
LUCI: Multi-Application Orchestration Agent

by

Guna Sekhar Sai Harsha Lagudu

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2024 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Amarsagar Reddy Ramapuram Matavalam

Vidya Chhabria

ARIZONA STATE UNIVERSITY

May 2024

ABSTRACT

Research in building agents by employing Large Language Models (LLMs) for com-

puter control is expanding, aiming to create agents that can efficiently automate

complex or repetitive computational tasks. Prior works showcased the potential of

Large Language Models (LLMs) with in-context learning (ICL). However, they suf-

fered from limited context length and poor generalization of the underlying models,

which led to poor performance in long-horizon tasks, handling multiple applications

and working across multiple domains. While initial work focused on extending the

coding capabilities of LLMs to work with APIs to accomplish tasks, a new body of

work focused on Graphical User Interface (GUI) manipulation has shown strong suc-

cess in web and mobile application automation. In this work, I introduce LUCI: Large

Language Model-assisted User Control Interface, a hierarchical, modular, and efficient

framework to extend the capabilities of LLMs to automate GUIs. LUCI utilizes the

reasoning capabilities of LLMs to decompose tasks into sub-tasks and recursively solve

them. A key innovation is the application-centric approach which creates sub-tasks

by first selecting the applications needed to solve the prompt. The GUI application is

decomposed into a novel compressed Information-Action-Field (IAF) representation

based on the underlying syntax tree. Furthermore, LUCI follows a modular structure

allowing it to be extended to new platforms without any additional training as the un-

derlying reasoning works on my IAF representations. These innovations alongside the

‘ensemble of LLMs’ structure allow LUCI to outperform previous supervised learning

(SL), reinforcement learning (RL), and LLM approaches on Miniwob++, overcom-

ing challenges such as limited context length, exemplar memory requirements, and

human intervention for task adaptability. LUCI shows a 20% improvement over the

state-of-the-art (SOTA) in GUI automation on the Mind2Web benchmark. When

tested in a realistic setting with over 22 commonly used applications, LUCI achieves

i

an 80% success rate in undertaking tasks that use a subset of these applications. I

also note an over 70% success rate on unseen applications, which is a less than 5%

drop as compared to the fine-tuned applications.

ii

DEDICATION

To all looking to explore the bounds of human knowledge and have fun doing it.

iii

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to my thesis advisor, Dr. Aviral

Shrivastava, for his active and patient support throughout my Thesis. His

encouragement and technical input have been indispensable in this endeavor.

Specifically, his help throughout the publication and writing process has helped

provide a clear and concise narrative.

iv

TABLE OF CONTENTS
Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 6

Building Agents with LLMs . 6

Automated GUI Tasks . 7

3 PROPOSED METHOD . 10

GUI Tool Set . 12

Tool Selector . 12

Conversational Model . 13

Task Verifier . 15

UI Extractor . 16

UI Selector . 17

Action Executor . 18

4 NOVEL ASPECTS OF LUCI . 19

Application-Centric Architecture . 19

Modular OS-Agnostic Agent . 19

Novel Tool Selection Mechanism . 20

Novel UI Parser . 20

Hierarchical Control Structure . 21

5 EXPERIMENTS AND RESULTS . 22

LUCI Outperforms Previous Approaches on Executing Complex Tasks . 22

LUCI Enables Cross-application Adaptability . 28

v

CHAPTER Page

LUCI Can Utilize Multiple Applications for Executing Complex Tasks . . 29

6 FUTURE WORK . 32

7 CONCLUSION . 34

REFERENCES . 35

v

LIST OF TABLES
Table Page

5.1 Average Performance Comparison of LUCI with Baselines on Mind2WEB
Benchmark. 26

vii

LIST OF FIGURES
Figure Page

1.1 An Illustrative Execution Trace of Luci Creating a Presentation to
Satisfy the given Instruction . 1

3.1 Architecture of LUCI. 11

3.2 Illustrative of Examples of Tool Selector in Selecting a Gui Application
from a given GUI Tool Set . 13

3.3 Illustrative Example of Solution Outline from Conversation Model to
Solve a Task . 14

3.4 Illustrative Example of Task Verifier in Deciding Whether a Task Is
Redundant or Not by Reasoning . 16

3.5 Illustrative Example of UI Selector Selcting a List of UI Elements 18

5.1 Average Performance Comparison of LUCI with Baselines in Mini-
Wob++ Environment . 24

5.2 Average Success Rate of LUCI in Using GUI Applications with GPT-
3.5 under Zero Shot Setting and Few Shot Setting 27

5.3 Cross Application Performance of LUCI with GPT-3.5 and PHI-2 28

5.4 Average Success Rate of LUCI Across Tasks Involving the Use of Mul-
tiple Applications . 30

viii

Chapter 1

INTRODUCTION

Automation and assisted computer interaction have been a significant area of

investment for researchers and industry professionals. Digital assistants such as Siri

and Google Assistant Tulshan and Dhage (2019) have enabled the creation of the

Internet of Things (IoT) devices and the home automation space. They also play a

critical role in the accessibility domain, enabling users with disabilities Isyanto et al.

(2020) to interact with computers and mobile devices. Today these virtual assistants

are regularly used to automate a variety of simple tasks Li et al. (2017) such as setting

alarms and reminders, controlling music playback, etc. However, they have always

struggled with more complex tasks and require specific language based on keywords

Figure 1.1: An illustrative execution trace of LUCI creating a presentation to satisfy

the given instruction : ”Create a presentation on Recycling with Q & A slide at the

end and Add Image Recycling.svg to last slide from Images folder in Downloads”.

First LUCI opens Keynote Application and creates a presentation on Recycling.

Then, open Images folder from Downloads directory and selects Recycling.svg file.

Finally, LUCI adds the image to the last slide of the presentation. This showcases

LUCI’s ability to execute tasks involving multiple applications.

1

to function correctly.

A key breakthrough in this domain was the advent of Large Language Models

(LLMs), which worked directly with natural language and displayed strong reasoning

and planning capabilities Ye et al. (2023). This allowed them to create a more ca-

pable and user-friendly interface for human-computer interaction (HCI) Desai et al.

(2023). Applications such as ChatGPT and Google Gemini proved the promise of

the underlying models which are now set to become the backbone of the aforemen-

tioned assistants. While LLMs proved to be effective in interacting with the user,

their ability to interact with computer systems and use tools was still limited and

needed to be augmented. The first approaches attempted to extend the coding ca-

pabilities of LLMs to work with APIs to accomplish tasks Yang et al. (2023); Schick

et al. (2023). These systems adopted a Planner, Actor, and Reporter Dasgupta et al.

(2023a) to ground the LLMs (restrict the response to relevant domains not part of the

LLM’s trained knowledge) and allow them to interact with the environment(computer

systems). While they were initially successful, API-based LLM automation systems

struggled with generalization across multiple applications due to the need for creat-

ing natural language instructions for the API of each application. These methods

Ahn et al. (2022); Gao et al. (2023) tried to leverage In-Context Learning (ICL), to

improve the generalization of the underlying models by forgoing training and instead

placing relevant information in the context for prompts. However, the limited context

lengths of these models led to poor performance in long-horizon tasks and handling

multiple applications.

