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ABSTRACT

Efficiently solving global optimization problems remains a pervasive challenge

across diverse domains, characterized by complex, high-dimensional search spaces

with non-convexity and noise. Most of the approaches in the Bayesian optimization

literature have highlighted the computational complexity involved when scaling to

high dimensions. Non myopic approximations over a finite horizon has been adopted

in recent years by modeling the problem as a partially observable Markov Decision

Process (MDP). Another promising direction is the partitioning of the input domain

into sub regions facilitating local modeling of the input space. This localized approach

helps prioritize regions of interest, which is particularly crucial in high dimensions.

However, very few literature exist which leverage agent based modeling of the problem

domain along with the aforementioned methodologies.

This work explores the synergistic integration of Bayesian Optimization and

Reinforcement Learning by proposing a Multi Agent Rollout formulation of the global

optimization problem. Multi Agent Bayesian Optimization (MABO) partitions the

input domain among a finite set of agents enabling distributed modeling of the input

space. In addition to selecting candidate samples from their respective sub regions,

these agents also influence each other in partitioning the sub regions. Consequently, a

portion of the function is optimized by these agents which prioritize candidate samples

that don’t undermine exploration in favor of a single step greedy exploitation. This

work highlights the efficacy of the algorithm on a range of complex synthetic test

functions.
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Chapter 1

INTRODUCTION

The quest for efficiently solving global optimization problems has been a longstand-

ing challenge across various domains, ranging from engineering design and finance

to healthcare and logistics. Black-box optimization represents a class of challenging

optimization problems where the objective function is treated as an opaque entity,

accessible only through evaluations at specific input points. Unlike traditional opti-

mization scenarios where analytical expressions or gradients are available, in black-box

optimization, the function’s internal structure or properties are unknown or deliber-

ately concealed. This characteristic renders the optimization process akin to navigating

a maze blindfolded, relying solely on the outcomes of function evaluations to guide

search efforts.

Imagine you are tasked with optimizing the supply chain network for a global

manufacturing company. The supply chain involves various interconnected processes,

such as sourcing raw materials, manufacturing products, and distributing them to

customers. However, the exact details of the supply chain, including transportation

routes, inventory levels, and production capacities, are complex and not fully known.

In this scenario, the entire supply chain network acts as a black box. You can’t

directly observe or control every aspect of the supply chain; instead, you have limited

visibility into certain key performance indicators, such as delivery times, production

costs, and inventory levels. Your goal is to optimize these indicators to improve overall

efficiency, reduce costs, and enhance customer satisfaction.

Using black-box optimization techniques, you explore different strategies and
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configurations for the supply chain network. For example, you might experiment with

different transportation routes, adjust inventory management policies, or optimize

production schedules. Each change you make represents a decision in the optimization

process.

However, since you can’t directly observe the inner workings of the supply chain,

you rely on feedback from performance metrics to guide your decisions. You monitor

how changes in one part of the supply chain affect overall performance and adjust your

strategy accordingly. Over time, through iterative experimentation and adjustment,

you aim to find the optimal configuration of the supply chain network that maximizes

efficiency and profitability.

The inherent challenges of black-box optimization stem from the lack of explicit

knowledge about the objective function, presenting obstacles in efficiently exploring

the search space and converging to optimal solutions. Strategies to address these

challenges range from direct search methods, such as evolutionary algorithms and

pattern search, to model-based approaches like Bayesian optimization and surrogate

modeling.

Despite its inherent difficulties, black-box optimization remains a crucial tool for

solving real-world problems where explicit knowledge of the objective function is

unavailable or impractical to obtain. Advances in algorithmic techniques and compu-

tational resources continue to drive progress in this field, unlocking new possibilities

for optimizing complex systems and processes.

Traditional optimization techniques often struggle to navigate complex, high-

dimensional search spaces characterized by non-convexity, discontinuities, and noise.

Bayesian optimization (BO) has been one of the most powerful paradigms and in

recent years, reinforcement learning (RL) has emerged as a promising approach for
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tackling such challenges. Both approaches have demonstrated remarkable success

across a variety of domains, from hyperparameter tuning in deep learning to robotic

control and autonomous systems.

Imagine using Bayesian optimization to optimize a global supply chain network,

aiming to enhance efficiency and reduce costs. Bayesian optimization starts with an

initial configuration of the supply chain network, including parameters like trans-

portation routes, inventory levels, and production schedules. The objective function

represents the performance of the supply chain network, incorporating metrics such as

delivery times, production costs, and inventory levels. However, this function is com-

plex and not directly observable. Bayesian optimization explores the space of possible

configurations by selecting new sets of parameters to evaluate. These selections are

guided by a probabilistic model of the objective function, which provides insights into

promising regions of the parameter space. Each selected configuration is evaluated

using simulations or real-world experiments to assess its performance according to

the objective function. The performance of each evaluated configuration provides

feedback to the Bayesian optimization algorithm. This feedback is used to update a

probabilistic model and refine the search for optimal configurations. Through iterative

evaluation and feedback, Bayesian optimization gradually identifies configurations

that maximize supply chain performance, achieving a balance between exploration of

new configurations and exploitation of known promising regions. Eventually, Bayesian

optimization converges to an optimal or near-optimal configuration of the supply

chain network, maximizing efficiency and minimizing costs while satisfying operational

constraints.

Whereas, reinforcement learning (RL) treats the optimization process as a sequen-

tial decision-making problem. The supply chain network learns optimal behaviors
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through interactions with the environment, receiving feedback based on actions taken.

Feedback is received in the form of rewards or penalties based on the performance of

the supply chain network. These rewards guide the learning process, reinforcing behav-

iors that lead to desirable outcomes. RL agent continuously explores different actions

to discover optimal behaviors while exploiting learned knowledge to maximize rewards.

Requires modeling the dynamics of the supply chain environment, including state

representations, action spaces, and reward functions. RL algorithms must learn com-

plex decision-making policies from high-dimensional and dynamic data. RL converges

when the RL agent has learned an effective policy that maximizes cumulative rewards

over time. Convergence may take a significant number of iterations and depends on

factors such as exploration strategy and the complexity of the environment.

Despite their individual successes, both Bayesian optimization and reinforcement

learning possess distinct strengths and limitations. Bayesian optimization, rooted in

probabilistic modeling and surrogate-based optimization, has gained popularity for its

ability to effectively explore and exploit unknown objective functions while providing

principled uncertainty estimates. However, its application to global optimization

problems is often hindered by scalability issues and the curse of dimensionality,

especially in settings where the objective function is computationally expensive to

evaluate.

On the other hand, reinforcement learning offers a principled framework for learning

optimal decision-making policies by interacting with an environment and maximizing

cumulative rewards. While RL methods have shown remarkable success in sequential

decision-making tasks and control problems, their application to global optimization

is limited by sample inefficiency, sensitivity to hyper parameters, and challenges in

handling noisy or sparse rewards.
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The blending of Bayesian optimization and reinforcement learning presents a com-

pelling opportunity to address these limitations and develop more effective strategies

for global optimization. Combining the principled exploration-exploitation trade-offs

of Bayesian optimization with the adaptive learning and decision-making capabilities

of reinforcement learning is actively being explored a lot in recent years.

1.1 Research Questions

This thesis seeks to answer the following research questions

• RQ1. Can the utilization of non-myopic acquisition functions enhance the

performance of Bayesian optimization by providing better point estimates?

• RQ2. Does partitioning the input space prove to be effective in high dimensional

optimization problems by systematically narrowing down the search space into

regions of interest?

1.2 Contributions

This thesis presents an approach inspired by Partition-based methods but intro-

duces a unique twist by integrating a multi-agent methodology. This method utilizes a

class of Approximate Dynamic Programming technique known as Multi-agent Rollout.

The inherent collaborative nature of this approach allows agents to act independently

yet in a coordinated manner. By combining partitioning with these agents, the input

space is divided based on the achieved lookahead, and actions taken by the agents.

This work introduces a Multi-agent formulation of Rollout for Bayesian optimiza-
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tion using non-myopic acquisition functions. The key contributions of this paper are

as follows:

• Given the high-dimensional nature of many real-world functions, a multi-agent

algorithm that focuses on specific regions of the unknown function by parti-

tioning the search space and distributing them among the agents is proposed.

