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ABSTRACT 

 

The wide-spread use of insecticides has contributed to the rapid decline of insect 

diversity and abundance. In light of recent guidance from international and governmental 

organizations, other non-chemical control methods are necessary to control insect pest 

populations. In my study, I used occupancy modeling techniques and found that 

environmental variables could predict the presence of Rhaphidophoridae, in Hidalgo, 

Mexico. The results showed that variables associated with forested habitats increase the 

probability of  Rhaphidophoridae detection, and higher elevation increases the probability of 

Rhaphidophoridae occupancy. Understanding the specific habitat variables associated with 

human detection and occupancy of Rhaphidophoridae give people the ability to utilize the 

Integrative Pest Management (IPM) strategy of cultural control to prevent Rhaphidophoridae 

pest populations in my study region. 
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INTRODUCTION 

Overview and Purpose of Study 

Climate change, driven by economic growth and anthropogenic disturbance, is no 

longer a problem for the future, but a crisis of the present (Caro et al., 2022; Habibullah 

et al., 2022; Rosales, 2008; Santer et al., 2003). As we turn our focus from how do we 

prevent a climate crisis to how do we mitigate the impacts of climate change and preserve 

biodiversity and ecosystem services, we are faced with the realization that a 

multidisciplinary approach shows the most promise (Amolegbe et al., 2022; Schipper, 

Dubash, & Mulugetta, 2021; Zayan, 2019). It is exceedingly unlikely that one strategy or 

area of research will be able to solve the current climate change crisis (Burroughs, 2007; 

Grasso & Markowitz, 2015; Falardeau & Bennett, 2019; Middleton, 2011; Urban, 2015). 

In 2018, the Intergovernmental Panel on Climate Change issued a special report on the 

problems that governments, researchers, and the public face if global climate 

temperatures rise 1.5°C above pre-industrial levels (IPCC, 2018). In this report, the IPCC 

also discussed how climate change could impact pest control by decoupling prey and 

predator species due to habitat degradation, reducing pollinator populations, and greatly 

limiting seed dispersal (IPCC, 2018). Insects comprise approximately 80% of named life 

on the planet with an estimated total of 1 million insect species named and 80% that 

remain to be discovered (Baillie et al., 2012; Scheffers et al., 2012; Stork, 2018). 

However, insect species have seen a significant decline in biodiversity due to factors 

related to climate change, wide-spread use of pesticides, and other anthropogenic 

disturbances (Harvey et al., 2023). Invertebrate species are less studied and less 



2  

understood than vertebrate species, even though Hexapoda make up approximately two-

thirds of all terrestrial biomass on the planet (Bánki et al., 2021; Eggleton, 2020; 

Rosenburg et al., 2023). Despite this gap in the literature, arthropods play a crucial role in 

ecosystems and ecosystem services. Insects are the primary food source of many 

terrestrial species, including but not limited to many birds, reptiles, amphibians, and 

small mammals, and they are the most common pollinator of most angiosperms and 

agricultural crops (Forister et al., 2019; Noriega et al., 2018).  

While insect biodiversity loss may seem significant to conservationists and 

wildlife biologists, the importance of protecting biodiversity is often juxtaposed against 

economic and agricultural needs (Kremen & Chaplin-Kramer, 2007; Onstad & Crain, 

2019; Samways et al., 2020). Arthropods that have been identified as economic pests can 

cause significant monetary losses. Researchers have estimated that worldwide 10-16% of 

agricultural yields are lost before harvest due to insect pests (Bradshaw et al., 2016; 

Dhawan, 2019). Diamondback moth management alone is estimated to cost 4 to 5 billion 

USD, per year, globally (Zalucki et al., 2012). At the same time, climate change is also 

impacting viability and output of economically significant crops, and food scarcity is an 

urgent issue in many developing areas around the world. Using the most severe climate 

change models, scientists predict a 7-23% crop yield loss due to growing extremes in 

climate conditions (Rezaei et al., 2023). Insect pests also can negatively impact the 

balance of ecosystems, which may require the use of control methods (Boyd, 2013). The 

need to balance both immediate economic and humanitarian needs with environmental 

priorities is a critical field of research (Gvozdenac et al., 2022; Ovawanda, Witjaksono, & 

Trisyono, 2016).  
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For my study, I wanted to determine if I could predict the presence or absence of 

an insect that is currently identified as a nuisance pest, not generally considered 

agriculturally detrimental, not a vector of disease, but is the subject of chemical control. 

