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ABSTRACT  

   

Large-scale civil infrastructure systems are critical for the functioning and development of 

any society. However, these systems are often vulnerable to degradation and the effects of 

aging, necessitating consistent monitoring and maintenance. Current methods for 

infrastructure maintenance primarily rely on human intervention and need the 

implementation of advanced sensing and computing technologies in field operations and 

maintenance (O&M) tasks. This research aimed to address these gaps and provide novel 

contributions. Specifically, the objectives of this study were to leverage artificial 

intelligence models to enhance point cloud noise processing, to automate tree species 

detection using Mask R-CNN, and to integrate imagery data and LiDAR datasets for real-

time terrain analysis. First, the study proposed leverages neural networks to eliminate 

unwanted noise from point cloud datasets, enhancing the accuracy and reliability of 

infrastructure data. Secondly, the research integrated Mask R-CNN into automated tree 

species detection. This component offers an efficient solution to identify and classify 

vegetation surrounding infrastructure, enabling infrastructure managers to devise proactive 

vegetation management strategies, thereby reducing risks associated with tree-related 

incidents. Lastly, the study fused image and LiDAR datasets to support real-time terrain 

analysis. This integrated approach provides a comprehensive understanding of terrain 

characteristics, allowing infrastructure managers to assess slope, elevation, and other 

relevant factors, facilitating proactive maintenance interventions and mitigating risks 

associated with erosion. These contributions collectively underscore the potential of 

artificial intelligence models in advancing the operations and maintenance practices of 

large civil infrastructure systems. By leveraging these models, infrastructure managers can 
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optimize decision-making processes, streamline maintenance efforts, and enhance critical 

infrastructure networks' overall resilience and sustainability. 
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CHAPTER 1 

INTRODUCTION 

 Infrastructure is the backbone of the U.S. economy and necessary input to every economic 

output. The U.S. has a twenty-four trillion-dollar economy that relies on a vast 

infrastructure network, from transportation systems, water supply and treatment facilities, 

energy grids, and communication networks. According to the National Council of Public 

Works Improvement (NCPWI), a productive economy and quality of life rely on three 

essential elements: good transportation, supply of clean water, and safe disposal of wastes 

(NCPWI, 1998). Supporting NCPWI, the American Society of Civil Engineers (ASCE), in 

their civil infrastructure performance report card, clearly states that a nation with good and 

adequate civil infrastructure that meets the needs of the society can boost the nation's 

economy (ASCE, 2017): 

• Business productivity,  

• Gross domestic product (GDP),  

• Employment,  

• Personal income of households, and  

• International competitiveness. 

However, the U.S. built the most reliable transportation and water supply systems in the 

late 1950s. Since then, the U.S. population has grown by more than 100%, which makes 

these old infrastructure systems inadequate to fulfill the current requirements and 

inefficient in meeting the demands of society (NCPWI, 1998).  
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1.1 Impact of Ageing Infrastructure and Deficiencies on U.S. Economy And Citizens  

The deteriorating condition of the U.S. infrastructure systems significantly affects U.S. 

economic growth and business productivity. According to ASCE, the U.S. infrastructure 

received a grade of C- on their 2021 Infrastructure Report Card, indicating that it requires 

significant investment to maintain and improve (ASCE, 2021). The ASCE estimated that 

the cost of deferred maintenance and needed upgrades to the U.S. infrastructure systems 

will reach $5.6 trillion, i.e., 24% of GDP by 2029. This includes transportation, water and 

wastewater systems, energy/ power system grids, and other critical infrastructure 

investments.  According to the previous estimations of ASCE, the cumulative cost of 

inadequate infrastructure systems has cost the U.S. economy more than $3.1 trillion in GDP 

and $1.1 trillion in lost business trade between the years 2012-2020 (ASCE, 2021). This 

includes lost productivity, increased transportation costs, and decreased competitiveness in 

the global marketplace. Further, the revised ASCE estimates predict that the continued 

underinvestment in infrastructure at current rates would cost $10 trillion in GDP, 3.5 

million lost jobs, and cost $2.24 trillion in exports by the year 2039 (ASCE Failure to Act, 

2021).  

 In addition to the economic loss, the deteriorating infrastructure systems have cost U.S. 

citizens billions of dollars and time. According to the study report on the deficiencies of 

the U.S. transportation systems, citizens have lost 69 billion hours of productive business 

time to traffic delays (ASCE, 2016; FSWH, 2019). Further, the congested traffic routes 

have cost $160 billion in wasted fuel (ASCE, 2016; FSWH, 2019). Also, the delays caused 

due to deficient infrastructure and avoided trips have cost implications of $35 billion to the 
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U.S. economy each year (ASCE, 2021). Adding to it, the deteriorating conditions of roads 

have forced motorists to spend $130 billion each year on extra vehicle repairs and operating 

costs (ASCE, 2021). In 2016, the ASCE predicted that the infrastructure systems' 

deficiencies may cost each household $3400 in disposable income each year by 2025 

(ASCE Failure to Act, 2016). However, the ASCE also estimated this loss would rise to 

$5100 for each household in the United States by 2040 (ASCE Failure to Act, 2016).  

Furthermore, the failure of these civil infrastructure systems has negative consequences for 

public safety and significant economic loss. A few examples of such failures are as follows: 

• Minneapolis Bridge Collapse: The 2007 collapse of the Mississippi River bridge 

resulted in 13 deaths and 145 injuries. The collapse cost is estimated to be between 

$250 million and $300 million. (MacDonald & MacDonald, 2012)  

• The Flint water crisis: The failure of infrastructure in Flint, Michigan, led to the 

contamination of the city's water supply with lead, resulting in health problems for 

residents. The estimated cost of the crisis is over $400 million. (EPA, 2018) 

• The Los Angeles Water Break: In 2014, a water main break in Los Angeles, 

California, caused flooding and damage to several homes and businesses. The cost 

of repairs and compensation to affected parties was estimated to be $20 million. 

(LADWP, 2014) 

• The New York City blackout of 2003: The infrastructure failure in the form of an 

electrical grid failure resulted in a widespread blackout affecting millions of 

residents, with an estimated cost of $6 billion. (U.S. -Canada PSOTF, 2004) 
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To avoid such catastrophic failures, there is a significant opportunity to improve the current 

state-of -of repair by optimizing the timely operations and maintenance procedures through 

leveraging innovative technologies (WEF, 2014). 

1.2  Operations and Maintenance (O&M) of Civil Infrastructure Systems 

Operations and maintenance (O&M) are the post-construction activities performed on the 

civil infrastructure systems to maintain a good repair state. The primary goal of performing 

O&M activities is to maintain accurate, updated, and reliable data on civil infrastructure, 

including physical characteristics (i.e., structural components of the infrastructure) and 

performance characteristics (i.e., changes on the infrastructure due to movement of traffic 

and weather conditions). O&M involves a wide range of activities such as (WEF, 2014): 

• Inspection and data collection 

• Condition assessment 

• Performance evaluation 

• Prediction of future performance 

• Planning, prioritizing maintenance and repair 

• Evaluating alternative technical solutions and economic 

policies 

Large and aging civil infrastructure systems in the U.S. create greater pressure on 

concerned authorities to pursue O&M activities regularly. However, most O&M activities 

on civil infrastructure are carried out manually through visual inspections. Thus, 

optimizing O&M activities is a perennial problem that often delays O&M decisions. The 
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major challenges and limitations of carrying out O&M activities are as follows (WEF, 

2014): 

• O&M requires high-quality and precise information on infrastructure assets for 

decision-making on maintenance/repair activities. Due to the geographic spread of 

civil infrastructure over extensive areas, it is difficult to extract information from 

inaccessible and isolated rural areas.  

• Implementing a proper maintenance strategy over a longer period for civil 

infrastructure assets is a complex and labor-intensive approach; it requires 

continuous monitoring and training, which takes a large amount of productive time.  

• Civil infrastructure systems are inherently large and complex, composed of diverse 

materials and elements. Deterioration in civil structures is characterized by cracks, 

deflections, and corrosion caused by various factors such as environmental 

parameters, load incurred, and natural disasters. Integrating these complex 

parameters into a monitoring system is challenging.  

• O&M is a multi-disciplinary process that involves many interdependent operations 

that need management in a coordinated manner.  The lack of an integrated 

computerized tool makes it impossible to communicate and maintain infrastructure 

condition status effectively.  

• Furthermore, O&M of civil infrastructure systems is a knowledge-intensive process 

that requires accessing and managing many knowledgeable resources. Relying on 

manual inspection procedures often results in slow information extraction, which 

leads to uninformed and delayed decisions.  
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However, technological innovations, particularly in sensor technology and active remote 

sensing, have significantly improved large civil infrastructure systems' operation and 

maintenance (O&M). Advancements in sensors and radio-frequency devices, such as strain 

gauges, accelerometers, and RFID tags, have enhanced safety, efficiency, and reliability 

by enabling real-time data collection and condition monitoring (Ansari, 2007; Stajano, 

2010; Johnson et al., 2015; Smith & Brown, 2016; Williams, 2017). LiDAR, an advanced 

active remote sensing technology, offers a non-invasive alternative for acquiring real-time 

infrastructure data, allowing the creation of detailed 3D models to support performance 

analytics and more effective O&M strategies (Chen, 2007; Gupta & Way, 2010; Wu et al., 

2021). LiDAR has been employed in various projects, including transportation, building 

and construction, water grid, and power grid infrastructure, with researchers developing 

computing algorithms to extract valuable information from 3D digitized models, 

automating data extraction and minimizing implementation costs and safety concerns 

(Qiao et al., 2021; Wu et al., 2020; Geng et al., 2022; Chu et al., 2022). 

1.3 Opportunity for Novel/Robust Analytical Algorithms.  

Despite the successful research efforts, the research gap in sensing and digitization of 

infrastructure systems for O&M tasks can be attributed to various aspects that require 

further exploration and development, particularly in handling sensor data to support O&M 

activities.  Several limitations in sensor data processing algorithms persist when computing 

datasets from multiple sources. Variability in data quality, resolution, format, and accuracy 

is one of the major limitations affecting the performance of algorithms. For example, Point 

cloud data generated using different sensors/platforms, i.e., airborne method or terrestrial 
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method, have different point cloud densities, spatial resolution, and noise levels compared 

to point cloud data from the mobile mapping method, which affects the efficiency of 

algorithms to extract features and measurements.  

Furthermore, the ability to process sensing data in various environmental conditions is 

critical for the successful implementation of O&M tasks. Research on adaptive algorithms 

that can account for varying environmental conditions during data acquisition is essential 

for improving the efficiency of sensor data processing. Standardizing data processing 

workflows and software tools will also greatly benefit the handling of O&M activities in 

civil infrastructure systems. 

However, as the adoption of sensor technologies in civil infrastructure asset digitization is 

expected to grow in the coming years, there is a significant opportunity to address the 

shortcomings of the data processing tools by developing more robust and adaptive 

algorithms. Researchers and engineers can enhance infrastructure digitization and enable 

efficient automated information extraction and monitoring of analytical models that handle 

complex datasets and environments. This would ultimately contribute to better 

management of infrastructure assets and more effective and efficient handling of required 

O&M activities. 
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CHAPTER 2 

RESEARCH SCOPE AND OBJECTIVES 

2.1 Research Hypothesis 

 

The development of novel analytical models with rich contextual information leveraging 

machine learning/ deep learning techniques promises to improve the ability to operate and 

maintain infrastructure systems that spread over large geographical domains.  

