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ABSTRACT

The objective of fault simulation is to estimate the fault coverage of a given test

input. Established fault models in the analog domain are based on detailed transistor-

level netlists. Existing fault simulation tools inject and analyze fault responses at

this level of detail. However, extending fault simulation to large circuits, especially

when digital signals and/or frequency translation is involved, can be difficult due to

the nature of simulations. Designers work with models at higher abstraction levels

where simulations are more efficient. The goal of this paper is to bridge the gap

between available transistor-level fault simulation tools, where fault simulation can

be accurate, and behavioral abstraction levels, where simulation time can be shorter.

This work aims to achieve this by judiciously adding various functional enhancements

to individual functional blocks from a list of templates into their behavioral model

until the responses at the two abstraction levels match. Transistor-level simulations

are only limited to smaller functional blocks, where they are feasible, and individual

fault responses are captured for behavioral simulations. Experimental results on

the flash ADC (Analog-to-Digital Converter), show that accurate simulations can be

achieved at a fraction of the simulation time.
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Chapter 1

INTRODUCTION

1.1 Background

Analog circuits, which have been typically manufactured with mature technology

nodes that are one or two generations older than the leading node, have caught up to

their digital counterparts, leading to higher-performance analog devices and better

integration. However, this leapfrogging also brought about higher defect rates for

analog devices. Built-in self-test (BIST) and design-for-test (DFT) techniques are

also becoming more prominent in the analog domain to tackle the challenge or low

accessibility. The confluence of higher defect density and the trends of relying on

internal measurements with additional uncertainty results in the need to quantify

the test quality. Furthermore, stringent limits on defect levels from automotive and

other safety-critical domains dictate that test quality be quantified. As a result,

analog test patterns, regardless of whether they are specification-based, internally, or

automatically generated, need to be evaluated in terms of their defect coverage. To

achieve this goal, observed defects are modeled as faults in a way that can be simulated

using existing circuit simulators. Fault models in the analog domain include hard

faults (resistive opens and shorts) as well as soft faults (out-of-tolerance variations in

process parameters) [1]. In most cases, this boundary is fuzzy since a good fraction

of hard faults do not result in catastrophic failures but shift the performance of the

device to an undesirable level.

A defect is an unwanted physical change in a circuit element or connection between

circuit elements that are not within fabrication specifications for the circuit element
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or connection. A fault, on the other hand, is a way to model defects at a certain level

of abstraction. Faults are majorly classified as hard and soft faults. Hard faults are

all those faults that cause the circuit to fail catastrophically or cause large variations

from the actual parameters. Soft faults, also called parametric faults, cause one or

more performance parameters to be degraded.

A consensus has been reached in hard fault models, where an open circuit is

modeled with a large resistor (1GΩ - 100kΩ) and a short circuit is modeled with a

small resistor (1Ω - 100Ω) [2]. Analog fault simulation involves injecting faults and

comparing the faulty circuit’s response with the fault-free circuit’s response. Most

commercial electronic design automation tools include analog fault injection and sim-

ulation capabilities. The resistive hard fault model generates five potential faults per

transistor (D open, S open, G open, DG short, SG short), and two faults per passive

circuit component. This results in a rather large number of faults generated even

for a small-scale analog circuit for evaluation. Conducting fault simulations for each

possible fault in large circuits with thousands of transistors becomes computationally

infeasible, limiting fault simulations to smaller circuits. Techniques, such as fault

dropping and collapsing, have been introduced to reduce the number of faults to be

simulated based on physical observation (e.g., D open and S open faults behave al-

most identically) [3], [4]. However, fault simulations for large circuits, such as a PLL,

have remained challenging even after collapsing.

The typical analog circuit design process involves starting with a behavioral de-

scription using a high-level language like MATLAB or Verilog-A. This description is

used to define system-level parameters as well as translate the system-level specifica-

tions to the specifications of individual design blocks [5]. Simulations at the behavioral

level are much faster and suitable for running many fault simulations. However, be-

havioral models are often not conducive to fault simulations as changing behavioral

2
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parameters does not correspond directly to fault behaviors. Furthermore, faults can

alter the behavior of circuit blocks beyond what is included in the behavioral models.

Hierarchical fault simulation plays a crucial role in the efficient and effective anal-

ysis of analog circuit designs by introducing a structured method of fault diagnosis

that addresses the complexity of modern circuits. his approach provides a structured

method of fault diagnosis that accounts for the complexity of modern circuits. By

breaking down the simulation into levels of abstraction, from individual transistors to

the entire system, engineers can precisely identify faults and understand their impact

on circuit performance. The first stage of transistor fault simulation focuses on iden-

tifying potential faults at the most granular level, that is, in individual transistors.

This meticulous scrutiny ensures that faults are not overlooked in the early stages of

design verification, laying a solid foundation for subsequent analyses.

As ascending the hierarchy, fault response modeling acts as a critical link between

identifying potential faults and comprehending their impact on the circuit’s function-

ality. This important step entails crafting mathematical models or simulations that

forecast how faults at the transistor level will impact the behavior of larger circuit

blocks. These models play a pivotal role in gauging the severity of identified faults

and determining whether they necessitate further investigation or can be disregarded

based on their impact on the circuit’s operation. By prioritizing faults with sub-

stantial functional implications, this phase optimizes design and verification resource

allocation and streamlines the fault diagnosis process.

The hierarchical fault simulation process culminates in fault grouping, clustering,

and pruning, followed by system-level simulation. Engineers can reduce the complex-

ity and number of simulations needed to diagnose and address issues by grouping

faults with similar characteristics or effects. This speeds up the fault identification

process and enhances simulation efficiency by focusing on the most critical faults.
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System-level simulation integrates all findings from lower levels of abstraction, of-

fering a comprehensive view of the circuit’s behavior under various fault conditions.

