Bond Occupancy – Calculates the percentage of trajectory frames in which the bonds present in the

first configuration are subsequently present. This is useful for prototyping structures, as improperly

designed regions will be unstable and prone to breaking base pairs.

• Duplex Angles – This is split into two sections, the first calculates the orientation of all duplexes in the

structure. The second takes as input the starting nucleotide ids of duplexes and uses the output file

from the previous script to calculate the angle between duplexes that start with those particles. The

input and output format are the same as the distance script.

“Mean and RMSF”, “Energy Plotter”, and “Bond Occupancy” give a good summary of how the structure behaves

and what fluctuation modes the structure encountered during the simulation. Base pair occupancy in particular

is something that rapid equilibrium structure prediction algorithms such as CanDo126 and SNUPI127 cannot

predict. Distance and Angles serve to ask specific questions about how regions of the structure behave

relative to one another, allowing the user to accurately discern parameters such as ideal locations for FRET

pairs or explore 3D curvature that is not visible on AFM images. All results from the server can be downloaded

by clicking the download link.

The webserver has been tested on all major browsers and operating systems (Table 1). The original

oxDNA code is supported only for Unix–based systems, so this improves accessibility to those using Windows

environments.

3.4 Conclusion

OxDNA.org simplifies the oxDNA/oxRNA simulation pipeline and makes a tool previously limited to Unix

command line execution usable to non–expert users via a GUI. OxDNA has long been a popular tool for the
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Linux Yes Yes N/A N/A

Windows Yes Yes N/A Yes

OSX Yes Yes Yes N/A

Table 1. Browser Compatibility oxDNA.org works in all major browsers and operating systems.

prototyping of DNA and RNA nanotechnology structures, and we hope that the simplification of the interface

and the implementation of automatic relaxation will allow this tool to find wider adoption among traditionally

experiment–only groups and that simulation–probing will become a standard step within the nucleic acid

nanostructure design and characterization process. The webserver implementation and scripts are also freely

available under GNU Public License at github.com/sulcgroup/oxdna-web.
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Chapter 4

USING OXDNA SIMULATIONS TO CHARACTERIZE THE EFFECTS OF DESIGN CHOICES ON A LEAF–SPRING

NANOENGINE

This chapter previously appeared in preprint form M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc,

M. Famulok, A rhythmically pulsing leaf–spring nanoengine that drives a passive follower BioRxiv

(2021)

Abstract

Molecular engineering seeks to create functional entities for the modular use in the bottom–up design

of nanoassemblies that can perform complex tasks. Such systems require fuel–consuming nanomotors that

can actively drive downstream passive followers. Most molecular motors are driven by Brownian motion, but

the generated forces are scattered and insufficient for efficient transfer to passive second–tier components,

which is why nanoscale driver–follower systems have not been realized. Here, we describe bottom–up

construction of a DNA–nanomachine that engages in an active, autonomous and rhythmical pulsing motion

of two rigid DNA–origami arms, driven by chemical energy. We show the straightforward coupling of the

active nanomachine to a passive follower unit, to which it then transmits its own motion, thus constituting

a genuine driver–follower pair. Our work introduces a versatile fuel–consuming nanomachine that can be

coupled with passive modules in nanoassemblies, the function of which depends on downstream sequences

of motion.

4.1 Introduction

Active mechanical motion of nanoscale objects is paramount for the bottom–up construction of bio- or

technomimetic nanomechanical machines219–224 that can perform tasks like pumping225, walking226, transduc-

tion or sensing of molecules or signals9, or any process involving motion227,228. Both in the nano– and in the

macroscopic world these processes require fuel–powered engines that perform periodically repeating rhythmic

motion. Impressive examples of synthetic pumping, rotating, or moving fuel–driven nano–devices exist229–233

but the creation of engines that generate active rhythmic motion at the nanoscale, driven by chemical fuel, re-

mains challenging234–236. Here we report a bio–hybrid nanoengine (NE) that rhythmically pulses by consuming

nucleoside triphosphates as fuel to build up potential energy stored as spring–tension in a compliant flexure

mechanism, followed by active relaxation. The device consists of two rigid DNA origami–arms connected in
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a V–shape by a bendable flexure at the pointed end, and a double–stranded DNA (dsDNA) sequence that

spans the diverging ends237. One origami–arm has a T7-RNA polymerase (T7RNAP) covalently attached near

a T7 promotor sequence in the dsDNA, allowing its use as a transcription template to create traction238–240.

Upon transcription, the stationary T7RNAP pulls the dsDNA like a rope and drags the opposing origami–arms

towards itself, which builds up spring tension at the compliant flexure that is released when the polymerase

reaches a termination sequence near the opposite origami arm allowing the structure to return to its equi-

librium position. This design leads to a continuous rhythmic flapping motion the frequency of which can be

tuned by slight changes in the transcribed dsDNA sequence. Coarse grained molecular dynamics simulations

illustrate the mechanical properties of various nanoengine designs and confirm our experimental results. In a

prototypical application we show that the engine acts as a mechanical driver that can be coupled to a passive

follower unit to which it then can actively transfer its motion, opening ground–breaking opportunities for its

future use to drive more complex nanomachines, similar to the balance wheel in a watch or in Leonardo da

Vinci’s self–propelled cart.

4.2 Design of the Nanoengine

The two 60 nm long origami–arms are formed by 18 helix bundles (18hb) that are arranged in a hon-

eycomb structure to form rigid and straight arms (Figure 19a, for exact sequences and CadNano map see

Supplementary Dataset S1 and Supplementary Dataset S2). They are connected by six 28 nm long dsDNA

helices arranged as a 12 nm wide sheet that can be bent to serve as the compliant leaf–spring, as shown

in previous work237,241, and by six single–stranded (ss) DNA strands that ensure the formation of the bent

V–shape by being overall shorter than the double–stranded compliant area (Figure 19a–e; Figure B1a in ap-

pendix B). A 154 nucleotide (nt) long transcribable dsDNA template strand (Figure 19a,c, grey; Figure B1b in

appendix B) spans the origami–arms and is firmly connected to each of them at 30 nm distance (Figure 19a;

Figure 19e, red dots) from the leaf–spring ends. One of the origami–arms contains a sequence with a 5’–

chloroalkyl group attached near the template dsDNA (Figure 19e, yellow dot; Figure B1c in appendix B), to

which a HaloTag–T7RNAP fusion protein (Figure 19a–c, orange–blue; Figure B1b,d,e in appendix B) couples

covalently at its HaloTag242 (HT) subunit (Figure B1f in appendix B). The dsDNA template contains a T7 RNA

polymerase promoter region (yellow, Figure B1a,g in appendix B) and a sequence that, once transcribed, binds

to a molecular beacon (green, Figure B1a,g in appendix B) to monitor the amount of RNA generated during

transcription. The proximity of the HT–attachment site and the dsDNA template (Figure 19e, yellow and red

60



dots) helps the T7RNAP bind to the T7 promotor sequence in the template (Figure B1a,b in appendix B, yellow)

and facilitates initiation of transcription in the presence of NTPs until it reaches the terminator sequence at the

opposite end of the dsDNA template (Figure B1a,b in appendix B, red). Moreover, the opposing origami–arm

contains four biotinylated sequences that protrude the arm at the outer part of the structure to which four

streptavidin proteins can be attached to unambiguously identify each arm by atomic force microscopy (AFM,

Figure 19d,f) or transmission electron microscopy (TEM, Figure 19g). The protruding biotin residues also can

potentially serve as attachment points to anchor the NE on surfaces or to other origamis. These features

were designed so as to operate the NE autonomously and continuously in a rhythmic opening/closing cycle

(Figure 19h) starting from the open equilibrium conformation of the structure, in which the T7–promotor is

bound by the HT–T7RNAP to begin transcription (Figure 1h, 1). The pulling of the template DNA through the

immobilized T7RNAP closes the origami structure while building up spring tension in the compliant segment

of the structure that generates a counteracting force (Figure 19h, 2). Once the terminator sequence has been

reached, the polymerase releases the template dsDNA and the structure opens to its equilibrium conformation

(Figure 19h, 3) and is ready to begin a new cycle.

