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ABSTRACT

In some scenarios, true temporal ordering is required to identify the actions occur-

ring in a video. Recently a new synthetic dataset named CATER, was introduced

containing 3D objects like sphere, cone, cylinder etc. which undergo simple move-

ments such as slide, pick & place etc. The task defined in the dataset is to identify

compositional actions with temporal ordering. In this thesis, a rule-based system and

a window-based technique are proposed to identify individual actions (atomic) and

multiple actions with temporal ordering (composite) on the CATER dataset. The

rule-based system proposed here is a heuristic algorithm that evaluates the magni-

tude and direction of object movement across frames to determine the atomic action

temporal windows and uses these windows to predict the composite actions in the

videos. The performance of the rule-based system is validated using the frame-level

object coordinates provided in the dataset and it outperforms the performance of

the baseline models on the CATER dataset. A window-based training technique is

proposed for identifying composite actions in the videos. A pre-trained deep neural

network (I3D model) is used as a base network for action recognition. During in-

ference, non-overlapping windows are passed through the I3D network to obtain the

atomic action predictions and the predictions are passed through a rule-based system

to determine the composite actions. The approach outperforms the state-of-the-art

composite action recognition models by 13.37% (mAP 66.47% vs. mAP 53.1%).

i



ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Hemanth Venkateswara for his constant

support and guidance throughout the project. His vision and ideas constantly moti-

vated me to push the boundaries, and I am grateful for the opportunity to work with

him.

I want to thank Dr. Troy McDaniel and Dr. Hasan Davulcu, for their continuous

guidance and support during the research work and the thesis.

I want to thank Dr. Mark Naufel for supporting me throughout my Masters

degree. He has been a great mentor and he inspires me everyday. I also want to

thank all my colleagues at the Luminosity Lab. Working with everyone in the lab

has been a tremendous learning experience for me.

I would also like to thank my parents, Santosh Kumar Maskara and Suman

Maskara, and my fiancée Utkarsha Bakshi for everything.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Trajectory Based Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Spatio-temporal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Transformer Based Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 DATASET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 PROPOSED METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Rule Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 Object Re-identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.3 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.4 Rule Based System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 R3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Window Based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Non Local Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Rule Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.2 Object Re-identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.3 Rule-based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



CHAPTER Page

5.2 I3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Window Based Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Non Local Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

APPENDIX

A COMPARISON OF CLASS WISE PERFORMANCE FOR RULE BASED

SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B ANALYZING THE PERFORMANCE OF WINDOW BASED TECH-

NIQUE FOR DIFFERENT EXPERIMENTAL SETUPS . . . . . . . . . . . . . . . 58

iv



LIST OF TABLES

Table Page

5.1 Object Detection Using Faster-RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Results from Siamese Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Performance of Rule Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Comparison of mAP for Atomic Action Recognition with Static Camera 40

5.5 Comparison of mAP for Composite Action Recognition with Static

Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Comparison of mAP for Composite Actions for Different Experimental

Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Comparison of mAP for Moving Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Comparison of Class Wise Performance for Atomic Actions . . . . . . . . . . . 56

A.2 Comparison of Class Wise Performance for Composite Actions Using

Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Comparison of Class Wise Performance for Composite Actions Using

Tracking Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.1 Comparison of Performance for Different Window Sizes . . . . . . . . . . . . . . . 59

v



LIST OF FIGURES

Figure Page

3.1 Sample Frames from a Video in the Cater Dataset . . . . . . . . . . . . . . . . . . . . 12

4.1 Architecture for Rule Based System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Architecture for Faster-RCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Plot Showing Object Trajectories for Atomic Actions . . . . . . . . . . . . . . . . . 19

4.4 Architecture for I3D network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Window Based Training Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Window Based Method Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Architecture for ViViT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Comparison of Faster-RCNN Loss for Different Experiments . . . . . . . . . . 33

5.2 Comparison of Faster-RCNN Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Object Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Siamese Network Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 mAP and Epoch loss plots for R3D, Non-Local Net and Transformers . 39

5.6 Comparison of mAP and Loss for Experiments Using 6 Windows . . . . . . 42

5.7 Plot of Window Based Method Performance for Static Camera . . . . . . . . 43

5.8 Comparison of mAP and Loss for Different Number of Windows . . . . . . . 44

5.9 Comparison of Map and Loss for Random Vs 6 Windows . . . . . . . . . . . . . 44

5.10 Plot of Window Based Method Performance for Different Weight Ini-

tialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.11 Plot of Window Based Method Performance for Moving Camera . . . . . . 47

5.12 Comparison of mAP and Loss for Videos with Camera Motion . . . . . . . . 47

vi



Chapter 1

INTRODUCTION

Deep learning based architectures have made immense progress in recent years and

have become quite accurate at tasks involving image classification and object detec-

tion. The results obtained from these tasks have motivated the research community

to attempt more complex problems such as action recognition. Action recognition in

videos is a standard Computer Vision problem and has been well studied. In videos,

in addition to the individual frames, the temporal component provides important

clues for identifying the action reliably. Moreover, real world videos offer multiple ad-

ditional challenges including jittering, camera motion and varying scene background.

These problems are unique to the videos and require additional effort for tackling

them efficiently.

In video action recognition, the fundamental goal is to analyze a video to identify

the actions taking place in the video. Essentially a video has a spatial aspect to

it i.e. the individual frames and a temporal aspect i.e. the ordering of the frames.

Some actions (eg. standing, running, etc.) can potentially be identified by using

just a single frame but for more complex actions(eg. walking vs running, bending vs

falling) might require more than 1 frame’s information to identify it correctly. Local

temporal information plays an important role in differentiating between such actions.

Moreover, for some use cases, local temporal information isn’t sufficient and you might

need long duration temporal information to correctly identify the action or classify

the video. Identifying such actions in videos find applications in several scenarios

including video surveillance, person tracking and providing response in emergency

situations. In a real world scenario, videos contain frequent long term occlusion and
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contain multiple actors performing different actions simultaneously. It is important

not only to identify these actions but also to understand the order of these actions.

Moreover, these systems can also find usage in live game referral systems where it

is critical to identify the order of actions. For eg., the user might be interested in

knowing whether a first a goal was scored or was a foul made first. During person

tracking, frequent occlusion is common if the actor is in a busy surrounding and

identifying his actions would require understanding the long term occlusion well.

In this thesis, I have taken the first step for identifying actions with temporal

ordering. The goal was to conduct the experiments in a controlled environment so

that the results can be analyzed carefully and conclusions can be drawn from it. For

this thesis, all the experiments were performed using a synthetic dataset containing

around 5500 videos. All the videos in the dataset consisted of simple objects such

as a cone, cylinder, sphere or a cube. The presence of simple 3D objects in the

scene simplifies the task of identification and re-identification in the videos. In real

world datasets, if the objects have a certain amount of variations, it becomes difficult

for the network to learn all those subtle variations. For eg., a network would require

thousands of images of a cat or a dog to become precise in the task of identifying a cat

from a dog. Moreover, all the videos consisted of the same background so that scene

bias could be eliminated. In real world datasets, often the background of the scene

offers important clues on the action taking place. For eg. if the network sees a football

field, it can easily infer that the actor is playing football or else a swimming pool can

indicate the act of swimming. The synthetic dataset with a constant background

eliminates these issues and the network can entirely focus on the objects and the

actions being performed by those objects.

The CATER (Girdhar and Ramanan (2019)) dataset contains synthetically gen-

erated videos containing simple 3D objects of different shapes and sizes placed before
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a solid background. The objects in the scene perform a subset of 4 atomic actions:

pick place, slide, rotate and contain. The dataset contains a total of 14 unique atomic

actions and identifying these actions constitute Task 1. Since multiple of these ac-

tions can take place in a video, identifying the temporal order between the actions

constitutes Task 2. The ordering is specified using three temporal intervals i.e. be-

fore, during and after. Using these three temporal intervals and combining it two of

the 14 atomic actions, a total of 301 unique composite actions are obtained. Task 2 is

setup as a multi-label classification problem for identifying which of these composite

actions occur in the video. Moreover, the dataset also defines a special object i.e.

the snitch and identifying its final location in the scene constitutes Task 3. In this

thesis, Task 1 and Task 2 was attempted. Chapter 3 provides more details about the

dataset and the tasks that were attempted. Moreover, for both Task 1 and Task 2,

experiments were performed with and without camera motion.