This holistic approach ensures that the circuit design is robust and capable of meeting

its performance requirements, even in the presence of faults, thereby enhancing the

reliability and functionality of the final product.

Analog fault simulation is a method to predict circuit behavior under various faulty

conditions. There are different techniques for performing fault simulation. Some of

them are Inductive fault simulation, Monte Carlo simulation, Fault simulation, fault

grouping/ collapsing, and Fault simulation using high-level models. The literature

has combined and used these techniques to speed up the simulation time to simulate

all the faults in an analog circuit.

This work aims to bridge the gap between transistor-level fault simulations where

the fault models are more accurate and behavioral simulations that are faster and fea-

sible for larger circuits. The circuit is partitioned into its building blocks, as guided by

its behavioral model. Transistor-level fault simulations are conducted on the smaller

building blocks. For each building block, fault behavior is captured through additional

circuit components and functional transformations that are added to the behavioral

model. Once the behavioral model is enhanced with the fault response models, system

level simulations can be conducted using this enhanced behavioral model. To system-

ically extract the fault response model, I propose a small set of library templates

that can capture a wide range of fault behaviors. I propose a two-tier algorithm to

match the fault response obtained from SPICE simulations to that obtained with the

enhanced behavioral model. I conduct experiments on two sample circuits. A flash

analog to- digital architecture is chosen as a straightforward open-loop application

and a phased locked loop is chosen as a closed loop application that typically takes

a long time to simulate. I compare the results of transistor-level fault simulations to

4



those of behavioral fault simulations. These experiments show that hierarchical fault

simulations can produce accurate results at a fraction of the time that it would take

to conduct the entire simulation at the transistor level.
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1.2 Prior Work

Analog fault simulations are time-consuming due to the large number of faults that

need to be evaluated and the lack of accepted simple fault models at the behavioral

level [6]. While there is a large body of work on analog fault simulation, this research

focuses specifically on facilitating high-level fault simulations using behavioral models

captured from transistor-level fault simulations in this section.

Several basis functions have been explored in the literature to model the fault

response of analog circuits. Chebyshev and Newton (CN) interpolating polynomials

have been used to approximate nonlinear circuit behaviors using a single, state-space

CN polynomial model [7]. The work mainly theorized to implement a single model

that could eliminate the need for multi model fault modelling. They implement it

in two parts: model generation and model evaluation. The paper explains how to

obtain CN polynomials for one-dimensional (1D) and two-dimensional (2D) nonlinear

functions using Chebyshev nodes and Newton divided difference (NDD) methods.

They also describe how to employ CN polynomials in ss to obtain AMG-CNIP macro

models, and how to tune the polynomial order using an automatic polynomial tuner

(APT) algorithm. The ground-up non-linear model extraction suffers from a very

large search space and cannot model fault effects that result in delays and phase

changes.

In [8], the authors propose to link fault responses directly to the functional specifi-

cations of the circuit block, which then can be included in the behavioral model. The

primary objective of this methodology is to calculate crucial test metrics, such as the

probability of failure, fault coverage, and/or yield coverage for a given measurement

under process variations. To achieve this, the authors propose generating models

for both faulty and fault-free circuits. Once these models are in place, Monte-Carlo
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sampling can be utilized to simulate the conditions without the need for exhaustive

Monte-Carlo simulations, which are typically more resource-intensive. However, this

approach will not be able to capture faults that change the functional response of the

circuit in addition to its performance.

A complex-field-based fault modeling approach is explored in [9] for linear time-

invariant circuits. To enhance fault detection against measurement errors and para-

metric tolerance, the authors further introduce an improved fault model in a three-

dimensional (3D) complex space, which achieves a higher fault detection ratio (FDR).

Addressing the issue of fault masking observed in both 2D and 3D fault models, the

authors propose a Design for Testability (DFT) method that involves adding redun-

dant bypassing components in the Circuit Under Test (CUT). This method effectively

isolates ambiguity groups, improving the fault isolation ratio (FIR).

Similarly, in [10], the authors explore the application of system identification tech-

niques to fault diagnosis where fault responses are captured into the transfer function

of the linear time-invariant circuit. The authors categorize traditional fault diagnosis

techniques into two main approaches: Simulation Before Test (SBT) and Simulation

After Test (SAT), with a focus on fault dictionary methods under SBT and not-

ing their limitations in diagnosing soft faults caused by parameter deviation. The

researchers introduced a novel fault parameter diagnosis method that utilizes sys-

tem identification tools to construct nonlinear diagnostic equations based on multi-

frequency testing. The method employs a Genetic Algorithm (GA) to search for global

optimal parameters, aiming to diagnose module-level parameter faults. A fault mod-

ule, as defined by the authors, comprises several components, and the method allows

for the diagnosis of module faults by comparing estimated system parameters against

their normal values.

In [11], the authors capture the changes to the impulse response of the circuit
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by various faults. It introduces a functional fault model where a faulty module is

represented as a fault-free module in series or parallel with a fault module. They

employ an iterative deconvolution technique to extract the impulse response of the

fault module from the faulty response, significantly improving diagnostic resolution

by separating the fault from the system function. This approach also enables the

application of single-module fault tables in multi-module system diagnosis, simplifying

the diagnostic process.

The authors [12] propose to capture fault responses of linear time-invariant circuits

in terms of three basic steps, namely enhancements to Kirchoff’s current and voltage

equations, extraction of differential equations based on a signal flow graph model,

and symbolically solving the system of equations . In [13], the authors propose to

model the fault response effect on the output signal (for a given input signal) directly

using the Hilbert transform, which captures both the magnitude and phase shifts but

cannot capture nonlinear fault effects.

