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ABSTRACT 

 

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by 

the progressive loss of motor function. Pathological mechanisms and clinical measures 

vary extensively from patient to patient, creating a spectrum of disease phenotypes with a 

poorly understood influence on individual outcomes like disease duration. The inability to 

ascertain patient phenotype has hindered clinical trial design and the development of more 

personalized and effective therapeutics. Wholistic analytical methods (‘-omics’) have 

provided unprecedented molecular resolution into cellular and system level disease 

processes and offer a foundation to better understand ALS disease variability. Building off 

initiatives by the New York Genome Center ALS Consortium and Target ALS groups, the 

goal of this work was to stratify a large patient cohort utilizing a range of bioinformatic 

strategies and bulk tissue gene expression (transcriptomes) from the brain and spinal cord. 

Central Hypothesis: Variability in the onset and progression of ALS is partially captured 

by molecular subgroups (subtypes) with distinct gene expression profiles and implicated 

pathologies. Work presented in this dissertation addresses the following: (Chapter 2): The 

use of unsupervised clustering and gene enrichment methods for the identification and 

characterization of patient subtypes in the postmortem cortex and spinal cord. Results 

obtained from this Chapter establish three ALS subtypes, identify uniquely dysregulated 

pathways, and examine intra-patient concordance between regions of the central nervous 

system. (Chapter 3): Patient subtypes from Chapter 2 are considered in the context of 

clinical outcomes, leveraging multiple survival models and gene co-expression analyses. 

Results from this Chapter establish a weak association between ALS subtype and clinical 
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outcomes including disease duration and age at symptom onset. (Chapter 4): Utilizing 

differential expression analysis, ‘marker’ genes are defined and leveraged with supervised 

classification (“machine learning”) methods to develop a suite of classifiers design to 

stratify patients by subtype. Results from this Chapter provide postmortem marker genes 

for two of the three ALS subtypes and offer a foundation for clinical stratification.  

Significance: Knowledge gained from this research provides a foundation to stratify 

patients in the clinic and prior to enrollment in clinical trials, offering a path toward 

improved therapies.  
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transcriptomes and are presented using publicly available de-identified IDs. (A) 

Heatmap showing subtype assignment to each region of the cortex and spinal cord 

considered in this study. Gray cells correspond to unavailable or not applicable 

tissue transcriptomes. Patients without observations from both the postmortem 

cortex and spinal cord are excluded from this plot, but are available in 

Supplementary Dataset 4. Patient sex is presented for (B–D) each ALS subtype. 

Interestingly, patients concordant for the ALS-Glia subtype are primarily female, 

potentially indicating sex-dependent differences in the presentation of disease 

phenotype. Clinical parameters for concordant patients are plotted as boxplots, 

and show (E) disease duration, (F) age at onset, (G) age at death, and (H) site of 

symptom onset. Statistical tests were not performed due to limited patient 

number. ..................................................................................................................94 

2.21   Concordance between the postmortem cortex and spinal cord using the majority  

agreement approach. A meta level analysis comparing subtype assigned in the 

cortex with the spinal cord using the majority agreement approach – in which 

patients were assigned a subtype if a single sample was available or by majority if 

two or more samples were available. Patient subtype was assigned in the cortex 

and spinal cord independently. (A) The majority (68.2%) of patient samples did 

not show concordance between the postmortem cortex and spinal cord when using 
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the majority agreement approach – indicating this method is not the optimal way 

to manage repeat patient sampling. (B) For patients that presented as ALS-Glia in 

the cortex, ~32% of individuals were assigned the same subtype in their spinal 

cord by majority agreement. Discordant was the most common subtype assigned, 

likely reflecting limitations due to cell type composition of the spinal cord. (C) 

Patients with the oxidative stress phenotype in the cortex demonstrated similar 

concordance, with ~25% of patients assigned the same subtype in their spinal 

cord. Encouragingly, very few patients classified as ALS-Ox in the cortex were 

assigned ALS-Glia in their spinal cord, suggesting cell type composition does not 

act as a confounding factor in the expression of ALS-Ox marker genes in the 

spinal cord but weakens the detectable signal. (D) Patients presenting as ALS-TD 

in their cortex showed the highest concordance with the spinal cord (~48%), but 

likely reflects bias towards this subtype in the spinal cord transcriptomes. 

Interestingly, this bias towards ALS-TD in the spinal cord does not appear to be 

due to RIN, given that the mean RIN was 6.14 for all cortex samples yet 6.50 for 

all samples from the spinal cord. (E) Patients initially showing discordance for 

their postmortem cortex subtype are reassigned to ALS subtypes with roughly the 

same frequency. The concordance label in this figure indicates both the 

postmortem cortex and spinal cord presented as “Discordant” by the majority 

agreement method. .................................................................................................95 
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2.22   Score-based classification uncovers hybrid subtype states in the ALS cortex  

cohort. (A) Subtype scoring was implemented with bootstrapping to assess the 

spectrum of disease phenotypes presented in ALS. Each point corresponds to a 

single transcriptome derived from the frontal or motor postmortem cortex, n=451 

biologically independent samples. Patient samples were initially placed at the 

origin, moved in the direction of the subtype axis for each round of bootstrapping 

that passed the subtype score threshold, and could only reach the vertex if the 

patient sample passed the threshold in all rounds of bootstrapping. Data points are 

filled according to the bootstrap-based subtype assignment and borders are 

included to denote the patient subtype obtained from unsupervised clustering. 

Transcriptomes which approached the vertices shared by two subtypes are 

considered to express a hybrid subtype state. Patient samples are color coded gray 

if they failed to pass the subtype score thresholds in ≥ 50% of bootstrap iterations. 

(B) Confusion matrix showing unsupervised clustering results in each 

classification subtype. (C) Clustering results in Glia-TD and Glia-Ox hybrids. ...98 

3.1   Assessment of ALS patient clinical parameters in the context of cortex subtypes.  

(A) Kaplan-Meier survival for the three identified ALS subtypes, with n=150 

patients. Patients without an available age of onset or disease duration were 

excluded from this analysis. The ALS-Glia subtype is significantly associated 

with a shorter survival duration (p < 0.01, log-rank test). The ALS-Ox subtype 

had a median survival duration of 36 months, while the ALS-TD group had the  
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longest median survival (42 months). (B) Age of disease onset plotted as boxplots 

for the three ALS subtypes, with n=151 patients. No significant differences are 

observed in age of onset by subtype. The median is indicated by the solid black 

line, and first and third quartiles are captured by the bounds of the box. Boxplot 

whiskers are defined as the first and third quartiles –/+ interquartile range times 

1.5, respectively, and outliers are denoted as solid black points. Minimum and 

maximum values are captured by the lowermost and uppermost points, 

respectively, or whisker bound if no outliers are shown.  (C) Age at death plotted 

as boxplots for the ALS-Glia, ALS-Ox, and ALS-TD subtypes, with n=178 

patients. Again, no significant differences are observed. (D) ALS subtype site of 

symptom onset, with the ‘Other’ category comprising axial (4), axial-limb (2), 

bulbar-limb (4), axial-bulbar (1), generalized (1), and unknown (9) sites of onset. 

(E) FTLD comorbidity was converted to a percentage and plotted as a bar graph. 

A Chi-square test of independence was used to assess whether ALS subtype and 

FTLD comorbidity were associated (p = 0.59, one-tailed). .................................110 

3.2   Assessment of ALS patient clinical parameters including discordant patients. (A)  

Kaplan-Meier survival analysis including the three ALS subtypes and ‘discordant’ 

patients (n=177). Pairwise comparisons showed significant differences in survival 

between the ALS-Glia and ALS-Ox subtypes (p = 0.015) and ALS-Glia and ALS-

TD subtypes (p = 0.0043). P, log-rank test. (B) Ages of ALS symptom onset are 

plotted as boxplots, separated by disease group (n=180). The ALS-Glia subtype  
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shows a nonsignificant trend towards the latest symptom onset. The median is 

indicated by the solid black line, and first and third quartiles are captured by the 

bounds of the box. Boxplot whiskers are defined as the first and third quartiles –/+ 

interquartile range times 1.5, respectively, and outliers are denoted as solid black 

points. Minimum and maximum values are captured by the lowermost and 

uppermost points, respectively, or whisker bound if no outliers are shown. (C) 

Age at death is shown for the three ALS subtypes and discordant patients 

(n=208). (D) Site of symptom onset are shown for all ALS patients included in 

this analysis, and a chi-square test of independence suggests site of symptom 

onset and subtype are not strongly associated. The ‘other’ category is comprised 

of axial (4), axial-limb (2), bulbar-limb (4), axial-bulbar (2), generalized (1), and 

unknown (11) sites of onset. (E) Frontotemporal lobar degeneration comorbidity 

is shown as a percentage, for all ALS patient groups considered in this analysis. A 

chi-square test of independence again suggests FTLD comorbidity and ALS 

subtype are not strongly associated......................................................................111 

3.3   Clinical parameters in patients with hybrid subtype samples. Patients were  

assigned to a hybrid subtype if one or more tissue samples passed the thresholds 

detailed in Chapter 2.2.9. (A) Kaplan-Meier survival analysis including the three 

ALS subtypes, hybrids, and ‘discordant’ patients (n=177). Interestingly, survival 

in Glia-TD hybrids mirrors survival in the ALS-Glia subtype, with significant 

differences observed when compared to the ALS-TD subtype (p = 0.007), and  
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survival differences trending towards significance when compared to the ALS-Ox 

subtype (p = 0.085). P, log-rank test. Findings suggest the elevated inflammatory 

phenotype seen in ALS-Glia patients is sufficient to drive fast progression in 

ALS, irrespective of co-expressed phenotypes, although additional work is needed 

to assess the consistency of hybrid subtype expression in other cohorts. (B) Age 

of symptom onset, plotted as boxplots, and separated by subtype (n=180). No 

significant differences are observed between the Glia-TD hybrids and other 

subtypes. The median is indicated by the solid black line, and first and third 

quartiles are captured by the bounds of the box. Boxplot whiskers are defined as 

the first and third quartiles –/+ interquartile range times 1.5, respectively, and 

outliers are denoted as solid black points. Minimum and maximum values are 

captured by the lowermost and uppermost points, respectively, or whisker bound 

if no outliers are shown. (C) Age of death, separated by subtype (n=208). (D) Site 

of symptom onset for all disease subtypes. (E) FTLD comorbidity in each disease 

subtype, presented as a percentage. The small number of Glia-Ox hybrids limits 

the interpretation of differences observed in survival, age of onset (p < 0.05 for all 

pairwise comparisons), age of death (p < 0.05 for all pairwise comparisons), and 

FTLD comorbidity. ..............................................................................................112 

3.4   Mutation frequency in the cortex cohort. Stacked bar chart showing C9orf72 and  

SOD1 mutation frequency in the ALS cohort. A chi-squared test of independence 

was performed to assess mutation dependency on subtype. After removal of the  
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“unknown” categorical variable, the null hypothesis (no association between ALS 

subtype and common genetic drivers) was accepted for both C9orf72 (p = 0.47, 

one-tailed) and SOD1 (p = 0.21, one-tailed). It is important to note that the limited 

number of observations for SOD1 may drive inaccurate estimation of the chi-

squared test statistic. ............................................................................................113 

3.5   (A) Kaplan-Meier survival analysis using patient subtypes (n=206) defined by  

spinal cord transcriptomes. Subtypes were assigned if the majority of available 

tissue regions were concordant, otherwise the patients were assigned to the 

‘Discordant’ group. No left censoring was applied. The ALS-Glia subtype is 

observed to have a significantly shorter survival duration when compared to the 

ALS-Ox and Discordant groups. (B) Age of onset (n=206) and (C) age at death 

(n=206) are presented as boxplots for each subtype. T-tests with a false discovery 

rate correction were applied, and the Glia subtype was seen to have a significantly 

later age of onset as compared to the Discordant group. Comorbidity for (D) 

FTLD and (E) Alzheimer’s disease are presented as bar plots. Chi-squared tests of 

independence were performed and neither FTLD (p = 0.38) nor Alzheimer’s (p = 

0.15) comorbidity was seen to be associated with ALS subtype. ........................117 

3.6   Mutation frequency in the spinal cord cohort. Stacked bar chart showing C9orf72  

and SOD1 mutation frequency in the ALS cohort. A chi-squared test of 

independence was performed to assess mutation dependency on subtype. After 

removal of the “unknown” categorical variable, the null hypothesis (no  
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association between ALS subtype and common genetic drivers) was accepted for 

C9orf72 (p = 0.26, one-tailed) but rejected for SOD1 (p < 0.001, one-tailed). It is 

important to note that the limited number of observations for SOD1 may drive 

inaccurate estimation of the chi-squared test statistic. .........................................118 

3.7   Assignment of patient subtype using the majority agreement approach. All  

patient samples from the postmortem cortex and spinal cord were considered, 

where available. ...................................................................................................121 

3.8   Survival and clinical parameters analysis using postmortem cortex and spinal  

cord observations. (A) Kaplan-Meier survival analysis using patient subtypes 

(n=192) defined by all available cortex and spinal cord transcriptomes. Patients 

without postmortem observations from both the cortex and spinal cord were 

excluded. Subtypes were assigned if the majority of available tissue regions were 

concordant, otherwise the patients were assigned to the ‘Discordant’ group. The 

ALS-Glia subtype is observed to have a significantly shorter survival duration 

when compared to the ALS-Ox and Discordant groups. (B) Age of onset (n=192) 

and (C) age at death (n=192) are presented as boxplots for each subtype. T-tests 

with a false discovery rate correction were applied, and the Glia subtype was seen 

to have a significantly later age of onset as compared to the other two subtypes 

(FDR p = 0.002). Comorbidity for (D) FTLD and (E) Alzheimer’s disease are 

presented as bar plots. Chi-squared tests of independence were performed and 

neither FTLD (p = 0.256) nor Alzheimer’s (p = 0.486) comorbidity was seen to be 
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associated with ALS subtype. (F) Site of symptom onset is presented for each 

subtype, and no significant associations were observed using a Chi-squared test of 

independence (p = 0.564). ....................................................................................122 

3.9   Independent and Identically Distributed (IID) Survival Analysis. Tissue region  

specific survival analyses for the ALS (A) frontal cortex (n = 193), (B) medial 

motor cortex (n = 102), (C) lateral motor cortex (n = 104), (D) cervical spinal 

cord (n = 195), (E) thoracic spinal cord (n = 55), and (F) lumbar spinal cord (n = 

178). The “unspecified motor cortex” (n = 52) was not considered. The effects 

due to repeat sampling from patients can be seen to contribute to the significant 

differences observed in survival when assigning subtype by majority 

agreement1,5. However, across most tissue regions, there is a general and 

consistent trend toward a lower hazard associated with the ALS-Ox subtype. 

Model terms are presented as hazard ratios with the 95% confidence interval 

shown. Terms are separated by covariate and subgroup, with reference levels 

indicated. ..............................................................................................................126 

3.10   Cox proportional hazard model diagnostics. Sample level observations from the  

postmortem cortex and spinal cord were separated by tissue region and utilized to 

construct Cox proportional hazard regression models. Sex, disease group, age of 

onset, and subtype were included as model covariates, yielding a total of 728 

observations without missing data in the six Cox models shown. For each model 

constructed, residuals are plotted by covariate, and generally show weak or null  
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dependency on the variable level. To assess adherence to the proportional hazard 

model assumption, scaled Schoenfeld residual plots are shown for each covariate 

level, with score test p-values determined using the ‘km’ time transformation. All 

covariates are seen to meet the assumption of having proportional hazards over 

the survival duration, excluding the disease group covariate in the lateral motor 

cortex model (p = 0.04). .......................................................................................127 

3.11   WGCNA scale free topology in the postmortem cortex and spinal cord cohorts.  

A soft threshold of 13 was selected for the cortex cohort, while a soft threshold of 

4 was selected for the spinal cohort. Although the assumption of scale free 

topology (red line) is roughly met for both cases, it is recognized that the power of 

13 does not fully ‘saturate’ the R2 value in the cortex and thus a value of 17 may 

have been a better choice. ....................................................................................137 

3.12   Eigengene correlation heatmap and clustering dendrogram identifies transcript  

sets that are co-expressed in the ALS postmortem cortex. The turquoise, purple, 

and magenta eigengenes were redefined as the navy, gold, and maroon 

eigengenes, respectively. All 1,681 transcripts are shown. .................................138 

3.13   WGCNA elucidates subtype-specific disease pathways and eigengenes  

associated with ALS patient clinical outcomes. (A) Heatmap depicting eigengenes 

significantly correlated with ALS patient age of disease onset, age of death, and 

disease duration (univariate regression, two-tailed). Eigengene labels, moving left 

to right in the dendrogram, are: pink, red, tan, navy (ALS-Ox), brown, green, gold 
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(ALS-Glia), gray, maroon (ALS-TD), yellow, blue, salmon, black, and green-

yellow. Eigengenes were enriched for gene ontology and Bonferroni-adjusted p-

values are shown (Fisher’s exact test, one-sided). Subtype-specific expression of 

eigengenes was determined using dummy regression (two-tailed), with the β 

coefficient presented as a heatmap. A positive β coefficient denotes subtype 

upregulation of transcripts comprising the particular eigengene. Bonferroni-

adjusted p-values less than 0.05 are denoted with *. (B) Univariate plots showing 

gene expression levels of four representative features (FCGR1B, FCGR3A, HLA-

DOA, SERPINA3) in the gold eigengene – with evidence for ALS-Glia 

specificity. P, DESeq2208 differential expression using the negative binomial 

distribution, two-tailed, false discovery rate (FDR) method for multiple 

hypothesis test correction. (C) ALS-TD specific expression of four representative 

features (ENSG00000215068, ENSG00000248015, KRT8P42, LINC00639) in the 

maroon eigengene. P, same as B. .........................................................................139 

3.14   Univariate violin plots showing gene expression levels of four representative  

features (GLRA3, HTR2C, SLC17A6, SLC17A8) in the navy eigengene – with 

evidence for ALS-Ox specificity. ........................................................................140 

3.15   Eigengene correlation heatmap and clustering dendrogram identifies transcript 

sets that are co-expressed in the ALS postmortem spinal cord. All 8,163 

transcripts are shown............................................................................................141 
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3.16   Heatmap depicting spinal cord eigengenes significantly correlated with ALS 

patient age of disease onset, age of death, and disease duration (univariate 

regression, two-tailed). Eigengene labels, moving left to right in the dendrogram, 

are: purple, turquoise (ALS-Ox), blue, grey, light cyan, yellow, midnight blue, 

magenta, pink, light yellow, salmon (ALS-TD), cyan, green-yellow, light green, 

grey60, green (ALS-Glia), red, brown, black, and tan. Eigengenes were enriched 

for gene ontology and Bonferroni-adjusted p-values are shown (Fisher’s exact 

test, one-sided). Subtype-specific expression of eigengenes was determined using 

dummy regression (two-tailed), with the β coefficient presented as a heatmap. A 

positive β coefficient denotes subtype upregulation of transcripts comprising the 

particular eigengene. ............................................................................................142 

3.17   Transcripts comprising the turquoise eigengene are elevated in the ALS-Ox  

subtype, with GLRA3, HTR2C, SLC17A6, and SLC17A8 shown – also found in 

the cortex ALS-Ox eigengene. .............................................................................143 

4.1   Subtype-specific transcript expression. (A) Heatmap showing expression of 36  

subtype-specific transcripts for all patient samples considered in this study. Count 

values are adjusted for RIN, site of sample preparation, and sequencing platform 

covariates. Expression is z-score normalized, using ALS patient expression to 

define the mean and standard deviation. Control samples with a z-score < –4 are 

adjusted to –4 for plotting purposes. (B) Presentation of FDR-adjusted p-values 

following pairwise differential expression analysis. P-values are –log10  
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transformed prior to plotting. Gray colored entries indicate an adjusted p-

value > 0.05. P, DESeq2 differential expression using the negative binomial 

distribution, two-tailed, FDR method for multiple hypothesis test correction. ...156 

4.2   Supplemental transcripts for the ALS-Glia subtype. Violin plots show ALS-Glia  

specific expression for 16 supporting genes: (top left) ALOX5AP, APOBR, 

APOC1, CCR5, CD68, CLEC7A, CR1, FPR3, MSR1, NCF2, NINJ2, 

ST6GALNAC2, TLR8, TNFRSF25, TREM1, and VRK2. Genes are generally 

associated with glial activation, neuroinflammation, and a pro-apoptotic 

phenotype. p-values have been adjusted for RIN, site of collection, and 

sequencing platform covariates. P, DESeq2 differential expression using the 

negative binomial distribution, two-tailed, FDR method for multiple hypothesis 

test correction. ......................................................................................................157 

4.3   Supplemental transcripts for the ALS-Ox subtype. ALS-Ox specific gene  

expression is shown as violin plots, and include: (top left) B4GALT6, BECN1, 

COL4A6, COX4I2, CP, GABRA6, GPR22, MYH11, MYL9, NDUFA4L2, NOS3, 

NOTCH3, PCSK1, SOD1, TAGLN, and UBQLN1. Supporting genes are generally 

associated with synaptic signaling, blood-brain barrier integrity, oxidative stress, 

and proteotoxic stress. P, DESeq2 differential expression using the negative 

binomial distribution, two-tailed, FDR method for multiple hypothesis test 

correction. ............................................................................................................158 
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4.4   Supplemental transcripts for the ALS-TD subtype. ALS-TD specific feature  

expression is shown as violin plots, and include: (top left) ADAT3, COL6A3, 

EGLN1P1, ENSG00000263278, ENSG00000268670, ENSG00000279233, 

ITGBL1, KRT8P13, LINC00176, LINC00638, MIR219A2, NKX6-2, RPS20P22, 

SLX1B-SULT1A4, TP63, and TUB-AS1. Supporting genes are generally 

associated with transcriptional regulation. P, DESeq2 differential expression using 

the negative binomial distribution, two-tailed, FDR method for multiple 

hypothesis test correction. ....................................................................................159 

4.5   Characteristic gene expression distinguishes ALS patients from controls. Genes  

strongly differentially expressed between ALS patients and controls. Violin plots 

indicate simple thresholding could be utilized to distinguish ALS patients from 

controls and some genes further show subtype-specific upregulation or 

downregulation. Of notable interest, elevated expression of STH in the brain is 

known to serve as a marker for Parkinson’s and other neurodegenerative diseases, 

including FTLD, and is observed to be strongly downregulated in all ALS 

patients. These findings offer a potential marker for the stratification of FTLD 

patients and ALS patients with FTLD comorbidity. P, DESeq2 differential 

expression using the negative binomial distribution, two-tailed, FDR method for 

multiple hypothesis test correction. .....................................................................160 
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4.6   Differential expression analysis considering features distinguishing ALS-FTLD  

from FTLD. Features presented in Figure 4.5 are reconsidered, excluding FTLD– 

ALS patients. Differential expression between ALS-FTLD and FTLD patients is  

maintained, further suggesting these features are specific to ALS pathology. P, 

DESeq2 differential expression using the negative binomial distribution, two-

tailed, FDR method for multiple hypothesis test correction. ...............................161 

4.7   Differential expression identifies transcripts in the spinal cord that stratify  

subtypes and ALS-Ox markers shared between the cortex and spinal cord. (A) 

Heatmap showing z-score normalized expression following transformation to the 

median-of-ratios scale for each subtype. For plotting, z-scores < –4 or > 4 are 

adjusted to –4 and 4, respectively. All presented genes have mean raw counts > 10 

and are expressed uniquely in a single ALS subtype. A total of 519 spinal cord 

samples are shown along the columns, grouped by subtype. (B) Heatmaps 

showing –log10 transformed differential expression FDR-adjusted p-values using 

pairwise comparisons. Gray cells indicated an adjusted p-value > 0.05. ............164 

4.8   The neuroinflammatory subtype (ALS-Glia) is obscured in the ALS spinal cord.  

Transcripts found to stratify this ALS cohort using the postmortem cortex2 are 

reconsidered in the spinal cord. ALS-Glia cortex transcripts AIF1, CD68, HLA-

DRA, TREM2, and TYROBP show weak or non-significant differences in 

expression compared to the other two subtypes in the spinal cord. Genes 

associated with proteotoxic and oxidative stress are elevated in the cortex of ALS- 
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Ox patients but not in the spinal cord, seen in the expression of BECN1, OXR1, 

SERPINI1, SOD1, and UBQLN2 yet tissue composition at the cellular level may 

partially explain these differences. NKX6-2 but not miR24-2, both associated with 

the regulation of transcription, showed weak but consistent upregulation in the 

cortex and spinal cord of ALS-TD patients. ........................................................165 

4.9   ALS-Ox marker genes in the postmortem cortex and spinal cord. Marker genes  

show coherent elevated expression throughout the central nervous system. 

Expression is separated both by subtype and CNS region for (A) B4GALT6, (B) 

GABRA1, (C) GAD2, (D) GLRA3, (E) HTR2A, (F) PCSK1, and (G) SLC17A6. All 

counts are presented on the log2 transformed median-of-ratio scale. All 

differential expression p-values are FDR adjusted. .............................................169 

4.10   ALS-Glia marker genes in the postmortem cortex and spinal cord. Expression is  

separated both by subtype and CNS region for (A) MYL9, (B) ST6GALNAC2, and 

(C) TAGLN. All counts are presented on the log2 transformed median-of-ratio 

scale. All differential expression p-values are FDR adjusted. .............................170 

4.11   ALS-Ox marker gene expression on the FPKM count scale. Sample-level  

expression of ALS-Ox marker genes after grouping by ALS-Ox percentage, 

calculated by taking the number of intra-patient samples defined as ALS-Ox 

divided by the total number of samples from the patient. Transcript expression is 

normalized by library size to the FPKM scale. Concordant ALS-Ox patients were 

defined as ALS-Ox in all available tissue samples, while the ‘generally not ALS- 
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Ox’ category is defined as less than 50% of samples classified as ALS-Ox. A total 

of 53 unique samples were included in the ‘Concordant ALS-Ox’ category, 393 

samples in the ‘at least 50% ALS-Ox’, 410 samples in ‘generally not ALS-Ox’, 

and 184 control samples – corresponding to 206 ALS patients and 88 non-

neurological controls. ...........................................................................................171 

4.12   Marker gene expression in the perfectly concordant patient subset presented in  

Figure 2.20. Marker gene expression is presented on the DESeq2 median-of-ratios 

scale for samples originating from the (A) postmortem cortex or (B) spinal cord. 

