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ABSTRACT

Robot motion and control remains a complex problem both in general and in

the field of machine learning (ML). Without ML approaches, robot controllers are

typically designed manually, which can take considerable time, generally requiring

accounting for a range of edge cases and often producing models highly constrained

to specific tasks. ML can decrease the time it takes to create a model while simulta-

neously allowing it to operate on a broader range of tasks. The utilization of neural

networks to learn from demonstration is, in particular, an approach with growing

popularity due to its potential to quickly fit the parameters of a model to mimic

training data.

Many such neural networks, especially in the realm of transformer-based archi-

tectures, act more as planners, taking in an initial context and then generating a

sequence from that context one step at a time. Others hybridize the approach, pre-

dicting a latent plan and conditioning immediate actions on that plan. Such ap-

proaches may limit a model’s ability to interact with a dynamic environment, need-

ing to replan to fully update its understanding of the environmental context. In this

thesis, Language-commanded Scene-aware Action Response (LanSAR) is proposed as

a reactive transformer-based neural network that makes immediate decisions based

on previous actions and environmental changes. Its actions are further conditioned

on a language command, serving as a control mechanism while also narrowing the

distribution of possible actions around this command. It is shown that LanSAR suc-

cessfully learns a strong representation of multimodal visual and spatial input, and

learns reasonable motions in relation to most language commands. It is also shown

that LanSAR can struggle with both the accuracy of motions and understanding the

specific semantics of language commands.
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Chapter 1

INTRODUCTION

Learning from demonstration (LfD) has become a pivotal methodology in the field

of robotics, allowing a model to learn the motions and actions required to accomplish

tasks via observation of real or simulated tasks. In the context of robot arm control,

a model would learn the intricate motions required to execute tasks and manipulate

objects in a range of scenarios, as opposed to needing to be directly programmed with

such actions, which often results in a model constrained to highly specific tasks. As

such, with sufficient data and sufficient architecture, a more flexible model can be

created in substantially less time.

In more recent years, the integration of transformer architectures into the domain

of LfD has shown great promise in the field of robotics. Originally developed for

natural language processing (NLP) by Vaswani et al. (2017), transformers are deep

learning models that are capable of learning long-term dependencies of sequential data

in parallel by leveraging self-attention mechanisms, making them ideal candidates for

interpreting temporal sequences.

NLP, in particular, has been an area of interest in the field of robotics, with the

goal of utilizing machine learning to train robots to perform tasks conditioned on

natural language commands. Not only can language commands provide a simple way

of directing a robot to perform a task, but they can also assist in the learning routine

by constraining a model’s otherwise large action space to a more limited distribution

of actions corresponding to the specified command. This, in turn, can aid in allowing

a model to learn a wide range of possible tasks rather than focusing on a specific task

at a time.
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Learning to map a complex array of multimodal input data, such as visual and

spatial information, to actions is not a simple task, hence LfD being an ongoing area

of research in robotics. This thesis will discuss an approach for attempting to solve

this problem via the utilization of LanSAR, a multimodal transformer architecture

that is capable of generating motion based on a language command such as, “open

the drawer,” a history of previous actions, and changes in the environment over time.

The output action space of LanSAR consists of 3D position and orientation deltas, as

well as a binary gripper action. Chapter 2 will provide further details on the specifics

of general transformer networks. Chapter 3 will discuss the architecture and imple-

mentation of LanSAR. Chapter 4 will detail all materials and methodologies used

to train and evaluate LanSAR. Chapter 5 will detail the results of the experiments

described in chapter 4. Chapter 6 will analyze and discuss the results of these exper-

iments, detailing the reasons LanSAR performs at the level it does, and then discuss

the future potential of this model and its architecture.

1.1 Related Works

There have been numerous approaches to modeling motion in the field of machine

learning, especially in relation to NLP. Lynch and Sermanet (2021) propose Multi-

context imitation learning (MCIL), which predicts robot motion based on perceptual

data and a latent plan formed from the same perceptual information as well as a

language goal. Mees et al. (2022a) extend MCIL with Hierarchical Universal Language

Conditioned Policies (HULC), which incorporates gripper image data and attempts to

address the issue of similar language encodings for similar commands via a contrastive

learning approach. Both architectures act as hybridized planners, in which real-time

decisions are made based on their latent plans and perceptual information. This

lessens the potential for error that pure planner-based models face but, if the latent
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plan is suboptimal, then immediate decisions conditioned on this plan may also be

suboptimal until the model replans.

Moving away from the MCIL line of robot motion models, Wu et al. (2023) propose

GR-1, a transformer architecture that is pre-trained with a large motion dataset before

being fine-tuned on a task-specific dataset, and is capable of jointly generating both

visual data and robot motion. GR-1’s performance is impressive but hinges on a

two-phase training routine, each with its own set of hyperparameters, with additional

complexity due to its image-generative auxiliary task.

Ke et al. (2024) leverage a diffusion approach with 3D Diffuser Actor, which jointly

learns a 3D representation of a scene and learns to diffuse noisy predictions of robot

motion into a smooth trajectory. Zhang et al. (2024) propose Language Control Dif-

fusion (LCD), a model that acts similarly to MCIL, generating a latent plan, but then

also employs diffusion techniques to denoise the plan before making a final motion

prediction. While performant, diffusion models can introduce additional complexity

to the problem in the form of determining optimal noise sampling techniques and

denoising iterations, as opposed to directly modeling trajectory dependencies.

Other approaches such as Zhou et al. (2024) and Driess et al. (2023) try to sep-

arate robot control into different levels of policies, with the former leveraging large

language models (LLMs) to generate high-level plans which are then used to condi-

tion a low-level motion policy. The latter jointly learns an intermediate policy for

specific skills such as “rotation,” “transportation,” and, “grasping,” and executes a

low-level policy based on the selected skill. Mees et al. (2023) extend MCIL and

HULC yet further with HULC++, which learns a high-level affordance policy that

estimates a goal location and moves the robot arm to the general desired location

before letting a learned low-level policy perform the more precise interactions needed.

This hierarchical separation of policies can potentially yield highly performant results

3



but suffers from a similar issue as hybridized planner models, in which suboptimal

high-level policies can negatively impact low-level policies.

While not intended to solve robot motion, Seff et al. (2023) propose MotionLM,

which closely aligns with LanSAR’s architecture via its utilization of transformer

architectures to encode spatial and temporal data. MotionLM encodes spatial and

environment information using a permutation invariant set transformer (Lee et al.,

2019), which can learn a holistic encoding representing an unordered sequence of

data and uses this encoding as the memory sequence to the transformer’s decoder to

predict a horizon of future states for agents in a scene by outputting a discretized

set of motion deltas. While MotionLM demonstrates strong predictive capabilities,

discretizing the action space inherently decreases the granularity of information.

Also unintended for robot motion, Zhou et al. (2019) propose Swarmnet, which

attempts to solve a similar problem of predicting motion based on spatiotemporal

information, in this case for a multiagent scenario. Swarmnet first encodes a window

of temporal information using 1D convolutions. It then leverages a graph neural

network (GNN) to encode unordered spatial information by modeling the temporal

encodings of agents as nodes in a graph and their interactions as edges. Swarmnet

demonstrates a strong capability in understanding spatial relationships but struggled

to learn long-term motion dynamics, requiring a curriculum learning routine that

substantially increased training time.