In reference [14], a defect simulator was established, incorporating defect mod-

els and assigning weights to each defect type model through sampling-based defect

simulation. The approach addresses common inquiries within the analog design com-

munity regarding the selection of sample sizes, verification of sampling algorithm

accuracy, and potential savings achieved through the application of sampling tech-

nologies. The methodology presented is grounded in a ”trust but verify” approach,

utilizing a commercial analog defect simulator, PrimeSim Custom Fault, across three

industrial-sized analog circuits: a Phase-Locked Loop (PLL), a Successive Approxima-

tion Register Analog-to-Digital Converter (SARADC), and a Physical Layer (PHY)

circuit, showcasing transistor counts ranging approximately from 3,000 to 30,000.

In [15], the authors employ a nonlinear autoregressive exogenous (NLARX) au-

tomatic model generation technique to perform high-level fault modeling and fault
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propagation. The extracted MATLAB models are then automatically transferred

into VHDL-AMS language format. This approach can handle non-linear behavior

and time delays. However, without any guidance from the existing circuit model, the

search space is extremely large, making fault response extraction complex.

In [16], the authors aim at capturing fault behavior into behavioral models (VHDL-

AMS) using DC analysis sweep and macro models of passive (resistors, capacitors,

diodes) devices in addition to ideal voltage and current sources. The limited nature

of circuit enhancements makes it difficult to capture a wide range of faulty behaviors.

Similarly, in [17], the aim is to extract fault responses at the block level and propagate

this information to the system level using behavioral simulations. The extraction of

this model is manual, relying on the designer for this task. In this work, need to

build a fault response model that aim to capture a wide range fault behavior and to

define a two-tier algorithm to extract fault response models based on the templates

and reduce the simulation time.
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1.3 Research Goals/Scope

• To bridge the gap between transistor-level fault simulations where the fault

models are more accurate and behavioral simulations that are faster and feasible

for larger circuits.

• To enhance fault response model templates to capture a wide range of fault

behaviors for analog building blocks and reduce the simulation time taken circuit

level fault simulations.

• To provide a two-tiered algorithm to extract fault response models based on the

templates, namely global search for a coarser level of model fitting and local

search or fine tune modelling.

• To demonstrate the accuracy of the fault simulation on circuit response for a

Analog to Digital converter circuit.

• To implement a unsupervised learning model that could further reduce the

simulation time at the system level

10



Chapter 2

METHODOLOGY

The overview of the proposed methodology is shown in Figure 1. The process

starts by exploring the existing behavioral model of the mixed-signal circuit that has

already been partitioned into circuit blocks (or modules). Our goal is to simulate

the transistor-level faults for each block separately and capture their effect into a

complete fault response model to enable system-level simulations. For each of the

blocks identified in the behavioral model, I modify the netlist to inject predefined

faults.

Figure 2.1: Overview of the Proposed Hierarchical Fault Simulation Approach

This step is identical to the offerings of existing commercial tools and in compliance

with the majority of the prior work. Perform SPICE level simulation on the fault-

free circuit to gather required results. Utilizing the same simulation testbench, then

11



generate responses from a circuit with introduced faults. These faulty responses serve

as the foundational ground truth for the High-level model. In the high-level model,

identify the circuit block based on established behavioral model.

After modifying the netlist, conduct SPICE level simulations on both the pristine

and fault-injected circuit configurations, using the same simulation testbench to en-

sure consistent results. I meticulously record the responses elicited from the circuit

under fault conditions, which serve as the empirical basis for calibrating the high-level

model. Then employ a fault response template library that seamlessly integrates with

the circuit’s behavioral model. By strategically inserting fault characteristic tem-

plates such as non-linearity, delay, or hysteresis at key points in the circuit block, our

methodology facilitates an unparalleled level of fault response accuracy and model

fidelity.

To refine the high-level model, utilize a dual-level parameter search approach

guided by the objective of aligning the model’s response with that observed in SPICE

simulations. Our meticulous alignment process relies on two key similarity metrics

- Dynamic Time Warping (DTW) and Euclidean Distance (ED) - each chosen for

its ability to capture the essence of the behavioral discrepancy between fault-free

and fault-induced circuit operations. By adopting these metrics and a strategically

determined threshold reflective of the fault’s severity, can precisely tune our search for

optimal model fitting parameters. Once tailored the model for each fault and circuit

block, can integrate it into the behavioral simulator to transition to system-level

fault simulations. This approach offers a holistic view of the circuit’s performance

under a spectrum of fault conditions, promising enhanced reliability and fidelity in

the design and assessment of mixed-signal circuits. Our methodology’s strength lies

in its rigorous and systematic approach to fault simulation.

12



2.1 Fault injection

Faults in a transistor can broadly classified into hard faults, which are opens and

shorts between each terminal of the transistor and parametric/global faults are those

which shift in one or more parameters such as length, width and threshold voltage

for all of the circuit. To inject both faults, extract the circuit level netlist from the

circuit designed. Now to inject shorts insert employ a 10Ω resistance while more

several faults (1 mΩ - 20 kΩ) have also been explored in the literature. Drain and

source-open defects are modeled with the insertion of a 1 MΩ resistance although

more severe faults (1 MΩ - 1 GΩ) have been explored in the literature [4], [19].

Figure 2.2: Fault Model for Open and Short Circuit Faults

The gate-open defect is treated as special since it does not draw any DC current.