The actions defined in the dataset have a distinct spatiotemporal trajectory which

can be used to distinguish between different classes of actions. If the actions have

a unique trajectory then the problem can be reduced to estimating the location of

the objects in each of the frames and then using the (x, y) coordinates to classify

the trajectory. To validate our assumption, a handcrafted rule based system was

developed that can be fed with the (x, y) coordinates of each of the objects and can

output the action predictions. The algorithm starts by finding all windows where

a particular object’s location changes and then these windows are categorized into

different actions based on the type of motion that was observed. The algorithm then

eliminates any overlapping windows based on a priority function. Finally, scene level

action predictions are made and the results are compared with the ground truth

information. Similarly for composite actions, the action windows are used to define

a temporal relationship between a pair of actions.
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The system was tested using the frame level annotations from the training data

and it was found that the system surpasses the state of the art performance for both

atomic and composite actions. It provided the confidence to pursue this method

further and derive the (x, y) coordinates from the videos using object tracking. Since

the dataset contains simple shapes without a lot of inter-class variations, a standard

object detection network was used for getting the bounding boxes. These bounding

boxes were then input to a object tracking module to get the trajectories for the

objects in the scene. Chapter 4 explains the process in detail and Chapter 5 describes

the results from the experiment.

In this thesis, experiments using other deep learning models such as I3D and

Non-local neural nets were performed for atomic-action recognition, as described in

4. Moreover, multiple experiments were performed using transformer based networks

for atomic action recognition. The transformer based networks failed to effective learn

the atomic actions in the dataset and its inability to learn can be accounted to the

lack of a large dataset available for training.

The experiments using I3D networks for atomic action recognition closely matched

the state of art performance as described in the original paper for CATER (Girdhar

and Ramanan (2019)) dataset. It provided the motivation to come up with a window

based technique where the whole video is divided into multiple clips and the training

is performed on these clips for atomic action recognition. The predictions from the

model is then passed through a simple rule based system to identify the temporal

ordering of the actions in the video. Multiple experiments were performed using these

approach including different window sizes, random windows and moving windows.

This method surpassed the performance for composite action recognition i.e. Task 2

as described in the CATER dataset.

The contribution of this work is three-fold. First, the thesis proposes, algorithms
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for a rule-based for identifying both atomic and composite actions. The algorithms

validate the hypothesis that the object tracks obtained by a robust tracking algorithm

will perform exceedingly well on this dataset. The algorithms when fed with frame

wise object coordinates from the training data, outperform the state of the art results

as reported in the CATER (Girdhar and Ramanan (2019)) dataset. If the same rule

based algorithms are fed with tracks from a robust multi-object tracker, it would

perform equally well.

Second, the thesis provides a script for generating labels for atomic actions for any

non-overlapping windows or even random sequences of varying sizes from the videos.

This script could aid in future research by making ground truth labels easily available

for any desired sequence in the videos. The windows in the videos refer to a set of

consecutive non-overlapping clips with each clip having multi actions taking place.

Similarly, a random sequence refers to a sequence of frames in a video of the specified

length. The script for random sequence also allows the user to specify the number of

samples that needs to be picked from each video.

Third, the thesis proposes a new approach for identifying composite actions in

videos. It proposes an approach where first the whole video is used for training

to learn atomic actions in the video. Next, the video is split into multiple non-

overlapping windows and the network is trained on these clips. The labels for these

clips are generated using the above script using the frame level scene annotations

available with the original dataset. Once the model outputs the atomic actions for

each of these clips, a simple rule based system is used for determining the composite

actions in the scene. This approach surpasses the existing state of the art performance

for Task 2 by an impressive margin. It must be noted that this technique aims to

solve for this specific dataset and might not be efficient for other datasets. Moreover,

for real world datasets, it might be difficult to identify exact ground truth labels for
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the different sub-clips from the video.
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Chapter 2

RELATED WORK

The problem of action recognition in videos can vary widely and there’s no single

approach that suits all the problem statements. Traditional approaches to action

recognition rely on object detection, pose detection, dense trajectories, or structural

information. More recent approaches have relied on 3D-CNN and transformer based

approaches. Video action recognition is a widely researched field and numerous works

have been published in the last few years exploring different approaches under a

variety of settings and applicable to different datasets.

2.1 Trajectory Based Methods

Convolutional Neural Networks(CNN) extracts the features from each frame and

pool the features from multiple frames to get a video-level prediction. The drawback

of this approach is that it fails to capture sufficient motion information. Motion

information can be captured by combining optical flow containing short-term motion.

In addition to RGB and optical flow, information from other modalities such as audio,

pose, and trajectory can also be used.

Dense Trajectories(Wang et al. (2011)) concatenated trajectory descriptors with

appearance features from each frame and tracks them based on displacement infor-

mation. Their approach combines dense sampling with feature tracking and intro-

duces an efficient solution for removing camera motion. They compute the motion

boundary descriptors along the dense trajectories which help in tackling the camera

motion. The motion information in the dense trajectories is leverages by calculating

the features within a space-time volume around the trajectory. Another approach
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using trajectory information by Wang and Schmid (2013), explicitly estimates the

camera motion to improve the dense trajectories. For estimating the camera motion,

they match feature points between frames using SURF descriptors and dense optical

flow. It also uses state of the art human detectors to remove potentially inconsistent

matches during camera motion estimation.

Two stream CNN(Simonyan and Zisserman (2014)) uses separate spatial and tem-

poral recognition streams based on ConvNets. The two-stream network consists of

two separate subnetworks, where one is for raw images and the other is for stacked

optical flow, respectively, and captures spatiotemporal information by fusing the soft-

max scores of two streams. The temporal stream uses optical flow displacement fields

for capturing the trajectory information.

A spatio-temporal representation can be constructed by fusion motion and appear-

ance information in the way of two streams. It would work well for short duration

clips, but would not be able to capture long-term temporal dynamics.

2.2 Spatio-temporal Networks

3D Convolutional Neural Networks for Human Action Recognition (Ji et al. (2013))

proposes to perform 3D convolutions to extract spatial and temporal features from

the video. It proposes the use of a 3D-CNN model for this purpose which generates

multiple channels of information from adjacent video frames, performing convolution

and subsampling separately in each channel. It also proposes the uses of auxiliary

outputs for regularizing the 3D CNN models.

Another work, ConvNet Architecture Search for Spatiotemporal Feature Learning

(Tran et al. (2017)) uses 3D CNNs as feature extractors. The convolution is applied

on a spatio-temporal cube ie. it includes multiple frames. They use a SVM classifier

(Hearst et al. (1998)) on top of the feature extractor as a classifier. The network
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performed decently for short videos but long-range temporal modeling was still not

performing well with this network.

Large-scale Video Classification with Convolutional Neural Networks (Karpathy

et al. (2014)), introduces early, late and slow fusion for fusing time information in

CNN models. Their experiments indicate that slow fusion performs better than other

methods. It also introduces a multi-resolution architecture to reduce the computa-

tion cost. This architecture uses 2 separate streams which processes the image at

2 different spatial resolutions. The issue with their approach was that very little

performance improvement was achieved using their approach.

Recurrent neural networks (RNNs), especially long short-term memory (LSTM),

achieved impressive results in the sequence tasks due to the ability of long-term

temporal modeling, so an alternative strategy is to adopt LSTM to model dynamics

of frame-level features. However, most existing LSTM-based approaches do not make

the distinction between various parts of video frames. LRCN (Donahue et al. (2015))

is a recurrent convolutional architecture, which cascaded a CNN with a recurrent

model into a unified model. CNN was used to extract features of each frame, and then,

these features were fed into LSTM step by step for modeling dynamics of the feature

sequence so that it could learn video level representation in both spatial and temporal

dimensions. Beyond short snippets(Ng et al. (2015)), combined the temporal feature

pooling architecture with LSTM to allow the model to accept arbitrary-length frames.