This led to the development of Graphical User Interface (GUI) LLM frame-

worksDeng et al. (2023a); Humphreys et al. (2022a). These systems focused on ma-

nipulating applications via the User Interface(UI) instead of relying on APIs which

may or may not exist. The earliest versions used Reinforcement Learning (RL) to

2

train an agent to mimic user clicks on inputs containing Hyper Text Markup Lan-

guage(HTML) Document Object Model (DOM) elements. However, they struggled

with with selection of relevant UI elements requiring supervised training. Gur et al

Gur et al. (2023) demonstrated the difficulty in training LLMs with purely HTML

due to the low information density and high noise in RAW HTML. Zeng et al Zheng

et al. (2024a) incorporated the multi-modal learning capabilities of GPT4 to address

the grounding of UI elements by proving the images of webpages to the model. This

approach revolves around understanding the visual aspects of rendered web pages and

generating precise plans in text format for various websites and tasks. However, this

method did not scale beyond HTML and was hence limited to web applications. Addi-

tionally, these systems cannot utilize multiple applications or websites to accomplish

a single task.

In this work, I introduce LLM-assisted User Control Interface (LUCI), a novel

framework that extends the capabilities of LLMs to automate GUIs. LUCI is designed

to enable LLMs to orchestrate multiple applications and execute complex tasks by

interacting with the GUI. I accomplish this by adopting an application-centric ap-

proach to task planning where a Tool Selector element (Section. 3) selects the most

relevant applications from a given set to solve a task. These are then used as the

central focus when decomposing a given instruction into sub-tasks. Each sub-task

is then mapped to a novel intermediate compressed structured representation based

on Information-Action-Field (IAF) pairs via a”UI Extractor” (Section. 3) and a ’UI

Selector” (Section. 3). This structured representation allows the LLM to effectively

interact with the GUI applications and execute the sub-tasks. The LUCI framework

is designed to be modular, hierarchical, and OS-agnostic, enabling it to work seam-

lessly across both native and web interfaces. Additionally, I augment the performance

of my conversational model with a Task Verifier (Section. 3) to filter redundant sub-

3

tasks and improve efficiency. The limited scope of the Task Verifier allows it to focus

on the relevance of a given sub-task, effectively reducing the generative task of the

conversational model into a simpler decision task. The structure of these elements

and how they interact with each other is shown in Figure 3.1.

When combined these components allow LUCI to solve complex multi-step and

multi-application tasks across web and native interfaces without the need for addi-

tional multi-modal context. An example of this capability is shown in Figure 1.1,

where LUCI creates a presentation on Recycling with a Q & A slide at the end and

adds an image ”Recycling.svg” to the last slide from the Images folder in Downloads.

This showcases LUCI’s ability to execute tasks involving multiple applications.

The main contributions of LUCI can be summarized as:

1. An application-centric approach to task planning, where the selection of relevant

applications is the basis of sub-task generation.

2. A modular OS-agnostic agent capable of functioning seamlessly across both

native and web interfaces.

3. A novel tool selection mechanism is implemented to identify relevant tools for

tasks involving multiple applications, enhancing adaptability and effectiveness.

4. A novel UI parser is designed to extract the web and desktop interfaces into

a compressed and structured representation based on Information-Action-Field

(IAF) pairs, thereby facilitating efficient orchestration by large language models

(LLMs).

5. A hierarchical control structure within LUCI, enabling effective management of

tasks across multiple applications, thereby empowering LLMs with comprehen-

sive control in diverse environments.

4

The experimental results support my claim. I note that LUCI achieves a greater

than 99% success rate on the MiniWoB++ benchmark. LUCI also achieves up to

31% improvement in Step SR and up to 24% improvement in OP. F1 Score over

GPT4V on the Mind2Web benchmark. When I tested the generalization capability

I noted a less than 5% drop in accuracy, indicating strong generalization. Finally,

my experiments show that LUCI maintains a 75% average success rate when using

4 applications simultaneously. I believe that the application-centric design proposed

in LUCI presents a promising direction for future research in GUI automation and

multi-application orchestration.

5

Chapter 2

RELATED WORK

Building Agents with LLMs

Large language models (LLMs) have offered promising avenues for leveraging nat-

ural language in decision-making tasks. One approach involves enhancing LLMs with

executable actions Mialon et al. (2023). Huang et al. Huang et al. (2022a) showed

LLMs can plan and perform basic domestic activities by mapping embeddings to a

predefined list of actions. However, their study lacks specificity for contemporary

activities. Ahn et al. Ahn et al. (2022) introduced SayCan, grounding actions by

multiplying candidate action probabilities with FLAN Wei et al. (2022) and the ac-

tion’s value function as an indicator of suitability. Huang et al. Huang et al. (2022b)

extended SayCan with Inner Monologue, adding a feedback loop to select actions

according to current state. However, Inner Monologue relies on a pre-trained, robot

policy conditioned on language with limited flexibility, impeding generalization across

various domains. Zeng et al. Zeng et al. (2022) combined LLMs conditioned on a

robot policy along with a vision - language model (VLM) for open vocabulary pick-

and-place tasks. Dasgupta et al. Dasgupta et al. (2023b) utilized Chinchilla Hoffmann

et al. (2022) as a planner in PycoLab, requiring RL pre-training for their actor module

to follow natural language instructions. Moreover, previous methods were restricted

to the necessity for fine-tuning.

Recently, enhancing LLM effectiveness involves integrating them with APIs for

utilizing external tools like information retrieval systems, code interpreters, and web

browsers Glaese et al. (2022); Menick et al. (2022); Schick et al. (2023); Thoppilan

6

et al. (2022). Integratings models with APIs involves five methods: 1) pre-training or

fine tuning the model with API enabled examples Taylor et al. (2022); Schick et al.

(2023). This approach has limited API space. 2) Another approach provides few

examples on how to use APIs and use in-context learning of LLM Ahn et al. (2022);

Gao et al. (2023); Lazaridou et al. (2022). This approach cannot accommodate nu-

merous APIs due to limited context length. 3) Reinforcement learning with human

feedback to enhance API usage Nakano et al. (2022). 4) Creating natural language

documents or structured programs instructs the model Vemprala et al. (2023); Paran-

jape et al. (2023). 5) Lastly, using natural language documents with RLHF improves

user feedback connectivity Liang et al. (2023). When using natural language docu-

ments the performance of LLM using a tool depends mainly on the documentation of

an API Liang et al. (2023). So, API developers are required to uphold comprehensive

and well-structured documentation. Also, API developers need to improve frequently

based on cases where API fails to execute instructions provided by user and user

feedback. However, these API tools require manual engineering and may have lim-

ited functionality. So, recent approaches shifted to agents working with Graphical

User Interface.

Automated GUI Tasks

Pursuing the goal of interaction between humans and the computer, significant

efforts have been dedicated to developing autonomous computer agents capable of

understanding language instructions and efficiently carrying out tasks on a computer

Pasupat et al. (2018); Gur et al. (2018); Furuta et al. (2024a); Liang et al. (2023). To

evaluate the models for human-like computer interactions, MiniWoB++ extending

the MiniWoB benchmark Shi et al. (2017); Liu et al. (2018), serves as a standard

benchmark. Early researchers utilized reinforcement learning and imitation learning

7

to solve MiniWoB++ challenges Liu et al. (2018); Gur et al. (2018); Jia et al. (2019);

Gur et al. (2022), but reaching human-level performance necessitates a large amount

of expert demonstration data (6,300 hours) Humphreys et al. (2022b).

