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ABSTRACT

Applications over a gesture-based human-computer interface (HCI) requires a new

user login method with gestures because it does not have traditional input devices.

For example, a user may be asked to verify the identity to unlock a device in a

mobile or wearable platform, or sign in a virtual site over a Virtual Reality (VR) or

Augmented Reality (AR) headset, where no physical keyboard or touchscreen is avail-

able. This dissertation presents a unified user login framework and an identity input

method using 3D In-Air-Handwriting (IAHW), where a user can log in to a virtual

site by writing a passcode in the air very fast like a signature. The presented research

contains multiple tasks that span motion signal modeling, user authentication, user

identification, template protection, and a thorough evaluation in both security and

usability. The results of this research show around 0.1% to 3% Equal Error Rate

(EER) in user authentication in different conditions as well as 93% accuracy in user

identification, on a dataset with over 100 users and two types of gesture input de-

vices. Besides, current research in this area is severely limited by the availability of

the gesture input device, datasets, and software tools. This study provides an infras-

tructure for IAHW research with an open-source library and open datasets of more

than 100K IAHW hand movement signals. Additionally, the proposed user identity

input method can be extended to a general word input method for both English and

Chinese using limited training data. Hence, this dissertation can help the research

community in both cybersecurity and HCI to explore IAHW as a new direction, and

potentially pave the way to practical adoption of such technologies in the future.
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Chapter 1

INTRODUCTION

Gesture interfaces are generally considered as the next generation of Human-

Computer Interface (HCI), which can fundamentally change the way that a human

user interacts with a computer, especially on wearable computers, Virtual Reality

(VR) or Augmented Reality (AR) applications, and home entertainment console.

Meanwhile, novel computing platforms equipped with gesture interfaces are gaining

popularity in consumer electronics, gaming, and education markets. For example,

Microsoft sold 35 million kinect gesture sensors with XBox 1 , and Sony sold more

than 1 million VR headset with gesture controller 2 . Wearable VR/AR headsets

with gesture interface like Facebook Oculus and Microsoft Hololens also attracted

attention for the immerse experience in gaming and simulation.

On these platforms, user login is a basic function, either for unlocking the device

or log in to a website for accessing personalized services and private data. However,

in such an environment, it is usually inconvenient or impractical to use a physical

keyboard or virtual keyboard on a touchscreen for typing a password. Most existing

VR headsets (e.g., Oculus Rift, HTC Vive, Google Daydream VR) and wearable

computers rely on the connected desktop computer or smartphone to finish the login

procedure using passwords, which is inconvenient. Some of them present a virtual

keyboard in the air for the user to type a password, which is slow because of limited

recognition accuracy of the in-the-air key type action and a lack of physical keystroke

feedback to the user. Meanwhile, digital identity solutions are becoming more and

1http://fortune.com/2017/10/25/microsoft-kinect-xbox-sensor/

2https://www.theverge.com/2017/6/5/15719382/playstation-vr-sony-sales-one-million
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more commonplace, especially as consumers grow increasingly aware of the weaknesses

of authentication methods like passwords. For example, weak passwords can be easily

guessed and strong passwords are difficult to remember. A recent study found 32%

of security incidents in 2019 involved phishing and 29% involved stolen credentials,

both of which would have been much more difficult had secure digital ID systems

been in place (Jason Tooley, 2020). Businesses and organizations are already taking

steps to close this security gap. Approximately 90% of mid-size organizations and

60% of large companies are expected to begin phasing out passwords by 2022, instead

turning to digital ID solutions such as two-factor authentication or biometrics (Gloria

Omale, 2019). Biometrics, on the other hand, is linked to the person, which means

they cannot be changed and they may raise privacy issues. For example, people

are usually reluctant to give their fingerprint to an arbitrary website other than the

bank, government offices or other trusted authorities. Additionally, the coronavirus

outbreak has presented a new challenge to the extensive deployed fingerprint and facial

recognition applications, because many people prefer the contactless authentication

interface to avoid virus infection, and they also wear masks to curb the spread of the

virus (PYMNTS, 2020).

Compared with password and traditional biometric technologies, behavior-based

identity verification technology can be used for login based on their unique behavior

when interacting with sensing devices. For examples, people walk (i.e., gait recog-

nition), people use their mouse or keyboard (i.e., biometrics of mouse or keystroke

dynamics), people hold and interact with a phone/tablet (i.e., touch gesture biomet-

rics), etc. Among all these methods, this dissertation focuses on In-Air Handwrit-

ing (IAHW), due to the following unique properties:

• Multi-factor: Generally speaking, existing user identification or identity verifi-

cation methods include what you know (such as passwords), who you are (unique
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physiological characteristics such as fingerprints), and what you have (such as

a token card). An IAHW solution may include all these features. For example,

IAHW can contain the meaning of handwritten strings created by the user, the

geometric shapes and texture patterns of the hand that can uniquely identify

the biological characteristics of the user, and the unique behavioral biological

characteristics possessed by the user represented by the handwriting.

• Limited-contact: Due to the in air nature, limited-contact data collection

devices can be used, such as cameras, motion capture sensors, personal wearable

sensors, which can effectively avoid the spread of microorganism attached to the

device due to frequent contacts by different people.

• Mobile-friendly: Gesture interfaces have great potentials on wearable com-

puters, Virtual Reality (VR) and Augmented Reality (AR) headsets, where a

traditional keyboard or touch screen is not suitable. IAHW is suitable for these

applications using a native hand motion capture device on these platforms as

an input method.

• Less-intrusive: Biometrics is linked to the person, which means they cannot

be changed and they may be used to track the users. Hence, people are usually

only willing to give their fingerprint to trusted authorities. Instead, IAHW

shares most of the features of password, e.g., the content of an IAHW string

is changeable and the information in the IAHW is not physically bound to a

person.

However, IAHW-based research is still in its infancy, which requires us to answer

several unresolved questions. Consider the two scenarios shown in Figure 1.1 as an

example, a dialog box asks the user to enter a password, ID, or a short piece of text
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Figure 1.1: Example Application Scenarios of IAHW Based User Input

information (e.g., a sentence) as input information. In the case shown on the left half

of the figure, there is no physical input devices for typing, and in the case shown on

the right half of the figure, it requires a high degree of cleanness such that touching

is not suitable. Instead of typing or touching, for these cases the finger motion can

be captured either by a wearable device or a 3D camera, and the information in the

motion signal can be extracted to verify the identity of the user or it can be used as

generic input text. Our research objective is to study and develop such an IAHW

based system over gesture interface, with a focus on the user authentication function

and identity input method. To reach this goal, in this dissertation we are going to

answer the following seven questions:

Q1) How to capture and represent a piece of IAHW?

Q2) How to determine whether two pieces of IAHW are generated by the same

user or not, like verification of a typed alphanumeric password?

Q3) How to efficiently identify the writer using a piece of IAHW among a database

of accounts, like an input method of an ID?

Q4) How to protect the identity information on the server from storage leakage,
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like storing the hash of a password instead of the plaintext password?

Q5) Can a human attacker spoof the handwriting of a legitimate user to pass the

login system, like shoulder surfing attack to steal a password?

Q6) How about the usability of such an IAHW based login system, especially

compared to password, finger print biometrics, or face recognition?

Q7) Can such an identity input method be extended to a generic word input

method?

These questions address various aspects of the desired user input system from the

deployment perspective, and their answers can be helpful to engineer an IAHW-based

user login system or identity input method through a gesture interface. Hence, this

dissertation attempts to work out the answers to these questions and discuss the

insights that we discovered in this research project. Specifically, chapter 2 layouts

the related works with a literature review. Chapter 3 shows a library and data

repository for IAHW analysis, named FMKit, which answers Q1. It is constructed

by us and currently made openly available to the academic community. Chapter 4

presents a detailed analysis of the global features of IAHW signals, which can be

used to construct user authentication methods, and hence, answers Q2. Chapter 5

provides a system to convert the information in a piece of IAHW movements to a

locality-sensitive hash code, which can be used for user identification, and hence,

answers Q3. Then, in Chapter 6, a unified user login framework is built based on

the previous chapters. Moreover, various practical issues are discussed, including

template protection, spoofing attack, and usability, which answers Q4, Q5, and Q6.

After that, in chapter 7, an extension of the user identification method is shown to

serve as a generic word input method through gesture interfaces, which answers Q7.

Finally, chapter 8 summarizes this dissertation and draws the conclusions.

The main contribution of this dissertation is the development of building blocks
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that satisfy the needs for user login and identity input method through gesture in-

terface in a systematic way. Since currently there is no satisfying solution for gesture

interface, our work provides answers on how such a solution could be engineered and

what challenges should be addressed, which may further pave the road to the per-

vasive adoption of such an IAHW-based solution. Additionally, current research in

gesture based authentication is severely limited by the availability of gesture input

device, dataset and data driven models. This research mainly targets low cost gesture

input devices, and we have made our dataset and software packages openly available,

which would help other researchers and practitioners in both the field of usable se-

curity and the field of human-computer interface. In addition, the in-air-handwriting

does not have restrictions on the language, including languages that cannot be typed

directly on keyboard, and hence, this research can potentially benefit people around

the world.
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Chapter 2

RELATED WORKS

In this chapter, we review the related works in three areas – gesture-based au-

thentication, deep hashing using neural networks, and in-air-handwriting recognition.

2.1 Gesture-based User Authentication

Traditional user authentication methods can be based on physiological traits (e.g.,

biometrics, like fingerprint and iris), knowledge (e.g., password), or possession (e.g.,

ID card, token). Unfortunately, none of them is perfect because physiological traits

can be copied (e.g. fingerprint spoofing by taking fingerprint left on cups or furniture

and making silica replica), knowledge can be forgotten (e.g. forgotten password), and

possession can be lost or faked (stolen ID card). Currently, password and biometrics

are the most widely adopted user authentication methods, but they both have short-

comings. On the password side, remembering different passwords for different sites is

a burden for the user, especially when a memorable password is usually not strong,

while a strong password is usually difficult to remember (Florencio and Herley, 2007).

Most users choose to reuse the same password across many sites (Ives et al., 2004),

and they rarely update it or only update it in predictable patterns (Zhang et al.,

2010). As a result, a password based system works far from optimal and there are

numerous research works that have made attempts to replace password (O’Gorman,

2003; Bonneau et al., 2012). On the biometrics side, although identity verification

using fingerprint (Cappelli et al., 2006), iris (Daugman, 2007) and face (Schroff et al.,

2015) are convenient, inexpensive and more secure than password in many cases,

biometrics are inherently not secrets, and they can not be changed easily for a user.
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For example, fingerprints can be leaked by the surfaces we touch and faces can be

leaked by photos, which makes it surprisingly easier to spoof than what most people

had thought 1 . Once leaked, the biometric information is unable to be revoked eas-

ily and it may cause privacy issues because it is directly linked to a person instead

of an anonymous account. On VR/AR and wearable computing platforms, whether

password and biometrics methods are suitable for user authentication is still an open

question.

Gesture-based user authentication can be regarded as a fusion of a secret, a be-

havior biometrics, and possibly a physiological trait (e.g., the hand geometry). It

combines the advantages of both password and biometrics, and it can potentially

achieve secure and convenient user login functions through gesture interface in mo-

bile scenarios such as VR/AR and wearable computers. Besides, a gesture-based

authentication method is desired to be able to defend spoofing attack to a certain

degree. Additionally, a gesture should contain a dynamic information that can be

changed or made in a challenge-response way, instead of just present a piece of static

information such as fingerprint or face.

Early gesture and body motion based authentication methods use the accelerom-

eter to track simple motions like shaking (Patel et al., 2004; Okumura et al., 2006;

Mayrhofer and Gellersen, 2007), walking (Gafurov and Snekkkenes, 2008; Lester et al.,

2004), or other predefined gesture patterns (Farella et al., 2006), which proves the fea-

sibility of such methods. Free-form hand gestures such as the in-air-handwriting can

be captured by smartphone or other handhold remote control devices (Hong et al.,

2015; Liu et al., 2009; Zaharis et al., 2010; Bailador et al., 2011) with an inertial sen-

sor. They have better potential because the complex motion of hand contains more

information that is useful to distinguish different users. However, waving a device as

1http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid

8



heavy as a smartphone to mimic writing is unnatural, which may lead to unstable

gesture in the long term. Moreover, the gesture behavior may depend on the actual

device. Furthermore, it is not easy to directly track the finesse of the movement of

fingertip, but choose to use movements of the wrist with a handhold device or a smart-

watch (Nassi et al., 2016). Recently, in-air-handwriting is investigated with camera

based gesture interface such as Kinect (Tian et al., 2013; Wu et al., 2013; Hayashi

et al., 2014) and Leap Motion (Chahar et al., 2015; Aslan et al., 2014; Chan et al.,

2015; Piekarczyk and Ogiela, 2015). The major drawback of such methods is strong

constraints on the size, speed, and orientation of a user’s movement, because these

cameras are set up at a fix place. For example, the user is required to move within the

field of view of the device, which is usually mounted on the desk. Also the user must

not move fast because of the limited capture speed of the camera. These constraints

hurt usability and authentication performance, and hence, wearable cameras such as

Google Glass (Sajid and Sen-ching, 2015) show advantages. However the vision algo-

rithm for hand motion tracking in real world environments has many difficulties such

as separating foreground and background and understanding the shape of a hand in

different pose. These technical challenges limit the authentication performance. The

critical research issue for gesture based authentication is designing good features and

classifiers that can tolerate variations of the captured motions of the same user as

well as distinguishing different users with high accuracy. Besides, nearly all existing

systems focus on authentication, which assumes the user can provide the specific ac-

count to login. In reality, the user is also required to provide an account ID, which

creates another problem of user identification, i.e., locate an account ID in a large

account database given a piece of gesture input information. For gesture based user

identification, the critical research issue is designing efficient way to index gesture

signals or features. Existing works (Liu et al., 2009; Bailador et al., 2011; Chahar
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et al., 2015) have to exhaustively search the account database to find a matching

account.

It should be noted that the in-air-handwriting based login system is different

from handwriting recognition or hand gesture recognition based systems (?Qu et al.,

2015; Moazen et al., 2016; Wen et al., 2016; Zhang and Harrison, 2015) because most

users write passcode like a signature in an illegible way and technically there is no

predefined gesture patterns or strokes. In addition, a handwriting recognition system

tries to classify similar finger motion patterns to the same letter or word regardless

of the writer. Moreover, the in-air-handwriting based login system is different from

signature (Impedovo and Pirlo, 2008) or 2D multi-touch gesture based authentication

system (Frank et al., 2013; Gong et al., 2016; Yang et al., 2016; Song et al., 2017)

because the useful information is in the 3D trajectory and speed of the fingertip,

instead of 2D pressure changes and image features of a pen or digital pen Bashir

and Kempf (2009); Renuka et al. (2014). Furthermore, it is different from writer

identification or signature verification systems designed for non-repudiation. In our

system the ID or the passcode can be changed at any time, which are not linked

to the users’ identity for privacy. Finally, our framework directly targets the VR or

wearable computer scenarios with gesture input interface, which is less addressed by

existing systems.

A comparison of related works is shown in Table 2.1.

2.2 Deep Neural Network and Deep Hashing

A neural network is a computational model consisting of layers of neurons. Each

neuron calculates an linear combination of its input x, and then, a non-linear activa-

tion function f() is applied to generate an output h. Mathematically, a neuron can be

represented as h = f(wx + b). One layer of neurons takes the output of its previous
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Table 2.1: Comparison of Experimental Results and Algorithms of Related Works

Related Works
# of

subjects
Device

Experiment

Timespan
EER

Claimed

Accuracy

Motion

Gesture
Algorithm

Patel et al. NA
Cellphone w/

accelerometer
NA NA NA shake

static

threshold

Okumura et al. 12 ∼ 22
Cellphone w/

accelerometer
6 weeks 4% NA shake DTW

Mayrhofer and Gellersen 51
Custom device

w/ accelerometer
NA

∼2%,

∼10%
NA shake

frequency

coherence

Farella et al. 5 ∼ 10
PDA w/

accelerometer
NA NA

63%

∼ 97%

4 specified

gestures

PCA / LLE

+ kNN

Lester et al. 6
Custom device

w/ accelerometer
NA NA 100% walk

frequency

coherence

Gafurov and Snekkkenes 30
Custom device

w/ accelerometer
NA 10% NA walk

frequency

similarity

Liu et al. 20 ∼ 25
Nintendo Wii

remote
1 ∼ 4 weeks

∼3%,

>10%

88%

∼ 99%
free writing DTW

Zaharis et al. 4
Nintendo Wii

remote
3 weeks NA 98.20% free writing

statistical

feature matching

Bailador et al. 96 Smartphone 20 days ∼2.5% NA free writing
DTW, Bayes,

HMM

Lee et al. 15 Smartphone NA NA 88.40% tap, flip, etc. decision tree

Bashir and Kempf 10 ∼ 40 Custom pen NA ∼1.8% 98.50%
alphabetic or

free writing
RDTW

Renuka et al. 12 Custom pen NA NA ∼ 95%
alphabetic or

free writing
NA

Aslan et al. 13 Leap Motion NA ∼10% NA
2 specified

gestures
DTW

Chahar et al. 150 Leap Motion NA NA 81% free writing
statistical feature

classification

Chan et al. 16 Leap Motion NA 0.80% >99% free writing random forest

Piekarczyk and Ogiela 4 ∼ 5 Leap Motion NA NA
88%

∼ 100%

4 specified

gestures

DCT + DTW

+ kNN / LSH

Tian et al. 18 Kinect 5 months ∼2% NA free writing DTW

Sajid and Sen-ching 10 Google Glass NA NA 97.50% free writing
PCA + GMM

Clustering + DTW

Wu et al. 20 Kinect NA 1.89% NA 8 gestures DTW

Hayashi et al. 36 Kinect 2 weeks
0.5%

∼ 1.6%
NA hand waving SVM
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layer as input, and its output is fed to the next layer as input. A deep neural network

contains multiple layers, which enables the capability to approximate an arbitrary

non-linear function.

A deep convolutional neural network (CNN) is generally composed of convolu-

tional layers and pooling layers. In a CNN, each neuron in the convolutional layer

connects to only a few adjacent neurons in the previous layer, and all neurons in the

layer share the same set of weights. Similarly, each neuron in the pooling layer con-

nects to only a few neurons locally and output the maximum or average of the inputs.

The combination of convolutional layers and pooling layers can learn and detect lo-

cal features efficiently and automatically by optimizing a loss function on the whole

network. Besides, cascading multiple convolutional layers enables the construction

of high-level abstract features, which is able to solve complicated pattern recognition

problems, most notably the image classification problem (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Chollet, 2017;

Huang et al., 2016).

Deep hashing is a deep neural network based method to generate compact binary

hash codes from images to achieve fast retrival of semantically similar images from a

database (Xia et al., 2014; Lai et al., 2015; Zhang et al., 2015; Zhao et al., 2015; Zhu

et al., 2016; Cao et al., 2016; Liu et al., 2016; Lin et al., 2016; Cao et al., 2017; Da

et al., 2017; Liu et al., 2017). To search similar images, a query image is converted to

a hash code with the same neural network, and images in the database with the exact

same or neighboring hash code are returned. Existing works mainly utilize the label

of training images through pairwise supervision (Xia et al., 2014; Liu et al., 2016),

triplet supervision (Zhang et al., 2015; Lai et al., 2015), or ranking list supervision

(Zhao et al., 2015), with various regularization and quantization loss (Liu et al.,

2016) to train the network. The goal is to hash images from the same class to the
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same code and images from different classes to different codes. A similar idea can

be applied to identify users with a piece of in-air-handwriting, i.e., we use the hash

code of an handwritten ID string to index each account so that at login if a user

write the same ID string, the same hash code is generated and the account ID can be

retrieved efficiently from a hash table of accounts. Although a CNN can be utilized

to generate a hash code from an image, hashing a piece of in-air-handwriting for

user identification has different requirements. First, the features of in-air-handwriting

motion signal is inherently different from the features of image. Second, identification

has different goals from image retrieval. For an identification system, it is desired to

maintain the sparsity of the Hamming space to avoid wrong identification instead of

maintaining smooth similarity change of the hash code in image retrieval, and the

fuzziness in the signal should not propagate to the hash code to increase identification

accuracy. Meanwhile, it is desired that a secret key can be generated from the hash

code to protect the account information so that long hash code is preferred due to

the difficulty for guessing. Third, considering that new accounts are registered from

time to time, our network is optimized with smaller number of parameters and faster

training speed.

2.3 In-Air-Handwriting Recognition

In-air-handwriting based user authentication and identification is closely related

to in-air-handwriting recognition, i.e., recognizing each individual characters, words,

and sentence based on a piece of finger motion signal generated by writing in some

language in the air. Such finger motion of handwriting can be considered as a special

type of hand gesture to convey information in verbal languages. Similar as any

gesture input, the recognition of in-air-handwriting builds upon accurate hand motion

tracking. Related research works mainly use three types of devices in general. The
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first type is inertial sensors in the smartphone (Agrawal et al., 2011), smartwatch (Xu

et al., 2015), special glove (Amma et al., 2014), or digital pen (Wang et al., 2013;

Hsu et al., 2015). The second type is computer vision based sensor systems such

as the LeapMotion controller (Qu et al., 2016; Gan and Wang, 2017), Kinect (Zhang

et al., 2013; Ye et al., 2013), or active visual tracking (Asano and Honda, 2010; Perrin

et al., 2004). The third type is radio based system using RFID (Ding et al., 2017;

Wang et al., 2014), WiFi (Sun et al., 2015), or millimeter radar (Lien et al., 2016).

Compared to general gesture input recognition, in-air-handwriting relies more heavily

on data due to the inherent complexity of handwriting motion and the data-driven

models such as hidden markov model (Amma et al., 2014) and neural network (Ren

et al., 2017; Ye et al., 2013). Hence, the lack of standard motion sensors and open

dataset significantly hinders the advancement of research in this area. To the best

of our knowledge, the largest dataset of in-air-handwriting is the IAHCC-UCAS and

IAHEW-UCAS (Qu et al., 2016; Gan and Wang, 2017) datasets, which contains the

data of 3755 Chinese characters and 2280 English words collected with the Leap

Motion controller. Besides the data collection, labeling each character requires a

significant amount of effort, which usually exceeds the ability of single research group

without special funding for such an infrastructure construction. As a result, currently

no such dataset offers annotation in character segmentation and stroke level labeling

for analyzing the complexity of a handwriting string and further deriving the strength

of a handwriting passcode.
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Chapter 3

FMKIT - A CODE LIBRARY AND DATA REPOSITORY FOR IAHW

3.1 Background

In AR/VR applications, 3D in-air hand gestures are natural ways to interact with

virtual objects as well as a method to input information (Freeman et al., 2016; May

et al., 2017; Piumsomboon et al., 2013; Tsukada and Yasumura, 2001). Meanwhile,

gesture input interfaces also have potential in wearable computers, gaming consoles,

IoT devices, and facilities with high level of cleanness where direct contact should

be avoided. Besides simple gestures like tap, scroll, slide, etc, there are cases when

complicated information such as text or identity is needed to be presented to the

software as input. Consider the scenario shown in Figure 1.1, a dialog pops up to

an AR/VR user asking a passcode, an ID, or a short piece of text information (e.g.,

a tweet) as input information. One possible method is using IAHW, i.e., instead of

typing, the user can write a piece of information in the air, and ask the computer

to recognize it. This piece of information may be an ID string, or a passcode, or a

string of some text input. However, there are a few challenges. First, recognizing

patterns in hand motion generally requires a large amount of data to train machine

learning models, but the data collection is generally expensive. Second, there is no

standard hand motion capture device and data collection procedures, and existing

works choose their own ways, which makes the datasets incompatible and hard to

compare. Additionally, most of them are not openly available. Third, given different

motion capture devices and multiple IAHW related tasks solved using various algo-

rithms, these mix-and-matches make it difficult to fairly evaluate different systems
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and compare their performance results (Clark and Lindqvist, 2015).

In this chapter, we present FMKit (Finger Motion analysis Kit), an open-source

library and open datasets for IAHW analysis, which serve as the foundation of our

IAHW related research projects. Currently, FMKit contains five datasets of IAHW

hand motion signals, in total about 110K data signals. Especially, each dataset

has two parts collected in identical scenarios with the same IAHW content using

two different motion capture devices, so that the results of the two devices can be

compared. We also release the details of the devices, data collection protocols, and the

source code of the client software online 1 so that researchers can extend our datasets.

Meanwhile, we propose three research tasks enabled by the FMKit infrastructure:

(a) user authentication (Lu et al., 2018, 2017), (b) user identification (Lu et al.,

2019), and (c) IAHW word recognition. These research tasks correspond to the three

types of inputs in Figure 1.1 and they consist the main body of this dissertation.

