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ABSTRACT

Computable properties of quantum states are given a dual gravitational inter-

pretation via the AdS/CFT correspondence. For holographic states, boundary en-

tanglement entropy is dual to the area of bulk geodesics, known as Ryu-Takayanagi

surfaces. Furthermore, the viability of states to admit a holographic dual at all is

constrained by their entanglement structure. Entanglement therefore defines a coarse

classification of states in the Hilbert space. Similarly, how a state transforms un-

der a group of operators also provides a classification on the Hilbert space. Certain

states, e.g. stabilizer states, are invariant under large sets of operations, and con-

sequently can be simulated on a classical computer. Cayley graphs offer a useful

representation for a group of operators, where vertices represent group elements and

edges represent group generators. In this representation, the orbit of a state un-

der action of the group can also be represented as a “reachability graph”, defined as

a quotient of the group Cayley graph. Reachability graphs can be dressed to en-

code entanglement information, making them a useful tool for studying entanglement

dynamics under quantum operations. Further quotienting a reachability graph by

group elements that fix a chosen state property, e.g. entanglement entropy, builds a

“contracted graph”. Contracted graphs provide explicit bounds on state parameter

evolution under quantum circuits. In this work, an upper bound on entropy vector

evolution under Clifford group action is presented. Another important property of

quantum systems is magic, which quantifies the difficulty of classically simulating a

quantum state. Magic and entanglement are intimately related, but the two are not

equivalent measures of complexity. Nonetheless, entanglement and magic play com-

plementary roles when describing emergent gravitational phenomena in AdS/CFT.

This manuscript describes the interplay between entanglement and magic, and offers

a holographic interpretation for magic as cosmic brane back-reaction.
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5.9 The number of unique entanglement entropies |sN | comprising all en-
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6.4 Reachability graph g36 (left) and its contracted graph (right). The g36
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6.7 Reachability graph g144 (left), and its associated contracted graph

(right). The contracted graph contains 5 vertices, corresponding to
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Chapter 1

INTRODUCTION

“We do not know what the rules of the game are; all we are allowed to do is to

watch the playing. Of course, if we watch long enough, we may eventually catch on to

a few of the rules. The rules of the game are what we mean by fundamental physics.”

-Richard P. Feynman

In recent years, many research efforts have centered around an emergent connec-

tion between gravity and quantum information. The academic works compiled herein

contribute only a small piece to this ongoing story, applying techniques and under-

standings from quantum information to gain further insight into the nature of gravity.

Along the way, a number of interesting results regarding entanglement, magic, and

the structure of quantum systems were fortuitously acquired as well. Looking eagerly

towards the future of quantum computation, it is my hope that some of these results

may find application in both scientific and technological settings.

1.1 Entanglement in Quantum Systems

One of the quintessential (and perhaps most bizarre) characteristics of quantum

systems is the concept of entanglement. Contrary to classical intuition, the mecha-

nism of entanglement renders a collection of systems, even in the absence of classical

interaction, independently indescribable. While a complete understanding of the en-

tanglement phenomenon is presently lacking, we know such a mechanism exists and

we may nonetheless exploit its many consequences. In particular, with the advent of

quantum computing, entanglement offers an invaluable resource for extending com-
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putation and understanding beyond what is classically achievable. In the following

sections we will give an overview describing the quantitative measures of entangle-

ment, as well as its role in quantum gravity and quantum computation.

When working with quantum-mechanical systems it is often most natural to con-

sider a pure state |Ψ⟩, which exists as some vector in a Hilbert space H. Since

|Ψ⟩ is pure, its “quantum” characteristics are limited to those which are classically-

achievable. However, if we decompose |Ψ⟩ into a collection of constituent subsystems

we observe a far richer structure. Performing this decomposition requires that we

assume H itself can be decomposed into the tensor product of Hilbert spaces Hi

H ≡
⊗
i

Hi. (1.1.1)

Eq. (1.1.1) suitably describes the setting for a system of qubits, a lattice of spins, or

any discrete set of interacting quantum systems.

1.1.1 Entropies of Entanglement

Assuming the bipartition H = HA ⊗ HĀ exists, we can ask what an observer

confined to HA can learn about a full state |Ψ⟩. The quantitative measure of this

limitation is known as entanglement entropy, and is computed according to the von

Neumann entropy in Eq. (1.1.2). To calculate the entanglement entropy of some

state in a H subspace we define subsystems ρA ∈ HA and ρĀ ∈ HĀ, such that ρA∪ρĀ

forms the pure state |Ψ⟩ ∈ H. The entanglement entropy of ρA, with respect to its

complement ρĀ, is then

SA ≡ −Tr ρA logρA . (1.1.2)

The object ρA is the reduced density matrix on the subregion A, and is constructed

via a partial trace of |Ψ⟩ over everything in HĀ.

The entanglement entropy in Eq. (1.1.2) is one instance of a family of entropies,
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known as Renyi entropies. The Renyi entropies, defined

Sα ≡
1

1− α
lnTr ρα, ∀α ∈ [0,∞], (1.1.3)

provide a generalization of the classical Shannon entropy. Eq. (1.1.2) is recovered

from Eq. (1.1.3) in the α→ 1 limit. In fact, this method for computing entanglement

entropy as a limit of the generalized Renyi entropy often proves simpler for field

theories in particular [32]. Chapters 3–6 of this dissertation rely specifically on the

properties of entanglement entropy, while 7 extends a more general interpretation for

properties of Renyi entropies in holography.

Given a composite state ρ ∈ H, comprised of n disjoint subsystems, there are 2n−1

unique entanglement entropies that can be computed using Eq. (1.1.2). Organizing

this set of subsystem entanglement entropies into a 2n − 1 component tuple builds

the entropy vector [5] for ρ. For example, a tripartite state with disjoint subsystems

indexed A, B, and C yields an entropy vector of the form

S⃗ρ = (SA, SB, SC , SAB, SAC , SBC , SABC). (1.1.4)

In this way, the entropy vector S⃗ρ for a state provides a complete description of

subsystem entanglement entropy in ρ.

1.1.2 Entropy Inequalities

Knowledge of a state’s entropy vector is sufficient to establish a classification on

states in H. One way to determine this classification is by validating the satisfaction,

saturation, or failure of certain entropy inequalities [21, 28, 35, 30, 34]. An entropy

inequality constrains the structure of a state’s entropy vector in a way that is consis-

tent with some otherwise understood property. For example, it is well-known that all

quantum states are strongly subadditive, therefore every quantum state must possess
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an entropy vector which satisfies

SAB + SBC ≥ SB + SABC . (1.1.5)

While Eq. (1.1.5) is trivially satisfied for arbitrary quantum states, additional entropy

inequalities provide stricter constraints on a state’s entanglement structure [5, 3, 4].

The monogamy of mutual information (MMI), constitutes an entropy inequality

which is satisfied by a strict subset of quantum states. States which obey MMI must

have an entropy vector which satisfies

SAB + SAC + SBC ≥ SA + SB + SC + SABC . (1.1.6)

Eq. (1.1.6) describes a critical property of holographic quantum states [20], those

states which admit a smooth classical description in a dual gravity theory via Ad-

S/CFT. We will review the AdS/CFT correspondence and discuss holographic states

further in the next section.

1.2 Holography and AdS/CFT

In 1997 a monumental duality was discovered, revealing that gravitational degrees

of freedom in certain (d+1)-dimensional spacetimes can be encoded into the degrees

of freedom for a class of d-dimensional quantum field theories [29]. This conjecture,

known as the AdS/CFT correspondence, is an explicit realization of the holographic

principle and provides a host of tools for rigorously probing quantum gravity. Perhaps

most useful is the nature of the AdS/CFT correspondence, a strong/weak coupling

duality, in which the parameters of strongly-correlated field theories are expressible

as classical (weakly-coupled) gravitational objects. Accordingly, certain properties

which are inherently difficult to compute in one theory may be ported over to their

corresponding dual and evaluated using the complement theory. While various ex-
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tensions and generalizations of the AdS/CFT formulation exist, we will focus solely

on the initial prescription in this document.

1.2.1 Anti de-Sitter Spacetime

The gravitational theory in AdS/CFT takes place on an Anti-de Sitter (AdS)

spacetime, a maximally-symmetric solution to Einstein’s equations with constant

negative curvature. More precisely we require only that our spacetime be asymp-

totically AdS, i.e. the manifold behaves like AdS at large length scales. In this large

radial limit, the spacetime metric is given by [22]

ds2 =
ℓ2

z2
(
ds2B + dz2

)
, (1.2.1)

where ℓ is known as the AdS radius, and ds2B provides the metric for the conformal

boundary B.

For simplicity, it is often preferred to compute quantum field theories on flat

spacetimes. Fortunately, d+1 dimensional AdS admits a boundary at spatial infinity

which is precisely d-dimensional Minkowski space1 under a particular choice of com-

pactification. This conformal compactification also permits operator action under

SO(d, 2), thus allowing conformal field theories to exist on the boundary of AdS with

the necessary symmetry structure that enables the AdS/CFT correspondence [38].

When the AdS length scale grows large compared to the Planck scale, string fluc-

tuations become negligible and the gravitational theory in the bulk AdS spacetime

behaves classically. Since AdS/CFT is a strong/weak coupling duality, this weak

string coupling in the gravity theory corresponds precisely to the limit when degrees

of freedom in the boundary CFT grow large, the so-called large N limit [23]. This
1The boundary manifold my be thought of as ordinary d-dimensional Minkowski space with the

addition of several points at infinity to resolve conformal mappings from Md to ∞.
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relationship between bulk and boundary degrees of freedom (see Eq. (1.2.5)) deter-

mines the energy sector of the theory, with the UV found nearest to the boundary

and the IR located deep in the AdS bulk.

Until now we have not specified the dimension of our AdS spacetime. Perhaps the

strongest demonstration of the AdS/CFT correspondence equates Type IIB super-

gravity on AdS5×S5 with 4-dimensional N = 4 super Yang-Mills theory [29, 18, 38].

In this paper however, for reasons which will soon become clear, we concern ourselves

only with the relationship between 3-dimensional gravity (AdS3) and 2-dimensional

conformal field theories (CFT2). We now give a brief introduction to conformal field

theories and the unique properties that emerge in two dimensions.

1.2.2 Conformal Field Theories

The second component of the AdS/CFT correspondence centers around a spe-

cial class of quantum field theories with particularly friendly structure. Conformal

field theories (CFTs) are quantum field theories invariant under the set of conformal

transformations [11], i.e. metric transformations of the form

g′µν(x
′) = Λ(x)gµν(x). (1.2.2)

The set of all transformations in Eq. (1.2.2) forms a group, known as the conformal

group, which contains the Poincare group as well as the set of all special conformal

transformations on gµν . Explicitly stated, the conformal group describes the following

set of coordinate transformations [11]

Translation: x
′µ = xµ + aµ,

Dilation: x
′µ = λxµ,

Rotation: x
′µ = Aµνx

ν ,

Special Conformal Transformation: x
′µ =

xµ − bµx⃗2

1− 2⃗b · x⃗+ b2x⃗2
.

(1.2.3)
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Alternatively, the above set of transformations may be thought of as the set of oper-

ations which locally preserve the angles of intersecting curves at a point.

In two dimensions there exists an infinite set of unique local conformal transforma-

tions, which constrains the form of n-point correlation functions, therefore enabling

exact solutions for 2-dimensional CFTs [7]. More rigorously stated, the generators

of 2-dimensional conformal transformations, shown in Eq. (1.2.4), satisfy an infinite-

dimensional algebra known as the Virasoro algebra [37, 13].

Upon quantizing 2-dimensional conformal fields, the arrival of a symmetry de-

formation gives rise to a central charge c often called the conformal anomaly. This

central charge results in the addition of a c-dependent term, such that the Virasoro

algebra is defined

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0,

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0,

[Ln, L̄n] = 0.

(1.2.4)

Generators without an overline in Eq. (1.2.4) act only on the holomorphic sector of

the theory, whereas those with a bar act on the antiholomorphic sector.

In the large c limit, the Virasoro algebra reduces to the group SO(d, 1). Beginning

with two identical copies of the Virasoro algebra in the limit of large central charge

allows us to recover SO(d, 2), precisely the isometry group of AdS3! This magnificent

symmetry matching allows the central charge of a double-copied boundary CFT to

be expressed using bulk gravitational parameters [8]

c =
3ℓ

2GN

. (1.2.5)

We observe in Eq. (1.2.5) one of the foundational equivalences provided by the Ad-

S/CFT correspondence.
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1.2.3 Entanglement In Holography

Now that we have established a connection between boundary quantum fields and

bulk geometry, we can begin performing explicit calculations. One of the most famous

computations performed in the AdS/CFT framework is the explicit interpretation of

boundary entanglement as areas of bulk geodesics. Formulated in the celebrated Ryu-

Takayanagi conjecture [33], this result enables the practical calculation entanglement

in strongly-correlated CFTs using rudimentary techniques of general relativity.

Before stating the Ryu-Takayanagi conjecture, we first recall the origin of black

hole entropy. Remarkable insight from Bekenstein and Hawking demonstrated that

the thermal entropy of a black hole is proportional to its horizon area [6], specifically

SBH =
1

4GN

A[H], (1.2.6)

where H represents the black hole horizon. Eq. (1.2.7) allows the black hole to be

cast as a thermodynamic system to an observer located outside the event horizon.

Placing a black hole in the center of AdS, allows us to inquire about corresponding

thermal properties in the boundary field theory. Specifically, the existence of an AdS

black hole implies that the boundary CFT is in a deconfined2 phase [22]. Assuming

a bipartition of the boundary Hilbert space, as defined in Eq. (1.1.1), into subspaces

A and Ā, we construct the thermal state

|ψ⟩ = 1√
Z

∑
n

e−βEn/2|n⟩A ⊗ |n⟩Ā. (1.2.7)

The state |ψ⟩ is known as the thermofield double state, and is interpreted as a two-

sided black hole in the dual AdS geometry [12, 39].
2Here this deconfinement phase transition in the field theory occurs when the thermodynamic

parameters are of order c.
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The state in Eq. (1.2.7) possesses several properties which enable an interpretation

of the Beckenstein-Hawking entropy as an entanglement measure. First, the entan-

glement structure of |ψ⟩ enables local operators, acting on A and Ā respectively, to

have non-zero correlation. Additionally, tracing out Ā yields a thermal density matrix

on A. The black hole entropy now corresponds to the entanglement entropy between

subregions of the boundary state |ψ⟩. The black hole horizon then generalizes to the

bulk AdS surface of minimal area which separates A from its complement Ā. This

generalization reveals the Ryu-Takayanagi conjecture, which states

SA =
1

4GN

A[γA], (1.2.8)

where γA now denotes the minimal area bulk surface homologous to boundary region

A. Eq. (1.2.8) is especially useful for computing entanglement in field theories, where

the log of a reduced density operator is non-trivially defined [32].

In the following section we provide an introduction to quantum computation and

its related role in investigating quantum gravity. Accordingly, we transition towards

a discrete treatment of quantum systems, focusing on the group-theoretic properties

of operators on H. We use this mathematical framework to define the set of stabi-

lizer states, a superset of the holographic states, which admit similar entanglement

structure at low qubit number.

1.3 Quantum Computing

An intuitive introduction to quantum computing relies heavily on terminology

inherited from its classical analog. Much like a classical storage device containing

information about the state of our computer, we consider a quantum system which

likewise possesses some computable parameters of interest. The system is free to

evolve under a variety of operations which, in the simplest case, act as logic gates. A
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sequence, in time, of these quantum gates constitutes a quantum circuit. The system

is measured at selected intervals along the evolution, and information is extracted

accordingly.

A natural starting point for discussing quantum gates is the set of Pauli matrices,

defined

I =

1 0

0 1

 , σX =

0 1

1 0

 , σY =

0 −i

i 0

 , σZ =

1 0

0 −1

 . (1.3.1)

As a matrix object, each Pauli is a Hermitian unitary with eigenvalue ±1. In the

{|0⟩, |1⟩} basis the matrices in Eq. (1.3.1) act as operators on the Hilbert space H ≡

C2. As generators of a multiplicative group, the operators {I, σX , σY , and σZ} build

the single-qubit Pauli group Π1.

We can generalize the action of the Pauli group to arbitrary qubit number by

composing strings of Pauli operators. A Pauli string generalizes local Pauli action to

an n-qubit setting by building each operator as the n-fold tensor product of Paulis.

For example, σZ acting on the kth qubit of an n-qubit system is constructed

I1 ⊗ . . .⊗ Ik−1 ⊗ σkZ ⊗ Ik+1 ⊗ . . .⊗ In. (1.3.2)

We refer to the number of non-identity factors in Eq. (1.3.2) as the weight of the

Pauli string. The full n-qubit Pauli group Πn can then be generated from all weight-1

Pauli strings.

Another useful set of quantum operations is the n-qubit Clifford group Cn. The

group Cn is a set of unitaries which normalizes the Pauli group, i.e. elements of Cn

map Pauli operators to Pauli operators via conjugation. We alternatively define Cn

as the multiplicative matrix group generated by the Hadamard, phase, and CNOT

10



operations [36, 19]

H ≡ 1√
2

1 1

1 −1

 , P ≡

1 0

0 i

 , CNOT1,2 ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.3.3)

The Hadamard and phase gates in Eq. (1.3.3) are local unitaries which act on a

single qubit in some n-qubit system. Conversely, the multi-qubit gate CNOTi,j acts

simultaneously on two qubits, a control bit i and a target bit j. The CNOT gate

interprets the state of the control bit, and flips the state of the target bit iff the

control bit is “on”.

We again may generalize the action of the gates in Eq. (1.3.3) to arbitrary n-qubit

systems by building Clifford strings, exactly analogous to the Pauli string construction

presented in Eq. (1.3.2). Accordingly, the group Cn is generated by all weight-1

Clifford strings, and contains the group Πn as a subgroup. Note, for the case of

a single qubit, the group C1 is generated using only Hadamard and phase. The

group Cn holds special regard in quantum computing since Clifford circuits, i.e. all

circuits composed of Clifford gate sequences, are efficiently-simulable on a classical

computer [15, 16]. In other words, with access to only Clifford gates and stabilizer

measurements, we can perform any task of interest in polynomial time using classical

computation techniques [1].

1.3.1 Stabilizer Formalism

For any state |ψ⟩ ∈ H, there exists3 a set of operations on H which leave |ψ⟩

fixed. For some chosen |ψ⟩, and group of operators G acting on H, the subgroup
3At the very least, there exists an identity operation on H which acts trivially on arbitrary |ψ⟩.

11



of operations which leave |ψ⟩ invariant is referred to as the stabilizer group of |ψ⟩,

defined

G|Ψ⟩ ≡ {g ∈ G | g|Ψ⟩ = |Ψ⟩}. (1.3.4)

When considering the action of Π1 on H, every state in the Hilbert space is

trivially stabilized by σI . Certain states however, are stabilized by a larger subset of

Π1 elements, specifically

S1 ≡
{
|0⟩, |1⟩, |±⟩ ≡ 1√

2
(|0⟩ ± |1⟩), |±i⟩ ≡ 1√

2
(|0⟩ ± i|1⟩)

}
. (1.3.5)

The 6 states in Eq. (1.3.5) comprise the set of single-qubit stabilizer states. The

definition of stabilizer states as the set of states in H which are invariant under the

largest subset of Πn generalizes to all n.

An alternative way to construct all n-qubit stabilizer states is to begin with any

state in the canonical measurement basis, e.g. |0⟩⊗n, and act with Cn on that state

[1]. Since Cn is finite the orbit of any state under Cn is likewise finite [14], and the

orbit of any measurement basis state is precisely the n-qubit stabilizer state set Sn.

The order of both are known, and are given by [17]

|Cn| = 2n
2+2n

n∏
k=1

(4k − 1),

|Sn| = 2n
n−1∏
k=0

(2n−k + 1).

(1.3.6)

The Clifford group forms a set of measure zero in the space of linear operations

on H. In fact, to perform any process which could yield quantum supremacy we must

move beyond the set Cn. The property of quantum magic characterizes non-stabilizer

behavior, and offers a valuable resource for near-term quantum computing [31].
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1.3.2 Quantum Magic

As previously stated Cn is not a universal quantum gate set, i.e. elements of Cn

are not sufficient to approximate any unitary with arbitrary precision. However, the

set Cn along with any V /∈ Cn is a universal gate set for quantum computing. The

operation V can be implemented as a gate in the quantum computer, or more cleverly

inserted via the coupling of a non-stabilizer state to the system. Such states which

encode this non-Clifford action are known as magic states, e.g.

|T ⟩ ≡ cos β|0⟩+ ei
π
4 sin β|1⟩, cos(2β) =

1√
3
. (1.3.7)

The state |T ⟩ cannot be reached by applying only Clifford operations to a single-qubit

measurement state.

Currently there is no universal magic measure, however many quantities help

characterize the magic in a quantum system. One such quantity, known as the trace

distance of magic [9], is defined

Mdist.(ρ) ≡ min
σ∈Stab0

1

2
||ρ− σ||1, (1.3.8)

where Stab0 is the set of all states with zero stabilizer Renyi entropy [27]. Eq. (1.3.8)

offers an intuitive notion of magic, computed as the trace distance to the nearest

stabilizer state. Perhaps less-intuitive is the fact that magic can also exist non-locally

in entangled quantum states [2], with certain entanglement structures yielding states

with higher magic than others [27]. The nuanced relationship between entanglement

and magic is discussed in detail in Chapter 7, as well as the role of magic in holography.

The papers in this thesis follow the order of their production.

• In Chapter 2 we discuss [10], where the modular conformal bootstrap technique

is applied to four-point scalar functions in the lightcone limit. The OPE spectral
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decomposition of the Virasoro vacuum is computed in the large-dimension limit.

A kernel ansatz method is further presented to generalize calculations beyond

this large dimension limit. The author’s primary contributions to this work

include calculations of OPE spectral coefficients, as well as functional analysis.

• In Chapter 3 we discuss [26], where entropy vectors of stabilizer states are com-

puted and analyzed using a graph-theoretic framework. The nature of these

reachability graphs is investigated, and important dimension-dependent charac-

teristics are highlighted. We offer a protocol for constructing restricted graphs,

where group action on the Hilbert space is constrained to a chosen subgroup of

operators. We observe stabilizer states which violate holographic entropy con-

ditions, and remark on their relation to other states under Clifford operations.

The author’s primary contributions include developing a graph model for state

orbits, programming and package development, calculating stabilizer entropy

vectors, and analysis of reachability graphs.

• In Chapter 4 we discuss [25], where the structure of the n-qubit Clifford group

is studied in depth. Useful relations between different Clifford circuits are an-

alyzed, and a state-independent method for constructing reachability graphs is

presented. The quotient protocol derived herein is used to explore the Clifford

orbit of non-stabilizer states. The author’s primary contributions include de-

termining a quotient structure on Cayley graphs to yield reachability graphs,

programming and package development, and an analysis of graph and group

theoretic structures.

• In Chapter 5 we discuss [30], where a formula for computing entanglement

entropies in Dicke states is derived. This calculation of entanglement entropies

enables us to generate all Dicke state entropy vectors, and accordingly describe
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the Dicke state entropy cone. Dicke state stabilizers under Clifford and Pauli

group action are give, and orbits of Dicke states under these two groups are

shown. The author’s primary contributions to this work include developing a

generalized form of Dicke state entanglement entropy, programming and package

development, and Dicke state orbit calculations.

• In Chapter 6 we discuss [24], where a new graph quotient, known as a con-

tracted graph, is presented. Contracted graphs enables a rigorous analysis of

state parameter evolution under group action on a Hilbert space. Furthermore,

the structure of contracted graphs provides a strict bound on state parameter

evolution under circuits composed of the group operators. We use the con-

tracted graph technique to give an upper-bound on achievable entropy vectors

built using Clifford circuits. The author’s primary contributions to this work

include developing a Cayley graph quotient that reproduces parameter evolu-

tion, formalising group and graph-theoretic concepts, programming and package

development, and exploring applications for contracted graph protocols.

• In Chapter 7 we discuss [9], where various magic measures and their associated

estimates are introduced and compared. The relation between entanglement and

magic is explored, and we conjecture on the role of non-local magic in conformal

field theories. Finally, a gravitational dual for non-local magic in holographic

CFTs is proposed. The author’s primary contributions to this work include

calculations of non-local magic in CFTs, and some analyses of the relationship

between entanglement entropy and magic.

• In Chapter 8 we conclude this dissertation. We propose a collection of interest-

ing open questions, and suggest extensions of the work herein that are worthy

of future study.
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Chapter 2

FOUR-POINT CORRELATION MODULAR BOOTSTRAP FOR OPE

DENSITIES

The contents of this chapter were originally published in the Journal of High En-

ergy Physics [11].

In this work we apply the lightcone bootstrap to a four-point function of scalars

in two-dimensional conformal field theory. We include the entire Virasoro symmetry

and consider non-rational theories with a gap in the spectrum from the vacuum and

no conserved currents. For those theories, we compute the large dimension limit

(h/c ≫ 1) of the OPE spectral decomposition of the Virasoro vacuum. We then

propose a kernel ansatz that generalizes the spectral decomposition beyond h/c ≫ 1.

Finally, we estimate the corrections to the OPE spectral densities from the inclusion

of the lightest operator in the spectrum.

2.1 Introduction and motivation

The study of conformal field theories in dimensions greater than two has seen a

rapidly-increasing interest in recent years due to successful application of the boot-

strap program to conformally symmetric correlation functions, revived in [46, 47]. In

particular, by taking the lightcone limit of the crossing equation and expanding in

large spin, [26, 34, 1, 2] obtained analytic results for the OPE coefficients and the

anomalous dimensions of the spectrum. In this regime, the resultant quantities reveal

properties universal to all conformal field theories in dimension three and higher.

In two dimensions, the conformal symmetry extends to an infinite-dimensional

Virasoro algebra. In the semi-classical limit, where the central charge is very large,
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this algebra reduces to the same finite-dimensional group SO(d, 1) as in the higher-

dimensional case. Thus, all the successful techniques applied in higher dimensions can,

in principle, be used in the semiclassical limit of any (non-rational) two-dimensional

CFT. However, applying these higher-dimensional techniques to the two-dimensional

case does not produce a straightforward result due to several features of the two-

dimensional theory. First, the two-dimensional theory has the infinite-dimensional

Virasoro algebra instead of just the global conformal algebra. Next, in more than

two dimensions, all non-vacuum operators have higher weight. In two dimensions,

instead, all the operators in the Virasoro vacuum Verma module, such as the stress

tensor and its composites, have zero weight; therefore a larger family of operators

contributes in the same multiplet.

Two-dimensional CFTs themselves can be further divided into rational and non-

rational theories. Techniques including integrability, vertex algebras [30] 1, and the

quantum groups approach [44, 45] have led to impressive progress towards classifying

the space of rational field theories. Unfortunately for generic non-rational conformal

field theories in two dimensions, this analysis is far from complete even in more-

controllable regions of the parameter space, such as the lightcone limit.

In order to translate the large spin results achieved in higher dimensions to the

two-dimensional case, we require a decomposition that accounts for the entire ex-

tended Virasoro symmetry. A powerful tool that allows for a clean analysis of large

spin quantities in higher-dimensional conformal field theories is the Lorentzian inver-

sion formula [15, 48], which shows the analyticity in spin of OPE coefficients (see

[40, 12, 10] for earlier applications of the inversion formula to compute anomalous

dimensions). Unfortunately, we cannot directly apply this inversion formula to the

two-dimensional case as it does not incorporate the entire Virasoro symmetry. Re-
1For a nice recent account on the use of vertex algebras in this context see [16].
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markably, progress is still possible: there is an analogous inversion formula relating

t-channel to s-channel data that has been known for two decades [44, 45, 49]. By

leveraging this impressive tool, [18, 20] studied the universal OPE large spin asymp-

totics for non-rational CFTs.

In the present work, we aim to reproduce some of these results via more traditional

bootstrap methods. Even though explicit forms for the Virasoro blocks are only

known in particular limits, e.g. the semi-classical limit, their form is still constrained

enough to justify certain conclusions regarding the large spin OPE spectral densities.

Previous work using the same strategy was done in [22, 38, 37], but we are able to

extend their results by proposing a kernel ansatz that goes beyond the strict semi-

classical limit previously considered.

Most of the previous work using the modular bootstrap focuses on the partition

function; for example, [35, 32] studied the asymptotic formula for the average value

of light-heavy-heavy three-point coefficients, in a generalization of Cardy’s formula

for the high energy density of states, while [3, 5, 17, 33, 25, 39] further generalized

these results. For the four-point function, [22] follows a similar approach. Numerical

work on the modular bootstrap has been undertaken in [19, 27, 29], mostly focusing

on the partition function. Our work here is highly motivated by these references.

In this paper we study a slight modification of the lightcone limit, which we term

the modular lightcone limit. In particular, we examine the crossing equation for the

scalar four-point function, extracting the large spin OPE spectral densities using fa-

miliar bootstrap techniques that require the Virasoro conformal blocks. We hope this

paper will provide a step towards a generalization of the lightcone and the Euclidean

bootstrap, both well understood in higher dimensions using conformal blocks, to the

two-dimensional case where the Virasoro blocks are needed for computation. We be-

gin by establishing notation and reviewing the Virasoro crossing equation in Section
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2.2. In Section 2.3 we re-establish the results for the vacuum contribution to the

OPE coefficient spectral density using a standard bootstrap approach, and in Section

2.4 we extend these results to next order in the semi-classical limit by incorporating

the first correction beyond the vacuum contribution. We conclude and discuss the

gravitational implications of our results in Section 2.5.

2.2 Virasoro Crossing Equation

We consider a scalar four-point function. By conformal invariance, this four-point

function is given by

⟨
4∏
i=1

Oφ(xi)⟩ =
1

(x212)
1
2
(∆1+∆2)(x234)

1
2
(∆3+∆4)

A(z, z̄), (2.2.1)

where A(z, z̄) characterizes the cross-ratio dependence. The cross ratios themselves

are given by

zz̄ =
x212x

2
34

x213x
2
24

, (1− z)(1− z̄) = x214x
2
23

x213x
2
24

. (2.2.2)

In two dimensions, fields factorize into holomorphic and anti-holomorphic com-

ponents. The total conformal dimension of an operator, ∆ = h + h̄, is the sum of

its holomorphic weight h and its anti-holomorphic weight h̄. The operator’s spin is

j = |h− h̄|, and c is the central charge of the CFT 2.

Here we study the OPE decomposition of the four-point correlation function by

a traditional bootstrap approach, i.e. by using Virasoro conformal blocks F and the

crossing equation. For the case where all external operators have the same conformal

dimensions, i.e. ∆i = ∆0 for i = 1, · · · , 4, the crossing equation simplifies to

∑
Os

i

C2
i F (hi|z) F̄

(
h̄j
∣∣z̄) =∑

Ot
j

C2
j F

(
hj
∣∣1− z) F̄ (h̄j∣∣1− z̄) . (2.2.3)

2Here we restrict to non-rational CFTs, therefore setting c > 1 to avoid the minimal models.

When we do numerics, we further specialize to c > 25.
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We introduce a spectral density of OPE coefficients defined as

C(h) =
∑
i

Ci δ(h− hi), (2.2.4)

where hi denotes the conformal dimension of the exchange operator Oi, with an

analogous definition for the barred coefficients. In this way the crossing equation

takes the form ∫ ∞

0

dhsdh̄sC(hs)
2F (hs|z) F̄

(
h̄s
∣∣z̄)

=

∫ ∞

0

dhtdh̄tC(ht)
2F (ht|1− z) F̄

(
h̄t
∣∣1− z̄) . (2.2.5)

An important comment is in order here. As will be demonstrated in subsequent

sections, we will obtain solutions to the spectral density which are approximated by

smooth functions rather than linear combinations of distributions. The proper state-

ment would be that those solutions approximate the RHS of equation Eq. (2.2.4) in a

smeared sense, i.e. after integration against an appropriate test function. The smear-

ing mechanism required to make this statement rigorous has been recently explored

through the use of Tauberian theorems, for example [42, 43, 24]3.

For the Virasoro blocks, we will use the elliptic representation found by Zamolod-

chikov [51]:

Fh0(hs|z) = (1− z)
c−1
24

−2h0 (z)
c−1
24

−2h0 [θ3 (q)]
c−1
2

−16h0 (16q)hs−
c−1
24 H(hs, q) , (2.2.6)

where q is known as the elliptic nome and h0 is the conformal dimension of the external

operators, while hs is the exchange dimension. The elliptic nome can be thought of

as a conformal transformation:

q = eiπτ(z) , τ(z) = i
K(1− z)
K(z)

, K(z) =
1

2

∫ 1

0

dt√
t(1− t)(1− zt)

, (2.2.7)

3We give special thanks to Alex Maloney for providing a clear explanation of this issue.
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so K is an elliptic integral of the first kind. In Eq. (2.2.6), the function θ3 is the

Jacobi theta function

θ3(q) ≡
∑
n∈Z

qn
2

, (2.2.8)

and the function H(hs, q) in Eq. (2.2.6) is unknown in closed form, but can be com-

puted recursively as a power expansion in q to very high order [52, 53]. In the semi-

classical regime, where hs ≫ c, H(hs, q) ≈ 1; the overall prefactors in Eq. (2.2.6) thus

capture the semi-classical behavior. Later we will also use the notation q̃ = q(− 1
τ
),

corresponding to the modular S transformation.

Given the elliptic representation for the Virasoro blocks Eq. (2.2.6), we are mainly

interested in two particular limits of the crossing equation. For later convenience, let

us define τ ≡ iβ
π
. First we consider the limit β → 0, with β̄ fixed. Then, as we

will show, the limit β̄ → 0 (Euclidean) simply becomes a copy of β → 0, with all

quantities replaced by their bar counterparts. We then study the limit β̄ →∞ while

keeping β → 0, which we term the modular lightcone limit due to its similarities with

the better-known global lightcone limit.

2.3 Spectral density OPE for vacuum

In this section we study the OPE spectral density in the s-channel in the limit

where the t-channel contribution is only due to the vacuum. Specifically, we first take

the β → 0 limit of the four-point function crossing equation while leaving β̄ fixed,

isolating the vacuum contribution in the t-channel; we will return to contributions

beyond this vacuum limit in Section 2.4. In the β → 0 limit, we then study the

s-channel contribution, proposing a kernel ansatze for the spectral density C(hs) in

both the Euclidean limit β̄ → 0 and the modular lightcone limit β̄ →∞.
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2.3.1 Small β limit

In order to isolate the t-channel vacuum contribution, we need to consider the

leading behavior of the conformal blocks when β → 0, as we now show. We begin

by inserting the elliptic representation for the Virasoro blocks Eq. (2.2.6) into the

crossing equation Eq. (2.2.5). We note that the t-channel blocks depend on (1 − z),

and thus they take the form Eq. (2.2.6) except with z ↔ 1 − z and q → q̃, where

q̃ = q(−1/τ) as in Eq. (2.2.7).

To compare the terms independent of exchange dimension, we rewrite the θ3 (q̃)

from the t-channel blocks using the modular transformation of the theta function

θ3 (q̃) =

(
β

π

)1/2

θ3 (q) , (2.3.1)

where we have used τ = iβ
π

and q̃ = q(−1/τ). Accordingly, the terms independent

of exchange dimension in Eq. (2.2.6) cancel when we plug into the crossing equation,

up to powers of β and β̄. Explicitly the crossing equation Eq. (2.2.5) becomes∫ ∞

0

dhsdh̄sC(hs)
2 (16)hs+h̄s e−β(hs−

c−1
24

)e−β̄(h̄s−
c−1
24

)H(hs, e
−β)H(h̄s, e

−β̄) (2.3.2)

=

(
ββ̄

π2

) c−1
4

−8h0 ∫ ∞

0

dhtdh̄tC(ht)
2 (16)ht+h̄t e−π

2(ht− c−1
24

)/βe−π
2(h̄t− c−1

24
)/β̄H(ht, e

−π2/β)H(h̄t, e
−π2/β̄) .

In the limit β → 0, the leading contribution in the holomorphic t-channel comes

from the operator with smallest weight ht, because any heavier operator is expo-

nentially suppressed by the e−1/β terms. In general dimensions, the smallest weight

operator would just be the vacuum; in two dimensions, the vacuum Verma module

captures contributions of all its descendants, which includes the stress tensor. We

will nonetheless still use the term vacuum block to refer to it.

In order to have only vacuum block contributions at leading order in the small

β limit of the t-channel, we also need to disallow contributions from representations
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with weight h = 0 but h̄ ̸= 0 (and vice versa). Stated in another way, we do not want

to allow for conserved currents, because a CFT possessing a primary operator that is

also a conserved current will have a vanishing gap between the vacuum block and the

rest of the spectrum, as has been recently shown in [6]. Instituting this restriction,

the dominant contribution given by the holomorphic vacuum block h = 0 only couples

to the corresponding anti-holomorphic vacuum block h̄ = 0. The crossing equation

thus simplifies to∫ ∞

0

dhsdh̄sC(hs)C(h̄s) (16)
hs+h̄s e−β(hs−

c−1
24

)e−β̄(h̄s−
c−1
24

)H(hs, e
−β)H(h̄s, e

−β̄)

=
(
ββ̄/π2

) c−1
4

−8h0 eπ
2( c−1

24
)/βeπ

2( c−1
24

)/β̄ C(0)2H(0, e−π
2/β)H(0, e−π

2/β̄). (2.3.3)

As we mentioned at the end of Section 2.2, the function H(h, q) can be computed

as a series expansion in small q recursively, and we have H(h, q) ∼ 1 + O(q). Since

the limit β → 0 implies q → 0 in the t-channel blocks, we can simplify the crossing

equation even further, obtaining∫ ∞

0

dhsdh̄sC(hs)
2 (16)hs+h̄s e−β(hs−

c−1
24

)e−β̄(h̄s−
c−1
24

)H(hs, e
−β)H(h̄s, e

−β̄)

= (ββ̄/π2)
c−1
4

−8h0eπ
2( c−1

24
)/βeπ

2( c−1
24

)/β̄ C(0)2H(0, e−π
2/β̄). (2.3.4)

2.3.2 Saddle point

Just as in the lightcone limit in higher dimensions [34, 26], we can see that the

crossing equation Eq. (2.3.4) develops an essential singularity on the righthand side

as β → 0. On the lefthand side, all of the terms in the integrand can be expanded

in small β. The only way a Taylor series in β can equal an essential singularity is

if it has an infinite number of terms, so we should expect infinite contributions to

the s-channel sum on the lefthand side. Accordingly, this sum should be dominated

by the tail, i.e. the s-channel expansion of the vacuum block must be dominated by

large values of hs. We now verify this intuition with a saddle point analysis.
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Before moving on to solving the crossing equation we have to address an important

subtlety. In order to solve for the spectral densities, we need an explicit form for

the block H(hs, e
−β), which is unfortunately not known in general. However, as we

argued in the previous paragraph, we mainly need its behavior for large values of hs.

Fortunately, it turns out that the blocks simplify dramatically in this limit [9]. At

leading order in inverse powers of hs, the Virasoro blocks are approximated by4

H(hs, β) ≡ 1− H−1

hs

(
E2(β)− 1

24

)
+O(1/h2s) , (2.3.5)

where

H−1 =
((c+ 1)− 32h0)((c+ 5)− 32h0)

16
, (2.3.6)

and E2(β) is an Eisenstein series of weight two.

The needed limit β → 0 is not expected to commute with the large hs approx-

imation, as has been recently argued numerically [24]. However, if we constrain

ourselves to a region where the constant H−1 in Eq. (2.3.5) becomes small, i.e. either

32h0 ∼ c+ 1 or 32h0 ∼ c+ 5, then the O(1/hs) terms become small regardless of the

value of β. If we constrain the relation between the external operator dimension h0

and the central charge c in this way, we can then take the limit β → 0 and then take

hs large, at the cost of keeping c finite.5 Thus, at zeroth order in 1/hs, with h0 ∼ c+1
32

4Beyond first order has been considered in [23].
5See [24] for details.
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and in the β → 0 limit, the crossing equation Eq. (2.3.4) becomes6∫ ∞

0

dhs

∫ ∞

0

dh̄sC(hs)
2 (16)hs+h̄s e−β(hs−

c−1
24

)e−β̄(h̄s−
c−1
24

)H(h̄s, e
−β̄)

= (ββ̄/π2)
c−1
4

−8h0eπ
2( c−1

24
)/βeπ

2( c−1
24

)/β̄ C(0)2H(0, e−π
2/β̄) . (2.3.7)

We first examine the holomorphic part∫ ∞

0

dhsC(hs) (16)
hs e−β(hs−

c−1
24

) = (β/π)
c−1
4

−8h0eπ
2( c−1

24
)/β C(0) . (2.3.8)

Actually, we should be more precise; previous arguments [19, 5] have shown that any

compact, unitary two-dimensional conformal field theory must have a gap smaller

than C ≡ c−1
24

. Although it is a choice here, in the following section, the integration

over hs ‘knows’ about this maximal gap. Accordingly, we will set the lower limit to

be C, not zero. Rewriting in terms of C, we have∫ ∞

C
dhsC(hs) (16)

hs e−β(hs−C) = (π/β)η0eπ
2C/β C(0) , (2.3.9)

where we have additionally defined a shifted external operator weight η0 ≡ 8h0 −
c−1
4

for future convenience. The left hand side of this equation is now the Laplace

transform of C(hs)16hs , with Laplace parameter β and integration variable hs − C.

Given the form of Eq. (2.3.9), we can solve for the spectral OPE density C(h) by

applying the inverse Laplace transform. We find

C(hs)16
hs =

C(0)πη0

2πi

∫ i∞

−i∞
β−η0 exp

[
β(hs − C) +

π2C
β

]
dβ. (2.3.10)

6The reader may be concerned that we have approximated our integrand at large hs without

modifying the integral as a whole. It turns out the saddle point expansion that follows will ac-

tually provide a justification for this approximation in hindsight. We can rewrite any integral∫∞
0
F(H, e−β)dH as

∫HΛ

0
F(H, e−β)dH+

∫∞
HΛ
F(H, e−β)dH, for some finite HΛ.

∫HΛ

0
F(H, e−β)dH

remains finite in the limit β → 0; specifically it is bounded by the finite value
∫HΛ

0
F(H, 1)dH. For

our case,
∫∞
HΛ
F(H, e−β)dH diverges as β → 0, as long as we pick HΛ below the saddle, as we can

see from the divergence of the saddle itself. Since an infinite contribution will always dominate over

a finite one, the approximation within the integrand is justified.
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The saddle point for this integral is given by

βs =
η0

(hs − C)
±
√
(−η0)2 + 4π2C(hs − C)

2(hs − C)
∼ η0

C(hsC − 1)
± π√

hs
C − 1

, (2.3.11)

We can see from this saddle point that the β → 0 limit is indeed dominated by large

values of hs. As usual the integral at the saddle point approximation is a simple

Gaussian that can be straightforwardly evaluated, giving the OPE spectral density

in the large hs limit as

C(hs) ∼
C(0)

(16)hs
√
πC

(βs)
−η0−3/2eβs(hs−C)+π2

βs
C , (2.3.12)

with βs given by Eq. (2.3.11).

In the limit hs ≫ C, the second term from Eq. (2.3.11) dominates. We can write

the OPE spectral density in the semi-classical limit more explicitly as

C(hs) ∼
C(0)

(16)hs
√
πC

(
hs
C
− 1

)−η0/2−3/4

e2πC
√

hs
C −1 . (2.3.13)

This result is in agreement with previous similar analyses done in [35, 22, 36].

2.3.3 Kernel ansatz

In section above, we have computed an approximate solution for C(hs) by means

of a saddle point analysis. However, we did need to assume that this saddle point

method is valid for any sufficiently large value of hs. Examining the evaluated saddle

point Eq. (2.3.11), we see the β → 0 limit is indeed reliable at this point when

hs/C ≫ 1. In this section, we propose a kernel ansatz that generalizes the result for

C(hs) from the saddle point analysis and henceforth allows matching the t-channel

vacuum via integration in the s-channel in a wider regime, down towards hs/C ∼ O(1).

We begin with the integral∫ ∞

0

dH cosh
(
2π
√
HC
)
Ha2e−βH = β−a2−1Γ

(
a2 + 1

)
1F1

(
a2 + 1;

1

2
;
Cπ2

β

)
.

(2.3.14)
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The format of this integral matches the left hand side of the holomorphic crossing

equation Eq. (2.3.9), provided we introduce the convenient variable

H ≡ hs − C . (2.3.15)

We can match7 the right hand side of Eq. (2.3.9) by taking the β → 0 limit of

Eq. (2.3.14): ∫ ∞

0

dH cosh
(
2π
√
HC
)
Ha2e−βH ≈ (Cπ2)a

2+1/2

β2a2+3/2
e

π2C
β . (2.3.16)

We set

a2 = η0/2− 3/4 = 4h0 − 3C − 3/4 (2.3.17)

by matching the β exponent in Eq. (2.3.9). We can then identify the spectral density

reproducing the vacuum as

C(hs) =
C(0)π1/2

16hsCη0/2−1/4
cosh

[
2π
√
HC
]
(H)η0/2−3/4 (2.3.18)

=
C(0)π1/2

16hsC1/2
cosh

[
2πC

√
hs
C
− 1

](
hs
C
− 1

)η0/2−3/4

.

As we anticipated in our saddle point analysis in Eq. (2.3.9), the lower integration

limit of Eq. (2.3.14), written in terms of dhs, is hs = C. Here we have a stronger

justification: the integral ‘knows’ about the maximal size of the gap via the kernel

choice. This lower bound is again in line with previous arguments about the size of

the gap [19, 5]. The vacuum in the t-channel is reproduced by the large hs tail of the

integral, as expected from the saddle point analysis in Section 2.3.2.

This result agrees with the saddle point analysis for hs ≫ C. As we have explicitly

shown, it also reproduces the vacuum block when hs ∼ C. Therefore, the kernel ansatz
7The choice of integrand for the left hand side of Eq. (2.3.14) is not unique, but rather belongs to

a family of integrands that correctly reproduce the leading order terms on the right hand side after

integration. When considering higher order terms, such as in Eq. (2.3.31), any appropriate selection

of integrand yielding the correct matching order by order is sufficient for this calculation.
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Eq. (2.3.18) should be thought of as a generalization of the spectral density that is

computed by an inverse Laplace transform followed by a saddle point analysis to fix

the constants.

As a final step, we use the spectral densities to define an average value for the

OPE coefficients [22]

C(hs) =
C(hs)

S0
, (2.3.19)

where S0 is the asymptotic density of primary states.8 In other words, S0 is the fusion

kernel for the vacuum character decomposition associated to the partition function

[54, 18], given by

S0 = 4
√
2 sinh

(
2πb
√
H
)
sinh

(
2πb−1

√
H
)
, (2.3.20)

where b relates to the central charge as c = 1+6(b+1/b)2. This density of primaries is

a refined version of Cardy’s formula [13]. In the limit hs/C ≫ 1 equation Eq. (2.3.19)

can be written

C(H) ∼ Hη0/2−3/4e−2π
√
HC. (2.3.21)

This result is compatible with previous results [22, 18, 20].

2.3.4 Anti-holomorphic piece

When evaluating the Euclidean limit of the anti-holomorphic piece, β̄ → 0, the

analysis is exactly the same as was performed for its holomorphic counterpart. There-

fore the result for the anti-holomorphic spectral density in the Euclidean limit is given

by Eq. (2.3.18) with h̄s substituted for hs. The opposite limit, when β̄ →∞, is more

interesting and more involved, as we will demonstrate in this section.
8For a more rigorous treatment of this average coefficients from Tauberian theorems of distribu-

tions, see [24, 42]
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Consider the anti-holomorphic portion of our crossing equation Eq. (2.3.4):∫ ∞

0

dh̄sC(h̄s) (16)
h̄s e−β̄(h̄s−C)H(h̄s, e

−β̄) =
(
β̄/π

)6C−8h0 eπ
2C/β̄ C̄(0)H(0, e−π

2/β̄) .

(2.3.22)

As in the holomorphic case, we do not have a useful form for the Virasoro blocks at

finite q and finite h̄. However, taking the limit β̄ →∞ we can approximate∫ ∞

0

dh̄s C̄(h̄s) (16)
h̄s e−β̄(h̄s−C) = (β̄/π)6C−8h0eπ

2C/β̄ C̄(0)H(0, q̃ → 1) . (2.3.23)

Evaluating the last term in this limit is subtle, but we can estimate using numerics.

Restricting to the case of central charge c = 30 and external dimensions h0 = 1, which

is close to the point c+1
32

, we computed9 H(0, q̃) up to q̃50, and have found that the

following function provides a good fit for the Virasoro block:

H(0, q̃) = 1− a1 e−a2π
2/β̄ . (2.3.24)

Here we have introduced constants a1 = 0.8 and a2 = 2.8, which are simply an

approximation to the values given by the interpolating function fitting the numerical

values for H(0, q̃). If we instead did a numeric fit for the Virasoro block for different

c and h0, we expect these values would change.

10 Inserting this approximation into the anti-holomorphic crossing equation Eq. (2.3.23)

we have∫ ∞

0

dh̄s C̄(h̄s) (16)
h̄s e−β̄(h̄s−C) = (β̄/π)6C−8h0eπ

2C/β̄ C̄(0)
(
1− a1 e−a2π

2/β̄
)
, (2.3.25)

9We have computed up to order 50 for computational time convenience, but we checked that

above order 130, the expansion becomes asymptotic in the limit q̃ → 1.
10Here we are not being too careful in finding the best fit to the numerical data, since we just

want to show how to deal with the anti-holomorphic piece once we interpolate the numerics. We

plan to leverage the numerics in a more meaningful way in a future publication.
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Figure 2.1: The dotted line corresponds to the vacuum Virasoro block computed

numerically with the aid of Zamolodchikov recursion relations for the particular values

c = 30, h0 = 1. The solid red line is an approximation fit, explicitly given by equation

Eq. (2.3.24).

keeping in mind fixed parameters h0 = 1 and c = 30. At leading order in β̄ →∞ we

can then equate ∫ ∞

0

dh̄s C̄(h̄s) (16)
h̄s e−β̄(h̄s−C) = (β̄/π)6C−8h0 C̄(0) . (2.3.26)

We solve this equation using the same saddle point method as before, employing a

similar kernel ansatz as in the holomorphic analysis, with the important difference

that we now take the β̄ → ∞ limit of our result to compare with the expression

above. Explicitly, we consider the following integral∫ ∞

0

dH̄ cosh
(
2π
√
H̄C
)
H̄ā2e−β̄H̄ = β̄−ā2−1Γ

(
ā2 + 1

)
1F1

(
ā2 + 1;

1

2
;
Cπ2

β̄

)
,

(2.3.27)

where we have, as in the holomorphic sector, rewritten in terms of H̄ = h̄s − C, and

set the lower bound at the maximal gap h̄s = C.

In the limit β̄ → ∞, the argument of the hypergeometric function becomes 0, so
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the lowest order term in 1F1 is just one. Matching the lowest order power of β̄ with

the right hand side of our crossing equation Eq. (2.3.26), we find

ā2 = 8h0 − 6C − 1 = η0 − 1, (2.3.28)

where we have used our earlier definition of the shifted external weight η0 = 8h0−6C.

Solving for the OPE coefficient spectral density, we find

C̄(h̄s) =
C̄(0)πη0

16h̄sΓ (η0)
H̄η0−1 cosh

(
2π
√
H̄C
)

=
C̄(0)πη0

16h̄sΓ (η0)

(
h̄s − C

)η0−1
cosh

(
2π
√
(h̄s − C)C

)
. (2.3.29)

This game can be continued to higher inverse-power orders in β̄. We wish to build

a kernel ansatz for C̄(h̄s) that recovers the anti-holomorphic t-channel contribution

on the righthand side of Eq. (2.3.25). To simplify the algebra, we first expand this

expression in powers of x ≡ π2C/β̄:

C̄(0)

(
πC
x

)−η0
 ∞∑

k=0

xk

k!

(1− a1 ∞∑
n=0

(−1)n

n!

(
a2x

C

)n)
. (2.3.30)

In order to match this t-channel expression, we need to upgrade the kernel Eq. (2.3.27),

to include a polynomial series in H̄:∫ ∞

0

dH̄ Ã cosh
(
2π
√
H̄C
) ∞∑
n=0

AnH̄ā2+ne−
π2

x
CH̄ (2.3.31)

= Ã

(
π2C
x

)−ā2−1 ∞∑
n=0

An
(

x

π2C

)n
Γ(ā2 + 1 + n) 1F1

(
ā2 + 1 + n;

1

2
;x

)
.

We will fix the constants Ã and An by expanding in powers of x and matching the

coefficients to Eq. (2.3.30):

Ã

(
π2C
x

)−η0 ∞∑
n=0

An
(

x

π2C

)n ∞∑
k=0

Γ(η0 + n+ k) Γ
(
1
2

)
Γ
(
1
2
+ k
) xk

k!
(2.3.32)

= C̄(0)

(
πC
x

)−η0
 ∞∑

k=0

xk

k!

(1− a1 ∞∑
n=0

(−1)n

n!

(
a2x

C

)n)
.
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Here we have already matched the lowest power of x, finding ā2 + 1 = η0 as in

Eq. (2.3.28). Matching the coefficient of the x−η0 terms sets

Ã =
C̄(0)(1− a1)

Γ(η0)
πη0 , (2.3.33)

where we have also chosen A0 = 1. Matching coefficients of the higher powers of x in

(2.3.32) gives a recursion relation for the coefficients An for n > 0:

An =
(π2C)nΓ (η0)

n! Γ (η0 + n)

(
1− a1

(
1− a2

C

)n
1− a1

)
−

n−1∑
k=0

(
π2C
)n−k

(n− k)!
Γ
(
1
2

)
Γ
(
1
2
+ n− k

)Ak . (2.3.34)

Solving this recursion relation for An, we find the closed form solution

An =
π2nCnΓ(η0)

1− a1

n∑
k=1

1− a1
(
1− a2

C

)k
k! Γ(η0 + k)

−
(1− a1)Γ

(
1
2

)
k! Γ(η0) Γ

(
1
2
+ k
)
 ∑

{λn−k}

j∏
i=1

(
−Γ
(
1
2

)
λi!Γ

(
1
2
+ λi

)) ,

(2.3.35)

where the sum over {λn−k} is taken over all sets of positive integers {λ1, λ2, . . . , λj}

such that
∑j

i=1 λi = n− k. If n− k = 0, this factor becomes 1.

Finally, we can identify the anti-holomorphic OPE density as

C(h̄s) = Ã cosh
(
2π
√
H̄C
) ∞∑
n=0

AnH̄η0+n−1 . (2.3.36)

Even though this result depends on the numerical fitting Eq. (2.3.24) with particular

values a1 = 0.8, a2 = 2.8, we have observed that for a wide enough range of values

{h0, c}, the numerical anti-holomorphic vacuum block can be approximated by the

same function Eq. (2.3.24) at different values of the fitting constants a1 and a2. The

fact that we have found a closed form expression for the coefficients An, as functions

of a1 and a2, indicates a fruitful path towards numerically exploring the OPE density

vacuum contribution in the modular lightcone limit.

2.4 Spectral density OPE beyond vacuum contribution

So far we have considered OPE spectral densities that reproduce the vacuum

block in the crossed channel, provided a gap separates this block from the rest of the
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spectrum. We now go beyond the vacuum contribution in the t-channel, allowing a

contribution from the Virasoro block associated to the primary operator closest to

the vacuum. We refer to this next-heaviest block as the lightest operator block, and

we now compute the correction to the spectral density arising (in the s-channel) when

we consider this lightest operator block in the t-channel of the crossing equation.

We first use a saddle point approximation to solve for the leading order correction

for the spectral densities at hs/C ≫ 1 due to the presence of the lightest operator

block. We then propose a generalization beyond hs/C ≫ 1 by introducing a kernel

ansatz for the densities.

2.4.1 Saddle point

We start the discussion by writing the crossing equation explicitly in this case.

In Section 2.3.1, the β → 0 limit, at leading order in small β and large exchange

dimension Eq. (2.3.7), gave only the vacuum contribution in the t-channel. If we

want to include the next order corrections to the crossing equation Eq. (2.3.4) in

small β, a similar argument leads us to11

∫ ∞

0

dhs
(
C0(hs) + δC0(hs)

)
(16)hs e−β(hs−

c−1
24

)

= (β/π)
c−1
4

−8h0eπ
2( c−1

24
)/β C(0) + (β/π)

c−1
4

−8h016hminC(hmin)e
−π2

β
(hmin− c−1

24
).(2.4.1)

The new term δC0(hs) in the s-channel represents the corrections to the spectral OPE

density produced from the lightest operator in the t-channel, whose block contribution

is given by the second term in the second line.12 The vacuum is of course already
11In this section we are going to consider the holomorphic sector only, mainly due to the fact that

for the anti-holomorphic correction we don’t have much information and would be forced to rely on

numerics alone.
12In the second line of Eq. (2.4.1) we have neglected higher order terms in small β from expanding

H ∼ 1+O(q), both when multiplied by the vacuum and the lightest operator. It is possible that the
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solved by Eq. (2.3.18), or in other words, the first integration term at the first line of

Eq. (2.4.1) equals the first term in the second line and therefore the correction terms

satisfy∫ ∞

0

dhs δC(hs) (16)
hs e−β(hs−

c−1
24

) = (β/π)
c−1
4

−8h016hminC(hmin)e
−π2

β
(hmin− c−1

24
) .

(2.4.2)

By using again an inverse Laplace transform to solve for δC, we find the saddle point

of the resulting integral over β to be at

βs =
4h0 − 3C
(hs − C)

+

√
(8h0 − 6C)2 − 4π2(hs − C) (hmin − C)

2(hs − C)
∼ 4h0 − 3C

(hs − C)
+π

√
(C − hmin)
(hs − C)

.

(2.4.3)

Notice that here we need hmin < C for the saddle to be real, which is nevertheless

automatically satisfied by the minimal gap.

The saddle point computation leads to,

δC(hs) ∼
C(hmin)16

hmin−hs√
π(C − hmin)

β6C−8h0+3/2
s eβs(hs−C)−π2

βs
(hmin−C) (2.4.4)

Taking the dominant second term in the saddle point, we can write this as

δC(hs) ∼
C(hmin)16

hmin√
π(C − hmin)

√(C − hmin)
(C − hs)

6C−8h0+3/2

e2π
√

(C−hmin)(hs−C) . (2.4.5)

As in the vacuum case, the saddle point result is reliable as long as hs/C ≫ 1. We

would like to generalize the spectral density OPE correction using the same technique

as for the vacuum block contribution by proposing a similar spectral density ansatz.

O(q) terms in C(0)H dominate over the leading term C(hmin) for the lightest operator. However,

here and in previous sections we have considered hmin < C with C to be of order one or less, while

the O(q) term in H has a more negative exponent set by a number greater than one, e.g. a2 in

Eq. (2.3.24). Thus, the second term in the second line of Eq. (2.4.1) is the dominant correction.
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2.4.2 Kernel ansatz

Based on the saddle point analysis of Section 2.4.1 and the results from [20, 18],

we propose the following ansatz as a generalization for the correction from the lightest

operator to the spectral density:

δC(hs) ∼ C(hmin)16
hmin−hs

(
(hmin − C)3C−4h0+1/4

(C − hs)3C−4h0+3/4

)
cosh

(
2π
√
hs − C

)√C−hmin

.

(2.4.6)

This ansatz reproduces the saddle point result Eq. (2.4.5) in the limit hs
C ≫ 1. How-

ever, a stronger check would be to prove that the integration over hs reproduces the

lightest hmin block in the t-channel. Specifically, we want to perform the integral

C(hmin)16
hmin

(hmin − C)−3C+4h0−1/4

∫ ∞

0

dhs

(
1

(C − hs)3C−4h0+3/4

)
cosh

(
2π
√
hs − C

)√C−hmin

e−β(hs−C) .

(2.4.7)

While we did not find a clever way to perform this integration, we have numerically

evaluated the integral for several values of the difference hmin−C in the range (0, 1).

In figure 2.2 we display three such cases for central charge c = 30 and external

dimension h0 = 1, observing convincing agreement between the numerical result and

the analytic t-channel of the crossing equation Eq. (2.4.2). As the value of hmin

approaches the value of C, the analytic expectation becomes closer to the numerical

integration. This behavior is expected, since the smaller C − hmin becomes, the less

suppressed is the contribution from the lightest operator; that is, for smaller C−hmin,

the ansatz is a better approximation in the range of smaller β′s, which is our initial

limiting condition. When the difference between C and hmin is increased, deviation

between the plots occurs for larger values of β, which is evident from the saddle point

Eq. (2.4.5).

Beyond the numerical check, we can, one last time, resort to a saddle point anal-

ysis. This time the saddle point analysis is on the integration Eq. (2.4.7) over hs in
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Figure 2.2: Comparison of analytic t-channel crossing with results of numerical inte-

gration over kernel ansatz for relevant values of hmin. The solid red lines display the

functional form expected from the t-channel crossing, given by the righthand side of

Eq. (2.4.2). The dashed blue lines exhibit successive results of numerically integrating

over the kernel Eq. (2.4.7).

the asymptotic limit, so we find

I(β) =

∫ ∞

0

dhs (C − hs)−3C+4h0−3/4 e2π
√

(hs−C)(C−hmin)e−β(hs−C)

∼ 2π(C − hmin)1/2

β3/2
e
π2

(
C−hmin

β

)(
π2(hmin − C)

β2

)−3C+4h0−3/4

= e
π2

(
C−hmin

β

)(
(hmin − C)−3C+4h0−1/4

β(−6C+8h0)

)
. (2.4.8)

From this result, we obtain the right hand side of Eq. (2.4.2) after multiplying by the

overall factor in front of the integral Eq. (2.4.7).

Just as in the definition Eq. (2.3.19), we now define an average correction by
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dividing by the generalized Cardy formula Eq. (2.3.20), namely,

δC(hs) ≡
δC(hs)

S0
. (2.4.9)

Taking the limit hs
C ≫ 1,

S0 = 4
√
2 sinh

(
2πb
√
(hs − C)

)
sinh

(
2πb−1

√
(hs − C)

)
→ e

(
4π
√

C(hs−C)
)
, (2.4.10)

so we find

δC(hs) ∼
C(hmin)16

hmin−hs√
π(C − hmin)

√(C − hmin)
(C − hs)

6C−8h0+3/2

e
−4π
√

C(hs−C)
(
1− 1

2

√
1−hmin

C

)
.

(2.4.11)

This result supports the claim that corrections to the spectral densities from including

non-vacuum contributions are suppressed with respect to the leading contribution

from the vacuum Eq. (2.3.13). In fact, these corrections are exponentially suppressed.

This result corresponds to the analogous result for the one point function in [35].

2.5 Discussion and conclusions

In this paper we studied OPE spectral densities for the four-point correlation

function of scalars in the large exchange dimension limit. Our technique was to

solve the modular bootstrap in an appropriate limit (the so-called modular lightcone

limit), allowing us to decouple the Virasoro vacuum from the rest of the conformal

dimensions spectrum. We further restricted ourselves to theories that do not have

conserved currents, and insisted on a twist gap in the spectrum, allowing us to identify

the contributions to the spectral densities of OPE coefficients at large spin from the

Virasoro vacuum.

First we solved the crossing equations by resorting to a saddle point computation

that allowed us to capture the OPE spectral density in the limit where the dimension

of the operator being exchanged is large in units of C, i.e. h
C ≫ 1. We then use
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this result as a leverage point to generalize the spectral densities beyond that region

and towards h
C ∼ 1 by proposing an ansatz that solves the crossing equations in the

modular lightcone limit. Just as the Cardy formula measures the density of primary

operators in the large dimension limit, our results can be understood as an extension

of the Cardy formula to the density of OPE primary coefficients.

An obstruction to the development of a full-fledged large spin perturbation theory

comes from the lack of a practical closed form for the Virasoro blocks. However, we

have shown in this paper that despite the limited knowledge we have of the blocks,

it is sufficient to allow for a leading order analysis. We were able to perform an

analytical analysis in the holomorphic sector of the OPE expansion, but needed some

numerical aid for the counterpart in the anti-holomorphic sector of the lightcone limit.

The numerical data needed for the Virasoro blocks was been obtained by solving the

Zamolodchikov recursion relations numerically.

Recently, some results for the Virasoro blocks at large exchange dimension have

surfaced [9, 23, 24, 31], which offer hope of going beyond leading order in the large

spin analysis, at least numerically. We have in fact already used some of these results

in the main body of the text.

Importantly, we did not make any further assumptions on the theory under con-

sideration, beyond the existence of a gap separating the Virasoro vacuum from the

rest of the spectrum and the absence of global conserved currents. Henceforth, we

can think of our results as universal up to those assumptions. Recently it was shown

that this universality for the OPE coefficients of heavy operators is nicely captured

by the DOZZ OPE of Liouville theory [20]. In particular, our result Eq. (2.3.21) can

be written in terms of the DOZZ coefficient.

Although we do not directly explore a gravitational interpretation of our work, we

expect it to provide a reliable semi-classical description of AdS3 gravity even at finite
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values of c [35, 28]. Along the same lines, it would be interesting to derive some of

the results of this paper from a purely gravitational analysis, in particular through

the computation of the Witten diagrams corresponding to the four-point function of

scalars considered here, by using several of the methods developed recently [21, 50,

14, 8, 7]. Our results will be useful for studies of coarse-graining CFTs to produce

gravitational duals, along the lines of [35, 22, 5, 41, 4]. In those papers, a coarse-

grained average of the CFT result is compared to a black hole geometric result. We

specifically think it would be interesting to consider if a set of (non-minimal, as we

consider) CFTs has a condition for successful coarse graining to a gravity theory,

where the condition of c = ccrit would be set by the asymptotic behavior of three-

point spectral density instead of the asymptotic density of states, as proposed in

[4].
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Chapter 3

AN ENTROPIC LENS ON STABILIZER STATES

The contents of this chapter were originally published in Physical Review A [20].

