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ABSTRACT 
   

Metabolomics focuses on the study of metabolic changes occurring in various 

systems and utilizes quantitative and semi-quantitative measurements of multiple 

metabolites in parallel. Mass spectrometry (MS) is the most ubiquitous platform in this 

field, as it provides superior sensitivity regarding measurements of complex metabolic 

profiles in biological systems. When combined with MS, multivariate statistics and 

advanced machine learning algorithms provide myriad opportunities for bioinformatics 

insights beyond simple univariate data comparisons. In this dissertation, the application of 

MS-based metabolomics is introduced with an emphasis on biomarker discovery for 

human disease detection. To advance disease diagnosis using MS-based metabolomics, 

numerous statistical techniques have been implemented in this research including 

principal component analysis, factor analysis, partial least squares-discriminant analysis 

(PLS-DA), orthogonal PLS-DA, random forest, receiver operating characteristic analysis, 

as well as functional pathway/enzyme enrichment analyses. These approaches are highly 

useful for improving classification sensitivity and specificity related to disease-induced 

biological variation and can help identify useful biomarkers and potential therapeutic 

targets. It is also shown that MS-based metabolomics can distinguish between clinical and 

prodromal disease as well as similar diseases with related symptoms, which may assist 

in clinical staging and differential diagnosis, respectively. Additionally, MS-based 

metabolomics is shown to be promising for the early and accurate detection of diseases, 

thereby improving patient outcomes, and advancing clinical care. Herein, the application 

of MS methods and chemometric statistics to the diagnosis of breast cancer, 

coccidioidomycosis (Valley fever), and senile dementia (Alzheimer's disease) are 

presented and discussed. In addition to presenting original research, previous efforts in 

biomarker discovery will be synthesized and appraised. A Comment will be offered 
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regarding the state of the science, specifically addressing the inefficient model of repetitive 

biomarker discovery and the need for increased translational efforts necessary to 

consolidate metabolomics findings and formalize purported metabolic markers as 

laboratory developed tests. Various factors impeding the translational throughput of 

metabolomics findings will be carefully considered with respect to study design, statistical 

analysis, and regulation of biomedical diagnostics. Importantly, this dissertation will offer 

critical insights to advance metabolomics from a scientific field to a practical one including 

targeted detection, enhanced quantitation, and direct-to-consumer considerations.  
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CHAPTER 1 

INTRODUCTION 

 It is estimated that 92.15% of all human deaths are attributable to communicable disorders 

and non-communicable diseases, with less than 8% attributable to natural causes, unintended 

injuries, and suicide (Roth et al., 2018). Metabolomics, the interdisciplinary study of metabolites 

(T. W. M. Fan & Lane, 2012), has facilitated numerous advances in the field of systems biology 

and biomedical diagnostics (Patti et al., 2012), which have in turn led to clinical improvements in 

diagnostic testing (G. N. Gowda et al., 2008), prognostic staging (X. Zhang et al., 2016), drug 

target identification (Patel & Ahmed, 2015), and therapeutic monitoring of diseases and disorders 

(Zhanghan Chen et al., 2019). Given its close proximity to the phenotype (Pinu et al., 2019), the 

metabolome has proven to be a sensitive and reliable indicator of disease (Zhu et al., 2015). As 

such, mass spectrometry (MS)-based metabolomics has emerged as a powerful tool for the 

quantitative and semi-quantitative measurement of metabolites for disease classification (Jasbi, 

Wang, et al., 2019) as well as the elucidation of pathogenic mechanisms (Jasbi et al., 2021). 

Firmly established as a mainstay testing method for inborn errors of metabolism (Ismail et al., 

2019), MS-based metabolomics has expanded to include the testing of cancers (Wei et al., 2021), 

infectious diseases (Jasbi, Mitchell, et al., 2019), cardiovascular diseases (Shah et al., 2012), 

digestive disorders (Wilmanski et al., 2019), neurological disorders (Havelund et al., 2017), and 

even cognitive disorders such as autism (Glinton & Elsea, 2019) and schizophrenia (D. Wang et 

al., 2019).  

 Indeed, the field of metabolomics has enjoyed a considerable increase in scientific interest 

over the last two decades. Regrettably, the number of laboratory developed tests (LDTs) has 

lagged behind this massive accumulation of metabolomics data and knowledge. As can be seen 

in Figure 1.1, a PubMed search of “metabolomics” and “study” returns 36,904 studies published 

since 2002; of these, 24,343 were published in just the last five years. In contrast, a similar 
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PubMed search of “metabolomics” and “laboratory developed test” returns just 691 results in the 

same time period. Although a plethora of candidate markers for various disorders and diseases 

have been collectively identified by the field of metabolomics (Xia et al., 2013), less than 5% have 

been formalized as LDTs (Dias & Koal, 2016). Compared to unvalidated candidate markers, LDTs 

offer significant advantages to disease assessment including increased accessibility, simple 

scalability, understandable results, and an enhanced educational effect (Lichtenberg et al., 2021). 

Nevertheless, translation of preliminary findings of metabolomic biomarker studies to formalized 

LDTs is prerequisite to the realization of these benefits. Although the U.S. Food and Drug 

Administration (FDA) has some limited authority in determining the complexity of LDTs and their 

potential classification as in vitro diagnostics (IVDs) and biomedical devices (Sharfstein, 2015), 

laboratories in the U.S. that develop LDTs are regulated by the Centers for Medicare and Medicaid 

Services (CMS) under the Clinical Laboratory Improvement Amendments (CLIA). By default, CMS 

categorizes all LDTs as high complexity tests and requires them to meet the most stringent CLIA 

standards (Lichtenberg et al., 2021).  
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Figure 1.1 Bar graph of published metabolomics studies and formalized LDTs from 2002—2022. 

X-axis represents year, Y-axis corresponds to number. Data for “Metabolomics Studies” series 

obtained via PubMed search of “metabolomics” and “study”; data for “Laboratory Developed 

Tests” series obtained via PubMed search of “metabolomics” and “laboratory developed test”. 

Search results current as of 2/19/2022. LDT, laboratory developed test. 

 Numerous challenges impede the translation of metabolomics studies to LDTs (Pinu et 

al., 2019) and, given the disproportionate ratio of generated knowledge to applied knowledge, a 

careful enumeration of these bottlenecks and a thoughtful discussion of possible solutions is 

warranted. First and foremost, only vague government guidelines for the assessment of analytical 

validity and clinical utility are currently offered, rendering an altogether unclear market access 

pathway and disincentivizing LDT development. Additionally, the results of many metabolomics 

studies are difficult to reproduce, and the significant cost of metabolomics analysis prohibits 

replication and validation efforts. Furthermore, the depth and richness of metabolomics data 

complicates communication of results to the end-user, often rendering results only interpretable 

to scientists in the field. Nevertheless, the application of metabolomics to medical laboratory 
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testing offers a promising translational opportunity and represents an excellent return on 

investment in terms of research and development dollars. In the U.S., 13 billion laboratory tests 

are performed each year across more than 2,000 CLIA-certified testing sites (Horvath, 2013); 

even so, laboratory testing comprises just 2.3% of annual healthcare costs yet supports 60-70% 

of all clinical decisions (Sikaris, 2017). Therefore, given the wealth of translational opportunities 

and the potential payoff of successful translational efforts, a Comment in the literature offering a 

critical perspective on the state of the science and considerations for future directions may guide 

biomarker consolidation and LDT formalization.  

 This dissertation will present MS-based metabolomics research in addition to synthesizing 

results as a Comment to the literature. Specifically, metabolomics assessment of breast cancer, 

coccidioidomycosis (Valley fever), and senile dementia (Alzheimer’s disease) will be presented 

and discussed. In addition to providing methods for the measurement and analysis of disease-

related metabolites, this dissertation will compile a detailed catalogue of pre-analytical 

considerations to study design, spectral data collection, and formal analysis and interpretation 

that can better facilitate LDT development in future studies. The aim of this Comment will be to 

identify specific considerations relating to study design and analytics which, if observed, can 

improve LDT formalization in metabolomics and facilitate enhanced clinical applications. 
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CHAPTER 2 

BREAST CANCER DETECTION USING TARGETED PLASMA METABOLOMICS 

(Published in Journal of Chromatography B, 2019, 1105: 26—37) 

 

Abstract 

Breast cancer (BC) is a major cause of human morbidity and mortality, especially among 

women. Despite the important role of metabolism in the molecular pathogenesis of cancer, robust 

metabolic markers to enable enhanced screening and disease monitoring of BC are still critically 

needed. In this study, a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

metabolic profiling approach is presented for the identification of metabolic marker candidates 

that could enable highly sensitive and specific detection of all-stage as well as early-stage BC. In 

this targeted approach, 105 metabolites from more than 35 metabolic pathways of potential 

biological relevance were reliably detected in 201 plasma samples taken from two groups of 

subjects (102 BC patients and 99 healthy controls). The results of our general linear model and 

partial least squares-discriminant analysis (PLS-DA) informed the construction of a novel 6-

metabolite panel of potential biomarkers. A receiver operating characteristic (ROC) curve 

generated based on an improved PLS-DA model showed relatively high sensitivity (0.80), 

specificity (0.75), and area under the receiver-operating characteristic curve (AUROC = 0.89). 

Similar classification performance of the model was observed for detection of early-stage BC 

(AUROC = 0.87, sensitivity: 0.86, specificity: 0.75). Bioinformatics analyses revealed significant 

disturbances in arginine/proline metabolism, tryptophan metabolism, and fatty acid biosynthesis. 

Our univariate and multivariate results indicate the effectiveness of this metabolomics approach 

for all-stage as well as early-stage BC diagnosis; our bioinformatics results indicate affected 

pathways related to tumor growth, metastasis, and immune escape mechanisms. Future studies 

should validate these results using more samples from different locations. 
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Introduction 

Globally, breast cancer (BC) is the second most common type of cancer and a major 

cause of human morbidity and mortality, disproportionately affecting women (Siegel et al., 2018). 

It is reported that BC alone accounts for 25% of all cancer cases and 15% of all cancer deaths 

among females (Torre et al., 2017). The American Cancer Society (2018) strongly recommends 

that women with an average risk of developing BC, as determined by a family history-based risk 

assessment, undergo regular screening mammography beginning at age 45 (Smith et al., 2018). 

Although mammography has been shown to have high sensitivity (93%) for the detection of 

symptomatic BC (Jiang et al., 2016), it is far less effective for the detection of early-stage BC. As 

such, it has been suggested that regular physical examination is of comparable importance, and 

perhaps the best method of early detection (Shen & Zelen, 2001). Sentinel lymph node biopsy 

remains the gold standard for detection of BC with lymph node involvement, but the major 

disadvantages include invasiveness, potential risk of complication, and the inherent inability for 

detection of early-stage BC (Lyman et al., 2017). The average 5-year BC survival rate is roughly 

90%, but can be as high as 99% for those diagnosed and treated with early-stage, localized 

disease (stages I and II), which regrettably accounts for only 61% of BC patients (DeSantis et al., 

2017). Therefore, noninvasive detection methods with high sensitivity and specificity, which would 

enable the early diagnosis and timely treatment of BC, are still critically needed.  

 A number of new BC detection methods have been developed at the molecular level, 

particularly based on genetic/phenotypic testing, computer-aided technology and biomarker 

identification, such as immunohistochemistry (Onitilo et al., 2009), and serum circulating 

microRNA (miRNA) profiling (Fong et al., 2015; Hayes et al., 2014), which have shown some 

favorable evidence of enhanced BC detection. Although efforts to typify ER/PR and HER2 status 

in order to predict BC pathogenesis and disease progression are promising methods of early 

detection, they often lead only to the assertion of broad probabilities (Onitilo et al., 2009).  
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 A characteristic feature of cancer is its abnormal metabolism. Consequently, recent cancer 

studies have endeavored to monitor levels of differential metabolites from biologically relevant 

pathways, resulting in improved BC subtype identification and diagnosis (Y. Fan et al., 2016). 

Metabolomics, the scientific study of comprehensive sets of metabolites present in biological 

samples, offers new avenues for advanced disease biomarker discovery (Bain et al., 2009; Dunn, 

Broadhurst, Atherton, et al., 2011; T. W. M. Fan & Lane, 2011; Y. Fan et al., 2016; Fernie et al., 

2004; Fiehn, 2002; G. A. N. Gowda & Raftery, 2013; Griffin et al., 2011; Gu et al., 2012; Hakimi 

et al., 2016; Halama et al., 2013; Jové et al., 2017; Lindon & Nicholson, 2014; Patti et al., 2012; 

Reaves & Rabinowitz, 2011; Scalbert et al., 2009; Xia et al., 2013). Mass spectrometry-based 

metabolic profiling has emerged as a powerful analytical platform for analysis of metabolic 

alterations caused by various cancers, which has led to substantial advances in cancer diagnosis, 

pathogenesis clarification, and identification of potential drug targets for clinical treatment (Beger, 

2013; Mishra & Ambs, 2015; More et al., 2018). Previous efforts to typify an associated metabolic 

profile of BC have typically assumed global profiling approaches to differentiate disease patients 

from healthy controls, employing gas chromatography-mass spectrometry (GC-MS) (Ingram et 

al., 1997), nuclear magnetic resonance (NMR) spectroscopy (Katz-Brull & Degani, 1996), flow 

injection analysis-tandem mass spectrometry (FIA-MS/MS) (Halama et al., 2011), and liquid 

chromatography time-of-flight mass spectrometry (LC-TOF-MS) (Guo et al., 2017). In contrast to 

global approaches, some metabolomics studies, citing well-known alterations in cancer 

metabolism such as the Warburg effect and glutamine addiction, have argued for MS-based 

testing of particular metabolites associated with decreased oxidative phosphorylation and 

increased glycolysis and lactic acid fermentation (Armitage & Barbas, 2014), while others have 

emphasized the need to therapeutically target glutamine addiction as breast cancer cells require 

glutamine that is vital to cancer cell growth and proliferation (D. R. Wise & Thompson, 2010). 

These metabolic differences, which can be hallmarks of all cancers, also suggest that 
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metabolomics is a highly promising approach to discover significant risk factors for BC and 

develop sensitive and specific BC biomarkers. 

 Although potential applications of metabolomics findings until now are encouraging and 

their significance is doubtless, limited work has focused on targeted plasma metabolic profiling of 

BC for accurate diagnosis and pathogenesis clarification. Few metabolomics studies of BC 

biomarker discovery have, to date, focused on multicenter replication and validation. In this study, 

a targeted plasma metabolic profiling approach optimized for the detection of over 400 

metabolites reflective of more than 35 metabolic pathways of potential biological relevance is 

reported. A total of 201 plasma samples from BC and control subjects from two different clinical 

centers were analyzed, and potential biomarkers were selected by means of univariate 

significance testing and multivariate model construction and validation. In the current study, two 

sets of control samples taken from two collection sites were analyzed, and only metabolites that 

were not found to be significantly different between control groups were retained for further 

comparison of metabolic profiles between breast cancer patients and their healthy counterparts. 

 

Methods 

Reagents 

 Acetonitrile (ACN), methanol (MeOH), acetic acid (AcOH), and ammonium acetate, all LC-

MS grade, were purchased from Fisher Scientific (Pittsburgh, PA). Standard compounds (purity 

>95-99%) corresponding to measured metabolites were purchased from Sigma-Aldrich (Saint 

Louis, MO) and Fisher Scientific (Pittsburgh, PA). Internal standards (stable 13C -labeled tyrosine 

and lactate; purity >99%) were purchased from Cambridge Isotope Laboratories (Tewksbury, MA, 

UK).  
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Clinical Samples 

 Clinical samples were purchased from the Fred Hutchinson Cancer Research Center 

Breast Specimen Repository (FHCRC; Seattle, WA) and Bloodworks Northwest (Seattle, WA). 

This analysis was deemed IRB exempt, since these samples were commercially purchased. 

Informed consent was obtained from all participants (both BC patients and healthy controls) 

before sample collection at the research institutes. All participants were evaluated, and blood 

samples were obtained after overnight fasting. In total, 201 subject samples were included in the 

study, among which there were 102 BC patients and 99 healthy controls. The controls were age-

matched with BC patients. Among the controls, 31 of 99 samples were allocated from FHCRC 

(Seattle, WA), while 68 control samples were allocated from Bloodworks Northwest (Seattle, WA). 

All clinical samples of BC subjects were allocated from FHCRC.  

 

Sample Preparation  

 The sample preparation protocol was modeled on previous studies (Beckonert et al., 2007; 

Dunn, Broadhurst, Begley, et al., 2011). Frozen samples were thawed overnight under 4ºC, and 

50 μL of each plasma sample was placed in a 2 mL Eppendorf vial. Protein precipitation and 

metabolite extraction were performed by adding 300 μL of methanol. The mixture was then 

vortexed for 2 min and stored at -20ºC for 30 min, followed by sonication in an ice bath for 10 min 

and subsequent centrifugation at 14,000 RPM for 20 min at 4°C. The supernatant (150 μL) was 

collected into a new Eppendorf vial, and dried using a Vacufuge Plus evaporator. The dried 

samples were reconstituted in 500 μL of 5 mM ammonium acetate in 40% H2O/60% ACN + 0.2% 

acetic acid containing 5.13 μM L-tyrosine-13C2 and 22.5 μM sodium-L-lactate-13C2. The two stable 

isotope-labeled internal standards were added to each sample to monitor system performance. A 

pooled sample, which was a mixture of plasma from all BC patients and healthy controls, was 
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extracted using the same procedure as previously described. This sample was used for quality 

control (QC) purposes and was analyzed once every 10 study samples.  

 

Liquid Chromatography and Mass Spectrometry Conditions 

 The targeted LC-MS/MS method used here was modeled after that developed and used 

in a growing number of studies (Carroll et al., 2015; Gu et al., 2015, 2016; Jové et al., 2017; More 

et al., 2018; Sperber et al., 2015; Zhu et al., 2014). Briefly, LC-MS/MS experiments were 

performed on a Waters Acquity I-Class UPLC TQS-micro MS system (Milford, MA). Each sample 

was injected twice, 2 μL and 5 μL for analysis using positive and negative ionization modes, 

respectively. Chromatographic separation was performed on a Waters Xbridge BEH Amide 

column (2.5 μm, 2.1 x 150 mm) at 40°C. The flow rate was 0.3 mL/min. For positive mode, the 

mobile phase was composed of Solvents A (5 mM ammonium acetate in H2O with 0.1% acetic 

acid) and B (ACN with 0.1% acetic acid). For negative mode, Solvent A was 10 mM ammonium 

bicarbonate in H2O, and Solvent B was ACN. The LC gradient conditions were the same for both 

positive and negative ionization modes. After an initial 1.5 min isocratic elution of 10% Solvent A, 

the percentage of Solvent A was increased linearly to 65% at t = 9 min. The percentage of A then 

remained the same (65%) for 5 min (t = 14 min), after which the percentage of A was reduced to 

10% at t = 15 min to prepare for the next injection. The total experimental time for each injection 

was 30 min. Metabolite identities were confirmed by spiking mixtures of standard compounds into 

prepared plasma samples. Extracted MRM peaks were integrated using the TargetLynx software 

(Waters, Milford, MA). 

 

Data Processing and Statistical Analysis 

After exporting from TargetLynx software, data were log10-transformed to approximate 

normality, and general linear models (GLMs) were used for comparison of metabolite levels 
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between the sets of control samples from differing centers as well as between BC patients and 

healthy controls. Age was included as a covariate in all univariate models to control for potential 

confounding effects. The Benjamini-Hochberg false discovery rate (FDR) control was 

implemented to correct for multiple comparisons. The FDR q-value threshold for significant 

markers was set at 0.05. Partial correlation analysis was used to calculate correlation coefficients 

among metabolites. These statistical analyses were performed using SPSS 22.0 (SPSS Inc.; 

Chicago, IL). 

Partial least squares discriminant analysis (PLS-DA) was performed using log10- 

transformed, Pareto scaled data to construct classification models. For Pareto scaling, data were 

mean-centered and divided by the square root of the standard deviation of each variable. An 

internal 7-fold (n was automatically selected by the software) cross-validation was carried out to 

estimate the performance of PLS-DA models. Model validation was also performed using a 300-

iteration permutation test. R2 represents the explanatory capacity of the model, and Q2 signifies 

the predictive capacity of the model. The PLS-DA model was constructed using SIMCA-P 14.1 

software (Umetrics, Umeå, Sweden). The differential metabolites were obtained based on 

variable importance in projection values (VIP > 1) taken from an initial PLS-DA model and 

significant q-values (q < 0.05) derived from the corrected GLM. These differential metabolites 

were then selected as a panel of markers to construct a second PLS-DA model for discrimination 

between BC patients and healthy controls. Area under the receiver operating characteristic curve 

(AUROC) was then calculated to evaluate the classification performance of the PLS-DA model. 

 Exploratory factor analysis (EFA) was conducted using Comprehensive Exploratory 

Factor Analysis (CEFA) software version 2.0 (Columbus, OH) to determine underlying pathways 

affected in BC patients. We used EFA, a data reduction and analytic technique, to discover 

patterns of latent variables that could increase the interpretability of the data. Rotation was 

conducted to achieve simple structure and increase pathway identification. Both analysis and 
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rotation were unsupervised, and all metabolite names were replaced as variable numbers to 

maintain unbiased interpretation of factor loadings. Parallel analysis was conducted with a 

random data matrix of the same order as the experimental data. Factors were retained if and only 

if they accounted for more variance than the random data, as evidenced by their respective 

eigenvalues.  

Pathway analyses were performed and visualized using both Ingenuity Pathway Analysis 

(IPA) (Krämer et al., 2014) and the MetaboAnalyst 4.0 software package (Chong et al., 2018). 

 

Results 

Targeted Metabolic Profiles of BC versus Healthy Controls 

A total of 102 BC patients and 99 healthy controls were included in the study. There was 

no statistically significant difference in age (p > 0.05) between BC patients and healthy controls 

as calculated by the Mann-Whitney U test. The clinical information of BC patients is shown in 

Table 2.1. 
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Table 2.1 Demographic and Clinical Characteristics of Study Participants 

  
 Breast cancer (N=102) Healthy controls 

(N=99) 
Age (years), mean (SD)  54.6 (10.4) 51.6 (12.3) 
Menopause status, n (%) Premenopausal 43 (42.2)  
 Perimenopausal 6 (5.9)  
 Postmenopausal 53 (52.0)  
Cancer stage, n (%) I 24 (23.5)  
 II 42 (41.2)  
 III 36 (35.3)  
Cancer type, n (%) Ductal 92 (90.2)  
 Lobular 8 (7.8)  
 Ductal and lobular 2 (2.0)  
ER status, n (%) Negative 7 (6.9)  
 Positive 95 (93.1)  
PR status, n (%) Negative 14 (13.7)  
 Positive 88 (86.3)  
HER2 status, n (%) Negative 69 (67.6)  
 Borderline 13 (12.7)  
 Positive 20 (19.6)  
Molecular subtype, n (%) ER/PR+ Her2+ 18 (17.6)  
 ER/PR+ Her2- 65 (63.7)  
 ER/PR- Her2+ 2 (2.0)  
 ER/PR- Her2- 4 (3.9)  
  Unknown 13 (12.7)  
Triple-negative (ER-, PR-, 
HER2-), n (%) 

Yes 4 (3.9)  
No 98 (96.1)  

 

In the current study, we used a large-scale, targeted LC-MS/MS method for reliable and 

comprehensive plasma metabolite detection. Using this paradigm, targeted analysis of 400+ 

MRM transitions was achieved for metabolites spanning over 20 different chemical classes (e.g., 

acyl glycines, bile acids, cyclic amines, etc.) from more than 35 metabolic pathways (e.g., vitamin 

and cofactor metabolism, citric acid cycle, lipid metabolism, etc.) across positive and negative 

ionization modes (Supplementary Table 2.1). In total, we found that 105 metabolites were 

detectable in the QC sample with signal-to-noise ratios (S/Ns) > 3. Moreover, 98 of the 105 

detected metabolites were observed in >90% of all study samples. Following normalization by 

averaged values from the QC injection data, relative levels of the 98 metabolites had a median 

coefficient of variation (CV) value of 5.1%, with ~87% of metabolites having CV < 15% 

(Supplementary Figure 2.1).  
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Sixty-seven of the 98 metabolites showed statistical significance (FDR q < 0.05) between 

BC patients and controls (Supplementary Table 2.2). Since the control samples were from two 

distinct institutes, we compared the metabolite levels between the two sets of control samples 

using GLMs with age adjustment. Between the two sets of controls, 68 of 98 metabolites were 

observed to be significant (q < 0.05). Of the 67 metabolites shown to be significantly different 

between cancer patients and controls, 53 of them were also observed to be statistically significant 

between the two sets of controls (Supplementary Table 2.2). Given this overlap, a real potential 

for confounding exists and, as such, any true comparison of BC patients and healthy controls 

necessitates a comparison of metabolites that were not found to be significantly different between 

the two control cohorts. There were 30 metabolites which exhibited no statistically significant 

differences between the two groups of control samples (q > 0.05) (Supplementary Figure 2.2). 