The purity of the origami was analysed by gel electrophoresis and the structural integrity of NEs was

confirmed by AFM (Figure 19f), and TEM (Figure 19g). In the AFM images of NEs that are not engaged in

transcription the dsDNA template is clearly visible in between the origami–arms. The TEM images also show

the HT–T7RNAP (Figure 19g, right panel, blue arrow) and the three streptavidin–tags (green arrows). AFM

distance measurements by height profiling confirm the designed distance of 21 nm between the streptavidin

tags and the height of the origami–arms, respectively (Figure B2c–e in appendix B). We also analysed NEs

during transcription by TEM (Figure 19i,j). The TEM image (Figure 19i, right) shows that the DNA template

strand exists in a strained state during the initial phase of transcription, as shown in the 3D model (left).

Examples of NEs in the final phase of transcription show the origami–arms in a “closed” state (Figure 19j,

right), as shown in the 3D model (left).

4.3 Molecular Dynamics Simulations

Coarse–grained simulations using the oxDNA model140–143 of different NE designs were performed to fur-

ther characterize the impact of our design choices on mechanical properties (Figure 20a). In addition to

verifying agreement with experimental results, there were three questions that we explored using the higher
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Figure 19. (Previous page.) Design and dimensions of the DNA leaf–spring nanoengine. (a)

Cross–section of the leaf–spring NE. Dimensions of the stiff origami–arms. Green circles: attachment sites

for streptavidin binding; blue circle: T7RNAP–part of the HT–T7RNAP fusion protein. Top panel: arrangement

and dimensions of the 18-helix bundle that forms the origami–arms, (b) cross section of the 90° left turn of

the cross section shown in (a); orange: HaloTag (HT), blue: T7RNAP, (c) cross section and dimensions of

the 90° left turn of the cross section shown in (b), (d) cross section and dimensions of the 90° left turn of

the cross section shown in (c), (e) cross section and dimensions of the origami–arms that flank the 28 nm

long leaf–spring helices (dark grey) that are arranged in a honeycomb structure (bottom panel), red dots:

attachment sites of the dsDNA template strand, yellow dot: attachment site of the HT–T7RNAP. (f)

Characterization by Atomic force microscopy (AFM) of the leaf–spring NE. Overview (left) and detailed image

(right) of the NEs in alternating contact mode in air on a poly–L–ornithine–functionalized mica surface, (g)

Transmission electron microscopy (TEM) of the NE in negative staining. Overview (left) and detailed image

(right) of the NEs. Green arrows: streptavidin molecules bound to biotin–modified staples protruding from

one of the origami–arms opposite to the location of the HT–T7RNAP fusion protein (blue arrow), (h) Full

opening and closing cycle of the compliant mechanical structure. 1 in the open structure the dsDNA template

is bound by the immobilized HT–T7RNAP fusion protein and transcription begins. 2 upon transcription,

HT–T7RNAP pulls the opposing origami–arm towards itself forcing the structure to close. 3 When the

terminator sequence is reached, the T7RNAP releases the dsDNA template linker, which causes the structure

to snap open to its equilibrium conformation. The T7RNAP can initiate the next closing cycle. (i) Example of

the NE engaged in transcription. Blue arrow: HT–T7RNAP, green arrows: streptavidin, (j) Example of the NE

engaged in transcription. Blue arrow: HT–T7RNAP, green arrows: streptavidin. All scale bars: 100 nm.

degree of resolution and control afforded by molecular dynamics: (1) the relative rate of opening and closing

the structure, (2) The contribution of the ds bridge to the re–opening rate, and (3) the effect of scaffold

sequence across the single–stranded regions of the flexure. Notably, the simulations showed that the largest

influence on mechanical properties came from transient, sequence–dependent secondary structures formed

by the single–stranded domains in the flexure. Disallowing formation of these secondary structures (“no struc-

ture”: all structures labelled as NS in Figure 20b) increased both the equilibrium angle and the stiffness of

the (n)NE (Figure 20b). Conversely, allowing the formation of secondary structures reduces the equilibrium

angle to roughly the same value, irrespective of variations in the transcribable sequence (NE_NB, NE, and

nNE in Figure 20b). This effect is particularly pronounced in the NE–structure lacking the transcribable DNA

sequence (“no–bridge”: labelled as NB in Figure 20b), where the difference in equilibrium angle between

NE_NB and NE_NS_NB is 25°. This result suggests that the secondary structures in the hinge region are the

largest determinant of equilibrium angle and stiffness (Figure B3a in appendix B); however, the presence of

the transcribable sequence imposes a hard upper limit on the opening angle of the structure.

In the absence of the transcribable dsDNA and secondary structures in the hinge region, the DNA leaf

spring can stretch out and reach an equilibrium angle of 80° with a standard deviation of 9°. When the

transcribable sequence is introduced, NE_NS and nNE_NS have comparable equilibrium angles of 71 ±6°

and 74 ±5°, respectively, both with a negatively skewed distribution caused by the upper limit imposed by

the transcribable sequence. When secondary structures are permitted, the scenario changes drastically: now
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NE_NB, nNE, and NE have highly comparable equilibrium angles of 55° ±8°, 58° ±7°, and 54° ±7° respectively

(Figure 20b), implying that the effect of the transcribable dsDNA on the equilibrium angle is negligible. These

results suggest that the hairpins formed by the single stranded sequences decrease the length and flexibility

of the hinge region, influencing both the overall shape and rigidity of the origami. The structures in the hinge

region are only slightly affected by temperature changes. Increasing the simulation temperature from 23 °C to

37 °C only marginally increases the angles observed in the simulated structures. (Figure B3b in appendix B).

To test whether the predicted effects of the simulations can be confirmed by experimental results, we

analysed the angle distribution using TEM images of a construct lacking the transcribable dsDNA (NE–NB) and

compared it with that of NE (Figure B3c,d in appendix B). We observed that the two populations have the

exact same distribution (p = 0.6), suggesting that the secondary structures predicted by the simulations are

indeed present in experimental conditions and have an impact on the conformational freedom of the structures.

Notably, the angle was systematically lower in the simulation compared to the experimental measurements. A

possible reason for the difference is that the experimental angles were measured from TEM images of surface

deposited structures, which could have caused slight deformation of the structure due to the adherence to the

TEM grid. In the 3D simulations we observe out–of–plane twisting in the structures (Figure B3e in appendix B).

It is likely that deposition of structures on the surface compensates some of this out–of–plane twist by opening

the structure slightly wider.