LanSAR aims to act entirely as a low-level reactive policy, with the goal of mak-

ing real-time decisions in continuous space based on its current state and previous

states, immediate and previous perceptual information, and a language command,

potentially avoiding the issues of plan-based and hierarchical models. LanSAR can

also be easily trained with a single-phase routine and a fairly small amount of data,

simply minimizing motion and gripper action losses for each step of training.

4



Chapter 2

TRANSFORMER ARCHITECTURE

This chapter serves to provide an in-depth overview of transformer models, closely

following the implementation and theoretical concepts introduced by Vaswani et al.

(2017). LanSAR is fundamentally a transformer architecture, thus understanding

transformers is essential to understanding LanSAR’s implementation and learning

dynamics. Readers who are familiar with encoders, decoders, and attention mecha-

nisms may move on to chapter 3, where the implementation of LanSAR’s architecture

is defined.

2.1 Transformer Overview

Transformers, at their most basic level, typically consist of an encoder and decoder

network, the former of which takes in an input sequence and the latter of which takes

in a target sequence, both of which are usually sequences of high-dimensional, latent

features projected from lower dimensionality via either embedding or linear layers.

Positional encodings are added to preserve a sense of order in the sequence, which

the transformer does not otherwise account for. A general example of a transformer

architecture can be seen in figure 2.1.

2.2 Encoder

Each encoder layer consists of a self-attention mechanism and a feed-forward net-

work. Given an input sequence X consisting of [x1, x2, . . . , xn] where each xi is a

continuous value or discrete token, these values are first projected to a higher dimen-

sional space via either linear layer(s) in the case of continuous values or an embedding
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Figure 2.1: Example of General Transformer Architecture with a Stack of N Encoder

Layers and N Decoder Layers.

layer in the case of discrete values.

Xproj = Einput(X) (2.1)

A positional encoding pi is computed via an embedding layer for each index in the

sequence of length N and then added to the projected values in the sequence.

P input = [P input
emb (i), i ∈ {0, 1, ..., n− 1}] (2.2)

Xenc = [xproj
i + pinputi , i ∈ {0, 1, ..., n− 1}] (2.3)

6



Figure 2.2: Transformer Encoder Layer Visualization

Self-attention is utilized on the full sequence Xenc by projecting it to a query Q, key

K, and value V via learnable linear transformations.

Q = Qinput
L (Xenc) (2.4)

K = K input
L (Xenc) (2.5)

V = V input
L (Xenc) (2.6)

The attention for attention head hi is calculated as,

hi = softmax

(
QKT

√
dk

)
V (2.7)

where
√
dk is the dimensionality of the key vectors. QKT

√
dk

, after normalization, pro-

duces a matrix of attention weights, where each row corresponds to a query and each

column corresponds to a key. The value at each position in the matrix represents the

importance that the query (row) places on the corresponding key (column). These

values serve as weights representing the extent to which the keys in the sequence will

contribute to the output at the respective query’s position, providing a contextual

7



relationship across the entire sequence. This matrix is multiplied by the value matrix

V , which produces the weighted output for a given attention head. Multiple attention

heads are used to allow the attention mechanism to focus on different relationships in

the sequence and the outputs of each attention head are concatenated prior to using

another linear function to produce the final attention output.

Ainput = Ainput
L (concat(h0, h1, . . . , hh−1)) (2.8)

This output is added to the original input as a residual connection to help gradients

better flow during training.

Xenc = layernorm(Xenc + Ainput) (2.9)

This is then sent through a feed-forward neural network, typically set of two lin-

ear transformations with a nonlinear activation, and added as yet another residual

connection before being normalized again.

Xenc = layernorm(Xenc + Finput(X
enc)) (2.10)

An example of an encoder layer can be seen in figure 2.2.

2.3 Decoder

As with the encoder, the positional encodings are added to the input to the de-

coder, denoted as the target sequence T = [t0, t1, . . . , tn−1]. Typically, separate linear

functions or embedding layers are used for the target sequence from the input se-

quence.

T proj = Etarget(T ) (2.11)

P target = [P target
emb (i), i ∈ {0, 1, ..., n− 1}] (2.12)

8



Figure 2.3: Transformer Decoder Layer Visualization

T enc = [tproji + ptargeti , i ∈ {0, 1, ..., n− 1}] (2.13)

The decoder, visualized in figure 2.3, primarily differs from the encoder in that it

introduces a cross-attention mechanism that utilizes the output from the encoder as

a “memory” sequence, allowing the decoder to attend to both the target and encoded

input sequence simultaneously. The process begins similarly with a self-attention

layer using the target sequence as its input.

Q = Qtarget
L1

(T enc) (2.14)

K = Ktarget
L (T enc) (2.15)

V = V target
L (T enc) (2.16)

hi = softmax

(
QKT

√
dk

)
V (2.17)

Atarget1 = Atarget
L1

(concat(h0h1, . . . , hh−1)) (2.18)

T enc = layernorm(T enc + Atarget1) (2.19)

9



From here, cross-attention is utilized between the memory sequence from the encoder

and the output from the decoder’s self-attention layer. In this case, the target is

projected to serve as the queries while the memory is projected to serve as the keys

and values.

Q = Qtarget
L2

(T enc) (2.20)

K = Kmemory
L (Xenc) (2.21)

V = V memory
L (Xenc) (2.22)

hi = softmax

(
QKT

√
dk

)
V (2.23)

The remainder of the decoder effectively functions identically to the encoder.

Atarget2 = Atarget
L2

(concat(h1, h2, . . . , hn)) (2.24)

T enc = layernorm(T enc + Atarget2) (2.25)

T enc = layernorm(T enc + Ftarget(T )
enc) (2.26)

In this thesis, PyTorch’s (Paszke et al., 2019) encoder and decoder implementa-

tions are used, which closely follow the architecture of Vaswani et al. (2017) while

allowing the use of the library’s performance optimizations and flexibility.
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Chapter 3

LANGUAGE-COMMANDED SCENE-AWARE ACTION RESPONSE

LanSAR specifically aims to operate on simulated data of a robot actuator per-

forming a variety of tasks on a desk, such as moving blocks in a number of different

ways, opening drawers, and pressing buttons, all aligned with a given natural lan-

guage command. These otherwise simple tasks require accurate and intricate motions,

which means the problem of mapping the language command and other input data

to an action is nontrivial.

The overall problem can be summarized as a function approximating a mapping

from a command C, sequence of robot states X, block states B, miscellaneous scene

information S, static image data I, and gripper image data G, to an end effector delta

position ∆p, delta orientation ∆o, and gripper action A. The miscellaneous scene

information consists of drawer, slider, and button hinge states, as well as binary light

states.

∆p,∆o, A = F (C,X,B, S, I,G) (3.1)

3.1 Model

In this section, a high-level overview of the input data and the approach for

modeling the approximation of the aforementioned function is described.

3.1.1 Inputs

At the highest level, LanSAR takes in a sequence of multimodal perceptual infor-

mation and robot states, and a corresponding language command. This multimodal

perceptual information includes the images, block states, miscellaneous scene informa-
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tion, and robot states. Images consist of RGB images from both a global perspective

and the perspective of a robot arm’s end effector. The block states consist of the

3D position and orientation of a red, blue, and pink block. The miscellaneous scene

information consists of the joint states of a drawer, sliding door, button, and lever, as

well as the binary states of two lights. The robot positions consist of the 3D position

and orientation of the end effector, the joint states of the arm, and the joint state of

the gripper.