The risks of broad-spectrum pesticide have been known for quite some time, many 

emerging countries are still struggling with environmental and health consequences as a 

result of broad-spectrum pesticide use (Konradsen et al., 2003; Sarkar et al., 2021). 

Currently, the Mexican government still authorizes the use of many insecticides that have 

been classified as Persistent Organic Pollutants (POPs) by the Stockholm Convention 

resulting in adverse health and environmental impacts such as unintended poisonings, 

pollution of drinking water sources and aquatic habitats, ecosystem degradation, and 

biodiversity loss (Cortez, 2023; FAO and WHO, 2022; Martínez et al., 2022; OECD, 

2013; Salas, Duran & Wiener, 2000). Pesticide use often impacts vulnerable communities 

(Garcia, 2021; Payán-Rentería et al., 2012; Wright, 1986). However, the use of Integrated 

Pest Management (IPM) principles has the ability to bridge the gap between human 

economic needs and the health and safety of people and the environment (Muneret et al., 

2018).  

In response to the risks associated with chemical control, IPM and IPM principles 

were introduced as a more environmentally conscious alternative before resorting to 

pesticide use (Ehler, 2006; Koppenhöfer et al., 2013). In 1972, IPM officially became 

accepted terms within the scientific community (El-Shafie, 2018; Kogan, 1998). IPM is a 

multidisciplinary approach and combines knowledge and practices from many different 

areas of study (Dara, 2019; Lamichhane, 2016). However, historically, pest control 

practices have been a tumultuous field (Bergvinson, 2004; Bueno et al., 2021; Deguine et 



4  

al., 2021; Zalucki, Adamson & Furlong, 2009). In the United States and Canada, pest 

management has relied heavily on a western perspective and has historically excluded 

Indigenous and traditional pest management strategies (Allen et al., 2014). While the 

official IPM name didn’t make it into the scientific literature until the 1970s, Indigenous 

populations have employed integrated pest management strategies for thousands of years 

(Allen et al., 2014; Kogan, 1998; Rathore et al., 2021; Tesfahun, Bayu & Tesfaye, 2000). 

IPM is a multi-tiered approach to pest management with chemical control being used as a 

last resort. Cultural control is the first line of defense in IPM. Cultural control is designed 

to create an environment that is less suitable for a particular pest. Understanding the 

environmental variables that predict the presence or absence of a pest can reduce the need 

for use of pesticides needed to control a pest population (Bajwa & Kogan, 2004; Vreysen 

et al., 2007; Barzman et al., 2015).  

I wanted to identify an insect that not only was the subject of chemical control, but 

also an insect that could also possibly be controlled through the IPM principle of cultural 

control, reducing the amount of chemical control needed, while also not increasing stress 

on agricultural practices or human health. I identified Rhaphidophoridae as an insect 

family that meets these criteria for our study. Rhaphidophoridae can be considered a 

nuisance, living in basements of homes in suburban areas, drains, sewers, and wells 

(Allegrucci, Todisco & Sbordoni, 2005). These insects are omnivorous, but they are not 

generally considered to cause significant agricultural damage or be a human disease 

vector (Gorochov, 2010; Hubbell & Norton 1978). Occupancy modeling is a statistical 

tool that allows researchers to estimate the probability of an organism’s occurrence 

among sampled sites, while also considering environmental variables such as habitat, 
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vegetation, disturbance, etc. that are thought to influence the organism’s occurrence 

among sampled sites. Occupancy modeling also takes into consideration imperfect 

detection (MacKenzie et al., 2017). Using occupancy modeling my study aimed at 

finding environmental variables that could be controllable through IPM practices and can 

predict the presence of Rhaphidophoridae in the environment. Based off of previous 

studies of Rhaphidophoridae in other regions, I hypothesized that leaf litter and 

herbaceous plants would predict the occupancy or detection of Rhaphidophoridae in the 

study region (Taylor, Krejca & Denight, 2005).  