The n-qubit stabilizer states are those left invariant by a 2n-element subset of the

Pauli group. The Clifford group is the group of unitaries which take stabilizer states

to stabilizer states; a physically–motivated generating set, the Hadamard, phase, and

CNOT gates which comprise the Clifford gates, imposes a graph structure on the

set of stabilizers. We explicitly construct these structures, the “reachability graphs,”

at n ≤ 5. When we consider only a subset of the Clifford gates, the reachability

graphs separate into multiple, often complicated, connected components. Seeking an

understanding of the entropic structure of the stabilizer states, which is ultimately

built up by CNOT gate applications on two qubits, we are motivated to consider the

restricted subgraphs built from the Hadamard and CNOT gates acting on only two

of the n qubits. We show how the two subgraphs already present at two qubits are

embedded into more complicated subgraphs at three and four qubits. We argue that no

additional types of subgraph appear beyond four qubits, but that the entropic structures

within the subgraphs can grow progressively more complicated as the qubit number

increases. Starting at four qubits, some of the stabilizer states have entropy vectors

which are not allowed by holographic entropy inequalities. We comment on the nature

of the transition between holographic and non-holographic states within the stabilizer

reachability graphs.
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3.1 Introduction

Are all quantum states in a Hilbert space created equal? Viewed at the most

abstract level, every pure quantum state can be rotated to any other by a unitary

change of basis. But when the Hilbert space is endowed with some structure, different

states play different roles with respect to that structure. One natural structure is

given by specifying a factorization of the Hilbert space: an isomorphism between the

abstract H and the tensor product Hilbert space
⊗N

i=1Hi. For finite Hilbert spaces

of composite dimension, the factorization associates to each pure state |Ψ⟩ ∈ H an

entropy vector, the collection of von Neumann entropies of the 2N−1 reduced density

matrices formed by tracing out each possible tensor product formed from factors Hi.

The entropy vectors provide a classification of the states in a tensor product

Hilbert space, but because every state has an associated entropy vector they do not,

by themselves, pick out any states as special. One way to accomplish this is by fixing

one or more preferred operators acting on the Hilbert space. As a familiar example,

choosing a particular Hermitian operator acting on a Hilbert space to be the Hamil-

tonian, the generator of time translations, specifies a basis of energy eigenstates, and

every state in the Hilbert space can then be expanded in the energy basis. Most

states are superpositions of more than one energy eigenstate, but not all: fixing a

Hamiltonian picks out the basis of eigenstates of the Hamiltonian, the energy eigen-

states themselves, which are the states where the Hamiltonian acts trivially, as scalar

multiplication. The particular scalar is just given by the eigenvalue of the energy

eigenstate, and if we just want to find the set of energy eigenstates this is unim-

portant: we could instead say that the energy eigenstates are the states where the

projector onto the energy eigenspaces acts as the identity.

A similar procedure applies when instead of specifying a single Hermitian operator
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we pick a (multiplicative) group of Hermitian operators. Given the group G ∈ L(H),

we can classify every state |Ψ⟩ ∈ H by the number of group elements that act trivially

on this state: the dimension of the stabilizer subgroup G|Ψ⟩. Almost every state will

have dimG|Ψ⟩ = 1: the only group element that acts trivially is the identity operator.

But some will have more, and the states that have the largest stabilizer subgroups

relative to G are called the stabilizer states (which we will define more precisely

below). For example, if the Hilbert space is that of a qubit, the stabilizer states of

the Pauli group generated by ⟨X, Y, Z⟩ are the six states stabilized (up to sign) by the

identity and one additional Pauli operator. Stabilizer states, especially with respect

to the Pauli group on n qubits, play an important role in the theory of quantum error

correction, and in the fundamentals of quantum computing [10, 11, 1, 21, 7]. But

here they emerged directly as “generalized eigenstates,” the states which play nicely

with a specified group of operators.

This paper initiates a research program aimed at combining these two classifica-

tions of states in Hilbert space. We seek an understanding of the stabilizer states,

picked out by their interaction with a specified group of operators, in terms of their

entropic structure, given by the underlying factorization of the Hilbert space. In par-

ticular, we will focus on the stabilizer states with respect to the Pauli group acting

on n qubits. In this setting, any stabilizer state can be reached by starting with any

other stabilizer state and applying a unitary quantum circuit comprised of the Clifford

gates: two one-qubit gates, the Hadamard and phase gates, and a single two-qubit

gate, the controlled NOT gate. Since unitary operations on a single tensor factor do

not change the entropy vector, it is already clear that moving between entropy vec-

tors can only be accomplished via a CNOT gate. But not all such gate applications

alter the entropic structure, and the picture we will find will be far richer than simply

counting CNOT gates.
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Besides understanding the general entropic structure of stabilizer states, we are

additionally motivated by the connections between stabilizer states and holography.

Stabilizer error-correcting codes satisfy a complementary recovery property which

implies, and is equivalent to, an operator-algebraic version of the Ryu-Takayanagi

formula [29] relating entropies of states in the boundary/physical Hilbert space to

the expectation value of an “area” operator acting on the bulk/logical Hilbert space

[14, 27]. A holographic bulk geometry can be discretized into a graph [6]; in the

limit of large bond dimension a tensor network built from random stabilizer tensors

saturates the RT formula with probability one [16, 25].

Hence all holographic entropy vectors can be represented by stabilizer states, but

the converse is not true: the holographic entropy cone consisting of space of all allowed

holographic entropy vectors is contained within the stabilizer entropy cone, and this

containment is strict starting at three regions. Because the holographic entropy cone

is well–characterized—explicitly at up to five regions [17], and implicitly at arbitrary

finite region number by the methods pioneered in [6]—but the stabilizer entropy

cone, and even the larger quantum entropy cone of all quantum states, are poorly

understood, it is of great interest to understand in more detail how the holographic

states are embedded into the larger space of stabilizer states. The stabilizer graph

constructions presented in this paper allow this question to be attacked.

3.1.1 Summary of Results

Figure 3.1 presents a preview of our results. All of the objects in the figure are

“reachability graphs,” which display the structure of a (subset of) the stabilizer states.

Each vertex is a particular stabilizer state, colored by its entropy vector. The edges

connecting them correspond to the action of a particular Clifford gate. The first

panel presents the full reachability graph at one qubit, showing the action of the two
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one-qubit Clifford gates, Hadamard and phase, on the six one-qubit stabilizer states.

The remaining panels show reachability graphs at higher qubits, constructed from a

subset of the Clifford gates consisting of the Hadamard and CNOT gates applied to

two particular qubits; we will argue below that this restricted set of gates is sufficient

to capture the changes in entropic structure as we move between different stabilizer

states. The second panel presents the two subgraphs found in the restricted two-qubit

reachability graph: one with 24 vertices and one with 36.

At three qubits, the restricted graph has 16 connected components, made up of

copies of the 24- and 36-vertex subgraphs, as well as two additional structures, with

144 and 288 vertices, respectively, which are presented in the third panel. We will

show how these more complicated structures, as well as an 1152-vertex subgraph that

appears at four qubits, can be constructed in a simple way by certain “lifts” of states

in the structures found at two qubits to stabilizer states in a larger Hilbert space. By

understanding the lifts, we will also understand how to map entropy vectors at lower

qubit numbers to entropy vectors at higher qubit numbers: for example, although only

three distinct entropy vectors appear in the 144-vertex subgraphs at three qubits, at

four qubits there are versions of this subgraph with four distinct entropy vectors, as

seen in the final panel of the Figure.

At four qubits, the stabilizer states can have any of eighteen different entropy

vectors (see Table 3.5), and one of these entropy vectors, shown in blue in the fourth

panel of Figure 3.1, is not holographic. The reachability graphs allow us to see how,

at four and five qubits, applications of Clifford gates can move states out of, and

back into, the holographic entropy cone. We see, for example, that moving from the

inner octagonal structure to the outer ring cannot be accomplished without passing

through non-holographic states.
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3.1.2 Structure of the Paper

The remainder of this paper is organized as follows. Section 6.2 reviews the notions

of stabilizer states and the entropy cone, which are of fundamental importance for

the rest of the paper. Section 3.3 initiates the study of the intersection of these two

concepts by presenting the two-qubit stabilizer graph colored by entropy vector. We

illustrate that additional insight can be gained into the graph structure by considering

the restricted graphs generated by only a subset of the Clifford gates; in particular,

we highlight the special role of the restricted graph generated by only Hadamard and

CNOT gates.

Section 3.4 extends the discussion to the three-qubit stabilizer graph. We show

that much of the three-qubit graph can be understood as the natural extension of

the two-qubit graph, but that nontrivial new structures appear in addition. We

argue that because the Clifford gates act on at most two qubits it is natural to

consider the restricted graphs generated by gates that act on any two of the three

qubits. In Section 3.5, we pass to a discussion of the situation for higher qubit

numbers, illuminated by some direct results at four and five qubits. We show that no

fundamentally new objects appear as we go to higher qubit number, but the existing

objects develop progressively more complicated entropic structures. At higher qubit

numbers, entropy vectors appear which cannot be represented by holographic states,

and we comment on how they fit into the stabilizer graph. Finally, in Section 6.6 we

discuss and conclude. Additional results and graphs are presented in appendices.
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3.2 Reminder: Stabilizer States and the Entropy Cone

3.2.1 Review of Stabilizer States

The Pauli matrices

I =

1 0

0 1

 , σX =

0 1

1 0

 , σY =

0 −i

i 0

 , σZ =

1 0

0 −1

 , (3.2.1)

are a set of four Hermitian and unitary matrices with eigenvalues ±1, which, given

a fixed basis {|0⟩, |1⟩}, can be interpreted as operators acting on the Hilbert space

C2 of a single qubit. The (nontrivial) Pauli operators {σX , σY , σZ} generate the full

algebra of linear operators L(C2). More importantly for our purposes, they generate

a 16-element multiplicative matrix group, the Pauli group on one qubit

Π1 ≡ ⟨σX , σY , σZ⟩ = c{I, σX , σY , σZ}, c ∈ {±1,±i}. (3.2.2)

Recall that for a pure state |Ψ⟩ ∈ H and a group of operators G ⊂ L(H), the

stabilizer group of |Ψ⟩ is defined by

G|Ψ⟩ ≡ {g ∈ G | g|Ψ⟩ = |Ψ⟩}. (3.2.3)

That is, the stabilizer group of |Ψ⟩ consists of the operators in G for which |Ψ⟩ is

an eigenvector with eigenvalue one. By inspection, the Pauli group on one qubit Π1

has one element, I, with two unit eigenvalues, which therefore stabilizes all states in

C2; one element with two negative eigenvalues, −I, which stabilizes no states; eight

elements with purely imaginary eigenvalues, which also stabilize no states; and six

elements with one unit eigenvalue, {±σX ,±σY ,±σZ}, which therefore each stabilize

one state in C2. Hence there are six states in the Hilbert space, the one-qubit stabilizer

states, which are stabilized by a two-element subgroup:

S1 ≡
{
|0⟩, |1⟩, |±⟩ ≡ 1√

2
(|0⟩ ± |1⟩), |±i⟩ ≡ 1√

2
(|0⟩ ± i|1⟩)

}
, (3.2.4)
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and all other states in the Hilbert space are stabilized by only the identity. For

example, |+⟩ is stabilized by I and σX , while |1⟩ is stabilized by I and −σZ .

If we fix a state |Ψ⟩ ∈ S1, then there are a limited number of operations we can

do that will map |Ψ⟩ to some other |Ψ′⟩ ∈ S1. In particular, we can ask what unitary

operators U ∈ L(C2) are guaranteed to map any state in S1 back into S1. Since we

defined the stabilizer states by their property of having the largest stabilizer group

with respect to Π1, we can equivalently ask which unitaries U normalize the Pauli

group, i.e. take group elements to group elements under conjugation by U. Clearly

every element of the Pauli group itself has this property, but in general there is a

larger group of unitaries which do as well. The group of unitaries which normalize

the Pauli group is called the Clifford group,

C1 =
{
U ∈ L(C2) | UgU † ∀g ∈ Π1

}
. (3.2.5)

It suffices to check that a unitary takes σX and σZ to elements of C1. For example,

the Hadamard [31, 13] and phase gates,

H ≡ 1√
2

1 1

1 −1

 , P ≡

1 0

0 e
iπ
2

 =

1 0

0 i

 , (3.2.6)

are both elements of the Clifford group, since HσXH† = σZ , HσZH† = σX , and

PσXP
† = σY , PσZP † = σZ . In fact, these two gates suffice to generate the Clifford

group, C1 = ⟨H,P ⟩. We see, in particular, that because PP = σZ , we can easily

construct the Paulis themselves out of H and P .

Given the set of stabilizer states S1 and a set of generators of the Clifford group

C1, which we call Clifford gates [10], we can arrange the states into a reachability

graph, with each vertex labeled by a stabilizer state and each edge between vertices

labeled by the Clifford gate which maps one vertex to the other. (The Hadamard

gate is its own inverse, so it can be represented by an undirected edge, but the phase
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gate is not, so it is represented by a directed edge.) The reachability graph for S1 is

shown in Figure 3.2. Note that the reachability graph depends on a particular choice

of generators of C1, e.g. the Clifford gates. The significance of choosing H and P ,

in particular, as our generators is that both operators have physical significance and

can be implemented experimentally (relatively) easily.

Note that the reachability graph consists of a single component: as implied by

the definition of the Clifford group, we can use the Clifford gates to get (in some

number of steps) from any initial stabilizer state, e.g. |0⟩, to any other stabilizer

state. Furthermore, the graph contains many cycles: trivial ones, where a Clifford

gate acts as the identity on a particular stabilizer state, but also longer ones. For

example, because H2 = P 4 = I, every edge corresponding to a Hadamard application

is part of a cycle of length two, and every edge corresponding to a nontrivial phase

application is part of a cycle of length four, such as the diamond representing a

nontrivial cycle consisting of four phase gates we see at the center of Figure 3.2.

More interestingly, we have cycles consisting of more than one type of gate, such as

the triangles with two phase gates and one Hadamard.

To better understand these cycles, we can apply two basic group-theoretic results.

First, Lagrange’s theorem says that the order of any subgroup H of a finite group G

gives an integer partition of that group [2]: explicitly,

|G| = [G : H] · |H|, ∀H ≤ G, (3.2.7)

with [G : H] the index of H in G. Second, the orbit-stabilizer theorem says that,

when H is a stabilizer subgroup of G with respect to some state x ∈ X, i.e. H = Gx,

there exists a bipartition between the orbit of x in G, |G · x|, and the set of cosets of

the stabilizer subgroup in G, G/H. Hence these two objects have the same dimension:

|G · x| = |G|
|H|

= [G : H], (3.2.8)
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|Ψ⟩ |C1| |C1|Ψ⟩| |C1 · |Ψ⟩|

|0⟩ 192 32 6

|1⟩ 192 32 6

|+⟩ 192 32 6

|−⟩ 192 32 6

|i⟩ 192 32 6

|−i⟩ 192 32 6

Table 3.1: Orbit lengths for each single-qubit stabilizer state under the one-qubit

Clifford group C1.

where in the last equality we have used Eq. (6.2.12).

The Clifford group C1 is a group of operators acting on the one-qubit Hilbert

space C2. As we have discussed, for each |Ψ⟩ ∈ Sn ⊂ C2, there exists a subgroup

G|Ψ⟩. Hence we can apply this group-theoretic machinery to our case of interest.

Substituting |Ψ⟩ ∈ S1 for x ∈ X, C1 for G, and G|Ψ⟩ for H in Eq. (3.2.8) gives

|C1 · |Ψ⟩| =
|C1|
|G|Ψ⟩|

, (3.2.9)

where |C1 · |Ψ⟩| denotes the length of the orbit of |Ψ⟩. When we represent the action

a of group element by a graph, the orbit length is the largest number of vertices in

any connected component of the graph.

Explicitly, consider the set of one-qubit stabilizer states S1 defined in 3.2.4. The

one-qubit Clifford group C1 is constructed from the generating set ⟨H1, P1⟩. The

orbit of each |Ψ⟩ ∈ S1 can be computed directly using Equation Eq. (3.2.9), with

results shown in Table 3.1. One can easily verify these results by comparing with the

reachability diagram in Figure 3.2.
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|Ψ⟩ |GP | |GP|Ψ⟩| |GP · |Ψ⟩|

|0⟩ 4 4 1

|1⟩ 4 4 1

|+⟩ 4 1 4

|−⟩ 4 1 4

|i⟩ 4 1 4

|−i⟩ 4 1 4

|Ψ⟩ |GH | |GH|Ψ⟩ | |GH · |Ψ⟩|

|0⟩ 2 1 2

|1⟩ 2 1 2

|+⟩ 2 1 2

|−⟩ 2 1 2

|i⟩ 2 1 2

|−i⟩ 2 1 2

Table 3.2: Orbit lengths for each single-qubit stabilizer state under subgroups GP <

C1 and GH < C1, generated by only the phase gate and Hadamard gate respectively.

We can also use this machinery to consider the orbits of states |Ψ⟩ ∈ S1 under

subgroups of C1, see Table 3.2. Let GP < C1 denote the subgroup generated by

only the phase gate. This group contains the 4 unique elements P1, P
2
1 , P

3
1 , and P 4

1

(recall P 4
1 = I). Each element acts trivially on |0⟩ and |1⟩, and thus these two states

are stabilized by all elements of GP . The remaining states (|+⟩, |−⟩, |i⟩, |−i⟩) form

a cycle of length 4 under operation of P1, each stabilized only by the identity P 4
1 .

These orbits manifest as subgraphs of the reachability graph as seen in Figure 3.3.

Similarly, consider the subgroup GH < C1, generated by only the Hadamard

gate. This group only has 2 elements since H1 = H−1
1 and H2

1 = I. Distinctly, the

Hadamard gate stabilizes no element of Sn, and thus each state in S1 is stabilized

by only the identity (H2
1 ). Each |Ψ⟩ ∈ S1 subsequently has an orbit of length 2, as

shown in Table 3.2, which results in the decomposition of the reachability graph into

pairs of states (Figure 3.3), equivalent up to a change of basis.

In the remainder of the paper, we will often consider splitting the reachability

graph into subgraphs constructed from a subset of the Clifford gates. Ultimately, the
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underlying structure behind this graphical representation is precisely the partitioning

of the stabilizer set by orbit length.

As the alert reader will have realized from our notation, we can extend the defini-

tions of the Pauli group, stabilizer states, and Clifford gates to more than one qubit.

The Pauli group Πn on n qubits consists of “Pauli strings” acting on each of the qubits,

and is generated by1 the length-one Pauli strings like I1⊗. . .⊗Ik−1⊗σkZ⊗Ik+1⊗. . .⊗In.

The stabilizer states Sn are those states |Ψ⟩ ∈ (C2)⊗n with stabilizer groups of maxi-

mal size, dimG|Ψ⟩ = 2n.[1, 9]

|Sn| = 2n
n−1∏
k=0

(2n−k + 1) = 2(2n + 1) |Sn−1| ≈ 2(.5+o(1))n
2

. (3.2.10)

We have given a closed-form expression, recursion relation (with base case |S1| = 6,

as constructed explicitly above), and asymptotic expression.

The Clifford group Cn is again the group of unitaries which normalize Πn, which

contains the Hadamard and phase gates acting on each individual qubit. However,

these gates no longer suffice to generate the full Clifford group: because the gates

act only on a single qubit, they cannot change the entanglement structure of a state.

Yet not every stabilizer state has the same entanglement structure. One subset of the

two-qubit stabilizer states consists of the tensor product of a one-qubit stabilizer state
1Note that writing a Pauli string requires not just a factorization of the 2n dimensional Hilbert

space into tensor factors representing qubits (each of which has a specified basis {0, 1}), but a

particular ordering of the qubits from 1 to n: we write |a1 . . . an⟩ ≡ |a1⟩1 ⊗ . . . |an⟩n. It should be

clear that the set of length-one Pauli strings as a whole are the independent of choice of ordering,

and hence so is the Pauli group Πn they generate. This will also be the case for the Clifford group

Cn and the set of all Clifford gates. However, individual gates will of course depend on the choice of

ordering. We will often consider a subset of the Clifford gates which act only on the first two qubits,

which again depends on the choice of ordering, but there is an equivalent subset which acts on any

two specified qubits, so although the position of a given state within the graphs we will generate

depends on a choice of ordering, the overall graph structures themselves will not.
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on the first qubit and another one-qubit stabilizer state on the second qubit: these

states are, of course, product states. But, for example, the Bell state 1√
2
(|00⟩+ |11⟩)

is a two-qubit stabilizer state, stabilized by {I1I2, σ1
Xσ

2
X ,−σ1

Y σ
2
Y , σ

1
Zσ

2
Z}. Hence any

set of operators generating Cn must contain operators which map product states to

entangled states and vice versa.

One convenient gate which accomplishes this task is the CNOTi,j gate, which

performs a controlled NOT operation on the jth qubit depending on the state of the

ith qubit:

CNOT1,2 ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


∈ L(C4). (3.2.11)

To check that CNOTi,j ∈ Cn, it suffices to check its action on the length-one Pauli

strings consisting of {σiX , σiZ , σ
j
X , σ

j
Z} tensored with identities on every other qubit. A

standard calculation shows that conjugation by CNOTi,j maps these four strings to

{σiX ⊗ σ
j
X , σ

i
Z , σ

j
X , σ

i
Z ⊗ σ

j
Z} tensored with identities, respectively. Hence the CNOT

gates are indeed members of the Clifford group; together with the Hadamards and

phase gates, they generate2 Cn, so the n-qubit Clifford gates are taken to be the n

Hadamard gates Hn, the n phase gates Pn, and the n(n − 1) gates CNOTi,j (for

i ̸= j).

We can thus construct, for the Hilbert space of n qubits C2n, a reachability graph

for the stabilizer states Sn using the Clifford gates which generate Cn. We will devote
2In fact, we only need half of the CNOT gates, the n(n−1)/2 gates CNOTi,j with i < j, because

we have the relation CNOTj,i = HiHjCNOTi,jHjHi. Note that this expression is not unique,

because Hi and Hj acting on distinct qubits commute. Following convention, we will nevertheless

take the Clifford gates to include all n(n − 1) CNOT gates; e.g. our two-qubit reachability graph

will show the actions of both CNOT1,2 and CNOT2,1.
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the rest of the paper to studying this object, and the subgraphs formed from it by

restricting to a subset of the Clifford gates, at various qubit numbers n > 1. Before

we begin this study, however, we will first categorize the various possible allowed

entropic structures of the stabilizer states Sn.

3.2.2 Review of the Entropy Cone

All stabilizer states themselves are pure states; that is, for a given stabilizer state

|ψ⟩, the density matrix ρψ is idempotent and thus has zero total entropy:

ρψ = |ψ⟩ ⟨ψ| , ρ2ψ = ρψ, S(ψ) = −tr ρψ log2 ρψ = 0. (3.2.12)

For this paper, we measure entropy in bits : every log should be interpreted as log2

throughout. As we will see shortly, this convention results in positive integer entries

for every element in the entropy vector for all stabilizer states.

Non-trivial entropic structure arises when we consider how one subset of qubits

relates to its complement. Suppose we pick a p-qubit subset I of the n qubits in a

full stabilizer state. Then, the entanglement entropy between the p-qubit subset I

and its (n− p)-qubit complement Ī is given by

ρI = tr I |ψ⟩ ⟨ψ| , SI = −tr ρI log2 ρI . (3.2.13)

Here the trace tr I is taken over only the p qubits in the subset I. The density matrix

ρI is called a reduced density matrix, and since stabilizer states are pure only their

reduced density matrices have nonzero entropy. Since the entropy for the full state is

zero, we also have SI = SĪ .

For an n-qubit stabilizer state, there are thus 2n−1 − 1 entropies. Listing all of

these entropies produces the entropy vector for a given state. As an example, 2-qubit

stabilizer states have full entropy vector S⃗ = (SA, SO, SAO). However, since the state
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is pure, SAO = 0 and SA = SO. We thus write the 2-qubit entropy vector as just

S⃗ = (SA). Here, we have labelled our last qubit with O to indicate it acts as a purifier

for the other qubits.

Similarly, for a 3-qubit state, we write S⃗ = (SA, SB, SO), or equivalently, S⃗ =

(SA, SB, SAB). For 4 qubits we have S⃗ = (SA, SB, SC , SO, SAB, SAC , SAO). We could

have written SO = SABC and SAO = SBC instead; some sources choose a different

ordering for the entropy vector accordingly.

As reviewed in Section 3.2.1, only CNOT gates can create or destroy entanglement

entropy. We can now refine this statement: the CNOTi,j gate can only alter entropies

SI where qubit i ∈ I but qubit j ∈ Ī, or vice versa.

In addition to the equation SI = SĪ , which holds for any pure state, entropies for

subsets of qubits also obey entropy inequalities. The full set of entropy inequalities

obeyed by a given set of states defines the entropy cone [34, 26]. The quantum entropy

cone is the largest region we will discuss; any quantum state obeys the inequalities that

define its boundaries. The Araki-Lieb inequality [3] SIJ + SI ≥ SJ and subadditivity

SI+SJ ≥ SIJ , where I, J are disjoint sets of qubits, are both examples of inequalities

obeyed by all quantum states. The full quantum cone at arbitrary qubit number is

not known, but many classes of inequalities are [35, 8, 23, 30].

Instead, we will be interested in two smaller cones: the stabilizer cone, and the

holographic entropy cone. The stabilizer cone [22, 12, 17, 4, 5] is defined as the

smallest convex cone which contains all stabilizer states. Since all states we study

are stabilizer states, they will all lie within the stabilizer cone. Although we will not

study this cone in further detail, we will use the fact that it is larger than our next

cone: the holographic entropy cone.

As defined in [6], the holographic entropy cone is the smallest convex cone in

entropy space which contains all quantum states that have a dual representation
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as a classical gravity state. The Ryu-Takayanagi formula relates the entanglement

entropies for subregions of field theoretic states to areas of extremal surfaces in their

dual holographic geometries. The geometry of these extremal surfaces constrains

the allowed entropy vectors. The first such constraint was the monogamy of mutual

information3 [15],

SIJ + SIK + SJK ≥ SIJK + SI + SJ + SK . (3.2.14)

Here again I, J, K are disjoint sets of qubits. This inequality is not obeyed by all

quantum states, nor by all stabilizer states, but it is obeyed by all states which

have a dual smooth classical geometry. As a consequence, it sets the first boundary

between the stabilizer and holographic cones. As we will review below, beginning

at four qubits (or, in the holographic dual language, three regions plus a purifier),

some stabilizer states cannot have a smooth holographic dual, because they do not

lie within the holographic cone. One of our interests in studying the reachability

diagrams is to understand what gate actions on a given state can move it from within

the holographic cone to outside of it. These gate actions then describe how to create

a state whose geometry is definitely nonclassical.

3.3 The Two-Qubit Stabilizer Graph

At two qubits, the reachability graph contains 60 vertices, representing the full

set of 2-qubit stabilizer states. These states are connected by the six Clifford gates:

H1, H2, P1, P2, CNOT1,2, and CNOT2,1. The full graph is visible in Figure 3.4.

As discussed in section 3.2.2, 2-qubit stabilizer states have a one-component re-
3As discussed in [6, 17], at 6 qubits (5 regions), further entropy inequalities arise not described

here. Since we limit our detailed discussion to 5 qubits or fewer, the Araki-Lieb, subadditivity, and

monogamy inequalities are sufficient to test if a state lies within the holographic entropy cone.
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duced entropy vector SA. For these states, SA is either zero or one,4 so states on

the reachability graph (represented by vertices) are either unentangled (blue) or form

an maximally entangled pair (red). Since only a CNOT gate can alter the entropy

vector, the graph has two subgraphs which are connected only by CNOT gates (pink

lines). One subgraph has all of the entangled stabilizer states, while the other has all

of the unentangled ones. At any number of qubits, removing all of the CNOT gates

breaks the full graph into subcomponents. Each subcomponent has the same entropy

vector throughout.

The graph here depicts every gate acting on each vertex. Since some of these gate

actions act trivially on particular states, the graph contains loops. These loops thus

represent gate actions which stabilize the state represented by the vertex attached to

the loop. This graph also contains degenerate gate action, i.e. multiple edges that

map one vertex to another as can be seen in the bottom-rightmost pair connected

by H1 and H2. Beginning in section 3.3.2, we will suppress trivial loops since we are

most interested in understanding the gates that move us between states.

While Figure 3.4 completely describes the connections between 2-qubit stabilizer

states via the Clifford gates, the graph’s complexity obscures some of the important

features. At higher qubit numbers, the full graphs quickly increase in complexity; we

thus relegate their complete graphs to Appendix A. In order to further explore the

structure of the 2-qubit graph, and to extend our understanding to higher qubits, we

will now explore restricted graphs which only depict the action of various subsets of

the Clifford gates.
4Since we are working with qubits, we measure entropies using log2. That is, the reduced density

matrix of one qubit in a maximally-entangled pair has von Neumann entropy 1.
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3.3.1 Restricted Graphs

Beginning at three qubits, we will further restrict our focus to the restricted graphs

composed of the Hadamard and CNOT gates on only the first two qubits. To help

motivate why we concentrate on this gate subset, we begin by constructing several

different restricted graphs for two qubits.

We construct a restricted graph by considering only select operations of the full

Clifford group. This restriction corresponds to removing edges, representing elimi-

nated gate operations, from the complete reachability graph. Each restricted graph

reveals different details about the connectivity and physics of the stabilizer states.

Two-Qubit Hadamard

We begin by considering only the two Hadamard gates on two qubits, H1 and H2,

as in Figure 3.5. The Hadamard gate Hi enacts a basis change on the ith qubit.

Consequently, Hadamards on different qubits commute. Since each Hadamard gate

also satisfiesH2
i = 1, each subgraph can have at most four different states. Indeed, the

majority of the 2-qubit states organize themselves into squares, consisting of a starting

state |ψ⟩ and the states H1|ψ⟩, H2|ψ⟩, and H1H2|ψ⟩ = H2H1|ψ⟩. Additionally, since

Hadamard gates cannot change entanglement, each square has the same entropy

vector throughout.

The four states arranged in pairs in the lower right of Figure 3.5 are worth further

note. They are

|00⟩+ |11⟩, |00⟩+ |01⟩+ |10⟩ − |11⟩ = H1

(
|00⟩+ |11⟩

)
= H2

(
|00⟩+ |11⟩

)
;

|01⟩ − |10⟩, |00⟩ − |01⟩ − |10⟩ − |11⟩ = H1

(
|01⟩ − |10⟩

)
= H2

(
|01⟩ − |10⟩

)
.

(3.3.1)
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Since H1 and H2 produce the same action on each of these states, their subgraphs

thus form degenerate pairs instead of full squares. That is, the four states given in

Eq. (3.3.1) are eigenstates of H1 ⊗ H2; the two states given in the first line have

eigenvalue +1, while the two states on the second line have eigenvalue −1.

Two-Qubit Phase and Hadamard

Considering both the Hadamard and phase gates yields the restricted graph depicted

in Figure 3.6. The right subgraph of Figure 3.6 contains all entangled states. The left

subgraph of this figure consists entirely of unentangled states. This bisection of the

restricted graph is required by the removal of CNOT edges since neither Hadamard

nor phase can alter the entanglement entropies.

The Hadamard boxes from Figure 3.5 are clearly visible in the unentangled sub-

graph. For the entangled state subgraph, the two degenerate pairs are present at the

upper left and lower right, while the Hadamard boxes are still present but slightly

harder to visualize. Removing the phase gates of course reproduces the Hadamard-

only Figure 3.5, while removing both Hadamard operations yields the phase-only

restricted graph (Figure A.1 in Appendix A).

The four basis states (|00⟩, |01⟩, |10⟩, |11⟩), are located at the corners of the unen-

tangled subgraph.5 Since both phase gates act trivially on basis states, each corner

has two attached directed loops. For the other sixteen states on the outside of the

unentangled subgraph (four on each side), one of the phase gates is trivial while the

other makes a square (since P 4
i = 1). As an example, the state |+0⟩ = H1|00⟩ satisfies

P2|+0⟩ = |+0⟩, P1|+0⟩ = |i0⟩, P 4
1 |+0⟩ = |+0⟩. (3.3.2)

5Qubits added to a system are appended to the right of the quantum register, as described in

section 3.2.1. Thus, an n-qubit product state is represented by |a1 . . . an⟩ ≡ |a1⟩1 ⊗ . . . |an⟩n.
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The remaining 16 states in the center of the unentangled graph are connected by 4

P1 squares and 4 P2 squares, arising because P 4
1 = P 4

2 = 1.

In the entangled subgraph, again the 16 states in the center are connected by 4

P1 squares and 4 P2 squares. The remaining 8 entangled states, 4 at the top and 4

at the bottom of the entangled subgraph in Figure 3.6, are in degenerate pairs. For

these states, either P1|ψ⟩ = P 3
2 |ψ⟩ or P1|ψ⟩ = P2|ψ⟩. More precisely, |01⟩ + |10⟩ is

one of the states at the top of the figure, so it satisfies

P1(|01⟩+ |10⟩) = P 3
2 (|01⟩+ |10⟩) (3.3.3)

while |00⟩+ |11⟩ is at the bottom of the figure and satisfies

P1(|00⟩+ |11⟩) = P2(|00⟩+ |11⟩. (3.3.4)

Consequently, the phase squares degenerate to connected pairs on all eight of these

states.

We can also see the single-qubit reachability diagram reflected here. In the unen-

tangled graph, removing H2 results in 6 copies of the one-qubit diagram in Figure 3.2,

arranged vertically in Figure 3.6. The leftmost copy results from tensoring the six

stabilizer states on the first qubit |0⟩, |1⟩, |±⟩, |±i⟩ with the state |0⟩ on the second

qubit. Similarly the rightmost copy includes the states |01⟩, |11⟩, |±, 1⟩, |±i, 1⟩. The

four copies in the middle, still connected by the phase gate P2, are constructed simi-

larly except with |±⟩, |±i⟩ for the second qubit. This tensoring is our first example

of a lift, in this case from a one-qubit structure to a two-qubit structure.

In general, a lift of a k-qubit state |ψ⟩ to n qubits is a quantum channel which

maps |ψ⟩ into C2n by first tensoring on a (n − k)-qubit state |ϕ⟩ and then applying

an operator O:

|ψ⟩ → O
(
|Ψ⟩ ⊗ |ϕ⟩

)
: O ∈ L(C2n), |ϕ⟩ ∈ C2(n−k). (3.3.5)

66



We will always have in mind lifts which take stabilizer states to stabilizer states, so

we will take |ϕ⟩ to be an (n − k)-qubit stabilizer state and O to be a product of

n-qubit Clifford gates. Given these restrictions, all lifts from C2k to C2n are on the

same footing, and indeed lifts of |ψ⟩ also successfully lift any other k-qubit stabilizer

state. What makes a particular lift useful is that it preserves some of the structure

seen at k qubits when we go to n qubits. In the example above, the lift given by

|ϕ⟩ = |0⟩, O = I mapped all six one-qubit stabilizer states to six two-qubit stabilizer

states, preserving their arrangement in the one-qubit reachability graph.

The entangled subgraph is not composed of tensor products of one-qubit stabilizer

states, so it is unsurprising that the one-qubit reachability diagram has become more

complicated. We still see four almost-copies of the one-qubit diagram, except the

Hadamard gate which connects |±i⟩ in Figure 3.2 instead connects the four almost-

copies to each other. Last, removing H1 instead of H2 results in exactly the same

structures; we have just chosen to arrange the entangled subgraph to prioritize the

H1 structure.

Two-Qubit Phase and CNOT

Considering only operations of the subgroup generated by phase and CNOT, we

observe a reduced graph composed of five disconnected substructures (Figure 3.7).

Each substructure is inherited from a combination of phase-only and CNOT-only

restricted graphs (Figures A.1 and A.2 in Appendix A).

Again, only CNOT gates can alter the entropy, so states with different entangle-

ment are connected only via CNOT gates. However, only some CNOT gates modify

the entropy. For example,

CNOT1,2|00⟩ = CNOT2,1|00⟩ = |00⟩. (3.3.6)

67



Since P1 and P2 also stabilize |00⟩, this state is represented by the isolated vertex

in Figure 3.7. The CNOT gates permute the remaining basis states |01⟩, |10⟩, |11⟩

among each other since CNOT can only flip a bit, not introduce a superposition. As

with |00⟩, phase acts trivially on all the remaining basis states.

The upper right subgraph in Figure 3.7 consists of 8 unentangled states and 4

entangled states. The unentangled states arrange into a P 4
1 cycle to the left, and

a P 4
2 cycle to the right. For the four central entangled states, P1|ψ⟩ = P2|ψ⟩, so

they are linked in one phase cycle. The entangled states and unentangled states are

necessarily connected by CNOT gates. In this subgraph, all CNOT gates either act

trivially or move between entangled and unentangled states. The CNOT gates alone

connect the states into 4 lines of 3 states each.

The bottom left subgraph is similar, except the central four entangled states satisfy

P1|ψ⟩ = P−1
2 |ψ⟩ instead. The three top states, and the three bottom states, both have

either trivial CNOT action or CNOT moves between an entangled and unentangled

states. For the middle states, however, both CNOT gates act nontrivially on each

state, producing a hexagon. Explicitly, we have the cycle

|1i⟩ = CNOT2,1CNOT1,2CNOT2,1CNOT1,2CNOT2,1CNOT1,2|1i⟩, (3.3.7)

where only two of the states along the way are entangled.

Finally the largest structure, located in the upper left of Figure 3.7, contains only

states stabilized by neither P1 nor P2. Again the CNOT gates are the only connections

between the entangled and unentangled states. Considering only these CNOT gates,

this subgraph contains the remaining 2 hexagonal cycles from the CNOT-only graph

(Appendix A, Figure A.2), as well as 6 3-state lines of paired CNOT edges, and 2

additional states invariant under both CNOT gates.
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3.3.2 Two-Qubit Hadamard and CNOT

For the remainder of this work, we will focus on restricted graphs generated by

H1, H2, CNOT1,2, and CNOT2,1 (see Figure 3.8 for the two-qubit version). In order

to understand changes in entanglement, we need to consider a restricted graph which

includes CNOT gates since they are the only gates which alter entropy. We specifically

choose to include the Hadamard gates (and exclude the phase gates) because in

the Hadamard-CNOT restricted graphs, each subgraph contains states with different

entropy vectors. Additionally, at two qubits, the Hadamard-CNOT graph will have

only two subgraphs; we will see echoes of these structures repeated at higher qubit

number. When we go to higher qubit number, we will continue to use only the gate

set H1, H2, CNOT1,2, CNOT2,1 because all entropic arrangements found in stabilizer

states can be built from successive bipartite entanglements.

Beginning with this graph, and continuing below, we omit any gate whose action

is the identity; thus no further trivial loops will appear. Because we have four possible

gates that can act on each state, a vertex with valency 4− k has k trivial loops. We

also label the subgraph structures by the number of vertices they contain, so e.g. we

use g24 for the 24-vertex substructure in Figure 3.8. As noted in Footnote 2 above,

we have the relation

CNOT2,1 = H1H2CNOT1,2H2H1, (3.3.8)

which can be checked explicitly for 2-qubit states using the figure; hence the presence

of the CNOT2,1 edges is completely fixed by the structure of the other three gates.

The subgraph g24 contains all 2-qubit stabilizer states connected to the basis states

(|00⟩, |01⟩, |10⟩, |11⟩) via only Hadamard and CNOT operations. As we can see from

the graph, acting a Hadamard and then a CNOT on |00⟩ produces the GHZ state,
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which is entangled:

CNOT1,2H1|00⟩ = |GHZ⟩. (3.3.9)

Because the phase gate is the only Clifford gate with imaginary matrix elements,

all states in g24 can be written as superpositions of the basis states with purely real

coefficients. States located in g36, on the other hand, have relative phases ±i between

different basis components. Accordingly, a phase gate is required to move between

the two subgraphs. In fact, every phase gate either acts trivially, or connects states in

g24 with states in g36, since the CNOT and Hadamard gates are both Hermitian, but

phase is not. Thus, the only way a product of CNOTs and Hadamards can have the

same action as a non-Hermitian operator O on a state is when the state has support

only on the eigenspaces of the operator O with real eigenvalues. For O = phase, the

only eigenspace with real eigenvalue has eigenvalue one. Hence the phase gate either

acts as the identity or its action is non-Hermitian (and thus moves us between the g24

and g36 subgraphs). We will see echoes of this structure when comparing subgraphs

in the H1, H2, CNOT1,2, CNOT2,1 restricted graphs at higher qubit number.

In our analysis at higher qubits, we will also rely on Hamiltonian paths and Hamil-

tonian cycles. Hamiltonian paths visit every vertex in a graph only once (and thus do

not self-intersect). Hamiltonian cycles are closed loops with the same property. The

subgraph g24 has no Hamiltonian paths, and therefore no Hamiltonian cycles either.

Subgraph g36 does have Hamiltonian paths (although again no Hamiltonian cycles).

One example is shown in Figure 3.9. The specific circuit depicted is

C ≡ (H2,H1, H2, CNOT1,2, H2, H1, H2, CNOT1,2, H2, CNOT1,2, H2, CNOT1,2,

H1, H2, H1, CNOT1,2, H1, CNOT1,2, H2, CNOT1,2, H2, H1, H2, CNOT1,2,

H1, CNOT1,2, H2, CNOT1,2, H2, H1, H2, CNOT2,1, H2, H1, H2).

(3.3.10)
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When applying this circuit to the graph, the leftmost gate acts first and the rightmost

gate last.

Note that the path C starting on |i1⟩ is not unique; other Hamiltonian paths exist

on g36. First, C also traverses a Hamiltonian path starting on |−i, 1⟩ instead. Another

example is C⊤, which swaps qubits 1 and 2 in Eq. (3.3.10). Two further possibilities

are the inverse paths C−1 and (C⊤)−1, which simply apply the respective circuits in

reverse order. In fact, there exists a Hamiltonian path on g36 starting from 30 (out

of 36) of its vertices.

For definiteness, we will use the Hamiltonian path C, starting on |i1⟩, in the lifting

procedure introduced in Section 3.4.2, where we turn to the three-qubit stabilizer

graph and a detailed analysis of its reduced graphs.

3.4 The Three-Qubit Stabilizer Graph

At three qubits there are now 1080 stabilizer states, and accordingly the full

reachability graph, which we defer to Figure A.3 in Appendix A, becomes unwieldy;

we thus proceed in this section immediately to the restricted graphs. For three qubits,

many of the reduced graphs show features similar to two qubits. As an example,

the Hadamard-only restricted graph at three qubits contains cubes and degenerate

squares instead of squares and degenerate pairs. As before, each subgraph has only

one entropy type, since Hadamard gates cannot alter the entropy vector. Figure 3.10

shows the structures exhibited in the H1, H2, H3 restricted three-qubit graph. The

phase graph at three qubits similarly extends, as exhibited by the full phase graph

P1, P2, P3, shown in Appendix A in Figure A.4.

In all of these graphs, the color of the vertex indicates the entropy vector of the

associated state. As reviewed in section 3.2.2 the entropy vector at three qubits is S⃗ =

(SA, SB, SAB). There are five different entropy vectors among the 3-qubit stabilizer
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states, as shown in Table 3.3. All five entropy vectors lie within the holographic cone

(that is, they satisfy the inequalities required for a holographic state, as discussed in

Section 3.2.2).

Just as in the 2-qubit case, the entropy vector can only be changed by the action

of a CNOT gate. Accordingly the phase– and Hadamard–restricted graphs do not

allow us to study changes in entropy. Instead, as discussed in Section 3.3.2, we are

most interested in the restricted graph which considers only H1, H2, CNOT1,2, and

CNOT2,1, since it will allow us to understand the changes in entropy induced by the

CNOT gates on a pair of qubits.

3.4.1 Three-Qubit CNOT+Hadamard on 1 and 2 only

We extend our analysis to three qubits, restricting the full stabilizer group to the

subgroup generated by H1, H2, CNOT1,2, and CNOT2,1. We concentrate on this gate

set in order to focus on the entropic structure of qubits 1 and 2. The choice of qubits

1 and 2 is arbitrary; any pair would do. Because all stabilizer gates act on at most

two qubits, and all entropic structure can be built from these bipartite interactions,

our analysis of qubits 1 and 2 is sufficient to understand reachability for all n qubits.

The full restricted graph for the gate set H1, H2, CNOT1,2, CNOT2,1 is shown in

Figure A.5 of Appendix A. There are only four types of subgraph, shown in Figure

3.11, which arise in the full restricted graph. The full graph consists of 6 copies of g24

and g36, 3 copies of g144, and a single copy of g288, where as in the previous subsection

the subscript denotes the number of vertices in the subgraph.

As mentioned above, there are only five different entropy vectors at three qubits.

In Table 3.3, we record the number of stabilizer states with each of these entropy

vectors, and also record the subgraph types those states appear in.

As discussed in section 3.3.2, phase actions on states in theH1, H2, CNOT1,2, CNOT2,1
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Holographic (SA, SB, SAB) Number of States Subgraph

Yes •(0, 0, 0) 216 g24, g36

Yes •(1, 1, 0) 144 g24, g36

Yes •(0, 1, 1) 144 g144, g288

Yes •(1, 0, 1) 144 g144, g288

Yes •(1, 1, 1) 432 g144, g288

Table 3.3: Table of 3-qubit entropy vectors. The last column lists which subgraph

types exhibit each entropy vector.

restricted graph are always either trivial, or move you to a different subgraph. How-

ever, unlike in the 2-qubit case, in addition to the phase gates we are also not repre-

senting H3, nor any CNOT gate involving the third qubit. Thus, not every subgraph

can be reached by phase actions alone: applying a phase gate does not change the

entropy vector, and two of the five entropy vectors appear only in g24, g36 while the

other three appear in only g144, g288. We are also not representing H3, nor any CNOT

gate involving the third qubit.

In particular, the subgraphs of type g144 and g288 contain the entropy vectors

(0, 1, 1), (1, 0, 1), and (1, 1, 1), but the subgraphs of type g24 and g36 only contain the

entropy vectors (0, 0, 0) and (1, 1, 0). This separation occurs because CNOT gates

involving the third qubit are required to change between the two sets of entropy

vectors. As reviewed in section 3.2.2, the CNOTi,j gate can only alter entropies SI

where qubit i ∈ I but qubit j ∈ Ī. Our entropy vectors are listed as (SA, SB, SAB),

where A refers to qubit 1 and B refers to qubit 2. So the CNOT1,2 or CNOT2,1 gates

can only affect SA and SB, not SAB. Thus, entropy vectors with different SAB can

only show up on separate subgraphs in our restricted graph.
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As we will see in the next section, we can understand both the number of copies

of each subgraph, as well as the shape of the subgraphs themselves, by seeing how

the 2-qubit states and subgraphs can be embedded into the 3-qubit structures.

3.4.2 Lifting States from Two Qubits to Three Qubits

We apply the lifting procedure introduced in Section 3.3.1 to lift 2-qubit states to

three qubits. States in the 2-qubit g24 subgraph all lift to states in the 3-qubit g24

subgraphs by tensoring on a third qubit. For example, starting with the state |00⟩

on qubits 1 and 2, we can tensor on |0⟩ on qubit 3 to find

|000⟩ = |00⟩ ⊗ |0⟩. (3.4.1)

There are 6 possible states of the third qubit: {|0⟩, |1⟩, |±⟩, |±i⟩}. Tensoring on all 6

of these states, as in Eq. (3.4.1), to the 24 states in the 2-qubit g24 subgraph generates

144 of the 3-qubit stabilizer states. These 144 states make up the 6 copies of g24 at

three qubits (shown in Figure A.5 of Appendix A).

The next simplest set of lifts begins with states in the 2-qubit g36 subgraph, and

then tensors on a third qubit. We start with the 2-qubit state |i1⟩, since the circuit

C Eq. (3.3.10) defines a Hamiltonian path on g36 starting at this state (Figure 3.9).

The process

|i1+⟩ = |i1⟩ ⊗ |+⟩, (3.4.2)

lifts |i1⟩ to one of the six 3-qubit g36 subgraphs. Since there are again 6 1-qubit

stabilizer states available for the third qubit, we generate a further 216 states via this

lift. These 216 states are all located on one of the 6 copies of g36 at three qubits,

completely covering those subgraphs.

When we tensor on a third qubit, we extend the entropy vector of the original

2-qubit state. For a 2-qubit state with entropy vector (SA), we have SA = SB since
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it is a pure state. When we tensor on the third qubit, these two values stay the

same. Additionally, the third qubit is just tensored on, so it is not entangled; thus

SO = SAB = 0. Accordingly, states with the entropy vector (1) lift to states with

(1, 1, 0) and those with entropy vector (0) lift to (0, 0, 0) under the tensoring lift of

Equations Eq. (3.4.1) and Eq. (3.4.2).

We have accounted so far for all of the states in the g24 and g36 subgraphs at three

qubits. As shown in Table 3.3, these are the only states with entropy vector (0, 0, 0)

or (1, 1, 0). To modify entanglement and reach new 3-qubit entropy arrangements, we

must act with CNOT gates involving the third qubit, i.e. CNOT1,3, CNOT3,1, CNOT2,3,

or CNOT3,2. For example, acting with CNOT3,1 on the lifted state |i1+⟩ in Equation

Eq. (3.4.2) gives

CNOT3,1|i1+⟩ = |010⟩+ i|011⟩+ i|110⟩+ |111⟩. (3.4.3)

This procedure lifts |i1⟩ from the 2-qubit g36 subgraph to a state on one g144 subgraph

at three qubits. Acting with CNOT3,1 on |i1+⟩ entangles qubits 1 and 3, resulting in

a state with entropy vector S⃗ = (1, 0, 1), indicated with an orange vertex in Figure

3.11. Similarly replacing the third qubit in |i1+⟩ with |−⟩, |i⟩, or |−i⟩ instead also

results in states on the same copy of g144. |i10⟩ and |i11⟩, however, return to the

same copies of g36 they started on under the action of CNOT3,1.

Acting a different gate on a lifted version of |i1⟩ can result in a lifted state on a

different copy of g144. For example, the gate CNOT1,3 on state |i10⟩ ≡ |i1⟩⊗|0⟩ gives

CNOT1,3|i10⟩ = |010⟩+ i|111⟩, (3.4.4)

which resides on a different copy of g144 than the state lifted in Equation Eq. (3.4.3).

As before, the third ket can be replaced with |1⟩, |i⟩ or |−i⟩ resulting in three other

states on the same copy of g144, but using |±⟩ results in CNOT1,3 mapping back to

the same copies of g36.
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The third copy of g144 is phase-separated from the previous two. Lifting 2-qubit

starting states to this subgraph requires a phase gate. One possible such lift to this

subgraph is

P3(CNOT1,3|i10⟩) = |010⟩ − |111⟩. (3.4.5)

Again, the third qubit can be replaced with |1⟩, |i⟩ or |−i⟩ giving three further states

on the last copy of g144.

There are two ways that we can lift the 2-qubit state |i1⟩ to the 3-qubit g288 sub-

graph. The first begins by tensoring on a third qubit, then applying the appropriate

CNOT gate to move the lifted state from g36 directly to g288. For example,

CNOT3,2|i1+⟩) = |010⟩+ i|011⟩+ |100⟩+ i|101⟩ (3.4.6)

resides on g288. It has entropy vector S⃗ = (0, 1, 1), and is represented by a purple

vertex in g288 in Figure 3.11. The same procedure works when we replace the third

qubit by |−⟩, |i⟩, or |−i⟩.

The second method first lifts state |i1⟩ to g144 as in Equation Eq. (3.4.3), entangling

qubits 1 and 3. Applying a second CNOT gate then entangles qubit 2 with the other

qubits. Explicitly, we have e.g.

CNOT3,2(CNOT3,1|i1+⟩) = |010⟩+ i|011⟩+ i|100⟩+ |101⟩. (3.4.7)

This process results in a final state on g288. Its entropy vector is (1, 1, 1), represented

by a yellow vertex in g288. Three further states arise by replacing the third qubit |+⟩

with |−⟩, |i⟩, or |−i⟩.

In the next subsection, we will use the lifted states described here, combined with

the 2-qubit Hamiltonian path C, to reach the remaining states as well as to understand

the new g144 and g288 subgraph structures that arise at three qubits.
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3.4.3 Lifting Paths from Two Qubits to Three Qubits

At two qubits, the Hamiltonian path C Eq. (3.3.10) starting from the state |i1⟩

covered the g36 subgraph. Similarly, C starting from the lifted states described in the

previous section, listed in Table 3.4, cover every vertex exactly once on each of the

g36, g144, and g288 subgraphs of the H1, H2, CNOT1,2, CNOT2,1 restricted graph at

three qubits.

For the g36 subgraphs, the lift only involved a simple tensor product with the third

qubit. Additionally, the lift actually worked on every state in the g36 subgraph, so

the structure of g36 in each of the 6 copies is completely preserved. All lifted states

from the 2-qubit g36 subgraph lift to the same relative position in the 3-qubit g36

subgraphs. Therefore, applying C on each lift of |i1⟩ on a 3-qubit copy g36 still builds

a Hamiltonian path on each subgraph. Accordingly, lifting C from two qubits to three

qubits by lifting the starting state gives a complete vertex covering of each 3-qubit

copy of g36, just as in Figure 3.9. This covering of higher qubit g36 subgraphs by the

2-qubit g36 structure persists to arbitrary qubit number.

Lifting C to the three copies of g144 and the single g288 subgraph illustrates how

the two-qubit subgraph g36 is embedded into larger subgraphs at three qubits. Let

us consider a specific example, beginning with the second g144 subgraph, which we

have termed g2144 in Table 3.4. As described in Equation Eq. (3.4.5), the lifted state

CNOT1,3|i10⟩ is on this subgraph. Applying the circuit C to this state produces a

non-intersecting path on g144, covering 1/4 of its states as in Figure 3.12.

Each of the lifted starting states listed under g2144 in Table 3.4 have entropy vector

S⃗ = (1, 0, 1), and are located around the central octagonal structure of g144. Applying

C to each of the lifted states defines a separate path, covering 36 vertices each, on

g144. The union of these 4 lifts of C defines a vertex covering of g144, displayed in
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Figure 3.13. The other two g144 subgraphs can be covered similarly, by four copies of

C starting on each of the lifted starting states listed in the table.

A covering of the g288 subgraph can also be constructed from lifts of C. First, we

lift the 2-qubit g36 state |i1⟩ via Equations Eq. (3.4.6) and Eq. (3.4.7), as listed in

Table 3.4. We then apply C on these 8 lifted states, covering every vertex of g288 once.

We have now reached all of the 3-qubit states, and we have covered the six sub-

graphs g36, three subgraphs g144, and single subgraph g288 with lifted versions of the

2-qubit Hamiltonian path g36.

Just as we described at the end of section 3.3.2 for the 2-qubit g36 subgraph, these

coverings are not unique. We could have lifted the 2-qubit state |−i, 1⟩ instead, since

C is also a Hamiltonian path from that starting point. Alternatively, we could have

used the path C⊤ or C−1 instead, or any other Hamiltonian path from the 2-qubit g36

subgraph.

Sticking to just C, C⊤, C−1, and (C⊤)−1, each path has two possible starting states

on the 2-qubit g36 subgraph. Lifting these eight states to four starting states each on

g2144, we hit all 32 purple and orange states in the central octagon in Figure 3.13. The

same statement works for the other g144 subgraphs, so every central octagon state is a

lifted starting state for some 2-qubit Hamiltonian path, which together with 3 other

states, fully covers the g144 subgraph. A similar situation arises for the g288 subgraph.

Rather than exploring these other possible coverings, we will instead move on to

further structures which first arise at three qubits: Hamiltonian cycles and Eulerian

paths.

3.4.4 Hamiltonian cycles and Eulerian paths

At one qubit, the complete reachability diagram did not have a Hamiltonian path.

At two qubits, the H1, H2, CNOT1,2, CNOT2,1 restricted subgraph g24 also did not
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have a Hamiltonian path, but g36 did. Beginning at three qubits, we are able to

construct Hamiltonian cycles as well, on subgraphs g144 and g288. Subgraph g288 will

additionally have an Eulerian cycle, which traverses every path exactly once (instead

of visiting every vertex once).

Hamiltonian cycles cannot be built on the g24 and g36 subgraphs. For g24 this

check is simple: it contains a vertex whose removal disconnects the graph, known as

a cut-vertex; the GHZ state in Figure 3.8 is one example. Subgraph g36 contains no

cut-vertex; however, it can be verified to have no Hamiltonian cycle by exhaustive

search.6

For the g144 subgraph, the four copies of C in each graph do not directly connect

into a Hamiltonian cycle simply by connecting their ends. However, other Hamilto-

nian paths exist on the 2-qubit g36 subgraph, and some of these paths, when their

starting states are lifted to four states on g144, can be directly connected into one

large loop that builds a Hamiltonian cycle.

For the g288 subgraph, we have three coverings. First, as in the previous section,

eight copies of C (or any other Hamiltonian path from g36 ) completely cover the

graph. Next, the Hamiltonian cycle on g144 can be mapped to a pair of cycles which

each cover half of g288, as shown in Figure 3.14. And last, a new Hamiltonian cycle

exists on g288 itself.

We also note that Eulerian cycles, which traverse every edge, first exist on g288.
6Any graph containing a Hamiltonian cycle must satisfy all of the following conditions: each

vertex of degree 2 must be included in the Hamiltonian cycle, once two edges incident to a vertex

are included in the Hamiltonian cycle all other edges incident to that vertex must be removed from

consideration, and the Hamiltonian cycle must contain no proper subcycles. These criteria are

only sufficient to eliminate a graph’s candidacy for having a Hamiltonian cycle. In general, the

“Hamiltonian path problem” of proving that a given graph does admit a Hamiltonian path or cycle

is NP-complete.
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The cycle is of length 576, and it must exist because all vertices have an even number

of attached edges (namely, four). Stated another way, all four gates in the restricted

set H1, H2, CNOT1,2, CNOT2,1 act nontrivially and differently from each other, on

every state in the subgraph. In particular, this means that g288 has no trivial loops.

Hamiltonian cycles can be embedded into to higher-qubit subgraphs in almost

exactly the same way as Hamiltonian paths; for cycles we have to pick an arbitrary

starting state to lift. Each Hamiltonian cycle embeds into every subgraph of greater

or equal vertex number. We will also see that embeddings of Hamiltonian paths and

cycles will continue to cover subgraphs at higher qubit number.

3.5 Towards the n-qubit Stabilizer Graph

We will now generalize our discussion to the cases of four and five qubits. Two

particularly important features arise first at four qubits. First, the last new subgraph

shape in the H1, H2, CNOT1,2, CNOT2,1 restricted graph appears. Second, some

entropy vectors of stabilizer states will disobey monogamy of mutual information

Eq. (3.2.14). These states thus lie outside the holographic entropy cone; they cannot

have a classical gravitational representation.

3.5.1 Four Qubits

In order to explore four qubits, we have explicitly generated all of the 36720 4-

qubit stabilizer states. The explicit form of these states is available in the GitHub

repository [24] along with associated reachability diagrams, entropy vector data, and

a Mathematica package for simulating stabilizer circuits, generating sets of states,

and constructing reachability diagrams.

Examining the H1, H2, CNOT1,2, CNOT2,1 restricted graphs, we find copies of

the g24 and g36 subgraphs we have seen before. We also see again the g144 subgraph
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with 3 different entropy vectors hereafter referred to as g144(3), and the g288 with

3 entropy vectors, now termed g288(3). We specify the number of entropy vectors

because we also find g144(4) and g288(4), as in Figures 3.15 and 3.16.

We also obtain our last new structure: g1152. At four qubits we find this subgraph

with either two or four different entropy vectors, as in Figures 3.17 and 3.18.

As in the 3-qubit case, lifting the g24 and g36 subgraphs from two qubits to four

qubits proceeds in a simple manner. To lift the 2-qubit g24 states to the 4-qubit g24

subgraphs, we proceed as in Eq. (3.4.1). That is, we start with a state in the 2-qubit

g24 subgraph, and then tensor on any other 2-qubit state. Thus, both |0000⟩ and

|00i1⟩ appear in copies of g24 at four qubits.

Similarly for g36, we again tensor on 2-qubit states instead of the 1-qubit state

added in Eq. (3.4.2). Thus |i100⟩ and |i1i1⟩ are in copies of g24 at four qubits. Since

there are 60 2-qubit stabilizer states, we get 60 copies each of g24 and g36. For g36 the

Hamiltonian paths transfer just as before.

These Hamiltonian paths can be embedded in g144 and g288 by acting with the

CNOT gates that involve qubits 3 and/or 4, or with phase gates when necessary. The

new structure, g1152, behaves similarly, except 32 copies of C are needed for a full

covering.

Not only the Hamiltonian paths lift; recall that Hamiltonian cycles exist for g144

and g288. These cycles embed as well. Choosing some starting state at 3 qubits, we

tensor on a 1-qubit stabilizer state, act with a CNOT to entangle it and arrive on

one of the ten copies of g1152, and then enact the cycle in the same gate order as the

Hamiltonian cycle at three qubits. In order to cover one full g1152 subgraph, four such

cycles are needed.

Lastly, the g1152 structure, like the g288 subgraph, contains an Eulerian cycle of

length 2304. Just as for g288, as discussed at the end of section 3.4.4, this cycle
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exists because all four of the gates H1, H2, CNOT1,2, CNOT2,1 act nontrivially and

differently from each other, on every state in the subgraph; no degeneracies or loops

remain.

Entropy Vector Analysis

In Table 3.5, we list the 18 different entropy vectors which stabilizer states exhibit at

four qubits. In the table, the vectors are grouped together if they appear in the same

subgraphs in the H1, H2, CNOT1,2, CNOT2,1 restricted graph. These groupings arise

because SC , SO, and SAB cannot be altered by the Hadamards and CNOTs on qubits

1 and 2 only.

Importantly, notice that our first non-holographic state, which disobeys the holo-

graphic entropy cone relation Eq. (3.2.14), arises here. CNOT gates are the only

actions which could move a state from within the entropy cone to outside of it, so

by studying the restricted graphs where this non-holographic entropy vector lives, we

can define how to reach such states. In particular, notice that in g144(4), shown in

Figure 3.14, the non-holographic states divide the subgraph into multiple parts; re-

moving them entirely would separate the inner octagonal structure from the outside,

and divide the outer ring into several pieces.

3.5.2 Five Qubits and Beyond

At five qubits, no new structures arise. The subgraph types may begin to have

more entropy vectors on a given subgraph, and each subgraph has more copies, but

the shapes themselves do not increase in size. Again, we have generated the full set

of stabilizer states as well as the complete reachability diagram, and this data is fully

accessible at [24]. The full five qubit list of entropy vectors is in Table A.1 of the

appendix.
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Again, we note 12 entropy vectors arise which disobey the holographic entropy

cone relations; as usual, examining the gate actions which move to and from those

entropy vectors will help us to learn how states move in and out of the holographic

entropy cone.

For now, we note that the g24 and g36 subgraphs each have 1080 copies, as expected

since they are built by tensoring 2-qubit stabilizer states with 3-qubit stabilizer states;

there are 1080 3-qubit stabilizer states. We also note that the number of g1152 copies

scales faster than for the smaller index number graphs, as shown in Table 3.6.

We believe no further new structures arise at higher qubits beyond the g1152 first

found at four qubits.7 However, individual subgraphs will start to contain larger

numbers of different entropy vectors, just as we found when increasing to four and

then five qubits.

3.6 Discussion

Our goal in the body of the paper has been to understand the n-qubit stabilizer

states by first constructing their reachability graphs, then passing to the restricted

graphs formed using only the Hadamards and CNOTs on two qubits. We were able

to understand how the simpler structures at low qubit number (n = 1 and n =

2) assemble, via lifts, to build the more complicated structures observed at higher

qubit number (n = 3 and n = 4). We have argued that the four graph structures

shown already in the Introduction are “all there is:” passing to higher qubit number

merely proliferates larger numbers of the four basic structures, perhaps with more
7 This claim has since been verified explicitly by directly computing the full set of unique Clif-

ford group elements generated by H1, H2, CNOT1,2, and CNOT2,1. A simple justification can be

observed by allowing each leg of the g1152 subgraph to represent a unique operation generated by

H1, H2, CNOT1,2 and CNOT2,1. The proof of this result will be presented in forthcoming work.
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complicated entropic arrangements. We noted the presence of non-holographic states

beginning at four qubits, and their confinement to particular groups of subgraphs, as

demanded by their having entropy vectors that violate holographic inequalities. In

this Discussion, we collect some other ways of thinking about the reachability graphs

we have constructed, along with potential generalizations and questions for further

research.

We first note that, to our knowledge, already at two qubits this is the first time

that the complete, explicit reachability graphs have been presented in the literature.

We have constructed the full reachability graphs up through five qubits, and have

made them available in our GitHub repository [24].

Having the explicit form of the graphs allows for direct computation of some

interesting quantities. For example, the minimum distance on the graph from one

state to another is, explicitly, the gate complexity of the stabilizer circuit which

maps the first state to the second. The state with largest minimum distance relative

to a reference state thus is the “most complicated” state by this measure. We have

explicitly computed this minimum distance relative to the all-zero state for n = 1 . . . 4,

and find that it is circuit distance 4, 7, 10, 13, respectively. Since the asymptotic

complexity of n-qubit stabilizer states is known to go as n2/log(n) [1], this is perhaps a

surprising result—it indicates that at small, finite qubit number the main contribution

to the complexity is not the CNOT gate applications which lead to the asymptotic

result. Of course, we note that, even with the explicit reachability graph, finding

a state with maximal relative distance is a highly nontrivial problem requiring an

exhaustive numerical search.

We recall also that the group-theoretic identity in Eq. (3.2.8) equates the num-

ber of elements in a given subgraph to the orbit length of an element in that sub-

graph under the action of the subgroup of the Clifford group generated by the subset
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of the Clifford gates we are considering (see Table 3.2). Hence we can interpret

24, 36, 144, 288, 1152 as the orbit lengths of various stabilizer states under the action

of the subgroup generated by {H1, H2, CNOT1,2, CNOT2,1}. It would be interesting

to find these orbits directly using a group-theoretic approach, and confirm or disprove

our conjecture that no additional structures appear beyond g1152.