These agents provide point estimates from their assigned “active” sub-regions,

facilitating faster convergence compared to vanilla Bayesian optimization.

• The inherent collaborative nature of Multi-agent Rollout allows us to converge

more rapidly towards the optimum. However, considering the multimodal nature

and uncertainty of real-world functions, a slight modification is proposed to the

traditional Multi-agent Rollout formulation. An agent tasked with tracking the

“inactive” sub-regions is introduced, enhancing our approach’s robustness to

uncertainties and multimodality.

The proposed algorithm can be found here - MABO

1.3 Structure

The organisation of Thesis is as follows. Chapter 2 gives an exhaustive overview of

the research literature that tackle problems in this domain along with a comparison

of the methods. Chapter 3 gives a brief overview of the background of the thesis

and introduces some key concepts that will be used extensively. This is followed by

the formulation of the algorithm in Chapter 4 along with the notations that will be

extensively used to describe the algorithm. Finally, Chapter 5 shows the results of

the algorithm tested on synthetic functions.

6
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Chapter 2

LITERATURE REVIEW

2.1 High Dimensional Bayesian Optimization

High dimensional black box optimization problems are significantly challenging

due to multiple reasons. (1) Curse of Dimensionality - As the dimensionality of

the search space increases, the number of possible combinations of parameters or

inputs grows exponentially. This makes it difficult to explore the entire search space

efficiently. (2) Computational Complexity - Modeling GP models which are inherently

non parametric becomes challenging as the search space increases. hyper parameters of

the likelihood function to be maximized from a (d + 1) dimensional vector, evaluating

the objective function for each combination of parameters can be time-consuming or

require a large amount of computational resources. (3) Lack of Gradient Information -

In black box optimization, the objective function is treated as a black box, meaning

that you have no knowledge of its analytical form or gradient information. This

makes it challenging to apply gradient-based optimization techniques, which are

effective in low-dimensional spaces. (4) Local Optima - High-dimensional spaces often

contain many local optima, which are sub optimal solutions that can trap optimization

algorithms. Finding the global optimum becomes more difficult in such cases. (5)

Noisy or Stochastic Objectives - In many practical scenarios, the objective function is

noisy or stochastic, meaning that evaluations may have some level of uncertainty or

randomness.

Projection based approaches Projection based approaches perform the search

7



in lower dimensional manifolds, assuming a low effective dimensional space exists that

contains all the behavioral information of the original high dimensional function. Some

of the noteworthy approaches in this category are Random Embedding BO, Hashing

enhanced subspace Bayesian Optimization by Munteanu, Nayebi, and Poloczek 2019,

subspace identification Bayesian optimization (SIBO) algorithm. These approaches

exhibit significant sensitivity to the embedded sub-space dimension which often needs

to be specified. Literature exist that try to automate the selection of the embedding

dimension. A lot of real world problems applications exist where the existence of a

low dimensional manifold does not hold.

Statistical learning based approaches The low effective dimensionality as-

sumption of the above approach is restrictive because all the input variable might

contribute to the objective function. So, Statistical learning based approaches rely on

the structural properties of the black box function in question. Additive structure

assumes that the objective function is a sum of functions of small, disjoint groups

of dimensions. Additive Gaussian processes differ in: (1) how the components are

learned (2) how the additive Gaussian process hyper parameters are estimated, and

(3) how the additive Gaussian process is used to take samples. Success depends on

correct choice of decompositions that must accurately mimic the inter-dimensional

dependencies.

Variable selection approaches Variable selection takes a different approach

where it operates under the assumption that not all dimensions are important to reach

the optimal. SAASBO proposed by Eriksson and Jankowiak 2021 assumes that the

dimensions have a hierarchy of relevance. They introduce a novel sparsity inducing

SAAS prior. The level of sparsity is controlled by a scalar. As a result, most of the

dimensions are ‘turned off’ in accordance with the principle of automatic relevance

8



determination. However, the cost of inference scales cubically with the number of

function evaluations. Thus, SAASBO is not expected to scale beyond small sampling

budgets. SAASBO perform variable selection implicitly but has high computational

cost of inference. Song et al. 2022 applies MCTS to iteratively partition all variables

into important and unimportant ones, and perform BO only for those important

variables. Again, it relies on the assumption of low effective dimensionality, and might

not work well if the percentage of valid variables is high.

Trust region based approaches To optimize high-dimensional functions without

relying on assumptions regarding their structure or dimensionality, a localized modeling

approach of the objective function can be adopted. This method iteratively refines

the objective function by cumulatively optimizing it within localized regions. TuRBO

put forth in Eriksson et al. 2020 represents a prominent example within this category

of approaches, employing “Trust Regions” that form hyper rectangles centered around

the best solution encountered thus far. These regions serve as repositories for local

probabilistic models, facilitating the exploration of diverse search trajectories capable

of swiftly uncovering optimal objective values. Notably, the local surrogate models

enable heterogeneous modeling of the objective function and mitigate the risk of

excessive exploration. To complement the local modeling strategy, TuRBO incorporates

a global bandit strategy, which intelligently distributes samples across confidence

regions, thereby achieving a balance between exploration and exploitation. However,

a limitation of TuRBO lies in the independent learning of trust regions without data

sharing, potentially resulting in inefficiencies for computationally expensive problems.

In contrast, Mathesen et al. 2021 employs a surrogate model to strategically

generate restart locations for local searches. Through dynamic allocation of the

number of function evaluations and restarts for local searches based on observed
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performance, SOAR optimizes its search process effectively. This adaptive approach

ensures efficient utilization of computational resources while achieving optimal solutions

2.1.1 Partitioning Based Approaches

Exact optimization methods, such as Partitioning methods like branch and bound,

have been employed extensively in various domains. However, they often assume

constant correlation functions within Gaussian processes across the input space.

Partitioning the input space into distinct regions, where each region employs a unique

correlation function or set of parameters, proves beneficial when the data generating

process exhibits differential rates of variation across different parts of the input space.

This approach allows for a more precise modeling of the local data behavior. For

instance, in scenarios where data displays varying levels of smoothness or variability

across different regions of the input space, employing distinct correlation functions for

each partition enables more accurate capture of these localized characteristics.

Incorporating reinforcement learning techniques facilitates optimal sequential

sampling of the input space, thereby guiding the branching decisions effectively.

Contrasting with local modeling methods like TuRBO, LA-MCTS (Limited Area

Monte Carlo Tree Search) by Wang, Fonseca, and Tian 2022 dynamically exploits

and explores promising regions concerning samples through Monte Carlo Tree Search,

continuously refining learned boundaries with new data points. LA-MCTS identifies

promising regions by iteratively partitioning the space. On the other hand, PART-X

by Pedrielli et al. 2021 leverages local Gaussian process estimations to adaptively

branch and sample within the input space. While LA-MCTS establishes nonlinear

boundaries, PART-X employs axis-aligned branches. Additionally, LA-MCTS employs
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the Upper Confidence Bound (UCB) method for selections, while PART-X utilizes

heuristics to identify level sets in a black-box function.

2.1.2 Lookahead Approaches

While most acquisition functions are myopic, considering only the next function

evaluation, non-myopic ones consider the impact of multiple future evaluations. One of

the prominent approach is put forth by Lee et al. 2020 Rollout Acquisition Functions:

Non-myopic acquisition functions are typically computed through rollout, which

involves simulating multiple steps of BO. These rollout acquisition functions are defined

as high-dimensional integrals, making them computationally expensive to compute

and optimize. Efficient Computation: The paper proposes a combination of quasi-

Monte Carlo methods, common random numbers, and control variates to significantly

reduce the computational burden of computing rollout acquisition functions. These

techniques aim to improve the efficiency of evaluating and optimizing these functions.

Policy-Search Approach: The authors formulate a policy-search based approach that

eliminates the need to directly optimize the rollout acquisition function. Instead,

the focus is on optimizing a policy that implicitly determines the rollout decisions.

Qualitative Behavior of Rollout Policies: The paper discusses the qualitative behavior

of rollout policies, particularly in the context of multi-modal objectives and model

error. Understanding how rollout policies behave in various scenarios is crucial for

their practical applicability.