Additionally, in this chapter, we provide the performance results for these tasks with

our dataset as an overview, which can be considered as baselines for future research.

We hope this open infrastructure helps researchers to validate models, benchmark

the performance of algorithms, and further facilitate data-driven approaches that can

be generalized across sensor types for IAHW analysis. This chapter is based on our

published research paper (Lu et al., 2020).

3.2 IAHW Signal Characterization

Handwriting is closely related to the cognitive process of humans (Itaguchi et al.,

2015) in different levels, and hence, we model the IAHW as a generative process in four

levels: string level, character level, stroke level, and signal level, as shown in Figure

3.1. First, a string contains meaningful symbols, characters, or letters in a certain

1https://github.com/duolu/fmkit
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Figure 3.1: The IAHW Signal Model

language. Second, each character or letter of a string in a language is made of strokes

defined by the calligraphy of that language. Third, the strokes further determine

the hand motion of the writing through the control of muscles on the hand and arm,

where a significant portion of the movement is determined by the “muscle memory” of

an individual writer. Fourth, the hand movement is eventually represented as a series

of samples of physical states of the hand and fingers. To simplify the physical model

of a moving hand, we want to only focus on a single point of the hand, typically the

tip of the index finger or the center of the palm, depends on the specific application

scenarios. Hence, given the hand movement of a person writing a string in the air,

we use a certain type of sensor to capture the six degree-of-freedom (6DOF) motion

states of that point. Formally, we call the captured data for writing a string in the

air as an IAHW signal. The specific meaning and format of such a signal depend

on the sensor, which is detailed in the next subsection.

Moreover, we can model the string, characters, and strokes can be regarded as

hidden states in a stochastic process, where only the signal samples are the obser-

vations. In general the IAHW process does not satisfy the Markov property (i.e.,

signal samples are correlated temporally), and the mapping between signal samples
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and strokes can be flexible due to the minor variations of the writing speed and

amplitude. However, the inherent process in the brain of generating hand motion

by writing is acquired and reinforced when a person learns how to write (Klemmer

et al., 2006), which indicates that the writing behavior is bound to individuals and

persistent in the long term. This can be justified as handwriting signature has been

widely used for identity verification for a long time.

Given two or more IAHW signals, we consider four cases (listed as follows), re-

garding who writes the strings and what the contents of the strings are about.

Case 1 - same writer, same content: For the same person writing the same

string in multiple repetitions, we are expected to see signals containing the same

sequence of strokes from the same sequence of characters in the same writing style.

If this sequence contains a shared secret like a password between the writer and a

login server, this shared secret is the foundation of IAHW-based user authentication.

Similarly, if this sequence contains some unique identity information specific to the

writer like an ID string known by a login server, this unique identity information is

the foundation of IAHW-based user identification.

Case 2 - different writers, same content: On the one hand, if different users

happen to choose the same string as the shared secret as passwords, or an imposter

intentionally writes the same string as the password of a legitimate user, there will

be slight differences in the writing style even if they contain the same sequence of

strokes, and we believe these different writing style matters for user authentication or

user identification. On the other hand, different people can write the same word in

the same language as general text input like messages on the phones, and such IAHW

signals are derived by the same string determined by the vocabulary of the language.

Hence, for IAHW text input methods, different writing style should be tolerated, and

only the content should be recognition.
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Case 3 - same writer, different contents: As the same person may have

multiple accounts with different account IDs or different passwords, in this research,

we assume the content difference matters. However, we do not study how to re-

identify the same user from different writing content merely based on the writing

style. Also, for IAHW text input methods, the recognized input should only depend

on the content of the string regardless of the writers.

Case 4 - different writers, different contents: Similar to case 3, if these

signals are representing different account IDs or different passwords, they should be

distinguished. Although the differences in the writing style may help, we suspect that

given large amount of writers, such help would be marginal. Writing is an acquired

skill from training and many people write in a very similar way as the training process

are all similar, unless a writer specifically write a string in a unique way like signing a

signature. However, if these signals are representing different text, such differences in

the writing style can make the word recognition task harder, especially if users write

them in illegible ways.

As the IAHW content may have significant meanings for different purposes, from

this point of view, a signal is nothing but a time series mapped from the space of

character sequences to the space of sensor measurements. However, this mapping

function contains two types of additional hidden information, the personal writing

style and uncontrolled variations in the writing. Hence, even the same person writes

the same string twice, the obtained two signals are not exactly the same. Since

the extraction of a stable sequence from a handwriting signal is difficult, in this

research, we compare the signals in some way as an indirect method to compare the

character sequences for our research tasks. Also, we use a learned model to extract a

representation of IAHW signals and map the representation to account IDs for user

identification. Similarly, other learned models are used to map the IAHW signals to
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word IDs in a lexicon for word recognition. For all research tasks in this project, we

do not employ character level annotation and signal segmentation. Only a class label

of a whole signal is used. For user authentication and user identification, this class

label is the account ID associated to the signal (detailed in chapter 4, 5, and 6). For

word recognition, this class label is the word ID in the lexicon associated to the signal

(detailed in chapter 7).

3.3 IAHW Data Collection Device

Our data repository contains multiple datasets, all collected using two types of de-

vices: a 3D camera (the Leap Motion controller, shown in Figure 3.2) and a wearable

device (a custom-made data glove with inertial sensors, shown in Figure 3.3).

The Leap Motion controller can capture the 3D position of each joint of the hand

at about 110 Hz with an 135 degree Field of View (FOV) and a depth range of 10

cm to 60 cm. The device is essentially a few infrared LEDs and a stereo pair of

wide angle infrared camera with a fixed baseline of about 45 mm. Meanwhile, the

device is connected to a client computer which runs a driver program to estimate the

pose of the hand and stream the results out from a USB port. As mentioned by the

manufacturer, this device does not rely on structured light or Time-of-Flight methods

to estimate the depth. Instead, 3D poses of the hand skeleton structure are directly

estimated from the two synchronized stereo images. However, in the preprocessing

step detailed in the next subsection, only one point of the hand skeleton is used.

Due to the nature of camera projection, users are restricted to write in the FOV of

the camera within the specified depth range. This device is denoted as the “camera

device” or the “camera” for short.

The data glove has a Micro-Electro-Mechanical System (MEMS) Inertial Measure-

ment Unit (IMU) on the tip of the index finger, which can measure the 3D acceleration
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Figure 3.2: The Leap Motion Controller for Finger Motion Capturing

in ±4g and angular speed in ±2000 degree-per-second at 100 Hz. Specifically, we use

the Bosch BNO055 IMU in this project. Besides the index finger, there is also an

identical IMU on the thumb of the glove device, but data from that sensor is not used

in this project. Hence, an IAHW signal obtained from the data glove device always

contains information of the movements of the tip of the index finger. Due to the

nature of the IMU, users are not restricted to write in a specific region or pointing

to a specific orientation. The data glove has a few variants with slight differences in

the glove material and microcontrollers. However, the motion sensors are the same

and the obtained signals have identical formats. This device is denoted as the “glove

device” or the “glove” for short.

Both devices are relatively inexpensive (∼$100) and their capabilities are similar

to existing VR/AR platforms with a gesture user interface. Although the prototype

system built by us in this project utilizes these two devices, our framework is not

restricted to these devices. Also, our framework is not designed to only use devices

dedicated for the login or word input purposes. Instead, hand movement tracking is

considered a basic function of the gesture user interface.

The basic unit of data in our datasets is called an IAHW signal, which is a piece
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Figure 3.3: The Custom Data Glove Device for Finger Motion Capturing

of hand movement of writing a string in the air recorded using our device. There are

four types of signals.

A. The raw signal obtained using the camera device.

B. The raw signal obtained using the glove device.

C. The preprocessed signal from the raw signal obtained using the camera device.

D. The preprocessed signal from the raw signal obtained using the glove device.

These four types of signals share a lot in common, and the formats of all four

types of signals are similar. In most cases, there is no need to specify whether a

signal is preprocessed or not and we collectively call it a “signal”. As a signal is a

time series of data samples from a sensor, it is denoted as a vector s = (s1, s2, ..., sl),

and l indicates that there are l samples in this series. Each sample si is another

vector si = (si1, si2, ..., sid), which represents an d individual values obtained by the

sensor with d axes. Instead of this generic representation using vector-of-vectors, we

can also use an l-by-d matrix S to represent a signal if a sample in different sensor
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Figure 3.4: An Example of Raw Signals Obtained From the Two Types of Devices

axes are obtained simultaneously (which is the typical case in this dissertation if we

only use one kind of device at a time).

For example, if a raw signal is obtained using our data glove device, each sample

si may have three axes representing the acceleration of the fingertip of the right hand

of a user along the x, y and z-axes, and another three axes representing the angular

speed of the same point. The whole signal s may have 250 samples at 100 Hz. On

the other hand, if a raw signal is obtained using our camera device, each sample si

may contain a collection (x, y, z) positions for each of the joint of the hand as well as

other attributes such as the confidence score of the hand skeleton pose estimation, etc.

Since both sensors can generate one sample for different sensor axes simultaneously,

either the vector-of-vectors representation or the matrix representation can be used.

An example of two raw signals from the two types of devices is shown in Figure 3.4.

In this figure, on the left side we show a trajectory of writing “apple” together with

the hand skeleton captured by the camera device, and on the right side we show a

signal containing the acceleration and the angular speed obtained from the data glove

when writing the same word.
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3.4 IAHW Signal Preprocessing

In our research, only the tip of the index finger or the center of the palm is

interested, because all the joints on the hand usually move in the same way as the wrist

moves for writing. Occasionally, for a few users, there are small movements of the

index finger relative to the palm during the writing, which is considered insignificant

in our data collection and processing procedures. Specifically, for user login using

the camera device, we discover that the tracking results of the fingers are not always

reliable, and hence, the center of the palm is used. One reason is that users typically

write in an illegible way and move the hand very quickly in the air, which may exceed

the tracking speed of the sensor. Another reason is that users may occasionally point

the index finger to certain directions such that the fingers are partially occluded by

the palm from the perspective of the camera. However, for general text input using

the camera device, users typically write slowly and in a legible way. Thus, the tip of

the index finger is used because its movement is more significant. As for the glove

device, all data is obtained from the IMU on the tip of the index finger.

Based on this principle of modeling hand movements using a single point, for a

preprocessed signal, it always has 18 sensor axes (i.e., d is always 18) representing

the motion states of that point to the second order. The meaning of the sensor axes

are as follows.

• 0 - 2: position in x-y-z.

• 3 - 5: velocity in x-y-z.

• 6 - 8: linear acceleration in x-y-z (the gravity vector “g” is removed).

• 9 - 11: orientation (the qx, qy, and qz components of a unit quaternion).

• 12 - 14: angular speed in x-y-z.
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• 15 - 17: angular acceleration in x-y-z.

Note that a preprocessed signal is actually device agnostic, and hence, it always

has these 18 sensor axes regardless of the hand movement capture devices. The

following preprocessing steps are applied on the client side.

Step 1) Down-sampling: The raw sensor data is down-sampled to 50 Hz with

linear interpolation on each sensor axis.

Step 2) Posture normalization: The signal is translated and rotated to a

reference frame such that the mean of all point positions is the origin, the “average

pointing” direction of the hand as the x-axis, and the “average downward direction

of the palm” is the on the XOZ plane. For the data glove with inertial sensors, we

also remove the influence of the gravity on the acceleration axes. This step is crucial

since it removes the uncertainty of the hand posture relative to the sensor coordinate

system. However, as the reference of the “standard pose” can only be approximated

from a signal, it is not perfect.

Step 3) State estimation: The indirect states are derived from the raw sensor

data. Also, we fix any missing signal samples due to the limited capability of the

motion capture device 2 . For the camera device, the position is directly observable,

and the orientation is estimated by the palm facing direction and hand pointing

direction. The orientation is represented by the three imaginary components of a unit

quaternion. Higher order states such as the speed and acceleration are derived by

differentiation of the position and orientation. For the glove device, the orientation

is estimated from the angular speed, while the position and speed are estimated

by inertial dead reckoning with a regularizer. The regularizer works like a virtual

attractive force to the origin in order to prevent unbounded drift caused by sensor

2The Leap Motion controller has a fixed field of view. When the hand moves out of the field of
the sensor, samples are not generated. The glove device does not have such an issue.
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bias or noise in integration. Although the obtained position does not follow the

actual hand movement trajectory (which cannot be accurately obtained solely with

this IMU), it is still useful for further processing because of the same regularization

algorithm applies to all signals.

Step 4) Low-Pass filtering: remove the high-frequency components above 10

Hz. We believed that any finger movements with a higher frequency than 10 Hz in

handwriting cannot be repeatedly generated by a person.

Step 5) Trimming: The samples at the start and the end of the signal are

removed where the hand does not move intensively. In practice, the signal can be

trimmed in a more aggressive way because we observed that the user behavior can

have larger uncertainty at the beginning and the end.

Step 6) Amplitude Normalization (Optional): The data of each sensor axis

is normalized individually to zero mean and unit variance, i.e., sij ← (sij − µj)/σj

where µj = mean(s1j, ..., slj), σj = std(s1j, ..., slj).

Step 7) Temporal Normalization (Optional): The signal length is normal-

ized to 256 samples with linear interpolation

The last two steps of preprocessing are only needed for specific tasks detailed in

later chapters. The actual implementation is slightly more complicated and readers

are recommended to refer to the code for further details in section 3.6. The prepro-

cessing is performed individually on each raw signal. After preprocessing, signals will

have the same format and further processed in each task regardless of the original

device.

Besides, there is another important preprocessing step not related to the fur-

ther tasks – Data Anonymization. We removed any tags and metadata that

is sensitive to user identity. Files storing the data are renamed to strings like

“user001 label001 repetition01.csv” and their creation time is reset. As a result,

26



other researchers using this dataset will be unable to deduce the true identity of a

subject participating our data collection. It should be noted that many participants

use their name as an account ID string, e.g., “Jacob”, and if it is written in a readable

way, the existence of a person named “Jacob” can be observed participating our data

collection. However, given the fact that a name is not a secret and there are many

people with the same name, other researchers using this dataset will not be able to

pin-point a person in the real world who writes this string in participation in our

dataset easily.

3.5 Formulation of IAHW Signal Variation

Given multiple preprocessed IAHW signals generated by the same person writing

the same string, assume one of the signal s is aligned to an imaginary “standard”

signal of that person writing that string in a fashion such that the variation of writing

speed is removed, it can be decomposed as

si = ti + ei, ei ∼ N(0,Σi),

where ti is a constant vector determined by the content of a piece of IAHW, and ei is

a vector of Gaussian random variables caused by the sensor noise and unintentional

small hand movements. Since ei is from different orthogonal sensor axes, we assume

these axes are independent, i.e., Σi = σ2
i I, where σ2

i = (σ2
i1, σ

2
i2, ..., σ

2
id). As men-

tioned previously, there are uncontrolled variations in the writing behavior of a person

such that two signals obtained from writing the same string twice are not identical.

Such variations can be further decomposed into two parts - temporal variation (i.e.,

along the temporal dimension of the signal s) and intensity variation (i.e., along the

amplitude dimension of each sample si). Here, the intensity variation is represented

by σ2
i . The temporal variation is more complicated, which can be modeled by the
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Figure 3.5: An Example of Signal Alignment

alignment of the signal s to the “standard” signal in the format of a “warping path”.

In reality, there is no way to define such a “standard” signal, but we found that in

a collection signals, any one of them can be used as a “standard” signal such that

the temporal variation of other signals can be measured relative to that signal. More

details are presented in chapter 4. An example of signal alignment is shown in Figure

3.5. In this figure, we show a pair of signals generated by the same person writing the

same string “FMKit” twice, with alignment on the left and without alignment on the

right. For alignment, both signals are preprocessed and normalized in amplitude. The

alignment is computed using Dynamic Time Warping (DTW) (Berndt and Clifford,

1994). Only the first nine sensor axes are shown in this figure.

An approximation of ti and σi can be computed by a set of signals {s(1), s(2), ..., s(K)}

as follows,

t̂i =
1

K

K∑
m=1

s
(m)
i , σ̂2

i =
1

K

K∑
m=1

(s
(m)
i − t̂i)

2.

Here t̂i is the Maximum Likelihood Estimation (MLE) of ti and σ̂2
i is the MLE

of σ2
i . This set of signals {s(1), s(2), ..., s(K)} are obtained by the same user writing
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Figure 3.6: Example of Signal Alignment and Template Construction

the same string, typically in the registration step for user authentication or user

identification, and typically they are all aligned to the first signal. The number K

is chosen as a trade off of usability and security performance. In our project, it is

between two and five, and five is typically used. If these signals are used in the

user authentication task or the user identification task, t̂ is stored as the id template

or the passcode template, depending on whether the set of signal is obtained by

writing the ID string or the passcode string. The system can match a signal in the

login request and such a template to determine whether this login request should be

accepted or rejected. σ̂ can also stored together with the template to indicate the

template uncertainty. Alignment and template construction are not needed for word

recognition.
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An example of template is shown in Figure 3.6. In this figure, ten signals from

the same person writing the same string “FMKit” are shown on the left side; in

the middle, the corresponding ten aligned signals are shown; on the right side, the

generated template is shown shown. Similar to Figure 3.5, the alignment is computed

using DTW and only the first nine sensor axes are shown. However, in this figure,

the signals are not normalized in amplitude. Typically, we normalize the signals and

alignment them together. However, the alignment can also be done on a single sensor

axis and the same warping path can be applied to all sensor axes.

3.6 The FMKit Code Library

We have developed a code library in Python 3 to interpret, manipulate, and

visualize a signal as well as a collection of signals in a dataset. This library has been

made open source and released in our GitHub repository 3 . This library depends on

NumPy and Matplotlib. It contains the following Python modules.

• fmsignal.py: abstraction of the signal and methods to manipulate the signal.

• fmsignal vis.py: visualization methods of the signal.

• fmsignal demo.py: demonstration of the usage of the signal data structures and

methods, as well as signal visualization.

• fmdataset.py: abstraction of the datasets and methods to use the datasets.

• fmdataset demo.py: demonstration of the usage of the datasets.

• fmbrowser.py: a simple interactive GUI-based software to browse the signals in

our dataset, as shown in Figure 3.7.

3https://github.com/duolu/fmkit
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Figure 3.7: The Interactive Gui-based Software to Browse Our Datasets

• pyrotation.py: an implementation of various representations of 3D rotation in-

cluding unit quaternion.

• pyrotation demo.py: demonstration of the usage of our implementation of rep-

resentations of 3D rotation.

Besides, we also implemented a version of DTW through the Python C API and

NumPy C API to speed up the signal alignment algorithm. Documentation and a

detailed user manual is also provided online 4 . Moreover, the online documentation

also provides demo videos and dynamic contents such as animations of replaying a

piece of IAHW, which cannot be directly shown in this dissertation.

4https://duolu-fmkit.github.io/
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3.7 The FMKit Data Repository

We have constructed the following datasets. Details about the data collection pro-

cedures are provided at the end of this section. We have obtained an institutional IRB

approval from Arizona State University (STUDY00008279 and STUDY00010539)

(1) ID-passcode: We asked each user to create two distinct meaningful strings

as an ID string and a passcode. Once the strings are created, we ask the user to

write each string in-the-air for 5 repetitions as registration and another 5 repetitions

as login attempts, using each device. This simulates the normal sign-up and sign-in

procedure. In total, there are 360 (strings) * 10 (repetitions) * 2 (devices) = 7,200

signals.

In this dataset, the content of the string is determined by the user, which may

include alphanumeric letters, characters in a language other than English, or mean-

ingful symbols that cannot be typed on a keyboard. We strongly recommend the

users avoid using the ID or password they use in their daily lives, but we did not

forbid the users to write their name as ID strings because most of the finger trajec-

tory of the IAHW are illegible such that the content is hard to read for a person

replaying it on a computer. 58 users wrote words in Chinese for both strings. The

remaining 122 users wrote alphanumerical strings or strings with individual symbols

similar to letters (e.g., triangles, tilde, etc). We asked each user to create a unique

ID string so that all 180 ID strings have unique contents. However, there are no

such constraints for the passcodes. Surprisingly, all 180 passcode strings also have

unique contents. In fact, there is only one user’s ID string that has the same con-

tent as someone else’s passcode. They are created by two different users, who both

choose the string “helloworld” but for different purposes. Also, the way of writing

these two “helloworld” strings are different and we can treat them as two different
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strings if needed. As a general guideline, we discourage simple strings for passcode

such as “123456”, and we recommend that the length of an alphanumerical string

be at least eight characters. However, it is not a strict restriction, and a few users

still created simple and short strings like “USA” or “abc123”. Many users chose a

combination of letters and numbers like a traditional password typed on a keyboard,

e.g., “stevenC909”, or meaningful phrases, e.g., “PondLakeOcean”, while some users

chose a combination without an obvious meaning, e.g., “sqwz1457”. There is also one

user that draws three five-pointed stars as a passcode. Because the content of such

an IAHW passcode can be very different from a typed password, we use the term

“passcode” instead of “password”. For privacy reasons, the contents of the ID and

passcode are not published in our datasets.

(2) ID-passcode-collision: We asked 10 skilled imposters to imitate the IAHW

of the ID and passcode generated by the users in the “ID-passcode” dataset. In

this setting, the imposters know the semantic meaning of the strings written by the

legitimate users, but the imposters have not seen the legitimate users writing the ID

and passcode in the air, which simulates the case of collision of ID or passcode, or

spoofing attack with semantic leakage. The imposters are very familiar to the data

collection system. For each string in the “ID-passcode” dataset, we ask each imposter

to write it with 5 repetitions using each device. In total, there are 360 (strings) * 10

(imposters) * 5 (repetitions) * 2 (devices) = 36,000 signals.

(3) ID-passcode-spoofing: Similar to the “ID-passcode-collision” dataset, we

asked 10 skilled imposters to imitate the IAHW of the ID and passcode generated by

the users in the “ID-passcode” dataset. In this setting, the imposters can watch the

recorded video of the IAHW and they will be informed with the semantic meaning of

the IAHW. The imposters were very familiar to the data collection system and they

went through special brief training for this task. There are 180 string in the “ID-
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passcode” dataset where the user allows us to record a video of the hand movement

(exactly 90 ID strings and 90 passcodes corresponding to 90 users). For each of the

180 strings, we ask each imposter to write it with 5 repetitions using each device. In

total, there are 360 (strings) * 10 (imposters) * 5 (repetitions) * 2 (devices) = 18,000

signals.

(4) ID-passcode-persistence: We kept collecting the sign-in IAHW of a sub-

set of the users in the “ID-passcode” dataset for a period of about 4 weeks, which

simulates login activity in the long term. In that dataset, the user wrote each string

5 repetitions as registration, while in this dataset, besides the registration, the users

wrote the strings for the account ID and the account passcode 5 repetitions in a day

as a session. There are 10 sessions in total and the data of each session is collected in

a different day. 40 users participated in this dataset. In total there are 80 (strings) *

10 (imposters) * 5 (repetitions) * 2 (devices) = 8,000 signals.

(5) word-210: We asked 10 participants to write 210 distinct English words and

210 distinct Chinese words. For each word, each person wrote it with 5 repetitions

using both devices. In total, there are 2 (languages) * 210 (strings) * 10 (writers) *

5 (repetitions) * 2 (devices) = 42,000 signals.

Besides, we are currently working on a superset of the word-210 dataset, named

word-10k. As the name suggests, this dataset contains 10,000 English words and

10,000 Chinese words, where each English word is written by 12 different users with

one repetition and each Chinese word is written by 12 different users with one rep-

etition. In total, there will be 480,000 signals. However, the progress is delayed by

the pandemic.

The detailed procedure for the Leap Motion controller device is shown in Figure

3.8. The data collection is done on several identical Linux desktop and Linux laptop

machines. On each machine, three Linux console terminals are opened, one for the
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Figure 3.8: Data Collection Procedure for the Leap Motion Controller Device

Leap Motion daemon process (i.e., typing “sudo leapd” in the command line), one

for the Leap Motion control panel as well as the visualizer (typing “LeapControl-

Panel - -showsettings” and then launch the “diagnose visualizer”), and the last for

the actual data collection program (typing “python ./client leap.py xxx.txt” in the

command line or launch the client program with a GUI). At the beginning of the

writing of one string, the participant typically hover the hand above the sensor, like

that in the following figure. Once the data collection starts, i.e., immediately after

the “client leap.py” script executes or the “start/stop” button on the GUI client is

clicked, the hand starts to move. At the end of the writing of one string, the hand

restores to the initial position or stop at the last stroke. The data collection program

can be stopped by the user, i.e., press the “space” key or clicking the “start/stop”
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button (typically for the “word-210” dataset), or it can automatically stop if the

user’s hand stops moving for roughly one second (typically for the datasets related

to ID strings and passcode strings). The participant can write from left to right or

just write every letter at the same place.