Thus, these 30 metabolites were used for subsequent analyses. An over-representation analysis 

was performed to evaluate the scope and depth of the metabolic profile generated from these 30 

compounds. As shown in Supplementary Figure 2.3, the metabolic profile used for comparison 

of cancer and control subjects is reflective of 27 pathways, and significantly representative of 7 

pathways. Associations among these 30 metabolites are shown in Figure 2.1. Most metabolites 

of BC patients were observed to be more positively correlated with each other than those of 

controls, and correlations of certain metabolites in the two groups showed inverse relationships 

(Figure 2.1). 
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Figure 2.1 Correlation coefficients among 30 metabolites after adjustment for age in (A) BC 

patients and (B) healthy controls. Blue and red represent negative and positive correlations, 

respectively. BC, breast cancer; FA, fatty acid, TMAO, trimethylamine N-oxide.  
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As shown in Table 2.2, 18 of these 30 metabolites showed statistical significance between 

BC patients and healthy controls (q < 0.05). With the exception of hypoxanthine, acetylglycine, 

and three metabolites related to fatty acid metabolism (nonadecanoic acid, palmitic acid, and 

stearic acid), all other metabolites were decreased in BC patients compared to healthy controls. 

Considerable fold change values (FC > 1) and significant p-values, calculated based on mean 

ratios and univariate testing respectively, were also observed for 17 of the 18 significant between-

group metabolites (Table 2.3), when comparing staged cancer patients and healthy controls. Of 

these, 8 metabolites were observed to be significant between stage I/controls, whereas 9 were 

significant between stage II/controls. When comparing early stage BC patients (stages I and II) to 

control subjects, 6 metabolites were found to be significant; of these 6 metabolites, 4 were found 

to be mutually significant in both stage I/control and stage II/control comparisons. Thirteen 

metabolites were observed to be significant between stage III patients and controls. Similarly, 

thirteen metabolites had p < 0.001 (with FC ranging from 0.63 to 1.60) when comparing all-stage 

BC patients to healthy controls (Table 2.2). 
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Table 2.2 Significant Metabolites for Comparison of BC Patients and Healthy Controls 

Metabolite AUC p-valuea FDR q-value Fold Change 
(BC/Control) VIPb 

Proline 0.76 1.10E-12 3.31E-11 0.73 1.10 
Myoinositol 0.71 1.60E-08 2.40E-07 0.78 1.02 
2-Hydroxybenzoic acid 0.70 3.94E-08 3.94E-07 0.63 1.60 
Gentisic acid 0.66 2.10E-06 1.58E-05 0.68 1.09 
Hypoxanthine 0.68 1.64E-04 6.16E-04 1.60 1.46 
2,3-Dihydroxybenzoic acid 0.60 1.97E-04 6.55E-04 0.72 1.05 
Palmitic acid 0.66 1.19E-05 7.14E-05 1.29 0.61 
5-Aminolevulinic acid 0.65 6.41E-05 3.20E-04 0.81 0.61 
Pantothenic acid 0.63 1.30E-04 5.55E-04 0.69 0.80 
Cytidine 0.66 2.26E-04 6.77E-04 0.77 0.91 
Stearic acid 0.64 3.34E-04 9.10E-04 1.18 0.51 
4-Pyridoxic acid 0.61 3.73E-04 9.33E-04 0.75 0.82 
TMAO 0.62 9.61E-04 2.22E-03 0.73 0.83 
Agmatine 0.64 2.09E-03 4.49E-03 0.84 0.55 
Indole-3-acetic acid 0.56 7.28E-03 1.46E-02 0.88 0.75 
Indole 0.53 7.61E-03 1.43E-02 0.85 0.71 
Acetylglycine 0.60 9.64E-03 1.70E-02 1.40 0.49 
Nonadecanoic acid 0.62 1.23E-02 2.05E-02 1.17 0.52 
Betaine 0.61 7.39E-02 1.17E-01 0.93 0.19 
Asparagine 0.53 1.01E-01 1.52E-01 1.02 0.42 
Glycocyamine 0.55 1.23E-01 1.76E-01 0.97 0.26 
Citraconic acid 0.58 1.82E-01 2.48E-01 1.14 0.43 
2-Aminoisobutyric acid 0.59 2.01E-01 2.62E-01 1.19 0.43 
3-Indolepropionic acid 0.56 2.60E-01 3.25E-01 1.17 0.91 
N,N'-Dicyclohexylurea 0.50 2.60E-01 3.12E-01 1.04 0.23 
Taurine 0.51 3.07E-01 3.54E-01 1.01 0.19 
Decanoylcarnitine 0.55 3.71E-01 4.12E-01 1.03 0.23 
Xanthine 0.51 4.46E-01 4.78E-01 0.99 0.20 
3-Indoxylsulfate 0.58 6.80E-01 7.04E-01 0.99 0.11 
Urocanic acid 0.53 9.10E-01 9.10E-01 1.04 0.31 

ap-values calculated from univariate GLM testing. 
bVIP values obtained from the age-enhanced PLS-DA model (see Figure 2.2). 
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Table 2.3 Significant Metabolites for Comparison of Staged BC Patients and Controls 

 stage I vs. controls stage II vs. controls stage I & II vs. controlsa stage III vs. controls 
 p FC p FC p FC p FC 

2-Hydroxybenzoic acid 1.8E-03 0.55 3.6E-04 0.64 2.7E-03 0.60 2.5E-04 0.65 
Myoinositol 1.9E-04 0.69 1.5E-03 0.82 2.1E-04 0.76 1.0E-04 0.80 
Proline 1.0E-05 0.75 3.2E-05 0.81 2.9E-04 0.73 5.5E-08 0.68 
Palmitic acid 1.1E-02 1.40 6.8E-03 1.24   4.4E-02 1.23 
Hypoxanthine 7.1E-04 2.67 2.3E-03 1.55 1.8E-04 2.21   
Indole 1.7E-02 0.78       
Gentisic acid 1.9E-02 0.63   3.0E-03 0.59 6.3E-04 0.64 
5-Aminolevulinic acid 2.3E-02 0.88     1.1E-02 0.78 
4-Pyridoxic acid   6.1E-03 0.68   2.8E-02 0.69 
Cytidine   1.6E-02 0.77   7.8E-04 0.78 
Nonadecanoic acid   2.1E-02 1.15     
Stearic acid   2.4E-03 1.27     
Agmatine       8.0E-04 0.76 
Indole-3-acetic acid       8.8E-03 0.73 
Pantothenic acid       1.1E-02 0.61 
2,3-Dihydroxybenzoic acid     1.8E-02 0.66 1.7E-02 0.77 
Glycocyamine       3.3E-02 0.88 

aEarly-stage BC is regarded as stages I and II.  

We compared patients with different molecular subtypes (ER/PR+, HER2+ vs. ER/PR+, 

HER2-), and compared triple negative (ER-, PR-, and HER2-) with non-triple negative patients. 

These results are shown in Table 2.4. No significant difference in metabolites was observed 

between these groups (all FDR q > 0.05). Interestingly, 15 metabolites were observed to have p-

values less than 0.05 when comparing ER, PR, HER2 status, and cancer stage among BC 

patients, although no significant differences in 30 metabolites were observed between the above-

mentioned comparison groups after multiple controlled comparisons (FDR) (Table 2.4). 
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Table 2.4 Differences in Metabolites of Patients between Cancer Stages, and Different ER, PR, HER2 Status 

Metabolites 
Cancer stages   ER status   PR status   HER2 status 

p q FC 
(II/I) 

FC 
(III/I)   p q FC 

(ER+/ER-)   p q FC 
(PR+/PR-)   p q FC 

(HER2+/HER2-) 

3-Indolepropionic acid 0.026  0.811  1.41  1.88   
   

 
   

 
   

Betaine 
    

 0.010  0.105  1.08   0.033  0.346  0.91   
   

Palmitic acid 
    

 0.013  0.099  1.21   
   

 
   

Asparagine 
    

 0.015  0.093  1.05   0.035  0.271  0.94   
   

2,3-Dihydroxybenzoic acid 
    

 0.021  0.109  1.49   
   

 
   

3-Indoxylsulfate 
    

 0.028  0.123  1.94   
   

 
   

Indole-3-acetic acid 
    

 0.034  0.130  1.34   
   

 0.046  0.479  1.26  
Hypoxanthine 

    
 0.041  0.143  1.94   

   
 

   

Gentisic acid 
    

 0.042  0.130  1.86   
   

 
   

Stearic acid 
    

 0.047  0.133  1.17   
   

 
   

Taurine 
    

 0.049  0.126  1.34   0.020  0.303  0.95   
   

5-Aminolevulinic acid 
    

 0.049  0.118  1.06   
   

 
   

Proline 
    

 
   

 0.005  0.142  0.92   0.030  0.462  1.13  
Pantothenic acid 

    
 

   
 0.049  0.303  0.77   

   

Cytidine 
    

  
   

  
   

  0.014  0.439  1.28  
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Biomarker Selection and Evaluation of Classification Performance  

 To further explore potential biomarkers for discrimination between BC patients and healthy 

controls, levels of the 30 comparative metabolites were selected to establish an initial PLS-DA 

model. As can be seen in Supplementary Figure 2.4, a separation trend was observed in the 

initial PLS-DA score plot [R2X (cum) = 0.291, R2Y (cum) = 0.398, Q2 (cum) = 0.312]. Clinical 

factors (i.e., gender, age, and medication) have often been incorporated in the building of 

predictive or diagnostic clinical models, and such variables have recently been used to enhance 

metabolite biomarker models (Rhee et al., 2013). To enhance the VIP metabolite model, age was 

included as a clinical factor. The enhanced metabolite model (Figure 2.2A) showed a distinct 

separation trend between the two groups [R2X (cum) = 0.709, R2Y (cum) = 0.481, Q2 (cum) = 

0.417], which indicated better performance than the initial PLS-DA model (Supplementary 

Figure 2.4). To validate the reliability of the enhanced prediction model, a permutation test (n = 

300) was conducted (Figure 2.2B). The Q2-intercept value (-0.158) of the predictive model was 

lower than 0.05, indicating the model to be statistically sound. VIP values were obtained as listed 

in Table 2.2. 
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Figure 2.2 The enhanced PLS-DA model for discrimination between breast cancer patients and 

healthy controls [R2X (cum) = 0.709, R2Y (cum) = 0.481, Q2 (cum) = 0.417]. (A) Score plot of the 

PLS-DA model: data were log10-transformed, and Pareto scaled. Thirty metabolites and age were 

used to construct this model. (B) Statistical validation of the PLS-DA model by permutation testing 

(n = 300) [Q2-intercept = -0.158]. PLS-DA, partial least squares-discriminant analysis.  

According to the VIP values from the enhanced PLS-DA model (VIP > 1) and the q-values 

from FDR-controlled comparisons (q < 0.05), 6 statistically significant, highly predictive features 

were retained for further analysis (Figure 2.3). A third PLS-DA model was built using the 6 

differential metabolites and subject age to distinguish BC patients from healthy controls. As can 

be seen in Figure 2.4, the resulting PLS-DA model proved to be powerful in distinguishing BC 

patients from healthy controls, with an AUROC of 0.89 (95% CI: 0.85-0.93, sensitivity = 0.80, 
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specificity = 0.75), which was more explanatory than that of each individual metabolite (see Table 

2.2).  

 

Figure 2.3 Box plots of 6 differential metabolites with both q < 0.05 and VIP > 1 for comparison 

between BC patients and healthy controls: (A) Proline, (B) Myoinositol, (C) 2-Hydroxybenzoic 

acid, (D) Gentisic acid, (E) Hypoxanthine, and (F) 2,3-Dihydroxybenzoic acid. BC, breast cancer; 

VIP, variable projection in importance.  
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Figure 2.4 ROC curve illustrating the classification performance of biomarker panel with 6 

differential metabolites and age for distinguishing between BC patients and healthy controls. 

[AUROC=0.89, 95% CI: 0.85-0.93, sensitivity: 0.80, specificity: 0.75]. AUC, area under curve; 

AUROC, area under receiver operating characteristic; BC, breast cancer; CI, confidence interval. 

 To evaluate the usefulness of this novel panel of 6 biomarkers in detecting early-stage 

breast cancer, control subjects were analyzed against only stage I and II BC patients using a 

combination of univariate testing, chemometric analysis, and ROC evaluation. As shown in Table 

2.3, these 6 differential metabolites were significant at the 0.05 level when comparing stage I and 

II BC patients to controls, as determined by GLM univariate testing. Moreover, an orthogonal PLS-

DA (OPLS-DA) model constructed using these 6 metabolites showed appreciable differences 

between groups (Figure 2.5A). Furthermore, as presented in Figure 2.5B, ROC analysis of the 

OPLS-DA model showed good classification performance (AUROC=0.87, 95% CI: 0.82-0.92). As 
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indicated by these results, the biomarker panel presented herein serves not only to distinguish 

BC patients from healthy controls but is also capable of discriminating stage I and II patients with 

localized disease from healthy control subjects with relatively high diagnostic accuracy, 

comparable to that of the all-stage cancer model. 

 

Figure 2.5 (A) Score plot of the orthogonal PLS-DA model for discrimination between stage I and 

II breast cancer patients (n = 66) and healthy controls (n = 99) [R2X (cum) = 0.264, R2Y (cum) = 

0.358, Q2 (cum) = 0.311]. Data were log10-transformed, and Pareto scaled. Six differential 

metabolites (q < 0.05 and VIP >1) were used to construct this OPLS-DA model. (B) ROC curve 

illustrating the classification performance of the 6-metabolite OPLS-DA model for distinguishing 

between stage I and II BC patients and controls. [AUROC=0.87, 95% CI: 0.82-0.92, sensitivity: 

0.86, specificity: 0.75]. AUROC, area under receiver operating characteristic; BC, breast cancer; 

CI, confidence interval; OPLS-DA, orthogonal partial least squares-discriminant analysis; PLS-

DA, partial least squares-discriminant analysis; ROC, receiver operating characteristic. 

 

Factor Analysis of Metabolic Data 

A secondary aim of this study was to relate detected metabolites to affected pathways. To 

this end, metabolite data were subjected to EFA (Gorsuch, 1982). This multivariate technique was 

performed on a reduced correlation matrix of the 30 metabolites used for between-group 
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comparisons in order to determine pathways (i.e., factors) related to BC. Spectral decomposition 

of the experimental data matrix revealed a maximum of 4 factors (i.e., Kaiser criterion). Parallel 

analysis revealed only three factors accounted for more variance than random, permuted data 

(Supplementary Figure 2.5). Subsequently, 1-, 2-, and 3-factor models were extracted and 

rotated in conformity with oblique promax and infomax criteria, totaling 6 possible factor models. 

Each model was comparatively examined for percentage of total variance explained, magnitude 

of factor loadings, number of variables loaded onto each factor, and potential for meaningful factor 

interpretation and subsequent factor assignment. The 3-factor infomax model yielded the most 

satisfactory solution (Table 2.5). The findings revealed that 3 metabolites loaded significantly 

(>0.50) on the first factor, 3 metabolites loaded significantly on the second factor, and 3 

metabolites loaded significantly on the third factor. These factors were found to be representative 

of the arginine/proline pathway, fatty acid biosynthesis, and tryptophan metabolism, respectively, 

suggesting significant alterations of these pathways in patients diagnosed with breast cancer. 

Table 2.5 Reduced Factor Loading Matrix with Significantly Altered Metabolites as Variables 

Variable 
Factor 1 

(arginine/proline 
metabolism) 

Factor 2 
(fatty acid 

biosynthesis) 

Factor 3 
(tryptophan 
metabolism) 

Proline 0.83 0.33 0.39 
Glycocyamine 0.51 0.18 0.18 
Agmatine 0.75 0.03 0.37 
Indole 0.12 0.08 0.91 
3-Indolepropionic acid 0.01 0.23 0.59 
Indole-3-acetic acid 0.39 0.49 0.71 
Nonadecanoic acid 0.08 0.56 0.38 
Palmitic acid 0.35 0.81 0.00 
Stearic acid 0.21 0.64 0.33 

 

Pathway Analysis of Metabolic Data 

To understand the possible connection among detected plasma metabolites, we 

constructed metabolic pathway maps using IPA software (Krämer et al., 2014), as shown in 

Figure 2.6. MetaboAnalyst 4.0 (Chong et al., 2018) was used to perform pathway enrichment and 
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topology analysis (Supplementary Figure 2.6). It is worth mentioning that all metabolic pathways 

identified by our EFA as being significantly altered in BC patients were also identified by one or 

both of our bioinformatics analyses as being significantly altered as well; for instance, 

disturbances in arginine and proline metabolism as identified by EFA (Table 2.5) were 

corroborated by the results of our pathway analysis (Figure 2.6) and enrichment analysis 

(Supplementary Figure 2.6). As the results of our pathway, enrichment, and exploratory factor 

analyses are highly commensurate with each other, we can be reasonably confident that 

arginine/proline synthesis and degradation, fatty acid biosynthesis, and tryptophan metabolism 

are dysregulated in BC patients. Future studies can further target these networks for the discovery 

of pathway-specific biomarkers and potential therapeutic targets. 
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Figure 2.6 Overlapping canonical pathway constructed using identified plasma metabolites 

showing the interrelationship between (A) arginine/proline/citrulline metabolism, and (B) affected 

mechanisms of tryptophan and purine metabolism, by way of the kynurenine pathway. Yellow, 

orange, and red mechanisms are reflective of small, medium, and large disturbances, 

respectively. 

 A visual representation of these affected pathways is given in Figure 2.7. Of particular 

interest is the high level of agreement in results observed among the statistical analyses 

employed in this study. Results of our enrichment analysis, factor analysis, and pathway analysis 

unanimously connote arginine and proline metabolism as being altered in breast cancer patients. 

In this pathway, levels of agmatine and glycocyamine, both closely related to arginine, were 
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significantly reduced in stage III breast cancer patients; an even greater mean reduction in proline 

was observed in BC patients of all stages. In addition, the results of our factor and pathway 

analyses both showed tryptophan metabolism to be highly dysregulated in BC patients. Between 

cancer patients and controls, univariate testing showed indole and its product indole-3-acetate to 

be significantly up- and down-regulated, respectively. Finally, our results indicated fatty acid 

metabolism as being significantly altered between cancer patients and controls. Levels of 

palmitate were ubiquitously higher in BC patients of all cancer stages. The effects of breast cancer 

on tryptophan and fatty acid metabolism were corroborated by two separate analytic techniques, 

while arginine and proline metabolism was shown to be significantly affected by all three 

bioinformatics analyses. Our results provided strong metabolic pathway candidates for future 

studies looking to investigate the underlying biological mechanisms of breast cancer pathology.  
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Figure 2.7 Metabolic map showing significant differences in arginine/proline, tryptophan, and fatty 

acid metabolism between control subjects and staged BC patients. Detected metabolites in the 

pathways are graphed using normalized data. Solid arrows represent direct connections between 

metabolites; dashed lines designate abridged connections. *, p < 0.05; ***, p < 0.001 compared 

to healthy controls. BC, breast cancer; FA, fatty acid; PEP, phosphoenolpyruvate.   

 Nonsignificant metabolites of glycolysis and the TCA cycle are also graphed alongside 

significantly altered metabolites in Figure 2.7. By and large, both lactate and alpha-ketoglutarate 

have been observed to be significantly increased in human breast cancer patients (Armitage & 

Barbas, 2014; Mishra & Ambs, 2015; D. R. Wise & Thompson, 2010), and have been attributed 

to the Warburg effect and glutamine addiction, respectively. However, no such increase in the 

levels of either metabolite was detected in our data set. This could be due to a lack of statistical 

power and may need to be validated with future studies 
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Discussion 

For the last 20 years, significant interest has grown in utilizing mass spectrometry for the 

detection and analysis of cancer-related metabolic alterations. In doing so, these efforts have 

borne highly valuable diagnostic information and elucidation of probable biological mechanisms 

of cancer initiation and proliferation (Claudino et al., 2007; Mishra & Ambs, 2015; Patti et al., 

2012). In the current study, we presented a combination of targeted metabolomics and 

multivariate statistics for the discovery of sensitive and specific BC metabolic biomarkers. Using 

this particular LC-MS/MS approach, 105 metabolites from many relevant metabolic pathways 

were reliably detected in both positive and negative ionization modes. Our multi-step biomarker 

selection, supervised model construction, and subsequent cross-validation have effectively 

demonstrated the robust diagnostic power of our metabolic profiling method in this study of 201 

subjects.  

 To date, a number of studies have implemented mass spectrometry-based methods for 

the detection of metabolic alterations linked to breast cancer (Asiago et al., 2010; Frickenschmidt 

et al., 2008; Gu et al., 2011; Jain et al., 2012). Typically, these studies have effected global 

metabolic profiling approaches. Global analytical platforms tend to capture as many features as 

possible, making acquired data potentially less reliable or robust as a result. In contrast, the highly 

reproducible targeted LC-MS/MS method we presented in this study was observed to have a 

median CV value of 5.1%, producing metabolic markers previously unreported. Further enhancing 

our data quality and reliability, all targeted metabolites reported in this study were confirmed using 

pure standard compounds in lieu of applying database searches for compound annotation, as is 

conventionally done in global profiling approaches. 

 Many studies regarding biomarkers for breast cancer detection have been published 

(Budczies et al., 2012; Y. Chen et al., 2009; Duffy, 2006; Günther, 2015; Hilvo et al., 2011; Lee 

et al., 2013). For example, cancer antigen (CA) 15-3 and carcinoembryonic antigen (CEA) have 
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already been used clinically (Lee et al., 2013); however, they are mostly indicative of late-stage 

metastases and exhibit poor classification accuracy (~36-56%) for early-stage BC (Duffy, 2006). 