 

METHODS AND MATERIALS 

Study Area 

We conducted fieldwork for this study from mid-May to mid-June 2023, as part of a 

larger study focused on identifying habitat factors relevant to Sceloporus lizard species (Flores et 

al., 2023). The study region was in central-eastern Mexico in the Sierra Madre Oriental Mountain 

range. The region hosts abundant biodiversity and comprises of a wide range of landscapes 

ranging from deserts to tropical broadleaf forests where pine-oak forests dominated most of the 

study region (Villaseñor & Ortiz, 2022). We selected 75 one-hectare sites, and the site locations 

extended in a spoke-like fashion around the town of Calnali in the state of Hidalgo (Figure 1 & 

2). Each site was a minimum of 1 km distance from any other site to ensure the independence of 

each site. We selected the sites to include a wide range of environmental variables and habitat 

characteristics. The elevation of the sites ranged from 111 to 2,181 meters above sea level.  
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Habitat Surveys 

The fieldwork team visited approximately four sites each day over the course of 

the month. The number of sites visited each day depended on the distance between sites, 

terrain, and weather variables. A wide range of weather conditions occurred during site 

visits. However, we did not collect data during periods of thunderstorms and heavy 

precipitation because of the low likelihood of locating or detecting Sceloporus lizard 

species. The field crew team walked quietly to the center of the site to attempt to not 

disturb local wildlife. We then determined the center of the site with a rangefinder. At 

each center point, I used a 4 in 1 environmental meter to measure air temperature (°C), 

relative humidity (%), wind speed (m/s), and light (LUX). I also recorded percentage of 

site disturbance, type of disturbance, time of day, location of the site, type of terrain, and 

other notable features. I calculated the percentage of site disturbance based on the level of 

observed human development such as agricultural development, trails, roads, human-

made structures, or any time of anthropogenic disturbance. 

We conducted habitat surveys for each site. Each observer began at a start point 

and recorded habitat variables at two random points along their transect. Recorded habitat 

variables included vegetation cover, ground cover, tree cover height and diameter, and 

leaf litter depth. The height and circumference of these habitat variables were measured 

by the six field crew members, at two random points each, in the site using a measuring 

tape and range finder. Vegetation cover was classified as either tree, shrub, or herbaceous 

plant cover. We considered ground cover to be anything covering the bare soil surface, 

such as grass, gravel (0.2-25.6 cm), rock, cement, woody debris, and leaf litter.  
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Insect Collection and Identification 

I used pitfall trap data for our Rhaphidophoridae occupancy modeling. The 

fieldwork team placed four pitfalls at each site, on the outermost corners of the one-

hectare site. Due to the topography, the one-hectare site areas were not always consistent 

in shape or side measurements. However, traps placed in this fashion reduced bias when 

attempting to identify the insect abundance and diversity of the site. Some 

accommodations were made in trap placement to reduce disturbance from livestock or to 

take into account site features, such as streams, man-made structures, and cliff faces. In 

these instances, we placed the trap as close to the correct placement as possible.  

The pitfall traps consisted of a 500 mL white plastic cup with a 10 cm opening 

placed flush with the ground. The pitfall traps also had a lid made from a 16 cm plastic 

plate with four plastic legs. The lid was placed approximately 2.5 – 3 cm above the 

substrate to prevent bycatch. The pitfall trap contained a detergent solution. I recorded 

the time of placement and picked up the traps approximately 24-hours later after we had 

placed pitfalls and collected the habitat data for our planned sites for the day. Once the 

pitfall traps were collected, I put the contents in an ethanol solution for preservation. I 

collected the traps even if weather conditions were poor and recorded any trap 

disturbance or loss. The most common cause of trap disturbance was either weather or 

livestock related. In July 2023, we identified insect specimens collected during field 

season with the assistance of entomologists at the collections department at the 

Universidad Nacional Autónoma de México (UNAM).  
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Data Analysis 

The species-occupancy modeling I used for this study contains two distinct sub-

models with one model being a function of site-level covariates and the other model 

representing detection probability. To determine significant environmental characteristics 

of the study sites, I began by running a principal component analysis (PCA) in R v4.3.1 

(R Core Team, 2023). The environmental variables that the fieldwork team collected in 

the field included elevation, disturbance, refuges, tree height, tree cover, shrub cover, 

herbaceous plant cover, and litter depth (Table 2). I excluded soil density and tree 

diameter due to missing data points. Including these data would reduce the number of 

sites included in my analysis. I ran PCAs to identify correlated habitat variables and to 

combine these correlated variables into individual Principal Components (PCs) for use in 

our occupancy-modeling analysis (Figure 5). I then standardized each habitat variable to 

a mean of 0 and a variance of 1. I included variables that were highly correlated with a 

correlation coefficient greater than 0.5 in value in our PC (MacKenzie, 2017).  

