
Accelerating Deep Learning Inference in Relational Database Systems

by

Saif Masood

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2024 by the

Graduate Supervisory Committee:

Jia Zou, Chair
Xusheng Xiao
Yingzhen Yang

ARIZONA STATE UNIVERSITY
May 2024

ABSTRACT

Deep learning has become a potent method for drawing conclusions and forecasts

from massive amounts of data. But when used in practical applications, conventional

deep learning frameworks frequently run into problems, especially when data is stored in

relational database systems. Thus, in recent years, a stream of research in integrating

machine learning model inferences with a relational database to achieve benefits such as

avoiding privacy issues and data transfer overheads is observed. The logic for performing

the inference using the DNN model can be encapsulated in a user-defined function

(UDF). These UDFs can then be integrated with the query interface of the DBMS and

executed by the query execution engine. While it is relatively straightforward to leverage

the User Defined Functions (UDFs) to implement machine learning algorithms using

parallelism, it is observed that such implementations will not always be optimal and may

incur issues in balancing the database threading and the threading of the libraries that the

UDFs invoke. Since relational databases provide native support for relational operators, it

is possible to leverage a cost model to make decisions for selectively transforming the

UDFs based inference logic into a model-parallel implementation for optimal

performance. Thus, this thesis will focus on the following: 1. Designing a

domain-specific language for implementing the UDFs using Velox library, which can be

lowered to a graph-based intermediate representation (IR); 2. Providing a cost model that

aids in the decision-making of converting a UDF-centric implementation to a relation

centric one.

ⅰ

ACKNOWLEDGMENTS

I extend my sincere gratitude to Dr. Jia Zou, Assistant Professor in the School of

Computing and Augmented Intelligence, for her invaluable guidance and unwavering

support throughout my thesis journey. Under Prof. Zou's mentorship, I delved deep into

the realm of Machine Learning Systems during our collaborative work on the Unified

Compilation project, which forms the essence of this thesis. Before joining Prof. Zou's

lab, I had not authored any research papers, but her mentorship enabled me to contribute

to the academic community with two publications. Additionally, I am indebted to Prof.

Zou for broadening my academic horizons by allowing me to partake in SIGMOD’23, a

significant research conference, where I gained invaluable insights and experiences.

Furthermore, I extend my gratitude to Dr. Yingzhen Yang and Dr. Xusheng Xiao for

generously dedicating their time and expertise as committee members for my Master’s

thesis defense.

I express my heartfelt appreciation to the members of the Cactus Data-Intensive

Systems Lab at ASU, especially Lixi, Hong, and Qi for their assistance whenever I

required it. Their support and collaboration greatly enriched my research journey.

Furthermore, I extend my gratitude to the Velox team at Meta and our esteemed

collaborators at Amazon for their invaluable contributions and collaborative efforts,

which significantly enhanced the scope and quality of my work.

I am also deeply thankful to my parents for their enduring support and encouragement

throughout my Master's degree.

ⅱ

TABLE OF CONTENTS

Page

LIST OF TABLES ……………………………………………………………………. v

LIST OF FIGURES ………………………………….……………………………….… vi

CHAPTER

1. INTRODUCTION ……………………………………………………………. 1

2. LITERATURE SURVEY ……………………………………………………… 5

3. BACKGROUND………………………………………………………………. 7

3.1 Deep Neural Networks…….……………………………………………… 7

3.2 DNN-RDBMS Integration Models………………………………………. 9

3.2.1 ML-Centric ….……………………………………………………. 9

3.2.2 User-Defined Function (UDF) Centric ……………………….….... 10

3.2.3 Relation-Centric …………………………………………………… 11

3.3 Query Plan Optimization ……………………………………………….... 12

3.4 The Hybrid Framework ……………….………………………………… 13

3.5 Velox Execution Engine ……….………………………………………… 15

4. ML INFERENCE IN VELOX ……………………………………………….. 19

4.1 Velox Logical Plan………………………………………………………… 19

4.2 Velox Tasks, Operators, Splits and Drivers……………………………… 20

4.3 ML Kernels as UDF………………………………………………………. 21

4.3.1 Design ……………………………………………………………… 21

ⅲ

CHAPTER Page

4.3.2 Matrix Multiplication………………………………………..………. 23

4.3.3 Matrix Addition …………………………………………………….. 24

4.3.4 Activation Kernels ………………………………………………… 25

4.3.4.1 ReLU……….…………………………………………… 25

4.3.4.2 Softmax…………………………………………………… 27

4.3.5 TorchDNN…….…………………………………………………… 28

4.4 Hyperparameters…………………………………………………...……... 30

4.4.1 Splits……………………………………….………………………. 30

4.4.2 Drivers(Velox Threads)……………………………….……………… 31

4.4.3 Library Threads ………………….……..……………………………. 31

4.4.4 Batch Size …………………………………………………………….32

4.5 Feed Forward Neural Network (FFNN) Inference ………,......................... 32

5. COST MODEL……… ……………………………………………………….. 35

5.1 Design …………………………………………………………………… 35

5.2 Implementation……………………………………………………………. 36

6. CONCLUSION AND FUTURE WORK ……………………………..……….. 39

REFERENCES ………………………………………………………………………… 42

APPENDIX

A ML KERNEL CODE …………………………………………………….…………. 47

B COST MODEL……………………………………………………………………… 57

ⅳ

LIST OF TABLES

Table Page

1. Benchmark Results for MNIST Inference Workload ……………………….… 34

ⅴ

LIST OF FIGURES

Figure Page

1. Johnson, J. (2020, July 27). Deep Neural Network. BMC ……………………. 8

2. MLWiki. (n.d.). Logical Query Plan Optimization……………………………. 13

3. UDF-Centric to Relation-Centric Transformation ……………………………… 14

4. Optimizer Transforming Matrix Multiplication to Join & Aggregation ……… 15

5. Velox as Execution Engine …………………………………………………….. 16

6. Illustration of Velox Operators Functionality ………………………………… 20

7. Velox Task Execution…………………………………………………………… 21

8. Class Diagram for ML Function ………………………………………………… 22

9. Brownlee, J. (2020, August 20). Line Plot of Rectified Linear Activation for

Negative and Positive Inputs ……………………………………………………. 26

10. Class Diagram for Cost Model………………………………………………….. 36

11. Velox Threads vs Torch Threads CNN Benchmark for 64 Samples ……….…… 40

12. Velox Threads vs Torch Threads CNN Benchmark for 128 Samples …………. 40

13. Velox Threads vs Torch Threads CNN Benchmark for 256 Samples ………… 41

ⅵ

CHAPTER 1

INTRODUCTION

Deep learning in relational databases seeks to improve data processing, analysis, and

decision-making capabilities by fusing deep learning methods with conventional

relational database management systems (RDBMS). Relational databases have

historically been used mostly for storing structured data and running SQL queries to

manipulate and retrieve data. But with the development of deep learning, there's been an

increasing interest in using neural networks in collaboration with relational databases

(Zhou et al., 2024; Zhou et al., 2022; Zou et al., 2021; Jankov et al., 2020).

There emerges a class of AI/ML applications running on top of relational data

including use cases from IBM, Amazon, and Meta, such as fraud card detection on

credit-card transaction records, recommendation over customer orders and profiles, and

conversational AI over customer activity and profiles. Decoupling the data preprocessing

and AI/ML leads to performance gaps, development and management complexity, and

privacy issues. Thus, there are practical uses for deep learning inference acceleration in

RDBMS. Recommendation engines and fraud detection (Cheng et al., 2020) are two

instances that will exemplify the speed up. The worldwide banking, card, and payment

industries lost an estimated 385 billion dollars in 2021 as a result of fraud detection

(Katkov, 2022). Deep learning model inferences are too costly and slow to be

implemented in online processing systems. The real-time inference required for

1

data-intensive routines, such as credit card transactions, can add an additional 50 to 80

milliseconds to transaction processing time. This delay slows down approval times for

transactions, leading to customer friction. As a result, the AI system processes very few

(less than 10 per cent) high-risk transactions. The majority of transactions undergo

post-transaction analysis after being scored using rules.

Thirty-five percent of Amazon's 2018 sales came from personalized recommendation

models ("Amazon's Recommendation Algorithm Drives 35% of Its Sales," 2020). For

any recommendation task, the latency requirements can range from tens to hundreds of

milliseconds. There are thousands of features, and up to 10,000 inquiries could be in a

batch. The primary bottleneck is the data transfer from the RDBMS to the ML runtime,

which necessitates pre-loading, pre-partitioning, and pre-indexing of the data in memory

before model serving.

Both the scenarios mentioned above could benefit from a speed-up in inference.

Accelerating fraud detection using a hybrid approach could lead to an increase in the

number of transactions that could be run through the system, thereby flagging more

potentially fraudulent transactions and minimizing losses. On the other hand, the

in-database inference could save the data transfer and pre-processing costs (Guan et al.,

2023) in case of recommendation models, leading to a richer experience for the end user.