3.1.2 Architecture Overview

LanSAR, seen in figure 3.1, utilizes a pre-trained CLIP module, a multimodal

transformer-based model introduced by Radford et al. (2021) jointly trained to un-

derstand both images and text. It also consists of a series of multilayer perceptrons

(MLPs) for projecting all input modalities to the same dimensionality, a context en-

coder, a motion decoder, and two output MLPs. The context encoder generates a

holistic representation of multimodal contextual information, the motion decoder uti-

lizes this context in tandem with previous robot states and conditions on a language

command to predict a latent action, which is decoded into an executable motion and

gripper action via the two output heads.

3.1.3 Input Layers

A temporal sequence of images and a corresponding language command are first

pre-encoded utilizing CLIP. These precomputed encodings, agent states (3D posi-

tion, orientation, joint states, binary gripper action), block states (3D position, ori-

entation), and miscellaneous scene information are all projected to the transformer’s

expected dimensionality via MLPs.

Cclip = CLIP(C) (3.2)
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Figure 3.1: LanSAR Architecture Overview

Iclip = CLIP(I) (3.3)

Gclip = CLIP(G) (3.4)

C input = M input
c (Cclip) (3.5)

Ctarget = M target
c (Cclip) (3.6)

I input = MI(I
clip) (3.7)

Ginput = Mg(G
clip) (3.8)

Binput = Mb(B) (3.9)

Sinput = Mh(S) (3.10)

X input = M input
x (X) (3.11)

Xtarget = M target
x (X) (3.12)
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3.1.4 Context Encoder

The context encoder is intended to learn a holistic encoding of a multimodal

sequence, providing a condensed but rich representation of the environment. For a

given timestep i, a sequence R is formed from the projected context information

[X input, Binput
red , Binput

blue , Binput
pink , Sinput, I input, Ginput], with the overall input being a 3D

matrix of shape (temporal length n, context length k = 7, hidden size h), not counting

the batch dimension. Seff et al. (2023) used a set transformer to learn a holistic

representation of relative agent states, but set transformers are permutation invariant.

In the problem that paper approached, the information had no need to be ordered

since their model was predicting a horizon of future timesteps based on a uniform

representation of relative states between different agents. In the case of LanSAR, the

order of context information has some importance, with each index in the context

sequence representing a different modality. To account for this difference, LanSAR

takes inspiration from Devlin et al. (2019), in which the embedding for a [CLS] token

is prepended to the sequence. Figure 3.2 provides additional visual clarity on the

context encoder’s input.

R = [CLS, X input, Binput
red , Binput

blue , Binput
pink , Sinput, I input, Ginput] (3.13)

Positional encodings are then added to each value at the corresponding index in the

new context sequence as a way to represent the different modalities.

P context = [P context
emb (i), i ∈ {0, 1, ..., 7}] (3.14)

R = [ri + pcontexti , i ∈ {0, 1, ..., 7}] (3.15)

The output corresponding to the [CLS] token is taken as the encoding of the entire

context sequence. The decision to follow this methodology was so the encoder could
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Figure 3.2: Context Sequence Visualization

directly learn a holistic representation of the sequence rather than forcing it to learn

based on an arbitrary pooling of the output sequence.

E = ENCODER(R) (3.16)

The context encoder follows a conventional multilayer encoder architecture as

described in figure 2.1 and figure 2.2, with its final output being a sequence E, where

the context dimension is condensed to a single value, resulting in a 2D matrix of

shape (n, h), again not counting the batch dimension.

3.1.5 Motion Decoder

The motion decoder is intended to predict an immediate, one-step action based

on both immediate and past environmental contexts and robot states, possessing

memory of how the environment has changed over time to determine the next most

optimal action. The output of the encoder is interleaved with the input projection of

the natural language command Cinput, resulting in the sequence

M = [C input, E0, C
input, E1, ..., C

input, En−1] (3.17)

which is used as the memory sequence for the decoder. Similarly, the target sequence

is constructed by interleaving the target projection of the natural language command
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with the target projection of the agent states.

T = [Ctarget, Xtarget
0 , Ctarget, Xtarget

1 , ..., Ctarget, Xtarget
n−1 ] (3.18)

The command is interleaved to help reinforce the decoder in understanding the re-

lation between the command and the robot motion. Other experiments that involved

only prepending the command to the sequence resulted in deteriorated performance.

The memory and target sequence both have positional encodings added before

being causally masked and sent through the decoder, which similarly follows the

conventional multilayer decoder architecture as described in figure 2.1 and figure 2.3.

P input = [P input
emb (i), i ∈ {0, 1, ..., (n− 1) ∗ 2}] (3.19)

M = [mi + pinputi , i ∈ {0, 1, ..., (n− 1) ∗ 2}] (3.20)

P target = [P target
emb (i), i ∈ {0, 1, ..., (n− 1) ∗ 2}] (3.21)

T = [ti + ptargeti , i ∈ {0, 1, ..., (n− 1) ∗ 2}] (3.22)

D = DECODER(T,M) (3.23)

3.1.6 Output Layers

The values at odd indices of the decoder’s output, which correspond to positional

values in the interleaved sequence, are extracted

P = [di | i is odd, i ∈ {1, 2, ..., (n− 1) ∗ 2}] (3.24)

and sent through two separate MLP heads to decode the final outputs.

∆p,∆o = Mmotion(P ) (3.25)

A = Mgripper(P ) (3.26)
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Chapter 4

MATERIALS & METHODS

This chapter intends to provide details on the methodologies and resources used

for both training and evaluating LanSAR. Information on the dataset and training

routine are provided in detail, followed by information on the methods of evaluating

model performance. Ablation experiments will be discussed to better understand

the learning dynamics of LanSAR. Other approaches to this problem will then be

discussed for the sake of comparison. Lastly, the methodology for examining the

model’s ability to robustly account for its own errors will be provided.

4.1 Dataset

The CALVIN dataset (Mees et al., 2022b) consists of language-annotated, simu-

lated demonstrations of robot actuator tasks. CALVIN was created specifically for

the training and evaluation of long-horizon continuous motion tasks conditioned on

language commands. The dataset was recorded from VR teleoperation in a variety

of simulated environments, simply labeled, “A,” “B,” “C,” and, “D,” where users

were told to interact with the environment without dropping any objects off the desk.

Short horizons of this teleoperation data were taken and labeled with a language

command based on the action performed by the teleoperator during that window.

This data is otherwise unstructured such that the dataset is robust, covering as much

of the state space as possible, starting from various points in time for the language

tasks.

The CALVIN simulation environments are each different but maintain a similar

structure. Each environment consists of a desk of a different color, texture, and
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Figure 4.1: CALVIN Environment D

layout, but the same objects can be found in each environment. All environments

contain a switch for toggling a light bulb, a button for toggling an LED light, a sliding

door that moves to the left and right, and a drawer that can be opened and closed.

The initial state of all interactable objects is random. All environments contain a

blue, pink, and red block placed at a random but structured, accessible location. An

example scenario for environment D can be seen in figure 4.1.

This dataset consists of multiple splits of data, but for the sake of this thesis, sepa-

rate LanSAR models will be trained and validated on the “A,B,C→ D” and “A,B,C,D

→ D” splits. The former contains 17,870 short-horizon, language-annotated demon-

strations split across environments A, B, and C. The latter contains 22,994 demon-

strations, now including environment D. Each demonstration consists of a sequence

of at most 64 timesteps. The validation set for both data splits consists of 1,087

demonstrations on environment D. Outside of simply containing a different number

of training samples, the primary difference in the datasets is that the former has a

more difficult goal of generalizing to an unseen environment.
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The dataset contains 34 categories of tasks, with each category having multiple

examples that may have different language annotations for each, some of which are

shown in table 4.1.