To sample the behaviour of the NE under tension, mimicking the action of T7RNAP, pulling and release

simulations were performed by applying a constant force comparable to that exerted by the T7RNAP (16

pN) between the nucleotide covalently linked to the T7RNAP in experiments and the first nucleotide of the

terminator sequence. In general, closing was faster than opening with rates of 0.28 ±0.07 °/ns vs. 0.13 ±0.06

°/ns for nNE and 0.28 ±0.10 °/ns vs. 0.11 ±0.05 °/ns for NE. These results are in accordance with what one

would expect if we take into account that closing is a driven process while opening relies on releasing strain

built up during the closing process and a component of Brownian motion. It also explains our experimental

observation that nNEsoft showed a similar transcription rate as nNE (Figure B2j in appendix B). Interestingly,

when secondary structures are prohibited the closing rate for nNE–NS was 0.29 ±0.10 °/ns and the opening

rate was 0.21 ±0.07 °/ns. For NE–NS, the closing rate was 0.26 ±0.08 °/ns and the opening rate was 0.22

±0.05 °/ns (Figure 20d). The similarity of the closing rates while doubling the opening rates when secondary

structures are disallowed suggests that the secondary structures have little effect on the driven closing process,

however they stabilize the closed state and impede the stochastic opening process. The transcribable sequence

has a smaller impact on opening rates. In simulations where that region was deleted from the closed state and
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allowed to re–open, the rate was slightly slower than the corresponding complete structure (0.08 ±0.07 °/ns

for NE_NB and 0.15 ±0.06 °/ns for NE_NS_NB). No significant difference was observed between the rates

of pulling and opening when NE (with the entirely transcribable dsDNA) and nNE (where the transcribable

dsDNA contained two nicks) simulations initiated from the same starting configuration (Figure 20c, d). The

simulation results hence suggest that the experimentally observed difference in closing and opening rates

between NE and nNE can be attributed to supercoiling caused by the activity of the polymerase rather than

to the mechanical properties conferred by the transcribable dsDNA to the NE itself.

The effect of temperature on the dynamic simulations was similar to the equilibrium simulations. The rates

of opening and closing were slightly increased and the variance of replicates of closing and opening simulations

increased at 37 °C, as would be expected due to the increase in the accessible phase space (Figure B3f,g in

appendix B).

To get a better insight into the observed phenomenon of a reduced transcription rate when the transcribable

dsDNA sequence is anchored only next to the polymerase we extracted the amount of time the promoter

region spends next to the polymerase in the case when the dsDNA strand is fully anchored at both ends to the

origami and when it is only attached next to the polymerase. As the T7RNAP is not explicitly represented in the

simulations, an approximation of accessibility was made based on distance. The overall geometry of T7RNAP is

roughly that of a sphere 10.35 nm in diameter243. Thus, to a first order approximation, transcription can only

be initiated when the distance between the polymerase attachment site and promoter sequence are within

10.35 nm proximity (this approximation ignores the specific orientation required to initiate transcription). The

simulations showed that in the nNE the promoter region spends 54.9 ± 0.01% of the time in the 10.35 nm

radius but this time is reduced to 45.6±0.01% when the dsDNA strand is only anchored next to the polymerase

indicating how the higher number of degrees of freedom in the latter case reduces the chances of the promoter

region to be in a favourable position to obtain efficient transcription. (Figure B3h in appendix B).

4.4 Driver–Follower Experiments

An important task of any engine that actively performs work is the ability to be coupled to passive moving

parts for transmission of force or motion. Nature has found vast solutions for the transmission of force, primar-

ily by myocytes or adherent cells, but examples demonstrating nanomechanical force and motion transmission

by synthetic machines are scarce and the motion occurs mostly stochastic39,244–246. To demonstrate that nNE
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Figure 20. Coarse–grained simulation of NE designs. oxDNA simulations were performed to determine

dynamic structural properties of the NE. (a) Mean structure of an equilibrium sampling simulation of nNE

represented in oxDNA, (b) Equilibrium angle distribution of six designs during oxDNA simulation. NE - nano

engine; nNE - nicked nano engine; NS - no structure, where base pairing was turned off for single stranded

regions of the flexure to isolate the effect of secondary structures forming in the flexure; NB - no

transcribable dsDNA bridge; here the transcribable dsDNA bridge was deleted using oxView’s editing tools,

to determine its effect on equilibrium and opening simulations, (c) Simulation–determined closing rates from

pulling simulations, (d) simulation–determined opening rates from relaxation simulations where the forces

from the pulling simulations are released and the structure is allowed to open again.

can act as non–stochastic, autonomous mechanical ‘driver’ (D, Figure 21a) and actively transmit its force to

a passive part that follows its motion, we coupled nNE to a passive ‘follower’ (F, Figure 21b). We added five

unique ssDNA overhangs protruding axially from the extremities of each origami arm of D and F. Each of the

ten sequences in D allow for the hybridization of only the complementary 10 sequences on the F unit to form

the rhomboid–shaped hetero dimer D–F (Fig 21c–e); formation of homodimers D–D or F–F is not possible

due to the non complementarity of the sequences (Figure B4a,b in appendix B). To strengthen the connection

between D and F, three LNA modifications247 were included into two of the overhanging sequences on each

D–arm that connect to F (Figure B4b in appendix B, red).

As before for nNE, a large set of TEM images of only the rhomboidal D–F dimers (Figure B4c in appendix B)

with and without transcription was analysed to obtain angle distributions under both conditions (Fig 21f). Box
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plots of the distribution (Fig 21g) show that the median (Q2) shifts from 65° in absence of transcription

(blue) to 52° in presence (orange). The quartile distribution Q1 shifts from 54° (no transcription, blue) to

39° (transcription, orange), and Q3 shifts from 75° (no transcription, blue) to 63° (transcription, orange).

Moreover, the formation of the D–F complex apparently leads to slightly narrower, less skewed, and more

symmetric angle distributions under both conditions (Figure B4d in appendix B, blue, orange) as compared to

NE (red, green) suggesting that the connection of D and F has a stabilizing effect on the angle. These data

demonstrate that transcribing D–F structures exhibit more acute angles on average than non–transcribing

ones and indicate that the D–bound F unit follows the motion imposed by D.

This trend becomes evenmore apparent in case of a D–F complex in which the F unit has a completely single

stranded flexure region (F–ss–hinge, Figure B4f,g in appendix B). In the ‘ss–hinge’-design the interaction of

dsDNA flat spring and ssDNA tension sequences is absent. Consequently, F does not assume a defined angle,

which is reflected by a broad angle distribution median of 113° (Figure B4h,i in appendix B, olive, F–ss–hinge).

However, when bound to D, the median shifts towards a more acute median angle of 71° (Figure B4h,i

in appendix B, wine, D–F–ss–hinge no transcription) under no transcription, and a median of 56° under

transcription conditions (Figure B4i in appendix B, green, D–F–ss–hinge transcription), comparable with the

medians obtained for NE. The boxplots also show that the angle distributions become considerably narrower

in the D–F–ss–hinge complex compared to F–ss–hinge: under no transcription the difference between Q3 and

Q1 in D–F–ss–hinge measures only 23° while in the F–ss–hinge it measures 54° (Figure B4i in appendix B).

When the D unit was coupled to an F–derivative with a soft hinge, (F–soft–hinge; Figure B4j in appendix B)

in which two staples are removed from the dsDNA flexure region, the transcription shows a behaviour that

is comparable with the D–F sample. The median angle of the distribution shifts from 62° in absence of

transcription (yellow, Figure B4k,l in appendix B) to 50° under transcription conditions (purple).