Jiang et al. 2020 proposes a joint Optimization of Decision Variables. Instead

of solving nested optimization problems within a multi-step scenario tree, the paper

proposes jointly optimizing all decision variables in the full tree simultaneously,
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termed as a “one-shot” approach. This method enhances computational tractability

and demonstrates superior performance compared to existing methods on various

benchmarks. Efficient Conditioning of Gaussian Processes (GPs): Traditional methods

for conditioning a GP on additional data involve rank-1 updates to the Cholesky

decomposition of the input covariance matrix. The paper introduces a related approach

called “multi-step fast fantasies,” which efficiently constructs fantasy models for GP

models representing the full look ahead tree. This approach includes novel linear

algebra methods for updating GPyTorch’s caches for posterior inference in each step.

The paper discusses related methods, including a recent development enabling gradient-

based optimization of two-step expected improvement (EI). However, these methods

often rely on assumptions about the maximizers of second-stage value functions and

may involve non-adaptive or computationally expensive procedures.

2.1.3 Multi Agent Approaches

Single-agent approach may struggle to explore the search space effectively or

exploit discovered regions efficiently. By distributing the workload across multiple

agents, each responsible for exploring different parts of the search space, a multi-agent

approach enables parallelization and enhanced exploration-exploitation trade-offs.

Furthermore, in real-world applications such as source seeking or complex opti-

mization problems, a single-agent approach may be insufficient to capture the diversity

of objectives or adequately handle uncertainty. Multi-agent systems offer inherent

flexibility and adaptability, allowing for diverse strategies and collaborative decision-

making. Additionally, in scenarios where resources or expertise are distributed across

different agents, a multi-agent approach facilitates decentralized coordination and
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communication, leveraging the strengths of individual agents while mitigating their

limitations.

Entropy Search (ES) put forth by Ma et al. 2023 has gained attention for its ability

to select query points that maximize the mutual information about the maximum

of the black-box function. However, one of the primary challenges of ES lies in its

computational complexity, often requiring costly approximation techniques. Efforts

have been made to address the scalability issue of ES, especially concerning its

exponential complexity with respect to the number of agents involved. Two main

approaches have been explored in the literature for selecting batches of query points

for agents: sequential query calculation and batch query calculation. While sequential

query calculation assigns explicit roles of exploration/exploitation to each agent, batch

query calculation implicitly handles collaboration through its probabilistic model.

Recent advancements have focused on enhancing the efficiency and scalability of ES.

For instance, gradient-based multi-agent ES algorithms have been proposed to reduce

the exponential cost to polynomial cost. However, these approaches still involve heavy

computations, particularly due to the large number of matrix inversions required.

To mitigate computational burdens, some studies have leveraged normal distri-

butions to approximate the distribution of the function maximum and calculate its

entropy, resulting in closed-form expressions for acquisition functions. Additionally,

central coordinators have been employed to facilitate communication among agents,

receiving observations, updating GP models, and calculating queries based on mutual

information maximization.Trade-offs between time and batch dimensions have also

been explored, with strategies such as Upper Confidence Bound (UCB) balancing

the proximity of query points to maximize exploration while maintaining spatial

separation among them.
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Existing baseline multi-agent BO algorithms have been compared in recent lit-

erature, including GPUCB with pure exploitation, Gaussian Process Batch Upper

Confidence Bound, EI with Monte-Carlo sampling, EI with stochastic policies, and

Parallel Thompson sampling. Empirical evaluations on various test functions have re-

vealed insights into the performance of these algorithms, with some showing superiority

in certain tasks or domains.

Krishnamoorthy and Paulson 2023 framework adds a penalty term to traditional

BO acquisition functions to account for coupling between the the agents without data

sharing. They derive a suitable form for this penalty term using alternating directions

method of multipliers (ADMM), which enables the local decision making problems

to be solved in parallel. While this approach relies on a central coordinator that

talks to these local models through the penalty term, the approach presented in this

thesis uses a class of Approximate Dynamic programming approach called Multi agent

Rollout proposed by Bertsekas 2020. The inherent coordinating nature exhibited by

the agents in this approach enables these agents to act independently. Coupled with

partitioning, these agents branch the input space based on the look ahead achieved

by decomposing the actions taken among the agents.
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Chapter 3

BACKGROUND

3.1 Black Box Models

Let’s consider a black box function f : Rn → R, where Rn represents the input

space and R represents the output space.

The black box model can be represented as:

y = f(x) + ϵ

where:

• y is the observed output,

• x = (x1, x2, . . . , xn) is the input vector,

• f(·) is the unknown function representing the black box,

• ϵ is the noise term representing any uncertainty or error in the observations.

In Bayesian optimization, we seek to find the optimal input x∗ that maximizes (or

minimizes) the objective function f(·):

x∗ = argmax
x

f(x)

subject to any constraints imposed on the input space.
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3.2 Bayesian Optimization

Let’s consider the following problem:

minx∈X f(x)
(3.1)

The function f : D→ R is unknown and can be any continuous real valued function

like the True function depicted above and a set of parameters that map to this function.

f is not convex or linear or any known structure to exploit using existing efficient

techniques to optimize. Also, we only observe f(x) and not it’s derivatives so we can’t

use gradient based methods. We only have a sample set of observations as shown

to provide an estimate of the true objective function. Our goal is to find a point

x∗ ∈ X with the lowest objective value by sequentially estimating points {xk}Nk=1 over

a budget of N function evaluations.

Bayesian optimization is among a popular class of sample efficient sequential

estimation methods. Bayesian optimization leverages Bayes’ theorem, which updates

prior beliefs with observed data to derive a posterior distribution. Unlike conventional

supervised learning methods that yield precise parameter values, Bayesian optimization

provides a probability distribution over potential parameter values. This distribution
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is initially informed by a set of observations, and as new observations are obtained,

the distribution is updated iteratively, leading to a more refined estimation.

The process begins with a prior distribution based on initial observations, depicted

in the figure by the shaded purple area, representing uncertainty. As additional

observations are sampled, the prior distribution is updated using Bayes’ conditional

probability, gradually reducing uncertainty and converging towards the true underlying

function.

P (w|y,X) = P (w)
P (y|X, w)

P (y|X)
(3.2)

Equation 3.2 facilitates this update, where the numerator represents the likelihood

multiplied by the prior, and the denominator is the marginal likelihood. By integrating

over possible parameter values weighted by their posterior distributions, the predictive

distribution P (f |x, y,X) is obtained.

P (f |x, y,X) =

∫
w

p(f |x,w)p(w|y,X)dw (3.3)

To make the integration tractable, a Gaussian prior distribution is often chosen.

Additionally, utilizing a Gaussian prior results in a predictive distribution that is

also Gaussian. Consequently, the mean of this predictive distribution serves as the

predicted observation, while the variance captures uncertainty, providing a reliable

surrogate function for further optimization.
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3.2.1 Surrogate Function

Gaussian process serves as a surrogate function that fits a probabilistic model to

the candidate observations. It is non parametric and provides a flexible model of

continuous functions. Since we have only sample observations, which can take many

possible admissible functions, Gaussian processes calculate a probability distribution

of all these admissible functions

First, we assume a GP prior with a mean µ and covariance function K as f ∼

GP (µ,K). This will serve as an infinite dimensional multivariate Gaussian distribution

that acts as the prior distribution of the space of functions possible using their mean

and covariances. The kernel function k(x, x
′) correlates the pairs of nearby points

with hyperparameters to get a smooth function approximation. Several gradient

based optimizers are used to tune these hyperparameters. For a given set of sample

observations, we can write the data as D = (xi, yi)i = 1..k where yi is the observation

with a Gaussian noise.