Task Example Commands

lift red block drawer pick up the red block lying in the drawer; lift the red block lying

in the drawer

turn off lightbulb push the switch downwards; move down the switch

move slider left slide the door to the left; move the sliding door to the left

open drawer open the drawer; grasp the drawer handle, then open it

turn on lightbulb turn on the yellow lamp; toggle the light switch to turn on the

yellow light

place in drawer place the grasped object in the drawer; put the grasped object in

the drawer

lift pink block drawer go towards the pink block in the drawer and pick it up; lift the

pink block lying in the drawer

rotate red block right grasp the red block and turn it right; take the red block and

rotate it right

rotate pink block right grasp the pink block and turn it right; grasp the pink block, then

rotate it right

turn off led turn off the green light; push down the button to turn off the

green light

turn on led toggle the button to turn on the led; push the button to turn on

the green light

lift red block slider lift the red block lying on the shelf; lift the red block lying in the

cabinet

place in slider put the block in the slider; place the grasped object in the sliding

cabinet

rotate blue block left rotate the blue block to the left; rotate left the blue block

push pink block left push left the pink block; push the pink block towards the left

unstack block remove the top block; take off the stacked block
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lift red block table lift the red block; lift the red block from the table

move slider right slide the door to the right side; grasp the door handle and slide

the door to the right

lift blue block table grasp the blue block and lift it up; grasp the blue block on the

table, then lift it up

lift blue block slider grasp the blue block lying in the cabinet; in the slider pick up the

blue block

push into drawer push the object into the drawer; sweep the block into the drawer

lift pink block slider grasp the pink block lying in the cabinet; in the cabinet grasp the

pink block

lift blue block drawer grasp the blue block in the drawer; go towards the blue block in

the drawer and lift it

stack block stack the object on top of another object; place the block on top

of another block

rotate red block left take the red block and turn it left; grasp the red block and turn

it left

close drawer close the drawer; grasp the drawer handle, then close it

push blue block left slide left the blue block; push the blue block towards the left

rotate blue block right take the blue block and rotate it right; rotate right the blue block

lift pink block table lift the pink block up; grasp the pink block on the table and lift

it up

rotate pink block left take the pink block and rotate it left; take the pink block and

turn it left

push blue block right go slide the blue block to the right; slide the blue block towards

the right

push pink block right push the pink block to the right; go slide the pink block to the

right

push red block left push the red block towards the left; slide the red block towards

the left
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push red block right sweep the red block to the right; slide the red block towards the

right

Table 4.1: All Tasks Categories with Example Commands

4.2 Training

LanSAR is trained by first randomly initializing its parameters via Xavier uniform

initialization (Glorot and Bengio, 2010), which can aid in preventing training failures

via vanishing or exploding gradients, an issue in which gradients begin to either

approach 0 or become extremely large, by keeping the variance of the inputs and

outputs consistent. Each weight for a layer is sampled from a uniform distribution

between a range calculated from the number of input and output features for that

layer.

wL
i ∼ U(−a, a) (4.1)

a =

√
6

inL + outL
(4.2)

The 22,994 example tasks from the A,B,C,D → D dataset are split into batches of

96, with padding added to allow a uniform maximum sequence length of 64, resulting

in a total of 240 training batches. The 1,087 examples from the D split are utilized

for validation. Due to the number of training batches, validation and training are

desynchronized such that validation occurs every 25 steps of training rather than after

a full epoch of training.

The loss function consists of a composite smooth L1 loss taken directly on motion

deltas and a binary cross-entropy loss on gripper actions.

L∆
a =

1

N

N−1∑
i=0


0.5

(
∆pred

a,i −∆true
a,i

)2

/β, if
∣∣∣∆pred

a,i −∆true
a,i

∣∣∣ < β∣∣∣∆pred
a,i −∆true

a,i

∣∣∣− 0.5β, otherwise

(4.3)
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L∆
o =

1

N

N−1∑
i=0


0.5

(
∆pred

o,i −∆true
o,i

)2

/β, if
∣∣∣∆pred

o,i −∆true
o,i

∣∣∣ < β∣∣∣∆pred
o,i −∆true

o,i

∣∣∣− 0.5β, otherwise

(4.4)

La = − 1

N

N−1∑
i=0

[
Atrue

i log(Apred
i ) + (1− Atrue

i ) log(1− Apred
i )

]
(4.5)

L = L∆
p + L∆

o + La (4.6)

The choice to use smooth L1 loss instead of mean squared error (MSE) or root mean

squared error (RMSE) is due to the latter two proving highly susceptible to orientation

errors, easily spiraling out of control at inference time. Utilizing mean absolute error

(MAE) for larger errors and MSE for smaller errors based on a threshold β resulted

in a model capable of far more refined movements at the cost of failing to adequately

learn rotation for certain tasks at higher thresholds of β. Lowering this threshold

to behave closer to MAE did result in rotation being learned but also resulted in a

decrease in motion delta accuracy. In the case of the best model, β was set to 0.1,

which resulted in a significantly higher percentage of tasks being accomplished.

Linear decay was used for the learning rate scheduler, starting at a maximum

learning rate of 4e-4 after a warmup of 5 epochs and decreasing to a minimum learning

rate of 0. AdamW was used as the optimizer with a weight decay of 0.01. For

additional regularization, a dropout rate of 0.1 was employed. Standard scaling was

used for end effector position and orientation, robot joint states, drawer joint states,

sliding door joint states, and end effector deltas. Thus, any single input feature xi is

scaled as

xscaled
i =

xi − µi

σi

(4.7)

Standard scaling was selected in place of min-max scaling, in which values are

scaled between a given range based on the minimum and maximum values of features

in the dataset, as min-max scaling resulted in highly unstable training that failed to
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Hyperparameter Value

Transformer Hidden Size 512

Context Encoder Layers 6

Context Encoder Heads 16

Motion Decoder Layers 6

Motion Decoder Heads 6

Maximum Sequence Length 64

Dropout 0.1

Smooth L1 β 0.1

Batch Size 96

Optimizer AdamW

Scheduler Linear Decay

Starting Learning Rate 4e-4

Final Learning Rate 0

Weight Decay 0.01

Epochs 125

Table 4.2: Model Hyperparameters

learn any meaningful mapping from input to output. The same held true when no

scaling was applied.

Table 4.2 provides a complete breakdown of all training and model hyperparam-

eters.

23



4.3 Evaluation

4.3.1 CALVIN Challenge

Performance will be evaluated on the CALVIN Long-Horizon Multi-Task Language

Control (LH-MTLC) challenge. This challenge involves testing a model in a variety

of procedurally generated, simulated environments. The CALVIN simulation is built

atop PyBullet (Coumans and Bai, 2016), a Python module for physics and robotics

simulation. This environment utilizes environment D as the base environment, the

same as with the data in the validation split. The simulator provides a Python

interface for accessing all of the necessary data, including RGB static camera images,

RGB gripper camera images, robot end effector position and orientation, robot joint

states, and any other required information. The simulator requires a custom class

and inference function to be written to interact with custom models. The simulation

is otherwise set to utilize the default values of 360 timesteps per task with 1,000

total test sequences. Tests consist of a chain of tasks, in which the model has the

aforementioned 360 timesteps to accomplish the current task before moving on to the

next task. If the model fails to complete a task, all subsequent tasks in the chain are

also considered to be failed. The commands and objects are generated such that no

task in the chain should be impossible to complete. The overall goal of this challenge

is to test the robustness of a model in not only handling unseen manipulation tasks

but a series of them in a row, with each in the chain starting where the previous task

was completed.