We emphasize that we chose to focus primarily on Clifford gates acting on the

first two qubits because the stabilizer states exhibit only bipartite entanglement,

constructed explicitly through CNOT gate applications. Hence our restricted graphs

are sufficient to analyze how the entropy vector of a state changes as it is acted upon

by various stabilizer circuits. Of course, adding additional gates to our restricted

gate will result in more complicated connected subgraphs, culminating in the full

reachability graph at each qubit number.

In the holographic literature, we typically think of each subsystem as some portion

of a spatial boundary, with the exception of an additional “purifier” subsystem which

does not necessarily have an interpretation as a spatial subsystem. The holographic

interpretation of our results will therefore differ depending on whether we take the

purifier to be one of the first two qubits, or instead some other qubit >= 3. In the

body of the paper we have taken the purifying system O to be the last qubit.

In what ways can our reachability graph be generalized? First consider staying

within the setting of n-qubit states. The existence of a graph structure is most

useful when we have a gate set that can be used to pick out only a finite number

of states, rather than a continuous subspace of C2n or the entire Hilbert space itself.

Hence we do not expect choosing a modification of the Clifford gates which yields

a universal gate set to provide interesting results. We could instead consider the

stabilizers of some other finite group of operators besides the Pauli group. It is

an interesting question whether there are any such finite groups with a compelling
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physical interpretation. We could also consider allowing a small number of discrete

applications of non-Clifford gates, i.e. allowing a small amount of “magic” [7, 33]

as a resource. Or, we could consider restricting ourselves to stabilizer states, but

allowing some applications of operators which are in the Clifford group but not Clifford

generators themselves, which could be used to “fast-forward” a circuit. Finally, it

would be very interesting to understand whether there is a set of gates that produce

a discrete set of states but allow, for example, for tripartite entanglement.

In more general Hilbert spaces which are not isomorphic to tensor products of

qubits, we expect that a similar story should hold with a different group than the

Pauli group. There are a number of approaches in the literature to generalizing Pauli

matrices to larger discrete systems. One approach, well-suited to qudit systems, is to

use Gell-Mann matrices and their generalizations. Another, quite different, approach

better suited to approaching the continuum limit of a lattice system is to use the

“clock” and “shift” matrices that generate a “generalized Clifford algebra” [18, 28].

Finally, we recall our motivation in the Introduction, where we described both

entanglement entropies in a factorized system, and stabilizer states relative to a pre-

ferred group of algebra, as two different ways of imposing structure on the set of

states in Hilbert space. We can further generalize this picture by noting that the

von Neumann entropy of a reduced density matrix of a subsystem can be identified

with the algebraic entropy associated with the algebra of operators which act as the

identity everywhere outside that subsystem. Hence entropies are defined relative to

an algebra of operators while stabilizer states are defined relative to a group of oper-

ators. In particular, recall that the algebra generated by the Pauli operators acting

on a qubit is in fact the full algebra of linear operators on that qubit.

When we consider more general von Neumann algebras, instead of the Hilbert

space decomposing as a product of tensor factors, we get a more general Wedderburn
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decomposition [32, 14, 19], which decomposes the Hilbert space as a sum of products

of tensor factors, where each term in the sum represents a superselection sector which

has its own associated entropy. Thus we can envision a very abstract version of our

picture in which we fix a set of operators, and then find stabilizer states by using this

set to generate a group of operators and entropies by using the same set to generate

an algebra of operators. It would be interesting to see how far this picture can be

taken in generic cases. A first step would be to understand how to generate not just

a single entropy for a given reduced density matrix on a state, but rather a larger

entropy vector, which would pick out some sequence of algebras, the equivalent of the

operators acting on the first, second, and in general nth qubit.

Data Repository The full set of states, reachability diagrams, and entropy vec-

tors for stabilizer states at n ≤ 5 qubits can be accessed via the GitHub repository

[24]. The repository additionally includes Mathematica notebooks used to generate

the data for this paper, as well as a Stabilizer State package designed to generate

reachability graphs and analyze stabilizer state structure.
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Figure 3.1: The collection of subgraph structures up through five qubits. (a) 1-Qubit

reachability diagram displaying all single-qubit operations. (b) 2-Qubit restricted

graph consisting of subgraph structures g24 and g36. (c) Two new subgraph structures

occur at three qubits, g144 and g288. (d) At four qubits we witness the arrival of a new

subgraph g1152, as well as an increase of entropy vectors on g144. No new subgraph

structures emerge beyond g1152, but the number of different entropy vectors present

in each subgraphs continues to increase for higher qubit number. At four qubits we

witness the first instance of non-holographic states, appearing on subgraph g144.
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Hadamard

Phase|0⟩ |1⟩|+⟩

|−⟩

|i⟩

|−i⟩

Figure 3.2: Complete one-qubit reachability diagram. Because the Hadamard gate is

its own inverse we have depicted edges corresponding to Hadamard gate applications

as undirected, but gates corresponding to phase gates as directed.
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|0⟩ |1⟩
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|0⟩ |1⟩

|i⟩

Figure 3.3: The one-qubit reachability diagram restricted to only phase (Top) and

only Hadamard (Bottom) operations reveals disconnected orbits of varying length for

states |Ψ⟩ ∈ S1.
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Figure 3.4: This complete 2-qubit reachability graph depicts the full map between all

stabilizer states under action of the Clifford group. Edges depicting Hi and CNOTi,j

are undirected since they are each their own inverse. P is not its own inverse since

P 4 = I; consequently the phase gates are represented by directed edges. The color of

the edge indicates the type of gate, and the line texture (solid vs. dashed) indicates

the qubits which the gate acts on.
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Figure 3.5: The 14 squares and 2 connected pair subgraphs in the graph restricted to

H1 and H2 at two qubits. Since [H1, H2] = 0 and H2
1 = H2

2 = 1, these subgraphs are

the only allowed shapes. The four states which connect in pairs rather than squares

are given in Equation Eq. (3.3.1).
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Figure 3.6: Removing the set of CNOT operations from the full reachability graph

Figure 3.4 reveals two disconnected subgraphs. Since only the CNOT gates can

change the entropy, each subgraph has the same entropy vector for all of its states.
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Figure 3.7: Subgraph of 2-qubit complete reachability graph restricted the subgroup

generated by CNOT and phase operations. Included structures are various attach-

ments of the simpler structures found in the only-phase and only-CNOT restricted

graphs in Figures A.1 and A.2 in Appendix A.
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← |00⟩|GHZ⟩ ↓

Figure 3.8: The 2-qubit subgraph restricted to H1, H2, CNOT1,2, and CNOT2,1 has

two subgraphs which are connected only via phase gates. Trivial loops have been

removed in this representation of the 2-qubit H1, H2, CNOT1,2, CNOT2,1 restricted

graph.
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Figure 3.9: Hamiltonian path C beginning on state |i, 1⟩ (encircled in green) and

ending on state |−,−i⟩ (encircled in red).

94
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Hadamard 1

Hadamard 2

Hadamard 3

(SA,SB,SO):

(0,1,1)

Figure 3.10: Pictured are the two unique subgraph types that occur in the 3-qubit

restricted graph of only H1, H2, and H3 operations. Degenerate pairs in the 2-qubit

H1, H2 restricted graph (Figure 3.5) are promoted to boxes at three qubits. Boxes

from the 2-qubit H1, H2 graph are promoted to cubes by the addition of the H3 gate.
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������

Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

(SA,SB,SO):

(0,0,0)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

g24 g36

g144 g288

Figure 3.11: This figure depicts the four unique subgraphs which arise in the full

3-qubit H1, H2, CNOT1,2, CNOT2,1 restricted graph, pictured in Figure A.5 of Ap-

pendix A. Each subgraph is labeled by its corresponding vertex count. The full graph

consists of 6 copies of g24 and g36, 3 copies of g144, and a single copy of g288.
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Lift Starting State Subgraph

|i1⟩ ⊗ |0⟩ |i10⟩ g136

|i1⟩ ⊗ |1⟩ |i11⟩ g236

|i1⟩ ⊗ |+⟩ |i1+⟩ g336

|i1⟩ ⊗ |−⟩ |i1−⟩ g436

|i1⟩ ⊗ |i⟩ |i1i⟩ g536

|i1⟩ ⊗ |−i⟩ |i1− i⟩ g636

CNOT3,1(|i1⟩ ⊗ |+⟩) |i10⟩+ i|−i, 11⟩

g1144

CNOT3,1(|i1⟩ ⊗ |−⟩) |i10⟩ − i|−i, 11⟩

CNOT3,1(|i1⟩ ⊗ |i⟩) |i10⟩ − |−i, 11⟩

CNOT3,1(|i1⟩ ⊗ |−i⟩) |i10⟩+ |−i, 11⟩

CNOT1,3(|i1⟩ ⊗ |0⟩) |010⟩+ i|111⟩

g2144

CNOT1,3(|i1⟩ ⊗ |1⟩) |011⟩+ i|110⟩

CNOT1,3(|i1⟩ ⊗ |i⟩) |01i⟩ − |11,−i⟩

CNOT1,3(|i1⟩ ⊗ |−i⟩) |01,−i⟩+ |11i⟩

P3CNOT1,3(|i1⟩ ⊗ |0⟩) |010⟩ − |111⟩

g3144

P3CNOT1,3(|i1⟩ ⊗ |1⟩) |011⟩+ |110⟩

P3CNOT1,3(|i1⟩ ⊗ |i⟩) |01−⟩ − |11+⟩

P3CNOT1,3(|i1⟩ ⊗ |−i⟩) |01+⟩+ |11−⟩

CNOT3,2(|i1⟩ ⊗ |+⟩) |i10⟩+ |i01⟩

g288

CNOT3,2(|i1⟩ ⊗ |−⟩) |i10⟩ − |i01⟩

CNOT3,2(|i1⟩ ⊗ |i⟩) |i10⟩+ i|i01⟩

CNOT3,2(|i1⟩ ⊗ |−i⟩) |i10⟩ − |i01⟩

CNOT3,2CNOT3,1(|i1⟩ ⊗ |+⟩) |i10⟩+ i|−i, 01⟩

CNOT3,2CNOT3,1(|i1⟩ ⊗ |−⟩) |i10⟩ − i|−i, 01⟩

CNOT3,2CNOT3,1(|i1⟩ ⊗ |i⟩) |i10⟩ − |−i, 01⟩

CNOT3,2CNOT3,1(|i1⟩ ⊗ |−i⟩) |i10⟩+ |−i, 01⟩

Table 3.4: Using the 26 starting states in this table, and the path C

Eq. (3.3.10), we cover every vertex on the g36, g144, and g288 subgraphs of the

H1, H2, CNOT1,2, CNOT2,1 restricted graph at 3 qubits. The g24 subgraphs can-

not be covered by a single path, but all states in them can be generated from states

in the 2-qubit g24 subgraph via the lift described in Eq. (3.4.2).
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Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

C

(SA,SB,SO):

(1,0,1)

(0,1,1)

(1,1,1)

← |ψ⟩

Figure 3.12: Lift of Hamiltonian path C defined in Equation Eq. (3.3.10), from the

2-qubit g36 subgraph to a copy of g144 at three qubits. The path begins on |ψ⟩ ≡

CNOT1,3|i10⟩, the state lifted in Equation Eq. (3.4.5).
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(SA,SB,SO):

(1,0,1)

(0,1,1)

(1,1,1)

CNOT1,3|i, 1, 0⟩

CNOT1,3|i, 1, 1⟩

CNOT1,3|i, 1, i⟩

CNOT1,3|i, 1,−i⟩

Figure 3.13: Four copies of Hamiltonian path C that give a vertex cover of g2144. Each

path is indicated by the lifted starting state where it begins.
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(SA,SB,SO):

(1,0,1)

(0,1,1)

(1,1,1)

Figure 3.14: The Hamiltonian cycle on g144 can be mapped to a cycle on g288 through

a CNOT operation connecting the two subgraphs. Two copies of g144 can be used to

cover g288 completely.
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Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

(SA ,SB ,SC ,SO ,SAB,SAC,SAO):

(1,0,1,1,1,1,1)

(0,1,1,1,1,1,1)

(1,1,1,1,1,2,2)

(1,1,1,1,1,1,1)

Figure 3.15: At four qubits, the g144 subgraph can have 4 different entropy vec-

tors among the vertices. The cyan vertices denote states with entropy vector

S⃗ = (1, 1, 1, 1, 1, 1, 1), an entropic structure that violates monogamy of mutual in-

formation Eq. (3.2.14). These 4-qubit stabilizer states, located on 4-qubit subgraphs

g144 and g288, are the first instances of non-holographic states.
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Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

(SA ,SB ,SC ,SO ,SAB,SAC,SAO):

(1,1,1,1,2,1,2)

(1,1,1,1,2,2,1)

(1,1,1,1,2,0,2)

(1,1,1,1,2,2,0)

Figure 3.16: At four qubits, we witness a variation to the g288 subgraph first seen

at three qubits. The structure is isomorphic to its 3-qubit counterpart; however, the

number of entropy vectors present has increased to four, similar to what occurred in

Figure 3.15.
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Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

(SA ,SB ,SC ,SO ,SAB,SAC,SAO):

(1,1,1,1,2,1,2)

(1,1,1,1,2,2,1)

Figure 3.17: One of the two g1152 occurring at four qubits. This subgraph is isomorphic

to the g1152 subgraph in Figure 3.18, but with only 2 different entropy vectors among

all the states in the subgraph.
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Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

(SA ,SB ,SC ,SO ,SAB,SAC,SAO):

(1,1,1,1,2,1,2)

(1,1,1,1,2,2,1)

(1,1,1,1,2,0,2)

(1,1,1,1,2,2,0)

Figure 3.18: Another copy of the g1152 subgraph introduced at 4 qubits. States located

on this subgraph exhibit 4 different entropy vectors, in contrast to the g1152 subgraph

in Figure 3.17.
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Holographic (SA, SB, SC , SO, SAB, SAC , SAO) Number of States Subgraph

Yes (0, 0, 0, 0, 0, 0, 0) 1296 g24, g36

Yes (1, 1, 0, 0, 0, 1, 1) 864 g24, g36

Yes (0, 0, 1, 1, 0, 1, 1) 864 g24, g36

Yes (1, 1, 1, 1, 0, 2, 2) 576 g24, g36

Yes (0, 1, 1, 0, 1, 1, 0) 864 g144, g288

Yes (1, 0, 1, 0, 1, 0, 1) 864 g144, g288

Yes (1, 1, 1, 0, 1, 1, 1) 2592 g144, g288

Yes (0, 1, 0, 1, 1, 0, 1) 864 g144, g288

Yes (1, 0, 0, 1, 1, 1, 0) 864 g144, g288

Yes (1, 1, 0, 1, 1, 1, 1) 2592 g144, g288

Yes •(1, 0, 1, 1, 1, 1, 1) 2592 g144, g288

Yes •(0, 1, 1, 1, 1, 1, 1) 2592 g144, g288

Yes •(1, 1, 1, 1, 1, 2, 2) 5184 g144, g288

No •(1, 1, 1, 1, 1, 1, 1) 2592 g144, g288

Yes •(1, 1, 1, 1, 2, 1, 2) 5184 g1152 (2,4)

Yes •(1, 1, 1, 1, 2, 2, 1) 5184 g1152 (2,4)

Yes •(1, 1, 1, 1, 2, 0, 2) 576 g1152 (4)

Yes •(1, 1, 1, 1, 2, 2, 0) 576 g1152 (4)

Table 3.5: Entropy vectors for the set of four-qubit stabilizer states. One entropy

vector disobeys the holographic inequalities. Graph g1152 comes in two varieties: one

with only two different entropy vectors, and one with four. The last two entropy vec-

tors only appear on subgraphs with four different entropy vectors, while the previous

two appear on subgraphs with either two or four entropy vectors.

105



Qubit # g24 g36 g144 g288 g1152

Two 1 1 - - -

Three 6 6 3 1 -

Four 60 60 90 30 10

Five 1080 1080 3780 1260 1260

Table 3.6: The number of occurrences of each subgraph structure at two, three, four,

and five qubits. The number of copies of g1152 exhibits the most dramatic growth

with qubit number.
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Chapter 4

CLIFFORD ORBITS FROM CAYLEY GRAPH QUOTIENTS

The contents of this chapter were originally published in Physical Review A [17].

We describe the structure of the n-qubit Clifford group Cn via Cayley graphs, whose

vertices represent group elements and edges represent generators. In order to obtain

the action of Clifford gates on a given quantum state, we introduce a quotient pro-

cedure. Quotienting the Cayley graph by the stabilizer subgroup of a state gives a

reduced graph which depicts the state’s Clifford orbit. Using this protocol for C2, we

reproduce and generalize the reachability graphs introduced in [19]. Since the proce-

dure is state-independent, we extend our study to non-stabilizer states, including the

W and Dicke states. Our new construction provides a more precise understanding of

state evolution under Clifford circuit action.

4.1 Introduction

How can we track the evolution of information about a quantum state? In the

general case, where we’d like to obtain the outcome of arbitrary measurements under

continuous time evolution, we can do no better than to work with the state itself.

For an n-qubit pure state |ψ⟩ ∈ H ∼= C2n, tracking the state requires knowing all

of its overlaps ⟨ai|ψ⟩ with a given orthonormal basis {|ai⟩}: that is, 4n − 2 real

parameters, accounting for normalization and the unobservability of global phase.

We can do better, however, by restricting which information we want to keep track

of, or restricting how the state might evolve, or starting with a special initial state:

• We might only care about some particular properties of the state. If we only

want to predict the outcome of measurements on k < n of the qubits, we can
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trace out the remaining n − k qubits and work with the reduced state ρ{n−k},

which requires only 4k − 1 real parameters. If we want to understand the

entanglement properties of the state, we can collect together the von Neumann

entropies of each independent reduced density matrix: 2n−1−1 real parameters.

• We might want to evolve the state through a quantum circuit with a limited set

of possible unitaries that can be applied, such as the Clifford gates: Hadamard,

phase, and CNOT. It might be that the multiplicative group spanned by the

gate set is all unitaries acting on C2n, in which case the gate set is universal.

But we might instead find that the group acts on a smaller Hilbert space, for

example if every gate in the gate set conserves some charge. Or, as is the case

for the Clifford gates [8, 13], the generated group might be finite, in which case,

for a given initial state, there are only a discrete set of possible states which

can be reached.

• We might have a special state that admits a reduced description. If we know

our state has decohered, we can write it as a superposition of pointer basis

states, and classical observables are independent of the relative phase between

branches, requiring only 2n − 1 real parameters. Or, if we know our state is an

eigenstate of some specified observable, or a simultaneous eigenstate of a group

of observables, we can obtain a compact description. For example, the Pauli

group on n qubits comprises the 2 · 4n (signed) Pauli strings. All n-qubit states

stabilize, i.e. are unit eigenvectors of, the identity operator 1 (and none stabilize

−1). But only a discrete set of states stabilize any additional Pauli strings: a

special set of states that can be specified by discrete rather than continuous

information.

One of the most famous results in the theory of quantum computation concerns
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a computational setting where we allow ourselves such simplifications. Quantum

circuits which take an initial stabilizer state1, a simultaneous unit eigenvector of 2n

Pauli strings, to any other stabilizer state can be represented as “Clifford circuits”,

which contain only Clifford gate applications. Unlike circuits made from a universal

quantum gate set, Clifford circuits are efficiently classically simulable [14, 15, 1].

In this paper, we exploit the finiteness of the Clifford group to reinterpret Clifford

circuits graphically. Our key tool is a group-theoretic notion: the Cayley graph [9],

which, given a choice of generators, graphically encodes the structure of the group.

We’re interested in studying what states can be reached if, instead of acting with

arbitrary Clifford circuits, we restrict to only a subset of the possible Clifford gates.

In particular, following our previous paper [19], we’d like to understand how the

entanglement entropy evolves as we act on a state with a Clifford circuit. Because

all of the entanglement created in this way is bipartite—the result of a CNOT gate

action—it suffices to consider entangling operations acting on only 2 of the n qubits.

We are thus led to consider the actions of the 2-qubit Clifford group on n ≥ 2-

qubit states, which might themselves be stabilizer states, or might be more general.

We previously considered a version of this problem in [19], developing “reachability

graphs” in which each vertex was a stabilizer state and each edge a Clifford gate, and

“restricted graphs” in which only certain types of edges were allowed. We found that

the complicated graphs encoding the action of Clifford circuits on stabilizer states

decomposed into highly structured subgraphs.
1This paper, unfortunately, will have to deal with two meanings of the word ‘stabilizer’: the

group-theoretic meaning, where a state stabilizes a group element if the group element acts trivially

on the state, and the quantum-information-theoretic, where it is standard to refer to those n-qubit

states which stabilize 2n elements of the n-qubit Pauli group simply as “stabilizer states”. We will

have cause in this paper to refer to both the traditional stabilizer states and states which stabilize

elements of other groups, most notably the n-qubit Clifford group and its subgroups.
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In this paper, using the technology of Cayley graphs, we are able to reproduce and

generalize our previous results. Rather than working with the action of Clifford gates

on states, we are instead led to work more directly with the abstract group elements

themselves. We can then recover the action on states via a quotienting procedure. By

working group-theoretically, we can easily understand the full diversity of subgraph

structures that arise, as well as extend our results to the action of Clifford circuits

on other states — for example, states which stabilize a non-maximal number of Pauli

group elements — which allows for new structures to arise. Along the way, we will

gain a better understanding of the Clifford group itself, deriving a formal presentation

for the group, as well as data on its subgroup structure. While a presentation was

previously found in the literature [24], our reformulation gives insight into the cir-

cumstances in which seemingly entangling gate operations fail to ultimately produce

entanglement.

In forthcoming work [18] we will use the relations of our presentation to exam-

ine and bound the dynamics of entanglement entropy. Because holographic states,

which have a classical geometric description, live inside the stabilizer entropy cone [4],

tracking the evolution of entanglement can give us insight into the operations which

move quantum states into and out of the holographic cone.

4.1.1 Summary of Results

We previously introduced, in [19], reachability graphs, in which each vertex is an

n-qubit pure quantum state, typically a stabilizer state, and each (directed) edge is

a Clifford gate taking the state at the initial vertex to the state at the final vertex,

as well as restricted graphs, in which only some subset of the Clifford gates, typically

{H1, H2, C1,2, C2,1}, is allowed. (Here and throughout we abbreviate CNOTi,j as

Ci,j.) Reachability graphs graphically encode the result of performing Clifford circuits
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on a given set of states; restricted graphs give a more refined picture which is often

more useful for understanding entropic evolution.

The main task accomplished in this paper is the reinterpretation of reachability

graphs as certain quotients of a group-theoretic object, the Cayley graph, a directed

graph that encodes the structure of a group by identifying a vertex for every group

element and a set of edges for each group generator.2 Since finite groups have finite

Cayley graphs, we can use quotients of the group to construct quotient spaces on its

Cayley graph.

The general protocol for constructing the quotient map that yields (graphs iso-

morphic to) reachability graphs from Cayley graphs is:

1. For a group G and chosen state |Ψ⟩, we first identify the stabilizer subgroup of

|Ψ⟩ in G, denoted Stab G(|Ψ⟩).

2. Since Stab G(|Ψ⟩) is a normal subgroup of G, all equivalence classes of the

quotient group G/ Stab G(|Ψ⟩) can be generated by taking the left-cosets h ·

Stab G(|Ψ⟩) for all h ∈ G.

3. Each equivalence class of G/ Stab G(|Ψ⟩) is assigned a vertex, and each vertex

is connected by the generator which maps each element of one equivalence class

to exactly one element of the other equivalence class.

This procedure takes as input a choice of group and a choice of state. To recover

the reachability graphs, we do not take G to be the Clifford group itself, because the
2Because the Cayley graph depends on a choice of generators, there are many different Cayley

graphs which each correspond to a given group. Each of these graphs has an isomorphic set of

vertices, namely one vertex for every group element, but in general inequivalent edges. For example,

{H1, H2, C1,2, C2,1} and {H1, H2, C1,2} both generate the two-qubit Clifford group; as seen in

Table 4.1, the corresponding Cayley graphs have the same number of vertices, 2304, but different

properties such as graph diameter.
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group contains elements which act as an (unobservable) global phase. Instead, we

first quotient the Clifford group (or (HC)1,2, the group generated by Hadamard and

CNOT acting on the first two qubits) by such elements, resulting in a smaller group

whose elements are isomorphic to equivalence classes of the original group; only then

do we specify a state. Figure 4.1 illustrates this procedure, starting with the one-qubit

Clifford group and the chosen state |0⟩ and producing a quotiented graph isomorphic

to the one-qubit stabilizer reachability graph. We could have started with any of the

six one-qubit stabilizer states and gotten the same result, but the precise mapping of

initial group elements to vertices of the final Cayley graph is state-dependent.

Out[ ]=
H1

P1

Figure 4.1: There are 32 elements of the single-qubit Clifford group C1 which form

the equivalence class of stabilizers for |0⟩, denoted Stab C1(|0⟩). We first build the

quotient group C̄1 ≡ C1/⟨ω⟩ by modding out global phase elements, then quotient C̄1

by Stab C̄1(|0⟩) to identify equivalent vertices in the C1 Cayley graph. This process

yields a quotient space of the Cayley graph which is isomorphic to the one-qubit

stabilizer reachability graph.

In the remainder of the paper, we build an understanding of the Clifford group

detailed enough to construct its Cayley graph and those of its subgroups. Then,

with that task accomplished, we display the diversity of structures which ensue from
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applying the procedure to various quantum states. In Section 4.2, we recall the

Pauli group, Clifford group, stabilizer states, and the reachability graphs defined in

our previous paper. In Section 4.3, we begin with the simple case of the one-qubit

Clifford group C1, writing down its presentation and displaying its Cayley graph.

We accomplish the same task for the two-qubit Clifford group C2 in Section 4.4,

where both of these steps are considerably more complicated. We also discuss those

subgroups of C2 generated by a proper subset of the Clifford gates, presenting in

Table 4.1 a comprehensive list of these subgroups and their properties, which might

be of independent interest, as well as discussing a number of the groups in more

detail. With the needed group-theoretic data obtained, we proceed in Section 4.5

to defining in detail the quotienting procedure summarized above and applying it to

various groups and states of interest. We summarize and discuss further directions in

Section 6.6. Appendix B provides further details of our derivations. All Mathematica

data and packages are publicly available [20].

4.2 Reminder: Clifford Group and Reachability Graphs

We begin with a brief review of background material discussed throughout this

paper. Much of this review was covered more extensively in Section 2 of [19], and we

invite the interested reader to consult it for additional details. Likewise, for a more

pedagogical reference on the group-theoretic concepts we recommend e.g. [2].

4.2.1 The Clifford Group

The Pauli matrices are a set of unitary and Hermitian matrices with ±1 eigenval-

ues, defined

1 ≡

1 0

0 1

 , σX ≡
0 1

1 0

 , σY ≡
0 −i
i 0

 , σZ ≡
1 0

0 −1

 . (4.2.1)
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These matrices act as operators on a Hilbert space C2 in the fixed measurement basis

{|0⟩, |1⟩}. The Pauli operators {σx, σy, σz} generate the algebra of all linear operators

on C2, and define a 16-element multiplicative matrix group, the one-qubit Pauli group:

Π1 ≡ ⟨σX , σY , σZ⟩, (4.2.2)

The set of unitary matrices that normalize the Pauli group is known as the (one-

qubit) Clifford group,

C1 ≡
{
U ∈ L(C2) | UgU † ∀g ∈ Π1

}
. (4.2.3)

Elements of C1 act as automorphisms on Π1 via conjugation by U . The single-qubit

Clifford group C1 is generated by the Hadamard and phase quantum gates, defined in

a matrix representation as

H ≡ 1√
2

1 1

1 −1

 , P ≡

1 0

0 i

 . (4.2.4)

We can extend the action of the Pauli group and Clifford groups to multiple qubits

by composing strings of operators. These “Pauli strings” generalize local Pauli group

action to a selected qubit in an n-qubit system, e.g. the operator which acts with σZ

on only the kth qubit can be written

I1 ⊗ . . .⊗ Ik−1 ⊗ σkZ ⊗ Ik+1 ⊗ . . .⊗ In. (4.2.5)

The weight of a Pauli string refers to the number of non-identity insertions in its

tensor product representation. Eq. Eq. (6.2.4) shows a Pauli string of weight one,

and the set of all weight-one Pauli strings is sufficient to generate3 the n-qubit Pauli

group Πn.
3Constructing Pauli strings requires both a factorization of the 2n dimensional Hilbert space in

some fixed basis, as well as a chosen ordering of these factors {1, ..., n}. We choose the ordering

|a1 . . . an⟩ ≡ |a1⟩1 ⊗ . . . |an⟩n. Elements of the n-qubit Pauli group are independent of any ordering
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The construction of the Clifford group can likewise be extended to n > 1 qubits

by adding CNOT gates to the generating set. The CNOT gate Ci,j acts bi-locally on

two qubits, performing a NOT operation on the jth qubit depending on the state of

the ith qubit. In our matrix representation, we write Ci,j as

Ci,j =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, (4.2.6)

where i denotes the control bit and j the target bit. We emphasize the fact that

Ci,j ̸= Cj,i. The group Cn is then

Cn ≡ ⟨H1, ..., Hn, P1, ..., Pn, C1,2, C2,1, ..., Cn−1,n, Cn,n−1⟩. (4.2.7)

We use a similar scheme when representing local gates, where the index denotes the

qubit being acted on, e.g. H1.

In this paper, we construct a presentation for the groups C1 and C2, and analyze

subgroups which are built by restricting the generating set. A presentation specifies

a group by choosing a set of generators and fixing a set of relations among those

generators. Elements of the group are then constructed by composing generators

using the group operation, subject to the constraints set by the relations.

Every element of a multiplicative group can be written as a product of generators,

known as a word. Words which independently equate to the same group element can

be transformed into each other using relations in the presentation. In this way, unique

words composed of Clifford group generators correspond to different constructible

choice, as are elements of the n-qubit Clifford group; however, the matrix representation of specific

gates will depend on this order. We often consider groups which act on an ℓ-qubit subsystem of an

n-qubit state, fixed by a choice of ordered indices.
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stabilizer circuits. We will present our set of relations as equalities between words

built from Clifford generators.

4.2.2 Stabilizer Formalism and Reachability Graphs

For a group G ⊂ L(H) acting on a Hilbert space we define the stabilizer subgroup

Stab G(|Ψ⟩) ≤ G, for some |Ψ⟩ ∈ H, as the set of elements that leave |Ψ⟩ unchanged,

Stab G(|Ψ⟩) ≡ {g ∈ G | g|Ψ⟩ = |Ψ⟩}. (4.2.8)

That is, Stab G(|Ψ⟩) contains only the elements of G for which |Ψ⟩ is an eigenvector

with eigenvalue +1.

To make further use of this group-theoretic concept, we invoke two important

theorems [2]. First, given a finite group G and subgroup H ≤ G, Lagrange’s theorem

states that the order of H gives an integer partition of G, that is

|G| = [G : H] · |H|, ∀H ≤ G, (4.2.9)

where [G : H] denotes the index ofH in G. Subsequently the Orbit-Stabilizer theorem

says that, when considering the action of G on a set X and H = Stab G(x), the orbit

of x ∈ X under G has size

[G · x] = [G : H] =
|G|
|H|

, ∀x ∈ X. (4.2.10)

Considering the action of Πn on H, it is clear that all states are trivially stabilized

by 1. Certain states, however, are stabilized by additional elements of Πn. The n-

qubit “stabilizer states” are those which are stabilized by a subgroup of Πn of size

2n, the largest allowed size for an n-qubit state [1, 12]. In general, the set of n-qubit

stabilizer states contains

|Sn| = 2n
n−1∏
k=0

(2n−k + 1) (4.2.11)
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states [16]. The set Sn can be generated by starting with a state in the measurement

basis, typically |0⟩⊗n, and acting on that state with all elements of Cn. In this way

Sn is the orbit
[
Cn · |0⟩n

]
.

This method to generate Sn, by acting with Cn on |0⟩⊗n, lends itself to a natural

graph-theoretic description. By assigning a vertex to each state in the orbit
[
Cn · |0⟩n

]
,

and an edge to every Cn generator, the evolution of |0⟩⊗n through H generates a

discrete and finite graph. This structure, introduced in [19], is known as a reachability

graph, as we discussed further in Section 4.1 above. When the action of a proper

subgroup of Cn rather than the group itself is considered, we often use the term

“restricted graph” to describe the reachability graph.

4.3 C1 Presentation and Cayley Graph

In this section we give a presentation for the one-qubit Clifford group C1 and con-

struct its Cayley graph. We will use this understanding of C1 to build a presentation

for C2, as well as its subgroups, in Section 4.4. We demonstrate that restricting the

set of generators builds subgraphs of the C1 Cayley graph. We show that quotienting

by a global phase reduces C1 to the symmetric group S4.

The one-qubit Clifford group C1 is generated by {Hi, Pi}, whose matrix represen-

tations are given in Eq. Eq. (4.2.4). Here i ∈ {1, n} is the qubit being acted on in an

n-qubit system. Relations 4.3.1, 4.3.2, and 4.3.3 give a presentation4 for C1,

H2
i = 1, (4.3.1)

P 4
i = 1, (4.3.2)

(HiPi)
3 = (PiHi)

3 = ω, (4.3.3)

4All presentations in this paper were verified using the Magma computer algebra system [6].

Additional details and code can be found in Appendix B.
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where ω8 = 1 acts as a global phase5 for the group. Eqs. Eq. (4.3.1)–Eq. (4.3.3)

can be directly verified by examining the matrix representations in Eq. Eq. (4.2.4).

All elements of C1 act locally on qubits, and therefore cannot generate or modify

entanglement in a physical system.

A Cayley graph [9], for a group G, is built by assigning a vertex to every element

in G, and an edge for each generator of G. The structure of C1 can be visualized

in the Cayley graph shown in Figure 4.2. Edges of this C1 Cayley graph represent

Hi and Pi, while vertices indicate the 192 unique group elements. Since H2
i = 1, we

use a single undirected edge to represent Hi. Directed edges are used to represent

Pi, as P 2
i ̸= 1. In this Cayley graph representation, sequential products of group

elements exist as graph paths. Different paths which start and end on the same pair

of vertices represent products whose action on the initial element is identical. Loops

in the Cayley graph correspond to a sequence of operations which act as the identity.

When we ignore global phase, i.e. distinguish group elements only up to the factor

ω, C1 reduces to a quotient group with 24 elements. This quotient group, is isomorphic

to S4, the symmetric group of degree 4; we give its Cayley graph later in the paper,

in Figure 4.8. S4 describes the rotational symmetries of an octahedron, like the

well-known stabilizer octahedron shown in Figure 4.3.

In addition to modding by global phase, we can also construct subgroups of C1 by

restricting our set of generators. The single-generator subgroups ⟨Hi⟩ and ⟨Pi⟩ are

completely described by relations 4.3.1 and 4.3.2 respectively. The Cayley graphs of

⟨Hi⟩ and ⟨Pi⟩ are shown in Figure 4.4.

We gave a presentation for C1 generated by H and P , and introduced ω ≡ (HiPi)
3

5There exist additional relations involving Clifford gates and ω. Some notable ones which are

used in Section 4.4 include (HiPjCi,j)
6 = (HiCi,jPj)

6 = ω6.
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Figure 4.2: Cayley graph of C1, with vertices representing group elements and edges

representing the generators Hi and Pi. We use undirected edges for Hi since H2
i = 1.

The graph has 192 vertices and 384 edges, and completely encodes the C1 group

structure.

which acts as a global phase on C1. We introduced the concept of a Cayley graph,

and constructed specific Cayley graphs for C1 and its single-generator subgroups ⟨Hi⟩

and ⟨Pi⟩. We described a quotient procedure for groups, and use it to quotient C1 by

ω to recover S4. Later, we will implement this quotient by ω, as well as by stabilizer

subgroups of quantum states, to generate reachability graphs from Cayley graphs.

4.4 C2 Presentation and Cayley Graphs

In this section we give a presentation for the two-qubit Clifford group generated

by H, P, and CNOT . This presentation includes a set of operator-level relations,

which serve as a set of state-independent constraints on Clifford circuits. We use

this presentation to construct all subgroups of C2 which are generated by subsets of

{Hi, Hj, Pi, Pj, Ci,j, Cj,i}. We give the order of each C2 subgroup and show how each
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order is reduced after quotienting the group by ω. For several examples we explicitly

build up each element of a subgroup to demonstrate how our relations constrain

combinations of Clifford operators.

Every group can be represented by a Cayley graph, which we build for all C2

subgroups. Since Cayley graphs are state-independent structures, we can use them

to study Clifford orbits of arbitrary quantum states. We compute the graph diameter

for each C2 subgroup Cayley graph, both before and after quotienting by ω. We display

the Cayley graphs for several example subgroups and highlight group relations that

can be visualized as graph paths. In later sections, we will use the quotient procedure

outlined here to construct reachability graphs as quotient spaces of Cayley graphs.

4.4.1 C2 Presentation

The two-qubit Clifford group C2 is generated by the set {Hi, Hj, Pi, Pj, Ci,j, Cj,i}

which consists of the local Hadamard and phase gates, as well as the bi-local CNOT

|0⟩

|1⟩

|+⟩ |−⟩
|i⟩

|−i⟩

Figure 4.3: The stabilizer octahedron, with 6 single-qubit stabilizer states at the

corners, is often shown embedded in the Bloch sphere. The group C1, after quotienting

by ω, gives the 24 orientation-preserving maps of this octahedron to itself.
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Figure 4.4: The Cayley graphs for C1 subgroups ⟨Hi⟩ and ⟨Pi⟩.

gate. Relations 4.4.1-4.4.10, in addition to the C1 relations 4.3.1-4.3.3, give a presen-

tation for C2:

C2
i,j = 1, (4.4.1)

P−1
i PjPi = Pj, (4.4.2)

H−1
i HjHi = Hj, (4.4.3)

P−1
i HjPi = Hj, (4.4.4)

Ci,jHjCi,jPjCi,jP
3
j Hj = Pi, (4.4.5)

HiHjCj,iHiHj = Ci,j, (4.4.6)

(Ci,jPj)
4 = P 2

i , (4.4.7)

C−1
i,j Cj,iCi,j = C−1

j,i Ci,jCj,i, (4.4.8)

P 3
i Ci,jPi = Ci,j, (4.4.9)

(Ci,jHj)
4 = P 2

i . (4.4.10)

The relations 4.4.8–4.4.10, along with H2
i = 1 and P 4

i = 1, can be removed to furnish

a more minimal presentation6 using only relations 4.4.1–4.4.7. We have nevertheless
6We additionally note that C2 can be minimally generated from the set {Hi, Hj , Pi, Cj,i}, as can

be seen from relations 4.4.5 and 4.4.6.
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retained a number of non-minimal relations as they provide insight into the structure

of C2 and will be useful for constructing subgroups in the following subsection.

Every relation in Eqs. Eq. (4.4.1)–Eq. (4.4.10) is a cycle in the Cayley graph of C2.

We especially note relation 4.4.10, (Ci,jHj)
4 = P 2

i , which allows us to build a phase

operation using only Hadamard and CNOT. Since P 2
i cannot modify entanglement,

neither can the sequence (Ci,jHj)
4. This relation is critical for demonstrating entropy

bounds on reachability graphs in [18]. Relation Eq. (4.4.10) is derived explicitly in

B.0.4.

While our presentation for C2 does not depend on the choice of qubits 1 and 2,

and describes the action of C2 on an n-qubit system, it is not a presentation for Cn

when n > 2. A presentation for Cn requires additional generators for each increase

in qubit number. One can, however, generalize our C2 presentation to a presentation

for C3 by adding only four relations. Each of these four new relations pertain only

to Hadamard and CNOT gates, and no new phase gate relations are needed. The

additional relations can be found in [24], where alternative presentations7 for C1, C2,

and C3 are studied using Clifford circuit normal forms.

4.4.2 C2 Subgroups

We now give a complete description of all C2 subgroups built by restricting the

generating set. First, we list all such subgroups, as well as their group and Cayley

graph properties, in Table 4.1. We directly construct several subgroups as examples

that highlight how our relations constrain strings of Clifford gates at the operator

level. We will use these state-independent relations in Section 4.5 to build reachability

graphs for non-stabilizer quantum states, and further in [18] to bound entanglement
7The presentation in [24] is given with generators Hi, Pi, and CZi,j , and offers a different set of

relations. Additionally, CZi,j = CZj,i while Ci,j ̸= Cj,i.
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entropy.

We can construct subgroups of C2 by restricting our set of generators to subsets

of {Hi, Hj, Pi, Pj, Ci,j, Cj,i}. One simple case is the subgroup C1, generated by only

{Hi, Pi} and discussed in Section 4.3. Table 4.1 gives a list of all subgroups con-

structed in this way. The Table gives the order of each subgroup, as well as the graph

diameter (the maximum over all minimum distances between vertices) of the Cay-

ley graph for each subgroup. Since each subgroup below is isomorphic under qubit

exchange, we only list one example for each generating set. Subgroups in bold are

explicitly constructed in the following text.

Some subgroups have the same order and are isomorphic, e.g. ⟨H1⟩ ∼= ⟨C1,2⟩ and

⟨H1, P1⟩ ∼= ⟨P1, C1,2⟩. Other subgroups have the same order, but are not isomorphic;

for example, subgroups ⟨P1, P2⟩, ⟨H1, C1,2⟩, and ⟨H1, C2,1⟩ all have order 16, but

⟨P1, P2⟩ ≇ ⟨H1, C1,2⟩ ∼= ⟨H1, C2,1⟩. Even when generated groups are isomorphic, as

is the case for subgroups ⟨H1, H2, C1,2⟩, ⟨H1, C1,2, C2,1⟩, and ⟨H1, H2, C1,2, C2,1⟩, we

emphasize that they may not have isomorphic Cayley graphs, since the Cayley graph

depends on not just the group but a choice of generators: here, none of the three

descriptions do.
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Subgroup ⟨H1, H2, C1,2⟩, which contains the same elements as ⟨H1, C1,2, C2,1⟩

and ⟨H1, H2, C1,2, C2,1⟩, has the Cayley graph of largest diameter. Adding C2,1 to

the set ⟨H1, H2, C1,2⟩ generates no new group elements, and instead lowers the graph

diameter by introducing additional edges between the set of vertices. Adding P1 to

the set ⟨H1, H2, C1,2⟩ does generate additional elements—in fact ⟨H1, H2, P1, C1,2⟩

generates all of C2—but also lowers the Cayley graph diameter by adding additional

edges.

We now discuss in depth how several subgroups are constructed, offering an ex-

planation for order of each group seen in Table 4.1. An extended version of Table

4.1, containing the relations needed to present each subgroup, is given in Appendix

B. Additional Cayley graph illustrations are given in Appendix B.

Single-Generator Subgroups: The C2 subgroups generated by a single Clifford

element, i.e. ⟨Hi⟩, ⟨Pi⟩, and ⟨Ci,j⟩, are completely described by Eqs. Eq. (4.3.1),

Eq. (4.3.2), and Eq. (4.4.1) respectively. Groups ⟨Hi⟩ and ⟨Pi⟩ were discussed in

Section 4.3, and their Cayley graphs shown in Figure 4.4. At two qubits we have the

possibility of bi-local gates, such as Ci,j. Since C2
i,j = 1, as shown by Eq. Eq. (4.4.1),

the group ⟨Ci,j⟩ is isomorphic to ⟨Hi⟩.

Subgroups ⟨Hi, Hj⟩ and ⟨Ci,j, Cj,i⟩: The subgroup generated by {Hi, Hj} is com-

pletely described by Eqs. Eq. (4.3.1) and Eq. (4.4.3). Since Hi and Hj commute for

i ̸= j, the group ⟨Hi, Hj⟩ has only 4 elements, and its structure can be easily under-

stood by examining the left image of Figure 4.5. Similarly, the subgroup ⟨Ci,j, Cj,i⟩

is described by Eqs. Eq. (4.4.1) and Eq. (4.4.8). The elements Ci,j and Cj,i do not

commute, but instead form the hexagonal structure to the right of Figure 4.5.
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Figure 4.5: Cayley graphs for subgroups ⟨H1, H2⟩ and ⟨C1,2, C2,1⟩ arrange into square

and hexagonal structures respectively. All edges in these figures are undirected since

both H and C are their own inverse.

Subgroup ⟨H1, P2, C2,1⟩: The subgroup generated by {H1, P2, C2,1} can be pre-

sented using Eqs. Eq. (4.3.1), Eq. (4.3.2), Eq. (4.3.3), Eq. (4.4.1), Eq. (4.4.4),

Eq. (4.4.9), and Eq. (4.4.10). Since P2 commutes with both H1 and C2,1, all P2

in a word can be pushed completely to one end, such that they occur either before

or after all H1 and C2,1 operations. In this way, the elements of ⟨H1, P2, C2,1⟩ can be

constructed as products of some element from ⟨H1, C2,1⟩ with an element from the set

{1, P2, P
2
2 , P

3
2 }. Initially, this generates 16×4 = 64 words, however Eq. Eq. (4.4.10)

demonstrates how P 2
2 can be built from H1 and C2,1. Therefore, all words containing

P 2
2 or P 3

2 can be reduced to a shorter sequence, and the order ⟨H1, P2, C2,1⟩ becomes

32.

Subgroup ⟨P2, C1,2⟩: The subgroup generated by {P2, C1,2} can be built using

Eqs. Eq. (4.3.2), Eq. (4.4.1), and Eq. (4.4.7). Figure 4.6 shows the Cayley graph for

⟨P2, C1,2⟩. We construct this subgroup by building words of alternating C1,2 and p,
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where

p ∈ {1, P2, P
2
2 , P

3
2 }. (4.4.11)

For clarity, we introduce the notation p ∈ {P2, P
2
2 , P

3
2 }. We generate all words

containing up to 2 CNOT operations, since the relation

Ci,jPjCi,jPj = PjCi,jPjCi,j, (4.4.12)

derived in Eq. Eq. (B.0.1), allows words with 3 or more C1,2 operations to be written

as duplicates of words containing fewer C1,2 operations.

1. For words containing 0 C1,2 operations, we have only the set p, containing 4

unique elements.

2. Words containing a 1 C1,2 operation have the form pC1,2p, with full choice of p

on either side of C1,2, giving 4× 4 = 16 possible new elements.

3. Words containing 2 or more C1,2 operations must alternate C1,2 and p operations,

or could otherwise be reduced by (C1,2)
2 = 1. Thus all 2 C1,2 words have the

form C1,2pC1,2p (note that we never include 1 between C1,2 operations as it could

be carried through a C1,2 to collapse the C1,2 pair). We apply Eq. Eq. (4.4.12)

to any word of the form pC1,2pC1,2p to move all p operations as far to the right

as possible. In this way, we generate 3× 4 = 12 new elements.

The above construction explicitly generates the 4+16+12 = 32 elements of ⟨C1,2, P2⟩,

each having one of the forms {p, pCp, CpCp}.

Subgroup ⟨H1, P2, C1,2⟩: The subgroup generated by {H1, P2, C1,2} can be built

using Eqs. Eq. (4.3.1)–Eq. (4.3.3), Eq. (4.4.1), Eq. (4.4.2), Eq. (4.4.4), Eq. (4.4.5),

Eq. (4.4.6), Eq. (4.4.8), Eq. (4.4.9), and Eq. (4.4.10). We will also use

(C1,2H1P
2
2 )

2 = (P 2
2H1C1,2)

2, (4.4.13)
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Figure 4.6: Cayley graph of ⟨P2, C1,2⟩ subgroup, which is useful for visualizing rela-

tions such as Ci,jPjCi,jPj = PjCi,jPjCi,j, highlighted in green.

which can be derived from the relations Eq. (4.4.1)–Eq. (4.4.10).

As with ⟨P2, C1,2⟩, we construct ⟨H1, P2, C1,2⟩ by building words of alternating H1

and one element from {P2, C1,2}, since (H1)
2 = 1. We only need to construct all words

containing up to 5 H1 operations, since words with 6 H1 operations can be reduced

using (H1C1,2)
8 = 1 or (H1C1,2P2)

6 = (P2H1C1,2)
6 = ω6. The full construction of

⟨H1, P2, C1,2⟩ is given in Appendix B.

Appending H2 to the generating set {H1, P2, C1,2} results in a factor of 10 more

elements, giving the full group C2. Adding more generators to {H1, H2, P2, C1,2}

does not add more group elements, and instead lowers the graph diameter. In fact,

the set {H1, H2, P2, C1,2} is a minimal generating set8 for C2 with the generators

{H1, H2, P1, P2, C1,2, C2,1}.
8There exist generating sets for C2 with fewer elements which involve composite Clifford opera-

tions e.g. the set {H1P1, H2P2, C1,2}.
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Subgroup ⟨H1, H2, C1,2, C2,1⟩: The group generated by {H1, H2, C1,2, C2,1} can

be understood from Eqs. Eq. (4.3.1), Eq. (4.3.2), Eq. (4.3.3), Eq. (4.4.1), Eq. (4.4.8),

and Eq. (4.4.10). We additionally make use of the identity,

Cj,iCi,jCj,iHiCj,iCi,jCj,i = Hj, (4.4.14)

which transforms a Hadamard using a sequence of CNOT operations. Initially, we

might assume this group is the direct product9 of ⟨H1, C1,2⟩ and ⟨H2, C2,1⟩, thereby

having 256 elements. However, Eq. Eq. (4.4.10) importantly demonstrates how a

sequence of H and C operations can create P 2
i . This generates a factor of 9 more

elements, for a total of 2304. Furthermore, since Eq. Eq. (4.4.6) offers a way to

construct C2,1 as the product of H1, H2, and C1,2, the subgroup ⟨H1, H2, C1,2, C2,1⟩

can be minimally generated from sets {Hi, Hj, Ci,j} or {Hi, Ci,j, Cj,i}. Figure 4.7

shows the Cayley graph for ⟨H1, H2, C1,2, C2,1⟩.

Through building this presentation and constructing subgroups in detail, we have

developed a functional understanding of C2. We identified a collection of Clifford

group relations which are independent of the state set being acted on. This state-

independent description will allow us to extend an analysis beyond the set of stabilizer

states, and to explore action of the Clifford group on arbitrary quantum states. By

systematically constructing all words in a subgroup, we were able to highlight exactly

how our relations transform Clifford strings. We found additional relations, such as

Ci,jPjCi,jPj = PjCi,jPjCi,j and Cj,iCi,jCj,iHiCj,iCi,jCj,i = Hj, which are not included

in our presentation, but can be derived from relations Eq. (4.4.1)–Eq. (4.4.10). These

auxiliary relations proved useful for understanding why certain sequences of Clifford

gates are non-trivially equivalent to others, as well as how entanglement entropy

evolves through Clifford circuits.
9While ⟨H1, H2, C1,2, C2,1⟩ is not a direct product, one example which is a direct product is

⟨H1, H2, P1, P2⟩ = ⟨H1, P1⟩ × ⟨H2, P2⟩, which has 1922/8 = 4608 elements.
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Figure 4.7: The Cayley graph for C2 subgroup ⟨H1, H2, C1,2, C2,1⟩. This graph has

2304 vertices, and displays the orbit of an arbitrary quantum state under the action

of ⟨H1, H2, C1,2, C2,1⟩.

Constructing the Cayley graph for each subgroup further illustrated the structure

of C2 and its subgroups. These graphs enabled us to visualize the operator rela-

tions that were used to build each subgroup. Computing the Cayley graph diameter,

and observing its change after adding generators or quotienting by ω, offered addi-

tional intuition for C2 subgroup connectivity. These Cayley graphs will constitute a

state-independent starting point for constructing reachability graphs in the following

section. By considering quotient spaces of this purely group-theoretic structure, we

are able to analyze the orbit of arbitrary quantum states under a selected gate set.

Furthermore, by understanding how this quotient protocol modifies a Cayley graph

we are able to build alternative graphs that can track and bound the evolution of

certain system properties, such as entanglement entropy [18].
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4.5 Reachability Graphs as Cayley Graph Quotients

We now generalize the notion of reachability graphs by constructing them as

quotient spaces of Cayley graphs. We define equivalence classes on group elements by

their congruent action on a chosen state. We demonstrate how identifying vertices in

a Cayley graph collapses its structure to a state reachability graph. Starting with the

state-independent Cayley graph, we are able to strictly bound the orbits for different

states under select sets of gates.

In each example below, we first quotient the Cayley graph by global phase, then

by the stabilizer subgroup for a chosen state. We explicitly compute quotients of C1

and C2 which yield familiar reachability graphs for one and two qubit stabilizer states.

Restricting to the subgroup ⟨H1, H2, C1,2, C2,1⟩◁C2, which we denote (HC)1,2 going

forward, we recover the reachability graphs studied in [19].

By adding P1 and P2 to the set {H1, H2, C1,2, C2,1}, we consider the full action of

C2. We observe how the addition of these two phase gates ties disconnected (HC)1,2

subgraphs together. Finally we apply our generalized understanding of C2 operators

to extend beyond the set of stabilizer states, and generate (HC)1,2 orbits for non-

stabilizer states.

4.5.1 Quotient by Global Phase

In this section, we define a procedure to quotient10 by elements which act as a

phase on the group. When building reachability graphs from Cayley graphs we always

quotient first by the group element ω = (H1P1)
3, as in Eq. Eq. (4.3.3), since quantum

10Formally we are building the map Q : G→ G/N , which takes elements of a group G into a set

of equivalence classes G/N . The set of equivalence classes is fixed by choice of congruence relation,

e.g. congruence up to action by ωn.
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states can only be operationally distinguished up to global phase. Accordingly, all

quotient groupsG/H we construct going forward are quotients by the product ⟨ω⟩×H.

We begin by explicitly building the quotient of C1/⟨ω⟩. As discussed in Section 4.3,

the group C1 is generated by {H1, P1} and contains 192 elements. When quotienting

by ω, we identify together all elements of C1 that are equivalent up to powers of ω.

For g1, g2 ∈ C1,

g1 ≡ g2 if g1 = ωnmod8g2. (4.5.1)

This identification defines the normal subgroup ⟨ω⟩◁ C1, where

⟨ω⟩ ≡ {1, ω, ω2, ω3, ω4, ω5, ω6, ω7}, (4.5.2)

and allows us to construct the quotient group C̄1 ≡ C1/⟨ω⟩.

The quotient C̄1 consists of 24 equivalence classes of 8 elements each. This is a

factor of 8 reduction in group order, from 192 to 24, as shown in the {H1, P1} row

of Table 4.1. All elements of each class are equivalent up to powers of ω. The 24

equivalence classes can be represented by elements of the form

{p, pH1p, H1P
2
1H1p}, (4.5.3)

where p ∈ {1, P1, P
2
1 , P

3
1 } as defined in Eq. Eq. (4.4.11).

Quotienting C1 by ⟨ω⟩ likewise modifies the C1 Cayley graph by gluing together all

vertices that represent operators in the same equivalence class. Figure 4.8 shows the

Cayley graph of C1 before and after modding out by ω. Each vertex in the C̄1 graph

represents 8 elements of C1, collapsing the 192 vertices of the C1 Cayley graph down

to 24. Every H1 edge in the contracted graph represents the 8 operators ωnH1, and

similarly for P1.

We have described a procedure for quotienting by ω, which acts as a global phase.

In the following sections, we will first quotient by ω when constructing reachability
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Figure 4.8: Cayley graph of C1 before and after quotienting by ω. The 192 vertices

in the C1 Cayley graph collapse to 24 vertices in the C̄1 quotient graph. Every edge

in the quotient graph represents the 8 edges ωnH1 and ωnP1. One set of 8 vertices,

which are identified to a single vertex under this quotient, is highlighted in green.

graphs. Quotienting a group by ω contracts the Cayley graph, by identifying vertices

which represent elements equivalent up to ω. As we highlight below, a similar graph

contraction will yield reachability graphs as Cayley graph quotients, which we will

highlight further in the following sections.

4.5.2 Quotient by Stabilizer Subgroup

In this section we show how to quotient a group by the stabilizer subgroup of a

chosen state, and how to construct the state’s reachability graph as a quotient space

of the group Cayley graph. While Cayley graphs offer a state-independent description

of a group, the orbit of a particular state under that group action is state-dependent.

Our quotient procedure defines the collapse of a group Cayley graph into a subgraph

which gives the reachability graph for a chosen state.

A state’s reachability graph displays the evolution of that state under some chosen

set of quantum gates. Since we are deriving each reachability graph from the Cayley
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graph of a group, this procedure can be applied to any11 chosen quantum state on

which the group acts.

The general procedure is to identify a group G which acts on a Hilbert space H,

as well as a choice of generators for G. We first quotient G by the global phase12

ω, giving the quotient group Ḡ = G/⟨ω⟩. Each element of Ḡ is isomorphic to the

equivalence class ωng ∈ G, for some g ∈ G. We then identify a state |ψ⟩ ∈ H, which

selects the stabilizer subgroup Stab Ḡ(|ψ⟩) that we will use to quotient Ḡ. Since

Stab Ḡ(|ψ⟩) is a normal subgroup, we can generate the quotient group Ḡ/ Stab Ḡ(|ψ⟩)

by computing all cosets

g · Stab Ḡ(|ψ⟩) ∀g ∈ Ḡ. (4.5.4)

Constructing the quotient group above again generates a set of equivalence classes

on G, with elements of each class congruent in their action on |ψ⟩. To map ele-

ments between different equivalence classes we define the function f : Stab Ḡ(|ψ⟩)→

Stab Ḡ(|ϕ⟩), where

f(g) = hg−1, ∀ g ∈ G|ψ⟩, h ∈ G|ϕ⟩. (4.5.5)

For example, to transform P1 ∈ Stab C̄2(|00⟩) to H1P
2
1H2P

2
2 ∈ Stab C̄2(|GHZ⟩2) we

apply the sequence H1P
2
1H2P

2
2P

−1
1 .

As an illustration of this procedure, we construct the quotient of C1 by ⟨ω⟩ ×

Stab C1(|0⟩). We first build the quotient group C̄1 = C1/⟨ω⟩ as detailed in Section

4.5.1. We then identify the stabilizer group Stab C1(|0⟩)◁ C̄1, which comprises the 4

elements that stabilize |0⟩, i.e.

Stab C1(|0⟩) = {1, P1, P
2
1 , P

3
1 }. (4.5.6)

11We do require that the state should be thought of as a state on n qubits, i.e. with a fixed

factorization in a fixed 2n-dimensional Hilbert space.
12For the general G, ω can be any element that acts as a root of unity times the identity operator.

For the Clifford subgroups we study here, ω will be an eighth root of unity.
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Quotienting C̄1 by Stab C1(|0⟩) then gives a set of 6 equivalence classes, with a repre-

sentative element from each class being

{1, pH1, H1P
2
1H1}, (4.5.7)

with p ∈ {1, P1, P
2
1 , P

3
1 } as before. The elements of each equivalence class are iden-

tified by multiplying each representative in Eq. Eq. (4.5.7) by the 4 elements of

Stab C1(|0⟩).

We build the graph corresponding to C̄1/ Stab C1(|0⟩) by assigning a vertex to each

of the 6 equivalence classes. Figure 4.9 shows the C1 Cayley graph before and after

modding by ⟨ω⟩× Stab C1(|0⟩). The 192-vertex C1 Cayley graph is reduced to a graph

with 6 vertices, which is isomorphic to the complete reachability graph for single-qubit

stabilizer states.

Out[ ]=
H1

P1

|0⟩ ↘

↖ |−i⟩

Figure 4.9: Quotient of C1 by Stab C1(|0⟩), the stabilizer subgroup of |0⟩. The C1

Cayley graph on the left collapses to a 6-vertex reachability graph on the right.

Four green vertices identify to a single vertex representing the equivalence class of

Stab C1(|0⟩), while four red vertices likewise identify to a vertex for Stab C1(|−i⟩).

We have demonstrated a procedure for quotienting Clifford groups and subgroups

by the stabilizer subgroup of a quantum state. We illustrated how Cayley graphs

are contracted to state reachability graphs under this quotient. We will now use this
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protocol to explore subgroups of C2.

4.5.3 Stabilizer Restricted Graphs from ⟨Hi, Hj, Ci,j, Cj,i⟩ Quotients

In [19] we constructed and analyzed reachability graphs under the action of C2

subgroups. We termed these restricted graphs, and focused on the subgroup

(HC)1,2 ≡ ⟨H1, H2, C1,2, C2,1⟩. Since entanglement entropy among stabilizer states

is modified by, at most, bi-local action, this subgroup gives useful insight into stabi-

lizer entanglement. We now generalize the construction of restricted graphs in [19] by

constructing the reachability graphs as quotient spaces of Cayley graphs. We specifi-

cally reproduce all (HC)1,2 restricted graphs that arise for stabilizer states, then use

our model to explore the orbit of non-stabilizer states as well.

The quotiented Cayley graphs we construct, in addition to representing a partic-

ular quotient group, are isomorphic to state reachability graphs. As defined in [19],

the vertices of reachability graphs represent states in a Hilbert space, while edges

represent gates acting which transform these states. Vertices in the quotient space

of a Cayley graph represent equivalence classes of group elements, defined by their

orbit with respect to a chosen subgroup, while edges represent sets of generators.

Going forward, we refer to Cayley graph quotients as reachability graphs and note

the distinction when necessary.

All stabilizer states can reached by acting on |0⟩⊗n with Cn. Acting on |0⟩⊗n

with the subgroup (HC)1,2 generates 24 stabilizer states, including all measurement

states of the computational basis. Every state in the orbit of |0⟩⊗n is stabilized by 48

elements of (HC)1,2.

Figure 4.10 shows the (HC)1,2 Cayley graph after quotienting by the stabilizer

subgroup for |0⟩⊗n, specifically for the 2-qubit example |00⟩. Since the stabilizer

subgroup is preserved when tensoring on additional qubits to the system, this 24-
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vertex graph likewise displays the orbit for any product of |00⟩ with any (n−2)-qubit

state. Each vertex in Figure 4.10 represents the stabilizer subgroup for one state in

the orbit of |00⟩ under (HC)1,2.

Out[ ]=
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C1,2

C2,1

↙ |00⟩

↖ |GHZ⟩2

Figure 4.10: Quotient space of (HC)1,2 Cayley graph after modding out by the sta-

bilizer subgroup of |00⟩. The equivalence class of Stab (HC)1,2(|00⟩) is highlighted in

red, while the equivalence class of Stab (HC)1,2(|GHZ⟩2) is highlighted in green.

In general any product state, as well as states with no entanglement between the

first two qubits and the other n− 2, will have either the 24-vertex reachability graph

in Figure 4.10 or the 36-vertex reachability graph, also defined in [19], that appears

below in Figure 4.14.

For additional entangled states which arise at higher qubit number, new reachabil-

ity graph structures appear when acting with (HC)1,2. Figure 4.11 shows a quotient

space of the (HC)1,2 Cayley graph after modding out by the stabilizer subgroup for

|GHZ⟩3 ≡ |000⟩+ |111⟩. The orbit of |GHZ⟩3 under (HC)1,2 reaches 144 states, each

of which is stabilized by 8 elements of (HC)1,2.

Also at three qubits, there exist stabilizer states which are stabilized by only 4

elements of (HC)1,2. In Section 4 of [19], we defined a lifting procedure which allows

us to find an example state in each stabilizer reachability graph. To identify a state

that is stabilized by 4 elements of (HC)1,2, we act with C3,2 on the product state

|i⟩ ⊗ |1⟩ ⊗ |+⟩. The resultant state |010⟩+ i|011⟩+ |100⟩+ i|101⟩ is stabilized by the

elements

{1, H2(C1,2H1)
4, (C1,2H1)

4H2,
(
(C1,2H1)

3C1,2H2

)2}. (4.5.8)
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Figure 4.11: Quotient of (HC)1,2 Cayley graph after modding by stabilizer subgroup

for |GHZ⟩3. Red vertex gives the equivalence class of (HC)1,2 elements that stabilize

|GHZ⟩3.

Figure 4.12 shows the quotient space of (HC)1,2 after modding out by the stabilizer

subgroup for C3,2|i1+⟩ ≡ |010⟩+ i|011⟩+ |100⟩+ i|101⟩.

Finally, there are stabilizer states which are only stabilized by 1 in (HC)1,2. Fig-

ure 4.13 illustrates the 1152-vertex reachability graph for such states. This graph

represents the largest possible orbit of any quantum state under (HC)1,2, since all

states are trivially stabilized by 1. Figure 4.13 is first observed at four qubits.

By taking quotients of the (HC)1,2 Cayley graph, we have reproduced all stabilizer

reachability graphs found in [19] under the action of this subgroup. We demonstrated

that the largest such subgraph contains 1152 vertices, by representing the orbit of

states which are stabilized by only the identity in (HC)1,2, in agreement with [19]. In

the following subsection we add P1 and P2 back into our generating set, and study the
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Figure 4.12: Orbit of stabilizer states which are stabilized by 4 elements of (HC)1,2.

This graph has different topology from the 288-vertex graph in Figure 4.17. Elements

of (HC)1,2 that stabilize C3,2|i1+⟩ ≡ |010⟩ + i|011⟩ + |100⟩ + i|101⟩ are represented

by the red vertex.

action of the full group C2. We will show how the addition of these two phase gates

does not generate any additional graphs, but instead connects the existent structures

studied above. We also discover new reachability graphs which arise from quotienting

(HC)1,2 by stabilizer subgroups of non-stabilizer states.

4.5.4 Full C2 Action

Adding P1 and P2 to the set {H1, H2, C1,2, C2,1} generates the full group C2,

which contains 92160 elements. The Cayley graph for C2 after quotienting by ⟨ω⟩ will

accordingly have 11520 vertices, as seen in the last four lines of Table 4.1. Similarly

the reachability graph for any n-qubit state stabilized by only 1 in C2 will have 11520
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Figure 4.13: Orbit for states stabilized by only 1 in (HC)1,2. This 1152-vertex graph

gives the orbit of a generic quantum state under action of (HC)1,2.

vertices. By first considering the action of ⟨H1, H2, C1,2, C2,1⟩ on a set of states,

followed by the action of P1 and P2, we observe how the reachability graphs from

Section 4.5.3 are connected.