We next measured the transcription speed of different driver follower constructs relative to the single D

(or nNE) unit. D was combined with the F–ss–hinge, F–soft–hinge, or the F unit (Fig 21h). Although the

differences are small, we observed a significant increase of transcription rate for the D–F–ss–hinge and the

D–F–soft–hinge, respectively, of 1.2 ±0.2 (p = 0.001) and 1.2 ±0.2 (p value 0.01), respectively, compared to

nNE. The combination of D with F (D–F) showed no significant increase in transcription speed compared to nNE

(Fig 21h, nNE vs. D–F). These results indicate that the combination of the active driver with a passive follower

unit influences the closing and opening speed of the dimeric system. In case of the D–F we hypothesize that

the addition of a complete hinge to the dimeric complex adds further resistance to the closing and this effect

is compensated just enough by the reopening spring effect to result in no significant effect on the overall
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transcription speed. In the case of the F–ss–hinge and the F–soft–hinge, however, the closing speed is not

significantly affected due to less resistant springs but the reopening is enhanced by the higher entropic degree

of spring areas resulting in a slightly increased transcription rate.

We simulated the D–F connected structure during the opening and closing process. When plotting the

angle of the F unit against the corresponding angle in the D unit it is possible to notice that the angles have a

linear correlation and are located along the bisector of the first quadrant (y = x). Deviation from the ideal line

that divides the first quadrant with 45 ° can be attributed to inherent flexibility in the origami itself and more

importantly in the contact points of the origami itself. Nevertheless, simulations show how, the angle that is

assumed by the driver unit is transferred over to the follower unit in a linear one to one fashion (Figure 21i).

4.5 Conclusion

We describe the bottom–up construction of a biohybrid DNA–origami–based nanomachine that performs

tasks that are fundamental for every contrivance requiring automated motion: An autonomous, fuel–driven,

rhythmically pulsing DNA–nanoengine that can be easily latched to any type of passive DNA–origami–based

‘follower’ entities to which it then transmits its motion and force, thus constituting a genuine driver–follower

pair.

Achieving autonomous active motion in a DNA–nanostructure constitutes a success in itself, but the demon-

stration that nNE can act as a driver of other devices adds considerable significance. Since DNA origami

technology permits the bottom–up construction of robust structures with different mechanical properties that

can span from mechanically rigid to bendable and compliant structures228,236,237,241, all bearing the option of

being combined into a single architecture, the versatility of mechanical power transmission by nNE is vast.

Although the different passive follower structures used here are fairly simple, the prototypical design of D–F

suggests that nNE should be applicable in other DNA–nanostructures to achieve considerably larger structural

rearrangements as exemplified before in non–autonomous systems99. nNE provides an actively moving nano

engine that operates fully autonomously; once the NTP–fuel is added to the system, the structure sets itself

in motion, and continues pulsation over several hours without further input. It can even be envisioned in-

troducing a switchable clutch mechanism that straightforwardly allows detaching the driver from a coupled

follower and attaching it to a different one while the engine is still running. For example by controllong the
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Figure 21. (Previous page.) nNE drives a passive follower unit. (a) Schematic representation of the nNE

driver D and the passive follower unit F in (b). The structures are modified to have ssDNA overhangs

protruding from the stiff origami arms. Five ssDNA overhangs (shown as red arrows) were introduced on

each arm for a total of 10 unique overhangs on each origami. The sequences are designed to allow the

connection of only the active structure to the passive structure. Biotin modifications are introduced only on

the driver unit and are shown as green dots. A Cy3 and Cy5 FRET pair in F are shown with a pink and cyan

dot, (c) the assembly of the D–F heterodimer is achieved by equimolarly combining the two parts of the

system and allowing a thermal annealing overnight. After 4.5 h of transcription experiments at 37 °C the

integrity of the system is confimed by AFM (d) size bar: 500 nm, and TEM (e) size bar: 100 nm, (f) Analysis

of the angle distribution from TEM images of the D–F dimer complex for samples that did not (n=1074, blue)

and did undergo transcription (n=1190, orange). The distribution was plotted as bar graphs with a bin with

of 3°, the count of each bar was divided by the total number of counts, and displayed as the relative count

percentages. The distribution significantly shifts towards more acute angles under transcription (p = 8 x

10-64), indicating the formation of structures with smaller angles during transcription; (g) Boxplot

representation of distributions. Blue: boxplot of D–F without transcription, orange: box plot of D–F with

transcription. The boxes represent the distribution at first quartile (Q1; 25%), second quartile or median
(Q2; 50%) and the third quartile (Q3; 75%) with dashed lines indicating the angular value in the
corresponding color. The whiskers represent 1.5-times the box size while the thin vertical lines represent the

1% and the 99% percentile of the distribution. The thin cross indicates the average angle of the distribution.

Average angles of distribution: D–F in absence of transcription 64°±17° (S.D. error), D–F with transcription

51° ±17°, (h) The transcription speed of different D–F complexes was measured and compared to the

transcription speed of D (nNE) alone (n = 27). Transcription speeds: D–F–ss–hinge 1.2 ±0.2 (n = 27, p =

0.001), D–F–soft–hinge 1.2 ±0.2 (n = 18, p = 0.01), D–F complex 1.1 ±0.2 (n = 24; p = 0.06). Bargraph:

average value with error S.D. (i) Simulation traces showing D–F coupling during 10 pulling simulations of the
D–F complex. Dashed line at y = x for reference.

hybridisation of the D–F connecting ODNs with light–switchable isomers, as has been shown for several DNA

nanomachines227,248–252.

By expanding the complexity of the structural features that can be easily attached to the origami by single

stranded overhangs or other chemical or biochemical modification, there is potentially no limit to the range

of motion or the type of motion that can be linear, rotative, pulsatile or contractile, that could be achieved by

introducing the nano engine as an active core component at the heart of bigger passive nano machines, the

function of which depends on downstream sequences of motion.
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Chapter 5

CONCLUSION AND FUTURE OUTLOOKS

Scientific software is notorious for its poor user design and rapid depreciation. In order for a scientific

field to reach maturity, it needs to develop a consistent set of tools which not only facilitate researchers

in achieving their goals, but also provides the continuity to allow institutional knowledge to pass through

successive generations of trainees and allow comparisons with past realizations. Nucleic acid nanotechnology

remains a field of high flux, with many new tools created every year to support nanoscale engineers in

designing and modeling their vision. Through the past decade, however, the oxDNA/RNA model and CaDNAno

have remained consistently popular despite attempts to create newer tools. This beginning of crystallized

software choices has led to a need for a new class of tools: software that supports, expands and connects

legacy tools together. The work presented at this dissertation is a first step towards creating a robust integrated

DNA/RNA design and simulation environment.

Chapters 2 and 3, introduced two new pieces of software which themselves do not answer novel scientific

questions, but rather make the oxDNA simulation engine more accessible and the data it produces easier

to analyze. These tools support and expand existing infrastructure for working with the oxDNA/RNA models

(Figure 22. Through the improved simulation setup and results visualization options provided by oxView, it

becomes more possible to use oxDNA as an iterative design tool where oxDNA simulations are used to identify

weaknesses in designs and oxView is used to perform fine–tune edits and test different designs. The structure

studied in chapter 4 is a fantastic example of this. Experimental characterization of the nanoengine (NE) left

many questions unanswered due to the limited resolution of microscopy techniques and the effects of the

surface. Combined with the format conversion tools introduced in174, oxView was used to take the structure

from the flat structure produced by conversion from CaDNAno to the many variations on the structure shown

in chapter 4 (Figure 23). Thanks to these simulations, I was able to identify a deficiency in the design in

that the scaffold strand was forming hairpins in a region that was intended to be single stranded. These

hairpin structures had a significant impact on the overall behavior of the NE, resulting in a smaller equilibrium

opening angle and slower re–opening kinetics than would have been observed for a design which used a

custom, orthogonal scaffold253.