The inference function was written such that the required inputs described in sec-

tion 3.1.3 and figure 3.1 are retrieved from the simulation and scaled to the expected

input scale. The model tracks a window of history, appending new information up to

a sequence length of 64, then incorporates a sliding window if the length exceeds this
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amount, allowing the model to track a continuous history without extending beyond

sequence lengths seen during training. Every 120 timesteps, the model is allowed to

clear its history, which aids in the case where the model occasionally gets stuck in a

loop of repetitious motions or if it gets “distracted” by a task misaligned with the

language goal. Predicted deltas are scaled back up to the original state space, and the

positional deltas and z-axis orientation delta are multiplied by an additional scaling

factor. This positional delta scaling factor starts at 3 and is gradually reduced to 2

as the model’s history sequence approaches a length of 64:

scale = 3− historycurrent
64

(4.8)

The z-axis is scaled by a constant factor of 1.5. All deltas are then added to the

previous state, giving the final action that’s fed back to the simulation. This scaling

factor was determined via hyperparameter tuning across multiple inference runs. This

scaling proved necessary as the model otherwise often favored staying near the center

of the state space or produced small motion deltas that would only take it near task

completion.

Success rates per task in the task chain and individual task success rates will be

tabulated and visualized to show the model’s capability to perform a wide range of

tasks across long horizons. Criteria for determining if a model completes a task

are built into the CALVIN simulation, where checks are performed to see if the

position, orientation, and joint states of the different objects have changed to match

the anticipated end state of a desired task.

4.3.2 Ablation Studies

Ablation studies will be performed to further study the model’s learning dynamics.

Each ablation will be trained on the A,B,C,D → D split and tested on the CALVIN
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LH-MTLC challenge, tabulating and comparing the results.

Prepended Language Encodings

In this experiment, rather than interleaving language commands, language com-

mands will only be prepended to the beginning of the sequence. The expectation is

that if the language modality is not repeated to reinforce it, the model may potentially

learn to begin ignoring the command in favor of paying attention to environmental

and robot state histories, in turn at least marginally decreasing performance.

Removal of Spatial Context

To study the effect non-image information had on the model’s training, all informa-

tion regarding agent states, block states, and hinge, light, and button states will be

removed from the context sequence. It is anticipated that the model’s performance

will notably deteriorate with the loss of a richer environmental context, but not to a

substantially impactful extent due to the robust information provided by both sets

of image sequences and the sequences of robot states.

Removal of Image Context

To study the effect image information had on the model’s training, all image encod-

ings will be removed from the context sequence, forcing the model to rely exclusively

on the end effector’s position and global scene information. The expectation is that

performance will deteriorate significantly for non-block interactions, given the lack of

direct positional information provided for the drawer, door, and lights.
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4.3.3 Self-corrective Capabilities

Directly quantifying LanSAR’s self-corrective capabilities on a large scale is not

feasible due to a wide range of possible edge cases to account for with any form of

automatic detection. Instead, to simulate this behavior across all attempted tasks,

three additional experiments are run on the LanSAR model trained with the A,B,C,D

→ D split. In each experiment, a random perturbation is sampled from a Gaussian

distribution centered at the predicted positional delta with a standard deviation of

the same predicted value multiplied by some scaling factor γ.

∆p ∼ N (∆p, (|∆p| · γ)) (4.9)

In the first experiment, a perturbation sampled with a standard deviation of 5

times the predicted value is added every 50 timesteps. In the second experiment,

the standard deviation of the perturbation distribution is reduced to 2.5 times the

predicted value but added with an increased frequency of every 25 timestaps. In the

final experiment, the standard deviation is further reduced to 0.5 times the predicted

value but is added every 5 timesteps. All perturbations are calculated after predictions

are scaled using equation 4.8. The expectation is for performance to remain highly

consistent across each experiment despite the model being pulled in random directions

away from its intended destination, demonstrating the ability of the model to adjust

to both large but infrequent motion errors and small but frequent motion errors.

4.3.4 Comparisons

Comparisons will be made to other approaches to the CALVIN LH-MTLC chal-

lenge and robot motion. Primarily, the CALVIN baseline agent and two models

considered to have achieved state-of-the-art performance on the CALVIN LH-MTLC

challenge will be compared. Results from a LanSAR model trained on both the
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A,B,C,D → D and A,B,C → D splits will be tabulated and compared to the results

reported for each of these models in their respective papers.

MCIL

MCIL agents are the baseline agents proposed by Lynch and Sermanet (2021) and

demonstrated on the CALVIN challenge by Mees et al. (2022b). MCIL leverages a

sequence-to-sequence variational auto-encoder (Kingma and Welling, 2022) to learn a

latent plan space. A plan proposal recognition network predicts a proposal distribu-

tion from perceptual information and the goal, while the recognition network predicts

another distribution from only perceptual information. A plan is sampled from the

recognition network’s distribution, and a decoder predicts an action from the plan,

perceptual information, and goal. Kullback-Leibler (KL) divergence loss was utilized

between a plan proposal and recognition networks to bring the distributions closer.

HULC

Proposed by Mees et al. (2022a), HULC expands upon the MCIL architecture,

with the most notable difference being the use of gripper camera images, instead of

only static camera images, and the use of a transformer to encode sequence infor-

mation as opposed to a recurrent neural network. It attempts to solve the issue of

similar language encodings for semantically similar commands via a contrastive loss,

maximizing the cosine similarity between the corresponding language features and

sequence of visual features while minimizing it for unrelated sequences.

GR-1

GR-1 is a transformer-based architecture proposed by Wu et al. (2023), which

possesses an architecture more similar to LanSAR than MCIL and HULC. GR-1

28



takes a CLIP language encoding, visual information encoded by a separate pre-trained

vision transformer (ViT), and robot state (3D position, 3D orientation) as input. It

predicts special [OBS] and [ACT] tokens for generating predictions of the next video

frame and the next robot action. GR-1, similarly to LanSAR, interleaves its language

encoding into the sequence. GR-1 is pre-trained with the EGO4D (Grauman et al.,

2022) dataset consisting of 3,500 hours of language-annotated video to predict the

next frame of video before GR-1 is then fine-tuned on CALVIN motion data. The

loss function during fine-tuning consists of a composite loss on the video predictions,

motion deltas, and gripper actions.
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Chapter 5

EXPERIMENT RESULTS

In this chapter, statistical results from each experiment outlined in chapter 4 are

provided. A deeper discussion of these results is reserved for chapter 6.

5.1 CALVIN LH-MTLC Challenge Results

In this section, the results of the LH-MTLC challenge discussed in section 4.3.1

are provided. Table 5.1 shows the success rate of the best model on the task chains. It

should be noted that the success rates are global percentages representing long-horizon

task success rates, meaning a failure in a prerequisite task counts towards subsequent

tasks, as previously described. The model locally succeeds at individual tasks with a

success rate of 65.17%. A categorical breakdown of local success rates per attempted

task can be seen in figure 5.1. Table 5.2 numerically breaks down the number of tasks

attempted by the model for additional clarity. The model most prominently struggles

with any tasks involving block interactions but strongly performs on tasks involving

desk interactions, such as any task involving the door, drawer, and lights.