Beyond frame level CNN (Wang et al. (2017)) utilized a deep 3-D-CNN to process

salient-aware clips and fed the features extracted from the fully connected layer of a

3-D-CNN into LSTM for action recognition. According to the spatial–optical data

organization(Yuan et al. (2018)), synthesized motion trajectories, optical, and video

segmentation into spatial–optical data and used a two-stream 3-D CNN to process

synthetic data and RGB data separately.
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2.3 Transformer Based Networks

Attention is all you need (Vaswani et al. (2017)) proposed a network based on

purely attention mechanisms for language translation task. Gradually, more work

was done for finding applications for transformer based models for vision tasks. One

of the first works proposing the use of transformers for image classification was the ViT

network (Dosovitskiy et al. (2021)). It proposes dividing the frame into small patches

and then passing these patches through a linear layer to get embeddings. These

embeddings are then stacked together and passed through a standard transformer

network to learn a class token embedding. These embeddings are passed through a

MLP layer for image classification.

The ViViT paper (Arnab et al. (2021)) extended the ViT approach to videos.

It proposed multiple techniques for the temporal extension. One of the approaches

proposed in the ViViT paper was to first use a standard ViT network on the all frames

of the video and then combining the class token embedding outputs. The combined

class token embedding outputs are passed through a temporal transformer and then

a MLP layer to learn the actions occurring in the video. Fig. 4.7 shows the network

architecture for this approach.

More recent architectures have focused on using attention mechanisms for pick-

ing salient parts of the video. This helps in overcoming the limitation of LSTMs

which didn’t distinguish between various parts of the video. 3D CNN RNN encoder

decoder model(Yao et al. (2015)) uses attention mechanism for effective video descrip-

tion as it allows the usage features obtained using global analysis of static frames.

Visual attention(Sharma et al. (2016)) proposes a soft attention based model for ac-

tion recognition. The model learns to focus selectively on the important parts of the

video. Global and Local Knowledge-Aware Attention Network(Zheng et al. (2021))
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incorporates two types of attention mechanisms called statistic-based attention (SA)

and learning-based attention (LA) to attach higher importance to the crucial ele-

ments in each video frame. Attention Clusters(Long et al. (2017)) uses multiple

attention mechanisms units(called attention clusters) to capture information from

multiple modalities. Video Action Transformer Network(Girdhar et al. (2019)) intro-

duces a transformer based architecture that learns to focus on hands and faces which

is often crucial in differentiating between actions. They use an action transformer as

input for the video feature representation and the box proposal from RPN and maps

it into query and memory features.
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Chapter 3

DATASET

The experiments in this thesis are conducted on the CATER (Girdhar and Ra-

manan (2019)) dataset. CATER is an extension of CLEVR (Johnson et al. (2016))

Figure 3.1: Sample Frames from a Video in the Cater Dataset showing the movements

of different 3D objects (Source: CATER Dataset (Girdhar and Ramanan (2019))).

In this sample, multiple objects are performing different actions simultaneously. It

can be noticed that the blue cylinder is rotating along its horizontal axis from the

top-left frame to the bottom-right frame. Moreover, the golden snitch can been being

picked from its place and placed to another location in the scene.
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and it can be used for understanding compositional and temporal actions in videos.

It is a synthetic dataset and it contains simple 3D objects such as a sphere, cone,

cylinder and a snitch. Each of these objects can afford one or multiple actions such

as slide, pick-place, contain and rotate. mAP is used as the performance metric for

both tasks. Fig. 3.1 shows some sample frames taken from a training video.

The dataset contains 5500 videos which are split into training and validation

set(80:20). Each video is a 300-frame 320x240px video at 24 FPS. During data gen-

eration, each video is divided into 30 frame slots and each action is contained within

these slots. Actions are iteratively added to at max K objects in these slots in an

random order. For Task 1 and Task 2, K=2 is used to avoid too many actions hap-

pening at the same time. For Task 3, K=N is used since the goal is to only find the

final location of the special object.

The original paper defines 3 different tasks of varying difficulties for action classi-

fication and localization.

Task 1: Atomic action recognition This task is to produce 14 different proba-

bility values to indicate the likelihood of that action taking place. A single video can

have multiple actions taking place, so Task 1 is designed as a multi-label classifica-

tion problem. The performance for this task is evaluated using mean average preci-

sion(mAP), computed by taking a mean of average precision(AP) over all the classes.

This is a popular evaluation metric for multi-label action classification datasets (Sig-

urdsson et al. (2016), Gu et al. (2018)).

Task 2: Composite action recognition This task is to predict the occurrence

of all the composite actions occurring in the video out of the 301 possible actions. It

takes pairs of 2 out of 14 atomic actions and joins it using a temporal relation(i.e.

before, during, after) to obtain all the different action classes. Similar to Task 1, this

problem is also defined as a multi-label classification problem. The performance for
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this task is evaluated using mAP metric similar to what was used for Task 1.

Task 3: Snitch Localization The final task defined in the dataset requires

predicting the final location of the special object called the snitch. Since, the snitch

can be occluded from view in the final frame, it is not a trivial task to identify its final

location. The frame is quantized into 36 equally equally sized cells and the problem

is defined as a classification problem where the goal is to predict the cell in which the

snitch is located in the final frame.

In this thesis, the first two tasks were attempted and Chapter 4 describes the

methodology used and Chapter 5 describes the results.
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Chapter 4

PROPOSED METHOD

4.1 Rule Based System

Looking at the actions defined in the dataset, one can observe that most of the

actions have a distinctive trajectory in space and it can be exploited to distinguish

between different action classes. Fig. 4.3 shows the trajectories for different atomic

actions defined in the dataset. This characteristic motivated us to track all the objects

Figure 4.1: Architecture for Rule Based System: (1) Individual frames are passed

through a pre-trained Faster-RCNN network with a ResNet-50 backbone to detect all

the objects in the frame. (2) A multi-object tracking algorithm is used to obtain the

trajectories for all the objects in the scene. (3) The trajectory information is passed

through a rule-based system to determine atomic and composite actions in the video
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in the scene and use handcrafted rules to classify the trajectories into different action

classes. Initially, a Faster-RCNN Ren et al. (2016) model is trained on a small set of

images to identify all the objects in the scene. The resulting bounding boxes are then

passed to the DeepSORT(Wojke et al. (2017)) algorithm to obtain object trajectories.

These object trajectories are input to a rule based system that classifies the action

classes. The methodology is described in detail in the following sections.

4.1.1 Object Detection

The dataset comprises of simple 3D objects of varying colors and sizes and is set

against the same background for all the videos. Since, the objects do not exhibit a lot

of inter-class variation, we manually annotated 100 images extracted from different

videos using(Tzutalin (2015)). These images were then used for training a standard

Faster-RCNN (Ren et al. (2016)) model for predicting bounding boxes and class

labels.

Faster-RCNN (Ren et al. (2016)) takes an input image and passes it through a

pre-trained CNN network to obtain a convolutional feature map. This feature map is

passed through a Region Proposal Network (RPN) to obtain a fixed number of regions

with probability of containing objects in them. Next, Region of Interest (RoI) Pooling

is applied to extract features from each of the bounding boxes given out by the RPN.

Finally, a classifier is used on the extracted feature map to classify the it as an object

or a background. Fig. 4.2 shows the architecture for Faster-RCNN.

