
Accelerator Design And Hardware Implementation For Distributed Coherent Mesh
Beamformer

by

Yang Li

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2024 by the
Graduate Supervisory Committee:

Daniel Bliss, Chair
Chaitali Chakrabart
Ahmed Alkhateeb

Antonia Papandreou

ARIZONA STATE UNIVERSITY

May 2024

ABSTRACT

This dissertation summarizes achievements and ongoing designs of Field-Programmable

Gate Array (FPGA) accelerators for Distributed Coherent Mesh Beamforming (DCMB).

The distributed coherent mesh beamforming program aims to create a distributed

beam network. The radios that make up this network must be small in size, weight,

power, and cost while overcoming long transmission distances and interference. Due

to the limitations, researchers developed a solid communication link using high speed

to increase signal strength and reduce interference significantly. There were two slots

to calculate the beamformer for the target platforms. One route is purely FPGA-

based. Another option is a hybrid approach using the FPGA for initial calculations

and the rest on the Central Processing Unit (CPU). People can reduce overall latency

significantly when performing FPGA calculations. DCMB has become a technology

for improving wireless communication systems, providing adaptability and efficiency

in dynamic environments. This dissertation presents an in-depth study of DCMB with

specific innovations in accelerator design and overall controller architecture. I inves-

tigate the design and implementation of dedicated accelerators adapted for DCMB

tasks, including Finite Impulse Response (FIR) filtering, matrix multiplication, QR

decomposition, and compensation on FPGA platforms. I optimized these accelera-

tors for real-time processing and better performance on DCMB systems. Compared

to soft-core processors, my research shows that hardware accelerators provide sig-

nificantly faster processing speeds, enabling fast execution and reduced latency in

communication systems. In addition, I discuss the design and integration of a general

controller that optimizes the operation of accelerators and coordinates the beam-

forming process between distributed nodes. Through experiments with analytical

and simulation tools, my study highlights the superiority of hardware accelerators

over soft-core processors for high-speed calculation tasks in DCMB systems.

i

ACKNOWLEDGMENTS

I thank my adviser, Dr. Daniel Bliss, for his constant support throughout my study

and expert advice through this project. He was very patient and positive for every

step in the path to the success of our research. I am thankful to Dr. Daniel Bliss,

Dr. Chaitali Chakrabarti, Dr. Antonia Papandreou-Suppapplola and Dr. Ahmed

Alkhateeb of Electrical Engineering for teaching important courses that built a strong

foundation for conducting my research. I am thankful to all my colleagues and

co-workers at WISCA center for their constant help and support in shaping this

thesis. I learned a lot from those long technical discussions in the lab on several

topics. I thank Owen Ma, Jacob Holtom, HanguangYu, Saquib Siddiqui, Narayanan

Murugan, and Anish Nallamur for providing valuable materials for my report. I am

grateful to my parents for always supporting me in every endeavor.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

1 INTRODUCTION . 1

1.1 Previous Work. 6

1.2 Work and Contributions . 11

2 BACKGROUND . 13

2.1 Beamforming . 14

2.1.1 Traditional Antenna Systems . 14

2.1.2 Principles of Beamforming . 15

2.1.3 Types of Beamforming . 15

2.1.4 Applications of Beamforming . 16

2.1.5 Minimum Mean Square Error (MMSE) Method 17

2.2 Field-Programmable Gate Arrays (FPGAs) . 19

2.2.1 Xilinx FPGAs . 24

3 DISTRIBUTED COHERENT MESH BEAMFORMING SYSTEM 30

3.1 System Overview . 30

3.2 Beamforming Methods . 32

3.3 Narrowband MMSE Beamformer . 34

3.4 Wideband MMSE Beamformer . 38

4 ALGORITHM DESIGN AND HARDWARE IMPLEMENTATION CHAL-

LENGES . 42

4.1 Synchronization Methods . 42

4.2 Data Exchange and Limited Transmitting Rates 47

4.3 Modified Wideband MMSE Beamformer . 51

iii

CHAPTER Page

4.3.1 Cross-Correlation . 53

4.3.2 Covariance Matrices . 56

4.3.3 Channel Estimation . 61

4.3.4 Building the beamforming filters . 63

4.4 Data Exchange and Accelerator Scheduler . 63

5 IMPLEMENTATION ONTO HARDWARE . 66

5.1 Overview. 66

5.2 FPGA Implementation . 66

5.2.1 Overview . 67

5.2.2 Convolution and Cross-Correlation . 72

5.2.3 Downsampling . 76

5.2.4 Matrix-Matrix Multiplication . 78

5.2.5 Average and Taper . 85

5.2.6 Diagonal Loading . 85

5.2.7 QR Decomposition with Back-Substitution 87

5.2.8 Normalization Strategy . 96

5.3 Hybrid FPGA-C++ Implementation . 97

5.3.1 SNR Gain Beamformer Implementation 98

5.3.2 Modified MMSE Beamformer Implementation 99

6 SUMMARY AND FUTURE WORK . 101

REFERENCES . 103

APPENDIX

A MATLAB SIMULATIONS . 106

iv

LIST OF TABLES

Table Page

5.1 Variables and Description . 69

5.2 Computation Block Mapping to Hardware Units. 71

5.3 Internal Precision of Each Block in Figure 5.1. 71

5.4 Execution Time for Computations. 72

5.5 Utilization Report for Entire HDL Design. 73

5.6 Utilization Report for Convolution and Cross-Correlation Blocks. 75

5.7 Utilization Report for Filtering and Downsampling Block. 79

5.8 State of the Shift Registers after Every Cycle. 83

5.9 Resource Utilization of the Matrix-matrix Multiplication Block. 84

5.10 Utilization Report for the QR Decomposition Plus Back-Substitution

Block . 98

v

LIST OF FIGURES

Figure Page

1.1 Trade-off Curves in Hardware Designs.[1] . 4

1.2 Signal From Transmitter to Receiver. 6

1.3 Satellite Communication Application for Distributed Coherent Mesh

Beamforming Technology.[2] . 8

1.4 Ground Base Station Mobile Devices Communication Applications. 9

1.5 Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit 12

2.1 Beamforming Example. 15

2.2 3D Beamforming Application Scenario [3]. 16

3.1 Overview of a Distributed Communications Topology That Includes

Two Meshes and Constant Interference. 31

3.2 Single Network Topology: Send a Distributed Network Node to the

Final Receiving Node in the Presence of an Interrupter. 33

4.1 Sources of Error. 44

4.2 Frequency Error vs. Update Rate for a two-element antenna array[4] . . 45

4.3 Block Diagram of Adapted Distributed Mmse Computation. 52

5.1 Block Diagram of the Beamformer Computation. 68

5.2 The Execution Timeline of the Blocks in Figure 5.1 Devoid of a Time

Scale. 70

5.3 Block Diagram of the Digital Beamformer Hdl Implementation. 70

5.4 Block Diagram of Cross-correlation and Convolution Units. 74

5.5 4 × 1 Systolic Array Used in the Convolution and Cross-correlation

Blocks. 74

5.6 Cross-correlation Output Comparison Between Matlab and FPGA. . . . 75

vi

Figure Page

5.7 Convolution Output Comparison Between Matlab and Fpga for One

Channel B and Downsampled Training Observation Vector. 76

5.8 Block Diagram of Filter and Decimate Block. 78

5.9 Data Flow of Downsampling Block. 79

5.10 Comparison of Downsampled Training Observations Resulting from

the FPGA Simulation and Matlab. 80

5.11 Matrix Multiplication Block diagram. 81

5.12 4× 4 Systolic Array Matrix Multiplier. 82

5.13 Matrix Multiplication Output Comparison Between Matlab and FPGA.

84

5.14 Block Diagram of the Average-Taper Block. 86

5.15 Data Flow of the Average Taper Block. 86

5.16 Block Diagram of the Scalable QR Accelerator [5]. 89

5.17 Data Flow in QR Using Systolic Array Architecture [5]. 90

5.18 Boundary Cell Flow Diagram [5]. 91

5.19 Internal Cell Flow Diagram [5]. 91

5.20 Data Flow in Back-substitution [5]. 92

5.21 Block Diagram of Back-substitution Accelerator [5]. 93

5.22 Original Design of Internal Cells in QRD Process [5] 94

5.23 parallel Design of Internal Cells in the QRD Process. 95

5.24 Original Back-substitution Process Data Flow [5]. 95

5.25 Modified Back-substitution Process Data Flow. 96

5.26 Comparison of Beamformers Resulting from Computations Performed

in Fpga Versus Matlab Given the Same Inputs. 97

vii

Figure Page

5.27 QRD Timing Report from Vivado. 97

A.1 Example Gold and Blue Node Placement Where the Mosaic Is Ar-

ranged as a Uniform Linear Array(Previous tests report from Owen

and Jacob). 112

viii

Chapter 1

INTRODUCTION

Distributed Coherent Mesh Beamforming (DCMB) represents an advanced ap-

proach to multi-antenna wireless communication networks that offers the opportu-

nity to improve performance and reliability significantly. The improvement is essen-

tial given the ineffectiveness of traditional communications networks in meeting the

demands of today’s applications. However, there are limitations in the adoption of

DCMB by several critical challenges that need to be addressed, such as, for example,

interference suppression, limited spectrum efficiency, and lower signal quality [6]. In

addition, successful implementation of DCMB requires overcoming obstacles related

to hardware design, algorithm optimization, and scaling in various operating environ-

ments. Therefore, an important goal is to develop efficient hardware and algorithm

solutions to unlock the full potential of DCMB and provide more efficient wireless

networks that meet the advanced needs of modern applications [7].

Beamforming empowers a multi-antenna system to take advantage of spatial de-

grees of freedom at the receiver. It can increase signal-to-noise ratio (SNR) and

resistance to obstructions. Typically, designers built beamformers with multiple

antennas with wired connections at the receiver; thus, transitioning to distributed

coherent beamforming requires synchronization between the dispersed components.

Other distributed transmit beamforming approaches need to consider the strength

of impedances within the channel more straightforwardly. When building the beam-

former, there will be some interference for the received signal. The interference can be

generated by the channel effects, communication between the distributed elements,

etc. So that SNR improvement and interference cancellation functions are both ap-

1

plied. Recent advances in distributed positioning and timing enable synchroniza-

tion between distributed radio receivers[8]. Further advances in low-cost antenna

design, high-performance domain-specific processor design, and efficient synchroniza-

tion technology have also helped create a new class of distributed coherent RF systems

previously considered too complex or expensive. Distributed beamforming networks

between these systems enable huge beamforming apertures using randomly and irreg-

ularly spaced elements at the expense of significant synchronization and processing

requirements. While this approach significantly overcomes the inherent limitations

of traditional high-speed arrays, it also introduces new challenges and disadvantages.

Previous research suggested practical distributed array processing systems are possi-

ble but difficult to build. A practical real-time distributed coherent system must be

inexpensive and have independent RF processing circuits. Researchers accomplished

independent elements without coherent noise at many stages of the processing chain

but not the whole design. There are also limitations to the independent elements. For

example, each system has differences in frequency and time perception. Further com-

plicating matters is that these differences constantly change as clocks tick and systems

move. The main task of real-time distributed coherent systems is to synchronize all

the quantities sufficiently to realize coherence between nodes and perform coherent

processing in real time. It requires timing, frequency, and phase alignment. No sys-

tem naturally wants to operate so synchronously because realizable systems’ natural

chaos and noise work against that goal. Additionally, the components and models

usually chosen prefer to avoid implementing such a system. It is also computationally

and spectrally resource-intensive to achieve coherence.

In this system, the high update rate and operation frequency are essential for

achievement, which refers to the high SNR gain at the receiver and successful in-

terference mitigation. The algorithm team did tests with different sets of data and

2

different setup parameters to identify parameter sets that provide the best system

performance. The algorithm team helped me with the simulations. By providing

me with the setup parameters I used for the hardware implementation. They also

provided test data for verification and all the functions that I need in the hardware

implementations. The faster a system operates, the better the SNR at the receiver[9].

The updated rate is related to the frequency offset and phase offset[9]. The algorithm

team tested system performance for update rates of 100 ms, 50 ms, 25 ms, and 10

ms. The 10 ms test data has the best SNR performance, but the 10 ms updated

rate is impossible to get because 10 ms is too short for all the computations to fin-

ish. As a result, the algorithm team and I decided to go with an update rate of

25 ms instead. I observed that the 10 ms rate is feasible but requires significantly

more initialization resources than required in the design. The system also performs

well enough at the selected update rate for the high SNR and interference mitigation

goals. For the hardware design, I focused on baseband signal processing which means

there are other parts on the same device for the whole processing chain, namely the

transmitter and data transition processes. With the limited resources available for

the DCMB design, I targeted a 25 ms update rate. As seen in Figure 1.1, there is

always a trade-off between utilization and speed. In this scenario, the best way is

to implement a folded architecture for all the accelerators and make it configurable.

Folded architecture design can limit the resources used in the hardware but make the

latency longer. It can help to save several times on the resources used on hardware.

The configurable design can make the accelerator more useful for different functions.

For example, I can use the same accelerator for FIR filter and convolution functions,

saving half of the resources.

In this dissertation, I accomplished coherence in real-time with a relatively simple

execution of hardware design. I display one set of procedures and approaches that

3

Figure 1.1: Trade-off Curves in Hardware Designs.[1]

address issues I met in the design stage. The accuracy required of the synchroniza-

tion is a few orders of magnitude superior to what currently utilized communications

frameworks work with. There are three central synchronization challenges. They are:

achieving precise timing alignment across distributed nodes, maintaining coherence

in signal reception and transmission, and minimizing synchronization overhead while

ensuring accuracy and reliability[9]. Time synchronization has been scrutinized and

appeared attainable. While conveyed time synchronization offers sufficient precision

for many applications, researchers often overlook its potential due to certain limita-

tions or challenges[10]. The algorithm team has considered recurrence synchronization

as well. Adequate recurrence exactness is challenging and not widely done on hard-

4

ware. Most existing frameworks don’t require recurrence alignment within a little

division of a hertz. In this scenario, conventional communication frameworks typi-

cally only measure the alignment with precision in the range of tens or even hundreds

of hertz. And it does not have enough precision for our applications. Additionally,

the system requires phase synchronization for coherent handling. In expansion, the

proposed framework requires genuine time coherence between the disseminated frame-

works. Not as it was in the framework to have the adequate exact time, stage, and

recurrence arrangement; it must do so in real-time. The approach leverages transmit

beamforming, so coherence must be realized over the signal processing procedure, not

after.

I present a hardware design for a distributed mesh beamforming algorithm that

uses many folded architectured and configurable accelerators to build three higher-

performance data processing chains with increased speed and less latency. As part

of a team, I developed and implemented a novel set of techniques that fully exploit

the hardware implementation to maximize link range, data rate, and robustness.

By performing transmit beamforming from the mesh, I can simultaneously receive

an amplified signal observed by the intended receiver and eliminate the interference

observed at the mesh; receiving nulling is performed through transmit beamforming

in hardware.

Now, I briefly discuss the novel DCMB hardware implementation technique. A

parallel process design is applied to extend and improve the performance of a typical

wireless communications system. First, the signal was sent from the transmitter

node as shown in Figure 1.2. The potentially shifted and compressed original radio

signal in frequency has training signals incorporated. This signal is then distributed

among the Mesh A nodes and is potentially transformed again through the air. An

optimized set of distributed pre-distortion filter hardware implementations (one for

5

Figure 1.2: Signal From Transmitter to Receiver.

each mesh node) is applied to each signal, operating as a wideband beamformer. This

beamformer maximizes the SINR at the receiving Mesh B [11].

1.1 Previous Work

In this section, I’ll review earlier studies and attempts in distributed mesh beam-

forming and hardware implementations. While many ways exist to use many elements

in an RF system, I will concentrate on current studies in the coherence and dispersed

beamforming sector.

To boost performance, distributed coherent systems integrate distributed pieces

through synchronization or other reconstruction methods. Using distributed compo-

nents in a manner that is similar to a traditional antenna array is known as distributed

mesh beamforming. Adaptive weightings are applied to every dispersed element to

achieve this.

Previous work on distributed coherent network beamforming (DCMB) has mainly

focused on exploring this innovative wireless communication system design’s theoreti-

cal foundations, algorithmic developments, and experimental validations. Researchers

have studied various aspects of DCMB: flash modeling techniques, distributed pro-

6

cessing architectures, hardware implementations, and performance evaluations. De-

veloping and optimizing flash modeling algorithms is a critical research area. These

algorithms aim to maximize signal quality, reduce interference, and improve spec-

trum efficiency. It utilizes the spatial diversity provided by distributed antennas[6].

Additionally, researchers have tried to improve the robustness of DCMB systems to

channel variations, Doppler effects, and environmental conditions[9]. In addition, re-

searchers have proposed other new types of distributed processing architectures and

applications, as shown in Figure 1.3 and Figure 1.4. All these new architectures

can efficiently implement DCMB algorithms on hardware platforms. These architec-

tures use parallel computing, distributed signal processing techniques, and optimized

communication protocols to achieve real-time performance and scalability[7].

As shown in the previous paragraph, researchers utilize distributed coherence func-

tions in multiple distinct regimes. For instance, post-processing is often used in radio

astronomy systems with dispersed receivers to restore coherence and lessen the need

for receiver synchronization. However, complete coherence phase and cycle synchro-

nization are necessary for timing and positioning applications[12]. The distributed

beamforming system is in the middle; it needs to be in the correct phase, but the

overall synchronization of the system can withstand a few cycle slippages. Thanks

to the approach in [12], phase-accurate distributed coherence can be achieved simul-

taneously with communications. Phase-accurate distributed coherence serves as the

foundation for the provided distributed beamforming algorithm.

In [13], the viability of this class of systems is demonstrated, including instances

with increased phase variance. There is a known trade-off between the highest possible

benefit and inadequate synchronization. Researchers addressed subsequent problems,

and advancements in laboratory demonstrations of these systems are presented in

subsequent work [14].