Task Success Rate (%)

1 69.70

2 46.70

3 26.90

4 17.10

5 9.30

Table 5.1: Task Success Rates
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Figure 5.1: Categorical Task Success Rates

Task Completions Count Success Rate (%)

unstack block 7 7 100.00

turn on led 114 116 98.28

move slider left 154 157 98.09

close drawer 102 104 98.08

move slider right 177 181 97.79

open drawer 221 229 96.51

turn off led 94 98 95.92
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place in drawer 39 41 95.12

place in slider 71 81 87.65

turn off lightbulb 70 87 80.46

turn on lightbulb 85 113 75.22

lift pink block drawer 3 4 75.00

push into drawer 55 87 63.22

push red block left 41 65 63.08

push pink block left 39 63 61.90

push blue block left 33 54 61.11

push pink block right 29 49 59.18

rotate pink block right 30 57 52.63

lift pink block table 52 101 51.49

rotate blue block right 30 60 50.00

rotate red block right 31 62 50.00

push red block right 24 60 40.00

lift pink block slider 37 93 39.78

lift red block table 39 103 37.86

stack block 12 35 34.29

rotate blue block left 18 58 31.03

rotate pink block left 13 43 30.23

rotate red block left 15 51 29.41

lift blue block table 23 86 26.74

push blue block right 15 57 26.32

lift red block drawer 2 8 25.00

32



lift blue block slider 12 96 12.50

lift blue block drawer 1 9 11.11

lift red block slider 9 89 10.11

Total 1697 2604 65.17

Table 5.2: Attempted Task Counts

5.2 Ablation Results

In this section, ablation study results as described in section 4.3.2 are provided.

Results for the baseline LanSAR model and each ablation can be seen in figure 5.2 and

table 5.3, which show results mostly matched what was anticipated. The prepended

language command ablation experienced a notable decrease in performance in com-

parison to the baseline. Removal of spatial information resulted in a marginal decrease

in performance, though not as large as anticipated. Removal of image information

resulted in a substantial decrease in performance, but on different tasks than antici-

pated. When no image information is present, the model still performs well on tasks

involving moving the sliding door to the left or interacting with the switch to enable

or disable the lightbulb.

5.3 Self-correction Experiment Results

Self-corrective capabilities demonstrated by the perturbation experiment can be

seen in table 5.4. Performance remains highly consistent, as anticipated, with the

performance on corresponding tasks in the chain for each experiment being within

3% of one another, and all having a standard deviation of less than 1.
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Tasks Success Rates (%)

Experiment 1 2 3 4 5

Baseline 69.70 46.70 26.90 17.10 9.30

Prepend 59.00 33.00 16.30 8.00 2.70

No Space 65.90 39.30 20.70 10.10 4.00

No Image 12.20 0.20 0.00 0.00 0.00

Table 5.3: Ablation Results

Figure 5.2: Ablation Categorical Task Success Rates

34



Perturbation Parameters Tasks Success Rates (%)

Scale Frequency 1 2 3 4 5

0 0 69.70 46.70 26.90 17.10 9.30

5 50 70.30 45.80 27.80 16.00 7.90

2.5 25 71.00 46.70 28.00 16.20 9.50

0.5 5 70.50 47.80 29.50 17.60 7.80

Standard Deviation 0.4657 0.7089 0.9341 0.6534 0.7790

Table 5.4: Perturbation Results

5.4 Comparative Results

Figure 5.5 shows a comparison of two LanSAR models, one trained with all four

simulation environments and one trained with the goal of generalizing to an unseen

environment, to the baseline MCIL agent and the state-of-the-art GR-1 and HULC

models. In both cases, LanSAR outperforms the baseline agent, but does not out-

perform any state-of-the-art models when trained with all four environments, only

coming closest to HULC. LanSAR does, however, outperform HULC when generaliz-

ing to an unseen environment.
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Experiment Task Success Rates (%)

Approach Data Split 1 2 3 4 5

MCIL ABCD→D 37.30 2.70 0.17 0.00 0.00

GR-1 ABCD→D 94.90 89.60 84.40 78.90 73.10

HULC ABCD→D 88.90 73.30 58.70 47.50 38.30

LanSAR ABCD→D 69.70 46.70 26.90 17.10 9.30

MCIL ABC→D 30.40 1.30 0.17 0.00 0.00

GR-1 ABC→D 85.40 71.20 59.60 49.70 40.10

HULC ABC→D 41.80 16.50 5.70 1.90 1.10

LanSAR ABC→D 62.00 35.10 17.80 8.90 4.00

Table 5.5: Comparative Results to Other Approaches
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Chapter 6

ANALYSIS & DISCUSSION

In this chapter, the results from chapter 5 will be discussed and tied together to

provide a cohesive understanding of why LanSAR is performing at the level it does,

and its strengths and weaknesses will be analyzed and explained. Additional examples

of the model’s behavior and the dynamics of its context attention mechanism will be

provided. Avenues of future improvement will be then provided as a result of this

analysis.

6.1 CALVIN LH-MTLC Challenge Analysis

As previously shown, LanSAR accomplishes 65.17% of individually attempted

tasks, with long-horizon success rates shown in table 5.1. Examining the performance

on individual task types shown in figure 5.1 and table 5.2, there are clear groupings of

performance capabilities for LanSAR. It proves performant on desk interactions but

struggles on most block interactions, with three exceptions. The model shows a high

success rate on storing blocks in the drawer and sliding door cabinet, as well as with

unstacking blocks. In the former two cases, the model has already accomplished the

more difficult prerequisite task of grasping a block, and these tasks fall more closely

in line with a desk interaction. In the latter case, unstacking blocks can be easily

performed accidentally by simply colliding with the blocks.

6.2 Ablation Analysis

As anticipated, prepending language commands resulted in deteriorated perfor-

mance compared to the baseline LanSAR model. Investigating the temporal attention
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(a) Interleaved command motion de-

coder attention

(b) Prepended command motion de-

coder attention

Figure 6.1: Comparison of Motion Decoder Attention Weights for Baseline &

Prepended Language Commands

weights, shown in figure 6.1, for the initial timestep of a scenario given the command,

“rotate the blue block to the right,” a similar pattern of attention can be observed be-

tween the baseline and ablated models. Even in the interleaved approach, the initial

command had the highest attention. However, the interleaved language commands

are still attended to. Combined with the improved performance both as a whole and

for most individual task types, this would indicate that interleaving the command

does indeed reinforce the language modality, allowing the model to more strongly

condition its actions based on it.

Examining the removal of spatial context, performance did deteriorate, but not as

significantly as expected, showing that the model does somewhat rely on knowledge

of global block and scene information but can still learn useful features with only

knowledge of its own position and image data.

Further reinforcing the importance of even precomputed image encodings and

showing spatial data primarily serves as supplementary information for this problem,

the removal of image information drastically deteriorates performance. However, this
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ablated model still accomplishes tasks involving moving the sliding door to the left

or using the lever to interact with the lightbulb. Given the initial states of these

objects are nearly identical for these tasks and the model saw environment D during

training, this model effectively learned to memorize the motion required to complete

these tasks, being otherwise unable to learn any form of meaningful environmental

representation.