Another study analyzing breast cancer tissue samples using GC-MS discovered 13 tumor 

markers for discrimination between disease and normal subjects (Budczies et al., 2012) with 

sensitivity and specificity of roughly 80%. Notably, certain findings of the current study are echoed 

by previous literature. Hilvo et. al. (Hilvo et al., 2011) used LC-MS to investigate lipid metabolism 

in relation to breast cancer pathogenesis; they found significantly increased levels of palmitate in 

BC patients of all cancer stages, which was also observed in the current study. Another study 

found 46 urinary biomarkers for breast cancer diagnosis using LC-MS (Y. Chen et al., 2009). 

Interestingly, the researchers discovered significant alterations in tryptophan metabolism due 

mainly to lowered levels of indole and indoleacetate, a trend that was also seen in the current 

study through analysis of plasma samples. 

The application of metabolomics technology in epidemiological and clinical studies is 

becoming common practice, but few multicenter metabolomics studies to increase reliability have 

been conducted. This study considers samples from multiple clinical locations, and we suggest a 

method for attenuating the confounding effect of significantly altered metabolite levels due to 

geographical location of sample collection. The 30 metabolites that were not found to be 

significantly different between controls (presumably ‘housekeeping’ metabolites) were selected 

for comparison between cancer patients and healthy subjects and for subsequent biomarker 

selection. Although this study proposes a solution to the problem of significant metabolite variation 

inherent in multicenter metabolomics studies, further studies are warranted to validate it.  

In our current study, we performed univariate analysis of plasma metabolites between BC 

patients and healthy controls and observed significant alterations in a variety of the metabolites 

detected. Furthermore, significantly altered plasma metabolites with q < 0.05 and VIP > 1 from 

the enhanced PLS-DA model were selected for inclusion in the biomarker panel (Table 2.2). 
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Additionally, age was included as a clinical factor to enhance the VIP-based metabolite model. 

Moreover, our enrichment, pathway, and factor analyses revealed significant alterations in (1) 

arginine/proline degradation, (2) fatty acid biosynthesis, and (3) tryptophan metabolism.  

Our results indicate proline to be significantly altered in stage I, II, and II breast cancer 

patients. This finding is in keeping with recent mechanistic studies that have discovered increased 

proline dehydrogenase (Prodh) activity to fuel proline catabolism and consequently lead to 

increased growth of breast cancer cells in 3D culture and in vivo metastasis formation (Elia et al., 

2017). Consequently, recent efforts have attempted to target proline catabolism, since 

metastasizing cancer cells rely on by-products of proline degradation to fuel their increased 

energy need during the colonization of distant organs. As such, targeting proline metabolism does 

not affect primary cancer growth or non-transformed cells but, rather, impairs metastasis 

formation in unaffected organs and may lead to better prognosis.  

Our results also indicate palmitate to be significantly overexpressed in BC patients at all 

cancer stages. As stated before, aberrant metabolism is a characteristic feature of breast cancer 

due to the increased energy needs of tumors. Cancer cells often induce a state of lipolysis and/or 

increased fatty acid synthesis in an effort to meet those needs (Wolf et al., 2006). This is known 

as cancer cachexia and has been estimated to account for nearly 20% of all cancer deaths. One 

key aspect of cancer treatment is the prevention of tumor growth which, in turn, requires a 

disruption in cancer cells’ energy consumption. Accordingly, studies have focused on reducing 

levels of endogenously produced fatty acids by inhibiting the activity of enzymes responsible for 

fatty acid biosynthesis (Pizer et al., 1996). 

The by-products of tryptophan metabolism, indole and indole-3-acetate were observed to 

be significantly altered in stage I and stage III BC subjects, respectively. One line of research has 

focused on the propagation of rapid-growing 'progressive' cancers due to a failure of the immune 

system to maintain control over budding tumors. As a result, there has been increased interest in 
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cancer’s ability to escape the human immune response. Recent advances have shown the 

consumption of tryptophan to be critical in the escape mechanisms of tumors (Prendergast, 2011). 

Mechanistically, cancers have been shown to upregulate the liver enzyme tryptophan 

dioxygenase, thereby driving tryptophan consumption to produce kynurenine, an endogenous 

ligand for the aryl hydrocarbon receptor which mediates invasive tumor growth. This affected 

pathway allows tumors to overcome the human immune response and is, potentially, reflected in 

the results of our factor and pathway analyses.  

There are some limitations in this study. This study considers samples from multiple 

clinical locations which, although critically important, is underused in metabolomics study design. 

However, knowledge of sample demographics is a limitation. Although statistically important 

clinical features such as age were known, we failed to collect other demographic information such 

as body mass index or smoking and drinking status, which may be confounding factors for the 

associations between metabolite levels and breast cancer status.  

Although the analytical platform was optimized for the detection of over 400 metabolites, 

30 potential markers were included in further data analysis when accounting for reliability and 

non-significance between control samples collected from two clinical sites. Results of our 

representation analysis indicate that the metabolic profile generated by these 30 metabolites is 

reflective of 27 metabolic pathways (see Supplementary Figure 2.3). Likewise, previous studies 

have used 20 compounds to infer tryptophan-induced pathogenesis of breast cancer (Cao et al., 

2015), and 25 metabolites for discrimination between lung cancer patients and age-matched 

controls (X. Zhang et al., 2016). Also, we performed pathway-based analyses to observe higher-

order effects due to breast cancer (S. Huang et al., 2016). It should also be noted that there is a 

great need for breast cancer metabolomics studies utilizing multi-center designs (Günther, 2015); 

our study aims to address that need while also offering a simple way to account for possible 

metabolic variations in samples taken from different clinical locations.  



 34 

Furthermore, more research is needed to study metabolism related to molecular subtypes 

of breast cancer. In this study, no significant difference in metabolites was observed between 

ER/PR+, HER2+ vs. ER/PR+, HER2- , and triple negative vs. non-triple negative patients. However, 

15 metabolites had p < 0.05 when comparing ER, PR, and HER2 positive and negative patients, 

as well as staged BC patients, although none of these 15 metabolites remained significant after 

FDR-correction. Future studies should also examine larger cohorts from multiple locations to 

further validate the altered metabolites and metabolic pathways related to BC pathogenesis 

discovered in our study (Jackson, 2003; Noether, 1987). To the best of our knowledge, this is the 

first study using an LC-MS/MS metabolomics approach to analyze plasma samples from two 

clinical sites for breast cancer diagnosis. Our predictive model demonstrates relatively good 

performance (89%) for detection of stage I and II breast cancer with specificity of 75% when 

sensitivity is 80%. This study provides a strong rationale for the development of larger multi-site 

projects to validate the findings across population groups and further advance the development 

of accurate tools for clinical risk prediction of breast cancer. 

 

Conclusions 

 This study is part of a growing body of literature in which an LC-MS/MS targeted plasma 

metabolic profiling approach has been applied for the comparison of BC patients and healthy 

controls. To the best of our knowledge, this is the first targeted approach for breast cancer 

diagnosis to consider samples from multiple locations. Our results demonstrate a panel of 18 

metabolites with FDR q-value < 0.05 and 6 metabolites with both q < 0.05 and VIP > 1. The 6 

differential metabolites were also shown to be effective for the detection of early stage, localized 

disease (stage I and II). Application of bioinformatic methods showed underlying disturbances in 

metabolic pathways related to tumor growth, metastasis, and immune escape mechanisms. 
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Accounting for age, this metabolic profiling method can potentially provide a novel disease 

biomarker panel for breast cancer.  
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CHAPTER 3 

COCCIDIOIDOMYCOSIS DETECTION USING TARGETED PLASMA AND URINE 

METABOLIC PROFILING 

(Published in Journal of Proteome Research, 2019, 18: 2791—2802) 

 

Abstract 

Coccidioidomycosis, also known as Valley fever (VF), is a potentially lethal fungal infection 

that results in more than 200 deaths per year in the United States. Despite the important role of 

metabolic processes in the molecular pathogenesis of VF, robust metabolic markers to enable 

effective screening, rapid diagnosis, accurate surveillance, and therapeutic monitoring of VF are 

still lacking. In this study, we present a targeted liquid chromatography-tandem mass 

spectrometry (LC-MS/MS)-based metabolic profiling approach for identifying metabolic marker 

candidates that could enable rapid, highly sensitive and specific VF detection. Using this targeted 

approach, 207 plasma metabolites and 231 urinary metabolites from many metabolic pathways 

of potential biological significance were reliably detected and monitored in 147 samples taken 

from two groups of subjects (48 VF patients and 99 non-VF controls). The results of our univariate 

significance testing and multivariate model development informed the construction of a 3-

metabolite panel of potential plasma biomarkers and a 9-metabolite panel of potential urinary 

biomarkers. Receiver operating characteristic (ROC) curves generated based on orthogonal 

partial least squares-discriminant analysis (OPLS-DA) models showed excellent classification 

performance, with 94.4% sensitivity and 97.6% specificity for plasma metabolites. Urine 

metabolites were less accurate, demonstrating 89.7% sensitivity and 88.1% specificity. 

Enrichment, pathway, and network analyses revealed significant disturbances in glycine and 

serine metabolism, in both plasma and urine samples. To the best of our knowledge, this is the 

first study aiming to discover novel metabolite markers of VF, which could achieve accurate 
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diagnosis within 24 hrs. The results expand basic knowledge of the metabolome related to VF 

and potentially reveal pathways or markers that could be targeted therapeutically. This study also 

provides a promising basis for the development of larger multi-site projects to validate our findings 

across population groups and further advance the development of better clinical care for VF 

patients. 

 

Introduction 

Coccidioidomycosis, also known as Valley fever (VF), is a respiratory infection caused by 

inhalation of airborne fungal spores of Coccidioides immitis or Coccidioides posadasii (Fisher et 

al., 2007). These category C fungal pathogens are endemic to desert climates with mild winters 

and arid summers such as those in the southwestern United States, including California, Arizona, 

New Mexico, and Texas, and parts of northern Mexico and South America. From 1990-2008, 

3089 deaths in the United States were attributed to coccidioidomycosis, or roughly 200 per year 

(J. Y. Huang et al., 2012). In states where VF is endemic, overall incidence is estimated to be 

42.6 cases per every 100,000 persons per year (Benedict, 2013). Between 1998 and 2016, 

Arizona accounted for 51-79% of all reported cases of VF in the United States (Adams et al., 

2017). In highly-endemic areas such as the Phoenix and Tucson metropolitan areas of Arizona, 

VF is estimated to account for 15-30% of all community-acquired pneumonias (CAP) (Valdivia et 

al., 2006), and evidence seems to suggest that diagnoses are under-reported due to low testing 

rates (Chang et al., 2008).  Therefore, VF is a common threat to human health especially in 

endemic areas.  

Currently, VF is difficult to diagnose due to presentation of vague symptoms that often 

mimic viral or bacterial pneumonias or even lung cancer (Petrini et al., 2003). In fact, the majority 

of people who are exposed to this virulent, dimorphic fungus never seek medical care (Smith et 

al., 1948), and approximately 40% of people who contract the fungal infection present with flu-like 
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symptoms such as fatigue, cough, fever, shortness of breath, headaches, night sweats, muscle 

or joint pain, and rash (Tsang et al., 2010), which can persist for weeks to months (Thompson, 

2011). Approximately 5-10% of infected people will develop serious, often chronic, lung diseases 

(Thompson, 2011), while roughly 1% of the patients develop disseminated coccidioidomycosis as 

the infection spreads from the lungs to other parts of the body resulting in nodules, ulcers, skin 

lesions, and possible meningitis (Crum et al., 2004; Galgiani et al., 2005; Thompson, 2011).  

The current mainstay diagnostics for VF are serologic testing methods, which mainly 

include enzyme immunoassay (EIA), complement fixation (CF), and immunodiffusion (ID). 

However, no single serological test offers both excellent sensitivity and specificity. Additionally, 

approximately 10% of immunocompetent patients and 30% of immunosuppressed patients fail to 

produce an adequate immunological response to the VF infection, especially in the acute phase 

of disease (Blair et al., 2006). Accurate diagnosis therefore relies on a combination of clinical 

presentation, serology, radiography, histology and culture (Ampel, 2010). These diagnostic 

methods are either costly, time-consuming (often greater than 2 weeks in the case of fungal 

culture), invasive, or indeterminable. Therefore, a fast, cost-effective, highly sensitive and specific 

method for the detection of VF is critically needed.  

 Broadly, fungal infections can induce wide and extensive alterations in metabolism (Bills 

& Gloer, 2016; Brown et al., 2014; Eisenreich et al., 2015; Ene et al., 2014) which provides a 

promising approach to detect fungal infections, such as VF. For example, fungal pathogens must 

assimilate local nutrients to establish an infection in their mammalian host, and metabolic flexibility 

is generally essential for fungal pathogenicity. Since metabolites are sensitive to subtle 

differences and changes in pathological status, metabolomics, the comprehensive study of small 

molecular-weight metabolites and their dynamic changes in biological systems (Patti et al., 2012), 

provides advanced methods to identify changing metabolite levels, and has resulted in the rapid 

discovery of disease biomarkers during the past decade (Bowers et al., 2014; G. A. N. Gowda & 
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Raftery, 2013; Gu et al., 2012; Jasbi, Wang, et al., 2019; Kaysen et al., 2015; Yin & Xu, 2017). 

Mass spectrometry (MS)-based metabolic profiling has proven to be a promising tool for analyzing 

metabolic alterations due to various diseases and, therefore, can provide sensitive and valuable 

diagnostic information (Ahn et al., 2017; Jasbi, Wang, et al., 2019; Madsen et al., 2010), 

pathogenesis identification (Ene et al., 2014; Poddighe et al., 2017), and potential therapeutic 

targets for clinical treatments (Monnerat et al., 2018) and disease monitoring (Zhu et al., 2015). 

Indeed, previous studies have used MS-based methods in conjunction with chemometric 

analyses to develop metabolic biomarker panels for the accurate diagnosis of fungal infections 

such as mucormycosis (Dadwal & Kontoyiannis, 2018) and aspergillosis (Savelieff & Pappalardo, 

2017), as well as detection of various mycotoxins produced as a result of host-fungal interactions 

(Culibrk et al., 2016; Rubert et al., 2017). In this study, we present the first targeted plasma and 

urine liquid chromatography-tandem mass spectrometry (LC-MS/MS) profiling approach for the 

rapid and accurate detection of VF. 

 

Methods 

Reagents 

Acetonitrile (ACN), methanol (MeOH), ammonium acetate (NH4OAc), and acetic acid 

(AcOH), all LC-MS grade, were purchased from Fisher Scientific (Pittsburgh, PA). Ammonium 

hydroxide (NH4OH) was bought from Sigma-Aldrich (Saint Louis, MO). DI water was provided in-

house by a Water Purification System from EMD Millipore (Billerica, MA). Phosphate buffered 

saline (PBS) was bought from GE Healthcare Life Sciences (Logan, UT). Standard compounds 

corresponding to the measured metabolites were purchased from Sigma-Aldrich (Saint Louis, 

MO) and Fisher Scientific (Pittsburgh, PA). 
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Sample Collection and VF Diagnostic Criteria  

The samples were collected under a previously approved IRB protocol with waived 

consent. Urine and plasma specimens were acquired from excess clinical specimens collected 

for routine standard of care at Mayo Clinic Arizona. De-identified aliquots were provided to the 

Arizona Metabolomics Laboratory (College of Health Solutions, Arizona State University) for 

processing. Samples had been frozen at –80°C until analysis. VF status was determined based 

on clinical evaluation using the Mayo Clinic Arizona multi-factorial criteria for the diagnosis of 

Coccidioidomycosis (Grys et al., 2018). This diagnostic rubric includes the evaluation of patient 

symptoms, radiography, serology, histology, and culture results, as no single assay or measure 

can currently be used alone to diagnose VF.  

 

Sample Preparation  

Frozen plasma and urine samples were first thawed overnight under 4°C. Afterward, 50 

μL of each plasma sample was placed in a 2 mL Eppendorf vial while 100 μL of each urine sample 

was placed in a separate vial. For both plasma and urine, the initial step for protein precipitation 

and metabolite extraction was performed by adding 500 μL MeOH and 50 μL internal standard 

solution (containing 1,810.5 μM 13C3-lactate and 142 μM 13C5-glutamic acid). The mixture was 

then vortexed for 10 s and stored under –20°C for 30 min, followed by centrifugation at 14,000 

RPM for 10 min at 4°C. The supernatants (450 μL and 500 μL for plasma and urine, respectively) 

were collected into new Eppendorf vials and dried using a CentriVap Concentrator (Labconco, 

Fort Scott, KS). The dried samples were reconstituted in 150 μL of 40% PBS/60% ACN and 

centrifuged again at 14,000 RPM at 4°C for 10 min. After that, 100 μL of supernatant was collected 

from each sample into an LC autosampler vial for subsequent analysis. Two pooled samples, 

which were a mixture of all plasma and urine samples respectively, were used as the internal 

quality-control (QC) samples and injected once every 10 experimental samples.   
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LC-MS/MS 

The targeted LC-MS/MS method used here was modeled after that developed and used 

in a growing number of studies (Buas et al., 2017; Carroll et al., 2015; Gu et al., 2016, 2015; Li et 

al., 2018; Zhu et al., 2014). Briefly, all LC-MS/MS experiments were performed on an Agilent 1290 

UPLC-6490 QQQ-MS system (Santa Clara, CA). Each sample was injected twice, 10 µL for 

analysis using negative ionization mode and 4 µL for analysis using positive ionization mode. 

Both chromatographic separations were performed in hydrophilic interaction chromatography 

(HILIC) mode on a Waters XBridge BEH Amide column (150 x 2.1 mm, 2.5 µm particle size, 

Waters Corporation, Milford, MA). The flow rate was 0.3 mL/min, auto-sampler temperature was 

kept at 4°C, and the column compartment was set to 40°C. The mobile phase was composed of 

Solvents A (10 mM ammonium acetate, 10 mM ammonium hydroxide in 95% H2O/5% ACN) and 

B (10 mM ammonium acetate, 10 mM ammonium hydroxide in 95% ACN/5% H2O). After an initial 

1 min isocratic elution of 90% B, the percentage of Solvent B decreased to 40% at t = 11 min. 

The composition of Solvent B was maintained at 40% for 4 min (t = 15 min), after which the 

percentage of B gradually went back to 90%, to prepare for the next injection. 

The mass spectrometer was equipped with an electrospray ionization (ESI) source. 

Targeted data acquisition was performed in multiple-reaction-monitoring (MRM) mode. We 

monitored 118 and 160 MRM transitions in negative and positive mode, respectively (278 

transitions in total). The whole LC-MS system was controlled by Agilent MassHunter Workstation 

software (Santa Clara, CA). The extracted MRM peaks were integrated using Agilent MassHunter 

Quantitative Data Analysis software (Santa Clara, CA).  

 

Data Analysis 

Univariate testing was performed using SPSS 22.0 (SPSS Inc., Chicago, IL). Multivariate 

statistical analyses were performed using open-source R software and SIMCA-P (Umetrics, 
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Umeå, Sweden). The data were log10-transformed prior to model construction. Pathway analysis 

and integrating enrichment analysis were performed and visualized using the online 

MetaboAnalyst software (Chong et al., 2018). 

 

Results 

Metabolic profiles 

A total of 48 VF patients and 99 non-VF controls were included in the study. Of the VF 

samples, 18 were plasma and 30 were urine. Of the non-VF control samples, 41 were from plasma 

and 58 from urine. Paired plasma and urine samples were only obtained from one patient, 

although on different days, given this was not a coordinated collection. Roughly half of all VF 

patients were taking antifungal medication at the time of sample collection. Table 3.1 shows the 

clinical and demographic characteristics of patients included in the study. There was no 

statistically significant difference in plasma or urine metabolites between VF patients on antifungal 

medication and those VF patients not taking antifungals, as calculated by a Mann-Whitney U test 

(all q > 0.05). 
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Table 3.1 Clinical and demographic characteristics of study participants. 

 

  Total n (%) Gender Age Clinical Course of Disease Serology (EIA, CF or ID)  Antifungals? 
  Male Female < 65 ³ 65 Acute Chronic Disseminated Positive Negative Yes No 

VF 
(+) 

 

Urine 30 
(62.5) 

19 
(63.3) 

11 
(36.7) 

15 
(50) 

15 
(50) 

17 
(56.7) 

10 
(33.3) 

3 
(10) 

24 
(80) 

6 
(20) 

25 
(83.3) 

5 
(16.7) 

Plasma 18 
(37.5) 

11 
(61.1) 

7 
(38.9) 

10 
(55.6) 

8 
(44.4) 

10 
(55.5) 

3 
(16.7) 

5 
(27.8) 

16 
(88.9) 

2 
(11.1) 

5 
(27.8) 

13 
(72.2) 

VF 
(-) 
 

Urine 58 
(59) 

34 
(58.6) 

24 
(41.4) 

31 
(53.4) 

27 
(46.6) N/A N/A N/A N/A N/A N/A N/A 

Plasma 41 
(41) 

22 
(53.7) 

19 
(46.3) 

29 
(70.7) 

12 
(29.3) N/A N/A N/A N/A N/A N/A N/A 
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In the current study, we used a large-scale, targeted LC-MS/MS approach for reliable and 

comprehensive VF plasma and urine metabolic profiling.(Jasbi, Wang, et al., 2019) Using this 

metabolic profiling system, targeted analysis of 278 MRM transitions was achieved for metabolites 

spanning over 20 different chemical classes (such as amino acids, carboxylic acids, pyridines, 

etc.) from more than 35 metabolic pathways (e.g., TCA cycle, amino acid metabolism, glycolysis, 

purine and pyrimidine metabolism, urea cycle, etc.) in both positive and negative ionization 

modes. In total, we found that 207 plasma metabolites and 231 urine metabolites were reliably 

detected with relative abundances > 1,000 in more than 80% of all samples. After normalization 

by averaged values from QC injection data, relative levels of the 207 plasma metabolites had a 

median coefficient of variation (CV) value of 11.91% (range: 0.46%-13.01%) with ~70% of 

metabolites having CV < 15%, while the 231 reliably detected urine metabolites had a median CV 

value of 11.37% (range: 0.02%-12.00%) with ~85% of metabolites having CV < 15% 

(Supplementary Figure 3.1).  

 

Statistical analyses 

Of the 207 reliably detected plasma metabolites, 106 showed statistical significance 

between VF patients and non-VF counterparts, as determined by a Wilcoxon rank rum test (see 

Supplementary Table 3.1 for the complete list of significant plasma metabolites, their associated 

p- and q-values, and directional changes). Of the 231 reliably detected urine metabolites, 20 

metabolites showed statistical significance between VF patients and non-VF controls 

(Supplementary Table 3.2). Volcano plots of the tested plasma and urine metabolites showing 

significance and fold change values are presented in Figure 3.1.  
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Figure 3.1 Volcano plot of (A) 207 plasma metabolites, and (B) 231 urine metabolites comparing 

Valley fever/non-Valley fever controls. Top 5 metabolites are labeled. Fold change (FC) threshold: 

2.0; false discovery rate (FDR)-adjusted p-value threshold: 0.05. Unequal group variance was 

assumed, non-parametric test was used.  