Calculating the posterior distribution is tractable since we used a GP prior. The

predictions are described by the mean and covariances in the diagonal of the covariance

matrix since the resulting posterior distribution is also Gaussian. Time complexity for

fitting the GP prior is O(n3) where n is the number of function evaluations. Now that

we have a predictive distribution, we need to choose the next observation by efficiently

searching the hyper parameter space. This is done using an Acquisition function.
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3.2.2 Acquisition Function

Acquisition functions help us choose the next observation by estimating the

likelihood that an observation is worth evaluating with the objective function. Since

we have used a GP, we can use this information to estimate how worthy the observation

is. Some of the well known acquisition functions in the literature are:

• Probability of improvement

• Expected Improvement

• Upper Confidence bound

This thesis extensively uses Expected improvement. It is calculated by computing

the probability of improvement over the current best solution at a given point, weighted

by the magnitude of that improvement. In other words, it quantifies the expected

amount of improvement in the objective function that can be obtained by sampling at

a certain point. EI strikes a good balance between exploration (by increasing variance)

by looking at regions of high uncertainty and exploitation (by increasing the mean) by

choosing the point where the surrogate model achieves high objective. It is defined as:

EI(x) = E[max(f(x)− f(x′), 0) | x,D] (3.4)

where f(x) is the minimal possible value observed so far and if we find a sample

x′ that happens to have f(x′) less than f(x) then we consider that as an improve-

ment. Eventually, we need to optimize this function to get the sample with the

maximum expected improvement. This inner optimization is relatively easier to

compute because it computes a scalar value which can be optimized using gradient

based methods and is typically O(d2) where d is the dimension of the search space.
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Broyden–Fletcher–Goldfarb–Shannon is the most common numerical optimization

technique chosen to optimize EI.

As it can be seen, the EI and other commonly used acquisition functions are greedy

and only give the next observation that results in a better realization of the objective

function and are oblivious to the remaining function evaluations. Multiple steps of

these are needed to find the global optimum and it is prone to be stuck at a local

minimum. A better approach would be to simulate multiple BO realisations to choose

the next observation by planning out a sequence of observations in a non myopic

manner thereby resulting in a faster convergence to global optimum.

3.3 Approximate Dynamic Programming And Non-Myopic Acquisition Functions

Bayesian optimization discussed so far utilizes the Acquisition function in a greedy

manner, in the sense that they only look at the immediate reward. Lookahead

approaches enable us to estimate the long term reward of the sample points. BO

with lookahead can be formulated as an instance of a finite N-stage DP, where N

denotes the number of stages or steps considered. State Space and Policy: At each

stage k, the state space is defined, and a policy π is a sequence of rules mapping

the state space to the action space. The policy π aims to maximize the cumulative

reward. Reward Function: The reward function at each stage is denoted by rk, and

the end-stage reward is denoted by rN+1. A discounted expected cumulative reward

over the N-step horizon under a given policy is calculated, considering a discount

factor . The objective is to find the optimal policy π∗ that maximizes the cumulative

reward.

However, DP formulation suffers from computational burden and the curse of
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dimensionality, especially due to the uncountable state and action space. To address

the computational challenges, an approximate dynamic programming approach called

Rollout is proposed in Bertsekas 2022c. Rollout involves approximating the reward-to-

go functions using heuristic base policies, which are more computationally efficient. The

rolling horizon approach limits the number of stages through which the approximate

reward is calculated, reducing the dimensionality. These are calculated using heuristic

base policies, and the process involves iterating through different stages and updating

policies accordingly.

3.3.1 Rollout

In the context of BO, acquisition functions take the role of the heuristic base policy

that can be utilized to compute the reward-to-go functions. Non myopic acquisition

function model the exploration exploitation trade off by considering immediate and

future rewards. To encapsulate the exploration-exploitation dilemma in BO we can

formulate it as a finite horizon Markov Decision Process (MDP). The MDP framework

takes the form < T, S,A, P,R >, where T = 0, 1...h− 1, h <∞. S is the state space,

A is the action space, P (s′ | s, a) is the transition probability of moving from state s

to s′ taking an action a and R(s, a, s′) is the reward of moving from state s to s′ by

taking the action a.

In the context of BO, with a GP prior over data D, we model h steps of BO as an

MDP. The state space is all possible sets of data reachable from a current dataset Dt.

Action is choosing an input u from the domain. Transition probability from dataset

Dt to Dt+1 by choosing an action ut+1 is the probability of choosing zuk+1
from the
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posterior distribution at uk+1. In other words, for a given prior distribution b0, an

observation uk+1 and posterior bk, the state transitions according to:

bk+1 = Bk(bk, uk+1, zuk+1
) (3.5)

Reward is defined using EI where z∗t is the minimum observed value given the

dataset Dt.

R(Dt, uk+1, Dt+1) = max((z∗t − zt+1), 0) (3.6)

For horizon (h = 1) this is simply maximising the immediate reward. Whereas a

non myopic policy is an optimal policy for h horizon MDP. The expected total reward

of this MDP is therefore given by:

Qπ
h(Dk) = E[

k+h−1∑
t=k

(z∗t − zt+1)] (3.7)

A DP formulation is infeasible because we require the knowledge of the Q factors

recursively done through DP to obtain the optimal solution. Moreover the space of

posterior distribution is infinite-dimensional even for the Gaussian case by using mean

and covariance to reduce it to a finite set.

Since, for h > 2, this is expensive to compute, we can use Rollout to get sub

optimal policies. We denote the base policy as π = (π0, π1, .....πh−1). At each decision

we are maximising the base acquisition function given the current state provided by

the data Dt. Using this base policy, a non myopic acquisition function is given by

rolling out this base policy π for h horizon in a forward fashion from any state. The

expected reward after h horizon is given by:

Λh(uk+1) = E[Qπ
h(Dk ∪ (uk+1, zk+1)] (3.8)

where zk+1 is a noisy observation from the posterior. Rollout being sequentially

consistent and sequentially improving, the expected reward of π should be better than

the base acquisition function, provided the GP prior is correctly specified.
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To get a reasonable estimate of the reward, Monte Carlo simulation is clearly

needed, where majority of the computation burden lies and is directly dependent

on the total number of samples. Approaches used in Lee et al. 2020 have come up

with methods to reduce this computation by integrating over the h horizons. The

reason being since the posterior is a normal distribution the expectation of rolling

out EI is approximately equal to mapping the h dimensional vector to the posterior

and averaging. Empirical evidences show that standard MC converges at the rate of

σ/
√
N . Any increase in precision warrants two orders of magnitude more samples.

3.3.2 Multi Agent Rollout

A natural extension in parallel and distributed settings would create scenarios

where we can sample multiple observations simultaneously before receiving feedback

on their outcomes. But handling multiple simultaneous decisions can pose significant

computational challenges due to the exponential growth in the observation space.

Moreover, we need to take into account the communication overhead that such an

approach entails. To address this issue, a multi-agent methodology, that extends the

traditional rollout algorithm to scenarios involving multiple agents making decisions

in collaboration has been proposed. The multi-agent rollout methodology proposed by

Bertsekas 2020 aims to approximate the value or reward of a decision by simulating

future trajectories of the system. Unlike the standard rollout algorithm, where a

single agent makes decisions at each stage, multi-agent rollout involves multiple

agents acting sequentially, with each agent making its own decision based on partial

knowledge of preceding agents’ choices. Although, the number of controls and the

computational requirements grow rapidly with the number of agents, we reduce the
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computational cost per stage by trading off control space complexity with state space

complexity. The reformulated problem involves breaking down the collective decision

into individual component decisions. This reduces the complexity of the control space

while introducing additional layers of states in the state space.

To integrate the provided multi-agent rollout methodology into the context of

Bayesian optimization (BO), we can adapt the sequential decision-making process to

represent how agents interact within the BO framework:

Let M denote the total number of agents involved in the decision-making process.

Define an ordered sequence of agents as {A1, A2, ..., AM}, where each Ai represents

an agent. At each stage t of the Bayesian optimization process:

1. Sequential Decision Making: - Starting with A1, each agent Ai selects a

candidate point xi(t) based on its partial knowledge of preceding agents’ choices and

the current state of the surrogate function.