I then used the R package Unmarked (v1. 0.1; Fiske & Chandler, 2011) to 

identify environmental variables that predict the presence of Rhaphidophoridae at our 

study sites. I was interested in estimating both detection probability (p) and occupancy 

probability (ψ) of Rhaphidophoridae by running single-species and single-sampling-

season occupancy models. I recorded data from each of the four traps as independent 

observations at each site (Fiske & Chandler, 2011). For the response variable, I recorded 

either zeroes and ones with “0” indicating a member of the Rhaphidophoridae family did 

not appear in the pit-fall trap, or a “1”, indicating that they were detected and later 

identified as a member of this family from the traps at each site. I found 
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Rhaphidophoridae at a total of 33 out of 75 of our study sites. I ran models for only 

detection, only occupancy, and both detection and occupancy combined, as well as a 

model for the null. I ran a total of sixteen models to take into consideration all relevant 

possibilities of our habitat and vegetation variables, in regard to detection and occupancy 

predictors. After running our models, I selected the model with the smallest Akaike 

information criterion (AIC) score as the best-fit model (MacKenzie, 2017). 

 

RESULTS 

Principal Component Analysis 

 

 The principal component analysis reduced the eight habitat variables into two 

principal components that described the variation across sites. I found that only two principal 

components had eigenvalues greater than one and together described 62% of the inter-site 

variation (Table 1). PC1 included 7 of the variables: negative site disturbance, negative 

herbaceous plant cover, positive tree cover, shrub cover, average tree height, leaf litter depth, 

and refuges. Positive values of PC1, therefore, represent less disturbed areas that are forested. 

Only a single habitat variable, elevation, loaded strongly on PC2. Because elevation was the 

only variable of interest in PC2, I instead used negative elevation as a single variable in my 

occupancy modeling analysis (Figure 5).  

Species Occupancy Modeling 

Using the PC1 and Elevation variables, I ran 16 occupancy models and found that 

several models fit better than our null model. Three models fit particularly well: (1) PC1 

plus elevation as predictors of detection with elevation as a predictor of occupancy; (2) 

PC1 plus elevation as predictors of both detection and occupancy; and (3) PC1 as a 
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predictor of detection and elevation as a predictor of occupancy (Table 2; Figure 3a, 3b, 

4a). I concluded that the best supported model was the third model, because it was within 

two ∆AICc units of the top model and was the simplest model. The third model showed 

that variables associated with forested areas predicted that the insects would fall into the 

pitfall traps in the sampled sites, disturbance and herbaceous plant cover were negatively 

correlated with detection, and elevation above 1,000 meters above sea level predicts the 

occupancy of Rhaphidophoridae (Table 2; df = 4, AICc = 324.57, ΔAICc = 0.62).  

 

DISCUSSION AND CONCLUSION 

Summary of Findings 

The results of the best fitting occupancy model showed that habitat variables 

associated with forested areas predicted detection of Rhaphidophoridae at the study sites, 

and an increase in elevation above 1,000 meters above sea level predicted the occupancy 

of Rhaphidophoridae. Sites with less disturbance, higher elevation and tree canopy, 

shrubs, leaf litter, and refuges predicted if Rhaphidophoridae would fall into the pitfall 

traps at the study sites. I was surprised to discover that low herbaceous plants were 

negatively correlated with detection, as I hypothesized that herbaceous plant ground 

cover would aid in the insects falling into our pitfall traps. However, because herbaceous 

plants are negatively correlated with tree cover, it appears that tree canopy and leaf litter 

may be more important in detection of Rhaphidophoridae. This also may be due to the 

cooling effect that trees and forests have on the surrounding area. However, I did not 

include ground or ambient air temperature in our analysis, because only one temperature 

data point was taken during the day. Further studies may want to consider utilizing 
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temperature data from an entire 24-hour period and utilize this variable in their 

occupancy models.  

Detection: More Than a Nuisance Variable 

Researchers have often considered detection variables in occupancy modeling to 

be nuisance variables (Karavarsamis, 2015; Richmond, Hines & Beissinger, 2010; 

Stewart et al., 2023). This is because many ecologists are primarily interested in the 

occupancy of organisms despite imperfect detection (MacKenzie et al., 2003; Guillera-

Arroita, 2017). However, some researchers have begun using detection variables to look 

at human and organism interactions and, more specifically, removal of invasive or 

unwanted species. When knowledge of occupancy, or total eradication, are not the main 

priorities, but instead, control is the desired result, our detection rate does not need to be 

maximized. We only need to detect to the level of the desirable removal rate (Christy et 

al., 2010; Reynolds et al., 2010; Waldron et al., 2013).  In this study, I was looking at a 

family of insects that are primarily targeted for insecticide use, because they are detected 

in homes or near manmade structures, and this detection is considered undesirable. If 

there is no detection, insecticides are not used. Detection in this study is therefore not a 

nuisance variable but just as important of a consideration as occupancy.  