We used a ResNet-50(He et al. (2015)) model as a feature extractor for the Faster-

RCNN model. The feature map obtained from it is then passed through a Region

Proposal Network(RPN) which outputs a predefined number of regions where ob-

jects might exist. RPN uses fixed sized anchor boxes placed uniformly throughout

the image. Region of Interest(ROI) Pooling is applied on each of these regions to
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Figure 4.2: Architecture for Faster-RCNN (Source: Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks (Ren et al. (2016))). The

figure shows that the image is passed through the conv layers which give out a feature

map. The feature map is passed through a Region Proposal Network (RPN) and a

Region of Interest (ROI) pooling layer to extract the feature map for each proposal.

extract features. Finally, the R-CNN module either classifies it as an object or as a

background.

We perform multiple experiments by tweaking the input channels, performing data

augmentation and using pre-trained weights etc. to iteratively increase the accuracy

of the model.
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4.1.2 Object Re-identification

Efficient tracking of multiple objects in the scene requires accurate re-identification

of the object across frames. We will be training a Siamese Net(Koch et al. (2015))

with a triplet loss function to group together similar objects and simultaneously learn

to keep the representation of other objects away from the first group. During training

a set of 3 images are picked, where the first image is one that is being trained, the

second image belongs to the same class as the first image(positive class) and the third

image belongs to the negative class i.e. it can be from any class apart from the first

image’s class. The loss function of the convolutional neural network tries to minimize

the cosine distance between the anchor and the positive class image and maximises

the cosine distance between the anchor and the negative class images.

Since, object detection gave a very high accuracy, the training images were ob-

tained by running the detection model on frames of the videos. The CATER dataset

defines 192 distinct object classes based on varying objects, their size, color and

texture. The object detection module was run until 300 instances of each object cat-

egories were obtained. We manually sifted across the resulting crops to remove all

incorrectly labeled images. The model was then trained for 40 epochs using a triplet

loss function using 80% images as training images.

4.1.3 Object Tracking

We used DeepSORT Wojke et al. (2017) for multi-object tracking as its a simple

and elegant framework for tracking multi objects simultaneously. The model takes in

only the set of bounding boxes for each of the frames. It uses the Siamese Net as a

feature extractor for objects in the scene. The feature map is used to calculate the

distance D between two objects as shown in Eq. 4.1. Dk represents the Mahalanobis
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(a) Pick Place (b) Slide

(c) Pick Place and Slide (d) Pick Place twice

Figure 4.3: Plot Showing Object Trajectories for Atomic Actions. The plots clearly

indicate each of these actions have a distinct trajectory and this information can be

exploited to determine the actions using the object trajectories

distance, Da represents the cosine distance and Λ represents the weighting factor.

The network returns tracks for each of the objects in the scene along with all the

necessary information about the object’s state.

D = Λ ∗Dk + (1− Λ) ∗Da (4.1)

19



Algorithm 1 Get Atomic Action Windows From Scene

1: procedure AtomicActionWindows(sceneInfo)

2: sceneObjects← GetSceneObjects(sceneInfo)

3: sceneActionWindows←< k, v >

4: for all obj1 : sceneObjects do

5: actionWins←< k, v >

6: (x1, y1, z1), name1, shape1 = GetObjCoords(obj1)

7: actionWins[slide] = GetSlideWins(shape1, x1, y1, z1)

8: actionWins[pickP lace] = GetPickPlaceWins(shape1, x1, y1, z1)

9: if shape1 is cone then

10: for all obj2 : sceneObjects do

11: if indexOf(obj2) = indexOf(obj1) then continue

12: end if

13: (x2, y2, z2), name2, shape2 = GetObjectCoords(objectDetails)

14: actionWins[contain] = GetContainWins(shape2, x2, y2, z2)

15: end for

16: end if

17: sceneActionWindows[name1] = actionWins

18: end for

19: end procedure
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Algorithm 2 Get Atomic Action Predictions

1: procedure AtomicActionPredictions(sceneActionWindows)

2: predActions← list()

3: for all obj : sceneActionWindows do

4: movements← sceneActionWindows[obj]

5: if contain in movements then

6: for all containWins : movements[contain] do

7: Remove overlapping pickPlace and slide movements

8: end for

9: end if

10: if pickPlace in movements then

11: for all pickP laceWins : movements[pickP lace] do

12: Remove overlapping slide movements

13: end for

14: end if

15: for all action : movements do

16: if len(movements[action] > 0) then

17: predActions.insert(GetShape(obj) + action)

18: end if

19: end for

20: end for

21: end procedure
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Algorithm 3 Task 1: Atomic Action Recognition

1: procedure AtomicActionRecognition(scenes)

2: groundTruthActions← list()

3: predActions← list()

4: for all scene : scenes do

5: sceneGtActions = GetGroundTruth(scene)

6: groundTruthActions.insert(sceneGtActions)

7: actionWindows← AtomicActionWindows(scene)

8: scenePredActions← AtomicActionPredictions(actionWindows)

9: predActions.insert(scenePredActions)

10: end for

11: mAP ← CalculatemAP(groundTruthActions, predActions)

12: end procedure

4.1.4 Rule Based System

We saw in Fig. 4.3 that different actions have distinct object trajectories. Using

DeepSORT we obtained the trajectories of each of the objects in the scene. This can

be fed into a handcrafted rule based system to classify the actions.

Algorithm. 3 shows the pseudo-code for classifying the atomic actions as defined in

Task 1 of the CATER dataset. It first identifies all the windows in which the location

of the object changes. The windows are then segregated into different buckets based

on the type of motion that was identified. If the location of the object changes just

along the x and y axis, it indicates a slide action whereas if z location of object changes

followed by changes in x, y coordinates, it denotes a pick-place action. The same

reasoning can be extended to a 2-D image where we just have x and y coordinates.
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The rules are designed to be flexible as all observations are made for a window of

10 frames so that it provides some room for error during the object tracking phase.

Algorithm .3 uses the procedures defined in Algorithm. 1 and Algorithm. 2 for getting

the atomic action windows and atomic action predictions of a scene respectively.

It must be noted that we omit the rotate action while experimenting with hand-

crafted rules as the physical location of the object doesn’t change in case of rotation.

Algorithm. 6 extends Algorithm. 3 and is used for identifying composite actions.

Using the first algorithm, the start and end time for each of the actions can be

estimated with some error. These action windows can then be used to define a

temporal relationship between pair of actions. Algorithm .6 uses the procedures

defined in Algorithm. 1, Algorithm. 4 and Algorithm. 5 for getting the atomic

action windows, composite action windows and composite action predictions of a

scene respectively.

4.2 R3D

This method is based on the Two stream Inflated 3D ConvNet (I3D) (Carreira and

Zisserman (2018)) network. The architecture extends the 2D ConvNet inflation to

3D for learning spatio-temporal features from the videos. Fig. 4.4 shows the inflated

Inception-V1 and its corresponding Inception module.

The model is trained using pre-trained weights from Kinetics dataset (Kay et al.

(2017)) and uses ResNet as its base. We performed multiple experiments by varying

the duration of the clip and the sampling rate of the video. Section 5.2 reports the

results obtained using this architecture.
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Algorithm 4 Get Composite Action Prediction Windows

1: procedure CompositeActionPredictionWindows(sceneActionWindows)

2: actionWindows← list()

3: for all obj : sceneActionWindows do

4: movements← sceneActionWindows[obj]

5: if contain in movements then

6: for all containWins : movements[contain] do

7: Remove overlapping pickPlace and slide movements

8: end for

9: end if

10: if pickPlace in movements then

11: for all pickP laceWins : movements[pickP lace] do

12: Remove overlapping slide movements

13: end for

14: end if

15: for all action : movements do

16: actionName← GetShape(obj) + action

17: if len(movements[action] > 0) then

18: actionWindows[actionName].insert(movements[action])

19: end if

20: end for

21: end for

22: end procedure
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Figure 4.4: Architecture for I3D network (Source: Quo Vadis, Action Recognition? A

New Model and the Kinetics Dataset (Carreira and Zisserman (2018))). The model

inflates the 2D ConvNet architecture so that it can be used for videos.