2. Reward estimation: - The selected candidate points {x1(t), x2(t), ..., xM(t)}

are evaluated using the posterior mean to obtain an estimate of their corresponding

function values {f1(t), f2(t), ..., fM(t)}. The regret is calculated using the function

value estimate to yield the rewards {r1(t), r2(t), ..., rM(t)}

3. Update: - The Bayesian optimization framework updates its belief about the ob-

jective function based on the new observations {(x1(t), f1(t)), (x2(t), f2(t)), ..., (xM (t), fM (t))}

that have the highest cumulative reward. This way the candidate points are chosen in

such a way that decomposes the reward among the agents and thereby the candidate

points chosen gets closer to the optimum.
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Sequential Decision Making:

1) xi(t) = Agent Decision(Ai, t, {xj(t)}i−1
j=1, {fj(t)}i−1

j=1) for i = 1, 2, ...,M

2) Evaluate f(xi(t)) for i = 1, 2, ...,M

3) Calculate the rewards ri(t) for i = 1, 2, ...,M

4) Update Gaussian process model{(xi(t), fi(t))}Mi=1

We will adapt this methodology to Bayesian optimization in Chapter 4.

25



Chapter 4

MULTI AGENT BAYESIAN OPTIMIZATION USING SEARCH SPACE

PARTITIONING

This chapter discusses the MABO algorithm, a multi agent partitioning based

algorithm the relies on local Gaussian processes for generating surrogates over the

subset of the input space and a non myopic choice of the samples to update the local

GPs. The major contribution of this algorithm is:

1. Using local surrogates to model the input space and yield point estimates within

those sub regions. The local modelling enables us to distribute the choice of candidate

samples taken to update the local GPs.

2. A branching criteria based on the existence of agents in the sub regions at any

point in time enables us to partition the input space and narrow down to regions of

interest.

3. A look ahead approach that renders a non myopic choice of candidate samples

by simulating the local modeling resulting from the agents’ partitioning for finite

horizons

4.1 Multi Agent Rollout For Bayesian Optimization

In Multi Agent Rollout, an action or control consists of or can be decomposed into

multiple components, with a separable control constraint structure, and each compo-

nent at each stage is chosen by a separate decision entity referred to as “agent” Bertsekas

2021. In MARO, the action from the original decision problem x is decomposed across
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a number of agents. As a result, the evolution of the algorithm together with the cost

function are now defined over the cross-product of the agent-level actions. When the

problem structure lands itself to the definition of agents, MARO can lead to more

efficient solutions algorithms compared to traditional Rollout that, as mentioned in the

literature review, as already tested in Bayesian optimization contexts Bertsekas 2021,

2022a, 2022b. There are two categories of MARL agent learning scheme: independent

learning scheme and action-dependent learning scheme Li et al. 2023. Within a fully

independent learning scheme framework, agents make action decisions independently

with their own object function or policies Li et al. 2023. A dependent learning scheme,

on the other hand, allows agents to have a protocol to communicate and make decisions

based on other agents’ decision. This is also the original definition of Multi-Agent

Rollout proposed in Bertsekas 2021 and further discussed in Bertsekas 2022a, 2022b.

MABO follows the dependent learning scheme for coordinating feasibility and scope

of agents.

In the MARO context, the optimization problem we are trying to solve can be

formulated as:

min
x∈X

[
min

i
(f(xi))

]
(4.1)

Where X is the input space, and the decision variable is encoded as x =



x1

x2

...

xm


, where

the component xi is an agent feasible solution, and xi ∈ Xi : ∪iXi = X,∩iXi = ∅.

MABO returns as solution the location associated with the agent that achieves the

lowest cost. More specifically, we define a decision vector at algorithm iterate k that

can be decomposed according to a separable input structure, i.e., xk = (x1
k, . . . ,x

m
k ),
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where xi
k ∈ X l

k, l = 1, . . . ,m Bertsekas 2021. Thus the domain of the original problem

can be expressed through the product Bertsekas 2021:

Xk = X1
k × · · · ×Xm

k .

MABO does not only sample points as it progresses through iterates, rather it sequen-

tially defines and evaluates agent configurations that induce a solution. Specifically,

given a partition with m subregions, i.e., ∩iX i
k = ∅,∪iX i

k = X, each agent will be

assigned a subregion X i
k, a data set within the subregion Di

k, and a surrogate model

Y i
k trained with the subregion data set Di

k. These three elements define the agent

configuration object at the k-th iteration, cik, and a configuration is the collection of

all agents configurations, namely ck. At each iteration k, the i-th agent can modify

the configuration based on the information from agents j = 1, . . . , i − 1 and their

prediction on the remainder of the agents configurations j = i+ 1, . . . ,m. Given a

configuration, the MABO incumbent solution is:

x̂∗
k = argmin

i

(
min
xi∈Di

k

f
(
xi
))

. (4.2)

We distinguish two types of agent. Agents i = 1, . . . ,m − 1 are active agents and

they can at each iteration actively change the subregion of interest and sample new

locations, agent m is an inactive agent. The inactive agent is responsible to collect all

the subregions that the m− 1 active agents disregard as a result of their update. The

inactive agent can hence have associated multiple subregions and while it maintains

the locations and the surrogate model no new sampling is performed by this agent.

Subregions contained by the inactive agents can receive new locations if an active agent

decides to jump into an inactive region. At iteration k, we define the state of MABO

Sk is the set of agents and the corresponding tuple Sk = (X i
k, D

i
k, Y

i
k )

m

i=1, considering

this state, the algorithm generates number NC of alternative configurations. To do so,
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we sequentially solve the following equations starting at agent i = 1:

c̃ik ∈ argmin
Ci

F a(c̃1k, . . . , c
i
k, . . . , ĉ

m
k ) i = 1, . . . ,m. (4.3)

Where Ci represents the set of feasible configurations for the i-th agent, and F a is a cost

function that the agent uses to sample the configuration component. In fact, each agent

can change its assigned subregion X i
k, and, given the subregion, it will sample novel

locations following an acquisition function implied by a surrogate model built with

the locations already assigned to X i
k that have been sampled from previous iterations.

The additional points are added to those currently present within the generated X i
k.

The sample points are then added to the data set Di
k, and, upon evaluation of the

locations, each agent can update a surrogate model Y i
k . Such generation is performed

for a user defined number of times, N c. Once the configurations are generated, the

rollout method is called to evaluate the competing configurations and move MABO

to the best configuration.

At iteration k, the rollout algorithm, is used to evaluate the candidate con-

figurations, namely cgk, g = 1, . . . , N c. To do so it applies a base-heuristic to

simulate the evolution of each configuration for an horizon of length h, namely,

(c̃1, . . . , c̃k−1, c̃k, ĉk+1, . . . , ĉk+h).

It then chooses the configuration that minimizes the approximate Q-factor (here

FRO) over all the simulated solutions solutions:

c̃k ∈ argmin
cgk

FRO
(
c̃g1, . . . , c̃

g
k−1, c

g
k, ĉ

g
k+1, . . . , ĉ

g
k+h

)
. (4.4)

It then repeats with (c̃1, . . . , c̃k−1) replaced by (c̃1, . . . , c̃k). After K iterations the

rollout algorithm produces the complete sequence of configurations

c̃ = (c̃1, . . . , c̃N)
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which is called the rollout solution. The fundamental result underlying the rollout

algorithm is that under certain assumptions, we have cost improvement, i.e.,

F (c̃1, . . . , c̃N) ≤ F (ĉ1, . . . , ĉN), (4.5)

where (ĉ1, . . . , ĉN) is the configuration produced by the base heuristic.

Figure 1. MABO iteration k = 1,
number of active agents m = 4,
the inactive agent is associated
with the empty set.

Figure 2. BO iteration k = 2,
number of active agents m = 4,
the inactive agent includes the
subregions “abandoned” by the
active agents.

MABO full step example (Figures 1-2). Figures 1-2 show an example of

configuration update. Specifically, Figure 1 shows that at iteration k = 1, there are

4 subregions (active agents), each with an associated dataset Di
1, i = 1, . . . , 4 (dots).

Each agent builds its own surrogate Y i
1 , i = 1, . . . , 4 using the respective datasets.

Figure 2 shows the configuration obtained after a full MABO iteration, for k = 2,

where we see two subregions in gray that are now associated with the inactive agent.