To further explore potential biomarkers for discrimination between VF patients and non-

VF controls, levels of the 106 significant plasma metabolites and 20 significant urine metabolites 

were selected to establish initial partial least squares-discriminant analysis (PLS-DA) models. As 
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can be seen in Supplementary Figure 3.2, a separation trend was observed in the initial PLS-

DA score plots. The plasma PLS-DA model (Supplementary Figure 3.2A, B) showed superior 

predictive and explanatory capacity to the PLS-DA model constructed from significant urine 

metabolites (Supplementary Figure 3.2C, D) as validated by permutation testing with 200 

iterations [Plasma: R2X (cum) = 0.973, R2Y (cum) = 0.862, Q2 (cum) = 0.789; Urine: R2X (cum) = 

0.847, R2Y (cum) = 0.627, Q2 (cum) = 0.501]. Variable importance in projection (VIP) scores were 

obtained from the initial PLS-DA models. As shown in Figure 3.2, 3 plasma metabolites were 

observed to have VIPs > 2, and 9 urine metabolites had VIPs > 1. In an effort to develop thrifty 

models that rely on the fewest number of predictors while accounting for as much variance as 

possible, enhanced orthogonal partial least squares-discriminant analysis (OPLS-DA) models 

were constructed using the 3 plasma metabolites that were both significant (q < 0.001) and had 

VIPs > 2 and the 9 urine metabolites that were significant (q < 0.05) and had VIPs > 1, 

respectively. As shown in Figure 3.3, separation was clearly observed in both the plasma and 

urine OPLS-DA models, with the plasma metabolite model again outperforming the urinary model 

[Plasma: R2X (cum) = 0.668, R2Y (cum) = 0.739, Q2 (cum) = 0.723; Urine: R2X (cum) = 0.302, 

R2Y (cum) = 0.416, Q2 (cum) = 0.389]. Significance information and fold change values for the 

final panel of 3 plasma and 9 urine metabolites can be found in Table 3.2; box plots of the plasma 

biomarker panel are provided in Figure 3.4 while urine biomarkers are plotted in Figure 3.5. 
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Figure 3.2 Variable Importance in Projection (VIP) scores of plasma and urine partial least 

squares-discriminant analysis (PLS-DA) models constructed using 106 and 20 metabolites, 

respectively, for discrimination between Valley fever patients and non-Valley fever controls. Top 

10 important contributors to model projection are shown. (A) Three plasma metabolites were 

observed to have VIPs > 2. (B) Nine urine metabolites were observed to have VIPs > 1.  
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Figure 3.3 Orthogonal partial least squares-discriminant analysis (OPLS-DA) performed on log10-

transformed plasma and urine metabolite data: (A) score plot of 3 significant and important plasma 

metabolites accounting for 66.8% of variance, (B) statistical validation of plasma OPLS-DA model 

[R2X (cum) = 0.668, R2Y (cum) = 0.739, Q2 (cum) = 0.723] by permutation testing (n = 200), (C) 

score plot of 9 significant and important urinary metabolites accounting for 51.1% of variance, (D) 

statistical validation of urinary OPLS-DA model [R2X (cum) = 0.302, R2Y (cum) = 0.416, Q2 (cum) 

= 0.389] by permutation testing (n = 200).
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Table 3.2 Significance and fold change details for final panel of plasma and urine markers. 

Metabolite 
Plasma Urine 

FDR q Fold Change FDR q Fold Change 
Inosine < 0.0001 26.724 

 3-Phosphoglyceric acid < 0.0001 192.44 
cGMP 0.0003 16.312 
Phenylacetic acid 

 

1.4E-4 0.181 
Amino valerate 0.0082 0.380 
Glycocyamine 0.0082 0.379 
Tryptamine 0.0284 0.076 
Gentisic acid 0.0284 0.194 
p-Coumaric acid 0.0325 0.191 
N,N’-Dicyclohexylurea 0.0395 0.434 
F16BP 0.0443 0.404 
Tetracaine 0.0491 0.367 

 

 

Figure 3.4 Box plots of candidate plasma markers (all q < 0.001 and VIP > 2) for Valley fever 

(VF) detection. Data were log10 normalized. 
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Figure 3.5 Box plots of candidate urine markers (all q < 0.05 and variable importance in projection 

(VIP) > 1) for Valley fever (VF) detection. Data were log10 normalized.  

Receiver operating characteristic (ROC) analysis was performed to determine the 

classification performance of the enhanced plasma and urine OPLS-DA models. As evidenced 

by the ROC curve shown in Figure 3.6A, the OPLS-DA model constructed using only 3 significant 
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and important plasma metabolites demonstrated near-perfect classification accuracy (AUC = 

0.995), excellent sensitivity (0.994) and specificity (0.976). The OPLS-DA model constructed 

using the 9 significant and important urine metabolites also showed excellent overall accuracy 

(AUC = 0.929), high sensitivity (0.897) and good specificity (0.881) (Figure 3.6B). 

 

Figure 6. ROC analysis of (A) 3-metabolite plasma OPLS-DA model [AUC = 0.995 (95% CI: 

0.983-1.00), sensitivity = 0.944 when specificity = 0.976] and (B) 9-metabolite urine OPLS-DA 

model [AUC = 0.929 (95% CI: 0.873-0.985), sensitivity = 0.897 when specificity = 0.881].  

 To analyze the discriminatory ability of the plasma and urine biomarker panels in 

accurately detecting VF patients of varying clinical course and seropositivity, univariate 

significance testing was performed on the plasma metabolite panel (inosine, 3-phosphoglyceric 

acid, cGMP) and urinary metabolite panel (phenylacetic acid, tryptamine, N,N-dicyclohexylurea, 

p-coumaric acid, gentisic acid, tetracaine, fructose-1,6-bisphosphate, amino valerate, 

glycocyamine) to monitor any potential changes in their levels attributable to clinical course or 

serology status. Notably, our results showed no significant change in these 12 marker candidates 

between VF patients with acute, chronic, or disseminated disease or VF patients with positive, 

negative, or indeterminant serology results (all p > 0.10).
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Pathway Analyses of Metabolic Data 

Enrichment analysis was conducted using KEGG database searches and 

metabolite intensities for both plasma and urine data. Enrichment analysis of 207 reliably 

detected plasma metabolites showed significant (p) disturbances in alanine metabolism 

(0.005) and amino sugar metabolism (0.014). Enrichment analysis of 231 reliably detected 

urine metabolites was also conducted. Although non-significant, results indicated a high 

magnitude of fold enrichment (VF/control) in phenylacetate metabolism (0.167) and 

alanine metabolism (0.315). Enriched pathways as determined by analysis of all reliably 

detected plasma and urine metabolites are shown as separated motifs in Figure 3.7. 

 

Figure 3.7 Results of enrichment analysis using (A) 207 reliably detected plasma 

metabolites and (B) 231 reliably detected urinary metabolites. 

Pathway analysis was also performed in order to determine significantly affected 

pathways in VF patients. Although no pathway was observed to have large impact 

coefficients (> 0.50), 4 pathways were shown to be significantly affected in both plasma 

and urine samples (Figure 3.8). Agreement between plasma and urinary analyses 

revealed significant disturbances in nicotinate and nicotinamide metabolism and ammonia 

recycling.  
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Figure 3.8 The metabolome view of pathway analysis comparing Valley fever (VF) 

patients and controls using (A) plasma samples [(1) glycine and serine metabolism, (2) 

purine metabolism, (3) nicotinate and nicotinamide metabolism, (4) ammonia recycling]; 

and (B) urine samples [(5) nicotinate and nicotinamide metabolism, (6) ammonia recycling, 

(7) phenylalanine metabolism, and (8) arginine and proline metabolism]. Data were log10-

transformed prior to analysis. 

 

Discussion 

Roughly 10% of patients who contract VF will develop serious chronic diseases or 

potentially fatal disseminated diseases. Diagnosis of VF remains difficult as currently 

available diagnostic techniques are inaccurate, nonspecific, and time-consuming. As a 

result, various diagnostic techniques must be used in conjunction for detection of VF, 

increasing cost and time to diagnosis. Significant metabolic alterations have previously 

been shown in response to various fungal infections and have demonstrated potential for 

use as diagnostic biomarkers (Culibrk et al., 2016; Dadwal & Kontoyiannis, 2018; Rubert 
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et al., 2017; Savelieff & Pappalardo, 2017). For the last two decades, significant 

innovations in mass spectrometry-based metabolic profiling and analysis of disease-

related alterations have been made and, in doing so, these efforts have borne highly 

sensitive and valuable diagnostic information (Ellis & Goodacre, 2006; Emwas et al., 2013; 

Jasbi, Wang, et al., 2019; D. Wang et al., 2019; A. Zhang et al., 2012). In the current study, 

we explored a combination of targeted metabolic profiling and multivariate statistical 

analysis for the discovery of sensitive and specific metabolite biomarkers for relatively 

rapid VF detection. We have used this particular method to detect 207 plasma metabolites 

and 231 urine metabolites from many relevant metabolic pathways. Our multi-step 

biomarker selection, model construction, and cross validation have demonstrated the 

robust diagnostic power of this metabolic profiling method in this study of 147 subjects.  

Although a number of studies have performed mass spectrometry-based 

proteomic and transcriptomic analysis for detection of biological alterations in response to 

coccidioidomycosis infection (Albuquerque et al., 2014; Berber et al., 2001; Lewis et al., 

2015; Mitchell et al., 2018; Whiston et al., 2012), no study has, to date, applied 

metabolomics for the accurate detection of coccidioidomycosis in humans (Sharpton et 

al., 2009). The targeted LC-MS/MS metabolite profiling approach presented in this study 

determined 3 significantly altered plasma metabolites with FDR q < 0.001 and VIP > 2 and 

9 urine metabolites with FDR q < 0.05 and VIP > 1, which informed the construction of 

enhanced OPLS-DA models for the diagnosis of VF. The combination of these 3 plasma 

metabolites had a diagnostic sensitivity and specificity of 94.4% and 97.6%, respectively, 

with an AUC of 0.995. Additionally, our urine panel of 9 metabolites provided a diagnostic 

sensitivity of 89.7% and specificity of 88.1%, with an AUC of 0.929. Although this urine 

panel was less accurate than the plasma panel, it represents an increase in diagnostic 

accuracy over currently available urinary antigen tests, which only report sensitivity of 
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around 70% (Durkin et al., 2008). While one of our future directions is to combine the 

plasma and urine biomarkers into a single statistical model, the realization of such a model 

was not possible in the current study given that paired plasma and urine samples were 

only collected from one patient, and on different days. Therefore, we have focused on the 

development of thrifty, independent models given the available data. Moreover, the current 

time-to-diagnosis ranges from a few days using skin-testing methods (Johnson et al., 

2012; Wack et al., 2015), which are contingent on an immune response and cannot 

differentiate current and past infections, to an unacceptably long period of 2 weeks in the 

case of laboratory culture. In contrast, our metabolomics approach has great potential to 

achieve accurate diagnosis of VF within 24 hours. Therefore, our results suggest that 

metabolomics methods can provide a notable improvement to VF diagnosis over currently 

available serological diagnostics. 

Importantly, no significant differences in levels of the 12 marker candidates were 

observed between VF patients with acute, chronic, or disseminated disease or VF patients 

with positive, negative, or indeterminant serology results, indicating that both the plasma 

and urine metabolite panels achieved accurate diagnoses of VF irrespective of clinical 

course or serological status.  Acutely ill patients were detected, indicating that these 

metabolic markers are present early in infection. Likewise, patients who were chronically 

ill or had disseminated diseases were also detected, suggesting that these markers persist 

and are present in extrapulmonary diseases. Although candidate markers presented in 

this study are capable of accurate VF diagnosis irrespective of stage, and therefore fulfill 

a critical need in current diagnostic testing, an ideal biomarker panel capable of identifying 

disease course would further aid clinical decisions. In order to reach this level of analysis, 

future metabolic biomarker panels should be designed with special attention paid to 

characterizing differential, stage-dependent metabolites. In addition, perhaps the most 
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interesting outcome was the correct identification of seronegative patients. These patients 

were clinically determined to have VF by the Mayo Clinic Arizona diagnostic rubric but 

were negative by at least one serological test. Frequently, these seronegative or 

serologically indeterminant patients are symptomatic and have positive radiography 

and/or histology tests, further complicating the process of differential diagnosis. These 

cases represent a difficult to diagnose subset of patients and, therefore, an assay that can 

correctly assess these patients is of critical need. Results of our urinary and plasma 

biomarker panels demonstrate the significant potential of our LC/MS-MS method to 

accurately classify this subset of patients.   

Although previously unreported in association with Valley fever, several of the 

plasma and urinary biomarkers identified in our diagnostic assay have been shown to be 

critical in the initiation and propagation of related fungal diseases. Chitty and colleagues 

(2017) showed production of inosine via adenylosuccinate lyase to be essential for DNA 

and RNA synthesis as well as energy production of Cryptococcus neoformans in a murine 

model (Chitty et al., 2017). In another murine model, Alves de Castro et. al. (2018) 

demonstrated cGMP to be a vital component of Sch9, a serine/threonine kinase 

responsible for target of rapamycin (TOR) signaling, essential for virulence of Aspergillus 

fumigatus (Alves de Castro et al., 2016). In the current study, levels of inosine were found 

to be increased more than 26-fold in VF patients whereas levels of cGMP exhibited a 16-

fold increase between VF patients and controls. Furthermore, phenylacetic acid has been 

shown to severely limit the proliferative capacity of Rhizoctonia solani in plants (Bartz et 

al., 2013). Similarly, p-coumaric acid was recently demonstrated to significantly inhibit the 

growth of Colletotrichum spp. in vitro (Roy et al., 2018). Levels of both metabolites were 

decreased by nearly 90% in VF patients as compared to controls. Additionally, fructose-

1,6-bisphosphate (F16BP) has been shown to prevent mortality from active Candida 
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albicans bloodstream infection in mice (Santos et al., 2012). Interestingly, levels of F16BP 

were reduced by almost 60% in VF patients as compared to controls. Further investigation 

of these candidate markers and their role in Coccidioides virulence and survival in a host 

environment is warranted.  

While results of our plasma and urine enrichment analyses are commensurate with 

each other, they have not been, to the best of our knowledge, previously reported in the 

literature in regard to VF. Enrichment analysis of plasma and urine data indicated 

significant and high-impact changes, respectively, in alanine metabolism. Additionally, 

analysis of plasma data indicated significant enrichment in amino sugar metabolism, while 

analysis of urine metabolites revealed a more than two-fold reduction in phenylacetate 

metabolism in response to active VF infection. Therefore, the significant differences and 

high magnitude effects observed herein provide valuable target pathways for future 

experimental studies. 

The current understanding of the primary and secondary metabolites produced by 

Coccidioides sp. is limited, but metabolism is known to be a key factor in pathogenesis 

(Culibrk et al., 2016; Dadwal & Kontoyiannis, 2018; Rubert et al., 2017; Savelieff & 

Pappalardo, 2017). Sharpton et. al. used genomic sequencing evidence to suggest that 

coccidioidal genetic diversion away from its closest genetic relative, Uncinocarpus reesii 

(a non-pathogen), is at least partially the result of acquiring and adapting genes involved 

in metabolism, membrane biology, and mycotoxin production (Sharpton et al., 2009). They 

hypothesized that these changes led to metabolic and morphological phenotypes that 

enabled survival within a living host, ultimately resulting in disease. Interestingly, they 

found that the subtilisin N domain-containing gene family of serine proteases were 

significantly increased in fungi of the order Onygenales. Serine proteases have not only 

been implicated in the pathogenicity of Aspergillus fumigatus (Monod et al., 2002), but 
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also more recently a serine/threonine protein kinase and a serine/threonine phosphatase 

suggested to be involved in C. posadasii virulence (Narra et al., 2016). An avirulent cps1 

knockout strain of C. posadasii had 7-fold less serine/threonine protein kinase and 3-fold 

less serine/threonine phosphatase transcription by RNA-seq than its virulent wild-type 

parent. It is therefore not surprising that glycine and serine metabolism was found to be 

significantly disturbed in plasma and urine from VF patients in this study.  

Both plasma and urinary analyses in this study revealed significant increases in 

nicotinamide metabolism and ammonia recycling. Increased nicotinamide may be a 

general host response to fungal infection, as it is involved in innate immune cell function 

and has previously been shown to decrease enzyme activity in Candida and Trichophyton 

spp. infections (Belenky et al., 2007; Ciebiada-Adamiec et al., 2010). Nicotinamide is 

currently being investigated for an antifungal therapeutic strategy, as it was shown to 

cause a loss of cell viability and reduce virulence in a mouse model of C. albicans infection 

(Wurtele et al., 2010). On the other hand, increased ammonia recycling could be a 

coccidioidal mechanism to evade host immune defenses and maximize nitrogen utilization 

to support the high demand of amino acid synthesis of rapidly dividing cells during 

infection, similar to that in cancer cells (Spinelli et al., 2017). Coccidioides spp. grow in 

alkaline soil conditions, and they convert the pH of the pulmonary microenvironment to 

alkaline concentrations during infection by releasing ammonia and urease when spherules 

rupture during the parasitic cycle (H. Z. Wise et al., 2013). Ammonia and urease elicit a 

non-protective innate host inflammatory response which contributes significantly to 

pathogenesis by inducing host cell damage without clearing the fungus (Mirbod-Donovan 

et al., 2006). Mice infected with a C. posadasii strain with double mutant knockout with 

deleted urease and ureidoglycolate hydrolase, an enzyme upstream of ammonia 
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synthesis from allantoate, were significantly less virulent and showed increased survival 

and better granuloma formation than the wild-type controls.  

These proof-of-concept diagnostic metabolites are encouraging; however, there 

are a number of limitations that need to be addressed in future studies. Firstly, none of the 

non-VF plasma samples and only 2 of the non-VF urine samples tested (1 bacterial 

pneumonia of an unknown species and 1 fungal pneumonia due to Candida sp. with 

Microascus sp.) had non-VF CAP. Although there were no false positive reactions in these 

2 non-VF CAP patients, a greater number of this type of patients should be evaluated, as 

any diagnostic for VF should discern VF from other pneumonial etiologies including 

bacterial, viral, and other fungal pneumonia-causing genera like Histoplasma, 

Blastomyces, Aspergillus, and Cryptococcal spp. Secondly, we assessed a relatively 

homogenous population of patients residing in Arizona. The most prevalent Coccidioides 

sp. in Arizona is C. posadasii, whereas in California C. immitis is more prevalent. 

Additional VF positive samples should be collected from California and South America 

and evaluated for possible metabolite variation between strains and patients of different 

regions. Additionally, further studies need to be performed to discriminate whether these 

significantly produced metabolites are generated by the host or pathogen. Although this 

determination is not essential for diagnostic purposes, metabolite biomarkers produced by 

the host are more likely to be variable in heterogeneic patient groups with varying 

comorbidities, whereas metabolites produced by the pathogen should be more 

consistently present. If particular metabolites could be attributed to the pathogen, novel 

inhibitors of metabolic precursors could be investigated as therapeutic targets. Future 

studies that evaluate metabolite production and consumption from in vitro Coccidioides 

spp. fungal cultures or mouse infection studies can help determine pathogen specific 

metabolites and metabolic pathways for targeted treatment. 
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This study is part of a growing body of literature in which an MS-based method has 

been utilized for disease biomarker discovery and accurate diagnosis (Ahn et al., 2017; 

Bowers et al., 2014; Buas et al., 2017; G. A. N. Gowda & Raftery, 2013; Kaysen et al., 

2015; D. Wang et al., 2019; Yin & Xu, 2017; A. Zhang et al., 2012). To the best of our 

knowledge, this is the first metabolomics approach for coccidioidomycosis diagnosis. 

Additionally, in lieu of applying database searches for compound annotation in global 

profiling, we tested all targeted metabolites reported in this study with pure standard 

compounds, allowing for improved relative quantification and analytical precision. Results 

of our fold change analysis, significance testing, as well as enrichment and pathway 

analyses indicate metabolites and pathways previously shown to be crucial for immune 

response inhibition, reproduction, dissemination, and pathogenic severity of fungal 

diseases, broadly defined. Likewise, the metabolites and associated metabolic pathways 

identified in this study may inform the development of new antifungal treatments for Valley 

fever. 

 

Conclusions 

In this study, we performed comparisons of plasma and urine metabolites from VF 

patients and non-VF controls using a targeted LC-MS/MS metabolic profiling approach 

(Jasbi, Wang, et al., 2019) and observed significant alterations in a variety of the 

metabolites detected. Our results demonstrate the utility of a panel of 3 plasma 

metabolites with FDR q-values < 0.001 and VIPs > 2 and 9 urine metabolites with q-values 

< 0.05 and VIPs > 1 for the rapid and accurate diagnosis of VF. These differential 

metabolites were used to construct predictive classification models that showed high 

sensitivity, specificity, and overall performance for VF patients of all clinical courses, 

including seronegative patients. Application of bioinformatic methods expanded basic 
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knowledge of the metabolome related to VF and showed ubiquitous disturbances in 

glycine and serine metabolism that could be targeted therapeutically in future studies. As 

evidenced by our results, this metabolic profiling method can potentially serve as a novel 

approach for rapid and routine VF diagnosis, with significant advantages to current 

diagnostic methods. In addition, this study provides a strong basis for larger multi-site 

projects to validate our findings across different population groups and further advances 

the development of improved clinical care for VF patients. 
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CHAPTER 4 

METABOLIC PROFILING OF NEOCORTICAL TISSUE DISCRIMINATES 

ALZHEIMER’S DISEASE FROM MILD COGNITIVE IMPARIMENT, HIGH PATHOLOGY 

CONTROLS, AND NORMAL CONTROLS 

(Published in Journal of Proteome Research, 2021, 20: 4303—4317) 

 

Abstract 

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for 

an estimated 60 to 80% of cases, and is the sixth-leading cause of death in the United 

States. While considerable advancements have been made in the clinical care of AD, it 

remains a complicated disorder that can be difficult to identify definitively in its earliest 

stages. Recently, mass spectrometry (MS)-based metabolomics has shown significant 

potential for elucidation of disease mechanisms and identification of therapeutic targets 

as well diagnostic and prognostic markers that may be useful in resolving some of the 

difficulties affecting clinical AD studies, such as effective stratification. In this study, 

complementary gas chromatography- and liquid chromatography-MS platforms were used 

to detect and monitor 2,080 metabolites and features in 48 post-mortem tissue samples 

harvested from the superior frontal gyrus of male and female subjects. Samples were 

taken from four groups: 12 normal control (NC) patients, 12 cognitively normal subjects 

characterized as high pathology controls (HPC), 12 subjects with non-specific mild 

cognitive impairment (MCI), and 12 subjects with AD. Multivariate statistics informed the 

construction and cross-validation (p < 0.01) of partial least squares-discriminant analysis 

(PLS-DA) models defined by a 9-metabolite panel of disease markers (lauric acid, stearic 

acid, myristic acid, palmitic acid, palmitoleic acid, and four unidentified mass spectral 

features). Receiver operating characteristic analysis showed high predictive accuracy of 
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the resulting PLS-DA models for discrimination of NC (97%), HPC (92%), MCI (~96%), 

and AD (~96%) groups. Pathway analysis revealed significant disturbances in lysine 

degradation, fatty acid metabolism, and the degradation of branched-chain amino acids. 

Network analysis showed significant enrichment of 11 enzymes, predominantly within the 

mitochondria. The results expand basic knowledge of the metabolome related to AD and 

reveal pathways that can be targeted therapeutically. This study also provides a promising 

basis for the development of larger multi-site projects to validate these candidate markers 

in readily available biospecimens such as blood to enable the effective screening, rapid 

diagnosis, accurate surveillance, and therapeutic monitoring of AD. All raw mass 

spectrometry data have been deposited to MassIVE (dataset identifier MSV000087165). 