Figure 4.5: Window Based Training technique: The whole video is divided into mul-

tiple windows and training is performed to learn atomic actions for each windows

25



Algorithm 5 Get Composite Action Predictions

1: procedure CompositeActionPredictions(actionWindows)

2: compositeActions← list()

3: for all action1 : actionWindows do

4: for all action2 : actionWindows do

5: windows1 ← actionWindows[action1]

6: windows2 ← actionWindows[action2]

7: for all win1 : windows1 do

8: for all win2 : windows2 do

9: rel← GetTemporalRel(win1, win2)

10: compositeActions.insert(action1 + rel + action2)

11: end for

12: end for

13: end for

14: end for

15: compositeActions← list(set(compositeActions))

16: end procedure

4.2.1 Window Based Method

The performance of I3D for learning the atomic actions in the videos was quite

encouraging and it provided the motivation to extend this approach for the identi-

fication of composite actions. A simple training technique was devised by dividing

the whole video into multiple windows and learning atomic actions for each of the

windows. The CATER (Girdhar and Ramanan (2019)) dataset provides annotations

indicating the start and end frames for each of the atomic actions. A script was
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Algorithm 6 Task 2: Composite Action Recognition

1: procedure CompositeActionRecognition(scenes)

2: groundTruthActions← list()

3: predActions← list()

4: for all scene : scenes do

5: sceneGtActions = GetGroundTruth(scene)

6: groundTruthActions.insert(sceneGtActions)

7: atomicActionWins

← CompositeActionPredictionWindows(scene)

8: compositeActionWins

← CompositeActionPredictionWindows(atomicActionWins)

9: scenePredActions

← CompositeActionPredictions(compositeActionWins)

10: predActions.insert(scenePredActions)

11: end for

12: mAP ← CalculatemAP(groundTruthActions, predActions)

13: end procedure

used for generating atomic action labels for the specified window using the available

annotations. The script made is quite easy to setup new experiments with different

number of windows. Fig. 4.5 shows how the video is divided into multiple windows

for training purpose. For eg., if the number of windows is set to 6, then the video

will be divided into 6 equal parts and each window will be treated as a independent

sample. During training, the labels generated using the script would be used for

learning the atomic actions for that particular window. Section 5.2.1 describes the

experiments in detail.
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Figure 4.6: Window Based Method Architecture: The figure shows the training and

validation process used for Window Based Method

During inference, clips from each of the windows are passed through the network

to obtain atomic action labels for the windows. Once the atomic action labels are

obtained, action’s start and end frame is set to be the same as the window’s start and

end frame. Fig. 4.6 shows the end to end training and validation architecture used

for this method. Finally, all the action windows (action, start, end) is passed through

a simple rule based system to determine the composite action labels. Algorithm 6

describes the rule based system used for determining the composite actions based on

predictions from all of the windows.

Initially, experiments were performed using number of windows from 6 to 12.

As described in Section 5.2.1, 6 windows performed the best amongst these. Next,

instead of taking non-overlapping windows from the videos, random clips of a fixed
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sequence length were picked from the video. A pre-determined number of samples

were extracted from each of the videos. The original script was modified to allow

generation of random clips. Using random clips massively improved the availability

of training data. The number of samples from each video was set to 20 so that enough

number of samples can be extracted from each video. Also, the sequence length was

set to 50 since in the previous experiment 6 windows (i.e. 50 frames per window)

performed the best.

4.3 Non Local Net

This method is based on the Non-local neural networks(Wang et al. (2018)) which

uses non-local operations for capturing long term dependencies. The non-local oper-

ation calculates the weighted sum of features at all positions instead of using just the

neighbouring positions. In our experiment, we replace the final two Conv3D layers of

the R3D model with non-local blocks. Similar to R3D we perform multiple experi-

ments by varying the clip duration and sampling rate. Section 5.3 reports the results

obtained using this architecture.

4.4 Transformers

In this thesis, multiple transformer based approaches were used for experimen-

tation to learn the atomic actions in the videos. The experiments didn’t perform

well and failed to effectively identify the atomic actions in the videos. This section

describes the network architectures for the different transformer based approaches.

First, a transformer network inspired from Video Action Transformer Network

(Girdhar et al. (2019)) was used for task 1 and task 2. As described in the original

paper, I used a I3D(Carreira and Zisserman (2018)) network as the base for extracting

feature maps from raw video frames. Next, a Faster-RCNN was used on the first frame
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of the video to extract the bounding boxes of all the objects. The bounding boxes

along with the feature map was passed to a ROI-align layer to get output feature

maps. Roi-align was originally proposed in the Mask R-CNN paper (He et al. (2018))

which takes a list of bounding boxes along with the input feature map and returns

a list of output feature maps of the same dimension. Finally, the output feature

maps are concatenated along with W dimension and pass it through a linear layer

to get the query (q) vector. Also, the original feature map obtained from I3D is

passed through two independent linear layers to get the key and value (k, v) vectors.

The (q, k, v) vectors are passed through 3 layer multi-head attention network(Vaswani

et al. (2017)) to get the final output. The final output is then passed through a fully

connected layer to get the class predictions. Section 5.4 describes the results obtained

using this network.

Next, ViViT, a video vision transformer (Arnab et al. (2021)) was used for experi-

menting with task 1. ViViT is a pure transformer based model for video classification.

It builds on top of ViT: Vision Transformer (Dosovitskiy et al. (2021)) which is a pure

transformer based network for classifying images. Fig. 4.7 shows the network archi-

tecture for ViViT. The network first uses a standard ViT network to extract encodings

from each of the frames and then the class tokens of these encodings are passed to

a temporal transformer for learning the temporal attention encodings. Finally, the

output of the temporal transformer encoder is passed through a MLP head for learn-

ing the video action class. The ViT network takes a input frame and divides it into

non-overlapping patches. Vector embeddings are then obtained from each of these

patches using a linear layer and the embeddings from all the patches are stacked to

get the embedding tokens. These tokens are of shape (BxNxd) where B is the batch

size, N is the number of tokens and d is the dimensions of the tokens.
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Figure 4.7: Architecture for ViViT: A Video Vision Transformer (Source: Fig 4. in

Arnab et al. (2021))
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Chapter 5

RESULTS

In this chapter the results of various experiments are discussed. For rule based sys-

tem, precision, recall and accuracy is reported and for other deep learning approaches,

mAP(mean average precision) is used as the performance metric.

5.1 Rule Based System

This section discusses the performance of different components of the rule based

system.

5.1.1 Object Detection

Multiple experiments were performed for object detection by changing the number

of input channels, performing data augmentation and by using pre-trained weights.

Table. 5.1 shows the results of the different experiments. Fig. 5.2 visualizes the

mAP using different experimental setups. Using pre-trained weights from COCO Lin

et al. (2015) dataset improved the mAP significantly and using pre-trained weights

from LaCATER Shamsian et al. (2020) achieved the best results. Fig. 5.1 shows the

progression of loss function for the different experiments that were performed. It can

be noticed that using pre-trained weights not only improved the mAP, but also helped

the network in learning faster. The value for loss decreases sharply when COCO or

LaCATER’s pre-trained weights were used.

Fig. 5.3 shows a few sample frames annotated with bounding boxes and their

corresponding class labels. It can be noticed that the network is able to draw correct

bounding boxes even for very small objects in the scene. It is able to correctly detect
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Figure 5.1: Comparison of Faster-RCNN Loss for Different Experiments: The plot

shows how the loss decreases after each training step. It can be noticed that the loss

for the network initialized using pre-trained weights from LaCATER dataset (orange

curve) decreases the fastest whereas the network initialized with pre-trained weights

from COCO dataset (purple curve) takes the most amount of time to converge. The

plots make it clear that not only does the use of pre-trained LaCATER weights

improve the performance, it also speeds up how fast the learning happens.

almost all objects in the sample images.

5.1.2 Object Re-identification

As described in Section. 4.1.2, Siamese Net was used for distinguishing between

objects in the scene. The training was done for 40 epochs using 300 images from each

of the 192 classes. Table 5.2 shows the training and testing results. The network

achieved very high testing accuracy of over 99%. Fig. 5.4 shows the plot for the loss

function during training.