This pattern of design–convert–build–simulate–analyze–edit has become integral in the design of complex
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Figure 22. The oxDNA ecosystem The tools presented in this dissertation are part of a larger ecosystem of

tools which implement, expand and support the oxDNA/RNA model.

nanostructures. Three of those four steps using the tools demonstrated in chapter 2. There have been

numerous papers in recent years54,254–256 which use this pattern to demonstrate some of the largest and

most complex DNA–based structures ever developed. It has been an honor to see the tools that I led the

development of become so integral to the field and play a key role in the maturation of DNA nanotechnology

into a field that is beginning to have applications beyond simply making interesting structures at the nanoscale.

Both oxView and oxDNA Analysis Tools are living pieces of software; because of their core role in the

research performed by the Šulc lab and others, myself and the other developers have continued to develop

and maintain the tools. Due to optimizations to the file readers and parallelization functions, oxDNA Analysis

Tools now runs computations 10− 100x faster than it did when chapter 2 was published and the oxView user

interface has been completley redesigned with many more editing features as well as the ability to prepare

simplified protein models161. OxDNA.org has run more than 10, 000 jobs for hundreds of users since its original

publication. At the time of writing, it has only been a year since the original publication, however the webserver

has already proven useful to many projects106,257–261. It has introduced many previously experimental–only

labs to the potential of using molecular simulation to further explore their designs.

Looking to the future, there’s still a lot to improve in the nanotechnology software environment. As we

move towards more complex and functional nanomaterials, the diversity of the chemistry has continuously

grown. DNA nanostructures are no longer just DNA, but are now decorated with proteins262, metal nanopar-

ticles263, and hydrophobic moieties264 in order to perform functional tasks, control light, and interface with

cells and cell–like vesicles. Currently, no tool offers a robust method to design with these other molecule

types the way CaDNAno lets us design with DNA. Towards that end, I have been involved in discussions with
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Figure 23. Using oxView to build the leaf–spring nanoengine (NE). (a) The design as exported from

CaDNAno. In CaDNAno all helices are parallel and creating off–lattice components is difficult. (b) OxView’s

translation, rotation, and rigid–body–dynamics tools were used to get the NE into roughly the correct 3D

geometry. (c) The polymerase attachment site and the dsDNA bridge were built using oxView’s freeform

design tools. (d) The relaxed NE after ligation of the freeform components and inital relaxation (e) The

no–bridge NE (NB_NE) was relaxed straight from (b). (f) The driver–follower structure was created by

building the connections (see Figure B2 in oxView and pulling the structure together with artificial forces.
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labs around the world as to the kinds of features we would like to see in future nano–CAD software packages.

One of the first products of these conversations is a draft of a highly–verbose file format, the Universal Nan-

otechnology Format265 which would allow software tools to both work with familiar formats — the CaDNAno

grid of virtual helices and the positions and rotations of the oxDNA format as well as other molecule types and

representations including PDB files for fully–atomistic protein structures. This draft format is far from perfect,

but we hope it will present the opportunity for future software developers to think about how we interact with

data structures and help future tools work with additional materials.

Another development that is needed to improve the ability of the nanotechnology field to build devices from

diverse materials are the tools to model them. The oxDNA/RNA model has been a fantastic success for DNA

and RNA, however is limited to those contexts plus a very simplified representation of proteins. Furthermore,

as structures grow larger and more complex, the nucleotide resolution used by oxDNA/RNA may be too high–

resolution to characterize structures at the timescales required. In light of this, the future of the modeling field

needs to be to move towards more multi–scale and multi–material models. A model which could capture less–

relevant or stiffer parts of a structure as rigid, convex polyhedra while representing components of interest at

the nucleotide (or subnucleotide) scale would greatly speed up, and improve the accuracy of molecular models

for nucleic acid nanotechnology. Multi–material models, including DNA, RNA, proteins, small molecules, lipids,

and metal nanoparticles is also a goal the field should strive for. The MARTINI266 force field is an attempt at

a model of this type, however this type of model still needs significant work; MARTINI is notoriously bad at

correctly reproducing the mechanics of DNA helices267.

While there is still much work to be done, the future of biological nanotechnology is bright. Between

more complex, robust and functional DNA and RNA structures, recent successes in de novo protein design

and efforts to put it all together in fully synthetic cell–like micromachines, there are beautiful and powerful

creations being developed all the time. Perhaps soon we will live in a world where multiplexed diagnostic tools

built from DNA computers, precision RNAi medicines are delivered with DNA nanocarriers, and fine chemicals

are produced on DNA–structured catalysis networks inside compartmentalized vesicles are all realities and not

the stuff of science fiction and marquee fraud cases. Whatever developments the future holds, it’s going to

happen on the back of good software which magnifies human creativity making the hard parts of design easy

and the easy parts trivial.
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A.1 OxDNA Input and Output File Formats

As the analyses discussed in the main text process the data from oxDNA files, it warrants a brief description

of the file types encountered when running and analyzing oxDNA files. This will mitigate confusion as to why

certain files are used in each case.

The three most important files are the input parameter file, the topology file and the trajectory file. The

input file is a text file with the simulation’s parameter names and values separated by equal signs. This file

defines simulation and physical parameters such as temperature, the force field used, and file I/O information.

Input files will be used by any analysis that calculates energy (primarily those concerned with hydrogen

bonds) or is optimized by writing its most computationally–intensive operations distributed and compiled with

the oxDNA code.

Topology files define the nucleotides present in the simulation. It is a text file with the extension .top

and contains a header line with the number of nucleotides and the number of strands separated by a space.

Following the header, each line defines a nucleotide with four values: the strand number, the base identity,

3’ covalent connection, and 5’ covalent connection (note that oxDNA numbers bases 3’-5’, the reverse of the

biochemistry convention). Strand ends have a value of −1.
The trajectory file contains the position, orientation and velocity of every nucleotide at each timepoint,

based on the interval specified in the input file. Each configuration in the trajectory begins with a three–line

header, defining the temperature, simulation box dimensions, and kinetic, potential, and total energies of the

system. Each subsequent line defines one nucleotide with 15 parameters: position, orientation defined by

two orthogonal vectors, translational velocity and rotational velocity. All parameters are in XYZ coordinates.

The TacoxDNA webserver174 has a variety of conversion tools from popular nanotechnology design tools and

simulation formats into the oxDNA format. Once converted, these files can be visualized and edited using

oxView or simulated using oxDNA/oxRNA. However, for large and/or long simulations, these files can become

quite unwieldy, requiring tens of gigabytes of storage and therefore are impossible to open and read in a single

reading frame. Therefore, all analyses and visualizations described in the main text read trajectory files in a

stream, allowing reading of files that would not otherwise fit in the computer’s RAM.