To illustrate how phase gates tie ⟨H1, H2, C1,2, C2,1⟩ reachability graphs together,

we first consider the orbit of |0⟩⊗n shown in Figure 4.10. Acting with P1 and P2 on

all states in this orbit connects the 24-vertex reachability graph to a 36-vertex graph,

as in Figure 4.14. These two graphs combine to give the orbit of any pure state under

the action of C2, as well as any state13 with only entanglement among its first two

qubits. In both Figure 4.14 and Figure 6.9 we have removed all “trivial loops”, that
13Figure 4.14 actually shows the orbit of any n-qubit state with no entanglement between one

pair of qubits and the remaining n− 2 qubits, since qubits 1 and 2 can be exchanged, without loss

of generality, with any qubits in both the state and the Clifford subgroup.

142



is all edges which map a vertex back to itself, as these loops represent a stabilizing

action on the vertex.

Out[ ]=
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↙ |00⟩⊗n

Figure 4.14: Acting with P1 and P2 on all states in the (HC)1,2 orbit of |00⟩⊗ |ψ⟩n−2

connects the 24-vertex reachability graph from Figure 4.10 to a graph of 36 vertices.

Together these two graphs show the C2 orbit of any product state, and all states with

no entanglement between the first two qubits and the remaining n− 2 qubits.

Similarly at higher qubit number, phase gates on the first two qubits tie together

the larger ⟨H1, H2, C1,2, C2,1⟩ reachability graphs. Acting with P1 and P2 on states

in the stabilizer 288-vertex graph, seen in Figure 4.12, will sometimes act trivially,

sometimes map the state to another in the 288-vertex graph, and sometimes map

it to one of three 144-vertex graphs. Figure 6.9 depicts how these four graphs are

connected via phase operations, where again trivial loops have been removed.

The largest reachability graph under the action of (HC)1,2 contains 1152 vertices,

and is depicted in Figure 4.13. This reachability graph, which we term g1152, gives

the orbit of states which are stabilized by only the identity in (HC)1,2. Acting with

P1 and P2 on every state in g1152 either connects the 1152-vertex graph to itself, or

maps to one of its 9 isomorphic copies. Figure 4.16 shows how these 10 copies of

g1152 are symmetrically attached via phase operations. Upon acting with P1 and P2
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Figure 4.15: Three copies of the 144-vertex reachability graph in Figure 4.11 connect

to a single copy of the 288-vertex graph in Figure 4.12, after acting with P1 and P2.

the resulting structure forms a completely-connected graph of 10 vertices, where each

vertex actually represents a g1152 graph.

We have examined the full action of C2 by acting with P1 and P2 on states in

(HC)1,2 orbits. We demonstrated how the addition of these two phase gates ties

together the (HC)1,2 reachability graphs shown in Section 4.5.3. Specifically we

observed how the 24-vertex reachability graph in Figure 4.10 connects to another

graph of 36 vertices. Meanwhile, three copies of the 144-vertex graph in Figure 4.11

connect to a single copy of the 288-vertex graph in Figure 4.12. Finally, the largest

1152-vertex reachability graph connects to 9 isomorphic copies of itself under the

action of P1 and P2. In the following section, we move beyond the set of stabilizer

states and consider the action of ⟨H1, H2, C1,2, C2,1⟩ on some notable non-stabilizer
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Figure 4.16: Acting P1 and P2 on states in g1152 attaches the graph to 9 isomorphic

copies of itself, forming a completely-connected 10-vertex graph. Each vertex rep-

resents one copy of g1152 (Figure 4.13) and every edge is a set of phase gates which

connect g1152 graphs.

states.

4.5.5 Non-Stabilizer Quotients

Our state-independent description of the Clifford group allows us to examine the

action of Cn on states which are not stabilizer states. For a quantum information

theorist, the term “stabilizer states” typically refers to the set of n-qubit quantum

states which are stabilized by a 2n-element subset of the Pauli group. There exist,

however, states which are not stabilizer states, but are stabilized by additional Clifford

group elements besides 1. These states likewise admit reachability graphs through our

quotient procedure, and their graph properties reflect their distinction from the set of

stabilizer states. Below we give a few examples of reachability graphs for notable non-

stabilizer states, under the action of ⟨H1, H2, C1,2, C2,1⟩, and contrast their structure

with the stabilizer state graphs.
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The n-qubitW -state holds particular interest as a highly-entangled, non-biseparable

quantum state [11, 23]. Defined as

|W ⟩n ≡
(
|100...00⟩+ |010...00⟩+ ...+ |000...01⟩

)
, (4.5.9)

|W ⟩n is famously not a stabilizer state when n ≥ 3. However, |W ⟩n is stabilized by

more than just 1 in Cn. Even considering just the action of (HC)1,2, |W ⟩n is stabilized

by the four elements

{1, H2C1,2H2, H1C1,2H2C2,1, H2C1,2C2,1C1,2H1}. (4.5.10)

Figure 4.17 shows the orbit of |W ⟩n under the action of (HC)1,2. The stabilizer

subgroup of |W ⟩n, in Eq. Eq. (4.5.10), is isomorphic to all other stabilizer subgroups

in the orbit seen in Figure 4.17. The stabilizer group of |W ⟩n is not, however, iso-

morphic to any subgroup in the orbit of the stabilizer state group in Eq. Eq. (6.4.4).

Consequently, while the reachability graph of |W ⟩n under (HC)1,2 contains 288 ver-

tices, its structure is distinctly different from the stabilizer state graph seen in Figure

4.12.

Another notable set of non-stabilizer states are the n-qubit Dicke states [10, 5].

Dicke states are equal superpositions of n-qubit basis states with Hamming weight k,

defined

|Dn
k ⟩ ≡

(
n

k

)−1/2 ∑
b∈{0,1}n, h(b)=k

|b⟩, (4.5.11)

where h(b) is the standard Hamming weight for binary stings.

While |Dn
k ⟩ is not a stabilizer state14 for all n ̸= k and n > 2, every |Dn

k ⟩ is

stabilized by more than 1 in (HC)1,2. States |Dn
k ⟩ where 1 < k < n− 1 are stabilized

by exactly two elements of (HC)1,2, namely

{1, H2C1,2C2,1C1,2H1}. (4.5.12)
14The state |Dn

n⟩ = |1⟩
⊗n is a stabilizer state and its reachability graph is given in Figure 4.10.

Additionally, states |Dn
1 ⟩ = |W ⟩n and |Dn

n−1⟩ have reachability graphs as shown in Figure 4.17.
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Out[ ]=

H1

H2

C1,2

C2,1

↙ |W ⟩3

Figure 4.17: Quotient space of (HC)1,2 Cayley graph after modding by |W ⟩n stabilizer

subgroup. This reachability graph is not isomorphic to the 288-vertex subgraph seen

for stabilizer states in Figure 4.12.

Figure 4.18 shows an example reachability graph for the state |D4
2⟩. Since |D4

2⟩

is only stabilized by the two elements in Eq. Eq. (4.5.12), its orbit under (HC)1,2

reaches 576 states. Graphs with 576 vertices are never observed among stabilizer

states at any qubit number.

We have displayed the orbits of non-stabilizer states under the action of (HC)1,2,

specifically for certain states which are stabilized by more than just the identity. We

observed reachability graphs with vertex count not seen among the set of stabilizer

states. Additionally, we identified graphs with vertex count shared with stabilizer

states, but possessing a different topology. The orbits of Dicke states and their

entanglement properties are studied in detail in [22].
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Out[ ]=

H1

H2

C1,2

C2,1

|D4
2⟩ →

Figure 4.18: Quotient space of (HC)1,2 Cayley graph after modding by the stabilizer

subgroup of |Dn
k ⟩, where 1 < k < n−1. This reachability graph contains 576 vertices,

an orbit size not observed among the set of stabilizer states.

4.6 Discussion

In this work we have presented a generalized construction for reachability graphs,

defining them as quotient spaces of Cayley graphs. We began by constructing a

presentation for C1 and C2, which we used to highlight the non-trivial relations among

Clifford group elements. These relations allowed us to understand the structure of

C1 and C2, and to explicitly construct all subgroups built from a restricted set of

generators. Our operator-level, state-independent construction allowed us to obtain

constraints on the evolution of any state through Clifford circuits.

Extending our construction to higher qubit Clifford groups would require the

definition of new relations with each increase in qubit number. Intriguingly, extending

our presentation for C2 to a presentation for C3 only requires the addition of 4 relations
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[24], none of which involve the phase gate.

After building their presentations, we studied the Cayley graphs for C1 and C2, as

well as for all C2 subgroups generated by a subset of Hadamard, phase, and CNOT

gates. Our protocol contracts the Cayley graph, yielding a quotient graph that is

isomorphic to the state’s reachability graph. Specifically, we quotient by the stabilizer

subgroup for a particular state, ensuring only non-trivial group action remains. Using

this procedure, we can analyze the evolution of a state through circuits comprised

of the given gate set. Since we begin with the state-independent Cayley graph, this

quotient protocol and analysis can be applied to any quantum state.

We emphasize that the techniques put forth in this paper are not limited to Clifford

circuits. Any finite gate set can be represented by a discrete Cayley graph. The

Cayley graph can then be made finite by imposing a cutoff on graph distance, which

constrains the depth of a circuit. Accordingly, the program established in this paper

could be used to study even universal gate sets in quantum computation, up to a

fixed circuit depth. Our techniques could furthermore be straightforwardly extended

to computation with qutrits or qudits.

Access to a graph-theoretic description of evolution through quantum circuits al-

lows for direct calculation of some interesting circuit properties. For example, the

gate complexity of a given circuit which transforms one state into another is precisely

the minimum graph distance separating the two vertices that represent each state.

The Cayley graph diameter hence immediately bounds the maximal change in com-

plexity that can be observed under the constituent gate set. Additionally, given a

fixed set of universal generators, one could compute complexity growth for circuits of

varying depths. Conversely, one could fix a circuit depth and consider the growth of

complexity under alternative sets of universal generators [21]. It would be interesting

to relate the discrete picture of gate complexity obtained here to a more continuous
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picture, as in [3].

The graph analysis in this paper might be useful to better understand circuit ar-

chitecture and reduce resource overhead in a quantum computation framework. The

relations in our presentation often describe non-trivial, and sometimes unexpected,

equivalences between sequences of quantum gates. In many cases, large-depth cir-

cuits containing strings of gates which are difficult to implement can be reduced

to sequences of shorter depth, and simpler gate composition. One such example

is Ci,jHjCi,jPjCi,jP
3
j Hj = Pi, where a circuit of 9 gates, including numerous (and

resource-expensive) CNOT insertions, can be optimized to a single phase gate. Sim-

ilarly, in the context of state preparation, an optimal circuit to transform an initial

state into some desired final state can be identified by the appropriate extremal graph

path. If computational or experimental constraints exist that limit the set of viable

gates, corresponding edges in the graph can be modified or removed to accommodate

this restriction. This analysis could be particularly interesting in the context of near-

term quantum computing, where it is often easier to implement some specified set of

gates than arbitrary two-body couplings.

In this work we focused on the group (HC)1,2 = ⟨H1, H2, C1,2, C2,1⟩ ⊂ C2, which

offered useful insight into the bipartite entanglement generated by Clifford circuits.

Using our quotient procedure for the (HC)1,2 we were able to recover all stabilizer

reachability graphs from our last paper, Figures 4.10–4.13, as well as reachability

graphs for some non-stabilizer states. In particular, we showed that the 1152-vertex

graph is the largest reachability graph for any state, stabilizer or otherwise. We

believe we have exhibited all reachability graphs involving C2 for stabilizer states, but

proving so would require a deeper understanding of the relation between the Pauli

stabilizer groups and Clifford stabilizer groups for a given state.

Instead of (HC)1,2, we could consider state orbits under alternative C2 subgroups.
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Orbits under different C2 subgroups should also decompose the full C2 reachability

graph into disconnected pieces, similarly to the situation for (HC)1,2.

Additional stabilizer subgroups exist which quotient Cn and (HC)1,2, distinct from

the stabilizer subgroups of individual stabilizer states. A 2-element subgroup of

(HC)1,2 stabilizes all Dicke states with a certain structure, building the reachabil-

ity graph seen in Figure 4.18. Furthermore, all states we examined from which magic

can be fault-tolerantly distilled [7] are stabilized by more than just 1 in Cn. We con-

jecture that some measure of “stabilizerness”, similar to stabilizer rank or mana [25],

can be defined using the order of state’s stabilizer subgroup in Cn.

We initiated this study to explore the evolution of entanglement entropy through

Clifford circuits. Since entanglement in Clifford circuits can only be modified through

CNOT action, the number of Ci,j edges in a reachability graph, which we term the

“CNOT diameter”, weakly bounds the number of times the entropy vector can change.

However, our deeper exploration of the Clifford group revealed that not every Ci,j gate

modifies entropic structure, since relations like (H1C2,1)
4 = P 2

1 demonstrate that some

circuits with CNOT gates nonetheless never modify entanglement. In forthcoming

work [18], we will build “contracted graphs” which exhibit how entropy vectors can

change within a given reachability graph.
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Generators Order Diam. (w/ phase) Factor (no phase)

{H1} 2† 1 - -

{C1,2} 2† 1 - -

{P1} 4 3 - -

{H1, H2} 4 2 - -

{C1,2, C2,1} 6 3 - -

{H1, P2} 8† 4 - -

{P1, C1,2} 8† 4 - -

{P1, P2} 16 6 - -

{H1, C2,1} 16† 8 - -

{H1, C1,2} 16† 8 - -

{H1, P2, C2,1} 32 6 - -

{P2, C1,2} 32 8 - -

{P1, P2, C2,1} 64 7 - -

{P1, C2,1, C1,2} 192 11 - -

{H1, P1} 192 16 8 6

{H1, H2, P1} 384 17 8 7

{P1, P2, H1} 768 19 8 9

{H1, C2,1, C1,2} 2304∗ 26 2 15

{H1, H2, C1,2} 2304∗ 27 2 17

{H1, H2, C1,2, C2,1} 2304∗ 25 2 15

{H1, P1, C2,1} 3072∗ 19 8 9

{H1, P1, C1,2} 3072 19 8 11

{H1, P1, P2, C2,1} 3072∗ 19 8 9

{H1, H2, P1, P2} 4608 17 8 12

{H1, P2, C1,2} 9216 24 8 13

{H1, H2, P1, C2,1} 92160∗ 21 8 13

{H1, H2, P1, C1,2} 92160∗ 21 8 16

{H1, P1, P2, C1,2} 92160∗ 21 8 14

{H1, H2, P1, P2, C1,2, C2,1} 92160∗ 19 8 11

Table 4.1: Subgroups generated by generator subsets are shown in the leftmost col-

umn. We give the order of each subgroup and its Cayley graph diameter, both before

and after modding by global phase. The third column gives the factor reduction by

removing global phase. An asterisk indicates groups with the same elements, and a

dagger indicates groups with isomorphic Cayley graphs. Bolded subgroups are ex-

plicitly constructed in the text.
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Chapter 5

ENTROPY CONES AND ENTANGLEMENT EVOLUTION FOR DICKE

STATES

The contents of this chapter were originally published in Physical Review A [35].

The N-qubit Dicke states |DN
k ⟩, of Hamming-weight k, are a class of entangled

states which play an important role in quantum algorithm optimization. We present a

general calculation of entanglement entropy in Dicke states, which we use to describe

the |DN
k ⟩ entropy cone. We demonstrate that all |DN

k ⟩ entropy vectors emerge sym-

metrized, and use this to define a min-cut protocol on star graphs which realizes |DN
k ⟩

entropy vectors. We identify the stabilizer group for all |DN
k ⟩, under the action of the

N-qubit Pauli group and two-qubit Clifford group, which we use to construct |DN
k ⟩

reachability graphs. We use these reachability graphs to analyze and bound evolution

of |DN
k ⟩ entropy vectors in Clifford circuits.

5.1 Introduction

There are numerous ways to classify sets of quantum states. For states in a

factorizable Hilbert space H =
⊗N

i Hi, one such classification is given by considering

the entropy vector of each state [7]. The entropy vector of a pure state |ψ⟩ ∈ H is

constructed as the ordered set of all 2N − 1 von Neumann entropies, computed by

tracing out all tensor product states |ψi⟩ ∈ Hi. While every |ψ⟩ ∈ H can be assigned

an entropy vector, specifying an entropy vector does not uniquely determine a state.

Instead, entropy vectors describe an equivalence relation on states in H, assigning

each state to a class based on its entanglement structure.

The space of allowed entropy vectors for a specific class of states defines the en-
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tropy cone for that class [40, 30, 5, 4]. Since a particular entanglement structure often

accompanies other interesting state characteristics, identifying specific entropy cones

which contain the entropy vectors for different state classifications has received signif-

icant research interest. One notable case is that of holographic states, those quantum

states with a smooth classical dual geometry via the AdS/CFT correspondence [31,

45], which possess subsystem entanglement that obeys the Ryu-Takayanagi formula

[39, 23]. The entropy vectors of holographic states are likewise confined to a convex

polyhedral subspace of the ambient vector space, known as the holographic entropy

cone. In general, having an entropy vector that is contained within a particular en-

tropy cone is a necessary, though not sufficient, condition for a state to belong to the

class described by that cone.

The N -qubit Dicke states are a particular class of entangled quantum state which

have received notable recognition for application in quantum algorithm development

and precision measurement. Dicke states have found significant use as the initial

state for Quantum Approximate Optimization Algorithm (QAOA) implementation,

a quantum algorithm designed to approximate combinatorial-optimization solutions

[14]. More recently, techniques have been established to deterministically prepare

N -qubit Dicke states using circuits of depth O(n) [8]. Much of the NISQ-era utility

of Dicke states for quantum computation is due to their unique entanglement proper-

ties. Certain highly-entangled Dicke states may be projected, via measurement, onto

distinct lower-qubit states that cannot be locally-transformed into each other.

An alternative, and useful, classification on H considers how state sets transform

under the action of a group. Consider a group G ∈ L(H), which transforms states

|ψ⟩ ∈ H. Certain elements of G may act trivially on some |ψ⟩, mapping the state to

itself. Such elements define the stabilizer group for |ψ⟩ under the action of G, which

we denote Stab G(|ψ⟩). The most generic quantum states are stabilized by only the
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identity operator 1 in a given G. Special sets of states, however, have larger stabilizer

groups with respect to certain sets of operators. A well-known example is the set of

stabilizer states, a class of classically-simulable quantum states, which are stabilized

by a maximal number, specifically 2N , of Pauli group elements [1, 16, 17, 9, 29, 28].

Acting on |ψ⟩ with every g ∈ G defines the orbit G · |ψ⟩, which describes the

trajectory of |ψ⟩ through H. For every finitely-generated G the orbit is discrete,

lending itself to a natural graph-theoretic description. We construct the graph which

corresponds to G · |ψ⟩, known as a reachability graph, by assigning vertices to states

in the orbit, and edges to represent generators of G. Viewed through the lens of

quantum computation, each path in a reachability graph defines a quantum circuit

and the graph itself encodes the state’s evolution under all possible circuits composed

of the generating gate set. States with isomorphic reachability graphs are congruent

as they share an isomorphic stabilizer group under some chosen group action [27].

We may also wish to track the evolution of specific state properties under the

action of a group G. Analogous to the subgroups which stabilize a state, there exist

elements of G which leave a particular state property invariant [26], e.g. all local gates

preserve entanglement structure. If our goal is to understand the dynamics of a chosen

state parameter, we can restrict consideration to the subset of G which non-trivially

evolves that parameter. In a reachability graph representation, this restriction cor-

responds to eliminating vertices and edges from the graph, leaving only the graph

paths, i.e. the quantum circuits, which modify the parameter under study. This

modification on reachability graphs allows us to establish bounds on the dynamics of

a chosen state property under circuits composed of a certain gate set.

In this paper we explore entanglement structure in Dicke states and the manner

in which that entanglement can evolve through quantum circuits. In Section 5.3,

we leverage the symmetric structure of Dicke states to explicitly compute all entan-
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glement entropies which arise in N -qubit Dicke systems. We use our calculation of

subsystem entanglement to generate all possible Dicke state entropy vectors, which

accordingly describe the N -qubit Dicke state entropy cone. We demonstrate inclu-

sion, and exclusion, of Dicke state entropy vectors relative to other known entropy

cones, and use our calculation to reproduce the entropy vectors for W states found

in [40]. Additionally, we propose a min-cut model on weighted star graphs which

realizes the symmetrized entropies of Dicke states.

In Section 5.4, we define the stabilizer group for all Dicke states under the action of

the Pauli and Clifford groups. We use this set of stabilizers to construct reachability

graphs which illustrate the orbit of Dicke states under circuits composed of Pauli

and Clifford gates. As we are interested to understand the dynamics of Dicke state

entropy vectors in Clifford circuits, we restrict to a subset of Clifford gates consisting

of Hadamard and CNOT acting on two qubits. By analyzing reachability graphs built

from these gates, we are able to observe bounds on entropy vector evolution directly

from the reachability graphs themselves [26].

In forthcoming work, we apply the stabilizing operations identified in Section 5.4 to

construct error-correcting codes for logical Dicke states. One reason for using Dicke

states in error-correcting codes is an increased resistance to information loss upon

single-qubit thermalization. Since tracing out a single qubit from certain Dicke states

recovers the same state, now defined on one lower qubit number, the redundancy of

such states may yield comparative advantages in codes.

We also consider the potential of highly-entangled Dicke states for magic distilla-

tion protocols. In this context, one benefit of Dicke states is found in their ease of

preparation and consequential preference as initial states for computation. Another

promising feature of using Dicke states for magic distillation relies on the significant

amount of non-local magic which contained in these states. In both applications, and
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perhaps others not considered in this paper, we believe this exploration into Dicke

state entanglement will prove useful.

5.2 Review: Dicke States, Entropy Cones, and the Stabilizer Formalism

We offer a short review of relevant background material used throughout this

work. Comprehensive discussions exist for the different topics covered here, which we

invite the curious reader to consult. Many significant papers discuss the structure and

properties of Dicke states, as well as their utility for realizable quantum computation,

of which we recommend [12, 8, 36, 24, 41, 38, 46]. For additional details on entropy

vectors and entropy cone construction, we suggest [7, 21, 40, 3, 30, 13]. Finally, the

group-theoretic constructs presented in this section are discussed extensively in [28,

1, 16, 17, 43],and more formally in the text [2].

5.2.1 Dicke States

The N -qubit Dicke states |DN
k ⟩ compose an interesting class of states which can

be efficiently prepared using a polynomial number of gates, despite having a larger-

than-polynomial number
(
N
k

)
of excitations [12, 8]. This property affords significant

resource conservation compared to arbitrary state preparation, which relies on an ap-

plication of O(2N) gates. For this reason, Dicke states often find preference as initial

states for quantum optimization algorithms, and have even been successfully imple-

mented in experiment [46, 38, 41, 24]. Furthermore, the highly-entangled structure

of certain Dicke states can be used to project out non-locally transformable states

upon measurement, such as the GHZ and W states, with very little computational

overhead.

We construct each N -qubit Dicke state |DN
k ⟩ as the equal superposition over all N -
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qubit states |b⟩, where b is a bit-string of fixed Hamming-weight h(b) = k. Explicitly,

|DN
k ⟩ ≡

(
N

k

)−1/2 ∑
b∈{0,1}n, h(b)=k

|b⟩. (5.2.1)

Specific examples of Dicke states include,

|D3
1⟩ =

1√
3

(
|100⟩+ |010⟩+ |001⟩

)
,

|D4
2⟩ =

1√
6

(
|1100⟩+ |1010⟩+ |1001⟩+ |0110⟩+ |0101⟩+ |0011⟩

)
.

(5.2.2)

Dicke states of the form |DN
1 ⟩, those with Hamming-weight k = 1, are exactly the

N -qubit W states |WN⟩, defined

|WN⟩ ≡
1√
N

(
|100...00⟩+ |010...00⟩+ ...+ |000...01⟩

)
. (5.2.3)

Similarly, Dicke states of Hamming-weight k = N are the N -qubit measurement basis

state

|DN
N ⟩ ≡ |111...1⟩ = |1⟩

⊗N . (5.2.4)

5.2.2 Entropy Vectors and Entropy Cones

We compute the entanglement entropy of a state ρψ as the von Neumann entropy

Sψ ≡ −Tr ρψ ln ρψ. (5.2.5)

When ρψ represents a pure state, i.e. when ρψ ≡ |ψ⟩ ⟨ψ|, the property ρ2ψ = ρψ yields

total entropy Sψ = 0. When information is measured in dits, as with a state |ψ⟩ ∈ Hd,

the entropy in Eq. Eq. (6.2.18) is computed using logd.

Even for an overall pure state, non-zero entanglement can exist when considering

complementary subsystems of |ψ⟩. For a state |ψ⟩, we can consider an ℓ-party subsys-

tem which we denote I. The entanglement entropy between I and its (N − ℓ)-party

complement system Ī is then computed

SI = −Tr ρI ln ρI . (5.2.6)

160



The object ρI is the reduced density matrix of subsystem I, computed by tracing out

its compliment Ī.

For an N -party state |ψ⟩, there are 2N − 1 different subsystems we can consider.

Computing SI for each subsystem I, and ordering the resulting set, defines the entropy

vector S⃗ for |ψ⟩. For example, the entropy vector for some 3-party pure state would

have the form,

S⃗ = (SA, SB, SO;SAB, SAO, SBC ;SABO). (5.2.7)

where we use a semicolon to distinguish entropies for regions of different sizes |I|.

The final party is often labeled with O, as it acts a purifier for the remainder of the

system.

If the overall state |ψ⟩ is pure, we have the additional constraint SI = SĪ , which

comes from the fact that Sψ = 0. This condition allows the entropy vector for |ψ⟩ to

be expressed using only 2N−1−1 entropies. Accordingly, the vector in Eq. Eq. (6.2.20)

can be described in the reduced form

S⃗ = (SA, SB;SAB). (5.2.8)

We use this reduced entropy vector presentation throughout Section 5.4.

Subsystem entropies SI for multi-partite quantum states are required to obey

certain entropy inequalities [7, 37, 21], which can also be used to classify that state.

For example, all quantum states are subadditive, meaning SI + SJ ≥ SIJ for all

disjoint subsystems I and J . Other entropy inequalities are more strict, and are

not necessarily satisfied by generic quantum states, e.g. the monogamy of mutual

information (MMI) [21] which states

SIJ + SIK + SJK ≥ SI + SJ + SK + SIJK , (5.2.9)

for disjoint subsystems I, J, and K. The MMI inequality is satisfied by all holo-

graphic states, states with a smooth classical geometric dual through the AdS/CFT
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correspondence.

A linear entropy inequality, such as that in Eq. Eq. (5.2.9), defines a hyperplane

in some 2N − 1 dimensional entropy-vector space, bisecting the space and placing

entropy vectors which satisfy the inequality on one side, and those which fail the

inequality on the other. Entropy vectors which saturate an inequality reside on the

hyperplane itself. The set of linear inequalities satisfied by a class of quantum states,

bounds a convex polyhedral cone in the entropy vector space, known as an entropy

cone [7]. Entropy vectors which correspond to a certain class of quantum states,

e.g. holographic states or stabilizer states, must have an entropy vector which lies in

the convex hull1 of the corresponding entropy cone. Alternatively, entropy cones can

be specified by identifying all extremal rays, the entropy vectors which saturate two

inequalities and lie at the intersection of two hyperplanes, or by directly identifying

all possible entropy vectors for the class of states, as performed in Section 5.3.

Entropy cones for various classes of states are well-understood for low party num-

ber. However as system size increases, so too does the number of necessary inequal-

ities, and complexity of each inequality, needed to characterize each entropy cone.

To navigate this complexity increase, much effort has turned towards studying more

fundamental properties of entropy cones. The symmetrized entropy cone prescription

[10, 13] focuses the extremal properties of a cone’s structure under a symmetry pro-

jection. Symmetrized entropies are defined as in Eq. Eq. (6.2.20), with the addition

of a normalization factor based on the cardinality of the subsystem. For subsystems

I, we have

S̃k ≡

[(
N + 1

k

)]−1 ∑
I∈{I}k

SI , (5.2.10)

where the sum is computed over all subsystems I, of and N -party states, with fixed
1We again highlight that this condition is necessary, but not sufficient, for identifying states

corresponding to a particular class.
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cardinality k = |I|. As an example, computing the symmetrized entropy of all single-

party subsystems for a 4-party state, we have

S̃1 =
1

4
(SA + SB + SC + SO) . (5.2.11)

Mathematical graphs also offer a useful description of entanglement in multi-

partite quantum systems, particularly with regards to holographic systems [7]. The

entropy vectors of holographic states can be realized as a min-cut protocol on weighted

undirected graphs, where edge cuts in the graph correspond to traversing minimal-

length geodesics in the dual geometry. Broader classes of states require more generic

graph descriptions, including hypergraphs [4, 5] or topological links [6]. Symmetrized

entropy vectors can likewise be realized using a min-cut prescription on weighted star

graphs [10, 13]. In Section 5.3.2, we extend this star graph proposal to describe the

structure of Dicke state entropy vectors.

5.2.3 Stabilizer Formalism and Reachability Graphs

An essential set of gates in quantum computing is the set of Pauli gates, defined

in a unitary matrix representation as

1 ≡

1 0

0 1

 , σX ≡
0 1

1 0

 , σY ≡
0 −i
i 0

 , σZ ≡
1 0

0 −1

 . (5.2.12)

In a fixed measurement basis {|0⟩, |1⟩}, the matrices in Eq. Eq. (6.2.1) act as operators

on a Hilbert space C2. The set {σX , σY , σZ} generates the 16-element Pauli group

under multiplication, denoted Π1.

We can extend the matrix representation of Pauli gates to arbitrary qubit number

by composing sets of Pauli strings. Each Pauli string describes a set of local actions

performed on specified qubits in an N -qubit system. Every N -qubit Pauli string can
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be defined2 as a tensor product over 2 × 2 matrices. For example, the action of σX

on the kth qubit of an N -qubit system can be written

σkX ≡ 11 ⊗ . . .⊗ 1k−1 ⊗ σX ⊗ 1k+1 ⊗ . . .⊗ 1N . (5.2.13)

Eq. Eq. (5.2.13) is an example of a weight-1 Pauli string, where the weight of a string

denotes the number of non-identity operations in the tensor product. The N -qubit

Pauli group ΠN is generated by the set of all weight-1 Pauli strings.

Having constructed ΠN , we could further consider operations which map ΠN to

itself. The N -qubit Clifford group CN is the set of unitaries which normalizes the

Pauli group, i.e. CN maps elements of ΠN to elements of ΠN via conjugation. In the

single-qubit case, we can define C1 as the group generated by the Hadamard [42, 19]

and phase gates, defined as the matrices

H ≡ 1√
2

1 1

1 −1

 , P ≡

1 0

0 i

 . (5.2.14)

Just as with Pauli gates we can generalize to an N -qubit description by composing

strings of Clifford operators, where we use a subscript to indicate the qubit being acted

on, e.g.

Hk ≡ 11 ⊗ . . .⊗ 1k−1 ⊗H ⊗ 1k+1 ⊗ . . .⊗ 1N . (5.2.15)

Unlike the Pauli group, however, the group CN is not generated by only weight-1

Clifford strings. For N > 1, constructing CN requires the addition of the bi-local
2This Pauli string representation as the N -fold tensor product of 2 × 2 matrices requires two

conditions: first, we assume the Hilbert space factorizes into a product of N qubits (N copies of

H2), and secondly, we ascribe an ordering to the set of qubits which will serve as an indexing system.
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CNOT gate, defined

Ci,j =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (5.2.16)

The CNOT gate acts on two qubits in an N -qubit system by first evaluating the

state of the ith qubit, the control bit, then performing a NOT operation on the jth

qubit, the target bit, if the ith qubit is found in the state |1⟩. It is important to note

that Ci,j ̸= Cj,i. We may now define the group CN as

CN ≡ ⟨H1, ..., HN , P1, ..., PN , C1,2, C2,1, ..., CN−1,N , CN,N−1⟩. (5.2.17)

Given a Hilbert space H and group G ⊂ L(H), an element of G is said to stabilize

|ψ⟩ ∈ H if it acts trivially on |ψ⟩. The set of all g ∈ G that stabilize |ψ⟩, defined

Stab G(|ψ⟩) ≡ {g ∈ G | g|ψ⟩ = |ψ⟩}, (5.2.18)

makes up the stabilizer subgroup of |ψ⟩ under the action of G. Otherwise stated, |ψ⟩

is a +1 eigenvector of each g ∈ Stab G(|ψ⟩).

For G a finite group, Lagrange’s theorem [2] ensures a partition of |G| for any

subgroup H ≤ G, explicitly

|G| = [G : H] · |H|, (5.2.19)

with [G : H] the index of H in G. Furthermore when G acts on a set X, the Orbit-

Stabilizer theorem [2] gives the orbit of x ∈ X under the action of G as

|G · x| =
[
G : Stab G(x)

]
=

|G|
| Stab G(x)|

. (5.2.20)

When G acts on a Hilbert space H, we can use Eqs. Eq. (6.2.12) and Eq. (6.2.13) to

construct orbits of |ψ⟩ ∈ H under the group action [27].
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When considering the action of ΠN on H, states which are stabilized by a 2N -

element subgroup of ΠN are known as stabilizer states [1, 16, 15, 28]. Stabilizer

states play a critical role in near-term realization of quantum computing, as they

represent the set of quantum systems which can be efficiently classically simulated

[17]. One way to construct the set of N -qubit stabilizer states is by acting on a state

in the measurement basis {|0⟩, |1⟩}N with the Clifford group CN . The set of N -qubit

stabilizer states SN is exactly the orbit of each state in {|0⟩, |1⟩}N , under the action

of CN . The number of N -qubit stabilizer states generated by the orbit SN is derived

in [18], and has order

|SN | = 2n
n−1∏
k=0

(2n−k + 1). (5.2.21)

The process of constructing state orbits under group action naturally admits a

graph-theoretic description [1, 27]. For some G acting on |ψ⟩ ∈ H, we can assign

a vertex to each state in the orbit [G · |ψ⟩], and an edge to each generator of G.

This graph is known as the reachability graph for |ψ⟩, and maps the evolution of |ψ⟩

through H under the action of G. Figure 5.1 depicts the reachability graph for |0⟩

under the single-qubit Clifford group C1, with vertices representing the 6 single-qubit

stabilizer states.

Out[ ]=
H1

P1

Figure 5.1: Orbit of |0⟩ under the action of C1, depicted as a reachability graph.

Graph vertices represent the 6 single-qubit stabilizer states, and edges correspond to

C1 generators. For generators which are self-inverse, e.g. the Hadamard gate, we use

undirected edges.

It is often useful to consider only the action of a subgroup H ≤ G on H. Focusing
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on the action of H highlights specific features of a state’s orbit, and can better-exhibit

the evolution of certain state properties through the orbit. When composing the orbit

of a state |ψ⟩ under the action of some H ≤ G, the term restricted graph is sometimes

used to discuss the emergent reachability graph [28].

5.3 The Entropy Cone for |DN
k ⟩

In this section, we describe the entropy cone for N -qubit Dicke states by explicitly

building all |DN
k ⟩ entropy vectors for qubit number N and Hamming-weight k. We

highlight the symmetric properties of |DN
k ⟩ entropy vectors, and note the relative

containment of the |DN
k ⟩ entropy cone in other known entropy cones. We demonstrate

that our construction for Dicke states reproduces the W state entropy cone found

in [40]. Additionally, we give a realization of |DN
k ⟩ entropy vectors as a min-cut

prescription on weighted star graphs. In later sections we analyze the evolution of

the |DN
k ⟩ entropy vectors defined here, under the action of Clifford circuits.

5.3.1 Dicke State Entropy Vectors

The symmetric structure of Dicke states |DN
k ⟩ enables a direct calculation of sub-

system entanglement entropy from the non-zero diagonal elements of the density

matrix [44]. For an N -party pure state |DN
k ⟩ of Hamming-weight k, the entanglement

entropy of an ℓ-party subsystem is computed

Sℓ

(
|DN

k ⟩
)
≡ −

(
N

k

)−1 min(ℓ,k)∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
N

k

)−1(
ℓ

i

)(
N − ℓ
k − i

)]
. (5.3.1)

We can directly verify that Sℓ = SN−ℓ and SN = 0, from Eq. Eq. (5.3.1). Furthermore,

we highlight the property that Sℓ
(
|DN

k ⟩
)

depends only on the cardinality of a chosen

subsystem.

The calculation of Sℓ admits simplifications for specific values of ℓ and k. For
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states |DN
k ⟩ with ℓ ≥ k, Eq. Eq. (5.3.1) becomes

Sℓ = ln

[(
N

k

)]
−
(
N

k

)−1 k∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
ℓ

i

)(
N − ℓ
k − i

)]
, (5.3.2)

where we note the ℓ-independence of the first term. A derivation of Eq. (5.3.2) is

given in Appendix C. A similar decoupling exists for ℓ < k, and is shown in Eq.

Eq. (C.0.5).

For k = 1, states |DN
k ⟩ are the subset of N -qubit W states, |WN⟩ ≡ |DN

1 ⟩. For an

ℓ-party subsystem of |DN
1 ⟩, the expression for Sℓ in Eq. Eq. (5.3.1) gives

Sℓ

(
|DN

1 ⟩
)
=

ℓ

N
ln

[
N

ℓ

]
+

(N − ℓ)
N

ln

[
N

N − ℓ

]
, (5.3.3)

in agreement with the calculations given in [40].

The ordered set of all 2N − 1 subsystem entropies for a state |DN
k ⟩, computed

according to Eq. Eq. (5.3.1), compose the entropy vector S⃗
(
|DN

k ⟩
)
. Since each Sℓ

depends only on |ℓ|, all Dicke state entropy vectors share the form

S⃗
(
|DN

k ⟩
)
≡
(
S1, ..., S1︸ ︷︷ ︸

(N1 )

; S2, ..., S2︸ ︷︷ ︸
(N2 )

; ...; SN−1, ..., SN−1︸ ︷︷ ︸
( N
N−1)

; 0
)
. (5.3.4)

The entropy vectors in Eq. Eq. (5.3.4) are manifestly symmetrized [10], leaving

S⃗
(
|DN

k ⟩
)

invariant up to exchange of subsystems of equal size |ℓ|.

All N -qubit Dicke state entropy vectors can be calculated using Eqs. Eq. (5.3.1)

and Eq. (5.3.4). Collectively, these equations describe theN -qubit Dicke state entropy

cone, defined for each N as the convex hull of all S⃗
(
|DN

k ⟩
)
. Since each S⃗

(
|DN

k ⟩
)

is

symmetrized, all Dicke state entropy vectors automatically satisfy the symmetrized

quantum entropy cone (SQEC) inequalities [13],

−Sℓ−1 + 2Sℓ − Sℓ+1 ≥ 0, ∀ 1 ≤ ℓ ≤ ⌈N/2⌉, (5.3.5)

which verify symmetric instances of subadditivity and strong-subadditivity. The N -

qubit Dicke state entropy cone is therefore contained within the SQEC for all N .
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The monogamy of mutual information (MMI) inequality, given in Eq. Eq. (5.2.9),

defines a subset of facets which bound the holographic entropy cone. For |DN
k ⟩, MMI

is saturated3 when N = 3, and violated otherwise. Similarly, |DN
k ⟩ entropy vectors

violate requisite inequalities for the symmetrized holographic entropy cone (SHEC),

when N > 3, namely

−ℓ(ℓ+ 1)Sℓ−1 + 2(ℓ− 1)(ℓ+ 1)Sℓ − ℓ(ℓ− 1)Sℓ+1 ≥ 0, ∀ ℓ ∈ [2, n/2]. (5.3.6)

Consequently, portions of the N -qubit Dicke state entropy cone lie outside the holo-

graphic and symmetrized holographic entropy cones.

The entropy cone of stabilizer states is completely characterized up through 4

parties (N = 5 qubits including the purifier). It is also known that states |DN
k ⟩ are

not stabilizer states4 for all N ≥ 3. Nevertheless, we observe the following for Dicke

state systems of N ≤ 5 qubits:

Observation 1. The Dicke state entropy cone, for N ≤ 5, is completely contained

within the convex hull of the stabilizer entropy cone.

Extending Observation 1 to a general conjecture for all N would require further

knowledge of higher-party stabilizer entropy cones.

Acting with Clifford circuits on states |DN
k ⟩ generates additional entropy vectors

beyond those given in Eq. Eq. (5.3.4). These Clifford group orbits of Dicke states

are discussed in Section 5.4, as are the resulting entropy vectors reached under corre-

sponding Clifford circuits. Here we note the following observation for entropy vectors

generated by 2-qubit Clifford action on |DN
k ⟩:

Observation 2. All entropy vectors generated by 2-qubit Clifford action on |DN
k ⟩, for

N ≤ 5, are contained in the convex hull of the stabilizer entropy cone.
3MMI is trivially saturated by entropy vectors of the unentangled Dicke states |DN

N ⟩ = |1⟩
⊗N .

4We again note the exception for |DN
N ⟩ which is trivially a stabilizer state.
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While we expect Observation 2 to hold for all |DN
k ⟩, as well as for arbitrary Clifford

circuits, we do not make an attempt towards a conjecture in this work.

We have given an explicit calculation of all ℓ-party entanglement entropies in

Dicke states |DN
k ⟩, for arbitrary system size N and Hamming-weight k. We used this

result to construct all Dicke state entropy vectors S⃗
(
|DN

k ⟩
)
, and showed that our

results reproduce previous entropy vector calculations for W states for k = 1. We

present the set of all S⃗
(
|DN

k ⟩
)
, for a fixed qubit number N , as the N -qubit Dicke

state entropy cone. We have highlighted that, since |DN
k ⟩ entropy vectors emerge

symmetrized, the |DN
k ⟩ entropy cone is contained within the SQEC. At N ≥ 4 we

observed that S⃗
(
|DN

k ⟩
)

violates holographic inequalities, e.g. MMI, and lies outside

both the holographic and symmetrized holographic entropy cones. In the next section,

we use our |DN
k ⟩ entropy vector construction to define a min-cut protocol which

realizes Dicke state entropy vectors using weighted star graphs.

5.3.2 A Graph Model for |DN
k ⟩ Entropies

We now outline a protocol which compute Dicke state entropies, as given in Eq.

Eq. (5.3.1), as a sum over minimum-weight edge cuts on star graphs. Initial descrip-

tions using star graphs to represent average entropies were presented in [11, 13], and

later extended to include the possibility of negative edge weights in [20, 40]. We

demonstrate an explicit example of this star graph construction for |DN
1 ⟩ entropy

vectors, and describe how to recursively generalize the model for k > 1.

To construct our representation of entanglement entropy, we consider a graph

G = (V,E), with vertex set V partitioned into subsets of internal vertices VInt. ⊆ V ,

and external vertices VExt. ⊆ V . For an N -party |ψ⟩ with purifier, each disjoint

subsystem ℓ is assigned a vertex vℓ ∈ VExt., where |VExt.| = N + 1. The entropy Sℓ

is then computed as the total weight of a min-cut on G which separates vℓ from its
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complement subsystem vℓC ⊂ VExt..

For Dicke states |DN
k ⟩ we represent each Sℓ using a star graph with N edges of unit

weight, and one edge of weight w ≤ 0. One novel feature of these graphs is that w

may take on select negative values, subject to the required inequalities5 of a particular

entropy cone, which ultimately sum to non-negative entropies. Since ℓ-party |DN
k ⟩

entropies depend only on the cardinality |ℓ|, we compute Sℓ as the min-cut

Sℓ = min{|ℓ|, N − 1− |ℓ|+ w}, (5.3.7)

following [40, 13]. Figure 5.2 gives an example of a star graph which realizes Sℓ for

a state |D3
k⟩. The value of w is defined in terms of k, as shown in Eqs. Eq. (5.3.8)–

Out[ ]=

w

A

B

C

O

Figure 5.2: Example of a 4-legged star graph, with 3 legs of unit weight and one leg

of weight w ≤ 0, which realizes the entropies of |D3
k⟩. The weight w is negative in

this graph, and defined as a function of k.

Eq. (5.3.16).
5We often consider a tuple of non-negative entropies which lives in a totally non-negative sector of

some 2N−1 vector space. If instead one considers a perfect tensor decomposition, negative entropies

are permitted as long as they sum to a positive value in the entropy basis and satisfy the required

inequalities of a chosen entropy cone. For further detail we recommend [20].
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Since |DN
k ⟩ entropies in Eq. Eq. (5.3.1) obey the symmetry Sℓ = SN−ℓ, we can

define S̃ℓ to be the symmetrized variable over all ℓ-party entanglement entropy

S̃ℓ =

(
N

ℓ

)−1
[(

N − 1

ℓ

)
Sℓ +

(
N − 1

N − ℓ

)
SN−ℓ

]
. (5.3.8)

As shown in Eq. Eq. (5.3.2), each Sℓ is computed as a sum over ℓ + 1 terms when

ℓ < k, or k + 1 terms when ℓ ≥ k. Accordingly, each S̃ℓ in Eq. Eq. (5.3.8) is realized

as a sum over ℓ+ 1 (or k + 1) star graphs, for 1 ≤ ℓ ≤ ⌈N/2⌉. This sum over graphs

for each Sℓ generalizes the previous constructions in [40] to all |DN
k ⟩.

To demonstrate this min-cut model, we construct an explicit representation of Sℓ

for states |DN
1 ⟩. Applying Eq. Eq. (5.3.7) to Eq. Eq. (5.3.8) we have

S̃ℓ =
1

N

[
(N − ℓ)min{ℓ,N − 1− ℓ+ w1}+ ℓmin{N − ℓ, w2 + ℓ− 1}

]
. (5.3.9)

Figure 5.3 shows an example pair of graphs, for the state |D4
1⟩, whose sum over min-

cuts realizes Eq. Eq. (5.3.9). In both graphs, the negatively-weighted edge connects

to the external vertex for the purifier O.

Out[ ]=

w1

w2

Figure 5.3: Pair of star graphs whose min-cut sum calculates S̃ℓ, as in Eq. Eq. (5.3.9),

for |D5
1⟩. The values w1, w2 are both negative and set by inserting Eq. Eq. (5.3.1)

into Eq. Eq. (5.3.7).
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Beginning with the first term in Eq. Eq. (5.3.9), which we denote (S̃ℓ)1, we have

(S̃ℓ)1 =
1

N
(N − ℓ)min{ℓ,N − 1− ℓ+ w1}. (5.3.10)

From Eq. Eq. (5.3.1) we require

min{ℓ,N − 1− ℓ+ w1} = ln

[
N

N − ℓ

]
, (5.3.11)

which we solve for w1 to give the bound

w1 = ℓ+ ln

[
N

N − ℓ

]
− (N − 1). (5.3.12)

The weight w1 in Eq. Eq. (5.3.12) takes on negative values for

ℓ < (N − 1)− ln

[
N

N − ℓ

]
. (5.3.13)

Evaluating the second term (S̃ℓ)2 in Eq. Eq. (5.3.8), we have

(S̃ℓ)2 =
ℓ

N
min{N − ℓ, w2 + ℓ− 1}. (5.3.14)

We solve Eq. Eq. (5.3.14) to find the weight

w2 = ln

[
N

ℓ

]
− ℓ+ 1, (5.3.15)

which is negative while

ℓ > 1 + ln

[
N

ℓ

]
. (5.3.16)

The procedure in Eqs. 5.3.9–5.3.16 can be applied for all |DN
1 ⟩, with the resulting

symmetrized entropies S̃ℓ described as a min-cut protocol on a pair of weighted star

graphs analogous to those in Figure 5.3. Each graph possesses a single edge of negative

weight, and the values of each weight can be determined as in Eqs. Eq. (5.3.13) and

Eq. (5.3.16). We now describe how to generalize this model to arbitrary k, by inserting

sequences of star graphs to evaluate each Sℓ.
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We can naturally extend the protocol described in Eqs. 5.3.9–5.3.16 to all |DN
k ⟩

with k ≥ 1. For any k > 1, each of the terms (S̃ℓ)1 and (S̃ℓ)2 in Eq. Eq. (5.3.8) are

computed as a sum over min-cuts on ℓ+1 star graphs for ℓ ≥ k, or k+1 star graphs

for ℓ < k. For example, consider the symmetrized entropies of |D5
2⟩,

S̃1 = (S̃1)1 + (S̃1)2 = 2

(
5

1

)−1
(
3

5
ln

[
5

3

]
+

2

5
ln

[
5

2

])
= S̃4,

S̃2 = (S̃2)1 + (S̃2)2 = 2

(
5

2

)−1
(
3

5
ln

[
5

3

]
+

3

10
ln

[
10

3

]
+

1

10
ln

[
10

1

])
= S̃3,

S̃5 = 0

(5.3.17)

The quantity S̃1 in Eq. Eq. (5.3.17) admits a star graph representation exactly as

described in Eqs. Eq. (5.3.8)–Eq. (5.3.16). Meanwhile, S̃2 is given by a sum over

three star graphs, each having a single edge of negative weight.

We have given a min-cut protocol on weighted star graphs which realizes the

symmetrized entropies S̃ℓ of all Dicke states |DN
k ⟩. We gave a direct example showing

graph realizations of Sℓ for states |DN
1 ⟩, in agreement with results demonstrated in

[40]. We generalized this technique to k > 1 by computing each term in S̃ℓ as a sum

over ℓ + 1 star graphs, each having a single edge of negative weight. In the next

section we explore group stabilizers for Dicke states under action of the Pauli and

Clifford groups. We likewise analyze the orbits of Dicke states under these groups, as

well as the dynamics of |DN
k ⟩ entropy vectors under Clifford circuits. We illustrate

|DN
k ⟩ orbits as reachability graphs, using the methods given in [28, 27, 26].

5.4 Stabilizers and Orbits of |DN
k ⟩

In this section we construct the stabilizer subgroups for all Dicke states |DN
k ⟩

under action of the Pauli and Clifford groups. We use each subgroup to construct the
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reachability graph for all |DN
k ⟩, under the action of Pauli and Clifford group elements

[27]. We highlight differences between the reachability graph structures observed for

Dicke states, and those seen among the N -qubit stabilizer states. We later remark

on the utility of the |DN
k ⟩ stabilizer groups identified for error-correcting codes. We

analyze |DN
k ⟩ reachability graphs, with vertices colored to indicate the entropy vector,

and determine the evolution of |DN
k ⟩ entropy vectors under a restricted subgroup of

Clifford operators. Further, we establish bounds on how much each |DN
k ⟩ entropy

vector can change under the select set of gates. The Mathematica data and packages

used to generate all graphs is publicly available [34, 32].

5.4.1 Pauli Group Orbits

We first consider the action of the Pauli group6 ΠN on the set of N -qubit Dicke

states. While all quantum states are trivially stabilized by 1 ∈ ΠN , Dicke states

admit larger stabilizer subgroups in ΠN , which make them useful for stabilizer code

construction. Every |DN
k ⟩ is stabilized by, at least, 2 elements of ΠN , but some are

stabilized by more.

In addition to 1, all Dicke states |DN
k ⟩ are stabilized by the ΠN element

N⊗
i=1

σiZ , for k even,

−
N⊗
i=1

σiZ , for k odd.

(5.4.1)

The operator in Eq. Eq. (5.4.1) acts as a σZ on every qubit of an N -qubit system,

with an additional −1 phase for k odd. For example, Dicke states |D3
1⟩ and |D5

2⟩ have
6In the case of ΠN , as well as with CN , we first mod out each group by elements which act as a

global phase on the group. For CN this global phase element is ω ≡ (HiPi)
3, which has the property

ω8 = 1. Likewise for ΠN , this global phase is ω2. For details, see Section 5.1 of [27].
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respective stabilizer subgroups given by

Stab Π3(|D3
1⟩) = {1,−σ1

Zσ
2
Zσ

3
Z},

Stab Π5(|D5
2⟩) = {1, σ1

Zσ
2
Zσ

3
Zσ

4
Zσ

5
Z}.

(5.4.2)

The stabilizer subgroup containing 1 and Eq. Eq. (5.4.1) quotients ΠN into a

group of order 22n−1. Figure 5.4 illustrates the reachability graph for |D3
1⟩ under the

action of Π3.
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Figure 5.4: Orbit of |D3
1⟩ under the 3-qubit Pauli group Π3, which contains 32 vertices.

In general, states stabilized by only 1 and Eq. Eq. (5.4.1) will have a Pauli orbit of

length 22n−1.

The Dicke state |DN
N ⟩ is a stabilizer state, specifically |DN

N ⟩ = |1⟩
⊗N , as are all

|DN
k ⟩ for N ≤ 2. Accordingly, |DN

N ⟩ is stabilized by a 2N -element subgroup of ΠN .

In addition to 1 and the operator in Eq. Eq. (5.4.1), |DN
N ⟩ is stabilized by the action

of −σZ on any single qubit, as well as σZ on any qubit pair for N ≥ 2. Written

explicitly, the set

Stab ΠN
(|DN

N ⟩) ⊇ {−σiZ , σiZσ
j
Z}, ∀ i, j ∈ {1, N}. (5.4.3)
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As an example, the stabilizer subgroup of |D3
3⟩ consists of the 6 operations

Stab Π3(|D3
3⟩) = {1, −σ1

Z , −σ2
Z , −σ3

Z , σ
1
Zσ

2
Z , σ

1
Zσ

3
Z , σ

2
Zσ

3
Z , −σ1

Zσ
2
Zσ

3
Z}. (5.4.4)

The corresponding Pauli orbit for |D3
3⟩ is shown in Figure 5.5, where we note that

all edges of the graph simultaneously represent the actions of σiX and σiY , as they act

identically on |D3
3⟩ up to global phase.
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Figure 5.5: Reachability graph of state |D3
3⟩ under the action of Π3. This graph

contains 8 vertices, with gates σiX and σiY acting the same on |D3
3⟩. States of the form

|DN
N ⟩ are stabilizer states and are stabilized by 2N elements of ΠN .

Finally, we consider Dicke states |DN
k ⟩ where N = 2k. States |D2k

k ⟩ are stabilized

by the simultaneous action of σX and σY on every qubit. For states |D2k
k ⟩, we have

Stab ΠN
(|D2k

k ⟩) ⊃


2k⊗
i=1

σiX ,
2k⊗
i=1

σiY

 , (5.4.5)

as well as 1 and Eq. Eq. (5.4.1). The two additional stabilizers in Eq. Eq. (5.4.5)

result in 4-element stabilizer subgroup for |D2k
k ⟩ under the action of ΠN .

For the example state |D4
2⟩, its stabilizer subgroup under Π4 can be written

Stab Π4(|D4
2⟩) = {1, σ1

Xσ
2
Xσ

3
Xσ

4
X , σ

1
Y σ

2
Y σ

3
Y σ

4
Y , σ

1
Zσ

2
Zσ

3
Zσ

4
Z}. (5.4.6)
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Since |D4
2⟩ is stabilized by a 4-element subgroup of Π4, its orbit under Π4, depicted

in Figure C.3 of Appendix C, reaches 64 states.

We have given the stabilizer subgroup for all |DN
k ⟩ under action of the N -qubit

Pauli group. We used the stabilizer subgroup to generate a reachability graph for

|DN
k ⟩, which represents each state’s orbit under ΠN . In the following section we

extend our analysis to consider action of the N -qubit Clifford group CN , as well as CN

subgroups. We use the reachability graphs of |DN
k ⟩ to analyze entanglement structures

observed in Dicke state orbits.

5.4.2 Clifford Group Orbits and Entanglement Evolution

Dicke states |DN
k ⟩ are not stabilizer states for N ≥ 3 and N ̸= k. However,

interestingly, states |DN
k ⟩ are stabilized by more Clifford group elements than just

1. In this section, we extend our study of |DN
k ⟩ orbits by considering the action of

the two-qubit Clifford group C2. Since entanglement modification via Clifford gates

occurs through bi-local action, this restriction to C2 is sufficient for exploring the

evolution of Dicke state entropy vectors under Clifford circuits. We construct the

stabilizer subgroup for each |DN
k ⟩ under the action of C2, and compute the size of

each orbit.

We also present reachability graphs for |DN
k ⟩ under the action of the C2 subgroup

(HC)1,2 ≡ ⟨H1, H2, C1,2, C2,1⟩, with vertices colored by entropy vector as in [28,

27]. Since the P1 and P2 gates cannot modify a state’s entropy vector, the subgroup

(HC)1,2 contains all non-trivial entropy vector dynamics. Furthermore, graph rep-

resentations of (HC)1,2 orbits are easier to parse than C2 orbits, as they contain a

factor of 10 less vertices. We use (HC)1,2 orbits of Dicke states to give a bound on

the number of times |DN
k ⟩ entropy vectors can change under this gate set. A more

general bound on entropy vector dynamics using quotient graphs is derived in [26].
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All one and two-qubit Dicke states, |D1
1⟩ and |D2

k⟩, are also stabilizer states.

Likewise, every |DN
N ⟩ is a stabilizer state as well. Accordingly, states |D2

k⟩ and |DN
N ⟩

are stabilized by a 192-element subgroup of C2, and their reachability graph is exactly

the two-qubit stabilizer state graph shown in Figure C.1 of Appendix C.

When we restrict to the action of (HC)1,2 = ⟨H1, H2C1,2C2,1⟩, the orbit of |D2
k⟩

and |DN
N ⟩ contains 24 states. Figure 5.6 illustrates this orbit, showing the reachability

graph of |DN
N ⟩ under the action of (HC)1,2. While the state |DN

N ⟩ is unentangled,

elements of the (HC)1,2 subgroup are capable of generating instances of GHZ-type

entanglement throughout the orbit.
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↑ |GHZ⟩N

Figure 5.6: Orbit of |DN
N ⟩ under ⟨H1, H2, C1, C2⟩ subgroup. This reachability

graph has 24 vertices and 2 entanglement possibilities, unentangled and maximally-

entangled. Since |DN
N ⟩ = |1⟩

⊗N , this reachability graph is shared by a subset of the

N -qubit stabilizer states.

Dicke states of the form |DN
1 ⟩, which define the set of N -qubit W states, as well

as states |DN
N−1⟩, are stabilized by 4 elements of C2. Specifically, the states |DN

1 ⟩ and

|DN
N−1⟩ have stabilizer subgroup

Stab C2(|DN
1 ⟩) = {1, H2C1,2H2, C1,2C2,1C1,2, H2C1,2H2C1,2C2,1C1,2},

= Stab C2(|DN
N−1⟩).

(5.4.7)
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The stabilizer group in Eq. Eq. (5.4.7) yields an orbit of 2880 states for |DN
1 ⟩ and

|DN
N−1⟩, under the action of C2.

Restricting group action to (HC)1,2, the orbits of all |DN
1 ⟩ and |DN

N−1⟩, for N ≥ 3,

consist of 288 states. Figure 5.7 depicts the |DN
1 ⟩ reachability graph under (HC)1,2,

shown for the example state |D3
1⟩. While this reachability graph has 288 vertices, it is

not isomorphic to the 288-vertex graph observed for stabilizer states under the action

of (HC)1,2, presented in [28].
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Figure 5.7: Orbit of |D3
1⟩ under ⟨H1, H2, C1, C2⟩ action. The graph has 288 ver-

tices, and contains 5 different entropy vectors. We especially note the topological

distinction of this graph, compared to the 288-vertex stabilizer state graph. Numer-

ical approximations for entanglement entropies are shown in the figure, with exact

values in Table C.1.

180



The orbit of |DN
1 ⟩ under (HC)1,2, for all N ≥ 3, contains 5 different entropy

vectors. As described in [26], there are maximally 5 unique entropy vectors that can

be generated for states |DN
1 ⟩, using all (HC)1,2 circuits in Figure 5.7. While the

number of entropy vectors in graphs like Figure 5.7 cannot increase beyond 5, the

number of different entanglement entropies comprising those entropy vectors, denoted

|sN |, continues to grow with increasing qubit number N . In Figure 5.7, the entropy

vectors in the orbit of |D3
1⟩ are built of 4 distinct entanglement entropies, shown to the

right of the figure. For arbitrary N -qubit states |DN
1 ⟩, we conjecture the following:

Conjecture 1. For N ≥ 2, the number of unique entanglement entropies which

comprise all entropy vectors in the (HC)1,2 orbit of |DN
1 ⟩ increases as

|sN | = ⌊
5N − 7

2
⌋. (5.4.8)

The state |D1
1⟩ is pure and has zero entanglement entropy. The number of unique

entanglement entropies encountered in the (HC)1,2 orbit of |DN
k ⟩ are depicted in

Figure 5.9, for N ≤ 10 qubits.

All remaining Dicke states |DN
k ⟩, with 1 < k < N−1, are stabilized by a 2-element

subgroup of C2. The stabilizer subgroup for such |DN
k ⟩ states is given by

Stab C2

(
|DN

k ⟩
)
= {1, C1,2C2,1C1,2, }, ∀ 1 < k < N − 1, (5.4.9)

Consequently, the C2 orbit of states stabilized by Eq. Eq. (6.4.8) reaches 5760 states.

The action of (HC)1,2 on |DN
k ⟩, for 1 < k < N − 1, generates an orbit of 576

states. This 576-element orbit under (HC)1,2 is particularly interesting as it differs in

size from any stabilizer state orbit under (HC)1,2 action [28, 27]. Stated alternatively,

the stabilizer subgroup in Eq. Eq. (6.4.8) is not shared by any stabilizer state at any

qubit number. As a result, reachability graphs with 576 vertices, like that in Figure

5.8, are never witnessed for stabilizer states.
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2⟩

Figure 5.8: Reachability graph showing the orbit of |D4
2⟩ under (HC)1,2. This reach-

ability graph has 576 vertices, a vertex count never observed among stabilizer states,

and contains 6 different entropy vector possibilities. We provide numerical approx-

imations for the entropy vector component in the figure, with exact values given in

Table C.2.

For k > 1, the number of unique entanglement entropies that make up entropy

vectors in the (HC)1,2 orbit of |DN
k ⟩ increases with system size. Figure 5.9 illustrates

the relationship between cardinality |sN | and qubit number N , for |DN
k ⟩ up to N = 10

qubits.

Reachability graphs like that in Figure 5.8 admit 6 unique entropy vectors through-

out the orbit. The bounds proposed in [26] limit graphs isomorphic to Figure 5.8 to

having, at most, 9 different entropy vectors. However, since entanglement dynamics
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Figure 5.9: The number of unique entanglement entropies |sN | comprising all entropy

vectors in the (HC)1,2 orbit of |DN
k ⟩. We plot this entanglement entropy cardinality

against increasing qubit number N , for N ≤ 10 and 1 ≤ k ≤ 5. The solid blue line

depicts the special case of |DN
1 ⟩ described in Conjecture 1.

additionally depends on the state being evolved through the quantum circuit, the

symmetries of Dicke states constrain the number of entropy vectors in these graphs

to 6. As with the orbits of |DN
1 ⟩, while the overall number of entropy vectors in

the reachability graph is fixed, for all N and k, the number of distinct entanglement

entropies which make up those vectors continues to increase for larger and larger N ,

and varies for different values of k.

We have identified the stabilizer subgroups for all Dicke states |DN
k ⟩, under the

action of the N -qubit Pauli group ΠN , as well as the two-qubit Clifford group C2.

We demonstrated that there exist three distinct stabilizer subgroups for states |DN
k ⟩,

depending on the values of N and k. States |DN
N ⟩ = |1⟩

⊗N belong to the set of N -
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qubit stabilizer states, and share the corresponding stabilizer groups [28, 27]. States

|DN
1 ⟩ and |DN

N−1⟩ share a stabilizer subgroup in ΠN and C2, as do all |DN
k ⟩ with

1 < k < N − 1. We illustrated the orbit of |DN
k ⟩, under the action of ΠN using

reachability graphs.

In order to understand the evolution of Dicke state entropy vectors, we likewise

constructed reachability graphs for all |DN
k ⟩ under the action of the C2 subgroup

(HC)1,2 = ⟨H1, H2, C1, C2⟩. Since entanglement modification in Clifford circuits

occurs through bi-local action, restricting to this subgroup enabled us to place con-

straints on the dynamics of |DN
k ⟩ entropy vectors under Clifford gates. We found

the number of entropy vectors in each (HC)1,2 orbit to be constant, with 5 entropy

vectors possible on graphs of 288 vertices, and 6 entropy vectors on graphs with 576

vertices. While the number of entropy vectors on these graphs is fixed, the number

of distinct entropies continued to increase.

5.5 Discussion

In this work we constructed the entropy cone for N -qubit Dicke states |DN
k ⟩ by

calculating all entropy vectors for arbitrary values of N and k. We first defined a

function to compute the entanglement entropy Sℓ of any ℓ-party subsystem of |DN
k ⟩.

We demonstrated that |DN
k ⟩ entropy vectors are manifestly symmetric, with Sℓ only

dependent on the size of subsystem ℓ, and therefore lie within the convex hull of the

SQEC. We likewise find that |DN
k ⟩ entropy vectors are contained within the Stabilizer

entropy cone as far as it is characterized, up to N = 5. Dicke state entropy vectors

do not, however, satisfy the necessary HEC or SHEC conditions for all N ≥ 3, where

k ̸= N . We verified that our calculation accurately reproduces all vectors of the

N -qubit W state entropy cone [40], since |WN⟩ = |DN
1 ⟩.

We additionally define a prescription which realizes average entropies S̃ℓ, for |DN
k ⟩,
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as a min-cut protocol on weighted star graphs. Entropies Sℓ, as in Eq. 5.3.1, are com-

puted as the minimum-weight edge cut on ℓ+1 star graphs of N +1 legs each. Every

star graph has a single edge of weight w ≤ 0, with the precise value of w constrained

by the values of N and ℓ. The sum of two set of star graphs, one representing Sℓ

and one SN−ℓ, defines S̃ℓ for all |DN
k ⟩. This graph representation of |DN

k ⟩ entropies

builds upon other min-cut protocols for symmetrized entropies [11, 13, 40], and is an

interesting direction for future study.

We studied the orbits of |DN
k ⟩ under action of N -qubit Pauli group ΠN and the

2-qubit Clifford group C2. Interestingly, Dicke states form a set of non-stabilizer

states which are stabilized by more Clifford elements than just 1. We identified the

stabilizer subgroup for every |DN
k ⟩, under the action of both groups, which we used

to generate |DN
k ⟩ reachability graphs [27]. Each |DN

k ⟩ reachability graph depicts the

state’s orbit under the action of a chosen group, and generates all states which can be

reached through circuits built of the generating gates. Since |DN
k ⟩ is often initialized

as the starting state for many quantum algorithms, the reachability graphs in Section

5.4 provide a map through the Hilbert space for algorithms that begin with |DN
k ⟩.