2.2  Scope & Objectives  

The scope of this research focuses on investigating, exploring, and developing analytical 

models, leveraging deep learning techniques to automate feature extraction from point 

cloud imagery data from highly reflective noisy environments acquired through mobile 

mapping of large civil embankment infrastructure systems.  Even though the scope of this 

research focuses on infrastructure systems spreading over large areas, such as power 

transmission and distribution, roads and highways, or open water distribution, the methods 

could apply to other infrastructures and built assets. The study involves LiDAR data with 

physical features like trees, powerline cables, transmission poles, walls, fences, noise, soil 

terrain, etc.  The analytical models are trained to identify and extract features such as noise, 

digital terrain, and tree classification. The proposed analytical models are trained on a 

combination of point cloud and imagery datasets, and the performance is validated 

compared to the traditional algorithms. The objectives of the study are as follows:  

• Objective 1: Explore novel and robust supervised machine-learning analytical 

algorithms for noise filtering that can effectively distinguish noise generated from 

complex real-world environments.  
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• Objective 2: Explore the ability of robust analytical learning algorithms to support real-

time terrain analytics of bare earth terrains by adopting data fusion between high-

resolution point cloud and street-level imagery data. 

• Objective 3: Investigate the ability of learning algorithms to extract tree specimens and 

classify tree species from street-level data containing complex contextual information.  

• Objective 4: Prove the efficiency and validity of the proposed models and algorithms. 
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CHAPTER 3 

METHODOLOGY 

The methodology employed in this study involves leveraging artificial intelligence models 

to address the challenges associated with the operations and maintenance of aging large 

civil infrastructure. The research aims to develop innovative approaches that leverage the 

capabilities of neural networks, Mask R-CNN, and the fusion of image and LiDAR datasets 

to support infrastructure management efforts. 

To achieve the first objective, a point cloud noise processing methodology will be 

developed using neural networks. This methodology will involve training a neural network 

model using a labeled dataset of infrastructure point clouds. The trained model will then 

be employed to process new point cloud data, removing noise and enhancing the accuracy 

and reliability of the infrastructure dataset. 

The second objective is to implement an automated tree species detection method using 

Mask R-CNN. The Mask R-CNN algorithm will be trained on a dataset containing 

annotated images of various tree species. The trained model will be used to detect and 

classify tree species in the vicinity of the infrastructure, aiding in vegetation management 

and ensuring the safety and longevity of the infrastructure. 

A real-time terrain analysis will be performed by fusing images and LiDAR datasets to 

accomplish the third objective. The image and LiDAR data will be processed and 

integrated to analyze terrain characteristics such as slope, elevation, and potential hazards. 

This analysis will provide infrastructure managers with timely insights for proactive 

decision-making and targeted maintenance interventions. 
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By employing these methodologies, this research seeks to contribute to the field of 

infrastructure management by leveraging artificial intelligence models to support 

operations and maintenance efforts for large civil infrastructure systems. The outcomes of 

this study will provide valuable insights into the effectiveness of these approaches and their 

potential to ensure that critical infrastructure systems are sustained good state of repair. 

Figure 1. illustrates the research methodology of this research study. 
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Figure 1. Research Methodology  
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CHAPTER 4 

LITERATURE REVIEW 

This section details a comprehensive literature review summarizing related research for 

processing remote sensing information from a digitized civil infrastructure system to 

support strategic O&M activities. The literature review is structured into four parts to 

provide a holistic understanding of the research area. The first part provides an overview 

of the current O&M activities through digitizing civil infrastructure systems and highlights 

the challenges of feature extraction algorithms. The second part discusses the various noise 

delineation methods and their limitations, detailing the challenges of accurately filtering 

noise from point cloud datasets. The third part examines the state-of-the-art techniques for 

analyzing infrastructure terrain and, highlighting the shortcomings, emphasizes the need 

for real-time terrain analysis. Finally, the fourth part explores deep learning-based image 

classification models for tree species detection and highlights the limitations, including 

their dependence on large and diverse datasets. 

4.1 State-of-Art O&M Activities  

LiDAR has become more popular in recent years for its ability to capture high-resolution 

3D data at high speed from large areas. LiDAR sensor-generated point cloud data provides 

access to a wide range of infrastructure asset information, including object features, digital 

terrains, vegetation, boundaries, encroachments, etc. This has enabled O&M activities to 

be carried out more efficiently, cost-effectively, and accurately compared to the traditional 

manual methods, which are labor-intensive, time-consuming, and costly.  Many research 

studies have highlighted the benefits of using digitized infrastructure assets for O&M 
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activities in building infrastructures, urban landscapes, and other large-scale 

infrastructures, including roads, bridges, embankments, etc. The following paragraph 

summarizes the previous research efforts in large civil infrastructure systems.  

4.1.1 Large Civil Infrastructure Systems 

Lidar-based analytical models are increasingly applied in large civil infrastructure projects 

for damage assessment, flood mapping, and corrosion analysis to maintain and manage 

structural health. Relevant studies in optimizing operation and maintenance include UAV-

based inspection on bridges by Khaloo et al. (2018), UAVs for damage inspection of 

bridges by Lovelace and Zink (2015), flood segmentation and depth identification using 

lidar data by Cai et al. (2007), and leak detection in canal systems using airborne 

multispectral data by Huang et al. (2009) and Arshad et al. (2014). Yang et al. (2014) 

proposed an automatic road marking extraction method from MLS point clouds. 

Additionally, researchers have used airborne lidar technology to study land surface 

conditions, analyze land cover patterns, and classify objects (Hecht et al., 2008; Huang et 

al., 2013; Giridharan et al., 2004; Coren & Sterzai, 2006; Höfle & Pfeifer, 2007; Kakon et 

al., 2009; Kotthaus & Grimmond 2014; Zhou & Troy, 2008; Zhou et al., 2009; Zhou, 2013; 

Samal & Gedam, 2015; Zhang et al., 2008). Numerous studies have applied an object-

oriented approach using lidar data fused with image analytics, which has shown better 

results in classifying building footprint, pavement, bare soil, fine-textured vegetation, and 

coarse-textured vegetation (Zhou & Troy, 2008; Zhou et al., 2009;  Zhou, 2013; Samal & 

Gedam, 2015).  Overall, these studies highlight the potential of lidar technology in 

contributing to the optimization of O&M activities in large civil infrastructure projects, 
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enabling more efficient and effective maintenance and management of these critical 

systems. 

4.1.2 General Limitations of Current Analytical Methods  

The accuracy and efficiency of feature extraction algorithms are challenges for digitizing 

civil infrastructure assets for O&M activities. Many researchers have emphasized that the 

performance of point cloud processing algorithms is affected by many factors, including 

variability in data quality, resolution, format, and accuracy of point cloud datasets (Wang 

et al., 2017;  Xiao et al., 2017; Zhang et al., 2017; Sithole & Vosselman, 2004; Vosselman 

& Maas, 2010; Rottensteiner et al., 2013). Also, Lei et al. (2020) and Wang et al. (2020) 

reported that Integrating data from various sources can be computationally demanding. 

They may result in inconsistencies and errors while processing large volumes of data. 

Additionally, Li et al. (2020) point out that the lack of standardization in data processing 

tools and hardware hampers the comparability of results across different studies. For 

instance, Borkar et al. (2020) found inaccuracies in the structural analysis due to difficulties 

in extracting meaningful information from point cloud data for concrete infrastructure. 

Furthermore, Du et al. (2018) highlighted the challenges of integrating data from multiple 

sources for road infrastructure management, leading to inconsistencies in data and making 

it challenging to make informed decisions about maintenance and repair. There is a 

significant opportunity to improve the accuracy and efficiency of processing tools for large 

point cloud datasets of civil infrastructure from complex reflective environments. The 

following paragraphs provide an overview of research studies on point cloud processing 
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analytical models, including noise filtering, real-time terrain analysis, and tree species 

classification from the point cloud and imagery datasets.  

4.2 Noise Filtering  

Point cloud datasets obtained through mobile LiDAR scanning are susceptible to noise, 

which may be caused by various factors such as the weather condition and continuous data 

collection process from an on-ground movable vehicle (Li et al., 2019). Researchers used 

the terms "outliers" and "noise" interchangeably. Salgado et al. (2009) and Bastani et al. 

(2019) have defined noise as misleading points in the dataset generated due to dust because 

of vehicle speed, reflection from surrounding water bodies and moving objects such as 

vehicles, humans, and birds. The presence of noise in point cloud dataset datasets can 

negatively impact the accuracy and reliability of the results, making it challenging to 

extract feature extraction information for various applications such as civil infrastructures.  

 

Figure 2. Noise in Civil Infrastructure Point Cloud 
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4.2.1 State-of-Art Noise Filtering Methods 

The first step in processing point cloud data is to segment it into infrastructure ground 

points and non-ground points. However, due to the lack of geometrical similarities and 

topography between ground and non-ground features, filtering point clouds has proven 

challenging (Sithole & Vosselman, 2004). Therefore, various filtering methods have been 

explored to filter noise features in large lidar point clouds, which are typically divided into 

three categories: slope-based, linear prediction-based, and surface-based methods (Sithole 

& Vosselman, 2004; Liu, 2008; Zhang & Witman, 2005; Bartels & Wei, 2010). 

Slope-based algorithms are successful in point cloud datasets with flat areas, but their 

accuracy decreases in steep terrains (Vosselman, 2000; Sithole, 2001; Shan & Sampath, 

2005; Wang & Tseng, 2010). Shan and Aparajithan (2005) improved the slope-based 

filtering algorithm's accuracy by calculating the slopes between neighbor points along a 

single scan line in a specified direction. Meng et al. (2009) extended the algorithm's 

application to multidirectional scan lines. On the other hand, linear prediction-based 

methods have been proven inefficient in preserving terrain details and tend to misclassify 

minute objects (Sithole & Vosselman, 2004; Liu, 2008), despite various threshold 

calibration methods being used, such as direction filters and adaptive filters (Wang & 

Tseng, 2010; Sithole, 2001; Susaki, 2012). 

Morphological filters effectively preserve terrain details and remove small objects in steep 

terrains. However, selecting the right processing window size is crucial (Kilian, 1996; 

Lohmann et al., 2000; Zhang et al., 2003; Sithole & Vosselman, 2005; Zhang & Witman, 

2005; Chen et al., 2007). Small processing windows remove small objects, leaving large 



18 

 

objects like buildings untouched, while large processing windows flatten terrain details. 

Kilian et al. (1996) proposed a solution to this issue by applying morphological filtering 

with gradually increasing window size and assigning weights to each point based on the 

processing window size by which it is recognized as a ground point. The terrain surface is 

then estimated using the weighted points' surface approximation. Similarly, Zhang et al. 

(2003) proposed a progressive morphological filtering method for constant inclinations, 

but the assumption of constant slope may lead to poor surface results. Additionally, a few 

other mathematical morphological-based filtering algorithms include morphological 

reconstruction (Arefi & Hahn, 2005), full-waveform methods (Mucke et al., 2010), and 

repetitive interpolation (Kobler et al., 2007). However, accuracy depends on the processing 

window size parameter, which requires prior knowledge of the study area. 

Surface-based methods gradually approximate the ground surface by iteratively selecting 

ground measurements from the original dataset (Axelsson, 2000). Zhang and Lin (2013) 

improved accuracy by embedding smoothness-constrained segmentation. However, the 

results are inconsistent with the steeper slope surfaces.  

In recent times, Zhang et al. (2016) proposed an advanced cloth simulation model (CSF) 

to extract terrain surfaces from the lidar point clouds from airborne datasets. Unlike the 

other filtering algorithms with complicated parameter setups, the CSF algorithm uses 

simple integer and Boolean parameters for mesh grid and iteration setups. The algorithm 

first inverts the point cloud dataset and simulates rigid cloth covering the inverted surface. 

The noise is identified and filtered by analyzing the surface interactions of point clouds 

with the cloth grid surface. However, this filtering technique's results were insignificant 
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while processing high-resolution point cloud datasets from reflective environments, 

misinterpreting vertical slope as noise and failing to filter noise generated from surrounding 

reflective water bodies. 