A.2 Simulation Details

The simulations given as examples here were run using the oxDNA code (June 2019 version). Structures

were originally obtained in either Tiamat94 or CaDNAno97 format and then exported to oxDNA format using the

TacoxDNA webserver174. Structures were relaxed in two steps. First, a brief Monte–Carlo (MC) simulation was

performed using the DNA_relax or RNA_relax force fields to remedy overlapping particles. After this initial

relaxation, mutual traps based on the intended design were applied to enforce relaxation to the intended

design. For designs exported from Tiamat, mutual trap files are produced by TacoxDNA; for other structures,

these files were produced using the force file generation script described in the “other utilities” section after the

MC relax. A further relaxation was performed using the max_backbone_force option in a molecular dynamics

(MD) simulation with the DNA2 or RNA2 force field. This bypasses checks of backbone bond length and

allows for faster relaxation due to the CUDA implementation of the MD method in oxDNA142. This simulation

was run until the energy stabilized between −57.98 and −62.13 pN nm (−1.4 and −1.5 oxDNA energy
units respectively). At which point, the external forces and backbone force limitations were released and a

production simulation run was performed using the same force field for 109 steps with a stepsize of 15.15 fs
(0.005 oxDNA time units). This corresponds to a total run time in the microsecond range; however, previous
work with the oxDNA model166,189 suggests, in part, due to the increased diffusion coefficient, this direct

conversion is an underestimate of the corresponding experimental time. However, as is the problem with

all coarse–grained models, it is impossible to establish a direct correspondence between the simulation and

experimental time because different processes in a coarse–grained simulation can scale to the experiment

with different ratios.
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The production simulations were performed at 20◦ C using an Andersen–like thermostat156, and configu-
rations were saved for analysis every 5 ∗ 105 steps, resulting in 2000 separate configurations used in each
analysis.

The RNA tile, used as an example of the clustering algorithm, was initially run as described above, however

simulation runs would frequently transition to a state where one of the crossovers was broken. Further

simulation only sampled the broken state and failed to capture reversible transition. Assessing the free–

energy difference between states through simulation requires observing the transition multiple times. To

facilitate observing the transition, a parallel tempering simulation using virtual–move Monte Carlo (VMMC)132

with umbrella sampling was performed. Simulations with eight parallel replicas were performed with the

temperatures set from 25 to 60◦ C at 5 degree increments. Replica exchange was attempted every 1000
steps and the average exchange acceptance rate was 0.47. Achieving reversible transitions along this order
parameter also required creation of a weight file to bias the simulation towards transition states between the

two states. This simulation successfully sampled multiple transitions between the two states and the resulting

combined trajectory was used to demonstrate the clustering script.

A.3 RNA Tile Analysis with Unsupervised Clustering

The trajectory files from all replicates of an RNA tile simulation discussed in the main text were combined

into a single trajectory file containing 1345 configurations. The output from the principal component script

was fed into the DBSCAN clustering algorithm as implemented in python sci–kit with parameters eps = 12

and min_samples = 8. This generated 5 different clusters of configurations, of which the first three are

displayed in Fig. 11 of the main text. The number of configurations in each cluster were 812, 240, 110,

78 and 7 with 98 unclustered configurations. It is possible to have fewer configurations in a cluster than

min_samples because min_samples only sets the number of neighbors required for a single point to be in

a cluster. The last two clusters correspond to partially melted states stabilized by oxRNA’s extremely strong

cross–stacking interactions. We do not believe that these states are physically relevant, however they are

successfully separated out by the clustering algorithm. The positions of each configuration projected to the

first three axes in principal component space are shown in Fig. A1.

A.4 Interduplex Angles and Distances

Figures A2 and A3 illustrate examples of analysis of interduplex angles and distances between origami

units respectively, as discussed in the main text.
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Figure A1. The positions of each configuration projected to the first three dimensions of principal component

space. The three plots correspond to looking down components 2, 1, and 0, respectively. Clusters 0, 1 and 2

correspond to the designed tile structure, the designed structure with stacking interrupted at the nick point,

and the structure where the paranemic cohesion is lost becoming a Holliday junction. clusters 3 and 4

correspond to non–physically relevant states where the entire strand becomes a single hairpin.
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a)

b)

Figure A2. Comparing angles in wireframe lattices. a) The mean structures of design 23 (top) and

design 20 (bottom) from108. The structures are designed to have a square and hexagonal lattice pattern,

respectively. b) The distribution of angles between two arms of a junction showing variation around the

designed junction angle. For the hexagonal lattice, the observed angle is lower than the designed angle of

60◦ because the structure has significant out–of–plane curvature in the simulation.
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a)

b)

Figure A3. Distance between origami units of TMF. a) The final configuration from a simulation of the

TMF structure used in DNA kinetics experiments199. Separate simulations were performed with the sticky

ends in both the bound and free configurations. b) The distribution of distances between the origami units

at opposite ends of the tether.

Figure A4. 3D printed Holliday junction exported from oxView. OxView supports export to GLTF

format that can be opened in a 3D rendering tool Blender and exported to 3D printers or used for creation of

more artistic 3Dfigures of DNA and RNA nanostructures.
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B.1 Materials and Methods

B.1.1 Design and Assembly of the 18–Helix Bundle DNA Origami

The origami was designed around the M13mp18 circular single stranded DNA scaffold of 7249 nucleotides

in length utilizing the three–dimensional DNA designing tool Cadnano2 (https://cadnano.org). Staples have

been optimized to have an average length and when possible optimized to follow design strategies presented

in previous publications that described the MgCl2 free assemblies of DNA origamis.
164. Three–dimensional

representation of the design was obtained with the online Tool CanDo (https://cando-dna-origami.org/). The

tool can provide 3D structure predictions based on the Cadnano2 designs. The provided rmsf 3D maps have

been used to optimize the structure to maximise the overall origami stability. From the optimized designs,

atomic models are obtained from the CanDo tool and further used to confirm shape and dimension of the

designed structure and are used to find the more suitable places where further modification can be inserted.

The place to introduce the chloroalkane modified staple, that serves as attachment point for the Halo T7 RNAP

fusion protein, and the transcribable dsDNA strand are introduced in the more stable origami parts. The

stiff origami arms are the most stable at half length of the origami arm. In order to not reduce the overall

stability of the origami, we have chosen to introduce modifications to the overall structure into staples that

already are nicked and are in the correct position where the modifications are needed. To ensure that the

modification protrude orthogonally to the surface of the origami, the neighbouring staple is lengthened and

made complementary to the protruding sequence of the modified oligo. The short double–stranded sequence

that protrudes from the origami ensures that the sequence is normal to the origami structure as long as the

sequence is much shorter than the persistence length of DNA. Origamis are assembled by combing 13.3 nM
of the M13mp18 scaffold with 10 EQ of each staple in 1 x OB. The mixture is then divided into 50µl aliquots
into 500µl reaction tubes and the origami annealed in a thermocycler.

B.1.2 Molecular Dynamics Simulations

Multiple designs of the NE were simulated using the oxDNA coarse grain model for DNA origami. OxDNA

is described in detail elsewhere158, but briefly, it is an empirically–derived force field designed with DNA

nanostructures in mind. The model has been shown to reproduce structural, kinetic and thermodynamic

properties of DNA, including persistence length, strand displacement rates and free energy barriers between

states, with reasonably high accuracy, while still being sufficiently coarse–grained to allow simulations of

DNA origami at timescales of up to milliseconds166. Equilibrium simulations of the NE were carried out for

3 different designs: nNE, NE, and a version of nNE with two staples removed from the hinge (soft nicked

NE, snNE). Starting configurations were obtained by exporting the CaDNAno97 design file into oxDNA format

using an in–house conversion script. Rigid body dynamics in oxView visualization tool114,118 were used to

bend the arms into a starting configuration. Relaxation was then performed using the method described

in158. After relaxation, the bridge was built using oxView’s editing tools and a further round of relaxation

performed. After the average energy per particle stabilized around −1.5 su, the structures were equilibrated
with production conditions for a further 2.5e8 simulation steps to allow equilibration of the angle distribution
(step number determined by past simulations). Equilibrium simulations were carried out for 1e9 oxDNA
simulation steps with a timestep of integration of 0.003, a temperature of either 23° C or 37° C was imposed

using an Andersen–like thermostat. Configuration snapshots were saved for analysis every 5e5 steps giving

2000 configurations per simulation which were verified to be well decorrelated. To identify the effects of

secondary structure in the flexure region, a second set of equilibrium simulations was performed with the base

type of the nucleotides in the single–stranded region of the flexure set to non–interacting (no structure, NS).