7

Figure 1.3: Satellite Communication Application for Distributed Coherent Mesh
Beamforming Technology.[2]

Combining shared hard decisions and coding decisions yields the necessary SNR

enhancement in another method described in [15]. Nonetheless, the designer did

not consider robustness to interference in this technique. With a set of small size,

weight, power, and cost radios conducting transmit beamforming to significantly ex-

tend the range and robust communications to a far receiver, the designer established

the viability of the final transmit beamforming stage in [16]. For distributed transmit

beamforming, the signal-to-interference-plus-noise ratio (SINR) loss related to carry-

ing out the channel estimate concurrently with the data transmission is described in

[17]. Combining shared hard decisions and coding decisions yields the necessary SNR

enhancement in another method defined in [15].

8

Figure 1.4: Ground Base Station Mobile Devices Communication Applications.

For distributed transmit beamforming, the signal-to-interference-plus-noise ratio

(SINR) loss related to carrying out the channel estimate concurrently with the data

transmission is described in [17]. The researcher described a technique that allows

timing synchronization to go close to fundamental limitations in [18]. The enablement

of distributed coherent beamforming techniques is also covered. The most recent

developments in this field have seen the implementation of workable systems using

commercially available hardware (COTS) that accomplish some of the objectives and

show viability.

A basic version employing three separated nodes achieves frequency synchroniza-

tion [19] by feeding a small amount of receiver feedback into an Extended Kalman

Filter (EKF). Phase is adjusted using a single bit of feedback to achieve beamforming.

With N being the number of mesh antenna components, this technique produced an

SNR gain of about 1.5 dB away from the N2 bound on SNR improvement. It did,

however, take a while to converge. The researcher obtained similar outcomes in [20]

9

and [21], with the main distinction being that they utilized a reference LO signal for

synchronization. Then, they sent it over the air to the virtual array’s nodes.

These SNR gain-focused methods are expanded onto mobile platforms once more

in [22] and [23]. A controlled guide transceiver bends the beam to support phase

adjustment feedback. They used feedback from the destination receiver to synchronize

frequencies. They examined beamformer phase estimation bounds and distributions.

In hardware implementation studies, researchers have investigated the design and

optimization of dedicated hardware accelerators and platforms for DCMB applica-

tions. These hardware platforms aim to balance performance, power consumption,

and resource utilization to meet the stringent requirements of DCMB systems [5].

[5] explains the QRD algorithm in matrix inversion and is one of the most complex

blocks in the design. Researchers have achieved experimental validations of DCMB

using simulation-based methods such as Matlab, but people have yet to implement

them in real life. These experiments demonstrate the performance, scalability, and re-

liability of DCMB systems in various operating scenarios and network configurations

[9].In addition, there are other previous studies [24], [25], [26] on DCMB hardware

that focused on optimizing performance, efficiency, and scalability. However, current

hardware implementations often need help with challenges such as limited processing

capabilities, high power consumption, and significant form factors. Recent advances

have explored new architectures, dedicated accelerators, and integrated circuits tai-

lored for DCMB applications to address these limitations. These innovations [27]

aim to improve performance, reduce latency, and improve energy efficiency, enabling

DCMB deployments in resource-constrained environments. Overall, previous work

on DCMB has contributed significantly to understanding distributed information,

beamforming techniques, efficient processing architectures development, and DCMB

feasibility validation in practical environments. These efforts will contribute to the

10

widespread adoption of DCMB in real-world applications.

1.2 Work and Contributions

My work focuses on developing hardware design methods for Distributed Coherent

Network Formation (DCMB). It is a critical technology for today’s communication

networks. My research mainly focuses on creating unique hardware accelerators for

beamforming in and without DCMB systems. These accelerators are optimized to

perform essential functions such as QR decomposition, decompensating, and matrix-

to-matrix multiplication with expected efficiency and accuracy. By offloading these

computationally intensive tasks to dedicated hardware, my approach significantly im-

proves the performance and scalability of DCMB systems. These improvements allow

for real-time processing and better signal quality. In addition, my work goes beyond

hardware accelerator optimization. I also designed and implemented a new archi-

tecture to control distributed node-to-node beamformers. This scheduler achieved

parallel execution of multiple timelines. Each of them is responsible for specific tasks

in the speed update process. The scheduler allows it to meet the timing requirements

of the DCMB network. I show the FPGA board I used to implement the design in

Figure 1.5. I expressed my contributions to this work in the following bullets:

• Designed three timelines to shorten the latency for the whole process.

• Improved folded architecture for the cross-correlation and matrix multiplica-

tion accelerator to limit the utilization of hardware design with fewer hardware

resources.

• Implemented two LUTs in the QRD accelerator to increase the precision of

output data.

• Completed timing closure for the whole design with required timing of 2.5ms.

11

Figure 1.5: Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit

• Developed two avenues for computing beamforming on the target platform; one

is purely FPGA-based, and the other is a hybrid approach.

In addition, Dr. Daniel Bliss, Dr. Chaitali Chakrabart, Dr. Jacob Holtom,

Dr. Owen Ma, Dr. Andrew Herschfelt, Dr. Hanguang Yu, Narayanan Murugan,

Saquib Siddiqui, and Isabella Lenz were vital contributors to the distributed coherent

beamforming research and demonstrations.

12

Chapter 2

BACKGROUND

Two key ideas in wireless communication systems are MIMO (Multiple Input,

Multiple Output) and SISO (Single Input, Single Output). Each of them has a dis-

tinct history and set of properties. History of Single Input Single Output, or SISO,

systems: Researchers utilize one transmission antenna and one reception in SISO sys-

tems. They are the conventional kind of wireless communication systems. Optimiz-

ing modulation methods, coding strategies, and signal processing algorithms to reach

maximum spectral efficiency is the main focus of SISO systems. Regarding installa-

tion and signal processing, SISO systems are more accessible than MIMO systems.

However, the capacity and robustness of SISO systems are constrained, particularly

in fading and interference-filled situations. MIMO (multiple input, multiple output)

systems’ history: Designers utilized multiple antennas in MIMO systems for trans-

mission and reception. It allows for the use of multiplexing gain and spatial diversity.

MIMO technology has dramatically increased data speeds, spectrum efficiency, and

dependability. The fundamental idea underlying MIMO is to use multiple antennas

to generate numerous parallel communication channels between the transmitter and

receiver. MIMO enhances the capacity and reliability of the system. MIMO sys-

tems may improve performance in data rates, coverage, and interference mitigation

by utilizing various techniques such as beamforming, precoding, spatial diversity, and

spatial multiplexing because MIMO technology may produce more significant data

rates, better coverage, and increased speed. Researchers commonly use it in wireless

communication protocols, including LTE, Wi-Fi, and 5G.

Researchers positioned several antenna systems to benefit from spatial diversity

13

by utilizing various transmit and receive elements. A comparable single input single

output (SISO) system cannot match spatial diversity created by various pathways con-

necting the transmitting and receiving systems. A system can become more resilient,

handle higher data rates, or be less susceptible to interference by utilizing numerous

antennas on both the broadcast and receiving ends [17]. Beamforming techniques,

which treat the transmit antennas as an array, can combine desired signals coherently.

Several strategies and techniques exist to take advantage of various components

and channel pathways. I will briefly address a few common ones in the following

section, but I would like to address them quickly and immediately. Using space-time

coding techniques offers a single way to use several antenna systems. A space-time

trellis code divides a conventional trellis code over many antennas and periods to

achieve diversity and coding gain. A data block is distributed among antennas and

time slots using a space-time block coding, which only increases spatial diversity.

2.1 Beamforming

In wireless communication systems, beamforming is a signal-processing technique

that focuses radio waves in a particular direction to improve the performance of the

communication channel. The history of beamforming is as follows:

2.1.1 Traditional Antenna Systems

Signals are consistently broadcast and received in all directions in typical antenna

systems. The communication system’s range, data speeds, and general performance

are all restricted by this omnidirectional transmission/reception pattern. It is partic-

ularly problematic in noisy and interference-filled situations.

14

Figure 2.1: Beamforming Example.

2.1.2 Principles of Beamforming

Beamforming utilizes the idea of constructive and destructive interference. Beam-

forming maximizes the concentration of transmitted energy in one direction while

reducing interference from other directions. Various antenna components produce a

directed radiation pattern by varying the phase and amplitude of the signals sent and

received[28]. Depending on the system’s needs and available technology, people can

perform beamforming using analog or digital signal processing techniques. In this

dissertation, I will only discuss digital signal processing techniques.

2.1.3 Types of Beamforming

Digital beamforming as shown in Figure 2.1, is one of the primary categories

of beamforming. Digital beamforming uses digital electronics to guide the beam

in the appropriate direction. By processing the data digitally, digital beamforming

offers greater flexibility and control over the beamforming procedure. Furthermore,

15

Figure 2.2: 3D Beamforming Application Scenario [3].

beamforming methods may include time domain-like phased array systems[29] and

frequency domain-like frequency-domain beamforming applications[30].

2.1.4 Applications of Beamforming

Beamforming has extensive use in a range of wireless communication systems.

For example, satellite communication, Wi-Fi, cellular networks as shown in Figure

2.2, and radar systems are all applications related to DCMB. It enhances system

capacity and spectrum efficiency, expands coverage area, reduces interference, and

improves signal reception quality. Beamforming is a crucial technique that enables

enormous data speeds, better coverage, and an enhanced user experience in modern

communication protocols, including LTE, 5G, and Wi-Fi 6/6E.

In conclusion, beamforming is an effective signal-processing method that allows

signals to be transmitted and received in a specific direction in wireless communication

systems. It improves wireless communication systems’ efficiency, dependability, and

performance.

The array factor represents the combined radiation pattern of several antenna

elements in an array. I state them as follows:

16

AF (θ) =
N∑
n=1

wne
−j2πd sin(θ)n−1

λ (2.1)

Where AF (θ) is the array factor as a function of the angle of arrival (θ). w is the

complex weight assigned to each antenna element. d is the spacing between adjacent

antenna elements. λ is the wavelength of the transmitted signal.

The steering vector represents the beamforming array’s directionality. I start it

as follows:

a(θ) = [1, e−j2πd sin(θ)/λ, . . . , e−j2πd(N−1) sin(θ)/λ]T (2.2)

where a(θ) is the steering vector, θ is the angle of arrival, d is the spacing between

adjacent antenna elements, N is the number of antenna elements, λ is the wavelength

of the transmitted signal.

It is possible to compute the weights allocated to each antenna element using differ-

ent beamforming techniques. The Maximum Signal-to-Interference-plus-Noise Ratio

(Max-SINR) beamforming technique is one popular approach[31][9]. The weights for

this method are provided by[9]:

wMax-SINR =
R−1a(θ)

aH(θ)R−1a(θ)
(2.3)

where wMax-SINR is the vector of beamforming weights, R is the covariance matrix

of the received signal.

2.1.5 Minimum Mean Square Error (MMSE) Method

In wireless communication systems, the Minimum Mean Square Error (MMSE)

beamforming approach optimizes the transmit beamforming vectors to minimize the

mean square error at the receiver while considering noise and channel conditions[32].

17

MMSE beamforming seeks to minimize the mean square error between the desired

and received signals by accounting for noise and channel characteristics. It strikes a

balance between reducing noise and interference and optimizing the strength of the

received signal. MMSE beamforming is especially helpful when channel conditions

are ambiguous, or channel state information (CSI) is imperfect.

Let w be the beamforming vector applied at the transmitter and h be the channel

vector between the emitter and the receiver. The received signal at the receiver

expressed as:

y = hHwx+ n (2.4)

where the algorithm team denoted the received signal by y, the signal was sent x.

The noise adds up to n. Then, the algorithm team shows the conjugate transpose by

the symbol ()H .

The estimated transmitted signal x at the receiver is given by:

x̂ = wHhyeff (2.5)

where: yeff is the effective received signal after applying the beamforming at the

transmitter.

Minimizing the mean square error (MSE) between the transmitted signal x and

the estimated signal x̂ is the aim of MMSE beamforming. The MSE is denoted as:

MSE = E
[
|x− x̂|2

]
(2.6)

where E denotes the expectation.

The goal is to find the beamforming vector w that minimizes the MSE. To do

so, to differentiate the MSE concerning the conjugate transpose of the beamforming

18

vector x∗ and set the derivative equal to zero. Setting the derivative equal to zero

is because, at the minimum point, the derivative of the MSE concerning x∗ should

be zero. The MMSE beamforming vector wMMSE can be derived by minimizing the

MSE[28]:

wMMSE =
R−1
h h

hHR−1
h h

(2.7)

where: Rh is the covariance matrix of the channel h.

MMSE beamforming strikes a compromise between reducing noise and interfer-

ence and optimizing the strength of the received signal. It functions effectively in

situations when there is noise and faulty CSI. This formulation and solution provide

the basis for comprehending and applying MMSE beamforming in wireless commu-

nication systems.

2.2 Field-Programmable Gate Arrays (FPGAs)

Integrated circuits known as Field-Programmable Gate Arrays (FPGAs) allow

user configuration after manufacturing the device. Because of their great adaptabil-

ity and customization, designers may use them in various sectors and for multiple

purposes. A flexible routing network connects a variety of programmable logic blocks

(PLBs) that make up FPGAs. PLBs comprise flip-flops and customizable logic el-

ements (LEs), which may be programmed to perform certain logic operations. The

routing network facilitates the development of intricate digital circuits by permitting

flexible connections between PLBs. Designers can use High-level synthesis tools or

Hardware Description Languages (HDLs) like Verilog or VHDL to program FPGAs.

With HDLs, designers may specify the desired register-transfer functionality of the

digital circuit. The configuration file, or bitstream, is created and loaded into the

FPGA once the design has been synthesized and mapped onto it, setting it up to

19

carry out the required functions. There are advantages for FPGA as follows:

• Flexibility: Fast prototyping and iteration of designs are made possible by the

great flexibility and reconfigurability of FPGAs.

• Reconfigurability: Even after deployment, FPGAs are reprogrammable. With

this functionality, designers can reconfigure hardware dynamically to accommo-

date upgrades or changing requirements without requiring new hardware.

• Rapid Development and Prototyping: designers utilized FPGAs extensively in

developing and prototyping digital systems. Time-to-market is shortened for

designers since they can test new algorithms, validate concepts, and iterate

designs fast without waiting for specialized ASIC manufacturers.

• Customization: FPGAs make it possible to build hardware accelerators suited

explicitly for a given application, boosting efficiency and performance. Paral-

lelism: FPGAs are ideally suited for applications with high processing needs

since they naturally allow parallelism.

• Parallelism: FPGAs inherently support parallelism, making them well-suited

for applications with high computational demands.

• High Performance: FPGAs may attain high performance for particular activities

by utilizing hardware acceleration and parallel processing. FPGA-based custom

hardware accelerators can perform faster and more efficiently than software-

based alternatives.

• Minimal Costs for Non-Recurring Engineering (NRE): FPGAs offer lower NRE

costs than application-specific integrated circuits (ASICs) since they don’t need

costly masks and manufacturing processes. Because of this, FPGAs are more

affordable for quick prototyping or low- to medium-volume production.

20

• Ease of Iteration and Debugging: FPGAs make it simple for designers to modify

the hardware design, promoting iterative design processes. Additionally, FP-

GAs come with built-in tools for testing and debugging in real-time, which help

find and fix problems quickly.

• High-degree Synthesis (HLS): HLS tools allow designers to use software-like

structures to describe hardware operations at higher abstraction. HLS lowers

the entry barrier for FPGA development by enabling software engineers to build

and optimize hardware circuits using their programming expertise.

• Versatility: From digital signal processing, image and video processing, network-

ing, and encryption to embedded systems, FPGAs serve various applications.

Due to their adaptability, designers can use FPGAs in multiple sectors and

applications.

• Low-Risk Investment: FPGAs provide a low-risk investment for creating new

products because of their flexibility and reconfigurability. Designers can test

several architectures and configurations before final hardware design.

• Customization and Differentiation: FPGAs allow businesses to set themselves

apart from the competition with their goods by including unique hardware

accelerators or customized processing units designed for specific applications.

Customization may result in distinctive features and a competitive edge in the

marketplace.

• Product Lifecycle Management and Length: FPGAs have longer product life-

cycles than application-specific integrated circuits (ASICs). Longer lifecycles

lower the risk of obsolescence by ensuring component availability for ongoing

product maintenance and support.

21

• Time-to-Market: FPGAs can reduce time-to-market by enabling rapid proto-

typing and design validation without needing custom ASIC development.

FPGAs provide flexibility, performance, affordability, and ease of development com-

pared to other options. The flexibility makes them a desirable choice for a variety

of applications. People may find FPGA applications in many industries, including

consumer electronics, data centers, automotive, aerospace, and telecommunications.

Digital signal processing (DSP), image and video processing, machine learning infer-

ence, encryption and decryption, software-defined networking (SDN), and embedded

systems are examples of everyday uses.

There are also challenges for FPGA as follows:

• Complexity of Design: Digital logic design and FPGA architectural knowledge

are prerequisites for designing intricate circuits for FPGAs, which can be dif-

ficult. Timing restrictions, resource use, and route congestion become more

challenging to manage as designs get more complex.

• Resource Restrictions: Logic cells, memory blocks, and input/output (I/O)

pins are among the few resources available to FPGAs. To ensure the design

works within the limitations of the FPGA chip, designers must carefully control

resource use. Designers must compromise performance or functionality, which

may occasionally happen due to resource constraints.

• Timing Closure: In FPGA design, achieving timing closureensuring all signals

satisfy timing requirementscan be tricky. Designers carefully place and route

high-speed designs to reduce signal propagation delays and fulfill timing limi-

tations. Timing closure can take time and may require numerous iterations.

• Power Consumption: Using FPGAs to implement complicated designs can lead

22

to excessive power consumption, mainly when those designs operate at high

frequencies or with high logic. Applications that target battery-operated devices

or those with tight power limits must control power usage.

• Verification and Validation: Ensuring the accuracy and operation of the imple-

mented logic is a complicated procedure that goes into verifying and validating

FPGA designs. While necessary, verification methods like hardware emulation,

formal verification, and simulation can be laborious and demand a lot of pro-

cessing power.

• Security Risks: FPGAs are vulnerable to security risks, including tampering,

reverse engineering, and intellectual property theft (IP). Robust security mech-

anisms, such as encryption, authentication, and access control, must be imple-

mented to guard FPGA designs from theft, piracy, and hardware assaults.

• Toolchain Complexity: FPGA development tools and toolchains can be chal-

lenging because of their complexity and high learning curve. The synthesis,

place-and-route, and debugging tools offered by FPGA suppliers need design-

ers to become adept in utilizing them; each tool may have peculiarities and

restrictions.