Implications for IPM 

Common insect control methods include biological, mechanical, chemical, and 

cultural control methods. However, chemical control is an extremely common method of 

control due to ease of use, effectiveness, and cost (Dent & Binks, 2020; Pedigo, Rice, & 

Krell, 2021). The use of chemical control to regulate arthropod pest populations has a 

long history, and Dichlorodiphenyltrichloroethane (DDT) was one of the first widely used 
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synthetic insecticides, an organochlorine pesticide, designed to control agricultural and 

disease vector pests (Morris, 2019). Rachel Carson wrote Silent Spring in 1962 sounding 

the alarm to the world about the havoc this insecticide was wreaking on the environment 

(Carson, 1996; Hajjar et al., 2023; Krebs, 1999). In 1972, the United States and many 

countries around the world banned DDT due to its harmful impact on biodiversity and the 

environment (Epstein, 2014; Morris, 2019; Turusov, 2002). However, even before DDT 

was banned, the scientific and agricultural community had recognized the indiscriminate 

use of insecticides as an environmental concern (Ehler, 2006). Researchers have 

recognized that organosynthetic pesticides, and other more recent insecticides, can cause 

insecticide resistance, resurgence of primary pests, increases of secondary pests, loss of 

biodiversity, risk environmental contamination, ecological degradation, and threats to 

human health (Brogdon & McAllister, 1998; Chagnon et al., 2015; Hemingway, Field & 

Vontas, 2002; Kogan, 1998; Pereira, 2009; Mew et al., 2004). Organophosphates (OPs), 

such as fenitrothion used in roach bait and phosmet, which is commonly used for 

controlling moth populations on fruit trees, were designed as hopeful alternatives to DDT 

and organochlorine insecticides (Adeyinka et al. 2023; Zaim & Guillet, 2002). However, 

OPs have also been shown to cause significant, poor health outcomes in humans and 

other vertebrates, even when exposed to small quantities (Iyer, Iken & Leon, 2015; 

Holstege & Baer 2004; Muzinic et al. 2018).  

Research has shown that educating individuals on IPM practices to reduce 

nuisance pests has been effective (Lowe et al., 2019). In one study, researchers educated 

staff and residents in New York apartment buildings on IPM strategies with the goal of 

reducing cockroach populations (e.g. steam cleaning, closing food containers, and 
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minimizing entry points for pests). At the end of the study, the IPM practices were more 

effective at reducing pests than traditional chemical control (Kass et al., 2009). While 

many of these strategies may seem simplistic, or like common sense, it is important to 

remember that many individuals have no education or knowledge on what may cause 

insect pests to infiltrate a space, thus resorting to chemical control. However, many IPM 

strategies can not only be effective but also be simple and cost effective. Education on 

preventative measures is crucial to IPM success, and further research into occupancy and 

detection variables is essential. Based on my study results, I would recommend that 

individuals wishing to reduce unwanted pests, such as Rhaphidophoridae, and live at 

elevations greater than 1000 meters above sea level, near forested environments, consider 

clearing a perimeter around their home of leaf litter, shrubs, and refuges that 

Rhaphidophoridae can use as shelter. Individuals may also want to consider building 

structures and homes away from tall trees and avoid planting tall trees and vegetation 

near their home. 

One reason for why I found a significant difference in detection of 

Rhaphidophoridae in forested areas versus sites that had greater disturbance could be 

because chemical control was already being utilized in those sites. Many of the study 

sites were also agricultural fields and livestock pasture sites. Previous research has shown 

that livestock grazing areas significantly impact insect communities (Basto-Estrella et al., 

2014; Debano, 2006;  Fenster et al., 2021; Figueroa, Galicia & Suárez, 2022). 

Researchers in future studies should consider including study sites in areas that are 

known to be subject to chemical control. Occupancy models that include sites with 

known chemical control, and other sites with no chemical control, would potentially help 
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tease out if the results of my study were due to forest habitat variables and elevation or 

due to insecticides already used in the area. 