For gate-open faults, terminate the gate connection (to ground, negative supply, or

positive supply, depending on the transistor type) through a 1 MΩ resistor. This

ensures the transistor remains in the off state. The global threshold and length

faults are modeled using the values indicated in the process design kit (PDK). In the

experiments, use the 65nm kit. 50% deviation in threshold voltage and length are

simulated as global parametric faults. Multiple fault instances have been explored in

the literature [18]. However, injecting single faults in our experiments since this does

not change the hierarchical fault simulation approach. These opens and shorts are
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injected to the netlist one by one to the fault free netlist. Multiple fault instances

have been explored in the literature

Manually implementing fault models is often time-consuming and impractical.

Our team has developed a Python script that simplifies this process by systemati-

cally manipulating the original netlist. This script can insert both shorts and opens,

and simulate global faults with precision and speed. To mimic a short circuit condi-

tion, use a resistor to bridge two terminals. Conversely, replicate open faults with a

large resistor, typically 1M Ohm, between a transistor terminal and its corresponding

original net. The approach address global faults by adjusting critical parameters such

as the transistor’s length and threshold voltage, reducing them to 50% of their origi-

nal values. All modifications are meticulously cataloged in a revised netlist, which is

then ready for comprehensive SPICE level fault simulation.

This foundational work paves the way for fault simulations to be executed auto-

matically, a task that has traditionally been time-consuming when performed man-

ually. The introduction of an OCEAN script specifically tailored to the Cadence

environment represents a significant breakthrough in this process. This script en-

capsulates all necessary Analog Design Environment (ADE) simulation parameters,

such as temperature settings, simulation duration, time steps, and the nature of the

simulation (i.e. DC or transient). It also specifies the output requirements, including

the data to be saved and any relevant output equations. The OCEAN script serves

as a conduit that seamlessly translates the ADE-defined simulation parameters into

an automated and repeatable process, eliminating the need for manual intervention

and greatly accelerating the fault simulation workflow.

The culmination of this process is the generation of output data in a CSV format,

meticulously organized for ease of analysis. This not only facilitates a straightforward

comparison between the simulated responses of fault-free and fault-induced circuits

14



but also enhances the accessibility of the data for subsequent high-level modeling

efforts. By automating the fault injection and simulation processes, this not only

expedite the evaluation of potential circuit failures but also elevate the precision of

our fault analysis, enabling a more robust and reliable design process for mixed-signal

circuits. This methodological innovation represents a leap forward in the field of

circuit design and analysis, promising significant improvements in both the efficiency

and efficacy of fault simulation procedures.
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2.2 Fault model templates

Our approach to modeling fault responses exists at the boundary of system-level

description and circuit-level description. Fault responses are obtained by running

transistor-level simulations in the SPICE environment. This library, designed for

quick fitting while capturing a wide range of fault effects from non-linear phenomena

to temporal variations like frequency shifts and hysteresis, enables us to replicate the

intricate behaviors of circuit failures. Through a detailed mapping process, translate

these failures into quantifiable model adjustments, allowing for precise identification

and targeted model modification to mirror fault perturbations. There can also be

potential in further enhancing our methodology through advanced techniques such

as fault collapsing and ordering, aimed at streamlining simulations and improving

efficiency. However, these are areas for future exploration.

Polynomial Hash Function:

If the analog or mixed-signal circuit has nominally non-linear behavior, this will al-

ready be captured in the fault-free behavioral model. For instance, a comparator is

a mixed-signal device with a highly non-linear large signal behavior. The ideal com-

parator model captures this non-linear behavior. Thus, for our modeling approach,

captures additional non-linearity that is not present in the existing fault-free model.

This relaxes the modeling need, and can limit our modeling approach to polynomials

up to 13th order (following most non-linear distortion models [20]) although most

non-linear effects can be modeled with a third order polynomial [21]. The polynomial

hash function can be applied to the input or the output of any functional block.

Y = c0 + c1X + c2X
2 + . . . (2.1)

Baseline Delay:
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An important fault effect to model is the delay that it may induce in the response of

the circuit. While it is difficult to capture the delay with a ground-up mathematical

model, it is fairly straightforward to add it to the behavioral model as a block with

a variable delay amount.

Figure 2.3: Baseline Delay Function

Noise: Some of the fault effects increase the noise level in the circuit. Noise can

be added as a Gaussian random variable into the signals at the input or output of the

functional block. In some cases, noise may need to be filtered and/or upconverted to

higher frequencies to model band-limited noise effects.

RC Delay, Ringing, and Oscillatory Behavior:

Some faults cause changes in the rise time or fall time of the circuit or limitations to

the slew rate of the signals. These effects can be captured with an RC circuit at the

input or the output of the functional block. Ringing behavior can be modeled using

a second-order RC circuit and oscillatory behavior can be modeled with a positive

feedback circuit.

Hysteresis:

Faults may cause hysteresis in circuit behavior where the response is dependent on

whether the input (or output) signal is rising or falling. This effect can be modeled

using a derivative block that controls the output circuit parameters (such as delay,

17



RC values, etc.). In effect, the circuit is transformed into two distinct embodiments

where the correct version is selected based on the derivative of the input signal (falling

or rising).