In the cortex, a total of 9, 27, and 28 unique tissue samples are included in the 

ALS-Glia, ALS-Ox, and ALS-TD categories, respectively. 42 FTLD mimics are 

included and the remaining 380 transcriptomes are included in the “Not 100% 

Concordant” category. In the spinal cord, a total of 10 ALS-Glia, 22 ALS-Ox, and 

38 ALS-TD transcriptomes comprise the perfectly concordant categories, with the 

remaining 346 samples as “Not 100% Concordant”. ...........................................172 

4.13   Truncated Stathmin-2 expression and genetic risk in the perfectly concordant  

patient subset in Figure 2.20. Full length and truncated Stathmin-2 expression 

presented on the transcript per million (TPM) or raw count scales in the (A) 

postmortem cortex and (B) spinal cord. In the cortex, a total of 9, 27, and 28 

unique tissue samples are included in the ALS-Glia, ALS-Ox, and ALS-TD 

categories, respectively. 42 FTLD mimics are included and the remaining 380 

transcriptomes are included in the “Not 100% Concordant” category. In the spinal 
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cord, a total of 10 ALS-Glia, 22 ALS-Ox, and 38 ALS-TD transcriptomes 

comprise the perfectly concordant categories, with the remaining 346 samples as 

“Not 100% Concordant”. (C) Genetic mutations in the perfectly concordant 

subset, with chi-squared test of independence indicating a significant association 

between (concordant) subtype and C9orf72 mutation with (p = 0.0009) and 

without (p = 0.0124) the ‘unknown’ category. ....................................................173 

4.14   Supervised classification in the postmortem cortex cohort exclusively using 299  

features. (A) F1 scores from 100-fold cross validation with the NovaSeq cohort 

are shown as boxplots, with n=208 patients in the training cohort and n=89 

patients in the test cohort. Four classification methods were considered (KNN, 

MLP, RF, and linear SVC) and predictive metrics are separated by subtype label. 

The MLP classifier demonstrated the highest average F1 score for the ALS-Glia 

subtype (0.80), while the RF classifier showed the best performance when 

predicting the ALS-Ox (0.93) and ALS-TD subtypes (0.90). The median is 

indicated by the solid black line, and first and third quartiles are captured by the 

bounds of the box. Boxplot whiskers are defined as the first and third quartiles –/+ 

interquartile range times 1.5, respectively, and outliers are denoted as solid black 

points. Minimum and maximum values are captured by the lowermost and 

uppermost points, respectively, or whisker bound if no outliers are shown. (B) 

ROC plot showing false positive rate (1-specificity) versus the true positive rate  
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(sensitivity) for the KNN classifier when applied to the holdout (HiSeq) cohort. 

Given the multi-class nature of this analysis, three classifiers were constructed  

accounting for each binary case, using a ‘one-versus-rest’ approach. (C) ROC plot 

showing predictive metrics for the MLP classifier. (D) Sensitivity and specificity 

metrics for the random forest classifier when applied to the holdout cohort. (E) 

ROC plot for the linear SVM classifier show similar performance to the RF and  

MLP models. Using net reclassification improvement and integrated 

discrimination improvement methodology no single classifier was observed to 

outperform the others in the case of Glia vs rest. The SVM classifier was 

determined to outperform all other classifiers for the Ox vs rest case, and both the 

MLP and SVM classifiers were superior when compared to the RF model in the 

TD vs rest case. ....................................................................................................177 

4.15   Three-gene PLS-DA classifiers for ALS-Ox patients. Partial least squares  

discriminate analysis with expression of transcripts normalized to the FPKM scale 

using library size and transcript length estimates from GRCh38.p12. In each case, 

visualization of patients is first performed using ALS-Ox marker genes, taking the 

mean FPKM expression magnitude – for the three-gene combination – from each 

available tissue sample. Majority assigned subtype is color-coded with the 

postmortem cortex and spinal cord presented in the upper and lower half circles, 

respectively. The PLS-DA classifier was then trained and tested using an 80/20 

split of (A) all postmortem cortex samples, and validated using all spinal cord  
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samples, (B) all postmortem spinal cord samples, and validated on the cortex 

holdout, and (C) all NovaSeq samples, and validated on the HiSeq holdout.  

Following PLS-DA, the training cohort is plotted using the first two components. 

Test cohort F1 metrics are presented as boxplots for 100 rounds of cross 

validation predicting ALS-Ox against all other samples, including non-

neurological controls (‘Other’). Lastly, ROC plots showing application of the 

PLS-DA classifier to each of the three holdout cohorts. The top gene combination 

is provided for each holdout cohort, and the B4GALT6, GLRA3, SLC17A6 trio 

was found to have the highest average AUC across all three holdout datasets. ..179 
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4.17   Supervised machine learning classifiers using all seven ALS-Ox marker genes.  

Five different classifiers were constructed, using FPKM normalized expression. 

F1 scores from 100 rounds of cross validation are presented as boxplots, for each  

classifier considered. F1 scores are separated by class level (ALS-Ox and ‘Not 

ALS-Ox’). A combined total of 1,104 ALS and control samples are considered, 

with n=377 (~34%) assigned the ALS-Ox label. Classifiers were constructed and 

applied to three different holdout cohorts comprised of (A) all postmortem spinal 

cord samples (n=519), (B) all postmortem cortex samples (n=585), and (C) all 

samples analyzed by HiSeq (n=415). ROC plots are presented second, for each 

classifier, and show sensitivity vs 1-specificity metrics when applied to the 

specified holdout cohort. ......................................................................................181 

4.18   Expression of transcript TARDBP, encoding ALS disease-associated protein  

TDP-43, is presented to show expression differences between subtypes are not 
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(C) Full length transcript STMN2 counts on TPM scale, evaluated using the 

Mann-Whitney U test (two-sided), with Bonferroni-adjusted p-values shown.   

(D) Full length transcript STMN2 counts on the DESeq2 median-of-ratios scale.  

Healthy control donors and FTLD patients are included, in an effort to improve 

the estimation of size factors for normalization. P, DESeq2208 differential 

expression using the negative binomial distribution, two-tailed, FDR method for 
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Chapter 1 

 

INTRODUCTION 

 

 The overarching goal of this dissertation is to characterize Amyotrophic Lateral 

Sclerosis (ALS) patient variability by stratifying a large, publicly available cohort (NCBI 

GEO Accession: GSE153960) using transcript expression from the postmortem cortex and 

spinal cord. Findings from this dissertation provide new insight into mechanistic 

heterogeneity in ALS patients through the discovery of unique molecular subtypes and 

support the discovery and validation of molecular features to stratify a living cohort. This 

is demonstrated through the application of a suite of bioinformatic strategies, including: 

unsupervised clustering, enrichment, survival, correlation-based networks, differential 

expression, and supervised clustering – presented in subsequent chapters. The resulting 

insight into ALS patient heterogeneity outlined in this work has the potential to improve 

clinical trial outcomes by stratifying patients prior to enrollment and guide the design of 

novel therapies or repurposing of existing drugs. Further, subtype-dependent differences 

in survival provides a foundation to inform patients of their prognosis and guide clinical 

decision making. 

 

1.1 Overview  

 

Previous studies provide an important foundation for this work and offer insight into 

potential drivers of disease variability. Discovery of many genetic mutations in the SOD1 
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protein have spurred the development of cell and animal models to better understand the 

role of the reactive oxygen species (ROS) mediating protein in ALS neurodegeneration. 

While no consensus on the mechanism of SOD1 fALS have emerged, more evidence points 

to a spectrum of toxic ‘gain-of-functions’ rather than directly due to the loss of ROS 

attenuating activity321
 – although oxidative and mitochondrial stress are commonly 

reported106,131,288. Even as the number of known mutant proteins and genetic aberrations 

causing ALS has grown, similar mechanistic disease variability has been observed across 

disease models223. A comprehensive overview of this heterogeneity is provided by Drs. 

Taylor, Brown Jr., and Cleveland, however in brief, cell and animal models provide 

evidence for the presence of (i) proteotoxic stress and disturbances in protein quality 

control, (ii) activated microglia and astrocytes, (iii) negative metabolic regulation reducing 

energy availability, (iv) dysregulated transcription and RNA metabolism, (v) glutamate 

associated excitotoxicity, and (vi) defects in the cytoskeleton and axonal transport321. 

Maturing ‘-omic’ approaches offer a platform to stratify patients using quantifiable 

molecular features when paired with bioinformatics, enabling a better understanding of 

mechanistic heterogeneity in ALS and how it influences disease outcomes. Benefiting from 

the global nature of the analysis, large cohort size, extensive transcriptomic quantification 

throughout the postmortem central nervous system, and detailed patient records, this work 

1) identifies three molecular subtypes in the cortex and spinal cord and considers the 

coherence of intra-patient subtype presentation, 2) links the subtypes to variability in 

patient outcomes, including weak associations with survival, and 3) leverages differential 

expression analysis to uncover marker genes for the ALS-Ox subtype that are consistently 
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upregulated in the cortex and spinal cord and demonstrate clinically appreciable 

stratification accuracies.  

 

1.2   Amyotrophic Lateral Sclerosis  

 

 A typical definition of ALS involves the progressive onset of muscle weakness with 

degeneration primarily affecting motor neurons in the brain and spinal cord of patients321, 

with early symptoms often including cortical hyperexcitability, muscle spasticity and 

fasciculations, and difficulties chewing, swallowing and with speech. ALS is a fatal 

disease, typically concluding with respiratory failure after an average of 3-5 years321. 

Roughly 5-10% of cases have a known hereditary association (familial ALS), while the 

remaining 90% do not, known as sporadic ALS. Disease onset occurs in mid-adulthood 

with a mean age of 55 years321
. Men are reported to have a slightly higher incidence than 

women in populations of European and Japanese descent (1.2–1.5:1)89,138.  Diagnostic 

timelines vary but often take roughly a year with more than half of patients receiving a 

misdiagnosis254, stemming from the lack of disease-specific biomarkers and symptom 

presentation that overlaps with other neurodegenerative diseases40. Given the absence of 

disease-specific biomarkers, the El Escorial criteria serves to guide clinical diagnosis while 

the revised ALS functional rating scale (ALSFRS-R) has been developed to approximate 

rate of progression and severity, but remains limited by subjectivity of scoring and patient 

variability45,58. Riluzole is the only effective therapy and generally offers patients a meager 

2-6 months of prolonged survival138,232, highlighting a clear need for continued work. 
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 Offering insight into the therapeutic gap, a persistent finding in ALS research has 

been the heterogeneity in phenotypes and outcomes observed in cell models, animal 

models, and human patients. Broadly interpreted here as ‘atypical’ ALS, evidence for 

disease onset and progression that falls outside the typical definition is extensive. Age 

related variability can be directly observed in juvenile ALS cases62,251, while as many as 

10% of patients survive longer than a decade with the disease40,315,329. Site of symptom 

onset is commonly heterogeneous, often categorized as ‘limb’ or ‘bulbar’, although other 

classifications exist including ‘axial’, ‘generalized’ or a combination thereof266. Disease 

comorbidities, like Alzheimer’s (AD) and frontotemporal dementia (FTD), present in as 

many as 5%, and 15–50%, of ALS patients respectively93,99,138,173,216. Interestingly, despite 

having a shared protein pathology (TDP-43) in ALS and FTD, not all ALS-TDP patients 

present with FTD, and FTD symptoms can occur without motor neuron degeneration50. 

The consistent observation of ‘atypical’ ALS in a variety of patient populations has driven 

a shift towards viewing ALS as a neurodegenerative spectrum that shares both mechanistic 

and phenotypic characteristics with a range of other diseases including AD, FTD, Primary 

Lateral Sclerosis (PLS), Progressive Muscular Atrophy (PMA), Progressive Bulbar Palsy, 

and Spinal Muscular Atrophy (SMA), among others40,84,138,173,321.  

 

1.2.1   Genetics  

 

 A genetic component to ALS has long been recognized, despite the fact that 

hereditary patients only comprise 5–10% of all cases. Early studies investigating genetic 
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linkage in families with histories of ALS found associations with mutations to chromosome 

21, subsequently discovered to encode the superoxide dismutase protein, SOD1281,296. It 

was immediately recognized that the variability in the location of the genetic mutations 

was extensive, despite being restricted to the SOD1 gene locus281,296. Confirming this initial 

observation, more than 150 additional mutations to the SOD1 protein have been reported 

since the initial discovery, effectively covering all regions of the 153 amino acid protein321. 

Complicating the interpretation, SOD1 mutations only present in 12–35% of fALS and 1–

3% of sporadic patients275,321,371, and no correlations are seen between the reduction in 

enzymatic activity of mutant SOD1 and clinical parameters like age of onset or disease 

duration70. Moreover, despite these mutations affecting the same protein, the gambit of 

genetic aberrations to SOD1 have been shown to yield vastly different disease phenotypes, 

clearly exemplified in A4V and H46R genotypes, with more than 15 years separating the 

average life expectancy of the two groups270. 

 Further complicating the biochemical and mechanistic interpretation of mutant 

SOD1, numerous additional gene loci have been linked to fALS, namely VAPB, TARDBP, 

FUS, ATXN2, UNC13A, UBQLN2, and a hexanucleotide repeat expansion (GGGGCC) on 

chromosome 9, open reading frame 72 (C9orf72) – among others2,217. Even still, known 

ALS genes only present in roughly 50% of fALS patients371, indicating continued work is 

needed to better understand the genetic component of ALS. Despite these limitations, novel 

ALS genes and loci have shed additional light on disease heterogeneity and offer new 

perspectives on centralized disease mechanisms. Of these genetic associations, the C9orf72 

repeat expansion has emerged as a dominant genetic link, as it is reported in a third of 
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fALS274 patients and in 5% of the sporadic population73, but strongly depends on 

ethnicity371. Elucidated by Renton et al.274, a naturally occurring six-nucleotide repeat is 

observed in the first intron of chromosome 9 open reading frame 72, comprised of four 

guanine nucleotides followed by two cytosine nucleotides (GGGGCC). The average repeat 

length in controls was found to be 2–3, regardless of ethnicity, compared to 53 in Finnish 

patients with fALS, with a bimodal distribution that reliably separates controls (<25 

repeats) from ALS cases (>30 repeats). Similar to findings from SOD1 ALS patients, 

phenotypic heterogeneity in C9orf72 associated ALS is extensive, even when considering 

patients from the same family303,315. Further, the length of the repeat expansion and 

zygosity are not seen to correlate with clinical parameters like onset and survival73,315 

making it difficult to uncover mechanisms driving heterogeneity. Yet, when comparing 

phenotypes in SOD1 and C9orf72 linked ALS, insightful differences emerge in site of onset 

and cognitive comorbidity315. The collective consideration of known genetic associations 

in the wider neurodegenerative spectrum continues to reinforce the heterogeneous nature 

of the phenomenon200,315. Despite limitations stemming from phenotypic variability, 

recently discovered genetic associations provide a multitude of platforms to gain additional 

disease insight66,231.  

 

1.2.2   Cell and Animal Models  

 

 Building on discoveries linking genetic aberrations to ALS, numerous cell and 

animal models harboring disease causing mutations have been developed, providing 



 
 

7 
 

immense insight into both mechanistic and phenotypic heterogeneity. Works using cell 

models harboring the C9orf72 repeat expansion commonly report the non-traditional 

translation of the GGGGCC repeat, producing five unique dipeptides (GA, GR, GP, PR, 

PA)11,113,117. These dipeptides have been observed to accumulate in both the nucleus and 

cytoplasm with localization depending on amino acid composition113,214.  In vitro, arginine 

containing peptides are often reported in the nucleus, however these findings do not persist 

in patients, as GR and PR dipeptides are predominantly found in the cytoplasm113. 

Conversely, the absence of GA inclusions in the nucleus of cell models is also observed in 

patients214, demonstrating the utility of genetic models to study ALS heterogeneity. In line 

with localization variability, studies linking dipeptide expression to toxic disease 

mechanisms find evidence for a plethora of defects, including complex formation affecting 

protein induced silencing and splicing75,90, trafficking between the nucleus and 

cytoplasm113,142, impairment of protein translation and RNA metabolism166,186, and 

proteasome recruitment132. Groups leveraging SOD1 cell models arrive at similar 

conclusions, implicating excitotoxicity, endoplasmic reticulum stress, mitochondrial 

dysfunction and oxidative stress, disruptions to cytoplasmic and axonal transport, protein 

aggregation, disruptions to RNA metabolism and processing, and activation of supporting 

glial cells in disease progression140,321. Thus, mechanisms inhibiting normal function in 

ALS cell models propagate to a spectrum of possible phenotypes, sometimes occurring in 

tandem, highlighting a need to better understand the influence in more complex biological 

systems and importance of identifying biological factors responsible for driving the 

expressed phenotype. 
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 The development of ALS animal models, including mice, rats, zebrafish, worms, 

and fruit flies, have spurred additional insight into mechanistic and outcome 

heterogeneity37. The first animal models were transgenic and included mutations to the 

human SOD1 protein (G93A, G37R, G85R), and mouse SOD1 protein 

(G86R)48,133,210,262,276,351. These mice generally presented with motor neuron loss, axonal 

denervation, protein aggregation, and progressive paralysis, recapitulating many aspects of 

human ALS – although age and duration variability were extensive given the genetic 

similarity of the models48,133,210,262,276,351. The utilization of mouse models has helped 

elucidate the role of glial cell involvement, and allowed for the probing of disease 

phenotypes and mechanisms throughout the disease course, enhancing understanding for 

region-specific motor neuron loss, protein aggregation, cellular transport defects, and 

mitochondrial abnormalities155,282. Beyond enhancing disease understanding, the G93A 

SOD1 mouse model provides an important foundation for preclinical studies, including its 

use to evaluate efficacy in the two FDA-approved drugs, Riluzole and Edavarone134,157. 

Outside of mouse models, rat models have been leveraged to identify new therapies and 

offer insights into shared pathological mechanisms between genetic models227,309, while 

the more simplistic Drosophila model has allowed groups to identify new associations with 

neurotransmission294 and disease-associated factors like Ubiquilin 1137. Despite the insight 

gained from animal models, variability in disease mechanisms continues to persist as a 

dominant theme100,101,263. 

 Generally, the predictable onset of disease phenotypes has driven widespread 

adoption of genetic models as a means to study ALS. And, while much insight has been 
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gained from the use of these models, gaps remain in the translation of these findings to the 

wider, sporadic patient population and point to the added necessity of directly studying 

human patients to better understand disease heterogeneity223,263. Recent initiatives, like 

Target ALS and Answer ALS21, aim to provide researchers with crucial access to large 

human cohorts, temporal bio-samples, multi-system level measures (genes, epigenetics, 

transcripts, and proteins), and extensive clinical data – promising to bridge the gap in 

understanding and translation.  

 

1.2.3   Common Disease Features and the Pursuit of Biomarkers   

 

 Despite the general heterogeneity reported from cell and animal models of genetic 

ALS, common disease features have been identified and offer additional insight into 

mechanisms underlying the neurodegenerative pathology. In ALS patients, the observation 

of aggregated TDP-43 in the cytoplasm of neurons is a near ubiquitous (~97%) 

phenomenon and is considered a pathological hallmark of the disease266. TDP-43 

aggregates were first reported by Neumann et al. and linked to the posttranslational 

hyperphosphorylation and ubiquitination of the protein, causing mislocalization from the 

nucleus to the cytoplasm243. Since then, it has been shown that truncated C-terminal 

fragments from the same protein are sufficient to initiate disease pathology153. In both 

cases, the resulting aggregates are observed in the brain and spinal cord of nearly all ALS 

patients and up to half of patients with a frontotemporal lobar degeneration (FTLD) 

exclusively, the typically behavioral variant of FTD42,54,105,243. Given the reliable formation 
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of TDP-43 inclusions in ALS, and similarity of phenotypes between hereditary and 

sporadic patients, many groups have examined the utility of the protein as a biomarker105. 

In addition to the lack of specificity for motor neuron degeneration, given the observation 

in FTLD patients, the detection of pathological forms of TDP-43 (hyperphosphorylated 

and C-terminal fragments) in patient biofluid has faced multiple challenges105. Rooted in 

these challenges is the ubiquitous cellular expression of nuclear TDP-43, regardless of cell 

type, and the tightly regulated exchange between the blood-brain barrier limiting 

opportunity for plasma to be a reservoir for pathological protein105. Antibodies designed to 

target the endmost C-terminus of pathological TDP-43, the optimal motif for detection of 

all forms of the disease causing protein105, were still shown to lack specificity for 

cytoplasmic inclusions in postmortem tissue and remained reactive for functional TDP-43 

in the nucleus105,187. Similar specificity concerns were encountered in patient cerebrospinal 

fluid (CSF)246,308 and plasma332, yet recent findings suggest promise in the use of exosomes 

to address specificity concerns for pathological TDP-43154.  

 Limitations surrounding the specific detection of pathological TDP-43 have 

spurred the search for other ALS-specific biomarkers. Supported by advances in 

technologies, computation, and methodologies, more ‘wholistic’ measures of patient gene 

expression (transcriptome) and protein abundance (proteome) have offered numerous 

additional markers associated with ALS neurodegeneration. The central role of TDP-43 in 

transcriptional regulation has resulted in the identification of truncated forms of STMN2 

and cryptic exon expression in UNC13A associated with ALS-TDP pathology46,179,212,266. 

While both transcripts show promise relative to controls, limited expression in patient 
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tissue and variability amongst patients, respectively, represent challenges for their 

implementation as biomarkers46,179,212. Similarly, promising findings occur at the protein 

level, with, among others, phosphorylated neurofilament heavy chain (pNfh), MCP-1, IL-

8, CD14 to S100β and C3 to pNfh ratios, shown to be elevated and transthyretin and 

cystatin C decreased in ALS patients relative to non-neurological controls – but specificity 

is generally limited when compared to disease mimics43,115,184,269,272,312. Thus, 

combinations of protein biomarkers may present an opportunity to increase sensitivity for 

ALS, although longitudinal and multi-site validation are ultimately necessary for 

successful clinical translation. 

 

1.3   RNA-Sequencing  

 

 Since its formal conception286, RNA-sequencing technologies have benefited from 

advances in both methodology and computational power, lowering costs and increasing 

throughput, resulting in widespread adoption of the technology as a means of assessing 

gene expression levels in an increasingly diverse set of organisms and contexts. In brief, 

‘next-generation’ sequencing leverages a variety of methodologies, each with the goal of 

‘reading’ the sequence of DNA bases comprising a given oligonucleotide. Reading DNA 

sequencing from human tissues requires the extraction and purification of DNA, or RNA, 

and subsequent steps often reflect the type of instrumentation used. In nanopore 

sequencing, DNA or RNA fragments are passed through a nanoscale opening under high 

voltage, producing characteristic current responses dependent on the nucleobase, and is 
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performed in parallel to achieve high throughput. Fluorescent-based methodologies, like 

Illumina’s sequencing by synthesis, involve ligating adapter sequences to purified 

fragments to allow for massively parallel sequencing on their custom designed flow cell. 

Sequencing of RNA requires additional steps, including reverse transcription to obtain 

cDNA and allow method compatibility. The dataset utilized throughout this dissertation 

leverages the latter approach from Illumina, and advantages and disadvantages of this 

technology are considered in Chapter 1.3.4. In all cases, the sequence(s) of DNA is then 

compared to a reference human genome using a computer to aid in the identification and 

quantification of all DNA fragments from a single sample – a step known as alignment. 

During alignment, fragment characteristics like transcript length, GC content (related to 

hydrogen bonding between base pairs), strandedness (3` or 5`), total number of transcripts 

observed (reads), and length of the sequencing read become important considerations when 

leveraging next-generation sequencing technologies as they can confound with and 

influence the observed transcript copy number. The complete sequencing of available 

transcripts through next-generation methods is typically referred to as transcriptomics, with 

the ‘-ome’ or ‘-omic’ suffix indicating wholistic measure of most or many available 

features at a given system level (e.g. gene, transcript, protein, metabolite, etc.).  

 

1.3.1   Protein-coding RNA  

 

 The central dogma of biology teaches the replication of DNA, the transcription of 

DNA to RNA, and the translation of processed RNA to proteins. This ‘traditional’ flow of 
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genetic information ultimately results in the synthesis of new proteins from individual 

amino acid subunits bound to transfer RNAs (tRNA). This process occurs at the ribosome 

– a large multi-protein complex found on the endoplasmic reticulum – and requires a tRNA 

displaying a sequencing complementary to the three-nucleotide codon presented on the 

processed RNA. These nascent proteins frequently undergo further processing in the Golgi 

apparatus before performing enzymatic, structural, signaling, transport, or regulatory 

functions within or outside of the cell. Before the RNA can be translated to proteins, a 

series of modifications occurs to the newly synthesized RNA sequences following 

transcription, producing messenger RNA (mRNA). These post-transcriptional 

modifications include the addition of 7-methylguanosine to the 5` end of the RNA sequence 

(5` cap), the addition of roughly 200 adenine nucleotides (in mammals) forming a poly(A) 

tail, and the removal of intronic sequences by the spliceosome – a ribonucleoprotein 

complex – to produce a contiguous segment of exons that can vary in their inclusion in the 

final mRNA sequence, a phenomenon known as alternative splicing79,126,258,348.  

 Of these post-transcriptional modifications, the alternative splicing of RNA 

transcripts contributes the most to variability in the encoded protein sequence on the mature 

mRNA and drives differences in the ultimate structure and function of the resulting protein. 

Thus, while the same DNA sequence may be transcribed to produce RNA copies, the same 

pre-processed RNA transcript may produce multiple proteins of similar or dissimilar 

structure and function126. This can create challenges during the analysis of large 

transcriptomic datasets generated by next-generation RNA-sequencing technologies and 

for the translation of findings from the mRNA level to the protein level30. Large databases 
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like Ensembl139 provide an important resource for linking mRNA splice variants to a single 

protein in an effort to infer the ultimate function of the encoded protein – although 

additional work is needed to understand the extent to which splice variants perform the 

same function and with what efficiency290,344.  

 

1.3.2   Non-coding RNA  

 

 Counterintuitively, given the importance of proteins in the function of both healthy 

and diseased cells, protein-coding genes comprise fewer than 3% of the entire human 

genome (<1.5% when considering exons exclusively)95,236. Although the remaining ~97% 

are never translated by the ribosome to create a protein, groups have shown that the 

transcription of these regions still occurs (over 80%), generally at low levels and only 

partially active in any given cell type3,63,95,236. Importantly, it has been demonstrated that 

many of these resulting RNA transcripts retain function, participating in a range of 

processes including epigenetic memory, development, transcriptional regulation, RNA 

splicing, translation, and RNA metabolism3,95,222,236. These transcripts are broadly 

classified by length and function, and include: (i) microRNAs, (ii) piRNA, (iii) siRNA, (iv) 

promoter associated RNA, (v) enhancer RNA, (vi) long non-coding RNA (lncRNA) – 

further subset by genetic locus and includes intergenic, antisense, intronic, and 

pseudogenes, (vii) small nuclear (snRNA), (viii) small nucleolar RNA (snoRNA), among 

others163,221,367. Although the mechanistic function of individual non-coding transcripts is 

generally unknown221, at present, the diversity of expressed transcripts provides insight 
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into the complexity and importance of non-protein coding RNA in the health and 

maintenance of normal cell function.  