Recent research Gur et al. (2023); Furuta et al. (2024a) proposes employing large

language models (LLMs) to read HTML code and vision transformers Dosovitskiy

et al. (2021); Hong et al. (2023) for extracting screenshot features, using a few-

shot in-context method yielding promising results without prolonged RL training.

Nonetheless, large volumes of expert demonstration data are still needed to fine-tune

LLMs. WebGPT Nakano et al. (2022) and WebShop Yao et al. (2023) demonstrate

LLMs automating web tasks with custom commands, but they are restricted in scope

and don’t address general computer tasks requiring keyboard and mouse inputs.

RCI Kim et al. (2023) achieves a 90.6% success rate in 54 MiniWoB++ tasks

using recursive self-correction, yet its reliance on task-specific examples restricts gen-

eralization to new scenarios. In contrast, my proposed method works well without

relying on self-correction. AdaPlanner Sun et al. (2023) achieved a 92.9% success

rate in 53 tasks by leveraging environment feedback for self-correction, but faced

similar generalization challenges as RCI. Pix2Act Shaw et al. (2023) addressed 59

MiniWoB++ tasks through tree search and BC, based on 1.3 million demonstrations.

WebGUM Furuta et al. (2024b) fine-tunes Language Multimodal Model (LMM) with

a huge multimodal corpus for web agents, allowing web agents to observe both HTML

and the captured screenshot but require lot of expert demonstrations for fine-tuning.

Synapse Zheng et al. (2024c) uses structured prompts with a LLM and achieves hu-

man level performance. However, the performance is largely dependent on the quality

of examples passed through prompts. On the other hand, my proposed method uses

few-shot in-context learning with structured prompts and structured representation

of UI elements on a browser making the agent independent of the quality of examples.

8

Moreover, my approach excels in addressing open-domain tasks on a large scale.

Numerous ongoing initiatives are dedicated to the development of computer agents

and benchmarks. Among the sophisticated benchmarks available, such as Mind2Web

Deng et al. (2023b), Webshop Yao et al. (2023), and WebArena Zhou et al. (2023).

WebArena Zhou et al. (2023) generates website simulations in a sandbox environ-

ment across four popular categories, replicating functionality and data from real-world

equivalents. In contrast, Mind2Web Deng et al. (2023b) offers environments spanning

diverse domains, websites, and various tasks extracted from live websites, complete

with action trajectory annotations. So, I have chosen Mind2Web for the real-world

evaluation. To solve Mind2Web benchmark, MindAct utilized an element-ranking

model to extract the top-50 relevant elements as clean observations. It employs MCQ

to recursively query the LLM for action selection from five alternative candidates un-

til either all options are wrong or just one action is selected. While MCQ-formatted

exemplars perform better than direct generation, MindAct frequently has trouble

selecting the right element Deng et al. (2023b). Another approach involves use of

language and vision transformer. Recent works in this works includes WebGUM Fu-

ruta et al. (2024b) and Gpt-4v Zheng et al. (2024b). WebGUM Furuta et al. (2024b)

fine-tunes Language Multimodal Model (LMM) with a huge multimodal corpus for

web agents, allowing web agents to observe both HTML and the captured screenshot

but require lot of expert demonstrations for fine-tuning. Gpt-4v Zheng et al. (2024b)

uses LMM’s to observe both HTML and captured screenshot to generate actions but

still lack sufficient visual perception abilities to serve as an effective agent.

9

Chapter 3

PROPOSED METHOD

In this work, my goal is to enable large language model to use various GUI tools

to extend its capabilities. The primary architecture of LUCI comprises of 7 key

components, namely

1. GUI Tool Set, which contains list of GUI tools authorized to be controlled by

the LLM.

2. Tool Selector, which selects GUI tools from GUI tool set required to accom-

plish given user instruction.

3. Conversational Model, which is responsible for interacting with users and

generating a solution outline based on GUI tool selected by the tool selector,

user instruction along with its conversational context.

4. Task Verifier, which filters the redundant sub-tasks in the solution outline

using action feedback.

5. UI Extractor, which extracts the information of UI elements from the selected

GUI tool.

6. UI Selector, which selects appropriate UI elements from the list of UI elements

generated by UI extractor for the given sub-task.

7. Action Executor, which performs action on selected UI elements based on

type of UI element and return the action feedback.

10

Figure 3.1: Architecture of LUCI. Given user instruction and the conversational

context, the Tool Selector first selects a tool from the given GUI tool set and opens a

GUI applications. Then, the conversational model generates a solution outline, which

is a textual description of list of sub-tasks needed to solve the task. Next, Task Verifier

filters redundant tasks in solution outline based on action feedback from previously

executed tasks and future sub-tasks. Then, a rule-based UI Extractor extracts UI

elements from GUI application. UI Selector selects appropriate UI elements from the

list of UI elements generated by UI extractor for the given sub-task. Lastly, Action

Executor performs action on selected UI element based on type of UI element and

generates an action feedback.

The overall architecture of LUCI is shown in Figure 3.1. The primary process

within this architecture is the LLM’s capability to execute action in response to

user instructions. This approach takes 4 inputs: large language model’s parameters,

represented as θ; GUI tool set, denoted as G; the user instructions, designated as

I, along with the conversational context, referred to as C. Utilizing these inputs,

the LLM generates a set of actions, designated as A, to execute and fulfill the user’s

instruction. This procedure can be defined as follows:

A = LLM(θ,G, I, C) (3.1)

11

Further, LUCI is employed with RLHF learning mechanism Ouyang et al. (2022)

to improve the task planning and task verification. Here, in addition to human

feedback, I also employ execution feedback, this combined feedback is denoted by F .

The Loss function of the learning mechanism is parameterised by,

L = L(LLM(θ,G, I, C),F) (3.2)

GUI Tool Set

The GUI tool set is a primary element in this framework, the tool set G = G =

{G1,G2,G3.....}, which contains a collection of different GUI application names. The

GUI tool set contains a list of all desktop application names (For instance, a weather

application on your personal computer) that the agent is allowed to work on. In this

work, I have used 22 GUI based desktop applications as shown in Table 1. In this

work web applications are accessed through a browser like Safari, Google Chrome or

Microsoft Edge, which gives more flexibility for navigation and using multiple GUI

applications.

Tool Selector

The main objective of the tool selector is to select a most appropriate GUI tool

from the GUI tool set that aligns with the given task requirements. The tool selector

is a language model that uses in-context learning to select a GUI application Gs from

the set of GUI tools G = {G1,G2,G3.....} based on given user instruction I, as shown

below. The output of the language model is grounded to application names in the

GUI tool set.

The tool selector in this study facilitates the use of multiple GUI tools based on

user instructions as shown in Example Query 2 in Figure 3.2. If a specified GUI tool

is incapable of performing a task, ”Tool Not Found” is chosen as shown in Example

12

Figure 3.2: Illustrative of examples of Tool Selector in selecting a GUI application

from a given GUI Tool set. Example Query 1 shows the ability of Tool selector to

select a GUI application. Example Query 2 shows the ability of Tool selector to

select multiple GUI application. Example Query 3 shows the ability of Tool selector

to notify the conversation model that given tasks cannot be performed with given

GUI applications. Example Query 4 shows the ability of Tool selector to to notify

the conversation model that given tasks can be solved without GUI application.

Query 3. For tasks that solely require language model capabilities, ”No tool required”

is selected as shown in Example Query 4. In cases of duplicate functionality, the

user’s specified tool takes precedence, or the tool is selected alphabetically or based

on previous user selections.