We observe that the iterate has produced a new set of subregions and, as a result of

the the sampling decision made by the agents, updated data sets Di
2, i = 1, . . . , 4 and

surrogates Y i
2 , i = 1, . . . , 4. The detailed process for the generation of a configuration

will be detailed in Section 4.1.1 (Step 1).
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4.1.1 Multi Agent Bayesian Optimization Algorithm

In this section, we provide the algorithmic details associated with our MABO. We

repeat this procedure for K iterations, i.e., until the available function evaluation

budget is exhausted. Upon termination MABO returns the rollout solution as explained

in Section 4.1.

Figure 3. MABO progression.

Figure 3 provides an overview of the key components of the algorithm that we

further detail below. MABO evolves using two key functions (Figure 3): (i) the

configuration generator responsible for producing the tuple ck = (X i
k, D

i
k, Y

i
k )

m

i=1; and

(ii) the configuration rollout responsible for the simulation (h-step) and evaluation of

the generated configurations at each iteration. While several surrogates and acquisition

functions can be used by these two functions, MABO adopts a Gaussian process to

produce the needed predictions for the function value in each of the subregions
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Below, we provide the MABO algorithmic steps that make up the algorithm.

Step 0. Initialization: Provide the feasible region X, the number of active agents

m − 1, the total budget K; Define the number of configurations per iteration N c;

The rollout simulation horizon h; the inactive agent is assigned the empty set, i.e.,

Xm
0 ← ∅. Initialize the active agents considering:

(i) An agent is defined by the tuple (X i
k, D

i
k, Y

i
k );

(ii) Each active agent aj is assigned to only one sub region X i
k and each sub region

X i
k contains only one agent aj.

Step 1. Configuration Generation: A configuration is defined as a tuple

(X i
k, D

i
k, Y

i
k )

m

i=1. Hence, a configuration update starts from the first agent and updates

the tuple by:

(1) letting the agent choose whether to stay in its currently assigned region or jump

into any of the successive agents region;

(2) if the agent jumps it will branch the target region according to a partitioning

scheme;

(3) the agent samples a location in the target region thus updating the data set and

the surrogate.

We encode such update step for the i-th agent as:

X i
g ← Pa

(
{X i

k, D
i
k, Y

i
k}

m

i=1

)
(4.6)

The i-th agent generates the related configuration component fixing the tuples

associated to agents 1, . . . , i− 1, and may change X i
k: (i) Jump to a subsequent agent :

agent i has a positive probability to jump into any agent region l = i+ 1, . . . ,m− 1

or jumping into the inactive region (m); (ii) once a jump has been determined, the
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agent can probabilistically branch the target subregion.

To manage the partitioning of the space, we adopt a tree encoding (see Figure 6).

Figure 4. BO iteration k = 1, number
of active agents m− 1 = 4. Figure 5. BO iteration k = 2, number

of active agents m− 1 = 4, the
inactive agent has two subregions.

Figure 6. An example of input space partitioning at iteration k = 1 and k = 2 into
sub regions σγ

eft. The indices e, f refer to the leaf e located at the f -th level of the
tree in the tth iteration. Each leaf is a sub region that is either depicted in green or
γ = + to denote active agents, inactive regions depicted in grey or γ = − are all
assigned to the inactive agent, i.e., Xm

k can be a disconnected set.

More specifically, the probability to jump to a candidate region σ+
eft from the agent-

associated subregion σ+
eft is proportional to the maximum Expected Improvement Jones,

Schonlau, and Welch 1998 calculated in each region as:

EI∗· = max
x∈σγ

·
EI(x)

EI∗· = max

([
f ∗ − Ŷ γ

· (x)
]
Φ

(
f ∗ − Ŷ γ

· (x)

ŝγ· (x)

)
+ ŝγ· (x)ϕ

(
f ∗ − Ŷ γ

· (x)

ŝγ· (x)

)
, 0

)
. (4.7)

p· ∝
EI∗·∑
i EI∗i

where f ∗
i is the best function value sampled so far across the entire input space. We

get a higher EI when the mean of the Gaussian process is high at x or when there is

a lot of uncertainty (ŝγ· (x) > 1), and p· ∝ EI∗·∑
i EI∗i

is the jump probability to subregion

(·). If an agent jumps to a target region, then it will branch it by choosing uniform at
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random a dimension d and a cutting point. Specifically if agent i jumps to the region

Xj
k given the bounds [lj, uj]

d, that contains agent j, then

Di
k = {x ∈ Di

k : xd ≤
lj + uj

2
}

Dj′

k = {x ∈ Dj
k : xd >

lj + uj

2
}

such that Dj
k = Di

k ∪ Dj′

k and Di
k ∪ Dj

k = ∅ where i, j = 1, 2, . . . ,m − 1. If agent i

jumps to an inactive region (m), then Di
k ← Dm

k . Upon branching the agent makes

a sampling decision based on the region-Expected improvement, i.e., the agents adds

a location to the selected region according to Jones, Schonlau, and Welch 1998:

xi
g ∈ arg max

x∈σγ
eft

EI(x)

xi
g = max

([
f ∗
i − Ŷ γ

eft (x)
]
Φ

(
f ∗
i − Ŷ γ

eft (x)

ŝγeft (x)

)
+ ŝγeft (x)ϕ

(
f ∗
i − Ŷ γ

eft (x)

ŝγeft (x)

)
, 0

)
.

(4.8)

where f ∗
i is the best function value sampled so far in subregion σγ

eft. In case of a

rollout step, the predicted value Ŷ γ
eft (x) is used in place of the actual function value.

Once the location has been sampled, the true function is evaluated and the following

updates are performed by the agent to complete the configuration generation:

Di
g ← Di

g ∪ xi
g : D

i
g =

{
x ∈ ∪lDl

k : x ∈ X i
g

}
, (4.9)

Y i
g ← GP |X i

g, D
i
g. (4.10)

Once all agents have their assigned sub region and the local Gaussian process model,

and N c configurations have been generated, the rollout is needed to evaluate each

configuration.

Step 2. Configurations Rollout: The agent configurations are rolled out for an

horizon of length h. A rollout step is nothing but a simulation of the steps encountered

34



so far. So, for each configuration resulting from Step 1, simulates Step 1-Step 2 of the

algorithm using a base heuristic in place of the exact function evaluations. A graphic

representation of this process is depicted in Figure 3 along with the progression of

each of the N c configurations.

At each step of the rollout, the configurations are sequentially updated i.e., region

partitions are updated and sample points selected from these new regions, based on

the base heuristic which in our case is the Expected Improvement (Jones, Schonlau,

and Welch 1998) (eqn. (4.8)). The evolution of the agents configurations for the

rollout horizon follows:

X i
k+r ← PRO

({
X i

k+r−1, D
i
k+r−1, Y

i
k+r−1

}m
i=1

)
, r = 1, . . . , h (4.11)

Di
k+r ←

{
x : x ∈ X i

k+r, x ∈ ∪lDl
k+r−1

}
∪ xi

k+r−1 : x
i
k+r−1 ∈ arg max

x∈Xi
k+r\D

i
k+r

EI (x) ,

r = 1, . . . , h

(4.12)

Y i
k+r ← GP |X i

k+r, D
i
k+r, r = 1, . . . , h (4.13)

In eqn. (4.11), PRO represents the rollout partitioning scheme. In the implementation,

the i-th agent receives as input the subregions from the other agents and follows one

of two mechanisms we discussed in Step 1 i.e., the probability to jump to any agent

region l = i+ 1, . . . ,m and the probability to jump to inactive region (m+ 1) given

by eqn. (4.7).The jump probability can be calculated using one of two ways: (i) using

the Gaussian process model Y i
k+r in the respective sub regions or (ii) using Y i

k+r from

region (X i
k+r ∪Xj

k+r), which is the common region between agent associated regions

X i
k+r and Xj

k+r where i, j = 1, 2, . . . ,m− 1. The two mechanisms are introduced as

a means to manipulate the exploration and exploitation trade off using the agent

movements. A jump probability following (i) might make the agents movements
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greedy whereas following (ii) might make the agents more explorative by using a

model that is trained on a larger sub region. For instance, if we want to calculate

the jump probability between σ+
1,3,2 and σ+

4,2,2, then following (ii) would utilise the

Gaussian process model built using Di in region σ+
4,1,2.