Furthermore, since construction of reachability graphs is not limited to the Clifford

group [33], it would be interesting to explore Dicke state orbits under a universal set

of gates.

Reachability graphs can also be used to bound entanglement evolution under

a chosen set of gates, by examining how many times the entropy can be changed

by circuits in the graph [26]. Motivated to explore the dynamics of |DN
k ⟩ entropy

vectors under C2, we focused on the subgroup (HC)1,2 = ⟨H1, H2, C1,2, C2,1⟩ since

entanglement in Clifford circuits occurs, at most, through the bi-local CNOT gate.

We found that the number of entropy vectors on each |DN
k ⟩ reachability graph is

constant, with 5 entropy vectors on the 288-vertex graphs, like that in Figure 5.7,
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and 6 entropy vectors on the 576-vertex graphs, like Figure 5.8. While the number

of entropy vectors is fixed, the number of distinct entanglement structures which

compose each vector continues to increase for larger and larger systems.

We expect our analysis of the N -qubit Dicke state entropy cone and |DN
k ⟩ orbits

to generalize for qudit Dicke states. Circuits for deterministically preparing arbi-

trary qudit Dicke states are known, and many recursive generalizations Dicke state

properties have also been demonstrated. We expect the |DN
k ⟩ entropy vectors pre-

sented in this paper to generalize similarly, with preliminary efforts towards W state

entropy cone generalization given in [40]. The Pauli and Clifford groups can like-

wise be extended to arbitrary Hilbert space dimension [25, 22], which would allow us

to extend our orbit model and consider the evolution of entanglement evolution for

higher-dimensional Dicke systems.

The Dicke state stabilizers presented in this work find immediate application in

stabilizer code construction. Given a scheme for encoding logical Dicke states and a

suitable choice of measurement, we can construct an error-correcting channel directly

using the stabilizers in Section 5.4. For specific Dicke states, such as |DN
k ⟩, the

entanglement structure renders the state robust to single-qubit loss, particularly at

large N . We expect this characteristic to offer significant error-correction advantages

when using Dicke state encoding for noisy processing. In future work, we explore this

proposal and construct a class of Dicke stabilizer codes, evaluating their performance

when compared to existing schemes.

Finally, the entanglement structure of certain Dicke states makes |DN
k ⟩ an interest-

ing candidate for magic distillation protocols [9]. Coupled with the ease of preparing

|DN
k ⟩, Dicke states can enable improved protocols for distilling magic with minimal

overhead. The states |D5
1⟩, |D5

2⟩, and |D5
4⟩ specifically possess a significant amount

non-local magic [6], though ultimately experience error rates slightly above the fault-
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tolerant Bravyi-Kitaev threshold. These error rates can be improved however, by

passing |D5
k⟩ through a short sequence of gates. This further motivates an under-

standing |DN
k ⟩ orbits under universal gate sets, which can provide circuits to improve

the utility of Dicke states in distillation schemes.
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Chapter 6

BOUNDING ENTANGLEMENT ENTROPY WITH CONTRACTED GRAPHS

Following on our previous work [17, 16] studying the orbits of quantum states

under Clifford circuits via ‘reachability graphs’, we introduce ‘contracted graphs’ whose

vertices represent classes of quantum states with the same entropy vector. These

contracted graphs represent the double cosets of the Clifford group, where the left

cosets are built from the stabilizer subgroup of the starting state and the right cosets are

built from the entropy-preserving operators. We study contracted graphs for stabilizer

states, as well as W states and Dicke states, discussing how the diameter of a state’s

contracted graph constrains the ‘entropic diversity’ of its 2-qubit Clifford orbit. We

derive an upper bound on the number of entropy vectors that can be generated using

any n-qubit Clifford circuit, for any quantum state. We speculate on the holographic

implications for the relative proximity of gravitational duals of states within the same

Clifford orbit. Although we concentrate on how entropy evolves under the Clifford

group, our double-coset formalism, and thus the contracted graph picture, is extendable

to generic gate sets and generic state properties.

6.1 Introduction

One primary goal of quantum computation is to outperform classical computers:

that is, for certain tasks, to take a classical input and compute a classical output

more rapidly, or efficiently, than any known classical algorithm. (In recent years, this

goal has been achieved or brought within reach for certain sets of problems [3, 30].)

Intuitively, quantum computers can only do better on these tasks because they’re

doing something intrinsically quantum: if they weren’t, they couldn’t outperform the
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Figure 6.1: A reachability graph and its reduction to a contracted graph. In this

example, discussed in more detail in Figure 6.11, G is the subgroup of the two-

qubit Clifford group generated by Hadamard and CNOT gates and H is the set of

operations which leave entropy vectors unchanged.

classical method. Formalizing this intuitive result is an object of ongoing research:

precisely what feature of a particular quantum algorithm allows it to gain an advan-

tage?

Setting aside not-even-wrong explanations like “quantum computers act on each

term in a superposition simultaneously," the folk wisdom is that the source of quantum

advantage has something to do with interference, superposition, and entanglement.

This appealing picture is challenged by the famous result that Clifford circuits, which

are generated by the one-qubit Hadamard and phase gates and the two-qubit CNOT

gate, can be efficiently classically simulated [11, 1]. That is, even though Clifford

circuits can, via CNOT gate applications, produce entanglement, they can’t give

quantum speedups. Evidently, if some kind of entanglement is the key to quantum

advantage, the type produced by Clifford gates doesn’t suffice.
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In order to understand the evolution of entanglement as a state is evolved through

a quantum circuit, it’s useful to track the entropy vector, which characterizes the

entanglement entropy of every subsystem of the state. In a recent series of papers,

we have investigated how the entropy vector changes under the restricted action

of Clifford gates acting on the first two qubits of a state. We first obtained [17] the

reachability graphs, colored by entropy vector, which show how stabilizer states evolve

under the action of the two-qubit Clifford group C2 and its subgroups. In our second

paper [16], having better understood the underlying group-theoretic structures from

which the reachability graphs are attained, we were able to find a representation of C2

as generated by the Clifford gates, as well as explore the reachability graphs produced

from initial non-stabilizer states.

Although reachability graphs are useful for directly showing the action of explicit

circuits and explicit states, they fail to fully illuminate the paths by which the entropy

vector can change. The problem, in short, is that some circuits, even when they

contain CNOT gates, fail to change the entropy. For example, one defining relation

of C2 is [16] (
CNOT1,2P2

)4
= P 2

1 . (6.1.1)

Hence the structure of reachability graphs by themselves can only loosely bound how

the entropy vector might change.

In this paper, we accordingly pass to a more concise graphical representation, the

contracted graphs, whose vertices represent not single states but classes of states with

the same entropy vector. We show how to construct these graphs from the double

cosets of the Clifford group C2 and its cosets. An example of this procedure is shown

in Figure 6.1. Our protocol for constructing contracted graphs is easily generalized

to groups beyond the Clifford group and state properties beyond the entropy vector,

and might be of use for other applications.
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The remainder of this paper is organized as follows. In Section 6.2, we review

the Clifford group and stabilizer formalism, as well as the group-theoretic concepts

of cosets and double cosets. We also recall the objects used in our previous papers:

Cayley graphs, reachability graphs, and entropy vectors. In Section 6.3, we give a gen-

eral procedure for constructing the contracted graphs which retain information about

entropy-changing operations in a group. In Section 6.4, we apply this procedure to C2

and its subgroup (HC)1,2. For each of the reachability graphs in our previous papers,

we obtain the resulting contracted graph, and show how these combine together un-

der the action of the full Clifford group. In Section 6.5 we consider the diameter and

entropic diversity of the reachability graphs, and discuss implications for the available

transformations on a dual geometry via holography. In Section 6.6 we conclude and

discuss future work. Appendix D collects additional details of our computations.

6.2 Review

6.2.1 Clifford Group and Stabilizer Formalism

The Pauli matrices are a set of unitary and Hermitian operators, defined in the

computational basis {|0⟩, |1⟩} as

1 ≡

1 0

0 1

 , σX ≡
0 1

1 0

 , σY ≡
0 −i
i 0

 , σZ ≡
1 0

0 −1

 . (6.2.1)

The multiplicative matrix group generated by σX , σY , and σZ is known as the single-

qubit Pauli group Π1, which we write

Π1 ≡ ⟨σX , σY , σZ⟩. (6.2.2)

When Π1 acts on a Hilbert space H ≡ C2, in the fixed basis spanned by {|0⟩, |1⟩}, it

generates the algebra of all linear operations on H.
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The Clifford group is likewise a multiplicative matrix group, generated by the

Hadamard, phase, and CNOT operations:

H ≡ 1√
2

1 1

1 −1

 , P ≡

1 0

0 i

 , Ci,j ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (6.2.3)

The CNOT gate is a bi-local operation which, depending on the state of one qubit,

the control bit, may act with a σX operation on a second qubit, the target bit. For the

gate Ci,j, the first subscript index denotes the control bit and the second subscript the

target bit. We define the single qubit Clifford group C1 as the group ⟨H, P ⟩. Elements

of C1 act as automorphisms on Π1 under conjugation; hence C1 is the normalizer of

Π1 in L(H).

When considering the action of the Pauli and Clifford groups on multi-qubit sys-

tems, we compose strings of operators which act collectively on an n-qubit state.

For an element of Π1 which acts locally on the kth qubit in an n-qubit system, for

example, we write

I1 ⊗ . . .⊗ Ik−1 ⊗ σkX ⊗ Ik+1 ⊗ . . .⊗ In. (6.2.4)

Eq. Eq. (6.2.4) is referred to as a Pauli string, where the weight of each string counts

the number non-identity insertions. The multiplicative group generated by all Pauli

strings of weight 1 is the n-qubit Pauli group Πn.

We similarly can extend the action of C1 to multiple qubits, now incorporating Ci,j

into the generating set. Composing Clifford strings analogously to Eq. Eq. (6.2.4),
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we define the n-qubit Clifford group Cn as1

Cn ≡ ⟨H1, ..., Hn, P1, ..., Pn, C1,2, C2,1, ..., Cn−1,n, Cn,n−1⟩. (6.2.5)

When indicating the action of some local gate, Hadamard or phase, the gate subscript

denotes which qubit the gate acts on, e.g. H1 for the action of Hadamard on the first

qubit of an n-qubit system.

Beginning with any n-qubit computational basis state, e.g. |0⟩⊗n, the group Cn

is sufficient to generate the full set of n-qubit stabilizer states. As we noted in the

introduction, stabilizer states are notable in quantum computing as a set of quantum

systems which can be efficiently simulated with classical computing [1, 10]. Addi-

tionally, stabilizer states comprise the elements of H which are left invariant under a

2n element subgroup of Πn. Since the group Cn is finite, the set of n-qubit stabilizer

states Sn is also finite [12] and has order given by

|Sn| = 2n
n−1∏
k=0

(2n−k + 1). (6.2.6)

6.2.2 Cosets and Double Cosets

Throughout this paper we support our graph models with parallel group-theoretic

arguments. Many of our explanations make substantial use of coset and double coset

constructions, which we review here. We also take this opportunity to set notation

and establish language that will be used throughout the remainder of the paper.

Let G be a group and K ≤ G an arbitrary subgroup. The set of all left cosets of

K in G are constructed as

g ·K, ∀g ∈ G. (6.2.7)
1This is not the minimal generating set for the Clifford group, since some Clifford gates can be

written in terms of the others, c.f. Eqs. (4.5, 4.6) of [16]. A more minimal definition of the Clifford

group is Cn ≡ ⟨{Hi, P1, Ci,j}⟩ where i ∈ {1 . . . n}, j > i.
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Each left coset built in Eq. Eq. (6.2.7) is an equivalence set of elements [gi], which

are equivalent under K group action on the right:

gi ∼ gj ⇐⇒ ∃ k ∈ K : gi = gjk. (6.2.8)

Any two cosets [gi] in g ·K must be either equal or disjoint, and every g ∈ G must

be found in, at most, one equivalence class. As a result, the set of all [gi] gives a

complete decomposition of G.

Eqs. Eq. (6.2.7) and Eq. (6.2.8), as well as the accompanying explanations, apply

analogously when generating all right cosets H · g, for arbitrary H ≤ G. We build all

right cosets by computing H · g, for every g ∈ G, where each equivalence class [gi] is

now determined by left subgroup action

gi ∼ gj ⇐⇒ ∃h ∈ H : gi = hgj. (6.2.9)

When H ≤ G is normal in G, the left and right cosets are equal, and both H · g and

g ·H form a group under the same binary operation which defines G.

Two subgroups H,K ≤ G can be used to construct double cosets of G. We build

each (H,K) double coset by acting on g ∈ G on the right by subgroup K, and on the

left by H, explicitly

H · g ·K, ∀g ∈ G, h ∈ H, k ∈ K. (6.2.10)

The double coset space built using Eq. Eq. (6.2.10) is denoted H\G/K, and is defined

by the equivalence relation

gi ∼ gj ⇐⇒ ∃h ∈ H, k ∈ K : gi = hgjk. (6.2.11)

In order to utilize the above coset constructions in this paper, we invoke several

foundational group theory concepts (see e.g. [2]). First, for a finite group G, the order

of any subgroup K ≤ G partitions the order of G by Lagrange’s theorem

|G|
|K|

= [G : K], ∀K ≤ G, (6.2.12)
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where [G : K] ∈ N is the number of left (or right) cosets of K in G. When acting

with G on a set X, the orbit-stabilizer theorem fixes the size of each orbit [G · x] to

be

[G · x] = [G : K] =
|G|
|K|

, ∀x ≤ X, (6.2.13)

where K ≤ G is the set of elements which map an x ∈ X to itself.

We can likewise use Eq. Eq. (6.2.12) with Eq. Eq. (6.2.13) to compute the order

of a double coset space, i.e. the orbit of all left (or right) cosets under left (or right)

subgroup action. For finite G and subgroups H,K ≤ G, the order2 of H\G/K is

computed as

|H\G/K| = 1

|H||K|
∑

(h,k)∈H×K

|G(h,k)|, (6.2.14)

where G(h,k) is the set of equivalence classes [gi] under Eq. Eq. (6.2.10). The sum in

Eq. Eq. (6.2.14) is taken over all ordered pairs (h, k) of h ∈ H and k ∈ K.

6.2.3 Cayley Graphs and Reachability Graphs

A Cayley graph encodes in graphical form the structure of a group. For a group

G and a chosen set of generators, we construct the Cayley graph of G by assigning a

vertex for every g ∈ G, and an edge3 for every generator of G. When G corresponds

to a set of quantum operators acting on a Hilbert space, paths in the Cayley graph

represent quantum circuits that can be composed using the generating gate set. Dif-

ferent paths which start and end on the same pair of vertices indicate sequences of

operators whose action on any quantum state is identical. Loops in a Cayley graph

represent operations equivalent to the identity.
2Note that a direct application of Lagrange’s theorem to the order of a double coset space is false,

i.e. the order of a double coset space of G does not necessarily divide |G|.
3Formally, each edge in a Cayley graph is directed. However, for improved legibility, we will often

represent group generators which are their own inverse using undirected edges.
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For a group G ⊂ L(H), we define the stabilizer subgroup Stab G(|ψ⟩) of some

|ψ⟩ ∈ H as the subset of elements g ∈ G which leave |ψ⟩ unchanged,

Stab G(|ψ⟩) ≡ {g ∈ G | g|ψ⟩ = ψ}. (6.2.15)

In other words, the subgroup Stab G(|ψ⟩) consists of all g ∈ G for which |ψ⟩ is a +1

eigenvector.

Reachability graphs can be obtained more generally as quotients of Cayley graphs

[16, 22, 20]. To perform this procedure, we first identify a group G ∈ L(H) to act

on a Hilbert space H, and a generating set for G. We then first quotient G by any

subgroup of elements which act as an overall phase on the group. For Cn, this is the

subgroup ⟨ω⟩, where

ω ≡ (HiPi)
3 = eiπ/41. (6.2.16)

Once we have removed overall phase and constructed the quotient group4 Ḡ = G/⟨ω⟩,

we identify a state |ψ⟩ ∈ H. Selecting |ψ⟩ immediately defines the stabilizer subgroup

Stab Ḡ(|ψ⟩). We then construct the left coset space Ḡ/ Stab Ḡ(|ψ⟩) whose elements

are

g · Stab Ḡ(|ψ⟩) ∀g ∈ Ḡ. (6.2.17)

To graphically represent this procedure, we begin with a graph Γ ≡ (V,E), which

we quotient by first defining a partition on the vertices V . This partition induces the

equivalence relation u ∼ v iff u and v lie in the same subset of the partition, defined

for any u, v ∈ V . In this way, each vertex in the quotient graph represents one subset

of the partition, and two vertices in the quotient graph are considered adjacent if any

two elements of their respective subsets are adjacent in Γ.
4Since ⟨ω⟩ < Cn is normal, modding by ⟨ω⟩ builds a proper quotient. It therefore does not matter

whether we apply ⟨ω⟩ on the left or right of G when building cosets, nor does it affect any subsequent

double coset construction. Accordingly, when it will not cause confusion we continue to use G to

refer to the group modded by global phase, rather than using an alternative notation.
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While the graphs in this paper often represent groups, constructing a graph quo-

tient is not equivalent to quotienting a group. Building a group quotient requires

modding by a normal subgroup, which ensures that the left and right coset spaces

of the chosen subgroup are equal, preserving the original group action in quotient

group. We do not impose such a requirement when building graph quotients in this

paper, even when our graphs illustrate the relation between groups of operators. We

distinguish graph quotients from group quotients wherever potential confusion could

occur.

6.2.4 Entropy Vectors and Entropy Cones

For a state |ψ⟩ ∈ H, and some specified factorization for H, we can compute the

von Neumann entropy of the associated density matrix:

Sψ ≡ −Tr ρψ ln ρψ, (6.2.18)

where ρψ ≡ |ψ⟩ ⟨ψ|. For |ψ⟩ a pure state, the property ρ2ψ = ρψ implies Sψ =

0. Throughout this paper, we measure information in bits, and entropies in Eq.

Eq. (6.2.18) are computed with log2.

For a multi-partite pure state |ψ⟩, we can still observe non-zero entanglement

entropy among complementary subsystems of |ψ⟩. Let |ψ⟩ be some n-party pure

state, and let I denote an ℓ-party subsystem of |ψ⟩. We can compute the entanglement

entropy between I and its (n− ℓ)-party complement, Ī, using

SI = −Tr ρI ln ρI . (6.2.19)

The object ρI in Eq. Eq. (6.2.19) indicates the reduced density matrix of subsystem

I, which is computed by tracing out the complement subsystem Ī.

In general, there are 2n − 1 possible subsystem entropies we can compute for any

n-qubit pure state |ψ⟩. Computing each SI , using Eq. Eq. (6.2.19), and arranging all
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entropies into an ordered tuple defines the entropy vector S⃗
(
|ψ⟩
)
. As an example,

consider the 4-qubit pure state |ψ⟩, where S⃗
(
|ψ⟩
)

is defined

S⃗ = (SA, SB, SC , SO;SAB, SAC , SAO, SBC , SBO, SCO;SABC , SABO, SACO, SBCO;SABCO).

(6.2.20)

In Eq. Eq. (6.2.20) we use a semicolon to separate entropy components for subregions

of distinct cardinality |I|. Additionally, for an n-qubit state it is customary to denote

the nth subsystem using O, as this region acts as a purifier for the other n−1 parties.

For an n-party system, each entropy vector contains 2n − 1 components, with

the first n components representing single-qubit subsystems. We list entropy vector

components in lexicographic order: with the first region denoted A, the second region

denoted B, and so forth. Unlike what is sometimes found in the literature, we use

O to represent a smaller bipartition, instead of the one which does not contain the

purifier. For example, in Eq. Eq. (6.2.20) we declare O a single-party subsystem

which purifies ABC, and write SO in place of SABC among the single-party entries of

the entropy vector.

When |ψ⟩ is a pure state, the condition Sψ = 0 implies an additional equivalence

between entropies of complement subsystems

SI = SĪ . (6.2.21)

Using Eq. Eq. (6.2.21) we can write S⃗
(
|ψ⟩
)
, for a pure state |ψ⟩, using only 2N−1− 1

entropies. For example, the entropy vector in Eq. Eq. (6.2.20) simplifies to the form

S⃗ = (SA, SB, SC , SO;SAB, SAC , SAO). (6.2.22)

Since we are always considering pure states in this paper, all entropy vectors are

written using the reduced notation in Eq. Eq. (6.2.22).
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6.3 Building Contracted Graphs

We now define a procedure to quotient reachability graphs by operations which

preserve some specified property of a quantum system. In this paper we focus on the

evolution of entanglement entropy under the action of the Clifford group; however,

this prescription is sufficiently general to study any state property5 under the action

of any finitely-generated group.

We build a contracted graph by identifying vertices in a reachability graph which

are connected by entropy-preserving circuits. In this way, a contracted graph details

the evolution of a state’s entropy vector under the chosen gate set. The number of

vertices in a contracted graph gives a strict upper bound on the number of different

entanglement vector values reachable via circuits constructed using the chosen gate

set. We will later use contracted graphs to derive an upper bound on entropy vector

variation in Clifford circuits.

We now give an algorithm for generating contracted graphs.

1. We first select a group G, and a generating set for G, as well as a property of

our quantum system we wish to study under the action of G.

2. We next build the Cayley graph for G by assigning a vertex for every g ∈ G,

and a directed edge for each generator action on an element g ∈ G. We quotient

G, and its Cayley graph, by any subgroup which acts as a global phase on the

group, such as in Eq. Eq. (6.2.16).

3. Next, we construct the reachability graph for some |ψ⟩ under the action of
5In this work, the term state property refers to anything computable from knowledge of the state,

along with some additional information such as a specified factorization of the Hilbert space. We

do not restrict analysis to properties which are observables; in fact, the main property discussed in

this paper, the entropy vector, is not itself an observable.
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G, as detailed in Subsection 6.2.3, which we denote6 RG

(
|ψ⟩
)
. We determine

the stabilizer subgroup Stab G

(
|ψ⟩
)

for |ψ⟩, and generate the left coset space

G/ Stab G

(
|ψ⟩
)

using the equivalence relation

gi ∼ gj ⇐⇒ ∃ s ∈ Stab G

(
|ψ⟩
)
: gi = gjs. (6.3.1)

We glue together vertices in the Cayley graph of G that correspond to elements

which share an equivalence class [gi] in G/ Stab G

(
|ψ⟩
)
. This graph quotient

yields RG

(
|ψ⟩
)
.

4. We now identify the subgroup H ≤ G of elements that leave the entropy vector

of any state invariant. The subgroup H defines the equivalence relation

gi ∼ gj ⇐⇒ ∃h ∈ H : gi = hgj. (6.3.2)

For any G, the group H will at least contain all g ∈ G which act as local gates

on a single qubit, since local action cannot modify entanglement. However, H

may also contain additional circuits which do not change the entropy vector.

5. Finally, we build all double cosets H\G/ Stab G

(
|ψ⟩
)
. We identify all vertices

in RG

(
|ψ⟩
)

which share an equivalence class in H\G/ Stab G

(
|ψ⟩
)
, and subse-

quently quotient RG

(
|ψ⟩
)

to give the final contracted graph.

We generate reachability graphs by building left cosets G/ Stab G

(
|ψ⟩
)
, defined

by an equivalence up to right subgroup action by Stab G

(
|ψ⟩
)

as in Eq. Eq. (6.3.1).

Since Stab G

(
|ψ⟩
)

acts trivially on |ψ⟩, appending any s ∈ Stab G

(
|ψ⟩
)

to the right

of any g ∈ G does not change how g transforms the state |ψ⟩. Conversely, we build a

contracted graph by generating right cosets G\H, with equivalence defined up to left

6A more precise notation for such reachability graphs would be R
(
StabG

(
|ψ⟩
))

, however we

choose RG

(
|ψ⟩
)

instead for brevity.
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subgroup action as shown in Eq. Eq. (6.3.2). Every element of H preserves a state’s

entropy vector, therefore acting on the left of g|ψ⟩ by any h ∈ H does not change the

measurement of the full state entropy vector, for every g ∈ G.

Recall that there are two interpretations of a reachability graph. By identifying

a state |ψ⟩ and group G of operators acting on that state, RG

(
|ψ⟩
)

represents the

orbit of |ψ⟩ under the action of G. In this state-orbit interpretation, vertices of

RG

(
|ψ⟩
)

represent states reached in the orbit of |ψ⟩. For simplicity, we choose this

state-orbit interpretation in this explanatory section. A more general interpretation

of reachability graphs exists which defines RG

(
|ψ⟩
)

as a quotient space of the Cayley

graph of the abstract group G. In this interpretation, vertices represent equivalence

classes of g ∈ G defined by the left coset g · Stab G

(
|ψ⟩
)
.

Example: For clarity, we now work through an explicit example. Consider the

subgroup of the two-qubit Clifford group7 generated by the P2 and CNOT1,2 gates,

G ≡ ⟨P2, CNOT1,2⟩. (6.3.3)

The group ⟨P2, CNOT1,2⟩ consists of 32 elements, specifically

⟨P2, CNOT1,2⟩ = {p, pCp, Cp̄Cp}, (6.3.4)

where we introduce the notations

p ∈ {1, P2, P
2
2 , P

3
2 }, p̄ ∈ {P2, P

2
2 , P

3
2 }. (6.3.5)

We select the state |ψ⟩ =
(
|00⟩+ 2|01⟩+ 4|10⟩+ 3|11⟩

)
/
√
30, which we choose for

its particular entropic properties that we will discuss at the end of the section. We
7For additional detail on this Clifford subgroup see Section 4.2 of [16], where all group elements

are derived using two-qubit Clifford group relations.
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construct the reachability graph RG

(
|ψ⟩
)

for |ψ⟩, shown in the left panel of Figure

6.2. The only element of G which leaves |ψ⟩ invariant is 1 in G, therefore

Stab G(|ψ⟩) = {1}. (6.3.6)

Since the stabilizer group in Eq. Eq. (6.3.6) consists of just the identity, and is there-

fore a normal subgroup, the group Stab G(|ψ⟩) quotients G and the reachability graph

RG

(
|ψ⟩
)

is exactly the 32-vertex Cayley graph. In the more general case, RG

(
|ψ⟩
)

would not necessarily represent a group quotient, but would represent a left coset

space.
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Figure 6.2: Reachability graph (left) of |ψ⟩ =
(
|00⟩+ 2|01⟩+ 4|10⟩+ 3|11⟩

)
/
√
30,

highlighted in cyan, under action of ⟨P2, CNOT1,2⟩, and its associated contracted

graph (right). The contracted graph has 4 vertices and 4 edges connecting any two

vertices, indicating the entropy vector can maximally change 4 times under any cir-

cuit built of P2 and CNOT1,2. The 4 entropy vector possibilities, defined by Eq.

Eq. (6.2.20), are given in the legend.

We construct the contracted graph of RG

(
|ψ⟩
)

by identifying the elements of G

which cannot modify the entropy vector of |ψ⟩. Since the gate P2 acts locally on

a single qubit, it can never modify entanglement. Accordingly, we initially contract
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RG

(
|ψ⟩
)

by gluing together all vertices connected by a P2 edge, represented by the

orange dashed lines. Additionally, as we recognized in [16],

(
C1,2P2

)4
= P 2

1 . (6.3.7)

Hence all vertices connected by the circuit
(
C1,2P2

)4 must be identified together as

well, since P1 likewise does not change a state’s entropy vector. The right panel of

Figure 6.2 shows the final contracted graph of RG

(
|ψ⟩
)
, which contains 4 vertices.

In this particular example, the contracted graph represents the right coset space of

the quotient group G/ Stab G(|ψ⟩). In general, however, the contracted graph will

represent the double coset space H\G/ Stab G(|ψ⟩), where G/ Stab G(|ψ⟩) need not

be a quotient group.

It is important to note that edges in a contracted graph do not represent any

one particular Ci,j operation. Instead, every edge bearing a CNOT coloration repre-

sents sequences of operations which, at least, include a Ci,j gate and are capable of

modifying the entropy vector of a sufficiently-general state. In this way, the edges of

a contracted graph bound the number of times the entropy vector of a system can

change. Since the process of building a contracted graph removes all group elements

which leave entanglement entropy unchanged, we are left with a graph structure that

represents the orbit of an entropy vector under the group action.

The number of vertices in a contracted graph give an upper bound on the number

of distinct entropy vectors which can be generated in particular reachability graph.

For example, the contracted graph in Figure 6.2 contains 4 vertices, indicating the

maximum number of entropy vectors that can be achieved by acting on |ψ⟩ with

⟨P2, CNOT1,2⟩. The number of vertices in a contracted graph is fixed by the overall

group structure of G, as well as the group structure of Stab G; however, the different

ways in which those vertices can be colored according to entanglement structure is set
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by the choice of state. The fact that this contracted graph contains a unique entropy

vector for each of its 4 vertices, i.e. the contracted graph is maximally-colored, is

the reason we chose |ψ⟩ as we did. While the number of vertices in a contracted

graph gives an upper bound on entropic diversity in reachability graphs, there can

be multiple entropic colorings of the same graph, depending on factors such as qubit

number or the specific state.

We have defined a procedure for building contracted graphs from the reacha-

bility graph of arbitrary state |ψ⟩. When considering a group G which acts on a

Hilbert space, we build the reachability graph of |ψ⟩ by decomposing G into left

cosets G/ Stab G(|ψ⟩), with elements equivalent up to action by Stab G(|ψ⟩). We

build the contracted graph of the |ψ⟩ reachability graph by building the double coset

space H\G/ Stab G(|ψ⟩), for a subgroup H ≤ G of elements which preserve a state’s

entropy vector.

We have demonstrated how contracted graphs illustrate the evolution of entangle-

ment entropy under the action of some quantum gate set. The number of vertices in

a contracted graph gives an upper bound on the maximal number of times an entropy

vector can change under the chosen set of gates. We have chosen in this paper to con-

struct contracted graphs from reachability graphs in order to analyze the evolution

of state entropy vectors; however, the contraction procedure can be applied directly

to Cayley graphs as well.

In the next section we use the techniques defined above to build contracted graphs

for all stabilizer state reachability graphs studied in [17, 16], establishing upper

bounds on the variation of entanglement entropy in stabilizer state systems. We

also extend our analysis beyond stabilizer states, deriving upper bounds on the evo-

lution of entanglement entropy for any quantum state under the action of the Clifford

group.
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6.4 Contracted Clifford Reachability Graphs

In this section, we build contracted graphs to illustrate entropy vector evolu-

tion in stabilizer and non-stabilizer state reachability graphs. We begin by first

considering stabilizer state reachability graphs under the action of the C2 subgroup

(HC)1,2 ≡ ⟨H1, H2, C1,2, C2,1⟩, as studied in [17, 16]. We demonstrate how the

contracted version of each (HC)1,2 reachability graph explains the bounds on entan-

glement variation observed in our earlier work [17]. We then extend our analysis to

consider the full action of C2 on stabilizer states, showing how C2 contracted graphs

constrain the evolution of entanglement entropy in stabilizer systems under any 2-

qubit Clifford circuit.

We extend our study beyond the stabilizer states to the set of n-qubit Dicke

states, a class of non-stabilizer quantum states possessing non-trivial stabilizer group

under Clifford action [23]. We construct (HC)1,2 and C2 reachability and contracted

graphs for all Dicke states, establishing constraints on entropy vector evolution for

such states. Finally we move toward complete generality, deriving an upper bound

for the number of entropy vectors that can be realized by any n-qubit Clifford circuit,

acting on an arbitrary quantum state.

6.4.1 Contracted Graphs of g24 and g36

The complete set of n-qubit stabilizer states can be generated by acting with Cn on

the state |0⟩⊗n. However, since we are motivated to better understand the evolution of

entropy vectors in stabilizer systems, we restrict analysis to C2 and its subgroups, since

all entanglement modification in Clifford circuits occurs through bi-local operations.

Acting with C2 on |0⟩⊗n, for n > 1, generates an orbit of 60 states.
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First, we consider the class of states with stabilizer subgroup8 isomorphic to

SHC(|0⟩⊗n) ≡ Stab (HC)1,2(|0⟩
⊗n), under the action of (HC)1,2. The state |0⟩⊗n,

and any other state with stabilizer group isomorphic to SHC(|0⟩⊗n), has an orbit of

24 states under (HC)1,2.

(HC)1,2 Contracted Graphs of g24 and g36

The stabilizer subgroup SHC(|0⟩⊗n) contains 48 elements. As a result, generating

all left cosets of the 1152-element group (HC)1,2 by SHC(|0⟩⊗n) builds a coset space

of 1152/48 = 24 equivalence classes. The corresponding reachability graph of |0⟩⊗n

under (HC)1,2 contains 24 vertices, which we appropriately term g24. The left panel

of Figure 6.3 shows the graph g24, which is shared by all states with stabilizer group

isomorphic to SHC(|0⟩⊗n).

To build the associated contracted graph we quotient g24 by all elements of (HC)1,2

which do not modify the entropy vector. One immediate (HC)1,2 subgroup which can-

not modify entanglement entropy is ⟨H1, H2⟩, which describes all circuits composed

of Hadamard gates acting on two qubits. Additionally, as we recognized in [16], the

relation (
Ci,jHj

)4
= P 2

i , (6.4.1)

demonstrates that certain sequences of Hadamard and CNOT gates are actually

equivalent to phase operations. We therefore need to also identify all vertices con-

nected by the circuits in Eq. Eq. (6.4.1), since phase operations cannot change en-

tanglement. After identifying all vertices connected by entropy-preserving edges, the

reachability graph g24 contracts to a graph with 2 vertices, shown on the right of

Figure 6.3.
8A comprehensive derivation of all stabilizer subgroups, for stabilizer states under the action of

(HC)1,2, is given in Section 5.3 of [16].
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Figure 6.3: Reachability graph g24 (left) and its contracted graph (right). Any state

with stabilizer group isomorphic to SHC(|0⟩⊗n) will have reachability graph g24 under

(HC)1,2. The g24 contracted graph has 2 vertices, indicating the maximum number of

unique entropy vectors that can exist in any g24 graph. Each edge in the contracted

graph represents a set of entanglement-modifying circuits, each containing at least

one CNOT gate.

The contracted graph of g24 contains 2 vertices, and is shown in the right panel

of Figure 6.3. These 2 vertices represent the 2 possible entropy vectors that can be

reached by all circuits in any g24 graph, regardless of qubit number. All states repre-

sented by blue vertices in g24 are connected by some circuit composed of H1, H2, P
2
1 ,

and P 2
2 , and are therefore identified to a single blue vertex in the contracted graph.

Likewise, all red vertices in g24 are identified to a single red vertex in the contracted

graph. For the specific case of |0⟩⊗n, the two entropy vectors in g24 correspond to

completely unentangled states, or states which share an EPR pair among two qubits.

As a group-theoretic object, the vertices of a contracted graph represent the equiv-

alence classes of a double coset space, as defined in Eq. Eq. (6.2.10). For the group

(HC)1,2 acting on H, the subgroup

(HP 2)1,2 ≡ ⟨H1, H2, P
2
1 , P

2
2 ⟩ (6.4.2)

can never modify the entropy vector of any state. Accordingly, the 2 vertices of the

contracted graph in Figure 6.3 indicate the 2 distinct equivalence classes in the double

coset space (HP 2)1,2\(HC)1,2/SHC(|0⟩⊗n).
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Acting with the gates H1 followed by P1 on the state |0⟩⊗n, that is

|ϕ⟩ = P1H1|0⟩⊗n, (6.4.3)

yields a state |ϕ⟩ with stabilizer group SHC(|ϕ⟩), consisting of 32 elements, which is

not isomorphic to SHC(|0⟩⊗n). Consequently the state |ϕ⟩, as well as any other state

with stabilizer group isomorphic to SHC(|ϕ⟩), is not found on any g24 graph. Instead,

each state stabilized by SHC(|ϕ⟩) resides on a reachability graph of 36 vertices, which

we term g36, shown on the left of Figure 6.4. In general, any state which is the

product of a 2-qubit stabilizer state and a generic (n− 2)-qubit state will either have

reachability graph g24 or g36.
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Figure 6.4: Reachability graph g36 (left) and its contracted graph (right). The g36

contracted graph contains 4 vertices, but only ever realizes 2 entropy vectors among

those vertices. Different sets of blue vertices, highlighted in cyan, yellow, and ma-

genta, identify respectively to the three blue vertices in the contracted graph. All

red vertices in g36 identify to a single red vertex in the contracted graph. Non-trivial

entropy-preserving circuits, e.g. (Ci,jHj)
4 from Eq. Eq. (6.4.1), map vertices on op-

posite sides of g36 to each other.

The contracted graph of g36, shown in the right panel of Figure 6.4, contains 4

vertices. All red vertices in g36 identify to the same red vertex in the contracted

graph. There are three distinct sets of blue vertices in g36, highlighted with colors

cyan, yellow, and magenta in Figure 6.4, which identify to the three blue vertices in
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the contracted graph. All vertices highlighted by the same color in g36 are connected

by circuits which preserve the entropy vector.

The vertices of the g36 contracted graph in Figure 6.4 represent the 4 unique

equivalence classes of the double coset space (HP 2)1,2\(HC)1,2/SHC(|ϕ⟩). Examining

the vertex identifications in Figure 6.4, we again observe that the contraction map is

not a quotient map on the original group. Vertex sets of different cardinalities in g36

are identified together under this graph contraction, which cannot occur in a formal

group quotient.

While the g36 contracted graph contains four vertices, these vertices only ever

realize two different entropy vector possibilities. Specifically, the two entropy vectors

found on any g36 graph are exactly the same as those found on the g24 graph in Figure

6.3. As we will show below, graph g24 attaches to g36 when we add phase gates back

to our generating set. This connection of the g24 and g36 reachability graphs by local

operations constrains the number of distinct entropy vectors that can be found on

either graph.

C2 Contracted Graphs of g24 and g36

We now analyze the full action of C2 on states in a g24 or g36 reachability graph

under (HC)1,2. Acting with C2 on any such state generates a reachability graph of 60

vertices, which can be seen in Figure 6.5. This 60-vertex reachability graph consists

of a single copy of g24 (top), attached to a single copy of g36 (bottom) by sets of P1

and P2 edges.

Following the P1 and P2 edges in Figure 6.5, we can observe how vertices of a

certain color connect to other vertices of the same color. Blue vertices in g24 always

connect to blue vertices in g36, as is true for red vertices. Red vertices in g36 may

connect to other red vertices in g36, or to red vertices in g24. The three distinct batches
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Figure 6.5: Reachability graph for all states with SHC(|0⟩⊗n) under the action of C2.

This 60-vertex reachability graph is the attachment of g24 (Figure 6.3) to g36 (Figure

6.4) by P1 and P2 gates. This reachability graph is likewise shared by all stabilizer

product states.

of blue vertices in g36, highlighted in Figure 6.4, connect to each other via sequences

of H1, H2, P1, and P2, all of which leave the entropy vector unchanged. We can also

directly observe circuits such as
(
C1,2H2

)4, as in Eq. Eq. (6.4.1), and verify that this

sequence is indeed equivalent to the entropy-preserving P 2
1 operation.

As before, we contract the C2 reachability graph in Figure 6.5 by identifying ver-

tices connected by entropy-preserving circuits. When performing this contraction on

the full C2 graph we do not rely on any special operator relations, e.g. Eq. Eq. (6.4.1),

since we are identifying vertices connected by all 2-qubit local operations, i.e. all op-

erations built of H1, H2, P1, and P2. The contracted graph of the C2 reachability

graph in Figure 6.5 is shown in the right panel of Figure 6.6. The 2 vertices in this

contracted graph represent the 2 equivalence classes in (HP 2)1,2\C2/SC2(|0⟩
⊗n).

Figure 6.5 depicts how sets of phase gates connect reachability graphs g24 and g36.
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Figure 6.6: Contracted graph (right) of C2 reachability graph in Figure 6.5. The left

panel shows the contracted graphs of g24 (top) and g36 (bottom), connected by P1 and

P2 circuits. Identifying vertices connected by phase edges quotients the left graph to

the 2-vertex contracted graph on the right. The 2 vertices of this contracted graph

represent the 2 unique entropy vectors that can be found in the reachability graph in

Figure 6.5.

Similarly, the left panel of Figure 6.6 shows how the respective contracted graphs of

g24 and g36 are connected by sets of phase edges. The right panel of Figure 6.6 gives

the final contracted graph after quotienting the C2 reachability graph in Figure 6.5 by

all entropy-preserving edges. The contracted graph has 2 vertices, corresponding to

the 2 possible entropy vectors that can be found on any C2 reachability graph of the

form shown in Figure 6.5. Furthermore, the 2 vertices in the contracted explain why

both graphs g24 and g36 individually only ever realize 2 entropy vector colors among

their vertices.

We examined the action of (HC)1,2 and C2 on n-qubit states with stabilizer group

isomorphic to SHC(|0⟩⊗n) and SHC(|0⟩P1H1⊗n). We generated the reachability graphs

for all states with both stabilizer groups, and quotiented each reachability graph

by entropy-preserving operations to build the associated contracted graphs. The
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number of vertices in each contracted graph gave an upper bound on the number of

different entropy vectors found in each reachability graph. Similarly, the edges in each

contracted graph indicated the ways an entropy vector can change under all circuits

comprising the reachability graph. We will now consider the reachability graphs of

n > 2 qubit stabilizer states, where more-complicated entanglement structures can

arise.

6.4.2 Contracted Graphs of g144 and g288

When we consider the action of (HC)1,2 and C2 on systems of n > 2 qubits, new

reachability graph structures appear [17]. Additionally at n > 2 qubits, we observe

new entanglement possibilities as well as new entropy vector colorings for reachability

graphs. In this subsection, we define two new sets of stabilizer states which arise at

n = 3 qubits, defined by their stabilizer subgroup under (HC)1,2 action. We build

all reachability graphs and contracted graphs for these two families of states, and

determine the bounds on entropy vector evolution in their respective reachability

graphs. We then consider the full action of C2 on these classes of states, and again

build all reachability and contracted graphs.

At three qubits, acting with (HC)1,2 on certain stabilizer states produces an ad-

ditional two reachability graphs beyond g24 and g36 discussed in the previous subsec-

tion. One new graph which arises at three qubits contains 144 vertices, shown on

the left of Figure 6.7, and corresponds to states which are stabilized by 8 elements

in (HC)1,2. One example of a state with g144 reachability graph is the 3-qubit GHZ

state |GHZ⟩3 ≡ |000⟩+ |111⟩. The graph g144 is shared by all states with a stabilizer

subgroup isomorphic to SHC(|GHZ⟩3). For reasons we will explain in a moment,

Figure 6.7 depicts the specific reachability graph for the 6-qubit state defined in Eq.

Eq. (D.0.1).
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Figure 6.7: Reachability graph g144 (left), and its associated contracted graph (right).

The contracted graph contains 5 vertices, corresponding to the 5 unique entropy

vectors that can be found on g144. We depict a g144 graph for the 6-qubit state

defined in Eq. Eq. (D.0.1), as it contains the maximal number of 5 entropy vectors

among its vertices. Again we observe that certain circuits, e.g. Eq. Eq. (6.4.1), do

not modify entanglement and map vertices of the same color together. The specific

entropy vectors shown are given in Table D.1.

The contracted graph of g144, shown on the right of Figure 6.7, contains 5 vertices.

These 5 vertices represent the 5 unique entropy vectors that can be found on any g144

reachability graph. While the graph g144 is first observed among 3-qubit systems,

we do not find a maximal coloring of g144, i.e. a copy of g144 with 5 different entropy

vectors, until 6 qubits. The specific graph shown in Figure 6.7 corresponds to the orbit

of the 6-qubit state defined in Eq. Eq. (D.0.1), which we choose precisely because its

g144 graph displays the maximum allowable entropic diversity. The specific entropy

vectors corresponding to the colors seen in Figure 6.7 can be found in Table D.1 of
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Appendix D.

Also beginning at three qubits, we witness a stabilizer state reachability graph

with 288 vertices, which we denote g288. States with reachability graph g288 are

stabilized by 4 elements of (HC)1,2, specifically by a subgroup isomorphic to

{1, H2(C1,2H1)
4, (C1,2H1)

4H2,
(
(C1,2H1)

3C1,2H2

)2}. (6.4.4)

The left panel of Figure 6.8 depicts a g288 reachability graph, specifically for a 6-qubit

state stabilized by the group in Eq. Eq. (6.4.4).
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Figure 6.8: Reachability graph g288, and its contracted graph, for 6-qubit state stabi-

lized by Eq. Eq. (6.4.4). While the g288 contracted graph has 12 vertices, we only ever

witness 5 entropy vectors among those vertices. The specific entropy vectors depicted

are the same as those in Figure 6.7, and can be found in Table D.1.

The g288 contracted graph shown in the right panel of Figure 6.8 contains 12

vertices, which provides a weak upper bound on the number of entropy vectors that

can be found on any g288 graph. However, for reasons we will soon explain, the 12

vertices of this contracted graph are only ever colored by 5 different entropy vectors.
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The specific 5 entropy vectors shown in Figure 6.8 are exactly those seen in Figure

6.7, and are defined in Table D.1. Similar to the case of g144 in Figure 6.7, the graph

g288 is first observed among 3-qubit systems, but only witnesses a maximal coloring

beginning at n ≥ 6 qubits.

We now consider the full action of C2 on states with a g144 or g288 reachability

graph, returning P1 and P2 to our generating set. Every state in a g144 and g288

reachability graph under (HC)1,2 is stabilized by 15 elements of the full group C2. The

orbit of all such states under C2 therefore contains 768 states, and the associated 768-

vertex reachability graph is shown in Figure 6.9. The orange edges in the reachability

graph, which correspond to P1 and P2 gates, illustrate specifically how three different

copies of g144 attach to a single copy of g288 under phase operations.

The contracted graphs for each g144 and g288 in Figure 6.9 are compiled in the

left panel of Figure 6.10. Each of the three copies of g144 contracts to a 5-vertex

graph that is isomorphic to Figure 6.7, while the single copy of g288 contracts to the

12-vertex graph seen in Figure 6.8. These four contracted graphs attach to each other

under phase operations, adding connections which do not change a state’s entropy

vector. The final contracted graph of Figure 6.9 is shown on the right of Figure 6.10,

and only has 5 vertices.

The full C2 contracted graph in Figure 6.10 is almost identical to the g144 con-

tracted graph in Figure 6.7, but with an additional edge connecting two of the ver-

tices. Since every g288 attaches to 3 copies of g144 by phase gates, which do not modify

entanglement, the maximum number of entropy vectors on any g288 is bounded by

the entropic coloring of each g144 it connects to. This connectivity explains why we

only observe at most 5 entropy vectors on any g288 graph, as can be seen in Figure

6.8.

Figure 6.10 depicts a symmetry between red and blue vertices which corresponds
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Figure 6.9: Reachability graph for states in g144 and g288 graphs, under the full action

of C2. This 768-vertex graph is composed of 3 copies of g144 and a single g288. The

graph connectivity constrains the diversity of entropy vectors which can be found on

any single g144 and g288 graph. For clarity we choose not to color vertices by their

entropy vector here.

to an equivalence of these two entropy vectors under an exchange of the first two

qubits. We likewise observe a symmetry between green, yellow, and magenta vertices,

reflecting the three ways to divide the 4-qubit subsystem CDEO into two groups of

two qubits each. For each g144 contracted graph in Figure 6.10, the middle vertex

corresponds to the entropy vector that occurs the fewest number of times, specifi-

cally 16 times, in each respective g144 reachability graph. We again observe that the
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Figure 6.10: Contracted graph of C2 reachability graph from Figure 6.9. The left panel

depicts the individual contracted graphs of the 3 g144 graphs attached to a single g288

graph. The right panel shows the final contracted graph, with 5 vertices, and explains

why we only ever find g288 and g144 graphs with 5 different entropy vectors (given in

Table D.1).

contraction procedure generates a double coset space, rather than a group quotient,

since the resulting equivalence classes have different cardinalities.

In this subsection we built contracted graphs for the stabilizer state reachability

graphs g144 and g288, corresponding to states which are stabilized by 4 and 8 elements

of (HC)1,2 respectively. We showed how the contracted graph for g144, with 5 vertices,

and the contracted graph for g288, with 12 vertices, both witness a maximum of 5

different entropy vectors. This constraint on the number of different entropy vectors,

perhaps surprising in the case of g288, can be understood by considering the full action

of C2, which attaches three copies of g144 to g288 by phase operations. The number

of entropy vectors found on any g288 reachability graph is bounded by the number

of entropy vectors found on each of the g144 graphs to which it attaches, since P1
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and P2 cannot modify entanglement. In the next subsection we consider the action

of (HC)1,2 and C2 on generic quantum states, which allows us to extend our analysis

beyond the stabilizer states.

6.4.3 Contracted Graphs of g1152 and Full C2

We now study the generic (HC)1,2 reachability graph for any quantum state sta-

bilized by only the identity in (HC)1,2. For stabilizer state systems, this final (HC)1,2

reachability graph structure arises at n ≥ 4 qubits. The reachability graph, which we

term g1152, contains 1152 vertices and is shown on the left of Figure 6.11.
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Figure 6.11: Reachability graph g1152 (left) and its contracted graph (right). The

graph g1152 is shared by all stabilizer states stabilized by only 1 ∈ (HC)1,2, as well as

generic quantum states. In this Figure, we illustrate an example g1152 for the 8-qubit

state in Eq. Eq. (D.0.2), where the contracted graph achieves a maximal coloring of

18 different entropy vectors (given in Figure D.1).

The contracted graph of g1152, shown in the right panel of Figure 6.11, contains 18

vertices. These 18 vertices indicate the maximum number of unique entropy vectors
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that can be generated for any quantum state using only operations in (HC)1,2. The

g1152 contracted graph is symmetric, and achieves a maximal coloring at 8 qubits.

The specific instance of g1152 in Figure 6.11 corresponds to the 8-qubit state given in

Eq. Eq. (D.0.2), for which the entropy vectors are given in Table D.1.

The full 2-qubit Clifford group C2 is composed of 11520 elements. A generic

quantum state will only be stabilized by 1 ∈ C2, and therefore has an orbit of 11520

states under C2 action. Every state in an 11520-vertex reachability graph under C2

will trivially lie in a g1152 graph under (HC)1,2, however, the converse9 is not always

true. We display the full C2 reachability graph, in a compressed format, to the left of

Figure 6.12. Each vertex in the left panel of Figure 6.12 represents a distinct copy of

g1152 from Figure 6.11. Each of the 10 copies of g1152 attaches to every other g1152 via

P1 and P2 gates.

The contracted graph10 of the 11520-vertex C2 reachability graph contains 20 ver-

tices, and is shown on the right of Figure 6.12. This contracted graph is complete and

symmetric, and the 20 entropy vectors shown in Figure 6.12 are given in Table D.1.

Since we are considering the full action of C2, the 20 vertices in this contracted graph

constrain the number of entropy vectors that can be generated by any 2-qubit Clifford

circuit. Otherwise stated, given a generic quantum state with arbitrary entanglement
9Since any state in an 11520-vertex graph under C2 is stabilized by only the identity, each state

will likewise be stabilized by only the identity in (HC)1,2. There exist states, however, which are

stabilized by only the identity in (HC)1,2, but can be transformed under phase gates into states

stabilized by more than one element of (HC)1,2. Subsection 6.4.4 discusses two classes of Dicke

states which demonstrate this counterexample.
10Since all states in the 11520-vertex reachability graph are stabilized by only 1 ∈ C2, and since ⟨1⟩

is normal in C2, the object C2/⟨1⟩ defines a formal group quotient on C2. Consequently, the contracted

graph to the right of Figure 6.12 actually represents the right coset space C2\⟨H1, H2, P1, P2⟩, as

opposed to a double coset space.

222



Out[ ]=

H1

H2

C1,2

C2,1

P1

P2

g1152

Figure 6.12: The full C2 reachability graph (left) with 11520 vertices. We present this

reachability graph as a collection of attached g1152 graphs, illustrating how (HC)1,2

reachability graphs connect via P1 and P2 gates. We also remove all loops in the

C2 reachability graph, i.e. all phase edges which map a copy of g1152 to itself. The

contracted graph of the C2 reachability graph is given to the right, and has 20 vertices.

These 20 vertices give an upper bound on the number of distinct entropy vectors that

can be reached by applying any sequence of 2-qubit operations on any quantum state.

structure, any unitary composed of 2-qubit Clifford gates can maximally achieve 20

distinct entropy vectors.

In the remainder of the section we extend our discussion beyond stabilizer states,

examining contracted graphs for non-stabilizer Dicke states under (HC)1,2 and C2

action. We also derive a general upper bound for the number of entropy vectors that

can be achieved under any n-qubit Clifford circuit, for arbitrary n.
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6.4.4 Non-Stabilizer State Contracted Graphs

[16, 23] showed that certain non-stabilizer states can have non-trivial stabilizer

subgroups, i.e. they are stabilized by more than just the identity, under the action of

Cn. One class of states in particular, the set of n-qubit Dicke states [24], always admits

a non-trivial Cn stabilizer group. In this subsection, we discuss all (HC)1,2 and C2

reachability graphs for Dicke states and construct their associated contracted graphs.

We use the contracted graphs to bound the number of possible entropy vectors that

can be generated in Dicke state systems under Clifford group action [27, 23].

Each n-qubit Dicke state |Dn
k ⟩ is defined as an equal-weight superposition over all

n-qubit states of a fixed Hamming weight. Using the n-qubit states {|b⟩}, where b

denotes some binary string of length 2n, we construct |Dn
k ⟩ as the state

|Dn
k ⟩ ≡

(
n

k

)−1/2 ∑
b∈{0,1}n, h(b)=k

|b⟩, (6.4.5)

where h(b) = k denotes the fixed Hamming weight of b. Some examples of Dicke

states include

|D2
1⟩ =

1√
2

(
|01⟩+ |10⟩

)
,

|D4
2⟩ =

1√
6

(
|1100⟩+ |1010⟩+ |1001⟩+ |0110⟩+ |0101⟩+ |0011⟩

)
.

(6.4.6)

Dicke states of the form |Dn
1 ⟩ are exactly the non-biseparable n-qubit W -states, while

|Dn
n⟩ are the computational basis states |1⟩⊗n.

For n ≥ 3 qubits, the state |Dn
1 ⟩ is not a stabilizer state. Regardless, each |Dn

k ⟩

is stabilized by a subset of Cn that contains more than just the identity. When

considering the action of C2 on |Dn
k ⟩, states of the form |Dn

1 ⟩ and |Dn
n−1⟩ share one

particular set of stabilizers, while those of the form |Dn
k ⟩ with 1 < k < n − 1 share

another. We discuss both cases below.
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Dicke states of the form |Dn
1 ⟩ and |Dn

n−1⟩ are not stabilizer states for all n ≥

3. However, both |Dn
1 ⟩ and |Dn

n−1⟩ are stabilized by a 4-element subgroup11 of C2,

specifically

SHC(|Dn
1 ⟩) = {1, H2C1,2H2, C1,2C2,1C1,2, H2C1,2H2C1,2C2,1C1,2},

= SHC(|Dn
n−1⟩).

(6.4.7)

Furthermore, we note that the subgroup in Eq. Eq. (6.4.7) is contained in (HC)1,2.

Therefore the left coset space (HC)1,2/SHC(|Dn
1 ⟩) contains 288 elements.

The reachability graph for all |Dn
1 ⟩ and |Dn

n−1⟩, which we denote g288∗ , has 288

vertices, as dictated by the order of SHC(|Dn
1 ⟩) in Eq. Eq. (6.4.7). While the graph

g288∗ has the same number of vertices as the g288 graph for stabilizer states, shown in

Figure 6.8, its topology is distinct from g288 and the two graphs are not isomorphic.

Graphs with the topology of g288∗ are never observed among stabilizer states, and

provide an example of non-stabilizer states that are stabilized by more than just the

identity in C2. The left panel of Figure 6.13 depicts an example of g288∗ , specifically

for the state |D3
1⟩.

The contracted graph of g288∗ has 5 vertices, and is shown on the right of Figure

6.13. While the reachability graph g288 for stabilizer states has a contracted graph

of 12 vertices, the distinct connectivity of g288∗ yields a smaller contracted graph.

Interestingly, the g288∗ contracted graph is isomorphic to the g144 contracted graph

seen in Figure 6.7. There are 5 possible entropy vectors found on any g288∗ , and the

graph achieves a maximal coloring beginning at 3 qubits.

The orbit of |Dn
1 ⟩ and |Dn

n−1⟩ under the full group C2 reaches 2880 states, gener-

ating a reachability graph of 2880 vertices. The left panel of Figure 6.14 illustrates

this 2880-vertex reachability graph for the state |D3
1⟩, which is comprised of several

11There is a more compact representation of this stabilizer group using CZ gates (see also [18]),

which can be written SHC(|Dn
1 ⟩) = {1, CZ1,2, C1,2C2,1C1,2, CZ1,2C1,2C2,1C1,2}.
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Figure 6.13: Reachability graph g288∗ (left) for |D3
1⟩ under the action of (HC)1,2.

The graph g288∗ has different topology than the g288 graph for stabilizer states. The

g288∗ contracted graph (right) has 5 vertices, and is isomorphic to the stabilizer state

contracted graph of g144 from Figure 6.7. The exact, rather than numerical, values of

the 5 entropy vectors given in the legend are shown in Table D.2.

attached copies of (HC)1,2 reachability graphs. For clarity, we allow each vertex of

the 2880-vertex reachability graph to represent graphs g288∗ , g576 (introduced later in

Figure 6.15), and g1152, focusing on the connectivity between different (HC)1,2 orbits

under P1 and P2 operations.

The C2 reachability graph in Figure 6.14 is built of 2 attached copies of g288∗ , 2

copies of g576, and a single g1152. Every state in this 2880-vertex reachability graph is

stabilized by 4 elements of C2. Certain states, such as |Dn
1 ⟩ and |Dn

n−1⟩, are stabilized

by a 4-element subgroup of C2 which is also completely contained within (HC)1,2, as

shown in Eq. Eq. (6.4.7). However, other states are stabilized by 4 elements of C2, but

by only 2 elements in (HC)1,2 (see Footnote 9). Accordingly, such states are found in
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Figure 6.14: Reachability graph (left) of |D3
1⟩ under the full action of C2, contain-

ing 2880 vertices. We illustrate this reachability graph with vertices representing

graphs g288∗ , g576, and g1152 to illustrate the connectivity of certain (HC)1,2 reacha-

bility graphs under phase gates. The right panel of the Figure depicts the associated

contracted for the C2 reachability graph, which contains 6 vertices.

one of the g576 graphs in Figure 6.14. Still other states are stabilized by 4 elements

of C2, but only by the identity in (HC)1,2, and reside in the single copy of g1152 in

Figure 6.14.

The C2 reachability graph of |D3
1⟩ contracts to a 6-vertex graph, seen to the right of

Figure 6.14, after identifying vertices connected by entropy-preserving circuits. While

the contracted graph in Figure 6.14 has 6 vertices, we only ever observe 5 different

entropy vectors among those vertices. We address this point further in the discussion.

The 5 entropy vectors of the |D3
1⟩ contracted graph are listed in Table D.2.

All remaining Dicke states, those of the form |Dn
k ⟩ with 1 < k < n − 1, are
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stabilized by only 2 elements in C2. For any |Dn
k ⟩ of this form, its stabilizer subgroup

under C2 action is given by

SC2
(
|Dn

k ⟩
)
= {1, C1,2C2,1C1,2}, ∀ 1 < k < n− 1. (6.4.8)

We again note that the stabilizer group in Eq. Eq. (6.4.8) is also contained completely

within (HC)1,2, and therefore the left coset space (HC)1,2/SC2
(
|Dn

k ⟩
)

consists of 576

elements.

The reachability graph for |Dn
k ⟩ under (HC)1,2, which we denote g576, has 576

vertices. The left panel of Figure 6.15 depicts g576, specifically for the state |D4
2⟩.

Reachability graphs with 576 vertices, under (HC)1,2 action, are never observed for

stabilizer states. Again, as with g288∗ , the graph g576 corresponds to non-stabilizer

states which are non-trivially stabilized by Cn.

After identifying vertices in g576 connected by entropy-preserving operations, we

are left with a contracted graph of 9 vertices shown on the right of Figure 6.15. These 9

vertices are colored by 6 different entropy vectors, with maximal coloring beginning at

4 qubits. Among the 6 entropy vectors in this contracted graph, there are symmetries

shared among cyan, magenta, and yellow vectors, and separately among red, blue,

and green vectors. The specific 6 entropy vectors for the |D4
2⟩ contracted graph are

given in Table D.3.

Acting with the full group C2 on |Dn
k ⟩, for 1 < k < n−1, generates an orbit of 5760

states. The C2 reachability graph of |Dn
k ⟩ therefore has 5760 vertices, and is depicted

in the left panel of Figure 6.16 for the case of |D4
2⟩. As before, we depict the full

5760-vertex reachability graph as 7 attached copies of different (HC)1,2 reachability

graphs g576 and g1152.

The 5760-vertex reachability graph in Figure 6.16 consists of 4 copies of g576 and

3 copies of g1152, all connected via P1 and P2 operations. While every state in the full
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Figure 6.15: The g576 reachability graph (left) for |D4
2⟩ under (HC)1,2 action. Graphs

of 576 vertices are never observed among stabilizer states under (HC)1,2 action. The

graph g576 contracts to a graph of 9 vertices under entropy-preserving operations,

with 6 different entropy vectors among those vertices. The 6 entropy vectors found

in this contracted graph are given in Table D.3.

5760-vertex reachability graph is stabilized by 2 elements of C2, some states have a

stabilizer group completely contained within (HC)1,2. States stabilized by 2 elements

of (HC)1,2 are found in one of the 4 copies of g576 in Figure 6.16. Alternatively, states

which are stabilized by 2 elements of C2, but only the identity in (HC)1,2, are found

in one of the 3 copies of g1152.

If we identify vertices connected by entropy-preserving operations in the C2 reach-

ability graph of |D4
2⟩, we are left with a contracted graph containing 10 vertices shown

to the right of Figure 6.16. While this contracted graph has 10 vertices, we only ever

observe 6 different entropy vectors among those 10 vertices. We again return to this

point in the discussion. The contracted graph in Figure 6.16 also reflects the sym-

metry among magenta, cyan, and yellow vertices observed in Figure 6.15. These 6
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Figure 6.16: Reachability graph of |D4
2⟩ under C2 (left), and its associated contracted

graph (right). We display the 5760-vertex reachability graph as a network of (HC)1,2

graphs g576 and g1152, connected by P1 and P2 gates. The contracted graph contains

10 vertices, but we only ever observe 6 entropy vectors due to how the g576 and g1152

copies connect under phase action. The 6 different entropy vectors shown are given

in Table D.3.

entropy vectors which can be generated from |D4
2⟩ under C2 are given in Table D.3.

In this subsection we extended our analysis beyond the stabilizer states, building

contracted graphs for non-stabilizer Dicke states under the action of (HC)1,2 and C2.

States |Dn
k ⟩, for k ̸= n, are particularly interesting at n ≥ 3 qubits as they comprise

a class of non-stabilizer states that are non-trivially stabilized by elements of Cn. We

constructed the two possible reachability graphs for |Dn
k ⟩, one for states |Dn

1 ⟩ and

|Dn
n−1⟩, and the other for all |Dn

k ⟩ with 1 < k < n− 1. We described how each Dicke

state reachability graph under C2 corresponds to a connection of (HC)1,2 reachability
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graphs g288∗ , g576, and g1152 under P1 and P2 operations.

We built the contracted graphs for each |Dn
k ⟩ reachability graph, both under

(HC)1,2 and C2 action. We illustrated that states |Dn
1 ⟩ and |Dn

n−1⟩ can realize 5 differ-

ent entropy vectors under C2. Alternatively, states of the form |Dn
k ⟩ with 1 < k < n−1

can achieve 6 different entropy vectors under C2. In the next subsection we completely

generalize to an argument for Cn action on arbitrary quantum states. We use our

construction up to this point to bound the entropy vector possibilities that can be

achieved for any state under n-qubit Clifford action.

6.4.5 Entanglement in n-Qubit Clifford Circuits

We now use our results to present an upper bound on entropy vector evolution in

Clifford circuits, for arbitrary qubit number. We begin by determining the subset of

Cn operations which cannot modify the entanglement entropy of any state. We then

build a contracted graph by identifying the vertices in the Cn Cayley graph that are

connected by entropy-preserving circuits.

Local actions, i.e. all operations which act only on a single qubit in some n-qubit

system, will always preserve a state’s entropy vector. When considering action by the

Clifford group Cn, the subgroup of all local actions is exactly the group generated by

n-qubit Hadamard and phase gates, which we denote (HP )n. We build (HP )n as the

direct product [16]

(HP )n ≡
n∏
i=1

⟨Hi, Pi⟩. (6.4.9)

Since (HP )n is a direct product, and |⟨Hi, Pi⟩| = 24, the order of |(HP )n| is just 24n.

The order of the n-qubit Clifford group is likewise known [29]. We can compute |Cn|

as

|Cn| = 2n
2+2n

n∏
j=1

(4j − 1). (6.4.10)
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Generating the right coset space Cn\(HP )n identifies all elements in Cn equivalent

up to local gate operations. Invoking Lagrange’s theorem (Eq. Eq. (6.2.12)) allows

us to compute the size of Cn\(HP )n as

|Cn|
|(HP )n|

=
2n

2−n

3n

n∏
j=1

(4j − 1). (6.4.11)

It is important to note that (HP )n is not a normal subgroup of Cn, which we

can immediately verify by considering any Hadamard operation Hj ∈ (HP )n. The

element

Ci,jHjC
−1
i,j /∈ ⟨Hi, Pi, Hj, Pj⟩, (6.4.12)

which violates the necessity that any normal subgroup be invariant under group

conjugation. Accordingly, (HP )n does not generate a quotient of Cn.

