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ABSTRACT  

   

Fatigue in radiology is a readily studied area. Machine learning concepts applied 

to the identification of fatigue are also readily available. However, the intersection 

between the two areas is not a relative commonality. This study looks to explore the 

intersection of fatigue in radiology and machine learning concepts by analyzing temporal 

trends in multivariate time series data. A novel methodological approach using support 

vector machines to observe temporal trends in time-based aggregations of time series data 

is proposed. The data used in the study is captured in a real-world, unconstrained 

radiology setting where gaze and facial metrics are captured from radiologists performing 

live image reviews. The captured data is formatted into classes whose labels represent a 

window of time during the radiologist’s review. Using the labeled classes, the decision 

function and accuracy of trained, linear support vector machine models are evaluated to 

produce a visualization of temporal trends and critical inflection points as well as the 

contribution of individual features. Consequently, the study finds valid potential 

justification in the methods suggested. The study offers a prospective use of maximum-

margin classification to demarcate the manipulation of an abstract phenomenon such as 

fatigue on temporal data. Potential applications are envisioned that could improve the 

workload distribution of the medical act. 
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CHAPTER 1 

INTRODUCTION 

Problem Statement 

Expertise is not the sole determinant of performance. Environmental, physical, 

mental, and other factors influence performance efficacy. Intuitively, a child cannot play 

a sport like basketball at the same performance level as a professional athlete. Although 

the disparity is primarily due to differences in physical development, similarly severe 

disparities can be produced by mental factors. Pressure, in its many forms, represents a 

degree of mental distress. Just as the child cannot compete against the professional 

athlete, a person executing a task under pressure suffers a performance ailed by burdens 

they would not have if they were devoid of pressure. With the focal form of performance 

being fatigue, the main goal of this paper is to explore machine learning data analysis 

models in the extraction of information pertinent to the timing of the onset of fatigue. In 

particular, the object of the analysis is the onset of oculomotor and cognitive-emotional 

fatigue in radiology experts. 

Fatigue in Radiology 

 Quantifying fatigue in itself is not a new subject nor is fatigue in radiology a 

novel area of research (Hanna et al., 2018; Krupinski et al., 2010; Li et al., 2020; 

Vosshenrich et al., 2021). Fatigue can be manifested through the growing weakness of 

muscles in executing physical tasks or as mental tiredness hindering intellectual acuity. 

Additionally, fatigue in radiology presents a unique form: oculomotor fatigue. Ocular 

fatigue affects eyesight and is an acute risk during medical image readings (Krupinski et 

al., 2010). Studies have delved into the objective and subjective measuring of fatigue in 
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radiology and have found evidence suggesting a decrease in performance as the workday 

progresses (Krupinski et al., 2010). The effects of a decrease in performance during 

radiology readings has been shown to include a reduction in diagnostic accuracy coupled 

with increased oculomotor strain (Krupinski et al., 2010). Even search patterns employed 

by radiologists during readings become less effective with fatigue, causing an increase in 

the amount of time and effort to review an image (Hanna et al. 2018). Diagnostic 

accuracy and review time and effort are essential metrics in an occupation where 

unsuccessful performance exacts a heavy price. The various effects of fatigue on 

radiologists’ performance are serious when left to fester and pose a clear occupational 

hazard. The existence of fatigue-born harmful effects in radiology is readily apparent. 

The nature of such effects is also no stranger to recorded observation. However, the goal 

of this paper is to analyze the leveraging of machine learning methodologies in the 

exploration of fatigue in radiology. 

Machine Learning Approaches for Fatigue 

Statistical methods such as linear regression have been used to quantify fatigue in 

radiology settings. One such study used the method to analyze the similarities between 

resident and staff reports across the length of a workday. The study found a negative 

relationship between staff and resident report similarity over time, suggesting the 

detrimental effect of fatigue on residents (Vosshenrich et al., 2021). However, heavier 

applications of statistical machine learning methods can be found in areas such as the 

construction industry. Li et al. (2020) performed a study where wearable eye-tracking 

equipment was used to collect gaze data from construction workers to analyze mental 

fatigue. The study was able to categorize levels of fatigue through a clustering algorithm; 
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the categories of which were used in support vector machine classification revealing 

successful classifications of fatigue (Li et al., 2020). Eye tracking is an important avenue 

for the analysis of fatigue, one which is used in this paper’s study, and is represented in 

other areas outside of construction such as driving (Du et al., 2021). However, while gaze 

analysis paired with machine learning methods is not uncommon in radiology research, 

the focus on fatigue apparent in construction and driving based studies is not as widely 

shared.  

Machine Learning in Radiology 

Gaze research in the realm of radiology favors perception characterization 

(Kocejko et al., 2019; Lévêque et al., 2021; Machado et al., 2018; Mall et al., 2018). 

Using eye-tracking technology, studies aim at understanding how radiologists perceive 

images (Lévêque et al., 2021; Machado et al., 2018). One such study attempted to 

identify gaze fixations of radiologists during lung cancer diagnosis reviews. The study 

was able to collect fixation data from eye-trackers and constructed regions of the lung 

where radiologists focused their attention (Machado et al., 2018). Another study 

combined the use of fixation and saccade metrics to analyze search patterns in 

radiologists performing mammogram reviews. The results suggested a difference in gaze 

behaviors across radiologists according to their varying degree of experience (Lévêque et 

al., 2021). While all were expert level radiologists, residents have been used in other 

research delving into the nature of visual perception. Kocejko et al. (2019) designed an 

experiment to capture gaze data in residents which could then be processed for assessing 

skills against those of expert-level and untrained-level image reviewers. The mapping of 

visual perception data to competency affirmed established metrics used in skill 
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assessments and suggested an opportunity to monitor skill acquisition through gaze 

analysis (Kocejko et al., 2019). However, each aforementioned study relegated machine 

learning tools in favor of general statistical interpretations. Mall et al. (2018) represented 

a departure from general statistical interpretations of radiologist gaze patterns by 

adopting deep machine learning approaches. Using a deep convolutional neural network, 

the study was able to derive accurate models learned according to radiologists’ own gaze 

behaviors as opposed to predetermined metrics (Mall et al., 2018). Utilized in machine 

learning or general statistical methods, gaze data is an established source of information 

in radiology research. Yet the interest in fatigue is not as shared as similarly gaze-based 

research in areas like construction and driving. While visual perception data is congruent 

across radiology and fatigue experiments another source of information is useful when 

machine learning methods are being approached. 