 While the study and elucidation of non-coding RNA function is ongoing, numerous 

works provide key insight into the role of non-coding RNA in health and disease. In female 

mammals, two copies of the X chromosome require additional regulation of chromosomal 

gene expression, and the well-studied non-coding RNA transcript XIST has been shown to 

play an important role in the necessary inactivation of one copy108,360. In mice, the deletion 

of the opposite strand of Hand2 results in abnormal heart function and embryonic death, 

while the deletion of non-coding Flicr decreases susceptibility for autoimmunity in non-

obese diabetic mice108,136,364. In human cancer, the expression non-coding RNA has been 

shown to influence the progression, metastasis, severity, and therapeutic responsiveness, 

reflecting a poorly understood mechanism partially responsible for patient 

phenotype28,76,280,320. More relevantly, in the brain, alternative splicing is known to occur 

at high frequency, and antisense transcript BACE1-AS has been associated with amyloid 

β production in Alzheimer’s disease, while a long non-coding transcript on the long arm of 

chromosome 22 has been linked to schizophrenia pathogenesis18,104,358,362,365. More 

recently, in ALS, longitudinal measures of serum microRNAs identified transcripts 

associated with progression87. Although collective knowledge reflects early stages of 

understanding, the relevance and importance of these non-protein coding features 

continues to grow, and associations with dysregulated RNA metabolism in ALS321 hint at 

new insights to be gained from the consideration of these transcripts. 
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1.3.3   Transposons  

 

 Transposons (“Transposable Elements”, TEs) are a class of non-coding RNA and 

these transcripts fall broadly into two categories depending on the mechanism utilized to 

reinsert itself into the genome39,225. DNA transposons are directly ‘copy-and-pasted’ into a 

new location in the genome without transcription to RNA and require a transposase enzyme 

to complete the duplication39,145. RNA transposons, also called retrotransposons, use a 

separate mechanism to insert itself back into the genome that involves transcription to RNA 

before it is reverse transcribed back to cDNA and integrated into a new location in the 

genome33,39. Transposons are grouped into subclasses with finer resolution related to the 

mechanism of genome integration, and further divided into ‘superfamilies’ that include 

long interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), 

Penelope-like elements (PLEs), Ty1/copia, Ty3/gypsy, and endogenous retroviruses 

(ERVs) in retrotransposons and hAT and Tc1/mariner in DNA transposons39. TE 

superfamilies are further grouped by phylogeny to produce ‘families’ that include highly 

expressed Alu, L1, and mammalian-wide interspersed repeats (MIRs) in humans39,264 that 

continue to influence the human genome102. Transposon integration into the genome occurs 

infrequently enough that these DNA features can be used as a method to assess mammalian 

phylogenetics162,253,300,301. Despite the low rate of integration, a portion of these non-coding 

regions remain actively transcribed in humans, spurring the development of reference 

databases and new computational methods to aid in the wholistic identification and analysis 

of these RNA features16,160,359. Generally, understanding for the function and role that 
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individual TEs play in human health and disease is limited at present, however TE 

expression is known to be elevated in the brain94, associated with cryptic exon expression 

in native genes94, an extensive regulator of gene expression39,69, capable of inducing DNA 

damage143 and activation of innate immunity125, and linked to aging125, cancer13, and 

neurodegeneration via TDP-43183,197,206. 

 As may be inferred from mechanisms of genome integration, high sequence 

similarity amongst retrotransposons from the same family coupled with short read lengths 

pose challenges during the quantification of these transcripts by next-generation RNA-

sequencing technologies. Existing computational methods handle this hurdle differently, 

either aggregating counts by TE family160 or maintaining gene locus resolution359, after 

applying the expectation maximization (EM) algorithm to aid the allocation of non-specific 

(multi-mapping) reads. 

 

1.3.4   Advantages and Limitations  

 

 Following the appropriate preparation steps, next-generation RNA sequencing 

provides a means to wholistically measure both coding and non-coding transcripts present 

in biofluid and tissue. When paired with carefully curated databases and computational 

methods that account for biological variability, a ‘global’ snapshot of active gene 

expression is obtained. The quantitative nature of sequencing (integer counts) allows for 

collective study of a multitude of gene processes in response to perturbation or disease. 

RNA-sequencing has already demonstrated success in elucidating unforeseen or 
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unexpected mechanisms in disease that often arise from complex interactions, associations 

with non-coding RNA, and alternative and cryptic splicing46,52,77,212,266,305.   

 While providing a platform to consider human health and disease using wholistic 

gene expression, the nascent technology is not without limitations and challenges. Illumina 

instruments generally leverage short read lengths (150-200 base pairs) and correctly 

assigning the read to one of many gene isoforms (splice variants) is prone to error305. 

Considering expression at the gene level rather than isoform level can circumvent this 

challenge, although there is a growing need to reach this resolution305.  Although not 

directly related to the instrumentation, methodologies that extract RNA from bulk tissue 

homogenate encounter additional drawbacks. Given that any tissue biopsy is comprised of 

a variety of unique cell types, with different regions of the genome actively expressed, 

counts obtained by bulk tissue RNA-sequencing are confounded with the proportion of cell 

types present – generally creating unwanted effects when sampling the same region from 

different patients. Bioinformatic strategies like cellular deconvolution have been developed 

to help ascertain effects due to varying cell type proportions, however alternative 

methodologies like single cell or single nucleus RNA-sequencing can avoid bulk tissue 

bias by quantifying expression individually in each cell. Further, procedures to extract and 

maintain RNA integrity from tissue vary substantially in practice, and can drive bias during 

quantification of expression – a particularly potent problem when looking at postmortem 

tissue107. The implementation of RNA Integrity Number (RIN)292 as a covariate in RNA-

sequencing studies can help adjust for effects due to the degradation of transcripts that 

occur following death, but literature suggests this measure is incomplete304,345. 
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 The work in this dissertation leverages RNA expression from bulk tissue 

sequencing. Future works considering heterogeneity from a single-cell perspective should 

provide additional insight into phenotype contribution from individual cell types, 

interactions between cells in the context of subtype-specific mechanisms, and the extent to 

which the observed subtype is driven by bulk tissue effects. 

 

1.4   Bioinformatics  

 

 Data generation from bulk RNA-sequencing experiments is extensive (typically 

gigabytes per run) and the raw sequence data is generally unfriendly to work with as 

millions of individual reads can make direct interpretation highly challenging. The 

implementation of computers to aid in the systematic quantification of the transcriptome 

becomes an inherent necessity, especially as the amount of sequencing information grows 

increasingly large (i.e. paired-end reads). Numerous software programs and workflows 

have been developed by the bioinformatics community aimed at providing standardized 

methods for aligning sequence reads to a reference human genome, allocating multi-

mapping reads, and data-driven normalization. Stemming from the complexity of the 

desired task, groups often weave multiple coding languages into a coherent pipeline with 

the goal of enhancing computational speed, analytical accuracy, and reducing the required 

resources. These software packages are typically made available to the wider community 

through code repositories like Github and are often most easily utilized in a Linux 

environment. When combined with parallel computing, often in a high-performance 
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computational architecture, the processing and alignment of raw RNA-sequencing data 

becomes a far more feasible and efficient task, even for large cohorts.  

 Beyond alignment and quantification of raw sequencing reads, bioinformatics 

reflects a wide variety of mathematical, statistical, and computational concepts that are 

often adapted to better address known biological phenomenon. For example, when 

comparing transcript expression, the use of the negative binomial distribution over a 

normal distribution reflects the intuitive assumption that gene expression is non-negative 

and generally expected to be low relative to a few active processes. In other cases, the 

expectation maximization algorithm can be leveraged to aid the assignment of multi-

mapping transcript sequences, while the cox regression framework serves as the basis for 

multivariate survival analysis. Elsewhere, sequence alignment algorithms allow for 

imperfect matches to account for single nucleotide polymorphisms and other naturally 

occurring and expected genetic variations relative to the reference genome. Thus, many 

concepts leveraged throughout this dissertation have methodological origins in other 

disciplines and reflect a substantial amount of work from the bioinformatics community to 

extend their usage to biological cases.  

 

1.4.1   Databases and Data Repositories 

 

 Although data repositories are not bioinformatic methods themselves, they 

certainly support the field of bioinformatics and are worth discussing. Government-led 

intuitions like the National Center for Biotechnology Information (NCBI) in the United 
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States or the European Bioinformatics Institute (EMBL-EBI) are responsible for storing 

and managing large biological datasets that are becoming increasingly commonplace. 

These repositories accept a wide variety of raw data formats and aim to provide the wider 

scientific community with straightforward access to these files in order to answer new 

biological questions. Available information is typically grouped by system level (e.g. 

transcripts, proteins, metabolites), organism, instrumentation, and methodology and 

currently exceeds 10 petabytes in NCBI’s Sequencing Read Archive (SRA) alone. More 

recent repositories like EBI’s PRIDE Archive (a part of ProteomeXchange334) provides 

mass spectral data from proteomics, while the MetaboLights repository offers the same 

raw spectral information but for metabolites.  Beyond data management, these institutions 

also provide the bioinformatics community with a suite of tools and curated databases to 

aid in the analysis of complex genomic (and non-genomic) information38,139,228,249.  

 Outside of these dedicated bioinformatics institutions, numerous initiatives have 

worked to expand access to -omics data and develop databases to aid in analysis, including: 

the National Cancer Institute’s The Cancer Genome Atlas (TCGA) Program, the Genetic 

Information Research Institute’s Repbase16, the ENCODE consortium’s GENCODE 

database95, the Canadian-led human metabolome database349, sequencing archives like the 

DNA DataBank of Japan180, European Nucleotide Archive194, and GenBank27, the National 

Institute of Health’s (NIH) Genotype-Tissue Expression Program (GTEx)128, the 

University of California Santa Cruz (UCSC) Genome Browser168, non-profit Sage 

Bionetworks’ Synapse database (among other resources), the University of California San 

Diego’s Metabolomics Workbench311, and pathway databases that synthesize findings 
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from hundreds of individual publications, like the Kyoto Encyclopedia for Genes and 

Genomes (KEGG)165, Reactome121, and BioCyc57. Furthermore, groups have improved file 

transfer protocols and storage to enhance download speed and security, which include 

software like IBM Aspera and University of Chicago’s Globus111. Collectively, these 

critical and fundamental undertakings serve as the bioinformatics backbone, directly 

accelerating new discoveries, enhancing biological insight, and supporting the proposal of 

novel questions or methodologies.  

 

1.4.2   RNA-Sequencing Alignment and Quantification  

 

 Raw sequencing files obtained from Illumina instrumentation require multiple 

processing steps before quantitative information can be obtained. Pre-processing usually 

involves the trimming of Illumina adapter sequences, accomplished by software like 

Trimmomatic35, but are not always necessary depending on the downstream alignment 

method used86. The first major step is referred to as alignment, and involves comparing all 

sequences of nucleotides against a reference human genome, offered by a number of 

databases95,139,249. Matching sequences are assigned as ‘counts’ to the corresponding gene 

or non-coding transcript, and genomic depth can vary depending on the reference genome 

provided. Multiple software pipelines have been developed to accomplish alignment and 

include, STAR86, Bowtie2189, Tophat2174, and GSNAP352, among others. Comparative 

studies report a substantial variability in alignment performance, with STAR frequently 

reported on the upper end of alignment procedures19,96. Following alignment, integer 
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counts are obtained for genes comprising the reference genome, although a minority of 

sequences typically show ambiguity during mapping and cannot be assigned to a single 

feature specifically, known as multi-mapping reads. To help with the data-driven allocation 

of these reads, the expectation maximization algorithm can be applied to derive count 

distributions adjusted for parent transcript, length, start position, and strandedness that are 

then used to determine the probability that a specific fragment originates from a given 

transcript196. The probabilities are then used to assign ambiguous transcripts as a fraction 

of the total number of reads available for allocation196. Following the utilization of 

RSEM196, count values may be rounded to integers to allow for compatibility with 

downstream applications like differential expression208.  

 

1.4.3   Correcting for Multiple Hypothesis Testing  

 

 Massively parallel sequencing enables the quantification of gene expression for 

most available transcripts, and is not restricted to protein coding regions, often yielding 

tens of thousands of unique features. Individual hypothesis testing becomes an immediate 

pitfall, and stems from the rather arbitrary definition of statistical significance. Using an 

alpha value of 0.05, results are determined to be ‘statistically significant’ if the probability 

of observing such an outcome is less than 1 in 20 under the null hypothesis, leading to an 

acceptance of the alternative hypothesis. Thus, when considering expression differences in 

20 different genes, one is likely to be observed as statistically significant entirely by chance 

and unrelated to the hypothesis being tested – by definition. To correct for the multiple 
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hypothesis testing problem, numerous statistical methods have been developed centered 

around controlling type I errors, also known as false positives. The most stringent, known 

as the Bonferroni36 correction, simply divides the chosen alpha value (typically 0.05) by 

the number of hypothesis tests being performed, providing the corrected alpha value to test 

against. The Bonferroni correction, along with the Sidak correction295, Holm-Bonferroni 

method150, and Hochberg’s procedure149 aim to control the family-wise error rate (FWER) 

or the probability that any given rejected null hypothesis is falsely reported. A different 

approach, often called the false discovery rate (FDR) developed by Benjamini and 

Hochberg26, involves controlling the proportion of all rejected null hypotheses that are 

falsely reported, ensuring that some are false positives. Typical false discovery rates are 

5% or 10%. Although this procedure generally leads to a higher number of false positives 

compared to FWER controlling methods, the FDR is often preferred in large exploratory 

studies where follow-up experiments may be performed to confirm the initial findings. 

Other strategies have been developed to address the problem of multiple hypothesis 

comparisons but are not utilized in this dissertation.  

 

1.4.4   Clustering 

 

Depending on the research question, interesting biological insight can often be 

obtained from grouping similar samples or observations together and probing the 

differences between groups, with notable successes in cancer72,129,299. Broadly, clustering 

algorithms aim to group similar observations into ‘clusters’ which ‘look’ more similar to 
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observations within the cluster as compared to other clusters. Clustering can be susceptible 

to outliers and sensitive to covariates with large effects, such as sex, and expression data 

typically requires normalization (i.e. regularized log or variance stabilizing transformation, 

VST) and filtering before interesting clusters can be extracted208. Numerous methods have 

been developed to accomplish this task, ranging in complexity, measures of distance, and 

approach to assigning clusters. Hierarchical and K-means clustering calculate the distance 

between points and assign centroids (cluster locations) in a way that minimizes the intra-

cluster sum of squares110,241,260. For hierarchical methods, alternative clustering schemes 

have been developed including the minimization of the max or average distance between 

points and density-based cluster assignment240,260. Consensus clustering builds on 

hierarchical or k-means algorithms by iteratively repeating the clustering process to obtain 

robust sample labels and parameter estimates235,347.  

Alternatively, matrix factorization can achieve the goals of clustering by 

decomposing a bulk signal into individual components, reducing the dimensionality of the 

parameter space. Principal component analysis (PCA) is a well-known matrix factorization 

technique and involves the decomposition of the covariance matrix to identify orthogonal 

components (eigenvectors), scaled by the eigenvalue, that maximizes the variance 

explained350. Groups within the sample population can typically be visualized by plotting 

the first few components capturing the largest variance. Another technique, non-negative 

matrix factorization (NMF), can be applied to matrices that are strictly non-negative, 

originally developed for image processing192,252. With the understanding that gene 

expression meets this criterion of non-negativity, the approach has been adapted for 
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biological clustering with numerous additional variants developed49,148,175,255. The 

constraint on negative observations allows for part-based representations in the resulting 

clusters, rather than wholistic ones (as in PCA), because additive combinations are strictly 

possible192. With gene expression data, part-based representation often yields more 

intuitive components and aids cluster identification given wholistic components (as in 

PCA) encoding negative expression are biologically unintelligible. Further differing from 

PCA, NMF provides probabilities that a given sample belonging to a specific cluster, 

known as soft clustering116. Using the highest cluster probability, a single group label can 

be assigned to a sample, supporting hard clustering. Finally, gene scores175 from NMF 

clustering provide additional information regarding cluster specificity, aiding feature 

selection for downstream analyses. Relatedly, but outside the scope of this dissertation, 

non-linear dimensionality reduction techniques like t-SNE330 and UMAP22 offer additional 

clustering frameworks for high dimensional data and are commonly leveraged in single 

cell sequencing datasets for cell type identification, among other applications289.  

  

1.4.5   Gene Enrichment 

 

 Following clustering analysis, and others like differential expression208 and gene 

co-expression188, one typically arrives at a list of important genes and transcripts related to 

the disease, group, or biological perturbation being studied. Gene enrichment encompasses 

a family of methods designed to provide additional information about the pathways and 

cellular contexts that genes of interest are known to participate in. Databases like KEGG165 
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and Reactome121 enable gene enrichment analyses by maintaining curated gene sets for 

known pathways to compare the interesting features against. Additionally, the Gene 

Ontology Consortium has offered a wealth of gene annotations that can be leveraged during 

enrichment analysis and are separated into three categories, (i) biological processes, (ii) 

molecular functions, and (iii) cellular compartments, offering both functional and spatial 

insight into over a million coding and non-coding transcripts across >5,000 different 

species118. Building on these important knowledge resources, multiple procedures and 

strategies for enrichment have been developed. Hypergeometric enrichment analysis 

determines the probability of observing the provided genes within the numerous lists 

offered by pathway and gene ontology databases, using the Fisher exact test, which 

assumes a binomial distribution59,277. Alternatively, Gene Set Enrichment Analysis 

(GSEA) is an important and popular bioinformatics software which performs gene 

enrichment analysis by first ranking genes by correlating expression data with two 

phenotype levels310 (e.g. disease vs control) – often performed in a pairwise manner for 

cases with >2 phenotypes. After obtaining a ranked set of genes, an enrichment score is 

calculated using a running-sum statistic with magnitude determine by the rank, which is 

followed by randomly resampling the phenotype for empirical estimation of the p-value310. 

Normalization is performed by dividing the true enrichment score by mean enrichment 

score from resampling, which is subsequently used to control the rate of false positives and 

in the calculation of FDR-adjusted p-values310. Challenges with enrichment analysis 

typically stem from the high degree of gene overlap between lists leading to an undesirable 

number of false positives, and more recently developed approaches work to address this 
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hurdle123,297. Collectively, these methods, and others, enable a deeper biological 

understanding for the genes of interest associated with the research question, and directly 

complement wholistic analytical strategies like RNA-sequencing where a relatively 

unbiased snapshot of transcription can provide unexpected insight into diseases processes 

and associated mechanisms.  

 

 1.4.6   Bootstrapping 

 

Bootstrapping is a statistical method that involves the resampling of observations 

with replacement. The technique is particularly helpful for estimating parameter 

distributions to assign confidence intervals, errors, variances, and probabilities. For 

example, Patel et al. leverage bootstrapping and glioblastoma subtype marker genes to 

establish confidence intervals on the expected expression for each phenotype following 

single cell RNA-sequencing, and utilize the derived distribution to show that individual 

cells can effectively express hybrid disease states259. The use of bootstrapping in 

bioinformatics generally stems from the complex nature or structure of large ‘-omic’ 

datasets, often making it difficult to determine parameter values directly, and the relative 

time and cost effectiveness of estimation through random resampling.  
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1.4.7   Cell Deconvolution 

 

Cellular deconvolution is a bioinformatic method that aims to decompose bulk 

tissue expression data into the individual contribution from each cell type provided in a 

reference gene expression dataset244,342, although reference-free methods have also been 

developed268,341. Cell deconvolution derives its name from linear algebra and signal 

processing concepts, namely signal deconvolution, and can help determine if the effects or 

phenomenon observed in bulk tissue expression may be explained by cell type composition 

and differences therein. With the understanding that the bulk expression matrix (B) is the 

observation of the proportion of different cell types (X) that has been convolved with the 

individual expression profiles of each cell type (A), linear algebra can be used to extract 

the cell type percentages needed to produce the bulk expression profile. In reference-based 

approaches, single cell RNA-sequencing data is typically used to define the individual 

expression. Although powerful and informative, cell deconvolution analysis can only 

provide estimates and can be biased and limited by currently available reference datasets, 

given relevant covariates like age, genetic background, exposure, or lifestyle may not align 

with the cohort being studied. Single cell RNA-sequencing approaches offer more precise 

determination of cell type and should continue to provide additional insight into the 

individual contributions to the overall disease phenotype135,171.  
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1.4.8   Survival Analysis 

 

 Survival analysis serves as a powerful method to associate treatments, 

interventions, subtypes, and diseases with differences in patient outcomes often measured 

in, or reported by, the clinic238. In the simplest case, the analysis aims to determine the 

influence of a single variable on patient survival (alive vs dead at time, t). Using the 

statistical framework provided by the log rank test and chi-squared distribution, survival 

analysis involves determining the probability that an event (death, in the case of survival) 

occurs at a given point in time, with the null hypothesis assuming no difference between 

two or more groups124,167. During analysis, at each time point where an event occurs, the 

observed number of events is compared against the expected number – for each group – 

and used to calculate the survival probability and log-rank test statistic124. The resulting 

plot presents the length of time along the x-axis and the survival probability along the y-

axis, with a step function joining points, given the proportion of surviving patients does 

not change between event times.  

To address commonly encountered scenarios resulting in missing data, a technique 

known as censoring is often applied, where ‘left censoring’ involves the exclusion of 

patients where the timing of initiating event (e.g. symptom onset) is unknown and ‘right 

censoring’ involves the exclusion of patients with unexpected study dropout, unrelated to 

the question or disease being examined, or does not reach some event or milestone of 

interest (e.g. death)195. In the R programming language (The R Foundation for Statistical 

Computing, Vienna, Austria), the ‘survival’ library325 implements a ‘status’ argument to 



 
 

31 
 

indicate whether censoring is to be applied, which allows use of observational information 

from censored patients without influencing the determination of the survival probability at 

any given point in time. In cohorts where patient observations are exclusively postmortem, 

the model is modified to reflect all patients experiencing the death event, eliminating the 

need for right censoring, but may still require left censoring depending on the informational 

availability of the initiating event. More complicated cases are also supported, where 

multiple states are possible (e.g. healthy, diseased, death)325. Yet, despite the capabilities 

of survival analysis, the log rank test is limited in its ability to account for the effects of 

more than one covariate. 

 

1.4.9   Cox Regression 

 

 The multivariate extension of survival analysis was established through a 

regression statistical framework developed by Dr. David Cox and extended by 

others5,80,324,325. Assuming that the hazard (age-specific failure rate) is proportional 

between subjects or observations over the timeframe being considered, the resulting hazard 

ratio becomes constant, and it is possible to simultaneously estimate the effects of all model 

parameters80. The method is commonly reported as the Cox proportional hazard model, 

reflecting the assumption necessary to allow for multivariate parameter estimation12,80. The 

model incorporates a baseline hazard, λ0(t), which is expected to be equivalent for all 

patients, and regression parameters are exponentiated. A reference level is specified to 

allow calculation of the hazard ratio relative to the reference. The hazard ratio is then 
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obtained by exponentiating the parameter coefficients, with hazards > 1 indicating 

increased risk of death relative to the reference level, and < 1 showing decreased relative 

risk of death.  

Within the proportional hazard framework, increasingly powerful computational 

strategies have been developed over time by a handful of individuals to extend the types of 

valid cases, with statistical research ongoing12,323,324,325. The inclusion of a single random 

effect term, often to account for patient-specific differences in the baseline hazard, can be 

a powerful way to adjust for fundamental individualistic differences in the failure rate and 

can be identified in peer-reviewed literature as a ‘frailty’ or Cox Mixed Effects 

models12,323. The latter is considered more robust by the R software developer and a move 

away from the ‘frailty’ framework has been recommended. For models that seek to 

incorporate more than one random effect term, the mixed effects approach becomes the 

only option. Alternative computational strategies can be leveraged with the proportional 

hazard framework to account for patient-specific effects, including the use of the ‘cluster()’ 

argument which more closely resembles generalized estimating equations. Quantitative 

testing of the proportional hazard assumption using the score test is offered by the R 

‘survival’ software package127,325 but can be qualitatively assessed through plots of the 

scaled martingale and Schoenfeld residuals or the log, –log transformed hazard function 

against logarithmic time127,178. Ultimately, Cox regression for multivariate survival 

represents one of the better strategies for isolating the effects of a single treatment, 

phenotype, or covariate after correcting for other relevant drivers of patient survival like 

age and sex25,164.  
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1.4.10   Weighted Gene Co-Expression Network Analysis (WGCNA) 

 

 Driven by major advances in the molecular and cellular biology, an understanding 

for the complex, redundant, and contrasting interactions between genes has been 

established. Weighted Gene Co-Expression Network Analysis (WGCNA) builds upon this 

foundation by working to identify correlated gene subsets using transformed expression 

data, often from next-generation sequencing platforms or microarrays188. The basis of 

WGCNA centers around network adjacency measures and the frequency of expected 

connectivity between genes in a network with scale-free topology. Two approaches for the 

calculation of weighted gene correlation networks are available, unsigned and signed, 

where an unsigned network treats positive and negative correlation the same during 

determination of adjacency, whereas a signed network does not. Signed networks are 

advantageous for uncovering biologically relevant or cell type gene clusters, but won’t 

group features with negative correlations188. After determining the adjacency for all gene 

pairings, the connectivity is then defined as the row sum of the adjacency matrix. The 

adjacency measure incorporates a power, β, which helps to satisfy the underlying 

assumption of scale-free topology and is assessed through the R2 value between the log of 

the connectivity and frequency188. Scale-free topology refers to the fraction of nodes with 

degree k that follows the power law k –a, which is an important feature for biological 

networks where many genes are expected to be uncorrelated with each other and unrelated 

to the disease or perturbation17,188.  
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 Once the soft thresholding power, β, has been selected to roughly satisfy the 

assumption of scale-free topology, the topological overlap matrix271 is calculated from the 

adjacency matrix and hierarchical clustering is then used to define gene clusters188. 

Subsequently, a minimum module size is typically specified and the dendrogram is then 

‘cut’ (regrouped) to ensure module size parameter is met188. A dissimilarity threshold is 

also specified and used to filter weakly connected modules188. Module (cluster) eigengenes 

are then calculated by singular value decomposition after standardizing expression and 

represent a weighted average of all genes comprising the eigengene188. Calculating 

eigengenes offers a number of advantages, including the ability to relate modules to each 

other and relevant clinical traits, as well as define module membership (co-expression) of 

individual features. When paired with enrichment strategies and pathway databases, the 

biological relevance of co-expressed gene subsets is often uncovered and can be associated 

with phenotypic outcomes of interest – which often represents a central goal of the 

bioinformatic analysis.  

 

1.4.11   Differential Expression 

 

 Differential expression, as the name implies, aims to determine if a particular gene 

or transcript is significantly upregulated or downregulated relative to a specified reference 

level. Most commonly, controls are provided as the reference level, and differentially 

expressed genes are identified from an experimental or disease cohort. Accounting for the 

inherent nature of gene expression data (i.e. non-negative and large dynamic range), 
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differential expression often assumes a non-normal distribution, either a Poisson278 or 

negative binomial4,208,328 which capture the non-negativity in expression observations, but 

is not strictly necessary302.  