Conversational Model

The conversational model is a LLM, which acts as a “brain” for this framework by

understanding user intentions from the current instructions and past conversations

to generate a set of sub-tasks (solution outline) needed to use the selected GUI ap-

plication. To generate a Solution outline, I employed the Chain-of-thought (CoT),

as it has shown significant improvement in performance across various tasks includ-

ing arithmetic reasoning, commonsense reasoning, and symbolic reasoning Wei et al.

13

Figure 3.3: Illustrative example of solution outline from Conversation model to solve

a task which involves integration of two applications, Calculator and Text Edit

(2023); Kojima et al. (2023). An example of a solution outline generated for using a

calculator is shown below.

To facilitate the utilization of multiple GUI tools, I have specified a field called

“Tool Name” for each sub-task along with sub-task description within the generated

solution outline. The generated solution outline, consists of 3 types of sub-tasks:

1. Sub-tasks that contain description of opening an application. In this work, the

GUI application is opened right after the tool selector selects an application

name from the tool set and is not considered as a sub-task.

2. Sub-tasks that can be directly performed by the conversational model, such as

text summarization (Sub-task 9 in the Example Query 5), will not trigger any

action on GUI application.

3. Sub-tasks that contain action descriptions to be performed on GUI applicaations

as seen in Sub-tasks 2-7 and 10 in the Example Query 5 in Figure 3.3.

From above categorization, to distinguish sub-tasks requiring GUI interaction, a

boolean field ”Tool Required” is introduced in the Solution outline, preventing un-

14

necessary execution of subsequent steps for tasks not involving tool interaction. The

final output format of each sub-task in the solution outline is shown below:

Tool Required: True/False, Tool: GUI Application Name, Task description:

Sub task description

When ”No tool required” is chosen, the conversational model directly responds to

user instructions, such as summarizing a text, and provides feedback in cases where

”Not Found” is selected by the tool selector.

Task Verifier

Before executing each sub-task in the generated solution outline, it should be

evaluated for 2 things to remove redundant tasks and improve efficiency:

1. Whether the sub-task is necessary or not based on future tasks.

2. Sub-task is already executed or not based on previous tasks.

In the response of Example Query 5, after converting 50 minutes to hours, there

is no need to press “=” key, one can directly multiply this with the hourly earnings.

Also, there might be a chance of pressing ”=” key after dividing 50 by 60 in Sub-task

3 is valid, but doing so in Sub-task 4 leads to an error due to redundant division by

60. To prevent errors and redundant sub-tasks, I introduced Task verifier. The main

aim of the Task verifier is to identify and remove the unnecessary sub-tasks in the

solution outline.

Task verifier is a language model which takes current sub-task, future sub-tasks,

and action feedback from previous sub-tasks to decide whether to proceed with ex-

ecution or not by reasoning as shown in Example Query of Figure 3.4. The action

15

feedback is generated through the analysis of interactions with user interface (UI)

elements and the resulting changes in the user interface. This feedback mechanism

informs the task verifier about actions performed in the past and reduces the execu-

tion of redundant actions in subsequent sub-tasks. At the end of execution, action

feedback is combined to generate the execution feedback used in RLHF for model

improvement.

Figure 3.4: Illustrative example of Task verifier in deciding whether a task is redun-

dant or not by reasoning.

UI Extractor

I developed a rule-based UI element extractor to extract UI elements from desktop

applications and its parameters like type of UI element, allowed actions, location, size,

description, value (if any) from GUI tool. In any desktop application, the graphical

interface is based on hierarchy / tree structure. I can use accessibility tools provided

by Windows and MAC OS to extract this tree structure. In this tree based structure,

I divide the UI elements into 3 categories :

• Information Elements (I): UI elements that contain only Information. Ex-

ample: < p >,< h1 > − < h6 >,< span >,< div > e.t.c (in context of

HTML).

• Action Elements (A): UI elements which perform can post and get methods.

Example: buttons, hyperlinks, submit buttons e.t.c.

16

• Field Elements (F): UI elements that collect user input. Example: textbox,

checkbox, radio buttons e.t.c.

Based on these 3 categorizations, I assume the following:

• User input is sent to server when a post method is called. It means every F

is associated with a A. For instance the submit button comes after the search

box. If there are multiple F’s while parsing through the tree it is associated

with the same A within the branch. Every F has a corresponding A but A

need not have a F.

• If there is I, it is linked with A either in its child nodes or child nodes to parent

nodes of I to get the context.

• I can contain multiple A. For example, heading and list of links.

• I can have multiple I’s, each associated with ‘A’. For example, a webpage

contains a heading, subheading and list of links for each subheading.

Based on the above assumptions, I parse through tree structure using a bottom-

top approach and the tree structure can be broken into:

I[I1, < A1, F1 >, I2, < A2, F2 >, I3, < A3, F3 >,]

I1, I2, I3,...... contains all text information in a given node. < An, Fn > is a set of

A and its corresponding F pairs.

UI Selector

Recent studies Chung et al. (2022); Gu et al. (2023) propose training language

models for discrimination rather than generation, as it enhances generalizability and

sample efficiency for grounding tasks. I adopt this approach by transforming UI ele-

ment selection into a multi-choice question answering problem. The language model

17

Figure 3.5: Illustrative example of UI selector selcting a list of UI elements.

is trained to select from a list of options instead of generating the complete target

element. Once the UI elements are extracted, the UI elements required for a sub-task

are selected by using a LLM as shown in Example Query 7 of Figure 3.5. If a UI

element is not found, a feedback signal is sent to the conversational model, triggering

a revision of the current sub-task.

Action Executor

The action executor is formulated with the purpose of executing a finite set of

actions, including clicking, right-clicking, text entry and selection. An action executor

is a python code that utilizes information about UI elements, such as their path,

location and size, to execute an appropriate action based on the type of UI element.

In order to enhance accuracy and reliability, the action executor is incorporated with

a feedback mechanism to ascertain whether an action is performed or not. Once an

action is performed, it generates action feedback for the next sub-task. Following

the execution of all the sub-tasks, the action executor will send a message to the

conversation model to generate an execution feedback and furnish results to users .

18

Chapter 4

NOVEL ASPECTS OF LUCI

Application-Centric Architecture

As seen in Figure. 3.1, the tool selector is the first component in my architecture.

The conversational model generates sub-tasks based on the selected applications,

which simplifies the problem statement and enables high-quality sub-task generation.

The application-centric approach also enable multi-application orchestration by

separating the selection and orchestration tasks between the Tool Selector and

the Conversational Model.

Modular OS-Agnostic Agent

The Modular OS-Agnostic Agent represents a foundational aspect of LUCI’s ar-

chitecture. The decomposition of the entire architecture into independent and in-

terchangeable components, each fulfilling specific functions within the framework,

makes LUCI modular. Components such as the Tool Selector, Conversational Model,

Task verifier and UI Selector are based on LLM’s and are engineered to seamlessly

operate across both native and web interfaces. Employing platform-independent tech-

niques to traverse the UI hierarchy and extract relevant information, the UI Extractor

within LUCI is designed to retrieve UI elements from desktop applications in a spe-

cific format, thus contributing to its operating system (OS) agnosticism. This design

approach ensures LUCI’s adaptability to diverse environments, facilitating its effec-

tiveness across a range of operating systems and interface types.