The procedure for the data glove is similar. However, only one Linux console

terminal is needed for the actual data collection program. Different from the Leap

Motion controller where the user must write within the field of view of the sensor, the

data glove does not have such constraints. The user can just start moving after the

data collection program starts to collect data. When the user finishes writing, the

data collection program can be stopped in the same way as that for the Leap Motion

controller.

Each captured handwriting signal is an individually named file. In the “ID-

passcode” dataset, for the ID string, it is typically “id id xx.csv”, where “xx” the

sequence number of the repetition. For example, if the ID string is “alice”, the file

is named as “alice alice 0.csv” for the first repetition. For the passcode, similarly, it

is “id passcode xx.csv”. For example, if the ID string is “alice” and the passcode is

“FMKit”, the file name is “alice FMKit 0.csv”. If the user chooses to write in Chi-

nese, pinyin is used in the file name to indicate the content. To protect the privacy,

We removed any tags and metadata that is sensitive to user identity. Files stor-

ing the data are renamed to something like “user0 user0 0.csv” for an ID string and

“user0 passcode0 0.csv” for a passcode. In this way, we can immediately know which

user generates which signal for what content from the file name while debugging the

code and tuning trained models.

For the “ID-passcode-collision” datset and the “ID-passcode-spoofing” dataset,

the procedure of spoofing with semantic leakage is similar to the “sign-in” step in the

“ID-passcode” dataset, i.e., only five repetitions for each string. The file name is in the
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format of “collision string xx.csv” or “spoof string xx.csv”. For example, if the im-

poster is designated to be “spoof8”, and the spoofed string is “FMKit”, the file name

is “spoof8 FMKit 0.csv” for the first repetition. To facilitate dataset loading and sav-

ing, an alternative naming scheme with a slight different difference is also used. It also

follows the format “collision string xx.csv” or “spoof string xx.csv”. All imposters

are just designated simply as “collision” or “spoof”. However, “spoof string 0.csv” to

“spoof string 4.csv” are the five repetitions for the first imposter, “spoof string 5.csv”

to “spoof string 9.csv” are the five repetitions for the second imposter, and so on. For

the same privacy reasons, the “string” part in the file name are renamed to something

like “user0” or “passcode0”.

For the long-term persistence study dataset, the procedure and file name con-

vention are the same as sign-up and sign-in. However, the sequence number of

repetitions will linearly increase. For example, if the ID string is “alice” and the

passcode is “FMKit”, for the five signals in registration, the file name will be “al-

ice FMKit 0.csv” to “alice FMKit 4.csv”. For the first login session, the file names

will be “alice FMKit 5.csv” to “alice FMKit 9.csv”. Similarly, for the second login

session, the file names will be increased to “alice FMKit 10.csv” to “alice FMKit 14.csv”,

and so on. For the same privacy reasons, the files are renamed in the same pattern

as that for the “ID-passcode” dataset.

For the “word-210” dataset, the procedure and file name convention are the same

as the collision dataset and the spoofing dataset. Instead of using “spoofer”, “user”

is used in the file name. For example, if the participant is designated as “user8”, and

it writes the English words “agree”, for the first repetition, the file name would

be “user8 agree 01.csv”. The same alternative naming scheme is also used, i.e.,

“user agree 0.csv” to “user agree 4.csv” are the five repetitions for the first user,

“user agree 5.csv” to “user agree 9.csv” are the five repetitions for the second user,

37



and so on. For Chinese words, pinyin is used in the file name. These files do not have

privacy issues, and hence, they are not anonymized.

3.8 Supported Research Tasks

A signal in any of the five datasets defined in the previous subsection can be

represented as a tuple (x, y, z), where x is the signal data, y is a label indicating

the meaning of the string, and z is a label indicating the identity of the writer. For

example, in the “ID-passcode” dataset, given all the signals collected from writing ID

strings, there are 180 different labels for y and 180 different labels for z, where each

label y represents an individual ID and each label z is the same as y. Similarly, given

all the signals collected from writing passcode, there are 180 different labels for y and

180 different labels for z, where each label y represents an individual passcode and

each label z represents the individual ID corresponds to that passcode. The same

rule also applies to the “ID-passcode-persistence” dataset. For the “ID-passcode-

collision” dataset and the “ID-passcode-spoofing” dataset, this label y also represents

the corresponding imitated ID or the passcode in the “ID-passcode” dataset, while

the label z of each signal represents the identity of the imposter. Typically, we do not

care which imposter generated which signal, while we only care whether the signal

is generated by an imposter or the original user who created it in the “ID-passcode”

dataset. As for the “word-210” dataset, the label y of each signal indicates its word

ID in the lexicon of 210 words, and the label z indicates the identity of the writer.

However, since this dataset is designed for word recognition, we generally do not care

the writer identity but only distinguish whether two signals are generated by the same

writer or not. Based on this definition, we propose the following three types of tasks.
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3.8.1 User Authentication

The user authentication task is essentially a binary classification task, which serves

as the function of “typing a password” over a gesture interface. In this task, each of

the 180 passcode strings in the “ID-passcode” dataset is considered as the passcode

of an account. Optionally, we can mix the ID strings and the passcode strings so that

there are 360 passcode strings for this user authentication task, which can simulate

the situation where one user has two accounts. This can double the dataset size in a

certain way for this user authentication task.

Using the “ID-passcode” dataset, The five signals for registration are used to

construct templates and train discriminative models for authentication purpose; the

five signals for login requests are used to test the performance. Specifically, consider

an account has been constructed by a set of registration signals {s1, s2, ..., sK} in the

“ID-passcode” dataset with the same label y. Given another login request signal

(x, y′) in the “ID-passcode” dataset, the authentication system should accept the

signal if y is the same as y′, i.e., it is generated by the same person writing the same

string; otherwise, the authentication system should reject it. Note that this binary

classifier is specific to an account constructed by those signals with the specific label

y corresponding to this account. For each account, there is a unique binary classifer.

All these binary classifers construct the authentication system, although they may

share the same set of parameters in certain cases (detailed in chapter 4).

For each account, we define those testing signals with y = y′ as positive testing

signals, and those testing signals with y 6= y′ as negative testing signals. The signals in

the “ID-passcode-collision” and “ID-passcode-spoofing” datasets are used to evaluate

the performance in scenarios with adversaries, i.e., all of them are negative testing

signals that should be rejected. in a realistic setting, the collision and spoofing data
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cannot be obtained by the users in normal registration procedures, and hence, they

are in general not available for training models. The signals in the “ID-passcode-

persistence” dataset are used to evaluate the authentication system performance in

the long term, i.e., all of them are positive testing signals that should be accepted.

Due to the imbalance of the number of positive testing signals (only five) and the

number of negative testing signals (potentially thousands or more) for each account,

we use the evaluation metrics commonly used in biometrics systems such as False

Accept Rate (FAR) and False Reject Rate (FRR) are used, instead of precision and

recall. The are defined as follows.

FAR = #{false accepts} / #{negative testing signals}

FRR = #{false rejects} / #{positive testing signals}

Here “#{}” means the number of elements in a set. Note that FAR and FRR can

be applied for one specific account or a collection of accounts. In the later case, the

number of testing signals for each account must be the same. Otherwise, the formula

must be changed to use the average of the FAR and FRR for each account.

Usually, the authentication system has a configurable discriminative threshold

that can be changed to trade off FAR and FRR. For example, if the threshold is

smaller, there will be more false rejects but less false accepts. When FAR is equal to

FRR, this rate is called the Equal Error Rate (EER). The EER is very convenient

when comparing different authentication algorithms using the same dataset, since it is

just a single number. When the threshold is set to a value such that the FAR is 0.001

or 0.0001, the corresponding FRR is called “FRR@FAR=1e-3” or “FRR@FAR=1e-

4”. They are also denoted as FAR1K and FAR10K in the biometrics community,

which may be confusing for readers who are not familiar with biometrics. These two

metrics are more important for practical usage than the EER.

Based on our datasets, we set up three different experiments for each account:
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A – All testing signals are from the “ID-passcode” dataset.

B – All positive testing signals are from the “ID-passcode” dataset but all negative

testing signals are from the “ID-passcode-collision” dataset.

C – All positive testing signals are from the “ID-passcode” dataset but all negative

testing signals are from the “ID-passcode-spoofing” dataset.

Note that currently we do not use the ”ID-passcode-persistence” dataset for quan-

titative evaluation. The number of signals in that dataset is quite limited, which can

cause bias or uncertainty. Instead, we mainly use that dataset for qualitative evalu-

ation and analysis.

The performance results are averaged over all accounts and baselines are provided

in Table 3.1. They are obtained using a per-account SVM classifier on aligned and

temporally normalized signals, detailed in chapter 4.

Table 3.1: Baseline Performance for User Authentication

Leap Motion data glove

EER
FAR

1K

FAR

10K
EER

FAR

1K

FAR

10K

(A) 0.1% 0.1% 0.8% 0.1% 0.2% 0.4%

(B) 2.4% 8.9% 12.7% 1.2% 1.6% 4.3%

(C) 2.9% 26.2% 33.1% 1.3% 4.9% 22.1%

3.8.2 User Identification

User identification task is essentially a classification task, which serves as the

function of “typing an account ID”. In this task, each of the 180 strings in the first
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dataset is considered as an account ID instead of a passcode. Optionally, we can mix

the ID strings and the passcode strings to double the dataset for this task similar as

that in the user authentication task.

Using the “ID-passcode” dataset, the five signals for registration from each user

are collectively used to train a classifier, and the five signals for login requests are

used to test the performance. Specifically, consider all accounts have been created

and the identification system has been set up. Given an signal with a label of y from

those testing signals in the ”ID-passcode” dataset, if the identification system predict

the label of the signal as y′, y′ should be the same as y, i.e., it should recognize the

signals generated by the same person writing the same content in the same label.

Different from user authentication, this classification is not specific to any account.

There is only one system-wide classifier. Also different from a passcode, an ID string

is usually not a secret.

Besides predicting one single label, this task can be formulated as retrieving the

top-k candidate accounts given a query signal. Together with the user authentication

function, a login system can take both the IAHW of an ID and a passcode to first

narrow down to one or a few candidate accounts using the ID and then check each

candidate account using the passcode to authenticate the user. In this case, the ID

is not needed to be returned to the user.

Based on our datasets, we set up two different types of experiments.

• For closed-set identification, the system will always locate at least k accounts,

i.e., it returns the best top-k predictions no matter how bad they are.

• For open-set identification, the system may end up with no candidate account

and reject the query signal, i.e., it returns best top-k predictions that above a

certain threshold that is configured by the identification system administrator.
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Note that currently we only set up these experiments using the ”ID-passcode”

dataset for simplicity. More details are provided in chapter 5. The performance

metrics are the top-1 and top-5 identification accuracy and the baselines are provided

in Table 3.2. They are obtained using a convolutional neural network encoder trained

with pairwise loss, and the identification is done by top-k nearest neighbor search in

the latent space. Details are provided in chapter 5.

Table 3.2: Baseline Performance for User Identification

Leap Motion data glove

top-1

accuracy

top-5

accuracy

top-1

accuracy

top-5

accuracy

open-set 93.2% 94.5% 95.7% 96.7%

closed-set 96.7% 98.9% 97.9% 98.8%

3.8.3 Word Recognition

The IAHW word recognition task is essentially another classification task. How-

ever, the label y of each signal is from a word lexicon of the “word-210” dataset

instead of a set of accounts in user identification. Meanwhile, in this task, behaviors

variations from different people writing the same word need to be tolerated. For ex-

ample, one person may write the same letter “O” clockwise but another person may

write it counterclockwise. Also, variations of stroke sequences need to be considered.

For example, when writing the same letter “t”, one person may write the horizontal

stroke as the last stroke but another person may write it as the first stroke. These

problems are challenging especially on our dataset with a limited number of writers.

Using the “word-210” dataset, the signals from nine users are used to tain the
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recognizer, and the signals of the remaining one user are used to test the performance

of the recognizer. This is repeated for ten times by selecting the data from each user

as testing data (i.e., 10-fold cross validation). All experiments are closed-set, i.e., the

recognizer will always provide the best predictions. Experiments using the data of

writing English and the data of writing Chinese are conducted independently.

The performance metrics are the top-1 and top-5 classification accuracy and the

baseline performance results are provided in Table 3.3. They are obtained using a sim-

ilar convolutional neural network as in the previous task, averaged over all accounts

with 10-fold cross validation. Details are provided in chapter 7. Current results are

on a dataset with a small lexicon and we believe it would be more challenging with a

large lexicon.

Table 3.3: Baseline Performance for IAHW Word Recognition

Leap Motion data glove

top-1

accuracy

top-5

accuracy

top-1

accuracy

top-5

accuracy

English 79.7% 93.2% 78.5% 93.8%

Chinese 87.4% 96.8% 83.4% 94.4%

3.9 Summary

In this chapter, we provide FMKit, an open-source library and data repository

for analysis of IAHW hand motion signals, which can potentially benefit AR/VR

applications, wearable computer platforms, or game consoles. We also propose three

research tasks that can be enabled by FMKit, with preliminary baseline performance

results. The construction of FMKit is a continuing effort and it will be expanded in
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the future. We hope it can help other research work in this area and pave the road

to practical usage of IAHW as a general input method.
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Chapter 4

FMAUTH - USING IAHW FOR USER AUTHENTICATION

4.1 Background

On Virtual Reality (VR) headsets, wearable computers and game consoles, gesture

user interfaces are gaining popularity. For example, users can play VR games (e.g.,

on Sony PSVR) and interact with virtual objects (e.g., on Microsoft Hololens) using

direct hand movements captured with handheld controllers or cameras. Meanwhile,

many applications need to authenticate a user to unlock the device or log in to

an account to access private data and services. This typically requires the user to

type a password. However, on these platforms, presenting a physical keyboard or

touchscreen is usually impractical, while a virtual keyboard is inconvenient to use

without touch feedback. Instead, a gesture or an IAHW passcode, can potentially be

used for authentication by leveraging the native gesture user interface. Similar to a

password-based system, the user is asked to ”write a passcode string” instead of ”type

a password”, and the captured hand-motion pattern is compared with a template for

authentication. The difference is that a password only contains typed alphanumerical

symbols and special characters, while the content of an IAHW passcode can be a string

in any language, a signature, or a doodle as long as it can be naturally reproduced by

the user but difficult to mimic by others. Thus, we denote it as a “passcode” instead

of a “password”. Besides the passcode content, the hand movement is also influenced

by the writing style, and the hand geometry, which may provide better security and

flexibility. For example, when the passcode content is leaked, such an authentication

system can still defend imposters to a certain extent using the handwriting style.
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Hence, it is more like a signature but different from a password. Meanwhile, it has all

desired characteristics of a password such as changeability and revocability. Finally,

since the passcode content is not necessarily linked to a person, unlike a biometric

trait such as a fingerprint, it can protect the privacy of a user.

There are three major technical challenges due to the inherent characteristics of

hand gestures and IAHW. First, limited sensor capability, i.e., accurate tracking of

fast hand movement with enough resolution is difficult using affordable consumer

electronic motion capture sensor. Second, information fuzziness, i.e., there are small

variations even for the same user writing the same passcode twice. It is difficult to

tolerate these variations and distinguish legitimate users from imposters at the same

time, especially without a deep understanding of the signal variations. Third, limited

data availability, i.e., the authentication system can only collect a few samples at reg-

istration (typically two to five) for usability reasons. To address these challenges, we

propose a multifactor authentication framework in this chapter, and our contributions

are as follows:

1) We provide an in-depth analysis on the global features of IAHW signals as well

as the hand geometry.

2) We designed and implemented a unified multifactor authentication framework

called FMAuth using two different types of inexpensive hand motion capture devices

(a glove with an inertial sensor and a 3D stereo camera). The framework supports

multiple authentication algorithms for different scenarios, and it achieves a perfor-

mance improvement over the existing baseline with limited training data.

3) We evaluated our framework using the FMKit dataset detailed in chapter 3,

and compared the results from the two devices. These results show good potential

for the usage of IAHW as a user authentication method.

The remainder of this chapter is organized as follows. Section 4.2 describes the
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architecture of our framework. Then, section 4.3, 4.4, and 4.5 provide the analysis

on temporal features, statistical features, and hand geometry features respectively.

After that, section 4.6 explains the multifactor fusion framework, section 4.7 shows the

empirical evaluation results and section 4.8 analyze the hard cases. Finally, section

4.9 summaries this chapter. This chapter is based on our published research papers

(Lu et al., 2018, 2017).

4.2 User Authentication System Model

Our proposed authentication framework consists of seven components (shown in

Figure. 4.1): a hand motion tracking device, a client software for signal preprocessing,

an account database, three types of feature extractors, and a decision maker.

Figure 4.1: Authentication Framework Architecture

The hand motion tracking device and signal preprosessing have been described in

chapter 3.3 and chapter 3.4. Both types of devices are used and evaluated in this

chapter. Also, all 18 sensor axes of the preprocessed signals are used, and the signals

are normalized in amplitude. We denote a preprocessed signal as a l × d matrix

R instead of a vector of vectors. Since the signal is preprocessed, d = 18. Given a
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certain sampling time i and a specific sensor dimension j, the sample value is denoted

as Rij. For the convenience of analysis and visualization, a signal is normalized to 256

samples in time using linear interpolation, i.e., l = 256. The matching and decision

making algorithms for user authentication do not require the signals to be normalized

in time.

Here we shown an example of a preprocessed signal obtained from the camera

device in Figure 4.2. This signal is obtained by tracking a user writing “123456”

in the air, which is probably the worst passcode a user can create. The normalized

value of samples for each sensor axis is shown on the left part of this figure in groups,

and inside each group, the color red, green, and blue represent the x-axis, y-axis, and

z-axis. The trajectory of this signal is shown on the right part of the this figure. Note

that this user deliberately writes the passcode from left to right in a legible way for

illustration purpose. Majority of the users write every letter or character at the same

place very fast in a illegible way like a signature because it is more natural to write in

such a way in the air and it is generally harder for imposters to mimic if the writing

is illegible. We also segment the trajectory to show different components of the signal

for each number as well as the transitioning strokes.

Figure 4.2: An Example of a Preprocessed Signal and Trajectory
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At registration, each user is required to create an account by creating a passcode

string, and write the passcode string in the air with five repetitions. The system

can obtain a set of registration signals in this step. After registration, each account

contains a tuple of <ID, templates>. Our framework allows one user to possess

multiple accounts with multiple distinct account IDs. The ID can be assigned by

the system, and the templates are generated from the registration signals based on

each type of features (detailed in the “template generation” step in section 4.3, 4.4,

4.5, and 4.6. Note that this account ID is just an internal ID of an account, not the

“IAHW ID string” that a user may use for login purpose. However, it is possible

to use an IAHW ID string to retrieve such an internal ID of an account, which is

discussed in chapter 5.

At login time, the user will provide an account ID and then writes a passcode

for authentication, similar to a password-based system. In this chapter we focus

on the authentication problem and we assume the account ID is available, such as

remembered by the system, or recognized by the IAHW of an ID string. After finishing

writing the passcode, the user keeps the hand still for one second as a termination sign

to the system. A login request signal R is generated. Then a matching algorithm

processes the signal R and calculates a distance score δ using templates (detailed

in later sections). After that, the authentication system makes a decision based on

the score δ and a threshold (typically configured by an administrator based on some

empirical results using a pilot dataset). If δ is greater than the threshold, output

“reject”; otherwise, output “accept”.

To facilitate analysis, given a specific account A and a login request signal R, we

define an authentication class label c of R in three cases based on the cases defined

in chapter 3.2, as follows.

1) c = same: Both the request signal R and the templates of the account A are
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generated by the owner of the account A writing the same content. This is legitimate

user login. In this case, the request signal R is from the positive testing signals in

the “ID-passcode” dataset. To simplify the analysis, we do not use the data from the

“ID-passcode-persistence” dataset in this chapter. More analysis for the long term

performance is shown in chapter 6.

2) c = collision: R is generated by a different user other than the owner of the

account A but both R and the templates of account A are generated by writing the

same content. This can be a passcode collision of two accounts, or an attack from an

imposter with the knowledge the passcode content. In this case, the request signal R

is from the “ID-passcode-collision” dataset. To simplify the analysis, we do not use

the data from the “ID-passcode-spoofing” dataset in this chapter. More analysis for

spoofing attacks is shown in chapter 6.

3) c = diff : R and the templates of account A are generated by writing different

content, regardless whether they are generated by the same user or not. This can

be a random guessing attack. In this case, the request signal R is from the negative

testing signals in the “ID-passcode” dataset.

Generally, in the first case δ should be small and R should be accepted, while

in other cases δ should be large and R should be rejected. In practice, a system

cannot distinguish case 2 and case 3 and they are only defined separately for analysis

purpose. It should be noted that the authentication class label c is defined with the

context of a specific account A, and this label can change if the context is changed to

a different account. This label is calculated from the content label y and writer label

z defined in section 3.8.
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4.3 Temporal Feature Analysis

In this section we analyze the signal variation in time (subsection 4.3.1) and sample

magnitude (subsection 4.3.2).

4.3.1 Alignment Analysis and DTW Matching

A signal R can be aligned to another signal T by Dynamic Time Warping (DTW)

(Berndt and Clifford, 1994) to generate an aligned signal S, as discussed in chapter

3.5. Here T can also be called a template. Specifically, we first run DTW on R and

T with all sensor axes and a window constraint of ±50 samples to obtain a warping

path. Then each sample of the aligned signal Sij is calculated by taking the average

of those samples of R which are mapped to Tij on the warping path. An illustration

of generating an aligned signal from a warping path is shown in Figure 4.3. In this

illustration, the signal R with five samples (1, 2, 3, 4, 5) is aligned to a template T

with four samples (A, B, C, D), where 1 is mapped to A and B, 2 is mapped to C, 3

is also mapped to C, 4 and 5 are both mapped to D. Since the signal R is aligned to

the template T , the aligned signal S will have the same length as T . Hence, for each

sample of T , we can compute two indices storing the start and the end of the segment

of R that corresponds to this sample of T (i.e., the “start” and the “end” shown in

Figure 4.3. With these indices, each sample of S is computed as the average of the

corresponding segment of R.

Another example is shown in Figure. 4.4. On the left half of this figure, we show

the DTW distance matrix computed by the two signals as an image. The two signals

are shown on the edges of this image, where the horizontal one is aligned to the

vertical one (i.e., the vertical one is the template). The warping path is shown as a

solid line from the bottom left corner of the image to the top right corner of the image.
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Figure 4.3: An Example of Generating an Aligned Signal From a Warping Path

These two signals are generated by the same person writing the same content twice.

If there is no variation in the writing behavior for these two signals, they should be

identical (which is impossible for human writers), and the warping path should be a

straight diagonal line as the dashed line. Because the writing content and the writing

style are the same, there are only small variations in these two signals, and hence, the

warping path is close to the diagonal line. The difference between this warping path

and the diagonal line can indicate the writing behavior variation in time. Note that

these two signals are normalized in time for the convenience of visualization so that

the warping path can be directly compared with the diagonal line. The alignment

algorithm does not require this normalization step.

This alignment step can be applied on any pair of signals, regardless whether they

are generated by writing the same content or not. On the right half of Figure 4.4,

we show the alignment results for various cases defined in section 4.2. Here the black

signal is the template and the colored signals are login request signals with or without

alignment. It can be observed that the signals generated by the same user writing

the same content are similar in shape. With this observation, the following DTW

matching algorithm is designed as a baseline algorithm.
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Figure 4.4: Example of a Warping Path and Signal Alignment Results

Template Generation: Given m raw signals at registration for an account,

first we preprocess and align them to the first signal to obtain m aligned signals

{S(1), S(2), ..., S(m)}. Then we calculate T as follows (essentially element-wise aver-

age),

Tij =
1

m

m∑
k

S
(k)
ij .

T is stored as the passcode template in the account database.

Matching: Given an account with a template T , and an authentication request

signal R, first we preprocess R and align it to T to obtain an aligned signal S. Here S

has the same length as T . Then calculate the element-wise distance Dij = |Tij −Sij|;

finally we calculate the DTW distance score

δDTW =
1

ld

l∑
i

d∑
j

Dij.

Here l is the template length, d is the number of sensor axes. δDTW can be compared

with the threshold directly for making a decision, or it can be considered as a feature

in the multifactor fusion methods. In fact, this δDTW has a fairly good discriminative

capability to distinguish login request signals from different classes. The distribution

of the DTW distance score for all accounts and all login requests in three authen-

tication class labels are shown in Figure 4.5. The overlap of the area of the curves

54



between the class “same” and the other classes can indicate the amount of confusion

for this distance score.