 

Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder marked primarily by 

cognitive decline and dementia (Costa et al., 2019; Qiu et al., 2007), in addition to the 

accumulation of extracellular amyloid β (Aβ) plaques and intracellular neurofibrillary tau 

tangles (Belbin et al., 2011; Hölscher, 2005). AD is the most common cause of adult 

dementia, accounting for 60 to 80% of cases worldwide (Yi et al., 2017), and is the sixth 

leading cause of death in the United States (Alzheimer’s Association Report, 2020). 

Currently, AD affects more than 5.8 million Americans (Snowden et al., 2017; Yi et al., 

2017), with prevalence expected to triple by 2050 (Hendrix et al., 2016). In the United 

States, total payments in 2020 for health care, long-term care, and hospice services are 

estimated to be $305 billion (Alzheimer’s Association Report, 2020). Consequently, AD 

represents a significant threat to human health and exerts a substantial financial and 

societal impact. 
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 Considerable advancements have been made in the ability to accurately diagnose 

AD, largely owing to the development of positron emission tomography (PET) scans for 

detection of plaques and tangles, as well as cerebral spinal fluid (CSF) and plasma tests 

for AD-associated biomarkers (Hane et al., 2017). However, treatment of patients and 

appropriate evaluation of the outcomes of clinical studies remain complicated by the many 

unknowns involved in AD. Individuals with mild cognitive impairment (MCI) may be in the 

early stages of AD or may be affected by an unrelated disease process, confounding 

studies of early interventional treatments. In addition, some individuals with intermediate 

to high levels of AD-associated pathology (plaques and tangles) do not display cognitive 

deficits (Hyman et al., 2012), indicating at least a partial disconnect between those specific 

pathologies and cognitive function. These resilient individuals, known as high pathology 

controls (HPC), can sustain AD-consistent pathology such as high amyloid loads, synaptic 

and neuronal demise, demyelination, and atrophy, while simultaneously remaining 

cognitively intact (Hyman et al., 2012; Maarouf et al., 2011). Although critical to the 

understanding of pathology- and cognition-specific metabolic alterations underlying AD 

(Beach et al., 2015; Hyman et al., 2012; Maarouf et al., 2011), this group remains 

understudied. It is also common for AD to be found in conjunction with other pathologies 

such as synucleinopathy, TDP-43, or microinfarcts (Nelson et al., 2010). Therefore, the 

ability to more effectively stratify and subgroup individuals would likely produce clearer 

and more actionable results. Furthermore, provisional diagnosis relies on a combination 

of mental status testing, neuropsychological tests, interviews with friends and family, 

laboratory tests, and various brain imaging techniques such as magnetic resonance 

imaging (MRI), computerized tomography (CT), and PET (Kang et al., 2016; McKhann et 

al., 1984; Seyfried et al., 2017). These conventional diagnostic methods show low 

specificity against other dementias (70%) and only moderate sensitivity (80%) (Iverson et 
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al., 2010). Additionally, these criteria are unable to capture early brain pathology that may 

predate symptoms by as much as 30 years (Sancesario & Bernardini, 2018); without 

timely diagnosis, patients are less likely to access appropriate treatment options that may 

slow disease progression (R González-Domínguez et al., 2017; Roberts & Knopman, 

2013). Consequently, there is a critical need for highly sensitive and specific markers of 

AD that may enable early disease detection as well as identification of potential drug 

targets, improved prognosis, and monitoring of therapeutic response.  

 A growing body of evidence suggests that perturbations in various metabolic 

pathways play a significant role in AD (An et al., 2018; Han et al., 2011; Varma et al., 

2018; G. Wang et al., 2014; Zetterberg & Burnham, 2019). Most notably, the mitochondrial 

cascade hypothesis states that widespread mitochondrial metabolic dysfunction is a 

strong characteristic of AD and plays a role in the accumulation of Aβ plaques (Hane et 

al., 2017; G. Wang et al., 2014; J. M. Wilkins & Trushina, 2018). Furthermore, studies 

have also shown long- and short-chain fatty acids to play an important role in AD 

pathology, exerting both protective and pathogenic effects (Peña-Bautista et al., 2019; 

Tynkkynen et al., 2018; Varma et al., 2018; G. Wang et al., 2014; J. M. Wilkins & Trushina, 

2018; Yi et al., 2017). Alterations in glycerophospholipid (Klavins et al., 2015) and 

phosphatidylcholine metabolism (Costa et al., 2019; Klavins et al., 2015; Tynkkynen et al., 

2018; J. M. Wilkins & Trushina, 2018; Yi et al., 2017) have also been strongly linked to AD 

in previous studies utilizing metabolomics-based approaches. More recently, an emerging 

role of the gut microbiome in AD has been identified (Mahmoudian-Dehkordi et al., 2019), 

and metabolic profiling studies have demonstrated the potential for bile acids in 

discriminating subclinical forms of AD (Baloni et al., 2020; Pan et al., 2017). Indeed, with 

advanced deterioration of cortical vasculature as seen in late-stage AD, it is possible for 

bile acids to be found in the central nervous system (Graham et al., 2018; Griffiths et al., 
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2019; Nho et al., 2019). Metabolomics, the scientific study of metabolic composition and 

pathways present in biological systems (Zhanghan Chen et al., 2019; Chong et al., 2018; 

Havelund et al., 2017; Ismail et al., 2019; Jové et al., 2014; Patti et al., 2012; J. M. Wilkins 

& Trushina, 2018), has facilitated the accurate characterization of various metabolomes 

for advances in disease classification, drug therapy, and biomarker discovery. More 

specifically, mass spectrometry (MS) is an analytical approach in metabolomics that 

allows for the accurate detection and quantification of metabolites in biological samples 

(Beach et al., 2015; Gu et al., 2013; Kind et al., 2009). Various forms of untargeted and 

targeted MS-based metabolomic assays have been implemented to profile biochemical 

processes in AD pathology. Methods mainly include direct infusion-MS (R. González-

Domínguez et al., 2014), ultrahigh resolution-MS enabled by liquid chromatography (LC)-

Orbitrap (Lin et al., 2013), and gas chromatography (GC)-time-of-flight-MS (G. Wang et 

al., 2014), which have been used in many previous studies for therapeutic drug targeting, 

disease characterization, and potential diagnostic biomarkers. 

 The current study employs hyphenated MS-based assays that combine both 

targeted and untargeted metabolomics approaches to detect aqueous metabolites, lipids, 

fatty acids, and bile acids, in addition to profiling unidentified features. A total of 2,080 

metabolites/features were detected in 48 samples of superior frontal gyrus tissue taken 

from four groups of patients: normal control (NC), HPC, MCI, and AD. Multivariate 

significance testing and model estimation constructed cross-validated partial least 

squares-discriminant analysis (PLS-DA) models confined to a highly predictive 9-

metabolite panel of potential biomarkers capable of distinguishing each clinical group with 

high sensitivity and specificity. In conjunction with pathway and enrichment analyses, the 

current study corroborates findings of previous literature and adds to basic knowledge of 

the metabolome related to neurodegenerative decline as well as the behavioral symptoms 
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of AD-induced dementia; this study offers a large-scale analysis of molecular alterations 

associated with AD pathogenesis and progression, potentially supporting future drug 

development and prevention efforts. Importantly, this study provides clinically relevant 

candidate biomarkers capable of accurate post-mortem classification which may, 

eventually, prove useful to in vivo diagnosis and disease monitoring. 

 

Methods 

Reagents 

Acetonitrile (ACN), methanol (MeOH), ammonium acetate (NH4OAc), acetic acid 

(AcOH), and isopropanol (IPA), all LC-MS grade, were purchased from Fisher Scientific 

(Pittsburgh, PA). Ammonium hydroxide (NH4OH), methyl tert-butyl ether (MTBE), O-

methylhydroxylamine hydrochloride (MeOX), and N-Methyl-N-(tert-butyldimethylsilyl) 

trifluoroacetamide (MTBSTFA) were bought from Sigma-Aldrich (Saint Louis, MO). High 

performance LC grade chloroform (CHCl3) was obtained from VWR (Radnor, PA). 

Deionized water was provided in-house by a water purification system from EMD Millipore 

(Billerica, MA). Phosphate buffered saline (PBS) was bought from GE Healthcare Life 

Sciences (Logan, UT). Standard compounds corresponding to measured aqueous 

metabolites/features were purchased from Sigma-Aldrich and Fisher Scientific. Lipid 

standards were purchased from Fisher Scientific, Sigma-Aldrich, and Avanti Polar Lipids 

(Alabaster, AL). 

 

Clinical Samples 

 Frozen tissue from the superior frontal gyrus of male and female subjects was 

obtained from the Arizona Study of Aging and Neurodegenerative Disorders/Brain and 

Body Donation Program at the Banner Sun Health Research Institute (BSHRI) in Sun City, 
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Arizona (Beach et al., 2015). Samples were collected under a previously approved 

institutional review board (IRB) protocol with broad consent for usage of biospecimens 

(WIRB Protocol #20120821). All research protocols were conducted in accordance with 

the principles expressed in the Declaration of Helsinki. Subjects were divided into four 

groups by clinical status (n = 12 for all groups) based on assessment of post-mortem brain 

pathology and cognitive status before death. These groups were: normal control (NC) 

subjects with criteria not met for AD neuropathology, cognitively normal subjects with 

intermediate AD pathology characterized as high pathology controls (HPC), subjects with 

non-specific mild cognitive impairment (MCI) and intermediate AD neuropathology, and 

subjects with dementia and high neuropathology with criteria met for AD. For definition of 

groups by AD pathology, the National Institute on Aging-Alzheimer’s Association 

guidelines for the neuropathologic assessment of Alzheimer’s disease were used (Hyman 

et al., 2012). Relevant clinical characteristics were provided by BSHRI for each subject 

such as age, sex, APOE genotype, post-mortem interval (PMI), Mini-Mental State 

Examination (MMSE), and Braak score. Additionally, measures of brain pathology 

including cerebral amyloid angiopathy (CAA), amyloid plaques and neurofibrillary tangles 

were taken from either a frontal area of the brain or a compilation of sampling from various 

brain regions.  

 

Targeted LC-MS/MS Aqueous Profiling 

For tissue lysates, 400 mg pieces of frozen superior frontal gyrus were hand 

homogenized in 400 µL of ice-cold sterile PBS containing a protease/phosphatase 

inhibitor cocktail (Halt, Thermo Scientific). Three samples for which less tissue was 

available were homogenized in equal ratios (weight to volume) of the PBS/inhibitor 

solution. Homogenized samples were sonicated on ice in a biosafety cabinet at a 40% 
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amplitude for a total time of 1 min, with alternating on/off sequences of 15 sec. Samples 

were then centrifuged for 30 min at 14,000 RPM at 4ºC. The supernatants and pellets were 

stored separately at -80oC until analysis. 

Prior to LC-MS/MS targeted measurement, frozen tissue supernatant samples 

were first thawed overnight under 4°C. Afterward, 50 μL of each sample were placed in a 

2 mL Eppendorf vial. The initial step for protein precipitation and metabolite extraction was 

performed by adding 500 μL MeOH and 50 μL internal standard solution (containing 

1,810.5 μM 13C3-lactate and 142 μM 13C5-glutamic acid). The mixture was then vortexed 

for 10 s and stored at -20°C for 30 min, followed by centrifugation at 14,000 RPM for 10 

min at 4°C. The supernatants (450 μL) were collected into new Eppendorf vials and dried 

using a CentriVap Concentrator. The dried samples were reconstituted in 150 μL of 40% 

PBS/60% ACN and centrifuged again at 14,000 RPM at 4°C for 10 min. Afterward, 100 

μL of supernatant was collected from each sample into an LC autosampler vial for 

subsequent analysis. A pooled sample, which was a mixture of all experimental samples, 

was used as the quality control (QC) sample and injected once every 10 experimental 

samples. 

The targeted LC-MS/MS method used here was modeled after that developed and 

used in a growing number of studies (Buas et al., 2017; Carroll et al., 2015; Gu et al., 

2016, 2015; Li et al., 2018; Zhu et al., 2014). Briefly, all LC-MS/MS experiments were 

performed on an Agilent 1290 UPLC-6490 QQQ-MS system. Each supernatant sample 

was injected twice, 10 µL for analysis using negative ionization mode and 4 µL for analysis 

using positive ionization mode. Both chromatographic separations were performed in 

hydrophilic interaction chromatography mode on a Waters XBridge BEH Amide column 

(150 x 2.1 mm, 2.5 µm particle size, Waters Corporation, Milford, MA). The flow rate was 

0.3 mL/min, auto-sampler temperature was kept at 4°C, and the column compartment was 
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set to 40°C. The mobile phase was composed of Solvents A (10 mM NH4OAc, 10 mM 

NH4OH in 95% H2O/5% ACN) and B (10 mM NH4OAc, 10 mM NH4OH in 95% ACN/5% 

H2O). After an initial 1 min isocratic elution of 90% B, the percentage of Solvent B 

decreased to 40% at t = 11 min. The composition of Solvent B was maintained at 40% for 

4 min (t = 15 min), after which the percentage of B gradually went back to 90%, to prepare 

for the next injection. The mass spectrometer was equipped with an electrospray 

ionization (ESI) source. Targeted data acquisition was performed in multiple-reaction-

monitoring (MRM) mode. For targeted data acquisition, we monitored 118 and 160 MRM 

transitions in negative and positive mode, respectively (278 transitions in total). The whole 

LC-MS system was controlled by Agilent MassHunter Workstation software. The extracted 

MRM peaks were integrated using Agilent MassHunter Quantitative Data Analysis 

software.  

 

Targeted LC-MS/MS Lipidomics 

 Tissue samples were thawed under 4°C. Then, 200 μL 10x diluted PBS and 80 μL 

of MeOH containing 50 μM PC (17:0, 17:0) and PG (17:0, 17:0) internal standards were 

added to 20 mg of each thawed sample. A ½ spoonful of stainless-steel micro beads was 

added to each sample, which was subsequently homogenized for 20 sec. Afterward, 400 

μL of MTBE was added to each sample (MTBE:MeOH:H2O = 10:2:5, v/v/v) and vortexed 

for 30 sec followed by sonication in ice bath for 20 min. Lastly, samples were centrifuged 

at 14,000 RPM to separate phases. The upper MTBE layer (300 μL) was 

extracted, transferred to new 1.5 mL Eppendorf tubes, dried in a Vacufuge Plus 

Evaporator (Hamburg, Germany), and then reconstituted with 100 μL 1:1 CHCl3/MeOH. 

Each sample (80 μL) was then transferred to a LC−MS vial for LC-MS/MS targeted 

lipidomics analysis, while the remaining 20 μL was pooled to create a QC sample.  
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For lipidomic profiling, all mass spectrometry experiments were done on an Agilent 

1290 LC-6490 QQQ-MS (Santa Clara, CA), and 4 μL was injected for positive ionization, 

whereas 6 μL was used in negative ion mode injections. Both modes used reverse phase 

chromatography with a Waters XSelect HSS T3 column (150 × 2.1 mm, 2.5 μm particle 

size; Waters Corporation, Milford, MA). The flow rate through the column was maintained 

at 0.3 mL/min. The mobile phase Solvent A was composed of 10 mM NH4OAc in 60% 

H2O/ 40% ACN. Solvent B consisted of 10 mM NH4OAc in 90% IPA/10% ACN. An 

isocratic elution was used with 50% Solvent B for 3 min before its percentage was 

gradually increased to 100% over the next 12 min. Following 10 min of continued 100% 

Solvent B, at t = 25 min, the percent of B was decreased gradually back to 50% to prepare 

for the next sample injection. The set of lipids covered in our LC-MS/MS lipidomics assay 

were the same as those in our previous study (Eghlimi et al., 2020), and 357 lipids were 

selected from various lipid classes including fatty acids, glycolipids, glycerophospholipids, 

sphingolipids, etc. (Eghlimi et al., 2020). Lipid standards were used to test the MRM and 

retention time (RT) for each individual lipid. 

 

Untargeted GC-MS Aqueous Profiling 

The aqueous bottom layer (180 μL) from the MTBE extraction described above 

was collected into a new Eppendorf tube for derivatization prior to untargeted metabolic 

profiling with GC-MS. The collected bottom layer was dried under vacuum at 37ºC for 4 h 

using a CentriVap Concentrator (Labconco, Fort Scott, KS). The residues were first 

derivatized with 40 µL of 20 mg/mL MeOX solution in pyridine under 60ºC for 90 min. Next, 

60 µL of MTBSTFA containing d27-mysristic acid were added, and the mixture was 

incubated at 60ºC for 30 min. The samples were then vortexed for 30 sec, followed by 
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centrifugation at 14,000 RPM for 10 min. Finally, 70 µL of supernatant were collected from 

each sample into new glass vials for GC-MS analysis. 

  GC-MS conditions used here were mainly adopted from previous studies (Gu et 

al., 2013; Kind et al., 2009). Briefly, GC-MS experiments were performed on an Agilent 

7820A GC-5977B MSD system (Santa Clara, CA) by injecting 1 µL of prepared samples. 

Helium was used as the carrier gas with a constant flow rate of 1.2 mL/min. The separation 

of metabolites was achieved using an Agilent HP-5ms capillary column (30 m x 250 µm x 

0.25 µm). The column temperature was maintained at 60°C for 1 min, increased at a rate 

of 10°C/min to 325°C, and then held at this temperature for 10 min. Mass spectral signals 

were recorded at an m/z range of 50-600. Data extraction was performed using Agilent 

MassHunter Profinder software. A batch recursive feature extraction algorithm for small 

molecules was used, and peaks were filtered so that only peaks with absolute height ≥ 

1,000 counts were included. An RT tolerance of 0.10 min was established, and extraction 

was limited to the largest 1,000 compound groups. Results were filtered if the overall 

identification score was less than 75.  

 

Long Chain Fatty Acids (LCFAs) 

 Weighed 20 mg samples were added to separate Eppendorf tubes and prepared 

using the same protocol as that outlined for LC-MS/MS lipidomics. Derivatization was 

performed using the same protocol as that outlined for GC-MS untargeted profiling. For 

analysis of LCFAs, 60 μL of supernatant was transferred to a glass vial for GC-MS 

analysis, while 20 μL was pooled from each sample for QC analysis. GC-MS method was 

the same as that for GC-MS untargeted profiling. 
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Short Chain Fatty Acids (SCFAs) 

  Frozen tissue samples were first thawed overnight under 4°C. Afterward, 20 mg of 

each sample was homogenized with 5 μL hexanoic acid-3,3,3 (internal standard), 15 μL 

sodium hydroxide (NaOH [0.5 M]), and 500 μL methanol (MeOH). Following storage at -

20°C for 20 min and centrifugation at 14,000 RPM for 10 min, 450 μL of supernatant were 

collected and sample pH was adjusted to 10 by adding 30 μL of NaOH:H2O (1:4, v:v). 

Samples were then dried, and they were measured using the same protocol as that 

outlined for GC-MS untargeted profiling (Gu et al., 2021). 

 

Bile Acids 

 Sample preparation techniques used here are well established and described in 

the previous literature (Dempsey et al., 2019; Ginos et al., 2018; Gutierrez et al., 2019; Li 

et al., 2018; Scoville et al., 2019). Briefly, 50 mg of each tissue sample were homogenized 

with methanol (500 μL) and then vortexed for 10 sec. Samples were stored at −20°C for 

20 min, followed by sonication in an ice bath for 10 min and then centrifugation at 14,000 

RPM for 15 min at 4°C. Supernatants (450 μL) were vacuum dried and then reconstituted 

in 100 μL MeOH/H2O (1:1, v/v). Each prepared sample (2 μL) was injected into the LC-

MS system (Agilent 1290 UPLC-6490 QQQ-MS) for analysis using negative ionization 

mode. The mobile phase was composed of 5 mM NH4OAc in H2O with 0.1% AcOH (A) 

and ACN with 0.1% AcOH (B). After a 1 min of isocratic elution of 75% Solvent A, the 

content percentage decreased to 5% A at t = 15 min. The composition of Solvent A was 

then maintained at 5% for 10 min, followed by an increase to 75% at t = 25 min. The MS 

parameters were the same as those reported for targeted LC-MS/MS aqueous profiling, 

except that 55 bile acids were included in the detection panel (Gutierrez et al., 2019). 

Samples were spiked with mixtures of standard compounds to validate bile acid identities. 
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Data Analysis 

Following peak integration, metabolites were filtered for reliability and only those 

with QC coefficient of variation (CV) < 20% and relative abundance of 1,000 in > 80% of 

samples were retained for analysis. Data were then normalized by tissue weight and lysate 

volume as appropriate. The data were log10-transformed and Pareto scaled prior to model 

construction. Univariate testing was performed using SPSS 22.0 (SPSS Inc., Chicago, IL). 

Multivariate statistical analyses were performed using open-source R software. Pathway 

and integrating enzyme enrichment analysis were performed and visualized using 

MetaboAnalyst v4.0 (Chong et al., 2018). 

 

Results 

Clinical Characteristics 

 A total of 2,080 metabolites and mass spectral features were reliably detected after 

signal and QC filtering. Of these, 728 were identified with retention times and/or fragment 

mass spectra using chemical standards, while 1,352 were unidentified m/z values. All raw 

mass spectrometry data have been deposited to MassIVE (dataset identifier 

MSV000087165). A total of 48 subjects were included in this study: NC (n = 12), HPC (n 

= 12), MCI (n = 12), and AD (n = 12). Figure 4.1 shows a graphical schema of the 

analytical workflow. Table 4.1 shows the clinical information of subjects, while Table 4.2 

shows the neuropathological characteristics of study subjects. Subjects between all 

experimental groups were age- and sex-matched such that no statistically significant 

difference was observed between groups (p > 0.05). Principal component analysis (PCA) 

conducted with all reliably detected metabolites (i.e., filtered metabolites) between all 

groups and QC samples was performed, and 95% confidence intervals were evaluated 

for potential outliers. QC samples were highly clustered, suggesting good system 
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performance. However, the initial PCA revealed one outlier (HPC subject) which, upon 

confirming extensive non-ignorable missingness, was removed from subsequent analyses 

(Supplementary Figure 4.1). 

 

Figure 4.1 Overview of the analytical workflow of the current study. Created with 

BioRender.com. 
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Table 4.1 Clinical information of study subjects. 

 Non-Demented 
Normal Controls 

(n=12) 

High 
Pathology 
Controls 
(n=12) 

Mild Cognitive 
Impairment 

(n=12) 

Alzheimer's 
Disease 
(n=12) 

Age in years, mean (SD) 79.7 (12.2) 90.3 (5.1) 88.1 (8.6) 81.3 (8.3) 

Sex of subjects (male/female) 7/5 6/6 8/4 7/5 

Post-mortem interval mean, 
hours (SD) 

2.93 (1.0) 2.84 (0.9) 3.06 (0.8) 3.2 (0.5) 

Mini-mental state examination 
score mean (SD) 

28.8 (0.8)* 27.6 (1.4) 26.0 (3.4)** 10.3 (7.6) 

APOE alleles: number of 
subjects with each genotype 2/3, 
2/4, 3/3, 3/4 

0,0,8,4 2,0,7,3 0,1,9,2 0,0,6,6 

*Scores not available for two subjects. 
**Score not available for one subject. 

Table 4.2 Neuropathological characteristics of study subjects.  