Study Goals and Hypothesis 

The relative novelty of using gaze analysis to tackle fatigue exploration in 

radiology merits the consideration of tangential studies. Returning to the fatigue analysis 

in driving research, facial data is another source of information utilized (Du et al., 2021; 

Khan et al., 2018). Facial features, extracted from simple RGB camera recordings of 

participants, have been shown to be valid determinants in machine learning models 

detecting driver fatigue (Du et al., 2021). Additionally, facial expression analysis has 

been studied as an enabler of driver fatigue recognition (Khan et al., 2018). With the goal 

of this paper’s study borrowing context from multiple different areas, it is important to 

establish the similarities from where exploration can be directed. In the instance of this 

research, gaze and facial data are the sources of information collected. Furthermore, 
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machine learning methods such as support vector machines serve as avenues of analysis. 

Fatigue acts as the main principle uniting the data and analysis.  

The machine learning assisted study of fatigue in radiology presents a certain 

degree of novelty. Yet, such a study, as previously described, is not uncommon in other 

areas. Borrowing directly from those studies would result in a review of prediction 

capabilities: can fatigue of radiologists be modeled from gaze and facial data to provide 

inferences concerning future levels of fatigue? While such a review has merit and a 

precedent set by other, non-machine learning based research into radiology fatigue, this 

paper poses a parallel review. Instead of using machine learning tools such as classifiers 

for predictive purposes, their use for detecting temporal change is considered. Fatigue 

exists on the temporal plane; it is related directly to the passing of time. Existing studies 

have modeled the flowing of fatigue across time, but this research looks to analyze a level 

deeper than modeling by exploring the nature of temporal change in fatigue. This 

research assumes the existence of inflection points within the flow of fatigue over time 

where the degree of the condition changes relatively dramatically. To explore the 

assumption, the novel use of tools such as classifiers for detection rather than prediction 

is considered. Further, the setting of this research poses an additional novelty. Gaze and 

facial data are captured from radiologists, similar to other studies, but in an 

unconstrained, real-world environment.  

Leveraging inspirations from fatigue-related machine learning research to fill a 

gap in fatigue-related radiology research, the study aims to develop a novel methodology 

for the analysis of fatigue. The study will accomplish this by implementing a 

contemporary machine learning technique which allows for the observation of temporal 
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fatigue characteristics from real-life, real-time radiology visual tasks. Thus, the 

implementation will explore the hypothesis set by the study:  

H1: A methodology exists that uses machine learning classifiers to detect the  

temporal effects of abstract phenomenon such as fatigue in multivariate space at a degree 

that allows for the discovery of inflection points demarcating the progress of such 

phenomenon. 
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CHAPTER 2 

LITERATURE REVIEW 

A more general summary of the literature previously introduced can be found in 

the discussion given by Hooda et al. (2021) on studied machine learning techniques to 

detect fatigue. Four approaches of detecting fatigue were analyzed: mathematical models, 

rule based, machine learning, and deep learning. The paper established mathematical 

models as correlators between different processes affecting fatigue and using features 

such as sleep and wakefulness duration. The Two Process model was given as an 

example of a fatigue detector for drivers using features belonging to distinct processes 

related to sleepiness and wakefulness. The Aircrew Fatigue Evaluation Model is another 

mathematical model that monitors pilot alertness during flight. Fuzzy logic in the fatigue 

detecting Fuzzy Inference System algorithm exchanged mathematical models for rule-

based analysis. However, the discussion entered the realm of learning by reviewing the 

varying features studies have used to detect fatigue. Facial features, eye properties, and 

biological metrics have been used to varying degrees as inputs to different machine 

learning methodologies. Deriving the state of yawning from face detection was one 

example given for the use of facial features. Parallelly, the drawing of 63 landmarks from 

facial behavior to derive eye aspect ratio, nose length ratio, and mouth opening ratio 

among others was another use of facial features. Capturing the opened or closed state of 

the eye along with its position and illumination was a discussed use of eye-related 

features. Biometrics such as skin conductance and electroencephalogram (EEG) signals 

constituted another category of features experimented with for fatigue detection. 
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Coinciding with the explanation of common features was the appraisal of the machine 

learning models that consumed them (Hooda et al., 2021). 

 AdaBoost, Support Vector Machine (SVM), and Gradient Boosting Decision Tree 

(GBDT) were among the machine learning models investigated. AdaBoost was used with 

eye data to select features and train a binary classifier capable of detecting eye states: 

opened or shut. SVM was used across studies designing models to detect signs of fatigue 

from biological metrics and facial features. Skin conductance was used within an SVM 

model with relatively high accuracy in the detection of fatigue levels while components 

of facial behavior reached similarly high levels of accuracy when used as features in 

another SVM model. A study interested in the characteristics of EEG signals leveraged 

the GDBT method to detect levels of fatigue in drivers when coupled with features drawn 

from such signals. However, while the paper offered clear examples of machine learning 

techniques being applied to the detection of fatigue, they were compared to similarly 

minded deep learning approaches (Hooda et al., 2021). 