Figure 2.4: RC and Hysteresis Function

Frequency Shift:

For a sub-class of circuits, such as oscillators and phase-locked loops, faults may

alter the operating frequency of the circuit. This can be captured by a shift in the

frequency domain or ideal mixing and filtering in the behavioral model.
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2.3 Dynamic Accuracy Setting

In order to enhance the model’s flexibility and responsiveness, it is crucial to

implement a dynamic threshold setting technique that can refine the accuracy of our

simulated fault models. By leveraging the natural variability of faults, ranging from

those with significant impacts to those with minimal effects, this innovative approach

enables the model to intelligently adjust its precision based on the observed severity

of the fault response. At the core of our adaptable methodology lies the crucial notion

of similarity error. This metric is derived from a thorough comparison of the flawed

circuit’s response, obtained through rigorous transistor-level fault simulations, and

the unblemished, error-free response. By employing Dynamic Time Warping (DTW)

or Euclidean distance measurements, this comparison generates a measurable gauge of

the variance between the anticipated and real-world circuit behaviors. The similarity

error holds great significance as it acts as a reliable indicator of the model’s fidelity. It

helps to adjust the accuracy threshold based on the magnitude of the error. In cases

where the similarity error exceeds predefined limits, signaling a significant divergence

that can be deemed catastrophic, the model takes a pragmatic approach of reducing

its demand for precision. This acknowledgement of catastrophic failures as beyond the

scope of detailed accuracy highlights a strategic decision to allocate computational

resources more efficiently. The focus is on the nuances of faults that subtly alter the

circuit’s performance, to ensure optimal utilization of resources.
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Figure 2.5: Ideal Response and Two Faults Response

An excellent way to demonstrate this concept is by comparing different responses

to faults. The response of a fault-free scenario is typically step-like and serves as a

reference point for evaluating the effects of faults. Fault 1, which settles within a

tolerable timeframe but with noticeable behavior, is an example of a fault that is

significant but does not prevent the circuit from meeting its specifications. On the

other hand, Fault 2, which has a prolonged and pronounced settling period, causes the

response to deviate far beyond acceptable limits, making it a catastrophic fault that

severely impacts the circuit’s functionality. The strategic use of model accuracy selec-

tion, based on the severity of similarity errors, demonstrates a sophisticated approach

to simulation. This technique optimizes time and computational resources by focus-

ing efforts on analyzing subtle yet critical faults that impact circuit performance.

By adjusting the model’s precision dynamically in response to each fault’s unique

characteristics, this methodology enhances simulation efficiency while also generating

more insightful and practical fault analysis. Ultimately, this paves the way for more

nuanced and effective electronic circuit design.
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2.4 Fault Response Model Fitting

The process of developing model templates for fault simulations in analog circuits

involves a particular approach to parameter selection and fitting, where the complex-

ity of the task can worsen significantly due to the expansive search space for these

parameters. For instance, when modeling the rise time or fall time of a signal and

selecting the value of capacitor the parameters involved span several orders of mag-

nitude. This vast range complicates the optimization process, as finding the optimal

set of parameters that accurately reflect the circuit’s real-world behavior under fault

conditions requires navigating through a significantly enormous search space. The

fact that these elements are interdependent adds to the complexity of this process.

Unlike variables that can be optimized in isolation, these fitting parameters influence

the circuit model’s behavior in a collective manner.

This interlinked optimization problem is computationally demanding, especially

when applied to all the possible fault scenarios that an analog circuit could expe-

rience. The essence of hierarchical fault simulations is to streamline the simulation

process, allowing for efficient analysis of faults at various levels of the circuit design.

However, the high computational complexity involved in functionally fitting multiple

interleaved parameters threatens to undermine this efficiency. The hierarchical ap-

proach’s anticipated benefits may be undermined by the time and processing resources

required for the thorough search necessary for each fault model. Strategies such as

employing machine learning algorithms for intelligent parameter estimation, simpli-

fying the model complexity without sacrificing accuracy, or developing more efficient

search algorithms could prove pivotal in preserving the hierarchical fault simulation’s

viability as a tool for robust and efficient circuit design and analysis.

In order to ensure accurate and efficient detection and characterization of circuit
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faults, a commonly used two-phase technique in machine learning is employed to

construct the algorithm for fault response modeling. The first metric used is Dynamic

Time Warping (DTW)[22], which assesses the similarity between two time series data

by allowing for the alignment of sequences that may vary in time or speed. DTW’s

ability to precisely record the subtle differences and similarities between a circuit’s

fault-free and faulty responses is due to its capacity to adjust to these variances by

”warping” the time axis until an ideal match between the two sequences is established.

This method directly tackles the challenge of time-based discrepancies, ensuring that

the analysis remains robust even when direct comparisons might be complicated by

temporal shifts in the signal responses. The figure shows the difference between ED

and DTW distance for the same responses

Figure 2.6: Comparison between DTW and ED Metrics

The Euclidean Distance (ED) is a valuable metric that provides a different view

of the data by measuring the distance between two points in multi-dimensional space.

Specifically, it measures the straight-line distance between corresponding time series

data points. Unlike DTW, ED is most effective when time series are aligned, and

the primary objective is to measure the degree of divergence between them. It does

not factor in temporal shifts. By leveraging both DTW and ED, the algorithm gains

a comprehensive understanding of fault impacts, incorporating insights from both

time-warped and direct comparisons.

To search for the model parameters efficiently, developed a two-phase algorithm

22



as shown in Figure 2.

Figure 2.7: Search Algorithm

Realizing that adjusting template functions individually within a fault model can

create a cumbersome search space that hinders efficiency, a new approach is neces-

sary. As a result, a two-tiered search algorithm has been developed that combines

both global and local search strategies to tackle the complexities involved in optimiz-

ing template function values. This advanced algorithm is engineered to effectively

navigate through extensive parameter space, identifying the best configurations that

accurately reflect the circuit’s faulty behaviors. The global search begins by casting

a wide net to identify promising regions within the vast search landscape, aiming to

pinpoint potential areas where optimal solutions can be found. After conducting a

thorough global search, the local search phase delves deeper into the identified areas,

employing a focused and precise technique for parameter optimization. This phase
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is essential for perfecting the template functions to closely match the observed faulty

behaviors of the circuit, as determined by rigorous fault simulations at the transistor

level. The meticulous refinement during the local search phase is guided by the princi-

ple of attaining high fidelity in the model’s response, dynamically adjusting accuracy

in response to the severity of faults as indicated by the similarity error criteria.