The coset space Cn\(HP )n partitions Cn into sets of Clifford circuits which are

equivalent up to local action. Consequently, Eq. Eq. (6.4.11) provides an upper bound

on the number of entropy vectors that can possibly be generated under any n-qubit

Clifford circuit, for any arbitrary quantum state. This upper bound is equivalently

captured by directly building a contracted graph from the Cn Cayley graph, and

counting the number of vertices. The right panel of Figure 6.12 illustrates the 20-

vertex contracted graph of the C2 Cayley12 graph. Table 6.1 gives the explicit number

of entropy vectors that can be achieved using n ≤ 5 qubit Clifford circuits.

In Eq. Eq. (6.4.11) we count the right cosets of Cn by the subgroup of entropy-

preserving operations. This upper bound equivalently constrains the number of en-

tropy vectors which can be realized by a generic quantum state, stabilized by only
12Formally, the left panel of Figure 6.12 depicts the reachability graph for some set of states,

rather than the Cayley graph of C2. However, since the particular class of states is stabilized by only

the identity in C2, the reachability graph in the left panel of Figure 6.12 is exactly the phase-modded

C2 Cayley graph.
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n |Cn|/|(HP )n|

1 1

2 20

3 6720

4 36556800

5 3191262412800

Table 6.1: Maximum number of entropy vectors that can be generated using elements

of the n-qubit Clifford group, for n ≤ 5.

1 ∈ Cn, under any Clifford circuit. However, we can tighten this bound for states

which are non-trivially stabilized by some subset of Cn. For a state |ψ⟩ with stabi-

lizer group SCn(|ψ⟩), the number of achievable entropy vectors is bounded by the size

of the double coset space (HP )n\Cn/SCn(|ψ⟩). As by Eq. Eq. (6.2.14), the size of

(HP )n\Cn/SCn(|ψ⟩) is

|(HP )n\Cn/SCn(|ψ⟩)| =
1

|(HP )n||SCn(|ψ⟩)|
∑

(h,s)∈(HP )n×SCn (|ψ⟩)

|C(h,s)n |, (6.4.13)

where C(h,s)n is defined by Eq. Eq. (6.2.10).

Applying Eq. Eq. (6.4.13) when |ψ⟩ is a stabilizer state dramatically reduces the

number of possible entropy vectors that can be reached under Cn. Specifically, when

restricting to group action by (HC)1,2, Eq. Eq. (6.4.13) computes the vertex count

for each of the five contracted graphs shown in Figures 6.3 – 6.12.

In this subsection we provided an upper bound on the number of entropy vectors

that can be generated by any Clifford circuit, at arbitrary qubit number. For a generic

quantum state, we showed that the number of possible entropy vectors is bounded

by the size of the right coset space Cn\(HP )n. Alternatively, for states stabilized by

additional elements in Cn, the number of possible entropy vectors is bounded by the
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size of the double coset space (HP )n\Cn/SCn(|ψ⟩).

6.5 From Entropic Diversity to Holographic Interpretation

The contracted graphs in Section 6.4 illustrate the diversity of entropy vectors on

(HC)1,2 and C2 reachability graphs. We now analyze this entropic diversity as we

move towards a holographic interpretation of our results. We begin by considering

the maximum number of different entropy vectors that can be found on each of the

(HC)1,2 and C2 graphs studied in the above section, as well as the minimum number

of qubits needed to realize that maximal diversity. We explore the implications of

entropic diversity and graph diameter as constraining the transformations of a ge-

ometric gravitational dual in holography. We then present the number of (HC)1,2

subgraphs, including isomorphic subgraphs with different entropic diversities, as we

increase qubit number. We remark how our contracted graphs encode information

about entropy vector evolution through entropy space.

6.5.1 Clifford Gates in Holography

The AdS/CFT conjecture [19] is a bulk/boundary duality which relates gravi-

tational objects in an asymptotically hyperbolic spacetime, evaluated at some fixed

timeslice Σ, with computable properties of a quantum-mechanical system on the

boundary of that spacetime ∂Σ. For a special class of quantum states known as

holographic states, the Ryu-Takayanagi formula relates all components of the state’s

entropy vector to areas of extremal surfaces in the dual gravity theory [26, 9]. In

this way, a description of the spacetime geometry in Σ is inherited from knowledge

of the entanglement structure on ∂Σ. For this relation to hold, holographic states

are required to have an entropy vector structure which satisfies a set of holographic

entropy inequalities [5, 15]. One holographic inequality, the monogamy of mutual
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information (MMI) [14], reads

SAB + SAC + SBC ≥ SA + SB + SC + SABC , (6.5.1)

and must be satisfied for all13 A,B,C ⊆ ∂Σ. While MMI constitutes only one of many

holographic entropy inequalities, it arises at four qubits, while all other holographic

inequalities require more parties.

Understanding the entropy-vector dynamics of a state in ∂Σ gives insight into bulk

geometric transformations in Σ. When a local operator acts on |ψ⟩ and modifies its

entropy vector to another vector within the holographic entropy cone, geodesics in the

dual spacetime geometry are likewise modified in accordance with the RT formula.

Consequently, analyzing how a group of operators transforms the entropy vector of a

state can reveal how gate action on ∂Σ alters geometries in Σ. When a sequence of

Clifford gates causes the state to violate holographic inequalities, the geometry may

be only a semi-classical approximation.

The distance between vertices on reachability graphs encodes a natural notion of

circuit complexity. Entropy vectors which populate the same reachability graph, e.g.

under (HC)1,2 or C2, may be considered close in the sense that a limited number

of gate applications is required to transform a state with one entropy vector into

some state with another. The gravitational dual geometries of states with “nearby”

entropy vectors may be considered close in a similar sense, since a small number of

manipulations are needed to transform one dual geometry into each other.

Some n-qubit stabilizer states have entropy vectors which violate the holographic
13It is important to note that each A,B,C ⊆ ∂Σ may separately correspond to the disjoint

union of multiple qubits in the n-party boundary theory. Accordingly, the MMI inequality in Eq.

Eq. (6.5.1) must hold for disjoint triples {A,B,C}, as well as those of the form {AB,C,DE} or

{ABC,DE,F}, and so on. Furthermore, holographic states must saturate or satisfy MMI for all

permutations among any chosen A,B,C ⊆ ∂Σ.
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entropy inequalities, beginning at n = 4. Since stabilizer entanglement is generated

by bi-local gates, 2-qubit Clifford operations are sufficient to generate all stabilizer

entropy vectors in an n-qubit system. We can therefore explore the transition from

holographic entropy vectors to non-holographic stabilizer entropy vectors by observ-

ing entropy vector evolution under C2. In the following subsections we discuss how

entropic diversity on (HC)1,2 and C2 reachability graphs can inform us about states

which are geometrically close, and not so close, in the dual gravitational theory.

6.5.2 Maximal Entropic Diversity for Stabilizer States

Each (HC)1,2 and C2 reachability graph describes the full orbit of some state

|ψ⟩ ∈ H under the action of (HC)1,2 or C2 respectively. While we can construct

reachability graphs for an arbitrary n-qubit quantum state, including states with

arbitrary entanglement structure, the set of possible entropy vectors that can be

reached under (HC)1,2 and C2 remains bounded at the operator level. For a given

reachability graph, we refer to the maximum number of possible entropy vectors that

can be generated in that graph as the maximal entropic diversity of the graph.

Table 6.2 gives each stabilizer state (HC)1,2 reachability graph, and the maximal

entropic diversity determined by its contracted graph. For certain subgraphs, such

as g144, g288, and g1152, the number of qubits needed to realize the maximal entropic

diversity is higher than the number of qubits at which each graph first appears.

The entropy vectors on g24 and g36 correspond to maximal and minimal 2-qubit

entanglement, and can therefore be achieved by entangling only 2 qubits in an n-party

system. These two entropy vectors are close in the sense that they are connected by a

single C1,2 action. Since this single gate acts on only 2 out of the n qubits, we expect

states with these entropy vectors to admit close dual (possibly semi-classical) geome-

tries. Analogously, altering only small segments of the boundary of a holographic
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(HC)1,2 Graph Max Entropic

Diversity

Stab. Qubit

Num. Appears

Stab. Qubit Num.

Max Diversity

g24 2 2 2

g36 2 2 2

g144 5 3 6

g288 5 3 6

g1152 18 4 7 or 8

Table 6.2: Stabilizer state (HC)1,2 graphs listed alongside their maximal entropic

diversities, set by contracted graphs. We give the qubit number when each graph is

first observed for stabilizer states, and the minimum qubit number needed to realize

the maximal entropic diversity for stabilizer states. We have found g1152 graphs with

maximal diversity for 8-qubit stabilizer states, but have not completely ruled out a

maximally diverse g1152 graph at 7 qubits since an exhaustive search is computation-

ally difficult.

state will affect its geometry only inside the entanglement wedge of the union of these

segments.

For larger reachability graphs, the graph diameter upper bounds the (HC)1,2

gate distance, and thus the geometric closeness, of the included entropy vectors. In

particular, g1152 is the (HC)1,2 reachability graph for generic quantum states, and its

maximal entropic diversity gives an upper bound on the number of distinct entropy

vectors, and thus the number of distinct semi-classical geometries, reachable under

(HC)1,2 action.

We additionally compile the entropic diversity data for all stabilizer state C2 reach-

ability graphs. As shown throughout Section 6.4, every C2 graph is a complex of
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(HC)1,2 subgraphs attached by P1 and P2 edges. Table 6.3 lists the different C2

complexes, and the maximal entropic diversity of each.

C2 Graph Max Entropic

Diversity

Stab. Qubit

Num. Appears

Stab. Qubit Num.

Max Diversity

g24 + g36 2 2 2

3 · g144 + g288 5 3 6

10 · g1152 20 4 7 or 8

Table 6.3: Each stabilizer state C2 graph, built of attached (HC)1,2 subgraphs. Each

graph is listed alongside its maximal entropic diversity, set by its contracted graph.

We give the first time each graph appears as a stabilizer state orbit, and the first time

each graph achieves maximal entropic diversity for stabilizer states.

The addition of P1 and P2 enables two more entropy vectors to be reached by

states in a g1152 subgraph. Although this section has so far concentrated on the

stabilizer states, the 10 · g1152 C2 complex is actually the generic reachability graph

for arbitrary quantum states, which are not stabilized by any non-identity element of

a given two-qubit Clifford group. Accordingly, the 20 entropy vectors in this complex

constrain the possible unique entropy vectors that can be generated by starting with

a generic quantum state and acting with 2-qubit Clifford operations.

In this subsection we provided Tables 6.2–6.3 which detailed the maximal entropic

diversity of each stabilizer state (HC)1,2 and C2 reachability graph. Additionally, we

provided the minimal system size needed to realize each maximal entropic diversity in

a stabilizer state orbit. Note that for other quantum states with the same reachability

graphs, maximal entropic diversity could be achieved at lower qubit numbers. We

speculated that the maximal entropic diversity of reachability graphs constrains the
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available transformations, and that the graph diameter constrains the dissimilarity,

of the dual geometries that can be generated from (HC)1,2, or C2, action on the

boundary state. In the next subsection we analyze the number, and diversity, of

stabilizer state reachability graphs as the number of qubits in the system increases.

6.5.3 C2 Subgraph Count by Qubit Number

The number of times each stabilizer state C2 reachability graph in Section 6.4

occurs in the set of n-qubit stabilizer states increases with every qubit added to

the system. Furthermore, as we increase qubit number we observe different entropic

diversities which are possible on C2 reachability graphs. Table 6.4 gives a count for

each variety of stabilizer state C2 graph, with increasing qubit number, for n ≤ 5

qubits.

C2 Graph

Qubit # g24/g36 g144/g288 g1152

2 1 (2) 0 0

3 6 (2) 1 (3) 0

4 60 (2) 12 (3), 18 (4) 1 (2), 9 (4)

5 1080 (2) 180 (3), 1080 (4) 18 (2), 216 (4), 486 (6), 540 (7)

Table 6.4: Distribution of stabilizer state C2 reachability graphs, and their different

entropic diversities, for n ≤ 5 qubits. The first number in each cell gives the number of

occurrences for each C2 subgraph, while the number in parentheses gives the entropic

diversity of each subgraph variation.

The overall count of each C2 subgraph increases as the size of the system grows.

Graph g1152 however, shown in the final column of Table 6.4, has an occurrence count
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which increases the fastest with qubit number. As expected, when the system size

grows large the percentage of states stabilized by any non-identity 2-qubit Clifford

subgroup decreases.

Subgraphs g144/g288 can have an entropic diversity of 3, 4, or 5, while states in

a g1152 C2 complex can reach up to 20 different entropy vectors. As qubit number

increases the number of entanglement possibilities grows, yielding more complex en-

tropy vectors. Entropy vectors with sufficient complexity will change the maximal

number of allowed times under C2 action. We therefore expect the number of g144/g288

graphs with 5 entropy vectors, and g1152 C2 graphs with 20 entropy vectors, to domi-

nate the subgraph occurrence count in the large system limit. For larger subgraphs,

e.g. those composed of g1152 subgraphs, understanding the precise distribution of en-

tropic diversity for arbitrary qubit number presents a challenging problem, which we

leave for future work. We now conclude this section with a discussion of Dicke state

entropic diversity in (HC)1,2 and C2 reachability graphs.

6.5.4 Maximum Entropic Diversity for Dicke States

We now analyze the entropic diversity of the Dicke state |Dn
k ⟩ reachability graphs

in Section 6.4.4. Subgraphs g288∗ and g576 correspond to the two possible |Dn
k ⟩ orbits

under (HC)1,2 action, shown in Figures 6.13–6.15. Under the full action of C2, P1 and

P2 edges attach copies of g288∗ , g576, and g1152 together, creating the graph complexes

seen in Figures 6.14–6.16. In Table 6.5 we present the maximal entropic diversity

of each |Dn
k ⟩ (HC)1,2 and C2 reachability graph, as determined by their contracted

graphs.

Both C2 reachability graphs in Table 6.5 do not achieve their maximal entropic

diversities as orbits of Dicke states. We expect that a state with sufficiently general
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Graph Max Entropic

Diversity

First Appears

for |Dn
k ⟩

Max Diversity

for |Dn
k ⟩

g288∗ 5 3 5

2 · g288∗ + 2 · g576 + g1152 6 3 5

g576 9 4 6

4 · g576 + 3 · g1152 10 4 6

Table 6.5: All (HC)1,2 reachability graphs (rows 1 and 3) and C2 reachability graphs

(rows 2 and 4) for Dicke states. We give the maximal entropic diversity of each graph,

as set by the contracted graph, as well as the first time the graph appears for Dicke

states and the largest entropic diversity achieved among |Dn
k ⟩ states. For C2 graphs

in particular, we never observe a |Dn
k ⟩ orbit that achieves the maximum number of

allowed entropy vectors.

entanglement structure, which also shares one of these reachability graphs14, would

realize the maximum allowed number of distinct entropy vectors, though we have not

shown this explicitly. In Section 6.6 we speculate on the highly symmetric structure of

|Dn
k ⟩ entropy vectors as a potential cause for the maximal diversity not being achieved

in such graphs.

In this section we analyzed the entropic diversity of reachability graphs studied

throughout Section 6.4. We detailed each reachability graph achieves its maximal

entropic diversity, and speculate implications for the geometric interpretations of

state entropy vectors in a dual gravity theory. We demonstrated how certain (HC)1,2

14Recall that the reachability graphs in Table 6.5 are shared by all states with stabilizer group

given by Eqs. Eq. (6.4.7) or Eq. (6.4.8), and are not restricted to |Dn
k ⟩ orbits. Since the entropy

vector is a state property, the state structure determines entropy vector complexity and therefore

how much an entropy vector can change under some group action.
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and C2 subgraphs appear more frequently with increasing qubit number, as well as

how different entropic variations of each subgraph are distributed when the system

size grows large. We addressed the notable case of Dicke state reachability graphs,

which do not achieve their maximal entropic diversity as orbits of |Dn
k ⟩. We will now

conclude this work with an overview of our results and some ideas for future research.

6.6 Discussion and Future Work

In this work we presented a procedure for quotienting a reachability graph to a

contracted graph, which allowed us to analyze and bound entropy vector evolution

under group action on a Hilbert space. We first constructed a reachability graph,

built as a quotient of the group Cayley graph [16], for a family of states defined by

their stabilizer subgroup under the chosen group action. As a group-theoretic object,

the vertex set of a reachability graph is the left coset space generated by the stabi-

lizer subgroup for the family of states. We then further quotiented this reachability

graph by identifying all vertices connected by edges that preserve the entropy vector

of a state. This second graph quotient corresponds to the right coset space generated

by the subgroup of elements which leave an entropy vector invariant. The resultant

object, after both graph quotients, is a contracted graph. This contracted graph rep-

resents the double coset space built of group elements which simultaneously stabilize

a family of states, and do not modify an entropy vector.

A contracted graph encodes the evolution of a state entropy vector under group

action. Specifically, the number of vertices in a contracted graph strictly bounds the

maximal number of distinct entropy vectors that can be found on a reachability graph.

The edges of a contracted graph detail the possible changes an entropy vector can

undergo through circuits composed of the group generating set. We built contracted

graphs for all stabilizer states under the action of (HC)1,2 and C2, and demonstrated
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how the vertex count of each explains the reachability graph entropy distributions

observed in our previous work [17, 16].

Although we did derive a general upper bound on the number of different entropy

vectors that can be reached using any n-qubit Clifford circuit starting from an arbi-

trary quantum state, much of our work focused on C2 contracted graphs. However, we

could use the same techniques to extend our analysis to Cn, for n ≥ 3, increasing our

generating gate set for additional qubits. In fact, a presentation for Cn is proposed

in [28], using Clifford relations up through 3 qubits. Understanding precisely how

contracted graphs scale with qubit number might offer tighter constraints on achiev-

able entropy vectors in Cn circuits, and enable us to study more general entropy

vector transformations. In AdS/CFT, we only expect systems with arbitrarily large

numbers of qubits to be dual to smooth classical qubits. Consequently, an improved

understanding of large-qubit-number contracted graph behavior would strengthen the

connection to previous holographic entropy cone work, and could even yield insights

for spacetime reconstruction efforts.

While our work in this paper has focused on Clifford circuits, the contracted graph

protocol can be applied equally to circuits composed of alternative gate sets (for ex-

ample, generators of crystal-like subgroups of SU(N) such as BT [13]). When the

chosen gate set generates a finite group of operators, the associated Cayley graph

will be finite, as will any graph quotients. For all such cases, a contracted graph

analysis follows exactly as in Section 6.4, and can be used accordingly to bound en-

tropy vector evolution in different circuit architectures. By exploring different circuit

constructions, we can precisely tune our analysis to focus on operations which may

be preferred for specific experiments, e.g. arbitrary rotation gate circuits, construc-

tions which replace multiple CNOT gates with Toffoli gates, and architectures that

deliberately avoid gates which are noisy to implement.
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Alternatively, if the chosen gate set is finite, but generates an infinite set of op-

erators, we can impose a cutoff at some arbitrary fixed circuit depth. This cutoff

truncates the associated Cayley graph, and enables an extension of our methods to-

ward the study of universal quantum circuits up to finite circuit depth. Even without

an imposed cutoff, we could use our graph analysis to establish bounds on the rate

of entanglement entropy per gate application. This description is reminiscent of the

notion of entanglement “velocity” in universal quantum circuits [8, 21].

Although we were originally interested in entropy vector evolution under some

chosen gate set, our techniques are sufficiently general to study the evolution of any

state property (see footnote 5). Of immediate interest, for example, is the amount of

distillable quantum magic present in a state [6, 4], and how this particular measure

of non-stabilizerness changes throughout a quantum circuit. Since magic is preserved

up to Clifford group action, one subgroup which leaves the amount of magic in a state

invariant is exactly the set Cn.

In Section 6.5, we analyzed the maximal entropic diversity of reachability graphs.

A reachability graph has maximal entropic diversity when it realizes the maximum

number of possible entropy vectors permitted by its contracted graph. We analyzed at

which qubit number each (HC)1,2 and C2 reachability graph achieves maximal entropic

diversity for stabilizer states, and remarked on the growth of entropic diversity with

increasing qubit number.

Since contracted graphs are defined at the operator level, we are also able to extend

our analysis to non-stabilizer states. In this paper, we generated all contracted graphs

under (HC)1,2 and C2 for n-qubit Dicke states, a class of non-stabilizer states heavily

utilized in optimization algorithms [7, 25]. For these states, we derived an upper

bound on the number of different entropy vectors that can exist in Dicke state (HC)1,2

and C2 reachability graphs. Interestingly, we have not observed C2 graphs achieve a
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maximal entropic diversity for Dicke states (see Figures 6.14–6.16). The contracted

graphs of g288∗ and g576 permit 6 and 10 unique entropy vectors respectively, but

we have only ever witnessed 5 and 9 entropy vectors for Dicke states with these

graphs. We suspect the reason no Dicke state orbit attains its permitted maximal

entropy diversity is due to additional C2 elements which stabilize specifically the highly

symmetric entropy vectors of Dicke states [27, 23].

In the body of this work, we connected our analysis of entropic diversity to the

holographic framework, where entropy vectors admit a description as geometric ob-

jects in a dual gravity theory. We used our entropic diversity results to speculate

about constraints on geometric transformations in the dual gravity theory, for states

which are holographic or near-holographic. We interpret a contracted graph as a

coarse-grained map of an entropy vector’s trajectory, through entropy space, under a

set of quantum gates. Thus, contracted graphs provide information about moving in

entropy space, and thereby moving between different entropy cones.

In future work, we plan to study precisely which Clifford operations move a holo-

graphic entropy vector out of, and back into, the holographic entropy cone. Fur-

thermore, we will explore Clifford circuits that transition a stabilizer entropy vector

from satisfying, to saturating, to failing holographic entropy conditions, particularly

including the monogamy of mutual information (MMI). We plan to concentrate on

MMI since every explicit stabilizer state we have checked either satisfies all holo-

graphic inequalities, or violates at least one MMI condition. While a priori we have

no reason to expect that all stabilizer states which are not holographic necessarily

violate MMI in particular, in practice we observe this to be the case empirically for

n ≤ 6 qubits.
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Chapter 7

GRAVITATIONAL BACK-REACTION IS THE HOLOGRAPHIC DUAL OF

MAGIC

We study interplay between magic and entanglement in quantum many-body sys-

tems. We show that non-local magic which is supported by the quantum correlations

is lower bounded by the flatness of entanglement spectrum and upper bounded by the

amount of entanglement in the system. We then argue that a smoothed version of non-

local magic bounds the hardness of classical simulations for incompressible states. In

conformal field theories, we conjecture that the non-local magic should scale linearly

with entanglement entropy but sublinearly when an approximation of the state is al-

lowed. We support the conjectures using both analytical arguments based on unitary

distillation and numerical data from an Ising CFT. If the CFT has a holographic dual,

then we prove that the non-local magic vanishes if and only if there is no gravitational

back-reaction. Furthermore, we show that non-local magic approximately equals the

rate of change of minimal surface area in response to the change of the tension of

cosmic branes in the bulk.

7.1 Introduction

Entanglement is an important quantum resource and an integral part of our under-

standing of quantum many-body physics and quantum gravity, such as topological

order [64, 69, 45], non-equilibrium dynamics [55, 98, 77, 91] , spacetime [96], and

black holes [7, 73]. In the Anti-de Sitter/Conformal Field Theory (AdS/CFT) corre-

spondence [74, 102], entanglement in the CFT is important for emerging spacetime

geometry [32, 30, 33, 27, 10] in the dual gravity theory, e.g. via the Ryu-Takayanagi
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formula[86, 70, 39, 56]. Surprisingly, this connection between geometry and entan-

glement holds not only for holographic CFTs, but also for more general quantum

many-body systems like tensor network toy models, which have been enormously

successful in reproducing an analogous Ryu-Takayanagi formula[46], the emergent

bulk geometry, and subregion operator reconstruction through quantum error correc-

tion[84, 52, 103, 47, 25, 92]. This is a profound development as it suggests the lessons

from holography may also apply beyond the confines of AdS[57, 23, 22].

However, the entanglement patterns in the tensor network models alone do not

capture the full quantum landscape spanned by holography. Despite many recent

advances[37, 6, 29, 25, 26, 11], it is still unclear how gravity can emerge in such mod-

els. In particular, neither the holographic stabilizer codes[84] nor the random tensor

networks[52] can fully capture the CFT entanglement spectrum and gravitational

back-reaction. Stabilizer tensor networks also fail to capture power-law correlations,

robust multi-partite entanglement, and non-trivial area operators[4, 50, 21]. From a

resource-theoretic perspective, what are these tensor network models missing com-

pared to the low energy states in holographic theories? We show in this work that

the answer is magic[14, 97, 68, 18], or more precisely, non-local magic.

Quantumness comes in two layers: entanglement gives the power of building cor-

relations stronger than classical and violates Bell’s inequalities while quantum ad-

vantage characterizes the hardness of simulating quantum systems on a classical

computer. The latter is distinct from entanglement — a task involving a highly

entangled system is not always hard to simulate classically as it can be achieved

purely using Clifford operations that are classically simulable. This notion of classi-

cal hardness that constitutes the second layer of quantumness is intimately connected

to the amount of non-stabilizerness, also known as magic, in the system. Although

magic alone cannot generate the intricate patterns of complexity that are crucial for
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the complex behavior in a quantum wave-function, when used in conjunction with

Clifford operations, non-stabilizerness [14] is both necessary and sufficient in realiz-

ing (fault-tolerant) universal quantum computation. Therefore, it is the remaining

piece needed for quantum advantage and for simulating holographic conformal field

theories.

In addition to being an important resource for fault-tolerant quantum computa-

tion[14, 97] and quantum simulation, pioneering work has established magic as an

important ingredient for characterizing quantum many-body systems[100, 87, 71],

such as dynamics [68, 42, 89, 85], quantum phases[66, 79], and randomness[95]. In

the context of holography, [100, 81] showed that magic is abundant in CFTs and is

therefore expected to play an important role for reproducing the correct CFT en-

tanglement spectrum, for generating power-law correlations, for building non-trivial

area operators in holographic codes, and for reproducing the correct multipartite

entanglement in holographic geometries[50]1.

There are also many questions surrounding the role played by magic. Empiri-

cally, the amount of non-stabilizerness or non-Gaussianity[97, 20, 67, 54, 88, 18, 17,

99] present in a quantum process appears to correlate with the hardness of classical

simulations[104], e.g. in stabilizer and matchgate simulations[1, 43, 59, 53, 13, 15,

16] as well as in Monte Carlo sampling[83]. However, its precise connection with

complexity is yet unclear. While it is proposed [100, 21] that the replication of the

CFT entanglement spectrum and emergent gravity in AdS/CFT requires magic, the

specific mechanism through which magic accomplishes this also remains uncertain.

Furthermore, although the amount of magic present in a system can be illuminating

all by itself, it is becoming clear the distribution of magic is equally, if not more, im-
1Although this is not noted by the authors explicitly, it is clear that holographic states require

O(1/GN ) tripartite entanglement but cannot be predominantly GHZ-type[78].
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portant for understanding non-equilibrium dynamics and entanglement spectrum[94].

For example, the amount of magic is generally expected to scale volumetrically with

the number of qubits in quantum many-body systems. The tensor product of non-

stabilizer states, CFT ground states, and Haar random states all have a high magic

density and volume law magic scaling, and yet their physical properties and their

usefulness for quantum computation are completely different. Therefore, a more pro-

found understanding of the interplay between entanglement and magic will shed new

light on the structure of quantum matter, quantum information, and gravity.

In this work, we report multiple advances in respond to the above queries. We

define non-local magic and offer compelling evidence for how it is connected to the

hardness in classically simulating incompressible states. We provide rigorous bounds

as well as computable estimates for non-local magic in any quantum system and show

that it is lower bounded by the anti-flatness of the entanglement spectrum and upper

bounded by various functions of the Renyi entropies. When applied to CFTs, we

propose a straightforward relationship between magic, entropy, and anti-flatness. For

theories with holographic dual, we show that the non-local magic controls the amount

of gravitational back-reaction in response to stress energy, and thus critical for the

emergence of gravity.

7.2 Main results

In this section, we explain the main results of this paper and lay down informally

the setup and strategy of this work. Then, in the following sections, we derive them

rigorously. The main goal of this paper is to show that the non-local magic is respon-

sible for the non-flat entanglement spectrum in a CFT and for the back-reaction in

AdS through the AdS-CFT dictionary.

Since the seminal work of Ryu and Takayanagi [86], a number of entries have
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been added to the AdS-CFT dictionary where one can connect quantum information

theoretic quantities on the boundary to geometric quantities in the bulk. Notably, the

correspondence can be used to find the holographic dual to functions of the spectrum

of a reduced density operator ψA in the conformal field theory[34], where A is a

subsystem of the CFT. The strategy of this work is to find a holographic dual of

magic in a state ψ by connecting it to the spectrum of its reduced density operator

ψA.

At the first sight, this may seem like an impossible task. There are two reasons:

first of all, the way magic relates to spectral properties is complicated. The reason is

that, as long as magic only quantifies the distillability of non-Clifford resources, convex

combinations through a probability distribution pi cannot create resources. However,

we may think of magic in a way such that these probabilities are resourceful. In this

case, there is a different resource theory of magic that we call STAB0. This is the

resource theory of magic established by the null set of stabilizer entropy[65]. We will

first therefore first develop this theory by employing as monotones both the trace

distance Mdist and relative entropy of resource MR. They will both be useful later to

establish our results.

The second reason why mapping magic in a spectral quantity is problematic is

due to the fact that magic is generally a property of the full state ψ, which has

trivial spectrum if pure. What has a non-trivial spectrum is the reduced state ψA to

a subregion A, because of entanglement. Then the question becomes: how can the

spectrum of ψA give us information on the magic of the full parent state ψ?

The answer comes from the remarkable fact that the magic of a state ψ is related to

the average deviation from the flat spectrum of the spectrum of the reduced density

operator ψA through the Clifford orbit [94, 62]. The Clifford orbit preserves the

magic, but entangles the system [61, 76, 60], therefore populating the spectrum of
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the reduced density operator. In fact, there is no need to take this average, as long as

the spectrum of the subsystem density operator possesses an entropy obeying volume

law. In this case, its flatness (or lack thereof) is enough to probe the magic of the

full state.

Unfortunately, this is not good enough to explore CFT as these states are not

hosting volume law for entanglement. In order to exploit the flatness-magic corre-

spondence for a theory that generally has an area-law scaling of entanglement, we

must focus on the boundary ∂A between the subregions A and A where most of the

entanglement is being mediated. On the Hilbert subspace supported on ∂A, the den-

sity operator ψ∂A is well populated and as a consequence we can compute its magic

through the spectrum. This gives rise to the notion of non-local magic.

The main results of this work are grouped in two parts: (i) Quantum information-

theoretic results that rigorously define non-local magic for both the magic measures

defined above, namely the trace distance of non-local magic M (NL)
dist and the relative

entropy of non-local magic M (NL)
R and relate them to spectral quantities. In par-

ticular, it will play an important role in the notion of anti-flatness F [94], that is, a

measure of how much the spectrum of a density operator is far from a flat distribution;

and (ii) the application of these tools to AdS/CFT by first making precise the rela-

tion between entanglement, non-local magic and spectral flatness in a CFT. Then for

holographic CFTs, we show that the holographic dual of gravitational back-reaction

is indeed non-local magic.

7.2.1 Quantum information-theoretic results

The first result is that, for a subsystem A of a quantum state ψ, M (NL)
dist is lower

bounded by the anti-flatness F(ψA) and upper bounded by the entanglement:

F(ψA)/8 ≤M
(NL)
dist (ψAĀ) ≤

√
1− e−SA

max(ψAĀ) (7.2.1)
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Second, by using the non-local magic measured by relative entropy M (NL)
RS , one can

find another relationship between magic in a quantum state ψ and its entanglement:

Smax(A)− S(A) ≤M
(NL)
RS (ψAĀ) ≤ Smax(A) (7.2.2)

where Smax(A) := log rank(ψA). The lower bound in the above equation is tight for

weakly entangled states. Eq. (7.2.2) has also the advantage to allow one to find good

estimates forM (NL)
RS (ψ) in terms of the Schmidt coefficients of ψ, see Eq. (7.3.54). This

is important because non local magic is otherwise a very hard quantity to calculate.

Moreover, the relative entropy of magic allows to define a smoothed (non-local) magic

as

M
(NL,ϵ)
RS (()ψAĀ) := min

∥χ−ψAĀ∥<ϵ
M

(NL)
RS (χ). (7.2.3)

such that for a pure state one obtains the bounds

Sϵmax(ψA)− (1− ϵ)−1S(ψA) ≤M
(NL,ϵ)
RS (ψAĀ) ≤ Sϵmax(ψA). (7.2.4)

with smoothed maximal entropy defined as Sϵmax(ρ) := min∥χ−ρ∥<ϵ ln
(
rank(χ)

)
. Since

the lower bound quantifies the compressibility of a state, we show that incompressible

states with low entanglement but high non-local magic can still be hard to simulate

classically.

Finally, using the spectral information {λi} of ψ and a computable measure of

magic called stabilizer 2-Renyi entropyM2, one can derive a computable estimate of

non-local magicM2({λi}) and a tighter upper bound than Eq. (7.2.2) such that

MNL
2 (ψAĀ) ≤ min{2S2(A), 4(Smax(A)− S1/2(A))} (7.2.5)

where Sn are the Renyi-n entropies of ψA.

For all the above measures, we show that non-local magic vanishes if and only if

the entanglement spectrum is flat, see Lemma 2.

255



7.2.2 AdS/CFT results

This is the main result for holography. One can exploit the notion of non-local

magic to find an RT-like formula for gravitational back-reaction defined as the sus-

ceptibility of the backreacted surface area A with respect to inserting a cosmic brane

of tension T . The first step is connecting back-reaction to spectral quantities. We

obtain,

∂A
∂T

∣∣∣∣
T =0

≈ −
( 4G

Pur(ψA)

)2
F(ψA), (7.2.6)

where the approximation holds when S2(A)−S3(A) < 1/2, i.e., for the small subregion

A or in the near-flat limit. Together with the relation between anti-flatness and non

local magic, Theorem 3, we find

M
(NL)
dist (ψAB) ≥

(Pur(ψA)
4G

)2 ∣∣∣∣∂A∂T
∣∣∣∣
T =0

≥
(e−A/4G

4G

)2 ∣∣∣∣∂A∂T
∣∣∣∣
T =0

∝

∣∣∣∣∣∂e−2A/4G

∂T

∣∣∣∣∣
T =0

(7.2.7)

the left hand side is the magic in the CFT side, the right end side of the above

equation is a measure of the back-reaction in AdS. As we prove in Section 7.5.1, the

above equation also implies that back-reaction is non-zero only if non-local magic is

non vanishing.

Further exploiting the structure of entanglement in CFT, (see Eq. (7.4.6),) we can

also obtain a simpler relation that holds more generally without the S2(A)−S3(A) <

1/2 constraint. ∣∣∣∣∂A∂T
∣∣∣∣
T =0

≈ (4G)2

κ
MNL

2 (|ψ⟩AĀ) (7.2.8)

which shows a more direct relation between gravitational back-reaction and non-local

magic based on the stabilizer 2-Renyi entropy for some constant κ.

Now for more general CFTs that need not have holographic duals, the above

relations continue to hold with suitable substitutions of T → (n − 1)/4Gn and
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A/4G → S̃n where S̃n is a function of Renyi entropy defined by [34]. We present

compelling evidence that an additive anti-flatness measure is proportional to the

amount of non-local magic in the system. We show with analytical arguments and

numerical results that the exact non-local magic in the CFT scales as S(A) whereas

the smoothed non-local magic scales as
√
S(A). We then conjecture that such rela-

tions hold for general CFTs and apply this conjecture to evaluate magic for selected

examples in holographic CFT using Eq. (7.2.4). Specifically, we do so for the static

thermofield double state, and for non-equilibrium dynamics after local and global

quantum quenches. We also examine the magic evolution in a time-evolved wormhole

geometry described by a thermal field double state.

7.3 Non-local Magic

7.3.1 Magic measures

In this section, we introduce several measures of magic that will be central for

supporting the claims in this manuscript. In order to properly establish a magic state

resource theory, it is essential that we define an initial null set for such a resource

theory. To achieve this purpose, we introduce three null sets, which we label as

PSTAB, STAB0, and STAB. Then we derive the free operations on such sets.

Additionally, we must introduce several useful concepts: the Pauli group, the

Clifford group, and the set of stabilizer quantum states. Consider the Hilbert space

of single qudit H = Cd, on which we define the following Pauli operators

X|i⟩ = |i+ 1⟩ Z|j⟩ = ωj|j⟩, (7.3.1)

where ω ≡ exp
(
2iπ/d

)
. The selection of operators in Eq. (7.3.1) likewise defines the

qudit computational basis {|i⟩}di .
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The Pauli group P̃ is defined as follows

P̃ ≡ ⟨ω̃1l, X, Z⟩ (7.3.2)

where ⟨·⟩ labels the set generated by {ω̃1l, X, Z}, and ω̃ = ω for d odd, and ω̃ =

exp
[
iπ/d

]
for d even. When the number of qudits is n, the Pauli group P̃n is defined

as the n-fold tensor product of the single qudit Pauli group P̃ .

The Clifford group C(dn) is defined as the normalizer of the Pauli group, meaning

that for any U ∈ C(dn) we have U †P̃nU ≡ P̃n. The group C(dn) is a multiplicative

matrix group. For qubits, d = 2 it can be generated by the Hadamard, phase, and

CNOT quantum gates

H ≡ 1√
2

1 1

1 −1

 , P ≡

1 0

0 i

 , Ci,j ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (7.3.3)

For general d, the generators are [58] the controlled-Z CZ, the quantum Fourier

Transform F and the phase gate P, whose action of the d-computational basis is

CZ |ii′⟩ := ωii
′|ii′⟩ F |i⟩ := 1√

d

∑
i∈Zd

ωii
′ |i′⟩ P |i⟩ := ωs(s+ϕd)/2|s⟩ (7.3.4)

where ϕd = 1 if d is odd, 0 otherwise. Notably, circuits composed of the Clifford gates

in Eq. (7.3.3) can be efficiently simulated on a classical computer [44, 1].

At this point, one can define the notion of stabilizer states for pure states. We

first say that a pure state |ϕ⟩ is stabilized by P ∈ P̃n if P |ϕ⟩ = |ϕ⟩. Then we define

the pure stabilizer states as the set

PSTAB := {|ϕ⟩ ⟨ϕ| = 1

|G|
∑
P∈G

P |G ⊂ P̃n, G abelian} (7.3.5)
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with the cardinality of G is |G| = dn and G is a set of commuting Pauli operators.

Notice that PSTAB is the orbit through the Clifford group of any computational

basis state for n qudits, i.e., PSTAB = {C|i1 . . . in⟩|C ∈ C(dn)}. The notion of pure

stabilizer states conveys the fact of a set of resources that is closed under Clifford

operations.

For mixed states, the most primitive notion of stabilizer states is that of [68]

STAB0, defined as the set of states σ = 1
dn

∑
P ∈ G, where G is a set of commuting

Pauli operators. In [68], STAB0 is introduced as the set of states for which the

stabilizer entropy (SE) is zero and SE is a good monotone for both PSTAB, STAB0.

From a more foundational perspective, STAB0 is the set of states that can be purified

in PSTAB and they can only yield trivial probability distributions, see[65]

When one allows for general probabilities distributions we obtain the convex hull

of PSTAB, namely STAB := {σ|σ =
∑

i pi|ϕi⟩ ⟨ϕi| , |ϕi⟩ ∈ PSTAB}. Note that

STAB0 ⊂ STAB.

The next step in the definition of our measures of magic is to define the free

operations of STAB and STAB0. For STAB the free operations are given in [97], and

we list them here for the sake of completeness:

1. Clifford unitaries. ρ→ UρU † with U ∈ C(dn).

2. Composition with stabilizer states, ρ→ ρ⊗ σ with σ a stabilizer state.

3. Computational basis measurement on the first qudit, ρ→ (|i⟩⟨i|⊗1ln−1)ρ(|i⟩⟨i|⊗

1ln−1)/Tr
(
ρ |i⟩⟨i| ⊗ 1ln−1

)
with probability Tr

(
ρ |i⟩⟨i| ⊗ 1ln−1

)
4. Partial trace of the first qudit, ρ→ Tr1(ρ)

5. The above operations conditioned on the outcomes of measurements or classical

randomness.
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It is straightforward to show that operations 1. − 4. also apply to STAB0 (see Ap-

pendix E). However, it’s important to note that stabilizer operations conditioned on

measurements or classical randomness do not belong to the set of free operations for

STAB0. This is an important feature of the STAB0 resource theory as it counts non-

flat probabilities as resources. It is the key element to use deviation from flatness as

the resource that connects magic in CFT to geometry in AdS.

Given the notion of null sets and free operations, one can then proceed to introduce

suitable measures of magic. Let us start by defining the trace distance of magic:

Definition 1 (Trace distance of magic0). The trace distance of magic0 of a state ψ

is given by:

Mdist(ψ) := min
σ∈STAB0

1

2
∥ψ − σ∥1 (7.3.6)

Proposition 1. The trace distance of magic satisfies the following properties:

1. Faithfulness: Mdist(ρ) = 0 if and only if ρ is a stabilizer state.

2. Monotonicity: for all trace-preserving channels ξ preserving STAB0, Mdist(ξ(ρ)) ≤

Mdist(ρ)

3. Convexity: Mdist(
∑

i piρi) ≤
∑

i piMdist(ρi)

4. Subadditivity: Mdist(ρ1 ⊗ ρ2) ≤Mdist(ρ1) +Mdist(ρ2)

Proof. 1. By definitionMdist(ψ) = 0 if and only ψ ∈ STAB0, and so ψ is a stabilizer

state.

2. The monotonicity descends from the monotonicity of the trace distance under

trace-preserving CP maps. Because given a map ξ preserving STAB0 we have

Mdist(ξ(ρ)) = min
σ∈STAB0

1

2

∥∥ξ(ρ)− σ∥∥
1
= min

σ∈STAB0

1

2

∥∥ξ(ρ− σ)∥∥
1

(7.3.7)

≤ min
σ∈STAB0

1

2
∥ρ− σ∥1 =Mdist(ρ) (7.3.8)
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where we used that ξ(ρ) ∈ STAB0 .

3. Convexity: It can be obtained through the convexity of the trace distance

Mdist(
∑
i

piρi) =
1

2
min

σ∈STAB0

∥∥∥∥∥∥
∑
i

piρi − σ

∥∥∥∥∥∥
1

≤ 1

2

∑
i

pi min
σ∈STAB0

∥ρi − σ∥1 =
∑
i

piMdist(ρi)

(7.3.9)

4. Subadditivity:

Mdist(ρL) =Mdist(ρ1 ⊗ ρ2) =
1

2
min

σ∈STAB0

∥ρ1 ⊗ ρ2 − σ∥1 (7.3.10)

=
1

2
min

σ∈STAB0

∥ρ1 ⊗ ρ2 − σ1 ⊗ σ2 + σ1 ⊗ σ2 − σ∥1

(7.3.11)

≤ 1

2
∥ρ1 ⊗ ρ2 − σ1 ⊗ σ2∥1 +

1

2
min

σ∈STAB0

∥σ1 ⊗ σ2 − σ∥1

(7.3.12)

≤ 1

2
∥ρ1 ⊗ ρ2 + ρ1 ⊗ σ2 − ρ1 ⊗ σ2 − σ1 ⊗ σ2∥1

(7.3.13)

≤ 1

2
∥ρ1∥1∥ρ2 − σ2∥1 +

1

2
∥σ2∥1∥ρ1 − σ1∥1 (7.3.14)

≤ 1

2
∥ρ2 − σ2∥1 +

1

2
∥ρ1 − σ1∥1 (7.3.15)

where we used that σ1, σ2 are two stabilizer states, then minσ∈STAB0∥σ1 ⊗ σ2 − σ∥ =

0, and the tightest bound is obtained by minimizing over σ1 and σ2 proving the

statement.

One can then define an entropic quantity the Relative stabilizer entropy of magic:

Definition 2 (Relative Stabilizer Entropy of Magic). The relative stabilizer entropy

of magic of ψ is given by

MRS(ψ) = min
σ∈STAB0

S(ρ||σ) (7.3.16)
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Proposition 2. The relative stabilizer entropy is a magic monotone, i.e., 1. it is

zero iff ρ ∈ STAB0, 2. is invariant under Clifford conjugation, 3. is non-increasing

on average under stabilizer measurement, 4. is non-increasing under partial trace and

5. is invariant under stabilizer composition.

Proof. The proof is similar to [97, Appendix A], where the only difference is the

definition of STAB. Here we recount for completeness.

1. Note that S(ρ||σ) ≥ 0 where equality is attained iff ρ = σ. Hence it only

vanishes when ρ ∈ STAB0, which by our definition is a stabilizer state.

2. Note that S(UρU †||UσU †) = S(ρ||σ) for any unitary U . Therefore for U ∈ C(dn)

MRS(UρU
†) = min

σ∈STAB0

S(UρU †||σ) = min
σ∈STAB0

S(UρU †||UσU †) = min
σ∈STAB0

S(ρ||σ) =MRS(ρ).

3. The action of partial stabilizer measurements of the form Vi = I⊗|i⟩⟨i| for some

Pauli basis state |i⟩ on STAB0 returns a stabilizer state up to normalization.

Using that pi = Tr[ρVi], qi = Tr[σVi] and ρi = ViρV
†
i , σi = ViσV

†
i , we can reuse

the proof from [97] and note that

∑
i

piS

(
ρi
pi

∥∥∥∥ σiqi
)
≤ S(ρ||σ).

The rest follows because σi/qi is again a stabilizer state.

4. By Lieb and Ruskai, it is shown that quantum relative entropy is non-increasing

under partial trace, i.e., S(TrB(ρAB)||TrA(σAB)) ≤ S(ρ||σ).

5. It is known that for any state τ , S(ρ ⊗ τ ||σ ⊗ τ) = S(ρ||σ), hence the desired

result follows when we take τ ∈ STAB0.
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7.3.2 (Anti-)Flatness

Flatness is the property of a quantum state that describes how close its spectrum is

to a flat spectrum. From the operational point of view, the flatness of a state describes

how flat is the classical probability distribution over a basis of pure states in which

we can decompose it. Of course, this does not imply that this state will return a flat

probability distribution for the measurements in any other basis. As an example of

flat states, both the completely mixed state and pure states possess flat spectrum.

Another notable example [40] are the ground states of string-net Hamiltonians, e.g.

the toric code and its generalizations.

Flat states are the free states for the resource theory of flatness. We thus define

the null set as

FLAT :=

{
σ ∈ H |σ2 =

σ

rankσ

}
(7.3.17)

Let us now define the following measure of anti-flatness, that is, how far is a spectrum

from the flat one. Of course, this quantity must measure the resource defined by

FLAT.

Definition 3. We define the anti-flatness of ψA as [94]

F(ψA) = Tr
(
ψ3
A

)
− Tr2(ψ2

A) (7.3.18)

This quantity is very natural as it can be defined classically as the variance of a proba-

bility distribution p(x) according to the probability distribution itself. More concretely,

if one defines ⟨x⟩p :=
∑

x xp(x), and one defines ∆p2 := ⟨(p− ⟨p⟩p)2⟩p, then one has

F(ψA) = ∆λ2 (7.3.19)

with {λ} ≡ spec[ψA]. Of course, this quantity is zero on the free states, that is,

F(σ) = 0 for σ ∈ FLAT as it is immediate to verify.
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There is a profound connection between anti-flatness and magic. It connects

magic, which is a property of the full state, to bipartite entanglement, and thus to

the spectrum of a reduced density operator. In particular, it has been shown that[94],

given a pure state ψAB in a bipartite Hilbert space H = HA ⊗ HB, its linearized

stabilizer entropy Mlin is the average anti-flatness of ψA on the Clifford orbit, that is,

⟨F(ψCA)⟩C = f(dA, dB)Mlin(ψAB) (7.3.20)

where ψCA = TrB ψ
C
AB ≡ TrB(CψABC

†). It is also true that anti-flatness shows typi-

cality. Later, we will use this property to connect magic to spectral properties. The

main message of Eq. (7.3.20) is that, as long as the state ψ is very entangled, and

therefore ψA is full rank, one can use the spectral quantity F(ψA) to probe magic.

Note that - by definition - every density matrix is full rank on its support. This will

come in handy in the next section.

Having defined FLAT and STAB, it is possible to show that the null set of the

flatness includes the null set STAB0, as shown in the following lemma:

Lemma 1. Let FLAT be the set of states with flat spectrum and STAB the set of

stabilizer states defined in Definition 1. Let U(H) the unitary group on H, then one

has

FLAT = {UρU † | ρ ∈ STAB0, U ∈ U(H)} (7.3.21)

Proof. To prove the lemma it is sufficient to note that a generic ρ ∈ STAB0 with G

as a stabilizer group, can be written as

ρ =
1

rG

rG∑
i=1

|σi⟩⟨σi| (7.3.22)

where σi are orthogonal stabilizer states and rG = d/|G|. First notice that 1 ≤ |G| ≤ d

with appropriate choices of the stabilizer state ρ. Then by applying a unitary one
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obtains

UρU † =
1

rG

rG∑
i=1

|ϕi⟩⟨ϕi| (7.3.23)

where |ϕi⟩ is a generic orthogonal basis in the Hilbert space. Therefore, one concludes

that one can obtain any state in FLAT by applying unitaries on STAB0.

It is possible to define another monotone for the resource theory of flatness through

the quantum relative entropy,

FR(ρ) = min
σ∈FLAT

S(ρ∥σ). (7.3.24)

One can prove the following proposition

Proposition 3. Given a state ρ ∈ H, it holds that

FR(ρ) = Smax(ρ)− S(ρ) (7.3.25)

See Appendix E for a proof. Note that FLAT ⊃ STAB0 where STAB0 is the

set of states with zero stabilizer Renyi entropy, hence minσ∈STAB0 S(ρ||σ) ≥ FR(ρ),

therefore the flatness lower bounds the total subregion magic for any state. The

same would not be true if STAB is the usual stabilizer polytope, because it overlaps

with FLAT but is not a subset as one can take classical mixture of it such that the

eigenvalues of ρ are not equal (or zero).

Finally, let us define yet another flatness that will be natural for holography.

Recall from [35] that a variant of the Renyi entropy is given by,

S̃n = n2∂n(
n− 1

n
Sn) = −n2∂n(

log Tr(ρn)

n
). (7.3.26)

If we rewrite Tr(ρn) in terms of the spectrum {λk} of ρ, it becomes

S̃n = −n2∂n(
log
(∑

k λ
n
k

)
n

) = log

∑
k

λnk

− n∑k λ
n
k log λk∑
k λ

n
k

. (7.3.27)
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Now we take derivative of this expression and obtain another definition of anti-

flatness.

Proposition 4. ∂nS̃n(ρ) is a measure of anti-flatness in that ∂nS̃n(ρ) = 0 if and only

if ρ has a flat spectrum.

Proof. Expanding the definition using the set of eigenvalues of ρ.

∂nS̃n =− n(
∑

k λ
n
k log

2 λk)(
∑

l λ
n
l )− (

∑
k λ

n
k log λk)

2

(
∑

k λ
n
k)

2
(7.3.28)

=− n(
∑

kl λ
n
kλ

n
l log

2 λk)− (
∑

kl λ
n
kλ

n
l log λk log λl)

(
∑

k λ
n
k)

2
(7.3.29)

=− n
∑

(kl) λ
n
kλ

n
l (log

2 λk + log2 λl − 2 log λk log λl)

(
∑

k λ
n
k)

2
(7.3.30)

=− n
∑

(kl) λ
n
kλ

n
l log

2 λk
λl

(
∑

k λ
n
k)

2
, (7.3.31)

where
∑

(kl) denotes sum over each pair of distinct indices k ̸= l. Note that each term

in the numerator is non-negative. Therefore ∂nS̃n = 0 if and only if log λk
λl

= 0, which

is equivalent to λk = λi for all k, l.

This anti-flatness (Eq. (7.3.28)) can be connected to (Eq. (7.3.18)) by first noticing

that the anti-flatness F(ρ) corresponds to the variance of ρ. The proof is straightfor-

ward

F(ρ) = tr (ρ3)− tr 2(ρ2) = tr (ρ ρ2)− tr 2(ρ ρ) = ⟨ρ2⟩ρ − ⟨ρ⟩2ρ = Varρ(ρ)(7.3.32)

Let us connect this definition with the derivative at n = 1. Let ρ ≡
∑

k λk|λk⟩ ⟨λk|.

Note that the following relation can also be written as a variance, by defining pk =

λnk∑
k λ

n
k
, it is easy to observe that

∑
pk = 1 and we can define the state

Ξ :=
∑
k

pk|λk⟩ ⟨λk| (7.3.33)
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and so

∂nS̃n = −n
∑
kl

pkpl(log
2 λk − log λk log λl) (7.3.34)

= −n⟨log2 ρ⟩Ξ + n⟨log ρ⟩2Ξ = −nVarΞ(log ρ) (7.3.35)

Let us compute it for n = 1

∂nS̃n

∣∣∣
n=1

= −
∑
kl

λkλl log λk(log
λk
λl

) (7.3.36)

= −
∑
k

λk log
2 λk +

∑
kl

λkλl log λk log λl (7.3.37)

= −tr (ρ log2 ρ) + tr 2(ρ log ρ) (7.3.38)

= −⟨log2 ρ⟩ρ + ⟨log ρ⟩2ρ = −Varρ(log ρ) (7.3.39)

Interestingly, when n = 1, Ξ coincides with ρ. Seeing log ρ as a function of ρ, the vari-

ances between the two quantities are connected. We make use of standard techniques

of error propagation to get the relationship between Varρ(ρ) and Varρ(log(ρ)).

Varρ(log(ρ)) ≈
Varρ(ρ)

⟨ρ⟩2ρ
=

Varρ(ρ)

Pur(ρ)2
=
F(ρ)

Pur2(ρ)
, (7.3.40)

The approximation is valid when S0 − S2 < log 2. Therefore, the two measures

coincide in the near-flat or weak entanglement regime.

In fact, Eq. (7.3.28) has a convenient rewriting as the variance of the modular

Hamiltonian. Given a state ρ ≡
∑

k λk|λk⟩ ⟨λk|, its eigenvalues can be written as

λk := exp(−βEk) where β is an effective temperature. Note that since
∑

k λk = 1

then Z[β] = 1. This also defines the (entanglement) Hamiltonian

H =
∑
k

Ek |λk⟩⟨λk| (7.3.41)

From (Section 7.3.2), we get

∂nS̃n

∣∣∣
n=1

= −
∑
k

exp(−βEk)(−βEk)2 +

∑
k

exp(−βEk)(−βEk)

2

(7.3.42)

= −β2
[
⟨H2⟩β − ⟨H⟩2β

]
(7.3.43)
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also, with simple algebra, one obtains that

∂nS̃n

∣∣∣
n=1

= −β2
[
⟨H2⟩β − ⟨H⟩2β

]
= −β2⟨(Ek − El)2⟩kl (7.3.44)

In other words, the modified Renyi entropy is proportional - by inverse temperature -

to the fluctuations of the Hamiltonian H which in turn is the average gap squared in

the energies Ek. This also shows why the derivative is connected to the anti-flatness

of the state.

This result can be extended to any n, to do this, note first that Ξ = exp(−nβH)Z−1[nβ].

Then with some algebra we obtain

∂nS̃n = −n3β2(⟨H2⟩nβ − ⟨H⟩2nβ). (7.3.45)

7.3.3 Non-local Magic, Entropy, and anti-Flatness

In this section, we are going to introduce the concept of non-local magic, and how

it relates to both entanglement and anti-flatness.

Definition 4 (Multi-partite non-local magic). Given M a measure of magic and

ψA1...An ≡ |ψA1...An⟩⟨ψA1...An| a pure state, we define as n-partite non-local magic

M (n−NL)(ψA1...An) := min
U=⊗n

i=1UAi

M(UψA1...AnU
†). (7.3.46)

As we exclusively discuss the case of bipartite non-local magic when n = 2 for the

rest of this work, we set A = A1, B = A2 and simply refer to M (NL) = M (2−NL) as

non-local magic for convenience.

Intuitively, non-local magic is the non-stabilizerness that lives in the correlation

between A and B because UA ⊗ UB removes all “local” magic in A or B separately.

Note that A,B themselves can be multi-qubit systems, so UA, UB need not be single

qubit unitaries.

In this work, we will use as measures of magic Mdist and the two relative entropies

of magic MR, MSR.
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Non-local magic and flatness

Let us start with a general relation valid for any measure of anti-flatness and any

measure of non-local magic.

Lemma 2. A pure quantum state |ψ⟩ possesses no non-local magic, that is, MNL(|ψ⟩) =

0, iff |ψ⟩ is unitarily locally equivalent to a state |ψ′⟩ = UA ⊗ UB|ψ⟩ with flat reduced

density matrix ψ′
A ≡ tr B |ψ′⟩⟨ψ′| with integer Renyi entropies2. In formulae,

MNL(|ψ⟩) = 0 ⇐⇒ F (ψA) = 0 ∧ rank(ψA) = 2rA , rA ∈ N (7.3.47)

Proof. Let us start from the left-to-right implication. We employ the fact that any

faithful measure of magic M(|ψ⟩) vanishes on the free states. For any such measure,

its non-local counterpart with respect to the the bipartition A|B is MNL(|ψ⟩) :=

minUA⊗UB
M(UA ⊗ UB|ψ⟩). Given M (NL)(|ψ⟩) = 0, then we know that there exist a

bi-local unitary UA⊗UB such that |ψ′⟩ ≡ UA⊗UB|ψ⟩ ∈ STAB0. Since STAB0 is closed

under partial trace, see Section 7.3.1, then ψ′
A ∈ STAB0. By Lemma 1, we know that

ψ′
A ∈ FLAT. Moreover, from Eq. (7.3.22) we know that rank(ψA) = 2rA with rA ∈ N.

Let us now show that also the converse is true. Consider a flat state |ψ⟩, that is, a

state such that its reduced density matrix ψA ≡ tr B |ψ⟩⟨ψ| = 1
2rA

∑
i |ϕi⟩⟨ϕi|A where

the sum run on 2rA many rank-one projectors |ϕi⟩⟨ϕi|A. Note that we exploited the

fact that Sα(ψA) = rA ∈ N for every α ∈ [0,∞). Via the Schmidt decomposition,

we can write the state as |ψ⟩ =
∑

i
1√
2rA
|ϕi⟩A ⊗ |ψi⟩B. Without loss of generality, we

choose now |A| < |B|. We further know that ⟨ϕi|ϕj⟩ = ⟨ψi|ψj⟩ = δij. Now choose UA

(resp. UB) such that UA|ϕi⟩A = |i⟩A (resp. UB|ψi⟩B = |i⟩B) for |i⟩A (resp. |i⟩B) being

2In this work, information is measured using bits. Accordingly, entropies are computed using

log2.
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the computational basis on A (resp. B). We obtain

UA ⊗ UB|ψ⟩ =
∑
i

1√
2rA
|i⟩A ⊗ |i⟩B ≡ |EPR⟩AĀ ⊗ |j⟩B\Ā (7.3.48)

where |EPR⟩AĀ is a EPR pair between the full A and any subsystem Ā ⊂ B such that

|A| = |Ā|, while |j⟩ is a computational basis state on B \ Ā. Since |EPR⟩AĀ⊗ |j⟩B\Ā

is a stab state, we obtain

0 =M(UA ⊗ UB|ψ⟩) ≥ min
UA⊗UB

M(UA ⊗ UB|ψ⟩) =MNL(|ψ⟩) ≥ 0 (7.3.49)

Notice that a non-vanishing non-local magic is a necessary condition for anti-

flatness to be zero. However, there are possibly states with non-integer Renyi en-

tropies that can possess some non-local magic without being guaranteed that anti-

flatness is non-vanishing. The lemma shows that if a state has anti-flatness zero, that

is, it is flat, then its non-local magic is zero for any sensible measure of non local

magic.

We now show lower and upper bounds to the non-local magic based on the trace

distance of Mdist defined in Definition 1. As we saw previously, anti-flatness connects

magic and entanglement. We have:

Theorem 3. Let ψAB be a pure state in a bipartite Hilbert space H = HA⊗HB, then

F(ψA)/8 ≤M
(NL)
dist (ψAB) ≤

√
1− e−SA

max(ψAB) (7.3.50)

The proof can be found in the Appendix E.

As we shall see in Section 7.5.1, the Lemma 2 and Theorem 3 will have important

consequences for the relationship between the non-local magic in the CFT side and

gravity in AdS.
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Non-local stabilizer relative entropies of magic

In this section, we show that similar to the trace distance of magic, the relative

stabilizer entropy also has a tight connection with flatness and entanglement.

Theorem 4. Let ρAB be a pure state, then

Smax(A)− S(A) = FR(ρA) ≤ min
UA

MRS(UAρAU
†
A) ≤M

(NL)
RS (ρAB) ≤ Smax(A).

(7.3.51)

Here S(A) = S(ρA) and Smax(A) = Smax(ρA). The proof can be found in Ap-

pendix E. Let us briefly comment on the tightness of the bound. It is clear that when

|ψ⟩AB has a dominant Schmidt coefficient and many small trailing singular values,

then the bound is essentially tight. A case in point is
√
1− ϵ|00⟩+

√
ϵ|11⟩. However,

the upper bound is quite loose for states with near-flat spectrum, e.g. ϵ = 1/2. This

is an artifact of choosing the maximally mixed state as a reference even though other

stabilizer states clearly yield a lower distance.

A similar upper bound can be obtained with the usual relative entropy measure

of magic.

Proposition 5 (Entanglement upper bounds NL magic). Suppose ρAB is pure, and

M
(NL)
R (ρAB) = min

UA⊗UB

MR((UA ⊗ UB)ρAB(UA ⊗ UB)†), (7.3.52)

then M
(NL)
R (ρAB) ≤ S(A) = S(B), where S(A) is the von Neumann entropy of sub-

system A.

The proof is given in Appendix E. This upper bound suffers from the same draw-

backs as (Eq. (7.3.51)) for states that are maximally entangled.
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Magic estimates

As minimization can be difficult for the relative entropy measure, let’s also derive a

tighter upper bound based on a computable measure of magic, that is, the stabilizer

Renyi entropy. To do so, we can pick a good estimate that is reasonably close to

the minimum. Suppose the entanglement spectrum of the state under the same

bipartition AB is {λi}, construct a state

|ψ′⟩AB =
2n∑
i=1

√
λi|si⟩|si⟩, (7.3.53)

where {|si⟩} are eigenstates of a stabilizer group S = {S1, S2, · · · , Sn} such that for

any Sk in S, Sk|si⟩ = ±|si⟩. Because the entanglement spectrum is invariant under

local unitary UA⊗UB, |ψ′⟩ is a reasonable construction such that the reduced density

matrix on both A and B are within the stabilizer polytope, and hence have vanishing

local magic by the relative entropy measure MR. Note that other choices of the

Schmidt basis may yield lower overall magic on AB, therefore M(|ψ′⟩) provides an

upper bound of non-local magic.

We now present an estimate of M(|ψ′⟩) using the Stabilizer Renyi Entropy mea-

sure.

Proposition 6. The non-local stabilizer Renyi entropy estimate for a state with en-

tanglement spectrum {λi} is

M2({λi}) =M2(
2n∑
i=1

√
λi|si⟩|si⟩), λi ≥ λj, for i < j. (7.3.54)

Note that this non-local magic estimate doesn’t depend on the choice of stabilizer

group S. However, the ordering of eigenvalues does affect its magnitude. Remarkably,

one can obtain an exact expression forM2({λi}).
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Theorem 5. The non-local stabilizer Rényi entropy estimate is

M2({λi}) = − log

 2n∑
i1,i2,i3,i4

√
λi1λi2λi3λi4λi3∧i2∧i1λi4∧i2∧i1λi1∧i3∧i4λi2∧i3∧i4

 ,

(7.3.55)

where ∧ denotes the bitwise XOR operation. This expression depends on the ordering

of the eigenvalues and reaches its minimum when the eigenvalues are in the descending

order, that is, λi ≥ λj for i < j.

In Section 7.4.2 we present numerical results ofM2({λi}) for finite-sized physical

system. It is helpful to see that the estimate constitutes a non-local magic upper

bound.

Corollary 6. Let {λi} be the Schmidt values for |ψ⟩AB when bipartitioning the system

into A and B. The non-local stabilizer Rényi entropy is upper bounded by

MNL
2 (|ψ⟩AB) ≤M2({λi}) ≤ min{2S2(A), 4(S0(A)− S1/2(A))} (7.3.56)

where Sα(A) = Sα(ρA) with ρA = TrB[|ψ⟩⟨ψ|].

See Appendix E for the proof. Based on this result, we discuss two regimes. One

is when the spectrum is almost flat. In this regime, the bipartite non-local magic is

upper bounded by,

M2({λi}) ≤ 4(S0(A)− S1/2(A)). (7.3.57)

This has the interpretation as anti-flatness. Although the measure of magic is dif-

ferent, we see that this gives a much tighter bound compared to (Theorem 4) in the

near-flat regime.

Remark 1. Haar random states have small bipartite non-local magic.

We see that M2 ∼ S0 − S1/2 whereas the lower bound from relative stabilizer

entropy measure in (Theorem 4) is S0−S1, both are bounded by a constant for Haar
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random states[63] — for small α, dimA ≪ dimB = m, S0 − Sα ≤ α
2
+ O(1/m2).

This is somewhat surprising because Haar random states are magic rich and have

non-trivial total magic [101, 72]. However, the magic sustained by their bipartite

entanglement is small even though local magic in any subregion A with |A| ≫ |B|

can be large.

Another limit is when S0(A) ≫ S1/2(A), which applies for quantum field theory.

In this regime the magic is approximated by the second Renyi entropy,

M2({λi}) ≤ 2S2(A). (7.3.58)

As we shall see in Section 7.4, this is consistent with our MERA intuition for conformal

field theories.