 Autoencoders were the predominant topic in the paper’s discussion of fatigue 

detection through deep learning. The studies presented were interested in biometric data 

such as EEG and electro-oculogram (EOG) signals. Layered autoencoders were then used 

to feed outputs into regression or classifier models that could label data as existing in a 

state of fatigue or not (Hooda et al., 2021). The summary of machine learning 

developments in fatigue detection provided by Hooda et al. (2021) serves as context for 

the objective of this study. The priorly introduced examples of fatigue identifiers in the 

fields of driving and construction supplement those reviewed here (Du et al., 2021; Khan 

et al., 2018; Li et al., 2021). However, the study does not aim to develop a state-of-the-art 
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machine learning model to pair with those previously discussed, but to observe the 

characteristics of an established model in the area of fatigue. Further, the lack of a 

common intersection between fatigue and machine learning in radiology research 

presents an opportunity to make such an observation in a novel environment. Radiology 

research has been introduced as having various studies comment on the nature of fatigue 

in the profession as well as those that derived expertise metrics with machine learning 

techniques (Krupinski et al., 2010; Mall et al., 2018). The study hopes to assuage the gap 

present in radiology research by putting forth the remarked observations against the 

hypothesis of the study. 
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CHAPTER 3 

EXPERIMENT 

Experimental Procedure 

With institutional review board approval, the data gathering took place at the 

Mayo Clinic Hospital, Phoenix, Arizona. A setup consisting of a lab computer and 

monitor, camera, and a Tobii-30 eye tracker was placed within a radiology reading room 

at a designated workstation. The workstation was designated by the volunteering 

radiologist of the particular day. The radiologist performed their shift, reading from the 

hospital setup while the cameras of the lab study recorded gaze and facial features onto 

the lab computer. The physical lab equipment was setup in the morning before the 

radiologist began their first readings of the day. Minimal interference from the 

researchers occurred until the completion of the recording session. Recordings were taken 

in fifty-minute intervals until the radiologist completed the self-allotted time for the 

study. Gaps existed between fifty-minute intervals as some recording sessions had 

members of the study start a new fifty-minute recording after the completion of preceding 

recordings. One recording session was done with continuous fifty-minute recordings 

ignoring the need for the manual starting of successive recordings. No restrictions were 

placed upon the radiologists during the recording session. Freedom of movement, time 

spent reading, and interruptions were left to the discretion of the radiologist to achieve 

the least amount of simulation in their readings. 

 Four recording sessions took place with two attending radiologists partaking in 

two sessions each. The set of sessions for one radiologist lasted four and seven hours 

while the set of sessions for the other radiologist lasted six hours each. Along with not 
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limiting the actions of the radiologists, the study did not impose an image selection to be 

read from. Thus, the images being read were not predetermined by the study and were 

genuine, real-time cases. With the sensitive nature of the images and readings, the study 

did not use the camera to capture data outside face recordings. Additionally, the gaze 

captured by the eye tracker was overlayed and calibrated to a screen on the lab monitor 

mimicking the dimensions of the hospital imaging monitor without capturing the contents 

of the hospital monitor. The data recording was stored and processed with a third-party 

software application, iMotions. 

Data Acquisition 

Upon completion of a recording session, the recordings of the camera and the 

gaze tracker were available for processing within the iMotions application. The software 

natively supports facial recognition and expression analysis from camera recordings as 

well as the measurement of gaze metrics from eye tracking data. However, the study 

extracted a subset of the metrics available from the software’s facial and gaze analysis. 

The chosen metrics, deemed applicable due to interesting exploration or their previously 

observed effects on fatigue, fell into the two categories of their respective pieces of 

equipment.  

Expression metrics: anger, contempt, disgust, fear, joy, sadness, surprise, 

engagement, and valence. The expression metrics were drawn from iMotions’ facial 

recognition analysis, using the Affectiva Affdex toolkit, of the camera’s recordings. The 

emotion variables are represented as intensity measurements where the larger the value of 

an emotion, the more intense the facial expression displaying that emotion and oppositely 

for the lower a value is. The variables themselves are drawn from the calculated 
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correlation between certain facial landmarks. The study pursued the use of facial 

expressions as they have been shown as determinants of fatigue in areas such as driving 

(Kaplan et al., 2015). Engagement is represented as a value between 0 and 100 where the 

higher the value, the more expressive the expression. More specifically, engagement 

measures the weighted sum of several facial movements. While not explicitly observed in 

other fatigue related studies, engagement is an interesting variable for the study as it 

serves as a parallel to the expression metrics. As the emotion variables themselves are 

drawn from facial landmarks, engagement being a higher-level composite value of facial 

landmarks can corroborate for or against observations drawn from the emotions. Valence 

is represented as a value between -100 and 100 where the more negative the value, the 

more negative the connotation of facial features while the more positive the value, the 

more positive the connotation. Again, valence is calculated by certain facial movements 

that contribute either adversely or positively towards the metric. As with engagement, 

valence is uncommon in similar fatigue studies but has the potential to serve as 

supporting evidence. 