19

Novel Tool Selection Mechanism

The Tool Selector embodies a novel tool selection mechanism aimed at identifying

relevant tools for multi-application tasks. At its core, the Tool Selector incorporates

a sophisticated mechanism driven by in-context learning, which enables it to discern

the most relevant GUI tool from the available toolset. Unlike traditional selection

methods, which may rely solely on predefined rules or heuristics, the Tool Selector

dynamically adapts its decision-making process based on the context provided by the

user’s instructions and task-specific requirements. This adaptive approach allows the

Tool Selector to consider various factors when identifying the optimal GUI tool for a

given task. For instance, it may take into account the nature of the user’s instructions,

such as the specific actions or functionalities requested, as well as any contextual infor-

mation provided, such as the current state of the application or the user’s preferences.

By leveraging this contextual awareness, the Tool Selector can make more informed

decisions, ultimately leading to better tool selections and improved task performance.

Novel UI Parser

The contribution pertaining to the novel UI parser is exemplified by the UI Extrac-

tor component within LUCI. This component employs a novel UI parsing technique

to extract structured IAF representations of both web and desktop interfaces. At

its core, the UI Extractor employs a sophisticated UI parsing technique that allows

it to traverse the complex hierarchy of UI elements present in web and desktop ap-

plications. By systematically categorizing these elements and extracting pertinent

information such as type, location, size, and description, the UI Extractor generates

structured representations that can be easily interpreted by the LLM. These IAF

representations sovle the limited context length issue seen in previous methods.

20

Hierarchical Control Structure

This contribution is manifested in the hierarchical control structure implemented

within LUCI, facilitating the control of tasks across multiple applications. At the

heart of this hierarchical control structure lies the collaborative effort of key com-

ponents such as the Conversational Model, Task Verifier, and Action Executor. The

conversational model within LUCI employs in-context learning to understand user in-

structions and adapt its behavior accordingly continuously refining its understanding

of tasks through feedback. Additionally, the Task Verifier filters redundant sub-tasks

based on future tasks and past actions, minimizing unnecessary actions without hu-

man intervention. These features collectively allow LUCI to autonomously adapt to

varying user needs and preferences without frequent human intervention while con-

tributing to the overall effectiveness of the framework.

21

Chapter 5

EXPERIMENTS AND RESULTS

In this section, I evaluate the performance of LUCI and demonstrate that: (1)

LUCI outperforms previous approaches on executing complex tasks (Sec-

tion 5), LUCI enables cross-application adaptability (Section 5) and LUCI

can utilize multiple applications for executing complex tasks (Section 5).

LUCI Outperforms Previous Approaches on Executing Complex Tasks

The performance of LUCI in executing complex tasks stands out prominently,

especially when evaluated against other methodologies. my comprehensive examina-

tion involved testing LUCI across two benchmarks Miniwob++ Shi et al. (2017) and

Mind2Web Deng et al. (2023b), to allow for fair comparisons with baselines. The

MiniWoB++ task suite, designed to simulate real-world human-computer interac-

tions Shi et al. (2017); Liu et al. (2018), poses simple tasks like click-checkboxes, and

text-complete for computer agents. In my MiniWoB++ experiments, I performed ex-

periments on two LLM’s GPT-3.5-turbo and Phi-2, running 50 episodes to generate

results for each task. In MiniWoB++ setup, I adopt RCI Kim et al. (2023) configura-

tions with action space comprising of click-xpath, type, press, and click-options. The

primary evaluation criterion is the success rate, reflecting the agent’s effectiveness in

completing the assigned task Kim et al. (2023). The success rate is determined by

the proportion of successful episodes, wherein the agent receives a positive reward.

Mind2Web Deng et al. (2023b) is a realistic dataset with human demonstrations

of open-domain tasks from diverse 137 real-world websites like Airbnb and Twitter,

for assessing generalization across tasks, websites, and domains. For Mind2Web, I

22

utilized GPT-3.5-turbo and Phi-2 with greedy decoding (i.e, temperature set to 0).

Metrics include Operation F1 (Op. F1) for token-level F1 score for predicted operation

comprised of action and input value, and Step SR for success rate per task step. This

dataset is divided into three test sets: Cross-Task, Cross-Website, and Cross-Domain,

evaluating generalizability over tasks from the same, similar and completely unseen

domains, respectively. I include set of examples in prompts.

Further, to evaluate my work on day-to-day tasks I performed my experiments on

22 GUI applications (including both desktop and web applications) shown in Figure

5.2. To evaluate the performance on GUI applications, my key evaluation criterion is

the success rate, reflecting the agent’s effectiveness in completing the assigned task.

Here, I’ve categorized three types of failure: tool selection, selection of unwanted

UI elements and task failure. Additionally, an episode is deemed failed if the agent

successfully carries out the created plan but is unable to complete the assignment

and thus not rewarded. Most of the applications lack an appropriate dataset for

comprehensive evaluation. To solve this problem, I employed an approach similar to

Wang et al. (2023). I used a set of hand-written tasks serving as seed examples and

then, utilize ChatGPT to generate more tasks. Unless explicitly stated otherwise, for

these manually curated test sets, human evaluators assess and determine whether the

task is considered to be accurately accomplished.

Performance on MiniWoB++ Task Suite

I performed comprehensive experiments to assess LUCI’s performance in compari-

son to state-of-the-art (SOTA) approaches on MiniWoB++. For baseline compar-

isons using Behavior Cloning (BC) and Reinforcement Learning (RL), I employed

CC-Net Humphreys et al. (2022b) and Pix2Act Shaw et al. (2023), which lever-

age large-scale BC and RL techniques. Regarding fine-tuning baselines, I evaluated

23

against WebGUM Furuta et al. (2024b) and WebN-T5 Gur et al. (2023), two lan-

guage models fine-tuned on a substantial number of demonstrations. In the realm

of in-context learning (ICL) methods, my baselines comprised Synapse Zheng et al.

(2024c), RCI Kim et al. (2023) and AdaPlanner Sun et al. (2023), both incorporating

self-correction mechanisms. Additionally, I included human scores from Humphreys

et al. Humphreys et al. (2022b) for supplementary benchmarking.

Figure 5.1 illustrates the average performance of different methods across Mini-

wob++ benchmark. LUCI, utilizing PHI2 and gpt-3.5-turbo, achieves human-level

performance with mean success rates of 94% and 98.6%, respectively. Notably, LUCI

Figure 5.1: Average performance comparison with baselines in MiniWoB++ environ-

ment. LUCI w/ GPT-3.5 achieves state-of-the-art performance and LUCI w/ PHI-2

is the first model to achieve human level performance with LLM less than 3B param-

eters.