• Vendor Lock-In: Selecting an FPGA vendor binds designers to that vendor’s

environment, which consists of their exclusive libraries, IP cores, and devel-

opment tools. A significant redesign and modification of the design could be

necessary to switch to a new supplier, raising questions about vendor lock-in

and reducing flexibility.

• Testing and Debugging: It may be challenging to test and debug FPGA designs,

particularly when they are complicated or include co-designing hardware and

23

software. FPGA debugging tools and methods may not be as developed as

software debugging, necessitating innovative problem-solving strategies.

• Cost: Although FPGAs are flexible and reconfigurable, in terms of unit cost,

they might be more costly than software solutions or application-specific inte-

grated circuits (ASICs), especially in high-volume production. Cost concerns

may influence the decision between alternate solutions and FPGA-based solu-

tions.

In conclusion, FPGAs provide a very adaptable and configurable framework for

building digital circuits. It facilitates quick prototyping, personalization, and parallel

processing for various business uses.

2.2.1 Xilinx FPGAs

In this dissertation, I describe the whole hardware implementation process. First

of all, I am using FPGA to implement the algorithm. And then, I choose Xilinx

FPGAs. There are a lot of choices in the market.

Xilinx is one of the top suppliers of FPGAs, and related software tools and IP

cores are Xilinx, which is now a part of AMD. Xilinx provides various FPGA fam-

ilies, including the Virtex, Kintex, and Artix series, as well as specialist goods like

RFSoCs and Zynq UltraScale+ MPSoCs. Numerous industries, including telecommu-

nications, automotive, aerospace, data centers, industrial automation, and consumer

electronics, employ their FPGAs. Intel has the FPGA part called Altera. With the

acquisition of Altera, Intel has emerged as a significant participant in the FPGA in-

dustry. The companies designed the Stratix, Arria, and Cyclone series of Altera’s

FPGA families to meet the needs of distinct market groups and application areas.

For example, networking, data center acceleration, automotive, and industrial au-

24

tomation are just a few of the many uses for Intel FPGAs. Currently a division

of Microchip Technology, Microsemi provides a variety of FPGAs under the Smart-

Fusion and PolarFire brands. Xilinx integrated ARM Cortex-M3 CPUs and FPGA

fabric within SmartFusion FPGAs, which makes them appropriate for embedded ap-

plications. Applications requiring low power and security, such as industrial IoT,

defense, and aerospace, are well-suited for PolarFire FPGAs. Semiconductor Lat-

tice: Software tools, programmable mixed-signal devices, and low-power FPGAs are

the areas of expertise for Lattice Semiconductor. Targeting applications including

mobile devices, IoT, industrial automation, and consumer electronics, their FPGA

families include the iCE40, ECP, and MachXO series. For low-volume applications,

lattice FPGAs are renowned for their tiny form factor, low power consumption, and

quick market time. QuickLogic Corporation specializes in embedded FPGA (eFPGA)

IP solutions and ultra-low-power FPGAs for battery-powered and power-constrained

applications. Their FPGA products include the ArcticPro and QuickLogic EOS S3

series, intended for edge AI, wearables, and Internet of Things applications. The

semiconductor Achronix, High-performance FPGAs, and embedded FPGA (eFPGA)

IP solutions for networking, data center acceleration, and automotive applications

are Achronix Semiconductor’s areas of expertise. The Speedster and Speedcore series

are among their FPGA families; they include high-speed interfaces and low-latency

processing, and designers can reconfigure fabric for customized acceleration.

These are only a handful of the businesses that manufacture FPGAs. Each has its

own unique features, functions, and target customers. Designers have a wide range of

FPGA families and suppliers to select from, depending on the particular requirements

of an application.

The whole team chose Xilinx FPGAs among all these worldwide manufactur-

ers because they have advantages for our design. Xilinx FPGAs are well-known for

25

their state-of-the-art features, exceptional performance, and broad ecosystem sup-

port. This paragraph is a more thorough overview of Xilinx FPGAs, encompassing

several facets of their programming, architecture, benefits, uses, and unique char-

acteristics. With programmable logic blocks (PLBs), customizable logic elements

(CLEs), block RAMs, DSP slices, and high-speed transceivers, Xilinx FPGAs have a

very flexible design. Designers can configure Flip-flops, CLEs, and other components

found in the PLBs to perform unique logic tasks. While DSP slices offer specialized

hardware for executing digital signal processing algorithms, block RAMs provide on-

chip memory resources for data processing and storage. Xilinx offers a complete set

of software tools for FPGA development, such as the ISE Design set (legacy) and the

Vivado Design Suite. Vivado Design Suite provides a cutting-edge, integrated devel-

opment environment for FPGA design, synthesis, place-and-route, and verification.

The development tools provided by Xilinx provide many design entry techniques, in-

cluding schematic capture, high-level synthesis (HLS) with languages like C, C++,

or SystemC, and Hardware Description Languages (HDLs) like Verilog and VHDL.

Advanced features like dynamic power management, on-chip security, and partial

reconfiguration are all included in Xilinx FPGAs. Partial reconfiguration enables

runtime flexibility to change requirements by allowing designers to program selected

areas of the FPGA dynamically while the remainder of the device stays functional. In

power-sensitive applications, dynamic power management techniques such as voltage

scaling, power gating, and clock gating maximize battery life and minimize power

usage. Xilinx FPGAs also have security capabilities to protect critical designs and

intellectual property, including bitstream encryption, device authentication, and tam-

per detection. High-level synthesis (HLS) tools from Xilinx, including Vivado HLS, let

designers use C, C++, or SystemC to define hardware functionality. High-level spec-

ifications are automatically converted into RTL (Register Transfer Level) code using

26

HLS tools, speeding up the FPGA design process and allowing software profession-

als to use their programming expertise to design hardware. Many sectors use Xilinx

FPGAs, including telecommunications, automotive, aerospace, data centers, indus-

trial automation, and consumer electronics. Digital signal processing (DSP), image

and video processing, embedded systems, machine learning inference, encryption and

decryption, and software-defined networking (SDN) are common uses. With a large

selection of IP cores, development boards, and software solutions, Xilinx maintains a

robust ecosystem of partners, developers, and outside IP vendors. The ecosystem of

Xilinx consists of hardware suppliers, companies that offer design services, training

partners, and online forums that give FPGA designers a wealth of information and

assistance.

Xilinx FPGAs are a popular option in this field since they provide several benefits

for creating wireless communication systems. The following are some of the main

benefits. Excellent Throughput and Performance: High-performance logic resources,

DSP slices, and hardware blocks specifically designed for digital signal processing are

all features of Xilinx FPGAs. These resources match the rigorous criteria of contem-

porary wireless standards like 5G by enabling the development of intricate wireless

communication algorithms with high throughput and low latency. Reconfigurability

and Flexibility: Because Xilinx FPGAs are versatile and programmable, designers

may easily modify and enhance wireless communication protocols and algorithms

in response to changing standards or demands. Rapid development and testing of

novel wireless technologies are made possible by reconfigurability, shortening time-to-

market, and promoting innovation. Combining Acceleration and Processing: With

the integration of FPGA fabric with multi-core ARM processors, Xilinx FPGAslike

the Zynq UltraScale+ MPSoCsoffer a heterogeneous processing platform for wireless

communication systems. The seamless implementation of baseband processing, pro-

27

tocol stack execution, and application-specific acceleration inside a single device is

made possible by integrating processor cores with FPGA fabric. Personalization and

Distinction: Xilinx FPGAs enable the implementation of customized hardware accel-

erators, protocol offload engines, and efficient processing pipelines. Hence, facilitating

the customization and differentiation of wireless communication systems is essential

in the design process. Designers can develop custom hardware accelerators to improve

system speed and efficiency for tasks like channel coding, modulation/demodulation,

beamforming, or interference mitigation. Minimal Power Usage: Xilinx FPGAs pro-

vide low-power design methodologies and extensive power management capabilities

to reduce power usage for wireless communication systems. Clock gating, power

gating, and voltage scaling are power optimization features that assist in lowering

power consumption without sacrificing performance, making them appropriate for

battery-operated and energy-efficient wireless devices. Interfaces and Integrated Con-

nectivity: A vast array of fast transceivers and interfaces. They support widely used

wireless communication protocols, including Ethernet, PCIe, JESD204, CPRI, and

RF, which Xilinx FPGAs offer. System integration is made more accessible by in-

tegrated connections and interfaces, making it easy to interface with external parts

like RF frontends, antennas, sensors, and network infrastructure. Features of Se-

curity: To guard against unwanted access, tampering, or intellectual property theft,

Xilinx FPGAs include security capabilities such as bitstream encryption, secure boot,

and device authentication in their critical wireless communication designs. Wireless

communication systems’ integrity, confidentiality, and authenticity are guaranteed by

security measures, especially in applications that call for secure data processing and

transmission.

Xilinx FPGAs provide a robust and adaptable foundation for speeding various

applications and developing unique digital logic. With its sophisticated features, all-

28

inclusive development tools, and broad ecosystem support, Xilinx keeps pushing the

boundaries of innovation in the FPGA sector and opening up new possibilities for

next-generation solutions in various fields.

In conclusion, Xilinx FPGAs provide high performance, flexibility, customiza-

tion, low power consumption, integrated processing, and security features to meet

the changing needs of contemporary wireless standards and applications. All these

feathers make them a powerful and adaptable platform for designing wireless com-

munication systems.

29

Chapter 3

DISTRIBUTED COHERENT MESH BEAMFORMING SYSTEM

The WISCA center and the algorithm team develop the algorithm and most com-

putations. The most detailed information can be found in[33][9][4], and some of the

algorithms are from the reports that Owen and Jacob summarized for the research.

In this chapter, I will talk only about the algorithms and computations implemented

on the hardware. A distributed coherent network relay network consists of relays

called initiating transmitters (transmitter and receiver at each end of the relay) or

network nodes. Initiating transceiver nodes are the radios through which users can

join the network. The system transmits the signal of interest (the payload) through

the transmitter. The outgoing transmitter may amplify this signal to facilitate net-

work propagation. The outgoing transmitter forwards this modified signal to a dis-

tributed, locally coherent collection of relay nodes. Relay nodes distort and amplify

the received signal. The relay nodes then work together to forward the pre-distorted

and augmented signal to another network or the incoming node. Repetition of this

process will happen if the target set of receivers is another network. Otherwise, the

receiving node effectively removes any remaining enhancements to isolate the signal

of interest and forwards it for decoding or use. The radios and algorithms that make

up this network need to be small in size, weight, power, and cost but able to overcome

long transmission distances and sources of interference.

3.1 System Overview

Distributed Coherent Mesh Beamforming (DCMB) aims to create a network of

distributed beams, shown in Figure 3.1, which act as signal relays. The network

30

consists of beams marked as gold nodes and blue nodes. A radio user can ask for the

help of a Distributed Coherent Mesh Beamforming (DCMB) system to transmit the

signal by directing the output of the source beam to the input of the golden node.

Figure 3.1: Overview of a Distributed Communications Topology That Includes
Two Meshes and Constant Interference.

The system approaches each mosaic through an antenna array, with each mosaic

tile representing one element, and the algorithm team builds the network to operate as

a ”bent-pipe.” The pre-distortion filters applied to the relay signals, which coherently

integrate the source waveform and reject incoming interference only when it reaches

the receiving gold node antenna, make this technique distinctive. Put differently,

transmit beamforming is used to achieve receiver beamforming. Therefore, the full

benefits of the mosaic relay will not be available to any radio not co-located within

the terminal gold node.

Frequency-division duplexing allows for bidirectional communications, with one

antenna used for each direction. Both routes use the same processing. The wave-

form uses underlays to provide information feedback and training materials at every

31

step. A transmitting gold node adds a low-power underlay and a center frequency

translation as its only augmentations. Blue nodes filter out most of the underlay

and apply the pre-distortion filter when processing incoming streaming data at the

baseband to perform beamforming feathers. Subsequently, blue nodes add a new un-

derlay and adjust the center frequency to prepare for the retransmission. Waveform

agnosticism and a certain amount of computational simplicity are provided by this

method, enabling flexible and attritable nodes. The computations used to create the

beamformer are ”generic,” and no operations reveal protected information. A certain

amount of infrastructure is required to enable such an activity. The algorithm team

uses an inter-mosaic data exchange network to provide the blue nodes with the data

they need to calculate the beamformer. Further, it depends on a background process

of time-frequency synchronization to enable distributed beamforming by enabling the

dispersed mosaic tiles to perform like a linked array.

3.2 Beamforming Methods

In this dissertation, I focus on the hardware design and implementation of a single

mosaic scenario, depicted in Figure 3.2.

The filters essentially adjust the beam pattern of the array. The relay network

differs from this traditional structure because every component of the receive array is

not connected to the data fusion point. Mosaic tiles must broadcast over the air to a

receiver to finish the signal-combining process. Through transmit beamforming, the

system can obtain receiver beamforming. The following is an additional interpretation

of this function. A gold n de sends a signal to another gold node equipped with a

virtual antenna array over a channel that represents the two-stage propagation in

analogy. At this point, the algorithm team can utilize standard processing techniques.

A particular beamformer building technique modifies the array beam pattern to

32

Figure 3.2: Single Network Topology: Send a Distributed Network Node to the
Final Receiving Node in the Presence of an Interrupter.

align the main lobe concerning element placements in the best possible direction.

Examples of such strategies include minimal power distortionless response (MPDR)

and minimum variance distortionless response (MVDR). However, precise node lo-

cation information is needed to attain the best performance. Introducing movable,

unconnected parts exacerbates these approaches’ sensitivity to positional precision.

Their approach does not need the specific position of the transmitters and receivers.

The adaptive wideband beamformer uses the minimal mean square error (MMSE)

technique. Instead, they use established training waveforms and track the alterations

they experience as they travel via communication channels. The observations provide

information about the exact relative locations of each receive and transmit element,

which is utilized implicitly throughout construction.

To mitigate the interference, researchers used the technique of a spatiotemporal

data covariance matrix to guide the null location in the beam pattern. This amount

includes the jammer’s propagation characteristics. For these techniques to achieve

33

interference rejection, data interchange is a prerequisite. The interference plus noise

covariance, which may be challenging to achieve, is a prerequisite for methods that

optimize the signal-to-interference plus noise ratio (SINR), such as the maximum

voltage distortion ratio (MVDR). With the e approaches, free-running communica-

tions signals would not be allowed. The covariance matrices used by the MMSE and

MPDR techniques may have a structure linked to the signal of interest, but there is a

chance that they will self-null. The MMSE approach is applied to obtain interference

rejection capabilities more effectively and to prevent sensitivity toward array element

location knowledge. The algorithm team addresses a compound channel extension

of the conventional narrowband and wideband MMSE beamforming problems in the

remaining portion of this section. To briefly describe the adaptation, the first step

is to review the narrowband model. The algorithm team can better comprehend the

beamformer’s design and performance limitations using narrowband models. The

vast form, the most universal version of the answer, is shown next. However, to

make this approach practically feasible, the algorithm team addresses modifications

made to this generic form in the following section. In this part, I finally talk about

performance measurement techniques.

3.3 Narrowband MMSE Beamformer

Our technique builds the beamform using training waveforms. Seeing how the

surroundings impact the training data allows constructing a beamformer appropriate

for the payload signal. This beamformer minimized the mean square error between

the training data and the reception at the terminal gold node[4].

A gold node first transmits the training waveform s to N mosaic nodes. For tile

n, the source signal s passes through the nth path of channel A, hA,n. Each node also

receives an observation of a jamming signal j that passes through a corresponding

34

channel hJ,n. Lastly, the mosaic accumulates some complex-valued noise q
n
. The

narrowband signal model for the reception at mosaic node n is

zn = hA,ns + hJ,nj + q
n
. (3.1)

Matrix Z, defined as

Z =


z1

...

zN

 , (3.2)

compiles all observations.

Before retransmission, the system applied a distortion transmit filter to the receipt

by each mosaic tile. Since the filter is merely spatial, the beamformer modifies only

the amplitude and phase.

Mosaic node n transmits

w∗nzn , (3.3)

where wn is one element of the spatial filter specific to node n.

The nth relay signal passes through the nth path of channel B hB,n. The reception

accumulates more complex-valued noise, q
B

. They model the gold node reception as

y =
N∑
n=1

hB,nw
∗
n

(
hA,ns + hJ,nj + q

n

)
+ q

B
(3.4)

=
N∑
n=1

hB,nw
∗
nzn + q

B
(3.5)

= wHdiag(hB)Z + q
B

(3.6)

= wHY + q
B
, (3.7)

35

where

Y =


y

1

...

y
N

 =


hB,1z1

...

hB,NzN

 . (3.8)

Matrix Y contains in its rows each tile’s re-transmitted signal having passed through

the various paths of channel B.

The algorithm team now finds a beamformer that minimizes the error between the

gold reception y and s. Only w∗nznis transmitted, so w must account for hB ahead

of time. The compound channel MMSE problem is

min
w

‖wHY − s‖2 . (3.9)

To consider a more typical MMSE adaptive beamforming problem, set hB = 1. This

setup shows that the system connects the final channels to the same processing unit.

The hardware design has a physical power restriction, but this minimization issue is

unrestricted. That constraint is not known to this optimization problem.

(
wHY − s

) (
wHY − s

)H
(3.10)

=wHw − sYHw −wHYsH + ssH (3.11)

To obtain the solution, expand the quadratic term in Equation 3.9, take the

derivative while leveraging Wirtinger derivatives because w is complex, set the result

to zero, and solve for w. The derivation is as follows: A closed-form solution exists

as

w =
(
YYH

)−1
YsH (3.12)

w = C−1r . (3.13)

36

Rearranging some terms within the MMSE beamformer expression results in the

following equation, and it is interesting to note that

w =
(

(diag(hB)Z) (diag(hB)Z)H
)−1

diag(hB)ZsH (3.14)

= diag(h∗B)−1 (ZZ)−1 ZsH . (3.15)

It is only possible to simplify this in the narrowband model. This form demon-

strates that, with a compensation term for the additional propagation stage, the

transmit beamformer is the standard MMSE receive beamformer as if channel B were

absent. Each element of the typical receive beamformer is pushed back off by h∗B,n.