This thesis delves into the significance of expediting Deep Neural Network (DNN)

inference within relational systems. It begins by exploring common integration patterns

between Deep Learning (DL) and Relational Database Management Systems (RDBMS).

Each integration pattern presents its own set of tradeoffs, suited to specific use cases. The

2

thesis emphasizes the adoption of User-Defined Functions (UDFs) as a central approach

to accelerate DNN inference.

Meta's Velox execution engine emerges as an optimal choice for implementing UDFs

or Machine Learning (ML) kernels for DNN inference. Leveraging its support for

relational operators, runtime optimizations, and user-friendly components, Velox

streamlines the DNN inference process effectively.

The thesis outlines the design and implementation specifics of the ML kernels.

Various kernels essential for DNN forward propagation, such as matrix multiplication,

matrix addition, and ReLU activation, are meticulously developed. External libraries like

Torch and Eigen are harnessed to implement these UDFs.

To assess the performance of Velox kernels, two benchmarks are conducted. The first

evaluates MNIST handwritten digits image classification, while the second scrutinizes a

convolution benchmark known as Deep Bench Conv1. In most scenarios, Velox kernels

surpass popular DL frameworks like TensorFlow and PyTorch in terms of performance.

Moreover, the thesis explores the impact of different hyperparameters on benchmark

performance. It identifies a challenge related to the calibration of Velox and external

library threads, which share a common runtime.

Furthermore, the thesis delves into optimizing the inference query plan by employing

a cost model. It provides a high-level overview of the cost model's design and proposes a

strategy to estimate the plan cost using learned coefficients. This approach aims to

enhance the efficiency of DNN inference within relational systems.

The remaining sections of the thesis are structured as follows:

3

Chapter 2: This chapter delves into the existing literature and related work pertinent to

the subject matter. It provides a comprehensive review of research, projects, and

advancements in the field, offering valuable context for the thesis's contributions.

Chapter 3: Here, readers are presented with foundational knowledge and background

information essential for understanding the concepts and systems central to this thesis.

This chapter lays the groundwork by elucidating key terminology, methodologies, and

technologies utilized throughout the research.

Chapter 4: Focusing on the heart of the thesis, this chapter delves into the intricate design

and implementation intricacies of Machine Learning (ML) kernels within the Velox

execution engine. It explores the development process, challenges encountered, and

innovative solutions devised to overcome them, providing readers with a deep

understanding of the technical aspects of the project.

Chapter 5: This chapter delves into the creation of a simple cost model tailored to

optimize decision-making processes within the inference query plan. By dissecting the

design rationale and methodology behind the cost model, readers gain insight into the

strategic approach employed to enhance performance in real-world scenarios.

Chapter 6: Concluding the thesis journey, this chapter reflects on the challenges

encountered throughout the research process. It also offers insights and suggestions for

future research directions, highlighting areas for further exploration and potential

advancements in the field. This reflective chapter serves as a springboard for ongoing

discourse and innovation within the realm of DNN inference optimization in relational

systems.

4

CHAPTER 2

LITERATURE SURVEY

In RDBMS, there are various methods for providing model serving. They fall into

two general categories: white box and black box (Zhou et al., 2024). Machine learning

models are implemented using the "black box" technique, which conceals the core

mechanisms and architecture of the models. Rather, the model is viewed as a "black box,"

one that receives input data and produces predictions without allowing insight into the

workings of the model itself. Black-box deployment techniques with modifiable

parameters for optimization are used by well-known model serving systems including

Microsoft's Azure ML (Barga et al., 2015), Amazon SageMaker (Liberty et al., 2020),

and TensorFlow Serving (Olston et al., 2017). For example, these systems balance

accuracy and latency by dynamically optimizing batch sizes.

The internal workings, parameters, or intermediate representations of the machine

learning models being used, on the other hand, are exposed and leveraged in a white box

model serving method. More control and transparency over the deployed models are

provided by this method, which enables more precise customization and optimization. A

bin-packing approach is introduced by Nexus (Shen et al., 2019) to optimize batch sizes

for individual layers and distribute machine learning layers to devices. For improved

performance, DeepSpeed (Yazdani Aminabadi et al., 2022) and FlexGen (Sheng et al.,

2023) include offloading particular weights to the CPU or even the disc. Other strategies

5

used are operator sharing amongst models, early prediction based on cached inference

findings, and utilizing approximation inference approaches for increased performance.

A few strategies have been used to speed up the RDBMS's DL query serving process.

A recently popular method is to use a vector database for caching inference results. This

method takes advantage of popular datasets like Pinecone (2023), Milvus (Wang et al.,

2021), Faiss (Johnson et al., 2019), etc. They employ a variety of indexing strategies,

including product quantization, hierarchical navigable small world (HNSW), and

locality-sensitive hashing (LSH), to make search easier.

A challenge in executing deep learning inference within RDBMS is the efficient

execution of complex neural network models. Several studies have explored query

optimization techniques to improve the performance of DL inference. For example, Chen

et al. (2023) proposed a query optimization framework for accelerating DL inference in

PostgreSQL databases by optimizing the execution of neural network operations.

Some RDBMS systems offer native support for executing machine learning models

directly within the database environment. Oracle Database provides in-database

execution capabilities for TensorFlow (Abadi et al., 2015) models through its Oracle

Machine Learning framework (Oracle, 2022). Similarly, IBM Db2 offers in-database

inference capabilities through its Db2 Machine Learning Accelerator, enabling efficient

execution of deep learning models within the database (IBM, 2019). In this context,

model pipeline and partitioning strategies have also been introduced, particularly for huge

models that are too large to fit in memory ("Systems for Parallel and Distributed

Large-Model Deep Learning Training," 2023).

6

CHAPTER 3

BACKGROUND

3.1 Deep Neural Networks (DNN)

One kind of machine learning model that draws inspiration from the composition and

operations of the human brain is the neural network. They are made up of layers of

networked nodes, known as neurons. Every neuron takes in information, processes it via

an activation function, and then generates an output.

A particular kind of neural network called Deep Neural Networks (DNNs) is

distinguished by the presence of numerous hidden layers in between the input and output

layers. The word "deep" describes these networks' depth, or the quantity of layers they

have. DNN layers are logically divided into three types:

1. Input Layer: This is the layer to which the input is passed. Each neuron processes or

represents an input feature.

2. Hidden Layer: Most computing takes place in these layers, which are situated

between the input and output layers. Multiple neurons make up each buried layer,

which transforms the incoming data. The training process teaches these transitions,

which deepen in complexity as they go.

3. Output Layer: The neural network's ultimate output is generated by this layer. The

type of problem being solved determines how many neurons are in the output layer.

7

For instance, two output neurons might indicate the odds of belonging to each class in

a classification job with two classes.

Figure 1: Johnson, J. (2020, July 27). Deep Neural Network. BMC.
https://www.bmc.com/blogs/deep-neural-network/

DNNs are popular when it comes to image classification. The input image is flattened

and fed to the neural network. When a DNN is trained, its weights and biases are updated

to minimize a loss function that calculates the difference between the expected and actual

outputs. Usually, an optimization approach like gradient descent is used for this. The

training process involves forward propagation, calculation of loss, and backward

propagation along with updation of weights. This process is repeated for multiple

iterations till the loss converges.

Once a DNN has been trained, it can be used to perform inference. During inference,

for each layer, a linear transformation is performed followed by an activation function

like ReLU:

8

Z [l] = W [l] . A [l-1] + b [l]

In the formula, l is the layer number, W is the weight matrix, A is the activation function

and b is the bias vector. Thus, inference at each layer can be written as a matrix

multiplication, followed by a matrix addition, and finally an activation function.

3.2 DNN-RDBMS Integration Models

The integration of Deep Learning models with relational databases falls into three

categories(Zhou et al., 2024) :

3.2.1 ML-Centric

Designing solutions that smoothly blend the advantages of deep learning and

conventional relational database management systems (RDBMS) is essential to

integrating deep neural networks (DNNs) into relational databases in a machine learning

(ML) centered manner. Therefore, ML runtimes handle the ML operations in this

approach. Relational databases are well-suited for storing structured data, and deep

learning models perform well in tensor operations unique to machine learning. One

disadvantage of ML-centric integration is that it necessitates procedures and tools for the

relational database's training data extraction. To obtain pertinent data for model training,

9

this entails querying the database, carrying out any required preprocessing (such as

feature scaling and normalization), and getting readily labeled datasets if supervised

learning is going to be used. This leads to memory copy and data transfer overheads.

Furthermore, co-optimization strategies for ML and SQL processes are difficult because

they are separate systems. It should be possible to run SQL queries including both model

inference and conventional relational operations within the integrated system. For the

deployed deep learning models to seamlessly integrate with it, the query execution engine

must be extended. For quicker inference, the system might, for instance, optimize queries

to shift processing to the GPU.