Figure 4.5: Distribution of DTW Distance Scores With Both Types of Devices

Additionally, we show the distribution of the warping paths in Figure 4.6. This

is obtained by overlaying warping paths of 1,000 signal and template pairs using

both types of devices, where each pair is normalized in time so that warping paths

from different accounts can be compared. Hence, we can consider this figure as a

“stacking” of all warping paths visualized in Figure 4.4 (left) for 1,000 accounts. This

figure indicates signals of different classes are “warped” in different intensity.

We define another distance score called alignment cost (denoted as δAC) to rep-

resent this difference in warping intensity. It is the absolute difference between a

warping path and the diagonal line as shown in Fig 4.4 (left), averaged by the tem-

plate length. Formally, assuming the segment between i′s and i′e of R is aligned to the

ith sample of T , the alignment cost is computed as follows.

δAC =
l∑
i

i− i′s + i′e
2

Here i′s and i′e are the two indices shown as the “start” and “end” for each sample

of the template in Figure 4.3. This alignment cost is a feature with relatively weak
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Figure 4.6: Distribution of Warping Path for Different Classes Using Both Devices

discriminative capability, but it can be used in the multifactor fusion methods. The

distribution of the alignment cost scores for all accounts and all login requests in three

authentication class labels are shown in Figure 4.7.

Figure 4.7: Distribution of Alignment Cost Scores With Both Types of Devices
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4.3.2 Sample Variation Analysis and TTV Matching

In the DTW distance score calculation, each sample is treated equally, which is

reasonable for alignment but not necessarily for matching and authentication decision

making. We propose the following Threshold-Then-Vote (TTV) algorithm based on

the DTW matching with improvements.

Template Generation: We calculate the template T in the same way as the

DTW matching algorithm. Additionally, we calculate the template uncertainty C as

follows,

Cij = var(S
(1)
ij , S

(2)
ij , ..., S

(m)
ij ),

where the var() function calculates the variance. Both T and C are stored in the

account database.

Matching: Given an account with T , C, and a request signal R, first we prepro-

cess R and align it to T . Then, we calculate element-wise distance Dij in the same

way as the DTW matching. After that, we multiply Dij by two scaling factors Pij

and Qij derived from the template value T and variance C (explained later). Finally,

we calculate the signal level distance

δTTV =
1

l

l∑
i

round[
1

d

d∑
j

TTV (Dij ∗ Pij ∗Qij)].

The round() function means rounding to the nearest integer (either 0 or 1 in our case),

which is essentially a majority vote. TTV (x) is a step function defined as follows:

TTV (x) =


0, if x ≤ th1

0.5, if th1 < x ≤ th2

1, if x > th2

(4.1)

The matching procedure is summarized in Algorithm 1.
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Algorithm 1: TTV match()

input : R, T, C

parameter: p, q, th1, th2

output : dist

R← preprocess(R).

S ← align(T , R).

D ← element-wise-abs(T - S).

P ← element-wise-inverse(1 + p× T )

Q← element-wise-inverse(1 + q × C)

D ← element-wise-multiply(D, P ).

D ← element-wise-multiply(D, Q).

for i = 1 to l do

for j = 1 to d do

if Dij < th1 then

Dij ← 0

else if Dij > th2 then

Dij ← 1

else

Dij ← 0.5

end

end

end

dist ← 1
l

∑l
i round[1

d

∑d
j TTV (Dij)]

Similar to δDTW , δTTV can be used directly for decision making or as a feature in

fusing multiple factors.

This matching algorithm maps an element-wise distance to an element-wise de-
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cision as “match” (i.e., 0), “non-match” (i.e., 1), or “unsure” (i.e., 0.5). Then the

element-wise decisions are aggregated, and the portion of non-match votes is the dis-

tance score. Here th1 and th2 are tunable parameters determined empirically (in our

case, th1 = 0.3, th2 = 0.4). When S and T are obtained from the same user writing

the same passcode, because of slight handwriting behavior change or misalignment,

such local non-matches exist but their votes are limited. However, when S and T are

obtained from different users or from writing different contents, they are different in

many places along multiple axes and the non-matches can dominate the votes.

Figure 4.8: Joint Distribution of Element-wise Distance and Template Property,
with the Camera Device

The design philosophy of the two two scaling factors P and Q are explained as

follows. Rather than varying the thresholds th1 and th2, the scaling of element-wise

distance are introduced to apply less importance (i.e., more tolerance) to some sam-
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Figure 4.9: Joint Distribution of Element-wise Distance and Template Property,
with the Camera Device, with the Glove Device.

ples. The assumption is that the element-wise distance varies differently in different

places and along different sensor axes, and Dij is large when Tij and Cij are large.

Hence, larger tolerance should be placed at these samples. Here Tij is each template

sample value and Cij is the template variance at each sample. To confirm this, we

first show the joint distributions of Dij and Tij, as well as the joint distribution of

Dij and Cij, in Figure 4.8 and Figure 4.9. These joint distributions are conditioned

with the distribution of Tij and Cij themselves. Then, we show the collective trend

between Dij and Tij, as well as the trend between Dij and Cij in Figure 4.10 and

Figure 4.11. We can approximately fit a line to capture these trends.
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Figure 4.10: Relation between Element-wise Distance and Template Property, with
the Camera Device.

Using these trends, Pij and Qij are calculated as follows.

Pij = 1/(1 + p ∗ Tij), Qij = 1/(1 + q ∗ Cij).

p and q are tunable parameters determined empirically (in our experiments, p =

0.5, q = 1.0). Basically, p and q are chosen such that the scaled Dij is roughly

separable between the same and diff classes using a single threshold, i.e., those lines

in Figure 4.10 (left) and Figure 4.11 (left) are roughly flat after Dij is scaled by the two

factors. To further accommodate the fuzziness introduced by the writing behavior,

two thresholds are used in the TTV algorithm instead of just one threshold.

Now we provide more analysis on the element-wise distance to explain the rationale

of the two thresholds. For convenience, Dij ∗ Pij ∗Qij is denoted as D′ij.
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Figure 4.11: Relation between Element-wise Distance and Template Property, with
the Glove Device.

First, in Figure 4.12 and Figure 4.13, we show the ±2σ ranges of D′ij respect to the

sensor axes averaged along the time, which are approximations of p(1
l

∑l
iD
′
ij|c), i.e.,

distribution of aggregatedD′ij respect to the sensor axes. The 18 sensor axes follow the

order defined in chapter 3.4. Because the original orientation representation using unit

quaternions cannot be mapped to the x-y-z axes directly, we convert the orientation

into three Euler angles roll, pitch, yaw, and show them as angle-x, angle-y, and angle-

z in the figures. Also, angular speed and angular acceleration are abbreviated as

a-speed and a-acc respectively.

These figures show the variation of the signal in each sensor axis, and larger

overlap indicates more difficulty in distinguishing different classes based on that axis.

Since the writing behavior in the air is similar to writing on an invisible wall, and
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Figure 4.12: Distribution of Aggregated Scaled Element-wise Distance in Different
Sensor Axes, without Considering Collision

in the posture normalization preprocessing step, the x-axis is defined as the averaged

pointing direction (i.e. against the wall), the uncertainty in that direction is larger.

Also, the position axes show larger variation range, which means users are generally

better at keeping the same pattern in speed and acceleration than maintaining the

same trajectory. We believe that the speed and acceleration of hand movement are

directly related to the force generated by the muscle using “muscle memory”, while

maintaining position and trajectory requires visual feedback and attention from the

brain. Since handwriting is an acquired skill, the “muscle memory” is a behavioral
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Figure 4.13: Distribution of Aggregated Scaled Element-wise Distance in Different
Sensor Axes, with Considering Collision

biometric trait and relatively stable.

Second, in Figure 4.14, we show the distribution of D′ij respect to the time av-

eraged over all sensor axe, i.e., an approximation of p(1
d

∑d
j D
′
ij|c). For those signal

and template generated by the same user writing the same content (c = same), the

average of D′ij is generally smaller than those generated by different users writing

the same content (c = collision) or by writing different contents (c = diff ). This

is expected. There is an overlap in a region (shown as the dashed horizontal lines),

which determines the two parameters th1 and th2. Generally, below th1, it is desired
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that

p(1
d

∑d
j D
′
ij|c = same) > p(1

d

∑d
j D
′
ij|c = collision),

and above th2, it is desired that

p(1
d

∑d
j D
′
ij|c = diff) > p(1

d

∑d
j D
′
ij|c = collision).

Figure 4.14: Distribution of Aggregated Scaled Element-wise Distance in Time

From these figures, it can be observed that samples in different sensor axes and at

different time should be considered with different importance (i.e., using different

weight). Also, in Figure 4.14, it can be observed that the distribution of sample

differences do not change along the time given a large amount of accounts with diverse
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passcode contents. However, the local non-matches of signals from different accounts

varies in different ways. Hence, a per-account decision maker can perform better than

a global decision maker. These observations explains the performance gain of the TTV

method and the Feature Fusion method (detailed in section 4.7). Additionally, there

are small anomalies on both ends, since users usually raise the hand to start the

writing and put down the hand to terminate the writing. Hence, the performance

can be improved slightly by trimming the start and the end again after alignment.

Third, we show the distribution of the TTV distance score δTTV over all accounts

in Figure 4.15, i.e., an approximation of the class-conditional probability p(δTTV |c).

The histograms are normalized as probability and the overlap between the histograms

represents the overall discriminative capability of the matching algorithm (smaller

overlap is better).

Figure 4.15: Distribution of TTV Distance Scores with Both Types of Devices

4.4 Statistical Feature Analysis

In this section, we focus on those statistical aspects of the signal which are lost in

the alignment and normalization steps. Specifically, the following statistical features

are studied.

66



1) The mean of each sensor axis M = (µ1, ..., µd), where µj = mean(R1j, ..., Rlj).

2) The standard deviation of each sensor axis Σ = (σ1, ..., σd), where σj =

std(R1j, ..., Rlj).

3) The correlation P = (αxy, αyz, αxz, βxy, βyz, βxz, ...) between pairs of adjacent

sensor axes, where αxy is the correlation of the three axes of position, βxy is the

correlation of the three axes of speed, and so on.

4) Sum of amplitude of each axis Λ = (λ1, ..., λd), where λj =
∑l

i=1 |Rij|.

5) Portion of low frequency components of each axis L = (ξ1, ..., ξd), where ξj =

mean(low pass(FFT(R))). Here FFT(R) is the Fast Fourier transform coefficients

and the low pass() function zeros the coefficients higher than 3 Hz.

Collectively, the statistical feature vector of a signal R is the combination of them,

defined as f(R) = (M,Σ,P,Λ,L), where f(R) is the statistical feature extractor.

Template Generation: Given {R(1), R(2), ..., R(m)} as the m signals at registra-

tion for an account, first run the prepossessing step 1 to 5 for each signal, extract

statistical features, and then calculate the element-wise mean µSF and standard de-

viation σSF as templates.

µSF = mean(f(R(1)), f(R(2)), ..., f(R(m)))

σSF = std(f(R(1)), f(R(2)), ..., f(R(m)))

Matching: Given an account with template µSF and σSF , and an authentication

request signal R, run the same preprocessing steps as those in the template generation,

then calculate the following aggregated statistical difference score

δSD = mean(abs(f(R)− µSF )/σSF )

where the subtraction and division are all element-wise, the mean() function aver-

ages all elements of its vector input. These statistical differences are based on the

Mahalanobis distance.
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Figure 4.16: Distribution of Statistical Difference for Different Classes with Both
Types of Devices

The distribution of each component of the statistical difference vector abs(f(R)−

µSF )/σSF is shown in Figure 4.16.

The correlation of each component of f(R) is shown in Figure 4.16, which indicates

positive correlation of signal variance, amplitude, and low frequency components.

Generally, if the user writes intensively, all these three features will have a larger

magnitude.

We incorporate an additional statistical features, which is the difference of lengths

between a signal R and a template T , denoted as δLD. It is calculated as

δLD = |lR − lT |/lT

Here lR and lT are the lengths of the signal R and template T respectively.

In a word, these statistical features are generally weak factors. Combining them

together the δSD may show a certain level of discriminative capability, as shown in
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Figure 4.17: Correlation of the Statistical Features of All Axes

the distribution of statistical difference scores in Figure 4.18. However, we argue that

removing them in the preprocessing step does not incur much loss of information

for the authentication task. This is also confirmed in the comparison of empirical

evaluation results in section 4.7. The means of most sensor axes, such as the speed

and acceleration, are especially weak features because many of them tend to be around

zero anyway.

Figure 4.18: Distribution of Statistical Difference Scores With Both Types of De-
vices
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4.5 Hand Geometry Feature Analysis

In our framework, the hand geometry feature h is a vector of 22 components

including the bone length vector and the hand width vector measured using the

onboard software of the camera device. The bone length vector contains the lengths

of metacarpals (M), proximal phalanges (P), intermediate phalanges (I), and distal

phalanges (D) of the five fingers on a hand, in total 19 components (note that the

thumb does not have an intermediate phalanges segment). The hand width vector

includes 3 components, which are the distances between the far ends of metacarpals of

two adjacent fingers except the thumb. The definition of each component of the hand

geometry feature is illustrated in Figure 4.19, and the vector h is a concatenation of

these components for each finger and the three hand width segments. For the glove

device, this feature is not available. The hand geometry feature is utilized as follows.

Figure 4.19: Definition of Hand Geometry Features

Template Generation: Given m measures of the user’s hand {h(1),h(2), ...,h(m)},

construct the template

hT = mean(h(1),h(2), ...,h(m)).
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Matching: Given an account with template hT , and an authentication request

with a measurement hR, calculate the hand geometry difference (HGD)

δHGD = mean(abs(hR − hT )/hT )

where both the subtraction and division are element-wise.

If the authentication request is generated by the account owner using the same

hand, the hand geometry feature extracted from the request should not differ from

the stored hand geometry template significantly. We measured the difference of each

individual hand geometry component of the same user as well as different users, and

the results for each component of abs(hR − hT ) average over all pairs of hands in

our dataset is shown in Figure 4.20. It can be seen that a longer bone on a finger

causes larger differences among users, and hence, we use the ratio instead of the

absolute difference. Also, the hand motion tracking device needs to obtain the hand

geometry measurement from the user’s hand image in millimeter-level precision, which

is challenging. Thus, even the same hand from the same user is measured in multiple

times, there are slight differences due to the measurement uncertainty. However, on

average this measurement uncertainty is less than the difference between different

hands from different users.

Figure 4.20: Average of Length Differences of Hand Geometry Feature Components
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Another important fact is that all these 22 components have strong correlations.

Since the five fingers on the same hand grow together, we suspect that the onboard

software of the camera device uses an internal model for estimating the hand shape,

which scales linearly in hand size. This can be verified by running Principle Com-

ponent Analysis (PCA) on the hand geometry data. Using our data, the dominant

principle component has an eigenvalue more than a thousand times larger than the

others. As a result, we average the ratio difference of the feature components to

improve the robustness and reduce the dimensionality of this feature.

Obviously, if two hands are different in size and shape, this hand geometry feature

will show the difference. However, it is highly possible that two different hands have

similar shapes and there is no way to determine whether they are from the same

user merely based on the geometry. Meanwhile, the same user may create multiple

accounts with the same hand. In a word, hand geometry is a weak factor with very

limited discriminative capability. Even if the glove device cannot obtain the hand

geometry features, it can still achieve comparable authentication performance as the

camera device using hand geometry features, as shown in section 4.7.

4.6 Fusion of Multiple Features

In this section we propose two methods of fusing multiple factors at score level

(section 6.1) and feature level (section 6.2).

4.6.1 Score Fusion

The Score Fusion (S-Fusion) scheme uses a weighted average of the matching

scores on each type of feature as follows.

Template Generation: Given the registration signals, generate templates for

the temporal, statistical, and hand geometry features.
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Figure 4.21: Distribution of the Scores From Various Features
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Matching: Run the matching algorithm of each feature and calculate the score:

δother = w1δAC + w2δSD + w3δLD + w4δHGD,

δSFusion = δTTV + δother,

where δTTV is the matching score using the TTV algorithm (i.e., the TTV distance

score), δAC is the alignment cost score, δSD is the statistical difference score, δHGD is

the hand geometry difference score, w1 to w4 are tunable parameters. Here, δTTV is

considered as the primary factor with strong discriminative capability, and the others

are supplemental factors.

These weights w1 to w4 are determined empirically. In our case, w1 = 0.1, w2 =

0.03, w3 = 0.3, w4 = 0.4, for both types of devices. Since the glove device is unable

to measure hand geometry, w4 is not used for that device. Specifically, we first plot

the scores of supplemental factors respect to the scores of the primary factor using

1,000 signals in each class, and then we fit a linear decision boundary manually, as

shown in Figure 4.21. The weights w1 to w4 are determined by the slope of these

lines. For example, in Figure 4.21 (a), the linear decision boundary connects δAC = 3

and δTTV = 0.3, and hence, w1 is set to δTTV /δAC = 0.1. This is designed mainly for

simplicity and practicality with a small pilot dataset, which is not necessarily optimal.

Also, it is assumed that these supplemental factors are not correlated, which may not

be true. More sophisticated score fusion schemes can also be employed in the future.

However, generally more sophisticated score fusion schemes use more complex models

and require more data to estimate the probability distribution of feature vectors in

different classes, which may cause over-fitting on a small pilot dataset.
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4.6.2 Feature Fusion

If we inspect each individual element-wise distance Dij, it is essentially a type

of weak feature. Inspired by the idea of ensemble of weak features using weighted

average, we design a Feature Fusion (F-Fusion) scheme as follows.

Template Generation: Same as Score Fusion.

Matching: Align the signal R to T and calculate the score:

δother = w1δAC + w2δSD + w3δLD + w4δHGD,

δT−Fusion = b+
l∑

i=1

d∑
j=1

wijDij,

δF−Fusion = δTFusion + δother,

In this scheme, each feature has its own weight wij, and since they vary differently,

the wij should be calculated based on the data for each account. b is a bias to

keep the score roughly in the range between 0 and 1. DTW matching is a special

case of T-Fusion by setting all weights to the same value, and TTV is setting the

weights systematically based on a few hyperparameters with additional nonlinear

cutoff. Determining the weights wij is essentially fitting a decision plane in the feature

space, and this can be done for each account independently. In our case, these weights

wij as well as w1 to w4 are learned from the data at registration using a soft margin

Support Vector Machine (SVM) in a per account manner. Specifically, at registration,

for each account we use the Dij calculated by the five signals generated by the account

owner as positive samples, and we use the Dij calculated by 1,000 signals randomly

selected from other accounts as negative samples to train an SVM. One limitation

of this method is that at registration data from all accounts must be accessed. This

is possible for an online applications with a lot of accounts but infeasible for device

unlock scenarios with only one or a few users. However, as our analysis in section 4.7
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shows, it is still possible to achieve relatively useful performance with a set of signals

not related to other accounts as negative training samples.

4.7 Experimental Evaluation

We adopt the following experimental evaluation protocol.

1) We create each account and the templates using the five registration signals

in the “ID-passcode” dataset. We also train the SVM if the feature fusion method

is used. We mixed the ID strings and the passcode strings to create 360 individual

accounts to slightly increase the dataset size, i.e., each user has two accounts in our

experiments, where one account uses the IAHW of the ID string in the “ID-passcode”

dataset for passcode purpose, and the other account uses the IAHW of the passcode

string “ID-passcode” dataset for passcode purpose. This can improve the resolution

of the evaluation metrics, and it also helps us to reveal a few hard cases analyzed

in section 4.8. A global threshold is also configured to determine the boundary of

acceptance and rejection.

2) For each account and for each of the fives testing signals in “ID-passcode”

dataset, we use it as a login request with class label c = same to that account. Then,

we use it as a login request with class label c = diff to all other accounts. The results

generated in this step are denoted as the case without collision.

3) For each account and for each of the five testing signals in “ID-passcode”, we

use it as a login request with class label c = save to that account. Then, for each

signal generated by impostors in “ID-passcode-collision”, we use it as a login request

with class label c = collision to the target account. The results generated in this step

are denoted as the case with collision.

We use the evaluation metrics defined in chapter 3.8.1. Specifically, if a request

signal with class label c = same is rejected, it is a False Reject (FR); if a request
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signal with class label c = diff or c = collision is accepted, it is a False Accept (FA)

or a Successful Collision (SC), which is a special case of false accept. The False Reject

Rate (FRR) and False Accept Rate (FAR) are defined as follows.

FRR = 1
kn

n∑
i=1

#{FRi},

FAR = 1
kn(n−1)

n∑
i=1

n∑
j=1,j 6=i

#{FAij}, without collision,

FAR = 1
kmn

n∑
i=1

m∑
j=1

#{SCij}, with collision,

where n is the total number of accounts (n = 360); k is the number of testing signals

generated by each user or the number of collision signals by each impostor, i.e., both

are five in our experiments; m is the number of impostors (m = 10). #{FRi} is

the total number of false rejects of the ith account, #{FAij} is the total number of

false accepts for ith account using the signals of jth account as the authentication

requests, and #{SCij} is the total number of successful spoof for the ith account by

the jth impostor.

The results are shown in Table 4.1 and 4.2. The Receiver Operating Characteristic

(ROC) curves are shown in Figure 4.22. We also use the Equal Error Rate (EER)

to evaluate the authentication methods, which is the rate where FRR is equal to

FAR. Here FAR1K and FAR10K indicate the FRR when FAR is 10−3 and 10−4,

respectively. ZeroFAR is the smallest FRR when FAR is zero and ZeroFRR is the

smallest FAR when FRR is zero. In the table, the row DTW(2) and TTV(2) shows

the results using only the first two signals at registration for template construction.

T-Fusion(A) and T-Fusion(E) are explained later in this section.

In this section, we do not evaluate the authentication methods with the data
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Table 4.1: Authentication Performance Results with the Camera Device

method
w/o collision (in %) with collision (in %)

EER
FAR

1K

FAR

10K

Zero

FAR

Zero

FRR
EER

FAR

1K

Zero

FAR

DTW(2) 1.24 5.75 17.69 71.40 28.76 5.10 27.6 37.2

TTV(2) 1.00 4.81 12.18 44.57 16.49 3.64 19.9 37.2

DTW 0.81 2.39 7.56 56.36 25.00 3.08 13.3 29.5

TTV 0.70 2.38 7.99 23.64 15.54 2.16 15.2 34.8

S-Fusion 0.50 1.38 4.95 37.75 42.38 1.83 7.4 15.4

T-Fusion 0.22 0.32 0.78 12.33 7.35 2.61 10.9 17.0

F-Fusion 0.26 0.31 0.85 12.00 7.30 2.61 10.7 16.6

T-Fusion(A) 0.21 0.23 0.57 10.62 3.23 2.74 10.6 23.2

T-Fusion(E) 0.10 0.12 0.78 10.70 4.72 2.40 8.91 18.3

Table 4.2: Authentication Performance Results with the Glove Device

method
w/o collision (in %) with collision (in %)

EER
FAR

1K

FAR

10K

Zero

FAR

Zero

FRR
EER

FAR

1K

Zero

FAR

DTW(2) 1.24 3.80 10.52 49.46 98.18 5.04 24.0 38.9

TTV(2) 1.12 2.97 7.30 48.84 50.97 4.17 23.0 38.9

DTW 0.75 1.33 5.26 43.80 8.56 2.95 12.0 19.6

TTV 0.68 0.85 2.86 35.50 11.23 2.39 13.6 23.6

S-Fusion 0.39 0.93 2.06 36.12 16.21 1.98 15.6 30.9

T-Fusion 0.16 0.16 0.39 2.95 6.57 1.51 4.7 6.2

F-Fusion 0.16 0.16 0.39 3.10 4.25 1.51 4.4 5.6

T-Fusion(A) 0.16 0.16 0.42 2.79 0.50 1.86 6.5 12.2

T-Fusion(E) 0.16 0.16 0.39 2.02 2.29 1.38 3.5 5.1
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Figure 4.22: Receiver Operating Characteristic (ROC)

“ID-passcode-spoofing” and ”ID-passcode-persistence”, mainly because they are only

available for a portion of the accounts. However, in chapter 6, we show the results

using these two datasets.

These matching algorithms have a gradual improvement in performance with an

increase in the number of parameters. The DTW algorithm is the simplest with-

out any need of parameter tuning. The TTV algorithm requires to determine four

parameters (p, q, th1, th2), and the S-Fusion algorithm requires another four (w1 to

w4). From a deployment point of view, they can be set up with a small pilot dataset
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or using rule-of-the-thumb values provided in this section. They can also work with

only one account in the account database (e.g., for device unlock). In T-Fusion and

F-Fusion, the numbers of parameters are roughly the same as an additional tem-

plate signal, and they are learned from the data. The reason of the performance

improvements for the T-Fusion method and the F-Fusion method is partially from

the added weight parameters that can tolerate variation at different places of the

signals, and partially from the added bias parameters which essentially makes the

decision threshold adaptable for each account.