Of these methods, DESeq2208 is an R software package that has emerged as one of 

the more optimal methods for count normalization and identification of differentially 

expressed genes between samples or groups78,85,370. DESeq2 first works to fit a generalized 

linear model (GLM) to each gene and estimates the dispersion (i.e. variability between 

replicates or observations) by maximum likelihood estimation208. The mean expression of 

the ith gene is scaled by a sample-dependent normalization factor, called size factors, which 

accounts for differences in sequencing depth between samples208. A curve is then fit to 

define the overall dispersion trend as a function of the mean of normalized counts208. The 

fit is then used to define a prior distribution which is leveraged in a second round of 

estimation to provide the maximum a posteriori (MAP) as the final count estimate208. The 

GLM statistical framework offered by DESeq2 is advantageous when more than one factor 

or variable is known to influence gene expression, which is often the case in biological 

experiments. Covariates with more than two levels can be sequentially contrasted in a 

pairwise manner to obtain a complete view of differentially expressed genes between levels 

or groups. DESeq2 implements the FDR multiple hypothesis correction, and sets the rate 

at 10% by default208. Differential expression is often necessary when working with large 

transcriptomic datasets generated by RNA-sequencing platforms, and can be paired with 

enrichment and classification analyses to elucidate significant biological insight.    
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1.4.12   Supervised Classification 

 

 Classification (‘learning’) algorithms aim to predict or assign a categorical label to 

an observation in which the true label may or may not be known. Classification methods 

fall into two categories, supervised and unsupervised, where the difference lies in 

knowledge of the true cluster labels prior to running the analysis. Unsupervised 

classification strategies work to extract labels from patterns in the observed data, with some 

approaches previously discussed in Chapter 1.4.4. Supervised classification requires 

knowledge of the sample labels prior to the analysis and generally performs iterative 

optimization of the underlying mathematical structure (decision function) to minimize or 

maximize a relevant performance metric – often referred to as “machine learning”. The 

resulting mathematical structure needed to provide the predicted label from a set of input 

observations is called the classifier. The development of a supervised classifier generally 

starts with randomly splitting a discovery cohort into a training and testing dataset, with 

allocations to the training cohort often between 60-80%, and repeating the process k times 

for cross validation. The training cohort is used to optimize the classifier, which is 

subsequently applied to the test cohort to estimate performance. Classifier performance is 

almost always overestimated in the test cohort due to the fact that all training and testing 

observations come from the same distribution. To address this common problem, the 

classifier is tested on an independent ‘validation’ cohort, often with different noise 

distributions and batch effects by default, which provides better estimates for future 

classifier performance. Supervised classifier performance is quantified in terms of true 
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positives, true negatives, false positives, and false negatives which are derived from the 

true and predicted categorical labels. From the frequency of each classification event, the 

precision (also known as positive predictive value) can be defined as the number of true 

positives over the number of true positives and false positives. Similarly, the recall (also 

known as sensitivity) can be defined as the number of true positives over the number of 

true positives and false negatives. The precision and recall are often leveraged to produce 

the F1 score, a symmetric representation of both precision and recall, which ranges between 

0 and 1, with 1 indicating perfect classification accuracy. Generally, classifier accuracy can 

be improved by increasing the number of observations used to train the classifier but may 

also lead to model overfitting in cases where the underlying batch effects or noise 

distribution is constant. Often, the class or label being predicted has more than two levels, 

a problem known as multi-class classification. Strategies to perform multi-class 

classification typically involve constructing classifiers for each ‘one-versus-rest’ or ‘one-

versus-one’ combination in the class labels.  

 Supervised classification algorithms are extensive, ranging from linear models like 

lasso and ridge regression to non-linear procedures like the multilayer perceptron (also 

known as neural networks) and decision trees. Software to implement classification 

algorithms is primarily available through the Python programming language and include 

TensorFlow, Keras, and Scikit-learn1,260. Often, the optimal algorithm to achieve the 

highest classification accuracy is not clear or easily determined. To circumvent this 

challenge and aid in selection of the best mathematical framework for the specific 

classification problem, multiple classifiers can be developed for the same dataset and 
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compared using precision, recall, and F1 scores248. This dissertation leverages scikit-

learn’s linear discriminate analysis (LDA), support vector machines (SVM), decision trees 

(random forest; RF), nearest neighbors (KNN), and multilayer perceptrons (MLP)260 – with 

other algorithms falling outside the scope of this work. In LDA classification, a linear 

decision boundary is defined by fitting class conditional densities (Gaussian) to the data 

using Bayesian statistics260. In SVM classification, a kernel function is specified and used 

to define decision boundaries in the high dimensional space from a subset of training 

points260. In RF classification, simple binary (true/false) decisions are inferred from the 

data to produce a decision tree260. The process is repeated using bootstrapping to produce 

the ‘forest’, with decision metrics defined by the mean decrease in (Gini) impurity 

following the split of a node. In KNN classification, a simple majority vote of the k nearest 

neighbors is used to assign the class or label to the given observation, where a larger k 

value is generally less susceptible to noise but produces less distinct boundaries between 

classes260. Lastly, in MLP classification, input features are used to approximate a non-linear 

decision function by passing linearly weighted information to each neuron comprising one 

or more hidden layers before transformation by a non-linear activation function like the 

hyperbolic tangent260. The complex structure is then passed to an output layer where the 

sample label can then be assigned via class probabilities. Guidelines for selecting the 

number of neurons in each layer and number of hidden layers are scarce, although a low 

number of hidden layers (≤ 3) is commonly advised203,211,306. A wealth of additional 

information is available at: https://scikit-learn.org/stable/260. 

 

https://scikit-learn.org/stable/
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1.5   Systems Biology as a Unifying Framework  

 

 The interdisciplinary space intersecting molecular biology, next-generation 

sequencing and mass spectrometry instrumentation (at present), statistics, and computation 

is commonly referred to as systems biology. While many research areas incorporate 

interdisciplinary perspectives, systems biology differs from traditional research strategies 

in that there are limited biases or preconceived hypotheses that guide and influence the 

measured biological variables (i.e. wholistic versus reductionist). The lack of a specific 

hypothesis to be tested leads to natural pitfalls, including ideas covered in Chapter 1.4.3, 

but can offer advantages for the interpretation of complex biological problems where the 

sum of the parts does not equal the whole (i.e. emergent properties). Evidence for the 

existence of emergent properties in biology is extensive and ranges from the macroscopic 

pattern of a flock of birds or plant fractals to bi-stable and oscillatory gene 

networks61,91,265,368.  

 Two broad perspectives on the field of systems biology exist, which are 

occasionally referred to as ‘top-down’ and ‘bottom-up’. In a bottom-up approach, a 

network of interacting features is first defined and subsequently used to generate 

mathematical models which aim to predict cell behavior – with confirmation often in a 

synthetic in vitro setting61,265,368. Bottom-up systems biology has consistently demonstrated 

that emergent properties in biological systems are present but are typically limited in the 

number of features that can be considered61,265,368. Conversely, driven by advancements 

across disciplines, a top-down systems biology perspective works to measure many or most 
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features from one informational level (genomics, epigenomics, transcriptomics, 

proteomics, metabolomics, etc.) or more than one level (multi-omics)363. Top-down 

systems biology relies more heavily on instrumentation, methodology, and statistics and 

study interpretation can be severely hindered by batch effects, known or unknown 

methodological bias, and selection of reference data. Despite these limitations, increasingly 

powerful bioinformatic strategies help correct for quantification and other analytical bias 

in top-down studies – enabling the genuine identification of novel or unforeseen 

effects182,322. Although top-down approaches are generally not interested in directly 

identifying emergent properties, the impetus for formulating research questions in this 

wholistic framework remains the same. 

 The work in this dissertation leverages a top-down systems biology perspective, 

which encompasses the use of Illumina next-generation RNA-sequencing for 

quantification of ALS patient transcriptomes from the central nervous system (CNS). 

Numerous bioinformatic strategies are leveraged to correct for, or assess, technical and 

analytical bias. The use of a top-down framework broadly expands upon insight gained 

from genetic models of ALS and naturally complements the proposed goal, namely to 

elucidate unknown and complex drivers of ALS patient heterogeneity.  

 

1.5.1   Cellular Heterogeneity  

 

 Studies leveraging a systems biology approach have already demonstrated success 

in the discovery of novel and emergent neurodegenerative disease phenotypes at the 
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cellular level. Using single-cell RNA-sequencing, groups have shown that the activation 

and phenotypic transition of both microglia and astrocytes occurs over time in Alzheimer’s 

disease135,171. Keren-Shaul et al. report a subpopulation of microglia following t-SNE non-

linear clustering analysis171. Differential expression analysis was then applied and led to 

the identification of marker genes defining the native (homeostatic) and disease-associated 

states, and co-localization was subsequently confirmed ex vivo by fluorescent imaging171. 

Through enrichment analysis, the authors find elevated expression of genes participating 

in phagocytic pathways in the disease-associated state, again verified by imaging171. The 

proportion of microglia expressing the disease-associated state was found to increase 

throughout the duration of the disease, lending strength to claims of a neurodegenerative 

associated phenotype. Similarly, Habib et al. leverage many of the same systems biology 

strategies, leading to the identification of a subpopulation of disease-associated astrocytes 

in Alzheimer’s disease135. The disease-associated cell phenotype was found to co-localize 

with amyloid β plaques in the brains of mice modeling AD and the proportion of astrocytes 

expressing the disease-associated phenotype increased with age and disease severity135. In 

both studies, the consideration of the entire cellular transcriptome enabled the authors to 

recover the rare and emergent disease-associated phenotype with limited prior knowledge 

for relevant factors influencing progression. Supporting the validity of wholistic discovery, 

these disease-associated phenotypes have been independently observed across the 

neurodegenerative disease spectrum, including AD, ALS, and FTD44,83. Further 

emphasizing the broad advantages of applying a wholistic perspective to complex 

biological problems, single cell transcriptome profiling has revealed intra-tumoral 
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heterogeneity in cancer patients and demonstrated the expression of hybrid phenotypes at 

a single cell level259. 

 

1.5.2   Patient Heterogeneity  

 

 The application of systems biology to stratify ALS patients and characterize poorly 

understood disease heterogeneity is not unique to this work. Before the development and 

widespread adoption of next-generation sequencing technologies, DNA microarrays 

showed early promise for transcriptome profiling and elucidating features distinguishing 

ALS patients from controls191,215. However, the formal consideration of disease 

heterogeneity within an ALS population leading to the discovery of phenotypic subgroups 

was not realized for another ~decade8. In this important work, the authors identify two ALS 

phenotypes in a sporadic population (n=31) following expression profiling by microarray 

and application of hierarchical clustering8,241. The authors termed the two subtypes SALS1 

and SALS2, where the primary differentiating phenotypes involved synaptic signaling, 

cytoskeletal organization, and neuroinflammation8. The same group later combines 

transcript expression data with copy number variants to find additional support for 

molecularly distinct phenotypes distinguishing the two SALS subtypes237. Building on 

these findings and providing an important foundation for this dissertation, Tam et al. 

leverage more advanced sequencing and clustering methodologies to identify three 

subtypes from the frontal and motor cortex of 77 ALS patients317. They re-capture many 

of the subtype-specific phenotypes observed in SALS1 and SALS2 patients and uncover a 
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third subtype defined by the expression of non-coding transposable elements and a 

hyperactive TDP-43 pathology160,317. In addition to the characterization of molecular 

heterogeneity, Tam et al. apply eCLIP-seq to identify TDP-43 binding sites on an 

expansive set of non-protein coding transcripts including LINE, SINE, and LTR 

transposable elements, introns, antisense, and long non-coding RNA, among others317 – 

providing a direct link to the pathology observed in transcriptome profiling. Despite the 

importance of these works, no associations had been found with the presentation of ALS 

subtype and heterogeneity in clinical outcomes like age of onset or survival – representing 

the primary motivation for this work.  

 Outside of sequencing-based approaches, but within the field of systems biology, 

multiple recently published studies leverage proteomics to stratify a neurodegenerative 

cohort and identify phenotypic subtypes in ALS337 and Alzheimer’s327. In the ALS cohort, 

59 candidate protein markers from CSF were found to stratify patients with fast (>1/month) 

and slow (<0.5/month) rates of disease progression (n=11), defined by the change in 

ALSFRS-R per month337. Following enrichment, the candidate protein markers were 

primarily upregulated in fast progressors and associated with neuroinflammation, and 

continued to show predictive power in an independent validation cohort337. In the 

Alzheimer’s cohort, over 1,000 AD-associated proteins identified from >400 individuals 

with AD and 187 controls were selected for clustering analysis by non-negative matrix 

factorization192,327. Following enrichment, and supplemented by MRI imaging, the authors 

define five molecular subtypes of AD at the protein level distinguished by: (i) 

hyperplasticity (32.7%), (ii) immune activation (29.6%), (iii) RNA dysregulation (5.7%), 
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(iv) choroid plexus dysfunction (18.6%), and (v) blood-brain barrier dysfunction 

(13.4%)327. Subtype-specific AD phenotypes were identified in multiple independent 

datasets and linked to differences in survival times, dementia comorbidity, sex, and age at 

onset327. The observation of distinct neurodegenerative subtypes at multiple system levels 

(i.e. transcripts and proteins) lends strength to their biological relevance and points to a 

need to better map the propagation of phenotypes from the transcript to protein level.  

 

1.6   Outline of the Dissertation  

 

 In Chapter 2, transcript alignment and quantification are performed enabling 

unsupervised clustering and enrichment for the discovery of three distinct molecular 

subtypes in the postmortem cortex and spinal cord. Methodological bias is partially 

addressed through the cell deconvolution analysis. Utilizing bootstrapping, the expression 

of hybrid subtypes is demonstrated and concordance of intra-patient subtype presentation 

between the cortex and spinal cord is shown to be statistically significant.  

 In Chapter 3, survival analysis and Cox regression are leveraged in an effort to link 

ALS subtypes to clinical variability, identifying weak associations with disease duration 

and age at onset. Supporting findings from univariate and multivariate survival, WGCNA 

uncovers subtype-specific gene subsets significantly correlated with survival and age of 

onset. Results broadly agree between the postmortem cortex and spinal cord.  

 In Chapter 4, application of differential expression analysis identifies seven marker 

genes consistently upregulated in the postmortem cortex and spinal cord of one of the 

subtypes. Marker genes are then utilized to develop numerous supervised classifiers – 
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generally showing clinically useful stratification accuracies in three different holdout 

cohorts. 

 In Chapter 5, the findings and implications from Chapters 2–4 are discussed and 

future directions are proposed. 

 Text and figures in this PhD dissertation are adapted from a previously published 

article and one currently in preparation: 

 

• Chapters 2, 3, and 4: Reprinted with permission from: Eshima J, O’Connor 

SA, Marschall E, NYGC ALS Consortium, Bowser R, Plaisier CL, Smith BS. 

Molecular subtypes of ALS are associated with differences in patient prognosis. 

Nature Communications, 14, 95 (2023). 

• Chapters 2, 3, and 4: Eshima J, Pennington TR, Choudhury R, Garcia JM, 

Fricks J, Smith BS. (2024). Elevated expression of B4GALT6, GABRA1, GAD2, 

GLRA3, HTR2A, PCSK1, and SLC17A6 are postmortem markers for the ALS-

Ox subtype. [in preparation]. 
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Chapter 2 

 

UNSUPERVISED CLUSTERING IDENTIFIES THREE ALS SUBTYPES IN THE 

POSTMORTEM CORTEX AND SPINAL CORD 

 

2.1   Introduction  

 

Amyotrophic Lateral Sclerosis is a neurodegenerative disease with poorly 

understood clinical heterogeneity, underscored by significant differences in patient age at 

onset, symptom progression, therapeutic response, disease duration, and comorbidity 

presentation. The effects of this gap in understanding can be seen in long clinical diagnostic 

timelines, hampered by an absence of disease specific biomarkers, subjective scoring 

metrics, and presentation of symptoms that overlap with other motor neuron disorders early 

in the disease course, often leading to misdiagnosis40,233,254. The lack of diagnostic and 

prognostic biomarkers has led to the utilization of a patient classification system based on 

the site of onset and symptom presentation, which poorly predicts differences in patient 

pathology, survival, treatment responsiveness, and symptom progression55,339. As a 

consequence, challenges experienced in the clinic – including in the design of clinical trials 

and subsequent lack of effective ALS treatments – are directly linked to the underlying 

disease heterogeneity.  

More broadly, recent efforts have been directed towards identifying the phenotypes 

and mechanisms driving clinical heterogeneity in neurodegeneration. In Alzheimer’s 
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patients, neuroimaging-derived subtypes demonstrated differences in clinical presentation, 

survival, age of onset, rate of progression, and age of death, providing critical new insight 

into disease heterogeneity346. Further, associations between age of onset, rate of 

progression, and symptom presentation in Alzheimer’s disease has led to the 

implementation of a recently developed clinical classification system (early vs late onset 

with additional subvariants) that better predicts the individuals’ disease course230. More 

directly, in the context of ALS, one group has recently developed a predictive model to 

stratify patients and inform prognosis, using patient-derived clinical information343. 

Collectively, these efforts demonstrate advantages of stratifying patients within these broad 

neurodegenerative disease spectrums and reflect a growing clinical need to enable this 

more personalized perspective.  

Strategies to assess the molecular foundation of ALS heterogeneity have primarily 

applied ‘-omic’ methodologies in combination with unsupervised clustering for disease 

subtype discovery8,237,317. Tam et al. established an important foundation for this chapter, 

using frontal and motor postmortem cortex transcriptomics to stratify a cohort of 77 ALS 

patients into three distinct subtypes317. They further demonstrate the direct interplay 

between TDP-43 and transposable elements using eCLIP-seq, providing key insight into 

the pathological role of transposable elements in ALS, given the near ubiquitous nature of 

TDP-43 cellular inclusions (~97%)202,266,317.  

In the second chapter of this dissertation, the publicly available ALS cohort derived 

from the NYGC ALS Consortium and Target ALS groups was stratified, leading to the 

identification of three molecular subtypes from > 200 individuals with ALS. Features 
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distinguishing each subtype were subject to enrichment, offering a wholistic framework to 

better understand pathological differences between the ALS subtypes. Stratification is 

performed on the postmortem cortex and spinal cord separately, but converge toward 

similar pathological themes regardless of the central nervous system region considered. 

Intra-patient presentation of subtypes and the related coherence (concordance) is 

considered for all patient samples. Lastly, limitations on the interpretation of the results are 

demonstrated through cellular deconvolution of bulk tissue RNA-seq data.  

 

2.2   Materials and Methods 

 

2.2.1 Data Sources 

 

Within the NCBI Gene Expression Omnibus (GEO) data repository, the study with 

accession GSE153960 contains RNA-seq data from 1659 tissue samples, spanning 11 

regions of the CNS, from 439 patients with ALS, frontotemporal lobar degeneration, or 

comorbidities for ALS-Alzheimer’s (ALS/AD) or ALS-FTLD. These 1659 tissue samples 

were filtered such that only the individuals belonging to the groups ALS-TDP, ALS/FTLD, 

ALS/AD, and ALS-SOD1 were considered. Cortex samples were derived from the frontal, 

medial motor, lateral motor, and ‘unspecified’ motor cortex regions, while spinal cord 

samples were derived from the cervical, thoracic, and lumbar regions. From the 

postmortem cortex, 451 unique tissue transcriptomes, corresponding to 208 individuals 

with ALS, passed the filtering criteria. An additional 135 transcriptomes were derived from 



 
 

49 
 

non-neurological controls (n=93 samples; n=58 patients) and patients with FTLD 

exclusively (n=42 samples and patients). Similarly, in the postmortem spinal cord, 428 

tissue transcriptomes are considered from 206 individuals with ALS, >85% of which are 

included in the postmortem cortex cohort. An additional 91 samples, corresponding to 56 

individuals, are derived from non-neurological controls exclusively. Files were transferred 

using Globus111. 

 

2.2.2 Study Approval 

 

The NYGC ALS Consortium samples presented in this work were acquired through 

various IRB protocols from member sites and the Target ALS postmortem tissue core and 

transferred to the NYGC in accordance with all applicable foreign, domestic, federal, state, 

and local laws and regulations for processing, sequencing, and analyses.266 

Postmortem brain tissues from patients with FTLD-TDP or PSP and from 

cognitively normal individuals were obtained from the Mayo Clinic Florida Brain Bank. 

Diagnosis was independently ascertained by trained neurologists and neuropathologists 

upon neurological and pathological examinations, respectively. Written informed consent 

was given by all participants or authorized family members, and all protocols were 

approved by the IRB and ethics committee of the Mayo Clinic.266 
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2.2.3   Alignment and Quantification 

 

Quantification of gene expression was performed using RSEM196, as detailed by 

Prudencio et al.266. The processed gene count matrix was accessed directly from the GEO 

Accession ([https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153960]) and 

counts were rounded to integers as recommended by the authors of RSEM.  

SQuIRE359 was selected for transposable element quantification, as this alignment 

pipeline provides locus-specific TE counts, allowing for a deeper analysis beyond TE 

subfamilies. Similar to RSEM, SQuIRE applies the Expectation Maximization (EM) 

algorithm to optimize the allocation of multi-mapped reads – an important step when 

sequence similarity between transcripts is high. SQuIRE's Fetch, Clean, Map, and Count 

functions were utilized to align and quantify locus-specific transposable elements. The EM 

‘tot_counts’ values were selected as the estimate for sequencing reads attributed to the 

transposable elements. The hg38 build was used during mapping, with default trim and EM 

parameters, and a read length of 100 or 125 base pairs depending on the sequencing 

platform specified. A scoring threshold of ≥ 99 was used to restrict the number of false 

positive TEs (1%), with few uniquely mapping reads. Quantification was performed 

separately in the postmortem cortex and spinal cord. Only the locus-specific TEs with at 

least one count for all ALS samples were included in downstream analysis, resulting in 

1474 unique TE features in the postmortem cortex and 475 in the postmortem spinal cord. 

The naming scheme for the locus-specific transposable elements is presented in 

SQuIRE359, however in brief, TE feature names included the mapping chromosome, start 
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and stop base pairs, transposable element subfamily, family and superfamily identifiers, 

base mismatches in parts per thousand, and sense or antisense stand annotation. TE lists 

for each cohort are available online in supplementary datasets from related 

publications98,99. The SQuIRE software pipeline was executed on ASU’s Agave high 

performance computing cluster.  

 

2.2.4   Addressing Technical and Biological Covariates 

 

As discussed by Prudencio et al.266, the large ALS cohort size required the 

utilization of two different sequencing platforms (HiSeq 2500 and NovaSeq 6000, 

Illumina, San Diego, CA) to complete the analysis. Exploratory differential expression in 

the cortex considering sequencing platforms as the design equation factor revealed strong 

batch effects in gene expression, evident by more than one-third of all genes falling below 

the Benjamini-Hochberg26 corrected p-value threshold (37.2%, 22478/60403; including 

TEs). To correct for these batch effects, the approach outlined by Prudencio et al. was 

followed and resulted in splitting the ALS cohort based on sequencing platform. In the 

cortex cohort, the NovaSeq subset contained 255 patient transcriptomes (n=106 female, 

n=149 male), while the HiSeq subset contained 196 (n=97 female, n=99 male). In the spinal 

cord cohort, the NovaSeq subset contained 273 patient transcriptomes (n=126 female, 

n=147 male), while the HiSeq subset contained 155 (n=75 female, n=80 male).  

DESeq2208 was initially applied to perform a preliminary differential expression 

analysis on gene and TE counts to screen for covariate-dependent expression. In the 
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postmortem cortex cohort, differential expression was utilized to guide the removal of sex-

dependent genes prior to clustering. As described by Prudencio et al., sex was determined 

using XIST and UTY expression. Default parameters were used for DESeq2 differential 

expression, with male specified as the reference level and the ‘betaPrior’ argument in the 

DESeq() function set to true. A Benjamini-Hochberg corrected p-value ≤ 0.05 was selected 

as the threshold for removal of sex-dependent genes. In the postmortem spinal cord, 

additional covariates were individually screened for dependent gene expression including: 

site of collection (NYGC versus Target ALS), RIN, and tissue region. Further, given 

previous work151, it was understood that cell type composition strongly influences bulk 

tissue expression in the spinal cord and used marker genes defined by the same study to 

remove these tissue-dependent features. Glial marker genes were obtained from Table S3 

in ref. 18. 

Following the removal of covariate-dependent genes using differential expression, 

the raw count matrix was subject to a variance stabilizing transformation (VST) to address 

heteroskedasticity in gene counts208. The VST counts were then subject to rank ordering 

by median absolute deviation (MAD) and the top 5,000 and 10,000 features were retained 

for unsupervised clustering analysis by non-negative matrix factorization (NMF), in the 

spinal cord and cortex cohorts, respectively192,255. Fewer features were used in the spinal 

cord cohort due to lower gene expression levels. This process was completed independently 

for all sequencing platform subsets.  
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2.2.5   Rank Estimation 

 

Factorization rank was estimated in R, Version 4.0.3 (The R Foundation for 

Statistical Computing, Vienna, Austria) using the NMF package116. A rank of 3 for 

clustering analysis, based on the plots of the cophenetic correlation coefficient for ranks 

spanning 2 to 6. Quality measures were estimated using 50 iterations at each rank and the 

default seeding method. The nsNMF (non-smooth non-negative matrix factorization) 

method variant was utilized for all NMF clustering255. 

 

2.2.6   Non-negative Matrix Factorization 

 

Non-negative matrix factorization was performed in SAKE, a convenient tool for 

RNA-seq sample pre-processing, filtering, clustering and visualization148 (Version 0.4.0). 

In the cortex cohort, the top 10,000 MAD genes, after a variance stabilizing transformation, 

were utilized as the input into SAKE, while the top 5,000 were used in the spinal cord 

cohort due to more stringent filtering of covariate-dependent genes. In SAKE, no samples 

were removed during the quality control step, and further transformations in the filtering 

step were not necessary. During non-negative matrix factorization, selected parameters 

include factorization rank = 3, iterations = 200 (cortex) or 100 (spinal cord), and NMF 

method set to nsNMF. 

To robustly assign ALS sample subtypes, 10 independent rounds of NMF clustering 

were performed in SAKE. For each patient sample, the ALS subtype with a simple majority 
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was assigned. For a small number of edge cases, an eleventh round of NMF clustering was 

used as a tiebreaker to reach the simple majority threshold. This process was completed for 

both sequencing platform groups in each tissue cohort.  

 

2.2.7   Feature Selection 

 

After each replicate of NMF clustering, gene and TE feature scores175 were 

calculated for all transcripts from each cohort and sequencing platform subgroup. Feature 

scores were averaged across all clustering replicates and reordered. In the postmortem 

cortex cohort, the top 1000 features from both sequencing platform cohorts were combined, 

and after the removal of duplicates, 1,681 transcripts remained for enrichment, 

corresponding to 891 gene symbols. Feedback from peer-reviewers99 guided the decision 

to increase the number of genes considered in the spinal cord cohort. Therefore, all features 

from both sequencing platform subgroups were combined, and after the removal of 

duplicates, 8,163 transcripts remained for enrichment, corresponding to 5438 gene 

symbols. 