4.2.2 Limitations of Noise Filtering Methods  

A major limitation of previous studies is the challenge of processing heavy noise point 

cloud datasets. Current noise filtering methods, such as morphological filters, linear 

prediction-based methods, and surface-based methods, have been proposed to filter out 

noise from point cloud datasets. However, these methods face limitations related to data 

density and reflective environments, which can affect the accuracy of ground-truth 

information in the point cloud datasets. 

For instance, morphological filters require appropriate threshold and window size selection 

for processing. At the same time, linear prediction-based and surface-based methods are 

inefficient in classifying and processing noise around steep vertical slopes. Furthermore, 

while these previous algorithms have effectively filtered noise from horizontal planar 

surfaces from point cloud datasets acquired through airborne methods, they were not 

accurate enough in filtering noise generated due to reflection and often miss-classify steep 

vertical slope points as noise. 

Thereby, this research explores novel and robust supervised machine-learning 

analytical algorithms for noise filtering that can effectively distinguish noise 

generated from complex real-world environments (Objective 1). 
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4.3 Terrain Analytics 

Large infrastructure networks often extend over vast areas, encompassing terrain types 

such as asphalt, concrete, and earthen soil roads. These diverse terrains face several 

challenges due to factors such as uncontrolled water discharge, traffic load, and 

environmental conditions. Effective management and maintenance of these terrains are 

crucial to ensure the longevity and functionality of the infrastructure. 

Uncontrolled water discharge, often from rain, can lead to standing water penetrating road 

surfaces, creating potholes or puddles. This infiltration weakens the terrain surface and 

base, causing material loss and making the infrastructure more susceptible to erosion. 

Additionally, due to moving traffic, unpaved terrain surfaces may experience abrasion, 

compaction, and displacement of surface material. Over time, the combined effects of 

traffic and complex environmental conditions can wash out surface aggregates, 

emphasizing the need for regular profile grading and maintenance of infrastructure terrains. 

Notably, unpaved terrains require two to three times more maintenance than paved roads, 

as they do not possess the same resistance to water infiltration as asphalt or concrete roads. 

To address these challenges, many researchers have explored advanced computing models 

to analyze terrain surface grades (slopes). The following sections of this paper will provide 

a detailed overview of such research efforts. 

4.3.1 State-of-Art Terrain Assessment Methods 

Lidar data has emerged as a valuable source of information for terrain analysis, enabling 

the assessment of slope grade, cross-slope, and erosion. By processing this data into Digital 

Elevation Models (DEMs), the surface elevation of the earth's terrain can be determined, 
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facilitating the calculation of terrain parameters such as slope and aspect. Traditional 

methods of determining slope grade relied on manual measurements and topographic maps, 

which were time-consuming, expensive, and limited by low resolution. 

Terrain profile grade is an essential feature impacting natural and human-made systems. 

For example, it plays a role in transportation by determining sight distance on vertical 

curves (Souleyrette et al., 2003), water distribution embankment networks by controlling 

and preventing uncontrolled water discharges (Paladugu et al., 2020; Paladugu & Grau, 

2018), and agriculture by identifying areas prone to erosion, which affects soil fertility and 

crop productivity. 

Researchers have used lidar data to create terrain profile maps, employing mathematical 

algorithms such as the Savitzky-Golay filter (1964), Loess method (1979), Horn algorithm 

(1981), Zevenbergen and Thorne algorithm (1996), and Slangen algorithm (1996) to 

calculate terrain grade profiles. However, these algorithms vary in accuracy and 

computational efficiency. Visualization techniques for terrain grade profile maps have also 

been developed, including color coding and shading. Machine learning techniques, like 

support vector machine (SVM) algorithms, have been utilized to train models for 

distinguishing between grade categories (Liu et al., 2018). Despite these advancements, 

there are limitations, such as a lack of semantic understanding of dynamic terrain scenes, 

which can result in inaccurate measurements (Chen et al., 2019). 

Recent advances in real-time terrain analysis methods, particularly those employing deep 

learning techniques, have demonstrated promising results in applications like erosion trend 

estimation and terrain classification (Zheng et al., 2018). These real-time methods fuse 
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datasets, such as imagery and point cloud data, to provide rich contextual information, 

including color, texture, semantic information, and precise measurements of distances and 

elevations (Ghaffarian et al., 2019). Data fusion has been shown to improve terrain analysis 

results by addressing the limitations of geometric methods. Real-time methods fusing 

image and LiDAR datasets have emerged as a promising approach for terrain analysis, 

addressing the limitations of traditional geometric methods and providing richer contextual 

information. These methods leverage information from both datasets, enhancing the 

understanding of various terrain types and environmental conditions. For example, in the 

context of terrain analysis, recent studies have utilized deep learning techniques to combine 

multispectral images and LiDAR-derived elevation data for improved terrain classification 

and segmentation (Yang et al., 2020). The method has demonstrated proficiency in 

accurately classifying distinct terrain features, including topographical attributes, slopes, 

and vegetation. These are crucial for various applications such as monitoring erosion, 

evaluating hazards, and planning land use. Another notable development is using 3D object 

detection frameworks, such as VoxelNet, which integrates image and LiDAR data to 

efficiently learn local spatial features and context information for robust object detection 

in complex urban environments (Zhou et al., 2018). These methods have also been applied 

to infrastructure condition assessment, such as automated bridge inspection using fused 

images and LiDAR data to detect and analyze bridge defects (Ye et al., 2019). This 

approach offers a more detailed and robust representation of surface features and structures, 

allowing for precise assessment of surface morphology and changes over time. Moreover, 

image and LiDAR data fusion have been applied in monitoring natural calamities, such as 
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landslides, soil erosion, and vegetation dynamics, providing valuable insights for 

environmental management and conservation (Qin et al., 2020). 

4.3.2 Limitations of Real-Time Terrain Analysis  

Change detection from terrain surface and estimation of erosion trends leveraging point 

cloud datasets has been a highly effective tool for terrain morphology assessment. Unlike 

paved terrains, unpaved terrain deteriorates faster due to traffic flow and complex 

environmental conditions, such as heavy rains and floods, leading to infrastructure failure. 

However, geometric methods can successfully generate the terrain morphology and erosion 

trends from point cloud datasets, including Triangulated Irregular Network (TIN), Digital 

Elevation Model (DEM), Savitzky-Golay filter, Loess method, support vector machines, 

etc. However, these geometric methods lack a semantic understanding of dynamic unpaved 

terrain scenes and are sensitive to noise, and outliers result in inaccurate measurements 

while processing raw point cloud datasets. The advances in multiple data fusion 

technologies provide an opportunity to address these limitations through real-time analytics 

by leveraging imagery and point cloud datasets. Fusion of multiple datasets, such as 

imagery and point cloud datasets processed with deep learning (DL) algorithms, provides 

access to rich contextual information, such as color, texture, and semantic information, and 

precise measurement of distances and elevations.  

Recent research studies on paved terrains using real-time methods have reported varying 

levels of accuracy, ranging from 80% to 95%. However, these research methods were 

developed with learning algorithms trained on contextual information from terrain scenes 

captured from an aerial view. Although a few studies have employed street-level data 
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fusion methods, the primary focus has been object detection rather than terrain morphology 

assessment. Consequently, these methods may not be directly adaptable for unpaved terrain 

datasets due to factors such as undefined boundaries, differences in perspective views and 

contextual information training, and varying data fusion alignment. Moreover, previous 

studies have faced computational limitations resulting from misalignment during data 

fusion and noise, leading to errors of 5%-20% in terrain classification. Addressing these 

limitations will be crucial in advancing real-time terrain analysis methods for unpaved 

surfaces with street-level data. 

Thereby, this research explores the ability of robust analytical learning algorithms to 

support real-time terrain analytics of unpaved terrains by adopting data fusion 

between the high-resolution point cloud and street-level imagery data from heavy 

noise reflective environment (Objective 2). 

4.4 Detection And Classification of Tree Species 

Growth of vegetation along the power line infrastructure corridors may result in tree limbs' 

intervention with power conductors, causing a short circuit, power blackout, or even fire. 

Control of vegetation growth requires regular inspections and a deep understanding of tree 

species and their growth rate. Different tree species have different textural and spectral 

characteristics.  

The emergence of Deep Learning (DL) architectures such as Convolutional Neural 

Networks (CNN) has enabled automatic feature learning and extraction methods for feature 

classification from 3D point clouds and images (Roberson et al., 2010; Douillard et al., 

2011; Li et al., 2013). Although instance segmentation-based feature extraction has gained 
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significant importance in the field of computer vision, 3D point cloud segmentation is still 

under development. In the field of urban forestry, street-level imagery in combination with 

computer vision has been applied for the estimation of shade provision (Li & Ratti, 2019; 

Li et al., 2017, 2018), quantification of perceived urban canopy cover (Duarte et al., 2017; 

Cai et al., 2018; Li et al., 2015; Stubbing et al., 2019), and mapping the location of trees 

(Wegner et al., 2016). The following paragraphs summarize the research studies in tree 

species detection and classification, followed by limitations. 

4.4.1 State-of- Art Methods for Tree Species Detection and Classification 

Over the years, accurate identification and tree species classification have been essential 

for various research and conservation efforts. Researchers have employed different 

approaches, including hyperspectral data, lidar data, and machine learning algorithms, to 

achieve precise classifications. This paper reviews these methods and their advantages and 

limitations in tree species classification. 

Hyperspectral data, covering visible and near-infrared spectral regions, has been used in 

studies by Alonzo et al. (2014), Dalponte et al. (2014), and Dian et al. (2016) to classify 

tree species. The results indicate high accuracy in tree species classification using 

hyperspectral data. Maschler et al. (2018) further automated classifying 13 tree species 

using this approach. However, acquiring hyperspectral data is complex, and the repeating 

spectral interval information for different tree species can reduce classification accuracy. 

In contrast, Liu et al. (2017) argued that lidar data contributes more to accurate species 

classification results than hyperspectral features. Lidar data is easier to obtain and provides 

accurate tree height and canopy cover measurements. However, its effectiveness for 
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species classification depends on computing complexity, the choice of features, and 

classification algorithms. 

Machine learning algorithms have recently been employed for tree species classification, 

demonstrating higher accuracy and robustness than traditional classification algorithms. 

Studies by Jones et al. (2010) and Dalponte et al. (2012) effectively classified tree species 

using RGB optical images obtained by UAVs. Dalponte et al. (2015) proposed a support 

vector machine (SVM) classification model for individual tree crown delineation. 

However, these methods require manual input of optimum threshold parameters, 

necessitating intense knowledge or expertise. 

Deep learning algorithms have gained popularity in tree species classification because they 

can characterize complex patterns in imagery data. Melgani and Mancini (2020) used deep 

learning algorithms to classify tree species from smartphone images, achieving 89.7% 

accuracy. Huang et al. (2018) employed a deep convolutional neural network (CNN) to 

classify tree species from bark photographs, achieving 95% accuracy on a test set. Wang 

et al. (2020) utilized street-level images and a deep CNN to classify tree species in urban 

areas, achieving up to 90% accuracy on a test set. However, deep learning models may 

underperform on images captured in different lighting conditions or with varying 

contextual information, limiting their adaptability to diverse use cases. 

4.4.2 Limitations of Tree Species Classification Methods 

Many researchers have studied different approaches to classify tree species, using 

hyperspectral and photogrammetry data, leveraging machine learning (ML) and deep 

learning algorithms (DL). However, most studies have used low-resolution 
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photogrammetry data from airborne methods, resulting in limited spatial resolution that 

struggles to capture fine-scale features of individual trees and distinguish between different 

tree species due to overlapping tree canopies and similar spectral characteristics. The 

classification accuracies of methods leveraging airborne data range between 60% - 80%. 

Recently, a few studies have proposed processing high-resolution street-level image data 

to address these limitations in classifying tree species. Through supervised training of ML 

/DL algorithms, these studies have reported a 90%-95% accuracy rate in classification. 