6.3 Self-correction Analysis

LanSAR is demonstrably capable of adjusting for previous mistakes and unfin-

ished tasks to see them to completion. Table 5.4, as previously shown, qualitatively

demonstrates this on a large scale by applying perturbations in both large, infrequent

amounts and small, frequent amounts. To provide specific examples of self-corrective

capabilities, if LanSAR is instructed to pick up and rotate a block, and then misses

the block, it will not necessarily finish the associated “pick up and rotate” motion

before trying again. Instead, it will often “realize” it does not possess the block and

try again almost immediately. Similarly, if it does not open the drawer or sliding

door all the way, it will also often “realize” this and move the gripper to the new

location of the handle or inner wall of the drawer to complete the action. Figure 6.2

demonstrates the model’s ability to self-correct when it initially fails to grab a red

block. Figure 6.3 further demonstrates the model’s ability to self-correct when the

end effector’s grasp slips on the sliding door handle halfway through the motion.

To examine this in further detail, figure 6.4 shows a 3D heatmap of the aggregated

context attention weights over time for rotating the red block. Specifically, attention

is aggregated to show which modalities are attended to the most per timestep, visu-

alizing attention as the simulation progresses. The highest attention weights are on

the image modalities, red block modality, [CLS] token, and end effector, in increasing
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order. The image modalities provide constant information about the state of the en-

vironment, while the [CLS] token needs to represent the entire sequence, which would

explain its high aggregated attention weight. The most important item of note is the

high attention weights on the end effector and red block, which shows the model is,

in particular, attending to the end effector and red block modalities, which would

further explain the model’s ability to understand when the block is and is not in

the end effector’s grasp. This also further reinforces the insights from the ablation

experiment in which spatial context is removed, showing that it still contains useful

information when paired with visual data.

Figure 6.5 show another heatmap of context attention weights over time for the

self-corrected door slider. Again, the model pays high attention to the end effector

position but has other notable spikes. The pink block is attended to more closely

as the end effector passes near it before the scene modality is attended to as the

end effector finishes manipulating the slider. The pink block attention still spikes far

higher than the scene or even image attention, which highlights a problem that will

be further discussed in section 6.5.

6.4 Comparative Analysis

6.4.1 MCIL

The differences between LanSAR and MCIL are significant, but the key differences

are:

• MCIL predicts a latent plan as well as an action as opposed to only an action.

• MCIL uses its own vision network.

• MCIL acts more as a hybridized planner and reactive system, creating a latent
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(a) Model misses red block

(b) Model stops lift-and-

rotate action early (c) Model tries again

(d) Model successfully

grasps and rotates red

block

Figure 6.2: Example 1 of Model Self-Correcting

(a) Grasp slips on handle (b) Model stops slide action (c) Model tries again

Figure 6.3: Example 2 of Model Self-Correcting
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(a) Context attention weights (b) Initial State

Figure 6.4: Context Attention Weights over Time for Self-Correcting Red Block Ro-

tation

(a) Context attention weights (b) Initial State

Figure 6.5: Context Attention Weights over Time for Self-Correcting Sliding Motion
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plan and conditioning actions based both on it and immediate observations,

and replanning arbitrarily.

• MCIL uses an RNN to process sequential information.

MCIL performs the weakest of all compared approaches, with LanSAR outper-

forming it by a considerable margin on both the A,B,C,D → D split and the A,B,C

→ D split. While MCIL has the advantage of its own vision network, it also uses

an RNN for its sequential data processing, which can often struggle with long-term

dependencies compared to transformer architectures.

6.4.2 HULC

The differences between HULC and LanSAR are much the same as MCIL, with

a few additions:

• HULC again predicts a distribution as well as an action as opposed to only an

action.

• HULC again uses its own vision network.

• HULC again acts more as a hybridized planner and reactive system.

• HULC utilizes a contrastive loss to better differentiate between similar language

encodings.

HULC’s use of a transformer for improved sequential data processing and con-

trastive loss to resolve the issue of similar encodings leads to substantially improved

performance over MCIL and surpasses LanSAR’s performance on the A,B,C,D → D

split. However, HULC does not generalize well to unseen data, with LanSAR outper-

forming it on the A,B,C → D split. HULC’s corresponding paper does not discuss
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this lack of generalization in detail, but the contrastive learning mechanism could

very well be overconstraining the model to training environments. As such, visual

information from unseen environments could significantly deviate from the learned

distributions in which corresponding commands and sequences should fall within.

6.4.3 GR-1

GR-1, being a transformer model that directly predicts motion from immediate

perceptual information, is the closest approach to LanSAR, with the most important

differences being:

• GR-1 is pre-trained on EGO4D to predict the next frame of video before being

fine-tuned on CALVIN.

• GR-1 generates video frames as well as robot actions, whereas LanSAR only

predicts robot actions.

GR-1’s use of pre-training on a large motion dataset and then simultaneously

fine-tuning for both video and motion predictions on the CALVIN dataset results in

the highest performing model of all comparisons, outperforming MCIL, HULC, and

LanSAR on all data splits.

In all cases, these models utilize only visual information and knowledge of the

robot state, whereas the best LanSAR model includes spatial information. While

LanSAR’s ablation experiments and attention weight visualizations show an ability to

correlate spatial and visual information despite being significantly differing modalities,

it is indeed not realistic to assume that such knowledge would be available in a

real-world scenario. Unless other detection models are incorporated to estimate the

position of objects or the objects have some other methodology of being tracked, such

as built-in GPS, LanSAR would only operate at its best in simulated applications.
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Even with this limitation in mind, the performance of LanSAR with only visual

information and knowledge of robot states still outperforms the MCIL baseline and

generalizes to unseen environments more strongly than HULC. The most significant

downside, in the case of LanSAR in comparison to MCIL, would be the quadratic

memory requirement of transformers, which is not an issue with RNNs, albeit at the

cost of reduced capability in handling long-term temporal dependencies. In compari-

son to HULC, LanSAR would be the ideal choice if the goal requires generalization to

new environments. If the assumption can be made that the model will only operate

in environments it was trained on and there is no risk of robot actuation errors and

perturbations, then HULC becomes the ideal choice. It would be beneficial to per-

form further studies with HULC and other latent planning models to test their ability

to correct for actuation errors while conditioning low-level actions on a latent plan,

whereas LanSAR has already demonstrated consistent performance in such scenarios

due to its predictions being based on the most immediate information available.

GR-1 proves itself to be the ideal choice in effectively all scenarios, substantially

outperforming LanSAR and all other compared models. The only benefits LanSAR

has in comparison would be a smaller model size of roughly 109 million parameters,

including CLIP, as opposed to 195 million parameters, making it just under 56% of the

size of GR-1. Additionally, LanSAR is trainable with a single-phase training routine

with a single set of hyperparameters, as opposed to GR-1 requiring a pre-training

phase.

6.5 Understanding LanSAR’s Shortcomings

Recall the breakdown of task success rates in figure 5.1 and table 5.2. LanSAR

most notably struggled on tasks involving block interactions but performed well on

desk interactions. Consider that there is a much wider variety of block states and
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interactions with blocks as opposed to desk interactions. The language command

and perceptual input for each demonstration should effectively act as an anchor,

constraining the distribution of possible actions and separating the different tasks

and demonstrations. Now again consider the issue described at the end of section 6.3

and shown in figure 6.5, in which the pink block is attended to for a task in which the

model must open the sliding door. Despite image, scene, and end effector information

being the most important information for this task, a block modality, irrelevant to

this task, is still strongly attended to. Recall LanSAR’s architecture as visualized in

figure 3.1. The language modality is only considered by the motion decoder, making

the context encoder language agnostic. In other words, the context encoder has the

difficult task of learning a general representation of the environment for any possible

downstream task and, for the same perceptual input, will always output the exact

same holistic context as opposed to a task-specific context.