3.2.2 User-Defined Function (UDF) Centric

User-defined functions (UDFs) enable users to design custom functions that may be

called from within SQL queries, offering a powerful way to expand the capabilities of

relational database management systems (RDBMS). Using this method, deep learning

models or particular procedures associated with deep learning tasks are contained in

UDFs. These consist of models that have already been trained or models that have been

trained inside a database. The RDBMS-supported programming languages can be used to

implement these UDFs. Additionally, these UDFs can call many low-level or high-level

libraries, like Eigen (2020) or TensorFlow, without the need to include an external

runtime. On the other hand, this can conflict with the host relational system's runtime.

Moreover, co-optimization is challenging to accomplish because UDFs are typically

10

opaque to the system. This method also fails for huge DNNs, when the input tensor

exceeds the memory capacity or the memory is not large enough to fit the complete

model. The intermediate outcomes of machine learning algorithms not fitting into

memory is another noteworthy problem.

3.2.3 Relation-Centric

In this approach, the DNN inference framework is tightly coupled with the database

system. The inference process is modeled as relational algebra operations. The model

parameters are treated as a dataset helping in distributed processing thereby achieving

model parallelism.

This can even work for models larger than the available memory. The tensors can be

split into tensor blocks that fit into memory and the intermediate results can be spilled to

disk. The model weight tensor block size can be fine-tuned to ensure better cache locality

i.e. fewer cache misses leading to lower latency. Thus, leveraging the strengths of

databases - paging/swapping, caching, spilling, pipelining, etcetera makes the inference

process feasible. A drawback of this technique is that not all ML operations can be

efficiently transformed into relational processes, leading to higher latency, especially for

smaller models for which dedicated ML systems like TensorFlow and PyTorch are

optimized.

11

3.3 Query Plan Optimization

In the context of databases, a query plan is a blueprint that a database management

system (DBMS) creates in order to effectively execute a given database query. The most

effective technique to access and modify the data in order to satisfy your request is

determined by the database management system (DBMS) when you submit a query to a

database.

The process of choosing the most effective execution strategy to carry out a database

query is known as query optimization. A query plan's objective is to reduce the amount of

time and resources needed to complete the query, including disc I/O, memory utilization,

and CPU usage. The following are a few aspects of query optimization:

1. Cost Optimization: This entails calculating the approximate costs of various

execution strategies using variables like statistics about the available data, indexes,

and system resources. The plan with the lowest estimated cost is selected by the

optimizer.

2. Query Rewriting: The query is often rewritten by the optimizer into a more efficient

equivalent form. This might involve changing the sequence of joins, tweaking the

subqueries, and skipping obsolete actions.

3. Statistics Collection: The DBMS often collects statistics about the tables and indexes

to aid in query optimization.

4. On-the-fly optimization: In a few cases, the optimizer dynamically changes the

execution plan based on the workload or runtime statistics.

12

Figure 2: MLWiki. (n.d.). Logical Query Plan Optimization. Retrieved from
http://mlwiki.org/index.php/Logical_Query_Plan_Optimization

3.4 The Hybrid Framework

Gauging the benefits and drawbacks of the techniques for integrating ML

computation with relational databases, a middle ground should be found for supporting

different use cases. Thus, to accelerate the inference of DNN models, it is possible to take

a hybrid approach by combining the UDF and Relation-Centric approaches. Thus, the

goal is to have a system to automatically optimize for deep learning inference queries -

no data transfer overhead, co-optimization of Deep Learning computations, and

Relational Processing - an adaptive IR that can dynamically choose Relation-Centric or

UDF-Centric for any subgraph, and a Unified Resource Management model.

In the hybrid approach of performing DNN inference in a relational database, the UDF

encapsulating the inference computation is represented as an intermediate representation

(IR) that can be selectively transformed into relational algebra computations for large

DNN models.

13

http://mlwiki.org/index.php/Logical_Query_Plan_Optimization

Here the IR has two levels:

1. Nested relational algebra with each node representing a relational operator like join,

filter, projection, aggregation, etc which are customizable using UDFs

2. ML Kernel operators such as matrix multiplication, matrix addition, ReLU, softmax,

etcetera

The optimizer can then traverse the two-level IR and transform the linear algebra

operations into equivalent relational algebra operations using a cost model.

Consider the example of the matrix multiplication operation (encapsulated by a UDF) of

a DNN inference model being transformed into join and aggregation (Yuan et al.,2021)

operations by the optimizer.

Figure 3: UDF-Centric to Relation-Centric Transformation

14

Figure 4: Optimizer Transforming Matrix Multiplication to Join & Aggregation

3.5 Velox Execution Engine

("Velox: Open-source execution engine," 2023) Despite their apparent differences at

first glance, data computation engines are all made up of the same essential parts: an

execution runtime, an optimizer, an intermediate representation (IR), a language

interface, and an execution engine (Figure 2). Velox (Pedreira et al., 2022) provides the

building blocks required to build execution engines. These building blocks cover a

variety of data-intensive activities carried out on a single host, such as expression

evaluation, aggregation, sorting, and joining—a.k.a. the data plane. As a result, Velox

uses local host resources to effectively execute an optimized plan that it predicts as input.

After the IR has been fully optimized by the optimizer, Velox receives it and builds

pipeline stages for plan execution.

15

Figure 5. Velox as Execution Engine (Diagram by Philip Bell). Retrieved from
Engineering @ Facebook: https://engineering.fb.com/2023/03/09/open-source/

velox-open-source-execution-engine/

Velox leverages a multitude of runtime optimizations, including dynamic filter

pushdown, adaptive column prefetching, key normalization for array and hash-based

aggregations and joins, and filter and conjunct reordering. These optimizations use

statistics and insights from incoming data batches to improve local efficiency. In addition,

Velox is carefully designed to manage the kinds of complicated data that are common in

contemporary workloads. It heavily depends on dictionary encoding for operations like

joins and filtering that either raise or lower cardinality, while still providing quick routes

for simple data types.

("Velox: Open-source execution engine," 2023) describes the following components

● Type: It may express scalar, complex, and nested data types, such as structs, maps,

arrays, functions (lambdas), decimals, tensors, and more, using a generic type system.

16

● Vector: a columnar memory layout module compatible with Apache Arrow that

supports a lazy materialization pattern, out-of-order buffer population, and different

encodings, including flat, dictionary, constant, sequence/RLE, and frame of reference.

● Expression Eval: a cutting-edge vectorized expression evaluation engine that uses

methods like dictionary peeling, constant folding, encoding-aware evaluation, fast

null propagation, common subexpression removal, and memoization.

● Functions: APIs that offer a row-by-row and vectorized (batch by batch) interface for

scalar functions and an API for aggregate functions, to create custom functions.

● Operators: application of widely used SQL operators, including OrderBy, TopN,

HashJoin, MergeJoin, Unnest, Project, Filter, Aggregation, and Exchange/Merge.

● I/O: API’s for integrating with other runtimes:

○ Connectors: permits data sources and sinks to be customized by developers

specifically for TableScan and TableWrite operators.

○ DWIO: an expandable interface with support for encoding and decoding

widely used file formats, including DWRF, Parquet, and ORC.

○ Storage adapters: a byte-based extendable interface that enables Velox to link

to a variety of storage systems, including HDFS, Tectonic, and S3.

○ Serializers: a serialization interface that supports Spark's UnsafeRow format

and PrestoPage, aimed at network communication and capable of

implementing many wire protocols.

● Resource management: a group of primitives for managing computational resources,

17

including caching for SSD, spilling, and CPU and memory management.

18

CHAPTER 4

ML INFERENCE IN VELOX

Velox requires an optimized query plan as input for execution. The computations of

an inference workload are represented as a Velox query plan by utilizing the various

Velox components. The following are the steps for executing an inference workload:

4.1 Velox Logical Plan

According to Facebook Incubator (n.d.), Velox’s logical plan is a tree of Plan Nodes.

Each PlanNode has zero or more child PlanNodes. There are different types of plan nodes

like Filter, Project, Aggregation, HashJoin, TableScan, etcetera. Plan Nodes can have

user-defined expressions that are evaluated by the Velox execution engine during query

execution. Thus, for any inference workload, the constituent ML kernels can be

implemented as UDFs and passed to the Plan Node as expressions. The logical plan is

then converted into a set of pipelines. Each pipeline comprises a linear sequence of

operators corresponding to a linear sub-tree of the plan. The plan tree is broken down into

a set of linear sub-trees by disconnecting all but one child node from each node that has

two or more children as shown in Figure 6.