However, the street-level images used for training and testing these algorithms are stand-

alone trees, which lack contextual information from the surrounding environment, such as 

nearby trees, buildings, urban objects, and vegetation features.  

This research study investigates the ability of learning algorithms to extract tree 

specimens and classify tree species from street-level data containing complex 

contextual information (Objective 3). 
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CHAPTER 5 

DATA COLLECTION 

This research study, a crucial collaboration between Arizona State University and Salt 

River Project (SRP), addresses critical infrastructure issues within SRP's vast canal and 

powerline infrastructure network. SRP's infrastructure systems feature an intricate lattice 

of embankments, water channels, and powerline corridors, necessitating comprehensive 

data collection and analysis. This research aims to employ advanced AI algorithms to 

process the collected data and automate data extraction and analysis procedures. Such a 

methodical approach is essential in managing vast information from the 262 miles of 

infrastructure network. The intention is to transform these data streams into actionable 

insights, enhancing strategic operations and maintenance activities. 

In the context of canal embankments, AI algorithms aim to reduce point cloud noise, 

ensuring a high level of data accuracy for better operational decisions. The powerline 

corridors pose a unique challenge due to fast-growing tree species that could intrude with 

the energy supply infrastructure, necessitating their detection and identification for risk 

mitigation. Furthermore, the research explores the estimation of surface slope gradient and 

erosion measurement from fast-degrading earthen embankments to assess their structural 

integrity, enabling early intervention and preventing potential failures. This collaborative 

research signifies an innovative step forward in infrastructure management, utilizing AI's 

power to address complex problems, automating processes, and enhancing the strategic 

operations and maintenance activities for SRP's critical infrastructure systems. The 

following sections detail the data collection procedure adopted for this research study, i.e., 
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defining a region of interest, making ground reference points, data collection, and post-

processing.  

5.1 Region of Interest (ROI) 

The area of focus for this study spans 262 miles of canal embankments within the Phoenix 

metropolitan region under the jurisdiction of SRP. The data for the study has been gathered 

from several canals, including the Arizona Canal, Grand Canal, South Canal, Tempe Canal, 

Western Canal, Eastern Canal, and Consolidated Canal. These canals traverse several 

cities, such as Chandler, Gilbert, Mesa, Tempe, Scottsdale, Phoenix, Glendale, Tolleson, 

and Peoria. Refer to Figure 3.  

 

Figure 3. Region of Interest Canals Under Jurisdiction of SRP 
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5.2 Geo-reference Points 

Before gathering data, the SRP team ensured that ground reference points were established 

for each mile of the embankment. This was done to enhance the precision of the data 

collection process. The data was gathered for 131 miles along the canal's centerline, 

equating to 262 miles of canal embankments. Hence, the SRP team identified and marked 

approximately 262 ground reference points. 

5.3. Data Acquisition 

This study uses high-resolution 3D point cloud data collected through the canal 

embankment with above-the-ground photogrammetric and laser scanner Topcon IP-S2 

mounted in a roving truck unit. The Topcon navigation technology combines three distinct 

technologies, i.e., dual-frequency 40-channel GNSS (Global Navigation Satellite System) 

receiver, Honeywell HG 1700 tactical–grade ring laser gyroscope, and DMI (Distance 

measuring interval module) (Punete et al., 2013). The GNSS receiver updates the position 

of the scanner relative to vehicle altitude provided by laser gyro, further supplemented by 

DMI for overall positioning. The image capability is based on the LADYBUG3 

multicamera unit, which performs 3,600 panoramic imaging up to 15 frames per second 

(Punete et al., 2013), with an average speed of 30 miles/hour. Figure 4. Illustrate a similar 

truck-mounted Lidar unit leveraged for data collection.  



31 

 

 

Figure 4. Mobile Lidar Unit 

The entire laser scanning is carried out by three SICK Laser Measurement Sensors (LMS) 

291 scanners (Punete et al., 2013). One laser was pointing towards the road, and the other 

two lasers were pointing at each side to provide a series of range and elevation profiles. 

The weather conditions were ideal; the data gathered was in the broad sunlight between 10 

am – 3 pm. This process has taken twelve days to gather data for entire canal miles. The 

average point cloud density generated by the Lidar unit was 1,200 -1,500 points/square 

meter. 

5.4 Post-processing  

The responsibility for field data collection, registration, and post-processing, was handled 

by BPG Design. The gathered data was subsequently post-processed in alignment with the 

pre-marked ground reference points. This approach facilitated a high level of surveying 

accuracy (approximately 1mm) in determining the coordinates of each point within the 

cloud. Figure 5.  illustrates a photogrammetric image of the point clouds for a canal cross-

section.  
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Figure 5. Photographic Image of 3D Point Cloud 
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CHAPTER 6 

AUTOMATED NOISE FILTERING FROM HIGH REFLECTIVE 

ENVIRONMENTS 

This research study's significance lies in advancing data collection and processing 

methodologies, specifically from challenging environments like unpaved embankment 

roads surrounded by high-reflective water surfaces. Such environmental settings often 

generate significant noise during data collection, interfering with the dataset's accuracy and 

usefulness. To harness this dataset for constructive analysis and predictive modeling, the 

study focuses on developing AI algorithms that effectively filter out this noise. By 

addressing the data quality issues and enhancing data processing techniques, this research 

helps pave the way for more accurate assessments of infrastructure conditions to support 

strategic O&M.  

High-reflective environments, such as those with water bodies or metallic structures, can 

lead to incorrect data points due to the high reflectivity of surfaces. These noise points pose 

significant challenges in modeling and visualization tasks. Therefore, an efficient filtering 

approach is essential to ensure the quality and reliability of point cloud data. 

The noise in point cloud data usually falls into two main categories: outliers and systematic 

noise (Zhang et al., 2016). Outliers are isolated points that significantly deviate from the 

neighboring points. These can occur due to sensor errors or reflection from small, non-

static objects like leaves or birds. On the other hand, systematic noise appears as consistent 

patterns or structures in the data, often resulting from sensor bias, misalignment, or 
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multiple reflections in highly reflective environments. Figure 6. illustrates noise in the 

point cloud datasets. 

 

Figure 6. Noise in Raw Point Cloud Dataset  

The current research methods for noise filtering primarily revolve around statistical outlier 

removal, radius-based outlier removal, and machine learning-based approaches. Statistical 

outlier removal is a straightforward and common technique that removes data points too 

far away from the mean of their neighboring points. Radius-based outlier removal 

eliminates points with fewer than a certain number of neighbors within a specified radius, 

thereby helping filter sparse noise points. 

However, these techniques have their limitations. For instance, statistical and radius-based 

outlier removal methods may inadvertently remove valid data points, particularly in sparse 

or complex environments. Furthermore, the issue of filtering noise in high-reflective 

environments, like water bodies or metal surfaces, is even more challenging. Traditional 

filtering methods often need help with these environments due to the complex nature of 

multiple reflections and their impact on the data points.  
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Machine learning-based approaches offer more advanced solutions to noise filtering. Deep 

learning models, for instance, can be trained to recognize and eliminate noise patterns 

based on large datasets. This research study explores the supervised reinforcement learning 

analytical algorithms for noise filtering that can effectively distinguish noise generated 

from complex real-world environments. 

The following paragraphs discuss the methodology for noise filtering, complemented by 

pseudo code for clarity. The noise filtering results are validated with ground truth 

information and compared with the outcomes from traditional algorithms. This 

comprehensive comparison helps understand the merits of the proposed method, identifies 

limitations, and discusses opportunities for further enhancement in point cloud processing 

techniques. 

6.1 Noise Filtering Algorithm Framework 

  

The methodology component of this study separates into four distinct sections. First, the 

study executes pre-processing and initial segmentation, laying a robust foundation for 

subsequent steps. Following this, unsupervised DBSCAN (Density-Based Spatial 

Clustering Application) filtering removes free-floating noise clusters. The third step 

involves eliminating reflection noise and tackling the common issues associated with high-

reflective environments. Figure 7. shows types of noise in the dataset.  Finally, the study 

applies a supervised trained ReLU network to filter surface noise, further refining the 

quality of the point cloud data. Figure 8. Show the noise filtering algorithm framework 

used in this study. 
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Figure 7. Types of Noise in Raw Point Cloud Dataset 

 

Figure 8.   Noise Filtering Algorithm Framework 
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 6.1.1   Pre-processing (Segmentation) 

 As the research study especially focused on terrain-based noise filtering, all the unwanted 

object features outside the terrain boundary are pre-processed for segmentation. These 

unwanted object features, such as wires, poles, vegetation, walls, and other electrical 

equipment, could introduce noise and inconsistencies in the data. By eliminating these 

features in the initial stage, the study ensures that the dataset under investigation is more 

focused and pertinent to the noise filtering from terrain surface, laying the groundwork for 

more accurate and reliable subsequent processing and filtering stages.  

6.1.2 Dataset Type  

 

The study incorporates a dynamic model training and testing approach to ensure algorithm 

adaptability across multiple use-case scenarios. Two distinct types of datasets serve as the 

foundation for this process.  

The first dataset, 'Type 1,' comprises one-side terrain data files. These files correspond to 

situations where the terrain is only present on the data collection side. Such scenarios 

typically involve reflection noise due to highly reflective surfaces and surface noise from 

dust and moving particles. It is important to note that as Type 1 files are one-sided, the 

DBSCAN clustering stage is bypassed for these files. 

The second dataset, known as 'Type 2,' encompasses two-side terrain data files. These files 

portray the terrain surface on both sides of the embankment. This configuration introduces 

unique challenges, with reflection noise on both sides and surface noise on the data 

collection side. Figure 9. Show the types of datasets used in this research study. 
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Figure 9. Type of Datasets for Analytics 

This study enables a comprehensive understanding and improvement of the model's noise 

filtering capabilities by incorporating both datasets into the model's training and testing 

phases. This method ensures that the model is adequately prepared to handle diverse noise-

filtering scenarios, thus enhancing its practicality and precision. 

6.1.3 DBSCAN Clustering  

 

This study employs the DBSCAN clustering approach to distinctly categorize the two-side 

terrain surface files into clusters of individual terrain files. The DBSCAN algorithm works 

on the principle of density-based clustering, which considers clusters as high-density 

regions separated by areas of lower density. Its mathematical formulation typically uses 

two parameters: epsilon (ε), which defines the maximum distance between two samples for 

them to be clustered in the same neighborhood, and “minPts,” the minimum number of 

points required to form a dense region. 

The mathematical basis of DBSCAN involves determining whether the ε-neighborhood of 

a point has enough points (at least minPts) to consider it a core point. The algorithm 

proceeds by arbitrarily selecting a point in the dataset. A new cluster is created if there are 
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at least minPts within a radius of ε from that point. The cluster then expands by adding all 

direct density-reachable objects to the cluster. If a point is density-reachable from any point 

of the cluster, it is added, too. This process continues until no more points can be added to 

the cluster. The algorithm then proceeds with the next point in the dataset and repeats the 

process until all points have been processed. Table 1. illustrates the pseudo-code of the 

DBSCAN algorithm. Figure 10. show the clustering from the DBSCAN algorithm 

visualized in the cloud compare point cloud processing tool.  