 
Non-Demented 
Normal Controls 

(n=12) 

High 
Pathology 
Controls 
(n=12) 

Mild Cognitive 
Impairment 

(n=12) 

Alzheimer's 
Disease 
(n=12) 

Frontal plaque and tangle 
scores (number of subjects 
scoring none, sparse, moderate, 
or frequent) 

    

      Plaque score (based on 
CERAD) 

10,2,0,0 0,0,0,12 1,1,1,9 0,0,0,12 

      Tangle score 11,0,0,0† 9,3,0,0 5,6,1,0 0,2,1,9 
Braak staging (number of 
subjects stage 0 to stage VI) 

0,5,3,4,0,0 0,0,1,2,9,0 0,0,1,1,9,1,0 0,0,0,0,6,6 

†Score not available for one subject. 

 

Case (MCI, AD) vs Control (NC, HPC) 

To assess broad differences in metabolic profiles, groups were collapsed among 

case (MCI and AD) and control (NC and HPC). Initial t-testing between case and control 

revealed two highly significant and predictive metabolites with p < 0.001 and univariate 

area under curve (AUC) > 0.90: lauric acid and myristic acid. Box plots of these 

metabolites are given in Supplementary Figure 4.2. In addition, a partial least squares-

discriminant analysis (PLS-DA) model was constructed using levels of lauric and myristic 

acid, and receiver operating characteristic (ROC) analysis was conducted using model-
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implied values to assess performance. As shown in Figure 4.2, the resulting PLS-DA 

scores plot showed appreciable separation between collapsed case and control groups, 

and ROC analysis by 100-fold leave-one-out cross validation (LOOCV) showed an overall 

accuracy of 95%, more than either metabolite individually.  

 

Figure 4.2 PLS-DA and ROC analysis of case (MCI and AD) and control (NC and HPC) 

constructed using levels of lauric acid and myristic acid: (A) Scores plot of PLS-DA model 

(R2X = 0.593, R2Y = 0.814, R2Q = 0.701; 10-fold cross validated Q2 = -0.183) and (B) ROC 

analysis by 100-fold leave-one-out cross validation (LOOCV) of model-implied values 

showing AUC = 0.95. PLS-DA, partial least squares-discriminant analysis; ROC, receiver 

operating characteristic. 

 

NC/HPC vs Other Groups 

To analyze differences among groups individually, we first compared metabolic 

profiles of NC vs HPC/MCI/AD, and HPC vs NC/MCI/AD. Multivariate analysis of variance 

(MANOVA) testing and associated post-hoc comparisons were performed to identify 

(A) (B)

Area under curve (AUC) = 0.95
95% CI: 0.875—1.0
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significant metabolites while PLS-DA was used to operationalize those metabolites for 

classification. Well-established risk factors (age, sex, and APOE status) (Liu & Zhou, 

2013; Riedel et al., 2016) were included in the MANOVA as covariates and all significance 

values adjusted accordingly. As outlined in Table 4.3, four metabolites (lauric acid, 

myristic acid, stearic acid, palmitic acid) showed significant main effects, as evidenced by 

LSD-controlled p < 0.05, and were mostly predictive of NC and HPC groups, irrespective 

of biological risk. Testing for group by age, group by sex, and group by allele interactions 

revealed no significant effects (p values = 0.077—0.991). Further analysis of a full-factorial 

GLM showed no significant main effect of age, sex, or APOE allele nor any significant 

interactions among them (all p > 0.05). Normalized box plots of these metabolites between 

all groups are shown in Figure 4.3. A PLS-DA model was constructed using levels of 

these four significant metabolites, and internal validation was performed using a 100-

iteration permutation test. More than 98% of total variance between the four study groups 

was explained by the first two components, and permutation testing revealed the model 

to be statistically sound (observed p < 0.001). To assess the predictive performance of 

this unified biomarker panel, the resulting PLS-DA model was subjected to ROC analysis 

with 100-fold LOOCV. ROC curves for each comparison are provided in Supplementary 

Figure 4.3. Evaluation of model accuracy showed high classification performance for 

discrimination of NC samples (96.6%, Supplementary Figure 4.3A) and HPC samples 

(91.7%, Supplementary Figure 4.3B). We further used a random forest (RF) classifier 

for group predictions (Supplementary Figure 4.4) but found the RF models exhibited poor 

generalization (OOB error = 0.511) and, therefore, suboptimal predictive performance of 

case and control (AUC = 0.917), as compared to PLS classification (AUC = 0.95). One 

potential explanation for this may be the small sample size (48 subjects).  
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Table 4.3 Significant between-group metabolites as determined by MANOVA testing, 

focusing on NC and HPC groups. 

Metabolite F-value p-value LSD p Significant post-hoc comparisons 
Lauric acid 23.360 3.98E-9 8.29E-6 HPC - AD; NC - AD; HPC - MCI; NC - HPC; NC - 

MCI 
Myristic acid 16.727 3.92E-7 2.49E-4 HPC - AD; NC - AD; HPC - MCI; HPC - NC; NC - 

MCI 

Stearic acid 9.911 4.34E-5 0.036 HPC - AD; NC - AD; HPC - MCI; HPC - NC; NC - 
MCI 

Palmitic acid 9.133 8.56E-5 0.036 HPC - AD; HPC - MCI; HPC - NC; NC - MCI 
 

 

Figure 4.3 Relative abundances of four metabolites found to be significant between 

groups (LSD p < 0.05) by multivariate analysis of variance (MANOVA) testing. Data were 

log10-transformed and Pareto scaled prior to plotting. NC, normal control; HPC, high 

pathology control; MCI, mild cognitive impairment; AD, Alzheimer’s disease. 

 

Lauric acid Myristic acid

Stearic acid Palmitic acid

NC HPC MCI AD NC HPC MCI AD

NC HPC MCI AD NC HPC MCI AD



 80 

MCI vs Other Groups 

 To increase model performance for discrimination of the MCI subgroup (see 

Supplementary Figure 4.3C), other groups were compared sequentially for identification 

of significant/predictive metabolites and model construction. Comparison of MCI and NC 

groups revealed lauric acid to be both highly significant (p < 0.001) and predictive (AUC = 

0.993) (Supplementary Figure 4.5). Comparison of MCI and HPC groups revealed four 

metabolites (myristic acid, palmitic acid, stearic acid, palmitoleic acid) to have AUC > 0.90 

and FDR q < 0.05 (Figure 4.4), while comparison of MCI and AD groups revealed four 

unidentified features (from untargeted GC-MS) with AUC > 0.80 and q < 0.05 (Figure 4.4). 

Candidate metabolites for the classification of MCI and HPC samples were used to 

construct an independent PLS-DA model, while candidate markers for MCI discrimination 

from AD samples were ported to construct a separate PLS-DA model. ROC analysis 

showed a predictive accuracy of 96.6% for the identification of MCI samples from high 

pathology controls (Figure 4.5A). Meanwhile, ROC analysis of the PLS-DA model 

constructed using levels of four unidentified features with an average AUC ~ 0.811 showed 

an appreciable improvement in accuracy relative to each univariate AUC; classification 

accuracy of the PLS-DA model exhibited an AUC = 0.917 for discrimination of MCI and 

AD groups (Figure 4.5B).   
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Figure 4.4 Top row: Relative abundances of myristic acid, palmitic acid, stearic acid, and 

palmitoleic acid with high predictive accuracy (AUC > 0.90) and significance (FDR q < 

0.05) in univariate ROC analysis and t-testing between HPC and MCI groups. Bottom row: 

Relative abundances of four unidentified features from untargeted GC-MS analysis with 

good predictive accuracy (AUC > 0.80) and significance (FDR q < 0.05) in univariate ROC 

analysis and t-testing between MCI and AD groups. MCI, mild cognitive impairment; AD, 

Alzheimer’s disease. 

AUC= 0.970 AUC= 0.932 AUC= 0.917 AUC= 0.902

Myristic acid Palmitic acid Stearic acid Palmitoleic acid

p= 3.96E-5 p= 1.09E-4 p= 1.52E-4 p= 2.75E-4

147.1@14.3080 147.1@20.7748 73.1@27.8681 272.2@20.9320

AUC = 0.813 AUC = 0.813 AUC = 0.813 AUC = 0.806
p= 0.011 p= 0.032 p= 0.028 p= 0.012
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Figure 4.5 ROC analysis of classification performance by 100-fold LOOCV: (A) The PLS-

DA model constructed using levels of myristic acid, palmitic acid, stearic acid, and 

palmitoleic acid (observed p = 0.005) for classification of MCI and HPC samples (AUC = 

0.966), and (B) The PLS-DA model constructed using levels of four significant unidentified 

features (observed p = 0.022) for classification of MCI and AD samples (AUC = 0.917).  

 

AD vs Other Groups 

 Relevant groups were also compared to AD samples for enhanced identification 

of disease. Univariate ROC analysis and independent samples t-testing of NC and AD 

samples showed lauric acid to be highly significant (p < 0.001) and predictive (AUC > 0.99) 

(see Supplementary Figure 4.6). For classification of AD samples from high pathology 

controls, t-testing revealed the unified biomarker panel in Figure 4.3 as being significantly 

altered between groups (p < 0.01) and to have high predictive potential (AUC > 0.90). 

Direct comparisons between AD and HPC groups for these metabolites are visualized as 

box plots in Supplementary Figure 4.7. For discrimination of these groups, an additional 

Area under curve (AUC) = 0.966
95% CI: 0.902—1.0

Area under curve (AUC) = 0.917
95% CI: 0.806—1.0

(A) (B)
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PLS-DA model was constructed using the aforementioned candidate markers, and ROC 

analysis revealed high predictive accuracy (94.8%) for discrimination of AD and HPC 

samples (Figure 4.6).  

 

Figure 4.6 (A) PLS-DA model constructed using levels of myristic acid, lauric acid, palmitic 

acid, and stearic acid for classification of AD and HPC groups (observed p = 0.007), (B) 

ROC analysis of PLS-DA model by 100-fold LOOCV showing AUC = 0.948. HPC, high 

pathology control; AD, Alzheimer’s disease. 

 

Correlation Analysis of Candidate Markers and Clinical/neuropathological Characteristics  

To assess relevant associations between the set of candidate markers and 

measures of brain pathology and disease progression, a correlation analysis was 

performed, and measures of association strength and significance were evaluated. A 

visualization of association strength between correlation variables is given in Figure 4.7. 

Full details regarding magnitude of association (r) and significance of association (p) can 

be found in Supplementary Table 4.1. In total, 4 associations had r > 0.5 or < -0.5 and p 

Area under curve (AUC) = 0.948
95% CI: 0.712—1.0
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< 0.05. Lauric acid showed strong, significant associations with frontal plaque (r = -0.598, 

p < 0.001), total plaque (r = -0.579, p < 0.001), total tangle (r = -0.507, p < 0.001), and 

Braak score (r = -0.539, p < 0.001). A PLS-DA model was articulated using this set of four 

neuropathological characteristics and significant between-group metabolites (lauric acid, 

myristic acid, stearic acid, and palmitic acid). With the inclusion of these clinical markers, 

a clear separation of AD, MCI, and HPC groups from normal controls was observed (see 

Supplementary Figure 4.8). Furthermore, correlation analysis between age, sex, APOE 

allele, and all 2,080 reliably detected metabolites/features was also performed; no 

association was observed to be both strongly correlated (r > |0.5|) and statistically 

significant (p > 0.05). 
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Figure 4.7 Correlation coefficients among the panel of candidate markers and clinical 

characteristics. CAA, cerebral amyloid angiopathy; PMI, postmortem interval; MMSE, Mini 

Mental State Examination. 

 

Pathway and Enzyme Enrichment Analyses of Metabolic Data 

 Subjects were grouped as case (MCI and AD) and control (NC and HPC) for 

analysis of significantly impacted pathways in response to Alzheimer’s progression. 

Pathway and enzyme analysis was conducted using KEGG database searches and 

metabolite intensities (Figure 4.8). Pathways were mapped to the human metabolome 

and only identified metabolites confirmed with authentic standards (i.e., based on retention 

time and MS2 fragmentation for LC-MS/MS and retention index for GC-MS) were included 

in the analysis. Three pathways were observed to have large impact coefficients (>0.5): 
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(1) linoleic acid metabolism, (2) alanine, aspartate, and glutamate metabolism, and (3) 

arginine and proline metabolism. Importantly, three pathways were found to be 

significantly affected (p < 0.05) as a result of increased AD pathogenesis. Namely, those 

were lysine degradation, fatty acid metabolism, and valine, leucine, and isoleucine 

degradation. 

 

Figure 4.8 Metabolome view of pathway analysis conducted using levels of all reliably 

detected metabolites showing significantly altered pathways (p < 0.05) and those with high 

impact (> 0.50). 

 Subjects were dichotomously grouped as case/control, and enrichment analysis 

was conducted using a library containing 912 metabolic sets that are predicted to be 

changed in the case of dysfunctional enzymes using a genome-scale network model of 

human metabolism (Supplementary Figure 4.9). Eleven enzymes were found to be 
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significantly enriched (p < 0.05). Notably, seven of those were mitochondrial enzymes 

indicated against the background of mitochondrial pathways. Full results of the enzyme 

enrichment analysis are displayed in Supplementary Table 4.2. 

 

Discussion 

For the last two decades, significant innovations in MS-based metabolic profiling 

and analysis of disease-related alterations have been made and, in doing so, these efforts 

have borne highly sensitive and valuable diagnostic information (Andrisic et al., 2018; G. 

A. N. Gowda & Raftery, 2013; Lawal et al., 2017). In the current study, we explored a 

combination of targeted and untargeted metabolic profiling in addition to advanced 

multivariate statistical analysis for the discovery of sensitive and specific metabolite 

biomarkers for rapid AD classification post-mortem. To capture the diversity of metabolites 

involved in AD pathobiology, we have used this method to detect 2,080 metabolites of the 

superior frontal gyrus from many biologically relevant metabolic pathways. Our multi-step 

biomarker selection, model construction, and cross validation have demonstrated the 

robust diagnostic power of this metabolic profiling method in this study of 48 NC, HPC, 

MCI and AD subjects. Additionally, we have applied complementary LC/GC-MS 

approaches for enhanced monitoring of the metabolome related to AD and, cumulatively, 

our results show clinically relevant disturbances in energy metabolism and substrate 

utilization.  

The metabolite profiling approach presented in this study determined 5 fatty acids 

capable of discriminating AD patients from NC and HPC samples with an average AUC of 

97%. Recent metabolomics studies have also shown perturbations in fatty acid 

metabolism across differing Alzheimer pathologies. It was found that the dysregulation of 

sphingolipids and glycerophospholipids, long-chain fatty acids, and unsaturated fatty acids 
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have been associated with AD (Snowden et al., 2017; Varma et al., 2018; G. Wang et al., 

2014). Similarly, significant disturbances in fatty acid metabolism were also observed in 

the current study (p = 0.008). More specific to our results, a recent serum profiling 

approach demonstrated the high predictive accuracy of palmitoleic acid, myristic acid, 

linoleic acid, and palmitic acid in differentiating central cognitive impairment in AD (J. 

Wang et al., 2020). Notably, these metabolites were also flagged as candidate markers in 

our profiling of neocortical tissue. Medium-chain fatty acids like lauric acid, which is found 

in high levels in coconut oil, have been proposed as possible nutritional therapies for the 

treatment of cognitive decline (Chatterjee et al., 2020; de la Rubia Ortí et al., 2018; Nafar 

et al., 2017), and a significant difference in lauric acid was also observed in the AD and 

NC groups in this study. The markedly reduced levels of these fatty acids observed in our 

AD subjects could be linked to the impaired glucose metabolism that is well-documented 

in AD patients (Burns et al., 2013; Zhichun Chen & Zhong, 2013; Szablewski, 2016). 

Declines in the levels of the identified fatty acids in conjunction with decreased glucose 

metabolism might suggest that β-oxidation of fatty acids, which is generally low in the 

brain, is being upregulated to support the energy needs of the brain in AD patients. 

Supplementation of the fatty acids that can be rapidly metabolized might help support the 

energy needs of the brain, potentially ameliorating symptoms. This might account for the 

data cited in the above referenced reports which suggest that the addition of lauric acid to 

the diet (via coconut oil), may improve some symptoms in AD patients. Lauric acid is 

known to cross the blood-brain barrier (Spector, 1988), and dietary lauric acid might 

therefore be accessible as an energy source for the brain (Fernando et al., 2015). The 

results of the current study warrant further investigation of the therapeutic potential of 

lauric acid for the treatment and prevention of AD.   
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Previous studies have shown evidence for brain glucose dysregulation in AD as 

characterized by higher brain tissue glucose concentration, reduced glycolytic flux, and 

lower GLUT3 expression as a function of increasing AD pathogenesis (An et al., 2018; 

Butterfield & Halliwell, 2019; Zhichun Chen & Zhong, 2013). Interestingly, the literature 

has shown involvement of the Warburg effect in non-tumor disease processes (Zhe Chen 

et al., 2017) and, in the context of AD, loss of brain aerobic glycolysis as a function of 

normal human aging is associated with increased tau deposition in preclinical AD (Goyal 

et al., 2017; Vlassenko et al., 2018). In addition, previous results have shown impaired 

hypothalamic insulin signaling to be associated with elevated BCAA levels in a mouse 

model of AD (Ruiz et al., 2016), while defects in BCAA metabolism have in-turn been 

shown to drive primary AD neuropathology (Ruiz et al., 2016). A prospective cohort study 

of over 22,000 participants found significant associations between circulating BCAAs and 

risk of incident dementia and AD (Tynkkynen et al., 2018). It has been shown that defects 

in BCAA metabolism, and subsequent accumulation, can lead to the phosphorylation of 

tau proteins and the incidence of AD (H. Li et al., 2018). Other studies have found post-

translational modifications to the stabilizing tau proteins, which were induced by lysine 

residues. It has been proposed that these modifications may play an integral role in the 

pathobiology of tau protein (Kontaxi et al., 2017). Our pathway analysis also revealed 

similar results with a significant degradation of lysine (p = 0.007) and BCAAs (p = 0.025), 

potentially signifying the underlying pathophysiology of AD. Given the recent failure of 

numerous billion-dollar clinical trials targeting traditionally hypothesized AD mechanisms 

such as reduced acetylcholine, Aβ plaques/neurofibrillary tangles, and tau protein 

(Albensi, 2019), our enzyme and pathway enrichment results further corroborate previous 

evidence of widespread mitochondrial dysfunction concomitant with Aβ pathology and AD 

progression (Albensi, 2019; Swerdlow, 2018; H. M. Wilkins & Swerdlow, 2015), providing 
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compelling evidence for mitochondrial bioenergetics as a novel therapeutic target for 

preventing/slowing the onset/progression of AD.  

Overall, our findings led to an integrated hypothesis describing the 

pathophysiology of AD in Figure 4.9 and are conceptualized with respect to the 

widespread mitochondrial dysfunction observed in our results. In Figure 4.9, the darker 

red areas (to the right) are more increased with AD pathology, and greater enrichment is 

observed in those pathways.  As can be seen, with increased AD pathogenicity (darker 

red areas), significant metabolic reprogramming is observed. Specifically, a decrease in 

aerobic glycolysis (lighter red areas) is followed by a shift toward degradation of BCAA for 

energy production, mostly associated with HPC and MCI subgroups (darker red areas). 

With even greater disease progression, further metabolic reprogramming is observed; 

fatty acids are progressively utilized for generation of ATP via increased β-oxidation 

activity and generation of FADH2 and NADH for oxidative phosphorylation in the electron 

transport chain (darker red areas). Preference for fatty acid substrates was most 

pronounced in the MCI and AD subgroups.  
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Figure 4.9 Conceptual schema articulating observed changes in substrate utilization and 

energy production as a function of increasing AD pathogenesis. The darker red areas (to 

the right) are more increased with AD pathology, and greater enrichment is observed in 

those pathways. Results show reduced aerobic glycolysis and increased degradation of 

BCAA associated with HPC and MCI groups as compared to NC. Meanwhile, a preference 

for fatty acid substrates is seen in MCI and AD groups, with further reductions in aerobic 

glycolysis as compared to NC. ETC, electron transport chain; IMM, inner mitochondrial 

membrane; OMM, outer mitochondrial membrane; OXPHOS, oxidative phosphorylation. 

Additionally, we evaluated levels of 4 unidentified features with p < 0.05 and FC > 

2, which informed the construction of independent PLS-DA models for enhanced 

classification of AD from MCI samples. The combination of these 4 features had a 

diagnostic sensitivity and specificity of 84.1% and 86.3%, respectively (AUC= 0.917). 
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Although accurate tests for AD pathology with high severity are currently available (i.e., 

PET amyloid and tau, CSF amyloid and tau, plasma tau), diagnostic tests useful for 

intermediate (MCI) and low (HPC) pathology levels are still lacking. In this study, diagnosis 

of HPC and MCI subgroups was achieved with more than 90% overall AUC. In addition to 

enabling mass screening, realization of these findings in plasma or CSF may inform 

clinical trial selection via improved study stratification.  

 

Strengths and Limitations 

A major strength of the study lies in the well-characterized BSHRI cohort (Beach 

et al., 2015) with measures of cognitive status and neuropathological examination at 

death. Furthermore, inclusion of traditionally understudied HPC and MCI groups allowed 

for the metabolic characterization of asymptomatic individuals with AD-consistent 

pathology and non-AD individuals with cognitive decline, respectively. Cumulatively, our 

panel of candidate markers shows potential for classification of individuals with early brain 

pathology and other dementias. Although this approach is not suited for in vivo diagnosis 

of AD given the impracticality of brain biopsy for living individuals, the putative metabolite 

markers/metabolic pathways and associated models reported herein serve as a strong 

proof-of-principle for their use as therapeutic targets. Furthermore, if validated in readily 

available biospecimens with minimally invasive sample collection (i.e., from blood draw), 

this novel panel of candidate markers may enable AD diagnosis in living patients and 

subsequently enhanced treatment options. Additionally, we applied six distinct 

metabolomics assays encompassing complementary GC and LC techniques to ensure 

maximal coverage of the brain metabolome and were able to monitor more than 2,000 

metabolites and features. Given the known benefit of complementary MS platforms for 

elucidation of AD pathology (Fiehn, 2016; R González-Domínguez et al., 2017; Raúl 



 93 

González-Domínguez et al., 2018), our large-scale multi-platform metabolomics approach 

utilizing both targeted and untargeted profiling enables comprehensive pathway and 

enzyme analysis, a key strength of this study to previous literature. 

The main limitation of this study is the relatively small sample size. Moreover, our 

samples were taken cross-sectionally and therefore cannot infer longitudinal changes in 

metabolite information over time. Also, samples were only taken from a single brain region; 

inferences to other AD-associated brain structures are unknown. Nevertheless, 

conventional power was achieved for all biomarker analyses (β < 0.2), and models were 

internally validated (p < 0.01). It should also be noted that, while the current study infers 

many proposed alterations in enzymes and pathways using metabolite-level data, the 

results cannot determine whether the purported markers and associated pathways are 

drivers of AD pathology or are themselves effects of other latent pathologies; future 

studies are warranted to investigate this relationship mechanistically. Additionally, of the 

48 subjects considered in this study, there were none with APOE 4/4 genotype. There was 

only one subject with APOE 2/4 genotype and 15 subjects with APOE 3/4 genotype. As 

APOE 4/4 individuals have the highest risk for AD, it would be useful for future studies to 

consider subjects with this genotype and monitor metabolites in this group. Our results 

merit further investigation in a larger sample with serial cognitive assessments taken 

during life as well as tissue samples collected from distinct brain regions both resistant 

and vulnerable to AD pathology to monitor possible differential changes between tissue 

types. 