The limitation of all evaluated methods is essentially the quality of the template,

i.e., it is difficult to use one template generated from limited number of signals at

registration to capture the whole picture of the user’s handwriting behavior variation.

This can be seen by the first two rows of Table 4.1 and 4.2 with the results for DTW(2)

and TTV(2). We also show the authentication performance change in terms of EER

respect to the number of signals for constructing the template. This results can be

used to determine empirically how many repetitions are needed at registration. In

general, more signals at registration lead to a better template, i.e., more signals can

capture the behavior variation better. However, the benefit is marginal because all

registration signals are obtain at roughly the same time and the amount of variation is

limited. This can also be confirmed by the results using the “ID-passcode-persistence”

data shown in chapter 6.

To mitigate this limitation of the template, we conduct two additional experiments

and the results are shown in the last two rows of Table 4.1 and 4.2. For T-Fusion(A),

we augment the five positive training signals to 125 signals by performing a slight

random rotation, adding a small perturbation, and swapping a random segment given

a randomly picked pair of training signals. The idea is to artificially create signal

variation so that the learned model may be more robust. For T-Fusion(E), we use
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Figure 4.23: Authentication Performance Change Respect to the Number of Signals
for Template Construction

each of the five positive training signals as a template, train five individual SVM

models, and during the testing we take the minimum of the five scores generated by

the five models as the ensemble score. The idea is to use multiple templates instead

of one and find the best match. These methods show slight improvements.

Another question is whether the weights learned from other accounts at registra-

tion in T-Fusion and S-Fusion can work in general. One may argue that the possible

guessing attacks can be enormous and such a trained model can only reject those sig-

nals generated by writing passcode strings from other accounts because the contents

of these strings are “seen” in the registration process. To answer this question, we

conduct another set of experiments where fewer randomly selected negative training

samples are used to learn the weights at registration. The results are shown in Figure

4.24. The performance degrades slightly with less negative training sample. However,
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even if signals from most of other accounts are not observed in training, the matching

algorithm can still work. One possible explanation is that the features, esp., Dij, are

generally large for negative training samples and they form similar cluster patterns

in high dimensional feature space as Figure 4.21. Hence, a linear maximum margin

decision plane fitted from training data (i.e., SVM) is relatively robust with the vari-

ation of the cluster shape. This also explains why we can obtain a reasonably good

performance with only five positive training samples. We believe this is the advan-

tage of template matching based methods since the system only needs to calculate

a rough decision boundary relative to the template (which is generally easy), rather

than learning a model that must “remember” the templates as in HMM or deep neu-

ral network based methods (which is generally hard). In fact, we tried a deep neural

network but the performance is inferior. However, since the templates are stored and

retrieved in alignment, they are similar to plain text password and they can not be

hashed, which needs certain protection mechanism. This is addressed in chapter 6.

Figure 4.24: Performance Change of the T-Fusion Method with Respect to the
Number of Negative Training Samples

It is interesting to see that both the camera device and the glove device share a lot
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in common in the characteristics of the features and the authentication performances,

even though these two types of sensors use fundamentally different motion tracking

methods. Our signal model and preprocessing steps removes the sensor dependent

information. As a result, we believe our feature analysis and authentication framework

can also apply to a broad range of devices. Still, there are small differences between

the results of different devices. For example, with the glove device, the signal quality

is slightly better, and the user behavior is slightly more consistent. This may be the

results of the lack of the field-of-view restriction with the glove device. The hand

movement is more stable if a user writes it more naturally with the “muscle memory”

rather than attention. However, there might be usability concerns for asking the user

to put on a glove. Hence, we will continue our study with a light-weight wearable

device like a ring with the same inertial sensor in the future. Another difference is

that the tip of the index finger is tracked by the glove, while the center of the palm

is tracked by the camera. It seems that the fingertip moves more significantly than

the palm center in handwriting in the air.

4.8 Analysis of The Hard Cases

Besides collective performance results, in Figure 4.25, we also show the ranges of

matching distance scores δ of the testing signals in different classes using the Feature

Fusion method. To accommodate the page width, two thirds of the accounts are

randomly selected to generate the figure. The accounts are sorted by the maximum

score of the five positive testing signals to show a trend from the “easy cases” on the

left to the “hard cases” on the right. On the top half of this figure, we show the ranges

of distance scores for signals with c = same and signals with c = diff. These distance

scores are obtained in the experimental evaluation protocol step 2 in section 4.7.

Here, “diff-min” and “diff-avg” are the minimum and average of the distance scores
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for those login request signals with class label c = diff for each accounts. The range of

these scores are shown by the colored area as “diff-range”. Similarly, “same-max” is

the maximum of the distance scores for those login request signals with class label c =

same for each accounts, and the range of these scores are shown by the colored area

as “same-range”. The intersection between the “diff-range” and “same-range” are

shown in darker colors and denoted as “overlap”. On the bottom half of this figure,

we show the ranges of distance scores for signals with c = same and signals with c

= collision in a similar way. These distance scores are obtained in the experimental

evaluation protocol step 3 in section 4.7. It should be noted that there are way more

signals with class label c = diff than those with class label c = collision, i.e., 359 * 5

vs. 10 * 5. Hence, the range denoted as “collision-range” has larger uncertainty, and

on the figure it “jumps” in a random way for different accounts.

It can be observed that for most of the accounts, there is a gap between the scores

computed from login request signals with c = same and those with c = diff or c =

collision. Clearly, the gap between the class “same” and the class “diff” is larger

than the gap between the class same and the class collision, which shows that the

difference of signals due to both the passcode string content and the writing style is

more significant than the difference of signals merely due to the writing style.

Still, there are a few testing signals with c = diff which have smaller matching

scores below a “reasonable threshold” (around 0.4, where FAR is ≈ 1e-5 without

considering collision). They are the first type of the “hard cases”, which has a sig-

nificant influence on the security strength of the authentication system and further

determines the threshold which should be used in practice. These are partly caused

by short and simple IAHW passcode strings created carelessly by users, and partly

caused by multiple accounts owned by the same user since we mixed the signals for

ID strings and signals for passcode strings. On the one hand, even if these passcode
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Figure 4.25: Matching Score Distribution of Each Account Using the F-Fusion
Method

strings are different in content, they may have similar stroke patterns when writing

in the air because of the transitioning strokes. For example, “FMKit” and “EWKje”

have very similar strokes in almost identical sequence, although four out of five let-

ters are different. On the other hand, one user may have multiple accounts with very

similar or even identical passcode strings. This happens when we intentionally mixed

the signals from the ID strings and the signals from passcode strings using the “ID-

passcode” dataset to allow each user to have two accounts. For example, the passcode

strings for the two accounts of a user is “feng” and “yang”, and these signals are very

similar because the similarity in content and writing style, as shown in Figure 4.26

(a). This pair of signal and template has a matching distance score of 0.294. Another

example is shown in Figure 4.26 (b), where a user creates two accounts using the
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string “Kaicheng” and “Kirkland”. This pair of signal and template has a matching

distance score of 0.373. We believe writing style itself is a weak factor, i.e., given a

large number of users we can always find users with similar writing styles. However,

it is not easy to mimic the writing style of a user if it has a certain level of uniqueness,

which is discussed in the spoofing attack analysis in chapter 6.

Figure 4.26: Examples of Hard Cases, Blue for the Templates and Orange for the
Testing Signals

On the rightmost of the figure, there are testing signals with c = same with large

matching distance scores above the reasonable threshold. They are the second type

of hard cases which influences the usability. They are usually generated by users that

changes the writing style or inconsistent behaviors that cannot accommodated by the

system. Two examples of the hard cases are shown here. For Figure 4.26 (c), the

signal and the template are generated by the same user writing the same passcode

content “Victor”, but the user changes the writing behavior, and the resulting δ is
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0.524. For Figure 4.26 (d) the signal and the template are generated by the same

user writing the same passcode content “harrison67”, and the resulting δ is 0.566. In

this example, at the end of the signal there are many meaningless hand movements

that cause interference for the posture normalization step in the signal preprosessing

procedure as well as the alignment procedure. The posture normalization relies on

the hand pointing direction while the two signals have the same pointing direction

but different hand moving direction. As a result, the scores of these hard cases

are comparable to the typical distance score between a template and a signal with

c = collision. Such an example for collision is shown in Figure 4.26 (e), where both

the user and the imposter wrote “Simon” and the resulting distance score δ is 0.555.

On the contrary, in Figure 4.26 (f), we show a template and a signal obtained by the

same user writing “123456”, and the distance score δ is only 0.187. We believe that

this second type of hard cases is more important because it determines the trade off

between the discriminative capability and the tolerance of minor behavior variations.

We can set the decision threshold at a conservative level to handle the first type of

hard cases, but if this threshold is too conservative such that majority of the second

type of hard cases are rejected, it will annoy the user and this system will be less

likely to be used in practice.

4.9 Summary

In this chapter we present a user authentication framework with two different

types of devices using various features of IAHW passcode including temporal features,

statistical features, and hand geometry features. Although the results are promising,

it is still in an early stage and requires further investigation, and we believe such an

IAHW passcode based authentication method has potential in application, especially

in VR headset or home entertainment scenarios with native gesture user interface
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instead of a keyboard or a touchscreen.
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Chapter 5

FMHASH - USING IAHW FOR USER IDENTIFICATION

5.1 Background

Gesture user interfaces are considered as the future way for people to interact with

Virtual Reality (VR) or Augmented Reality (AR) applications and other devices such

as a smart door bell or smart wearable devices (Lien et al., 2016). Such interfaces can

capture and track hand motions in the air, and allow a user to manipulate menus,

dialogues, and other virtual objects directly by hand gesture. However, for security

related tasks such as sign-up and sign-in, entering the user ID string and password

through a virtual keyboard on gesture interfaces become cumbersome due to the lack

of keystroke feedback. Existing researches (Okumura et al., 2006; Farella et al., 2006;

Liu et al., 2009; Bailador et al., 2011; Chahar et al., 2015; Tian et al., 2013; Lu

et al., 2017, 2018) exploit the rich information in native gestures, and esp., IAHW, to

authenticate a user. Yet, a usually neglected function is user identification. Authen-

tication is a true or false question, i.e., answering whether the user owns the account

which he or she claims to own. On the other hand, identification is a multiple choice

question, i.e., answering which account the user wants to login among a database

of many accounts. If we make an analogy of the sign-in procedure on a web with a

desktop computer, the authentication procedure resembles typing and checking the

password, while the identification procedure resembles searching the database given

an ID number or ID string. Is it possible to construct a system that is capable of (1)

taking a piece of IAHW of an ID string instead of typing, (2) searching a potentially

large database of accounts registered using the IAHW, and (3) returning the matched
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identity or account number with high accuracy and short respond time?

There are challenges for gesture-based user identification due to the unique char-

acteristics of the hand motion. First, hand motion has inherent fuzziness. Even if the

same user writes the same string in the air twice, the generated two motion signals

are not identical, but with minor variations. Yet, the system should be able to tol-

erate the fuzziness and identify these two signals as the same user. This is different

from typing an ID string of characters twice where even a single bit difference in

the typed ID can cause failure in the identification. Second, it is difficult for many

native gestures to provide enough information to enable a large account ID space as

well as distinctiveness. Third, the traditional method of hash table for indexing a

large account database using an ID string or account number does not work with

handwriting signal, unless there is a way to generate a fixed size binary hash code

from the signal with tolerance of inherent fuzziness (i.e., fuzzy hash).

In this chapter, we propose a framework called FMHash, i.e., Finger Motion

Hash, to efficiently obtain a user’s account ID from the hand motion signal of writing

an ID string in the air. FMHash uses a camera-based gesture user input device to cap-

ture the hand motion and a deep convolutional neural network (called FMHashNet)

to convert the in-air-handwriting signal to a binary hash code (i.e., deep hashing).

With the hash code of the signals of all accounts, it further builds a hash table to

index the whole account database to enable efficient user identification with hash

table search. This is similar to face recognition, where a large database of identities

are indexed using faces and an ID can be retrieved by presenting an image of a face.

However, FMHash has a few unique advantages compared to face recognition. For ex-

ample, one face is linked to one person, and a user can neither have multiple faces for

multiple accounts nor change or revoke his or her own face. Moreover, the users may

be worried about privacy because it is impossible to stay completely anonymous if a
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website requires face image to register. Yet, with in-air-handwriting of an ID string,

the user can have multiple accounts with different ID strings, change or revoke the

ID string, and stay anonymous by writing something unrelated to the true identity.

In summary, our contributions are as follows:

1) We proposed a deep hashing framework of IAHW for user identification over

gesture interface, named FMHash, which can generate fuzzy hash code from IAHW

to index user accounts. Our method can accommodate gesture fuzziness by hashing

multiple instances of the same handwriting by the same user to the same binary code

with high probability of success (≥97% precision and ≥92% recall).

2) We designed a neural network model with a regularizer called the pq-regularizer

and a progressive training procedure. With the pq-regularizer, hashcode of IAHW

signals of different accounts are separated more than two bits in over 99% of the

change. Meanwhile, we can maintain a reasonably fast training speed (∼10 minutes

for a full training on our dataset).

3) We provided a detailed analysis on the hash code fuzziness using datasets

collected by us with two different types of devices.

The remainder of this chapter is organized as follows. Section 5.2 presents the

architecture of the proposed FMHash framework. Section 5.3 provides details of our

neural network model. Section 5.4 explains the user identification procedure. Section

5.5 shows the empirical evaluation results. Section 5.6 summarizes this chapter. This

chapter is based on our published research paper (Lu et al., 2019).

5.2 System Model

The proposed FMHash framework contains the following five components, as

shown in shown in Figure 7.1.

(1) An IAHW hand motion capture device, i.e., the camera device or the glove
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Figure 5.1: The Architecture of the FMHash Framework

device in chapter 3.3.

(2) A preprocessing module that smooths and normalize the captured motion

signal, detailed in chapter 3.4. All preprocessing steps are used, including amplitude

normalization and temporal normalization. After the preprocessing, each signal has

the format of a vector x of 256 samples and each sample is again a vector containing 18

individual elements. We use the vector representation in this chapter to accommodate

the widely used terminologies of neural network.

(3) A deep neural network that takes a preprocessed motion signal x as input and

generates a high dimensional floating point latent vector h. This step is denoted as

a function f(x) = h, detailed in section 5.3.

(4) An additional neural network layer that projects the latent vector h to low

dimensional space and quantize the projected result to B-bit binary fuzzy hash code

b ∈ {−1,+1}B. This step is denoted as another function g(h) = b. The deep neural

network and the additional projection-quantization layer are implemented together,

which are collectively called the FMHashNet, also detailed in section 5.3. The value

of B can be 16, 32, 48, 64, etc., which is configured by the system administrator. Note
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that we use {−1,+1} instead of {0, 1} for the convenience of explaining the output

of the neural network. in practice, it is trivial to convert a sequence of numbers made

of {−1,+1} to a binary hash code (just replacing any occurrences of −1 to 0 and

convert the number sequence to a binary code).

(5) An account database that stores a collection of account tuples <ID, bID,

hID >, where ID is the account ID (usually a unique number generated by the system

at registration), bID and hID are the hash code and latent vector corresponding to

the account. This account database also contains a hash table that maps bID to

account ID, so that once a fussy hash code bID is obtained from the neural network,

the corresponding account ID can be retrieved. The usage of the account database

and the user identification procedure are detailed in section 5.4.

Optionally, the ID generated by the hash table lookup step using the account

database can be considered as a candidate ID. Multiple candidate IDs can be retrieved

given a a fussy hash code bID by considering all neighbors within a certain Hamming

distance. Once a set of candidate IDs are obtained, there is an additional verification

module that runs a procedure similar to the authentication procedure explained in

chapter 4 by comparing the IAHW signal of the ID string in the identification request

to the templates stored in the account corresponding to those candidate IDs, which

can further eliminate wrong identification results. This module is detailed in chapter

6.

5.3 FMHashNet

An overview of the FMHashNet is shown in Table 5.1. There are multiple design

goals for this neural network. First, given a pair of IAHW signals (x1,x2), if they

are generated by the same user writing the same ID string, the corresponding hash

codes (b1,b2) should be the same in most cases or differ only in one or two bits
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Table 5.1: The FMHashNet Architecture

layer kernel output #para

input: 256 * 18

conv-pool1 3→1 conv, 2→1 max pool 128 * 48 1.3k

conv-pool2 3→1 conv, 2→1 max pool 64 * 96 14k

conv-pool3 3→1 conv, 2→1 max pool 32 * 128 37k

conv-pool4 3→1 conv, 2→1 avg pool 16 * 192 74k

conv-pool5 3→1 conv, 2→1 avg pool 8 * 256 147k

fc (latent) fully connected 512 1,048k

layer output #para layer output #para

softmax N 512*N projection B 512*B

cross-entropy loss pairwise loss

sometimes due to the variation of the writing behavior of the user. However, if they

are generated from different ID strings (regardless of the same user or different users),

(b1,b2) should differ by at least three bits. Second, the neural network should learn

latent representations h for each ID string that distinguish the differences of these ID

strings so as to facilitate the projection. Third, it should be easy to train and fast to

converge as it may need to be updated when new users are added.

To achieve these goals, we design the FMHashNet in the following way, as shown

in Table 1 and illustrated in Figure 5.2. First, we apply five convolutional and pooling

layers with VGG-like kernel (Simonyan and Zisserman, 2014) and a fully connected

layer to map input signal x to latent vectors h. Both the convolutional layer and the

fully connected layer have leaky ReLU activation. Next, the projection layer projects

the latent vector h to a space in the same dimension as the desired hash code, i.e.,
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Figure 5.2: An Illustration of the FMHashNet Architecture

z = Wh+c, where z is the projected vector whose dimension is B. Here W and c are

trainable parameters. After that, the hash code is generated by taking the sign of the

projected vector bi = sign(zi), 1 ≤ i ≤ B. This is essentially partitioning the latent

space by B hyperplanes to obtain at most 2B regions, where each region is associated

with a unique hash code. Additionally, a softmax layer for classification with N

categories is added in parallel with the projection layer to facilitate the training the

neural network.

We believe that the training process of the FMHashNet is essentially setting up a

mapping function from the 256-by-18 dimensional signal space to the B dimensional

Hamming space. The mapping function is also equivalent to placing all these signals
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from the registered accounts into these 2B regions, such that different accounts should

be placed in different regions. This is achieved progressively in two steps. First,

we train the network with the softmax layer and cross-entropy loss to allow the

convolutional filters to converge. In this step the projection layer is not activated.

Note that the softmax classification layer does not need to contain all accounts if

the account number is large, or even a independent dataset for pretraining can be

utilized.

Second, we train the network using the projection layer with the following pairwise

loss L, and minibatches of 2M pairs of signals (x
(i)
1 ,x

(i)
2 ), 1 ≤ i ≤ 2M . Here 2M

(i.e., the batch size) is a hyperparameter chosen empirically. Larger batch size leads

to more computation in the training but more stable convergence behavior. In the

minibatch, half pairs of signals are from the same account (y(i) = 0), and the other

half pairs of signals are from different accounts (y(i) = 1). The loss function L is as

follows:

L =
1

2M

2M∑
i=1

L(i),

L(i) = (1− y(i))||z(i)
1 − z

(i)
2 ||+ y(i)max(m− ||z(i)

1 − z
(i)
2 ||, 0)

+α(P (z
(i)
1 ) + P (z

(i)
2 )) + β(Q(z

(i)
1 ) +Q(z

(i)
2 )).

Here ||.|| is the Euclidean norm. In this loss function, the first term forces the pro-

jected vectors of the same account to the same value, and the second term forces the

projected vectors of different accounts to separate at least m in Euclidean distance.

The remaining terms P (z) and Q(z) are the so-called pq-regularizer which is spe-

cially designed to help place all registered accounts into different regions and avoid

ambiguity in quantization. These two terms are defined as follows:
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Figure 5.3: The Effect of the Regularizer

P (z(i)) =
B∑
j=1

max(|z(i)j | − p, 0),

Q(z(i)) =
B∑
j=1

max(q − |z(i)j |, 0),

where p and q are hyperparameters chosen empirically, |z(i)j | is taking absolute

value of the jth component of z(i). This regularizer forces each element of the pro-

jected vector z to reside in the region [−p,−q] or the region [+q,+p]. The element

z(i) is quantized to the bit -1 if it is less than zero or bit +1 if it is greater or equal

to zero, so as to generate the final fuzzy hash code bit bi. The p prevents z(i) taking

unbounded large values, and the q prevents z(i) taking values close to zero which

causes quantization ambiguity.

With a careful choice of m, a pair of (z
(i)
1 , z

(i)
2 ) of different accounts can be sep-

arated in different places in the latent space, and hence, the binary codes obtained

after quantization will differ at least on or more bits. Essentially, the pq-regularizer

implement a virtual “force” in the training process that pushes (z1, z2) from different

accounts to different regions, which is illustrated in Figure 5.3 (left). The actual effect
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is shown in Figure 5.3 (right), which is obtained by plotting the first two dimensions

of z of 200 training signals from 200 different accounts, with p=10 and q=5. One

example choice of m as in our experiment is p
√
B, which is the Euclidean distance

from the origin to the point z∗ = (p, p, ..., p). This forces the hash code of signals

of different accounts differ at least one bit. Our experience shows larger m helps

separation, but hurts convergence. The hyperparameter α, β controls the portion

of contribution of the regularizer in the total loss and gradients. Our design differs

from most related works of deep hashing which try to minimize quantization loss

(i.e., forces the projected vector to be close to the vertices of Hamming hypercube).

Instead, we map the input to a bounded Euclidean space and push them away from

the decision boundary zj = 0, where a relatively large region that can be quantized

to the same bit value regardless of the quantization error. The effectiveness of our

regularizer relies on the assumption that ID strings are distinctive, which is true in

an identification system but not in an image retrival system. Meanwhile, both the

FMHashNet activation function and the regularizer are piece-wise linear, which is

easier to compute and train compared to the saturation methods such as tanh or

sigmoid relaxation commonly used in deep hashing.

5.4 Account Database and User Identification Procedure

The user identification system maintains an account database, where each account

contains a tuple of <ID, bID, hID >. At registration time, the system generates a

unique account ID for the registered account. The user is asked to create an ID string

and write it K times. The obtained K IAHW signals {x(1),x(2), ...,x(K)} are utilized

to train the FMHashNet. Once the training is finished, we can use the training signals

to construct bID and hID as follows:
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hID =
1

K

K∑
i=1

h(i) =
1

K

K∑
i=1

f(x(i)),

bID = g(hID) = sign(WhID + c),

where f() is the deep neural network g() is the projection and quantization process,

and sign() is element-wise sign function. A hash table is also constructed to index

all account tuples using the hash code bID, i.e., in this hash table the hash code bID

is the key and the account ID is the value.

Figure 5.4: An Illustration of the Identification Procedure

At identification time, given a preprocessed IAHW signal x′ as an identification

requests, the following steps are proceeded to obtain the account ID. First, we run

the forward path of FMHashNet to obtain a latent vector h′ and b′. Second, we

search the hash table using b′ with a tolerance of l bits. If l is 0, we just search

the hash table using b′. If l is greater than 0, we construct a set of hash codes

S containing all possible hash codes with a Hamming distance less or equal than l

bits from b′, then we search the hash table multiple times with each element of a
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collection of hash codes S. The rationale is that the fuzziness in the writing behavior

eventually lead to errors that make b′ differ from the hash code of its real account,

but this difference should be smaller than l bits. We usually set l to 1 or 2 to limit

the total number of searches for prompt response. It should be noted that the set

S is introduced to explain the procedure in a simple way. In practice, since l is a

system wide configurable parameter, the implementation may use a different way to

allow one account to occupy 2l buckets during the registration instead of generating

2l search at identification time.

An illustration is shown in Figure 5.4. The colored circles are the identification

requests b′, and the size of the circle represents the tolerance level of l bits. Assuming

the dimension of the binary hash code is B, after the registration, the hash codes of

all existing accounts bID will spread on the Hamming space. Hence, one such request

with a tolerance of l bits will cover one or multiple buckets in the Hamming space

during the hash table searching. There are three cases, denoted as the colored circles

named A, B, and C. In case A, there is no corresponding accounts retrieved. In

case B, there is exact one candidate account retrieved. In case C, there are multiple

candidate accounts retrieved, and in this case, we compare the hID of the candidate

accounts and the h′ to select the nearest neighbor of h′ in Euclidean distance as the

final candidate. Finally, the ID of the candidate account is returned as the identified

ID. If no candidate account is found, the system returns “unidentified”.

5.5 Experimental Evaluation

We use the “ID-passcode” dataset introduced in chapter 3.6 to evaluate the

FMHash framework. We mixed the ID strings and the passcode strings to create

one account for each string (i.e., N = 360), similar to that in chapter 4.