Time constraints also prevented me from identifying down to the species level of 

Rhaphidophoridae collected in our pitfall traps from the study site locations. However, 

while species level environmental occupancy would be an interest for future studies, 

species level occupancy knowledge is not necessary for the purpose of my study since 

pest identification and chemical application most often happens at the family level for 

this insect. Rhaphidophoridae habitat literature is sparse for this region of Mexico, and 

Rhaphidophoridae are a largely understudied group of insects. My study adds to the body 

of literature, for not only this insect family, but also contributes to occupancy and 

detection data that can be used for IPM methods and potentially reduce broad-spectrum 

pesticide use (Hegg, Morgan-Richards & Trewick, 2019).  
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Table 1. Rotated principal component results for all eight habitat variables: 

Loadings with an absolute value > 0.5 are considered high loading results. 

Only principal components with eigenvalues > 1 were included for detection 

and occupancy model analysis. Since elevation was the only high loading in 

PC2, it was analyzed separately during detection and occupancy model 

analysis.  

Habitat Variables PC1 PC2 

Elevation 0.14 - 0.82 

Disturbance -0.68 0.22 

Tree Cover 0.90 - 0.19 

Shrub Cover 0.54 0.04 

Herbaceous Plant Cover - 0.76 - 0.39 

Average Tree Height 0.81 - 0.23 

Leaf Litter Depth 0.76 - 0.01 

Refuges 0.63 0.49 

Proportion Variance Explained (%) 47.24 14.99 

Cumulative Variance Explained (%) 47.24 62.23 

Eigenvalue (λ) 3.78 1.20 
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Table 2. 16 model results for detection (p), occupancy (ψ), AICc, ΔAICc, and null model 

Model df AICc ΔAICc Weight 

 p(PC1 + Elevation)ψ(Elevation) 5 323.95 0.00 0.28133 

 p(PC1 + Elevation)ψ(PC1 + Elevation) 6 324.27 0.32 0.23983 

 p(PC1)ψ(Elevation) 4 324.57 0.62 0.20663 

 p(PC1)ψ(PC1 + Elevation) 5 326.27 2.32 0.08834 

 p(Elevation)ψ(PC1 + Elevation) 5 326.81 2.85 0.06757 

 p(.)ψ(PC1 + Elevation) 4 327.74 3.79 0.04231 

 p(.)ψ(Elevation) 3 328.29 4.33 0.03222 

 p(Elevation)ψ(Elevation) 4 328.29 4.34 0.03213 

 p(Elevation)ψ(.) 3 334.36 10.41 0.00154 

 p(PC1)ψ(.) 3 334.50 10.54 0.00145 

 p(Elevation)ψ(PC1) 4 334.68 10.73 0.00132 

 p(PC1 + Elevation)ψ(.) 4 334.74 10.79 0.00128 

 p(.)ψ(PC1) 3 334.86 10.91 0.00120 

 p(.)ψ(.) 2 334.89 10.93 0.00119 

p(PC1)ψ(PC1) 4 335.41 11.46 0.00092 

p(PC1 + Elevation)ψ(PC1) 5 335.79 11.84 0.00076 
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Figure 1. Map of study region in the Mexican State of Hidalgo 
 

 
 
 

 
 
 
 

 

 

 

 

 

 

Figure 2. Map of 75 sites in the Mexican state of Hidalgo 
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   Figure 3. Best-fit detection model results, in standardized form, for 

Rhaphidophoridae detection: Elevation is shown in meters above sea level. The solid 

lines indicate the detection estimate, and the broken lines indicate the 95% CIs. 

 

(A) 

(B) 
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Figure 4. Best-fit occupancy model results, in standardized form, for 

Rhaphidophoridae occupancy: Elevation is shown in meters above sea level. The 

solid lines indicate the detection estimate, and the broken lines indicate the 95% CIs. 

(A) 

(B) 
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Figure 5. Loading plot shows how strongly each habitat variable influences the principal 

component analysis. Loadings closer to 1 or -1 indicate that the habitat variable strongly 

influences the PC. PC1 and PC2 loadings are on different axes. PC1 is represented by 

Dim1, and PC2 is represented by Dim2. We see that positive refuges, shrub cover, litter 

depth, tree height, tree cover, negative disturbance, and negative herb cover influence PC1. 

Negative elevation influences PC2. Vectors that have a small angle represent habitat 

variables that are positively correlated. Vectors closer to 180° are negatively correlated.  
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