Figure 6.6 and 6.7 demonstrate this issue for an environment in which a blue

and pink block are placed close to one another, with the model being instructed to

pick up and rotate the blue block. The context encoder produces similar attention

weights for both the blue and pink block, with small spikes for both at various points

in time depending on the position of the end effector, showing it has indeed learned

relevance based on spatial relationships, but has no understanding that the pink block

is irrelevant to this scenario. Had it also been provided with the language command,

it may have learned to attend more strongly to the blue block and less strongly to

the pink block.

Figure 6.8 similarly demonstrates this issue for a more extreme failure case. In

this environment, a red and blue block are placed next to each other, and the model is

instructed to pick up the red block. For this experiment, the model does not produce

any substantially meaningful motion, alternating between hovering around the red
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(a) Initial State (b) Grasps pink block (c) Rotates pink block

Figure 6.6: Misaligned Task Example: Instructed to Rotate Blue Block

(a) Context attention weights (b) Initial State

Figure 6.7: Context Attention Weights over Time for Misaligned Task
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(a) Context attention weights (b) Initial State

Figure 6.8: Context Attention Weights over Time for Motion Failure

block and blue block, occasionally grasping between or around the blocks with no

success. The context encoder strongly attends to the end effector’s position while

increasing attention on the red and blue blocks depending on which block the arm

is hovering closest to. There are also notable spikes in the scene attention when the

arm accidentally pushes down on the LED button. This again shows the context

encoder’s ability to produce strong context encodings based on spatial relationships,

but without any knowledge of the language command.

Now lastly consider the issue Mees et al. (2022a) highlighted of similar language

command encodings and two language commands, “pick up and rotate the blue

block,” and, “pick up and rotate the pink block.” Taking the CLIP encodings of

these commands and computing the cosine similarity, a value of 94.29% is calculated.

Effectively, LanSAR is failing to learn the specific semantics of such language com-

mands and instead only understands a more general, “pick up and rotate the block,”

command.
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When taking the language-agnostic nature of the context encoder and the similar

language encodings seen by the motion decoder under consideration, it begins to be-

come clear why LanSAR is struggling the way it does. Highly similar inputs are being

provided for very different demonstrations, thus the inputs do not serve as adequate

information to constrain the distributions of possible actions, thus the different tasks

and demonstrations are not properly separated. In the best case, with no clear way

of utilizing all input information to minimize the motion delta losses during train-

ing, the model can memorize the most common motion given similar environmental

contexts and language commands, resulting in performing misaligned tasks such as

seen in figures 6.6 and 6.7. In the worst case, the model may predict some weighted

average of common motion, producing inaccurate or even nonsensical motion such as

in figure 6.8.

6.5.1 Future Improvements

With these faults in mind and the strengths of the two state-of-the-art approaches

under consideration, there are obvious avenues to improve LanSAR’s performance.

LanSAR’s inability to properly separate different demonstrations due to its language-

agnostic context encoder and highly similar language encodings is a substantial reason

the model does not achieve state-of-the-art performance. While LanSAR does have

the benefit of a simple training routine and is capable of learning from a small amount

of data, 22,994 demonstrations form a considerably small dataset for training a trans-

former architecture. Many transformer architectures are trained with hundreds of

thousands, if not millions or billions, of demonstrations. As such, pre-training with a

larger amount of data would improve performance, as evidenced by Wu et al. (2023),

where GR-1 was pre-trained with a dataset nearly 34 times larger than CALVIN. Tak-

ing all of this under consideration, the most immediately apparent ways to improve
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the performance of LanSAR are as follows:

• Include language context as part of the context encoder’s sequential input, al-

lowing for a holistic, task-specific context encoding given the provided command

and allowing the model to potentially learn to mask out irrelevant objects while

providing more varied input to the motion decoder for each demonstration.

• Utilize contrastive learning techniques to further separate similar language com-

mands, similar to HULC. It would also be beneficial to train or fine-tune a

language model for LanSAR to learn new language encodings directly.

– In this vein, training or fine-tuning a vision model instead of using precom-

puted encodings could also prove beneficial, but the CLIP image encodings

proved robust to this problem. The contrastive learning mechanism could

instead potentially be applied between the language command and the se-

quences of robot and context states without needing to directly bring the

image encodings closer to the corresponding language encodings.

• Pre-train LanSAR on a larger motion dataset, similar to GR-1, and/or apply

data augmentation to the CALVIN dataset.

– Utilizing a sliding window to derive smaller sets of sequences from the ex-

isting sequence may prove beneficial, further leaning into the unstructured

format of the CALVIN dataset. However, later positional encodings con-

tain significant information about gripper actions, and this methodology

could obfuscate that information.

LanSAR is additionally underfitting to the data with its current approach, as

evidenced by figure 6.9, in which both the train and validation loss plateau at the same

rate, with the model never overfitting to the training set. Resolving these issues by
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Figure 6.9: Best Model Loss Curves (MAE)

utilizing the additional proposed methodologies would provide a richer, more distinct

representation of each demonstration, allowing the model to better understand the

required actions for each task and better fit to the data. In turn, this would not only

likely solve the issue of misaligned tasks but simultaneously resolve any remaining

issues with accuracy of motion.

6.6 Conclusion

LanSAR was proposed as an approach for a real-time robot motion controller

that incorporates a context encoder to encode multimodal visual and spatial data

and a motion decoder that conditions on the context encodings, robot arm states,

and language command to predict a motion delta. LanSAR is capable of leveraging

a wide range of multimodal inputs to understand its environmental context, and can
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perform language-commanded actions with a fairly high degree of accuracy. LanSAR

was evaluated on the CALVIN LH-MTLC challenge, and while LanSAR does not

achieve state-of-the-art performance, it does demonstrate an ability to correct its

own errors in many scenarios and an ability to interact with the environment without

any need for long-term planning.

LanSAR demonstrated capability in understanding visual and spatial relation-

ships with its context encoder, which attended more strongly to different modalities

depending on proximity to the end effector.

LanSAR particularly struggles with understanding the specifics of similarly en-

coded language commands, and its lack of task-specific context encodings can lead

to similar or identical environmental encodings for different demonstrations. Both

of these issues compound with one another, failing to adequately separate different

demonstrations, resulting in LanSAR performing misaligned tasks or demonstrating

a general loss in motion accuracy.

LanSAR may be improved by conditioning its context encodings on language

commands rather than only in the motion decoding step. Additionally, utilizing

contrastive learning techniques, such as the ones used in Radford et al. (2021) and

Mees et al. (2022a) to separate similarly encoded language commands would prove

beneficial and resolve the issue of LanSAR learning to simply memorize the most

common motion for similar environment contexts and commands. Pre-training on a

larger dataset, even if for a different domain such as video prediction, as is the case

with the approach in Wu et al. (2023), would also prove beneficial by alleviating the

data scarcity problem of the CALVIN dataset.
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APPENDIX A

GITHUB REPOSITORY

LanSAR: https://github.com/anhardy/LanSAR
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