The form C−1r commonly shows amongst many other beamformer construction

strategies. The cross-correlation vector and the inverse data covariance matrix mul-

tiply each other to create the beamformer. Coherent combining properties are pro-

vided by the cross-correlation r, which embodies the combined effects of channel B

and channel A. The term ZsH differs from the least squares estimate of channel A by

the normalization term, 1
|s|2 . Interference mitigation properties are provided by C−1.

The system comprised the matrix C of an uncorrelated noise component and a sum

of rank-1 components corresponding to each environment source. This mat ix is the

solution’s only term containing information about the jammer’s propagation charac-

teristics. The covariance matrix comprises a weighted sum of rank one components

and noise, some of which are correlated. Information about the signal of interest also

existed within C.

The algorithm team eventually rescaled the signals to optimize their occupancy of

the dynamic range of the digital-to-analog converter (DAC) without clipping, which

washes out the original scaling. There is still a chance of self-nulling even with the

same performance ceiling.

Similar work with the jamming component might be carried out to examine how

37

covariance estimation mistakes, which distort the jammer’s characteristics, affect

nulling effectiveness. Similar to this, the exact impact of the beamformer on the

jammer may be seen by applying the beamformer’s solution to the jammer’s channel

and solving for it using the Woodbury matrix identity. The inverse data covariance

matrix provides the interference-mitigating features. Examine the situation of noise

alone.

In actuality, the system has to approximate this sum. Blue nodes increase the

number of training sequences in the relay signal to sound the channel. The channel-

sounding waveform does not get any beamforming or beamforming filter processing

applied.

The terminal gold node receives the training waveform that the channel has dis-

torted in addition to a beamformed payload signal. Subsequently, the gold node

can estimate each channel and provide this information to the mosaic. The gold

node approximated all channels simultaneously if the transmitter sent the sounding

waveforms using a code division multiple access approach.

3.4 Wideband MMSE Beamformer

Transmit s from gold to N mosaic nodes. The sign l s passes through the nth

path of channel A, hA. Each node also receives an observation of a jamming signal

j that has passed through the nth path of hJ [n]. Lastly, the mosaic accumulates

some complex noise q
n
. The system has to contain beamforming filters to manage

dispersion and be functional. The filters allow the system to support a more extensive

range of bandwidths and mosaic node spacing. Here, the algorithm team expands the

beamformer formulation and signal models into a wideband operational regime. The

algorithm team designed spatiotemporal filters instead of just spatial ones.

38

The reception model at mosaic node n is

zn = hA,n ∗ s + hJ,n ∗ j + q
n
, (3.16)

Where the * operation indicates a convolution, a finite impulse response (FIR)

filter now represents each channel. Mosaic node n transmits after applying a pre-

distortion FIR transmit filter on the receiver with Tw taps.

wH
n ∗ zn . (3.17)

The filter length is one design parameter that must be long enough to accommo-

date a maximum predicted delay spread. Through the nth path of channel B, hB,n,

travels the nth relay signal. The model for gold reception stated as

y =
N∑
n=1

hB,n ∗wH
n ∗ zn + q

B
(3.18)

=
N∑
n=1

wH
n ∗ yn + q

B
(3.19)

=
N∑
n=1

wH
n Ỹn + q

B
(3.20)

= wHỸ + q
B

(3.21)

where y
n

represents the nth re-transmission through its corresponding path in channel

B. Define the nth re-transmission through its corresponding channel B as

y
n

= hB,n ∗ zn . (3.22)

The expressions wH
n Ỹn implement vector-matrix form convolutions between the

retransmission over channel B and the beamforming filter unique to each tile. wHỸ

is the term that implements the summation and the convolutions of those signal

39

streams. The data matrix Ỹ is spatiotemporal. The algorithm team first creates

component matrices to form this matrix.

Ỹn =



y
n
[0] y

n
[1] y

n
[2] . . .

0 y
n
[0] y

n
[1]

. . .

0 0 y
n
[0]

. . .

...
.


, (3.23)

and then stack them according to the structure,

Ỹ =


Ỹ1

...

ỸN

 . (3.24)

The unconstrained minimization problem is

min
w

‖wHỸ − s‖2 . (3.25)

The procedures used in the narrowband formulation are also needed to achieve the

closed-form solution. The solution for a wideband beamformer is

w =
(
ỸỸH

)−1

ỸsH (3.26)

= C−1r . (3.27)

This formulation takes on a more conventional form when the receive antennas

link to the same receiver, and each channel sets the B filter to a Dirac delta. The

convention Ỹs is a backward cross-correlation, as stated in Equation 3.23. Beginning

at a later time lag, the training waveform s glides over y
n

backward. Through the

compounded channels, the relative variations in flight time are adjusted for by this

backward cross-correlation.

40

Lastly, w, structured as

w =


w1

...

wN

 , (3.28)

The system includes every N beamforming filter in it. The system can parse out

individual filters by reading out continuous sequences coefficients of length Tw, given

the Ỹ structure. Before transferring them to be convolved with zn, corresponding to

the optimization problem statement, each wn has to be complex conjugated.

Once again, the beamformer constructor has to get a channel estimate. Instead,

the system has to estimate the collection of filters. An estimator of least squares

utilizing a tapped delay line model expressed as

min
hB,n

(y − hB,nS̃)(y − hB,nS̃)H (3.29)

(3.30)

can be used here, where

S̃ =



s[0] s[1] s[2] . . .

0 s[0] s[1]
. . .

0 0 s[0]
. . .

...
.


(3.31)

The algorithm team can approximate all channels concurrently if the transmitter

sends sounding waveforms using a code division multiple access approach. They can

obtain the channel estimation by taking the complex derivative about hH
B,n while

utilizing Wirtinger derivatives, setting the result to 0, and rearranging the formula

as the estimator is

hB,n = ySH(SSH)−1 (3.32)

41

Chapter 4

ALGORITHM DESIGN AND HARDWARE IMPLEMENTATION CHALLENGES

Adapting the previously provided solutions for the specific hardware implemen-

tation and real-world applications is necessary. In my research, I implemented the

design on the FPGA platform. Numerous modifications are required from the typical

MMSE problem.

The beamformer construction formulae covered in the previous section are better

suited for systems that use preload training sent via the same spectral support as the

tactical signal. The use of underlays causes issues with self-interference. It is also

essential to think about data exchange rate concerns. Providing a shorter cycle route

becomes necessary when this worry is transferred to the hardware.

The challenges instantly break two key assumptions: data availability and time-

frequency synchronization. I also must put this into practice on hardware. Many

decisions regarding algorithm adaptation and system design are ultimately driven by

the need to satisfy these two needs.

4.1 Synchronization Methods

The wideband MMSE beamformer structure described above presupposes the us-

age of observation data, wherein each stream is recorded beginning at a specific

global time, and the transmission and reception center frequencies are consistently

synchronized throughout all components. Because the nodes are dispersed, each has

a separate clock source, which might have oscillation frequencies that are out of sync,

leading to offsets in the clock time and carrier frequency. In center frequency misalign-

ments, there are discrepancies in local oscillator frequencies. Furthermore, there’s a

42

chance that every source and receiver in the environment will be mobile, resulting in

additional random frequency offsets via Doppler shifts.

A depiction of the network labeled with all the possible frequency offsets is shown

in Figure 4.1. If frequency alignment is poor enough, then poor correlations may

be observed. More importantly, the payload signal will not be able to maintain

coherence. This statement means the system has stringent timing requirements, and

the software design can hardly satisfy the criteria. If timing alignment is poor, then

the geometry of the network is inaccurately represented, which will produce a poorly

optimized beamformer that points the main lobe and nulls in incorrect directions.

The network has to adjust the time and carrier frequency offsets to achieve the

required beamforming gain and interference rejection at the receiver. It is necessary

to have synchronization regardless of the relay technology employed.

Additionally, the algorithm team will suppose a Doppler shift exists between the

Gold a and Gold b mosaics. The Doppler shift results from the relative velocity of

Gold B and the mosaic pieces.

If the frequencies are not aligned, the interference protection performance falls

off according to some equation. In Figure 4.2, the behavior for a two-element array

frequency offset increases.

The provided MMSE beamformer construction explicitly corrects for time and

phase offsets. However, mosaic tiles must be sufficiently synchronized to accurately

represent the time difference of arrival (TDOA) information. The mosaic must also

be punctual while signaling toward the gold receiver so that the channel estimator

can also accurately represent TDOA information. A shared sense of time should be

established and can be accomplished by declaring a master mosaic node for all others

to reference. Beamformer construction is somewhat robust in the case of misalign-

ments between each mosaic’s sense of global time and a genuine global timeline if it

43

Figure 4.1: Sources of Error.

meets certain conditions. One of these conditions is that mosaic data captures, and

the subsequent transmission of the channel-sounding waveform obey the same offset.

The transmission causes the misalignment embedded in the channel B estimate and

will be corrected when the beamformer is applied. For example, suppose a mosaic

node captures information early. In that case, it will also transmit early conditions

that the misalignments do not cause signal arrivals to miss the analysis window, which

is related to the maximum delay spread the mosaic can support. Alignment should be

accurate within one chip of the tactical signal. Misalignment is more tolerable when

achieving only SNR gain is sufficient than when effective interference rejection is de-

sired. Lastly, any misalignments must be stable and jitter minimally. A mechanism

to coordinate the timing between the mosaic nodes is required.

The provided MMSE beamformer architecture does not directly account for fre-

quency offsets. It can implicitly make little adjustments, but only for a limited range

of offsets. One can create augmentations that explicitly rectify carrier frequency

44

10ms Update

100ms Update

25ms Update

0 0.5 1.0 1.5 2.0
-30

-25

-20

-15

-10

Frequency Error (Hz)

N
u
ll
D
e
p
th

(d
B
)

Figure 4.2: Frequency Error vs. Update Rate for a two-element antenna array[4]

alignments, albeit at a much more considerable computational expense. An extra

device is needed to synchronize the broadcasts and receptions. Every node in the

DCMB network needs to compensate for its offset from a reference frequency. In a

relay network, the reference node is typically identified. Upon receipt, each mosaic

tile needs to have its offset from the gold transmitter adjusted. To ensure that signals

are correctly centered at the gold receiver after down-conversion, each mosaic node

must have its own pre-correction applied during transmission.

This technique requires that the system performs beamformer computation as

though the mosaic to gold offset does not exist. The hardware computations will take

this into account. The estimate may require a phase ramp correction before feedback,

contingent on the channel B estimating approach. Estimates for Channel B need to

be adjusted so that the gold node can use the training data obtained at the nominal

center frequency to create the initial estimate. Compound adjustments will result

in inaccurate beamformers. The algorithm team pinpointed every area that needs

correction and every area that is cause for concern. Every element in the mosaic will

45

have a frequency correction applied, consistent from Gold A to the mosaic. Every

mosaic tile will then undergo separate frequency corrections to Gold B. It will be

calculated at Gold B and returned.

They apply estimators at the mosaic and gold nodes to calculate the offsets and

Doppler shifts that must be adjusted for oscillator mismatch. It is not the frequency

offset size but the frequency offset estimate error, which is the performance-affecting

measure that is the cause for concern. Assume, for example, that nominally oper-

ating clocks powered all radios. Even so, a frequency offset is still possible if the

nodes move. It is easier to correct offsets resulting from smooth, predictable mo-

tion than from chaotic motion, which is harder to detect and has a higher variance

in the estimation error. The problems arise from discontinuous disciplining in the

context of faulty clocks. To adjust to changes in the network and surroundings, the

mosaic needs to update the beamformer regularly. The primary factor determining

how frequently updates are required, though, is the accuracy of the frequency offset

estimator. Any residual error will contribute to excess phase rotation due to the lag

between estimating the offset measurement and applying the correction, potentially

leading to the signals losing coherence. Update frequency is reduced if the estimator’s

accuracy is exact. While updating often increases the estimator’s margin for error,

other system components, such as information sharing and beamformer computation,

also need to operate more quickly. Decreasing the building time and increasing the

data rates is not an easy process.

For an N-element antenna array, SNR gain[28] as a function of the update interval

τ and estimation error variance σ2 is given by

(N2 −N)(e−4(πτ)2σ2

) +N . (4.1)

46

The INR reduction[9] parameterized in the same way is given by

N − 1

N
(1− e−4(πτ)2σ2

) . (4.2)

People can project estimation performance by constructing the cramer-rao lower

bound (CRLB) for frequency offset estimation. The CRLB can be parameterized

according to the observation’s integrated SNR (ISNR). Whether or not an estimator

hits the lower bound depends on its construction. A bound that allows sufficient

SNR gain and INR reduction[28] should be targeted. The ISNR associated with that

bound can be used to inform waveform design and the signaling strategy. A bound

should be targeted to provide some tolerance for achieving the required performance

when the bound cannot be met precisely. This bound maps to some ISNR, which can

inform waveform and signaling strategy aspects.

4.2 Data Exchange and Limited Transmitting Rates

Program limitations are in place to reduce data exchange. Constrained by prac-

ticality is another issue. This may have an impact on interface and hardware design.

The interface manages the data rate in addition to accelerator designs. In terms of

data throughput, accelerator requirements have grown. The beamformer’s effective-

ness depends on our capacity to estimate the cross-correlation and the spatiotemporal

data covariance matrix precisely within a time window when the statistics are deemed

stationary, provided that the time-frequency alignment is sufficiently precise. In the

end, estimation performance depends on how long training and observation data are

available.

The beamformer computation requires the observations of all mosaic nodes to be

compiled onto some processing agent. This information must be exchanged through

an intramosaic data exchange network. Because all mosaic nodes are distributed,

47

a hefty restriction is placed on the amount of information that can be practically

exchanged. Due to the beamformer update rates needed, the amount of information

that can be practically exchanged is heavily restricted. Furthermore, one program

goal is to minimize the information exchange between nodes. Data demands can

quickly become expensive as well. These goals oppose each other, leading to opera-

tional constraints and further algorithm adaptations. Several methods are employed

to reduce the traffic needed to build the MMSE beamformer. All these methods can

help with the hardware design, which means a reduced data rate and lower latency

in the computation time.

The dimensionality of the covariance matrix determines the minimal number of

observation samples required to obtain a certain level of estimation accuracy. The

more dimensions there are, the more samples are needed. The quantity of beam-

forming filter taps and tiles determines how many dimensions are required. From

an alternative viewpoint, the size of the covariance matrix determines how effective

those samples are, as the update rate restricts the amount of information that can be

shared. How many samples of each zn that can be shared throughout the network de-

termines the estimation accuracy; however, the dimensionality determines how useful

they are.

Estimating the cross-correlation depends on the number of samples available and

the worst-case underlay to interference plus noise ratio (UINR) supported at the

mosaic. The number of samples required to estimate the cross-correlation reasonably

depends on the worst-case underlay to interference plus noise ratio (UINR) supported

at the mosaic. The underlay is generally significantly jammed. Transmitting the

number of raw samples to overcome this jamming is infeasible, especially given the

required update rates. Exchanging a locally computed cross-correlation result is much

cheaper, in which case the amount of data needed to be exchanged depends only on

48

the number of beamformer taps used.

Therefore, each node must transmit the maximum number of correlation and co-

variance estimation samples, which can support information exchange strictly between

mosaic nodes. Mosaic tiles need to send extra data in addition to these bits to sup-

port time-frequency synchronization between mosaic nodes and uniquely identify the

mosaic tile. It is necessary to take into account elements like forward error-correcting

codes. The capacity to reasonably estimate the mosaic to gold channel is inherent

to estimating the covariance matrix and the cross-correlation vector. The estimation

quality depends on the number of samples required to overcome a substantial UINR

at the gold node, just like the cross-correlation.

But all that needs to be sent back to the mosaic are the estimations themselves.

The number of tiles that are supported and the number of taps that are used de-

termine how much data needs to be delivered. The transmitter used a portion of

the underlying transmission cycle; this estimate is transmitted back across a gold-

to-mosaic channel. Because of the propagation length, this program targets some

applications where at least one gold-mosaic transmission stage experiences consid-

erable attenuation. The supported data rates are often modest in these situations.

Given a particular amount of mosaic tiles, the designer must be careful about how

many taps it can help.

The observation samples needed for covariance estimation are the most costly

data set. In certain situations, estimating the mosaic to be sent to the gold channel

can be expensive. The necessary data rates are determined by the number of taps

designated for the beamforming filters.

The number of beamforming filter taps is a design choice tied to the maximum

expected delay spread of the end-to-end transmission when the payload signal passes

through the compounded channels and the sampling rate. The worst-case delay

49

spread in samples for a sampling rate fs is

τmax = 2
Dmax

c
fs , (4.3)

Dmax
c
fs is the delay spread for a single stage. The system’s operating constraint

is the maximum pairwise separation Dmax between two mosaic nodes. The worst-

case situation could be the consequence of a corner case. Lowering the number of

filter taps needed may be possible if the designer wants to improve the mosaic nodes’

placement can be improved. Our design assumes that could have to deal with the

worst scenario. Practically speaking, it is advisable to add additional taps to account

for sinc forms that result from fractional delays, which are crucial to maintain. After

considering extra buffer samples and the maximum delay spread in samples, then gets

the tap length Tw.

Using the wideband MMSE formulation directly means building a beamformer

that affects at least the chipping rate of the underlay depending on the oversampling

rate. For a practical set of mosaic geometries, an impractically large covariance

matrix tends to result in an infeasible number of training observation samples being

exchanged. The covariance matrix’s construction and inversion would also place an

immense computational burden on the system.

To reduce demands on the data exchange links, people have elected to build a

beamformer that only affects the spectral support of the payload signal. Achieving

gain and interference rejection within that space is sufficient. Any interference re-

ceived beyond the spectral support of the payload waveforms can be filtered out using

a low-pass filter.

Our system builds the beamformer at a sampling rate that oversamples the tac-

tical waveform by a small multiple more significant than 1. For the same geometry,

fewer taps are needed in this strategy. Although a higher bandwidth training wave-

50

form is transmitted, then estimate covariance matrices and correlations such that

they characterize the spatiotemporal relationships strictly within the band of inter-

est. Augmentation of the covariance matrix’s dimensionality is not as severe, making

its estimation much more manageable. Given a fixed number of samples that the

intramosaic network can support exchanging, convergence toward an acceptable esti-

mate is more easily attained.