Smoothed magic

The concept of magic and its bound, as discussed earlier, are applicable to systems

with finite dimensions. However, in quantum field theory, the Hilbert space has an

infinite dimension. In this case, the bounds given by max entropy in Theorem 4 can

easily be divergent. To produce a non-trivial bound, it is imperative to introduce the

‘smoothed magic’, defined as

M ϵ
RS := min

∥χ−ρAB∥<ϵ
MRS(χ), (7.3.59)

as well as the ‘smoothed non-local magic’, defined as

M
(NL,ϵ)
RS (ρAB) := min

∥χ−ρAB∥<ϵ
M

(NL)
RS (χ). (7.3.60)

For this, a smoothed version of Theorem 4 holds.

Theorem 7. Let ρAB be a pure state, then

Sϵmax(ρA)− (1− ϵ)−1S(ρA) ≤M
(NL,ϵ)
RS (ρAB) ≤ Sϵmax(ρA). (7.3.61)
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where the smoothed maximal entropy is defined as

Sϵmax(ρ) = min
∥χ−ρ∥<ϵ

ln
(
rank(χ)

)
. (7.3.62)

The proof can be found in Appendix E. As stated by Theorem 7, the magic is

bounded from below by the difference between the smoothed maximal entropy and

the entanglement entropy which is finite for conformal field theories.

Before we discuss CFTs, let’s examine the physical meaning of the lower bound,

which is the difference between smoothed max entropy and the von Neumann entropy.

In addition to the anti-flatness of the entanglement spectrum, this quantifies the

compressibility of a state [3]. Consider a bipartition of the state followed by a Schmidt

decomposition. It is compressible if we can still well approximate it after truncating

the less significant singular values, as one is wont to do in DMRG. Here we can

show that this compressibility gap which lower bounds smoothed non-local magic

also quantifies the classical hardness in simulations.

Let us build up the following argument by recalling that there are states such

as random stabilizer states that have high entanglement but are classically easy to

simulate. Since magic and entanglement capture two orthogonal perspectives of quan-

tumness, are there quantum states with low entanglement but high magic that are

classically hard to simulate? Naïvely, a state with high magic will have high stabilizer

rank, which is hard in the stabilizer simulation. On the other hand, the system will

be classically hard using the tensor network method if it has high bond dimensions.

However, a folk theorem in tensor network suggests that the small entanglement

would permit one to capture the state with a tensor network whose bond dimension

only needs scale as O(eS) where S is the von Neumann entropy of each subsystem.

Therefore, it seems that as long as the entanglement is small, there should be a clas-

sically easy description. However, one needs to be careful in applying this lore as it
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is known that there exist states with low entanglement but classically complex[41].

More precisely, consider an exact MPS description of a state with low entangle-

ment such that for any subsystem A, S(A)≪ log rank(ρA) where we have taken the

bond dimension χ to be sufficiently large to reproduce the state exactly. One would

be tempted to truncate the singular values and only keep O(eS) as suggested by the

folk theorem. However, we note that this truncation is only justified if there exists

σA with ||σA − ρA|| < ϵ such that

∆Sϵ(A) = Sϵmax(A)− S(A) = log rank(σA)− S(A)

is small compared to S(A). In other words, the state is (perfectly) compressible. Such

is indeed true for conformal field theory ground states, where ∆Sϵ ∼
√
S log

(
1/ϵ
)
.

However, it is not true in general. For example, consider a state |ψ⟩ = 1
N
∑r

i=1
1√
i
|i⟩A|i⟩B.

The smoothed max entropy Sϵmax = log r − ϵ, while entanglement entropy is nearly

half of it, S ≈ 1
2
log r. In holography, [3] argued that certain state mixtures, such as

that of a thermal and pure state, can lead to an arbitrarily large ∆Sϵ(A).

Therefore, high incompressibility on the one hand forces high tensor network bond

dimension, and on the other necessitates high non-local magic from Theorem 7. This

implies that such states will be classically hard to simulate and sharpens a gen-

eral empirical observation that relates magic to classical complexity. Furthermore, if

S ≪ ∆Sϵ ≈ Sϵmax, then both the lower and upper bounds are approximately satu-

rated. In this case, the smoothed non-local magic provides a quantitative measure

for the classical hardness of simulating such states. Treating magic as roughly as the

log of stabilizer rank and bond dimension, one would expect that classical resource of

order O(exp
(
M

(NL,ϵ)
RS

)
) will be needed. It then follows that simulating such incom-

pressible states is classical hard using not only the tensor network method, but also

the stabilizer and the Monte Carlo method[83] by having large magic3.
3A careful treatment of this problem should include other formulations of non-magical processes
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7.4 Magic in conformal field theories

Having seen a quantitative connection between anti-flatness in entanglement spec-

trum and non-local magic, we examine these relations in the context of CFTs.

7.4.1 Geometric Interpretation through tensor networks

To figure out (1) how much non-local magic there is in a CFT and (2) how such

magic connected with the anti-flatness of the entanglement spectrum, it is instructive

to first look at an intuitive picture from tensor networks. For CFTs with small central

charges, MERAs have been shown to be good approximations of CFT ground states

|ψ⟩AB. By extension, it also holds for products of CFTs with small central charge.

Let us assume that the tensor network structure remains valid for arbitrary degree of

accuracy, perhaps at the cost of increasing the bond dimension, which is supported

by empirical observations. Using this as a heuristic, we deduce that local unitary

deformations UA⊗UB “distills” an entangled state between A and B with log Schmidt

rank that is upper bounded by the number of edge cuts (green triangle Fig. 7.1). As

such cuts scale linearly with the size of the RT surface, i.e. the boundary of the

triangle in the bulk, the log of Schmidt rank must be bounded by the number of edge

cuts which scale the same way as entanglement entropy in this case. This implies that

the non-local Magic in CFTs should scale linearly with the area of the Ryu-Takayanagi

surface.

In fact, we can almost identify the optimal distilled state that has the same

Schmidt rank but removes the unnecessary zero eigenvalues by just acting mostly

unitaries and disentanglers. Let the blue rectangles at the bottom layer be the CFT

ground state but at a more coarse-grained scale. As the ground state is an IR fixed

like Gaussian states, matchgates with [18].
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point, we can simply use it as an input in the MERA to generate the more fine-grained

state on the top layer. We can decompose the IR state by Schmidt decomposition,

and the Schmidt rank is upper bounded by the bond dimension (here the bond is

represented as 3 edges on each side of the blue rectangle on the bottom assuming the

worst case volume law upper bound in the central region). By acting disentanglers

and isometries in B followed by global unitaries on the subsystems represented by

the blue rectangles on two sides of the bottom layer in the the IR ground state, we

“pushed” the subregion B on the top layer to the red boundary by acting UB, which

now lives on ∂B. Similarly, acting UA by running unitaries and isometries in A, we

remove the bulk dof and push A to ∂A, marked by the orange lines. The qubits on

∂A and ∂B are entangled and their entanglement spectrum is unchanged since we

only applied unitaries UA ⊗ UB.

Let |∂A|, |∂B| be the number of edges in ∂A, ∂B. The distilled state |χ⟩AB is not

optimal as log rank(ρA) ≤ |∂A| < |∂B|, where we would have hoped that |∂A| =

|∂B| = log rank(ρA), but this is close enough as |∂A| and |∂B| both scale as ∼ log |A|

as the blue region that contributed to suboptimality in the edge cuts is only constant

(AdS) radius away from the true minimal surface. The number of edge cuts on

the bottom layer is always bounded as the width of the MERA past causal cone is

bounded. This means that |∂A| + const = |∂B| where the constant depends on the

network discretization. For binary MERA it stabilizes at 4 to 6 sites.

As a consequence, after the removal of local magic in each wedge, the remaining

magic is tied up into the interface between A and B marked by the region shaded

in blue. Since the amount of magic generically scale linearly with the number of

tensors, for a contiguous subregion A, the size of the interface region scales as log |A|,

which is proportional to the size of the RT surface up to subleading corrections. Note

that while it may be possible to lower the size of this interface region further by local
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Figure 7.1: Green: past causal domain of dependence of A, Union of blue and green:

past causal cone of A. Time runs upwards.

unitary transformations, the number of sites it involves must be lower bounded by the

minimum number of edges connecting A and B, which is given by |∂A|. Heuristically,

consider a case where all the bipartite entanglement between A and B have been

“distilled” into imperfect Bell pairs connecting the two complementary regions. Then

for any additive measure of magic, the non-local magic should scale linearly with the

number of such imperfect Bell states, which is again proportional to the length of the

minimal surface.

More precisely, we observe that the tensor network of the interface region is a ma-

trix product state (MPS) (Fig. 7.2b) by removing the local unitaries. The remaining

structure contributes to the non-local magic is shown in Fig. 7.2a. Each matrix in

the chain consists of two isometries and one disentangler.

|χ⟩AB =M
(s1r1)
1 M

(s2r2)
2 · · ·M (snrn)

n |s1s2 · · · sn⟩∂A|r1r2 · · · rn⟩∂B. (7.4.1)

We expect the magic of this state to scale linearly with the number of matrices,

namely the size of the light-cone, min{|∂A|, |∂B|}. Indeed, we verify that magic scales

as volume of the MPS, which is ∼ log |A|.

For the numerics, we pick a random realization of the disentangler and isometry
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Figure 7.2: The MERA tensor network with local unitaries removed produces a tensor

network (a) that contributes to non-local magic. It can be written as an MPS (b) for

which its stabilizer Renyi entropy can be computed numerically.

and use them for each each layer, in accordance of the scaling invariance. Then we

present two estimations of the non-local magic of this MPS state. The first estimation

we calculate the lower bound of the stabilizer relative entropy, given in Eq. (7.3.51).

We present the result in Fig. 7.3a. Both max entropy and the von Neumann entropy

scale linearly with the number of matrices, and thus linearly with respect to the RT

surface area and the entanglement entropy S(A) of the boundary theory of subregion

A. In the second estimation we calculate the entanglement spectrum of this state,

denoting the set of eigenvalues as {λi}. Then we construct a state with the same

entanglement spectrum and compute its non-local magic estimate using 7.3.54.

The above intuition is also apparent when we think of the holographic QECC

perspective of AdS/CFT where it is given by a code that corrects erasures approx-

imately. In this case, complementary [46] approximate erasure correction promises

the existence of recover unitaries supported on each subregion, such that
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Figure 7.3: (a) Maximal entropy and von Neumann entropy of the MPS as a function

of the number of sites in the state. (b) Stabilizer Renyi entropy of the state with

small local magic.

UAUAc |ψ̃⟩AAcU †
AU

†
Ac ≈ |ψ⟩|χ⟩, (7.4.2)

where |ψ⟩ captures the bulk encoded information while |χ⟩ is the entanglement me-

diating erasure correction4. This is the case for certain of holographic QECC toy

models, such as instances of approximate holographic Bacon-Shor codes[25], (see e.g.

Fig. 41 or generally when the skewing is small,) and [52] when imperfectly entan-

gled pairs are used in place of maximally entangled states when building the tensor

network. The latter is known to be able to produce the correct single-interval CFT

entanglement entropy but fails at the multi-interval level.

The states |χ⟩ now play the role of the interface tensor in MERA. To leading

order, the Renyi entropies associated with |χ⟩ again scale as the area of the extremal
4We note that this heuristic argument is only expected to hold approximately in the leading order

N for holographic CFTs as that is when they function as approximate erasure correction codes with

recovery errors suppressed by 1/N .
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surface where it is explicitly given by the number of entangled states across the bulk

cut. Therefore, by (Eq. (7.3.56)), its magic as measured by the stabilizer Renyi

entropy should scale as the area of the RT surface for any additive magic measure as

one simply has to count the number of such approximate Bell pairs. Strictly speaking,

this again yields an upper bound as we do not optimize over all basis choices.

We also expect this linear dependence between non-local magic and entanglement

to extend to non-critical states with translational invariance. For example, it is well-

known that the truncated MERA (or more simply an MPS) can describe ground

state of gapped phases where entanglement can increase slightly as the system grows,

but plateaus at sufficiently large |A|5. The non-local magic again resides on the

edges connecting A and B. From the bond counting argument, we again arrives at

MNL ∼ S(A) providedM is an additive measure of magic.

Having established that the non-local magic should scale as the entropy, let’s

now examine how it should be connected with the anti-flatness of the entanglement

spectrum. Consider again the distilled state |χ⟩ which we represent as an MPS shared

between A and B with local magic removed. Recall that since χA = tr B[|χ⟩⟨χ|] =

UAρAU
†
A, their entanglement spectrum and anti-flatness are identical, i.e., F(χA) =

F(ρA).

For simplicity, let’s approximate the MPS as entangled states |ϕ⟩⊗n where each

state |ϕ⟩ can be thought of as imperfect entangled pairs6. These states have volume

law entanglement across A and B. We expect this to be a reasonable approximation

because MPS with constant bond dimension limits the amount of correlation to be

short-ranged, making them close to the tensor products which one can think of as a
5See [75] for example.
6For concreteness, one can think of them as imperfect Bell pairs. More generally, they do not

have to be qubits, but a pair of qudits that are not maximally entangled.
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mean field approximation. We further support this claim with numerical evidence in

Appendix E.

It is known from [94] that for a typical state |ϕ⟩ab with stabilizer linear entropy

Mlin(|ϕ⟩) chosen from its Clifford orbit {Γab|ϕ⟩,∀Γ ∈ C2}, the anti-flatness of the

entanglement spectrum of ϕ = Trb[|ϕ⟩⟨ϕ|] when cutting the state in half is given by

F(ϕ) = c(d, da)Mlin(ϕ), (7.4.3)

where c(da, d) = (d2−d2a)(d2a−1)
(d2−1)(d+2)

. Note that the second stabilizer Renyi entropy is related

to the stabilizer linear entropy M2 = − log(1−Mlin). Here Mlin ≤ 1 − 2(d + 1)−1

with d being the dimension of the Hilbert space of |ϕ⟩ and da =
√
d the Hilbert space

dimension of subsystem a. Applying Eq. (7.4.3) to each pair, we would have

M2(|ϕ⟩) ≈
F(ϕa)
c(d, da)

≈− Pur(ϕa)
2

c(d, da)

∂S̃m(ϕa)

∂m

∣∣∣∣∣
m=1

,

(7.4.4)

where we have applied the approximation Eq. (7.3.40) to rewrite the R.H.S. in terms

of additive anti-flatness measure. Based on the assumption of distillation |χ⟩ ≈ |ϕ⟩⊗n

(See Appendix E for discussion) and additivity ofM2 we conclude that

M2(|χ⟩) ≈ n
Pur(ϕa)

2

c(d, da)
|∂mS̃m(ϕa)||m=1

= κ|∂mS̃m(χA)||m=1.

(7.4.5)

where κ = Pur(ϕa)
2/c(d, da) is some coefficient that depends on the details of |ϕ⟩.

Note that ∂mS̃m is negative in our convention.

Since we argued thatM2(|χ⟩) ≈MNL
2 (|ψ⟩AB),

MNL
2 (|ψ⟩AB) ≈ κ|∂mS̃m(χA)||m=1. (7.4.6)

for a CFT ground state. Therefore, if one uses the computable stabilizer Renyi en-

tropyM2, we predict that the non-local magic scales linearly with both entanglement
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entropy and the additive anti-flatness ∂mS̃m(χA)|m=1 of the entanglement spectrum

across A and B. In Section 7.4.2, we numerically verify that this is indeed the case

for an Ising CFT.

Remark 2. Notably, our reasoning for the area-law scaling of exact magic, i.e.

M(NL) ∼ S(A), and the non-flatness relation (7.4.6) does not rely on any partic-

ular properties of the CFT. Indeed, as long as one can concentrate the magic from A

to ∂A using the kind of unitary distillation procedure, this area law would also hold for

gapped system with entanglement area law. The anti-flatness relation is also similar

to the area law scaling of entanglement spread[8].

7.4.2 Non-local magic in Ising model

In this section we provide numerical computations to support our prior conjec-

tures. We begin with the 1+1D transverse field Ising model, with Hamiltonian given

by

HIsing = − cos(θ)
∑
i

ZiZi+1 − sin(θ)
∑
i

Xi. (7.4.7)

We particularly consider Eq. (7.4.7) near its critical point, when θ = π/4.

This model is described by an Ising CFT in the thermodynamic limit at criti-

cality, that is when θ = π
4
. For our analysis, we perform exact diagonalization to

determine the ground state of a 26-site spin chain with periodic boundary condition.

Subsequently, the state is partitioned into two contiguous segments: A and Ā. To

numerically estimate the non-local magic related to this bipartition, we use the Sta-

bilizer Rényi Entropy measure M2({λi}), as defined in Section 7.3.3. Importantly,

this measure relies solely on the entanglement spectrum, which we obtain through

Singular Value Decomposition (SVD).
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Figure 7.4: (a) Plot of non-local Stabilizer Renyi Entropy M2 v.s. subsystem size

|A|; (b) Plot of M2 v.s. Entropy S. (c) Plot of M2 v.s. anti-flatness. Model is at

critical point, with 26 lattice sites.

At the critical point, we compute the M2({λi}) measure while progressively in-

creasing the size of the subsystem |A|. The plot ofM2 is present in Fig. 7.4a.

In Fig. 7.4b, we observe that the non-local magic scales similarly to entropy when

we increase the size of the subregion |A|, particularly beyond 3 qubits. This indicates

that the non-local magic in the CFT scales logarithmically with |A|, in agreement

with our analysis presented in the MERA framework in Section 7.4.1. Additionally,
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Figure 7.5: Plot of non-local Stabilizer Renyi Entropy M2 v.s. subsystem size |A|.

The model parameter g = θ − π
4

is adjusted to position the model away from its

critical point.

Fig. 7.4c demonstrates the proportional relationship between non-local magic and

anti-flatness, supporting the estimation in Eq. (7.4.6).

A similar analysis is applied to study the model away from the critical point, as

illustrated in Fig. 7.5. We define the parameter g = θ − π
4
, where g quantifies the

deviation from criticality. In this regime, we observe that the non-local magic reaches

a plateau at a certain point, mirroring the behavior observed in entropy.

In our final analysis, we keep the size of the subregion |A| constant and track the

changes in non-local magic as the model approaches and passes through the critical

point. As depicted in Fig. 7.6, a distinct peak in non-local magic is observed. Notably,

this peak shifts closer to the critical point (g = 0) and becomes increasingly sharp

as the total system size (n) is enlarged. These observations suggest the potential

presence of a phase transition in the non-local magic measure. Fig. 7.7 presents
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Figure 7.6: Plot of non-local Stabilizer Renyi EntropyM2 v.s. parameter g = θ− π
4
,

at |A| = 5 with increasing total spins n.

a comparison of non-local magic and anti-flatness against the model parameter g,

revealing a consistent trend as g changes.

However, it is important to point out that non-local magic is not simply the

entanglement entropy despite their similarity in this example. For instance, the ratio

between non-local magic and entanglement depends on g. Fig. 7.8 gives a complete

picture of M2/S for a 14-qubit Ising chain, as we vary both the parameter g and

the subsystem cardinality |A|. We observe that M2/S maximizes for angles slightly

above the critical point (g = 0) due to finite size effect, in agreement with Figs. 7.6

and 7.7.

The plateau in Fig. 7.8 suggests a linear scaling between M2 and S, as subsystem

|A| grows large. As we see that the linear behavior is already apparent at n = 14.

Recall from the tensor network picture, the linear scaling between non-local magic

and entanglement entropy is expected, however, the density of non-local magic can
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Figure 7.7: (a) Plot of non-local magicM2 v.s. g. (b) Plot of anti-flatness v.s. g. (c)

Plot of anti-flatness |∂nS̃n| v.s. g. (d) Plot of entropy S v.s. g. All of these plots are

based on data for fixed subregion size |A| = 13.

vary depending on the shape of the spectrum. This is reflected in the figure as the

asymptotic proportionality constant between M2 and S depends on θ.

Another instance where non-local magic distinguishes itself from entanglement

can be found in the context of symmetry breaking. For g < 0, the Ising model enters

the symmetry-breaking phase in the thermodynamic limit where the non-local magic
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Figure 7.8: Surface illustrating the ratio of non-local magic to entanglement entropy

in n = 14 Ising CFT. We plot M2/S as a function of parameter g = θ − π/4

and subsystem size |A|. The value M2/S reaches a maximum just above criticality

(g = 0), before decreasing and ultimately plateauing.

further displays a transition. We refer interested readers to Appendix E for details of

this discussion.

7.4.3 Smoothed Magic from Entropic Bounds

However, beyond tensor network and finite-size numerics, we recognize that many

of the entropic quantities we have examined so far are generally infinite in conformal

field theories and need regularization. It makes more sense to look at smoothed magic,

which can be bounded by smoothed max-entropies. On the one hand, it generally

leads to finite quantities. On the other hand, for any reasonable simulation of a CFT,

it is far more relevant to produce approximations of a target state up to a small

precision parameter ϵ instead of the exact state defined by the theory.

289



In [11], it was shown that under the assumption that the Renyi entropies satisfy

Sn = sn
GN

, the smoothed maximal entropy is directly proportional to the following

expression:

Sϵmax = S +

√
log

1

ϵ
S +O(c0), (7.4.8)

where S denotes the von Neumann entropy of the state. A similar expression is

obtained by [31] using the explicit spectrum for a 1+1D CFT by Calabrese and

Lefevre[19]. This entropy is proportional to the central charge c of holographic CFT,

which is assumed to be large. The leading-order correction to this expression is at

O(1), making it negligible relative to the primary term.

With this in mind, we can estimate the lower bound for magic as follows:

M
(NL,ϵ)
RS (ρAAc) ≥ Sϵmax(A)− S(A) =

√
S(A) log

1

ϵ
+O(ϵc). (7.4.9)

We assume the parameter ϵ to fall within the range e−c ≪ ϵ≪ c−1.

Recall that for a given bipartition A and Ac in a holographic CFT, the von Neu-

mann entropy of subregion A to leading order is equal to the area A of the extremal

surface anchored to the entangling boundary ∂A divided by 4GN according to the

Ryu-Takayanagi formula[86]. Thus, we can formally represent the lower bound of

non-local magic as:

M
(NL,ϵ)
RS (ρAAc) ≥

√
log

1

ϵ

√
A

4GN

, (7.4.10)

where GN denotes the bulk gravitational constant, which is related to the central

charge of the CFT through the equation c = 3R
2GN

for 1+1 d CFT, and c ∼ Rd−1

GN
for

general dimensions. R is the AdS radius.
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Exact and Smoothed Magic in CFTs

Having obtained a lower bound, we now examine the smoothed magic upper bound.

Let’s pause for a moment and make an interesting observation about exact versus

smoothed magic. Consider n copies of |ψ⟩ = a|00⟩ + b|11⟩ which is not maximally

entangled. For any additive magic measure, the total magic M ∼ n. The same can

be deduced from the entropy bounds as both the lower and upper bounds pick up a

constant multiple of n compared to that of a single copy.

However, smoothed entropies are not additive. If we allow for approximations,

then it is known that [51] for any state |ψ⟩ there exist local unitaries UA ⊗ UB such

that

F (UA ⊗ UB|ψ⟩⊗n, |Φ+⟩Sn−O(
√
n) ⊗ |χ⟩) ≥ 1− ϵ (7.4.11)

for some ϵ, where F (σ, ρ) = (Tr
[√

σ1/2ρσ1/2
]
)2 is the Uhlmann fidelity and |χ⟩ is a

state that’s entangling O(
√
n) qubits. Because the perfect Bell pairs |Φ+⟩ contain

zero magic, the smoothed non-local magic of such a system must be upper bounded

by O(
√
n) with implicit ϵ dependence. From this, we can derive a tighter upper bound

of O(
√
n) ∼ O(

√
S). This agrees with the lower bound up to constant factors. Hence

assuming the distillation argument, the smoothed non-local magic M (NL,ϵ)
RS (ρAAc) ∼

O(
√
S(A)). This is contrasted with magic scaling without smoothing, which has

shown to scale linearly with S(A) in tensor networks and small size numerics without

smoothing.

A similar argument can be applied to CFTs by taking an n-fold tensor product.

Let |ψ⟩AB now be a CFT ground state with some fixed bipartition. Under such an

n-fold tensor product, c→ nc and the magic lower bound scales as O(
√
c)→ O(

√
cn)

where we take identical bipartitions A,B for all copies of the CFT. Although the magic

scaling is O(n) according to the smoothed max entropy upper bound, by Eq. (7.4.11),
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a tighter bound from Bell pair counting yield O(
√
n) scaling again. On the surface,

an n−fold copy of CFTs should have n fold increase of the non-local magic if the

measure is additive, however, we see that smoothing in fact always brings about a

quadratic reduction in the amount of required magic in producing an approximation

of the target state.

It is natural to ask whether the square root scaling of smoothed magic persists

for SU(N) gauge theories like holographic CFTs in the large N limit and when the

upper/lower bounds in Theorem 7 are tight. Here we conjecture that the lower bound

(Eq. (7.3.61)) is essentially saturated by smoothed magic whereas the non-smoothed

magic can scale linearly with the Renyi entropies Sn(A). In other words, the upper

bounds (Proposition 5) and (Eq. (7.3.61)) are approximately saturated up to constant

multiplicative factors.

Conjecture 2. Let |ψ⟩AB be a low energy state of any conformal field theory. As-

suming a UV cut off to render entropies finite, let S(A) be the von Neumann entropy

of the state on a contiguous subregion A. For any additive measure of magic,

(a) the smoothed non-local magic evaluated at any fixed precision ϵ is of O(
√
S(A)).

(b) If the exact non-local magic is well-defined, then it scales as O(S(A)).

A simple reasoning is as follows. Suppose the bipartite entanglement across AB

are distillable such that for each Planck area of the RT surface, we can obtain a

Bell-like state |χ⟩AB which need not be maximally entangled; suppose these states

are near identical by the conformal symmetries of the CFT ground state, then we

must have O(S(A)) copies of such states. Following a distillation like Eq. (7.4.11),

we obtain at most O(
√
S) states that are imperfectly entangled, in which non-local

magic can reside. Note that if no smoothing is allowed, and the magic measure is
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additive, then the O(S) number of entangled pairs simply contain O(S) amount of

magic, consistent with our MERA intuitions and CFT numerics.

This conjecture, if true, has a wider implication for quantum simulations of confor-

mal field theories. Although our naïve expectation is that the non-local magic should

increase as the volume of the minimal surface, as indicated by holographic tensor

networks, the magic needed to produce a good approximation allows a quadratic re-

duction. In terms of non-Clifford resources, it implies that an practical preparation of

a CFT ground state may permit a quadratic reduction of T gates compared to naïve

expectations with moderate scaling with increasing precision ϵ. However, the actual

state preparation has to take into account local magic, which is volume law, and mul-

tipartite non-local magic, which is not covered by our bipartite analysis. Therefore,

although a state isospectral to ρA may consume less non-Clifford resource, we make

no claim as to how it alters the total resource scaling for the preparation of ρA.

Anti-flatness and smoothed magic

Now we comment on a key relation between smoothed magic and entanglement in the

CFT. It was suggested in [100] that magic non-locally distributed would be needed

to reproduce the anti-flatness of the CFT entanglement spectrum. We have seen a

version of it for exact magic in Section 7.4. We can also verify this relation precisely

for smoothed magic — the spectral anti-flatness FR(ρA) is proportional to the amount

of smoothed non-local magic MNL
RS (ρAB) to leading order. However, the scaling with

entropy is different.

Proposition 7. For any bipartition A and Ac of the CFT ground state, the anti-

flatness of the CFT entanglement spectrum necessitates the existence of smoothed
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non-local magic of at least

O

(√
S(A) log

(
1/ϵ
))

. If the distillation argument holds, then

FR(ρA) ∼M
(NL,ϵ)
RS (ρAAc) = O(

√
S(A)). (7.4.12)

7.5 Holographic Magic and Gravity

Heuristically, anti-flatness of the entanglement spectrum is critical in emerging

gravity. Various approaches for (entanglement) entropic derivations of the Einstein’s

equations make use of entanglement first law in both AdS/CFT, e.g.[12, 38, 93, 33],

and beyond [57, 23, 22]. This simple relation connects the stress energy by way of

modular Hamiltonian HA = − log ρA. Under a perturbation ρA → ρA + δρ such that

δS ≡ S(ρA + δρ) − S(ρA) and δ⟨HA⟩ ≡ Tr[HAδρ], then to linear order δS = δ⟨HA⟩.

As entropy is linked to the area of an extremal surface and HA can be linked to

functions of the stress energy tensor in quantum field theories, δ⟨HA⟩ is connected to

perturbation in stress energy caused by the perturbation δρ while δS can be linked to

the area and hence metric perturbation. The combination of these relations produce

the Hamiltonian constraint, where a covariantized version leads to the (linearized)

Einstein’s equations. It is clear that if the spectrum was flat, i.e. the system has zero

non-local magic and the modular Hamiltonian is proportional to the identity, then no

state perturbation can ever incur entropy and therefore metric perturbations, let alone

Einstein gravity. Therefore, it is natural to link non-local magic to the emergence of

gravity by way of entanglement spectrum.

In this section, we examine non-local magic in CFTs with dual gravity theories.

Although it is speculated that non-local magic should play an important role in the

dual theory [100, 21], the precise relation has not been made clear. We now provide
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a holographic dual of non-local magic: non-local magic in the CFT is backreaction in

the bulk.

7.5.1 Brane tension and magic

Let’s make a more precise statement from the point of view of Renyi entropies.

Recall that the Renyi entropies in holographic CFTs are computed by the replica

geometries which insert a conical singularity that correspond to cosmic branes at

various tensions [34, 35]. Therefore, anti-flatness in the entanglement spectrum can

be naturally interpreted as the difference between minimal surfaces areas in different

backreacted geometries caused by the addition of some stress energy in the form of a

cosmic brane with tension T .

More precisely, the derivative of brane area is related to anti-flatness (Proposi-

tion 4),

∂nAn
4G

= ∂nS̃n. (7.5.1)

The brane tension T is related to n by

Tn =
n− 1

4nG
(7.5.2)

Hence for n = 1, or tension T = 0, we have that 4G∂nAn|n=1 = ∂A/∂T |T =0.

Applying (Eq. (7.4.6)) we arrive at a linear relation between ∂A/∂T ∼ M2(|ϕ⟩),

specifically ∣∣∣∣∂A∂T
∣∣∣∣
T =0

= (4G)2|∂nS̃n||n=1 ≈
(4G)2

κ
MNL

2 (|ψ⟩AB) (7.5.3)

which then provides an estimate for the non-local magic M (NL)
dist across the bipartition

from Theorem 3. Note that the bipartition is arbitrary and each subregion A need

not be connected.
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That is, non-local magic controls the level of geometric change in response to

adding mass energy in the bulk, where the zero magic limit indeed recovers the

trivial response function in stabilizer holographic tensor networks. As we showed

earlier in Lemma 2, anti-flatness is zero if and only if the non-local magic vanishes.

Then, through Section 7.5.1, there is no back-reaction in the zero magic limit. This

is consistent with results from [21].

Remark 3. Recall the flatness problem of the entanglement spectrum is also present

in random tensor networks even though they are not stabilizer codes. This is because

non-local magic is also low for Haar random states (Remark 1), even though they

are not stabilizer codes. Therefore the same type of gravitational backreaction is also

“turned off” in [52].

A more rigorous bound relating non-local magic and the Renyi entropy derivatives

∂nA can also be proven.

Proposition 8. Assuming the distillation argument where UA⊗UB|ψ⟩AB ≈ ⊗i|ϕi⟩aibi
for the state with local magic removed, then the non-local stabilizer Renyi entropy for

a CFT under bipartition AB is bounded by

1

2

∣∣∣∣∂nAn|n=2

4G
(|ψ⟩AB)

∣∣∣∣ ≤M2(|ψ⟩AB) ≤
∣∣∣∣∂nAn|n=1

4G
(|ψ⟩AB)

∣∣∣∣ (7.5.4)

See proof in Appendix E and justification of the distillation assumption for CFT

in Appendix E. We elaborate the regime of validity for various magic bounds and

anti-flatness relations in Appendix E.

7.5.2 Magic in Holographic CFT

Note that magic in quantum many-body systems is generally difficult to compute

as the cost can grow exponentially with the system size[100, 82]. This scaling is much
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improved for measures like stabilizer Renyi entropy where the non-linear function

of the state can be computed using MPS[49] or enumerator-based tensor networks

[24]. However, the computation remains costly at high bond dimensions and for

other measures. On the other hand, the bounds of magic from Section 7.3.3 offers

an entropic perspective into this otherwise hard-to-compute quantity by leveraging

existing results.

We now study non-local magic in CFTs in light of the general relations derived

in Section 7.3.3. Using the holographic dictionary and applying Conjecture 2, we can

predict the behaviour of non-local magic in CFTs that are otherwise difficult to com-

pute. Although the following examples essentially amounts to putting square roots on

known holographic entanglement entropies, it is instructive to review their behaviours

and analyze their implications for magic and, by extension, classical complexity and

quantum resource needed for state preparation. At the same time, holographic cal-

culations enable us to study magic dynamics under quantum quenches, for which

existing results have been sparse and size-limited [90] due to prohibitive computa-

tional costs.

Static Configurations

We now apply (7.4.12) to estimate the smoothed non-local magic in the CFT state.

To illustrate, consider the thermal state ρAAc of a (1+1)d CFT which is purified by

B, e.g. in a thermal field double state.

|TFD⟩ ∝
∑
n

exp
(
−βEn/2

)
|En⟩AAc |En⟩B (7.5.5)

Bipartitioning the system into A and Ac ∪B, the behavior of the non-local magic
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is given by:

M
(NL,ϵ)
RS (|TFD⟩AAcB) ∼

√√√√ c

3
log

(
β

πδUV
sinh

(
2πl

β

))
, (7.5.6)

where l is size of subregion A. The magic increases logarithmically with the subregion

size l for l ≪ β. However, when the size surpasses the thermal correlation length,

represented by β = 1
T
, it becomes proportional to

√
l. A similar result holds for a

small subsystem A of a pure state |ψ⟩AAc with that thermalizes under ETH such that

A has fixed temperature T = 1/β.

Now instead consider the bipartition of the system in to AAc and B. It is known

that for holographic CFTs, the system undergoes a confinement-deconfinement phase

transition which corresponds to the Hawking-Page transition in the bulk at a critical

temperature Tc7.

It is known that

S(B) = S(AAc) ∼


O(N0) T < Tc

O(N2) T > Tc

(7.5.7)

In the same way, we predict a magic phase transition where M (NL,ϵ)
RS /N is discontin-

uous across Tc in the N →∞ limit.

Local quench

In the following sections, we consider several time-dependent scenarios and analyze

their implications on the system dynamics.

For our first scenario, let’s examine a CFT ground state that’s been perturbed by

a smeared local operator Oα(x, 0) at t = 0. This is then subjected to time evolution
7This is a simplified account of the transition, which for different theories there can be different

phases as one dial up the temperature[2].
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governed by the CFT Hamiltonian. We can express the state as:

|ψ(t)⟩ = N e−iHte−δHOα(x, t)|Ω⟩. (7.5.8)

In the corresponding bulk dual, this equates to introducing an in-falling particle

with mass m into the initially vacuum AdS spacetime. The energy-momentum tensor

for this scenario can be characterized as:

Tuu =
mRα2

8π(u2 + α2)2
. (7.5.9)

Here, α denotes the size of the smeared operator. As α approaches 0, this converges

to a delta function in u. The subsequent effect on the bulk spacetime is encapsulated

by a shock-wave geometry, as illustrated below in Figure 7.9.

O(x, t)

Figure 7.9: Penrose diagram depicting a shock wave in global coordinates.

We aim to investigate the non-local magic of subsystem A in relation to Ac. These

subsystems are separated by the boundary ∂A = ∂Ac, a d− 2 sphere of radius l. By

solving the Einstein equation, [80] derived the leading-order change in entanglement

entropy due to the injected energy. Specifically, for a (1+1)d holographic CFT, this

change is expressed as:

∆S(t) =
2mRlα +mR(l2 − α2 − t2) arctan

(
2αl

t2+α2−l2

)
8lα

+O
(
(mR)2

)
. (7.5.10)
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We can then employ the lower bound to estimate the growth of the non-local

magic as follows:

M
(NL)
RS (|ψ(t)⟩) ∼

√
S(0) + ∆S(t)

≈
√
S(0) +

1

2

∆S(t)√
S(0)

.
(7.5.11)

In the early-time regime, t≪
√
l2 − α2, the magic exhibits quadratic growth with

time, independent of the spacetime dimension. This can be expressed as:

∆M
(NL)
RS (t) ∼ κd

mR√
S0

(
αl

l2 − α2
)2

t2

l2 − α2
+O(

t4

(l2 − α2)2
). (7.5.12)

At t =
√
l2 − α2, the magic reaches its peak value of ∆M

(NL)
RS = κd

mR√
S0

, after

which it declines to zero. In the long-term regime, it decays following a power-law

pattern:

∆M
(NL)
RS (t) ∼ mR√

S0

(
αl

t2

)d(
1 +O(

l2 − α2

t2
)

)
. (7.5.13)

For the (1+1)d CFT, another intriguing scenario arises when subsystem A encom-

passes half of the space, signifying l → ∞. In this context, there exists a range in

which the magic grows logarithmically with t [28], specifically when l≪ t≪ D1/mRα,

∆M
(NL)
RS (t) ∼ mR√

S0

log
t

α
, (7.5.14)

where D is quantum dimension of the quench operator O. The value reaches a

constant late-time limit of ∆M
(NL)
RS = logD√

S0
. This logarithmic growth can only be

observed in system with large central charge due to the otherwise small value of

D. Note that holographic methods are at a distinct advantage here because magic

dynamics for large systems over long periods of time is numerically intractable using

existing methods.
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Global Quench

We also explore the global quench scenario wherein the perturbation isn’t confined

to a localized region but influences the entire CFT state. Within the bulk dual, this

corresponds to a spherically symmetric in-falling mass shell.

∫
dxO(x, t)

Figure 7.10: Vaidya geometry. Right side boundary denotes the asymptotic boundary

of the AdS-Vaidya spacetime. Outside the mass shell is the black hole geometry.

Inside the mass shell is Vacuum AdS in Poincaré patch.

The geometry impacted by the mass shell is characterized by the Vaidya metric.

This is essentially the integration of pure AdS with an AdS-Schwarzschild black hole,

aligned along the mass shell, as illustrated in Fig. 7.10.

The shell’s descent into the bulk parallels the boundary CFT’s thermalization

following the global perturbation. The state transitions from the ground state and

progressively thermalizes to a certain finite temperature. The entanglement entropy

of subregion A serves as a quantitative measure, increasing during this process. Corre-

spondingly, in the bulk perspective, this entropy surge is represented by the expanding

area of the minimal surface anchored to the boundary of A.

In a (1+1)-dimensional CFT, it’s feasible to precisely solve for the minimal surface
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[9]. The entropy at t = 0 is equivalent to the CFT ground state entropy, given by

S(0) = c
3
log l

δUV
. This aligns with the length of the geodesic fully contained within

the pure AdS. Following the onset of the quench, the geodesic begins to intersect with

the in-falling mass shell, causing its length to increase over time. Initially, this growth

is quadratic with respect to t,

L(t) = 2 log
l

δUV
+ 2

π2t2

β2
+O(t3). (7.5.15)

As thermalization progresses, the geodesic’s intersection with the mass shell delves

deeper into the bulk. Once the subregion completes its thermalization at time t =

l
2
, the geodesic no longer intersects the in-falling shell, stabilizing its length to an

equilibrium value,

L(t > l

2
) = 2 log

β

πδUV
sinh

πl

β
. (7.5.16)

We also detail the behavior of the geodesic length in the late stages, prior to

reaching full thermalization, as outlined below:

L(t ≲ l

2
) = 2 log

(
β

πδUV
sinh

πl

β

)
− 2

3

√
2 tanh

πl

β

(
l

2
− t
) 3

2

+O

((
l

2
− t
)2
)
.

(7.5.17)

Based on the aforementioned results, the evolution of the smoothed non-local

magic for a subregion in a 2d CFT can be characterized as follows: it increases

according to,

M
(NL,ϵ)
RS (t) ∼

√
c|log ϵ|

(√
S0/c+

π2t2

6
√
S0/c

+O(t3)

)
, (7.5.18)

during the initial stages, and as,

M
(NL,ϵ)
RS (t) ∼

√
c|log ϵ|

√ST/c−
1

18

√
2 tanh πl

β√
ST/c

(
l

2
− t
) 3

2

+O

((
l

2
− t
)2
) ,

(7.5.19)
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during the latter phases when the subregion is nearing full thermalization. This can

be contrasted with the dynamics of total subsystem magic under thermalization[90]

which decays after a quick initial rise.

Wormhole

Lastly, we examine a thermalization process involving two copies of CFT states. This

dynamic process corresponds to the evolution of an expanding wormhole in the bulk

dual.

Figure 7.11: Wormhole geometry

Let us revisit the thermal-field-double (TFD),

|TFD⟩ = 1√
Z(β)

∑
n

e−(β
2
+2it)En|En⟩L|En⟩R (7.5.20)

We designate our region of interest to encompass a section from both the left

and right CFT states (illustrated in Fig. 7.11). The entanglement entropy of this

composite region is probed by the extremal surface spanning the wormhole, connecting

the left and right segments.

In this setup, we assume symmetry when exchanging the two CFT sides. Specif-

ically, we mandate that the subregion A on one side mirrors its counterpart on the

other side. See red region in Fig. 7.11. Given this symmetry, the extremal surface oc-

cupies a plane defined by constant transverse spatial coordinates and is characterized

solely by the relationship between time and the radial direction.
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At the boundary time t = 0, the area of extremal surface is given by

A(0) = βr∞
π

Vd−2. (7.5.21)

where r∞ is the UV cutoff of radial coordinates. This extremal area is proportional

to the volume of subregion boundary ∂A, reminiscent of the area law entanglement

observed in gapped systems. As time progresses, the extremal surface accrues ad-

ditional contributions from regions beyond the horizon. As highlighted in [48], this

contribution exhibits a straightforward linear relationship with the boundary time,

as illustrated below:

A(t) = 4πt

β
αdVd−2, for t≫ β. (7.5.22)

The linear growth eventually ceases when the extremal surface traversing the

wormhole is surpassed by another, more minimal configuration. A different set of

competing extremal surfaces, anchored to the same entangling boundary but by-

passing the wormhole, emerges. These surfaces are essentially combinations of the

extremal surfaces corresponding to subregions within each individual thermal CFT.

Their area is given by

A(∞)−A(0) = 2π

β
Vd−1. (7.5.23)

The transition of dominant extremal surface occurs around t ∼ R, which corre-

sponds to the size of the subregion under consideration. Consequently, we anticipate

the non-local magic in this TFD state to scale as follows:

M
(NL,ϵ)
RS (t) ∼

√
|log ϵ|

√
S0 +

4πt

β
αdVd−2, for β ≪ t < R

∼
√
|log ϵ|ST , for t ≥ R.

(7.5.24)

7.6 Discussion

In this work, we explored the question: what dual boundary quantity enables grav-

itational back-reaction in the bulk? The celebrated formula of Ryu and Takayanagi
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provides a fundamental observation of the AdS-CFT conjecture by showing that areas

in AdS correspond to entanglement entropies in the CFT. In the greater context of

spacetime and gravity emerging from quantum information, we ask: If entanglement

builds geometry, then what builds gravity? In this work we show that gravitational

back-reaction corresponds to (non-local) magic in CFT. In other words, gravity is

magical! Accordingly, both defining properties of quantumness admit holographic

counterparts in AdS.

To obtain this result, we studied the interplay between non-local magic and entan-

glement. We show that for any quantum state in a finite dimensional Hilbert space,

this form of non-stabilizerness that can only live in the bipartite correlations is lower

bounded by the anti-flatness of the entanglement spectrum and upper bounded by

the amount of entanglement in the system as defined by Renyi entropies. We then

apply these results to CFTs and conclude that both the exact and smoothed non-local

magic is proportional to various notions of anti-flatness. However, they scale differ-

ently with entropy — the exact non-local magic scales linearly with the von Neumann

entropy of a CFT subregion while the smoothed magic only scales as the square root.

Numerically we verify that non-local magic is sensitive to quantum phase transition

in a way that is different from entanglement. We also examined its behaviour under

symmetry breaking.

Finally, in the context of holographic CFTs, we derive a quantitative relation be-

tween non-local magic and the level of gravitational back-reaction. Using the bulk

gravity theory, smoothed non-local magic in the CFT can also be estimated holograph-

ically. As non-stabilizerness in quantum systems are generically hard to compute, our

work also provides an important estimate on the practical level and constrain magic

distributions using existing data and well-founded methods like tensor networks and

DMRG.
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There are several directions that are of interest for future work. The key con-

straints for non-local magic here are given in terms of inequalities. Part of the reason

for bounds instead of a precise equality is that non-local magic requires extremization

while the computation of magic itself is already non-trivial. However, given the uni-

versal behaviour of non-local magic across multiple distinct measures of anti-flatness,

there is reason to believe that a unifying statement or even a precise equality ex-

ists between entanglement spectral properties and magic. In the particular case of

quantum field theory, it is also crucial to generalize our observations to definitions of

magic that is native to the infinite dimensional system, e.g. non-Gaussianity, as well

as other different measures of spectral anti-flatness.

Approaching non-local magic from a different perspective, we can start with state

ρA from the usual stabilizer polytope and construct a purified state ψAB. One can also

define a non-local magic as the minimal magic among all possible purifications. In

the same vein of connecting magic with entanglement, we ask whether it is possible to

define instead magical entanglement, i.e., the entanglement that cannot be removed

by any Clifford operation8. In this case, one can easily show from our entropy bounds

that magical entanglement is an upper bound of non-local magic. However, it is yet

unknown whether the two definitions are equivalent. Finally, recall that non-local

magic can be generalized to systems with multi-partite entanglement. This will be

crucial in understanding the behaviour of e.g. Haar random states, random tensor

networks, and holographic states. As the type of multi-partite entanglement is quite

constrained for stabilizer states, non-local magic may be crucial in the classification

of multi-partite entanglement.

For CFTs specifically, several of our results rely on the assumption that the bi-

partite entanglement across a subregion A and its complement B in a pure state
8We thank Kaifeng Bu for this suggestion.
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can be approximately converted into a tensor product of entangled pairs through

unitaries that only act on the respective subregions. Although this assumption is

well-supported by numerics and well-motivated by holographic tensor networks mod-

els, it is unclear the extent to which this holds for a single copy of (holographic)

CFT in general. This assumption may also admit further modification in the case

where A consists of multiple disjoint regions. It is important that we understand the

regime of validity for such assumptions and pave the way for proving Conjecture 2

and extending the generality of Proposition 7.

Just like various types of entanglement can admit different holographic interpre-

tations, a similar situation may hold for magic. Although we take a first step towards

addressing the open question of what is the holographic dual of magic, much remains

unknown. For instance, the connection we identify with anti-flatness signals a link

between non-local magic and gravitational back-reaction. However, because we lack

a systematic understanding of how the bulk duals should deform under a sequence of

boundary theories that have increasing flat spectrum, the physical meaning of how

the removal of magic turns off backreaction is unclear. Additionally, it is possible

that other gravitational phenomena generating backreaction have a different magical

origin on the boundary. If that is the case, we eventually wish to distinguish them

from the consequence of bipartite non-local magic in the boundary theory.

Although it has been suggested that boundary states with flat entanglement spec-

trum are dual to peculiar bulk states of fixed areas[5, 36], exactly how these bulk

states should be interpreted holographically remains to be understood. To this end, a

more precise relation between magic and emergent gravity [39] in the bulk, one which

does not rely on the distillation assumptions used in this work, is highly desirable.

Furthermore, a connection between magic and a local function of curvature generated

by more physical forms of stress energy instead of an extended conical singularity such
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as a cosmic brane may provide a more natural link with the Einstein’s equations or the

Hamiltonian constraint. A more comprehensive understanding of holographic magic

through the lens of dynamics such as quantum chaos[42] and (classical) complexity

can also provide another unique perspective that is not captured by our current work.

More broadly, this work calls for several important lines of investigation as we

move towards establishing non-local magic as a key metric for characterizing quan-

tum many-body systems. For instance, the tensor product of random single-qubit

states, the ground states of physical quantum many-body systems, and the Haar

random states all have volume law magic scaling. Purely from the point of view of

entanglement entropy, they can also be mimicked by stabilizer states. However, their

non-local magic behaves very differently. Thus it provides a distinct indicator for

the properties of the underlying quantum systems that are invisible to entanglement

entropy or total non-stabilizerness alone. It would also be intriguing to study the

role of non-local magic in quantum phase transition, in symmetry breaking, and in

non-equilibrium systems.
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Chapter 8

CONCLUSION

We began by discussing OPE spectral densities of conformal field theories in the

large exchange dimension limit. Utilizing the modular bootstrap technique, we de-

termine Virasoro vacuum contributions to the OPE spectrum in the lightcone limit.

We then extend beyond this limit, towards h/C ∼ 1, by proposing an ansatz solution

to the crossing equations in the lightcone limit. Despite lacking a closed form for

the Virasoro blocks in the large spin limit, our kernel ansatz method is sufficient to

numerically explore the density of OPE coefficients to leading-order.

Although a gravitational interpretation of the lightcone modular bootstrap was

not directly explored in this work, we anticipate that our results recover semi-classical

gravity in AdS3, even for finite values of central charge. The four-point functions

we analyzed may be equivalently represented by bulk Witten diagrams, enabling a

gravitational parallel for the calculations herein. In this vein, our results provide a

useful model uncovering gravitational descriptions for coarse-grained CFTs, or sets

thereof. For non-minimal CFTs in particular, it would be interesting to explore

constraints on such theories which retain a gravitational dual throughout the coarse-

graining process.

We next transition towards an exploration of stabilizer states, and ultimately an

investigation of quantum group action on state entropy vectors. We explicitly generate

sets of stabilizer states and compute their associated entropy vectors, demonstrating

the connectivity of these states using reachability graphs. For fixed qubit number,

our reachability graphs offer a complete description of entanglement entropy distri-

bution and state proximity under the Clifford group in the Hilbert space. We further

317



introduce a procedure for building restricted graphs, where only group action under

certain Clifford subgroups is considered, demonstrating how higher-qubit graphs are

composed of attached lower-qubit subgraphs. This restricted graph analysis signif-

icantly extends the tractability of direct analysis to higher qubit number, and even

provides a general understanding of certain reachability graphs at arbitrary qubit

number.

Our graph protocol offers a novel way of studying state parameter evolution un-

der group action on the Hilbert space. In this work we focus on the evolution of

entanglement entropy, observing the possible entropy vector transformations under

Clifford group action. Beginning at 4 qubits we observe stabilizer states with entropy

vectors that violate known holographic inequalities, specifically the monogamy of mu-

tual information. Accordingly, the n ≥ 4 stabilizer state restricted graphs enable us

to directly identify quantum circuits which evolve a state with a holographic entropy

vector to one which violates MMI. Furthermore, since we restrict to stabilizer states

and Clifford circuits, this construction easy to reproduce using near-term quantum

computers.

Extending beyond the scope of stabilizer states we derive and analyze the entan-

glement structure of n-qubit Dicke states, constructing the Dicke state entropy cone.

We further define a min-cut protocol on weight directed graphs which reproduces

Dicke state entropy vectors, and verify that such vectors violate both the holographic

and symmetrized holographic entropy conditions. We explore the evolution of Dicke

state entropy vectors under Clifford group action, identifying the stabilizing opera-

tions for all Dicke states and building their associated reachability graphs. Finally,

we use our graph model to demonstrate strict bounds on Dicke state entropy vector

evolution under Clifford group action.

The symmetric entanglement structure of Dicke states affords a particular ro-
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bustness to single-qubit loss. This characteristic renders large-qubit Dicke states an

excellent option for logical encoding, as well as a preferred initial state for many

quantum optimization algorithms. Further studying into the Dicke state entropy

cone, and more importantly the evolution of Dicke state entropy vectors under larger

sets of quantum operations, may reveal additional utility for near-term quantum al-

gorithms. In addition, select Dicke states possess a significant amount of distillable

magic. The ease of preparation and magic content of Dicke states suggests such states

as a natural candidate for preliminary experimental magic distillation schemes.

Moving towards a more general description of Clifford group action on arbitrary

quantum states, we introduce a protocol to construct reachability graphs and re-

stricted graphs as Cayley graph quotients. In this abstraction, identifiable relations

among different quantum circuits are equally valid when applied to arbitrary quan-

tum states. Furthermore generalized properties of parameter evolution, e.g. classes of

circuits which must preserve the entropy vector of any state, can likewise be studied.

This quotient protocol is not limited to the Clifford group, but can be identically

applied to any discrete and finite set of operators on a Hilbert space. Upon relaxing

the conditions of discreteness and finiteness, a corollary analysis for infinite or contin-

uous gate sets may be performed to establish maximal bounds or rates of parameter

evolution under quantum operators.

One natural extension of this work would consider Cayley graph quotients for sys-

tems of qudits, or perhaps an analogous treatment for generalized Clifford algebras.

Alternatively we could consider intermediate magic state injection to otherwise Clif-

ford circuits, thereby enabling controlled non-Clifford behavior in the circuit. Such

an analysis would particularly benefit near-term quantum computing architecture, as

non-Clifford evolution is expected to be severely limited. Finally we could consider

alternative coupling maps which render certain gate actions easier (or harder) to per-
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form than others. In a graph description, this could correspond to promoting our

Cayley graph quotients to weighted graphs, where the difficulty of implementing a

certain gate fixes the corresponding edge weight.

Applying our quotient graph protocol to study parameter evolution for arbitrary

quantum states, we introduce contracted graphs. Defined as a graph quotient on

reachability graphs, under operations which leave a certain parameter invariant, these

contracted graphs enable us to derive explicit bounds on parameter evolution under a

chosen group. More rigorously defined, upon choosing a group of operators to act on

a Hilbert space and some computable state parameter to study, a contracted graph

represents the coset space of the group with equivalence classes that leave the chosen

property invariant. Furthermore by identifying the reachability graph for a family of

states as well as some chosen state property, the contracted graph indicates the double

coset space of group elements which fix both the family of states and the property of

interest.

In this work we specifically focus on the evolution of entropy vectors, and derive

a strict upper bound on the number of possible entanglement entropy configurations

which can be achieved under the action of a chosen group of operators. This maximal

number of entropy configurations is set by the vertex count of the associated con-

tracted graph, and applies generally to any initial state acted on by the group. If the

group is finite, a maximal number of achievable entanglement configurations can be

directly identified. If however the group is infinite, a fixed number of configurations

can be derived up to arbitrary circuit depth, or a rate of entanglement evolution can

be established as the evolution becomes continuous.

The contracted graph techniques presented are sufficiently general to study the

evolution of any computable state parameter under any chosen gate set. Natural

extensions of this work include exploring the dynamics of additional state properties,
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such as different magic measures or stabilizer rank. Furthermore an in-depth investi-

gation into holography-violating circuits could yield new insight into entropy vector

transformation under various sets of unitaries. Primarily we wish to focus on Clif-

ford circuits which evolve a holographic entropy vector into one that violates MMI,

particularly since, thus far, all observed non-holographic stabilizer states violate (at

least) MMI.

Finally we extend a more general discussion away from stabilizer states and en-

tanglement entropy towards the holographic implications of quantum magic. We

demonstrate that the presence of non-local magic in a boundary CFT yields gravi-

tational back-reaction in the bulk. We show that non-local magic is proportional to

different measures of anti-flatness, and how this anti-flatness of the state results in

back-reaction on the cosmic branes that represent Renyi entropies of boundary subre-

gions. Additionally, we numerically verify our conjectures and discuss the sensitivity

of non-local magic to quantum phase transitions in the boundary CFT.

We could consider extrapolating our results to explore the entanglement in magic

states which cannot be removed by Clifford operations. Such a entanglement structure

contributes to the presence of non-local magic, and may admit some novel holographic

interpretation. While we show that the existence of non-local magic in a boundary

CFT generates bulk back-reaction, it remains unknown precisely how much of that

gravitational back-reaction can be attributed to this boundary origin. Perhaps most-

desired is a refined connection between boundary magic and bulk local curvature by

more tangible sources. Relating canonical stress-energy spacetime deformations in

AdS to magic content in the boundary CFT would provoke a holographic connection

between magic and Einstein’s equations.

Throughout this work we traverse both sides of the AdS/CFT correspondence.

We discuss different prospects for exploring gravitational phenomena using proper-
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ties of quantum systems and implications derived from quantum information theory.

We highlight the fascinating overlap of entanglement and magic with geometry and

gravitational fluctuations, made possible through the mathematical underpinnings of

holography. In anticipation of realizable quantum computing, we remark on the prac-

tical utility of our results for improving quantum algorithms and a general understand

of quantum computing architecture. While much work has been done towards each

of these efforts, much more remains to be understood. This dissertation constitutes

only a small collection of efforts to probe the mysteries of quantum gravity.
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APPENDIX A

ADDITIONAL GRAPHS
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Contained below are some graphs not featured in the body of this paper. Futher
graphs are available in the repository [1].

The 2-qubit complete reachability graph and some 2-qubit restricted graphs were
discussed in section 3.3. Here we compile additional restricted graphs to further
illustrate the relation between states under action C2 subgroup action. Figure A.1
restricts to only phase operations, while Figure A.2 shows the restricted graph for
only CNOT operation.

Figure A.1 shows the 2-qubit graph restricted to only phase operations. The graph
consists of 5 distinct and disconnected substructures.

Out[ ]=

Phase 1

Phase 2

(SA):

(0)

(1)

Figure A.1: The 2-qubit P1, P2 restricted graph contains 5 unique substructures. The
4 isolated points are states on which both P1 and P2 act trivially. The box-like
structures come in two varieties. The box of unentangled states has a trivial loop at
each corner, while the boxes of entangled states witness degenerate action instead.
There exist two largest structures of states (top-left) on which both phase gates act
non-trivially and non-degenerately.

Figure A.2 shows all interactions between 2-qubit states under only CNOT oper-
ations. The CNOT gate can modify entropy structure, therefore we witness the first
occurrences of states with different entropy vectors lying in the same substructures.
Alternating action of CNOT1,2 and CNOT2,1 has a maximum cycle of 6, seen in the
hexagonal structures top-left.
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CNOT 1,2

CNOT 2,1

(SA):

(0)

(1)

Figure A.2: The subgroup generated by CNOT1,2 and CNOT2,1 partitions the set
of 2-qubit states into 3 graph substructures. The isolated points are states on which
both CNOT gates act trivially. The linear triplets are built of one state, on which
both CNOT gates act non-trivially, connected to two states on which opposing one
CNOT gate acts trivially. These triplets can occur with states of similar or different
entropic structure. The largest structure is a hexagon which illustrates the maximum
cycle of the subgroup generated by CNOT1,2 and CNOT2,1.

The 3-qubit reachability diagrams were discussed in section 3.4 with a focus on the
H1, H2, CNOT1,2, CNOT2,1 restricted graph (Figure A.5). Here we provide additional
graphs of potential interest, including the complete reachability graph on three qubits
(Figure A.3). Figure A.4 displays the action of all phase gates on three qubits,
generalizing the cycles and structures seen at two qubits (Figure A.1) to three qubits.

Figure A.3 displays the full reachability graph for three qubits (trivial loops re-
moved). This graph contains all non-trivial information about 3-qubit interaction
under operations of the Clifford group (C3).
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Hadamard

Phase

CNOT

(SA,SB,SO):

(0,0,0)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

Figure A.3: Complete reachability diagram on three qubits with trivial loops removed.
The Hadamard and phase gates act individually on all three qubits, while the CNOT
gate acts on any pair of qubits. Line texture indicates the particular action, e.g. a
solid line for H1 and medium dashed line for H2.

In Figure A.4 is the 3-qubit graph restricted to only phase gates. The addition of
P3 to the generating set allows for longer cycles, resulting in more complex structures
than were witness at lower qubit number.
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Phase 1

Phase 2

Phase 3

(SA,SB,SO):

(0,0,0)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

Figure A.4: There are 11 unique subgraphs whose copies build the 3-qubit P1, P2, P3

restricted graph. These subgraphs segregate according to which sequences of P1, P2,
and P3 are equivalent.

Figure A.5 shows the 3-qubit Three-qubit restricted graph displaying only Hadamard
and CNOT operations on the first two qubits of in the system. The graph has re-
peated copies of structures found at two qubits, as well as the addition of two new
subgraphs g144 and g288.

Below we present the complete set of entropy vectors for the 5-qubit stabilizer
set. There are 2423520 stabilizer states at five qubits, with 93 different entropic
arrangements. There are 16 of these 93 entropy vectors which violate the monogamy
of mutual information (Equation Eq. (3.2.14)), and therefore correspond to non-
holographic states.
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Hadamard 1

Hadamard 2

CNOT 1,2

CNOT 2,1

(SA,SB,SO):

(0,0,0)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

Figure A.5: The graph contains 6 copies of g24 and g36, 3 copies of g144, and a single
copy of g288. The 3 g144 subgraphs are isomorphic, but were generated with slightly
different layouts by the software used to build this graph.
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Holographic Entropy Vector Subgraph
Yes (0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1) g24, g36
Yes (1, 1, 1, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 0, 1) g24, g36
Yes (0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1) g24, g36
Yes (1, 1, 1, 1, 0, 0, 2, 2, 1, 2, 2, 1, 0, 1, 1) g24, g36
Yes (0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0) g24, g36
Yes (1, 1, 0, 1, 1, 0, 1, 2, 2, 1, 2, 2, 1, 1, 0) g24, g36
Yes (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) g24, g36
Yes (1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0) g24, g36
Yes (0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) g24, g36
Yes (1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 1, 1, 1) g24, g36
Yes (0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0) g144, g288
Yes (1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 2, 0), g144, g288
Yes (1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 0) g144, g288
Yes (0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 2, 2) g144, g288
Yes (1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2) g144, g288
Yes (1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 0, 2, 2) g144, g288
Yes (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1) g144, g288
Yes (1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1) g144, g288
Yes (1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) g144, g288
Yes (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1) g144, g288
Yes (1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1) g144, g288
Yes (1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1) g144, g288
Yes (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0) g144, g288
Yes (1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0) g144, g288
Yes (1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) g144, g288

Table A.1: At five qubits, there are 93 stabilizer state entropy vectors (listed here
and on the next two pages). Of these, 16 correspond to non-holographic states. All
non-holographic states are located on subgraphs with 4 different entropy vectors.
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Holographic Entropy Vector Subgraph
Yes (0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 2, 0, 2) g144, g288
Yes (1, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 1, 2, 0, 2) g144, g288
Yes (1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 0, 2) g144, g288
No (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
No (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
No (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
No (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1) g144, g288
Yes (0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2) g144, g288
Yes (1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2) g144, g288
No (1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2) g144, g288
Yes (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2) g144, g288
Yes (0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1) g144, g288
Yes (1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1) g144, g288
No (1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
Yes (1, 1, 1, 1, 0, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1) g144, g288
Yes (0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
Yes (1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) g144, g288
No (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
Yes (1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1) g144, g288
Yes (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1) g144, g288
Yes (1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1) g144, g288
No (1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1) g144, g288
Yes (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1) g144, g288
Yes (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) g144, g288
Yes (1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1) g144, g288
No (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) g144, g288
Yes (1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1) g144, g288
Yes (0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2) g144, g288
Yes (1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2) g144, g288
No (1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2) g144, g288
Yes (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2) g144, g288
Yes (1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1) g1152 (2,4)
Yes (1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1) g1152 (2,4)
Yes (1, 1, 1, 0, 1, 2, 0, 1, 2, 2, 1, 0, 1, 2, 1) g1152 (4)
Yes (1, 1, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 1, 2, 1) g1152 (4)
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Holographic Entropy Vector Subgraph
Yes (1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2) g1152 (2,4)
Yes (1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2) g1152 (2,4)
Yes (1, 1, 0, 1, 1, 2, 1, 0, 2, 1, 2, 0, 1, 1, 2) g1152 (4)
Yes (1, 1, 0, 1, 1, 2, 1, 2, 0, 1, 0, 2, 1, 1, 2) g1152 (4)
Yes (1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1) g1152 (2,4)
Yes (1, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1) g1152 (2,4)
Yes (1, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 1, 2, 1, 1) g1152 (4)
Yes (1, 1, 1, 1, 0, 2, 2, 0, 1, 0, 2, 1, 2, 1, 1) g1152 (4)
No (1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1) g1152 (4,6)
No (1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 1, 1, 2, 2, 1) g1152 (6)
Yes (1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1) g1152 (6)
No (1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2) g1152 (4,6)
No (1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 0, 1, 1, 2, 1, 2, 2) g1152 (6)
Yes (1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 0, 1, 2, 2) g1152 (6)
No (1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2) g1152 (4,6)
No (1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2) g1152 (4,6)
Yes (1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 2, 1, 2) g1152 (6)
Yes (1, 1, 1, 1, 1, 2, 2, 0, 2, 1, 2, 1, 2, 1, 2) g1152 (6)
Yes (1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2) g1152 (7)
Yes (1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2) g1152 (7)
Yes (1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2) g1152 (7)
Yes (1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2) g1152 (7)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2) g1152 (7)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2) g1152 (7)
Yes (1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) g1152 (7)
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Table 4.1 with relations to generate each subgroup.