The FMHashNet is implemented in TensorFlow (Abadi et al., 2016) on a Nvidia
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GTX 1080 Ti GPU. The weight parameters are initialized with the Xavier method

(Glorot and Bengio, 2010) and the Adam optimizer (Kingma and Ba, 2014) with

a initial learning rate of 0.001 is used. The leaky ReLU negative slope is set to

0.2. For the training protocol, we first enable the softmax layer and train the whole

network using cross-entropy loss for 1,000 iterations as a “warm-up”. In this mode,

the projection layer is disabled. The network is provided with mini-batches of IAHW

signals randomly picked from the registration signals with the corresponding account

ID as labels, and the network is trained in a similar way to a classification network.

Then we disable the softmax layer and enable the projection layer. In this mode,

we train the whole network using the pairwise loss with pq-regularizer for another

10,000 iterations. During these 10,000 iterations, α is always set to 0.1, and β is

initially set 0.0001 for the first 2,000 iterations, and gradually increased 10 times per

every 2,000 iterations until 0.1. The regularizer hyperparameter p is set to 10, q is

set to 5. The inter-class distance m is set to p
√
B, and the hash code size B is 16,

32, 48 and 64 respectively in multiple experiments. The training pairs are selected

online, and minibatch size is set to 200 pairs, where the signals of each of the first 100

pairs are from the same account and the signals of each of the second 100 pairs are

from different accounts. For a pair of signals from the same account, we randomly

select an account and two training signals of that account. For a pair of signals from

different accounts, we calculate the account hash code bID for all accounts every 20

iterations, and select a pair from those accounts whose hash codes differs less than

three bits. If no such account exists or the number of such accounts is less than the

minibatch size, we randomly choose pairs of signals from different accounts.

Another major challenge we encountered is the limited amount of training data

(only five signals per account). To overcome this challenge, we augment the training

dataset in two steps. First, given K signals {x(1),x(2), ...,x(K)} obtained at registra-
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tion, for each x(k) in this set, we align all the other signals to x(k) to create K − 1

additional signals using Dynamic Time Warping (Berndt and Clifford, 1994), and in

total we can obtain K2 signals (in our case 25 signals). Second, we randomly pick

two aligned signals and exchange a random segment to create a new signal, and this

step is repeated many times. Finally each account has 125 training signals.

We trained the FMHashNet with different hash code sizes B = 16, 32, 48, 64 and

tested it with fuzziness tolerances l = 0, 1, 2. In a single experiment, we train the

FMHashNet from scratch using the registration signals with augmentation and ran

the identification procedure with the testing signals for each account. Given a testing

signal x of an account A, if x is correctly identified as account A, it is a true positive

of account A; if it is wrongly identified as some other account B, it is a false negative

of account A and false positive of account B, also counted as a mis-identification; if

it is not identified as any account, it is counted as a failure of identification. The

performance metrics are the average precision of all accounts, the average recall of

all accounts, the mis-identification rate (total number of mis-identification divided by

N×5), and the failure of identification rate (total number of failure of identification

divided by N×5). The results are shown in Figure 5.5 and 5.6.

Due to the stochastic nature of neural network, the results are obtained by av-

eraging the performance of five repetitions of the same experiment with the same

parameter settings. For each repetition, the neural network is trained from scratch.

The ID verification step is not used in this evaluation. These results show that

our FMHash framework performs consistently in the user identification task on our

dataset with different hash code sizes. In general, longer hash code size provides

better security since it is more difficult to guess without knowing the writing content,

but it is also more difficult to train due to the added parameters. Also, a larger

fuzziness tolerance l leads to less failure of identification (i.e., improved recall) but
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Figure 5.5: Identification Results With the Camera Device
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Figure 5.6: Identification Results With the Glove Device
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more mis-identifications. For a practical identification system, we recommend to set

l = 0 without ID verification for simplicity or set l = 2 with ID verification for better

security.

Next, we evaluate how much fuzziness is in the hash code caused by the inherent

variation in the IAHW. As shown in Figure 5.7 (left), 1.8% of the testing signals

are hashed more than 2 bits away from the their real accounts. Such fuzziness is

mitigated by the separation of the hash codes of different classes, as shown in Figure

5.7 (right), i.e., in 99% of the case the hash code of a signal of one account is at least

three bits far away from the hash code of other accounts.

Figure 5.7: Distribution of the Hamming Distance Between the Hash Code of the
Account and the Hash Code of Testing Signals.

Then, we study how the hash codes of all accounts are placed in the Hamming

space. Here we use 16-bit hash codes for convenience. First, the distribution of zero

and one of each bit in the hash code generated in an experiment is shown in Fig. 5.8

(left). There are roughly equal amounts of zeros and ones in each bit, indicating that

the hash codes are evenly spread. Second, the correlation of every bit pair is shown

in Fig. 5.8 (right). In this figure, the correlation is close to zero for every pair of bit i

and j if i 6= j, indicating that each bit carries different information in the hash code.

Third, the distribution of the distances of hash codes between any two accounts are
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Figure 5.8: Distribution and Correlation of the Zeros and the Ones in the Hash
Code

shown in Figure 5.9, where the minimum distance is 3 to 4 bits, the average is 7 to 8

bits, and the maximum is 13 to 14 bits. From this figure, we can see that hash codes

of the accounts are sparsely located in the Hamming space and the distance between

any two accounts are at least a few bits away. This property of sparsity is the key for

an identification system, and it is from our careful design of the regularizer.

Figure 5.9: Distribution of the Hamming Distance Between the Hash Code of the
Account and the Hash Code of Testing Signals for Each Account.

At last we show examples of the generated hash codes in 16 bits for a few accounts

in Figure 5.10 (left). It should be noted that due to the stochastic nature of the

initialization of the neural network, each trained network will generate a different
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set of hash codes for all accounts. We also plot 200 hash codes in 16 bits from 200

accounts in Figure 5.10 (right), where the x-axis is the first 8 bits and the y-axis is the

second 8 bits. This visualization can provide an overview of the random spreading of

these hash codes in the Hamming space.

Figure 5.10: Examples of Generated Hash Codes for Multiple Accounts

5.6 Summary

In this chapter, we present a user identification framework named FMHash that

can generate a compact binary hash code and efficiently locate an account in a

database given a piece of IAHW of an ID string. the empirical results obtained

from our prototype evaluation demonstrates the feasibility of the idea of deep hash-

ing of IAHW for user identification. The ability to convert a finger motion signal to

fuzzy hash code gives FMHash great potential for sign-in over gesture input interface.

However, it has certain limitations such as the requirement of retraining the neural

network on creating new accounts or updating an existing ID. In the next chap-

ter, we will continue improving the proposed framework, investigating the long term

performance, and designing possible key generation schemes from the fuzzy hash.
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Chapter 6

FMCODE - A UNIFIED IAHW BASED USER LOGIN FRAMEWORK

6.1 Background

Recent studies have shown the feasibility of authentication methods using gestures

and the IAHW of a password on various gesture input interfaces, including hand-held

controllers (Bailador et al., 2011; Liu et al., 2009; Zaharis et al., 2010), cameras (Sajid

and Sen-ching, 2015; Chan et al., 2015; Chahar et al., 2015; Tian et al., 2013), and

touchscreens (Frank et al., 2013; Gong et al., 2016; Yang et al., 2016). In chapter 4 and

chapter 5, we also present a user authentication framework and a user identification

frame work using IAHW. However, there are a few fundamental challenges. First,

existing gesture input sensors have different modalities (e.g., inertial, visual, etc.)

and various capabilities (e.g., differences in accuracy, resolution, sampling speed,

field of view, etc.). There is no unified login framework with both user authentication

and user identification functions. Moreover, there is no existing framework that can

abstract and accommodate the two different types of sensors introduced in chapter

3.3. As a result, it is hard to objectively evaluate and compare the performance of

different gesture-based login schemes. Second, the captured hand movement contains

“fuzzy information”, i.e., there are minor variations in speed and shape even for the

same user writing the same content. Unlike a password that does not tolerate a single

bit difference in matching, this fuzziness leads to difficulty in the design of verification

algorithms in the hashed or encrypted domain. As a result, a authentication system

usually needs to store a template for alignment and comparison at login time. This is

equivalent to storing a plain text password and it is not secure. Third, a login system
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requires not only an identity secret (like a password) but also an account ID. If this

account ID is also obtained from a hand movement signal with fuzziness, it is difficult

to use such a signal to build index on a large amount of accounts at registration and

search an account efficiently upon a login request. As a result, existing login solutions

need to compare the signal in the login request with the template of each account

exhaustively.

To address these issues, in this chapter, we propose FMCode (i.e., Finger Motion

Passcode), a unified user login framework using IAHW of an ID string and a pass-

code. In our framework, the hand movement can be captured by either a wearable

inertial sensor or a 3D camera, as shown in chapter 3.3. The hand motion signal

is preprocessed and abstracted as a time series of physical states of a point on the

hand independent from sensor modalities, which means the same login framework can

be used with different types of sensor devices. Meanwhile, it does not recognize the

writing content, but matches the signals in terms of features, which allows the user to

write fast in an illegible way, or write in virtually any language that may be unable

to be directly typed on a keyboard. In summary, our contributions are as follows.

1) We propose a unified login framework for gesture interface using finger move-

ments in the air, which can perform both effective user authentication and efficient

user identification without exhaustive account database search. Our framework sup-

ports two different gesture input devices including a wearable inertial sensor or a

contactless 3D camera, and it enables fair comparison of performance with different

sensors among different writing contents.

2) We present two template protection schemes using deep hashing, cryptographic

hashing, and fuzzy commitment (Juels and Wattenberg, 1999), which allows the login

server to store encrypted templates for each account.

3) We build a prototype system that implements the proposed framework and
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conduct extensive experimental evaluations as well as usability evaluation in various

scenarios including active spoofing attacks.

The remainder of this chapter is organized as follows. Section 6.2 describes the

system model of our framework. Section 6.3 explains the implementation details

including user authentication, user identification, and template protection methods.

Section 6.4 presents analysis on the security aspects and section 6.5 presents analysis

on the usability aspects. Section 6.6 shows further discussions on the practical issues

and section 6.7 summarize this chapter. This chapter is based on our published patent

(Huang and Lu, 2020).

6.2 System Model

The FMCode framework contains two functional modules, as shown in Figure 6.1:

a gesture user interface device that is equipped with motion capture sensors, and a

server that stores the account database and runs the algorithms for registration and

login. The hand motion capture devices and signal preprocessing steps are detailed in

chapter 3.3 and chapter 3.4. Similar to password based login systems, our framework

requires an initial registration comparable to the password “sign up” step. In this

workflow, the login system will ask the user to create an account and write an ID

string and a passcode string multiple times. After that, the user can login by writing

the same ID string and password and the login server process the hand motion signals

through a login workflow.

At registration, the user is required to create an account by creating an ID string

as well as a passcode string, and write them in the air for a few times (in our demo

system, we use five times). An ID string is unique and distinctive but it is usually not

a secret, while a passcode does not need to be unique but it is a secret. In this step,

the obtained hand movement signals are preprocessed on the device side and send to
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Figure 6.1: The FMCode Login Framework Architecture and Procedures

the server. The server has an account database where each account in it contains a

tuple of (account number, ID template, passcode template). The account number is a

number or a string allocated by the server to uniquely index each account, and the

two templates are computed from the signals obtained at registration. The server

may check the uniqueness of the ID string, analyze the “strength” of the passcode,

and provide feedback to the user (these additional functions are planned in our future

work, not implemented in our current prototype system).

The server has the following three relatively independent functions that work
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together as a login framework.

1) User Authentication: Given a specific account number and an IAHW signal

of passcode as a login request, the server verifies the user identity using a binary

classifier with the signal and the passcode template of that account as inputs, and

“accept” or “reject” the login request. The account number is obtained using the

identification function detailed below. Both the passcode template and the binary

classifier are computed and trained at registration. In our prototype system, this is

implemented with a variant of the T-Fusion method described in chapter 4.

2) User Identification: Given an IAHW signal of the ID string, the server

obtains an account number corresponding to this from the account database. In our

prototype system, this is implemented with the FMHash method described in chapter

5. It serves as an index of the account database using the IAHW of the ID string,

which allows efficient searching at login time.

3) Template Protection: Given the IAHW signals of the ID string and the

passcode, the server generates a key, so that the templates can be stored in the

account database in an encrypted format, and the user can only be able to decrypt

them if both the signals of the ID string and the passcode string are “close” enough

to the templates at registration. Note that in this step, the signals are not required

to be compared with the templates. In our prototype system, this is implemented

with a variant of the FMHash method together with a cryptographic hash function

such as SHA-256 or a fuzzy commitment scheme (Juels and Wattenberg, 1999).

The target application scenarios of FMCode are mainly VR/AR headsets and

wearable computing platforms that already have a gesture interface but lack a key-

board or a touchscreen. Other application scenarios can also benefit from our frame-

work, e.g., scenarios that prefer touchless gesture interfaces for a level of cleanliness.

Our framework can be used for two different purposes. The first one is online user
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login, where the server is remotely connected to the client via the Internet. For exam-

ple, the user can sign into an online personal account through the gesture interface

on a VR headset. The second one is local user login, where the client and server

reside on the same machine. For example, the user can unlock his or her wearable

devices through the gesture interface. In addition, our framework can also be used

as a supplementary authentication factor in a Multi-Factor Authentication (MFA)

system.

FMCode is compatible with existing server infrastructures using password based

login because on the server side only software changes are required. These changes

including the construction of templates, the implementation of feature extraction

algorithms, the classifier for authentication function and the deep neural networks

for identification and template protection functions. The requirement of the network

between the client and the server for remote user login is the same as existing secure

web application through a secure communication channel over SSL/TSL with Public

Key Infrastructure (PKI).

6.3 Implementation Detail

We implemented a prototype system for the proposed FMCode framework with

the aforementioned two gesture interface devices. This section provides details of the

algorithms for the three functions of our framework.

6.3.1 User Authentication

The task of authentication is essentially a binary classification problem. We use

a variant of the T-Fusion method in chapter 4 for the user authentication function.

Specifically, for registration, we first align all registration signals of passcode strings

to the first one and compute a template T̂ = (t̂1, t̂2, ..., t̂l) and the corresponding
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template variance Σ̂ = (σ̂1, σ̂2, ..., σ̂l) following the method explained in chapter 3.5.

They are stored in the account database as the “passcode template” shown in the

server registration workflow of Figure 6.1. The same procedure is also applied to the

signals of ID strings to generate the “ID template” shown in the server registration

workflow of Figure 6.1.

A slight variation of the T-Fusion method is made in the following feature vector

extraction steps. Given an account with a passcode template T̂, a template variance

Σ̂, and a signal S, we run the following steps.

Step 1) Assume S is preprocessed with amplitude normalization. Align S to T̂

using Dynamic Time Warping as explained in chapter 3.5.

Step 2) Calculate the element-wise distance D = (d1,d2, ...,dl), where di =

abs(si − t̂i), where abs() means the element-wise absolute function.

Step 3) Resample the template and the signal with linear interpolation, such

that its length is a multiple of a predefined number H. Then, segment D into H

local windows of length W = l/H. This is essentially partitioning elements of D into

groups of (D1,D2, ...,Dj, ...,DH), where Dj is a group containing the elements in the

jth window, i.e., Dj = (dj×W+1,dj×W+2, ...,dj×W+W ).

Step 4) For each window Dj, randomly select a sample from it as a feature

element, i.e., choose one element xj ∈ Dj, and then use these feature element to form

a feature vector x = (x1,x2, ...,xH). Here x is essentially the element-wise distance

at a specific local region, which indicates the difference of the stroke segment between

the signal and the template at that place. For example, assume D has 10 samples,

segmented to two windows (i.e., l = 10, H = 2,W = 5), and we can randomly pick

(d2,d9) or (d3,d6) as feature vectors.

Step 5) Given a certain window set, step 4 can be repeated multiple times.

Additionally, we can consider di as a Gaussian random variable and draw samples
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from the distribution di ∼ N(abs(si − t̂i), σ̂
2
i ) in step 4. As a result, more than one

feature vectors can be obtained from a pair of signal and template. This technique

allows us to augment the training data from the limited number of registration signals,

since asking the user to write more repetitions hurts the usability. Also, it allows us

to run the classifier multiple times given a single login request, which can slightly

improve the robustness.

With the feature vectors extracted from signals, a soft-margin SVM is trained as

our binary classifier at registration. We choose to use SVM mainly because it can be

trained efficiently with limited amount of data and high dimension of features, which

are suitable for the authentication task. Specifially, given a training set with n data

points {(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))}, where {x(i)} are the feature vectors and

{y(i)} are binary class labels from {0, 1}, an SVM seeks a hyperplane f(x) = wx+b =

0 to maximize the separation of the data points of the two classes, which can be done

efficiently. Here class label 0 means that the feature vectors are from the registration

signals of the same account as the template, while class label 1 means that the feature

vectors are from the registration signals of other accounts different from the template.

This is the same as the T-Fusion method.

At login, the server extracts feature vectors from the login request signal, and

obtains a prediction score {f(x) = wx + b}. Finally, this score is compared with a

predefined decision threshold. If score < threshold, the authentication request with

signal is accepted, otherwise, it is rejected.

The aim of the feature extraction method and classifier ensemble is to achieve a

better separation of signals from different classes in the feature space and maintain

a stable performance in the long term. If a signal is from the account owner writing

the same content as that in registration, it should have a small score because they

are from similar hand movements. While signals from the other people or writing
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different contents should have a larger score due to the hand movement differences,

which is caused by the difference in content and writing style. However, as the

analysis in chapter 4 shows, the distance in sample level has uncertainties because of

the minor variation of writing behavior for the same user writing the same content.

Misclassification caused by such uncertainties may happen. Hence, we group local

samples into segments which roughly map to the strokes of the IAHW, so as to achieve

better tolerance the signal level uncertainties by comparing subset of strokes instead

of individual sample. An further improvement can be made to select a special window

sequence for each account using a boosting method instead of ensemble method, or

using multiple templates as in chapter 4.

6.3.2 User Identification

The task of identification is a multipleclass classification problem, which should be

done efficiently without linearly query the account database. Given an identification

request with a signal, the server is expected to generate a set of candidate account

numbers, verify each candidate, and return the best matched account number candi-

date, or “unidentified” if all candidates fail the verification. For this function, we use

the variant of the FMHash framework explained in chapter 5, with an additional ID

verification step.

As in the last step of preprocessing, a signal is normalized both in time and in

amplitude to a fixed length of 256 elements in 18 channels. We use a similar neural

network architecture as that in chapter 5 with slight modification. For the first

two convolutional and pooling layers, we changed them to a depthwise convolutional

kernel (Chollet, 2017) of size 3 on each individual channels, and a 2-by-1 max pooling

on the output of the convolutional layers. Then the filters are combined to form a 64-

by-144 tensor. The remaining three convolutional layers are replaced with separable

116



convolutional layers (Chollet, 2017), and the three pooling layers use average pooling.

For all convolutional layers, the input tensor is padded to maintain the same length

after the convolution operation. Finally, the output tensor of the these layers is

flattened, and the remaining is the same as that in chapter 5. We use 16 bit fuzzy

hash code.

A deep convolutional neural network can learn the features in the hand movement

signal in multiple abstraction levels (Zeiler and Fergus, 2014). For example, each

neuron in the third conv-pool layer has a receptive field of 16 samples in the original

signal, which is roughly corresponds to one stroke. The filters in this layer can capture

different types of features in the stroke level, and we believe the neuron activation

of this layer can represent the presences of different types of basic finger movement

when writing a stroke segment, for example, straight motion in different directions,

circular motions, and various sharp turning between adjacent strokes. Similarly, we

believe the fourth and fifth conv-pool layers can detect the presence of higher level

features of stroke combinations, so that the neural network reflects the hierarchy of

IAHW signal characterization shown in chapter 3.2. The depthwise and separable

convolution operators are introduced to reduce the total number of parameters and

help learning discriminative features on each individual sensor axis at an early stage.

Eventually, the fully connected layer map the aggregated features to latent vectors

of 512 dimension and the last layer project and quantize these latent vectors to the

Hamming space. As a major challenge of training the CNN is the limited amount of

data at registration, which can lead to overfitting easily. To overcome this hurdle,

we augment the five registration signals to 125 signals in the same way in chapter 5.

Besides, we add another step to randomly stretch a segment both in time for each

augmented signal, and then normalize the signal to 256 samples.

As mentioned previously, there is an optional step for ID verification. For ID ver-
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ification, the system stores an ID template of the handwriting of the ID string gener-

ated at registration for each account, like those templates for authentication purposes.

Upon an identification request, the system can compare the signal in the request with

the templates of all candidate accounts obtained by the hash table searching and run

a matching procedure similar to an authentication system to verify each candidate

ID. The motivation is that the hashing step loses information in the IAHW, which

may lead to collisions if an imposter writes the same ID string as a legitimate user,

and hence, a verification step can reduce misidentification significantly.

6.3.3 Template Protection

Since the login server stores the templates, which are essentially in the same way

as plain text password, there might be server storage leakage by insider attackers.

Hence, the templates should protected like salted hash of passwords in a password-

based login system. However, due to the inherent hand movement variation, even if

the same user writes the same content, the obtained signals are not identical, and

hence, cryptographic hashing of the signals can not be compared directly to verify

the identity of the writer. In this section, we describe two possible approaches to

protected the templates. Both of them use the FMHash as a foundation, which is a

method to convert a signal to a fixed-size fuzzy binary hash code.

In the first approach, we run the following steps at registration to directly generate

a key from a login request.

Step 1): We concatenate the temporally normalized signal of writing the ID

string and the signal of writing the passcode in terms of sensor axes to make a new

signal. That means, instead of 18 sensor axes, the concatenated signal has 36 sensor

axes. Each signal is also normalized to 256 samples to facilitate the concatenation.

As the ID string is unique but not secret while a passcode string is secret but not
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unique, concatenating the signals from these two strings make the new signal both

unique and secret.

Step 2): We trained a slightly different FMHash system that can take 256-by-

36 dimensional data and generate 128-bit fuzzy hash code. Then, we obtain the

fuzzy hash codes for each new signal generated in the previous step using the set of

registration signals. These fuzzy hash codes will be identical or only differ slightly.

For each bit of them, we keep the majority vote of that bit and form an aggregated

fuzzy hash code. This is the hash code for the corresponding account.

Step 3): We apply a cryptographic hash function such as SHA-256 on the aggre-

gated fuzzy hash code XORed with a random salt to obtain a cryptographic key.

Step 4): We use this key to encrypt the passcode template, and store both the

encrypted template and the salt (in plain text) into the account database.

At login, we proceed from step 1 to 3. Here in step 2, there will be only one

fuzzy hash code for the login request and no aggregation is needed. In step 3, the

salt is retrieved from the account database instead of randomly generated. Then we

use the generated key to decrypt the template. As shown in the analysis in chapter

5, if the signals in the login request are “close enough” to those at registration, the

generated fuzzy hash code will be identical and so as the key. To tolerate “fuzziness”,

the server can keep multiple hash codes in step 2, and hence, multiple keys as well

as multiple copies of encrypted templates in step 3 with an account, such that if

the derived key at login can decrypt any of the copies of encrypted templates, the

authentication procedure can proceed. This number of multiple hash codes can be

set as a system-wide or per-account parameter. Typically, we can tolerate 1 bit or 2

bits as shown in chapter 5.

The second approach is similar to the first approach but it binds a key to the

account instead of directly generating one from the signal. At registration, the first
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two steps of the previous direct key generation approach are proceeded. However, in

the third approach, a special random key is generated and bound to the fuzzy hash

code through fuzzy commitment (Juels and Wattenberg, 1999). The last step is the

same as the direct key generation approach. At login, we proceed with the first step,

and in the third step, the key can be decommited by a hash code generated from the

signals in the login request, if these signals are “close enough” to those at registration.

The amount of “fuzziness” tolerance can be controlled by the Error Correcting Code

(ECC) scheme used in the fuzzy commitment.

A brief explanation of key binding using fuzzy commitment in the context of our

usage is provided as follows, and also illustrated in Figure 6.2. Consider a user wants

to bind a secret key k to a fuzzy hash x, where both k and x are binary strings with

the same length of n bits. For example, in Figure 6.2, they are all six bits. This

illustration shows the Hamming space in 2D, where the x-axis is the first three bits

and the y-axis is the next three bits. Both axes use Grey code instead of ordinary

binary code to show the Hamming distance in a way similar to Euclidean distance.

Assuming F is a field of n bits. Let C be the set of codewords in F using some ECC

scheme. Here, in Figure 6.2, F is the grid structure where each individual one is

indexed by a six-bit string composed by the coordinates of that grid. C is the set of

shaded grids.