Example of tree update simulation step. An instance of the partitioning scheme

is depicted in Figure 6. Agent i = 1 assigned to subregion σ1,1,2, following PRO, it

jumps to subregion σ+
4,1,2 thus splitting the subregion into σ1,2,2 and σ+

4,2,2 with agent

and i = 4. Next, agent i = 2, stays in its assigned subregion σ2,1,2. And agent 3

jumps to subregion σ1,2,2 to split it into σ+
1,3,2 and σ+

3,3,2. Finally, agent 4 stays in

its subregion σ+
4,2,2. Consequently, the inactive agent a′ collects the subregions σ−

1,1,2

and σ−
3,1,2. During each jump, the agent level updates to the dataset and GP follow

eqn. (4.12)-(4.13).

Given the uncertainty of the approach NRO independent replications of the rollout

are performed for each configuration to increase it’s stability and the approximate

Q-factor (FRO in eqn. (4.4)) is updated as follows:

fRO
g,ℓ = min

i=1,...,m

(
qg1,ℓ

(
Ŝ1
k+h,ℓ

)
, qg2,ℓ

(
Ŝ2
k+h,ℓ

)
, . . . , qgm,ℓ

(
Ŝm
k+h,ℓ

))
g = 1, . . . , N c, ℓ = 1, . . . , NRO

FRO
g =

1

NRO

∑
ℓ

fRO
g,ℓ . (4.14)

where
(
Ŝi
k+h

)
represents the state of the i-th agent at the end of the rollout horizon

and the cost component qgi is the minimum predicted function value by the i-th agent.

Based on the approximate Q-factor, we can choose the configuration ck+1 as follows:

ck+1 ← argmin
g

FRO
g , (4.15)

x̂∗
k+1 ← arg min

x∈∪iDi
K

Ŷ (x) . (4.16)
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This renders the other configurations in iteration k as losing configuration depicted in

gray in Figure 3. From the configuration ck+1 , the sampling decision x̂∗
k+1 is obtained

from all the agents. The locations sampled are a result of predicted values Ŷ (x) as

opposed to actual function evaluations.

Update the iteration index, k ← k + 1.

Step 3. Stopping Condition if k == N , STOP, return the best so far

x̂∗
K argminx∈∪iDi

k+1
f (x). Else Go to Step 1.

The complete algorithm is shown in Algorithm 1. The Algorithm 2 is a recursive

implementation of the Steps 1 and 2 for horizon of length h. It should be noted that

in the implementation, the reassignment might include a temporary classification

scheme with an additional crowded region classification as shown in Algorithm 3. This

classification is just a minor implementation detail that needs less attention.
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Algorithm 1 Multi Agent BO
1: Input: Input space X ⊂ Rd, Number of agents m, initialization budget n0, Total

budget K, Number of Configurations N c, Number of rollout replications NRO,
number of cuts per dimension per sub region B → f(M), Branching operator
C : X → (Xi)i : ∪iXi = X,∩iXi = ∅, sub region classified as active (+), inactive
(-) γ ∈ {+,−}, Rollout horizon h, Number of samples per subregion s.

2: Set iteration index k ← 1
3: Initialize the sets Θk+,Θk− = ∅,Θk ← X
4: Output: Sets Θk+ with Agents (a)m−1

i=1 assigned to sub regions in set Θk+ and set
of inactive sub regions Θk− assigned to agent am

5:
6: Get the initial set of observations D0 = {xn0 , yn0} from X
7: A configurations is defined as a tuple {X i

k, D
i
k, Y

i
k}mi=1

8: while k ≤ N do
9: Generate/Update configurations

10: X i
g ← Pa

(
{X i

k, D
i
k, Y

i
k}

m

i=1

)
11: (cg)

Nc

g=1 ← Generate configurations C(d,m!, s) (Step 1)
12: for ck ∈ cg do
13: Rollout configuration ck ← {X i

k, D
i
k, Y

i
k}mi=1

14: Replicate rollout NRO times
15: for l = 1 to NRO do
16: fRO

g,l ← ConfigurationRollout(ck, h) (Step 2)
17: end for
18: Average h-step cost
19: FRO

g = 1

NRO
∑

ℓ f
RO
g,ℓ

20: end for
21: Choose the configuration with min cost
22: c∗ ← argming F

RO
g

23: x∗ ← argminx∈∪iDi
K
Y (x)

24: k ← k + 1
25: end while
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Algorithm 2 Configuration Rollout
1: Input: Configuration ck, Rollout horizon h
2: Output: Sets Θ̂k+ with Agents (a)m−1

i=1 assigned to it and set of inactive sub
regions Θ̂k− assigned to agent am

3:
4: while h ≥ 0 do
5: Generate/Update configurations
6: X i

g ← PRO
(
{X i

k, D
i
k, Y

i
k}

m

i=1

)
7: Rollout configuration ck ← {X i

k, D
i
k, Y

i
k}mi=1

8: fRO
g,l ← ConfigurationRollout(ck, h− 1)

9: end while

Algorithm 3 Reassign
Input: Set of active sub regions σβ

i,j,k , p· ∝ EI∗·∑
i EI∗i

of all sub regions to decide on
reassignment

2: Output: New status of the sub region γ = (+,−,++)

4: Get the region with the minimum h-step cost based on jump probability p
σ∗,γ
e,f,t ← argmaxσ∈Θk p(σγ

e,f,t)
6: Check if the region with min cost is same as the current active region

if σβ
e,f,t ̸= σ∗,γ

e,f,t then
8: β = −

if γ = + then
10: γ = ++

else if γ = − then
12: γ = +

end if
14: end if

Return γ
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Chapter 5

EXPERIMENTS ON SYNTHETIC TEST FUNCTIONS

5.1 Results

Objective of the study: In this chapter, we put forth the results of a set of

experiments on synthetic test function to understand the performance of the algorithm

in low dimensions and establish a baseline. The objective is to understand the impact

of the rollout horizon, the number of agents and the number of configurations, which

are all user-defined parameters, on the performance of the algorithm. The impact of

the multi agent nature of the algorithm coupled with the rollout approach is evaluated

and studied to understand its ability to scale to higher dimensions. The performance

of the algorithm is compared with Bayesian Optimization against these non-convex

highly multi-modal test functions whose global minimum is known apriori.

Experimental Settings: We consider the difference between the best observed

function value and the true optimum value |f̄K − f ∗| averaged across 25 macro-

replications. The mean along with the standard error of the metric are recorded.

We compare the results of BO and MABO against the following synthetic test

functions:

• Shubert The Shubert function is defined as a product of sums, where each term

in the product represents a sum of cosine functions. This structure contributes

to the function’s multi-modal nature, as the interaction between the individual
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cosine terms creates a complex landscape with multiple local optima.

f(x) =
n∏

i=1

(
5∑

j=1

j · cos ((j + 1) · xi + j)

)
(5.1)

which has feasible region [−10, 10]d, has many local minima and one global

minima at (−7.0835, 4.8580);

• Rastrigin has a feasible region [−2.5, 3]d, with several local minima and one

global minimum at 0;

f(x) = An+
n∑

i=1

(
x2
i − A cos(2πxi)

)
(5.2)

• Schwefel 4-d and 10-d function has a feasible region [−500, 500]d, with several

local minima and one global minimum at 0;

f(x) = −
n∑

i=1

xi sin
(√
|xi|
)

(5.3)

• Langermann 6-d and 10-d function has a feasible region [0, 10]d with many

local minima and one global minimum with a function value (−5.16)

f(x) = −
m∑
i=1

ci exp

(
−

n∑
j=1

(
(xj − aij)

2
))

(5.4)

Key characteristics of these functions :

Multimodality: These functions exhibit multiple local optima, challenging optimization

algorithms to navigate the search space effectively. Oscillatory Behavior: The function

features rapid oscillations, posing difficulties for gradient-based optimization methods.

Scalability: As the dimensionality increases, the complexity of the function grows

exponentially, making it a stringent test for high-dimensional optimization techniques.