These simulations were carried out with the same parameters as the simulations where secondary structure

was allowed to form. Closing rates were measured by running either 3 (snNE) or 10 (nNE, nNE–NS, NE and

NE–NS) replicates of simulations with external forces added. The simulations were started from the final
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configuration of one replicate of the associated equilibrium simulation and run for 1e7 steps with snapshots

saved every 1e3 steps for a total of 2000 configurations per simulation. A constant force of 16 pN (based on

the typical value of tension exerted by a polymerase on a duplex DNA268) was applied between the nucleotide

where the RNA polymerase is covalently linked to the first nucleotide in the first stop sequence in the bridge

with a cutoff radius of 10.35 nm (the radius of T4 polymerase)243. Other parameters were the same as in the

equilibrium simulations. One additional simulation was performed for each design where the force was applied

for 1e9 steps to allow the structure to equilibrate in the closed position. Opening rates were measured by

running either 3 (snNE) or 10 (nNE, nNE–NS, NE and NE–NS) replicates starting from the final configuration

of the equilibrated pulling simulation. Each simulation was run for 2e7 steps with snapshots saved every

1e3 steps for a total of 4000 configurations per simulation. In addition to the full NE, simulations were also

performed where the bridge was deleted (NE–NB and NE–NS–NB), allowing the structure to open under only

the influence of the flexure. Other parameters were the same as in the equilibrium simulations. Simulations

were aligned and mean structures obtained from the equilibrium simulations using oxdna_analysis_tools114

and movies of the trajectories produced using oxView114,118. To get the spring constant and opening/closing

rates, a linear regression was performed on the point clouds corresponding to the arms of each hinge and

the angle between the arms calculated for each snapshot. The spring constant was then estimated using the

equipartition theorem for a simple harmonic oscillator

k(x− x0)
2 =

1

2
KbT (B.1)

Where k is the spring constant, x and x0 are the displacement and the average position, and KbT is the

thermal energy. Opening and closing rates were calculated using a linear regression to the angle traces over

the simulations. Significance of distributions was determined using a two–tailed Kolmogorov–Smirnov test.
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Figure B1. (Previous page) Additional design features of the leaf–spring NE (a) Cross section of the NE

with the leaf–spring (left panel), a side–view (middle) that shows the ssDNA template and the location of the

T7 promotor (yellow), the sequence coding for a binding site for a molecular beacon to determine

transcription yields (green), and the two terminator sequences (red). The right panel shows the location of

the six ssDNA sequences, (b) Sequence of the dsDNA transcription template. Yellow: T7 promotor, green:

sequence coding for molecular beacon–binding (green), red: terminator sequence, (c) Chemical structure of

the halogenated 5’-end of the protruding HT–T7RNAP attachment staple, (d) Primary amino acid sequence

(upper panel) and design (lower panel) of the HT–T7-RNAP fusion protein, (e) Design and sequence of the

protruding staple containing the 5’-halogenated attachment site for HT–T7RNAP, (f) Chloroalkane DNA

connection to the HaloTag (HT) enzyme. Lanes 1-3: Chloralkane DNA in (1) origami buffer, (2) H2O, (3)

Origami buffer + EDTA; lanes 4-6: Chloralkane DNA + HT–T7RNAP in (4) origami buffer, (5) H2O, (6)

Origami buffer + EDTA; lanes 7-9: Chloralkane DNA + HT in (7) origami buffer, (8) H2O, (9) Origami buffer

+ EDTA. The Halo enzyme alone in absence of MgCl2 cannot bind to the chloroalkane modified DNA. In

presence of the buffer the protein can bind to the DNA and the connection is covalent and strong enough

that even after addition of EDTA to remove the MgCl2 the connection of DNA and protein is maintained. In

the fusion protein of Halo T7 RNA pol this phenomenon is not present, very likely due to the affinity of the

polymerase towards DNA that probably increases the affinity of the fused Halo tag towards the DNA, (g)

Sequence, secondary structure, and labels (5’-FAM, 3’-Dabcyl) of the molecular beacon RNA that detects the

green sequence in the RNA generated during transcription.
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Figure B2. (Previous page) Assembly of the NE and AFM analysis of the geometry of the NE. (a) Filter

purification of the origami. Lane 1: M13MP18 scaffold, lane 2: assembled origami unpurified, lane 3: 100

kDa filter–purified origami, (b) PEG–purification of origami. Lane 1: Assembled unpurified origami, lane 2:

PEG–purified origami, (c) detailed AFM image of the origami structure. The green line spans the streptavidin

molecules attached to the respective origami–arm and marks the height measurement shown in (d). The

red line marks the cross–section of the opposing origami–arm and marks the height measurement shown in

(e), (d) height profile of the green line shown in (c) confirms the distance of the streptavidin molecules on

the respective origami–arm to be spaced exactly 21 nm as designed, (e) height profile of the red line shown

in (c) to determine the cross–section of the opposing origami–arm to be exactly 9 nm as designed, (f)

calibration curve of the fluorescence intensity (F.I.) of the molecular beacon (MB) as a function of the

concentration of the added complementary oligonucleotide. The measuring time was 1.5 h because the F.I.

stabilized after that time without significant further photobleaching, (g) exemplary transcription curves of

constructs 1a (blue), 2a (green), 3a (magenta), and 4a (red) shown in Fig. 2a with linear fit of the linear

parts of the curves, (h) exemplary transcription curves of constructs 1b (yellow) and 2b (cyan) with linear fit

of the linear parts of the curves, (i) Detailed representation of the various forms of template dsDNA used in

this study; (α) red arrows: position of the two nicks in the template dsDNA, (β) red arrows: the same
without the promotor region, (γ) dsDNA, attached only on the opposite side of the HT–T7RNAP; red arrow:
nick–position, (δ) dsDNA, attached only next to the HT–T7RNAP; red arrow: nick position. Importantly, to
avoid that the single stranded nicks weakens the stability of the template DNA and cause detachment of the

DNA from the origami by forces generated during the pulling by the polymerase and/or during the formation

of the transcription bubble, the template strand has no single nicks upstream of the promoter region while

the nick is placed in the coding strand. Downstream of the promoter region the single stranded nick has

been placed into the template strand while the coding strand is fully attached into the origami. This design

avoids that the two ss nicks in the coding strand lead to loss of the DNA–DNA duplex by formation of a

DNA–RNA as the amount of RNA increases over time. Both, leading and coding strands, are anchored to the

origami; their hybridization is favored even when the RNA transcript levels increase, (j) Relative

transcription speed of nNE (left) and nNEsoft (right). Error bars: S.D., n ≥ 53. (k) representative TEM
image (upper panel) of construct 1d indicates electrostatic repulsion of the dsDNA template strand in case

where the strand is not anchored at its anchoring point next to the HT–T7-RNAP, which hampers efficient

transcription. Lower panel: cross section of this construct.
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Figure B3. (Previous page) Comparison of hinge properties of simulations run at 23° and 37° C. (a)