19

Figure 6. Illustration of Velox Operators Functionality. Adapted from "Velox Operators"
by Facebook Incubator. Retrieved from https://facebookincubator.github.io/velox/devel

op/operators.html

4.2 Velox Tasks, Operators, Splits and Drivers

As per Facebook Incubator (n.d.), the Velox task is responsible for converting a query

plan into a set of pipelines. Each pipeline is made up of operators stacked on top of each

other, where each operator is obtained from one or more plan nodes. Each pipeline is

executed by a single driver (Velox thread). The task receives data from the source/leaf

nodes like TableScan in the form of splits. The splits are consumed by the operators in

the pipeline for execution.

20

Figure 7. Velox Task execution. Adapted from "What’s in the Task" by Facebook
Incubator.Retrieved from https://facebookincubator.github.io/velox/develop/task.html

4.3 ML Kernels as UDF

4.3.1 Design

Velox provides Vector Functions that process a batch of rows and produce a vector of

results. This makes it extremely convenient to implement ML kernels efficiently, similar

to many ML-centric systems like Torch and TensorFlow. Building upon the design of the

21

Velox Vector function, a virtual class called MLFunction, which inherits from

VectorFunction, is introduced. Subsequently, the ML core functions are implemented by

overriding the apply function with custom logic. This logic involves invoking external

libraries such as Eigen, Torch, XgBoost (Chen et al.,2016), etcetera.

To summarize, the UDFs-based expression aligns with the design of the Vector

Function. The ML functions are encapsulated within the Vector Functions and the logical

plan is constructed utilizing these functions.

Figure 8: Class Diagram for MLFunction

22

4.3.2 Matrix Multiplication

The matrix multiply kernel is used to multiply two matrices. In the context of DNN

inference, it is used to obtain the product of the input and the weight of a single layer of

the DNN in forward propagation. It is implemented using the Eigen library. First, in the

constructor, the weight of the DNN model is saved in the private member weights_ which

is a pointer to a float array. The dimensions of the DNN layer are also passed to the

constructor so that the one-dimensional weights_ array can be mapped to a

two-dimensional matrix for multiplication.

MatrixMultiply(float* weights, int num_rows, int num_cols) {

weights_ = weights;

dims.push_back(num_rows);

dims.push_back(num_cols);

}

In the overridden apply() method, the matrix multiplication of the inputs and weights

is performed. First, the two-dimensional input array vector is flattened to a

one-dimensional vector. Then the input vector and the weight vector are mapped to Eigen

matrices m1 and m2. Here, the address space of the vectors is mapped so there is no

additional copy of the underlying values of the vectors. Then both matrices are multiplied

23

and the result is mapped to an array vector to be returned to the caller. The code for

matrix multiplication is provided in Appendix A.

int input_size = input_elements->size();

Eigen::Map<Eigen::Matrix<float,Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>

m1(input_values, input_size/dims[0], dims[0]);

Eigen::Map<Eigen::Matrix<float,Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>

m2(weights_, dims[0], dims[1]);

Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>m= m1 * m2;

4.3.3 Matrix Addition

As the name suggests, this kernel is used to add two matrics. Concerning DNN, it is

used to add the bias values to the output of matrix multiplication from the previous step.

The matrix addition kernel is similar to the matrix multiplication kernel with a couple of

differences. First, we only pass the number of columns in the constructor of the

MatrixAddition. This is because the weight and the input matrics have the same

dimensions, and the number of rows can be inferred from the number of input samples.

MatrixAddition(float* weights, int num_cols) {

weights_ = weights;

dims.push_back(num_cols);

24

}

Second, we use the Eigen’s matrix addition to get the final result. The code for matrix

addition is provided in Appendix A.

Eigen::Map<Eigen::Matrix<float,Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>

m1(input_values, rows.size(), dims[0]);

Eigen::Map<Eigen::Matrix<float,Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>

m2(weights_, rows.size(), dims[0]);

Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>m= m1 + m2;

4.3.4 Activation Kernels

The final step in the forward propagation step at each layer is passing the result

obtained after matrix multiplication and matrix addition through an activation function.

This is a non-linear function, and its output decides the neurons in the DNN that will be

“activated”. ReLU is a commonly used activation function for the input and hidden layers

while softmax is a popular function used for the output layer.

4.3.4.1 ReLU

This ML kernel transforms the input such that only positive numbers retain their value

25

while the negative ones are converted to 0.

Figure 9: Brownlee, J. (2020, August 20). Line Plot of Rectified Linear Activation
for Negative and Positive Inputs. Machine Learning Mastery. Retrieved from

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-le
arning-neural-networks/

The implementation of the kernel is straightforward. The input is transformed, one

row at a time, with each negative value replaced by zero and a positive value retained as

is. The comple implementation can be found in Appendix A.

for (int i = 0; i < num_rows; i++) {

std::vector<float> rowResult(num_cols);

std::transform(input_values + i*num_cols, input_values + (i+1)*num_cols,

rowResult.data(), relu_function);

result.push_back(rowResult);

}

26

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/

4.3.4.2 Softmax

This kernel is used to transform a vector of integers into a probability distribution. In

the context of DNN, especially classification, it is used to estimate the likelihood of each

class. Mathematically, softmax can be represented as:

softmax() =𝑧
𝑖

𝑒
𝑧
𝑖

𝑗=1

𝐾

∑ 𝑒
𝑧
𝑗

Here zi is the score for class i, K is the total number of classes and e is the base of the

natural log.

The kernel is implemented using Eigen. First, the exponentiation for each value is

calculated

Eigen::Map<Eigen::Matrix<float,Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>

m(input_values, num_rows, num_cols);

Eigen::ArrayXXf exp = m.array().exp();

Next, the row-wise sum is calculated for the matrix. This corresponds to the denominator

in the softmax formula.

Eigen::ArrayXXf sum = exp.rowwise().sum();

27

Finally, the probability for each class in each sample is calculated by dividing the

exponentiation with the row-wise sum. Appendix A contains the complete

implementation of this method.

for (int i = 0; i < exp.rows(); i++) {

exp.row(i) /= sum(i);

}

4.3.5 TorchDNN

Each layer of a DNN is implemented by chaining the matrix multiplication, matrix

addition, and an activation kernel. However, using the torch library, the entire DNN can

be implemented using a single ML kernel.

First, the TorchDNN class is initialized by passing the weights and bias vector along with

the input dimensions of each layer.

TorchDNN(float** weights, float** bias, std::vector<int> dimensions) {

this->weights = weights;

this->bias = bias;

dims = dimensions;

}

28

The dimensions are used to create the layers while the weights and bias vectors are

used to initialize them.

torch::nn::Linear dense1(dims[0], dims[1]);

torch::nn::Linear dense2(dims[1],dims[2]);

torch::nn::ReLU relu;

dense1->weight.set_data(weightTensor1);

dense2->weight.set_data(weightTensor2);

dense1->bias.set_data(bias1);

dense2->bias.set_data(bias2);

Once the layers are initialized, a forward pass is performed to obtain the classification

results.

torch::Tensor layer1_output = dense1->forward(input);

torch::Tensor reluOutput = relu->forward(layer1_output);

torch::Tensor layer2_output = dense2->forward(reluOutput);

torch::Tensor softmax_output = torch::nn::functional::softmax(layer2_output, 1);

29

4.4 Hyperparameters

The performance of the ML kernels and the workload, in general, is determined by

the hyperparameter setting. Having the optimal values for the following parameters leads

to the best performance:

4.4.1 Splits

The input data is divided into chunks called splits before it is sent to the ML kernels

for execution. Each split is executed by a Velox thread (driver) so increasing the number

of splits can increase parallelism. However, having a higher number of splits isn’t always

optimal. For instance, creating 8 splits on a machine with 8 CPU cores may be more

efficient than creating 16 splits on the same machine since only 8 splits can be executed

concurrently. Further, executing a larger split can be more optimal than executing two

smaller splits since the Eigen library in ML kernels can better exploit SIMD

vectorization, and larger matrices can have better cache efficiency.

Velox provides support for creating hive splits from a DWRF file.

auto hiveSplits = makeHiveConnectorSplits(file->path, num_splits,

dwio::common::FileFormat::DWRF);

These splits can then be added to the task for execution:

30

for(auto& split : hiveSplits) {

task->addSplit(p0, exec::Split(std::move(split)));

}

4.4.2 Drivers (Velox Threads)

The number of Velox drivers or threads represents the total number of pipelines that

can be executed concurrently. Each thread is responsible for the execution of a single

split. Thus, the number of Velox drivers is bounded by the total number of CPU cores on

the machine. Although increasing the number of threads can increase concurrency, the

overall execution time may suffer in the case multithreaded libraries are used to

implement ML kernels. For instance, both Eigen and Torch have multithreading support.

As such, a higher number of Velox threads may interfere with the library threads due to

increased context switching, leading to degradation in the total workload execution time.