 

 
Figure 10. DBSCAN Clustering of Point Cloud Dataset 
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Table 1. Pseudo Code for DBSCAN Clustering Algorithm 

Algorithm 1: ALGORITHM FOR DBSCAN CLUSTERING  

 
Input: D (dataset as a set of points), eps (distance for neighborhood), 

minPts (minimum number of points required to form a dense region) 
 

Output: C (set of clusters) 

 
Initialize C = empty set 

 
For each unvisited point P in dataset D 

  
- Mark P as visited 

  
- Get NeighborPts, the ε-neighborhood of P 

  
- If the size of NeighborPts is greater than or equal to minPts 

   
- Create a new cluster, newCluster 

   
- Extend newCluster with P and all points in NeighborPts 

   
- For each point P' in NeighborPts 

    
- If P' is not visited 

     
- Mark P' as visited 

     
- Get NeighborPts', the ε-neighborhood of P' 

     
- If size of NeighborPts' is greater than or equal to minPts 

      
- Append NeighborPts' to NeighborPts 

    
- If P' is not yet a member of any cluster 

     
- Add P' to newCluster 

  
- Add newCluster to the set of clusters C 

 
Return C 
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6.1.4 Filtering Reflection Noise  
 
Applying DBSCAN clustering to two-sided terrain data in this research results in data split 

into two clusters, typically separated by a physical distance. Each generated cluster 

corresponds to an individual terrain file. After the successful application of DBSCAN 

clustering, the next phase involves identifying the 'min point' within the dataset. 

The 'min point,' in this study's context, signifies the reflection point on the water's surface. 

Due to water surfaces' flat, mirror-like nature, this point often displays the lowest elevation 

point in the dataset. Identifying this 'min point' is critical in managing the reflection noise 

frequently associated with high-reflective environments, thereby enhancing the point cloud 

data's accuracy. 

The employed algorithm operates under the assumption that the 'min point' in the Z-axis, 

or the lowest elevation, always signifies a reflection point within the dataset. Consequently, 

a threshold value of 0.5 feet is established. Points falling within a range of 0.5 feet below 

the 'min point' are classified as reflection noise. In contrast, points exceeding the 0.5 feet 

threshold are considered terrain points for the time being and proceed further for surface 

noise filtering. Figure 11. Shows the reflection noise filtered from cluster 1 and clustered 

2 using the min Z-axis point from the dataset.  
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Figure 11. Data Clusters Post-Reflection Noise Processing  

6.1.5 Supervised Neural Network Model for Surface Noise Filtering 
 
This research explores the efficiency of neural network algorithms to separate noise from 

surface point clouds. The research study leverages the supervised learning capability of 

neural networks to follow a systematic process to accomplish the noise-filtering task. 

Firstly, ten ground truth datasets are labeled, distinguishing between noise and surface 

points. The labels assigned are 0 for noise and 1 for surface points. The ten ground truth 

datasets are selected based on the variable noise characteristics in the dataset. These labeled 

datasets serve as the basis for training the neural network model. 
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The algorithm proceeds by training the model using these labeled datasets for a specified 

number of epochs, which in this case is 150. During training, the model learns to recognize 

patterns and features that differentiate noise from surface points within the point clouds. 

The dataset is split into training and testing subsets, i.e., eight training and two testing 

datasets. The model is tested on the testing subset to assess its ability to classify accurately 

and separate noise from surface points. The model is saved for future use upon completion 

of the training phase. It is then applied to various point cloud datasets to test its 

generalization capability and effectiveness in separating noise from surface points. 

The trained model identifies each data point within the testing dataset as either a terrain 

point, denoted with class value"1", or a noise point, marked with class value "0". The 

algorithm's accuracy of the terrain classification is assessed by comparing its identification 

of terrain points against the established ground truth information, yielding the quantity of 

true positive terrain values. In parallel, the algorithm's ability to correctly distinguish noise 

points is also measured, providing the number of true positive noise values, which is again 

compared to the manually segmented ground truth data. The accuracy of the model's 

predictions is subsequently determined by analyzing the percentage of points accurately 

identified in both terrain and noise classifications, providing a well-rounded assessment of 

the model's efficiency and precision. Figure 12. illustrate the filtered noise from the original 

point cloud dataset. The results obtained from these experiments are presented in 

subsequent sections of the research paper, providing insights into the algorithm's 

performance, its ability to distinguish noise from surface points, and its efficiency 
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compared to the traditional model. Table 2. provides the pseudo-code of the supervised 

clustering algorithm.  

 

Figure 12. Processed Point Clouds Post-Noise Filter 
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Table 2. Pseudo Code for Supervised Neural Network for Noise Filtering  

ALGORITHM 2: SUPERVISED NEURAL NETWORK ALGORITHM FOR NOISE 

FILTERING 

 IMPORT TensorFlow library 

 Define function -create a model. 

  Create a neural network model. 

   - Dense layer with 64 units, ReLU activation, and input shape (input_dim) 

   - Dense layer with 64 units and ReLU activation 

   - Dense layer with two units and softmax activation 

  Return the model 

 -Set GPU memory growth to True for the first physical device 

 -Set input_dim to 3 

 -Set batch_size to 64 

 -Set epochs to 150 

 Create the noise_filter_model using create_model function 

 Compile the model with: 

  - Optimizer: Adam 

  -Loss function: Sparse categorical cross-entropy 

  - Metrics: Accuracy 

 Define x_train as the training data 

 Define y_train as the training labels 

 Create a TensorFlow Dataset from x_train and y_train with batch_size 
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 Train the model on the train_dataset for the specified number of epochs 

 Save the trained model as 'point_classification_model.h5' 

 #test 

 Define x_test as the test data 

 Define y_test as the test labels 

 Evaluate the trained model on x_test and y_test: 

  Calculate the predicted labels using the trained model on x_test 

  Calculate the accuracy of the predictions by comparing them with y_test 

  Display the accuracy 

 

The trained model achieved an accuracy of 98.4% in filtering noise from the testing dataset. 

The loss curve for each epoch is presented below. Figure 13. The loss curve illustrates the 

decrease in the model's loss function over the training process.  

 

Figure 13. Training Loss Curve of Noise Filtering Neural Network Model 
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The model learns to make better predictions as the epochs progress, resulting in a lower 

loss value. The model's accuracy at the final epoch reflects its ability to correctly classify 

the data, with 98.4% accuracy indicating high noise filtering performance. The following 

sections discuss the results and validation of the neural network model against the 

traditional noise filtering algorithms.  

6.2. Validation   

The proposed neural network method was validated using four comparison methods: 1) 

cloth simulation function, 2) slope-based method, 3) Statistical Outlier Removal (SOR), 

and 4) Open 3D spatial filter method. These algorithms served as benchmarks for 

evaluating the performance of the model. The proposed method was validated by 

comparing two parameters: 1) type 1 evaluation, which represents the number of terrains 

points classified as terrain points, and 2) type 2 evaluation , which represents the number 

of noise points identified as noise points. In the comprehensive evaluation process, the 

trained models predict each data point within the testing dataset as either a terrain point 

("1") or a noise point ("0"). The proficiency of the algorithm in terrain identification is 

pursued by comparing its classified terrain points against the ground truth, yielding the 

count of true positive terrain values. Concurrently, the ability of the model to accurately 

classify noise points is assessed, producing the number of true positive noise values, which 

is contrasted with the ground truth data for accuracy assessment. Table 3. shows the 

comparative methods and testing environments. All the classified results are finally 

visualized Cloud Compare Lidar processing tool.  

.  
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Table 3. Noise Filtering Methods and Testing Environments 

Method Testing Environment Visualization 

Supervised Neural Nets (ours) Python, Tensor Flow Cloud Compare 

Cloth Simulation Filter (CSF) Cloud Compare Cloud Compare 

Slope-based Method Python Cloud Compare 

Statistical Outlier Removal (SOR) Python Cloud Compare 

Open 3D Spatial Filtering Python, Scikit-Image Cloud Compare 

 

 

Figure 14. New Test Dataset 
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The following images in Table 4. showcase the filtering results of noise algorithms for raw 

point cloud data (Figure 14) visualized in the Cloud Compare software tool. The dataset 

comprises point clouds with two terrain surfaces.  

Table 4. Results from Processing Two side Terrain Raw Point Cloud Dataset 

 

Noise 
Filtering 
Method 

Classified Terrain Filtered Noise 

Ground 
Truth 

  

Supervised 
Neural Nets 
(ours) 
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Cloth 
Simulation 
Filter (CSF) 

  

Slope-
based 
Method 
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Statistical 
outlier 
removal 
(SOR) 

  

Open 3D 
filter 

  
 

 
 
The evaluation revealed that the other algorithms employed in the study could not 

effectively identify vertical slopes as terrain and often misclassified reflection noise. The 

algorithms are tested on sample datasets of the Type 1:one side terrain dataset for better 

comparison. The evaluation of three sample raw point cloud datasets is discussed in the 

following sections. 
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6.2.1 Sample 1: Low Surface Noise Dataset  
 
The analysis is carried out on a sample dataset with paved concrete terrain; because of low 

surface noise, most algorithms have done a good job classifying terrain points; however, 

they failed to separate reflection noise from the terrain dataset. See Figure 15.  Our neural 

net algorithm has achieved 99.3% accuracy in classifying terrain points and 97.40% 

accuracy in filtering noise from the dataset. Table 5. shows the comparative evaluation of 

results for the sample 1 dataset.  

 

 
 

Figure 15. Low Surface Noise Dataset 
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Table 5. Evaluation of Noise Filtering Algorithms on Low Noise Dataset  

 

Algorithm  
 

Terrain 

Data 

Points 

 Noise 

Points 

 

Accuracy 

(Terrain 

Points) 

Accuracy 

(Noise) 

Ground Truth  2,796,616 36,800   

CSF Filter  2,791,023 8,538 99.80% 23.20% 
Slope based Method  2,441,446 30,176 87.30% 82% 

Statistical Outlier Removal 

(SOR) 2,612,039 8,206 93.40% 22.30% 

Open 3D Morphological 

Filter 2,662,378 8,832 95.20% 24% 

Supervised Neural Net 

(ours) 2,777,040 35,843 99.30% 97.40% 

 

 
6.2.2 Sample 2: Medium Surface Nosie Dataset   
 
The analysis is carried out on a sample dataset with unpaved terrain; due to the thick 

reflection noise surface on the water, most algorithms have failed to separate reflection 

noise from the terrain dataset. See Figure 16. Our neural net algorithm has achieved 98.7% 

accuracy in classifying terrain points and 98.30% accuracy in filtering noise from the 

dataset. Table 6. shows the comparative evaluation of results for the sample 2 dataset. 
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Figure 16. Medium Surface Noise Dataset 

 

 

Table 6. Evaluation of Noise Filtering Algorithms on Medium Noise Dataset  

 

ALGORITHM 

Terrain 

Data 

Points 

Noise 

Points 

Accuracy 

(Terrain 

Points) 

Accuracy 

(Noise) 

Ground Truth 2,692,746 633,223   

CSF Filter 2,369,616 214,329 88.00% 33.84% 

Slope based Method 2,396,544 512,911 89.00% 81% 

Statistical Outlier Removal (SOR) 2,208,052 260,888 82.00% 41.20% 

Open 3D Morphological Filter 2,504,254 558,503 93.00% 88% 

Supervised Neural Net (ours) 2,563,494 622,458 98.70% 98.30% 

 

 



55 

 

6.2.3 Sample 3: Heavy Surface Noise Dataset 

 

The analysis is carried out on a sample dataset with unpaved terrain with heavy noise; due 

to the clear difference in elevation between reflection noise and terrain points, most 

algorithms did a better job filtering noise points than the last two samples. See Figure 17. 

Our neural net algorithm has achieved 96.3% accuracy in classifying terrain points and 

95.10% accuracy in filtering noise from the dataset. Table 7. shows the comparative 

evaluation of results for the sample 3 dataset. 