The object detection module was used for obtaining frame wise bounding boxes

and class labels for all videos in the validation set. The bounding boxes along with the
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Method AP[IoU=0.5] AP[IoU=0.75] AR[IoU=0.5:0.95]

RGB images 92.9 87.1 72.1

RGB with

image augmentation
94.0 84.2 74.5

Grayscale images 94.7 84.2 74.3

Grayscale pretrained

on COCO
97.3 90.8 78.6

Grayscale pretrained

on LaCATER
99.5 96.3 82.0

Table 5.1: Comparison of average precision values for different experimental settings

using Faster-RCNN. The network depicted the best results when grayscale images

were passed through the Faster-RCNN network pretrained on a LaCATER Dataset.

The results clearly show that use of LaCATER weights results in significantly better

performance as compared to what is obtained using COCO weights.

trained object re-identification module was passed to the DeepSORT model to obtain

trajectories for all objects in the scene. The results were stored as CSV files which

were later fed into a handcrafted rule based system to obtain action predictions.

5.1.3 Rule-based System

The preceding sections described how object detection, re-identification and track-

ing was done to obtain trajectories for all objects in the scene. Before the trajectories

obtained from DeepSORT are used for action classification, we test our handcrafted

rules using the annotations from the training data. The training data contains frame

wise locations for each of the objects in the scene.
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Figure 5.2: Comparison of Faster-RCNN Performance: The plot shows the perfor-

mance obtained using Faster-RCNN network under different experimental settings.

Clearly using Grayscale images pre-trained on LaCATER dataset performed the best

amongst these experiments.

For task 1, we pass these coordinates through our rules as described in Algorithm

3. Table A.1a shows the class wise precision and recall using the training data. It

can be seen that the rules are able to accurately classify almost all actions. It must

be noted that we have reported precision and recall separately for this experiment

as the recall doesn’t vary based on different values of precision. The results beat

the state of the art performance reported in the CATER dataset paper by about

2%. Table A.1b shows the class wise performance when object trajectories are used

instead of training data. The performance degrades considerably, indicating that

the trajectories obtained using DeepSORT are not accurate. The objects in the
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Figure 5.3: Object Detection Results: The images show the predicted bounding boxes

and the class labels on some samples frames of a video in the CATER dataset. Faster-

RCNN network pre-trained on LaCATER dataset was used for these predictions and

the plots show that the network is able to draw a fairly accurate bounding box even

for smaller or partially occluded objects in the frame.

Figure 5.4: Siamese Network Loss

Metric Value

Training Loss 0.022

Training + Val accuracy

(20% unseen samples)
99.99%

Correct/Total 57599/57600

Table 5.2: Results from Siamese Network
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scene undergo long term occlusion and containment which would lead to tracks being

deleted and reinitialized.

Similarly, for task 2, Algorithm 6 is fed with the coordinates obtained from track-

ing to predict composite actions. Again, to validate the rules, the training data is

used for action predictions and Table A.2 shows the class wise scores for the first 15

actions. As seen for task 1, the results using object trajectories didn’t perform well

since the tracks were not accurate. Table A.3 shows the results for first 15 actions

using trajectories obtained from DeepSORT.

Table 5.3 shows the overall performance of rule based systems for both tasks using

training data and tracking information. The performance of the handcrafted rules

using training data beats the state of the art for both task 1 and task 2 but the results

are not replicated when training data is replaced with tracking information. There’s

a definite possibility for improvement using a robust tracker that handles long term

occlusion and containment efficiently.

5.2 I3D

Table 5.4 shows the performance of using R3D network for task 1 and Table

5.5 shows the performance for task 2. For task 1 using clips with 64 frames sampled

uniformly at a rate of 4 performed better as compared to clips with 32 frames samples

at a rate 8. The model was trained for 150 epochs and the experiment using clips

with 64 frames achieved a mAP of 97.2% which is very close to the state-of-the-art

performance. For task 2 R3D with 64 frames achieved an mAP of 40.38% which is

close to what the original paper states.
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Method
Precision

(%)

Recall

(%)

F1 Score

(%)

Accuracy

(%)

Atomic Actions

using training data
99.37 99.3 99.33 99.27

Atomic Actions

using tracking results
72.5 68.5 70.4 68.6

Composite Actions

using training data
71.9 90.1 80.0 92.0

Composite Actions

using tracking results
32.0 46.0 38.0 73.0

Table 5.3: Performance of Rule Based System for different experimental settings. The

first two rows in the table show the results for atomic action recognition and the next

two rows show the results for composite actions. The results clearly show that the

the rule-based system performs quite well when coordinates from the training data is

used whereas when coordinates from the tracking results are used, the performance

drops drastically.

5.2.1 Window Based Method

Window based training strategy was used for learning atomic actions from each of

windows and these were used for inferring the composite action labels. mAP metric

was used for evaluating the performance of this method.

Calculating mAP: The mean Average Precision (mAP) was calculating by tak-

ing a mean of Average Precision (AP) values for all the classes. For calculating the

AP, the area under the curve was calculated for the precision vs recall plot. Different
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(a) Task 1: mAP (b) Task 1: Epoch Loss

(c) Task 2: mAP (d) Task 2: Epoch Loss

Figure 5.5: mAP and Epoch loss plots for R3D, Non-Local Net and Transformers

values of threshold were used for classifying a class as positive label to get the action

predictions. Using the predictions at different threshold values, precision and recall

values were calculated. Using these precision and recall values, the plot was drawn

for precision vs recall.

Table 5.5 shows the performance of window based method for task 2. It surpasses

the state-of-the-art performance for task 2 as reported in the CATER (Girdhar and

Ramanan (2019)) dataset paper. The results are quite encouraging as 66.57% mAP is

significantly higher than the best performing network described in the paper. These

results were achieved using random sequences of 50 frames with 20 samples from each

video used for training. During inference, clips from all the windows of the video

were passed through the I3D network to obtain the atomic action labels and then the

composite action labels were determined using the rule based system as described in
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Method mAP(%)

Static R3D + NL 98.9

Rule-Based System using training data1 99.37

Rule-Based System using tracking results1 72.5

R3D with 32 frames 81.1

R3D with 64 frames 97.2

Non-local net with 32 frames 74.3

Non-local net with 64 frames 90.4

Transformer Network 60.32

Table 5.4: Comparison of mAP using different approaches for atomic action recog-

nition with static camera setup. The first row lists the state-of-the-art performance

from the CATER dataset.

Algorithm 6.

Static Camera

Initially, experiments were performed with a static camera setting where the camera

position was kept the same for the entire duration of the video. Experiments using a

static camera setting performed much better than a moving camera setting. Results

for moving camera is described in 5.2.1.

As described in Section 4.2.1, multiple experiments were performed using different

number of windows. Table 5.6a shows the performance achieved for different exper-

imental setups. It can be clearly seen that amongst using 4-12 windows, 6 windows

(i.e. 50 frames per window) performed the best. Fig. 5.8 shows the comparison of

validation mAP and Epoch loss for different number of windows. Moreover, Fig. 5.7
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Method mAP(%)

R3D + NL + LSTM (64 frames) 53.1

Handcrafted rules using training data1 71.9

Handcrafted rules using tracking results1 32.0

R3D with 64 frames 40.38

Non-local net with 64 frames 38.63

Transformer Network 19.28

I3D With random sequences of 50 frames 66.47

Table 5.5: Comparison of mAP using different approaches for composite action recog-

nition with static camera setup. The first row lists the state-of-the-art performance

from the CATER dataset.

compares the performance of the experiments performed with the baseline perfor-

mance.