This beamformer can be applied to the relay signals in one of two ways. The

first option is to use the filter to bent-pipe data that has been first downsampled to

the same processing rate at which the beamformer was constructed. The result is

resampled to the system sampling rate and prepared for retransmission. The second

option is to keep the bent pipe data sampled at the system rate, use a low-pass filter

closely around the tactical spectrum, upsample the beamforming filter, and apply the

filter to the pre-processed bent pipe data.

Despite this modified construction, the required network traffic to support it re-

mains relatively high. Trading off algorithmic simplicity for demands on the informa-

tion exchange network, they relegate reducing traffic demand toward future research.

Prospective techniques for reducing the required data rates include beamformer track-

ing, subspace tracking, and source compression.

4.3 Modified Wideband MMSE Beamformer

To make data exchange and computation more feasible, the algorithm team built

a beamforming filter sampled at a lower rate, affecting a much smaller portion of

the spectrum than the underlay. Our strategy is still to solve an MMSE problem,

but there is a mismatch between the spectral support of the training data and the

signal, whose error to minimize. The beamformer is still built based on the form w =

C−1r. However, extra care must be taken because the computation is distributed, and

51

components are computed at different sampling rates. A block diagram describing

the flow of operations within each mosaic node in Figure 4.3.

Figure 4.3: Block Diagram of Adapted Distributed Mmse Computation.

Firstly, the receiver must capture training data carefully. The radios operate with

independent clocks and synthesizers, so each has its sense of time. Due to differences

in propagation distances, the signal emitted from the gold transmitter arrives at each

of the blue nodes at slightly different times according to some common sense of time

amongst the nodes. The beamformer corrects for differences in propagation distances,

so capturing and fusing the data in a way that preserves this information is essential.

Ideally, the mosaic should collectively capture data like an antenna array wired to the

same clock source. In other words, the first sample in each capture should refer to the

exact timestamp of some reference timeline. Additionally, data must be captured so

that all detections appear within a limited window. Some reference is needed to cue

captures to ensure this requirement is satisfied. One method is scheduling captures

based on the earliest training signal arrival at any mosaic node. Mosaic nodes need

52

to establish some sense of global time to be successful, which requires additional

coordination. Assuming such a mechanism exists and is integrated with the system.

Pieces of the beamformer computation are completed at several different sampling

rates. All data begins sampled at the system rate fS. Data passing through the bent

pipe remains sampled fS. However, the beamformer computation consumes data

first downsampled to fU . This rate fU is 1.5 or 2 times the underlay chipping rate

BU , depending on the implementation version. Eventually, computation products are

converted to characterize dynamics sampled at fT = fU/8, which oversamples the

maximum supported tactical bandwidth by a factor of 1.5. Mosaic tiles compute the

beamformer sampled at fT and then upsample them to fS to apply the filters to the

bent pipe data stream directly.

Granted a proper data capture, each tile performs pre-processing on local obser-

vations. They then provide intermediate computation products to each other. These

products are fused and post-processed. Then, each mosaic tile computes the beam-

former filters.

Hypothetically, if compile all the raw captures together, this would be given by

This is given by

Z =


z1

...

zN

 =


hA,1 ∗ sU1

...

hA,N ∗ sU1

 (4.4)

The channels hA,n modeled here have embedded time difference of arrival (TDOA)

information. The first entry in each row refers to the same global timestamp.

4.3.1 Cross-Correlation

Cross-correlations must be computed locally at the higher sampling rate fU to

maximize the available integration gain. Then, the result must be downsampled to be

53

compatible with the spatiotemporal covariance matrix. The cross-correlation should

not be directly estimated at fT because doing so would require first downsampling

the data vector, significantly attenuating the training waveform.

Notice the term r = ỸsH in Equation 3.27, the wideband MMSE formulation

presented earlier. The training data is cross-correlated against each y
n
, the result

of convolving the channel estimate with the corresponding training observations. In

this case, the same computation should not be performed directly because the channel

estimate must be returned from the gold node downsampled to rate, fT . Instead, the

cross-correlation between zn and s should be performed first as follows:

r′n = Z̃ns
H
U1 , (4.5)

where

Z̃n =



zn[0] zn[1] zn[2] . . .

0 zn[0] zn[1]
. . .

0 0 zn[0]
. . .

...
.


. (4.6)

The reference signal sU1 should contain the transmit filter and the receive filter that

processes the data zn beforehand, if applicable, to estimate the over-air-channel. The

transmit and receive filters are a part of the underlay’s channel but not the tactical

signal. Only the standard pieces of the channel should be left over in the cross-

correlation. This intermediate cross-correlation r′n result is downsampled and stored

as r̂′n.

Poor UINR is expected, approximately -30 dB in the worst case. With approxi-

mately 40 dB worth of integration gain, hope to build cross-correlations where peaks

of energy associated with the signal arrivals can be reliably detected. However, the

training sequence length cannot effectively suppress the off-peak correlations. If just

54

a few samples of a more extended sequence (on the order of 100) make up the de-

tection peak, convolving an anti-alias filter with this sequence will likely bury the

channel information. Most of the information within the sequence is unrelated to the

underlay itself. Here, leveraing windowing to help preserve this information during

downsampling.

Assume that the system operates within a line-of-sight dominant channel. The

algorithm team further leans on this assumption and applies a rectangular window

centered on the detection peak. The window is short, with just a few samples on either

side of the energy peak, so any sinc structure present can be preserved. Observing

a tail corresponding to some scattering behavior is possible in higher UINR cases.

If the line of sight component is strong enough and the tail short enough, these

components can be negligible. The tail is likely poorly estimated. Applying the

window results in a cross-correlation that appears as if a smaller analysis window

was used, and the result was zero-padded. Applying the window should not destroy

the TDOA information. They filter and decimate the cross-correlations. The goal

is to ensure the downsampled cross-correlations maintain the correct phase offset,

relative amplitude, and timing offsets. Having extraneous information in the source

material only aids in corrupting this information. This rectangular window enforces a

line-of-sight dominant structure. Performance will break down if the narrower-band

channel is not line-of-sight dominant. The resulting cross-correlation should resemble

a fractional delay filter. Each tile provides its own r̂′n to every other tile.

Finally, leveraging the commutative property of convolutions, the channel estimate

ĥB,n[τ] can be convolved with the intermediate cross-correlation r̂′n[τ] to produce the

required cross-correlation r̂n[τ]. The convolution between ĥB,n[τ] and the r̂′n[τ] must

be performed in the correct direction. Recall that the beamformer formulation uses

55

a cross-correlation stored in the backward direction,

r̂′n =


r̂′n[Tw]

...

r̂′n[0]

 , (4.7)

which corrects timing offsets. The full-length convolution is

r̂n[τ] =
(
ĥB,n ∗ r̂′n

)
[τ] . (4.8)

After compensating for filter delay and truncation, the result is

r̂n =


r̂n[Tw]

...

r̂n[0]

 . (4.9)

where n denotes the specific node where this particular cross-correlation is computed.

Care must be taken when truncating the full-length convolution, where the same

window of time is selected from all r̂n[τ]. The compounded channel response from hA,n

and hB,n must remain intact within the window. The cross-correlation computation

is complete after compiling all vectors into the order given by

r̂ =


r̂1

...

r̂N

 . (4.10)

4.3.2 Covariance Matrices

Building a lower sampling rate spatiotemporal covariance matrix is straightfor-

ward. Each tile must capture an excerpt of the fU sampling rate data, zn. The

capture window must refer to the same block of global time across all tiles. This

data excerpt is downsampled to form ẑn. These vectors retain TDOA information

56

of the gold and jammer transmissions but are sampled at a lower rate, fT . Again,

downsampling removes all out-of-band information, so the beamformer only rejects

interference within the band of interest. Only ẑn needs to be exchanged between tiles.

Assuming that the data vectors have been exchanged, the computation can pro-

ceed according to the earlier stated wideband MMSE formulation. First, each data

vector is convolved with the channel estimate ĥB,n and stored as

Ŷ =


ŷ

1

...

ŷ
N

 =


ĥB,1 ∗ ẑ1

...

ĥB,N ∗ ẑN

 . (4.11)

Spatiotemporal data matrix Ỹ is built from Ŷ in the following way:

Ỹn =



ŷ
n
[0] ŷ

n
[1] ŷ

n
[2] . . .

0 ŷ
n
[0] ŷ

n
[1]

. . .

0 0 ŷ
n
[0]

. . .

...
.


(4.12)

Ỹ =


Ỹ1

...

ỸN

 . (4.13)

The organization of Ỹ must correspond to that of r̂. Practically, the spatiotemporal

data matrix should not be explicitly formed.

The spatiotemporal covariance matrix is constructed by evaluating

C = ỸỸH . (4.14)

Our system is explicitly sample starved because of not enough bandwidth between

the mosaic tiles to share sufficient samples, even when computing a lower sample rate

beamformer. Fewer samples of ẑn than there are dimensions in C are exchanged,

57

which means the covariance matrix is poorly estimated. Furthermore, C will almost

certainly be poorly conditioned. Employ averaging to refine the covariance matrix

estimate to resolve this issue.

Specifically, we employ an exponential moving average. This procedure is ex-

pressed as

Ct = (1− b)Ct−1 + bC , (4.15)

where b is a forgetting factor, C is the most recent covariance computation, Ct−1

is the average from the previous construction epoch, and Ct is the current average.

The forgetting factor b weights the history of all C such that the average depends

most on more recent estimates. Over time, the influence a previous estimate has on

the average decays. We employ this averaging instead of a moving average due to its

computational simplicity and ability to adapt to a dynamic environment. The system

requires a few iterations of training from a startup to produce a helpful covariance

matrix. When network nodes have high mobility, then the pseudo-stationary assump-

tion is violated over a shorter period. In these situations, the averaging mechanism

must rely less on the past. Consequently, the covariance matrix is at risk of being

poorly estimated again.

Additional tools are needed to stabilize the computation further and make the al-

gorithm robust. In sample-starved scenarios, the covariance matrix tends to be poorly

conditioned. Spatiotemporal data matrices tend to contain plenty of redundancy,

exacerbating poor covariance matrix conditioning. Inverses of poorly conditioned co-

variance matrices will introduce heavy distortions into the beamformer. One common

technique that permits the construction of a sensible beamformer despite these sce-

narios is L2 regularization[9], otherwise known as diagonal loading. L2 regularization

introduces a penalty term into the MMSE objective function. The new optimization

58

problem is given by

min
w

wHCtw −wHr− rHw + ‖s‖2 + d‖w‖2 , (4.16)

Where d is a parameter set by the user. The result of taking the derivative, setting it

equal to zero, and solving for w yields The minimization problem has a closed-form

solution expressed as

w = (Ct + dI)−1 r̂ . (4.17)

The parameter d is the loading level related to the penalty weight for increasing the

norm of w. Diagonal loading constrains the white noise gain, often the most poorly

estimated component of the covariance matrix.

The loading level d must be judiciously set. Increasing d too much causes the co-

variance matrix to function as a scaled identity matrix, in which case the beamformer

will be proportional to r. Consequently, excessive loading destroys any interference

mitigation properties. Setting the d loading level too low may fail to stabilize the

computation, producing nonsensical filters. The appropriate diagonal loading de-

pends on the scenario but is often referenced from either the maximum eigenvalue or

the system noise floor. The former method is expressed by

αλ1 , (4.18)

where α scales down the maximum eigenvalue λ1. A more practical approach is to

use a proxy measure of the maximum eigenvalue instead. The simplest alternative is

d1 = α
tr(C)

Tw
, (4.19)

the trace is divided by Tw to account for the redundancy introduced by the spatiotem-

poral variant. The latter is expressed by

d2 = βmax
n
|ĥB,n|2σ2

n , (4.20)

59

β is a parameter that scales up the strongest noise floor. The noise floors considered

are the noise floor of ẑn, σ2
n, with an adjustment for the channel estimate applied

to the data. The noise floor is obtained by performing calibration measurements on

the system. Given some fixed automatic gain control (AGC) setting, ẑn must be

recorded with the front end port terminated. The signal power of this recorded data

is a reference point. This calibration value is adjusted according to the AGC state

and internal normalization to produce σ2
n before use with (4.20).

The signal-to-interference ratio (SIR) measured at the mosaic is the primary de-

terminant of the diagonal loading level. Assessing this connection in real-time on

the system is prohibitive due to processing capacity limitations. The trace-based

approach is suitable for many high-SIR circumstances when α is set appropriately.

The noise-based approach is ideal for a variety of low SIR scenarios that the other

approach might not be able to handle, provided that β is set appropriately.

Both loading methods are considered, and the system switches between them to

robustly and automatically adapt to the environment. Mosaic nodes switch between

the two methods according to the following rule:

d = max{d1, d2} . (4.21)

As the SIR changes, so will d1, but d2 will remain constant. The switching rule sets

a lower limit on the loading level d.

Covariance matrix tapering is another technique that can be used to add robust-

ness. Covariance matrix tapering applies a phase dither in time and space to increase

the spatial extent of every emitter represented. The main lobe and nulls of the beam-

former are widened as a result. When the covariance matrix is poorly estimated, the

interferers are inaccurately represented in space. Mismatches between the estimate

and truth will yield ineffective interference mitigation. Widening the nulls provides

60

a better opportunity to mitigate the interference. Tapering also suppresses sidelobes

of the beamforming pattern, and any error in the beamforming target’s statistics is

compensated by the wider main lobe. Taper the covariance matrix is implemented by

first constructing a tapering matrix. The construction of the tapering matrix TDLMZ

(including diagonal loading) is given by

TDLMZ = (TMZn ⊗ 1ntaps×ntaps)� (1N×N ⊗TMZτ) + dI (4.22)

TMZn = [sinc((m− n)∆n)] (4.23)

TMZτ = [sinc((m− n)∆τ)] , (4.24)

where TMZn tapers spatially and TMZτ tapers temporally. We apply the taper through

a Hadamard product with the covariance matrix. To solely rely upon diagonal loading,

an all 1s matrix can be used for the taper. All these computations are implemented

on hardware. I designed every accelerator to compute these functions and tested the

accelerator with test data. This way, I can ensure the accelerator performs well enough

to operate the required tasks. I set the standard as 40dB SNR by comparing the

MATLAB and FPGA output results data. With this precision, the implementation

can perform interference mitigation and N2 gain at the receiver.

4.3.3 Channel Estimation

The channel estimation process is similar to cross-correlation computation, where

the estimate must be computed at the higher fU sampling rate first and downsampled

afterward. The channel estimation is where I utilize the convolution accelerators to

achieve channel estimation functions. The difference is that the estimation carries the

usual way, according to Equation 3.32, without any intermediate downsampling. The

only actual expense of the computation is the cross-correlation between the data y

and the sU2. Like sU1, sU2 should contain the transmit and receive filters if applicable

61

when performing the cross-correlation. The covariance matrix is built purely on the

training data. Furthermore, the inverse covariance matrix can be computed offline

and stored. This covariance matrix contains plenty of redundancy and tends to have

a poor condition number. We are leveraging diagonal loading again to remedy this

issue.

The sounding underlay will inevitably be strongly jammed. This estimator has

far more integration gain available than the mosaic tile cross-correlators because the

sounding underlay is not required to carry data from the mosaic to the gold node.

Regardless, we enforce the strong line of sight assumption on the mosaic to gold b

channel estimates and use a short number of taps in the tapped delay line model. The

analysis window is centered around the detection peak. This idea is similar to the

windowing used on r′n. Estimates are computed as training sequences arrive. Time

stamps of the analysis windows are documented.

The sounding underlay is transmitted from each mosaic tile in a TDMA fashion.

The gold node will observe arrivals spaced out by TDMA slot size with deviations cor-

responding to differences in propagation distances. Consider that a channel estimate

for each tile to gold node path, hB,n, has been estimated but not yet downsampled.

Implicit in these channel estimates, despite being short in length and calculated sepa-

rately from each other, is the TDOA information. The TDOA includes timing related

to the schedule and the differences in propagation time. The channels need to be re-

aligned such that the TDOA information only includes differences in propagation

distance. To realign the responses, the gold node assumes the exact scheduling and

determines offsets in arrival times. Based on this offset information, the channel esti-

mates sampled at fU can be placed into a sampling lattice according to the corrected

timing. The realigned collection of estimates characterizes a group of responses as

if the training was emitted simultaneously from all tiles. The channel estimates are

62

now filtered and decimated, producing a set of estimates ĥB,n that are now sampled

at fT . This estimate is especially sensitive to residual frequency offset errors because

the channels are sounded in a TDMA fashion. The gold node must account for and

compensate for a much longer phase ramp.

4.3.4 Building the beamforming filters

Let us denote the postprocessed covariance, which includes diagonal loading and

any desired tapering, as CREG. There is a matrix inverse computation in the equation

below. I also applied a QR decomposition and back substitution algorithm to handle

the inversion. Tiles then solve the expression

ŵ = C−1
REGr̂ . (4.25)

Each tile reads out its own ŵn. We choose to resample the beamforming filters to the

system sampling rate fS and apply them to the full rate bent-pipe signal. Denote the

resampled filters as wn. Each tile only needs to resample its filter. The parsed-out

filters are already time-aligned appropriately. The resampling process must preserve

this structure at a higher sampling rate. The set of filters should appear to be a

collection of sinc shapes. The payload must have been filtered low-pass beforehand

to isolate the spectrum of interest. The pre-distorted payload signal is

wH ∗ hLPF ∗ zn . (4.26)

4.4 Data Exchange and Accelerator Scheduler

The requirement for the beamformer is to update every 25 ms. Completing the

computation requires waiting for several pieces to be exchanged across the network.

Only when all intermediate computation products have been exchanged can a beam-

former be computed. The overall process has been split into three parallel schedules

63

for pipeline beamformer construction, making adhering to the update rate possible.

Each scheduler in hardware hardware controls the components in one timeline, and

then I composed them together into one comprehensive scheduler. State machines

are implemented multiple times in the scheduler.

Timeline 1 consists of operations that preprocess the data. Training information is

transmitted from gold A on a strict and consistent 25 ms schedule. The mosaic nodes

receive the training data and immediately begin processing. Each node produces

both ẑn and r̂′n. These operations should be completed well before receiving the

following training observation. Timeline 1 repeats on a strict 25 ms cycle due to gold

A’s transmission schedule. The mosaic nodes stage their results for exchange, which

triggers the following timeline.