4.4.3 Library Threads

These threads are used to execute the core operations of the ML kernels. For instance,

the execution of matrix multiplication in the MatrixMultiply kernel can be optimized by

using multiple Eigen threads. But similar to the Velox threads, more library threads don’t

always translate to better performance. The optimal performance can be achieved by

31

striking a careful balance between the Velox threads and library threads.

For Eigen, the number of threads can be set using Eigen::setNbThreads(n).

Alternatively, Eigen can use openBLAS if the preprocessor directive #define

EIGEN_USE_BLAS is provided.

For Torch, the number of threads is set using torch::set_num_threads(n).

4.4.4 Batch size

The batch size is controlled by max_output_batch_rows and

preferred_output_batch_bytes is another important parameter that determines the

execution time of the ML kernels. Each split added to the task can in turn be split into

batches before being executed by the pipeline. This parameter also needs to be carefully

tuned for optimal performance. A very small or large value may fail to leverage SIMD

vectorization, cache efficiency, expression optimization, or parallelism.

4.5 Feed Forward Neural Network (FFNN) Inference

The Modified National Institute of Standards and Technology database (MNIST)

dataset (Deng, 2012) consists of handwritten letters from 0 to 9 and is a popular dataset

for image classification benchmarks. This dataset is used here as an example of running

an FFNN (Bebis et al., 1994) workload on Velox. The FFNN model consists of an input

layer of size 784, a hidden layer of size 1024, and an output layer of size 10 (since there

32

are 10 digits for prediction).

First, we identify and implement the ML kernels required for this workload. Recall

that an FFNN consists of a matrix multiplication of the input vector and the model

weights, followed by the addition of the result with the bias term (represented as a matrix

addition), and finally followed by an activation function like ReLU or softmax. Thus

matrix multiplication, matrix addition, ReLU, and softmax are required to be

implemented for this inference workload. Thus, the following three steps are required:

1）Register the ML functions

exec::registerVectorFunction(
"mat_mul", // name of function
MatrixMultiplication::signatures(), // types of inputs and outputs
std::make_unique< MatrixMultiplication >() // memory allocation
);

2) Implement of function

class MatrixMultiplication: public exec::VectorFunction {
MatrixMultiplication(){} // constructor
void apply (){} // main logic
signatures() // define types of input/output
}

3) Build the Logical Plan

data = {x, vector}
Wo, b: model params
PlanBuilder()

.values({data})
.project(“relu(mat_add(mat_mul(x, w0), b)”)
.planNode();

33

Here the ML kernels are chained together to form the expression of a Plan Node. This

also represents the IR that is understood by the custom optimizer. The input to these

kernels is an array of vectors where each vector is a data sample (in the case of the first

layer) or an intermediate result.

The results for the benchmark are shown in table 1. This benchmark was performed

on AWS EC2 r4.2xlarge (CPU:8, Mem: 61GB) instance. The running time is in seconds.

Sample(K) Velox
(Eigen)

Velox
(Torch)

Tensorflow Torch

1 0.04 0.05 0.51 0.11

10 0.29 0.26 1.1 0.21

60 1.40 0.76 4.36 0.79

Table 1: Benchmark results for MNIST Inference workload

34

CHAPTER 5

COST MODEL

As stated earlier, it is possible to selectively transform the UDF-centric implementation

into a Relation-centric one. Once the Velox logical plan is built, it can be optimized by

the custom optimizer by using some co-optimization rules. To decide whether the final

query plan after applying these optimization rules is potentially better than the original

one, a cost model is required.

5.1 Design

The cost model has the following components

1. CostEstimator: this is the class used by the optimizer to estimate the cost of the query

plan. It uses the costModel to estimate the cost of the plan.

2. CostModel: it is used to estimate the cost of a plan node given its sources. It uses a

catalog to get information about the sources to estimate the cost

3. Catalog: it is a store of all the data sources that will act as the input to the query plan

4. Source: it represents a data source. It can be of type Node (PlanNode), File, Vector,

or Database.

5. Stats: it represents the statistics of a data source. It is used by the cost model to get

information about the source so that a cost estimate can be made. For instance, the

35

cardinality for each column of a table could be stored in the stats which can then be

used to estimate the cost of a HashJoin plan node. This class can be extended for

different data sources.

Figure 10: Class Diagram for Cost Model

5.2 Implementation

Once a query plan has been created, its input sources are added to the catalog. These

sources have been initialized with their respective statistics (Stats).

36

std::shared_ptr<Catalog> catalog = std::make_shared<Catalog>(Catalog("test-catalog"));

catalog->addSource(std::make_shared<Source>(src1));

catalog->addSource(std::make_shared<Source>(src2));

Now, a CostModel can be created and passed to a CostEstimator which will estimate

the entire cost of the plan. Here, CostEstimate object contains the estimated cost along

with the estimated number of output rows and columns.

CostModel* cm = new SimpleCostModel(catalog);

CostEstimator* ce = new SimpleCostEstimator(std::unique_ptr<CostModel>(cm));

CostEstimate cost = ce->estimateCost(plan);

The cost model is similar to a database query optimizer. It traverses the Velox query

plan and estimates the cost for each Plan Node. Since the query plan is a tree, a

depth-first search is used to obtain the cost of all the children of a Plan Node before

calculating and returning its own cost. For Plan Nodes like HashJoin and Filter nodes, the

costModel uses the statistics like cardinality of the data source to estimate the cost. Each

operator in the query plan also has a weight w configured. After getting an estimate of the

cost of a Plan Node, this weight is multiplied with it to get a weighted cost. For instance,

the value of w can be 1.0 for HashJoin and 0.5 for Filter operation. This value is

user-configurable and is set by carrying out benchmarks.

37

The cost of the ML kernels is computed similarly. The cost model traverses the query

plan and parses each expression in the Plan Nodes. If a node has UDFs in the expression,

it gets the handle to the function pointer of the UDF from the Velox function registry and

invokes the getCost() method of the respective UDF class to get an estimate of the

UDF’s cost. The cost function of the UDFs uses the input and model size to get a cost

estimate. Similar to the other relational operations, UDFs also have an associated weight

that helps to get the weighted cost. Finally, the cost model adds up the cost for each Plan

Node and returns the cost estimate for the entire plan. Kindly refer to Appendix B for the

implementation details.

38

CHAPTER 6

CONCLUSION & FUTURE WORK

This work discussed a hybrid approach to executing Deep Learning inference

workloads for improved performance. By adaptively choosing between UDF-centric and

Relation-centric approaches, one gets the best of both worlds. Thus, the system can

support workloads of varying nature and provide performance comparable to specialized

systems.

The work also proposes a couple of interesting optimization problems. First, finding

the optimal configuration for the number of Velox threads and Eigen / Torch threads is

non-trivial since they both are in the same runtime (share the same resources). Figures 4,

5, and 6 depict the variability in performance for different numbers of Velox and Torch

threads over different samples for a CNN workload. The best running time is highlighted

in red. Further, there is no heuristic for obtaining the optimal performance when it comes

to the batch size and number of data splits in Velox. To add to the complexity, the

hardware configuration also determines the performance of different configurations.

Since the search space is large, a grid search approach for these hyperparameters will not

be feasible. Thus, a hyperparameter optimization approach like Hyperband (Li et al.,

2018) may be worth exploring.

Second, the cost model currently depends on the user-provided weight coefficient for

estimating the cost of the query plan. Such a configuration is also non-trivial and requires

39

a large number of benchmarks to get it right. Perhaps exploring a probabilistic model will

be more helpful in this direction.

Finally, inference result caching using vector databases is also a promising direction

to explore for accelerating the inference workloads.

Figure 11: Velox Threads vs Torch Threads CNN Benchmark for 64 samples

Figure 12: Velox Threads vs Torch Threads CNN Benchmark for 128 samples

40

Figure 13: Velox Threads vs Torch Threads CNN Benchmark for 128 samples

41

REFERENCE

Lixi Zhou, Qi Lin, Kanchan Chowdhury, Saif Masood, Alexandre E. Eichenberger,
Hong Min, Alexander Sim, Jie Wang, Yida Wang, Kesheng Wu, Binhang Yuan,
Jia Zou:Serving Deep Learning Models from Relational Databases. EDBT 2024:
717-724

Lixi Zhou, Jiaqing Chen, Amitabh Das, Hong Min, Lei Yu, Ming Zhao, Jia Zou: Serving
Deep Learning Models with Deduplication from Relational Databases. Proc. VLDB
Endow. 15(10): 2230-2243 (2022)

Jia Zou, Amitabh Das, Pratik Barhate, Arun Iyengar, Binhang Yuan, Dimitrije Jankov,
Chris Jermaine: Lachesis: Automated Partitioning for UDF-Centric Analytics. Proc.
VLDB Endow. 14(8): 1262-1275 (2021)

Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jermaine,
Zekai J. Gao:Declarative Recursive Computation on an RDBMS: or, Why You
Should Use a Database For Distributed Machine Learning. SIGMOD Rec. 49(1):
43-50 (2020)

Dawei Cheng, Sheng Xiang, Chencheng Shang, Yiyi Zhang, Fangzhou Yang, and Liqing
Zhang.2020. Spatio-temporal attention-based neural network for credit card fraud
detection. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
362–369

Guan, H., Masood, S., Dwarampudi, M., Gunda, V., Min, H., Yu, L., Nag, S. and
Zou, J., 2023, October. A Comparison of End-to-End Decision Forest Inference
Pipelines. In Proceedings of the 2023 ACM Symposium on Cloud Computing
(pp. 200-215).