Gaze metrics: left and right pupil diameter, area covered, gaze velocity, gaze 

acceleration, fixation duration, saccade amplitude, saccade peak velocity, and saccade 

peak acceleration. The gaze metrics were drawn from iMotions’ gaze analysis of the eye 

tracker recordings. The pupil diameters were calculated from the Tobii eye tracking 

software. Pupil diameter has been observed as a substantial factor in fatigue detection (Li 

et al., 2020; Yamada & Kobayashi, 2018). Area covered was calculated by multiplying 

the standard deviation of interpolated x and y gaze coordinates given by internal iMotions 

gaze analysis. Studies of fatigue in radiology have observed a decrease in search pattern 
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efficacy as fatigue progresses (Hanna et al., 2018). The decrease in search efficacy 

suggests an increase in the observed area of an image, a suggestion the study found merit 

in and a cause for exploration. Gaze velocity and acceleration are provided by iMotions’ 

internal gaze analysis. Gaze velocity has been used in proposed fatigue detection models 

while gaze acceleration is more uncommon but was selected for its use to correlate with 

gaze velocity (Li F. et al., 2019). Fixation duration was also calculated by iMotions’ 

internal gaze analysis. Fixations are represented as clusters of similarly positioned gaze 

points by iMotions, the duration consequently being the amount of time, in milliseconds, 

the gaze is within a cluster’s area. Fixation duration as an oculomotor metric has been 

investigated for its use in fatigue detection (Naeeri et al., 2021; Yamada & Kobayashi, 

2018). Fixations have been observed in radiology-related fatigue studies where the 

number of fixations during a reading increased the more fatigued the radiologist (Hanna 

et al., 2018). The duration of fixations serves as an interesting metric to be observed in 

comparison with recorded effects of similar metrics such as the number of fixations. 

Saccade amplitude, peak velocity, and peak acceleration are all drawn from the internal 

iMotions gaze analysis. Saccades are represented, in iMotions, as rapid minute 

movements of the gaze between fixation points. Saccade amplitude is the total distance of 

the movement between fixations. All three saccade metrics are heavily researched in the 

area of fatigue and have been shown to suffer acute effects from fatigue (Di et al., 2012; 

Li F. et al., 2019; Naeeri et al., 2021; Yamada & Kobayashi, 2018). 

Data Preprocessing 

Before analysis, the raw data from iMotions, with the selected metrics, was 

exported into a comma separated file format. The exported data was represented as a 
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multivariate time series where the selected metrics from both the camera and eye tracker 

were aligned with timestamps ordered by iMotions. Given a timestamp in milliseconds, 

the data would contain the recorded measurements of the aforementioned metrics if any 

existed at that time. Due to the unrestrained nature of the recording sessions, sparsity and 

noise are apparent in the data. However, Wang et al. (2012) studied the clustering of 

multivariate time series data through the use of feature extraction. Other studies have also 

reviewed the potential for feature-based representations of multivariate time series data 

(Fulcher, 2017). This study took inspiration from the approaches and transformed the 

exported data to allow for the extraction of global features to potentially assuage the 

nature of the data.  

Particularly, the data was arranged into buckets. The buckets would be an interval 

of time, defined by the study, that covered from the start of one recording session until its 

end. Although the recordings for a session were done in fifty-minute periods and 

contained gaps from the end of one period to the start of the next, the buckets were 

ordered sequentially regardless of gap time. For instance, a bucket time of fifteen-minutes 

would result in sixteen buckets from a four-hour recording session containing four fifty-

minute recordings (three full-length fifteen-minute buckets and one five-minute long 

bucket for each fifty-minute recording). The buckets, ordered sequentially starting from 

one, represented classes. In the fifteen-minute bucket example, the first class represents 

the first active fifteen minutes of the recording session, the second class the second 

fifteen minutes, and so on. After the data was arranged into buckets, global features from 

the multivariate time series were drawn at another time-based granularity. Allowing 

another example, a bucket time of fifteen-minutes with a feature length of three minutes 
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would result in five feature vectors belonging to that bucket. Specifically, the feature 

length of three minutes denotes the aggregation of datapoints into global features such as 

mean anger, mean saccade amplitude, and saccade peak velocity variance among others. 

The bucketing and feature extraction of the data allowed feature vectors and classes to be 

created from the original multivariate time series. Additionally, several z-score 

standardization techniques were used on the data, the results of which will be discussed 

in a later section. 
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CHAPTER 4 

ANALYSIS METHODS 

The goal of the data analysis was to explore the possibility of using machine 

learning classifiers in the detection of temporal change with regards to fatigue. To that 

end, the study experimented with the use of support vector machine (SVM) classifiers. 

SVMs are an optimal margin classifier where a decision function is learned from training 

data that computes a relation between datapoints and a separating hyperplane between 

different classes of data. The separating hyperplane maximizes the margin, the smallest 

distance between the hyperplane and the closest datapoints (Boser et al., 1992). In the 

two-class, linearly separable example illustrated in Figure 1, SVM finds the optimal 

decision boundary that separates the data space into two areas, one for each class.  

Figure 1. Visualization of SVM hyperplane construction. 

The solid line represents the decision boundary or hyperplane while the dashed 

lines represent the support vectors. The support vectors contain the datapoints from 

which the optimal hyperplane can be found as the distance between the support vectors 

and the hyperplane is the maximized margin (Cortes & Vapnik, 1995). Although an SVM 

classifier looks to maximize the margin, a solution can also be gained through the 
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equivalent problem of minimizing the norm of the feature weights, w (Boser et al., 1992). 

However, complexity is added to the SVM objective when non-linearly separable or non-

separable data is introduced. Non-separable data refers to the situation where datapoints 

from one class exist in the opposite class’s area. In a linear case as well as others, such a 

situation can be solved by introducing a slack variable, ζ, that allows datapoints in 

opposing areas to remain ‘valid’ so long as they do not exceed the distance from their 

correct areas allowed to them by the slack variable (Cortes & Vapnik, 1995). The method 

is known as soft-margin SVM, where any datapoint exceeding the slack distance is 

considered an error and the tuning of such error acceptance is done through a 

hyperparameter, C. A large C has the SVM search for a margin that misclassifies the 

smallest amount of datapoints possible whereas a small C has the SVM search for a 

maximum margin regardless of the number of misclassifications incurred (Pedregosa et 

al., 2011). However, non-separability can occur in a case of non-linear separability as 

well. Non-linearly separable data refers to the inability to construct a linear separating 

hyperplane between data classes. In such cases, the kernel trick technique is adopted 

within the SVM objective function. The kernel trick maps datapoints that are non-linearly 

separable in their native dimension, to higher dimensions where they can potentially 

become linearly separable (Cortes & Vapnik, 1995). Thus, the margin classification of 

SVMs paired with their documented capabilities in complex dataspaces offered an 

interesting potential use for this study. 