Timeline 2 encompasses the data exchange and prepares the data for computing

the beamformer. Each mosaic node takes turns broadcasting its information within

a 25 ms window using a TDMA structure. The average time per slot is 2.5 ms,

given ten nodes. Upon reception, nodes convolve ẑn and r̂′n with corresponding ĥB,n.

Timeline 2 repeats its 25 ms cycle due to the TDMA structure. This cycle of events

is offset from timeline one due to the computation execution time and propagation

delay. Completing these computations triggers a third timeline.

Timeline three encompasses the MMSE computation. Once a cycle of timeline two

has been completed, each node has all the necessary ŷ
n

and r̂n vectors, so the nodes

finally complete the beamformer computation. The computations across the network

are expected to finish approximately simultaneously. Timeline 3 is similarly offset

from timeline two and should repeat consistently on a 25 ms loop consequent of events

in the latter timeline. Each timeline can be executed in parallel with the others. How

often can timeline three repeats assess the effective update rate of the beamformer?

The offset from Timeline 1 and 3 is the processing latency and propagation delay,

64

which is expected to remain stable. It is shown in Figure 5.1

65

Chapter 5

IMPLEMENTATION ONTO HARDWARE

5.1 Overview

Two paths for beamformer computation on the target platforms were created and

designed. Only FPGA is used in one route. The alternative pathway is a hybrid

strategy that does part of the initial computations on an FPGA and the remaining

calculations on a CPU. The implementation of the calculations on a real-time system

presents several difficulties. To provide the necessary update time, beamformer cre-

ation must be fast enough. Because the FPGA employs fixed point math, maintaining

precision can be problematic, mainly when hardware resources are scarce and time is

intricate. Beamformers that accomplish both effective SNR gain and INR reduction

are less susceptible to calculation mistakes than those that accomplish SNR gain.

I must be aware of memory and FPGA consumption since some calculations, such

as the cross-correlator, linear solver, and covariance estimator, might be costly for

time and resources because the accelerator’s input data is extensive. It is over 10000

numbers. Although the scenarios our system is designed to handle are manageable,

the system may be under stress due to the necessary algorithm settings because it

strives to maintain computation speed and accuracy.

5.2 FPGA Implementation

When exclusively using the FPGA to construct the beamformer, all computations

occur within the FPGA, except for capture scheduling and receiving the intramosaic

and gold information exchange. It means only capture scheduling, receiving shared

66

data, and beamforming upsampling occur outside of the beamformer computing block

when the beamformer is built entirely on the FPGA. Only information exchange and a

small amount of the capture schedule are processed on the CPU during this procedure.

Data is resampled to a sampling rate of 1.5BU outside the beamformer constructor

at the capture time. Upon loading all required auxiliary variables, the current building

cycle computations commence. The beamformer calculation block delivers the filter

suitable for the tile, computed on an upsampler after the building process. The bent

pipe is then given as the upsampled beamforming filter.

• Modem detects a signal

• Software schedules the FPGA to make a capture (based on the FPGA clock)

• When the capture is made, that data is resampled to 1.5BU and provided to

the FPGA block. Assuming all necessary auxiliary variables have been loaded,

the computation for the current cycle begins.

• At the end of the computation, the block provides the filter appropriate for the

tile it was computed on.

• That beamformer is upsampled and provided to the bent pipe

This section explains in detail the architecture, specifications, and performance

of the Digital Beamformer FPGA implementation and the individual computation

blocks of the design.

5.2.1 Overview

Figure 5.1 displays a block diagram of all internal calculations used to construct

the beamforming filters servicing a single relay direction. This processing block must

67

be instantiated twice to maximize communication in both ways. The computing block

diagram comprises three components: the QR decomposition (QRD) based linear

solver, data fusion, and local preprocessing. I also include the block’s relationship

with the architecture surrounding it, which consists of the bent pipe and the front

end.

Figure 5.1: Block Diagram of the Beamformer Computation.

Three-state machines divide and oversee the computation sequence. The calcula-

tion blocks displayed in Figure 5.1 are executed in a sequence described by a timeline

in Figure 5.2. The three distinct state machines in hardware represent the three more

minor sequences that make up the overall chronology.

State machine one sequentially executes the filter-decimation of an excerpt of

zn,HIGH, cross-correlation of zn,HIGH with the training sequence s (complex-conjugating

the latter), and then filter-decimation of the cross-correlation r′n,HIGH which produces

r′n. Once this sequence is complete, the tile has prepared the information that needs

to be exchanged. This state machine also performs the convolutions with channel B,

hB,n, for the locally generated z′n and r′n vectors.

68

Variable Description

Znhigh Local training observation capture

rnhigh Local cross-correlation

zn Local downsampled training observation

rn Local downsampled cross-correlation

zk Distributed downsampled training observation

rk Distributed downsampled cross-correlation

Y’ Spatiotemporal data matrix

Table 5.1: Variables and Description

State machine two fuses the data and performs the final data preprocessing steps.

The subscript n denotes local measurements, and data from distributed nodes are

subscripted by k in Figure 5.1. The remaining preprocessing steps involve convolving

z′k with hB,k and r′k with hB,k. This state machine progresses when any z′k and r′k are

received. State machine two depends on the distributed nodes successfully progressing

through state machine one.

State machine three encompasses the covariance matrix computation and the lin-

ear solver that produces the beamformers. This state machine sequentially executes

matrix-matrix multiplication, covariance matrix averaging, covariance matrix taper-

ing, diagonal loading, and QRD with back-substitution. The result of the QRD with

back-substitution is the set of beamforming filters for all tiles. The computation

block complex conjures the filter specific to the tile, performing the computation be-

fore feeding it to the upsampler. It adapts the result to be used with the bent pipe

architecture. This state machine depends on completing state machine one and state

machine two.

Motivated by several standard computations performed in the chain, the hard-

69

Figure 5.2: The Execution Timeline of the Blocks in Figure 5.1 Devoid of a Time
Scale.

ware description language (HDL) is implemented to use standard hardware for both

the anti-alias filter and convolution blocks. Inputs and computations are scheduled

according to the timeline shown in Figure 5.2 to achieve the desired products. An

HDL implementation block diagram showing all computational blocks, their inter-

connections, their inputs, and their outputs are shown in Figure 5.3.

Figure 5.3: Block Diagram of the Digital Beamformer Hdl Implementation.

The mapping of computation blocks from Figure 5.1 to the FPGA hardware blocks

shown in Figure 5.3 are listed in Table 5.2.

The input and output precision for all blocks shown in Figure 5.1 are listed in

Table 5.3. The number of bits listed is the depth used separately for genuine and

70

Table 5.2: Computation Block Mapping to Hardware Units.

Hardware Block (Figure 5.3) Computation Blocks (Figure 5.1)

A 2

B 5, 6

C 1a, 1b, 3, 4

D 7

E 9, 10

F 11

G 8

complex parts. For example, block A represents the fundamental part of a sample

using 32 bits and the imaginary part using 32 bits. The bit length of the complex

number is 64 bits in total. Block G, however, is a case where its input precision is

20 bits for the natural part and 20 bits for the imaginary. Still, the output precision

of the natural and imaginary parts is 12 bits each. Different bit depths are used for

each block based on the accuracy requirements of each output.

Table 5.3: Internal Precision of Each Block in Figure 5.1.

Hardware Block Internal Precision (bits)

A 32

B 24

C 32

D 24

E 24

F 24

G* 20

71

The execution times of the computations displayed in Figure 5.1 differ because

different computation blocks are implemented using the same hardware unit. Table

5.4 contains a list of these computations’ execution times. The output SNRs of each

block are also listed. The accuracy is calculated by comparing the FPGA output with

the same calculation performed using double precision in MatLab.

Table 5.4: Execution Time for Computations.

Computation Blocks Execution Time (µs) SNR (dB)

2 3400 42.65

6 90 35.63

5 7 45.98

1a, 3 3.3 34

1b, 4 1 37.74

7 2100 40

9 & 10 52 42

11 50 44.21

8 1500 27.23

Resource utilization of the entire design is summarized in Table 5.5. The overall

utilization attributed to beamformer construction is double the values in Table 5.5

when accounting for the required second instantiation.

5.2.2 Convolution and Cross-Correlation

Each tile must compute its local cross-correlation estimate r′n,HIGH and a series of

convolutions between hB,k and r′k as well as between hB,k and z′k, according to Figure

5.1 notation. A time reversal and a complex conjugation relate cross-correlations

and convolutions. Consequently, the same architecture is used for both tasks. Two

72

Table 5.5: Utilization Report for Entire HDL Design.

Resource Utilization Available Utilization (%)

LUT 83748 425280 19.69

FF 43943 850560 5.17

BRAM 175.5 1080 16.25

URAM 12 80 15

DSP 918 4272 21.49

instantiations are used to enable parallel execution of both computations. The cross-

correlator invokes many operations, making this additional utilization necessary for

minimizing scheduling conflicts. One instance implements the cross-correlation, and

the other implements the convolution. The cross-correlation computation is triggered

within state machine 1, whereas most convolutions occur within state machine two

while tiles exchange information.

Figure 5.4 shows a high-level diagram describing the architecture. The convolu-

tion controller coordinates inputs for a 4× 1 vector-vector multiplication along with

corresponding partial outputs to iteratively obtain the results of cross-correlating or

convolving sequences much longer than four-element vectors. The architecture of the

4× 1 vector-vector multiplication systolic array is shown in Figure 5.5.

Table 5.6 lists the resource utilization of the convolution or cross-correlation

blocks. The resource usage is the same because the computation procedure is the

same for both despite consuming different length inputs and producing different length

outputs.

Narayana demonstrates in Figure 5.6 the accuracy of the HDL implementation of

the cross-correlation computation by comparing its result with that of MATLAB. The

real part is compared in the top panel, and the imaginary part is shown in the bottom

73

Figure 5.4: Block Diagram of Cross-correlation and Convolution Units.

Figure 5.5: 4 × 1 Systolic Array Used in the Convolution and Cross-correlation
Blocks.

panel. The overall accuracy in the example shown is 42.6546 dB when considering

MATLAB’s result as the gold standard. The results are virtually indistinguishable.

Similarly, I demonstrate in Figure 5.7 the accuracy of the HDL implementation

of the convolution computation relative to MATLAB’s product. In this example, it

produces a y′
n

by convolving z′n with hB,n. This data vector is partly used to estimate

the covariance matrix used in the MMSE form. The overall accuracy in this case is

42.5776 dB compared to MATLAB’s result. Note that this accuracy measurement is

74

Table 5.6: Utilization Report for Convolution and Cross-Correlation Blocks.

Resource Utilization Available Utilization (%)

LUT 1026 425280 0.24

FF 1099 850560 0.13

DSP 18 4272 0.42

Figure 5.6: Cross-correlation Output Comparison Between Matlab and FPGA.

not related to the accuracy of the channel B estimate.

The result is the full-length convolution with hB,n. This method of computing

the result results in a cross-correlation longer than the 16 taps specified. To correctly

center the channel replies into the appropriate time window, I need to consider the

filter delay in the cross-correlation.

The 4th peak is where the initial arrivals in channel B and the downsampled

cross-correlation appear by design. For this reason, the delay that channel B adds

to the cross-correlation is predictable. To ensure that the correct filter length is

maintained and all detections show inside the relevant analysis window, I read 16

75

Figure 5.7: Convolution Output Comparison Between Matlab and Fpga for One
Channel B and Downsampled Training Observation Vector.

samples, beginning with the third. Each of the y′
k

vectors produced is a 1×135 sample.

Since y′
k

vectors are solely utilized to estimate the covariance matrix, which describes

relationships as a function of relative elements and time differences, truncation is not

required.

The downsampled cross-correlation vectors are 16 samples a piece. doing a full

convolution typically results in a longer sequence. In this case, it’s 26 sample vectors.

it is more crucial to truncate in this case to maintain the correct filter lengths. By

design, the first peak in channel B is designed to occur at the 4th peak due to the

resampler’s sinc structure, so delay compensation is included to remove the delay.

The result is a 16-sample vector. The result must still be 16 samples.

5.2.3 Downsampling

The system uses two downsampling blocks to change the cross-correlation vectors

and train observation sampling rates. z′n is produced by this block when z′n,HIGH is

76

given. In contrast, r′n,HIGH yields r′n. This block simultaneously carries out the two

tasks of FIR filtering and decimation, avoiding calculations that result in samples

that will be eliminated during the decimation process.

A systolic array structure is used in these blocks to reduce FPGA utilization and

to adapt to various input data lengths. Both downsampling blocks implement the

exact sampling rate conversion: fU to fU/8.

Figure 5.8 illustrates the computational architecture for this block. An example

of downsampling the cross-correlation computed at 1.5BU , r′n,HIGH, is shown in this

image. A comparable high-level diagram summarizing the downsampling block’s data

flow and control flow is displayed in Figure 5.9. The block takes in four consecutive

inputs at a time, each of which feeds a multiplier with an anti-alias filter coefficient.

The outcomes are totaled. The block then cycles over the whole filter and data vector,

adding the sum of products with r′n[t], a matching previously calculated intermediate

result. Through the r′n[t] port, the relevant intermediate results that have been saved

are read out and supplied. The controller controls data transmission into and out of

the block to guarantee that the folded computation yields accurate outputs. Every

cycle, the data kept in the memory banks is refreshed. Each memory bank receives

the outputs via a demultiplexer (DMUX).

The final output is the accumulation of all r′i from each cycle. It contains four

multipliers, eight adders, and one demultiplexer (DMUX). There are four memory

banks to store the input data. So, there are four input ports in the filter array as

well. The same is true for the output data. There is only one output port in the

filtering and downsampling array, so a MUX is applied to distribute the output into

four memory banks.

Table 5.7 summarizes the downsampling block use report as calculated by Vivado.

This block performs one of the less expensive calculations compared to other com-

77

Figure 5.8: Block Diagram of Filter and Decimate Block.

putations. Because fewer operations are required than for different blocks, usage is

often negligible, and the calculation usually finishes rather rapidly.

I demonstrate that the HDL implementation of the downsampling block yields

acceptable accuracy in Figure 5.10. Compared to MATLAB’s result, the FPGA

outputs a result with 42.0105 dB SNR.

5.2.4 Matrix-Matrix Multiplication

All ten tiles’ channel B convolution outputs are aggregated to form a matrix Yi of

size 10×135. State machine two produces 10 y′
n

vectors, which then triggers the start

of state machine three. From this collection of vectors, the computation block can

78

Figure 5.9: Data Flow of Downsampling Block.

Table 5.7: Utilization Report for Filtering and Downsampling Block.

Resource Utilization

LUT 846

FF 828

CARRY 45

DSP 32

now estimate the spatiotemporal covariance matrix required to mitigate interference.

This operation is the first in the third state machine. They together form the data

matrix Y .

Narayanan notes the two properties regarding the inputs of this particular matrix-

matrix multiplication. First, the covariance matrix is constructed by multiplying the

spatiotemporal data matrix Y with its hermitian transpose. Second, the spatiotem-

poral data matrix Y (Ỹ in Equation 4.13) of size 160× 150 is generated by creating

16 sample shifted versions of each 1 × 135 vector y′
n
. Narayanan uses these two

key features and optimizes the matrix-matrix multiplier by adopting two strategies.

These two fundamental relations are used to design efficiently. Matrix Multiplier by

79

Figure 5.10: Comparison of Downsampled Training Observations Resulting from
the FPGA Simulation and Matlab.

adopting the following two strategies. Spatiotemporal data matrix Y is only implic-

itly generated from the 10 y′
n

vectors on the fly during the computation, thereby

reducing memory requirements to store the input matrix by 94.37%. The spatiotem-

poral data matrix is constructed from sample shifts, so the exact computation can

be achieved by simply readdressing the inputs. Memory requirements are further

reduced by also calculating the hermitian conjugate YH on the fly without physi-

cally storing it. Forming the conjugate only requires a sign flip for the imaginary

part. Only a 10× 135 matrix needs to be physically stored. Furthermore, these data

savings do not incur a significant computational cost.

Figure 5.11 displays the matrix multiplication unit’s block diagram. A folded

80

4×4-systolic multiply-accumulate (MAC) array divides the large matrix-matrix mul-

tiplication into smaller 4x4 matrix-matrix multiplications. All partial outcomes from

the past are collected with the partial products that are kept in memory. The con-

troller schedules the input and partial outputs from the previous cycle to be sent to

the systolic array.

Figure 5.11: Matrix Multiplication Block diagram.

In Figure 5.12, the systolic array utilized in the matrix-matrix multiplication

unit is displayed. Intermediate product totals drop in a staggered pattern from the

top. The cells receive data. Spatial-temporal covariance matrices are obtained via

staggered input of complex-conjugated data from the left.

The matrix multiplication accelerator works correctly in this stage, but this design

takes a considerable memory block size to store the input matrix data. Narayanan

Murugan worked on optimizing the matrix multiplication accelerator to decrease re-

source utilization. I also included this part to complete the whole accelerator design.

The following paragraphs explain how he did the optimization.

Since the space-delay data matrix Y is generated by appending together time-

shifted versions of the 10 × 135 data matrix, I create 4 × 4 sub-matrices of Y by

81

Figure 5.12: 4× 4 Systolic Array Matrix Multiplier.

passing each y′
n

vector through a shift register. Every four shifts produces a new

4× 4 sub-matrix. I demonstrate this process with the following example.

Consider an initial 1× 4 vector y′,

y′ =

[
y0 y1 y2 y3

]
, (5.1)

which is to be converted to a 4× 7 matrix,

Y =



y0 y1 y2 y3 0 0 0

0 y0 y1 y2 y3 0 0

0 0 y0 y1 y2 y3 0

0 0 0 y0 y1 y2 y3


, (5.2)

through 3 sequential shifts from the 0th delay. Narayanan does this conversion in

hardware by maintaining a shift register of depth 7. The state of the shift register

over seven cycles is shown in Table 5.8.

82

Table 5.8: State of the Shift Registers after Every Cycle.