 

2.2.8   Enrichment 

 

In the postmortem cortex cohort, the 891 gene symbols were then enriched using 

two independent approaches, GSEA310 (Version 4.1.0, Broad Institute, Boston, MA) and 

Enricher185. Healthy control donors were selected as the reference phenotype during 
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enrichment. Transcripts without a corresponding gene symbol (HGNC) were excluded 

from the enrichment analysis, including TEs. The minimum gene set size was adjusted to 

5, and all other parameters were maintained as the default. For the enrichment, the 

canonical pathways contained in the Reactome database159, a custom gene set containing 

markers of disease-associated microglia68,171, and curated gene sets for Alzheimer’s, 

Parkinson’s, and ALS31,165 were used. Pathway heatmaps reflecting gene enrichment by 

phenotype were built using the ‘Rank Metric Score’ tabulated during GSEA. Enrichr185 

was performed to support subtype-specific pathway expression observed during GSEA, 

utilizing the Fisher’s exact test with Benjamini-Hochberg multiple hypothesis test 

correction26. Hypergeometric enrichment analysis was considered in the context of the 

Reactome 2016 database. Upregulation and downregulation of pathways was determined 

using subtype-specific differential expression, with each feature assigned to two of the 

three subtypes based on the maximum and minimum median expression on the DESeq2 

median-of-ratios scale.   

To perform GSEA in the postmortem spinal cord cohort, transcript expression was 

normalized to the DESeq2 median-of-ratios scale for enrichment after removing covariate 

dependent genes. Default parameters were maintained, aside from lowering the minimum 

gene set size to 5 and maximum to 150. Canonical pathways contained in the Reactome 

database159 were leveraged and pathway normalized enrichment scores are presented for 

each ALS subtype. Non-neurological controls were designated as the reference level. To 

further support subtype-specific pathway enrichment observed in GSEA, hypergeometric 

enrichment analysis was performed using Enrichr185, the Reactome 2022 database, and the 
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subtype feature assignment approach detailed above99. Enrichment p-values are determined 

by Fisher’s exact test, and presented as –log10 transformed values after FDR adjustment. 

The p-value heatmap is color-coded to indicate upregulation or downregulation relative to 

the other subtypes, and blank cells indicate an FDR adjusted p-value > 0.05. 

 

2.2.9   Bootstrapping and Hybrid Subtypes 

 

Given that previously established predictor gene sets for ALS subtype were not 

available, ALS-Glia, ALS-Ox, and ALS-TD predictor gene sets in the cortex cohort were 

derived from the gold, navy, and maroon eigengenes, respectively and defined in a later 

chapter. Transcript counts were considered on the DESeq2 median-of-ratios scale, adjusted 

for RIN, site of collection, and sequencing platform covariates. Difficulty identifying ALS-

Glia and ALS-TD specific eigengenes in the postmortem spinal cord cohort restricted this 

analysis to the cortex cohort exclusively. 

Subtype scores were defined as the average expression of subtype-specific 

predictor genes minus the average expression of all features from the cortex or spinal cord 

cohorts. Scores were calculated for 100 different sets of predictors (per subtype) and used 

to define a 5% cutoff for the expected subtype score175. Each sampled predictor gene set 

contained the same number of features as the original eigengene, and were generated by 

randomly sampling the eigengenes with replacement. For example, the expected subtype 

score for ALS-Glia patients was determined by first generating 100 predictor sets by 

randomly sampling features comprising the gold eigengene. Then, the average (sample-
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wise) ALS-Glia expression was determined for each of the 100 predictor sets and 

subtracted from the average (sample-wise) ALS-Glia expression of all 1,681 classification 

genes.  

After repeating this analysis for the ALS-Ox and ALS-TD subtypes, using their 

respective eigengenes, 100 subtype scores were generated for all cortex samples (n=203 

female, n=248 male). A 5% cutoff for the expected subtype score was then established, per 

sample, and final subtype classification thresholds were determined by weighting expected 

subtype scores according to the observed proportion of patient samples in each subtype 

(obtained from clustering). Bootstrapping was then applied, involving the sampling of 

predictor gene sets (with replacement) and calculation of subtype scores for 1000 iterations.  

Patient samples were initially placed at the origin, and moved in the direction of 

the subtype vertex after passing the corresponding subtype threshold. Therefore, the x, y, 

and z axis vertices reflect the expression of a single subtype, while the other three vertices 

capture a combination of two subtypes. Individual points that passed a given subtype 

threshold in >50% of bootstrap iterations were filled with their respective subtype colors. 

Samples were considered to express a hybrid subtype state if one subtype threshold was 

passed >50% of the time and simultaneously passed a second subtype threshold >40% of 

the time. 
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2.2.10   Cellular Deconvolution 

 

 In the postmortem cortex cohort, cell deconvolution was performed using 

CIBERSORTx244 with reference single cell RNA-sequencing expression from the 

developing human brain available from Nowakowski et al.247 

(http://bit.ly/cortexSingleCell). Raw data were filtered and normalized to the DESeq2 

median-of-ratios scale. Cell types were grouped into 10 major cell types: neuronal 

progenitor, excitatory neuron, inhibitory neuron, glial progenitor, astrocyte, microglia, 

endothelial, mural, choroid, and unknown. Marker genes for each major cell type were 

identified using Seurat’s289 function FindAllMarkers() (Version 4.0.3). Marker genes were 

used to generate medioids (i.e., cell type signatures) to use as the reference for cell 

deconvolution. The ALS cohort was normalized using DESeq2 with count values on the 

median-of-ratios scale. All overlapping MAD transcripts between the NovaSeq and HiSeq 

cohorts were used, totaling 7372 transcripts, to ensure a sufficient number of transcripts 

were available for deconvolution. Transcripts without a mapped gene symbol and 

transposable elements were removed from the analysis which led to 4912 total genes. 

Lastly, transcripts not shared between ALS and control cohorts (n=586; n=267 female, 

n=319 male) and Nowakowski cell type signatures were removed. 1881 transcripts 

remained and were used as input into CIBERSORTx. Quantile normalization was disabled 

in CIBERSORTx, which is recommended for RNA-seq data, and 500 permutations were 

used for significance analysis. Significant differences in cell type fractions were assessed 

using the nonparametric Wilcoxon rank sum test204 with Bonferroni92 correction. In the 

http://bit.ly/cortexSingleCell
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postmortem spinal cord cohort, cell type proportions from bulk expression deconvolution 

were obtained from a previous study151. 

 

2.2.11   Assignment of Patient-Level Subtype 

 

 For most ALS patients considered, multiple postmortem tissue samples from the 

cortex and spinal cord were subject to RNA-sequencing. Patients were assigned a subtype 

label only if there was a majority consensus among their frontal and motor cortex samples, 

or if there was a single sample characterized. The same approach was taken to assign 

patient-level subtypes in the spinal cord cohort. This strategy is termed the majority 

agreement approach herein. ALS patients which failed to reach a majority consensus in the 

cortex or spinal cord (independently) were labeled ‘Discordant’. A ‘global’ or full 

consideration of all available postmortem samples using the majority agreement approach 

is presented in Chapter 3 for the 192 patients with observations from both the cortex and 

spinal cord.  

 

2.2.12   Intra-Patient Concordance Analysis 

 

Postmortem cortex subtype labels were used to assess concordance with the 

molecular phenotype presented in the spinal cord of the same patients, given that most 

patients had observations from both regions of the CNS. Agreement is considered at the 

tissue-level rather than CNS level (i.e. cortex, spinal cord), to avoid sample dependence 
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concerns with the majority agreement approach described above. Subtype discordance 

between the cortex and spinal is color-coded using the same scheme presented in the hybrid 

subtype analysis to inform which discordant subtype was more common, given the 

postmortem cortex observation. The p-values were estimated using bootstrapping, where 

distributions for the expected number of concordant patient samples were generated from 

10,000 iterations, after adjusting sampling probabilities to reflect observations from the 

cortex and spinal cord. Subtype re-sampling probabilities were adjusted separately for the 

postmortem cortex and spinal cord cohorts, with probabilities in the cortex set equal to 

239/451, 84/451, and 128/451 for Ox, Glia, and TD subtypes respectively. The spinal cord 

probabilities were 139/428, 106/428, and 183/428, for Ox, Glia, and TD respectively. The 

same approach was used when considering concordance in the NovaSeq and HiSeq 

platforms independently, with all values presented in Figure 2.11. True concordant values 

were compared against the derived distribution for estimation of p-values assuming a one-

tailed binomial distribution. 

 

2.3   Results 

 

To assess whether ALS patient heterogeneity is reflected in postmortem gene 

expression, unsupervised clustering analysis was first performed in SAKE148 using ALS 

transcriptomes from the postmortem cortex (n=451) and spinal cord (n=428) as presented 

in Figure 2.1. As shown in Figure 2.1D, over 85% (n=192) of ALS patients were shared 

between the cortex and spinal cord cohorts. SQuIRE359 was implemented to quantify 

transposable element expression with chromosomal locus specificity. TE features were 
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filtered to ensure the retained transcripts had unique mapping reads and counts in all ALS 

patient samples per cohort. In response to preliminary differential expression analyses and 

relevant work266, both postmortem cohorts were split according to sequencing platform 

(NovaSeq 6000 and HiSeq 2500, Illumina, San Diego, CA, USA) and clustered 

independently. Following the assignment of sample subtypes, gene enrichment and cellular 

deconvolution are leverage to provide additional insight into subtype-specific pathologies 

and the influence of bulk tissue RNA-sequencing on the observed phenotypes. Prior to 

clustering, a variance stabilizing transformation was applied following size factor 

estimation, as shown in Figure 2.2, and the removal of covariate-dependent genes was 

performed using DESeq2 differential expression208. In the postmortem cortex cohort, sex 

was the only covariate considered prior to clustering, while RIN, tissue, and site of 

collection were additional covariates screened for dependent gene expression in the 

postmortem spinal cord.  Estimation of factorization rank was then performed in R, and a 

rank of 3 was chosen given the quality metrics presented in Figure 2.3. No specific filter 

or expression cut-off was applied to remove lowly expressed genes, however most features 

were expressed with a mean of normalized counts > 10, as shown in Figure 2.4.  
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Figure 2.1: The postmortem cortex and spinal cord cohorts. (A) Selection of the 

postmortem cortex ALS cohort from the GSE153960 repository. Transcriptomes 

associated with the frontal and motor cortex were the only tissue sites considered in this 

cohort. Control samples are not shown, but included 93 transcriptomes from healthy 

control donors and 42 from frontotemporal lobar degeneration patients. (B) Comparison of 

common ALS patient postmortem cortex samples between the foundational study from 

Tam et al.317 (GSE124439) and the repository utilized in this analysis. (C) Overview of 

sample numbers from the spinal cord region, separated by sequencing platform. (D) Venn 

diagram showing patient overlap between the postmortem cortex and spinal cord cohorts 

considered in this dissertation. Over 85% of patients were included in both cohorts, 

allowing assessment of intra-patient concordance. 
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Figure 2.2: Diagnostic plots following DESeq2-based normalization. In the postmortem 

cortex, (A) estimation of size factors are performed first and is followed by a (B) variance 

stabilizing transformation to address heteroskedasticity concerns, ensuring the most 

variable genes are not strictly the most highly expressed. Equivalently, in the postmortem 

spinal cord cohort, (C) estimation of size factors is followed by (D) a variance stabilizing 

transformation. Diagnostic plots are relatively consistent throughout all cohorts and 

sequencing platform subgroups, indicating that the effects due to normalization are similar.   
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Figure 2.3: Estimation of rank using the NMF package in R. Ranks 2-6 were considered 

and quality measures were estimated using 50 iterations at each rank with the default 

seeding method. Cluster number estimation (rank) was performed independently in the 

postmortem cortex (A) HiSeq subgroup and (B) NovaSeq subgroup, and the postmortem 

spinal cord (C) HiSeq subgroup and (D) NovaSeq subgroup. 



 
 

65 
 

 

Figure 2.4: Feature expression in the postmortem cortex and spinal cord cohorts following 

covariate-dependent gene removal and DESeq2 normalization. (A) Mean of normalized 

counts adjusted for RIN, site of collection and sequencing platform covariates, presented 

on the log10 scale, showing the 1,681 genes used in enrichment, WGCNA, and differential 

expression (“Enrichment Features”). All cortex subtype-specific features (n=36) show 

mean expression above 10 normalized counts (red dashed line). (B) Mean of normalized 

counts adjusted for RIN, site of collection, tissue region, and sequencing platform 

covariates, presented on the log10 scale, showing ~8100 genes used in clustering and 

enrichment. Two of the 60 subtype-specific features had mean normalized expression 

below 10 counts (red dashed line). 
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2.3.1   Unsupervised Clustering in the ALS Postmortem Cortex 

 

After filtering for the top 10,000 most variably expressed transcripts by median 

absolute deviation, non-smooth non-negative matrix factorization (nsNMF)255 was applied 

in SAKE148 to identify subgroups of ALS patients based on gene expression in the 

postmortem cortex. Eleven independent rounds of clustering were performed, and soft 

clustering probabilities were used to assign single subtypes to all samples with 

representative results depicted in Figure 2.5. Three distinct patterns of gene expression 

were identified in both the NovaSeq and HiSeq ALS cohorts as shown in Figure 2.6A and 

2.6F. Principal component analysis (PCA) further demonstrated the ability to separate the 

putative ALS subtypes into three distinct clusters when considering the first and second 

principal components as seen in Figure 2.6B and 2.6G. To illustrate subtype-specific 

expression, two transcripts associated with each subtype were considered in the principal 

component space on the VST scale, as depicted in Figure 2.6C-E and Figure 2.6H-J. Taken 

together, these results support the existence of three distinct patterns of gene and TE 

expression within the ALS postmortem cortex transcriptome. 
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Figure 2.5: Representative soft clustering probabilities for patient samples from the 

postmortem cortex, separated by sequencing platform. Unsupervised clustering was 

performed using the non-smooth variant of the NMF algorithm255. Basis groupings were 

used for assignment of sample subtype. 
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Figure 2.6: (A) Heatmap of 741 genes and transposable elements selected by SAKE148 

shows transcript overexpression in a subtype-specific fashion for the NovaSeq cohort 

(n=255 biologically independent samples). Transcript counts are z-score normalized. (B) 

Principal component analysis shows three distinct clusters, when considering the first two 

principal components. (C) Sample expression of CD28 transcripts was plotted in the same 

PCA space, with elevated counts seen for the ALS-Glia subtype. A darker color 

corresponds to higher feature expression. (D) Expression of the ANO3 gene shows 

specificity for the oxidative stress and altered synaptic signaling subtype. (E) The ALS-TD 

subtype shows specific upregulation of transposable element 

chr5|760200|760576|MLT1B:ERVL-MaLR:LTR|277|+ compared to the other two 

subtypes. (F) Heatmap of 618 genes and TEs shows subtype-specific expression in the 

HiSeq cohort (n=196 biologically independent samples). (G) PCA considering the HiSeq 

cohort shows three distinct clusters of ALS patient transcriptomes. (H) Elevated expression 

of CD22 is seen in the activated glia subtype. (I) Subtype-specific expression of WNT16 in 

the ALS-Ox subtype. (J) chr10|14102244|14102461|AluSz:Alu:SINE|138|+ is 

overexpressed in the ALS-TD subtype. 
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2.3.2   Unsupervised Clustering in the ALS Postmortem Spinal Cord 

 

Eleven independent rounds of unsupervised clustering were performed on 428 

transcriptomes derived from cervical, thoracic and lumbar postmortem tissue, 

corresponding to 206 unique ALS patients. To help address bulk tissue effects and 

differences in cell type composition between the cortex and spinal cord, oligodendrocyte, 

microglia, astrocyte, and endothelial cell marker genes were removed (n = 1282), presented 

by Humphrey et al.151, given their findings show differential gene expression in the ALS 

spinal cord is partially driven by cell type composition. The majority of these features 

showed gene expression dependent on one of the four covariates previously addressed for 

both the NovaSeq (1061/1282) and HiSeq (855/1282) cohorts. Following the removal of 

covariate-dependent and glial marker genes, the top 5,000 most variable transcripts by 

median absolute deviation were selected. The number of features considered was reduced 

relative to the cortex cohort to limit the consideration of noisy transcripts. Mirroring the 

cortex cohort, clustering probabilities were used to assign a single subtype to each patient 

sample, with representative results shown in Figure 2.7. Results capture three distinct 

expression profiles in both the NovaSeq and HiSeq cohorts as seen in Figure 2.8A-B, and 

yield three clusters following application of principal component analysis seen in Figure 

2.8C-D. 
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Figure 2.7: Representative soft clustering probabilities for patient samples from the 

postmortem spinal cord, separated by sequencing platform. Unsupervised clustering was 

performed using the non-smooth variant of the NMF algorithm255. Basis groupings were 

used for assignment of sample subtype. 
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Figure 2.8: (A) Heatmap showing subtype specific gene expression in the NovaSeq cohort, 

comprised of 273 biologically independent tissue samples (columns) and 763 transcripts 

(rows). (B) Gene expression in the HiSeq cohort, with 155 biologically independent tissue 

samples (columns) and 567 transcripts (rows). Both heatmaps are presented after z-score 

normalization with features selected by SAKE148. Principal component analysis shows 

three distinct clusters when considering the first two principal components, in both the (C) 

NovaSeq and (D) HiSeq subgroups. 

 

 

 

 

 

 



 
 

72 
 

2.3.3   Enrichment in the ALS Postmortem Cortex 

 

Gene scores from NMF clustering175 were used to select the top 1000 features most 

uniquely associated with a single subtype from each sequencing platform (1,681 total), 

done in an effort to better isolate phenotypes unique to each ALS cluster. Gene enrichment 

was performed using two independent approaches, Gene Set Enrichment Analysis 

(GSEA)310 and hypergeometric enrichment analysis185 (Fisher’s exact test). Subtype-

specific pathway enrichment was observed for each ALS subtype, as shown in Figure 2.9A-

D. In the first subtype, termed ALS-Glia317, enrichment for immunological signaling and 

activation, genes implicated in a pro-neuroinflammatory microglia state in Alzheimer’s 

(Disease-Associated Microglia, DAM)171, and markers of neural cell death were observed 

as seen in Figure 2.9A, 2.9B, and 2.9G. Transposable element expression was greatly 

reduced in ALS-Glia samples compared to the other two subtypes, as shown in Figure 2.9E 

and Figure 2.10A and 2.10C. 

Enrichment of the remaining two subtypes, termed ALS-TD and ALS-Ox317, 

suggest some overlapping disease mechanisms, such as altered ECM maintenance and the 

influence of post translational modification machinery, as observed in Figure 2.9C, 2.9D, 

2.9I, and 2.9J. Furthermore, while the ALS-Ox subtype had the strongest expression of the 

locus-specific TEs, as seen in Figure 2.9E, the ALS-TD subtype showed elevated TE 

expression more often than the control groups and ALS-Glia subtype as shown in Figure 

2.10A. To distinguish the ALS-TD subtype from ALS-Ox, the unique downregulation of 

RNA polymerase II transcriptional genes is observed for the TD subtype as seen in Figure 
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2.9H. This enrichment evidence, along with univariate features considered later, were used 

to define this ALS subgroup by transcriptional dysregulation (TD), rather than TE 

expression, as in previous work317. 

In the ALS-Ox subtype the distinct enrichment of Alzheimer’s associated genes is 

observed, but not genes previously associated with ALS or Parkinson’s disease, which may 

reflect stringent filtering during NMF score-based feature selection. Additionally, negative 

enrichment for genes involved in oxidative phosphorylation are seen in Figure 2.9D, and 

weak positive enrichment for synaptic signaling shown in Figure 2.9D and 2.9K, when 

compared to the control cohort. It is worth noting that subtype enrichment results generally 

agree with the findings reported by Tam et al.317, important given the overlapping patient 

cohort depicted in Figure 2.1B, although custom TE enrichment was not performed and 

some key differences are observed for the ALS-Ox group. Given these results, ALS 

subtype naming conventions presented by Tam et al.317 were maintained, where 

appropriate.  

In the NovaSeq cohort there was roughly a ratio of 3:1.4:1 observed for the ALS-

Ox, ALS-TD, and ALS-Glia subtypes, respectively. The HiSeq cohort showed a similar 

proportion of ALS subtypes, with an approximate 3:1.9:1 ratio observed for the ALS-Ox, 

ALS-TD, and ALS-Glia subtypes, respectively. Similar subtype proportions in both 

sequencing platform subgroups are seen as evidence for the limited influence of 

instrumentation on the expression of ALS phenotypes postmortem, strengthening the 

overall utility of patient stratification. 
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Figure 2.9: (A) Benjamini-Hochberg adjusted p-values, derived from a Fisher’s exact test, 

are presented on the –log10 scale. All presented pathways are significantly enriched in at 

least one subtype. Negative enrichment is encoded as the negative magnitude of the –

log10(adjusted p-value). P, Fisher’s exact test, one-tailed, Benjamini-Hochberg method for 

multiple hypothesis test correction. (B-D) Gene sets enriched in each ALS subtype are 

presented along the Y-axis, with GSEA normalized enrichment score (NES) presented 

along the X-axis. (E) Heatmap of transposable element expression, with 426 unique TEs 

and 544 biologically independent transcriptomes. Patient samples were plotted by 

subgroup, with the thin black lines denoting sample separation by subtype. TE count values 

were subject to VST, followed by z-score normalization, with red indicating elevated 

expression. (F-K) Pathways enriched specifically for one or more subtypes were generated 

using GSEA rank metric scores. Genes comprising each functional pathway are included, 

with subtype-specific gene enrichment scores encoded on a red-blue scale. 
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Figure 2.10: (A) Cortex transposable elements with gene locus resolution were assigned 

to the group which demonstrated the largest average expression on the median-of-ratios 

scale, and reveals characteristic expression in both the TD and Ox subtypes. (B) Cortex 

TARDBP expression, encoding TDP-43, is shown for healthy controls, patients with 

frontotemporal degeneration, and each ALS subtype on the DESeq2 median-of-ratios 

scale. P, DESeq2 differential expression using the negative binomial distribution, two-

tailed, FDR method for multiple hypothesis test correction. Previous works have 

demonstrated direct interactions between TDP-43 and transposable elements (TEs) and 

implicated TE subfamilies as subtype specific features206,317. However, normalized 

expression is relatively consistent across ALS subtypes and significant differences in 

expression are not observed, suggesting TARDBP expression is not a defining 

characteristic of a single subtype. (C) A locus-specific transposable element feature set, 

derived from SQuIRE359, was utilized to perform TE enrichment using GSEA. Normalized 

enrichment scores for each of the three subtypes are plotted, with healthy controls specified 

as the reference. Results indicate that elevated expression of TEs are characteristic of both 

the ALS-Ox and ALS-TD subtypes. 
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2.3.4   Enrichment in the ALS Postmortem Spinal Cord 

 

Similar to the approach taken in the cortex cohort, enrichment was performed using 

all 5000 features from the NovaSeq and HiSeq cohorts, and combined them to yield 8,163 

non-duplicate transcripts (corresponding to 5438 gene symbols). The resulting feature set 

was used to perform hypergeometric enrichment analysis with Enrichr185 and the 

Reactome159 pathway database, according to our previously described approach99, as 

shown in Figure 2.11A.  GSEA310 was leveraged to enrich each stratified group against a 

non-neurological control cohort comprised of 91 donor samples from the cervical, thoracic, 

and lumbar regions of the spinal cord as shown in Figure 2.11B. In agreement with the 

phenotypes identified in the ALS postmortem cortex99, significant enrichment for 

neuroinflammatory signatures is observed in ALS-Glia patients when compared to the 

other two subtypes. Interestingly, normalized enrichment scores indicate negative 

enrichment for neuroinflammatory pathways in the ALS spinal cord, relative to controls, 

whereas positive enrichment is observed in the cortex99 – findings which may be linked to 

cell type composition151 and stringent filtering of glial marker genes. In ALS-Ox patients, 

statistically significant positive enrichment for genes associated with synaptic signaling is 

observed, mirroring the phenotype observed in the postmortem cortex. Pathways 

associated with RNA metabolism and processing were the most strongly enriched in the 

ALS-TD subtype when compared to controls using GSEA, although significant 

associations were not observed at an adjusted p-value < 0.05 by either enrichment 

approach. Collectively, findings demonstrate that unsupervised clustering of the ALS 
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spinal cord recapitulates many of the same subtype signatures observed in the postmortem 

cortex. Conversely, phenotypic differences between the groups are less pronounced than 

in the cortex, evident in the magnitude of GSEA normalized enrichment scores. These 

findings likely reflect differences in cell type composition between the two regions of the 

central nervous system and the fact that most glial marker genes demonstrated covariate-

dependent expression and were subsequently filtered. 

Allocation to each of the three subtypes in the NovaSeq cohort more closely agrees 

with findings from the frontal and motor cortex, with ALS-Glia representing the rarest 

subtype (21.9% of spinal transcriptomes compared to 19.2% in the cortex99) corresponding 

to a Glia:Ox:TD ratio of 1:1.5:2, as shown in Figure 2.12. In the HiSeq cohort, a 

Glia:Ox:TD subtype ratio of 1:1:1.4 was observed, shown in Figure 2.12, corresponding to 

~30% of patients classified as ALS-Glia, indicating the selected sequencing platform 

influences the detectable subtype expression signature. In both cases, the transcriptional 

dysregulation (TD) subtype was the most commonly assigned – as compared to the 

oxidative stress subtype in the postmortem cortex – potentially a consequence of some 

dependency on the removed covariates as seen in Figure 2.13A-D, weak neuronal 

expression associated with cell type composition in the spinal cord as observed in Figure 

2.13E, and stringent filtering of covariate-dependent genes. 
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Figure 2.11: Enrichment analysis using (A) Fisher exact tests performed with Enrichr185 

with FDR26 adjusted p-values presented on the –log10 scale. Genes were assigned to patient 

clusters depending on median expression and downregulated pathways are indicated with 

the negative magnitude of the –log10 transformed p-value. (B) GSEA310 with non-

neurological controls specified as the reference level for calculation of all normalized 

enrichment scores. 
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Figure 2.12: Generalized comparison of subtypes assigned to the ALS postmortem cortex 

and spinal cord. Pie charts showing patient level subtypes using the majority agreement 

approach described previously99,317 in the (A) postmortem cortex and (B) the postmortem 

spinal cord. A larger fraction of patients was found to be “Discordant” or “ALS-TD” in the 

spinal cord as compared to the cortex, potentially reflecting cell type composition 

differences in each tissue region. When accounting for sequencing platform in the 

assignment of patient subtype at the individual sample level, the NovaSeq cohort more 

closely mirrors the subtype proportion in the postmortem cortex. Yet, in both cases, the 

ALS-Ox subtype was not the most common, pointing to cell composition effects given 

work from Humphrey et al.151 
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Figure 2.13: Diagnostic plots show spinal cord subtype is partially influenced by multiple 

covariates after dependent gene removal. Covariate diagnostic plots following assignment 

of sample subtype using non-smooth non-negative matrix factorization showing (A) sex, 

(B) site of collection, (C) tissue region, and (D) RIN. While scaled RIN does not appear to 

have a strong effect on the assigned subtype, the remaining covariates are seen to influence 

subtype despite removal of covariate-dependent genes using differential expression. 