24

using gpt-3.5-turbo outperforms all baselines on MiniWoB++. LUCI surpasses pre-

vious ICL methods by addressing issues associated with context length, need for

exemplar memory and human intervention for task adaptability. First, UI extractor

in LUCI represents the user interface / HTML page in a compressed and structured

way which solves tasks that previous methods cannot solve due to limited context

length, such as book flight. Second, LUCI’s hierarchical control structure and contin-

uous user interaction enable dynamic task execution and adaptation without relying

on exemplar memory, unlike Synapse Zheng et al. (2024c). While Synapse and

LUCI have around 99% success rate on the simpler Miniwob++ bench-

mark, LUCI shows nearly 3 times higher performance on Mind2WEB

benchmark. Third, conversational model within LUCI employs in-context learning

to understand user instructions and adapt its behavior accordingly and continuously

refining its understanding of tasks through feedback. Additionally, the Task Veri-

fier filters redundant sub-tasks based on future tasks and past actions, minimizing

unnecessary actions without human intervention. These features collectively allow

LUCI to autonomously adapt to varying user needs and preferences without frequent

human intervention. The instances of failure in LUCI are primarily attributed to the

inherent challenges of tasks which cannot be planned ahead. For instance, tasks like

tic-tac-toe, where the LUCI has to make dynamic decision-making at each turn, and

the outcome of the game is contingent on the opponent’s moves. Unlike other tasks

which have deterministic or predictable outcomes, tic-tac-toe requires adaptability

and the ability to react to the changing state of the game. LUCI cannot accurately

plan ahead because it cannot foresee the opponent’s moves beyond the current turn,

making the traditional pre-planning approach less effective.

25

Table 5.1: Average performance of different methods on Mind2WEB Benchmark.

LUCI w/ GPT-3.5 achieves state-of-the-art performance.

Baseline Cross-Task Cross-Website Cross-Domain

Op. F1 Step SR Op. F1 Step SR Op. F1 Step SR

MINDACT 56.6 17.4 48.8 16.2 52.8 18.6

Synapse - 30.6 - 29.1 - 26.4

WebGUM 75.9 64.9 75.3 62.5 77.7 66.7

GPT-4v 80.9 65.7 83.7 70 73.6 62.1

LUCI

w/ GPT-3.5 93.8 86.7 96.3 89.1 91.7 84.2

w/ Phi2 82.3 72.8 84.9 77.3 79.4 69.1

Performance on Mind2Web

I showcase LUCI’s applicability to real-world scenarios by testing it on Mind2Web

Deng et al. (2023b). For baseline comparisons I used MindACT with GPT-3.5, We-

bGUM Furuta et al. (2024b), Gpt-4v Zheng et al. (2024b). The current SOTA in

this benchmark is Gpt-4v Zheng et al. (2024b) with oracle grounding but requires

human annotations. It requires LMM to generate action and then selects the UI

element based on the action. In my experiments, I directly selects the UI element

instead of generating action. LUCI with GPT-3.5-turbo achieves a Step success rate

of 86.7 %, 89.1% and 84.2% across three test splits, respectively. As demonstrated

in Table 5.1, my approach performs significantly better than other methods across

three test splits over every metric. Notably, it achieves atleast 19% more in step

success rate improvement over GPT-4(v) in all three settings using GPT-3.5. LUCI

with Phi2 still performs admirably, demonstrating solid performance across various

26

scenarios. It outperforms other models in most categories, showcasing the efficiency

of LUCI with smaller LLMs in handling cross-task, cross-website, and cross-domain

challenges.

Figure 5.2: Average success rate of LUCI in using GUI Applications with GPT-3.5

under zero shot setting and Few Shot Setting

Performance of LUCI on GUI Applications

In this section I assess the effectiveness of my approach in empowering the model to

autonomously leverage GUI applications, without the need for additional supervision.

The results of my experiments, depicted in Figure 5.2, showcase the performance of

LUCI when integrated with GPT-3.5 under both the zero-shot and few-shot in-context

settings. Specifically, under the zero-shot setting, where the language model relies

solely on its pre-existing knowledge to generate a solution outline, LUCI achieves an

27

average success rate of 58%. In contrast, under the few-shot setting with limited

context, the average success rate significantly increases to 76.5%, with over 60% of

applications achieving a success rate of at least 80%. LUCI exhibits a comparatively

lower performance in PyCharm, primarily attributed to the language model’s limita-

tions in generating accurate and effective code. LUCI demonstrates good performance

on desktop applications even under the zero-shot setting when compared to web ap-

plications. However, a significant decrease is observed in the performance of LUCI

with web applications under the few-shot setting. This disparity may stem from the

language model’s training data, which potentially contains information on how to

navigate and interact with desktop applications but lacks comprehensive guidance

on web applications. These findings highlight the LUCI’s adaptability to scenarios

where the model encounters unfamiliar domains with just few prompts.

LUCI Enables Cross-application Adaptability

Figure 5.3: Cross application performance of LUCI with GPT-3.5 and PHI-2. LUCI

fine-tuned on an application exhibits comparable performance on similar unseen ap-

plications. LUCI can generalise to unseen environment.

In this section, I closely examine the cross-application performance of language

28

models with LUCI. Here I fine-tune language models on a single application and

subsequently evaluating their success rate on analogous applications within same do-

mains and task contexts. The models subjected to experimentation include GPT-3.5

Turbo and Phi-2. The objective of this investigation was to discern the adaptability

of these agents when confronted with entirely new desktop or web applications, albeit

within the familiarity of domains and task contexts they were originally fine-tuned

for.

From Figure 5.3, it is observed that the models fine-tuned for a particular appli-

cation exhibit a comparable success rate when tested on applications from the same

domain. Quantitatively, the average deviation in performance is measured at 3.3 %

for the GPT-3.5 Turbo setting and 4.5 % for the Phi-2 setting. This means that fine-

tuning for a certain type of application helps the models do well on other applications

in the same category.

LUCI Can Utilize Multiple Applications for Executing Complex Tasks

Another noteworthy aspect of LUCI is its ability to carry out tasks that require

the integration of multiple applications. In this section, I evaluate LUCI’s proficiency

in seamlessly orchestrating various applications to efficiently execute multifaceted

tasks, showcasing its potential for enhanced productivity and versatility in diverse

user scenarios. To evaluate LUCI’s capability to manage multiple applications, I cre-

ated a set of hand-written tasks serving as seed examples and then, utilize ChatGPT

to generate more tasks that requires the utilization of one or more GUI applications

listed in Figure 5.2. Then, executed these tasks with number of GUI applications

required to complete each task ranges from 1 to 6. In each case at least 21 tasks are

evaluated and run 30 episodes to produce the results. My key evaluation criterion

is the success rate discussed in Section 5, reflecting the agent’s effectiveness in com-

29

pleting the assigned task. From Figure 5.4, delineates a trend wherein the success

Figure 5.4: Average success rate of LUCI across tasks involving the use of multiple

applications. The trend shows LUCI’s ability to use at least four applications without

losing efficacy.

rate exhibits a gradual decline from 93.17% for tasks involving a single application

to 79.36% when four applications are concurrently utilized. This trend underscores

LUCI’s commendable performance in handling tasks comprising up to four appli-

cations. However, surpassing this threshold, the success rates sharply decrease to

58.73%, indicating a substantial challenge for LUCI in managing tasks necessitating

the simultaneous usage of more than five applications. These findings underscore

the diminishing efficacy of LUCI with an increasing number of applications, implying

complexities in its multitasking capabilities beyond a certain threshold.

During my experiments, I note that the ordering of applications can have sig-

30

nificant impact on the success rate of entire task. While executing tasks involving

multiple applications, complex applications such as Keynote, are called in later stages

leads to a lower success rate. I can attribute this effect to long term attention lim-

itations in LLMs. This implies a LUCI with advanced LLM (such as GPT-4) can

alleivate these issues.