Cycle 1 2 3 4 5 6 7

R0 y0 y1 y2 y3 0 0 0

R1 0 y0 y1 y2 y3 0 0

R2 0 0 y0 y1 y2 y3 0

R3 0 0 0 y0 y1 y2 y3

R4 0 0 0 0 y0 y1 y2

R5 0 0 0 0 0 y0 y1

R6 0 0 0 0 0 0 y0

For a particular cycle, parsing out subsets of the register’s contents into 4 × 4

blocks, structured as 

R3 R2 R1 R0

R4 R3 R2 R1

R5 R4 R3 R2

R6 R5 R4 R3


, (5.3)

yields the appropriate delay structure in the input to produce the spatiotemporal

covariance matrix. The example here, shown for the smaller 1 × 4 vector, can be

scaled to the longer y′
n

vectors used in the actual implementation.

To ensure that the block can manage the 16 delays, a shift register with 20 slots is

employed explicitly for our system. The shift register is where the longer 1× 135 y′
n

vectors travel through, producing a new 4 × 4 block with each shift. The controller

arranges for the appropriate sub-blocks to multiply in tandem.

Resource utilization of the matrix-matrix multiplication block is listed in Table

5.9. Despite the number of operations involved in computing a 160× 160 covariance

matrix from a spatiotemporal data matrix with dimensions 160× 150, the utilization

is relatively small because of the systolic array architecture.

83

Table 5.9: Resource Utilization of the Matrix-matrix Multiplication Block.

Resource Utilization Available Utilization (%)

LUT 8644 425280 2.03

FF 7746 850560 0.91

DSP 65 4272 1.52

After Narayanan’s optimization, I compared the matrix-matrix multiplication out-

puts from MATLAB and the FPGA implementation in Figure 5.13. In this example,

the FPGA design achieves an overall SNR of 41.7601 dB relative to the MATLAB

result.

0.5 1 1.5 2 2.5

Matrix Element 10
4

-0.2

0

0.2

R
e
(C

)

MATLAB FPGA

0.5 1 1.5 2 2.5

Matrix Element 10
4

-0.2

0

0.2

Im
(C

)

MATLAB FPGA

Figure 5.13: Matrix Multiplication Output Comparison Between Matlab and
FPGA.

More research has been done on the optimization of the matrix multiplication.

The output matrix is a hermitian matrix. I can take advantage of this property and

further decrease the total latency and memory usage. Only the upper triangle of the

output matrix is needed for the final output, so I only need to calculate and store the

84

upper triangle of the matrix in the memory. The rest part is conjugate of the upper

triangle part. I finished the simulation of this algorithm and have not integrated this

design yet. It will be the future work.

5.2.5 Average and Taper

The first step in the covariance matrix postprocessing is averaging and tapering.

The two operations are in the same group and conveniently fit into one hardware

block.

Figure 5.14 illustrates the construction of the average-taper block. Since averaging

and tapering are element-wise processes, they may be completed in parallel efficiently.

Four subsets of the matrices are processed in parallel by four identical computer

units. As seen in Figure 5.14, each computing unit initially averages as a weighted

sum between the prior average and the present estimate (C′−1 and C′, respectively).

The averaged result is supplied to tapering and returned to memory storage. As

seen in Figure 5.14, tapering is achieved by multiplying the updated average by a

pre-computed coefficient in the matrix CT .

The data flow of the averaging-tapering block is outlined in Figure 5.15. Several

memory banks are initialized to store the previous averaged covariance matrix C′−1,

the current epoch’s estimate C′, and the tapering matrix CT . The controller transfers

data into and out of the memory banks accordingly.

5.2.6 Diagonal Loading

I implement in hardware the diagonal loading strategy as explained described in

Equation 4.19, Equation4.20, and Equation 4.21.

Using the obtained covariance matrix, the first loading level option, d1 in Equation

4.19, is directly determined. However, the second loading level choice d2 is calculated

85

Figure 5.14: Block Diagram of the Average-Taper Block.

Figure 5.15: Data Flow of the Average Taper Block.

using a noise floor measurement that has been calibrated. Since the covariance matrix

is dynamically scaled, d2 needs to be normalized for it to roughly represent the noise

power in the covariance matrix as d2/β (or a in Figure 5.3). d2 is transformed into

the same binary format as the covariance matrix elements in the calculation block.

The covariance matrix’s diagonal is increased by the amount obtained by computing

86

the maximum of the two possibilities.

5.2.7 QR Decomposition with Back-Substitution

The last major step in the beamformer computation is implementing a linear

solver that produces the beamformer. The linear system that must be solved is

Cw = r , (5.4)

where C is a fully post-processed covariance matrix, r is a downsampled cross-

correlation convolved with channel B, and w contains all 10 beamforming filters.

My approach to obtaining the solution involves a QR decomposition (QRD) with a

back-substitution algorithm. Srimayee designed a folded, scalable QRD with a back-

substitution block to implement this operation on a resource-constrained system.

The hardware implementation architecture of the QRD and back-substitution ac-

celerator was borrowed from Srimayee’s thesis[5]. I implemented the folded archi-

tecture from [5] on FPGA. The following paragraph explains the algorithm roughly

and its structure. However, there are limitations to this design. One of them is that

the setup frequency is only 50 MHz, and I changed the design and ran it with a 140

MHz clock frequency. Another change is about the reciprocal operation. The rotation

method was employed in [5], and I used lookup tables instead. Because the lookup

tables can provide higher precision and produce fewer clock cycles, all the changes

are also described in this section.

A QRD is used to facilitate the matrix inversion. This procedure decomposes a

87

complex-valued matrix A into

A = QR =

[
q1 q2 . . . qN

]


r11 r12 . . . r1N

0 r22 . . . r2N

.

.

0 0 . . . rNN


, (5.5)

where Q is an orthogonal matrix and R is an upper triangular matrix. When lever-

aging this decomposition, the system is solved in the following way:

Ax = b (5.6)

(QR)x = b (5.7)

Rx = Q−1b (5.8)

Rx = b′ . (5.9)

Inverting Q is simple because Q−1 = QH. In this application, Equation5.4 corre-

sponds with Equation 5.6. When analyzing the structure of Equation 5.9,

r11 r12 . . . r1N

0 r22 . . . r2N

.

.

0 0 . . . rNN





x1

x2

x3

...

xN


=



b′1

b′2

b′3
...

b′N


, (5.10)

she noticed that the solution of the resultant linear system can be easily obtained by

solving for individual elements of x in a bottom-up approach given by the following

sequence:

rn,nxn = b′n

rn−1,n−1xn−1 + rn−1,nxn = b′n−1

. (5.11)

88

Figure 5.16: Block Diagram of the Scalable QR Accelerator [5].

The QRD block directly computes Rx = Q−1b by applying Givens rotations to either

side of the equation. The orthogonal matrix is never explicitly formed nor stored.

She uses a folded architecture to compute the QRD of a large-sized matrix.

Supporting the folded architecture are three blocks. These blocks are linked to

three memory blocks and each other, as Figure 5.16 illustrates. Each block is made

up of two different kinds of programming elements: internal cells and border cells.

Block type I is triangular, with four border cells and six interior cells, a structure

akin to matrix R. Type II has sixteen internal cells and is rectangular. Type III,

which has four internal cells, is a column vector.

Figure 5.17 illustrates how the systolic array is constructed utilizing boundary

and interior cells. To illustrate how the cells interact, Srimayee specifically shows

an example of decomposing a 4 × 4 matrix A while changing the vector b. A type

I block and a type III block are adequate. Squares stand in for interior cells and

circles for border cells. Figure 5.17 also shows input scheduling. The covariance ma-

trix’s columns cascade across one another in an uneven pattern. Type II blocks are

utilized especially when breaking down more significant matrices. These blocks ef-

fectively represent the remaining off-diagonal, higher triangular components by being

89

put between type I and type III blocks.

Figure 5.17: Data Flow in QR Using Systolic Array Architecture [5].

She summarizes the data flow of boundary cells in Figure 5.18. Algorithm 1

executes within these cells. Boundary cells receive a complex number Uin as input.

The cell computes a Givens rotation parameterized by C, an actual number, and S,

a complex number. Lastly, the cell computes the result of the rotation and stores it

in memory for the next computation iteration.

Internal cells represent the off-diagonal elements of the upper triangular matrix

R in the triangular systolic array. She summarizes the data flow in and out of

90

Figure 5.18: Boundary Cell Flow Diagram [5].

Algorithm 1 Boundary Cell Computation.

if Uin ← 0 then

C ← 1; S ← 0; R← R′

else

R′ ←
√
R2 + |Uin|2

C ← R/R′

S ← Uin/R
′

R← R′

end if

internal cells Figure 5.19. Algorithm 2 executes within internal cells, which applies

the Givens rotation computed in the corresponding boundary cell. Similarly, an

updated upper triangular matrix element value is stored for future computations.

Figure 5.19: Internal Cell Flow Diagram [5].

Once the QRD operation is completed, the back-substitution procedure begins. The

back-substitution step reuses the QRD structure consisting of boundary and internal

91

Algorithm 2 Inner Cell Computation.
Uout ← CUin − SR

R′ ← S ∗ Uin + CR

cells to produce the solution x of Equation 5.6. In other words, the back-substitution

sequence produces the beamformer. A control signal is used to switch between the

forward and backward computations in the cell. Data flow for back-substitution,

depicted in Figure 5.20, flows in the opposite direction of the QRD step.

Figure 5.20: Data Flow in Back-substitution [5].

To simplify the folding calculation, the block types are merged as seen in Figure

5.21. An enable signal signals the start of the backwards calculation once the forward

path provides B′N . From random access memory (RAM) III, the relevant RN,N value

is read and supplied as input to the type I block’s last boundary cell. All other

92

internal cells in the same column receive the XN value calculated in the border cell.

The R values from RAM III and the B′ values from the type III block are also

supplied concurrently to calculate intermediate values. The type I block’s border cell

to calculate Xn−1. The computed X values are kept in RAM IV to be transferred to

the type II block, where the input matrix size is N ×N , to calculate the intermediate

values for the remaining N − 4 rows.

So, the basic structure of the QRD and back-substitution block is described above.

As I mentioned at the beginning of this paragraph, there are other changes I made

to this design to make sure it can work under 140MHz clock frequency and have the

required number of clock cycles to finish. After implementing this folded architecture

and synthesis of the design, the 140 MHz frequency requirement is from other parts

of the system. There was a setup time violation and lower precision than expected.

Figure 5.21: Block Diagram of Back-substitution Accelerator [5].

To solve the setup time violation, I used the Vivado program to find the critical

path that caused the problem and extracted the circuit to do analysis. The critical

path is inside the internal cell in the QRD process. The original design is shown in

Figure 5.22. And it results in 8 ns on the critical path. This critical path caused

the setup time violation. This means that this design does not fit the 140 MHz clock

frequency. Then, I designed it in parallel and made it two cycles. The circuit is

93

shown in Figure 5.23. After this parallel design, the critical path changed to 6.93 ns,

which meets the 140 MHz clock frequency requirement. The setup time problems are

now solved, but not yet since the number of clock cycles for the internal cell. The

block scheduler must also be changed to ensure the data flow is still correct. Both

the QRD and back-substitution design need to be modified. Here is an example of

the back-substitution data flow. The original data flow design is shown in Figure

5.24. And the new design is demonstrated in Figure 5.25. Since the data flow has

changed, the overall latency has also changed. After calculating the total latency, it

is 100 µs longer than the original design, but it is acceptable and does not affect other

accelerators. Narayanan helped with the rescheduling design as well.

Figure 5.22: Original Design of Internal Cells in QRD Process [5]

Another problem is about the square root reciprocal operation. I implemented the

lookup table, but it took a considerable memory block. It is over the requirement of

resource utilization. Narayanan helped to design a new strategy that uses two small

lookup tables to complete the calculation. This strategy results in similar precision

and much less resource utilization. In this way, the new lookup table design satisfies

the timing requirement and precision requirements at the same time.

94

Figure 5.23: parallel Design of Internal Cells in the QRD Process.

Figure 5.24: Original Back-substitution Process Data Flow [5].

By comparing the generated beamformers in Figure 5.26, I show the precision

of the FPGA calculation in comparison to a floating point computation. In this

case, the final output’s SNR is 35.4394 dB. Errors will likely worsen since mosaic

noise-dominated scenarios typically produce poorly conditioned covariance matrices.

Cases where gold noise predominates typically produce higher conditioned covariance

matrices and computational accuracy closer to 30 dB.

The timing report from Vivado, Figure 5.27, shows that the critical path length

is 5.848 ns. I document the FPGA utilization in Table 5.10. The output of the entire

QRD with the back-substitution process is sensitive to internal precision. Conse-

quently, extensive look-up tables (LUTs) are used to achieve the required accuracy.

The reports are based on the XCZU43DR-FFVE1156-1LV-i part from Xilinx.

95

Figure 5.25: Modified Back-substitution Process Data Flow.

5.2.8 Normalization Strategy

Even for near-zero magnitudes, clipping is risky when using a restricted bit depth

in calculations. Preserving computational correctness requires normalizing interme-

diate outcomes. I applied the normalization by the beamformer calculation at the

points where the block diagram in Figure 5.3 is designated. I employ a normalization

technique that exclusively uses binary shifts to avoid requiring division operations,

adding delay, and increasing the amount of FPGA utilized. The relative scaling

between the data vectors must not be disturbed by mosaic tiles during normaliza-

tion. Before the covariance averaging, QR decomposition blocks, and matrix-matrix

96

0 20 40 60 80 100 120 140 160

Beamformer Vector Element

-1

-0.5

0

0.5

1

R
e
(w

)
MATLAB FPGA

0 20 40 60 80 100 120 140 160

Beamformer Vector Element

-1

-0.5

0

0.5

1

Im
(w

)

MATLAB FPGA

Figure 5.26: Comparison of Beamformers Resulting from Computations Performed
in Fpga Versus Matlab Given the Same Inputs.

Figure 5.27: QRD Timing Report from Vivado.

multiplier, normalizing inputs is the safest and maybe most important thing to do.

5.3 Hybrid FPGA-C++ Implementation

ASU created an effective beamformer construction algorithm solution that runs

on an FPGA and a CPU to ease system integration. The processor does the majority

of the work in this hybrid method. The FPGA starts the calculation, which migrates

early to the CPU to finish. The final filters are resampled at the sampling rate of the

97

Table 5.10: Utilization Report for the QR Decomposition Plus Back-Substitution
Block

Resource Utilization Available Utilization (%)

LUT 57864 425280 13.61

LUTRAM 480 213600 0.22

FF 25080 850560 2.95

URAM 26 80 32.50

DSP 561 4272 13.13

bent pipe processing. The implementation’s software is made to operate on a single

A53 core under AArch64 Petalinux.

One advantage of this approach is the use of floating-point computations. Com-

plexity arises during integration, though. The construction of the beamformer risks

disrupting the timing of other system routines.

5.3.1 SNR Gain Beamformer Implementation

I created an implementation that merely achieves SNR Gain to construct and ver-

ify a fully integrated system. The rejection of interference, if any, is accidental. When

operating in this mode, the system adjusts the phase and timing offsets caused by the

compounded channels when computing beamforming filters. A beamformer of this

kind is only appropriate when interference is minimal or nonexistent. This beam-

former design has a considerably lower computational complexity than an MMSE

beamformer construction.

This beamformer is computed directly from the cross-correlation vector in Equa-

tion 4.9. The specific filter for node n is

wn = r̂n . (5.12)

98

Note that wn must undergo complex conjugation before providing it to the filter

resampler.

Local cross-correlations computed within the FGPA and used for detection in

the modem are provided to the software. Again, the cross-correlations must be con-

structed so that TDOA information is preserved. From then on, the rest of the com-

putation progresses on a processor core instead of the FPGA. This cross-correlation

has lag spacing determined by a sampling rate of 2BU . The beamformer is still

constructed at a sampling rate of 3BU/16, so the initial cross-correlation must be

downsampled. The downsampled cross-correlation is convolved with a corresponding

channel B estimate to yield r̂n.

This construction does not require the exchange of observation vectors rvzn or

cross-correlations rn. The computation is complete once the local cross-correlation

estimate affected by the appropriate channel response is estimated. This implemen-

tation forms beamformers quickly. Consequently, there is little concern regarding its

integration and effect on the system’s timing. Additionally, the system can normalize

the signal to maximize its digital power without clipping because achieving strictly

SNR gain is insensitive toward relative power differences.

5.3.2 Modified MMSE Beamformer Implementation

As mentioned in the preceding sections, the whole method is likewise implemented.

Although necessary, the FPGA effectively does the timeline one data pre-processing.

A simplified FPGA implementation is used when utilizing the CPU to finish the cal-

culation, eliminating all timeline two and three activities. Of course, information

needs to be shared. All convolutions using channel B, covariance estimation, covari-

ance post-processing, and linear system solution are essentially executed in the CPU

during timelines two and three. The cross-correlation generated by the modem can

99

be utilized directly if needed. Similarly, the processor must downsample the cross-

correlation sequence to the proper sampling rate of 3BU/16.

100

Chapter 6

SUMMARY AND FUTURE WORK

In this dissertation, I set out to address the research topic of hardware design

of the distributed coherence mesh beamforming system. Through a comprehensive

investigation, I aimed to implement the DCMB on hardware and make sure the hard-

ware design satisfies the timing and resource utilization requirements. I employed a

standard FPGA design flow and several optimization technologies in hardware imple-

mentation to achieve my research objectives. This methodology allowed me to achieve

the goal and test the implementation to ensure it can be used in the real world. My

research yielded several key findings that shed light on how the DCMB can be imple-

mented in the real world and achieve SNR increase at the receiver. The QRD folded

design needs some modification based on the frequency requirements. The basic de-

sign of the QRD folded architecture was inspired by[5]. I changed the schedule for

type one, two, and three blocks to meet the timing requirements. Narayanan helped

with the implementation of two LUT technology in the QRD accelerator. I designed

the matrix multiplication accelerator and Narayanan helped with the optimization of

the design to increase the precision of the output. Notably, I discovered that the whole

DCMB system can be implemented on the hardware, and optimization methods are

helpful in the design. The findings of this dissertation make several significant contri-

butions to the field of wireless communication system design and efficient hardware

design of wireless communication systems. First and foremost, my research advances

existing knowledge by implementing DCMB on the Xilinx FPGA board and demon-

strating the system works as expected on hardware. Additionally, my work provides

valuable insights into optimizing different accelerators and the design of the overall

101

scheduler. While this study has provided useful insights, it is not without limitations.