For implementation, the Python library Scikit-learn and its SVM derivation was 

used. Named support vector classifier in the library, Scikit-learn provides the following 

formulation of an SVM classifier (Pedregosa et al., 2011): 
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𝑚𝑖𝑛
𝑤,𝑏,𝜁

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜁𝑖

𝑛
𝑖=1

subject to 𝑦𝑖(𝑤
𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜁𝑖,

𝜁𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛

   (1) 

Equation 1 represents the feature weight vector minimization problem. However, 

the impact of the slack variable and error acceptance can be observed in the second term 

of the minimization function as well as the function bounds. Although Equation 1 is 

given by the library, an equivalent formulation is used in the library’s implementation 

that allows for the kernel trick (Pedregosa et al., 2011): 

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼

subject to 𝑦𝑇𝛼 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑛

    (2) 

Equation 2 removes the feature weight vector for the dual coefficients, α, and the 

matrix, Q. Q contains the kernel K which in turn contains the kernel function φ. The 

kernel function is responsible for the mapping of feature vectors, datapoints, into higher 

dimensions. The library offers several kernel functions to choose from, but the study 

primarily focused on the linear kernel with some testing with the radial basis function 

kernel. 

Using the SVM implementation provided by the Scikit-learn library, the study 

conducted three major experiments on the pre-processed recording data. First, the study 

looked to observe the temporal patterns of the bucketed data. Given a time granularity for 

the classes of data, described as bucketing in the data pre-processing section, the data 

would be used to train an SVM for every unique one-versus-one class scenario. The SVM 

parameters were kept constant through each scenario, those mainly being the linear 

kernel type and an error acceptance value, C, of 1. After a one-versus-one SVM was 
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trained, the decision function and accuracy of the fitted SVM were evaluated against the 

training data. In particular, the trained SVMs were not used with the goal of creating 

generalizable classifiers, but rather with the goal of observing the attributes of the fitted 

model.  

The decision function is given in the following equation by the Scikit-learn 

library: 

∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥)𝑖∈𝑆𝑉
+ 𝑏     (3) 

The decision functions of the trained SVMs were evaluated against the training 

data to achieve a distance-based perspective of the margin constructed by the models. To 

corroborate the perspective observed from the decision function, the accuracy of the 

trained SVMs was also evaluated. The accuracy allowed a similarity-based perspective of 

the constructed margin. Altogether, the accuracy and decision function of the trained 

SVMs formed the basis of the experimental temporal analysis methodology. 

The second major experiment maintained the one-versus-one scenarios of the first 

experiment but also adopted a leave-one-out approach. The one-versus-one scenarios of 

the second experiment only concerned the first class against every other class but were 

repeated for every removal of a single feature. The feature vectors used to train the SVM 

models in the first experiment contained n features. In the second experiment, one feature 

would be removed at a time and a full set of SVMs were trained with n-1 sized feature 

vectors for each class one-versus-x for all x not one cases until all features had been 

removed once. The decision functions and accuracies of the resulting SVMs were again 

evaluated and aggregated according to what feature was missing. 
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The third experiment continued with the results of the second and calculated the 

difference between the decision function results and accuracies found by the general class 

one-versus-rest SVMs and each leave-one SVM. The differences were then ranked in 

descending order allowing an interpretation of the effects different features had on the 

temporal pattern of the data. With the third experiment completed, the results were 

analyzed and constituted a proof of concept for the experimental methods outlined in this 

paper. 
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CHAPTER 5 

RESULTS 

Experiment One: Temporal Trends 

The results of experiment one, the observation of temporal patterns, are shown in 

the following figures: 

 

Figure 2. Progression of average decision values. 

 

 

Figure 3. Progression of average accuracy. 
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Figures 2 and 3 show the class-based average of their respective metrics for a 

bucketing interval of fifteen minutes and a feature length of three minutes. The figures 

were derived from the following heatmaps respectively: 

 

Figure 4. Heatmap of individual average decision values. 

Figure 5. Heatmap of individual accuracies. 

Figures 4 and 5 display the results of individual SVMs for their respective 

metrics; Figure 4 contains averaged SVM decision value results while Figure 5 contains 

the accuracy of SVMs. Along with decision value and accuracy metrics, the two being 
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the primary metrics of the experiment, a distance metric was also observed in experiment 

one. The figures for the distance metric are provided below. 

Figure 6. Progression of average distance. 

Figure 7. Heatmap of individual distances. 
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Additionally, the data used to produce the preceding figures had any missing 

values for the various sensor readings replaced with zero and standardized using the z-

score measurement. The standardization took place before any bucketing into time 

classes or aggregation into feature vectors. Explaining Figure 3, the point for class 1 

represents the averaged accuracy of linear SVMs trained on class one versus all other 

classes independently and scored against the training data. Figure 2 follows a similar 

pattern but is instead the average of the absolute average decision function results for 

each SVM trained in the one-versus-one scenarios. Different standardization techniques 

using z-score were also tested during the first experiment. One technique waited to 

standardize the data until the data aggregation step, meaning the data was only 

standardized within the feature vectors themselves. Additionally, the technique did not 

replace any missing values in the original dataset with zeroes until feature vector 

standardization. Another technique followed the similar pattern of standardizing feature 

vectors independently but allowed the emplacement of zeroes within the overall data 

before standardization. The effects of these techniques compared to the first are shown in 

the following figure. 
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Figure 8. Comparison of standardization techniques. 