Generators Order Diam. Fact. Diam.* Relation
{H1} 2† 1 - - 4.3.1
{C1,2} 2† 1 - - 4.4.1
{P1} 4 3 - - 4.3.2

{H1, H2} 4 2 - - 4.3.1, 4.4.3
{C1,2, C2,1} 6 3 - - 4.4.1, 4.4.8

{H1, P2} 8† 4 - - 4.3.1, 4.3.2, 4.4.4
{P1, C1,2} 8† 4 - - 4.3.2, 4.4.1, 4.4.9
{P1, P2} 16 6 - - 4.3.2, 4.4.2

{H1, C2,1} 16† 8 - - 4.3.1, 4.4.1, 4.4.10
{H1, C1,2} 16† 8 - - 4.3.1, 4.4.1,4.4.6,

4.4.10
{H1, P2, C2,1} 32 6 - - 4.3.1, 4.3.2, 4.4.1,

4.4.4, 4.4.9, 4.4.10
{P1, C2,1} 32 8 - - 4.3.2, 4.4.1, 4.4.7

{P1, P2, C2,1} 64 7 - - 4.3.2, 4.4.1, 4.4.2,
4.4.7, 4.4.9

{P1, C2,1, C1,2} 192 11 - - 4.3.2, 4.4.1, 4.4.2,
4.4.4–4.4.6,
4.4.8–4.4.10

{H1, P1} 192 16 8 6 4.3.1–4.3.3
{H1, H2, P1} 384 17 8 7 4.3.1–4.3.3, 4.4.3,

4.4.4
{P1, P2, H1} 768 19 8 9 4.3.1–4.3.3, 4.4.3,

4.4.4
{H1, C2,1, C1,2} 2304∗ 26 2 15 4.3.1–4.3.3, 4.4.1,

4.4.8, 4.4.10
{H1, H2, C1,2} 2304∗ 27 2 17 4.3.1–4.3.3, 4.4.1,

4.4.8, 4.4.10
{H1, H2, C1,2, C2,1} 2304∗ 25 2 15 4.3.1–4.3.3, 4.4.1,

4.4.8, 4.4.10
{H1, P1, C2,1} 3072∗ 19 8 9 4.3.1–4.3.3, 4.4.1,

4.4.2, 4.4.4, 4.4.5,
4.4.7, 4.4.9

{H1, P1, C1,2} 3072 19 8 11 4.3.1–4.3.3, 4.4.2,
4.4.12, 4.4.13

{H1, P1, P2, C2,1} 3072∗ 19 8 9 4.3.2, 4.3.3, 4.4.1,
4.4.2,4.4.4–4.4.6,
4.4.8–4.4.10

{H1, H2, P1, P2} 4608 17 8 12 4.3.1–4.3.3, 4.4.2,
4.4.4

{H1, P2, C1,2} 9216 24 8 13 4.3.1, 4.3.2, 4.4.1,
4.4.2, 4.4.4–4.4.6,
4.4.9, 4.4.10

{H1, H2, P1, C2,1} 92160∗ 21 8 13 4.3.3, 4.4.2–4.4.8
{H1, H2, P1, C1,2} 92160∗ 21 8 16 4.3.3, 4.4.2–4.4.8
{H1, P1, P2, C1,2} 92160∗ 21 8 14 4.3.3, 4.4.2–4.4.8

All 92160∗ 19 8 11 4.3.3, 4.4.2–4.4.8

Table B.1: C2 subgroups built by restricting generating set. Asterisk indicates
subgroups with same elements, dagger indicates subgroups with isomorphic Cayley
graphs. Relations to present each subgroup given in rightmost column.
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In this Appendix, we provide a derivation of additional relations useful for sub-
group construction, but not explicitly included in our presentation. Each of the
relations below can be derived from Eqs. Eq. (4.3.1)–Eq. (4.4.10).

Using relations 4.3.2, 4.4.2, 4.4.4, 4.4.9, 4.4.10, 4.4.5, and 4.4.6, we can construct
the useful identity,

Ci,jPjCi,jPj = PjCi,jPjCi,j. (B.0.1)

A derivation of this identity is provided below for C2,1 and P1. For simplicity, let
H = H1, h = H2, C = C1,2, c = C2,1, P = P1, and p = P2. We then derive,

HcH = HcH,

HcHP = HcHP,

hChP = HcHP,

PhCh = HcHP,

PHcH = HcHP,

cPHcH = cHcHP,

cPHcH = p2HcHcP,

p2cPHcH = HcHcP,

pcPHcpH = HcHcP,

pcPccHcpH = HcHcP,

pcPcPcP 3 = HcHcP,

pcPcPcP 2 = HcHc,

cPcPcP 2p = HcHc,

cPcPcP 2cHcpH = 1,
∗ cPcPcP 3cP 3 = 1,

cPcP = PcPc,

where 4.4.5 was used to show cP 3cP 3 = cP 2cHcpH, and acquire the starred line from
the one above it.

A useful identity, derivable from relations 4.3.2, 4.4.6 and, 4.4.10, is the following,

(Ci,jHiP
2
j )

2 = (P 2
j HiCi,j)

2. (B.0.2)

A derivation of Eq. (B.0.2) is given below using H1, C1,2 and P2. For simplicity, we
again let H = H1, h = H2, C = C1,2, c = C2,1, and p = P2. We have,

p4 = (p2)2 = (Ch)8 = 1,
ChChChChChChChCh = 1,

CHcHCHcHCHcHCHcH = 1,

(CH(cH)4)4 = 1,

(CHp2)4 = 1,

(C1,2H1P
2
2 )

2 = (P 2
2H1C1,2)

2,
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A useful identity for constructing ⟨Hi, Hj, Ci,j⟩ is the following,

Cj,iCi,jCj,iHiCj,iCi,jCj,i = Hj. (B.0.3)

A useful identity for constraining entropy in ⟨Hi, Hj, Ci,j⟩ reachability graphs is
(Ci,jHj)

4 = P 2
i . This relation can be proved using other relations in our presentation,

beginning with the fact that Ci,j and Pi commute,

Ci,jPi = PiCi,j,

Ci,jPiHj = PiCi,jHj,

Ci,jHjPi = PiCi,jHj,

Ci,jHjCi,jPiCi,j = Ci,jPiHj,

Ci,jHjCi,jPi = Ci,jPiHjCi,j,

PjCi,jP
3
j Hj = HjP

3
j Ci,jPj,

Ci,jP
3
j HjP

3
j = P 3

j HjP
3
j Ci,j,

Hj = PjCi,jP
3
j HjP

3
j Ci,jPj,

Hj = PjCi,jP
3
j Ci,jPiHjCi,j,

Ci,jHjCi,jHj = Ci,jHjCi,jPjCi,jP
3
j HjHjCi,jPiHjCi,j,

Ci,jHjCi,jHj = PiHjCi,jPiHjCi,j,

(Ci,jHj)
4 = P 2

i .

(B.0.4)

The details of building ⟨H1, P2, C1,2⟩ are given below.

1. For words containing 0 H1 operations, we have the 32 elements b ∈ ⟨C1,2, P2⟩ =
{p, pC1,2p, C1,2pC1,2p}, with p defined as in Eq. Eq. (4.4.11).

2. Words containing 1 H1 have the form bH1b. Since H1 and P2 commute, we
can push all P2 operations to the right until they reach a C1,2. This action
corresponds to multiplying all 0 H1 words on the left by H1, pC1,2H1, and
C1,2pC1,2H1, giving the set {H1b, pC1,2H1b, C1,2pC1,2H1b}, which has 32+ (4×
32) + (3× 32) = 256 elements.

3. To generate words with 2 H1 operations, we left-multiply all 1 H1 words that
do not begin with H1, by the set {H1, pC1,2H1, C1,2pC1,2H1} (since otherwise
we would collapse resulting H1 pair). This procedure generates 1792 elements,
with 512 duplicates such as

H1C1,2H1 = P 2
2C1,2H1P

2
2C1,2H1P

2
2C1,2P

2
2 , (B.0.5)

as well as,
C1,2H1C1,2H1 = C1,2P

2
2C1,2H1P

2
2C1,2H1P

2
2C1,2P

2
2 , (B.0.6)

both reducible by Eq. Eq. (4.4.13). After removing duplicates, there are 1280
unique 2 H1 words added to our set.
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4. For words containing 3 H1 operations, we again left-multiply all 2 H1 words
which do not begin with H1, by {H1, pC1,2H1, and C1,2pC1,2H1}, generating
12544 elements.
Of these 12544 elements, 9152 are duplicates of other 3 H1 words, e.g.

H1C1,2H1C1,2H1 = H1C1,2P
2
2C1,2H1P

2
2C1,2H1P

2
2C1,2P

2
2 , (B.0.7)

described by Eq. Eq. (4.4.13). An additional 256 are duplicates of 1 H1 words,
e.g.

H1C1,2H1P
2
2C1,2H1 = P 2

2C1,2H1P
2
2C1,2P

2
2 , (B.0.8)

also described by Eq. Eq. (4.4.13), leaving only 3136 new contributions to the
subgroup.

5. Words with 4 H1 operations are likewise built by left-multiplying all 3 H1 words
that do not begin with H1, by {H1, pC1,2H1, and C1,2pC1,2H1}. This process
generates 87808 elements, 83200 of which are duplicates of other 4 H1 words,
e.g.

H1C1,2H1C1,2H1C1,2H1 = C1,2H1C1,2H1C1,2H1C1,2H1C1,2, (B.0.9)

which can be reduced by (H1C1,2)
8 = 1. Another 1280 are duplicates of 2 H1

words, such as

H1C1,2H1C1,2H1P
2
2C1,2H1 = H1C1,2P

2
2C1,2H1P

2
2C1,2P

2
2 , (B.0.10)

described by Eqs. Eq. (4.4.13) and Eq. (4.4.12). A final 32 elements are dupli-
cates of 0 H1 words, e.g.

H1C1,2H1P
2
2C1,2H1P

2
2C1,2H1 = P 2

2C1,2P
2
2 , (B.0.11)

explained using Eq. Eq. (4.4.13). Removing duplicates adds 3296 new 4 H1

words to our subgroup.

6. Finally we construct words with 5 H1 operations, multiplying all 4 H1 words
that do not begin with H1 by H1, pC1,2H1, and C1,2pC1,2H1, and generating
614656 words. Of these 614656 words, 609792 are duplicates of other 5 H1

words, e.g.

H1P2C1,2H1P
3
2C1,2H1P

3
2C1,2H1P2C1,2H1P2C1,2P

3
2

= C1,2H1C1,2H1C1,2H1C1,2H1C1,2H1,
(B.0.12)

described by Eq. Eq. (4.4.13) using relations 4.3.2, 4.4.1, and 4.4.7. Another
3392 are duplicates of 3 H1 words, e.g.

C1,2H1C1,2H1C1,2H1C1,2 = H1C1,2H1C1,2H1C1,2H1C1,2H1, (B.0.13)

described by (H1C1,2)
8 = 1, and a final 256 are duplicates of 1 H1 words, e.g.

H1 = H1C1,2H1C1,2H1P
2
2C1,2H1P

2
2C1,2H1C1,2P

2
2C1,2P

2
2 , (B.0.14)

by Eqs. Eq. (4.4.13) and Eq. (4.4.12). Upon removing duplicates, there are
1216 unique 5 H1 words added to our subgroup, giving an order of 9216.
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The Magma Computer Algebra system [1] was used to validate many of the sub-
group constructions in this paper. This program, which can be downloaded to a
local device or accessed via a browser at http://magma.maths.usyd.edu.au/magma/,
offers a powerful suite of group-theoretic calculators. We have included below a few
examples of code input and output that demonstrate some functionality, and provide
the interested reader a coarse template for using the software.

We formally construct subgroups of C1 and C2 by taking quotient groups of the
free group generated by a select set of operations. For example, the group ⟨Hi, Pi⟩
can be built as

Input: F ⟨H,P ⟩ := FreeGroup(2);
G⟨x, y⟩, phi := quo⟨F |H2 = P 4 = 1, (H ∗ P )3 = (P ∗H)3⟩;
G

Output: Finitely presented group G on 2 generators
Relations

x2 = Id(G)
y4 = Id(G)

(x ∗ y)3 = (y ∗ x)3

Further calculations can be used to yield desired group properties such as order,
number of defining generators, checks for abelianess, cyclicity, and many more. Some
simple examples are included below.

Input: F ⟨P,C⟩ := FreeGroup(2);
G⟨x, y⟩, phi := quo⟨F |C2 = P 4 = 1, C ∗ P ∗ C = P ⟩;
Order(G)

Output: 8

Input: F ⟨H, c⟩ := FreeGroup(2);
G⟨x, y⟩, phi := quo⟨F |c2 = H2 = (H ∗ c)8 = 1;
Parent(G)

Output: Power Structure of GrpFP

To generate the complete two-qubit Clifford group C2, we include all generators
and the relations of our presentation. We can subsequently simplify the presentation
with the following code.
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Input: F < H, h, C, c, P, p >:= FreeGroup(6);
G < u, v, w, x, y, z >, phi := quo⟨F |P 4 = p4 = H2 = h2 = C2 = c2 = (H ∗C ∗p2)4 =
(c ∗ C)3 = (c ∗H)8 = 1, H ∗ h ∗H = h, H ∗ p ∗H = p, h ∗ P ∗ h = P, P 3 ∗ p ∗ P =
p, C ∗ P ∗C = P, c ∗ p ∗ c = p, (H ∗ P )3 = (P ∗H)3, (p ∗ h)3 = (h ∗ p)3, P ∗H ∗ P =
(c∗p∗h)3, C ∗h∗C ∗p∗C ∗ (p3)∗h = P, c∗C ∗ c∗H ∗ c∗C ∗ c = h, H ∗h∗ c∗H ∗h =
C, c ∗C ∗ p2 ∗C ∗ c = P 2, p ∗C ∗ p ∗C = C ∗ p ∗C ∗ p, P 2 = (C ∗h)4, P 2 = (C ∗ p)4 >;
Order(G);
Simplify(G)

Output: 92160
Finitely presented group on 4 generators
Generators as words in group G

$.1 = u

$.2 = v

$.3 = w

$.4 = z

Relations
$.3∧2 = Id($)
$.1∧2 = Id($)
$.2∧2 = Id($)
($.1 * $.2)∧2 = Id($)
$.4∧4 = Id($)
$.1 * $.4 * $.1 * $.4∧-1 = Id($)
$.2 * $.4∧-1 * $.3 * $.4 * $.2 * $.4 * $.3 * $.4∧-1 = Id($)
$.2 * $.3 * $.2 * $.4∧-1 * $.2 * $.3 * $.2 * $.4 = Id($)
$.4 * $.3 * $.4 * $.3 * $.4∧-1 * $.3 * $.4∧-1 * $.3 = Id($)
($.4∧-1 * $.3 * $.4∧2 * $.3 * $.4∧-1)∧2 = Id($)
$.2 * $.4 * $.3 * $.4∧-1 * $.2 * $.3 * $.2 * $.4∧-1 * $.3 * $.4 * $.2* $.3 = Id($)
$.3 * $.4∧-1 * $.3 * $.2 * $.3 * $.2 * $.3 * $.4 * $.3 * $.2 * $.3 * $.2 = Id($)
$.4 * $.2 * $.4 * $.2 * $.4 * $.2 * $.4∧-1 * $.2 * $.4∧-1 * $.2 * $.4∧-1 * $.2 = Id($)
$.2 * $.1 * $.3 * $.2 * $.1 * $.4 * $.2 * $.1 * $.3 * $.2 * $.1 * $.4∧-1 =Id($)
$.1 * $.3 * $.4∧2 * $.1 * $.3 * $.4∧-2 * $.1 * $.3 * $.4∧-2 * $.1 * $.3 * $.4∧-2 = Id($)
$.3 * $.2 * $.1 * $.3 * $.2 * $.1 * $.3 * $.1 * $.3 * $.2 * $.1 * $.3 * $.2 * $.1 * $.3 *
$.2 = Id($)
($.3 * $.1)∧8 = Id($)
$.4∧-1 * $.1 * $.3 * $.2 * $.1 * $.3 * $.4∧-2 * $.3 * $.4 * $.1 * $.2 * $.3*
$.1 * $.2 * $.3 * $.4∧-1 * $.2 * $.4 * $.3 = Id($)
$.2 * $.3 * $.2 * $.4∧-1 * $.3 * $.1 * $.3 * $.4 * $.3 * $.2 * $.3 * $.2*
$.4∧-1 * $.1 * $.2 * $.3 * $.4∧-1 * $.2
* $.3 * $.4∧-1 * $.2 * $.3 * $.1 *$.3 = Id($)
$.3 * $.4 * $.3 * $.2 * $.3 * $.1 * $.4 * $.3 * $.4∧-1 * $.2 * $.3 * $.2
*$.3 * $.1 * $.4 * $.3 * $.4∧-1 * $.2 * $.3 * $.2 * $.3 * $.1 * $.3 * $.2 *$.3 * $.4∧-1 *
$.3 * $.4 * $.1 * $.2 * $.3 * $.2 * $.3 * $.4∧-1 * $.3 * $.4* $.1 * $.2 * $.3 * $.2 * $.3
* $.4∧-1 * $.3 * $.1 = Id($)

356



In this section we include several additional graphs, not included in the main text.
Each figure below offers further visualization for relations Eq. (4.3.1)–Eq. (4.4.10).

Figure B.1 shows the Cayley graph for ⟨H1, P2⟩, containing 8 vertices. Since H1

and P2 commute, the group ⟨H1, P2⟩ is the direct product of ⟨H1⟩ × ⟨P2⟩, which is
manifest in the Cayley graph structure.

Out[ ]=
H1

P2

Figure B.1: Cayley graph for ⟨H1, P2⟩, the direct product ⟨H1⟩×⟨P2⟩, with 8 vertices.
Individual group structures for ⟨H1⟩ and ⟨P2⟩ are easily verified.

Figure B.2 shows the Cayley graph of ⟨P1, P2⟩. The graph has 16 vertices, and
corresponds to the direct product ⟨P1⟩ × ⟨P2⟩.

Out[ ]=
P1

P2

Figure B.2: Cayley graph of ⟨P1, P2⟩, the direct product ⟨P1⟩ × ⟨P2⟩, containing 16
vertices.
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The group ⟨H1, P2, C1,2⟩ is represented by the Cayley graph in Figure B.3. The
graph contains 32 vertices, and the relation (H1C1,2)

4 = P 2
2 can be directly visualized.

Out[ ]=

H1

P2

C1,2

Figure B.3: Cayley graph of ⟨H1, P2, C1,2⟩, with 32 vertices, where we note the non-
trivial relation (H1C1,2)

4 = P 2
2 . Sequence (H1C1,2)

4 is highlighted in green, and P 2
2

in magenta.

Figure B.4 gives the Cayley graph for ⟨P1, P2, H1⟩. While the graph is large, the
symmetric structure of stacked P1 and P2 boxes connected by H1 can be observed.
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Out[ ]=

P1

P2

H1

Figure B.4: Cayley graph of ⟨P1, P2, H1⟩ with 768 vertices. The graph contains
directed P1 and P2 boxes connected by H1 edges.
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In this Appendix we give a few reductions for the |DN
k ⟩ entropies in Eq. Eq. (5.3.1).

Expanding ln in Eq. Eq. (5.3.1) gives,

Sℓ = −
(
N

k

)−1 min(ℓ,k)∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
N

k

)−1
]

−
(
N

k

)−1 min(ℓ,k)∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
ℓ

i

)(
N − ℓ
k − i

)]
.

(C.0.1)

We invoke the Chu-Vandermonde identity, which reads

n∑
i=0

(
r

i

)(
s

n− i

)
=

(
r + s

n

)
, (C.0.2)

to simplify the first sum as

Sℓ =

(
N

k

)−1(
N

min(ℓ, k)

)
ln

[(
N

k

)]

−
(
N

k

)−1 min(ℓ,k)∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
ℓ

i

)(
N − ℓ
k − i

)]
.

(C.0.3)

For the case when ℓ ≥ k, Eq. Eq. (C.0.3) further simplifies to,

Sℓ = ln

[(
N

k

)]
−
(
N

k

)−1 k∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
ℓ

i

)(
N − ℓ
k − i

)]
, (C.0.4)

where we note the ℓ-independence of the first term.
Likewise for ℓ < k we have the reduction

Sℓ =
k!(N − k)!
ℓ!(N − ℓ)!

ln

[(
N

k

)]
−
(
N

k

)−1 ℓ∑
i=0

(
ℓ

i

)(
N − ℓ
k − i

)
ln

[(
ℓ

i

)(
N − ℓ
k − i

)]
. (C.0.5)

361



The reachability graph for |DN
N ⟩, and accordingly for all stabilizer states, under

the action of C2 is shown in Figure C.1.

Out[ ]=

H1

H2

P1

P2

C1,2

C2,1

Figure C.1: Orbit of all |DN
N ⟩ under the action of the 2-qubit Clifford group C2. The

state |DN
N ⟩ is a stabilizer state, and therefore its reachability graph is isomorphic to

that of all 2-qubit stabilizer states.

Figure C.2 gives the reachability graph for |DN
N ⟩ under the action of C3.

Figure C.3 depicts the orbit of state |D4
2⟩ under action of the 4-qubit Pauli group

Π4. Since |D4
2⟩ is stabilized by a 4-element subgroup of Π4, its reachability graph

contains 64 vertices.
Below we include additional examples of |DN

1 ⟩ orbits under the action of (HC)1,2 ≡
⟨H1, H2C1,2C2,1⟩. Figure C.4 shows the orbit for |D4

1⟩ under (HC)1,2, which contains
288 states and 4 different entropy vectors. This set of 5 entropy vectors is built of 6
different entanglement entropies.

Figure C.5 gives the orbit of |D5
1⟩ under (HC)1,2. This orbit likewise has 5 different

entropy vectors, which are composed of 9 different entanglement entropies.
In this Appendix we give exact entropy vectors seen in Figures 5.7 and 5.8. Table

C.1 gives each entropy vector from Figure 5.7. There are 4 entanglement entropies
observed in the orbit of |D3

1⟩ under the action of ⟨H1, H2C1,2C2,1⟩, which we define
as variables in Eq. Eq. (D.0.3) for presentation clarity.

s0 ≡ 1,

s1 ≡
2

3
log2

[
3

2

]
+

1

3
log2 [3] ,

s2 ≡
5

6
log2

[
6

5

]
+

1

6
log2 [6] ,

s3 ≡
3−
√
5

6
log2

[
6

3−
√
5

]
+

3 +
√
5

6
log2

[
6

3 +
√
5

]
,

(C.0.6)
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Out[ ]=

H1

H2

H3

P1

P2

P3

C1,2

C1,3

C2,3

C2,1

C3,1

C3,2

Figure C.2: Orbit of |DN
N ⟩ under the action of the 3-qubit Clifford group C3. Since

|DN
N ⟩ is a stabilizer state, this reachability graph is isomorphic to the orbit shared by

all 3-qubit stabilizer states.

The four entropies in Eq. Eq. (D.0.3) build the entropy vectors in Table C.1.

Label Entropy Vector
(s1, s1, s1)
(s3, s1, s1)
(s1, s3, s1)
(s0, s0, s1)
(s2, s2, s1)

Table C.1: The 5 entropy vectors found in the (HC)1,2 orbit of |D3
1⟩, shown in Figure

5.7. For brevity, we introduce the variables in Eq. Eq. (D.0.3) to present these entropy
vectors.

Similarly for the orbit of |D4
2⟩ under ⟨H1, H2C1,2C2,1⟩ action, there are 5 entan-
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Out[ ]=

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Z1

Z2

Z3

Z4

Figure C.3: Orbit of |D4
2⟩ under the action of Π4. This reachability graph contains

64 vertices as |D4
2⟩ is only stabilized by 4 elements of Π4.

glement entropies observe. We likewise define the variables,

s0 ≡
5

6
log2

[
12

5

]
+

1

6
log2 [12] ,

s1 ≡
3−
√
5

6
log2

[
12

3−
√
5

]
+

3 +
√
5

6
log2

[
12

3 +
√
5

]
,

s2 ≡
2

3
log2

[
3

2

]
+

1

3
log2 [6] ,

s3 ≡
3− 2

√
2

6
log2

[
12

3− 2
√
2

]
+

3 + 2
√
2

6
log2

[
12

3 + 2
√
2

]
,

s4 ≡ 1,

s5 ≡
2

3
log2

[
3

2

]
+

1

3
log2 [3] ,

s6 ≡
5

6
log2

[
6

5

]
+

1

6
log2 [6] .

(C.0.7)
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Out[ ]=

H1

H2

C1,2

C2,1

S = (SA ,SB ,SC ,SO ,SAB,SAC,SAO)

{0.811, 0.811, 0.811, 0.811, 1.00, 1.00, 1.00}

{0.601, 1.00, 0.811, 0.811, 1.00, 1.22, 1.22}

{1.00, 1.00, 0.811, 0.811, 1.00, 1.35, 1.35}

{0.811, 0.811, 0.811, 0.811, 1.00, 1.00, 1.00}

{0.811, 0.811, 0.811, 0.811, 1.00, 1.20, 1.20}

Figure C.4: Orbit of |D4
1⟩, and stabilizer state, under the action of (HC)1,2.

Out[ ]=

H1

H2

C1,2

C2,1

S = (SA ,SB ,SC ,SD ,SO ,SAB,SAC,SAD,SAO,SBC,SBD,SBO,SCD,SCO,SDO)

{0.72, 0.72, 0.72, 0.72, 0.72, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97, 0.97}

{0.58, 0.97, 0.72, 0.72, 0.72, 0.97, 1.2, 1.2, 1.2, 1.3, 1.3, 1.3, 0.97, 0.97, 0.97}

{0.97, 0.58, 0.72, 0.72, 0.72, 0.97, 1.3, 1.3, 1.3, 1.2, 1.2, 1.2, 0.97, 0.97, 0.97}

{1.0, 1.0, 0.72, 0.72, 0.72, 0.97, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 0.97, 0.97, 0.97}

{0.88, 0.88, 0.72, 0.72, 0.72, 0.97, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 0.97, 0.97, 0.97}

Figure C.5: Orbit of |D5
1⟩, and stabilizer state, under the action of (HC)1,2.
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Label Entropy Vector
(s4, s4, s4, s4, s2, s2, s2)
(s6, s5, s4, s4, s2, s1, s1)
(s5, s6, s4, s4, s2, s1, s1)
(s4, s4, s4, s4, s2, s0, s0)
(s4, s4, s4, s4, s2, s2, s2)
(s6, s6, s4, s4, s2, s3, s3)

Table C.2: The 6 entropy vectors contained in the orbit of |D4
2⟩ under the action

of (HC)1,2, illustrated in Figure 5.8. We introduce variables in Eq. Eq. (D.0.4) to
display the entropy vectors in the table.
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Below we include sets of entropy vectors referenced throughout the paper. The
states used to generate each entropy vector set are likewise given in bit-address no-
tation. A bit-address is the ordered set of coefficients multiplying each basis ket
of an n-qubit system, e.g. the bit-address (1, 0, 0, 1, 0, 0, i, i) indicates the state
|000⟩ + |011⟩ + i|110⟩ + i|111⟩. We order index qubits within each ket from right
to left, i.e. the rightmost digit corresponds to the first qubit of the system, while the
leftmost digit represents the nth qubit of an n-qubit system.

Reachability graphs g144 and g288, shown in Figures 6.7–6.10, can be generated by
the action of (HC)1,2 or C2 on the 6-qubit state in Eq. Eq. (D.0.1).

1

8
(1,− 1, 1, 1,−1, 1, 1, 1, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1,−1,−1,−1, 1,−1,−1,−1, 1, 1,

1,−1, 1,−1,−1,−1, 1, 1, 1, 1,−1, 1, 1,−1, 1, 1, 1,−1, 1, 1,−1,−1,−1, 1,−1, 1, 1, 1,
1,−1, 1,−1,−1,−1, 1, 1, 1)

(D.0.1)

There are 5 distinct entropy vectors that can be reached in the orbit of Eq.
Eq. (D.0.1) under (HC)1,2 and C2, given in Table D.1. The colors in the table corre-
spond to the vertex colors in Figures 6.7–6.10.

Label Entropy Vector
(1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2)
(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3)
(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3)

Table D.1: Table of the 5 entropy vectors found on g144 and g288 reachability graphs
in Figures 6.7–6.10. Colors in the leftmost column correspond to the vertex colors of
these figures.

To construct the reachability graphs shown in Figure 6.11–6.12, we consider the
orbit of the 8-qubit state in Eq. Eq. (D.0.2) under the action of (HC)1,2 and C2.

1√
32

(0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 0,−i, 0,−1, 0,−i, 0, 0, 0, 0, 0, 0, 0, 0, i, 0,−1, 0,−i, 0,−1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−i, 0,
0, 0, 0, 0, 0, 0, 0, 0,−1, 0,−i, 0, 0, i, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−i, 0,−1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−i, 0,
− 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, i, 0,−1,−1, 0,−i, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−i, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, i, 0, 1, 0,−i, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, i, 0,−1, 0, i, 0, 0, 0, 0)
(D.0.2)
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The entropy vectors generated along the (HC)1,2 and C2 orbits of Eq. Eq. (D.0.2)
are given in Figure D.1. The color preceding each entropy vector corresponds to the
vertex coloring in Figures 6.11–6.12.

The orbit of |D3
1⟩ under (HC)1,2 and C2 reaches 5 entropy vectors, built of 4

different entangle entropy values. We define these 4 unique entropy values in Eq.
Eq. (D.0.3).

s0 ≡ 1,

s1 ≡
2

3
log2

[
3

2

]
+

1

3
log2 [3] ,

s2 ≡
5

6
log2

[
6

5

]
+

1

6
log2 [6] ,

s3 ≡
3−
√
5

6
log2

[
6

3−
√
5

]
+

3 +
√
5

6
log2

[
6

3 +
√
5

]
,

(D.0.3)

The specific entropy vectors encountered in the (HC)1,2 and C2 orbit of |D3
1⟩ are

given in Table D.2. Each entropy vector is built from the entanglement entropies
given in Eq. D.0.3. Numerical approximations for each entropy vector were provided
in Figure 6.13 when each first appeared.
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Label Entropy Vector
(s1, s1, s1)
(s3, s1, s1)
(s1, s3, s1)
(s0, s0, s1)
(s2, s2, s1)

Table D.2: Table showing the 5 entropy vectors seen in Figures 6.13 and 6.14, reached
in the orbit of |D3

1⟩ under (HC)1,2 and C2. For clarity, we introduce variables in Eq.
Eq. (D.0.3) to succintly present each entropy vector.
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Similarly for the orbit of |D4
2⟩ under (HC)1,2 and C2, we observe 6 different entropy

vectors. Following the notation of [1], we give these 6 entropy vectors in terms of their
5 distinct entanglement entropy components, which we list in Eq. Eq. (D.0.4).

s0 ≡
5

6
log2

[
12

5

]
+

1

6
log2 [12] ,

s1 ≡
3−
√
5

6
log2

[
12

3−
√
5

]
+

3 +
√
5

6
log2

[
12

3 +
√
5

]
,

s2 ≡
2

3
log2

[
3

2

]
+

1

3
log2 [6] ,

s3 ≡
3− 2

√
2

6
log2

[
12

3− 2
√
2

]
+

3 + 2
√
2

6
log2

[
12

3 + 2
√
2

]
,

s4 ≡ 1,

s5 ≡
2

3
log2

[
3

2

]
+

1

3
log2 [3] ,

s6 ≡
5

6
log2

[
6

5

]
+

1

6
log2 [6] .

(D.0.4)

The 5 entropies in Eq. Eq. (D.0.4) build the 6 entropy vectors in Table D.3.

Label Entropy Vector
(s4, s4, s4, s4, s2, s2, s2)
(s6, s5, s4, s4, s2, s1, s1)
(s5, s6, s4, s4, s2, s1, s1)
(s4, s4, s4, s4, s2, s0, s0)
(s4, s4, s4, s4, s2, s2, s2)
(s6, s6, s4, s4, s2, s3, s3)

Table D.3: The 6 entropy vectors in the orbit of |D4
2⟩ under (HC)1,2 and C2. The

vectors appears in Figures 6.15 and 6.16, and are built using the variables in Eq.
Eq. (D.0.4).
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{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 2}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3}}

{ , {1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1,

2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2,

3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3}}

Figure D.1: All 8-qubit entropy vectors reached in the orbit of Eq. D.0.2 under the
action of C2. Of these 20 entropy vectors, 18 can be generated with (HC)1,2 alone.
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APPENDIX E

PROOF OF CLIFFORD INVARIANCE
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Invariance under Stab0

In this section, we prove that STAB0 is invariant under the following operations

1. Clifford unitaries. ρ→ UρU † with U ∈ C(dn).

2. Composition with stabilizer states, ρ→ ρ⊗ σ with σ a stabilizer state.

3. Partial trace of the first qudit, ρ→ Tr1(ρ)

4. Computational basis measurement on the first qudit, ρ→ (|i⟩⟨i|⊗1ln−1)ρ(|i⟩⟨i|⊗
1ln−1)/Tr

(
ρ |i⟩⟨i| ⊗ 1ln−1

)
with probability Tr

(
ρ |i⟩⟨i| ⊗ 1ln−1

)
Proposition 9. Clifford Invariance. Given σ ∈ STAB0 and C ∈ C(dn), then CσC† ∈
STAB0

Proof.

CσC† =
1

dn

∑
P∈G

CPC† =
1

d

∑
P̃∈G̃

P̃ (E.0.1)

the latter is an element of STAB0 since it is the equal-weighted sum of Pauli operators
of a commuting set. This is since C : P 7→ P̃ ∈ P̃ and the action of a unitary on a
subgroup G does not modify the commutation relations.

Proposition 10. Given ρ ∈ STAB0 and τ ∈ STAB0 then ρ⊗ τ ∈ STAB0

Proof.

ρ⊗ σ =
1

d2n

∑
P∈G1,Q∈G2

P ⊗Q =
1

d2

∑
P⊗Q∈G1×G2

P ⊗Q. (E.0.2)

where the latter is an element of STAB0 since the tensor product of Pauli operators
is still a Pauli operator and the Cartesian product of a group is still a group, and
since the tensor product does not affect the commutation relations of the G1 or G2,
then G1 ×G2 is a commuting group and so ρ⊗ σ ∈ STAB0.

Proposition 11. Given a state ρ ∈ STAB0 then Tr1 ρ ∈ STAB0

Tr1(ρ) =
1

dn

∑
P∈G

Tr(P1)P2...n =
1

dn−1

∑
P2...n∈Tr1(G)

P2...n (E.0.3)

where P1 labels the Pauli operator on the first qudit of P . It is easy to observe that
the only elements whose partial trace is different from 0 are the ones with P1 = 1l.
These elements that were in G are still commuting Pauli operator in the traced group
Tr1G.

Proposition 12. Given a state ρ and {|i⟩} the 1-qudit computational basis, then
(|i⟩⟨i| ⊗ 1ln−1)ρ(|i⟩⟨i| ⊗ 1ln−1)/Tr

(
ρ |i⟩⟨i| ⊗ 1ln−1

)
∈ STAB0
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Proof. For the sake of simplicity, let us consider the case for a multi-qubit system
and i = 0, it can be easily generalized for i ̸= 0 and qudits.

(|0⟩⟨0| ⊗ 1ln−1)ρ(|0⟩⟨0| ⊗ 1ln−1)

Tr
(
ρ |0⟩⟨0| ⊗ 1ln−1

) =

∑
P∈GTr

(
|0⟩⟨0|P1

)
|0⟩⟨0| ⊗ P2...n∑

P∈GTr
(
|0⟩⟨0|P1

)
Tr(P2...n)

(E.0.4)

=
1

2n−1

∑
P∈GTr

(
P1 |0⟩⟨0|

)
|0⟩⟨0| ⊗ P2...n∑

P1∈Tr2...nGTr
(
P1 |0⟩⟨0|

) (E.0.5)

=
1

2n−1

∑
P∈G|P1∈{1l,Z} |0⟩⟨0| ⊗ P2...n∑

P1∈1l,Z∩Tr2...nG
(E.0.6)

= |0⟩⟨0| ⊗ 1

2n−1

∑
P∈G|P1∈{1l,Z} P2...n∑
P1∈1l,Z∩Tr2...nG

(E.0.7)

(E.0.8)

note that
∑

P1∈1l,Z∩Tr2...nG can be either 1 or 2, due to the terms 1ln Z1ln−1. While on
the numerator the only terms surviving have on the first qubit 1l or Z. Now it is not
difficult to see that for G to be a commuting group, if

∑
P1∈1l,Z∩Tr2...nG = 1 then there

will be no multiplying factor to the numerator, while in the other case, there will be
a 2 since each non-zero P2...n has to repeat twice. Then it is not difficult to see that
then one has a stabilizer state, because P2...n is still summing on a commuting Pauli
subgroup.

Proof of Proposition 3

Proof. Let us start by expanding the relative entropy, we have

FR(ρ) = − min
σ∈FLAT

Tr[ρ log σ]− S(ρ). (E.0.9)

Since the elements of FLAT are all proportional to projection operators, it is possible
to choose σ such that σ = 1lr/r ⊕ 0n−r is diagonal in the same basis as ρ where r ≡
rank(ρ), 1lr is the identity on a subspace of dimension r, and 0n−r is the zero-matrix of
dimension (n−r)×(n−r). Hence the first term becomes log r Tr ρ = log r = Smax(ρ)
and FR(ρ) ≤ Smax(ρ)− S(ρ).

To show that the minimum is attained when FR(ρ) = −minσ∈FLAT Tr[ρ log σ] −
S(ρ), suppose on the contrary that there exists σ = Πk/k, where Πk is a projection
operator of rank k such that the first term is less than log r. Let M = ρ log σ; in the
diagonal basis of σ, where we denote the diagonal element by λi, one has

TrM =
∑
i

Mii =
∑
i

ρijδji log λi =
∑
i

ρii log λi. (E.0.10)

Let us note that when i > k, log λi>k = −∞. Then in order for the trace of M =
ρ log σ to be finite, we need ρii = 0 for any λi ̸= 0 to be 0. On the other hand, we
know that if the diagonal of a positive semi-definite matrix has a zero on the diagonal,
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then the corresponding rows and columns must be all 0s. Then it implies that up to
rearranging the rows and columns for the sake of clarity,

ρ =

(
A 0
0 0

)
(E.0.11)

where A is a k×k block matrix of rank at most k. Therefore, −TrM = log k Tr[AI] =
log k < log r by assumption, we must have k < r. Because dimA ≥ rank(A), it
follows that rank(A) = rank(ρ) ≤ k < r, which is a contradiction.

Proof of Theorem 3

In this section, we prove Theorem 3. Let us start from the upper bound. Being
defined through two minima, we can arbitrarily choose a state ψ and a stabilizer σ
to upper bound M

(ML)
dist . Consider a state ψAB with ψA = TrB(ψAB), ψB = TrA(ψAB)

isospectral (up to truncation of 0 eigenvalues) to states of a subsystem. Suppose that
ψA and ψB are states where the local magic has been removed such that both ψA, ψB
are diagonal in the computational (or another complete stabilizer basis). It can be
done by first rewriting the true state in the Schmidt basis, which is orthonormal,
and then by replacing the Schmidt basis with an orthonormal stabilizer basis. For σ
instead, one can choose a flat state in the Schmidt basis, and so σ = 1

rank(ψA)

∑
i |si⟩⟨si|.

Consequently, we obtain

M
(NL)
dist (ψAB) ≤

1

2

∥∥∥∥∥∥
∑
ij

λiλj
∣∣si〉〈sj∣∣− 1

rank(ψA)

∑
i

|si⟩⟨si|

∥∥∥∥∥∥
1

(E.0.12)

≤
√
1− F (

∑
ij

λiλj
∣∣si〉〈sj∣∣ , 1

rank(ψA)

∑
i

|si⟩⟨si|) (E.0.13)

where F (·) is the Uhlmann fidelity, now we can rewrite everything as

M
(NL)
dist (ψAB) ≤

√
1− 1

rank(ψA)

∑
ijk

λiλj ⟨sk⟩ si ⟨sj⟩ sk =

√
1− 1

rank(ψA)
,

=
√

1− e−SA
max(ψA),

(E.0.14)

where we used that
∑

ij λiλj
∣∣si〉〈sj∣∣ is still a pure state and that

∑
i λ

2
i = 1. Let us

focus on the lower bound, to prove it let us first provide a bound between F(ψ) and
Mdist(ψ).

Lemma 8. Let ψ be a state then its flatness F(ψ) is upper bounded by Mdist as follows

F(ψ) ≤ 8Mdist(ψ). (E.0.15)

Proof. Starting from the flatness one can add a zero term to it; take a flat state
σ ∈ STAB0

F(ψ) = F(ψ)−F(σ). (E.0.16)
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We can then bound the flatness as follows:

F(ψ) = Tr
(
ψ3 − σ3

)
− Tr

(
(ψ2)⊗2 − (σ2)⊗2

)
(E.0.17)

=
∣∣∣Tr(ψ3 − σ3

)∣∣∣+ ∣∣∣Tr ((ψ2)⊗2 − (σ2)⊗2
)∣∣∣ (E.0.18)

≤
∣∣∣Tr(ψ3 − σ3

)∣∣∣+ 2
∣∣∣Tr ((ψ2)− (σ2)

)∣∣∣ (E.0.19)

≤ 1− (1− T )3 + 2− 2(1− T )2 ≤ T 3 + 7T ≤ 8T (E.0.20)

where T = 1/2 ∥ψ − σ∥1. In the second line we made use of the triangular inequality,
in the third line, we used the following inequality

|Tr
(
ψ2
)
Tr
(
ψ2
)
− Tr

(
σ2
)
Tr
(
σ2
)
| ≤ |Tr

(
ψ2
) (

Tr
(
ψ2
)
− Tr

(
σ2
))
| (E.0.21)

+ |
(
Tr
(
ψ2
)
− Tr

(
σ2
))

Tr
(
σ2
)
| (E.0.22)

≤ 2|Tr
(
ψ2
)
− Tr

(
σ2
)
| (E.0.23)

while in the fourth line we used [1, Lemma 1.2] and then T 3 ≤ T , since 0 ≤ T ≤ 1.
By minimizing over σ ∈ STAB we prove the lower bound with Mdist(ψ).

With the following lemma,

F(ψA) ≤ 8min
UA

Mdist(UAψAU
†
A) (E.0.24)

where we used that F(ψA) is invariant under the action of global unitaries. Now
we prove that minUA

Mdist(UAψAU
†
A) ≤ M

(NL)
dist (ψAB). First recall that given ψA =

TrB(ψAB) due to the monotonicity of Mdist one has Mdist(ψA) ≤Mdist(ψAB). Now let
us prove the statement by contradiction. Let us suppose that there exists UA, U ≡
VA ⊗ VB which attains the respective minima but has

Mdist(UAψAU
†
A) > Mdist(UψABU

†) (E.0.25)

then from monotonicity, we have

Mdist(UAψAU
†
A) > Mdist(UψABU

†) ≥Mdist(U TrB ψABU
†) =Mdist(VAψAV

†
A)

(E.0.26)
but this is a contradiction to the statement that UA attains the minima, and so
one obtains that minUA

Mdist(UAψAU
†
A) ≤ M

(NL)
dist (ψAB). This result combined with

Lemma 8 concludes the proof.

Stabilizer relative entropies

Proof of Theorem 4

Let us start by proving the upper-bound to M (NL)
RS . The proof is similar to the

proof done for the upper bound of the non-local trace distance of magic. We choose
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σAB = I/D where D is the Schmidt rank of ρA. Then the second term in the relative
entropy expansion is simply

−Tr[ψAB log σAB] = −Tr

 D∑
i,j=1

λiλj|si⟩⟨sj|
D∑
k=1

|sk⟩⟨sk| log
(
1/D

),
= logDTr[ψAB],

= logD,

(E.0.27)

which is the max entropy of the system A. Hence MNL(ρAB) ≤ Smax(A) in this case.
Concluding the proof for the upper bound. Shifting our focus on the lower bound
instead, let us note that for any ρ, MRS(ρ) ≥ F (ρ). This is because STAB0 ⊂ FLAT
as shown in the other note. Because F (ρ) is isospectral under any unitary conjugation,
it must follow that MRS(UρU

†) ≥ F (UρU †) = F (ρ). Therefore,

FR(ρA) ≤ min
UA

MRS(UAρAU
†
A). (E.0.28)

On the other hand, for any ρA, from monotonicity it follows that MRS(ρAB) ≥
MRS(ρA) where ρA = TrB[ρAB]. Therefore, we must have

min
UA

MRS(UAρAU
†
A) ≤ min

U=VA⊗VB
MRS(UρABU

†) ≡MNL(ρAB). (E.0.29)

We can see that this is true from a proof by contradiction. Suppose there exists some
UA, U which attains the respective minima but has

MRS(UAρAU
†
A) > MRS(UρABU

†),

then from monotonicity, we must have

MRS(UAρAU
†
A) > MRS(UρABU

†) ≥MRS(TrB[UρABU
†]) =MRS(VAρAV

†
A)

for some local unitary VA which yields a lower distance than UA. Since we assumed
that UA attains the minimum, this violates our assumption, concluding the proof for
the lower bound.

Proof of Proposition 5

Consider a state ψAB where ψA, ψB are isospectral (up to truncation of 0 eigenval-
ues) to that of a subsystem ρA, ρB. Suppose they are states where we have removed
the local magic such that both ψA, ψB are diagonal in the computational (or another
complete stabilizer basis). Again, this can be done by first rewriting the true state in
the Schmidt basis, which are orthonormal. Then we replace the Schmidt basis by an
orthonormal stabilizer basis. Since the mixture of stabilizer states is in the convex
hull of stabilizer states, each ψA, ψB must have zero local magic. Note that there are
also other basis choices such that the basis state need not be a stabilizer, such states
can also be in the convex hull of the stabilizer group as long as they are not pure
states.
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By definition, M (NL)
R (ρAB) ≤ MR(ψAB) because we have chosen a particular in-

stance of the local unitary UA⊗UB on the right hand side whereas the left hand side
is minimized over all possible instances. Since ψAB is pure, then S(ψAB) = 0. While
for the other term, if σAB is pure, then the relative entropy is either 0 when σ = ψ
or ∞ for any other σ that’s mixed.

We pick a stabilizer state σAB = λ2i |si⟩⟨si|AB where λi are the Schmidt coefficients
of ψAB =

∑
i λi|si⟩AB where |si⟩ are the stabilizer basis we chose. For convenience,

we can choose them to be the computational basis which is orthonormal. Then for
the second term, we write

MR(ψAB) = −Tr[ψAB log σAB] (E.0.30)

= −Tr

∑
ij

λiλj|si⟩⟨sj|
∑
k

log
(
λ2k
)
|sk⟩⟨sk|

 (E.0.31)

= −
∑
i,j,k

δijδikλiλj log
(
λ2k
)

(E.0.32)

= −
∑
k

pk log pk (E.0.33)

where we have set λ2k = pk because each Schmidt coefficient is real. δij are Kronecker
deltas because we have chosen the basis {|sk⟩} to be orthonormal. Note that

∑
k pk =

1. In this case, the second term is nothing but S(A) = S(B) which is the von Neumann
entropy of a subsystem.

Since we have chosen a particular stabilizer state σAB, this serves as an upper
bound of the relative entropy of magic. Hence

M
(NL)
R (ρAB) ≤M

(NL)
R (ψAB) ≤ S(A) = S(B). (E.0.34)

Proof of Theorem 7

Let ρϵAB represent the state that minimizes the non-local magic. ThereforeM (NL,ϵ)
RS (ρAB) =

MNL
(RS)(ρ

ϵ
AB). Drawing from Theorem 4, we understand that:

M
(NL,ϵ)
RS (ρAB) ≥Smax(ρϵA)− S(ρϵA) ≥ min

∥χ−ρA∥<ϵ

(
Smax(χ)− S(χ)

)
. (E.0.35)

On the right-hand side, our goal is to identify a state χ within the ϵ-ball of ρA
that minimizes the difference between Smax(χ) and S(χ). Interestingly, the state that
minimizes this difference also reduces Smax(χ) to its lowest value Sϵmax. To illustrate,
denote χϵA as the state that minimizes Smax within the ϵ-ball. Then consider increasing
Smax by modifying one eigenvalue of χϵA from zero to δ. This adjustment results in an
increase ∆Smax = S−1

max, while the change in entropy is capped at ∆S ≤ δ|log δ|. Such
a modification invariably elevates the entropy gap, i.e. ∆(Smax−S) ≥ S−1

max−δ|log δ| >
0, since δ can be arbitrarily small.

To evaluate the von Neumann entropy of the state χϵA, as a modification from ρA
by dropping some eigenvalues whose total contribution to the trace is smaller than ϵ.
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Let’s denote their contribution to the von Neumann entropy as Sϵ. Then the entropy
of the new state χϵA is given by S(χϵA) = S(ρA)−Sϵ

1−ϵ ≤ S(ρA)
1−ϵ . Therefore, we get the

following inequality:

M
(NL,ϵ)
RS (ρAB) ≥Smax(χϵA)− S(χϵA)

≥Sϵmax(ρA)− (1− ϵ)−1S(ρA).
(E.0.36)

Regarding the upper bound, since χϵA minimizes the maximal entropy, it satisfies
the following condition:

Sϵmax(ρA) = Smax(χ
ϵ
A). (E.0.37)

While this condition specifies the spectrum of χϵA, we retain the flexibility to
select a purification χϵAB, ensuring its deviation from ρAB remains within an ϵ bound.
Consequently, the process of minimizing the non-local magic leads us to the following
inequality:

M
(NL,ϵ)
RS (ρAB) ≤M (NL)

RS (χϵAB)

≤ rankχϵAB = Smax(χ
ϵ
A).

(E.0.38)

where the second step is a result from Theorem 4.

Estimate by Stabilizer-Renyi-entropy

Proof of Theorem 5

In this section, we provide an estimation of the second Stabilizer-Renyi-entropy
measure of the non-local magic. It is defined in [2] as the second Renyi-entropy of a
probability distribution, pa = 1

d
|⟨ψ|Pa|ψ⟩|2, over all the Pauli-string basis Pa.

M2(|ψ⟩) := − log

(∑
a

p2a

)
− log d. (E.0.39)

Given the entanglement spectrum {λi}, we construct a state |ψ′⟩ with small local
magic,

|ψ′⟩AB =
r−1∑
i=0

√
λi|si⟩A|si⟩B. (E.0.40)

where the rank r is taken to be 2n for integer n. The Pauli operators on the Hilbert
space HAB = HA⊗HB can be factorized as product of Pauli operators on HA and HB

respectively, P ab = P a⊗P b. We denote their matrix elements as P a,b
ij := ⟨si|P a,b|sj⟩,

and compute the magic measureM2 as follows,

M2(|ψ′⟩) = − log

 r2∑
a=1

r2∑
b=1

∣∣∣∣∣∣
r−1∑
i,j=0

√
λi
√
λjP

a
ijP

b
ij

∣∣∣∣∣∣
4
 . (E.0.41)
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The result is complicated and depends on specific choice of the basis |si⟩’s. We
simplify the analysis by assuming that the orthonormal basis |si⟩’s are common eigen-
states of a stabilizer group S = {S1, S2, · · · , Sn}. This condition allows us to write
the Pauli matrices P a

ij in computational basis. Substituting the matrix representation
of Pauli operators, we find that

M2 =− log

(√
λi1
√
λi2
√
λi3
√
λi4
√
λi5
√
λi6
√
λi7
√
λi8(
∑
a

P a
i1i2
P a
i3i4
P a
i5i6
P a
i7i8

)2

)

=− log

 r−1∑
i1,i2,i3,i4=0

√
λi1λi2λi3λi4λi3∧i2∧i1λi4∧i2∧i1λi1∧i3∧i4λi2∧i3∧i4

 .

(E.0.42)

where ∧ denotes the bitwise XOR operation. This expression depends on order of
eigenvalues and takes minimum when the eigenvalues are ordered, λi > λj for i < j.
If we take all the eigenvalues to be the same, then each term in the summation is
equal to 1

r4
. The number of terms is r4 since we are summing over four indices. The

argument is equal to 1 in this case. Therefore, the non-local Stabilizer Renyi entropy
vanishes when the spectrum is flat.

Fig. E.1 gives a comparison of the direct SRE calculation against the estima-
tion given by Eq. (E.0.42). As can be observed in the plots, the approximation in
Eq. (E.0.42) is correct up to numerical imprecision.

1 2 3 4 5 6 7 8
A
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0.30

0.31

0.32

0.33

M
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M2 v.s. A (n=26 at Criticality)
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(a) M2 computed from stabilizer Renyi
entropy, compared to the estimation in
Eq. (E.0.42).
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|A|
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6
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2
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2

1e 16 2 Residual v.s. |A| (n=26 at Criticality)

Difference

(b) Residual from computational and ana-
lytic calculations ofM2, accurate to one part
in 1016.

Figure E.1

We can derive an upper bound for M2, by averaging over the permutations of
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eigenvalues, this gives us the expression,

M2 ≤M2 = − log

 r−1∑
i=0

λ4i + 7
∑

0≤i ̸=j≤r−1

λ2iλ
2
j +

7

r − 3

∑
0≤i ̸=j ̸=k ̸=l≤r−1

λiλjλkλl+

∑
0≤i1 ̸=i2 ̸=···̸=i8≤r−1

∏8
a=1

√
λia

(r − 3)(r − 5)(r − 6)(r − 7)

)
.

(E.0.43)

In Eq. (E.0.43), the sum inside the logarithm is taken over products of distinct
eigenvalues. Computing this sum explicitly, and expressing the result in terms of
different Renyi entropies Sα, we obtain

M2 = − log
(
7e−2S2 − 6e−3S4 + 7e−S0(1− 6e−S2 + 8e−2S3 + 3e−2S2)+

e−4S0(e4S1/2 + 105e−3S4 − 420eS1/2 + · · · )
)

= − log
(
7e−2S2 − 6e−3S4 + e4S1/2−4S0

)
+O(e−S1/2).

(E.0.44)

The averaged magic M2 is a complicated combination of Renyi entropies, ranging
from S1/2 to S4. However, in the large Hilbert dimension limit, where S1/2 ≫ 1,
the averaged magicM2 simplifies to the final expression in Eq. (E.0.43). It provides
straightforward estimate ofM2 based on a few Rényi entropy terms.

To establish a rigorous bound forM2, we start with Eq. (E.0.44), leading to:

M2 ≤ − log

 r−1∑
i=0

λ4i + 7
∑

0≤i ̸=j≤r−1

λ2iλ
2
j


≤ − log


∑

i

λ2i

2
 = 2S2.

(E.0.45)

This holds for all spectrum distributions. Rewriting Eq. (E.0.44) in terms of the
entropy difference δ1/2 = S0 − S1/2, we obtain the following expansion;

M2 =− log
(
e−4δ1/2 + e−S0(7 + 21e−4δ1/2 − 28e−3δ1/2) +O(e−2S0)

)
≤4δ1/2.

(E.0.46)

Note that the coefficient associated with e−S0 in the expansion remains non-
negative for any value of δ1/2 and vanishes when δ1/2 = 0. Verifying that these
coefficients are non-negative for every order of e−S0 supports the inequality. Finally,
combining this with the previously established bound finishes our proof that:

M2({λi}) ≤M2 ≤ min{2S2, 4(S0 − S1/2)}. (E.0.47)
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Proof of Proposition 8

Let |ϕ⟩ denotes an entangled pair of qubits, with the entanglement spectrum given
by {λ, 1 − λ}. We show that the non-local stabilizer Renyi entropy M2(λ) of |ϕ⟩ is
bounded by the non-flatness ∂nS̃n.

From Eq. (7.3.55), we find thatM2(λ) is equal to,

M2(λ) = − log
(
1− 4λ+ 20λ2 − 32λ3 + 16λ4

)
. (E.0.48)

By definition Eq. (7.3.28), the non-flatness is

−∂nS̃n = n
λn(1− λ)n

(
log λ

1−λ

)2
(
λn + (1− λ)n

)2 . (E.0.49)

Both functions are zero at λ = 0, 1
2
, 1. So let’s make a Taylor expansion around

these value. Around λ = 1
2
, we have that

M2(λ) = 4(λ− 1/2)2 − 8(λ− 1/2)2 +O((λ− 1/2)3)

−∂nS̃n|n=1 = 4(λ− 1/2)2 − 16

3
(λ− 1/2)2 +O((λ− 1/2)3)

−1

2
∂nS̃n|n=2 = 4(λ− 1/2)2 − 160

3
(λ− 1/2)2 +O((λ− 1/2)3).

(E.0.50)

Therefore for λ close to 1/2, the following inequility holds:

−1

2
∂nS̃n|n=2 ≤M2(λ) ≤ −∂nS̃n|n=1. (E.0.51)

Similarly, one can ahow that this inequility holds for λ close to 0 and 1, where the
functions are,

M2(λ) = 4λ− 12λ2 +O(λ3)

−∂nS̃n|n=1 = λ log2 λ+ (2 log λ− log2 λ)λ2 +O(λ3)

−1

2
∂nS̃n|n=2 = λ2 log2 λ+ 2(log λ+ log2 λ)λ3 +O(λ4).

(E.0.52)

For other value of λ, we justify this inequility by the plot in Fig. E.2.
Both the Stabilizer Renyi entropy and anti-flatness are additive. Therefore for

state |ψ⟩ that can be distilled into product of entangled pairs UA ⊗ UB|ψ⟩AB =
⊗ki=1|ϕ⟩aibi , we have the inequility,

1

2

∣∣∣∣∂nAn|n=2

4G
(|ψ⟩AB)

∣∣∣∣ ≤M2(|ψ⟩AB) ≤
∣∣∣∣∂nAn|n=1

4G
(|ψ⟩AB)

∣∣∣∣ . (E.0.53)
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Figure E.2: The non-local stabilizer Renyi entropyM2 is bounded by the anti-flatness
∂nS̃n

Distillation of Matrix Product State

We further elaborate our discussions from Section 7.4.1. Building on the MERA
representation of CFT, we transform the state on the boundary of the past light-cone,
∂A, into a Matrix Product State (MPS) using local unitaries, as defined in Eq. (7.4.1)
and illustrated in Fig. 7.2. In this section, we further contend that this MPS state
can approximately be distilled into a tensor product of entangled pairs:

|χ⟩AB ≈ UA ⊗ UB
(
⊗ki=1|ϕi⟩aibi

)
. (E.0.54)

where k is the size of MPS state. It’s clear that this approximation does not hold
in general due to the disparity in the number of free parameters between the most
general entanglement spectrum (contains 2k−1 parameters) and that of the tensor
product of entangled pairs (k parameters). However, for translationally invariant
MPS states characterized by short correlation lengths, this approximation is valid.

To substantiate this approximation, we simulate several MPS states using k num-
ber of identical random matrices to construct the reduced state ρA = tr B(|χ⟩ ⟨χ|) and
evaluate its entanglement spectrum. We then approximate this spectrum by fitting
it to the tensor product of individual entangled pair spectra:

min
{λi}

∣∣∣∣∣∣Spec(ρA)−
k⊗
i=1

(
λi 0
0 1− λi

)∣∣∣∣∣∣ = ϵk (E.0.55)

where ϵk quantifies the approximation error. Our numerical analysis up to k = 11
reveals an exponential decrease in ϵk with increasing k. We present two distinct
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scenarios in Fig. E.3: In the first scenario, we require all EPR pairs in the tensor
product to be identical, yielding an error trend of ϵk ∼ 0.1 × 1.2−k. In the second
scenario, we relax this constraint, allowing for variability among the EPR pairs, which
results in a more pronounced error reduction, following ϵk ∼ 0.05× 1.4−k.

With the distillation assumption justified we expect the inequility Eq. (E.0.53) to
be true for general MPS state and therefore for a CFT. We plot the magic and the
Renyi entropy (dual to brane area) for a set of randomly generated samples of MPS
states in Fig. E.4 and verify the validity of the bound Eq. (E.0.53).

Validity of various bound for magic

In the main text, we introduced several approximations for non-local magic, not-
ing its proportional relationship to anti-flatness in certain regimes and its closeness
to entropy in others. This section delineates the conditions under which these ap-
proximations hold true.

Near flat limit

We begin by examining the approximation between non-local magic and anti-
flatness, specifically:

M2(|ψ⟩AB) ≈
F(ρA)

Pur2(ρA)
(E.0.56)

which is applicable primarily in the near-flat limit of the entanglement spectrum.
This is because the left-hand side (LHS) is additive and scales linearly with n, while
the right-hand side (RHS) can be expressed as:

F(ρA)
Pur2(ρA)

=
tr (ρ3A)− tr (ρ2A)

2

tr (ρ2A)
2

= e2(S2(A)−S3(A)) − 1, (E.0.57)

which becomes additive only at the linear order of the Taylor expansion in the entropy
difference. Hence, the condition S2(A)−S3(A) <

1
2

must be met, indicating an almost
flat spectrum or a small system size.

Additionally, this regime aligns with where the two anti-flatness measures defined
previously converge, particularly when:

⟨(δ log ρ)2⟩ρ ≈
⟨(δρ)2⟩ρ
⟨ρ⟩2ρ

(E.0.58)

under the condition
∑

i δλ
2
i ≪

∑
i λ̄

2
i . In the flat limit

∑
i λ̄

2
i ∼ e−S0 . and

∑
i δλ

2
i ∼

e−S2 − e−S0 . So the approximation requires eS0−S2 − 1 < 1, that is S0 − S2 ∼ O(1).
This also corresponds to near-flat regime or small system size.

Far from flat limit

In contrast, for quantum states with a far-from-flat entanglement spectrum, where
the entropy differences across Rényi indices are comparable to the entropy itself, the
scenario changes. Referring to Theorem 5, the upper bound for the second Stabilizer
Rényi entropy measure of non-local magic is:
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MNL
2 (|ψ⟩AB) ≤M2({λi}) ≤ min{2S2(A), 4(S0(A)− S1/2(A))}, (E.0.59)

indicating a transitional crossover around S0(A) − S1/2(A) ∼ 1
2
S2(A). Beyond this

point, non-local magic transitions from being proportional to anti-flatness to being
proportional to entropy. Our numerical analyses within the Ising model confirm this
transition: in the disordered phase and at critical points, non-local magic correlates
with entropy S both when varying the model parameter and the subsystem size.
However, in the symmetry-breaking phase (refer to Appendix E), it deviates and
becomes anti-correlated with entropy, as shown in Figure E.6.

Supplemental results for Ising Model

Symmetry breaking phase

In the g < 0 regime, the Ising model enters the symmetry-breaking phase in the
thermodynamic limit. However, our analysis is conducted on a finite-size lattice,
where the ground state remains symmetric to spin flipping. Heuristically, we can
think of this ground state being approximated by something similar to the GHZ
state:

|G⟩sym ≈
1√
2
(|00 · · · 0⟩+ |11 · · · 1⟩). (E.0.60)

To approximate the true ground state achievable in the thermodynamic limit
within our finite lattice model, we introduce a small bias field in the z-direction:

H = HIsing(g) + b
∑
i

Zi. (E.0.61)
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As the bias b increases, the ground state transitions towards one of the two
symmetry-broken states:

|G⟩↑ = |↑↑ · · · ↑⟩ (E.0.62)
|G⟩↓ = |↓↓ · · · ↓⟩. (E.0.63)

Exploring how non-local magic M2 behaves as we adjust different parameters
led to some fascinating results that are particularly noticeable when a non-zero bias
field is applied. As shown in Fig. E.5, a distinctive “valley” emerges in the M2 plot
within the g < 0 regime. We juxtapose entropy and non-local magic in our plots to
underscore their divergent behaviors and the unique information conveyed by non-
local magic.

This valley can be understood as arising from the competition between two types
of ground states. Within the valley, the system’s ground state approximates the sym-
metric GHZ-like state |G⟩sym, as defined in Eq. (E.0.60). In this region, non-local
magic values are minimized because the reduced density matrix of |G⟩sym resembles
that of a maximally mixed single qubit state, leading to a flat spectrum and, conse-
quently, lowerM2 follows from Corollary 6. Additionally, we observe diminishedM2

values in regions far from the critical point, where |g| is sufficiently large, as indicated
by the plateau beyond g < −0.2 in Fig. E.5. Here, the ground state transitions to a
symmetry-broken state |G⟩↑/↓, which lacks non-local magic due to its tensor product
structure.

Despite the low non-local magic values associated with both |G⟩sym and |G⟩↑/↓, the
transition between these states has to past through a regime of non-trivial non-local
magic. This occurs because continuous parameter changes cannot be approximated by
discrete Clifford transformations, resulting in a notable increase in non-local magic.
The M2 measure captures this as a pronounced peak, delineating the transition
between the two ground states near g ∼ −0.1 in Fig. E.5.
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An additional noteworthy aspect of non-local magic inside the valley is its coun-
terintuitive decrease with increasing subregion size |A|, as depicted in Fig. E.6a. This
phenomenon is unique to the valley. In contrast, entropy consistently increases with
|A|. This unusual trend inM2 is also linked to the proximity to the symmetric state
|G⟩sym, which results in an almost flat entanglement spectrum within the valley. Con-
sequently, M2 aligns more closely with the entropy differential S0 − S rather than
the entropy itself, as discussed in Section 7.3.3, offering an explanation for the inverse
relationship observed between S andM2 in this region.

It’s also important to note that the competition between |G⟩sym and |G⟩↑/↓ is
a manifestation of finite-size effects. As demonstrated in Fig. E.7, the valley tends
to diminish with increasing lattice size n. Specifically, when we set b = 10−4 (see
Fig. E.7a), the peak of non-local magic shifts closer to g = 0 with larger lattice sizes.
Similarly, with g = −0.11 (see Fig. E.7b), the peak moves towards b = 0 as the lattice
size expands. This suggests that the parameter space favoring the symmetric state
narrows in both dimensions with increasing lattice size.

Expanding our analysis, Fig. E.8 explores the non-local magic across a broader
range of the bias field b. We find that beyond b > 0.01 the valley disappears, and
the g < 0 phase transitions to being governed by the symmetry-broken ground state
|G⟩↑/↓. As b decreases towards zero, the peak is pushed to the left where the valley
widens, signifying the growing significance of the symmetric ground state |G⟩sym,
which becomes dominant for all g < 0 in the absence of b.

Figure E.9 depicts theM2 surface as a function of subregion size |A| and critical
angle θ. As we decrease the magnitude of the bias field, the symmetry-breaking peak
is pushed towards lower and lower θ values.
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Figure E.8: Comparison between M2 and |∂nS̃n| at various magnetic field b and
model parameter g
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Figure E.9: Non-local magicM2 surface, as a function of critical angle θ and subregion
size |A|, for different bias offset fields. The bias magnetic field decreases, the peak
indicating a symmetry-breaking effect in the system is pushed further away from
criticality.
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APPENDIX F

PERMISSION FOR REPLICATION
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The contents of Chapters 2–7 comprise previously published work. I thank the
coauthors of these papers for their permission to replicate the corresponding work
here.
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