One primary limitation is that this design is sensitive to the input data. The other

limitation is that the results could get lower SNR than simulation data when I used

some actual data for the verification. Also, precision needs to be improved. These

limitations may have influenced the interpretation of my findings to some extent.

Building upon the findings of this dissertation, several avenues for future research

warrant exploration. For example, future studies could be related to the further op-

timization of individual accelerators and memory reuse strategies. Dynamic range

analysis of the input data is also needed in the future. The findings of this disser-

tation have practical implications for improving wireless communication devices. By

demonstrating the DCMB system on FPGA, our work has the potential to be used

in autonomous cars, satellite communication, and cell phone communications.

In summary, this dissertation has provided a comprehensive investigation into

the hardware implementation of DCMB. Through design, development, simulation,

and verification of the design, I have an advanced understanding of wireless com-

munication system design and FPGA implementation. Moving forward, I hope that

my findings will help develop wireless communication system design and hardware

implementation area.

102

REFERENCES

[1] R. Hourani, R. Jenkal, W. Davis, and W. Alexander, “Automated design space
exploration for dsp applications,” Signal Processing Systems, vol. 56, pp. 199–
216, 09 2009.

[2] N. C. A. News, “India to be first country to auction satcom spectrum,” Indias
Current Affairs 2023: National Current Affairs News, 2022.

[3] J. Wang, W. Deng, X. Li, H. Zhu, M. Nair, T. Chen, N. Yi, and N. Gomes, “3d
beamforming technologies and field trials in 5g massive mimo systems,” IEEE
Open Journal of Vehicular Technology, vol. 1, pp. 362–371, 01 2020.

[4] J. Holtom, O. Ma, A. Herschfelt, D. G. Landon, and D. W. Bliss, “Distributed
beamforming techniques for flexible communications networks,” in 2021 55th
Asilomar Conference on Signals, Systems, and Computers, 2021, pp. 400–404.

[5] S. Kanagala, “Accelerator for flexible qr decomposition and back substitution,”
2020.

[6] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of distributed
beamforming in wireless networks,” IEEE Transactions on Wireless Communi-
cations, vol. 6, no. 5, pp. 1754–1763, 2007.

[7] S. Jayaprakasam, S. K. A. Rahim, and C. Y. Leow, “Distributed and collab-
orative beamforming in wireless sensor networks: Classifications, trends, and
research directions,” IEEE Communications Surveys Tutorials, vol. 19, no. 4,
pp. 2092–2116, 2017.

[8] A. Herschfelt, A. Chiriyath, D. W. Bliss, C. D. Richmond, U. Mitra, and S. D.
Blunt, “Vehicular rf convergence: Simultaneous radar, communications, and pnt
for urban air mobility and automotive applications,” in 2020 IEEE Radar Con-
ference (RadarConf20), 2020, pp. 1–6.

[9] J. Holtom, “Distributed coherent mesh beamforming: Algorithms and implemen-
tation,” ProQuest Dissertations and Theses, p. 129, 2023, copyright - Database
copyright ProQuest LLC; ProQuest does not claim copyright in the individual
underlying works; Last updated - 2023-05-19.

[10] S. M. Lasassmeh and J. M. Conrad, “Time synchronization in wireless sensor
networks: A survey,” in Proceedings of the IEEE SoutheastCon 2010 (Southeast-
Con), 2010, pp. 242–245.

[11] D. W. Bliss and S. Govindasamy, “Adaptive wireless communications,” 2013.

[12] A. Herschfelt, H. Yu, S. Wu, H. LEE, and D. Bliss, “Joint positioning-
communications system design: Leveraging phase-accurate time-of-flight esti-
mation and distributed coherence,” in Conference Record of the 52nd Asilomar
Conference on Signals, Systems and Computers, ACSSC 2018, ser. Conference

103

Record - Asilomar Conference on Signals, Systems and Computers, M. Matthews,
Ed. IEEE Computer Society, Feb. 2019, pp. 433–437, 52nd Asilomar Conference
on Signals, Systems and Computers, ACSSC 2018 ; Conference date: 28-10-2018
Through 31-10-2018.

[13] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of distributed
beamforming in wireless networks,” IEEE Transactions on Wireless Communi-
cations, vol. 6, no. 5, pp. 1754–1763, 2007.

[14] R. Mudumbai, D. R. Brown Iii, U. Madhow, and H. V. Poor, “Distributed trans-
mit beamforming: challenges and recent progress,” IEEE Communications Mag-
azine, vol. 47, no. 2, pp. 102–110, 2009.

[15] D. R. Brown III, U. Madhow, M. Ni, M. Rebholz, and P. Bidigare, “Distributed
reception with hard decision exchanges,” IEEE Transactions on Wireless Com-
munications, vol. 13, no. 6, pp. 3406–3418, 2014.

[16] D. Scherber, P. Bidigare, R. ODonnell, M. Rebholz, M. Oyarzun, C. Obranovich,
W. Kulp, D. Chang, and D. R. B. III, “Coherent distributed techniques for tac-
tical radio networks: Enabling long range communications with reduced size,
weight, power and cost,” in MILCOM 2013 - 2013 IEEE Military Communica-
tions Conference, 2013, pp. 655–660.

[17] D. W. Bliss, S. Kraut, and A. Agaskar, “Transmit and receive space-time-
frequency adaptive processing for cooperative distributed mimo communica-
tions,” in 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2012, pp. 5221–5224.

[18] P. Bidigare, U. Madhow, R. Mudumbai, and D. Scherber, “Attaining fundamen-
tal bounds on timing synchronization,” in 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 5229–5232.

[19] F. Quitin, U. Madhow, M. M. U. Rahman, and R. Mudumbai, “Demonstrating
distributed transmit beamforming with software-defined radios,” in 2012 IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Net-
works (WoWMoM). IEEE, 2012, pp. 1–3.

[20] M. M. Rahman, H. E. Baidoo-Williams, R. Mudumbai, and S. Dasgupta, “Fully
wireless implementation of distributed beamforming on a software-defined radio
platform,” in Proceedings of the 11th international conference on Information
Processing in Sensor Networks, 2012, pp. 305–316.

[21] R. Mudumbai, U. Madhow, R. Brown, and P. Bidigare, “Dsp-centric algorithms
for distributed transmit beamforming,” in 2011 Conference Record of the Forty
Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).
IEEE, 2011, pp. 93–98.

[22] S. Hanna and D. Cabric, “Distributed transmit beamforming: Design and
demonstration from the lab to uavs,” IEEE Transactions on Wireless Commu-
nications, vol. 22, no. 2, pp. 778–792, 2022.

104

[23] S. Hanna, E. Krijestorac, and D. Cabric, “Destination-feedback free distributed
transmit beamforming using guided directionality,” IEEE Transactions on Mo-
bile Computing, 2022.

[24] R. Mudumbai, D. R. Brown Iii, U. Madhow, and H. V. Poor, “Distributed trans-
mit beamforming: challenges and recent progress,” IEEE Communications Mag-
azine, vol. 47, no. 2, pp. 102–110, 2009.

[25] J. A. Nanzer, S. R. Mghabghab, S. M. Ellison, and A. Schlegel, “Distributed
phased arrays: Challenges and recent advances,” IEEE Transactions on Mi-
crowave Theory and Techniques, vol. 69, no. 11, pp. 4893–4907, 2021.

[26] J. Mack, S. E. Arda, U. Y. Ogras, and A. Akoglu, “Performant, multi-objective
scheduling of highly interleaved task graphs on heterogeneous system on chip
devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9,
pp. 2148–2162, 2022.

[27] S. Jayaprakasam, S. K. A. Rahim, and C. Y. Leow, “Distributed and collabo-
rative beamforming in wireless sensor networks: Classifications, trends, and re-
search directions,” IEEE Communications Surveys and Tutorials, vol. 19, no. 4,
pp. 2092–2116, 2017.

[28] D. W. Bliss, Modern communications: a systematic introduction. Cambridge
University Press, 2021.

[29] H. Zhang, J. Luo, X. Chen, Q. Liu, and T. Zeng, “Fresnel based frequency domain
adaptive beamforming for large aperture distributed array radar,” in 2016 IEEE
International Conference on Signal Processing, Communications and Computing
(ICSPCC), 2016, pp. 1–5.

[30] G. He, X. Gao, L. Sun, and R. Zhang, “A review of multibeam phased array
antennas as leo satellite constellation ground station,” IEEE Access, vol. 9, pp.
147 142–147 154, 2021.

[31] Z. Lin, M. Lin, J. Ouyang, W.-P. Zhu, A. D. Panagopoulos, and M.-S. Alouini,
“Robust secure beamforming for multibeam satellite communication systems,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 6, pp. 6202–6206, 2019.

[32] N. Benvenuto, E. Conte, S. Tomasin, and M. Trivellato, “Predictive channel
quantization and beamformer design for mimo-bc with limited feedback,” in
IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, 2007,
pp. 3607–3611.

[33] J. Holtom, G. Gubash, A. Herschfelt, O. Ma, W. Standage-Beier, H. Yu, and
D. W. Bliss, “Rapid implementation and demonstration of radio applications
using wiscanet,” in 2021 IEEE 32nd Annual International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2021, pp.
1500–1505.

105

APPENDIX A

MATLAB SIMULATIONS

106

A fully parameterized MATLAB simulation is also built to quickly iterate and

project our algorithm’s performance in various circumstances. This Matlab simulation

program was mainly created by Owen and Jacob. I added this section to explain

how to get the reference data to compare with FPGA results. There are several

parameters in the algorithm itself that need to be adjusted. The simulation makes

efficient investigation of these parameters possible. Regarding the intended use cases

and surroundings The MATLAB code may be a C++ version of the beamformer

computation customized for the algorithm team’s platform and the environments in

which they anticipate it will operate. Furthermore, this simulation may save test

vectors for use in testing by the developers of FPGA implementations.

The simulation runs in a loop, where the beginning is marked by the transmission

of a training waveform from gold A. Each cycle tracks the propagation of an epoch of

gold A’s data stream through all relay stages. The cycle ends once Gold B has received

and processed this stream. Cycles are split into a gold A to mosaic transmission stage

and a mosaic to the gold B stage. In between stages, the beamformer is computed,

although, in actuality, the filters are constructed in parallel with signal relaying. The

beamformer calculated using the current epoch is deployed on the next cycle.

The algorithm team employs surrogate waveforms in our simulation. BPSK signals

make up the tactical and underlay waveforms. The decision to choose BPSK was not

entirely random. The tactical waveform and the underlay need good auto-correlation

characteristics appropriate for low SNR situations. The foundation of both signals

is a random binary sequence. Dead time between transmissions is absent from the

simulated underlays, but including it in real life is still beneficial.

Gold A’s underlay structure repeats every 25 ms, so a new beamformer is con-

structed every 25 ms. Additional processing latency should be included to assess the

beamformer’s performance more accurately.

107

To simplify processing, the analysis window’s duration is much shorter than 25 ms

but long enough to preserve the actual duration of the deployed training waveform.

Channel sounding sequences are sent on a 2.5 ms interval. Similarly, in simulation,

the TDMA slots have been shortened only to include training information in the

underlay. Despite the shorter transmissions, all estimators in the processing chain

use the actual length of the training sequences. The analysis window the mosaic

receives is long enough to transmit ten-channel sounding sequences from the mosaic

to gold B. As a result, the bent pipe transmission is long enough to jam the channel-

sounding signal realistically. The duration of the tactical and bent pipe signals is

as long as the analysis window. One assumption they implement that allows them

to simplify this is using genie channels. Gold A’s underlay carries back channel

estimates for constructing the reverse direction’s beamformer. However, the genie

channel allows however much information necessary to be exchanged instantaneously

when demanded. Consequently, they can shorten the transmission while disregarding

the waveform needed to communicate the feedback. The channel estimate produced

at gold B is fed back and used in the next epoch’s beamformer computation.

The jammer is a Gaussian signal that spans the entire frame’s duration. Our team

has only tested our system with constant streaming jamming. In future studies, we

plan to include support for intermittent interference. People usually investigate with

the jammer occupying the same spectral support of the tactical waveform to evaluate

the beamformer’s exclusive ability to reject interference. The signal is filtered and

upsampled to limit energy inside the tactical waveform’s spectral support. Of course,

we do not influence the jammer waveform. Except for a tiny variation in the system

sample rate, the system faithfully replicates the data processing. To ease the process

of resampling to and from all beamformer construction data sampling rates and signal

chipping rates, the simulation system’s sampling rate of 122.88 MHz is marginally

108

lower than the hardware’s real rate of 125 MHz.

By employing 122.88 MHz, the actual underlay bandwidth of 40.96 MHz is pre-

cisely three times oversampled. As long as there are no appreciable distortions brought

about by resampling, the difference should have no impact. The data is resampled

to the same processing speeds utilized on the hardware implementation immediately

following receive filtering. Both in simulation and hardware, the beamformer is built

at 7.68 MHz, oversampling the highest tactical bandwidth supported by a factor of

1.5. Under 5.12 MHz, tactical bandwidths can be utilized if the proper low-pass and

anti-aliasing filters are applied. The actual underlay bandwidth of 40.96 MHz is pre-

cisely three times oversampled by using 122.88 MHz. As long as resampling doesn’t

result in any noticeable distortions, the difference shouldn’t matter. After receive

filtering, the data is resampled to the same processing rates used on the hardware

implementation. The beamformer is designed at 7.68 MHz in both simulation and

hardware, oversampling the maximum tactical bandwidth supported by a factor of

1.5. Tactical bandwidths below 5.12 MHz are usable if the appropriate low-pass and

anti-aliasing filters are used.

After ensuring a standard reference power in all component signals, each can

be weighted directly according to the prescribed USR before summing. The proper

USR could not be guaranteed without these intermediate normalization steps. This

normalization scheme is best suited for determining the nominal performance of the

algorithm in simulation. However, the MMSE optimization problem does not limit the

maximum power. The algorithm only implicitly imposes an average power constraint.

This scheme, in practice, may result in clipping if insufficient headroom is provided

while attempting to meet some target transmit power. One way to resolve this is to

provide such headroom and calibrate the power to meet the target transmit power.

The system may only be able to rescale signals using bit shifts. If the power amp can

109

compensate for less digital power, there is likely a tiny performance gap. To properly

assess performance based on SISO power measurements, the baseline measurement

should be made using the same normalization scheme.

The algorithm is tested using several mosaic tile arrangements, including a linear

array with a max distance of 200 m and random positions within a bounded box

generated according to a uniform distribution. The simulation supports positioning

in 3 dimensions, but the network is typically in the XY plane. The mosaic is centered

on the origin. We place jammers at some distance from the origin but at uniformly

random angles of arrival. To validate the methodology and set a performance baseline,

the static simulation runs with all nodes. Even with static nodes, frequency offsets can

still occur. Specifically, we model residuals from frequency estimation and correction

algorithms applied by L3 Harris. To establish nominal performance, we simulate the

system under time-frequency aligned conditions.

Wideband channels are generated based on a Rician distribution that also includes

the effects of relative time offsets, differences in attenuation, and phase delays dictated

by the generated geometry. Impulse responses are directly generated at the system

sampling rate. First, each channel for a particular transmission stage is created time

aligned with each other and the sampling lattice. This structure is given by

hm =
D2
m

max
n

D2
n

(√
K

1 +K

[
ei2πfc/cDm 0 . . . 0

]

+

√
1

1 +K
hscatter

)
, (A.1)

where the fraction D2
m/max

n
D2
n represents a relative attenuation based on the squared

distances between a gold node and the mth tile, Dm. The scattering component

hscatter is a white, complex-valued Gaussian process, where each sample is distributed

110

by CN (0, I), weighted by a taper,

e

log(0.1)
Tdecay

[
0 . . . Tdecay

]
, (A.2)

That lowers the signal’s reception strength while it travels along longer distances.

Compared to the first, the longest scattering route is 20 dB less intense. The line of

sight power about the scattering response power is modulated by the parameter K.

The relative temporal offsets of the line of sight component are then incorporated by

zero-padding the impulse responses to the closest total delay.

Subsequently, every impulse response undergoes a fractional delay filtering process

to finalize the time shift and precisely include TDOA data according to the network

architecture in the channels. The channel impulse responses are static between loops

for baseline testing.

We take for granted that data will be sent instantly and reliably via a genie channel

upon request. This presumption simplifies reviewing the necessary quantity of sam-

ples sent across the network. The beamformer calculation is always sample-hungry

during performance evaluation. More specifically, the covariance matrix estimator

may use only 125 samples from each tile.

The algorithm team showcases simulated outcomes for the most severe scenarios of

domination of gold and mosaic noise that the system is intended to manage. System

and signal settings that try to mimic the deployed system as closely as feasible were

used to get these findings. The technique employs 125 samples, sampled at 3
16
BU

from each tile to estimate the covariance matrix. For cross-correlation and channel

estimation, 30000 samples taken at 2BU are used for each tile. The USR is -10 dB

for short-link communications and -6 dB for long-link communications. A 20 dB INR

interferer in the same spectrum as the mosaic observes the tactical waveform. During

the long link transmission stage, the received SNR is 0 dB. Last but not least, the

111

short link transmission stage’s received SNR is 20 dB.

In the discussed examples, the mosaic is arranged in a linear array centered around

the origin of the XY plane. The most considerable pairwise distance is 200 m. The

gold nodes are placed in positions such that communicating in one direction yields the

gold noise dominant operating regime, and relaying in the opposite direction yields

the mosaic noise dominant operating regime. The distant gold node is placed 50 Km

from the mosaic center at a random angle. The closer gold node is also placed 200 m

from the mosaic center at a random angle. An example set of the radio positions is

shown in Fig. A.1. The top panel of Fig. A.1 shows all nodes from a bird’s eye view.

The bottom panel shows a restricted view containing only the close gold node and

the mosaic.

0 5 10 15

X Position (Km)

0

20

40

Y
 P

o
s
it

io
n

 (
K

m
)

System Geometry

Gold A/B

Mosaic

Gold B/A

-0.2 -0.1 0 0.1 0.2

X Position (Km)

-0.2

0

0.2

Y
 P

o
s
it

io
n

 (
K

m
)

Gold A/B

Mosaic

Gold B/A

Figure A.1: Example Gold and Blue Node Placement Where the Mosaic Is Arranged
as a Uniform Linear Array(Previous tests report from Owen and Jacob).

112