 
 

Figure 17. Heavy Noise Dataset 
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Table 7. Evaluation of Noise Filtering Algorithms on Heavy Noise Dataset  

 

ALGORITHM  

 Terrain 

Data 

Points 

 Noise 

Points 

 

Accuracy 

(Terrain 

Points) 

Accuracy 

(Noise) 

Ground Truth 22,209,639 1,522,321   

CSF Filter 20,743,803 770,294 93.40% 50.60% 

Slope based Method 18,478,420 1,339,642 83.20% 88% 

Statistical Outlier 

Removal (SOR) 19,833,208 977,330 89.30% 64.20% 

Open 3D 

Morphological Filter 21,143,576 1,050,401 95.20% 69% 

Supervised Neural Net 

(ours) 21,387,882 1,432,504 96.30% 95.10% 

 

Based on the results obtained, our proposed neural network algorithm demonstrates 

significant improvements in classifying terrain points and effectively filtering noise from 

the dataset compared to other algorithms. The achieved accuracy of classifying terrain 

points and filtering noise showcases the algorithm's robustness and efficiency. These 

findings highlight the potential of neural network-based approaches in accurately analyzing 

point cloud data with complex noise characteristics, such as reflection and surface noise 

due to dust. The successful implementation of our algorithm contributes to the 

advancement of noise filtering techniques, enhancing the reliability and quality of point 

cloud analysis in various applications, including terrain analytics and monitoring. 

However, Despite the promising results achieved in this study, there are certain limitations 

discussed in the following section. 
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6.3 Limitations   

• Dataset Generalization: The analysis was carried out on a specific sample dataset with 

reflective surfaces from surrounding water bodies. Generalizing the findings to 

different terrains or diverse environmental conditions may require further validation 

and testing. 

• Algorithm Performance on Other Noise Types: Although our neural network algorithm 

demonstrated excellent performance in filtering reflection noise and moving dust, its 

effectiveness in handling other types of noise, such as sensor noise or occlusion noise, 

remains to be investigated. 

• Model Training and Hyperparameters: The performance of the neural network 

algorithm heavily relies on the quality of training data and the selection of appropriate 

hyperparameters. The impact of different training data sizes, variations in 

hyperparameter tuning, or alternative model architectures should be explored to 

comprehensively understand the algorithm's limitations. 

• Computational Resource Requirements: The neural network algorithm used in this 

study might demand significant computational resources, particularly for large-scale 

point cloud datasets. The feasibility and scalability of the algorithm on resource-

constrained devices or real-time applications need to be assessed. 
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CHAPTER 7 

 TERRAIN ANALYTICS 

Large road infrastructure networks extended over vast areas include asphalt, concrete, or 

earthen soil surface roads.  Uncontrolled water discharges due to rains allow standing water 

to penetrate the road surface; through potholes or retention in puddles, the road surface and 

the road base become weak. Which further causes damage and material loss, making 

infrastructure susceptible to erosion. Additionally, abrasion, compaction, and displacement 

of surface material caused by moving traffic and improper grading can also deform the 

road surface. The types of road surface crowns are discussed below. See Figure 18.  

 

Figure 18. Types of Road Crown Surface  
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• Centerline Crown  

A surface shape allows surface water to flow in either direction from the high point 

at the center.  

• In-ward slope  

A road surface shape allows surface water to flow from the entire width of the road 

toward the cut-bank or up-slope side. The in-ward slope condition is considered a 

(+) slope for research purposes.  

• Out-ward slope  

A road surface shape allows surface water to flow from the entire road width toward 

the fill bank or cut-slope side. The outward slope condition is considered a (-) slope 

for research purposes.  

The Salt River Project (SRP) manages numerous unpaved embankments within its canal 

network. These earthen embankments, though robust, can be prone to terrain slope changes 

due to inclement weather, particularly heavy rainfalls. Rain-induced erosion can lead to the 

formation of inverted slope patterns. These changes affect the structural stability of the 

embankments and result in unwanted sediment discharges into the canal system. Such 

sediment discharges are problematic as they can significantly impact water quality within 

the canals and disrupt regular operations. Moreover, these discharges violate the 

Environmental Protection Agency (EPA) regulations, emphasizing the necessity for 

continuous monitoring and effective maintenance of these embankments to prevent such 

occurrences. 
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Over time, traffic and nature can wash out the surface aggregates resulting in the 

displacement of the crown, so grading and maintenance of the road should be a routine 

process. Every road surface can be different; some require more frequent maintenance than 

others. For example, unpaved roads require 2 or 3 times more maintenance than paved 

roads, as paved roads resist water infiltration, unlike gravel or dirt roads. As civil 

infrastructures are large and have a complex-surface orientation, this study proposes a 

Slope Orientation-based Terrain Modeling (SOTM) algorithm that generates a dynamic 

surface grade profile. The SOTM algorithm supports the decision systems for erosion 

estimation, surface elevation grading, and determining maintenance requirements for 

infrastructure. The surface grade heatmaps from the SOTM algorithm offer a dynamic and 

detailed perspective on the topography. When integrated with real-time camera images, 

these heatmaps facilitate a powerful visual tool for observing and understanding terrain 

changes as they occur. This combination of technologies boosts the clarity and precision 

of terrain assessments. It revolutionizes monitoring and reacting to real-time landscape 

variations, providing crucial information in urban planning, disaster management, and 

autonomous vehicle navigation. 

7.1 Algorithm Framework for Terrain Analytics  

The proposed algorithm framework actively integrates lidar data with camera images, 

refines the selection of the processing window, and leverages Shepard's Inverse Distance 

Weighting (IDW) interpolation within a SOTM algorithm. This four-stage computational 

procedure is an advanced model for image analysis and result interpretation. 
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The first step in this algorithm is the fusion of lidar data with camera images, which unifies 

3D point cloud data with 2D visual information, generating a composite output that 

captures detailed, multidimensional scene interpretation. 

Following this, the second stage involves the selection of a processing window. The 

algorithm systematically determines an optimal subset of data for processing, maximizing 

computational efficiency and focusing on regions of interest. 

In the third stage, the SOTM algorithm, employing IDW interpolation, performs the 

computation process to generate a heat map of the terrain surface. This technique 

influences nearby data points based on distance, lending more weight to closer points and 

enhancing the model's sensitivity to local patterns. 

The final step of the algorithm framework involves the visualization of the integrated 

results, presenting a comprehensive, graphical representation of the data. Enables users 

intuitively understand the resultant information, aiding in analysis and decision-making. 

Georeferencing camera images by fusing them with LiDAR data involves a process that 

assigns geographic coordinates to the camera images, using LiDAR data as the reference 

system. This process is crucial in ensuring that each pixel in the image accurately 

corresponds to a specific geographical location on Earth, enabling precise overlaying of 

data from various sources for comprehensive terrain analysis. 

7.1.1 LiDAR and Camera Image Data Fusion  

LiDAR data, with its inherent geographic information, serves as a perfect baseline for 

georeferencing. The high-resolution 3D point cloud data captured by LiDAR contains each 

point's precise location information (longitude, latitude, and altitude). By leveraging 
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sophisticated alignment algorithms, the coordinates from the LiDAR data can be 

transferred to corresponding pixel points in the camera images. 

The process begins with identifying common features or points in the LiDAR data and the 

camera images. These could be distinct terrain features, edges of buildings, road markings, 

or any other elements that are clearly identifiable in both datasets. A transformation matrix 

is computed using these common points, which relate the image coordinates to the LiDAR 

coordinates. 

 

Figure 19. Camera and LiDAR Data Fusion 
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Once this matrix is computed, it aligns geometric XYZ coordinates to every pixel in the 

camera image, effectively georeferencing it. See Figures 19 &20.  The result is a set of 

camera images that are tied to a specific geographic location, allowing them to be 

accurately overlaid on other georeferenced datasets. Table 8. illustrate the Pseudo 

algorithm for fusing camera images with LiDAR information.  

 

Figure 20. Fused RGB LiDAR data on Camera Pixels  
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Table 8.  Pseudo Algorithm for Fusing Camera Images with LiDAR Information. 

Algorithm 3: Fuse Camera Images with LiDAR Data 

 - Initialize: 

  -load camera images 

  -load point cloud data 

 -Pre-process 

  - clean the datasets and remove any noise or inconsistencies. 

 -   For each image in the camera Images 

  -For each point in lidar Data 

   - Find corresponding points between the image and LiDAR point cloud 

   - If corresponding points found 

    -compute the transformation matrix using corresponding points 

   - Apply the transformation matrix to all points in the image 

   - Georeferenced image using the transformed points 

  - Overlay LiDAR data onto the georeferenced image 

  - Save fused image 

 - Return fused images 



65 

 

7.1.2 Computing Window Size Selection  

In this terrain modeling research study, the computing window is defined using coordinates 

Xmin, Ymin, and Xmax, Ymax extracted from the Lidar fused camera data. With every 

continuous frame change, as the data collection vehicle advances by 3 meters, the 

processing window is correspondingly adjusted by the same distance. This strategic 

adjustment ensures that the most relevant points from the point cloud are selected for 

ongoing analysis. This approach maintains computational precision and accuracy, leading 

to a highly detailed model for surface grade analysis. See Figure 21. 

 

Figure 21. Computing Window for Data Frame 

7.1.3 Slope Orientation-based Terrain Modeling (SOTM) 

The Slope Orientation-based Terrain Modelling (SOTM) algorithm has three key stages. 

The first stage entails extracting surface points from the point cloud in the computing 
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window range. These extracted points shape the raw data, laying the foundation for the 

upcoming terrain profile. 

In the algorithm's second stage, computations determine the surface grade from the 

previously extracted points. This stage involves mathematical operations to calculate the 

steepness or gradient of the surface at each point. Understanding the rate of change in the 

terrain's elevation at these points gives a clearer picture of the terrain's overall gradient.  

Subsequently, the algorithm applies interpolation techniques in the third stage to create a 

surface grade profile. This process estimates values between two known values to generate 

a continuous function, filling in data gaps and smoothing the profile. The result transitions 

from discrete surface grades to a continuous terrain representation. Figure 22. illustrate the 

algorithm framework of the SOTM algorithm.  The following paragraphs discuss the 

methodology of slope computation and Inverse Distance Weighting (IDW) interpolation 

as leveraged in this research study.  
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Figure 22. SOTM Algorithm Framework 

The slope along the terrain was computed for 5cm wide segments. Each segment was 

divided into 5cm x 5cm voxel grids. A ground point (𝐺1, 𝐺2 … 𝐺𝑛) was randomly selected 

from each voxel grid. The slope was computed between the selected ground points in voxel 
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grids (𝐺1 − 𝐺2, 𝐺2 − 𝐺3, … . 𝐺𝑛−1 − 𝐺𝑛) with equation (1) given below, where ( 𝑥1, 𝑦1, 𝑧1) 

are coordinates of the ground point (𝐺1) and ( 𝑥2, 𝑦2, 𝑧2) are coordinates of the ground point 

(𝐺2) . Slope values were stored in a slope vector (t) { 𝑡1, 𝑡2, 𝑡3, 𝑡4 … 𝑡𝑛}, with geo-referenced 

coordinates. The reference coordinates were increased in 5cm increments before repeating 

the process. The slope vector values (t) enabled the visual analysis of the surface orientation 

(e.g., regular or inverted).  

𝑡1 =
𝑧1−𝑧2

√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2+(𝑧1−𝑧2)2
 ----------------- (i) 

Adjacent resulting slope vector values (t) were interpolated to generate the slope terrain 

map and surface. IDW interpolation was adopted for the analysis because of its accuracy 

with closely spaced data variables (i.e., < 5 cm in this study) when compared to other 

interpolation techniques (e.g., Kriging) (Setianto & Triandini, 2013). With variable search 

radius (𝑧𝑟), the unknown value (𝑧𝑡) was computed based on known slope values 

(𝑖. 𝑒. 𝑡1,  𝑡2, 𝑡3, 𝑡4 … 𝑡𝑛) in the neighborhood with the equation (1) (Bartier and Keller, 

1996). Where “𝑑𝑖” was the distance between the known slope value (𝑡𝑖) and unknown value 

(𝑧𝑡), power constant (p) indicates smoothness of surface (default p=2).  

zt =
∑ (

ti

di
p)n

i=1

∑ (
1

di
p)n

i=1

 ---------------------------------------------- (ii) 

7.2 Visualization  

Once the slope grade heat maps are generated leveraging the IDW method. The produced 

raster files are aligned with the street-level images within the same coordinate system. Due 

to differing pixel resolutions between the generated heat map and the computing window 

in the fused dataset, grade maps are displayed in a separate window synchronously with 
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the moving computing window for enhanced visualization. This process facilitates real-

time monitoring of surface grade changes with the change in the data frame. 