Strictly considering this spinal cord cohort, the NYGC site of collection/processing and the 

lumbar tissue region appear more robust to covariate-dependent gene expression. (E) 
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Estimated cell type fractions in the postmortem spinal cord (n = 293 unique transcriptomes, 

137 cervical, 36 thoracic, 120 lumbar), considered in the context of the ALS subtypes. 

Estimates were previously calculated by Humphrey et al.151 using the MuSiC algorithm342 

with reference single-nucleus RNA-seq data from Mathys et al.218 Significant differences 

in cell type percentages were assessed using a two-sided Wilcoxon rank sum test with 

Bonferroni p-value adjustment. Adjusted p-values are denoted using the following scheme: 

*** p < 1E-5; ** p < 0.001; * p < 0.05. Pairwise comparisons not depicted have an adjusted 

p-value > 0.05. 

 

 

2.3.5   Cellular Deconvolution 

 

During bulk tissue RNA-sequencing, mRNA is extracted and purified from many 

cells, a process that is usually controlled using the initial weight of the tissue sample. As 

single cell sequencing technologies have shown, the individual cellular composition of 

most tissue is heterogeneous, varying spatially, temporally, and between organisms of the 

same species. Therefore, measured gene expression in bulk tissue RNA-sequencing is 

generally influenced, to some extent, by the varying cellular composition of the tissue, 

rather than reflect some underlying disease state or process151,259. Consequentially, the 

interpretation of the stratified subtypes is limited without an improved understanding for 

cell type composition in the bulk tissue transcriptomes. As previously discussed, cellular 

deconvolution is a matrix decomposition strategy which leverages reference single-cell 

RNA-seq expression data and the original bulk tissue transcriptome to identify the 

contribution of individual cell types to the overall expression signature. 

In an effort to address potential biases in the cortex cohort during bulk tissue 

sequencing, cell deconvolution was performed using CIBERSORTx244, with DESeq2 
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normalized count values (additional details in Methods section) and reference single cell 

expression from Nowakowski et al.247 as seen in Figure 2.14. Ten cell type signatures 

(including “Unknown”) were generated from the single cell expression and used to 

estimate cell percentages in the bulk expression data. Significant differences between 

prefrontal and motor cortices are observed in microglial, glial progenitor, vascular cell, and 

inhibitory neuron fractions as seen in Figure 2.14A. Weak significant differences are 

observed in the excitatory neurons, and no significant differences are seen in the astrocytes. 

Taken together, these findings indicate cell percentages in the frontal and motor cortex may 

partially explain subtype-specific expression, although tissue region in the CNS does not 

strongly influence the assignment of ALS subtype, as seen in Figure 2.15A. When 

considering cell type percentages in each subtype, some significant differences were 

observed, as seen in Figure 2.14B. The ALS-Ox subtype had a greater average percentage 

of excitatory neurons as compared to the ALS-Glia subtype (Bonferroni-adjusted p-value 

< 1E-5). Similarly, the ALS-Ox subtype demonstrated a significantly greater percentage of 

inhibitory neurons as compared to the other two subtypes. These results suggest that the 

ALS-Ox phenotype is partially driven by bulk tissue cell fractions, yet these differences 

are small in the case of ALS-Ox versus ALS-TD patients, supporting neuronal stress and 

altered inhibition as hallmarks of the ALS-Ox subtype. The percentage of endothelial and 

mural cells in ALS-Ox postmortem cortices suggests expression implicating blood-brain 

barrier dysfunction may be driven by bulk tissue biases. Some significant differences in 

microglial fraction are observed between the Glia and Ox subtypes (Bonferroni-adjusted 

p-value < 1E-9) and Glia and TD subtypes (Bonferroni-adjusted p-value < 1E-7), 
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suggesting that differences in cell type fractions may, in part, explain elevated expression 

of microglial marker genes in ALS-Glia patients. However, it is important to emphasize 

that no significant differences in astrocyte fraction were observed between the ALS-Glia 

subtype and the other two subtypes, indicating upregulated neuroinflammatory signaling 

in ALS-Glia patients remains a defining characteristic. Cell deconvolution was also 

performed on the healthy control and FTLD patients, with results presented in Figure 

2.15B.  

In the postmortem spinal cord, cell fractions were previously estimated by 

Humphrey et al.151 using the MuSiC algorithm342 with reference single-nucleus RNA-seq 

data from Mathys et al.218 A total of 293 patient samples are shown in Figure 2.13E, 137 

from the cervical region of the spinal cord, 36 from thoracic, and 120 from the lumbar 

region. Similar to cell deconvolution results from the postmortem cortex cohort, no 

significant differences in astrocyte percentages were observed between subtypes in the 

spinal cord cohort. Also mirroring the cortex results, significant differences between 

subtypes were observed in neuronal, endothelial, pericyte, and microglial cell fractions. 

Collectively, results from cellular deconvolution demonstrate that the findings of this work 

are partially influenced by bulk tissue RNA-sequencing limitations, however unique 

astrocyte gene expression in the ALS-Glia subtype suggests that the observation of distinct 

disease states during stratification cannot be attributed to analytical bias alone. The 

stratification of ALS patients using single-cell RNA-sequencing data is likely to provide 

significant new insight into this challenge.  
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Figure 2.14: Bulk tissue cell deconvolution in ALS subtypes. (A) Cell type percentages in 

the prefrontal and motor cortices for all patient samples considered in this study. (B) 

Fractions of cell types in the frontal and motor postmortem cortex, considered in the 

context of the ALS subtypes. Significant differences in cell type percentages were assessed 

using a two-sided Wilcoxon rank sum test with Bonferroni p-value adjustment. Adjusted 

p-values are denoted using the following scheme: *** p < 0.001; ** p < 0.01; * p < 0.05. 

The median is indicated by the solid black line, and first and third quartiles are captured by 

the bounds of the box. Boxplot whiskers are defined as the first and third quartiles –/+ 

interquartile range times 1.5, respectively, and outliers are denoted as solid black points. 

Minimum and maximum values are captured by the lowermost and uppermost points, 

respectively, or whisker bound if no outliers are shown.  
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Figure 2.15: (A) Patient subtypes in each tissue region considered in this study. 

Approximately the same ratio of Glia, Ox and TD patients are observed in the frontal and 

specified motor cortices, roughly matching the ratio observed during unsupervised 

clustering, indicating brain region is not a confounding factor with subtype. (B) Cell type 

percentages in the frontal and motor cortex, considered in the context of ALS patients and 

controls (n=585). Cell deconvolution was performed using CIBERSORT244, with DESeq2 
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median-of-ratio counts and references expression from Nowakowski et al.247. Significant 

differences in cell populations were assessed using a Wilcoxon rank sum test (two-sided) 

with Bonferroni adjustment. Adjusted p-values are denoted using the following scheme: 

*** p < 0.001; ** p < 0.01; * p < 0.05. n.s. – not significant. The median is indicated by 

the solid black line, and first and third quartiles are captured by the bounds of the box. 

Boxplot whiskers are defined as the first and third quartiles –/+ interquartile range times 

1.5, respectively, and outliers are denoted as solid black points. Minimum and maximum 

values are captured by the lowermost and uppermost points, respectively, or whisker bound 

if no outliers are shown.  

 

 

2.3.6   Subtype Concordance in the Postmortem Cortex and Spinal Cord 

 

 Having performed the independent clustering and enrichment of the postmortem 

cortex and spinal cord cohorts and arriving at similar conclusions in both, intra-patient 

agreement (concordance) was then assessed. As shown in Figure 2.1D, the large number 

of shared patients between the two postmortem cohorts allowed for the comparison of 

subtypes presented throughout the ALS central nervous system. Subtype labels from the 

frontal, medial motor, lateral motor, and ‘unspecified’ motor cortex were combined with 

labels from the cervical, thoracic, and lumbar regions of the spinal cord, where available. 

The average number of postmortem tissue transcriptomes available for each patient was 

approximately four.   

Concordance was considered at the sample level, to ensure independence, and 

presented as a matrix of pie charts, with spinal cord region along the rows and cortical 

region along the columns, as seen in Figure 2.16. Excluding the unspecified motor cortex 

samples, the highest concordance was found between the frontal cortex and lumbar region 

of the spinal cord for the ALS-Glia subtype (46.2%), the medial motor cortex and lumbar 
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region for the ALS-Ox subtype (46.4%), and the medial motor cortex and cervical spinal 

cord for the ALS-TD subtype (69.6%). The higher concordance observed in the ALS-TD 

subtype, and generally lower overall agreement, likely stems from bias towards the ALS-

TD subtype during unsupervised clustering, despite removal of covariate dependent genes 

as seen in Figure 2.13A-D, and differences in cell type composition as compared to the 

cortex as seen in Figure 2.13E. Similarly, the lumbar region is seen to more closely reflect 

the proportion of subtypes observed in the cortex99, as seen in Figure 2.13C, generally 

corresponding to a noticeable improvement in concordance between the cortex and lumbar 

spinal cord relative to other spinal cord regions for ALS-Ox and ALS-Glia patients, as 

shown in Figure 2.16. More generally, concordance between the lumbar spinal cord and 

each region of the cortex, excluding the lateral motor, is statistically significant with 

agreement being higher than would be expected by random chance. Using bootstrapping, 

distributions for the expected number of concordant patient samples were generated from 

10,000 iterations, after adjusting sampling probabilities to reflect subtype observations in 

the cortex and spinal cord. True concordant values were compared against the derived 

distribution for estimation of p-values, assuming a one-tailed binomial distribution, which 

were found to be 0.012 in the frontal cortex, 0.031 in the medial motor cortex, 0.160 in the 

lateral motor cortex, and 0.021 in the ‘unspecified’ motor cortex. Statistically significant 

concordance was also observed between the cervical region of the spinal cord and the 

frontal cortex (p = 0.026).   

The concordance analysis was extended by further separating patients by 

sequencing platform to assess dependence on instrumentation, as shown in Figures 2.17, 



 
 

88 
 

2.18, and 2.19. The NovaSeq 6000 sequencing platform was found to outperform the HiSeq 

2500 sequencing platform in the cervical (42.3% vs 35.4%) and lumbar spinal cord (47.7% 

vs 35.4%) but not the thoracic spinal cord (32.0% vs 37.9%). In the NovaSeq cohort, the 

highest concordance for the ALS-Glia subtype remains the same tissue pairing at 48.0%, 

and for ALS-Ox the highest agreement was seen between the lateral motor cortex and 

lumbar spinal cord at 48.4% (excluding the unspecified motor cortex and pairings with a 

single observation) – although lower sample numbers may partially explain these 

differences. In the NovaSeq subset, intra-patient concordance between the postmortem 

cortex and lumbar region of the spinal cord remains statistically significance in the frontal 

cortex (p = 0.024), medial motor cortex (p = 0.041), lateral motor cortex (p = 0.037), and 

‘unspecified’ motor cortex (p = 0.010). Additionally, concordance was significant between 

the cervical region of the spinal cord and the frontal cortex (p = 0.024) and ‘unspecified’ 

motor cortex (p = 0.050). No tissue pairings were found to be statistically significance in 

the HiSeq subset. Collectively the analysis shows weak to moderate agreement in subtype 

presented throughout the ALS postmortem cortex and spinal cord, despite differences in 

cell type composition, after removal of covariate-dependent genes. Concordance between 

the cortex and spinal cord phenotype was demonstrated to be dependent on tissue and 

sequencing platform, and find the lumbar region of the spinal cord shows the highest 

overall concordance with the cortical phenotype in this cohort. Bootstrapping shows that 

the proportion of concordant patients in the NovaSeq subset consistently exceeds the 

number expected by random chance when comparing any region of the cortex with the 

lumbar region of the spinal cord, improving the likelihood that patient subtypes are 
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expressed throughout the individual’s central nervous system and influence the disease 

course. 

Patient concordance was further considered by screening for patients assigned the 

same subtype in every sample considered in this study and the previous99. A total of 45 

patients were found to pass this criterion (45/222; 20.3%) and stratify these patients further 

to find five ALS-Glia patients, 12 ALS-Ox patients, and 19 ALS-TD patients coherently 

assigned a single subtype in both the cortex and spinal cord, as shown in Figure 2.20. While 

the lower patient number limits the extrapolation of these findings, a surprising association 

with sex and a stark difference in disease duration in this concordant patient subset is 

observed, as observed in Figure 2.20B-E.  

Despite the statistical limitations (sample independence) of assigning patient 

subtype using the majority agreement approach, concordance between the majority 

postmortem cortex subtype99 and majority spinal cord subtype are considered using this 

method. As shown in Figure 2.21, more than half of the patients were found to be 

discordant (68.2%), which likely reflects differences in cell type composition between the 

cortex and spinal cord and highlights the challenges of linking patient phenotype between 

these two regions. 
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Figure 2.16: Agreement between the subtype assigned to the cervical, thoracic, and lumbar 

regions (rows) and (A) the frontal cortex, (B) the unspecified motor cortex, (C) the medial 

motor cortex, and (D) the lateral motor cortex – for all available samples. Pie charts are 

first presented as an aggregate of all paired tissue samples (light blue and pink) and in a 

subtype-specific manner. Concordance at the subtype level (columns) has been color coded 

to indicate agreement (gold, navy, and maroon) or disagreement (orange, green, and 

purple) between the two tissue regions compared. No patients assigned ALS-TD in the 

unspecified motor cortex had a corresponding thoracic spinal cord sample in this cohort. 

Created with BioRender.com. 
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Figure 2.17: Tissue specific concordance between the postmortem cortex and spinal cord 

in the NovaSeq cohort. Agreement between the subtype assigned to the cervical, thoracic, 

and lumbar regions (rows) and (A) the frontal cortex, (B) the unspecified motor cortex, (C) 

the medial motor cortex, and (D) the lateral motor cortex – for all available NovaSeq spinal 

cord samples. Pie charts are first presented as an aggregate of all paired tissue samples 

(light blue and pink) and in a subtype-specific manner. Concordance at the subtype level 

(columns) has been color coded to indicate agreement (gold, navy, and maroon) or 

disagreement (orange, green, and purple) between the two tissue regions compared. No 

patients assigned ALS-TD in the medial motor cortex had a corresponding thoracic spinal 

cord sample in this cohort. There were no intra-patient tissue pairings between the thoracic 

spinal cord and unspecified motor cortex in this cohort. Created with BioRender.com. 
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Figure 2.18: Tissue specific concordance between the postmortem cortex and spinal cord 

in the HiSeq cohort. Agreement between the subtype assigned to the cervical, thoracic, and 

lumbar regions (rows) and (A) the frontal cortex, (B) the unspecified motor cortex, (C) the 

medial motor cortex, and (D) the lateral motor cortex – for all available HiSeq spinal cord 

samples. Pie charts are first presented as an aggregate of all paired tissue samples (light 

blue and pink) and in a subtype-specific manner. Concordance at the subtype level 

(columns) has been color coded to indicate agreement (gold, navy, and maroon) or 

disagreement (orange, green, and purple) between the two tissue regions compared. No 

patients assigned ALS-TD in the unspecified motor cortex had a corresponding thoracic 

spinal cord sample in this cohort. Created with BioRender.com. 
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Figure 2.19: Intra-patient concordance p-values, estimated from 10,000 rounds of 

bootstrapping after independently adjusting for the proportion of patient subtypes observed 

in the cortex and spinal cord cohorts. The red line indicates the true number of concordant 

samples observed for a given cortex – spinal tissue pairing. P-value estimates are provided 

for (A) all patient samples and (B) the NovaSeq subset exclusively. The NovaSeq platform 

generally outperforms the HiSeq, with no tissue pairings having statistical significance in 

the HiSeq subset. No significant agreement was observed in the thoracic spinal cord in any 

cohort. 
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Figure 2.20: ALS patients with subtype concordance throughout the central nervous 

system. Multiple patients demonstrated perfect concordance across all available tissue 

transcriptomes and are presented using publicly available de-identified IDs. (A) Heatmap 

showing subtype assignment to each region of the cortex and spinal cord considered in this 

study. Gray cells correspond to unavailable or not applicable tissue transcriptomes. Patients 

without observations from both the postmortem cortex and spinal cord are excluded from 

this plot, but are available in Supplementary Dataset 4. Patient sex is presented for (B–D) 

each ALS subtype. Interestingly, patients concordant for the ALS-Glia subtype are 

primarily female, potentially indicating sex-dependent differences in the presentation of 

disease phenotype. Clinical parameters for concordant patients are plotted as boxplots, and 

show (E) disease duration, (F) age at onset, (G) age at death, and (H) site of symptom onset. 

Statistical tests were not performed due to limited patient number.   
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Figure 2.21: Concordance between the postmortem cortex and spinal cord using the 

majority agreement approach. A meta level analysis comparing subtype assigned in the 

cortex with the spinal cord using the majority agreement approach – in which patients were 

assigned a subtype if a single sample was available or by majority if two or more samples 

were available. Patient subtype was assigned in the cortex and spinal cord independently. 

(A) The majority (68.2%) of patient samples did not show concordance between the 

postmortem cortex and spinal cord when using the majority agreement approach – 

indicating this method is not the optimal way to manage repeat patient sampling. (B) For 

patients that presented as ALS-Glia in the cortex, ~32% of individuals were assigned the 

same subtype in their spinal cord by majority agreement. Discordant was the most common 

subtype assigned, likely reflecting limitations due to cell type composition of the spinal 

cord. (C) Patients with the oxidative stress phenotype in the cortex demonstrated similar 

concordance, with ~25% of patients assigned the same subtype in their spinal cord. 

Encouragingly, very few patients classified as ALS-Ox in the cortex were assigned ALS-

Glia in their spinal cord, suggesting cell type composition does not act as a confounding 

factor in the expression of ALS-Ox marker genes in the spinal cord but weakens the 

detectable signal. (D) Patients presenting as ALS-TD in their cortex showed the highest 

concordance with the spinal cord (~48%), but likely reflects bias towards this subtype in 

the spinal cord transcriptomes. Interestingly, this bias towards ALS-TD in the spinal cord 

does not appear to be due to RIN, given that the mean RIN was 6.14 for all cortex samples 

yet 6.50 for all samples from the spinal cord. (E) Patients initially showing discordance for 

their postmortem cortex subtype are reassigned to ALS subtypes with roughly the same 

frequency. The concordance label in this figure indicates both the postmortem cortex and 

spinal cord presented as “Discordant” by the majority agreement method. 
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2.3.7   Presentation of Hybrid Subtypes  

  

As shown in Figures 2.5, 2.6, 2.7, 2.8, 2.9, and 2.11, evidence for the co-

presentation of ALS phenotypes within the ALS cortex cohort is observed. Therefore, to 

better understand the transcriptional landscape of these ALS molecular subtypes, the 

classification approach outlined by Patel et al.259 was leveraged. This classification strategy 

leverages subtype-specific and co-expressed gene subsets (“eigengenes”) obtained from 

the WGCNA analysis discussed in Chapter 3. As detailed in the methods section above, 

subtype scores were calculated using predictor gene sets derived from the ALS-Glia (gold), 

ALS-Ox (navy), and ALS-TD (maroon) eigengenes. Bootstrapping was applied to define 

95% confidence intervals on the expected subtype scores and assign patient samples to one 

or more subtypes if they passed the 5% threshold. As shown in Figure 2.22, the majority 

of classified patient samples demonstrated gene expression characteristic of a single 

subtype (220/244). However, for a subset of patients, hybrid gene expression characteristic 

of both the ALS-Glia and ALS-TD subtypes (n=19), as well as the ALS-Glia and ALS-Ox 

subtypes (n=5) was observed. Interestingly, despite shared disease themes between the 

ALS-Ox and ALS-TD groups as seen in Figure 2.8C-D, the bootstrap-based classification 

approach shows that these two subtypes are generally expressed independently. 

Furthermore, no patient samples were seen to express all three subtypes simultaneously, 

evident by the fact that all samples fall along one of the three faces of the hexagonal plot 

in Figure 2.22A. Sample subtypes obtained from the unsupervised clustering analysis are 

encoded as border colors, and generally show agreement between the two approaches, 
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shown in Figure 2.22B. All patient samples shown to express a hybrid ALS phenotype 

were initially clustered into one of the two subtypes comprising the hybrid state, as shown 

in Figure 2.22C, further supporting the interpretation of this analysis. Taken together, the 

results capture the heterogeneous spectrum of ALS disease phenotypes in this cohort and 

reveal that a small subset of ALS postmortem cortex transcriptomes show evidence for the 

co-presentation of subtype states. 

 Stemming from the challenges encountered during stratification and similar 

phenotype presentation in ALS-Glia and ALS-TD patients when using spinal cord gene 

expression, hybrid subtyping analysis was not performed in the spinal cord cohort. As 

shown in Figure 2.11, 2.13 and 2.14, the higher proportion of glia cells in the spinal cord, 

relative to the cortex, likely drives some of the shared pathways and mechanisms found to 

be enriched in the two subtypes. These effects propagated forward into the WGCNA 

analysis performed in Chapter 3.3.5, and made definition of ALS-Glia and ALS-TD 

eigengenes difficult. Thus, consideration of hybrid subtype presentation in the spinal cord 

cohort would likely show overestimation of Glia-TD hybrids and reflect a severe 

dependence on cell type composition. 
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Figure 2.22: Score-based classification uncovers hybrid subtype states in the ALS cortex 

cohort. (A) Subtype scoring was implemented with bootstrapping to assess the spectrum 

of disease phenotypes presented in ALS. Each point corresponds to a single transcriptome 

derived from the frontal or motor postmortem cortex, n=451 biologically independent 

samples. Patient samples were initially placed at the origin, moved in the direction of the 

subtype axis for each round of bootstrapping that passed the subtype score threshold, and 

could only reach the vertex if the patient sample passed the threshold in all rounds of 

bootstrapping. Data points are filled according to the bootstrap-based subtype assignment 

and borders are included to denote the patient subtype obtained from unsupervised 

clustering. Transcriptomes which approached the vertices shared by two subtypes are 

considered to express a hybrid subtype state. Patient samples are color coded gray if they 

failed to pass the subtype score thresholds in ≥ 50% of bootstrap iterations. (B) Confusion 

matrix showing unsupervised clustering results in each classification subtype. (C) 

Clustering results in Glia-TD and Glia-Ox hybrids. 
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2.4   Discussion and Conclusion 

 

Limited understanding for variable ALS onset and progression has limited clinical 

trial success and slowed the development of effective therapeutics. Collectively, 

unsupervised clustering and enrichment results from the postmortem cortex and spinal cord 

cohorts converge on similar phenotypes, lending strength for the contribution of 

independent, yet occasionally concurrent, molecular subtypes to ALS disease 

heterogeneity. In both postmortem cohorts, ALS patient transcriptomes266 were stratified 

into three subtypes defined by distinct gene expression phenotypes, termed ALS-Glia317, 

ALS-Ox317, and ALS-TD. Guided by enrichment analyses, gene expression associated with 

activated glia and neuroinflammatory signaling are observed in the ALS-Glia subtype. 

Although enrichment scores take opposite magnitudes in the ALS-Glia cortex and spinal 

cord relative to non-neurological controls, results continue to implicate neuroimmune 

pathologies relative to the other two subtypes, and likely reflect more stringent gene 

filtering applied to spinal cord transcriptomes to address cell compositional differences. 

Despite these differences, the ALS-Ox subtype was found to be highly conserved in the 

ALS central nervous system. Gene expression primarily implicates altered synaptic 

signaling in both the postmortem cortex and spinal cord with oxidative and proteotoxic 

stress also elevated in the cortex – more typical neurodegenerative themes. Consideration 

of locus-specific transposable elements via SQuIRE revealed that both the ALS-TD and 

ALS-Ox subtypes strongly overexpressed TEs compared to healthy control donors and 

ALS-Glia patients in the cortex. In ALS-TD cortex samples, the unique expression of 
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transcription and translation associated genes was observed, including transcription 

factors, regulatory microRNAs, mRNA traditionally marked for nonsense mediated decay, 

pseudogenes, antisense, intronic, and long non-coding RNAs. These findings led us to 

define the final subtype by transcriptional dysregulation, rather than transposable element 

expression. Features generally indicating transcriptional dysregulation in the ALS-TD 

spinal cord continued to be observed, including pseudogenes, antisense, read-through 

transcripts, and regulatory RNA.  

 Findings from this Chapter offer an important postmortem foundation for future 

ALS patient stratification in the clinic and prior to enrollment in clinical trials. Clustering 

and enrichment analyses, in agreement with prior studies8,237,317, jointly indicate separate 

pathological mechanisms in each subtype, offering one explanation for variable and 

generally weak patient response to existing therapies like Riluzole and Edaravone. Further, 

enrichment analyses offer new perspectives on subtype-specific therapeutic targets, 

providing a pharmacological foundation for future drug discovery. Choice of sequencing 

platform was seen to influence the allocation of patient samples in the spinal cord cohort 

but not in the cortex cohort after carrying out the analyses separately for samples derived 

from NovaSeq 6000 and HiSeq 2500 instruments. Further, bulk tissue RNA-sequencing 

and variability in cell composition is seen to influence the overall expression profile and 

restricts the interpretation and utility of these findings to some extent. Finally, considering 

agreement in subtype presentation at the patient level, modest but statistically significant 

agreement is observed between the subtype(s) expressed in the postmortem cortex and 

spinal cord, likely influenced by both technical and biological confounding factors. Results 
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show that the lumbar region of the spinal cord generally demonstrates the highest 

concordance with all regions of the cortex, regardless of the individuals’ subtype. In 

addition, the NovaSeq platform appears to outperform the HiSeq platform when using 

intra-patient concordance as the measure. Importantly, concordance between the lumbar 

spinal cord and frontal, medial motor, lateral motor, and ‘unspecified’ motor cortex regions 

in the NovaSeq subset is higher than would be expected by random chance (p = 0.003–

0.027), after adjusting for subtype proportions observed in each cohort, as shown in Figure 

2.18, strengthening claims for the existence and pathological relevance of the 

neurodegenerative subtypes in ALS patients.  
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Chapter 3 

 

PATIENT SUBTYPES CAPTURE SURVIVAL DIFFERENCES AND INDICATE 

ASSOCIATIONS WITH AGE AT DISEASE ONSET 

 

3.1   Introduction  

  

 ALS patient variability in disease onset, age, presentation of symptoms, presence 

of comorbidities like Alzheimer’s disease or FTLD, rates of functional decline, and overall 

duration have long been reported to vary, even in relatively small cohorts with similar 

underlying characteristics or in cohorts with different genetic mutations on the same 

protein67,81,170,284,315. As previously discussed in Chapter 2, the use of a patient stratification 

system based on the site of symptom onset poorly predicts disease progression and patient 

outcomes55,339. Further, patient heterogeneity represents a major complication in the design 

of clinical trials315 and the identification of reliable and quantifiable molecular features to 

aid patient stratification and improve success rate remains a potent need. As noted in 

Chapters 1.1 and 1.2.1, genetic models of the disease have offered evidence for a spectrum 

of mechanistic disease pathways in ALS neurodegeneration. Linking mechanistic 

heterogeneity to clinical variability would provide an important foundation for improving 

clinical trial success and guide development of more personalized therapeutics.  