Our algorithm simplifies the search process, minimizing the intricacies of the

search space. It utilizes a systematic methodology for fault modeling, blending exten-

sive, exploratory phases with precise, detail-oriented ones. This strategy guarantees

that the model precisely captures the intricate behaviors of defective circuits, am-

plifying the usefulness and importance of the simulations. Our algorithm furnishes

a sturdy framework for identifying and comprehending circuit faults with a versatile

and adjustable accuracy threshold.

In this phase, our global threshold (GTh) for model fitting is set to be 10% of the

baseline similarity error, a metric obtained from a comparison between the faulty and

the fault-free responses of the circuit. This crucial step guarantees that the model’s

precision is perfectly tailored to the severity of the fault-induced deviations, creating

a clear benchmark for accuracy. The algorithm then systematically explores the

template function values, beginning with the polynomial function coefficients at the

input. This initial stage is essential for capturing the circuit’s nuanced pre-comparator

behavior, laying the groundwork for a comprehensive modeling of the fault impact.

Next, utilized a logarithmic function of the RC (resistance-capacitance) and de-

lay function variables, taking into account their interconnection and expansive op-

erational scope. Employing this logarithmic tactic enables swift exploration of the

search space, from the leisurely milliseconds of gradual dynamics to the swift pi-

cosecond transitions, guaranteeing a thorough analysis for the most desirable values.

Subsequent to the RC and delay parameterization, our algorithm turns its attention
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to the output, ascertaining the coefficients for the output polynomial hash function

to accurately mirror the comparator’s reaction under fault conditions.

When the derived template function values reach the required accuracy, the global

search phase is considered successful, and the values are finalized. However, if the

accuracy benchmark is not met, an iterative refinement process follows, including an

increase in the order of coefficients and a renewed search. This iterative refinement

shows the algorithm’s ability to adapt and ensure precision. It helps capture the

circuit’s faulty behavior and meets accuracy requirements. This diligent process forms

a solid foundation for a fault model that combines high fidelity with practical insight

into circuit behavior.

During the second phase of our algorithm, narrow down the search area based

on what was learned in the first phase. Use 50% range of values found in the initial

phase to focus our search. This helps us to fine-tune the parameters more efficiently.

Using a genetic algorithm, can fine-tune the values for the template function in this

precise search area.

The genetic algorithm (GA) is a powerful optimization and search technique in-

spired by the principles of genetics and natural selection. It mimics the process of

biological evolution by starting with a population of potential solutions to a given

problem, each represented by a set of ”genes” or parameters. These solutions then

evolve over successive generations, with the algorithm applying natural operations

such as selection, crossover, and mutation. Fit individuals are favored through selec-

tion, allowing them to pass their genes to the next generation. Crossover mixes the

genes of parent solutions to produce offspring, introducing new solution variants. Mu-

tation introduces random changes to individual genes, which prevents the algorithm

from becoming stuck in local optima and encourages exploration of the solution space.

Through these iterative processes, the GA aims to evolve solutions towards increasing
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levels of fitness, ultimately converging on an optimal or near-optimal solution to the

problem at hand.

Figure 2.8: Genetic Algorithm

Genetic algorithms (GAs) excel at solving intricate optimization problems that

stymie traditional search and optimization techniques. These problems may be chal-

lenging due to their size, non-linearity, multi-modality, or other characteristics. GAs

search a population of solutions instead of a single point, making them adept at find-

ing global optima and resistant to the pitfalls of local optima traps. The algorithm’s

flexibility and adaptability make it a potent tool for a wide range of applications,

including engineering design, scheduling, machine learning, and artificial intelligence.

GAs’ evolutionary approach allows them to navigate vast and complex search spaces

efficiently, making them invaluable for tackling problems where the search space is

poorly understood or difficult to navigate using conventional methods.

This genetic algorithm uses an iterative and adaptable approach to find optimal

configurations that meet the model’s accuracy standards. The local search phase

demonstrates the effectiveness of evolutionary principles in fault modeling. The re-

sulting fault model is precise and informative, meeting strict accuracy criteria and

providing valuable insights into the subtle impacts of marginal faults on circuit per-
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formance. This process combines a targeted, limited search space with the adaptive,

iterative capabilities of the genetic algorithm, resulting in a efficient and powerful

model.
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2.5 Fault Clustering

In our pursuit of refining the model’s efficiency and achieving a reduction in sim-

ulation time, have strategically proposed the adoption of a fault clustering algorithm.

This approach aims to improve our current process by adding a complex data group-

ing/clustering layer that depends on the template parameters values taken out of our

fault response model. Our goal is to streamline the analysis process by classifying

the collected data according to these core factors using the k-means method. The

incorporation of k-means into our fault analysis model takes advantage of the algo-

rithm’s ability to handle large, complicated data sets with resilience to guarantee a

more precise, accurate, and speedy simulation process.

The K-means clustering algorithm functions by first identifying the desired num-

ber of clusters, K, utilizing methods such as the Elbow Curve. The algorithm then

selects initial centroids either randomly or through more informed techniques like

k-means++. Data points are subsequently assigned to the nearest centroid based

on Euclidean distance, effectively grouping them into clusters. After assignment, the

centroids are updated as the mean of all points within their cluster, refining their

position to better represent the cluster center. This process of point assignment and

centroid update repeats until convergence is achieved. Ultimately, K-means efficiently

organizes data into distinct clusters, with the final centroids accurately embodying

the centers of their respective clusters, thereby enabling clear partitioning of data

based on similarity.