The surface grade map visually represents the slope pattern in the data frame. See Figure 

23. The color spectrum represents slope changes (%) in the embankment. The color 

spectrum signifies the slope changes (%) in the embankment. Blue color designates 

positive slope regions, while a gradient from yellow to red marks inverted slope conditions 

of the terrain surface.  

 
 

Figure 23. Visualization of Surface Grade Map Integrated with Fusion Dataset. 

Furthermore, this research study employed the method for calculating area from pixels 

under a heat map following the generation of the heat maps. Integral to the process is the 
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georeferencing phase, where each pixel of the raster image is aligned with LiDAR 

coordinates, and each pixel of the image. Upon setting these parameters, the computation 

of the area takes place. Here, this research has specifically computed the area by counting 

the number of 10cm x 10cm pixels within the same color group on the generated heat map. 

The quantity of these pixels is multiplied by the area each pixel represents, determined by 

the spatial resolution. Aggregating these areas yields the total area. The area derived from 

the color gradient of the slope offers a comparative measure against future datasets for 

estimating erosion. Table 9. Summarize the results from a data frame shown in Figure 23.  

Table 9. Area Under the Terrain Grade Heatmap 

Terrain Grade (%)  Area  

 Slope <-6% 12.9716 𝑚2 

-6% ≤ slope <-4% 81.7592 𝑚2 

-4% ≤ slope <-2% 106.3896 𝑚2 

-2% ≤ slope <-1% 124.7878 𝑚2 

-1% ≤ slope < 0% 143.8654 𝑚2 

1.25% ≥slope >0% 258.7318 𝑚2 

2.5% ≥slope >1.25% 176. 9864 𝑚2 

Slope  > 2.5%  195.5463 𝑚2 

Total Computation Area 1101 𝑚2 

 

7.3 Limitations  

• Dependence on Sensor Accuracy: The quality of the terrain model heavily depends on 

the precision of the LiDAR and camera sensors. Any inaccuracies in the computing 
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transformation matrix may impact the fidelity of the generated models, potentially 

leading to errors in the terrain profile. 

• Homogeneity Assumption: The method assumes homogeneity in the heat map, with 

minimal pixel size or shape variations. Any significant distortions or variations in the 

pixels of the heatmap could impact the accuracy of area calculations. 

• Resolution Limitations: The granularity of the results is limited by the resolution of the 

input data. If the spatial resolution is low, fine details of the terrain might not be 

captured accurately. 

• Static Processing Window: The processing window remains static at 3 meters 

increments for every frame change assuming uniformity in computation window size. 

This might not adequately capture the dynamics of more complex terrains with sharp 

curves, leading to potential inaccuracies. 

• Error Propagation: Errors from each stage of the algorithm can propagate to subsequent 

stages. For instance, any error in point extraction can affect the surface grade 

calculation and, subsequently, the interpolation process, leading to compounded 

inaccuracies in the final model. 
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CHAPTER 8 

TREE SPECIES DETECTION AND CLASSIFICATION 

The growth of trees and their interaction with powerlines presents a considerable risk to 

power infrastructure, with potential outcomes ranging from service interruptions to 

catastrophic events like wildfires. Identifying tree species and understanding their growth 

patterns can significantly contribute to proactive management, reducing these risks (Ray et 

al., 2020). 

Currently, the maintenance of powerline corridors primarily involves manual labor, which 

is labor-intensive, costly, and inefficient. An automated, machine-learning-based solution, 

such as the one proposed in this research, can provide more consistent results faster and at 

a lower cost. By identifying different tree species, this research can provide valuable 

insights into each species' unique growth patterns, enabling more accurate predictions 

about when and where tree pruning might be needed. 

This research study revolves around leveraging Mask R-CNN, a deep learning method 

known for its versatility and performance in instance segmentation tasks (He et al., 2018). 

Despite the technical challenges associated with "Instance Segmentation for Classification 

Classes," Mask R-CNN has recently proven its efficacy, becoming the architecture of 

choice for many researchers. Its robust performance in recent COCO Instance 

Segmentation challenges further underlines its suitability for this study. 

Mask R-CNN, implemented in Python 3.8, Karas =2.5, and TensorFlow=2.5, facilitates 

detecting and classifying individual tree species within images. The process yields several 

outputs: bounding boxes around each detected infrastructure object in pixel coordinates, a 
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probability score assigned to a detected object class, and a pixel mask for each detected 

object. 

Once trained, the Mask R-CNN model can efficiently detect and classify tree species in 

new, previously unseen images. The training and evaluation strategies are integral 

components of the research and are discussed in the following paragraphs. Figure 24. 

illustrates Mask-RCNN architecture.  

 

 

Figure 24. Mask R-CNN Framework 

8.1 Mask R-CNN Architecture  

In this research, the Mask R-CNN architecture, notable for its proficiency in instance 

segmentation tasks, is used. This model, an expansion of the Faster R-CNN object 

detection framework, includes an additional third branch predicting an object mask in 

parallel with existing branches for bounding box detection and class prediction. 

The training of the Mask R-CNN model occurs in two main stages: 

• Region Proposal Network (RPN): This study trains a fully convolutional RPN end-to-

end, which suggests potential object bounding boxes. It receives an entire image as 
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input and delivers a set of objects bounding box proposals, each accompanied by an 

object confidence score. 

• ROI Classifier & Bounding Box Regressor: The Region of Interest (ROI) pooling layer 

takes the RPN's proposals and extracts relevant features using the feature map created 

by the backbone network (ResNet-101). These features assist in predicting the object's 

class and refining the bounding box coordinates. 

• Segmentation Masks: The research introduces a third branch running parallel to the 

existing branches for bounding box recognition and class prediction. It aligns the 

positive regions derived from the ROI classifier and directs them through a series of 

convolution layers, finally outputting a binary mask for each class. 

The training process involves minimizing a multi-task loss, which is a weighted sum of the 

classification loss, localization loss (bounding-box regression), and mask loss. 

ResNet-101, a deep residual network with 101 layers, is the backbone of the Mask R-CNN 

architecture employed in this research. ResNet-101 helps to address the vanishing gradient 

problem, enabling the model to learn more intricate features effectively. As a feature 

extractor in Mask R-CNN, ResNet-101 accepts the entire image as input. It returns a 

convolutional feature map, capturing lower-level details (e.g., edges, textures) and higher-

level aspects (e.g., shapes). Figure 25. illustrate Mask R-CNN algorithmic workflow for 

classifying tree species.  
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Figure 25.  Mask R-CNN Workflow 

Once trained, the model can process new images by classifying tree species, providing 

bounding boxes for the detected trees, and creating pixel masks for each detected object. 

The outputs from this research provide a comprehensive understanding of tree species 

distribution in powerline corridors, contributing significantly to strategic infrastructure 

management. 

8.2. Training, Validation, and Testing Datasets 

This research leverages the pre-trained Mask R-CNN model, using approximately 36,500 

images extracted from the COCO Stuff dataset (Lin et al., 2014). The COCO Stuff dataset, 

an open-source image library, offers semantic segmentation labels (~164,000) for 

amorphous classes such as roads, bricks, walls, and trees. 

Subsequently, the study fine-tuned the Mask R-CNN model with local Phoenix 

metropolitan area tree species images. Due to the lack of an open-source dataset suitable 

for deep neural network (DNN) model training specific to tree species classification, a 

unique dataset was created. This novel dataset combined images from Google and street-

level images, culminating in 500 manually labeled images across five tree species classes, 
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and all other vegetation in the images were labeled as “others” specie class. The new dataset 

was then divided into training, validation, and testing datasets in an 8:1:1 ratio. The five 

species used in the study are shown in Figure 26. Following Table 10. illustrates the 

pseudo-code for the mask RCNN model. 

 

Figure 26.  Tree Species Leveraged for Model Training. 
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Table 10. Pseudo Code for Mask R-CNN Implementation 

Algorithm 4: Mask R-CNN Implementation on Custom Build Dataset  

 -Define Mask R-CNN model with ResNet-101 backbone, a Region Proposal Network 

(RPN), ROI classifier & bounding box regressor, and a segmentation mask. 

 - Initialize model parameters. 

 - For each epoch in the total number of epochs: 

  - Extract features using the ResNet-101 backbone from the input image to 

generate feature maps. 

  - Generate object proposals using the RPN with the feature maps as input 

  -Define the regions of interest (ROIs) using the proposals. 

  -Classify the object in each ROI and refine its bounding box coordinates using the 

ROI classifier and bounding box regressor, with the ROIs and feature maps as 

input. 

  -Generate a binary mask for each class using the segmentation mask, with the 

ROIs and feature maps as input. 

  - Compute the losses: RPN classification loss, RPN bounding box loss, ROI 

classifier loss, ROI bounding box loss, and segmentation mask loss. 

  - Combine these losses to get the total loss. 

  - Use backpropagation to calculate the gradients of the total loss with respect to 

the model parameters. 

  - Update the model parameters using these gradients. 

 - After training, use the trained model to make predictions on new images. 
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8.3 Proof of Concept  

The Mask R-CNN model in this study is trained using a custom dataset of tree species 

specific to the Phoenix metropolitan area. The data comprises approximately 500 manually 

labeled images of five distinct tree species. Each image was scrutinized to label individual 

tree instances using the "Make Sense AI" annotation tool. 

After initializing the model parameters, the training process spans 200 epochs, a value 

determined empirically for satisfactory model performance. Within each epoch, the model 

goes through feature extraction, region proposal, ROI pooling, and the final task of 

bounding box regression, class prediction, and binary mask generation. At each step, losses 

are computed and summed, providing a comprehensive total loss for the system. 

Backpropagation then calculates the gradients based on this total loss, and the model 

parameters are updated accordingly, paving the way for learning from the data. This cycle 

is repeated for each of the 200 epochs, with the model constantly refining its understanding 

of the data and improving its predictive capabilities. 

During training, the validation dataset, a subset of the overall data, ensures the model's 

robustness and generalizability. It helps avoid overfitting by checking the model's 

performance with unseen data. 

The study uses a subset of the overall data, the validation dataset, to ensure the model's 

robustness and generalizability during training. This validation data helps prevent 

overfitting by actively checking the model's performance against unseen data. 

Upon completion of the training process over the defined epochs, the model stands 

prepared to make predictions on new images. It performs instance segmentation tasks and 
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identifies tree species, drawing on the knowledge gained from the initial training with the 

custom dataset. 

8.3.1 Results  

The model, once trained, is subjected to a test using a new dataset, with the resulting 

outcomes illustrated below. Five representative images, i.e., Figure 27. Sissoo tree, Figure 

28. Eucalyptus tree, Figure 29. Palm tree, Figure 30. Paloverde tree, Figure 31. Mesquite 

tree demonstrates the model's predictive capabilities, displaying the predicted mask, 

bounding box, and the accuracy of tree species identification. 