Neil Katkov. 2022. OPERATIONALIZING FRAUD PREVENTION ON IBM Z16.
https://www.ibm.com/downloads/cas/DOXY3Q94

Amazon’s recommendation algorithm drives 35% of its sales. Evdelo. (2020, June 28).
https://evdelo.com/amazons-recommendation-algorithm-drives-35-of-its-sales/

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li,
Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflowserving:
Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139 (2017).

Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. 2020.
Elastic machine learning algorithms in amazon sagemaker. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 731–737

42

https://urldefense.com/v3/__https://dblp.org/pid/24/4675.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GB07gDw9Q$
https://urldefense.com/v3/__https://dblp.org/pid/237/3380.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCIkxPp9A$
https://urldefense.com/v3/__https://dblp.org/pid/358/7262.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GDpnWKamg$
https://urldefense.com/v3/__https://dblp.org/pid/e/AlexandreEEichenberger.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GADNXZBRQ$
https://urldefense.com/v3/__https://dblp.org/pid/47/1976.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCI_GgQjw$
https://urldefense.com/v3/__https://dblp.org/pid/75/4666.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GDGIywS0w$
https://urldefense.com/v3/__https://dblp.org/pid/29/5259.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCsD05EJA$
https://urldefense.com/v3/__https://dblp.org/pid/17/1701.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GC9afE4Iw$
https://urldefense.com/v3/__https://dblp.org/pid/30/4395.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAAGFQwtA$
https://urldefense.com/v3/__https://dblp.org/pid/141/0690.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAo3J-8Kg$
https://urldefense.com/v3/__https://dblp.org/db/conf/edbt/edbt2024.html*ZhouLCMEMSWWWY024__;Iw!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCeULpVrA$
https://urldefense.com/v3/__https://dblp.org/pid/276/7084.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GBOv5DLMw$
https://urldefense.com/v3/__https://dblp.org/pid/05/10445.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAxOaxnyA$
https://urldefense.com/v3/__https://dblp.org/pid/61/11158.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCqp16j3A$
https://urldefense.com/v3/__https://dblp.org/pid/47/1976.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCI_GgQjw$
https://urldefense.com/v3/__https://dblp.org/pid/01/2775-2.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GDHoStArg$
https://urldefense.com/v3/__https://dblp.org/pid/39/6844.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GDsrmDPHQ$
https://urldefense.com/v3/__https://dblp.org/db/journals/pvldb/pvldb15.html*ZhouCDMYZZ22__;Iw!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCp9A5sxg$
https://urldefense.com/v3/__https://dblp.org/db/journals/pvldb/pvldb15.html*ZhouCDMYZZ22__;Iw!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCp9A5sxg$
https://urldefense.com/v3/__https://dblp.org/pid/61/11158.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCqp16j3A$
https://urldefense.com/v3/__https://dblp.org/pid/268/6682.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GDwZkb7ww$
https://urldefense.com/v3/__https://dblp.org/pid/i/ArunIyengar.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GBAXGz_mQ$
https://urldefense.com/v3/__https://dblp.org/pid/141/0690.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAo3J-8Kg$
https://urldefense.com/v3/__https://dblp.org/pid/201/4842.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCGA-X64g$
https://urldefense.com/v3/__https://dblp.org/pid/j/ChrisJermaine.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GA9w-d4QQ$
https://urldefense.com/v3/__https://dblp.org/db/journals/pvldb/pvldb14.html*ZouDBIYJJ21__;Iw!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAfzk2YJg$
https://urldefense.com/v3/__https://dblp.org/db/journals/pvldb/pvldb14.html*ZouDBIYJJ21__;Iw!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAfzk2YJg$
https://urldefense.com/v3/__https://dblp.org/pid/201/4842.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GCGA-X64g$
https://urldefense.com/v3/__https://dblp.org/pid/147/1166.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAQnWnDkw$
https://urldefense.com/v3/__https://dblp.org/pid/141/0690.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAo3J-8Kg$
https://urldefense.com/v3/__https://dblp.org/pid/82/1037.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GAXrF_ZxA$
https://urldefense.com/v3/__https://dblp.org/pid/j/ChrisJermaine.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GA9w-d4QQ$
https://urldefense.com/v3/__https://dblp.org/pid/147/1259.html__;!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GBXpjnXvw$
https://urldefense.com/v3/__https://dblp.org/db/journals/sigmod/sigmod49.html*JankovLYCZJG20__;Iw!!IKRxdwAv5BmarQ!bdKKS7C0OMyLIbG6CdO4rTbnT9yRka8x_IecPKe-Hh6RjGcfZtLop1q4dOQvUaliTaH4qnORSfVZ9GB4uDte4g$

Roger Barga, Valentine Fontama, Wee Hyong Tok, and Luis Cabrera-Cordon. 2015.
Predictive analytics with Microsoft Azure machine learning. Springer

Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai Philipose,
Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU cluster engine for
accelerating DNN-based video analysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 322–337.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li,
Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. 2022.
DeepSpeed-inference: enabling efficient inference of transformer models at
unprecedented scale. In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–15

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y Fu,
Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023.
Highthroughput generative inference of large language models with a single gpu.
arXiv preprint arXiv:2303.06865 (2023).

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu
Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus: A
Purpose-Built Vector Data Management System. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627

Xu Chen, Haitian Chen, Zibo Liang, Shuncheng Liu, Jinghong Wang, Kai Zeng, Han Su,
and Kai Zheng. (2023). LEON: A New Framework for ML-Aided Query
Optimization. PVLDB, 16(9), 2261-2273. doi:10.14778/3598581.3598597

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org

2023. Pinecone: Vector Database for Vector Search. https://www.pinecone.io/

43

Oracle. (2022). Oracle Machine Learning Documentation. Retrieved from
https://docs.oracle.com/en/database/oracle/machine-learning/

IBM. (2019). Db2. Retrieved from https://www.ibm.com/products/db2

arXiv. (2023, January 6). Systems for Parallel and Distributed Large-Model Deep
Learning Training [Preprint]. arXiv:2301.02691v1.

2020. Eigen. http://eigen.tuxfamily.org/index.php?title=Main_Page

Binhang Yuan, Dimitrije Jankov, Jia Zou, Yuxin Tang, Daniel Bourgeois, and Chris
Jermaine. 2021. Tensor Relational Algebra for Distributed Machine Learning System
Design. Proc. VLDB Endow.14, 8 (2021), 1338–1350 https://doi.org/10.14778/34573
90.3457399

Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka, Krishna
Pai, Wei He, Biswapesh Chattopadhyay. Velox: Meta’s Unified Execution Engine.
PVLDB, 15(12): 3372 - 3384, 2022. doi:10.14778/3554821.3554829

Engineering @ Facebook. (2023, March 9). Velox: Open-source execution engine.
Facebook Engineering. Retrieved from https://engineering.fb.com/2023/03/09/open-s
ource/velox-open-source-execution-engine/

Facebook Incubator. (n.d.). Velox Operators. Facebook Incubator.https://facebookincubat
or.github.io/velox/develop/operators.html

Facebook Incubator. (n.d.). What’s in the task. Facebook Incubator.https://facebookincub
ator.github.io/velox/develop/task.html

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. 785–794

Deng, L. (2012). The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6), 141–142.