Figure 8 highlights the effects of the different standardization techniques, but the 

study favored the use of the first technique, middle in the figure, and all ensuing results 

are shown with its adoption. However, different time granularities for classes were also 

tested. One granularity smaller and one larger than fifteen minutes were considered, the 

results follow: 

Figure 9. Comparison of time classes.  
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Just as with the first standardization technique adoption, the study favored the use 

of fifteen-minute classes going into the subsequent experiments. The second and third 

experiments have their results combined as the third is no more than the ranking of the 

second’s outputs. Echoing earlier sentiments, the following graphs show results of data 

standardized using the first technique mentioned and grouped into fifteen-minute classes 

with three-minute feature vector lengths. 

Experiment Two & Three: Feature Impacts on Temporal Trends 

Figure 10. Individual feature impacts on average decision values. 
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Figure 11. Individual feature impacts on average accuracy. 

Figure 12. Individual feature impacts on average distance. 
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produced by trained SVMs. Parallelly, Figure 11 shows the removal of the interpolated 

area covered feature had the largest effect on the average accuracy produced by trained 

SVMs. The results illustrate the effects of SVM classifiers on observing trends in 

temporal data. Discussing the interpretation of the results will hopefully offer insight into 

the usefulness of the experimental methods used in this study. 
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CHAPTER 6 

DISCUSSION 

Interpretation Context 

Fatigue research in radiology is not uncommon nor is the use of machine learning 

techniques in fatigue detection a rarity. However, the data used in this analysis represents 

a degree of novelty as the studies previously discussed have used data gathered in 

relatively controlled environments. To the best of the author’s knowledge this is the first-

time full shift gaze analysis and emotional data were recorded in live radiology readings. 

Furthermore, the use of an SVM classifier to observe temporal trends below the 

abstraction of fatigue and its occurrence in radiology readings is another relative novelty. 

The experiments done in this study showcase a potential procedure to be used in such an 

area. The results of which, as to be discussed here, carry interpretations that suggest a 

legitimacy of the novel perspectives of classifiers offered by this research. 

Given the data gathered by the study, could an inflection point be found where the 

data could be split into pre-fatigue and post-fatigue areas? Could the data help investigate 

the validity of H1? For such an investigation a means of deciphering differences in the 

data at-hand was required. However, the data was a multivariate time series, any 

difference had to be made with regards to time. Linear SVM classifiers were proposed as 

an avenue to decipher such temporal differences. SVMs look to create an optimal margin 

between different classes of data; it follows that the margin and other attributes of a 

trained SVM model could be viewed as differentiators. Specifically, if a margin can be 

formed between two classes that is smaller or larger than a margin between two other 

classes, then an interpretation of a difference between the classes exists. However, before 
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attempting to gain any interpretation from the margin or other attributes of an SVM, the 

data collected by the study had to be pre-processed to allow for such an interpretation to 

have meaning in a temporal setting. 

The multivariate time series’ of the study were grouped into classes representing a 

time granularity. Each recording session consisted of multiple fifty-minute recordings 

from which the multivariate time series’ were extracted. Any time granularity chosen to 

represent classes for the SVM thus acted as a filter for the temporal trends of the data. A 

granularity too high would effectively filter out the details of any temporal trend while a 

granularity too small would filter in an exhaustive amount of details. After testing several 

granularities, fifteen minutes were found to offer the relatively best perspective of 

temporal trends. Within each fifteen-minute interval, the data was aggregated into 

composite metrics at another time-based granularity. Again, other values for the length of 

the composite metric were tested before settling on a three-minute interval. The 

composite metrics chosen were as follows: the mean of anger, contempt, disgust, fear, 

joy, sadness, surprise, engagement, valence, left pupil diameter, right pupil diameter, 

gaze velocity, gaze acceleration, fixation duration, saccade amplitude, saccade peak 

velocity, and saccade peak acceleration, the variance of left pupil diameter, right pupil 

diameter, gaze velocity, gaze acceleration, fixation duration, saccade amplitude, saccade 

peak velocity, and saccade peak acceleration and lastly the interpolated area covered. The 

composite metrics were taken for every three-minute interval within a fifteen-minute 

class effectively creating five feature vectors for each instance of a fifteen-minute class. 

With data from four recording sessions, the longest of which containing seven fifty-

minute recordings, the classes ranged from label 1 to 28 (a fifty-minute recording 
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contains three full-length fifteen-minute classes followed by one class constituting the 

final five minutes). To observe the difference between classes, an SVM was trained for 

every unique combination of classes. From these trained SVMs the results shown in 

Figures 2 through 7 were obtained. 

Temporal Trend Interpretations 

Figure 2 shows the trend of average decision values across the different classes 

which themselves represent the passage of time. To illustrate a finer granularity of the 

trend in Figure 2, the heatmap in Figure 4 is provided. Figure 4 shows the average 

decision values for each case of unique class combinations. Figure 2 is no more than the 

column-wise averaging of the values in Figure 4. Each cell in Figure 4 is the averaged 

absolute sum of the decision function in Equation 3 computed against the training data 

used to train the particular SVM. The decision values in both Figure 2 and 4 can be 

interpreted as a form of distance from the hyperplane constructed by a linear SVM. An 

average decision value closer to zero can be seen as the training data existing with a 

higher closeness to their fitted hyperplane than training data whose averaged decision 

value is larger. Additionally, Equation 4 can used to relate decision values more closely 

to a distance measurement in a linear SVM. 