The results from using different number of windows showed that using 6 windows

clearly outperformed other window sizes. It provided the motivation to use sequences

of length 50 for the random training approach. Fig. 5.9 shows the comparison of of

validation mAP and Epoch loss for Random sequences vs 6 Windows. It can clearly

be seen that the validation mAP using random window surpasses the performance

using 6 windows. The same is reasserted by the epoch loss where the epoch loss

using random windows consistently decreases as training continues whereas using 6

windows, the loss starts increasing after a certain amount of time. These plots reaffirm

the importance of having a large number of training samples available for the network

to learn effectively.
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(a) Task 1: mAP (b) Task 1: Epoch Loss

Figure 5.6: Comparison of validation mAP and Epoch loss for 6 Windows with and

without pre-trained weights: The plot on the left clearly shows that using weights

from the whole video (pink curve) results in the fastest convergence and also improves

the performance of the network significantly.

Moreover, experiments were performed to see the effect of using pre-trained weights.

Table 5.6b shows the performance for task 2 with and without pre-trained weights for

6 windows. In one of the experiments, the weights were randomly initialized and in

the next experiments weights from the I3D network trained on Kinetics dataset was

used. In the final experiment, weights of the I3D network trained on the full video

of the CATER (Girdhar and Ramanan (2019)) dataset was used. It can be clearly

seen from the results that using pre-trained weights from the whole video helps in

improving the learning capability of the network. Fig. 5.6 shows the comparison of

validation mAP and Epoch loss for 6 Windows with and without pre-trained weights.

Encouraged by the results, pre-trained weights from the whole video was used for all

the other experiments. Moreover, Fig. 5.10 shows the same results as a bar plot for

easier visualization.
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Figure 5.7: Plot of Window Based Method Performance for Static Camera: The plot

compares the performance of the window based method for static camera setting with

the baseline performance. The baseline performance is shown in orange and all the

other bars show the results of the experiments performed in this thesis.

Moving Camera

After performing numerous experiments in a static camera scenario, a few experi-

ments were performed for a moving camera setup. With a moving camera, all the

experiments need not be repeated as the experimental setup is very similar. For eg.,

experiments in the previous section (Section 5.2.1) indicated that using pre-trained

weights from the whole video aids in learning the actions on smaller clips. This

learning was utilized for the moving camera approach and all the experiments were

performed by initializing the model with weights from the whole video.
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(a) Task 1: mAP (b) Task 1: Epoch Loss

Figure 5.8: Comparison of mAP and Loss for Different Number of Windows: Multiple

experiments were performed using different window sizes to find the optimal window

size that gives the best result for the task of composite action recognition. The results

indicate that using random clips with 20 samples taken from each video outperforms

other experimental settings

(a) Task 1: mAP (b) Task 1: Epoch Loss

Figure 5.9: Comparison of Map and Loss for Random Vs 6 Windows: The plot on

the right shows that when random windows are used(dark pink curve), the validation

loss steadily decreases whereas using 6 windows (light pink curve), the validation loss

starts increasing after around 5000 steps.
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Method mAP(%)

I3D With 4 Windows 62.15

I3D With 6 Windows 65.63

I3D With 8 Windows 64.67

I3D With 10 Windows 61.7

I3D With 12 Windows 62.46

I3D With Random

Sequences of 50 frames
66.47

(a) Experiments using different

window sizes

Method mAP(%)

I3D With 6 Windows

random weight initialization
62.36

I3D With 6 Windows

pre-trained with weights

from whole video

64.67

I3D With 6 Windows

pre-trained on Kinetics dataset
61.37

(b) Experiments with and without

pre-trained weights

Table 5.6: Comparison of mAP for Composite Actions for Different Experimental

Setups: (a) The table shows the performance of the I3D network when different

number of windows are used. The results indicate that using random clip sequences

of size 50 with 20 samples taken from each video outperforms other experimental

settings (b) The table shows the performance of the I3D network with and without

pre-trained weights. The results clearly indicate that using weights from the whole

video helps in improving the performance in terms of mAP.

Moreover, experiments using different window sizes, showcased a similar perfor-

mance with 6-10 windows performing quite well. Therefore, for moving camera ex-

periments were performed only for these window sizes. Table 5.7a compares the

performance using window based training technique to the best baseline performance

listed in the CATER dataset. Table 5.7b shows the performance obtained when dif-

ferent window sizes were used. The table clearly shows that the best performance

was obtained using 10 windows. It must be noted, that with a static camera setting,
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Figure 5.10: Plot of Window Based Method Performance for Different Weight Initial-

ization

the best performance was obtained using random sequences of 50 frames which is

equivalent to 6 windows in terms of clip duration. Fig. 5.12 shows the comparison

of validation mAP and epoch loss for different number of windows. Moreover, 5.11

shows the comparison of mAP for different experimental setups using moving camera.

5.3 Non Local Network

Table 5.4 shows the performance of using Non-local neural network for task 1 and

Table 5.5 shows the performance for task 2. Similar to R3D, for task 1 experiments

were conducted using 64 frames and 32 frames. Network with 64 frame clips performed

better as compared to the one with 32 frames. For task 2, the network performed

poorly and couldn’t achieve the performance as stated in the original CATER paper.
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Figure 5.11: Plot of Window Based Method Performance for Moving Camera: The

plots show the baseline performance in orange and the green lines show the results of

the experiments performed in this thesis.

(a) Task 1: mAP (b) Task 1: Epoch Loss

Figure 5.12: Comparison of validation mAP and Epoch loss for different number of

windows using videos containing camera motion: The plot on the left clearly shows

that using 8 windows (light green curve) results in the best validation mAP and its

performance is significantly better than using 10 windows (orange curve).
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Method mAP(%)

R3D + NL + LSTM

(32 frames)
43.5

I3D With 10 windows 45.53

(a) Task 2: Composite Action Recognition

Method mAP(%)

I3D With 6 Windows 38.32

I3D With 8 Windows 43.95

I3D With 10 Windows 45.53

(b) Different window sizes

Table 5.7: Comparison of mAP using different approaches for moving camera: (a) The

first row lists the baseline performance as mentioned in the CATER dataset. Using

I3D with 10 windows is able to outperform the mAP by around 2%. (b) The table

shows the mAP obtained using different number of windows. It can be clearly seen

that using 10 windows results in the best performance. Moreover, using 8 windows

also surpasses the baseline mAP by a very small margin.

It is evident that using a larger sample duration lets the model learn more efficiently

as the spatio-temporal features are captured in much more detail.

5.4 Transformers

The results using transformer network is listed for the sake of completeness but

there would be future iterations to this network that should improve its performance.

Table 5.4 shows the existing performance for task 1 and Table 5.5 shows the perfor-

mance for task 2.

Fig. 5.5a and 5.5b shows a comparison of mAP and epoch loss for R3D, Non Local

nets and transformers for task 1. Similarly, Fig. 5.5c and 5.5d shows a comparison

of mAP and epoch loss for R3D, Non Local nets and transformers for task 2.

1For handcrafted rules all actions except actions containing rotation are considered, since rotation

doesn’t have any translational motion

48



Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, the first step was taken towards effectively identifying composite

actions in videos under long-term occlusion and containment. The experiments were

performed on the CATER dataset which is a synthetic dataset containing simple

objects performing actions such as slide, pick & place, rotate and contain. A controlled

environment was chosen for the experiments so that it is easier to analyze the results of

the experiments and identify the best approach for solving the problem of composite

action recognition.

In this thesis, a rule based system was proposed for identifying atomic and com-

posite actions in videos. The algorithm was validated using frame level annotations

provided with the training data and it performed exceedingly well for both Task 1

and Task 2. It achieved a mAP of 99.37% for Task 1 and 71.9% mAP for Task

2. It provided the motivation to use a multi-object tracking technique for predict-

ing the coordinates of all the objects in each of the frames and pass it to the rule

based system. Predicting the coordinates of all the objects in the scene required 3

key tasks, i.e. object detection, object re-identification and multi object tracking. A

Faster RCNN network was trained on using a few hundred samples and it achieved

a mAP of 96.3% for 0.75 IOU. Moreover, a Siamese network was trained on a few

thousand samples for object re-identification and it achieved 99.99% accuracy when

all the training and validation images were used. Finally, a DeepSORT algorithm was

used for object tracking. It is evident that tracking based approach doesn’t achieve
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the desired accuracy as the objects in the scene undergo long term occlusion and con-

tainment. The DeepSORT based tracker makes multiple identity switches and isn’t

able to track the objects accurately. Even though the handcrafted rule based system

exceed the baseline accuracy, the rules do not perform well when fed with tracking

information.