Calculated spring constant of each design at 23° and 37° C. Only NS structures with an intact dsDNA bridge

show a significant difference between the two temperatures, demonstrating the influence of stable

secondary structures on angle distribution, (b) Angle–distribution in triplicate equilibrium simulations at

different temperatures. A slight increase in average angle for simulations with secondary structures in the

flexure and slight decrease in average angle for simulations where secondary structure was inhibited was

observed. This is consistent with the hypothesis that secondary structures limit the opening angle of the

structures with secondary structure while the extended single strands behave more like entropic springs

which become more flexible as temperature increases. (c) The angle distributions between NE and NE–NB

are highly comparable (p = 0.6). The box plot in (d) which shows distribution of angles measured from TEM

images of NE (red, n = 5135) with the angle distribution of the NE–NB missing the dsDNA template strand
(cyan, n = 1382) with whiskers of size 1.5 times with first, second (median) and third quartile indicated
with dashed lines (red for NE and cyan for NE–NB). Thin cross: average values 64° ±20° for NE and 64°

±19° for NE–NB. (e) Relaxation of the NE origami structure simulation indicate that the origami arms bent

out of plane. Left panel: designed structure, middle panel: model based on simulation, right panel: relaxed

simulation. The origami arms clearly show a longitudinal twist in the top view of the 18 HB and are bent out

of the vertical plane of the arm that extends towards the top. Since the dsDNA helixes in the origami arms

are used as references, a distortion of the surface–deposited structure results in slight systematic difference

compared to how the angles are measured in the simulated structure. This difference likely explains the

systematic difference in the angle distributions. (f) Calculated pulling rates under 16 pN applied force

between the polymerase attachment point and the terminator sequence on the dsDNA bridge for each design

at 23° and 37° C. The only significant difference between the two temperatures was observed for nNE and

NE, where decreasing the number of base pairs in the flexure significantly increased the rate at which the

leaf–spring was able to close, (g) Calculated re–opening rates after being closed under 16 pN force. This is a

process which relies mostly on brownian motion to return to the relaxed state of the NE. Unsurprisingly, we

see an increase in average rate and an increase in variance for the structures where secondary structures

can form in the flexure and a decrease in average rate and no trend in variance for structures where no

structure was permitted in the flexure. (h) Distance distribution between the polymerase attachment point

and start of the promoter sequence. The radius representing the attached polymerase has been estimated

to be 10.35 nm to have an encounter of promoter region and polymerase. The frequency at which the nNE

construct (red curve, nNE) spends within this ideal distance bubble is higher then the case where the

transcribable dsDNA strand is attached only next to the polymerase (blue curve, nNE_LB).
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Figure B4. (Previous page) Driver follower experiments Schematic front view of the Driver and Follower

units, (a) Note how it is necessary to flip one of the two units upside down to be able to join the structures.

(b) DNA sequences of the overhangs for the Driver (left) and for the Follower (right). Bases labeled in red in

the Driver overhang sequences indicate LNA. (c) shows an example of TEM image used to determine the

angle of the D–F complex on the left and with the overlayed black line to indicate how the angle were

measured. Improperly joined structures or single origamis have been ignored during the angle

measurements (red strikethrough). When measuring the angle distribution from TEM images (d) and

comparing the distribution of NE (red, n = 5135) with the angle distributions of only complete D–F (blue,
n = 1074) in absence of transcription it is noticeable how the average angle remains unchanged, being 64°
± 20° for NE and 64° ± 17° (Error: S.D.) but the curve is less skewed and more symmetric in case of the

D–F complex. The same effect is appreciable also during transcription (NE in green, n = 3266; D–F in
orange, n = 1190). In the NE sample the average angle distribution drops to 57° ± 22° that is comparable
to the average value of the D–F complex of 57° ± 17° but the curve is narrower in the second case. The

boxplots of the distribution, (e), confirm that in case of the D–F complex the angle distribution is narrower

and less skewed. (e). The example TEM image for the F–no–hinge structure (f) nicely shows how large the

range of angles is when the double stranded structure is missing in the flexure region making it impossible

to obtain the correct structure that determines the angulated form of the origami structure. The F–no–hinge

(g) constructs shows a very wide and flat distribution (h) (dark yellow, n = 1682) with obtuse angle of 107°
± 41°. When combining the F–no–hinge origami with the D unit the angle is reduced to 71° ± 17° with a

narrower distribution (wine, n = 398). In case of transcription the average distribution angle shifts to 55° ±

20° getting slightly larger as expected for the transcription sample (olive, n = 462). The Boxplots (i) show
clearly how the distribution for the F–no–hinge (dark yellow) is widely spread over a great range of angles,

having a difference between Q3 and Q1 of 54° while in the D–F this range is reduced to 23° in absence of

transcription (wine) and 29° in presence of transcription (olive). The change in angle distribution during

transcription in the D–F structure is also appreciable in the presence of F–soft–hinge (j) in the complex (k).

The D–F-soft–hinge complex shows an average angle of 61° ± 14° (yellow, n = 496) in the no transcription
case and 51° ± 17° in the transcription sample (violet, n = 528). The boxplot (l) graphically shows how
also in this case the distribution clearly shifts towards more acute angles in the case of transcription

compared to the no transcription sample. (Errors are S.D. and the boxplots show Q1, Q2, Q3 in the box with

whiskers 1.5 times the box size. Thin crosses in the boxplots indicate the average angle while the thin

vertical lines indicate the 1% and 99% percentile of the distribution).

107



APPENDIX C

PLEASE SEE ATTACHED FILES

108



C.1 Supplementary Videos

1. Video 1: Lemniscate video of oxView scene containing more than 1 million nucleotides

2. Video 2: OxView editing demonstration

3. Video 3: Rigid body dynamics in oxView

4. Video 4: Lemniscate video of a mean structure

5. Video 5: Video of simulation trajectory
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The co–authors of the papers reproduced for chapters 2114, 3269 and 4270 have given their permission for

the manuscripts to reappear here.

The published manuscripts for chapters 2114 and 3269 are under a creative commons license and do not

require permissions to reproduce as long as they are properly attributed. Chapter 4 is a preprint270, so the

copyright is held by the authors.

Figure D1. License Information for Chapter 2

Figure D2. License Information for Chapter 3
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Figure E1. Licensing information for parts (a) and (b) of Figure 1.
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Figure E2. Re–use permission for part (c) of Figure 1

Figure E3. Re–use permission for part (d) of Figure 1
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Figure E4. Licensing information for parts (a) of Figure 2

Figure E5. Re–use permission for part (b) of Figure 2
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Figure E6. Re–use permission for part (c) of Figure 2

Figure E7. Re–use permission for part (b) of Figure 3
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Figure E8. Re–use permission for part (c) of Figure 3

Figure E9. Re–use permission for part (d) of Figure 3

117


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 INTRODUCTION
	2 Software tools for preparation, visualization, and analysis of oxDNA/RNA simulations
	3 Online resources for characterizing DNA and RNA nanostructure designs
	4 Using oxDNA simulations to characterize the effects of design choices on a leaf–spring nanoengine
	5 CONCLUSION AND FUTURE OUTLOOKS

	References
	Appendix
	A Supplementary Material for Chapter 2
	B Supplementary Material for Chapter 4
	C PLEASE SEE ATTACHED FILES
	D PERMISSIONS FOR MANUSCRIPT RE-USE
	E PERMISSIONS FOR ADAPTED FIGURES