 

Conclusions 

This study is part of a growing body of literature in which  MS-based metabolomics 

methods have been utilized for disease biomarker discovery and accurate classification 
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(Buas et al., 2017; Chong et al., 2018; Gu et al., 2016; R. Li et al., 2018). We performed 

comparisons of brain tissue metabolites from AD patients, MCI samples, as well as high 

pathology and normal controls using both targeted LC-MS/MS metabolic profiling and an 

untargeted GC-MS approach (Klavins et al., 2015). Our results demonstrate significant 

alterations in a variety of the metabolites, mainly fatty acids, which are characteristic of 

different groups. Furthermore,  we evaluated the performance of 4 unidentified metabolic 

features and, through multivariate model construction, achieved an overall classification 

performance of >90% for comparison of AD and MCI patients, which has the potential to 

fulfill critical clinical needs (Sun et al., 2020). Application of bioinformatic methods 

expanded basic knowledge of the metabolome related to AD and showed decreased 

glycolytic function with increased degradation of BCAAs and β-oxidation of fatty acids 

associated with increased AD pathogenicity. Results of our fold change analysis, 

significance testing, and pathway analysis indicate metabolites and pathways previously 

shown to be crucial in immune response inhibition (Godyń et al., 2016) and increased AD 

severity (Blennow et al., 2006). Likewise, the metabolites and associated metabolic 

pathways and enzymes identified in this study may inform the development of new 

therapeutic treatments for AD. In addition, this study provides a strong basis for larger 

multi-site projects to validate our findings across different population groups and further 

advances the development of improved clinical care for AD patients. 
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CHAPTER 5 

CONCLUSIONS 

A number of issues impede the translation of metabolomics studies. Broadly 

defined, these issues are conceptually related to study design, pre-analytic 

considerations, data analysis and interpretation, and the regulatory and scientific 

backdrop of translational efforts.  

Regarding study design, a few key issues deserve special consideration. First, 

sample sizes in metabolomics studies are commonly below that needed to reach 

conventional power (Bujak et al., 2015; Considine, 2019). Although such a lack of 

satisfactory power would not cause us to doubt our confidence in observed metabolite 

differences, it fundamentally undermines the degree to which study results may be 

generalizable to the larger population from which the sample was drawn. Relatedly, 

validation studies are often missing, and findings are sometimes poorly corroborated or 

even contradictory (Xia et al., 2013). Critically, many metabolomics studies are clinically 

uninformed and, as such, are inherently unsuited to overcoming the ambiguities faced by 

physicians during differential diagnosis (G. A. N. Gowda & Raftery, 2013). Furthermore, 

some metabolomics studies suffer from a lack of clinical parallelization and thus cannot 

prove improved efficacy relative to current standard of care (Odom & Sutton, 2021). 

Moreover, most metabolomics studies are cross-sectional and thus inappropriately 

designed for monitoring long-term disease course, which is a primary research interest for 

many diseases posing the greatest threats to human health (G. A. N. Gowda & Raftery, 

2013). Finally, many diagnostic metabolomics studies include improper biological samples 

necessitating collection protocols that are either too invasive, time consuming, or 

expensive to facilitate routine diagnostic testing and disease monitoring (Lichtenberg et 

al., 2021). Therefore, whenever possible, researchers should endeavor to collect 
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biospecimens that can be easily scaled to facilitate expanded testing via end-user sample 

kits, such as with dried blood spot (DBS) and exhaled breath condensate testing. 

There are also pre-analytic aspects of the research that are often not considered 

at the outset of studies that later preclude the translation of metabolomics results into 

formalized LDTs. For instance, although it is well known that variations in sample storage, 

freeze/thaw cycling, temperature and preservative use may impact metabolite profiles and 

lead to erroneous results (Raúl González-Domínguez et al., 2020; X. Wang et al., 2019), 

there are no standardized sample handling protocols. Additionally, there are no standard 

operating protocols (SOPs) for preparation of various biospecimens which may lead to 

incongruous findings (Dias & Koal, 2016). Furthermore, given the cost and limited 

availability of many internal standards, only approximately 10% of metabolomics studies 

are truly quantitative (Pinu et al., 2019), thereby preventing translational efforts such as 

validation between laboratories and instruments.  

Following data collection, post-analytical differences in data processing and results 

reporting further confuse a clear translational pathway to LDT formalization (Dias & Koal, 

2016). Differences in mass spectral peak integration, sample filtering, missing value 

imputation, data normalization (including transformation and scaling), as well as methods 

for outlier detection and reconciliation of technical batch effects vary widely in 

metabolomics and are far too often poorly reported or not reported at all (van den Berg et 

al., 2006). Of significant detriment to translational efforts is the lack of a central database 

for indexing metabolite markers (Dias & Koal, 2016). Although metabolomics has greatly 

benefited from the creation and maintenance of general metabolite databases such as the 

Human Metabolome Database (HMDB) (Wishart, Guo, et al., 2022) and METLIN (Guijas 

et al., 2018), as well as fit-for-purpose databases such as the Natural Products Magnetic 

Resonance Database (NP-MRD) (Wishart, Sayeeda, et al., 2022), the curation of 
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biological and statistical characteristics of metabolite markers has enjoyed considerably 

less attention from the scientific community. Without an extensively indexed database of 

metabolite biomarkers, efforts to consolidate findings to establish simple, non-invasive, 

rapid, accurate, and cost-effective laboratory testing remain significantly obstructed 

(Considine, 2019). 

Finally, many ambiguities in the current regulatory and scientific landscape of 

laboratory testing may be to blame for the paucity of translated results. Regarding 

intellectual property of naturally occurring molecules, uncertainty in patenting rights 

disincentivizes costly validation efforts critically needed for regulatory approval 

(Lichtenberg et al., 2021), resulting in a cycle of redundant discovery with meager returns 

on investment. In addition to these issues in the regulatory sphere, metabolomics must 

contend with the cultural dilemmas common to all sciences. Chief among these is a 

skewed scientific incentive that leverages professional advancement for continuous 

publication, thereby emphasizing discovery with little consideration or praise for 

researchers engaged in the time-consuming work of translational science.  

Nevertheless, these impediments to translational throughput may be largely 

ameliorated with a conscious detailing of potential solutions. These suggestions are 

graphically outlined in Figure 5.1 with respect to the regulatory and scientific topography 

of translational metabolomics, improvements in study design, and pre-/post-analytical 

considerations to increase the generalizability and clinical utility of results. 
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Figure 5.1 Considerations for metabolomics laboratory testing and suggestions for 

improving translational output. Created with BioRender.com. 

Translation of metabolomics findings to consumer facing LDTs would be greatly 

incentivized by enhanced guidance from government entities regarding the allocation of 

intellectual property rights, the patentability of metabolites or their relationship to disease, 

and requirements of CLIA certification for academic laboratories. Top-down, a general 

paradigm shift in scientific philosophy is required; for instance, journals can do much to 

encourage high quality translational work by insisting on validation of purported 

biomarkers as prerequisite to publication. Furthermore, regulatory obstacles and 

uncertainties can be overcome by close collaboration with regulatory agencies from 

project conception to review and approval and even post-market surveillance efforts such 

as external proficiency testing.  

 Changes to study design can also lessen the translational burden. Although many 

well-powered metabolomics studies have been conducted, most biomarker studies are 

under-powered (Bujak et al., 2015; Considine, 2019) and thus suffer from a high 

probability of type II error. As such, there is increased risk of overfitting and decreased 

potential for generalizable results. Although not always possible, large well-characterized 
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cohorts are necessary to power the confident detection of many thousands of metabolites. 

When not feasible, mining of publicly available datasets combined with in silico methods 

may be a convenient means of increasing sample size and power (Ghosh et al., 2020). 

Similarly, samples are often drawn from a single study site within a narrow collection 

window and results may therefore be highly variable across geographic and chronological 

distance. Consequently, larger, multi-site longitudinal studies are needed to significantly 

enhance translational success (G. A. N. Gowda & Raftery, 2013). Additionally, 

metabolomics studies of disease biomarkers are often either not bench-marked against 

current standards of care or are ill suited for differential diagnosis (G. A. N. Gowda & 

Raftery, 2013; Odom & Sutton, 2021). Therefore, studies should be designed with special 

emphasis paid to clinical parallelization and inclusion of any clinically relevant disease 

groups. Finally, many biomarker papers in the metabolomics space profile inappropriate 

biospecimen types that are either too invasive, costly, or time-consuming to allow routine 

testing and monitoring (Lichtenberg et al., 2021; Pinu et al., 2019). Therefore, future 

studies should investigate disease signatures in conducive sample types such as DBS or 

exhaled breath condensate.  

 To mitigate the degree of confounding variance introduced into metabolomics 

experiments, standardization of sample storage, handling, and preparation protocols is 

critically needed (Dias & Koal, 2016). A mutually agreed-upon set of operating procedures 

promulgated by a network of working groups representative of various metabolomics 

societies would systematically reduce inconsistencies in replication between laboratories. 

Furthermore, research should attempt to validate previous disease-associated 

metabolites whenever possible, rather than pursuing novel biomarker discovery efforts 

(Griffiths et al., 2010; Xia et al., 2013); as such, there is a greater need for targeted 

metabolite detection, whereas untargeted profiling should be used in exploratory 
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investigations where no metabolites have previously been associated with the variable of 

interest. To facilitate this gradual accrual of translational research, authors should 

endeavor to report structurally identified metabolites whenever possible rather than 

unknown or tentatively unidentified mass spectral features. Furthermore, absolute 

quantitation of metabolite concentrations is essential to translation of results between 

studies.  

 There are also post-analytical considerations which, if made appropriately, can 

facilitate discovery of public value. At a fundamental level, standard data practices related 

to peak processing or normalization procedures should be formally enumerated or, at the 

very least, be clearly described in sufficient detail to allow replication (van den Berg et al., 

2006). Although a basic expectation of all scientific reporting, these crucial details are 

often incompletely reported or entirely missing from metabolomic biomarker studies. 

Furthermore, in addition to uploading all raw mass spectral data and relevant subject 

metadata to publicly available depositories, researchers should detail biomarker results in 

an appropriate database such as MarkerDB (Wishart et al., 2021). Notably, researchers 

should index key details that may inform future biomarker validation efforts such as 

confidence intervals, predictive algorithms, diagnostic sensitivity and specificity, 

permutation and model fit statistics, measures of effect size, and any relevant statistical 

corrections. Lastly, translational research should always be undertaken with an eye toward 

the end user, whether that be a physician or the consumer. As such, researchers in the 

field should endeavor to reduce the analytical and statistical complexity of metabolomics 

testing (Pinu et al., 2019). To realize this goal, researchers should strive to produce LDTs 

on accessible, scalable platforms with automated data processing and reporting such as 

mini-MS, lab-on-chip, and point-of-care testing formats.  
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 Indeed, metabolomics as a science has facilitated critical advances over the last 

two decades (Patti et al., 2012). Unfortunately, various factors have historically hindered 

the translational throughput of metabolomics results (G. A. N. Gowda & Raftery, 2013; 

Lichtenberg et al., 2021). It is the expressed hope of this author that a thoughtful 

consideration of these factors and their potential solutions will accelerate the translation 

of candidate biomarker panels to validated LDTs with high clinical utility.  
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Supplementary Table 2.1 Partial list of targeted metabolites and associated major 

metabolic pathways. 

Metabolites Major Pathway(s) 
2-Aminoisobutyric acid Amino acid/pyrimidine metabolism 
3-Indolepropionic acid Tryptophan Cycle 
4-Pyridoxic acid Vitamins/B6 
5-Aminolevulinic acid Glycine, serine and threonine metabolism/Porphyrin and 

chlorophyll 
Acetylglycine Amino Acid metabolism 
Agmatine Arginine and proline metabolism 
Asparagine Amino Acid 
Betaine Amino acids metabolism/Gly,Ser, Thr metabolism 
Cytidine Nucleotide/Pyrimidine metabolism 
Decanoylcarnitine Acylcarnitine 
Glycocyamine Glycine, serine and threonine metabolism/  

Arginine and proline metabolism 
Hypoxanthine Nucleotide 
Indole Tryptophan Cycle 
Indole-3-acetic acid Tryptophan Cycle 
N,N'-Dicyclohexylurea               
Pantothenic acid Pantothenate and CoA biosynthesis/beta-Alanine metabolism 
Proline Amino Acid 
TMAO Gut flora metabolism / Redox 
Taurine Amino acids metabolism/Sulfur metabolism  
Urocanic acid Histidine metabolism 
2,3-Dihydroxybenzoic acid Benzoate degradation 
2-Hydroxybenzoic acid Phenylalanine metabolism 
3-Indoxylsulfate Tryptophan Cycle 
Citraconic acid Amino Acid metabolism/Val, Leu, IL 
Gentisic acid Tyrosine metabolism 
Myoinositol Inositol phosphate metabolism/Galactose metabolism 
Nonadecanoic acid Fatty acid 
Palmitic acid Fatty acid metabolism 
Stearic acid Fatty acid metabolism 
Xanthine Nucleotide 
1-Methyladenosine Nucleotide/Purine metabolism 
2-aminoadipic acid Lysine biosynthesis/7-ketocholesterol 
7-ketocholesterol Cholesterol metabolism 
Acetylcarnitine Fatty acid metabolism 
Acetylglucosamine Amino sugar and nucleotide sugar metabolism 
Adenosine Nucleotide/Purine metabolism 
Adenosyl-L-homocysteine Cysteine and methionine metabolism 
Alanine Amino Acid 
Anthranilic acid Amino Acid metabolism/Trp, Phe, Tyr 
Arginine Amino Acid 
Caffeine Caffeine metabolism 
Carnitine Amino acids metabolism/Lys 
Carnosine Histidine metabolism 
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Choline Vitamins 
Citrulline Urea Cycle  
Creatine Amino acids metabolism/Arg, Gly 
Creatinine Amino acids metabolism/Arg, Gly 
Cystathionine Amino acids metabolism/cys 
Cystine Amino Acid 
Dimethylarginine Arginine metabolism 
GDP Nucleotide/Purine metabolism 
Glutamic acid Amino Acid 
Glycine Amino Acid 
Hippuric acid Phenylalanine metabolism 
Histidine Amino Acid 
Homoserine Amino acids metabolism/Thr, Met, Asp 
Hydrocortisone Steroid hormone biosynthesis 
Inosine Nucleotide/Purine metabolism 
Isoleucine Valine, leucine and isoleucine degradation 
Kynurenic acid Tryptophan Cycle/Amino Acid metabolism 
Kynurenine Tryptophan Cycle 
L-Alloisoleucine Valine, leucine and isoleucine degradation 
Leucine Amino Acid 
Lysine Amino Acid 
Methionine Amino Acid 
Methylhistamine Amino acids metabolism/His 
N-Acetylethanolamine 
Nicotinamide Nicotinate and nicotinamide metabolism 
Norleucine Amino acid 
Ornithine Urea cycle 
Phenylalanine Amino Acid 
Pipecolinic acid Lysine degradation 
Pyroglutamic acid Amino acids/Glu 
Serine Amino Acid 
Threonine Amino Acid 
Tryptophan Tryptophan Cycle 
Tyrosine Amino Acid 
UDP-GlcNAc Amino sugar and nucleotide sugar metabolism 
Uridine Nucleotide/Pyrimidine metabolism 
Valine Amino Acid 
2-Pyrrolidone-5-carboxylic 
acid 

D-Glutamine and D-glutamate metabolism 

3-Methyl-2-oxovaleric acid Amino Acid  
3-Phenyllactic acid Tropane, piperidine and pyridine alkaloid biosynthesis 
4-Methyl-2-oxopentanoic 
acid 

Valine, leucine and isoleucine biosynthesis/degradation 

Adipic acid Caprolactam degradation 
Allantoin Nucleotide Degradation 
Dextrose Glycolysis / Gluconeogenesis 
Fumarate TCA cycle 
Gluconic acid Pentose phosphate pathway 
Glucose Glycolysis/sugar 
Ketoisoleucine Isoleucine metabolism 
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Ketoleucine Valine, leucine and isoleucine degradation/biosynthesis 
Lactate Glycolysis/TCA 
Suberic acid Fatty acid metabolism 
Succinate TCA Cycle 
Urate Nucleotide/Purine metabolism 
alpha-Hydroxyisovaleric 
acid 

Valine, leucine and isoleucine metabolism 

alpha-KG TCA cycle/Amino acid metabolism 
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Supplementary Table 2.2 Comparative results of 98 metabolites between BC patients 

and healthy controls, and between two groups of control samples. 

No. Metabolite qa qb 
1 Cystine 7.27E-16 2.40E-18 
2 7-Ketocholesterol 9.39E-16 3.32E-20 
3 Ornithine 1.94E-11 1.47E-07 
4 Glutamic acid 1.22E-10 4.65E-18 
5 Succinate 1.47E-10 1.85E-07 
6 Acetylcarnitine 5.90E-09 1.54E-04 
7 alpha-KG 8.26E-09 3.51E-22 
8 Pipecolinic acid 3.60E-08 2.21E-03 
9 Tyrosine 9.00E-08 2.02E-05 
10 Proline 1.01E-07 5.58E-02 
11 Pyroglutamic acid 1.61E-07 4.98E-03 
12 Phenylalanine 3.79E-07 2.29E-08 
13 Allantoin 3.96E-07 1.09E-09 
14 Lactate 1.28E-06 2.80E-06 
15 2-Pyrrolidone-5-carboxylic acid 3.94E-06 8.16E-05 
16 Alanine 4.02E-06 8.10E-04 
17 Suberic acid 5.09E-06 1.93E-10 
18 Valine 5.33E-06 4.13E-04 
19 L-Alloisoleucine 1.49E-05 2.46E-07 
20 Isoleucine 1.54E-05 3.22E-07 
21 Norleucine 1.54E-05 3.36E-07 
22 Leucine 1.54E-05 2.84E-07 
23 Adenosine 2.47E-05 4.81E-08 
24 2-Hydroxybenzoic acid 2.49E-05 2.12E-01 
25 Caffeine 2.66E-05 2.11E-04 
26 Carnosine 2.72E-05 5.34E-03 
27 Choline 4.86E-05 1.57E-03 
28 Hippuric acid 5.19E-05 1.73E-02 
29 GDP 5.21E-05 1.07E-03 
30 Myoinositol 5.35E-05 8.40E-02 
31 Acetylglucosamine 5.39E-05 1.22E-02 
32 Creatinine 1.52E-04 1.84E-06 
33 3-Phenyllactic acid 2.56E-04 4.07E-05 
34 Lysine 3.17E-04 3.99E-05 
35 Kynurenic acid 4.66E-04 9.78E-03 
36 Homoserine 4.76E-04 8.62E-04 
37 Palmitic acid 5.20E-04 5.54E-01 
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38 Threonine 5.30E-04 1.03E-03 
39 Adipic acid 8.72E-04 2.56E-12 
40 Hypoxanthine 8.73E-04 7.41E-01 
41 2-Aminoadipic acid 8.98E-04 9.38E-03 
42 Histidine 1.01E-03 4.71E-05 
43 Carnitine 2.33E-03 1.14E-08 
44 Glucose 2.68E-03 3.41E-02 
45 Urate 2.95E-03 2.16E-03 
46 4-Pyridoxic acid 2.95E-03 8.94E-01 
47 Gentisic acid 3.85E-03 1.49E-01 
48 Kynurenine 4.32E-03 1.17E-04 
49 Cytidine 4.43E-03 6.65E-01 
50 Serine 5.55E-03 1.06E-03 
51 Agmatine 5.86E-03 7.80E-01 
52 UDP-GlcNAc 5.92E-03 1.35E-10 
53 Dextrose 7.39E-03 2.67E-02 
54 Stearic acid 8.52E-03 9.85E-01 
55 Fumarate 1.34E-02 1.02E-02 
56 Pantothenic acid 1.44E-02 4.20E-01 
57 Tryptophan 1.59E-02 1.53E-07 
58 Ketoleucine 2.14E-02 4.65E-02 
59 5-Aminolevulinic acid 2.24E-02 1.11E-01 
60 Acetylglycine 3.01E-02 5.22E-01 
61 Ketoisoleucine 3.08E-02 2.23E-02 
62 Methionine 3.54E-02 3.43E-02 
63 1-Methyladenosine 3.54E-02 5.32E-12 
64 2,3-Dihydroxybenzoic acid 3.57E-02 4.77E-01 
65 3-Methyl-2-oxovaleric acid 3.59E-02 3.46E-02 
66 4-Methyl-2-oxopentanoic acid 3.81E-02 2.91E-02 
67 Anthranilic acid 4.58E-02 9.93E-06 
68 N,N'-Dicyclohexylurea 6.27E-02 6.18E-02 
69 Creatine 6.54E-02 4.18E-02 
70 2-Aminoisobutyric acid 6.57E-02 5.83E-02 
71 TMAO 7.54E-02 2.61E-01 
72 3-Indoxylsulfate 9.05E-02 6.88E-02 
73 Nicotinamide 9.37E-02 1.83E-02 
74 Decanoylcarnitine 1.49E-01 6.03E-01 
75 Indole-3-acetic acid 1.54E-01 1.30E-01 
76 Asparagine 1.71E-01 9.90E-01 
77 Adenosyl-L-homocysteine 1.95E-01 1.11E-05 
78 Citrulline 2.28E-01 1.56E-02 
79 Urocanic acid 2.92E-01 1.36E-01 
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80 Nonadecanoic acid 3.30E-01 5.20E-02 
81 N-Acetylethanolamine 3.44E-01 2.02E-03 
82 Taurine 3.75E-01 7.47E-02 
83 Uridine 4.01E-01 1.37E-03 
84 Cystathionine 4.33E-01 1.32E-03 
85 Hydrocortisone 4.91E-01 2.52E-03 
86 3-Indolepropionic acid 6.39E-01 7.32E-01 
87 Gluconic acid 6.54E-01 2.38E-04 
88 Inosine 6.56E-01 4.08E-04 
89 Dimethylarginine 6.98E-01 1.71E-04 
90 Glycocyamine 7.12E-01 1.10E-01 
91 Betaine 7.15E-01 1.38E-01 
92 alpha-Hydroxyisovaleric acid 8.24E-01 1.19E-02 
93 Citraconic acid 8.53E-01 5.84E-01 
94 Arginine 9.24E-01 1.68E-02 
95 Indole 9.79E-01 8.69E-02 
96 Methylhistamine 9.89E-01 3.32E-03 
97 Glycine 9.91E-01 2.28E-02 
98 Xanthine 9.95E-01 2.69E-01 

aq-values are FDR corrections for p-values comparing BC patients and all controls. 
bq-values are FDR corrections for p-values comparing the two sets of controls from different 
centers. 
q-values in red indicate <0.05. 
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Supplementary Figure 2.1 Distribution of coefficient of variation (CV) values of all 

measured metabolites in this study. (A) CV distribution in positive mode detection; (B) CV 

distribution in negative mode detection. QC median CV: 5.1%, with ~87% of metabolites 

having CV < 15%. 
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Supplementary Figure 2.2 Flow diagram depicting process of metabolite selection for 

biomarker analysis.  
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Supplementary Figure 2.3 Over-representation analysis conducted using relative 

abundances of 30 reliably detected metabolites used for comparison between BC patients 

and controls. Results indicate these 30 metabolites to be significantly reflective of 7 

metabolic pathways: ammonia recycling (p < 0.001), glycine and serine metabolism (p = 

0.005), taurine and hypotaurine metabolism (p = 0.010), phosphatidylinositol phosphate 

metabolism (p = 0.032), vitamin B6 metabolism (p = 0.037), arginine and proline 

metabolism (p = 0.039), and betaine metabolism (p = 0.042).  
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Supplementary Figure 2.4 PLS-DA model constructed using 30 metabolites for 

discrimination between breast cancer patients and healthy controls (R2X (cum) = 0.291, 

R2Y (cum) = 0.398, Q2 (cum) = 0.312). (A) Score plot: data were log10-transformed, and 

Pareto scaled. (B) Statistical validation of the PLS-DA model by permutation testing 

(n=300).
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Supplementary Figure 2.5 Parallel analysis for 30 between-group metabolites. Plotted 

eigenvalues obtained from breast cancer data set (Eigen) were compared to random data 

from an equivalent matrix (PA). Only the first 3 factors were shown to have eigenvalues 

greater than random data and, as such, only 3 factors were retained. 
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Supplementary Figure 2.6 The metabolome view of pathway enrichment analysis 

comparing BC patients and controls. (1) Arginine and proline metabolism; (2) Inositol 

phosphate metabolism; (3) Pantothenate and CoA biosynthesis; (4) Fatty acid 

biosynthesis. 
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Supplementary Table 3.1 Complete list of plasma metabolites found to be significant between VF patients and non-VF controls. 