31

Chapter 6

FUTURE WORK

LUCI is designed to simplify the creation and evaluation of versatile agents opti-

mized for GUI tools. These agents show great potential in improving the accessibility

and usability of GUI tools, especially for those who are unfamiliar with information

technology or have impairments that may make it difficult to navigate complex tools

or applications. Despite its potential benefits, there remain significant concerns and

limits regarding present data gathering approaches, system design, and the necessary

safety precautions for deployment in real-world circumstances.

Representation in Data: The data and methodology have undergone evalua-

tion for English instructions and user interfaces containing English text. In future, I

would expand to different languages.

Use of Multimodal Information: LUCI, focuses on modeling the GUI envi-

ronment into textual context from underlying hierarchy, neglecting other information

such as images, videos e.t.c. This makes LUCI vulnerable to performs actions based on

information other than text. Leveraging this multimodal information holds promise

for enhancing model performance.

Tolerance to Noise: In LUCI, a solution outline is generate ahead of execution

based on previous knowledge. Deviations of desktop or web application from the

original user interfaces, often triggered by Pop-ups and Ads, result in errors as LUCI

struggles to adjust to unexpected scenarios.

Safety Concerns: The development of general-purpose action agents holds the

potential to enhance efficiency and user experiences but requires careful consideration

of safety concerns. Key issues include managing sensitive actions, privacy-related

32

activities, and the risk of breaching security measures. Amid these challenges, ac-

tion agents pose a significant risk of breaching security involving authentication and

authorization processes, including CAPTCHA, and may be exploited for malicious

activities. A comprehensive approach is needed for responsible deployment, urging

proactive cybersecurity research to develop preemptive protective measures.

33

Chapter 7

CONCLUSION

In this work, I introduced LLM assisted User Control Interface (LUCI), a computer

agent that leverages the reasoning capabilities of LLMs, such as GPT-3.5 and PHI-2,

to interact and control wide range of desktop and web applications to execute repet-

itive actions and solve complex tasks. LUCI addresses context-length issues as seen

in previous methods by using compressed semantic representations for UI elements

across both native and web interfaces. This extends the capabilities of previous single

platform approaches. Additionally, LUCI leverages a hierarchical structure enabling

multi-application control. LUCI accomplishes all this while maintaining similar or up

to 20% better performance on the benchmarks like MiniWoB++, Mind2Web.

34

REFERENCES

Ahn, M., A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu,
K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pas-
tor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers,
C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan and
A. Zeng, “Do as i can, not as i say: Grounding language in robotic affordances”,
(2022).

Chung, H. W., L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. De-
hghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowd-
hery, A. Castro-Ros, M. Pellat, K. Robinson, D. Valter, S. Narang, G. Mishra,
A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin,
A. Roberts, D. Zhou, Q. V. Le and J. Wei, “Scaling instruction-finetuned language
models”, (2022).

Dasgupta, I., C. Kaeser-Chen, K. Marino, A. Ahuja, S. Babayan, F. Hill and R. Fer-
gus, “Collaborating with language models for embodied reasoning”, (2023a).

Dasgupta, I., C. Kaeser-Chen, K. Marino, A. Ahuja, S. Babayan, F. Hill and R. Fer-
gus, “Collaborating with language models for embodied reasoning”, (2023b).

Deng, X., Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun and Y. Su,
“Mind2web: Towards a generalist agent for the web”, (2023a).

Deng, X., Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun and Y. Su,
“Mind2web: Towards a generalist agent for the web”, (2023b).

Desai, S., T. Sharma and P. Saha, “Using chatgpt in hci research—a trioethnogra-
phy”, in “Proceedings of the 5th International Conference on Conversational User
Interfaces”, CUI ’23 (ACM, 2023), URL http://dx.doi.org/10.1145/3571884.
3603755.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale”, (2021).

Furuta, H., K.-H. Lee, O. Nachum, Y. Matsuo, A. Faust, S. S. Gu and I. Gur, “Mul-
timodal web navigation with instruction-finetuned foundation models”, (2024a).

Furuta, H., K.-H. Lee, O. Nachum, Y. Matsuo, A. Faust, S. S. Gu and I. Gur, “Mul-
timodal web navigation with instruction-finetuned foundation models”, (2024b).

Gao, L., A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan and G. Neubig,
“Pal: Program-aided language models”, (2023).

35

http://dx.doi.org/10.1145/3571884.3603755
http://dx.doi.org/10.1145/3571884.3603755

Glaese, A., N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh,
L. Weidinger, M. Chadwick, P. Thacker, L. Campbell-Gillingham, J. Uesato, P.-S.
Huang, R. Comanescu, F. Yang, A. See, S. Dathathri, R. Greig, C. Chen, D. Fritz,
J. S. Elias, R. Green, S. Mokrá, N. Fernando, B. Wu, R. Foley, S. Young, I. Gabriel,
W. Isaac, J. Mellor, D. Hassabis, K. Kavukcuoglu, L. A. Hendricks and G. Irving,
“Improving alignment of dialogue agents via targeted human judgements”, (2022).

Gu, Y., X. Deng and Y. Su, “Don’t generate, discriminate: A proposal for grounding
language models to real-world environments”, (2023).

Gur, I., N. Jaques, Y. Miao, J. Choi, M. Tiwari, H. Lee and A. Faust, “Environment
generation for zero-shot compositional reinforcement learning”, (2022).

Gur, I., O. Nachum, Y. Miao, M. Safdari, A. Huang, A. Chowdhery, S. Narang,
N. Fiedel and A. Faust, “Understanding html with large language models”, (2023).

Gur, I., U. Rueckert, A. Faust and D. Hakkani-Tur, “Learning to navigate the web”,
(2018).

Hoffmann, J., S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford,
D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland,
K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan,
E. Elsen, J. W. Rae, O. Vinyals and L. Sifre, “Training compute-optimal large
language models”, (2022).

Hong, W., W. Wang, Q. Lv, J. Xu, W. Yu, J. Ji, Y. Wang, Z. Wang, Y. Zhang, J. Li,
B. Xu, Y. Dong, M. Ding and J. Tang, “Cogagent: A visual language model for
gui agents”, (2023).

Huang, W., P. Abbeel, D. Pathak and I. Mordatch, “Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents”, in “Pro-
ceedings of the 39th International Conference on Machine Learning”, edited by
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu and S. Sabato, vol. 162 of
Proceedings of Machine Learning Research, pp. 9118–9147 (PMLR, 2022a), URL
https://proceedings.mlr.press/v162/huang22a.html.

Huang, W., F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson,
I. Mordatch, Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine,
K. Hausman and B. Ichter, “Inner monologue: Embodied reasoning through plan-
ning with language models”, (2022b).

Humphreys, P. C., D. Raposo, T. Pohlen, G. Thornton, R. Chhaparia, A. Muldal,
J. Abramson, P. Georgiev, A. Goldin, A. Santoro and T. Lillicrap, “A data-driven
approach for learning to control computers”, (2022a).

Humphreys, P. C., D. Raposo, T. Pohlen, G. Thornton, R. Chhaparia, A. Muldal,
J. Abramson, P. Georgiev, A. Goldin, A. Santoro and T. Lillicrap, “A data-driven
approach for learning to control computers”, (2022b).

36

https://proceedings.mlr.press/v162/huang22a.html

Isyanto, H., A. S. Arifin and M. Suryanegara, “Design and implementation of iot-
based smart home voice commands for disabled people using google assistant”, in
“2020 International Conference on Smart Technology and Applications (ICoSTA)”,
pp. 1–6 (2020).