At registration, for each account, given the generated fuzzy hash code of the

account as x, the system selects a codeword k uniformly at random from C, compute

d = k − x, and then store d and the cryptographic hash of k (such as SHA-256)

in the account database. Here the subtraction operation is implemented as binary

XOR. Because k is randomly selected, and d is a “distance” between k and x, given

a certain registered account with a determined x, d has the same level of randomness

as k. This step commits k with some x, as shown in Figure 6.2 (a). Note that the
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system does not want to reveal either k or x, and the templates are encrypted using

k as the secret key.

At login time, given another fuzzy hash code x′, the system compute y = d + x′.

Here the addition operation is also implemented as binary XOR. Then, it uses the

ECC scheme to find the proper codeword k′ for y. In this step, if the fuzzy hash

code x′ generated by the login request is “close enough” to the account hash code x

in the registration, the recovered codeword k′ after ECC should be the same as k.

Hence, the level of fuzziness tolerance is managed by this ECC scheme. After that,

the system compute the cryptographic hash of k′ and compare it with the stored

cryptographic hash of k. If they are the same, it means that the fuzzy hash codes x′

and x are “close enough”, i.e., they can be considered as generated by the same user

writing the same content. This also means that k = y. Finally, the templates are

decrypted using k as the secret key.

Figure 6.2: An Illustration of Key Binding Using Fuzzy Commitment

For both approaches, the security are guaranteed by the cryptographic tools, i.e.,

SHA-256 or fuzzy commitment. However, the actual “strength” of the key depends
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on the fuzzy hash code and the level of tolerance of fuzziness. On the one hand, the

fuzzy hash code should be long enough to create a large key space to prevent brute-

force attacks. This can be achieved by training multiple deep hash neural network

to generate multiple segments of 64-bit hash code and concatenate them to a longer

hash code. Due to the stochastic nature of the initialization of the deep hash neural

network, these networks are unrelated. However, the fuzziness will also grow with the

hash code length. On the other hand, the fuzzy hash code should be spread pseudo-

randomly in the Hamming space to prevent systematic guessing attacks. Although

the fuzziness tolerance scheme can reduce the “strength” of the key, the amount of

tolerance can be controlled as a trade-off between security and usability.

6.3.4 Cost of Computing and Storage

We implemented our prototype system in Python with sklearn library and Ten-

sorFlow Abadi et al. (2016). Preprocessing a single signal cost about 25 ms for the

glove device (excluding any steps running on the device) and 100 ms for the camera

device. The filtering step is the bottleneck because the complexity of Fast Fourier

Transform (FFT) is O(nlogn) and the complexity of all other preprocessing steps are

essentially O(n). For authentication, generate template cost 2.1 ms, and training the

SVM cost 30 ms for each account; classification of each signal cost less than 1 ms,

which is negligible compared to the time for writing the string. The time consumption

measured here does not contain loading the data and model from disk to the main

memory, because the disk speed varies significantly due to the page cache in the main

memory and our dataset is small enough to be fully fit in the cache, which is quite

different when used in real world scenarios. This measurement is conducted with a

single threaded program on a desktop computer with Intel Xeon E3-1230 CPU (quad-

core 3.2GHz, 8M cache) and 32 GB main memory. For identification, training the
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deep CNN from the scratch takes about 10 minutes on a Nvida GTX 1080 Ti GPU.

Obtaining candidate account IDs using the CNN costs less than 1 ms on the GPU and

ID verification takes less than 1 ms on the CPU. The space cost for template storage

and the amount of data needed to be transferred between the server and the client is

proportional to the signal length. If each sensor axis of a sample is represented in sin-

gle precision floating point number (four bytes), the average space cost of a signal is

about 18 KB with our datasets for both devices, considering each preprocessed signal

is a 256-by-18 single precision floating point array. If all parameters are represented

in single precision floating point number, storing the SVM classifiers also costs about

18 KB per account on average. Storing the CNN itself requires around 6 MB because

of the 1.4 million weights and biases parameters.

6.4 Security Analysis

In this section, we first set up a security model for the FMCode framework, and

analyze it frome various security aspects.

6.4.1 Security Model

FMCode has the same security assumptions as existing gesture-based authentica-

tion and identification systems as follows: (1) the device on the user side is secure(i.e.,

no sniffing backdoor); (2) the memory and computing infrastructure of the authenti-

cation server is secure (i.e., the server program will not leak the decrypted template

to another program); and (3) the communication channel between the user and the

server is secure (i.e, no man-in-the-middle attacks). These security assumptions are

also similar to traditional biometrics for device unlock and password-based online

login system. Based on the assumptions, we are mainly interested in the following

normal scenario and attacks on the user side, as listed below:
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1) Legitimate user login, i.e., the account owner writes the correct ID string

and passcode string to login. This type of login request is labeled as the “true-user”

class. This corresponds to the signals labeled as “same” in chapter 4.2 and “same

account” in chapter 5.5.

2) Random guessing attack, i.e., the attacker tries to enter a user’s account by

guessing an ID string and a passcode string and signs it on the same gesture interface,

without any knowledge of the content of the two strings. This type of login request

is labeled as the “guessing” class. This corresponds to the signals labeled as “diff”

in chapter 4.2 and “different account” in chapter 5.5.

3) ID and passcode collision or spoofing attack with semantic leakage,

i.e., the attacker tries to enter a user’s account by writing the correct ID string and

passcode string of the target user in the air through the same gesture interface, with

only the knowledge of the content of the passcode. This is similar to password collision

or password leakage. This type of login request is labeled as the “collision” class.

This corresponds to the signals labeled as “collision” in chapter 4.2.

4) Spoofing attack with both semantic leakage and visual leakage, which

is similar to attack scenario (2), but the attacker has seen the legitimate user writing

the correct ID string or passcode string. Moreover, the attacker may recorded the

hand movements with a camera and watch them carefully multiple times. We use

the pairs of signals from the “ID-passcode-spoofing” dataset to generate this type of

login requests. This type of login request is labeled as the “spoofing” class.

For the scenarios of collision and spoofing attack, we assume that the attack source

is a human attacker, and the attacker’s goal is to sign into the victim’s account or

be identified as the victim. If the attack is successful, the account owner may suffer

from loss of the account or leakage of private information. Though it is generally

considered that ID is not a secret, in many cases, if the attacker is wrongly identified
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as the victim, he or she may launch further attacks e.g., phishing other sensitive

personal information of the victim.

Based on this security model, we set up the experiments with the following pro-

tocol, which is similar to that in chapter 4.7.

A. Registration: We follow the registration process to create all the accounts using

the signals in the “ID-passcode” dataset, construct the templates, and train the

models for each account. All five registration pairs of signals of each account in

the dataset are used to construct the template and train the model.

B. Legitimate user login experiment: For each account, we use each of the five

pairs of testing signals of the same account in the “ID-passcode” dataset as a

login request to this account.

C. Random guessing attack experiment: For each account, we use each of the five

pairs of testing signals of other accounts in the “ID-passcode” dataset as a

random guessing attack request to this account.

D. Collision or semantic spoofing attack experiment: We use each of the five pairs of

spoofing signals in the “ID-passcode-collision” dataset as a collision or semantic

spoofing attack.

E. Visual spoofing attack experiment: We use each of the five pairs of spoofing

signals in the “ID-passcode-spoofing” dataset as a visual spoofing attack.

6.4.2 Analysis of User Authentication

For authentication, we define the false reject, false accept, successful collision in

the same way as those in chapter 4.7. We also defined successful spoofing in a similar

way as successful collision using the visual spoofing attack experiment results. The
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Table 6.1: Empirical Results of User Authentication with the Camera Device

method EER
FRR@

FAR1e-3

FRR@

FAR1e-4

FRR@

ZeroFAR

FAR@

FRR1%

FMCode (guessing) 0.1 0.1 0.8 1.1 0.0

FMCode (collision) 2.4 8.9 12.7 14.8 7.7

FMCode (spoofing) 2.9 26.2 33.1 33.1 12.1

DTW (guessing) 0.7 3.1 5.4 9.2 0.6

DTW (collision) 4.4 15.5 33.4 33.4 19.6

DTW (spoofing) 4.7 59.3 78.3 78.3 24.5

evaluation metrics, i.e., False Reject Rate (FRR), False Accept Rate (FAR), and

Equal Error Rate (EER) are defined in the same way as those in chapter 4.7. The

evaluation results are shown in Table 6.4.2 and Table 6.4.2. Here, we use the term

FRR@FAR1e-3 and the term FRR@FAR1e-4 denotes the smallest FRR when FAR

is 10−3 and 10−4, respectively. In chapter 4.7 they are called FAR1K and FAR10K.

We use FRR@ZeroFAR to denote the smallest FRR when FAR is zero, and we use

FAR@FRR1% to denote the smallest FAR when FRR is 1%. These terminologies

are better understandable for general readers instead of readers with a background in

biometrics. It should be noted that visual spoofing attacks are not available for every

account and metrics related to visual spoofing attacks only concerns those accounts

with corresponding data from the “ID-passcode-spoofing” dataset.

Since both FRR and FAR can change with the decision threshold, we vary it to

obtain all possible FRR and FAR pairs and show them as the Receiver Operating

Characteristic (ROC) curve in Figure 6.3. The score of each login request does not

depend on the decision threshold, and collectively they are shown in the histogram

for different classes in Figure 6.4. For comparison with different methods, we use the
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Table 6.2: Empirical Results of User Authentication with the Glove Device

method EER
FRR@

FAR1e-3

FRR@

FAR1e-4

FRR@

ZeroFAR

FAR@

FRR1%

FMCode (guessing) 0.1 0.2 0.4 0.4 0.0

FMCode (collision) 1.2 1.6 4.3 4.6 1.9

FMCode (spoofing) 1.3 4.9 22.1 22.1 3.5

DTW (guessing) 0.3 0.6 0.9 3.5 0.0

DTW (collision) 1.7 7.6 20.6 20.6 3.5

DTW (spoofing) 2.3 19.6 52.7 52.7 7.2

Figure 6.3: Receiver Operating Characteristic (ROC)

EER since it is a single number that captures the general performance. However,

for practical usage, typically a realistic decision threshold is set at the smallest value

such that the corresponding FAR of the random guessing attacks is at most 10−4 and

the FRR is between 90% to 99%. The rationale is that using this decision threshold,

an attacker without the knowledge of the passcode needs to make at least 104 times

guessing to break the passcode, which is comparable to a 4-digit PIN for device

unlocking. For security considerations, this decision threshold can be set to a lower
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Figure 6.4: Authentication Score Histogram for Different Classes

value at a slightly tolerable usability cost of rejecting legitimate user a little more

frequently, and usually this false reject rate is at most 10%.

We also apply the legitimate user login experiment and the random guessing

experiment on the data in each session of the “ID-passcode-persistence” dataset.

The score variation among the ten sessions is shown in Figure 6.5 (left) and Figure

6.6 (left). In these two figures, each column of corresponds to the results in one

session, which is similar to the score histogram but the scores of login requests from

all 40 accounts are plot as scattered points from left to right across the width of

the column. The red lines represents a decision threshold, which is set to 0.613 for

the camera device and 0.601 for the glove device, such that the corresponding single

session performance metrics are FRR ≈ 1%, FARguessing ≈ 10−5, FARcollision ≈

12%, and FARspoofing ≈ 20%.

There are two observations. On the one hand, there is an increase of the scores of

the login requests of legitimate users over time if the templates and the classifiers are

not updated, although the extent of increase slows down after the fourth session. On

the other hand, the scores of the login requests of the random guessing attacks do not
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have noticeable changes. These two factors make the system harder to distinguish

legitimate users from attackers, which eventually leads to more frequent false rejection

of legitimate users if the decision threshold is not changed.

Figure 6.5: Authentication Score Among Ten Sessions, with the Camera Device

Figure 6.6: Authentication Score Among Ten Sessions, with the Glove Device

There are two reasons. First, there are inherent variations of user behaviors,

which leads to differences in signals even for the same user writing the same string.

For example, most users write from left to right using the index finger, but this

left-to-right movements of hand usually do not have a fixed angle relative to the

pointing direction of the index finger when writing the same content every time in

the air. However, the xyz-axes are determined by the pointing direction in the signal
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preprocessing steps, which leads to variations in the signals. This is more significant

for the camera device because it directly tracks position and orientation. Second, the

authentication algorithm is not perfect. There are limited amount of signals obtained

at registration, which make the system difficult to capture or predict the long-term

in-air-handwriting behavior variation. Meanwhile, the classification are designed to

utilize signal-level differences directly for more effective detection of spoofing attacks

from legitimate login requests, which also limits its generalization capability under

long-term variation.

Figure 6.7: Variation of True Acceptance Rate (TAR, i.e., 1 - FRR) Among Ten
Sessions

To accommodate these variations, one solution is asking the users to update the

templates and retrain the classifier. The updated template is a linear combination
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of an old template t̂ and the updating signal s, i.e., t̂ ← (1 − λ)t̂ + λs, where λ is

the update factor set to 0.2 in our experiments. After the updating, the classifier

is retrained using the old templates as well as the updating signals as positive data

points, and using the templates of other accounts as negative data points. In Figure

6.7, we show the performance change with four different scenarios: (a) only do the

updating in the first session while not changing the templates and the classifier after

that; (b) similar to (a) but do the updating in both the first session and the second

session; (c) similar to (a) but do the updating in the first five sessions; (d) do the

updating in all ten sessions. The results with updating in all ten sessions are also

shown in Figure 6.5 (right) and Figure 6.6 (right). From these results, we can observe

that long term performance can be improved by the updating, even only updating at

the first login immediately after registration can boost the true accept rate to above

95% for all remaining sessions.

6.4.3 Analysis of User Identification

For identification, we set up two scenarios, i.e., open-set and closed-set, as men-

tioned in chapter 3.8. For the open-set scenario, we retrieve the top-k nearest neighbor

as candidate accounts in the Hamming space within four bit fuzziness tolerance. The

ID verification is applied on the candidate account set and it will remove any accounts

that the verification score is below a threshold. For the closed-set scenario, we retrieve

all candidate accounts within a certain fuzziness tolerance and use the ID verification

step to select the top-k candidate accounts using the verification score. The initial

fuzziness tolerance is four bits. If there are not enough candidate accounts to select

the top-k within this fuzziness tolerance level (which rarely happens), the tolerance is

increased one bit at a time until the top-k candidate accounts are selected. If a login

request in the legitimate user login experiment retrieves the correct account ID in the
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candidate account set, it is a correct identification, and otherwise, it is an incorrect

identification. We define identification accuracy as the number of correct identifica-

tion divided by the total number of login requests in this experiment. Similarly, if a

login request in the visual spoofing attack experiment retrieves the correct account

ID, it is a successful spoof. We also define the spoof success rate as the number of

successful spoof divided by the total number of spoofing attacks in this experiment.

The results of user identification without considering collision and spoofing is shown

in Table 6.4.3.

Table 6.3: Empirical Results for User Identification

camera glove

top-1

accuracy

top-5

accuracy

top-1

accuracy

top-5

accuracy

open-set 93.2% 94.5% 95.7% 96.7%

closed-set 96.7% 98.9% 97.9% 98.8%

It is commonly believed that ID is not a secret and the identity verification should

not be too strict to hurt usability. Thus, we choose the threshold for the identity

verification such that roughly 5% of the signals from the legitimate users are rejected

(i.e., a threshold at FRR ≈ 5%). We vary k from 1 to 7 and show the results in Figure

6.8. In general, increasing the number of candidates helps identification accuracy, at a

marginal cost of slightly increased spoof success rate. However, if identity verification

is skipped, spoof success rate will have a significant increase, which renders the system

vulnerable or even useless. The main cause is that the network learns features for

distinguishing difference stroke combinations instead of distinguishing fine differences

in the signal segments of the same stroke. Also in practice, there is no spoofing data

available at registration time to train the neural network. Essentially, the network also
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serves as an index for all accounts in the database, which locates the probable accounts

given a signal instead of search it exhaustively. With exhaustive search, our prototype

system can achieve around 99.5% accuracy with both types of devices. However,

it takes more than one second to exhaustive search on a database containing 180

accounts. The time consumption is mainly caused by accessing the stored template

as well as aligning the signal, and it will grow linearly with the number of accounts

in the database.

Figure 6.8: Identification Results Considering Spoofing Attacks, with and Without
ID Verification

We also apply the legitimate user login experiment and the random guessing

experiment on the data in each session of the “ID-passcode-persistence” dataset. The

variation of identification accuracy among ten sessions is shown in Figure 6.9. It can

be observed that there is slight performance degradation with time, which is mainly
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caused by the ID verification process for the same reason as that in the authentication

results. Similarly, the accuracy can be improved significantly if the templates and

the SVM classifiers for the ID verification process are both updated with the new

signals at the end of the session. We believe that for some users merely 5 signals

at registration cannot fully capture the uncertainty of the writing behavior, even

with our data augmentation methods. In practice, typing a password can always be

employed as a fallback. On the smartphone, if the user does not unlock it immediately

with fingerprint or face, the smartphone will ask the user to type a password. If the

password passes, it will update the fingerprint or face template accordingly. Such a

strategy can also be utilized in our framework since showing a virtual keyboard to

type a password can always be an backup option, though it is inconvenient.

Figure 6.9: Variation of Identification Accuracy Among Ten Sessions
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6.4.4 Comparative Study

A comparison to existing works which also use in-air-handwriting is shown in the

Table 6.4. The major characteristics that differentiate our framework from them are

as follows. First we use a data driven method by designing features and utilizing

machine learning models, instead of crafting algorithms calculating a matching dis-

tance for authentication. Second, we avoid exhaustively searching and comparing the

whole account database for user identification. Third, we evaluate performance of

our framework under active spoofing attacks and with a time span of near a month,

which is usually omitted by existing works. Fourth, our system has a significant per-

formance improvement on a dataset with reasonable size. A more complete list and

comparison of related work in this area is provided in chapter 2.1.

Table 6.4: Comparison to Existing Works

Ref.
dataset

size

EER

(w/o spoof)

EER

(w/ spoof)

Identification

Accuracy
Device

FMCode (camera) 180 0.1% 2.9% 93.2% (96.7%) Leap Motion

FMCode (glove) 180 0.1% 1.3% 95.7% (97.9%) data glove

Liu et al. (2009) 25 ∼3% ∼10% 88 ∼ 98.4% Wii remote

Bailador et al. (2011) 96 1.8%∼2.1% ∼5% N/A smartphone

Bashir et al. (2009) 40 ∼1.8% N/A 98.5% digital pen

Chan et al. (2015) 16 0.8% N/A 98% Leap Motion

Tian et al. (2013) 18 ∼2% N/A N/A Kinect

In Table 6.4.4 we present a comparison of FMCode with password and biomet-

rics based system. The results shown here are obtained from different publications

with various datasets, which merely show limited information as an intuition about

their performance, instead of the performance with serious and strongly supervised
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evaluation. First we show the classification accuracy in terms of EER. Here FM-

Code is comparable to fingerprint (on FVC2004 (Cappelli et al., 2006) among all

the datasets), face, iris, and signature. Comparing to biometrics, a considerable

portion of discrimination capability comes from the large content space of the in-air-

handwriting. Next we show the equivalent key space in number of bits. For password

used in device unlock, the commonly used 4-digit password (default setting on most

smartphone) are considered, and for biometrics, the equivalent key space is defined

by log2(1/FAR) (O’Gorman, 2003). For FMCode we calculate key space with the

corresponding FAR by setting the decision threshold at a place where the true user

has 95% successful login rate (i.e., 5% FRR). The results show that FMCode is also

comparable to password based login and authentication system. Due to the limited

amount of data, we cannot achieve an FAR resolution lower than 5× 10−6, i.e., more

than 17.6 bit key space. For the glove device, at the 5% FRR decision threshold, the

FAR is already 0 but we can only conclude that the equivalent key space is larger

than 17.6 bits. In practice, recommended password key space is between 28 to 128

bits (Crocker and Schiller, 2011) while web users typically choose passwords with 20

to 90 bits key space and on average it is 40 to 41 bits (Florencio and Herley, 2007).

However such large key space is underutilized because it is well known that people

are not good at creating and memorizing strong password, and the actually entropy is

much less than the whole key space (Ma et al., 2010). Moreover, since password must

contain letters that can be typed on keyboard, efficient password guessing strategies

such as dictionary attack further weaken the calculated password quality in number

of bits.
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Table 6.5: Comparison to Password and Biometrics

method EER Key Space (bit)

FMCode (camera) 0.1% ∼ 2.9% ∼17.6

FMCode (glove) 0.1% ∼ 1.3% ∼17.6

Password (online) N/A 20∼90 (Florencio et al., 2007)

Password (device) N/A 13.3 (O’Gorman, 2003)

Fingerprint 0.28%∼2% (Cappelli et al., 2006) N/A

Face Recognition 2.6% ∼8.6% (Parkhi et al., 2015) N/A

Iris 0.11% (O’Gorman, 2003) 19.9 (O’Gorman, 2003)

Signature 1% ∼3% (Impedovo et al., 2008) N/A

6.4.5 Discussions

There are other potential attacks on our authentication system if some of our

security assumptions do not hold. For example, the attacker may be able to access

the server’s storage to steal the templates. Due to the inherent fuzziness in the

authentication step, traditional hash is not able to protect the templates like the

hashed password. One possible solution that we are working on is to adapt the

deep CNN to generate a fuzzy hash and further a set of keys for each account using

the signals at registration. The templates can be encrypted by each of the key to

form a pool. At login time, the same neural network is applied on the signal in the

login request to obtain a fuzzy hash and a key. It is highly possible that this key

can decrypt an encrypted templates in the pool, if the signal is generated by the

legitimate user performing the correct FMCode. After the template decryption, the

authentication procedure can continue. If the templates can be successfully decrypted

by the generated key from the signal in the login request, we can not conclude that

the user is authenticated. As we have shown in the identification results, the ID is
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easier to spoof without a verification step, thus an impostor with the knowledge of

the ID and the passcode may also be able to derive an acceptable key. However, the

attacker that steals the templates does not have such knowledge.

Another possible threat is man-in-the-middle attacks, where the attacker inter-

cepts and records the messages between the server and the client. We believe this is

not critical because machine-to-machine authentication and message encryption can

be used first to allow the client and the server to communicate securely. Existing

technologies such as SSL/TLS and public key infrastructure (PKI) over the Internet

can be leveraged to build a secure communication channel before user login, similar

to the case of password-based login on most websites over the Internet nowadays.

On the user side, record and replay attacks must also be handled. The authenti-

cation request require to present a multi-dimensional signal about the physical states

of the hand during the writing. In a preliminary experiment, we found that it is dif-

ficult to synthesis such a signal from a video recorded by monolens camera or depth

camera placed 1 meter away from the user. The main reason is the drastic spatial

resolution drop with distance, which cause limited hand skeleton estimation accuracy.

A secondary reason is the posture uncertainty of the user and the motion blur due

to insufficient frame rate of the camera. If the camera is close to the user, the user

might get alerted, just like if someone within a proximity is watching a user typing

his or her password, the user will be alerted and stop typing. More details about this

type of attack will be presented in future work.

6.5 Usability Analysis

In this section, we analyze the usability of the FMCode framework.
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6.5.1 User Evaluation

We investigated the usability of our framework by taking questionnaire from 100

users with the experience of both the glove device and the camera device. These users

participated in our data collection of the “ID-passcode” dataset. Each user is asked

to submit a questionnaire.

First, the users evaluate various aspects of our IAHW based login framework

by putting down a score from 1 (strongly disagree) to 5 (strongly agree) on the

following statements. In these statements, “the user” refers to the user taking this

questionnaire. The users are required to provide these scores based on their subjective

feeling.

A. Since the passcode string is created by the user, the passcode content is easy to

memorize.

B. From the perspective of a stranger, the passcode content created by the user is

difficult to guess.

C. The passcode content is difficult to leak visually, i.e., it is difficult to guess the

passcode content based on the IAHW hand movements.

D. From the perspective of an imposter, it is difficult to mimic the IAHW hand

movements after seen them.

E. It is easy to learn and register with our IAHW-based login framework.

F. It is fast to login through our IAHW-based login framework.

G. It is easy to update or revoke the passcode if the user forgets it or if the user

wants to change it.
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H. The user prefers to use it as the primary login method through a gesture input

interface.

The results are shown in Fig. 6.10. Overall, users feel positive to our framework,

although the usability is not exceptionally good in a few aspects.

Figure 6.10: Results of Subjective User Evaluation on Our Login Framework

Second, we ask the user to compare our framework with the password based

systems and biometrics including fingerprint and face. The comparison is made on

three aspects, the easiness of usage, login speed, and security based on the feeling of

users. The user has three options: (a) our framework is better, (b) both methods are

the same, or it is difficult to decide which one is better or worse, (c) our framework

is worse. The results are shown in Fig. 6.11. We can see that the user has a mixed

attitude on the usability compared to traditional password, but clearly FMCode can

not compete biometrics like fingerprint and face for device unlock. However, the

majority of the users feel that FMCode is more secure than traditional password, and

more than half of them feel it is more secure than fingerprint and face.