Implementing fault clustering can significantly streamline simulation time by group-

ing similar faults, reducing the number of individual simulations required. While some

steps of the algorithm are undoubtedly essential and cannot be replaced or reduced,

would like to focus on reducing the more mundane simulation time-consuming parts.
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Chapter 3

IMPLEMENTATION

To validate the effectiveness and precision of our hierarchical fault modeling method-

ology, selected an analog-to-digital converter (ADC), focusing specifically on a flash

ADC due to its widespread use and simplicity. By applying our hierarchical fault mod-

eling approach to showcase the method’s accuracy in modeling faults. The evaluation

process involves a detailed comparison of the fault model’s accuracy at the system

level, utilizing MATLAB for visualization, analysis and simulation. This aims to show

notable improvements in fault detection accuracy and simulation process efficiency

by comparing the results of our hierarchical modeling approach with conventional

fault simulation techniques. Our dedication to improving fault analysis techniques is

demonstrated by our all-encompassing validation strategy, which ultimately aims to

raise the performance and dependability of analog-to-digital conversion systems and,

consequently, the entire area of electronic circuit design.

3.1 Flash ADC

Flash analog-to-digital converters, also known as parallel ADCs, are the fastest

way to convert an analog signal to a digital signal. Flash ADCs are suitable for

applications requiring very large bandwidths. It is one of the simplest and fastest

ADC architectures in literature. Flash ADC consists of string of resistors and high-

speed comparators. The reference voltage is the FSR voltage divided by N resistors,

which would create a voltage divider and the smallest division is called LSB.

1 LSB =
FSR

2N
(3.1)
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Figure 3.1: Flash ADC

The gray code output, get after all the comparators are then passed through

another digital circuit which converts gray scale into 3-bit digital output. In this

project, considering the output at the end of to be final output as after that it can

have some digital logic gates which are not considered.
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3.1.1 Comparator

A comparator is a device that compares an input voltage with a reference voltage

and indicates which is greater by means of a digital output. If positive terminal is

greater than negative terminal, then the comparator output will be 1. For inverted

comparator, the working is exactly opposite, then the output will be 0. The compara-

tor amplification is very high gain, as it should be able to amplify a small difference.

These comparators are essential components in various applications from level detec-

tors, oscillators to ADC to make quick decisions based on small input changes.

Comparator architecture:

Figure 3.2: Simple Comparator Architecture

The comparator designed in this project is a two-stage comparator that has a

preamplifier and a positive feedback track and hold latch stage. The preamplifier is

a like differential input pair which converts the voltage into current. This current

is then mirrored into the next stage which consists of a cross coupled pair which is

positive feedback and diode connected load. After this there is a self-biased differential
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Operational transconductance amplifier which converts differential input into a single

ended and based on which input is larger, the output will be lower or higher value.

Then there is an inverter which converts this into a digital signal.

Figure 3.3: Ideal Response of 3-Bit Flash ADC

During the transient analysis with a ramp input, we observe the ideal response of a

3-bit Flash ADC. Each comparator trips correspondingly as the ramp input increases.
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Chapter 4

EXPERIMENTAL RESULTS

The flash ADC consists of a resistor string and a string of comparators. Since the

resistor string is already modeled at the behavioral level, the module to model here

is the comparator.

Figure 4.1: High-level Model of the Comparator

The high-level model for the comparator is shown in Figure 3. For each fault,

the model parameters are computed separately and no fault collapsing or ordering

has been employed. Extraction of the fault model takes on average 5 seconds (some

faults have a higher accuracy threshold compared to the others). Overall, 95 hard

and parametric faults are evaluated for the comparator. For all evaluated faults, the

input hash function has only one parameter, a DC offset. A first-order RC circuit has

proven to be sufficient to model the rise time and fall time delays (no faults resulted

in ringing or oscillatory behavior). The output hash function is of first degree despite

the highly non-linear behavior of the comparator, which is already captured in the

ideal model. Most faults have resulted in hysteresis behavior where the rise and fall
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time responses are different depending on whether the output is rising or falling. This

can be included in the model in multiple ways. The derivative block has been chosen

for its general applicability, although the ideal response could also serve this purpose

effectively.

At the comparator level, fault response similarities are evaluated as DTW or

ED metrics. The thresholds are adjusted per fault based on the difference between

faulty and fault-free responses. After the fine-tuning phase of the fitting algorithm,

each fault response is modeled with a worst-case error metric. To analyze the fault

modeling effects in more detail, have grouped the faults into five categories: (a) faults

that shift the offset of the input hash function (IHF), (b) faults that shift the output

hash function offset (OHF), (c) faults that shift the output hash function gain (OG),

(d) faults that shift the baseline delay (D), and (e) faults that shif the RC value at the

output (RC). A fault can be included in more than one category since it can change

multiple parameters. For each category, RMS (root-mean-square) was calculated of

the similarity error, which is shown in Table 4.1. Table I shows that faults in each

category are modeled with similar efficacy and there are no significant differences

between the fault categories.

Table 4.1: Similarity Errors for Different Fault Categories

Fault Cat. Baseline IHF D OHF OG RC

Metric

DTW 1800 8.4 5.8 16.7 0.2 7.2

ED 500 4.0 4.6 4.8 0.0 4.6

Next, evaluated the accuracy of the fault simulations at the system level using a

3-bit ADC as a demonstration. To enable full-scale transistor-level simulations, have

chosen to limit the resolution of the ADC to three bits. For the 3-bit ADC, there

are 672 faults to simulate, where the majority of them are within the 7 comparators.

34



The ADC is simulated for its static parameters, including DNL, INL, gain error, and

offset error. Some faults result in very large deviations in these parameters whereas

some faults result in only marginal deviations. For a more detailed analysis of the

accuracy, have grouped the faults into the same aforementioned categories. These

represent two of the fault responses, one that causes catastrophic shifts and another

that causes marginal shifts.