Jia, S., J. Kiros and J. Ba, “Dom-q-net: Grounded rl on structured language”, (2019).

Kim, G., P. Baldi and S. McAleer, “Language models can solve computer tasks”,
(2023).

Kojima, T., S. S. Gu, M. Reid, Y. Matsuo and Y. Iwasawa, “Large language models
are zero-shot reasoners”, (2023).

Lazaridou, A., E. Gribovskaya, W. Stokowiec and N. Grigorev, “Internet-augmented
language models through few-shot prompting for open-domain question answering”,
(2022).

Li, T. J.-J., A. Azaria and B. A. Myers, “Sugilite: Creating multimodal smartphone
automation by demonstration”, in “Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems”, CHI ’17, p. 6038–6049 (Association for
Computing Machinery, New York, NY, USA, 2017), URL https://doi.org/10.
1145/3025453.3025483.

Liang, Y., C. Wu, T. Song, W. Wu, Y. Xia, Y. Liu, Y. Ou, S. Lu, L. Ji, S. Mao,
Y. Wang, L. Shou, M. Gong and N. Duan, “Taskmatrix.ai: Completing tasks by
connecting foundation models with millions of apis”, (2023).

Liu, E. Z., K. Guu, P. Pasupat, T. Shi and P. Liang, “Reinforcement learning on web
interfaces using workflow-guided exploration”, (2018).

Menick, J., M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chadwick, M. Glaese,
S. Young, L. Campbell-Gillingham, G. Irving and N. McAleese, “Teaching language
models to support answers with verified quotes”, (2022).

Mialon, G., R. Dess̀ı, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu,
B. Rozière, T. Schick, J. Dwivedi-Yu, A. Celikyilmaz, E. Grave, Y. LeCun and
T. Scialom, “Augmented language models: a survey”, (2023).

Nakano, R., J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain,
V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. But-
ton, M. Knight, B. Chess and J. Schulman, “Webgpt: Browser-assisted question-
answering with human feedback”, (2022).

Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike and R. Lowe, “Training
language models to follow instructions with human feedback”, (2022).

Paranjape, B., S. Lundberg, S. Singh, H. Hajishirzi, L. Zettlemoyer and M. T. Ribeiro,
“Art: Automatic multi-step reasoning and tool-use for large language models”,
(2023).

37

https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3025453.3025483

Pasupat, P., T.-S. Jiang, E. Liu, K. Guu and P. Liang, “Mapping natural language
commands to web elements”, in “Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing”, edited by E. Riloff, D. Chiang, J. Hock-
enmaier and J. Tsujii, pp. 4970–4976 (Association for Computational Linguistics,
Brussels, Belgium, 2018), URL https://aclanthology.org/D18-1540.

Schick, T., J. Dwivedi-Yu, R. Dess̀ı, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Can-
cedda and T. Scialom, “Toolformer: Language models can teach themselves to use
tools”, (2023).

Shaw, P., M. Joshi, J. Cohan, J. Berant, P. Pasupat, H. Hu, U. Khandelwal, K. Lee
and K. Toutanova, “From pixels to ui actions: Learning to follow instructions via
graphical user interfaces”, (2023).

Shi, T., A. Karpathy, L. Fan, J. Hernandez and P. Liang, “World of bits: An open-
domain platform for web-based agents”, in “Proceedings of the 34th International
Conference on Machine Learning”, edited by D. Precup and Y. W. Teh, vol. 70
of Proceedings of Machine Learning Research, pp. 3135–3144 (PMLR, 2017), URL
https://proceedings.mlr.press/v70/shi17a.html.

Sun, H., Y. Zhuang, L. Kong, B. Dai and C. Zhang, “Adaplanner: Adaptive planning
from feedback with language models”, (2023).

Taylor, R., M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton,
V. Kerkez and R. Stojnic, “Galactica: A large language model for science”, (2022).

Thoppilan, R., D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng,
A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri,
M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen,
A. Roberts, M. Bosma, V. Zhao, Y. Zhou, C.-C. Chang, I. Krivokon, W. Rusch,
M. Pickett, P. Srinivasan, L. Man, K. Meier-Hellstern, M. R. Morris, T. Doshi,
R. D. Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz,
B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Ra-
jakumar, A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein,
R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak, E. Chi and Q. Le, “Lamda:
Language models for dialog applications”, (2022).

Tulshan, A. S. and S. N. Dhage, “Survey on virtual assistant: Google assistant,
siri, cortana, alexa”, in “Advances in Signal Processing and Intelligent Recognition
Systems”, edited by S. M. Thampi, O. Marques, S. Krishnan, K.-C. Li, D. Ciuonzo
and M. H. Kolekar, pp. 190–201 (Springer Singapore, Singapore, 2019).

Vemprala, S., R. Bonatti, A. Bucker and A. Kapoor, “Chatgpt for robotics: Design
principles and model abilities”, (2023).

Wang, Y., Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi and H. Hajishirzi,
“Self-instruct: Aligning language models with self-generated instructions”, (2023).

Wei, J., M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai and
Q. V. Le, “Finetuned language models are zero-shot learners”, (2022).

38

https://aclanthology.org/D18-1540
https://proceedings.mlr.press/v70/shi17a.html

Wei, J., X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le and
D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models”,
(2023).

Yang, R., L. Song, Y. Li, S. Zhao, Y. Ge, X. Li and Y. Shan, “Gpt4tools: Teaching
large language model to use tools via self-instruction”, (2023).

Yao, S., H. Chen, J. Yang and K. Narasimhan, “Webshop: Towards scalable real-
world web interaction with grounded language agents”, (2023).

Ye, J., X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C. Gong, Y. Shen,
J. Zhou, S. Chen, T. Gui, Q. Zhang and X. Huang, “A comprehensive capability
analysis of gpt-3 and gpt-3.5 series models”, (2023).

Zeng, A., M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari,
A. Purohit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke and P. Florence, “So-
cratic models: Composing zero-shot multimodal reasoning with language”, (2022).

Zheng, B., B. Gou, J. Kil, H. Sun and Y. Su, “Gpt-4v(ision) is a generalist web agent,
if grounded”, (2024a).

Zheng, B., B. Gou, J. Kil, H. Sun and Y. Su, “Gpt-4v(ision) is a generalist web agent,
if grounded”, (2024b).

Zheng, L., R. Wang, X. Wang and B. An, “Synapse: Trajectory-as-exemplar prompt-
ing with memory for computer control”, (2024c).

Zhou, S., F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Sridhar, X. Cheng, T. Ou, Y. Bisk,
D. Fried, U. Alon and G. Neubig, “Webarena: A realistic web environment for
building autonomous agents”, (2023).

39

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Related Work
	Building Agents with LLMs
	Automated GUI Tasks

	Proposed Method
	GUI Tool Set
	Tool Selector
	Conversational Model
	Task Verifier
	UI Extractor
	UI Selector
	Action Executor

	Novel Aspects of LUCI
	Application-Centric Architecture
	Modular OS-Agnostic Agent
	Novel Tool Selection Mechanism
	Novel UI Parser
	Hierarchical Control Structure

	Experiments and Results
	LUCI Outperforms Previous Approaches on Executing Complex Tasks
	LUCI Enables Cross-application Adaptability
	LUCI Can Utilize Multiple Applications for Executing Complex Tasks

	Future work
	Conclusion

	REFERENCES