Offering key insight into the extent of mechanistic heterogeneity in patients, groups 

report incomplete recovery of all phenotypic aspects of ALS using patient-derived stem 

cell models, and further show dependency on the gene mutation used as the basis of the 
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ALS disease model60,176,223,338. Further capturing mechanistic heterogeneity, groups 

leveraging the C9orf72 hexanucleotide repeat expansion as the genetic ALS model 

frequently report the presence of aggregated dipeptide repeats of varying amino acid 

composition, cellular effects, toxicity, and localization15,113,214. Similar conclusions are 

found when leveraging animal models of ALS, where genetic background of the mouse 

has been shown to influence microglial activation and heterogeneity in pathology and 

progression181. Further, heterogeneous disease outcomes have been reported in mouse 

models when using the same mutant protein, TDP-43, but with different mutation loci 

(M337V and Q331K)7. Finally, in human cohorts, clear evidence for continued mechanistic 

heterogeneity is demonstrated in hereditary patients with the mutations to the SOD1 

protein. Despite the fact that the same protein is implicated in the pathology, significant 

variability in disease onset and progression are observed when considering common 

mutations like A4V, H46R, and D90A170,270. Extensive work has linked mutation 

variability to toxic gain of function, with proposed mechanisms implicating altered 

substrate affinity, metal-free protein stability, and the propensity for monomer aggregation, 

rather than loss of dismutase (enzymatic) activity23,47,199,267,321,351. Collectively, these works 

and others show that a multitude of factors likely contribute to the heterogeneity observed 

in patients and emphasize the challenges associated with the stratification of patients to 

improve clinical trial outcomes.  

 While the characterization of the ALS neurodegenerative spectrum provides 

important insight into disease variability in patients, associations with clinical parameters 

have not yet been established, calling into question the biological relevance of the proposed 
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subtypes. In the third chapter of this dissertation, subtype labels from Chapter 2 are 

leveraged to perform univariate and multivariate survival analyses, weakly linking the 

immunological subtype, ALS-Glia, to a shorter disease duration and oxidative stress 

subtype to a longer duration. In line with findings from survival analysis, results from 

WGCNA converge on the same interpretation, as the ALS-Glia eigengene is significantly 

negatively correlated with disease duration in the postmortem cortex. Similar gene 

expression profiles between ALS-Glia and ALS-TD subtypes in the spinal cord – likely a 

consequence of cell type composition151 – makes assignment of subtype eigengenes 

challenging. However, one immunological eigengene continues to agree with findings 

from survival, as a significantly negative correlation is seen between eigengene 

‘expression’ and disease duration – indicating a negative effect on rate of disease 

progression – although the eigengene shows specificity for the ALS-TD subtype.  

The association of subtype with survival variability represents an important step 

towards the beneficial stratification of patients, but as Cox Regression shows, only remains 

part of the picture as other factors like sex and age are seen to contribute more towards 

differences in patient hazard. Further, disease duration does not capture important clinical 

considerations like rate of functional decline, and future works linking expression-based 

subtypes to alternative parameters like ALSFRS-R, metabolic readings, or neuroimaging 

data may present further insight into the contribution of the expressed subtypes on clinical 

and mechanistic heterogeneity.  
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3.2   Methods  

 

3.2.1   Assignment of Patient-Level Subtype for Clinical Analysis 

 

 To allow for the consideration of patient clinical parameters, the majority subtype 

approach outlined in Chapter 2.2.11 is leveraged i) in the cortex and spinal cord cohorts 

separately and ii) ‘globally’ across all available samples from the cortex and spinal cord. 

In brief, patients were assigned a subtype label only if there was a majority consensus. ALS 

patients which failed to reach a majority consensus were labeled ‘Discordant’. When 

applying the majority agreement approach in the later case, the patient cohort was filtered 

to ensure observations were available from both the postmortem cortex and spinal cord, 

totaling 192 individuals.  

 

3.2.2   Assessment of Clinical Parameters in ALS Subtypes  

 

 Differences in ALS survival by subtype was assessed using the Kaplan-Meier 

analysis80,167 with application of the log-rank statistical test. Left censoring was applied in 

the postmortem cortex cohort. Subtype-specific differences in age of symptom onset and 

age at death were analyzed using ANOVA tests. Post hoc analysis used a two-sided t-test 

with FDR p-value adjustment. A Chi-squared test of independence was applied to assess 

subtype dependency for site of symptom onset, genetic mutation, or FTLD and 

Alzheimer’s comorbidity.  
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3.2.3   Cox Regression for Multivariate Survival 

 

 To address sample dependence due to repeat patient measures, Cox proportional 

hazard models were constructed in R to assess multivariate contribution to patient 

survival80,169,178,324,325. Sex, subtype, age at symptom onset, and disease group covariates 

are included as fixed effects and obtain hazard ratios from the exponential of the β 

coefficient. Regression diagnostics are separated by tissue region, and first show residuals 

plotted by covariate followed by plots of scaled Schoenfeld residuals for each covariate 

level. By running regression in each tissue region independently, the need to incorporate 

patient-specific random effects into the proportional hazard model is bypassed. Model term 

p-values were calculated from the coefficient z-scores, while testing of the proportional 

hazard assumption at the covariate level was performed using the score test, with p < 0.05 

indicating time-dependent hazard and assumption violation80. All covariates in all models 

are observed to meet the assumption of having proportional hazards over the survival 

duration, excluding the disease group covariate in the lateral motor cortex model (p = 0.04). 

 

3.2.4   Weighted Gene Co-Expression Network Analysis (WGCNA) 

 

 Co-expressed gene sets associated with disease duration, age of symptom onset, 

and age at death were assessed using the Weighted Gene Co-Expression Network Analysis 

(WGCNA) package in R188 (Version 1.70-3, University of California, Los Angeles). The 

minimum module size was set to 25 and a soft power of 13 was selected in the cortex, while 
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a power of six was selected in the spinal cord, to ensure the assumptions of scale-free 

topology are met188. Gene expression was maintained on the variance stabilizing 

transformation (VST) scale. Eigengenes were enriched for the biological process (BP) gene 

ontology. Transcripts without a corresponding gene symbol (ENSG and TEs) were 

included in WGCNA to ensure features relevant for the ALS-TD subtype were still 

considered.  

In the cortex cohort, the top 1,000 most relevant transcripts from each sequencing 

platform subgroup were considered during construction of the eigengene heatmap, using 

variance-stabilizing transformation count values. The same scale was used in the spinal 

cord cohort, however the 5,000 most variable transcripts from each sequencing platform 

were combined, yielding a total of 8,163 transcripts. Eigengenes were assessed for 

upregulation or downregulation in each subtype using dummy regression, with subtype as 

the predictor and sample-wise eigengene expression as the response variable. For each 

eigengene, a linear regression model was constructed, setting one of the three subtypes to 

a value of 1, and the other two to a value of 0. The sign and magnitude of the β coefficient 

from the non-zero term reflects subtype-specific eigengene expression. Correlation and 

regression p-values are –log10 transformed prior to plotting. 
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3.3   Results  

 

3.3.1   Subtype Clinical Outcomes in the Cortex Cohort 

 

 Following the assignment of cortex sample subtype from unsupervised clustering, 

patient clinical parameters were considered in the context of their respective subtypes. A 

survival analysis167 was performed to determine whether the three molecular subtypes of 

ALS capture some of the clinical heterogeneity seen in patient disease duration. ALS 

patients (n=208) were only assigned a subtype if there was a majority consensus among 

frontal and motor cortex samples or a single tissue sample was characterized for a given 

patient (additional details in Methods section). Importantly, multiple tissue samples from 

the same donor are classified as the same subtype (80.8%; 126/156), lending support to the 

patient-level subtype assignment methodology. 

Notably, the results show significant differences in patient survival, with the ALS-

Glia subtype associated with the shortest disease duration and a median survival of 28 

months as seen in Figure 3.1A. Pairwise comparisons using the log-rank test showed 

significant differences in survival between ALS-Glia and ALS-Ox subtypes (p = 0.015) 

and ALS-Glia and ALS-TD subtypes (p = 0.0043) but not between the ALS-Ox and ALS-

TD subtypes (p = 0.30) after (left) censoring patients with an unknown age of onset but 

recorded disease duration. Consideration of patient age of symptom onset showed a 

nonsignificant trend toward the latest disease onset for the ALS-Glia subtype (63.2 ± 1.83 

years; presented as mean ± standard error) and earliest disease onset for the ALS-Ox 

subtype (60.4 ± 1.16 years) as seen in Figure 3.1B. The oldest median age at death was 
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observed for the ALS-TD subtype (66.7 ± 1.33 years) and youngest median age at death 

for the ALS-Ox subtype (64.0 ± 1.05 years), which likely reflects some dependency on the 

age of symptom onset, as observed in Figure 3.1C. As shown in Figure 3.1D, site of 

symptom onset shows roughly the same proportion of patients with bulbar and limb onset 

across the three subtypes. Subtype comorbidity for FTLD was analyzed using a Chi-square 

test of independence, although subtype dependency in the co-presentation of ALS and 

FTLD was not observed (p = 0.59).  

This analysis was also performed with ALS patients that did not reach a majority 

agreement for subtype presentation in available tissue samples, termed ALS-Discordant317. 

Among the 208 unique patients in the cortex cohort (n=95 female, n=113 male), 30 were 

found to be discordant (n=17 female, n=13 male), as summarized in Table 3.1. As seen in 

Figure 3.2, similar results are observed, with significant differences in patient survival (p 

< 0.05) and the latest age of onset maintained for the ALS-Glia subtype (nonsignificant). 

Patient clinical parameters are also considered in the context of the hybrid subtypes 

identified in Chapter 2.3.7, with results presented in Figure 3.3. In addition, given the large 

number of patient transcriptomes shared between this cohort and important foundational 

work from Tam et al.317, agreement of subtype labels for the 140 samples in common were 

considered, as presented in Figure 2.1. 85% agreement (119/140) in sample classification 

is reported, despite differences in the features used for patient stratification, with results 

presented in Table 3.2. Finally, given known genetic associations with ALS, C9orf72 and 

SOD1 mutation frequency is considered in the context of the identified subtypes, presented 

in Figure 3.4. 
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Figure 3.1: Assessment of ALS patient clinical parameters in the context of cortex 

subtypes. (A) Kaplan-Meier survival for the three identified ALS subtypes, with n=150 

patients. Patients without an available age of onset or disease duration were excluded from 

this analysis. The ALS-Glia subtype is significantly associated with a shorter survival 

duration (p < 0.01, log-rank test). The ALS-Ox subtype had a median survival duration of 

36 months, while the ALS-TD group had the longest median survival (42 months). (B) Age 

of disease onset plotted as boxplots for the three ALS subtypes, with n=151 patients. No 

significant differences are observed in age of onset by subtype. The median is indicated by 

the solid black line, and first and third quartiles are captured by the bounds of the box. 

Boxplot whiskers are defined as the first and third quartiles –/+ interquartile range times 

1.5, respectively, and outliers are denoted as solid black points. Minimum and maximum 

values are captured by the lowermost and uppermost points, respectively, or whisker bound 

if no outliers are shown.  (C) Age at death plotted as boxplots for the ALS-Glia, ALS-Ox, 

and ALS-TD subtypes, with n=178 patients. Again, no significant differences are observed. 

(D) ALS subtype site of symptom onset, with the ‘Other’ category comprising axial (4), 

axial-limb (2), bulbar-limb (4), axial-bulbar (1), generalized (1), and unknown (9) sites of 

onset. (E) FTLD comorbidity was converted to a percentage and plotted as a bar graph. A 

Chi-square test of independence was used to assess whether ALS subtype and FTLD 

comorbidity were associated (p = 0.59, one-tailed). 
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Figure 3.2: Assessment of ALS patient clinical parameters including discordant patients. 

(A) Kaplan-Meier survival analysis including the three ALS subtypes and ‘discordant’ 

patients (n=177). Pairwise comparisons showed significant differences in survival between 

the ALS-Glia and ALS-Ox subtypes (p = 0.015) and ALS-Glia and ALS-TD subtypes (p 

= 0.0043). P, log-rank test. (B) Ages of ALS symptom onset are plotted as boxplots, 

separated by disease group (n=180). The ALS-Glia subtype shows a nonsignificant trend 

towards the latest symptom onset. The median is indicated by the solid black line, and first 

and third quartiles are captured by the bounds of the box. Boxplot whiskers are defined as 

the first and third quartiles –/+ interquartile range times 1.5, respectively, and outliers are 

denoted as solid black points. Minimum and maximum values are captured by the 

lowermost and uppermost points, respectively, or whisker bound if no outliers are shown. 

(C) Age at death is shown for the three ALS subtypes and discordant patients (n=208). (D) 

Site of symptom onset are shown for all ALS patients included in this analysis, and a chi-

square test of independence suggests site of symptom onset and subtype are not strongly 

associated. The ‘other’ category is comprised of axial (4), axial-limb (2), bulbar-limb (4), 

axial-bulbar (2), generalized (1), and unknown (11) sites of onset. (E) Frontotemporal lobar 

degeneration comorbidity is shown as a percentage, for all ALS patient groups considered 

in this analysis. A chi-square test of independence again suggests FTLD comorbidity and 

ALS subtype are not strongly associated.  
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Figure 3.3: Clinical parameters in patients with hybrid subtype samples. Patients were 

assigned to a hybrid subtype if one or more tissue samples passed the thresholds detailed 

in Chapter 2.2.9. (A) Kaplan-Meier survival analysis including the three ALS subtypes, 

hybrids, and ‘discordant’ patients (n=177). Interestingly, survival in Glia-TD hybrids 

mirrors survival in the ALS-Glia subtype, with significant differences observed when 

compared to the ALS-TD subtype (p = 0.007), and survival differences trending towards 

significance when compared to the ALS-Ox subtype (p = 0.085). P, log-rank test. Findings 

suggest the elevated inflammatory phenotype seen in ALS-Glia patients is sufficient to 

drive fast progression in ALS, irrespective of co-expressed phenotypes, although additional 

work is needed to assess the consistency of hybrid subtype expression in other cohorts. (B) 

Age of symptom onset, plotted as boxplots, and separated by subtype (n=180). No 

significant differences are observed between the Glia-TD hybrids and other subtypes. The 

median is indicated by the solid black line, and first and third quartiles are captured by the 

bounds of the box. Boxplot whiskers are defined as the first and third quartiles –/+ 

interquartile range times 1.5, respectively, and outliers are denoted as solid black points. 

Minimum and maximum values are captured by the lowermost and uppermost points, 

respectively, or whisker bound if no outliers are shown. (C) Age of death, separated by 

subtype (n=208). (D) Site of symptom onset for all disease subtypes. (E) FTLD 

comorbidity in each disease subtype, presented as a percentage. The small number of Glia-

Ox hybrids limits the interpretation of differences observed in survival, age of onset (p < 

0.05 for all pairwise comparisons), age of death (p < 0.05 for all pairwise comparisons), 

and FTLD comorbidity. 
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Figure 3.4: Mutation frequency in the cortex cohort. Stacked bar chart showing C9orf72 

and SOD1 mutation frequency in the ALS cohort. A chi-squared test of independence was 

performed to assess mutation dependency on subtype. After removal of the “unknown” 

categorical variable, the null hypothesis (no association between ALS subtype and 

common genetic drivers) was accepted for both C9orf72 (p = 0.47, one-tailed) and SOD1 

(p = 0.21, one-tailed). It is important to note that the limited number of observations for 

SOD1 may drive inaccurate estimation of the chi-squared test statistic. 

 

 

 

 

 

 

Table 3.1. Cortex cohort demographics, with clinical parameters separated by ALS 

subtype. Disease Duration, Age of Onset, and Age of Death metrics presented as mean ± 

standard error.  
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 Cohort Demographics 

A-L: Axial and Limb Onset 
B-L: Bulbar and Limb 
Onset 
A-B: Axial and Bulbar 
Onset 

ALS Spectrum FTLD Healthy 
Control Donors 

(n = 208) (n = 42) (n = 58) 

Sex    

   Female 95 (45.7%) 18 (42.9%) 28 (48.3%) 

   Male 113 (54.3%) 24 (57.1%) 30 (51.7%) 

Tissue Site n = 451 n = 42 n = 93 

   Frontal Cortex 193 (42.8%) 42 (100%) 56 (60.2%) 

   Lateral Motor Cortex 104 (23.1%) 0 18 (19.4%) 

   Medial Motor Cortex 102 (22.6%) 0 19 (20.4%) 

   Motor Cortex Unspecified 52 (11.5%) 0 0 

ALS Subtype  NA NA 

   ALS-Glia 33 (15.9%)  ‒ ‒ 

   ALS-TD 56 (26.9%) ‒ ‒ 

   ALS-Ox 89 (42.8%) ‒ ‒ 

   ALS-Discordant 30 (14.4%) ‒ ‒ 

Disease Duration 
(months) 

 Not Available NA 

   ALS-Glia 29.1 ± 3.81 ‒ ‒ 

   ALS-TD 38.1 ± 3.40 ‒ ‒ 

   ALS-Ox 41.8 ± 3.18 ‒ ‒ 

   ALS-Discordant 42.4 ± 6.35 ‒ ‒ 

Age of Onset (years)  Not Available NA 

   ALS-Glia 63.2 ± 1.83 ‒ ‒ 

   ALS-TD 62.7 ± 1.68 ‒ ‒ 

   ALS-Ox 60.4 ± 1.16 ‒ ‒ 

   ALS-Discordant 60.9 ± 1.87 ‒ ‒ 

Site of Onset  NA NA 

   ALS-Glia Bulbar: 11; Limb: 20; 
Unknown: 2 

‒ ‒ 

   ALS-TD Bulbar: 17; Limb: 35; Axial: 
2; A-L: 1; Unknown: 1 

‒ ‒ 

   ALS-Ox Bulbar: 23; Limb: 51; Axial: 
2; A-B: 1; A-L: 1; B-L: 4; 

Generalized: 1; Unknown: 6 
‒ ‒ 

   ALS-Discordant Bulbar: 8; Limb: 19; 
Unknown: 2; A-B: 1 

‒ ‒ 

Age of Death (years)  66.5 ± 9.5 64.8 ± 15.7 * 

   ALS-Glia 66.1 ±1.60 ‒ ‒ 

   ALS-TD 66.7 ± 1.33 ‒ ‒ 

   ALS-Ox 64.0 ± 1.05 ‒ ‒ 

   ALS-Discordant 64.0 ± 1.65 ‒ ‒ 

FTLD Comorbidity 27/208 (13.0%) 42/42 (100%) NA 

   ALS-Glia 6/33 (18.2%) ‒ ‒ 

   ALS-TD 8/56 (14.3%) ‒ ‒ 

   ALS-Ox 10/89 (11.2%) ‒ ‒ 

   ALS-Discordant 4/30 (13.3%) ‒ ‒ 
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Table 3.2. Subtype concordance matrix highlights the strong agreement of subtype labels 

(85%) between this analysis and the foundational work from Tam et al.317 for the 140 

samples in common.  

 
Study Concordance Matrix Eshima et al.99 

ALS-TD ALS-Ox ALS-Glia 

 
Tam et al.317 

ALS-TE 21 6 0 

ALS-Ox 9 79 1 

ALS-Glia 1 4 19 

 

 

3.3.2   Subtype Clinical Outcomes in the Spinal Cord Cohort 

 

 After stratification of the spinal cord cohort, patient clinical parameters were 

examined to determine if subtype level differences in survival are maintained. A Kaplan-

Meier survival analysis was performed after assigning patient-level subtype using majority 

agreement between all available regions of the spinal cord or if a single tissue sample was 

characterized for a given patient (26/206; 12.6%). Similar to the postmortem cortex, a 

significantly shorter survival duration is observed in the ALS-Glia subtype when compared 

to ALS-Ox (p = 0.032) and Discordant (p = 0.023) groups but not the ALS-TD subtype (p 

= 0.27) as seen in Figure 3.5A. As shown in Figure 2.13 and 2.14, the higher proportion of 

glial cells comprising spinal cord tissue likely drives weaker phenotypic differences 

between ALS-Glia and ALS-TD subtypes, relative to the cortex, which may partially 

explain the similar survival curves observed in Figure 3.5A. The mean survival duration 

for ALS-Glia patients was found to be 31.3 ± 3.97 months (mean ± SE), while ALS-Ox 

patients were found to have the longest mean survival duration at 45.6 ± 4.87 months, with 

all values presented in Table 3.3. Interestingly, a significant difference in the age of disease 
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onset between ALS-Glia and discordant patients is seen after FDR26 correction (FDR p = 

0.018), following the trend seen in the postmortem cortex, as seen in Figure 3.5B. 

Differences in age at death were not significant after FDR correction, shown in Figure 

3.5C. No significant relationships were found between disease comorbidity and ALS 

subtype in the spinal cord using Chi-squared tests of independence, as shown in Figure 

3.5D and 3.5E. C9orf72 and SOD1 mutation frequency are again plotted in the context of 

the identified spinal cord subtypes, presented in Figure 3.6. Collectively, findings generally 

agree with results from the postmortem cortex, but also reflect some of the challenges 

associated with stratifying patients using spinal cord gene expression.  
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Figure 3.5: (A) Kaplan-Meier survival analysis167 using patient subtypes (n=206) defined 

by spinal cord transcriptomes. Subtypes were assigned if the majority of available tissue 

regions were concordant, otherwise the patients were assigned to the ‘Discordant’ group. 

No left censoring was applied. The ALS-Glia subtype is observed to have a significantly 

shorter survival duration when compared to the ALS-Ox and Discordant groups. (B) Age 

of onset (n=206) and (C) age at death (n=206) are presented as boxplots for each subtype. 

T-tests with a false discovery rate correction were applied, and the Glia subtype was seen 

to have a significantly later age of onset as compared to the Discordant group. Comorbidity 

for (D) FTLD and (E) Alzheimer’s disease are presented as bar plots. Chi-squared tests of 

independence were performed and neither FTLD (p = 0.38) nor Alzheimer’s (p = 0.15) 

comorbidity was seen to be associated with ALS subtype. 
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Figure 3.6: Mutation frequency in the spinal cord cohort. Stacked bar chart showing 

C9orf72 and SOD1 mutation frequency in the ALS cohort. A chi-squared test of 

independence was performed to assess mutation dependency on subtype. After removal of 

the “unknown” categorical variable, the null hypothesis (no association between ALS 

subtype and common genetic drivers) was accepted for C9orf72 (p = 0.26, one-tailed) but 

rejected for SOD1 (p < 0.001, one-tailed). It is important to note that the limited number of 

observations for SOD1 may drive inaccurate estimation of the chi-squared test statistic. 
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Table 3.3. ALS patient and healthy control demographics from the spinal cord cohort. 

Disease duration, age of onset, and age of death statistics are provided as mean ± standard 

error. *Two non-neurological control donors had an age of death listed as “90 or Older”. 

An estimate of 90 years was used for all samples listed as such. 

 
Cohort Demographics 

A-L: Axial and Limb Onset 
B-L: Bulbar and Limb Onset 
A-B: Axial and Bulbar Onset 

ALS Spectrum Healthy Control Donors 
(n = 206) (n = 56) 

Sex   

   Female 97 (47.1%) 31 (55.4%) 

   Male 109 (52.9%) 25 (44.6%) 

Tissue Site n = 428 n = 91 

   Cervical Spinal Cord 195 (45.6%) 40 (44.0%) 

   Thoracic Spinal Cord 55 (12.9%) 9 (9.9%) 

   Lumbar Spinal Cord 178 (41.6%) 42 (46.2%) 

ALS Subtype  NA 

   ALS-Glia 34 (16.5%)  ‒ 

   ALS-TD 68 (33.0%) ‒ 

   ALS-Ox 45 (21.8%) ‒ 

   ALS-Discordant 59 (28.6%) ‒ 

Disease Duration (months)  NA 

   ALS-Glia 31.3 ± 3.97 ‒ 

   ALS-TD 36.0 ± 3.01 ‒ 

   ALS-Ox 45.6 ± 4.87 ‒ 

   ALS-Discordant 43.2 ± 3.98 ‒ 

Age of Onset (years)  NA 

   ALS-Glia 64.7 ± 1.50 ‒ 

   ALS-TD 61.6 ± 1.58 ‒ 

   ALS-Ox 62.6 ± 1.63 ‒ 

   ALS-Discordant 58.4 ± 1.41 ‒ 

Site of Onset  NA 

   ALS-Glia A-B: 1; A-L: 1; Bulbar: 8; B-L: 1 
Limb: 23 

‒ 

   ALS-TD A-L: 1; Bulbar: 21; B-L: 1; Limb: 
37; Unknown: 8 

‒ 

   ALS-Ox Axial: 2; Bulbar: 12; B-L: 2; Limb: 
26; Generalized: 1; Unknown: 2 

‒ 

   ALS-Discordant Axial: 1; A-B: 1; Bulbar: 16; B-L: 
1 Limb: 39; Unknown: 1 

‒ 

Age of Death (years)  63.8 ± 2.16 * 

   ALS-Glia 67.4 ± 1.48 ‒ 

   ALS-TD 65.5 ± 1.36 ‒ 

   ALS-Ox 66.1 ± 1.15 ‒ 

   ALS-Discordant 62.7 ± 1.29 ‒ 

FTLD Comorbidity 23/206 (11.2%) NA 

   ALS-Glia 6/34 (17.6%) ‒ 

   ALS-TD 6/68 (8.8%) ‒ 

   ALS-Ox 3/45 (6.7%) ‒ 

   ALS-Discordant 8/59 (13.6%) ‒ 



 
 

120 
 

3.3.3   Subtype Clinical Outcomes in both Cohorts 

 

Extending the consideration of clinical parameters in the cortex and spinal cord 

cohorts independently, the majority agreement approach is leveraged to assign a single, 

patient-level subtype from all available samples. Patients without observations from both 

the cortex and spinal cord were excluded from this analysis, totaling 192 unique 

individuals. Providing support for the majority agreement approach and overall 

methodology, subtype proportions derived from all samples mirrors the ratios observed in 

the postmortem cortex alone, demonstrating that phenotypic agreement broadly occurs 

throughout the cortex and spinal cord – shown in Figure 3.7. In line with previous 

univariate survival analyses in the cortex and spinal cord, more defined differences 

between the subtypes in the context of disease duration and age at onset are observed, as 

shown in Figure 3.8. Survival differences are greater between the ALS-Glia patients and 

ALS-Ox and discordant patients, seen in Figure 3.8A. Shown in Figure 3.8B, a 

significantly later age of onset is seen in ALS-Glia patients, relative to the other two ALS 

subtypes, after correcting for multiple hypothesis testing. Significant differences in age at 

death are also seen but are confounded with age of onset. FTLD and Alzheimer’s 

comorbidity was not seen to be associated with ALS subtype, nor was site of symptom 

onset, as shown in Figure 3.8D, 3.8E, and 3.8F. The combined cohort demographics are 

provided in Table 3.4. Different results are driven by the re-classification of patient 

subtype, accounting for added observations from either the postmortem cortex or spinal 

cord. Worth mentioning, slow progressors in the ALS-Glia subtype are no longer observed, 
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suggesting misclassification, and point to the potential benefit of resampling patient tissue 

transcriptomes to obtain a robust CNS-level subtype. Collectively, the consideration of 

patient outcomes in the context of a ‘global’ ALS subtype continues to indicate phenotype-

dependent differences in disease duration and age at onset.  