Metabolite Mean (SD) of non-VF Mean (SD) of VF p-value q-valuea VF/non-VF 
Phenylpyruvic acid 767.098 (909.487) 2652.667 (1399.143) < 0.0001 0 Down 
m-Hydroxyphenylacetic acid 5413.902 (4204.522) 35754.333 (72110.464) < 0.0001 0 Down 
Phenylglyoxylic acid 201.610 (206.345) 5677.500 (13815.467) < 0.0001 0 Down 
4-Ethylbenzoic acid 3414.463 (1562.858) 1789.611 (772.786) < 0.0001 0 Up 
Aconitic acid 134894.098 (125561.923) 614132.833 (704041.673) < 0.0001 0 Down 
Glucuronic acid 10691.463 (8835.651) 67688.000 (89264.837) < 0.0001 0 Down 
3-Phosphoglyceric acid 47.000 (65.085) 9044.889 (10224.959) < 0.0001 0 Down 
Trehalose 501.366 (733.602) 12350.278 (21092.154) < 0.0001 0 Down 
Lactose 1525.366 (2124.076) 43415.333 (77212.041) < 0.0001 0 Down 
Mucic acid 1695.073 (1834.075) 32251.667 (81455.680) < 0.0001 0 Down 
UDP 444402.707 (80869.195) 315901.556 (61426.519) < 0.0001 0 Up 
Urate 20902.341 (15600.697) 8111.889 (15749.978) < 0.0001 0 Up 
Nicotinamide 80973.098 (65498.482) 491977.167 (341431.680) < 0.0001 0 Down 
Adenosine 126.951 (290.795) 2306.111 (8547.169) < 0.0001 0 Down 
Inosine 8418.439 (20891.451) 224975.056 (542154.620) < 0.0001 0 Down 
Cytidine 6217.195 (8535.782) 43921.722 (40874.749) < 0.0001 0 Down 
Serotonin 574.354 (1471.699) 13168.889 (16156.079) < 0.0001 0 Down 
Kynurenine 67817.341 (48058.141) 239900.333 (154387.537) < 0.0001 0 Down 
Acetylglucosamine 2347.659 (1571.320) 14808.556 (29497.084) < 0.0001 0 Down 
HIAA 22163.146 (16978.735) 100382.944 (67347.661) < 0.0001 0 Down 
Taurine 445508.293 (319693.230) 1242645.556 (546361.931) < 0.0001 0 Down 
Neopterin 114.610 (92.163) 2309.111 (6325.796) < 0.0001 0 Down 
N-Acetylneuraminic acid 7837.854 (6214.353) 48149.667 (65529.408) < 0.0001 0 Down 
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Serine 636530.805 (465498.745) 191022.222 (122889.050) < 0.0001 0 Up 
ATP 256.110 (429.587) 3117.583 (6387.790) < 0.0001 0 Down 
4,3-Cresotic acid 543.024 (586.677) 5591.889 (11345.426) < 0.0001 0.0001 Down 
Glutaconic acid 57052.000 (51630.259) 297695.111 (505144.435) < 0.0001 0.0001 Down 
Fumarate 3904.537 (5361.854) 10277.167 (6802.435) < 0.0001 0.0001 Down 
R5P 1106.610 (1110.623) 4854.000 (4039.972) < 0.0001 0.0001 Down 
Phosphocreatine 276465.268 (175998.461) 112381.611 (53614.620) < 0.0001 0.0001 Up 
Hypoxanthine 36082.902 (59246.688) 253440.500 (375073.278) < 0.0001 0.0001 Down 
Creatinine 6806479.073 (4136343.484) 18434021.389 (20597092.113) < 0.0001 0.0001 Down 
Cytosine 774.220 (625.257) 5823.667 (9532.608) < 0.0001 0.0001 Down 
Amiloride 2137.073 (1768.553) 32232.778 (41054.770) < 0.0001 0.0001 Down 
Acetyl-L-glutamine 4870.244 (6320.621) 36424.889 (90812.647) < 0.0001 0.0001 Down 
Acetylcarnitine 15264397.5 (13906895.225) 48325691.000 (34471688.498) < 0.0001 0.0001 Down 
Aspartate 144548.439 (191390.440) 36062.722 (62627.864) < 0.0001 0.0001 Up 
UDP-GlcNAc 254.341 (456.734) 4096.278 (5193.289) < 0.0001 0.0001 Down 
GDP 576.976 (995.162) 3100.167 (2829.869) < 0.0001 0.0001 Down 
Valeric acid 208295.902 (245995.384) 30966.944 (20154.547) < 0.0001 0.0002 Up 
Sorbitol 7562.390 (5745.078) 85457.889 (170824.541) < 0.0001 0.0002 Down 
alpha-KG/Adipic acid 115687.195 (128604.182) 352055.167 (285924.094) < 0.0001 0.0002 Down 
Decanoylcarnitine 801675.390 (1206714.705) 2395290.889 (2373922.031) < 0.0001 0.0002 Down 
Kynurenic acid 1168.439 (1742.876) 29907.111 (106962.679) < 0.0001 0.0002 Down 
cGMP 17250.720 (57975.418) 281385.417 (414126.069) < 0.0001 0.0003 Down 
2-Methylglutaric acid 48112.439 (52466.834) 147715.167 (117705.465) < 0.0001 0.0004 Down 
Galactonic acid 15268.390 (13596.163) 81456.444 (176100.084) < 0.0001 0.0004 Down 
Xanthurenic acid 577.561 (1182.061) 4491.278 (10014.180) 0.0001 0.0005 Down 
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1-Methyladenosine 146860.110 (223884.636) 1567914.056 (5396571.157) 0.0001 0.0005 Down 
PGE2 7240.659 (7896.321) 327.056 (311.300) 0.0001 0.0006 Up 
Dimethylarginine 508.085 (486.202) 2174.889 (2436.668) 0.0002 0.0006 Down 
3-hydroxybutyric acid 528.049 (614.555) 2467.000 (4048.681) 0.0002 0.0008 Down 
Adenine 1776.171 (1480.568) 10018.111 (20253.545) 0.0002 0.0008 Down 
Glyoxylic acid 1218.951 (1550.379) 4513.944 (5186.019) 0.0003 0.001 Down 
Pantothenic acid 30854.073 (50997.288) 81098.944 (135081.935) 0.0003 0.0011 Down 
Xanthosine 858.146 (674.404) 6030.611 (12327.632) 0.0003 0.0011 Down 
Glycylproline 9499.390 (26184.445) 13175.778 (13036.061) 0.0003 0.0011 Down 
Glucosamine 2389.927 (10952.810) 5410.278 (9793.262) 0.0003 0.0011 Down 
4-Hydroxybenzaldehyde 2147.829 (1240.685) 3290.556 (1814.624) 0.0003 0.0012 Down 
Lactate 606008.780 (614066.590) 1276734.722 (692832.013) 0.0004 0.0013 Down 
dTMP 12302.317 (9428.154) 7404.556 (4089.898) 0.0004 0.0013 Up 
Leucic acid 4765.829 (6196.919) 12796.389 (11703.913) 0.0005 0.0016 Down 
Gluconic acid 10084.341 (10236.700) 47173.444 (107661.401) 0.0005 0.0016 Down 
3-Phenyllactic acid 2753.146 (1797.324) 6114.111 (4379.643) 0.0006 0.0017 Down 
Pyruvate 3138.463 (7788.109) 5717.611 (6128.526) 0.0005 0.0017 Down 
Cystine 36519.659 (64288.908) 102764.111 (90411.819) 0.0005 0.0017 Down 
Anthranilic acid 1743.927 (1377.783) 1256.833 (2604.669) 0.0008 0.0024 Up 
6-Methyl-DL-Tryptophan 6758.220 (7758.716) 13139.889 (8471.394) 0.0008 0.0025 Down 
Ethylmalonic acid 562.878 (929.142) 4316.889 (11022.810) 0.0011 0.0032 Down 
Imidazole 93276.585 (24883.531) 70857.722 (17972.566) 0.0011 0.0032 Up 
Methylhistamine 11390.195 (6269.223) 18930.167 (8901.474) 0.0011 0.0032 Down 
4-Pyridoxic acid 288231.634 (983543.794) 251933.556 (840323.263) 0.0016 0.0045 Up 
Allopurinol 1760.098 (1664.661) 3616.778 (3950.359) 0.0016 0.0045 Down 
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Methyl a-D-glucopyranoside 526.732 (575.170) 2747.556 (4814.640) 0.0019 0.0051 Down 
3-Aminobutyric acid 23391.122 (20558.345) 80367.556 (122804.668) 0.0019 0.0051 Down 
5-Hydroxytryptophan 1914.585 (1785.209) 5871.944 (6218.323) 0.0021 0.0057 Down 
Isovaleric acid 48101.854 (46856.729) 118393.056 (101307.610) 0.0023 0.006 Down 
D-Galacturonic acid 9832.439 (11294.956) 34362.667 (49976.537) 0.0026 0.0066 Down 
Normetanephrine 4696.244 (3267.454) 14385.833 (26929.888) 0.0027 0.007 Down 
Nicotinate 1080.488 (4749.259) 1816.222 (2754.319) 0.003 0.0075 Down 
3-hydroxykynurenine 18325.195 (10047.178) 28709.500 (14933.541) 0.0031 0.0076 Down 
Gibberellic acid 446.854 (435.723) 3078.611 (5795.638) 0.0036 0.0088 Down 
2-Aminoadipic acid 13945.220 (13192.151) 42123.056 (51884.925) 0.0041 0.0099 Down 
Erythrose 4974.683 (4671.148) 18720.500 (38448.715) 0.0043 0.0104 Down 
Mandelic acid 2177.000 (1745.405) 17376.556 (45442.269) 0.0057 0.0135 Down 
Phenylbutazone 8580.000 (15741.924) 24277.222 (87556.855) 0.0063 0.0148 Down 
2-Pyrrolidinone 5364.439 (3554.457) 8560.778 (23304.948) 0.007 0.0163 Down 
Phthalic acid 3431.049 (5447.462) 3774.222 (12035.429) 0.0078 0.018 Down 
DOPA 4966.098 (7481.359) 10435.000 (21778.280) 0.0091 0.0207 Down 
Maleic acid 10884.463 (7215.685) 14780.056 (6056.841) 0.0106 0.0235 Down 
Pyroglutamic acid 906652.000 (659064.874) 1619928.611 (1308957.236) 0.0106 0.0235 Down 
Xylose 4946.024 (7334.651) 12278.111 (13914.277) 0.0111 0.0245 Down 
2-Aminobutyric acid 2172414.488 (1325623.343) 3700377.389 (2526935.169) 0.0117 0.0255 Down 
Ribose 11512.146 (7202.911) 18516.333 (8366.034) 0.0126 0.0271 Down 
Suberic acid 5126.341 (3361.662) 34565.944 (74238.831) 0.0142 0.03 Down 
Cadaverine 29193.512 (17452.927) 31284.000 (65752.635) 0.0142 0.03 Down 
beta-Hydroxyisovaleric acid 21565.610 (22788.207) 43948.278 (40332.407) 0.0156 0.0327 Down 
Glycine 73422.415 (43287.510) 52689.944 (36160.433) 0.0172 0.0355 Up 
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Azelaic acid 4294.366 (4658.546) 66508.111 (264243.763) 0.019 0.0389 Down 
Homoserine/Threonine 1535813.927 (825122.781) 1054702.444 (530221.831) 0.0207 0.0415 Up 
5-Aminolevulinic acid 989197.756 (843115.074) 1372020.833 (659096.468) 0.0207 0.0415 Down 
Malonic acid 9420.439 (9521.260) 66877.833 (122333.866) 0.0226 0.0442 Down 
Hydroxyproline 1052729.122 (939096.019) 1457822.056 (736465.080) 0.0226 0.0442 Down 
Glutamic acid 1173856.000 (1266873.298) 653706.000 (892982.804) 0.0226 0.0442 Up 
Ketoleucine 21780.976 (20912.018) 37558.278 (35324.800) 0.0237 0.0458 Down 
Oxaloacetic acid 12333.049 (13049.461) 17882.667 (8632.556) 0.0247 0.0474 Down 

aValues are FDR-corrected. 
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Supplementary 3.2 Urinary metabolites found to be statistically significant (q < 0.05) 

between VF patients and non-VF controls, using non-parametric t-test. 

 
Correctiona Metaboliteb pc qd  Fold Changee 

Mann-Whitney Phenylacetic acid 6.3E-7 1.4E-4 0.181 
 DOPA 

Nicotinamide 
Amino valerate 
Glycocyamine 
6-Hydroxynicotinic acid 
Tryptamine 
Gentisic acid 
Glyoxylic acid 
Suberic acid 
3-Methyl-2-oxovaleric acid 
4-Ethylbenzoic acid 
p-Coumaric acid 
N,N-Dicyclohexylurea 
F16BP 
Dimethylarginine 
Tetracaine  
Urocanic acid 
Xanthosine 
Urate 

2.2E-5 
1.0E-4 
1.6E-4 
1.7E-4 
3.5E-4 
0.0011 
0.0011 
0.0012 
0.0012 
0.0013 
0.0017 
0.0018 
0.0023 
0.0030 
0.0030 
0.0038 
0.0040 
0.0042 
0.0042 

0.0026 
0.0082 
0.0082 
0.0082 
0.0138 
0.0284 
0.0284 
0.0284 
0.0284 
0.0284 
0.0325 
0.0325 
0.0395 
0.0443 
0.0443 
0.0491 
0.0491 
0.0491 
0.0491 

0.474 
0.475 
0.380 
0.379 
0.347 
0.076 
0.194 
2.257 
0.367 
0.339 
0.315 
0.191 
0.434 
0.404 
2.117 
0.367 
0.290 
0.282 
0.153 

aUnequal group variance assumed. 
bData were normalized by creatinine levels. 
cAdjusted p-value cutoff: 0.05. 
dNon-parametric Wilcoxon rank-sum test used to adjust for multiple comparisons. 
eCalculated as mean ratio of metabolites: VF/control. 
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Supplementary Figure 3.1 Distribution of coefficient of variation (CV) values of all 

measured plasma and urine metabolites in this study. (A) CV distribution of plasma 

metabolites in positive mode detection; (B) CV distribution of plasma metabolites in 

negative mode detection; (C) CV distribution of urine metabolites in positive mode 

detection; (D) CV distribution of urine metabolites in negative mode detection. 

[Plasma QC CV range: 0.46%-13.01%, median CV: 11.91%, with ~70% of metabolites 

having CV<15%] 

[Urine QC CV range: 0.02%-12.00%, median CV: 11.37%, with ~85% of metabolites 

having CV<15%] 
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Supplementary Figure 3.2 Partial least squares-discriminant analysis (PLS-DA) 

performed on log10-transformed plasma and urine metabolite data: (A) score plot of 106 

significant plasma metabolites accounting for 54.5% of variance, (B) statistical validation 

of plasma PLS-DA model [R2X (cum) = 0.973, R2Y (cum) = 0.862, Q2 (cum) = 0.789] by 

permutation testing (n = 200), (C) score plot of 20 significant urinary metabolites 

accounting for 39.8% of variance, (D) statistical validation of urinary PLS-DA model [R2X 

(cum) = 0.847, R2Y (cum) = 0.627, Q2 (cum) = 0.501] by permutation testing (n = 200). 
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Supplementary Table 4.1 Matrix of correlation analysis between candidate markers and clinical characteristics showing r and (p). 

Clinical 
Characteristic 272.2@20.932005 147.1@14.3080015 147.1@20.774895 73.1@27.868113 Lauric 

acid 
Myristic 

acid 
Palmitoleic 

acid 
Palmitic 

acid 
Stearic 

acid 

Age 
-0.079 0.048 -0.036 -0.103 -0.043 0.150 0.210 0.168 0.168 

(0.598) (0.748) (0.810) (0.490) (0.775) (0.313) (0.157) (0.259) (0.259) 

Sex 
0.116 -0.246 -0.012 -0.100 -0.071 0.104 0.234 0.181 0.136 

(0.437) (0.095) (0.936) (0.505) (0.638) (0.488) (0.114) (0.222) (0.360) 

PMI 
0.219 0.019 0.183 -0.078 -0.269 -0.221 -0.222 -0.149 -0.154 

(0.139) (0.897) (0.217) (0.604) (0.067) (0.135) (0.134) (0.318) (0.302) 

APOE alleles 
-0.045 0.048 -0.047 -0.084 0.092 0.051 0.058 0.031 0.043 

(0.762) (0.751) (0.755) (0.574) (0.538) (0.733) (0.699) (0.839) (0.777) 

MMSE 
-0.097 0.114 -0.064 0.362 0.363 0.398 0.202 0.278 0.294 

(0.515) (0.445) (0.669) (0.012) (0.012) (0.006) (0.172) (0.059) (0.045) 

Frontal 
plaque 

0.198 -0.036 0.130 -0.160 -0.598 -0.085 0.118 0.003 -0.004 

(0.182) (0.810) (0.382) (0.283) (0.000) (0.569) (0.428) (0.982) (0.981) 

Total Plaque 
0.296 -0.092 0.157 -0.153 -0.579 -0.100 0.108 -0.001 -0.002 

(0.043) (0.539) (0.293) (0.305) (0.000) (0.503) (0.469) (0.993) (0.988) 

Frontal 
Tangle 

0.203 -0.129 0.070 -0.141 -0.410 -0.399 -0.109 -0.289 -0.276 

(0.172) (0.387) (0.639) (0.345) (0.004) (0.005) (0.467) (0.048) (0.061) 

Total Tangle 
0.111 -0.200 0.148 -0.246 -0.507 -0.350 -0.011 -0.219 -0.229 

(0.457) (0.177) (0.322) (0.096) (0.000) (0.016) (0.941) (0.138) (0.122) 

Braak score 
0.063 -0.157 0.198 -0.252 -0.539 -0.353 -0.046 -0.234 -0.250 

(0.672) (0.293) (0.182) (0.087) (0.000) (0.015) (0.757) (0.113) (0.091) 

Frontal CAA 
0.105 0.036 0.179 -0.165 -0.169 0.094 0.274 0.209 0.196 

(0.481) (0.811) (0.228) (0.267) (0.257) (0.529) (0.063) (0.159) (0.187) 

Total CAA 
0.100 0.005 0.083 -0.164 -0.211 0.091 0.295 0.219 0.194 

(0.502) (0.972) (0.579) (0.269) (0.155) (0.543) (0.044) (0.139) (0.191) 
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Supplementary Table 4.2 Full list of significantly enriched enzymes in response to 

Alzheimer’s progression. For analysis, subjects were dichotomously grouped as case 

(MCI and AD) and control (NC and HPC). 

Enzyme p value 
Mitochondrial 2-oxovalerate dehydrogenase 0.025 
3-amino-isobutyrate transport 0.025 
Mitochondrial 3-amino-isobutyrate transport 0.025 
3-hydroxyacyl-CoA dehydratase 0.025 
Mitochondrial 3-hydroxyisobutyrate dehydrogenase 0.025 
Mitochondrial 3-hydroxyisobutyryl-CoA hydrolase 0.025 
Mitochondrial acyl-CoA dehydrogenase 0.025 
L-3-amino-isobutanoate exchange 0.025 
Mitochondrial L-3-aminoisobutyrate transaminase 0.025 
Mitochondrial malonate-semialdehyde dehydrogenase 0.025 
Methylmalonate-semialdehyde dehydrogenase 0.025 
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Supplementary Figure 4.1 Scores plot of principal component analysis (PCA) conducted 

with all reliably detected metabolites between all groups, including quality control (QC) 

samples; 95% confidence intervals were evaluated for potential outliers. Data for sample 

13 (HPC group) was reviewed and removed from further analysis.  
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Supplementary Figure 4.2 Significant metabolites between case (MCI and AD) and 

control (NC and HPC) as determined by independent samples t-test. Data were log10-

transformed and Pareto scaled prior to plotting.  
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Supplementary Figure 4.3 ROC analysis of PLS-DA model constructed using levels of 

lauric acid, myristic acid, stearic acid, and palmitic acid (all p < 0.05): (A) classification of 

NC vs. HPC/MCI/AD, (B) classification of HPC vs. NC/MCI/AD, (C) classification of MCI 

vs. NC/HPC/AD, and (D) classification of AD vs. NC/HPC/MCI.  

 

 

 

 

 

 

NC

AUC = 0.966

HPC

AUC = 0.917

MCI
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(A) (B)
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Supplementary Figure 4.4 (A) RF analysis of study groups based on levels of lauric acid, 

myristic acid, stearic acid, palmitic acid (OOB error = 0.511), and (B) 100-fold LOOCV 

ROC analysis of case (MCI/AD) and control (NC/HPC) using RF classifier (AUC = 0.917). 

 

 

 

 

 

 

 

(A) (B)
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Supplementary Figure 4.5 Univariate ROC analysis and t-testing between NC and MCI 

groups show lauric acid to be highly predictive (AUC = 0.993) and significant (FDR q < 

0.001).  
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Supplementary Figure 4.6 Univariate ROC analysis and t-testing between NC and AD 

groups show lauric acid to be highly predictive (AUC = 1.0) and significant (FDR q < 

0.001). 
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Supplementary Figure 4.7 Univariate ROC analysis and t-testing of between HPC and 

AD groups show high predictive performance (AUC > 0.90) and significance (FDR q < 

0.01) of myristic acid, lauric acid, palmitic acid, and stearic acid. 
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Supplementary Figure 4.8 (A) Scores plot of PLS-DA model constructed using significant 

between-group metabolites (lauric acid, myristic acid, stearic acid, palmitic acid) in 

conjunction with highly correlated neuropathological characteristics (frontal plaque, total 

plaque, total tangle, and Braak score) (R2X = 0.710, R2Y = 0.748, R2Q = 0.722) and (B) 

Permutation testing with 100 iterations shows excellent model fit (p < 0.01). 
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Supplementary Figure 4.9 Network view of enzyme enrichment analysis conducted 

between case (MCI and AD) and control (NC and HPC). Enrichment ratios were 

significantly different for eleven enzymes between groups (p < 0.05).   
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