G. Bebis and M. Georgiopoulos, "Feed-forward neural networks," in IEEE Potentials,
vol. 13, no. 4, pp. 27-31, Oct.-Nov. 1994, doi: 10.1109/45.329294

Intel Corporation. (2023). Intel Math Kernel Library.[Software]. https://software.intel.co
m/content/www/us/en/develop/tools/math-kernel-library.html

44

https://docs.oracle.com/en/database/oracle/machine-learning/

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceedings
of the 17th European Conference on Machine Learning (pp. 282–293).
Springer-Verlag.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar.Hyperband: A novel bandit-based approach to hyperparameter
optimization. Journal of Machine Learning Research, 18(185):1–52, 2018

45

APPENDIX A

ML KERNEL CODE

46

A.1 Matrix Multiplication

class MatrixMultiply: public MLFunction {

public:
MatrixMultiply(float* weights, int num_rows, int num_cols) {

weights_ = weights;
dims.push_back(num_rows);
dims.push_back(num_cols);

}

MatrixMultiply(std::string weightsFile, int num_rows, int num_cols) {
weightsFile_ = weightsFile;
dims.push_back(num_rows);
dims.push_back(num_cols);

}

void apply(
const SelectivityVector& rows,
std::vector<VectorPtr>& args,
const TypePtr& type,
exec::EvalCtx& context,
VectorPtr& output) const override {

BaseVector::ensureWritable(rows, type, context.pool(), output);
auto input_elements = args[0]->as<ArrayVector>()->elements();
float* input_values = input_elements->values()->asMutable<float>();
int input_size = input_elements->size();

Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic,
Eigen::RowMajor>> m1(input_values, input_size/dims[0], dims[0]);

Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic,
Eigen::RowMajor>> m2(weights_, dims[0], dims[1]);

Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
m = m1 * m2;

std::vector<std::vector<float>> result;
for (int i = 0; i < m.rows(); i++) {

std::vector<float> row(
m.row(i).data(),

47

m.row(i).data() + m.cols());
result.push_back(row);

}
VectorMaker maker{context.pool()};
output = maker.arrayVector<float>(result, REAL());

}

static std::vector<std::shared_ptr<exec::FunctionSignature>> signatures() {
return {exec::FunctionSignatureBuilder()

.returnType("array(REAL)")

.argumentType("array(REAL)")

.build()};
}

float* getTensor() const override {
return weights_;

}

static std::string getName() {
return "mat_mul";

};

std::string getWeightsFile() {
return weightsFile_;

}

void setWeights(float* weights){
weights_ = weights;

}

CostEstimate getCost(std::vector<int> inputDims){
float cost = getWeightedCost(getName(), inputDims[0] * inputDims[1] * dims[0] *
dims[1]);
return CostEstimate(cost, dims[0], inputDims[1]);

}

private:
float* weights_;
std::string weightsFile_;

};

48

A.2 Matrix Addition

class MatrixAddition: public MLFunction {
public:

MatrixAddition(float* weights, int num_cols) {
weights_ = weights;
dims.push_back(num_cols);

}

MatrixAddition(std::string weightsFile, int num_cols) {
weightsFile_ = weightsFile;
dims.push_back(num_cols);

}

void apply(
const SelectivityVector& rows,
std::vector<VectorPtr>& args,
const TypePtr& type,
exec::EvalCtx& context,
VectorPtr& output) const override {

BaseVector::ensureWritable(rows, type, context.pool(), output);

auto input_elements = args[0]->as<ArrayVector>()->elements();
float* input_values = input_elements->values()->asMutable<float>();

Eigen::Map<Eigen::Matrix<float,Eigen::Dynamic,Eigen::Dynamic,
Eigen::RowMajor>> m1(input_values, rows.size(), dims[0]);

Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic,
Eigen::RowMajor>> m2(weights_, rows.size(), dims[0]);

Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
m = m1 + m2;

int result_size = m.size();
float* data = m.data();

std::vector<std::vector<float>> result;
for (int i = 0; i < m.rows(); i++) {

std::vector<float> row(
m.row(i).data(),
m.row(i).data() + m.cols());
result.push_back(row);

49

}
VectorMaker maker{context.pool()};
output = maker.arrayVector<float>(result, REAL());

}

static std::vector<std::shared_ptr<exec::FunctionSignature>> signatures() {
return {exec::FunctionSignatureBuilder()

.returnType("array(REAL)")

.argumentType("array(REAL)")

.build()};
}

float* getTensor() const override {
return weights_;

}

static std::string getName() {
return "mat_add";

};

std::string getWeightsFile() {
return weightsFile_;

}

void setWeights(float* weights){
weights_ = weights;

}

CostEstimate getCost(std::vector<int> inputDims){
float cost = getWeightedCost(getName(),inputDims[0] * inputDims[1] + dims[0] *
dims[1]);
return CostEstimate(cost , inputDims[0], inputDims[1]);

}

private:
float* weights_;
std::string weightsFile_;

};

50

A.3 ReLU

class Relu: public MLFunction {
public:

Relu() {}

float static relu_function(float x) {
return (x > 0.0f) ? x : 0.0f;

}

void apply(
const SelectivityVector& rows,
std::vector<VectorPtr>& args,
const TypePtr& type,
exec::EvalCtx& context,
VectorPtr& output) const override {

BaseVector::ensureWritable(rows, type, context.pool(), output);

auto input_elements = args[0]->as<ArrayVector>()->elements();
float* input_values = input_elements->values()->asMutable<float>();
int input_size = input_elements->size();
int num_rows = args[0]->size();
int num_cols = input_size / num_rows;

std::vector<std::vector<float>> result;
for (int i = 0; i < num_rows; i++) {

std::vector<float> rowResult(num_cols);
std::transform(input_values + i*num_cols, input_values + (i+1)*num_cols,
rowResult.data(), relu_function);
result.push_back(rowResult);

}
VectorMaker maker{context.pool()};
output = maker.arrayVector<float>(result, REAL());

}

static std::vector<std::shared_ptr<exec::FunctionSignature>> signatures() {
return {exec::FunctionSignatureBuilder()

.returnType("array(REAL)")

.argumentType("array(REAL)")

.build()};
}

51

float* getTensor() const override {
return new float[0];

}

static std::string getName() {
return "relu";

};

CostEstimate getCost(std::vector<int> inputDims){
float cost = getWeightedCost(getName(), inputDims[0] * inputDims[1]);
return CostEstimate(cost, inputDims[0], inputDims[1]);

}
};

A.4 Softmax

class Softmax: public MLFunction {
public:

Softmax() {}

void apply(
const SelectivityVector& rows,
std::vector<VectorPtr>& args,
const TypePtr& type,
exec::EvalCtx& context,
VectorPtr& output) const override {

BaseVector::ensureWritable(rows, type, context.pool(), output);

auto input_elements = args[0]->as<ArrayVector>()->elements();
float* input_values = input_elements->values()->asMutable<float>();
int input_size = input_elements->size();

int num_rows = args[0]->size();
int num_cols = input_size / num_rows;

Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic,
Eigen::RowMajor>> m(input_values, num_rows, num_cols);
Eigen::ArrayXXf exp = m.array().exp();
Eigen::ArrayXXf sum = exp.rowwise().sum();
for (int i = 0; i < exp.rows(); i++) {

exp.row(i) /= sum(i);

52

}

std::vector<std::vector<float>> result(num_rows, std::vector<float>(num_cols));
for (int i = 0; i < num_rows; ++i) {

for (int j = 0; j < num_cols; ++j) {
result[i][j] = exp(i,j);

}
}

VectorMaker maker{context.pool()};
output = maker.arrayVector<float>(result, REAL());

}

static std::vector<std::shared_ptr<exec::FunctionSignature>> signatures() {
return {exec::FunctionSignatureBuilder()

.returnType("array(REAL)")

.argumentType("array(REAL)")

.build()};
}

float* getTensor() const override {
return new float[0];

}

static std::string getName() {
return "softmax";

};

CostEstimate getCost(std::vector<int> inputDims){
float cost = getWeightedCost(getName(), inputDims[0] * inputDims[1]);
return CostEstimate(cost, inputDims[0], inputDims[1]);

}
};

A.5 TorchDNN

class TorchDNN: public MLFunction {
public:

TorchDNN(float** weights, float** bias, std::vector<int> dimensions) {
this->weights = weights;
this->bias = bias;
dims = dimensions;

53

}

void apply(
const SelectivityVector& rows,
std::vector<VectorPtr>& args,
const TypePtr& type,
exec::EvalCtx& context,
VectorPtr& output) const override {

std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
torch::nn::Linear dense1(dims[0], dims[1]);
torch::nn::Linear dense2(dims[1],dims[2]);
torch::nn::ReLU relu;

torch::Tensor weightTensor1 = torch::from_blob(weights[0], {dims[0], dims[1]}).t();
torch::Tensor weightTensor2 = torch::from_blob(weights[1], {dims[1], dims[2]}).t();
torch::Tensor bias1 = torch::from_blob(bias[0], {dims[1]});
torch::Tensor bias2 = torch::from_blob(bias[1], {dims[2]});

dense1->weight.set_data(weightTensor1);
dense2->weight.set_data(weightTensor2);
dense1->bias.set_data(bias1);
dense2->bias.set_data(bias2);

auto input_elements = args[0]->as<ArrayVector>()->elements();
float* input_values = input_elements->values()->asMutable<float>();
int input_size = input_elements->size();

torch::Tensor input = torch::from_blob(input_values, {rows.size(), dims[0]});

torch::Tensor layer1_output = dense1->forward(input);
torch::Tensor reluOutput = relu->forward(layer1_output);
torch::Tensor layer2_output = dense2->forward(reluOutput);
torch::Tensor softmax_output = torch::nn::functional::softmax(layer2_output, 1);
float* data = softmax_output.data_ptr<float>();

std::vector<std::vector<float>> results;
for (int i = 0; i < rows.size(); ++i) {

std::vector<float> result(data + i*dims[2], data+ (i+1)*dims[2]);
results.push_back(result);