Equation 4 contains the decision function D and the feature weight vector w, both 

of which are provided by the Scikit-learn library. The decision function in Equation 4 can 

be drawn from Equation 3 while the feature weight vector is a provided attribute of the 

library’s SVM models. A heatmap using Equation 4 is given in Figure 7. Figure 7 shows 

the average distance of training samples from their hyperplanes using Equation 4. 

However, any value above twice the median has been masked with the highest degree of 
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heat. Following the same procedure for Figure 2, the graph in Figure 6 can be constructed 

to highlight the flow of average distances across the classes.  

Figure 6 shows the progression of the column-wise averages from Figure 7, class 

28 is left out as all distances of class 28 were above the double median threshold. Figures 

6 and 7 illustrate the distance between training samples and their hyperplanes allowing an 

interpretation of the differences between time classes. The higher a classes average 

distance to the hyperplane, the further spread out the data for each class is from each 

other. The higher spread, the greater degree of difference between classes. The 

progression of this difference can be used to shed light on the flow of more abstract 

variables such as fatigue. Both Figures 2 and 6 show the progression of class difference 

using different metrics, decision values and distance respectively, yet a structure is 

common between the two. Further, Figures 4 and 7 display a more concise supporting 

view of the structure. Fluctuations exist across the sequence of classes but a positive 

trend culminating in a large, rapid growth can be observed. Remembering the time-based 

nature of the classes, it can be assumed that the structure in the figures relates to a 

temporal pattern. As time moves forward, it can be postulated that the data is undergoing 

an increasingly differentiating phenomenon. The figures would suggest this phenomenon 

affects the data in such a way that an inflection may exist that can allude to the separation 

of the data into areas containing different degrees of differentiation. To corroborate the 

structure and interpretation of Figures 2, 4, 6, and 7, the study evaluated the accuracy of 

the trained models as seen in Figure 5.  

As with Figures 2 and 6, Figure 3 was constructed from the column-wise 

averaging of the values from Figure 5. However, in the case of viewing the flow of 
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accuracies in Figures 3 and 5, a different interpretation of relationships between classes 

can be reviewed. The accuracy evaluated is the amount of correctly predicted feature 

vectors given by feeding the training data into the trained SVM model. A higher accuracy 

denotes a decision function and hyperplane that can better separate the training data than 

a lower accuracy. In the case of observing temporal trends, a high accuracy is seen as two 

classes being dissimilar from each other whereas a low accuracy demonstrates similarity, 

or the inability of the SVM to construct a perfectly separating hyperplane given the 

allowed slack for the soft margin. In both cases, as with decision values and distance, 

accuracy can be used to evaluate the differentiation between time classes.  

Observing Figures 4 and 7 against Figure 5 reveals the similar, generally positive 

structure of the data. While distance and decision values grew as time progressed, 

accuracy increased as well. The outer edges of the heatmap grow in severity compared to 

the growth preceding them. The increase in distance and decision values demarcate data-

hyperplane separation, accuracy highlights the intermixing of data classes. The increase 

of accuracy suggests an increase in dissimilarity between later time classes. Yet despite 

the nuances in each perspective, both form a similar opinion of temporal trends. 

Therefore, in the case of this study, accuracy and distance contain a level of 

corresponding evidence for SVM-based temporal differentiation. The results from 

experiment one clearly offer a structure of data variables over time that suggests an 

abstract phenomenon. Thus, the evidence from the results can be used to support the 

claim of H1 in the existence of a classifier-based methodology that can detect temporal 

effects.  However, to better view the effects of individual data variables on the observed 
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structure and support H1’s claim of the methodology being applicable in multivariate 

space, the results from experiments two and three were gathered. 

Feature Impact Interpretations 

Figures 10 and 11 show the effects of different variables on their respective 

trends. However, only the unique combinations of class one with other classes were 

considered. Thus, the results represent the impact of variables on the relationships 

between the first fifteen-minute interval and every other interval. Figure 10 focuses on 

the difference of decision value trends. The figure suggests the variance in fixation 

duration and in saccade amplitude account for the two largest discrepancies in class one’s 

relationships with other classes. Particularly, the absence of the variables results in a 

trend of decision values that differs the most from the trend with their inclusion. To view 

the rankings according to the accuracy trend, Figure 11 is provided. Figure 11 instead 

proposes that the interpolated area covered and variance in gaze acceleration led to the 

two largest discrepancies in class one’s relationships with other classes. However, despite 

the opposing suggestions of the top two variables, an interestingly similar observation 

can be made across the two figures. Each figure places a higher number of gaze related 

metrics towards higher degrees of impact than facial related metrics. Some facial metrics 

such as mean anger and engagement are given similar levels of impact but the general 

favoring of gaze over facial variables remain. Viewing Figure 12 for the rankings 

according to distance trends also supports the observation. 

The interpretation of this observation leads to a belief that gaze features are 

impacted by the abstract phenomenon from experiment one more heavily than facial 

features. However, this impact itself is miniscule as the differences shown in Figures 10, 
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11, and 12 are themselves tiny. Nonetheless, the relationship between the individual 

effects of different variables provides an interesting set of observations compounded with 

those from experiment one. The abstract phenomenon is manipulating the data across the 

flow of time with a positive trend. However, positive in the case of the metrics reviewed 

in experiment one corresponds to a greater difference or isolation of classes. The increase 

in isolation matches a hypothetical progression of fatigue; as time progresses, fatigue 

becomes more severe. A stronger involvement of fatigue should then impact the overall 

state of an individual adversely. Specifically, the state of a person with maximum fatigue 

should be extremely differentiable from the state exhibiting average fatigue. The severity 

of fatigue can be a possible explanation of the increase in the isolation of time classes 

observed in experiment one; a positive trend should exist as fatigue isolates the state of 

an individual further away from preceding states. However, fatigue itself is extremely 

hard to define; more confidently, the structure of results from experiment one suggests a 

manipulation by some abstract phenomenon that may be fatigue related. No claim is 

made that fatigue is the direct cause of the manipulation, but the claim is made that an 

increasingly differentiating, temporal manipulation can be observed using SVM 

classifiers.  