Similar to many benchmark functions, the Rastrigin function is continuous but

non-smooth, with sharp, narrow peaks and valleys in its landscape. The function
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contains periodic components due to the cosine term, leading to oscillations in its

landscape The Schwefel function exhibits non-separability, meaning that the variables

are interdependent and optimizing each variable individually may not lead to optimal

solutions. Scaling: The function’s landscape can be steep and rugged, with scaling

issues becoming more prominent as the dimensionality of the problem increases.

This can pose challenges for optimization algorithms, particularly those that rely on

gradient information. The Schwefel function has a search space that extends to both

positive and negative infinity for each variable, making it an unbounded function.

The Langermann function is continuous but non-smooth. This non-smoothness adds

to the complexity of optimization problems based on this function. The function

involves exponential and trigonometric operations, introducing non-linear behavior

that complicates the optimization process. The locations of the function’s peaks can

be defined arbitrarily, allowing for flexibility in generating different instances of the

function

5.2 Experiment Parameters

All the experiments were performed with an initial budget n0 equivalent to 10-d

where d is the dimension of the test function. These samples were taken using Latin

Hypercube Sampling for its ability to divide each input parameter’s range into equally

probable intervals. It ensures that each interval along each dimension is represented

by exactly one sample, thereby providing a more uniform coverage of the parameter

space compared to simple random sampling. If the sub region is not branchable during

configuration rollout then the parent region is used to perform the rollout routine.

Number of cuts B = f(m) is a function of the number of agents. To ensure fairness,
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all agents are assigned to sub regions that have equal Hypervolume. Across the

experiments the number of configurations N c, the rollout horizon h and the number of

agents m are modified. All the experiments were executed on Sol - High Performance

Computing infrastructure at ASU with 64-core node and 2GB of RAM per core.

5.3 Performance Analysis

In this section, we verify the hypothesis concerning the performance of MAroBO.

In fact, we want to verify the following: (H1) Increasing the number of configurations

improves the performance of MABO; (H2) The number of agents and the rollout

horizon length have a positive impact on the performance of MABO; (H3) MABO is

more robust to higher dimensions than BO.

Figure 7. 2-d Langermann with
N c = 25, N c = 50.

Figure 8. 2-d Schubert with
N c = 25, N c = 50

Experiment 1: Performance in low dimensional settings for varying

configurations. Table 1 shows the results of different 2d functions. We see here

the effect of the number of configurations. We expect that the higher the number of

configurations evaluated the better the solution. The choice of number of configurations
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Table 1. Results for low dimensional experiments. Across the experiments m = 4,
h = 4.

Function d N c |f̄K
MABO − f ∗| ± stdErr |f̄K

BO − f ∗| ± stdErr K
Shubert 2 25 62.20±6.56 48.50±6.05 78
Shubert 2 50 10.27±4.39 48.50±6.05 78

Langermann 2 25 0.83±0.17 1.62±0.22 78
Langermann 2 50 0.03±0.09 1.62±0.22 78

is arbitrary, although the count of configurations can be attributed to the dimension of

the input domain. This is confirmed by the empirical results in all the cases Figure ??

shows how MABO Shubert has better performance when the configurations are doubled

from 25 to 50. Similarly, Langermann in Figure 7 exhibits better performance when

the evaluations per iteration is doubled from 25 to 50. While Langermann eventually

surpasses as we get more samples, it clearly shows that 25 configurations is insufficient.

Table 2. Experiments to assess the impact of more agents and longer look ahead
horizon. All the functions were evaluated with N c = 100.

Function d m h |f̄K
MABO − f ∗| ± stdErr |f̄K

BO − f ∗| ± stdErr K
Langermann 6 4 4 4.09±0.03 4.50±0.05 100
Langermann 6 4 8 3.76±0.06 4.50±0.05 100
Langermann 6 8 4 4.02±0.001 4.50±0.05 100

Schwefel 4 4 2 440.04±38.18 518.85±36.22 100
Schwefel 4 8 2 464.15±24.15 518.85±36.22 100
Schwefel 4 8 6 516.13±27.76 518.85±36.22 100
Rastrigin 6 4 2 2.34±0.24 2.42±0.25 80
Rastrigin 6 4 6 2.04±0.20 2.42±0.25 80

Experiment 2: Performance for varying number of agents and higher

dimensions. MABO was run with N c = 100 configurations across all the cases and

we notice that it is always superior to BO (Table 2). We can also observe how doubling

the number of agents does not seem to have a remarkable effect (Figure 9). We also
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Figure 9. 6-d Langermann with m
= 4 vs m = 8.

Figure 10. 6-d Langermann with
h = 4 vs h = 8

Figure 11. 4-d Schwefel with m =
4 vs m = 8.

Figure 12. 4-d Schwefel with h =
2 vs h = 6

observed an important variability in the quality of the solutions which may be brought

back to the low number of rollout replications NRO, which varied from 5− 10 across

all the experiments. Similarly, observing Schwefel Figure 11, we find that doubling

the agents doesn’t necessarily have a remarkable impact. Analysing the results by

increasing the rollout horizons reveal that Langermann (Figure 10) shows positive

impact when doubling the rollout horizon. Similarly, observing the Rastrigin (Figure

13) results, we notice how increasing the rollout horizon has a positive impact, but

this finding is not confirmed under the Schwefel (Figure 12) which calls for a further

experimental fraction and a deeper understanding of the impact of the interaction

between the agents and the horizon.
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Figure 13. 6-d Rastrigin with h =
2 vs h = 6.

Figure 14. 10-d Rastrigin with m
= 4 and h = 4

Figure 15. 10-d Langermann with
m = 10 vs m = 4.

Figure 16. 10-d Schwefel with m
= 4 and h = 4

Table 3. Experiments on higher dimensions. Langermann used N c = 500, while
Rastrigin and Schwefel were evaluated under NC = 600.

Function d m h |f̄K
MABO − f ∗| ± stdErr |f̄K

BO − f ∗| ± stdErr K
Langermann 10 4 4 4.95±0.0002 4.99±0.0002 47
Langermann 10 10 4 4.64±0.01 4.99±0.0002 47

Rastrigin 10 4 4 1.31±0.09 3.39±0.31 53
Schwefel 10 4 4 2188.67±48.44 2816.05±42.49 42

Experiment 3: Effect of increased dimensionality. Table 3 reports the

results for the higher dimensional cases. First off we observe the detrimental effect

that the increased dimensionality has on the performance of the algorithms. We
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observed that the algorithm is relatively more explorative than BO by distributing

the sampling among agents. Figure 15 shows an exemplar behavior where BO has

a very hard time initially to identify improving areas and MABO with its agents

succeeds in moving towards improved values. Results from more replications should

ensure its consistency. Further experiments on more complex functions needs to be

done to ensure the consistency of MABO. Similarly, Rastrigin and Schwefel results

are shown in Figure 14 and Figure 16 where MABO still outperforms the vanilla

BO significantly. Configurations needed would indeed be large for high dimensional

functions so an empirical study of different combinations of parameters - number of

agents, configurations evaluated, lookahead horizon, MC iterations needs to be done

to establish the efficacy of MABO.
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Chapter 6

CONCLUSION

With this chapter, we come to the conclusion of the thesis. The thesis started by

proposing the two research questions:

• RQ1. Can the utilization of non-myopic acquisition functions enhance the

performance of Bayesian optimization by providing better point estimates?

Response: MABO proposed in Chapter 4 builds on the foundations presented

in Chapter 2. MABO indeed can result in better convergence to the global

minimum/maximum. Chapter 5 results establish this fact with the results from

Rastrigin and Langermann function . The consistency of which needs to be

further explored and experimented going forward.

• RQ2. Does partitioning the input space prove to be effective in high dimensional

optimization problems by systematically narrowing down the search space into

regions of interest?

Response: Chapter 4 shows how the combination of Multi agent rollout with

a partitioning scheme can narrow down to the region of interest better than

vanilla BO. Experimental results with 10-d Langermann, Schwefel and Rastrigin

funtion in Chapter 5 reveal that a distributed modeling of the input space via

region partitioning make a positive impact that is worth exploring going forward.

This thesis has proposed MABO for solving global optimization problems. The

preliminary results reveal that a version of MABO is consistently dominating Bayesian

Optimization, thus granting further analysis. Future work will particularly be focused

on increased agent exploration and computational efficiency of the rollout loop.
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