 

Figure 27. Model Prediction Sissoo Tree, Confidence = 77.6% 
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Figure 28. Model Prediction Eucalyptus Tree, Confidence = 84.9% 

 

Figure 29. Model Prediction Palm Tree, Confidence = 97.3% 

 



81 

 

 

Figure 30. Model Prediction Paloverde Tree, Confidence = 97.0% 

 

Figure 31. Model Prediction Mesquite Tree, confidence = 79.9% 
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The model demonstrates varying degrees of confidence in its five different tree species 

predictions. For the Sissoo tree, the model reports a prediction confidence of 77.6%, 

suggesting a moderate level of certainty. In the case of the Eucalyptus tree, the confidence 

level rises to 84.9%, indicating a higher degree of prediction assurance. The highest 

confidence levels are reported for the Palm tree and the Palo Verde, standing at 97.3% and 

97.0%, respectively, suggesting an exceptional model performance for these species. The 

Mesquite tree, with a prediction confidence of 79.9%, also showcases a robust prediction 

capability. These results confirm the model's substantial efficacy in distinguishing and 

correctly identifying these five tree species. 

The following section presents the graphical representation of loss values observed during 

the model's training. These loss graphs, often referred to as learning curves, play a crucial 

role in understanding and analyzing the performance and learning progression of the model 

over time. 

The loss graphs typically display two main types of losses: training loss and validation loss, 

which should ideally decrease throughout training. The training loss represents the model's 

performance on the data it learns from, while the validation loss shows how well the model 

generalizes to new, unseen data. 

Significant aspects to observe in these graphs include the overall trend of loss reduction 

and the potential existence of overfitting or underfitting. Overfitting occurs when the 

training loss continues to decrease significantly (to “zero”), but the validation loss 

increases, indicating that the model is memorizing the training data but performing poorly 
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on new data. Conversely, underfitting happens when both losses remain high, indicating 

that the model is not learning adequately from the training data. 

By monitoring these loss graphs, important insights about the model's learning process can 

be extracted, further, adjust the training parameters if necessary, and ultimately guide the 

model toward better performance. The goal is to have both the training and validation 

losses decrease to a point of stability with a minimal gap between them. The following log 

graphs offer insights into the training and validation results for 200 epochs on a tree species 

dataset trained with the Mask R-CNN model, revealing key patterns and trends that aid in 

understanding the model's learning dynamics. Refer to Figures 32-44. 

 

Figure 32. Tree Species Dataset -Training Loss Curve 
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Figure 33. Tree Species Dataset -Training Bounding Box Loss Curve 

 

 

Figure 34. Tree Species Dataset -Training Class Loss Curve 
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Figure 35. Tree Species Dataset -Training Mask Loss Curve 

 

 

Figure 36. Tree Species Dataset -Training RPN BBox Loss 
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Figure 37. Tree Species Dataset -Training RPN Class Loss 

 

 

Figure 38. Tree Species Dataset -Validation Loss 
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Figure 39. Tree Species Dataset -Validation BBox Loss 

 

 

Figure 40. Tree Species Dataset -Validation Class Loss 
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Figure 41. Tree Species Dataset -Validation Mask Loss 

 

 

Figure 42. Tree Species Dataset -Validation RPN Bounding Box Loss 
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Figure 43. Tree Species Dataset -Validation RPN Class Loss 

 

 

Figure 44. Loss Curves for Tree Species Dataset 
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The alignment of the training and validation loss curves in the presented graphs indicates 

a strong model performance. This alignment suggests that the model is successfully 

generalizing from the training data to unseen data, a critical factor in assessing model 

accuracy. It implies a low bias and variance trade-off, reducing the likelihood of overfitting 

or underfitting. 

In conclusion, given the close alignment of the loss curves and the high confidence levels 

in tree species identification, it can be inferred that the model has achieved a high level of 

accuracy. This robust performance validates the efficacy of using the Mask R-CNN model 

with a ResNet-101 backbone for tree species identification tasks. 

Furthermore, in this research study, comparison graphs were generated to evaluate the 

accuracy of the tree species classification against the ground truth from the testing dataset. 

A thorough analysis of these graphs reveals the model's success and challenges in 

distinguishing between tree species. Specifically, the model demonstrated an accuracy of 

71% in detecting mesquite trees. However, 23% of mesquite trees were incorrectly 

classified as other vegetation types. Interestingly, the model also misclassified 5% of 

mesquite trees as paloverdes. Refer to Figure 45.  

Paloverde trees, on the other hand, showed a classification accuracy of 73% with the model, 

while 16% were wrongly identified as other tree types. Additionally, the model 

misclassified 10% of paloverdes as mesquites. Refer to Figure 46.  In stark contrast, the 

model exhibited exceptional performance in identifying palm trees, with an accuracy rate 

of 99%. Refer to Figure 47. 
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As for the classification of eucalyptus and sissoo trees, the trained model demonstrated 

substantial proficiency with 86% and 85% accuracy rates, respectively. Refer to Figure 48 

& Figure 49.  Overall, these findings underscore the trained model's capabilities and 

limitations in identifying and differentiating between various tree species.  

 

Figure 45. Accuracy on Testing Dataset – Mesquite Trees 

 

 

Figure 46. Accuracy on Testing Dataset – Paloverde Trees 
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Figure 47. Accuracy on Testing Dataset – Palm Trees 

 

 

Figure 48. Accuracy on Testing Dataset – Eucalyptus Trees 
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Figure 49. Accuracy on Testing Dataset – Sissoo Trees 

8.4 Limitations 
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CHAPTER 9 

CONCLUSION 

This research paper has applied artificial intelligence models to address critical 

infrastructure operations and maintenance. The study focused on point cloud noise 

processing using neural networks, automated tree species detection using Mask R-CNN, 

and real-time terrain analysis by combining image and LiDAR datasets. The overall goal 

of this research was to leverage artificial intelligence to support the maintenance and 

upkeep of aging large civil infrastructure, with the ultimate objective of ensuring a 

sustained state of repair and functionality. 

The findings of this study have yielded significant contributions to the field. Firstly, the 

implementation of neural networks for point cloud noise processing has demonstrated its 

potential in effectively eliminating unwanted noise, thus enhancing the accuracy and 

reliability of infrastructure data. This provides a means to improve the quality and integrity 

of monitoring data, leading to better-informed decision-making processes and more precise 

maintenance interventions. 

Secondly, integrating Mask R-CNN for automated tree species detection presents a 

valuable solution for efficiently identifying and classifying vegetation surrounding 

infrastructure. By accurately identifying tree species, infrastructure managers can 

proactively plan and execute vegetation management strategies, reducing risks associated 

with tree-related incidents and ensuring the safety and longevity of infrastructure assets. 

Lastly, the fusion of image and LiDAR datasets for real-time terrain analysis offers a 

comprehensive understanding of the terrain's characteristics and potential hazards. This 
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integrated approach enables infrastructure managers to assess slope, elevation, and other 

relevant factors, facilitating proactive maintenance interventions and mitigating risks 

associated with terrain-related issues. 

Collectively, the outcomes of this research underscore the crucial role that artificial 

intelligence models play in advancing the operations and maintenance practices of aging 

large civil infrastructure systems. By leveraging the power of AI, infrastructure managers 

can optimize their decision-making processes, streamline maintenance efforts, and 

promote the overall health and resilience of vital infrastructure networks. The findings 

presented in this study pave the way for enhanced infrastructure management strategies 

and contribute to the collective efforts to maintain a robust and reliable infrastructure 

system to benefit society. 

In addition to the specific contributions mentioned above, this research paper holds broader 

implications for infrastructure management. By harnessing the capabilities of artificial 

intelligence models, the study has demonstrated the potential to overcome longstanding 

challenges associated with complex large infrastructure systems. The ability to process 

point cloud noise, detect tree species, and analyze terrain in real-time improves the 

efficiency and accuracy of maintenance efforts and enables proactive decision-making and 

resource allocation. This proactive approach to infrastructure management is crucial in 

ensuring the longevity and functionality of critical civil infrastructure, especially in the 

face of increasing demands and aging systems. 

Furthermore, the research highlights artificial intelligence's transformative role in 

infrastructure operations and maintenance. Traditionally, these tasks have relied on manual 
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inspection, subjective assessments, and limited resources. However, integrating AI models 

and advanced sensing technologies offers a paradigm shift in monitoring and maintaining 

infrastructure. The automation and intelligence brought by these models streamline 

processes, reduce human error, and enhance the overall effectiveness of maintenance 

activities. As a result, infrastructure managers are better equipped to optimize resources, 

minimize downtime, and prioritize maintenance efforts based on accurate and real-time 

insights, ultimately leading to improved infrastructure performance and resilience. 

In conclusion, the findings presented in this research paper underscore the significant 

potential of artificial intelligence models in supporting the operations and maintenance of 

large infrastructure systems. The application of neural networks for point cloud noise 

processing, automated tree species detection using Mask R-CNN, and real-time terrain 

analysis through image and LiDAR fusion offer valuable solutions to address challenges 

in infrastructure management. By leveraging these advancements, infrastructure managers 

can make informed decisions, enhance maintenance strategies, and ensure the longevity 

and reliability of vital infrastructure systems. The research opens new avenues for further 

exploration and underscores the importance of embracing AI-driven approaches to 

maximize the performance and sustainability of our infrastructure networks. 
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CHAPTER 10 

BROADER IMPACTS 

The proposed methodology has the potential to provide managers/engineers/concerned 

local authorities with the necessary information to make informed decisions regarding the 

operation and maintenance of large infrastructure systems. Some of the impact benefits of 

the proposed methodology are as follows: 

• The research will contribute to more accurate and reliable data analysis across various 

fields, including remote sensing, computer vision, and autonomous systems. The 

successful implementation of O&M tasks may lead to the creation of new job 

opportunities in the field, promoting U.S. economic growth.  

• Optimized O&M activities through digitization and advanced computing promises to 

improve/extend the life span of infrastructure systems, reducing the frequency and cost 

of major reconstruction. This would ultimately reduce the cost burden on U.S. local 

authorities.  

• Real-time analysis and optimized O&M will contribute to data-driven decision-

making, ensuring that resources are allocated efficiently and effectively to identify 

potential hazards, leading to quicker interventions, and ultimately enhancing the safety 

of U.S. society by mitigating catastrophic infrastructure failures. 

• Real-time analysis and optimized O&M promises to improve transportation systems by 

reducing the occurrence of potholes, cracks, and other surface issues, which can 

promote economic growth and save billions of dollars for U.S. society by enhancing 

connectivity, and reduce travel times, wasted fuel, and vehicle maintenance.  
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• The research will contribute to more effective vegetation management around critical 

infrastructure, such as power lines and transportation networks. This will help prevent 

power breakouts caused by the intrusion of vegetation growth, ensure the safety of 

maintenance personnel, and enhance better decision-making for O&M activities.   

• This research will contribute to developing comprehensive and integrated O&M 

solutions. These solutions can leverage cutting-edge technologies, such as artificial 

intelligence, Internet of Things (IoT), augmented reality (AR), virtual reality (VR), and 

mixed reality (MR) applications to streamline O&M processes, reduce cost, mitigates 

risk, ultimately leads to safer, more sustainable infrastructure systems, and enhanced 

infrastructure resilience.   
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CHAPTER 11 

INTELLECTUAL MERIT 

The intellectual merit of this research lies in addressing the existing limitations. It aims to 

adopt analytical models for processing large point cloud datasets, which are critical to 

understanding and managing complex civil infrastructure systems. The research aims to 

significantly improve the accuracy and efficiency of automated feature extraction from 

point cloud and imagery data by developing novel analytical models and incorporating 

deep learning techniques.  

• The proposed method provides a more efficient and effective way to filter noise and 

extract infrastructure surface points than existing algorithms. 

• The research enhances tree species classification using deep learning models to 

accurately classify and distinguish overlapping tree species by effectively interpreting 

the complex contextual information from natural environments.  

• The proposed robust real-time analytics for terrain assessment for surface grade and 

erosion estimation enables accurate, efficient, and rapid terrain analysis, outperforming 

the traditional geometric methods.  

• The proposed real-time fusion method overcomes the pre-processing requirement 

while analyzing the terrain information from the point cloud dataset with heavy noise 

acquired from complex reflective environments. 
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