Experiments using I3D and Non-local neural networks perform well and matches

the performance that was stated in the CATER dataset’s paper for Task 1. The

performance of I3D network on Task 1 motivated to extend it for Task 2. A window

based training technique was devised where the whole video was divided into multiple

non-overlapping clips and labels where generated for each of those clips using a custom

script. Multiple experiments were performed using this approach and the use of

random sequences of 50 frames with 20 samples picked from each video, performed

the best with a validation mAP of 66.47%. This surpassed the mAP reported for Task

2 in the CATER dataset by a good margin. Moreover, the network was initialized

with pre-trained weights from the whole video and it provided a performance boost

of around 4-5% in terms of mAP. It must be noted that this although approach works

quite well for this particular dataset, it might not generalize well for other datasets.

6.2 Future Work

In this thesis, all the experiments were performed under a controlled environment

and real-world datasets might differ in terms of complexity of the scene. In future,

work must be done to perform experiments using a real-world dataset. To effectively

test the performance of the network, it is necessary that the dataset doesn’t contain

any scene bias so that the network doesn’t start learning from the background of the

scene instead of focusing on the actual action taking place in it. Moreover, it would be

challenging to come up with frame level annotations for the actions being performed
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and the coordinates for all the object of interest in the scene. In a synthetic dataset,

these annotations were easily made available and could be easily extended to other

objects or actions. It would be quite insightful to test the effectiveness of window

based training technique on a real dataset. Moreover, experiments can be performed

to see if this technique generalizes well for other datasets with pure temporal ordering.

Moreover, in future work must be done to introduce new objects and actions in

the videos and test the effectiveness of transfer learning for the new videos. Since, its

a synthetic dataset and the code for creating the dataset is open-source it would be

quite easy to create new videos with new actions or objects introduced to the scene.
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APPENDIX A

COMPARISON OF CLASS WISE PERFORMANCE FOR RULE BASED
SYSTEM
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In this section, the class wise performance of the handcrafted rule based system
is compared for both Task 1 and Task 2. Table A.1a shows the precision and recall
for Task 1 using frame wise coordinates from the training data. It can be seen that
the algorithm is able to precisely predict all the actions with a very high recall rate.
When instead of passing the coordinates from the training data annotations, tracking
algorithm is used for determining the coordinates, the performance of the algorithm
drops drastically. Table A.1b shows the c lass wise precision and recall using tracking
information. It can be seen that the algorithm performs well only for cones and shows
a high precision and recll but for other objects, the performance is quite poor. Taking
a detailed look at the table indicates that the algorithm still shows a high recall rate
for most of the objects but the precision decreases. It indicates that the algorithm is
making a lot of false positive predictions.

Action Precision Recall
sphere slide 1.00 0.98
sphere pick place 1.00 1.00
spl slide 1.00 0.98
spl pick place 1.00 1.00
cylinder pick place 1.00 1.00
cylinder slide 1.00 0.98
cube slide 1.00 0.98
cube pick place 1.00 1.00
cone contain 1.00 1.00
cone pick place 0.96 1.00
cone slide 1.00 0.99

(a) Using training data

Action Precision Recall
cone pick place 0.97 0.99
cone contain 1.00 1.00
cone slide 0.90 0.73
spl pick place 0.24 0.98
spl slide 0.47 0.78
cylinder pick place 0.36 1.00
cylinder slide 0.28 0.95
sphere pick place 0.56 0.98
sphere slide 0.57 0.80
cube pick place 0.39 1.00
cube slide 0.34 0.87

(b) Using tracking information

Table A.1: Comparison of Class Wise Performance for Atomic Actions

Table A.2 shows the class wise performance for Task 2 for some of the classes
out of the 301 possible classes using the training annotations. It can be seen that
the algorithm performs quite well for most of the classes except actions where two
actions are happening simultaneously and the temporal relation between the actions
is during. Similar to Task 1, it can be seen from Table A.3 that when coordinates
from tracking method is passed to the algorithm, the performance drops drastically.
Apart from a few classes, most of the classes show very poor performance. Again,
it must be noted that the recall is still relatively high but the precision is quite low.
which indicates a lot of false positives been predicted by the algorithm. The poor per-
formance can be attributes to two factors. First, the tracks predicted by the tracking
algorithm are not accurate and have a lot of breaks in them due to occlusion. With a
lack of accurate object coordinate, the algorithm fails to determine the actions taking
place. Moreover, the composite action prediction using the algorithm is dependent
on atomic action prediction. Since, the atomic predictions were not highly precise,
the error was compounded while predicting the composite actions.
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Action P R
sphere slide before sphere slide 1.00 0.95
sphere slide during sphere slide 0.04 1.00

sphere slide before sphere pick place 0.99 0.97
sphere slide during sphere pick place 0.80 0.97
sphere slide after sphere pick place 0.99 0.96

... ... ...
cone pick place before cone slide 0.87 0.99
cone pick place during cone slide 0.66 0.97
cone pick place after cone slide 0.92 0.99

cone slide before cone slide 1.00 0.94
cone slide during cone slide 0.48 1.00

Table A.2: Comparison of Class Wise Performance for Composite Actions Using
Training Data: The class wise performance for composite actions using training data
is quite good for most of the classes except the ones where two actions are happen-
ing simultaneously. The same results are not replicated when coordinates from the
tracking based method is used.

Action P R
sphere slide before sphere slide 0.33 0.64
sphere slide during sphere slide 0.02 0.88

sphere slide before sphere pick place 0.33 0.80
sphere slide during sphere pick place 0.08 0.91
sphere slide after sphere pick place 0.36 0.77

... ... ...
cone pick place before cone slide 0.77 0.70
cone pick place during cone slide 0.41 0.72
cone pick place after cone slide 0.78 0.69

cone slide before cone slide 0.69 0.53
cone slide during cone slide 0.42 0.74

Table A.3: Comparison of Class Wise Performance for Composite Actions Using
Tracking Information: The results indicate that the performance of the rule-based
system using tracking information is poor for most of the classes except some of the
classes involving a cone.
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APPENDIX B

ANALYZING THE PERFORMANCE OF WINDOW BASED TECHNIQUE FOR
DIFFERENT EXPERIMENTAL SETUPS
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Table B.1 shows the performance of different experimental setups using the win-
dow based training technique. The table shows the precision, recall, F1 score, Ac-
curacy and mAP for these experiments. mAP is the most important performance
indicator since it summarizes the score into a single number. At the same time, it
is interesting to check the precision and recall scores for different experiments. It
can be seen that in terms of recall random sequences performed the best where as
the precision of random windows was similar to other experimental setups. Having a
higher recall rate positively impacted the mAP score as well. Moreover, it must also
be noted that the accuracy score doesn’t hold much significance since the positive
labels would be sparse and the accuracy score would be boosted by just predicting
the negative labels correctly. In other words, if the network fails to identify any of
the actions and just classifies everything as no action, then too the accuracy score
would be relatively high.

Type Pre-trained Precision Recall F1 Accuracy mAP
4 Windows Yes 68.58 87.66 76.96 90.61 62.15
6 Windows No 70.56 71.93 71.24 89.61 62.36
6 Windows On Kinetics 67.86 84.44 75.25 90.06 61.31
6 Windows Yes 69.97 91.79 79.41 91.48 65.63
8 Windows Yes 69.48 91.5 78.92 91.25 64.67
10 Windows Yes 65.14 94.19 77.02 89.94 61.7
12 Windows Yes 67.76 86.55 76.01 90.02 62.46
Random Yes 69.3 95.12 80.19 91.59 66.47

Table B.1: Comparison of Performance for Different Window Sizes: The table shows
the precision, recall, F1 score, accuracy and mAP values for different experimental
setups.
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