}
VectorMaker maker{context.pool()};
output = maker.arrayVector<float>(results, REAL());

}

54

static std::vector<std::shared_ptr<exec::FunctionSignature>> signatures() {
return {exec::FunctionSignatureBuilder()

.returnType("array(REAL)")

.argumentType("array(REAL)")

.build()};
}

float* getTensor() const override {
return new float[0];

}
float** getWeights() const {

return weights;
}

float** getBias() const {
return bias;

}

static std::string getName() {
return "torch_dnn";

};

CostEstimate getCost(std::vector<int> inputDims){
float cost = getWeightedCost(getName(), inputDims[0] * inputDims[1] * dims[0] *
dims[1]);
return CostEstimate(cost, inputDims[0], inputDims[1]);

}

private:
float** weights;
float** bias;

};

55

APPENDIX B

COST MODEL

56

B.1 Cost Estimator

class CostEstimator {

protected:
std::unique_ptr<CostModel> costModel;

public:
virtual ~CostEstimator() = default;

CostEstimator(std::unique_ptr<CostModel> model): costModel(std::move(model)) {}

virtual CostEstimate estimateCost(std::shared_ptr<const core::PlanNode>& plan) const
= 0;

};

class SimpleCostEstimator : public CostEstimator {

public:

SimpleCostEstimator(std::unique_ptr<CostModel>model):
CostEstimator(std::move(model)) {}

CostEstimate estimateCost(std::shared_ptr<const core::PlanNode>& plan) const
override {

if(!plan)
return CostEstimate(0,0,0);

std::vector<Source> sources;
// total cost of all the sources for the current node
// this will be added to the cost of the current node
// to get the total cost so far including the current node

float srcCost = 0.0; // the current node
for (auto source : plan->sources()) {

CostEstimate estimate = estimateCost(source);

srcCost += estimate.cost;
std::shared_ptr<OutputStat> stat = std::make_shared<OutputStat>
(OutputStat(estimate.outputRows , estimate.outputCols));
// inputs to the current node
// output from previous step is input to the current node

57

// hence the stat is the output stat of the sources
sources.push_back(Source(std::string(plan->name()),
Source::Type::NODE, stat));

}

CostEstimate estimate = costModel->getCost(plan, sources);
// total cost so far
estimate.cost += srcCost;
return estimate;

}
};

B.2 Cost Model

class CostModel {

public:

enum PlanNodeType {
Filter,
Project,
Aggregation,
HashJoin,
OrderBy,
TableScan,
NONE

};

virtual ~CostModel() = default;

CostModel(std::shared_ptr<Catalog> catalog) : catalog(catalog) {}

// node needs a stat (which isn't necessarilty a source stat)
virtual CostEstimate getCost(std::shared_ptr<const core::PlanNode>& node,
std::vector<Source> sources) = 0;
// if else on node type and handle each type .. e.g projections, filters, etc

PlanNodeType hashPlanNode(std::string_view name) {
if (name == "Filter") return Filter;
if (name == "Project") return Project;
if (name == "TableScan") return TableScan;
if (name == "HashJoin") return HashJoin;

58

if (name == "OrderBy") return OrderBy;
if (name == "Aggregation") return Aggregation;
return NONE;

}

protected:
std::shared_ptr<Catalog> catalog;

};

class SimpleCostModel: public CostModel {

public:
SimpleCostModel(std::shared_ptr<Catalog> catalog): CostModel(catalog) {}

CostEstimate getCost(std::shared_ptr<const core::PlanNode>& node,
std::vector<Source> sources) override {

if(!node)
return CostEstimate(0,0,0);

// it is a leaf node
if(sources.empty()){

return handleLeafNode(node);
} else {

return handleInternalNode(node, sources);
}

}

private:

CostEstimate handleLeafNode(std::shared_ptr<const core::PlanNode>& node){

std::shared_ptr<Source> src = catalog->getSource(node->id());
if(!src)

throw std::runtime_error("Source not found for node: " + node->id() + ":" +
std::string(node->name()));

switch (src->getType()) {
case Source::Type::FILE:
case Source::Type::DATABASE:
case Source::Type::NODE:
case Source::Type::VECTOR: {

59

// for now we're just using output stat but
// we can use different stats here based on the src type

std::shared_ptr<OutputStat> stat = std::static_pointer_cast<OutputStat>
(src->getStats());

// the cost for source node is 0 or constant for a plan
return CostEstimate(0.0, stat->getRows(), stat->getCols());

} break;

default:
throw std::runtime_error("Source type not supported");

}
}

CostEstimate handleInternalNode(std::shared_ptr<const core::PlanNode>& node,
std::vector<Source> sources){

if(sources.empty())
throw std::runtime_error("Source not found for node: " + node->id() + ":" +
std::string(node->name()));

switch (hashPlanNode(node->name())) {
case Aggregation:
case OrderBy:{

std::shared_ptr<OutputStat> stats = std::static_pointer_cast<OutputStat>
(sources[0].getStats());

return CostEstimate(stats->getCols() + stats->getRows(), stats->getRows(),
stats->getCols());

} break;
case Filter: {

float lambda = 0.5;
std::shared_ptr<OutputStat> stats = std::static_pointer_cast<OutputStat>
(sources[0].getStats());

return CostEstimate(lambda * stats->getRows() , lambda * stats->getRows(),
stats->getCols());

} break;
case HashJoin: {

float lambda = 0.7;

60

std::shared_ptr<OutputStat> stats1 =
std::static_pointer_cast<OutputStat>(sources[0].getStats());
std::shared_ptr<OutputStat> stats2 =
std::static_pointer_cast<OutputStat>(sources[1].getStats());
return CostEstimate(lambda * stats1->getRows() * stats2->getRows(),
lambda * stats1->getRows() * stats2->getRows(), stats1->getCols() +
stats2->getCols());

} break;
case Project: {

std::shared_ptr<const ProjectNode> projectNode =
std::dynamic_pointer_cast<const ProjectNode> (node);

const std::vector<TypedExprPtr> & projections =
projectNode->projections();

std::cout << "There are " << projections.size() << " projections." << std::endl;

for(auto projection : projections){
handleProjection(projection, sources);

}

return CostEstimate(0,1,1);
} break;

default:
throw std::runtime_error("Node type not supported");

}
}

CostEstimate getUDFCost(const std::vector<std::string> udfs, std::vector<Source>
sources) {

// get the stat for the source of this node
std::shared_ptr<OutputStat> stat =
std::static_pointer_cast<OutputStat>(sources[0].getStats());

CostEstimate finalEstimate(0, stat->getRows(), stat->getCols());

vectorFunctionFactories().withRLock([&](auto& functionMap) {

for(std::string udf : udfs){

61

auto it = functionMap.find(udf);

if (it != functionMap.end()) {

std::cout << udf << std::endl;
core::QueryConfig config({});
std::shared_ptr<VectorFunction> func = getVectorFunction(udf,
{ARRAY(REAL())}, {}, config);
std::shared_ptr<MLFunction> mlFunc =
std::dynamic_pointer_cast<MLFunction>(func);
CostEstimate curCost = mlFunc->getCost({finalEstimate.outputRows,
finalEstimate.outputCols});

finalEstimate.cost += curCost.cost;
std::cout << finalEstimate.cost << std:: endl;
finalEstimate.outputCols = curCost.outputRows;
finalEstimate.outputCols = curCost.outputCols;

}
}

});
std::cout<< finalEstimate.cost;
return finalEstimate;

}

void handleProjection(const core::TypedExprPtr expression, std::vector<Source>
sources) {

if (!expression) return;
// entire expression for udf
std::string exp = expression->toString();
std::cout << exp << std::endl;
// relu(mat_add(mat_mul())
// (mat_mul -> mat_add -> relu) ()
std::vector<std::string> udfs = getUDFs(exp);

// to estimate entire expression cost
// we have to start with the innermost udf
// because the input size applies to the
// innermost udf
// hence we have to reverse the exp
// relu(mat_add(mat_mul())) -> mat_mul(mad_add(relu))
// now we can lookup the udf cost map

62

std::reverse(udfs.begin(), udfs.end());
getUDFCost(udfs, sources);

}

std::vector<std::string> getUDFs(std::string expression) {
std::istringstream stream(expression);
std::string token;
std::vector<std::string> udfs;
char delimiter = '(';

while (std::getline(stream, token, delimiter)) {
udfs.push_back(token);

}
// last element is the input
// hence we have to delete it
// relu(mat_add(mat_mul(x)))
if(!udfs.empty())

udfs.pop_back();

return udfs;
}

};

63