Figure 4.2: Fault Response with Catastrophic Shift

Figure 4.3: Fault Response with Marginal Shift

Table 4.2 shows the RMS errors (evaluated over each fault category) of deter-

mining DNL, offset error, and gain error with a ramp input, for all fault categories.

DNL and offset errors are with reference to 1LSB; the gain error is with reference
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to 1. Hierarchical fault simulations and full transistor-level fault simulations are in

agreement with the maximum error for hierarchical fault simulation being less than

1% of 1 LSB. As an example, Figure 4 shows the simulation results for 2 randomly

selected faults.

Table 4.2: RMS Error in Estimating DNL, G and Voff

Fault DNL1 DNL2 DNL3 DNL4 DNL5 DNL6 G Voff

IHF 2e-4 7e-4 4e-4 3e-4 3e-4 2e-4 3e-6 0

D 8e-4 6e-3 2e-3 1e-3 1e-3 5e-4 2e-4 2e-6

OHF 1e-3 6e-3 2e-3 2e-3 2e-3 8e-4 9e-6 9e-7

OG 6e-4 1e-2 8e-4 1e-3 9e-4 1e-4 2e-6 0

RC 8e-4 8e-3 2e-3 1e-3 1e-3 4e-4 1e-5 1e-6
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4.1 Simulation Time

Table 4.3 compares the computation times between the hierarchical and full transistor-

level simulations for three circuits: a 3-bit flash ADC and an 8-bit flash ADC. Compu-

tation times for the hierarchical simulations (HL) include transistor-level simulations

for each block, model fitting time, and behavioral simulations whereas computation

time for full transistor-level simulations (SP) includes only the SPICE simulation

time. The time savings for the hierarchical simulations increase with the increasing

complexity of the circuits.

Table 4.3: Fault Simulation Time Comparison

3b ADC 8b ADC

SP 14s 30min

HL 10s 15min

Reduction 1.4x 2x

To implement the fault clustering used the template model values as data points.

Since the duration of transistor-level simulations is constant and determined by the

capabilities and limitations of the simulation tools, the focus shifts towards optimizing

the remaining components of the simulation process. Model fitting and the search for

optimal template values consume the bulk of the time, accounting for approximately

50% of the total simulation time. While attempts to streamline this process could

potentially expedite simulations, they risk compromising the model’s accuracy, lead-

ing to significant discrepancies between the simulated and actual circuit behaviors.

Meanwhile, performance parameter calculations, representing about 20% of the total

time, emerge as a viable option for optimization.

Our dataset consists of five systematically processed and scaled variables, with

a data range spanning from 1 to 10-15. Employed several normalization techniques
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to facilitate more effective grouping and extensively evaluated their performance,

including MinMax Scaler, MaxAbsolute Scaler, and Standard Scaler, among others.

After careful consideration, selected the MinMax Scaler and Standard Scaler as the

best choices based on the number of clusters and error (elbow curve), ultimately

choosing the Standard Scaler for its superior performance with respect to cluster

cohesion and error metrics.

Figure 4.4: Fault Clusters and Sizes

Since the duration of transistor-level simulations is constant and determined by

the capabilities and limitations of the simulation tools, the focus shifts towards op-

timizing the remaining components of the simulation process. Model fitting and the

search for optimal template values consume the bulk of the time, accounting for ap-

proximately 50% of the total simulation time. While attempts to streamline this

process could expedite simulations, they risk compromising the model’s accuracy,

leading to significant discrepancies between the simulated and actual circuit behav-

iors. Meanwhile, performance parameter calculations, representing about 20% of the

total time, emerge as a viable option for optimization.

Using data clustering techniques offers a strategic solution to streamline the calcu-

lation of performance parameters, resulting in significant time savings. This approach
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is particularly effective in Flash ADCs due to the recurring nature of faults in the com-

parators. In a Flash ADC with 7 comparators that may each have up to 100 unique

faults, there could be a total of 700 distinct fault simulations. Observed that the

average cluster size is around 10 for the data collected. However, by employing fault

clustering for all ADC faults, a substantial reduction in computational overhead can

be achieved, revolutionizing simulation efficiency. Table 4.4 shows the improvement

in simulation time from implementing fault clustering.

Table 4.4: Fault Simulation Time Comparison with Clustering

3b ADC 8b ADC

SP 156min 12288hrs

HL 14min 143hrs

Reduction 11x 85x

As a result, the simulation time is reduced tenfold without compromising the

model’s accuracy in analyzing fault impacts. This optimization strategy highlights

the importance of innovative approaches to simplify the complexities of ADC fault

modeling, and demonstrates the potential for significant improvements in simulation

efficiency. These advancements make it possible to create accurate and efficient fault

models, thus improving the efficacy of simulations in capturing the nuanced behaviors

of Flash ADCs under fault conditions.
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Chapter 5

CONCLUSION

This work aims to close the gap between existing transistor- level fault simulation

tools, known for their accuracy, and behavioral abstraction levels, characterized by

shorter simulation times. Our approach involves incorporating functional enhance-

ments into the high-level models of individual circuit blocks. The model enhance-

ments are chosen from a predefined set of templates through a two-tier algorithm

that aims to align the responses between SPICE simulations and HL simulations.

Two similarity metrics with dynamically adjustable thresholds are used for model

fitting. Experimental findings on case study, a flash ADC , demonstrate that highly

accurate fault simulations can be attained at a significantly reduced simulation time.

Data clustering algorithm also decreases the sim time by 4 folds. The image process-

ing for layout can be further continued and can be completed to fruit probability of

shorts and improve overall fault model.
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