The results shown and experiments discussed have been garnered from the 

complete concatenation of all data gathered. However, another application of the 

experiments was done on the data separated into their respective subjects. Two subjects 

participated in the data gathering and the results of their individual analyses can be found 

in the appendix. Regardless, the study focused on analyzing the full set of data and offers 

the individual subject results as an aside. 
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Methodology Interpretations 

Returning to the question of finding an inflection point where the data can be split 

into pre-fatigue and post-fatigue areas with the results from the experiments evokes 

confidence. Confidence not in the concrete solution to the problem, but confidence in the 

methodologies of the study in serving as a steppingstone towards a solution. The results 

clearly show a structure of data, in multiple evaluation metrics, that follows a trend one 

would believe is manipulated by fatigue. Fatigue should increase over time and adversely 

affect the state of an individual. The results from experiment one do show a separation of 

the state of variables as time progresses. The results from experiment two and three offer 

insight as to the nature of those variables on their shared state across time. However, 

despite these promising observations, this study does not claim to have defined fatigue or 

the exact location of an inflection point that defines a state change of fatigue. The study 

offers the observations as justification for the use of SVM classifiers in the analysis of 

temporal trends and inflection points. Such a use, as seen on the data from the study, has 

potential in the realm of fatigue. The results produced by the study vindicate the 

methodology outlined, granting firm supporting evidence for H1. Further, the 

experiments were done without any direct coupling to the radiology setting outside of the 

data gathered therefore allowing the methodologies of this study to be applied to fatigue 

analysis in other areas. 



  37 

CHAPTER 7 

CONCLUDING REMARKS 

Conclusion 

The study set out to analyze the complex trend of fatigue against the claims of H1 

a level lower than similar studies. Machine learning fatigue identifiers have been studied 

that can detect a state of fatigue. The state of fatigue in these studies consist of metrics 

from both gaze and facial features. However, the detection is static with regard to time; 

the state of an individual is either marked as fatigued or not fatigued. Delving a level 

lower than a binary classification of fatigue led to this study contemplating the 

identification of fatigue dynamically with time. The main question drawn from such 

contemplation was the location of an inflection point in the progression of time that could 

demarcate pre-fatigue and post-fatigue areas. To explore the question, a novel 

arrangement of data was proposed that could be used in a novel application of a 

contemporary machine learning classifier, SVM. Instead of viewing feature vectors as 

determinants of a static state of fatigue, feature vectors were viewed as malleable 

constructs existing in different frames of time. Using the nature of SVM classifiers to 

construct optimal margins, the manipulation of these time-anchored constructs could be 

observed. The observations of which could be extrapolated to the manipulation by an 

abstract phenomenon such as fatigue. The results of the study suggest such a 

manipulation on both the structure of the frames of time as well as the features within 

them. The study is confident with the use of SVM classifiers to evaluate temporal trends 

in a multivariate space and is hopeful the procedure outlined in the paper offers a 

potential boon in the further study of fatigue identification in radiology and elsewhere. 
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Future Work 

The ability to use an SVM classifier to differentiate between temporal areas is a 

prospective method to decipher fatigue. Although machine learning methods have been 

used as identifiers of fatigue, the use of SVMs in this study are more suited for the 

analysis of temporal trends in the search for an inflection point. Although this study did 

not aim to directly find such an inflection point, the methods described in the experiments 

can be used as inspiration in the definite search of an inflection point. Upon finding the 

inflection point, a classifier or other machine learning models could be constructed and 

use the knowledge of inflection to help monitor the temporal progression of fatigue. 

Additionally, as the study gathered data in a real-world, unconstrained setting, the 

experimental procedure outlined can serve as an extendable baseline for conducting 

studies in similar settings. 

Limitations 

 Several limitations exist throughout the results produced by the study. The data 

itself is noisy and sparse. Sparsity arises from the unconstrained nature of the study 

where recordings may be ongoing, but the subjects may leave the recording area or orient 

themselves away from the cameras. Additionally, noise is apparent in the data from its 

processed nature. The data is derived from third party software, iMotions and Tobii, 

whose accuracy cannot be completely guaranteed by the study. The facial expression and 

some gaze variables are produced by iMotions calculations and are not validated by the 

study. Further, Tobii requires gaze calibrations of subjects which again cannot have their 

accuracy guaranteed by the study. Gaze calibrations were taken at the beginning of 
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recording sessions and were not repeated for the rest of the session leading to another 

source of noise. 

 Parallelly, the data was also limited. Only two recording sessions from two 

radiologists each were gathered totaling to about twenty-three hours of recording. The 

data is then limited in its number of subjects and the amount of data obtained from each. 

Thus, the reliability of the results leaves much room for improvement. The results are not 

generalizable and better serve as a proof of concept for future work. 
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Subject 1: 

Figure A1. Progression of average decision values for subject 1. 

 

Figure A2. Progression of average accuracy for subject 1.  
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Figure A3. Individual feature impacts on average decision values for subject 1. 

 

 

 

Figure A4. Individual feature impacts on average accuracy for subject 1. 
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Subject 2: 

Figure A5. Progression of average decision values for subject 2. 

 

Figure A6. Progression of average accuracy for subject 2. 
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Figure A7. Individual feature impacts on average decision values for subject 2. 

 

 

Figure A8. Individual feature impacts on average accuracy for subject 2. 
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