Third, we ask the following questions:

1) Compared to password, our framework considers both handwriting content and

handwriting style, i.e., combining a password and a biometric trait. Is this feature

important for a login system?
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Figure 6.11: Results of Subjective User Evaluation on Our Login Framework Com-
pared With Other Login Methods

2) Compared to biometrics, our framework allows change and revoke the in-air-

handwriting passcode, which is unlinked to personal identity. Is this feature important

for a login system?

Among the surveyed users, 89% and 82% of them answer “important” for the

first and second features respectively. Combined with the previous results, we can

conclude that FMCode does not intend to replace existing password-based solution

or biometrics. Instead, due to its unique features that passwords and biometrics lack,

we believe that FMCode is suitable in scenarios where such features matter and where

passwords and biometrics are not applicable, for example, login over gesture interface

on VR headset or in operating theater.
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At last, we ask the user which type of device is preferred between a wearable

device and a contactless device for hand motion tracking. 21% of the users choose

the wearable device and the other 79% choose the contactless device.

6.5.2 Qualitative Evaluation

We also evaluated the usability, deployability and security features of FMCode

qualitatively using the a well-known set of criteria (Bonneau et al., 2012), and the

result is shown in Table 6.5.2, Table 6.5.2, and Table 6.5.2. We added two aspects in

deployability, “configurable” and “developer friendly” mentioned in an exiting survey

work (Clark and Lindqvist, 2015). Each usability, deployability and security item is

evaluated by whether our FMCode method possess the characteristics, and a plus

/ minus sign means that our method is better / worse than password. We explain

a few items here but the readers are recommended to refer to the original study

(Bonneau et al., 2012) and survey work (Clark and Lindqvist, 2015) for the definition

of these characteristics. In general, compared with password and biometrics, FMCode

achieves nearly all their usability and deployability characteristics, and it contains the

security advantages from both password and biometrics.

On the usability side, nothing to carry means the user does not to present a

physical item such as a card. Though our prototype system uses a glove, the glove is

treated as a general gesture input device, just like password does not require the user

to bring a keyboard everywhere. Arguably, FMCode has less memory burden because

the discrimination capability comes from both the content and the writing style,

instead of just the combination of characters in password, so memorable FMCode is

not necessarily weak any more. However, there might be potentially more frequent

rejection of legitimate user login than password because the internal fluctuation in

the stability of finger motion.
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Table 6.6: Qualitative Evaluation of Usability.

Usability FMCode

Memory effortless Maybe (+)

Scalable for users Maybe

Nothing to carry Yes

Physically effortless No

Easy to learn Yes

Efficient to use Yes

Infrequent errors Maybe (-)

Easy to recovery Yes

Table 6.7: Qualitative Evaluation of Deployability.

Deployability FMCode

Accessible Yes

Scalable Yes

Server compatible Maybe (-)

Browser compatible Maybe (-)

Mature No (-)

Non-proprietary Maybe (-)

Configurable Yes

Developer friendly Yes
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Table 6.8: Qualitative Evaluation of Security.

Security FMCode

Resilient to physical observation Maybe (+)

Resilient to targeted impersonation Maybe (+)

Resilient to throttled guessing Maybe

Resilient to unthrottled guessing No

Resilient to theft Yes (+)

No trusted third party required Maybe (-)

Requiring explicit consent Yes

Unlinkable Yes

On the deployability side, since the server only needs to store the template as a

secret, FMCode is similar as those behavior biometrics without using special devices

(e.g., keyboard or mouse dynamics), thus it can be compatible with most server with

small software modification. FMCode can be supported by browsers on devices with

gesture input interface, where the FMCode input of a user can be treated as a very

long password and sent to the server over the Internet, similar as the case of logining

in a website using password.

On the security side, FMCode can withstand spoof under semantic or visual dis-

closure and targeted impersonation to a certain extent, which is more like biometrics

than password. But unlike passive biometrics, FMCode is changable and more dif-

ficult to steal. For example, an attacker can collect a user’s fingerprint from a cup

after the user has touched it, but FMCode can only be recorded when the user per-

forms it. FMCode suffers from server storage leakage and internal observer if the

template is not properly protected, and such proper template protection might be

difficult because of fussiness in alignment and matching. Also it shares all other
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security deficiencies of password and biometrics under attacks such as brute-force

guessing/collision, dictionary guessing, phishing and cross-site leakage.

Compared with traditional password, FMCode uses handwriting, which makes it

a behavior biometrics, and this provides certain protection under semantic or visual

disclosure of the passcode. On the other side, compared with unchangeable biomet-

rics like fingerprint, FMCode keeps most of the advantages of a password such as

revocability and privacy preserving. This also allows one user to have more than

one FMCode, different from traditional behavior biometrics like gait or voice in ac-

tive speaker recognition. The most similar authentication techniques would be online

signature verification (technically speaking, handwriting verification), or graphical

password with stroke dynamics, but most of they assume a 2D pressure sensitive

touchscreen instead of writing in the air.

6.6 Summary

In this chapter, we present FMCode, a unified user authentication and identifi-

cation framework for applications using gesture input interface. FMCode does not

completely replace password or biometrics in all use cases, but it can be an alternative

way for user login over gesture interface where password and passive biometrics are

inconvenient or not applicable. Our prototype system and experimental results show

great potential of this method. However, FMCode also has limitations under certain

security assumptions, which require further investigation.
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Chapter 7

FMWORD - USING IAHW FOR WORD INPUT

7.1 Background

People natually communicate with each other over speech and writing. Hence,

speech and handwriting are also natural ways for users to provide input information to

a computer, if the computer can understand them. For example, there are many smart

home appliances with virtual assistant technology enabled by modern AI technology,

such that people can directly ask questions or issue control command over voice.

However, there are also many application scenarios requiring a quite and private

environment where voice command is not suitable. In such scenarios, typing or writing

would be preferred rather than speaking. Meanwhile, many computing platforms are

equipped with a gesture input interface and they lack a traditional keyboard, such as

VR/AR headset, wearable devices, or game console. On these platforms, writing is

more natural and efficient than typing.

Compared to speech and traditional 2D handwriting on a touch screen, IAHW is

not widely studied as an input method of general text. This is partially due to the

limited popularity of gesture input interfaces that can track hand movements, and

partially due to the inherent challenges of recognizing IAHW words. For example,

there is no consensus on what kind of motion capture sensors should be used, and

hence, there is no standard dataset for IAHW word recognition research and bench-

mark. Moreover, collecting and labeling such a dataset is usually expensive, and as

a result, it is difficult to train data-driven models for IAHW recognition.

In this chapter, we present a framework named FMWord, which utilizes a deep
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learning method for the IAHW word recognition task. It is an extension of the

FMHash framework, which generates compact binary hash codes for the IAHW signals

obtained from writing words in a predefined lexicon. These hash codes are used to

search candidate words as the recognition results. Additionally, our framework can

be trained with limited amount of data. Our contributions are summarized as follows.

1) We designed an IAHW word recognition framework with a deep learning

method that achieve reasonably useful performance with limited amount of train-

ing data. Our framework support two types of hand movement capturing devices and

two different natural languages (English and Chinese).

2) We implemented a set of data augmentation schemes that can improve the

performance when large amount of training data is not available.

3) We collected a dataset from 20 users writing 210 English words as well as 210

Chinese words to evaluate our framework. Our FMWord framework can achieve over

93% top-5 recognition accuracy.

The remainder of this chapter is organized as follows. Section 2 explains the details

of our FMWord framework and section 3 details the data augmentation methods we

used to train our deep neural network models with limited amount of data. Section

4 shows experimental evaluation results with our dataset. Section 5 summarize this

chapter.

7.2 System Model

The architecture of FMWord is essentially the same as the FMHash framework.

There is only one difference, i.e., the account database is replaced with a lexicon. The

IAHW hand movement signals are processed in the same way as that in FMHash to

generate a compact binary hash, and a pre-built hash table is used to index the words

in the lexicon for word recognition instead of the accounts in the account database
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Figure 7.1: The Architecture of the FMWord Framework.

for user identification. Essentially, we convert this word recognition problem into an

information retrieval problem, i.e., given a request signal, the system retrieves the

word ID in a lexicon by finding those signals that are most similar to the request

signal. The similarity is measured through a metric on learned features defined in

the loss function in the training process (Hamming distance in our case).

However, different from closed-set user identification, for this word recognition

task, our framework should always return a list of candidate words and a probability

of each candidate word as a confidence score. To achieve this, we modify the structure

of the hash table and we use the following “registration” procedure.

Step 1): We use the same training process to generate the fuzzy hash code for

each word in the lexicon. The hash code or the ith word in the lexicon is denoted

as b(i), which is essentially the same as the bID in chapter 5. Step 2): We set up a

hash table with 2B buckets, where B is the length of the fuzzy hash code. We initiate

each hash table bucket with an empty list.

Step 3): Given a hash table bucket indexed by the hash code b<k>, for each

word in the lexicon with hash code b(i), we compute the Hamming distance d = b<k>

XOR b(i). Then, if d is greater than a certain threshold dth, we further compute a
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probability using the following probability density function of a Gaussian distribution:

p(d) =
1

σ
√

2π
e−

d2

2σ2 .

Here both the threshold dth and the σ in the Gaussian probability density function

are configurable parameters. After that, we put the tuple < i, p(d) > into the list

corresponding to the hash table bucket b<k>.

Step 4): We repeat step 3 for every hash table bucket. The insight is that each

word in the lexicon is hashed to a ball with a Gaussian probability instead of just one

code with absolute certainty in the Hamming space. This Gaussian ball is centered

at b(i) with a radius of dth and a variance indicator of σ. If a bucket is within that

ball, it contains that word in the list associated to that bucket. Finally, for each hash

table bucket with a list of tuples, we normalize the p(d) of the whole list and sort the

list according to p(d).

Once this “registration” procedure is done, the system can be used to recognize

IAHW words. The recognition procedure is relatively simple. Given an IAHW signal,

we use the neural network to compute its fuzzy hash code, and use the hash code

to search the hash table to obtain a list of tuples. The top-k tuples are returned as

the recognition result, where the first element of each tuple indicates the word in the

lexicon, and the second element indicates the confidence score. Moreover, if this word

recognition system is used as a word input method, typically the user will choose the

word that the user intend to write from the top-k list. If the top-k list does not

contain this word, the user typically want to search the next k tuples in the list until

the word is found or the user gives up. Hence, we store the whole list for each bucket

instead of just the top-k, and we use the threshold dth to control the length of the

list.

Furthermore, the user may not follow the procedure of writing one word, selecting
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the word from a list of candidate, and writing another word. Instead, the user may

just keep writing. In this case, a continuous IAHW recognition system may automat-

ically slice the continuous signal of writing a sentence into multiple small segments of

different length during the writing, run our word recognition system for each segment,

and use an n-gram model or a hidden Markov model trained on natural language texts

to recognize the whole input sentence in a way similar to continuous voice recognition.

In this case, the p(d) associated with each tuple will be the likelihood in the n-gram

model or the observation probability of the hidden Markov model. Also, p(d) does not

need to be normalized. This continuous IAHW recognition system is a downstream

system of our word recognition framework and it is beyond the scope of this chapter.

We refer this function to emphasize the importance of predicting a list of candidates

and probability scores for the candidates.

In our implementation, σ is also computed from the training data. Specifically,

given the training signals for the ith word in the lexicon, after the neural network is

trained, we can obtain a set of fuzzy hash codes for the training signals, denoted as

H = {b<1>,b<2>, ...,b<m>, ...}. We first do a majority vote on each bit of each hash

code in H to compute the fuzzy hash code of the ith word, denoted as b(i). Then,

for each fuzzy hash code in H, we compute the Hamming distance dm = b<m> XOR

b(i). After that, we compute the average distance davg = 1
K

∑K
m=1 dm. Finally, we set

σ = 1 + davg. The rationale is measuring the extent of “spreading” of the training

signals in order to get an estimation of the shape of the Gaussian ball.

7.3 Data Augmentation

Our FMWord framework has many similarities with existing works on metric meta

learning (Tang and Lian, 2021), metric-based few-shot learning (Cheng et al., 2019),

and prototypical learning (Snell et al., 2017). These properties allow efficient training
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of our framework from limited amount of data (in theory our framework can be trained

from only one signal for each word). However, these methods do not guarantee a useful

level of recognition accuracy. Hence, to further improve the accuracy and robustness

of the neural network, we implemented four data augmentation methods to generate

more training data with plausible variations.

First, we applied three random rotations on the signal in the order of yaw-pitch-

roll. The yaw rotation and the pitch rotation are generated randomly between zero

degree and 30 degree. For the camera device, the roll rotation is generated randomly

between zero degree and 15 degree, and for the glove device, it is generated randomly

between zero degree and 30 degree . Here we show an example of the signal obtained

by writing the string “FMWord” in Figure 7.2 (a). Five augmented signals obtained

by randomly rotating this signal are shown in Figure 7.2 (b) and (c) in different

perspectives angles.

We design this data augmentation step mainly to address an issue related to the

pose normalization in the signal preprocessing. As explained in chapter 3, for both

types of devices, we normalize the pose such that the average pointing direction is the

x-axis. However, it is not guaranteed that all users will write from left to right in an

invisible wall perpendicular to the pointing direction. Even for the same user writing

the same content multiple times, there are variations in the direction of pointing and

the direction of writing (assuming in a way similar as left-to-right). We observed

this by fitting a plane on the trajectory of the signal from the camera device, and we

measured that the pointing direction of the index finger and the plane is not always

perpendicular. The angle between the pointing direction and its projection on the

plane is somewhat randomly distributed between 60 degree to 90 degree. Also, for the

camera device, we observed that the roll rotation has less variation using the gravity

as a reference. Hence, we empirically choose the ranges of random rotation based on
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our observation of the data. However, the glove device has an additional cause of

the uncertainty. When the user puts on the glove device, it may not align perfectly

with the finger, especially, the IMU sensor may be rotated slightly around the finger

pointing direction, which generates larger uncertainty in the roll angles relative to

the gravity.

Figure 7.2: An Example of Data Augmentation with Random Rotation

Second, we applied a random warping on a signal. Similar to the signal alignment,

we can modify the signal to generate a new signal according to a warping path. The

rationale is that different people have different writing speed for different strokes even

for writing the same word, and these differences in writing speed can be represented

by the warping paths, as explained in our analysis in chapter 4.3.1. A warping path

is a 2D structure as shown in Figure 4.4 (left), and it is represented by two arrays

(i.e., the “start” array and the “end” array as shown in Figure 4.3). As long as

one dimension of the warping path has the same length as the signal. This warping

operation can be done even if the warping path is derived from other signals.

In practice, we saved all the warping paths for the “collision” class obtained in

chapter 4. Given a signal for data augmentation, we randomly choose a saved warping

path, resize it with linear interpolation such that both dimension of the warping path
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is the same as the length of the signal to be augmented, and then we use the algorithm

shown in Figure 4.3 to “warp” the signal. An example is shown in Figure 7.3, where

the blue signal is the original signal and orange signal is the signal after warping.

Note that this step does not change the length or the trajectory of the signal. It only

changes the positions of each sample on the trajectory.

Figure 7.3: An Example of Data Augmentation with Random Warping

Third, we applied random perturbations on the signal amplitude in each sensor

axis. Specifically, we create an augmented signal by adding a Gaussian shaped seg-

ment to the original signal at a randomly generated place. An example is shown in

Figure 7.2, where the subplot (a) is the original signal, subplot (b) is the comparison

of the original signal vs. the augmented signal, and subplot (c) is a close look at the

perturbed signal segment. In this example, the random perturbation is applied on

the segment from the index 100 the the index 150, which roughly corresponds to the

letter “M” in the string “FMWord”.
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Figure 7.4: An Example of Data Augmentation with Random Amplitude Pertur-
bation

The rationale of this data augmentation method is that the signal can vary in

amplitude even for the same person writing the same content, which is analyzed in

chapter 4.3.2. We observed that for a set of signals of writing the same content

regardless of the writer, they have observable differences in signal amplitude after

alignment. Often these differences happens in a few local segment. Hence, we perturb

a segment of the signal by adding a Gaussian shaped signal segment, mimicking the

effect of a random uncontrolled force generated by the muscle during the writing.

The shape of the added segment is empirically determined using the analysis results

of the element-wise distance for the “collision” class in chapter 4.3.2. This random

perturbations on the signal amplitude can be done multiple times on the same signal.

In fact, we can use a similar method but with much more aggressive perturbation.

Besides the random Gaussian perturbation, given a signal A that we want to augment,

we can essentially align any signal B to signal A, and then we can generate a new

signal A′ = A+αB. Here αB is the perturbation and α is usually a small number that

is randomly generated (it can be either positive or negative). We typically choose B

from those signals obtained by writing the same content as signal A but from other

users. A signal B that is completely unrelated to A can also be chosen for greater

randomness.
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Fourth, for signals obtained by writing the same word, we randomly pick a pair

of signals and swap a segment. Specifically, given a pair of signal A and signal B, we

align B to A, randomly select a segment and overwrite this segment of A with the

corresponding segment of B. To avoid sudden change of the sample values, we smooth

both ends of the segment of A using a gradually transition from A to B. This process

creates a new signal A′. In practice, we use a linear interpolate A′ = (1− λ)A+ λB

between the signal A and the aligned signal B, where λ is gradually increased from 0

to 1 in the transitioning part on both ends of the segment to be swapped. The same

procedure can be applied on B with the signal A aligned to B, and a new signal B′.

The pair of signals A′ and B′ are returned as the augmented signals. An example is

shown in Figure 7.5, where the subplot (a) shows the original pair of signal A and

signal B, subplot (b) shows the original signal A and the signal A′ after the segment

swapping, and subplot (c) shows the trajectory of the signal A and the signal A′

after the segment swapping. The swapped segment starts from index 100 to index

200, which roughly corresponds to the letter “M” and the letter “W” in the string

“FMWord”.

Figure 7.5: An Example of Data Augmentation with Random Segment Swapping
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7.4 Experimental Evaluation

We use the “word-210” dataset introduced in chapter 3.7 to evaluate our FMWord

framework. Due to the limited amount of training data in this dataset, we use ten-

fold cross validation. Specifically, for each writer among the ten writers, we split

the dataset into two sets, where the testing set contains the signals generated by this

writer, and the training set contains the signals generated by other nine writers. After

that, the neural network model is trained using the data of nine writers and tested

using the data of one writer.

Table 7.1: English Word Recognition Results

camera glove

testing

writer

top-1

accuracy

top-5

accuracy

testing

writer

top-1

accuracy

top-5

accuracy

#1 59.6 75.3 #1 69.8 92.5

#2 71.5 86.5 #2 75.0 94.2

#3 91.9 98.7 #3 98.9 99.9

#4 90.4 99.0 #4 65.9 85.0

#5 59.7 85.8 #5 79.3 96.3

#6 86.3 99.3 #6 64.5 87.2

#7 87.3 98.4 #7 82.8 97.9

#8 85.5 97.4 #8 73.9 91.3

#9 71.6 91.7 #9 90.9 97.9

#10 92.7 99.4 #10 83.7 96.2

average 79.7 93.2 average 78.5 93.8

Our lexicon contains only 210 words. For each word, there are 5 signals for testing
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Table 7.2: Chinese Word Recognition Results

camera glove

testing

writer

top-1

accuracy

top-5

accuracy

test

writer

top-1

accuracy

top-5

accuracy

#1 94.7 99.4 #1 89.1 97.6

#2 97.2 99.6 #2 97.6 99.9

#3 87.2 97.4 #3 93.8 98.8

#4 89.1 97.1 #4 84.8 94.8

#5 72.5 89.5 #5 87.7 97.5

#6 86.4 97.6 #6 62.8 83.5

#7 87.6 98.1 #7 93.2 99.1

#8 78.9 95.4 #8 80.2 94.4

#9 87.9 96.8 #9 67.1 86.5

#10 92.5 97.2 #10 77.2 91.5

avg 87.4 96.8 avg 83.4 94.4

and 45 signals for training (with 5 repetitions by each of the 9 writers). We augment

the training data with the following procedure. First, given a word, for each of the

5 signals generated by each of the nine writers, we use the random rotation method

to create 50 signals. Second, we applied random warping on each of the 50 signals.

Third, for each of the 50 signals and for each sensor axis of the signal, we add random

Gaussian perturbations at a random place three times. After this step, we mix the

signals from all writers and create a set of 450 signals. Fourth, for each signal A in the

set of 450 signals, we randomly select another signal B from a different writer. Then,

we randomly swap a segment between A and B to obtain a signal A′, and we put A′

into another set (the signal B′ is not needed). Finally, we add the original 45 signals
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into the set of 450 signals with segment swapped, and we obtain a set of 495 signals.

These signals are used in the training. The testing signals are not augmented.

The evaluation metrics are the top-1 recognition accuracy and top-5 recognition

accuracy. The results are shown in Table 7.4 and Table 7.4. All accuracy numbers are

in percentage. From these results, we can see our framework can achieve reasonably

good top-5 recognition accuracy with training data from only nine writers. However,

for a few specific testing writers, the recognition performance metrics are significantly

worse than other testing writers.

There are two main reasons for this performance drop. First, compared to other

writers, these writers wrote in a relatively less legible way. Second, different writers

may write the same content in different stroke sequences or in different styles. For

example, in Figure 7.6, we show examples of trajectories of two persons writing the

same word “bot”. It can be seen that the vertical stroke and the circular stroke in

the letter “b” are basically the same for the two writers. Meanwhile, the first person

writes the letter “o” clockwise while the second person writes it counter-clockwise.

Also, they write “t” in different styles, which can be distinguished by determining

whether the horizontal stroke is written first or last. Both English and Chinese have

this kind of difference in stroke sequence and writing style with different writers. In

our dataset, the writer #1 has unique behaviors, e.g., this writer wrote “o” clockwise

while all other writers wrote “o” counterclockwise. Hence, when the writer #1 is

selected as the testing writer, because of the writing behavioral uniqueness, many

signals generated by this writer is not correctly recognized, and our data augmentation

methods cannot help much.
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Figure 7.6: Two Different Writers Write the Same Word “bot” in Different Stroke
Sequences

7.5 Summary

In this chapter, we present an IAHW word recognition framework using a neu-

ral network, which is extended from our user identification framework detailed in

chapter 5. To facilitate efficient training of the neural network from limited amount

of data, we developed four data augmentation methods for our IAHW signals. Our

framework can achieve over 93% top-5 word recognition accuracy for both English

and Chinese with a lexicon of 210 words. However, there are still several limitations

regarding unique writing behaviors and illegible writing. In the future, we plan to

collect a much bigger dataset with 400,000 signals and 10,000 words in the lexicon and

develop a extended version of the current FMWord framework. We believe our frame-

work has great potential for applications in VR/AR headsets, wearable devices, and

home entertainment console with native gesture input interface but lack a traditional

keyboard.
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Chapter 8

CONCLUSIONS

This dissertation presents a unified user login framework and identity input meth-

ods using 3D In-Air-Handwriting (IAHW), where a user can log in to a virtual site by

writing a passcode in the air very fast like a signature. The finger motion is captured

by the gesture input interface and the information is extracted from the motion signal

to verify the identity of the user. IAHW, as a combination of password and hand-

writing biometrics, addresses the above challenges through novel signal processing,

feature design, and data-driven models such as a deep neural network. As a result,

a finger motion passcode is changeable, revocable, unlinked to personal identity, and

robust to spoof to a certain degree even under the leakage of the passcode content.

The proposed research contains multiple tasks that span motion signal modeling, user

authentication, user identification, stroke analysis for assessing the passcode strength,

fuzzy-hash based cryptographic key generation from the motion signal, and a thor-

ough evaluation in both security and usability. Our results show around 0.1% best

Equal Error Rate (EER) in user authentication as well as around 93% accuracy in

user identification, on a dataset collected by us with 180 users using two types of

gesture input devices (a custom data glove and the Leap Motion controller). Addi-

tionally, we also present a word recognition framework as an extension of our user

identification framework, which can achieve over 93% top-5 word recognition accuracy

for both English and Chinese with a lexicon of 210 words.

The main contribution of this research is the framework for user login and identity

input methods through gesture interfaces. Since currently there is no satisfying login

solution for gesture interface, our work provides answers on how such a solution could
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be engineered and what challenges should be addressed. Besides, current research in

this area is severely limited by the availability of the gesture input device, datasets,

and software tools. Our research targets inexpensive device (less than $100), and our

research outcome is made openly available, which includes our datasets, source code, a

demo system, and publications, which can help research communities in both usable

security and human-computer interface. Additionally, our framework is inherently

language neutral, which can potentially benefit people around the world.
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