 

 

Figure 3.7: Assignment of patient subtype using the majority agreement approach. All 

patient samples from the postmortem cortex and spinal cord were considered, where 

available.  
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Figure 3.8: Survival and clinical parameters analysis using postmortem cortex and spinal 

cord observations. (A) Kaplan-Meier survival analysis using patient subtypes (n=192) 

defined by all available cortex and spinal cord transcriptomes. Patients without postmortem 

observations from both the cortex and spinal cord were excluded. Subtypes were assigned 

if the majority of available tissue regions were concordant, otherwise the patients were 

assigned to the ‘Discordant’ group. The ALS-Glia subtype is observed to have a 

significantly shorter survival duration when compared to the ALS-Ox and Discordant 

groups. (B) Age of onset (n=192) and (C) age at death (n=192) are presented as boxplots 

for each subtype. T-tests with a false discovery rate correction were applied, and the Glia 

subtype was seen to have a significantly later age of onset as compared to the other two 

subtypes (FDR p = 0.002). Comorbidity for (D) FTLD and (E) Alzheimer’s disease are 

presented as bar plots. Chi-squared tests of independence were performed and neither 

FTLD (p = 0.256) nor Alzheimer’s (p = 0.486) comorbidity was seen to be associated with 

ALS subtype. (F) Site of symptom onset is presented for each subtype, and no significant 

associations were observed using a Chi-squared test of independence (p = 0.564). 

 

 

Table 3.4. Cohort demographics for all available ALS samples considered in this work. 

Patients without observations from both the cortex and spinal cord were excluded. Disease 

duration, age of onset, and age of death statistics are provided as mean ± standard error. 

*Two non-neurological control donors had an age of death listed as “90 or Older”. An 

estimate of 90 years was used for all samples listed as such. Site of onset abbreviations: A-

L: Axial-Limb, B-L: Bulbar-Limb, A-B: Axial-Bulbar 
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Cohort Demographics 
 

ALS Spectrum 
(n = 192) 

Sex  

   Female 89 (46.4%) 

   Male 103 (53.6%) 

Tissue Site n = 832 

   Frontal Cortex 180 (21.6%) 

   Medial Motor Cortex 101 (12.1%) 

   Lateral Motor Cortex 100 (12.0%) 

   Unspecified Motor Cortex 48 (5.8%) 

   Cervical Spinal Cord 181 (21.8%) 

   Thoracic Spinal Cord 55 (6.6%) 

   Lumbar Spinal Cord 167 (20.1%) 

ALS Subtype  

   ALS-Glia 28 (14.6%)  

   ALS-TD 50 (26.0%) 

   ALS-Ox 78 (40.6%) 

   ALS-Discordant 36 (18.8%) 

Disease Duration (months) 39.5 ± 2.1 

   ALS-Glia 26.8 ± 2.8 

   ALS-TD 35.2 ± 3.6 

   ALS-Ox 46.0 ± 3.8 

   ALS-Discordant 41.3 ± 4.6 

Age of Onset (years) 61.9 ± 0.8 

   ALS-Glia 67.5 ± 1.4 

   ALS-TD 58.3 ± 2.1 

   ALS-Ox 60.7 ± 1.2 

   ALS-Discordant 63.6 ± 1.4 

Site of Onset  

   ALS-Glia A-B: 1; Bulbar: 11; Limb: 15; Unknown: 1 

   ALS-TD A-L: 1; Bulbar: 16; Limb: 29; Unknown: 4 

   ALS-Ox Axial: 3; A-B: 1; A-L: 1; Bulbar: 19; B-L: 3; Generalized: 1; Limb: 48; 
Unknown: 2 

   ALS-Discordant Bulbar: 9; B-L: 1 Limb: 23; Unknown: 3 

Age of Death (years) 65.6 ± 0.7 

   ALS-Glia 69.9 ± 1.3 

   ALS-TD 64.1 ± 1.7 

   ALS-Ox 64.3 ± 1.0 

   ALS-Discordant 67.1 ± 1.2 

FTLD Comorbidity 23/192 (12.0%) 

   ALS-Glia 5/28 (17.9%) 

   ALS-TD 7/50 (14.0%) 

   ALS-Ox 10/78 (12.8%) 

   ALS-Discordant 1/36 (2.8%) 

Alzheimer’s Comorbidity 11/192 (5.7%) 

   ALS-Glia 1/28 (3.6%) 

   ALS-TD 5/50 (10.0%) 

   ALS-Ox 3/78 (3.8%) 

   ALS-Discordant 2/36 (5.6%) 
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3.3.4   Cox Regression for Multivariate Survival 

 

 Stemming from the repeat measure of patient tissue transcriptomes postmortem, the 

assignment of patient level subtype using the majority agreement approach suffers from 

sample dependence concerns when performing survival analysis. Further, standard survival 

analyses consider the influence of a single variable on differences in disease duration, 

making it challenging to address the effects of other important biological covariates like 

sex and age at disease onset. Tissue-dependent cox regression provides a framework to 

address both shortcomings of the majority agreement survival analysis shown in Figures 

3.1, 3.2, 3.3, 3.5 and 3.8. In addition to informing covariate-dependent survival differences, 

the exponential of the fitted β coefficient provides the hazard ratio which is useful for 

informing how much better or worse a given state or level is relative to the specified 

reference level. While powerful and informative, the undertaking of this analysis proved 

more challenging than initially anticipated due to the unique structure of the data – given 

the repetition of patient measures was performed at a single point in time, rather than across 

time or multiple visits, as is more common. 

To better understand how repeat patient measures and the majority agreement 

approach99,317 influences previously observed survival differences in the cortex99, 

multivariate survival analyses were performed independently in each tissue region using 

Cox proportional hazard regression12,80,169,324,325. As shown in Figure 3.9, survival analysis 

in each region of the CNS shows weaker differences in disease duration dependent on 

subtype, revealing that sex and disease group (ALS-FTLD, ALS/Alzheimer’s, ALS-SOD1, 
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and ALS-TDP) contribute more to differences in disease duration. Model diagnostics 

presented in Figure 3.10 show the proportional hazard assumption is met for all covariates. 

Reference levels are set as males, ALS-TDP disease group, and the ALS-TD subtype. 

Subtype effect on survival was not statistically significant in the six regions presented, 

although the ALS-Ox subtype trended towards significance in the cervical (p = 0.095) and 

thoracic (p = 0.064) tissues with hazard ratios between 0.5 and 0.9. The ALS-Glia covariate 

is less consistent, with hazards ranging from 0.77 to 1.4, but were more generally 

equivalent or slightly higher than the ALS-TD reference level. Large confidence intervals 

seen in the disease group covariate likely reflect low sample number, although it is notable 

to see the greatest difference in hazard ratio in this covariate and shows disease comorbidity 

negatively affects risk of death. Interestingly, sex-dependent differences in hazard ratio are 

seen, with females showing an increased risk for death in the range of 14–80% for the six 

regions presented. Furthermore, the same model is considered excluding the disease group 

covariate to account for possible collinearity with subtype. Similar results are seen, with 

the ALS-Ox hazard ratio between 0.58 and 0.93, ALS-Glia hazard ratio between 0.82 and 

1.57, and elevated hazard in females (1.10 – 1.81). Taken together, the ALS-Ox subtype 

may be weakly associated with a better patient prognosis, however the inclusion sex, age, 

and disease group covariates while maintaining observational independent demonstrates 

limitations with the majority agreement approach and that the effects due to these factors 

contributes more to survival differences than subtype. 
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Figure 3.9: Independent and Identically Distributed (IID) Survival Analysis. Tissue region 

specific survival analyses for the ALS (A) frontal cortex (n = 193), (B) medial motor cortex 

(n = 102), (C) lateral motor cortex (n = 104), (D) cervical spinal cord (n = 195), (E) thoracic 

spinal cord (n = 55), and (F) lumbar spinal cord (n = 178). The “unspecified motor cortex” 

(n = 52) was not considered. The effects due to sex and disease group can be seen to 

contribute more to survival differences among patients however, across most tissue 

regions, there is a nonsignificant but consistent trend toward a lower hazard associated with 

the ALS-Ox subtype. Model terms are presented as hazard ratios with the 95% confidence 

interval shown. Terms are separated by covariate and subgroup, with reference levels 

indicated. 
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Figure 3.10: Cox proportional hazard model diagnostics. Sample level observations from 

the postmortem cortex and spinal cord were separated by tissue region and utilized to 

construct Cox proportional hazard regression models. Sex, disease group, age of onset, and 

subtype were included as model covariates, yielding a total of 728 observations without 

missing data in the six Cox models shown. For each model constructed, residuals are 

plotted by covariate, and generally show weak or null dependency on the variable level. 

To assess adherence to the proportional hazard model assumption, scaled Schoenfeld 

residual plots are shown for each covariate level, with score test p-values325 determined 

using the ‘km’ time transformation. All covariates are seen to meet the assumption of 

having proportional hazards over the survival duration, excluding the disease group 

covariate in the lateral motor cortex model (p = 0.04). 
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3.3.5   Weighted Gene Co-Expression Network Analysis 

 

 In an effort to strengthen associations between ALS gene expression subtypes and 

differences in patient clinical parameters, a weighted gene co-expression (correlation) 

network analysis188 was performed in the cortex and spinal cord cohorts independently. In 

both cases, a soft threshold (power) of the signed network was selected to ensure the 

assumption of scale free topology is roughly met, as shown in Figure 3.11.  

 In the cortex cohort, the identification of eigengene clusters based on the 

correlation of gene expression is shown as a dendrogram and heatmap plot in Figure 3.12. 

Results indicate the maroon and gold eigengenes are significantly correlated with ALS 

clinical parameters, as shown in Figure 3.13. Expression of the maroon eigengene is seen 

to be negatively correlated with age of symptom onset and age at death. Conversely, the 

gold eigengene is seen to be positively correlated with age of onset and death, yet 

negatively correlated with disease duration as seen in Figure 3.13A. The observed 

relationship between the gold eigengene and patient clinical parameters indicates that 

elevated expression drives a later disease onset but a shorter survival duration. Transcripts 

comprising subtype-specific eigengenes are presented in Table 3.5. 

Cortex eigengenes were enriched for gene ontology, and the gold eigengene was 

seen to be strongly linked to the immune system (p < 5×10-16, Fisher exact test, one-tailed, 

Bonferroni-corrected) as shown in Figure 3.13A. Importantly, ALS-Glia specific 

overexpression was observed for the majority of features included in the gold eigengene, 

as observed in Figure 3.13B. The maroon eigengene – primarily composed of transposable 
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elements, long non-coding RNA, pseudogenes, and poorly characterized transcripts 

(Ensembl IDs) – was not significantly linked to any gene ontologies, although a general 

association with transcription was given. ALS-TD specific expression was observed for 

many of the features comprising the maroon eigengene as seen in Figure 3.13C. Four 

representative transcripts from the navy (ALS-Ox) eigengene are shown in Figure 3.14. 

Subtype-specificity for eigengene expression was further assessed using the β coefficient 

from dummy regressions considering subtype as the binary predictor and sample-wise 

eigengene expression as the response, as shown in Figure 3.13A. 

Mirroring the approach taken in the cortex cohort, WGCNA was applied to the 

spinal cord cohort and leveraged the top 5,000 most variable genes form the NovaSeq and 

HiSeq subgroups, calculated by median absolute deviation. The identification of 

eigengenes based on correlation of gene expression is shown as a dendrogram and heatmap 

plot in Figure 3.15. Despite identifying some similarly enriched eigengenes in the cortex 

and spinal cord cohorts, they were intentionally not redefined as gold, maroon, and navy 

given that the transcripts comprising subtypes-specific eigengenes are not equivalent. 

Results show the weighted correlation analysis in the spinal cord uncovers an ALS-Ox 

specific eigengene (“turquoise”) that shares many features with the navy eigengene from 

the cortex, as presented in Figures 3.16 and 3.17. As shown in Figure 3.16, the turquoise 

ALS-Ox eigengene was significantly enriched for the neuropeptide signaling gene 

ontology (p < 1×10-3, Fisher exact test, one-tailed, Bonferroni-corrected) but not 

significantly associated with disease duration and age of onset (p = 0.08 and 0.09, 

respectively). Likely reflecting the challenges stratifying ALS-Glia and ALS-TD patients 
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using spinal cord expression, identification of Glia- and TD-specific eigengenes was 

difficult. Guided by dummy regression coefficients, the green eigengene was assigned to 

the ALS-Glia subtype while the salmon eigengene demonstrated the strongest specificity 

for ALS-TD as seen in Figure 3.16. The green ALS-Glia eigengene was not found to be 

significant enriched for gene ontology and weakly associated with age of onset (p = 0.008). 

A negative correlation with age of onset was observed, opposite to the effects seen in the 

gold ALS-Glia eigengene from the cortex. The salmon eigengene was found to be 

significantly enriched for regulation of type I interferon production gene ontology (p < 

0.05, Fisher exact test, one-tailed, Bonferroni-corrected) and was significantly negatively 

correlated with disease duration (p < 1×10-11). Although the negative association between 

elevated immunological eigengene expression and disease duration persists in the spinal 

cord, this phenotype is difficult to distinguish in ALS-Glia and ALS-TD patients and is 

assigned to the TD subtype instead of Glia (by intuition), again implicating cell 

compositional challenges and clustering limitations in the spinal cord. 

It is relevant to consider a similar WGCNA analysis, performed by Humphrey et 

al.151
, with many of the same spinal cord patient samples considered in this work. 

Differences in results likely reflect the method used to select input features into WGCNA 

and the inclusion of transposable element transcripts in this dissertation. Humphrey et al. 

use all differentially expressed genes relative to controls and consider each region of the 

spinal cord independently during WGCNA analysis151. This work uses the top 5,000 most 

variably expressed transcripts (by median absolute deviation) within the ALS cohort 
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exclusively, and considers each sequencing platform independently in the selection of 

features, facilitating the discovery of subtype-specific eigengenes. 

The clinical parameter analysis in Chapter 3.3.1, 3.3.2, and 3.3.3 is further 

supported by WGCNA results in the cortex, given the ALS-Glia subtype shows the oldest 

median age of onset and a significantly shorter disease duration – as captured by the gold 

eigengene shown in Figure 3.13. Similarly, in the spinal cord, expression of the immune-

related salmon eigengene is seen to be significantly negatively correlated with the duration 

of the disease as shown in Figure 3.16 – although specificity was found for the ALS-TD 

subtype rather than ALS-Glia, based on the β coefficients from dummy regression. Despite 

challenges associated with cell composition differences, the cortex and spinal cord 

WGCNA results converge on similar interpretations, lending additional support for the 

proposed subtype-associated clinical heterogeneity in ALS. 

 

Table 3.5. Features comprising subtype-specific eigengenes from the postmortem cortex. 

ALS-Glia  ALS-Ox     ALS-TD 

FCGR3A 

HLA-DRB1 

SCIN 

HLA-DQA1 

APOC2 

ENSG00000261795 

CD300A 

TREM2 

ALOX5AP 

SERPINA1 

CD68 

SLC7A7 

SIGLEC7 

NPR3 

IMPG1 

OLFM4 

LINC01361 

GPR26 

VIP 

ENSG00000257501 

LINC01140 

FNDC9 

HTR3B 

ZNF702P 

NME5 

ENSG00000205562 

ENSG00000228741 

PSORS1C1 

HPN-AS1 

chr5|137489774|137490129|L2c:L2:LINE|341|+ 

KRT8P42 

C10orf62 

ENSG00000261710 

chr18|76982063|76982196|MIRb:MIR:SINE|271|

- 

DUOX1 

chr1|205529732|205529939|MIR:MIR:SINE|294|

+ 

GAS6-AS1 

chr11|67418109|67418229|MIR3:MIR:SINE|292|

- 
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AIF1 

TLR7 

LY86 

CX3CR1 

HLA-DRB5 

CCR5 

CD44 

SLAMF8 

HLA-DRA 

SERPINA3 

GPR34 

MSR1 

SNX20 

HLA-DOA 

CD86 

APOBR 

FCER1G 

TYROBP 

ENSG00000273259 

SIGLEC9 

HAMP 

SCIMP 

IGSF6 

APOC1 

RAB42 

OLR1 

FCGR1A 

CD300LF 

CHI3L2 

CLEC7A 

P2RY13 

IFI30 

ANKRD22 

LILRA4 

RNASE2 

P2RY12 

TYMP 

RGS1 

CP 

RNASE6 

FCGR1B 

ENSG00000286069 

PPP1R17 

NPY2R 

GGH 

SMPX 

ENSG00000283025 

C2orf80 

LINC00643 

CASQ1 

CCDC68 

ENSG00000260878 

AKAP5 

LRRC53 

ENSG00000223812 

SYTL5 

ENSG00000260401 

FBXO40 

IGF1 

COX7A2 

SLC17A8 

ENTPD3 

KITLG 

GLRA2 

MCHR2 

LAMP5 

TPH2 

FAM19A2 

PCP4L1 

BEX5 

GAD2 

GJD2 

TMEM126A 

VSTM2A-OT1 

NPY5R 

MAL2 

PCP4 

ENSG00000270111 

ENSG00000260412 

TMEM155 

CDKN3 

DAW1 

ENSG00000286220 

chr17|74248710|74248902|MIR:MIR:SINE|219|- 

LINC00862 

SLC4A9 

ENSG00000279495 

chr17|82658820|82659186|MLT1C:ERVL-

MaLR:LTR|238|+ 

chr11|113245172|113245450|AluJb:Alu:SINE|16

6|+ 

ENSG00000262188 

FAM95C 

chr1|204965807|204966058|MIRb:MIR:SINE|28

2|+ 

CD22 

chr18|76992147|76992483|MER1B:hAT-

Charlie:DNA|141|- 

chr10|22568490|22568589|L2b:L2:LINE|263|- 

chr9|19550846|19551149|L1MA4A:L1:LINE|136

|- 

PACRG-AS3 

chr13|24298816|24299096|L3:CR1:LINE|314|- 

HSD17B3 

OR6W1P 

SNX18P3 

PRR26 

TRPV5 

ENSG00000215068 

DUOXA1 

ENSG00000259807 

ENSG00000280206 

ENSG00000240265 

ENSG00000283486 

LINC00639 

TRPV6 

chr1|225866202|225866280|MIR3:MIR:SINE|29

5|- 

ENSG00000279803 

ENSG00000248710 

TNRC6C-AS1 

ENSG00000231840 

KEL 

ENSG00000279360 

ENSG00000241218 

TWF1P1 

ENSG00000279996 
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TLR8 

CD69 

NCF2 

CSTA 

IL21R 

PTPN7 

CCL2 

LSP1 

FPR1 

IL1B 

MS4A4A 

RGS18 

FPR3 

SELL 

FCGR1CP 

ODF3B 

GPR183 

S100A9 

NAPSB 

GYPC 

LILRB3 

LY96 

DAPP1 

LILRA6 

FPR2 

SOCS3 

BCL2A1 
 

ENSG00000278727 

WNT2 

PRKAG2-AS1 

ZRSR1 

ENSG00000273301 

ENSG00000261037 

LY86-AS1 

STYK1 

HTR2C 

SERTM1 

CNTN6 

LINC01202 

DACH2 

TYRP1 

ABCC12 

SYT4 

NDUFAB1 

SLC26A4-AS1 

IL1RAPL2 

STAT4 

NEK2 

TMEM196 

GABRA1 

ST6GALNAC5 

NWD2 

CLGN 

KLHL14 

TDO2 

KRT222 

HAPLN1 

FAM19A1 

ENSG00000236841 

ENSG00000246363 

HS6ST2 

USMG5 

ENSG00000261728 

INHBA-AS1 

OLFM3 

ENSG00000230852 

PCSK1 

C3orf80 

NANOGP4 

ENSG00000285269 

chr6|39795360|39795610|MIRb:MIR:SINE|332|+ 

AGPAT4-IT1 

ENSG00000261121 

ENSG00000283914 

DCLK3 

chr10|22599150|22599430|L1MB8:L1:LINE|204|

- 

KRT8P13 

PACRG-AS1 

ENSG00000286159 

ENSG00000281969 

ENSG00000254491 

ENSG00000279161 

ENSG00000228510 

DNM1P47 

ENSG00000229492 

ENSG00000280571 

ENSG00000255176 

ENSG00000239828 

ENSG00000250072 

ENSG00000274184 

C9orf139 

LINC00940 

MAGEC3 

ENSG00000261329 

ENSG00000248015 

ENSG00000268518 

ENSG00000225877 

GPR83 

ADAMTS14 

ENSG00000240687 

ENSG00000273151 

ENSG00000266844 

FFAR1 

LINC00877 

HIST1H1T 
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LINC01511 

RTKN2 

MIR133A1HG 

VSTM2A 

NXPH2 

TESPA1 

TAC1 

FLRT3 

GPR22 

KCNB2 

GPR149 

PFDN4 

FAM3C2 

QPCT 

MAS1 

HTR5A.AS1 

CALB1 

C7orf61 

ENSG00000272321 

PTH2R 

ESRP1 

HTR2A 

C10orf105 

MZT1 

FAM162B 

GLRA3 

PLS1 

ASAH2B 

ENSG00000278962 

LINC00507 

RGS4 

NEUROD1 

MAD2L1 

NEUROD6 

ANO3 

GDA 

SYNPR 

ENSG00000280105 

KCNIP4 

HPRT1 

RAB27B 



 
 

135 
 

TMEM200A 

OTOGL 

ENSG00000261292 

SLC27A2 

RFK 

LINC00460 

ENSG00000286084 

ELOVL4 

FAM3C 

ENSG00000282033 

DYDC2 

SDR16C5 

ENSG00000267034 

ENSG00000260838 

ENSG00000233508 

TRBC2 

ENSG00000229425 

TSPAN13 

C1D 

ENSG00000279981 

SYT10 

NUDT4P1 

B4GALT6 

HSP90AB4P 

EIF5A2 

LRRC2 

ENSG00000279013 

ENSG00000265579 

LIN28B 

PWAR5 

SNX10 

CERKL 

EPHX4 

RAB3C 

chr12|54950114|54950247| 

MIR1_Amn:MIR:SINE|372

|- 

OXGR1 

ENSG00000228971 

SERPINI1 

PTGER3 

DYNLT3 
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ARL6 

SOSTDC1 

ENSG00000249436 

ENSG00000267160 

LINC01378 

NSRP1P1 

KCNV1 

WNT16 

FGF9 

CTXN2 

PVALB 

LINC01616 

ABRACL 

ANKRD34C 

TMEM14A 

GULP1 

ENSG00000254187 

BMP3 

SMIM18 

MEPE 

RASL11B 

PKIB 

ENSG00000261542 

SPTSSB 

CTXN3 

ENSG00000248115 

ENSG00000279675 

OSTN 

LANCL3 

ENSG00000257522 

PTPN3 

ENSG00000214265 

EEF1E1 

SMIM17 

SLC17A6 

ENSG00000259834 
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Figure 3.11: WGCNA scale free topology in the postmortem cortex and spinal cord 

cohorts. A soft threshold of 13 was selected for the cortex cohort, while a soft threshold of 

4 was selected for the spinal cohort. Although the assumption of scale free topology (red 

line) is roughly met for both cases, it is recognized that the power of 13 does not fully 

‘saturate’ the R2 value in the cortex and thus a value of 17 may have been a better choice.  
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Figure 3.12: Eigengene correlation heatmap and clustering dendrogram identifies 

transcript sets that are co-expressed in the ALS postmortem cortex. The turquoise, purple, 

and magenta eigengenes were redefined as the navy, gold, and maroon eigengenes, 

respectively. All 1,681 transcripts are shown. 
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Figure 3.13: WGCNA elucidates subtype-specific disease pathways and eigengenes 

associated with ALS patient clinical outcomes. (A) Heatmap depicting eigengenes 

significantly correlated with ALS patient age of disease onset, age of death, and disease 

duration (univariate regression, two-tailed). Eigengene labels, moving left to right in the 

dendrogram, are: pink, red, tan, navy (ALS-Ox), brown, green, gold (ALS-Glia), gray, 

maroon (ALS-TD), yellow, blue, salmon, black, and green-yellow. Eigengenes were 

enriched for gene ontology and Bonferroni-adjusted p-values are shown (Fisher’s exact 

test, one-sided). Subtype-specific expression of eigengenes was determined using dummy 

regression (two-tailed), with the β coefficient presented as a heatmap. A positive β 

coefficient denotes subtype upregulation of transcripts comprising the particular 

eigengene. Bonferroni-adjusted p-values less than 0.05 are denoted with *. (B) Univariate 

plots showing gene expression levels of four representative features (FCGR1B, FCGR3A, 

HLA-DOA, SERPINA3) in the gold eigengene – with evidence for ALS-Glia specificity. P, 

DESeq2208 differential expression using the negative binomial distribution, two-tailed, 

false discovery rate (FDR) method for multiple hypothesis test correction. (C) ALS-TD 

specific expression of four representative features (ENSG00000215068, 

ENSG00000248015, KRT8P42, LINC00639) in the maroon eigengene. P, same as B. 

 



 
 

140 
 

 

Figure 3.14: Univariate violin plots showing gene expression levels of four representative 

features (GLRA3, HTR2C, SLC17A6, SLC17A8) in the navy eigengene – with evidence for 

ALS-Ox specificity. 
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Figure 3.15: Eigengene correlation heatmap and clustering dendrogram identifies 

transcript sets that are co-expressed in the ALS postmortem spinal cord. All 8,163 

transcripts are shown. 
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Figure 3.16: Heatmap depicting spinal cord eigengenes significantly correlated with ALS 

patient age of disease onset, age of death, and disease duration (univariate regression, two-

tailed). Eigengene labels, moving left to right in the dendrogram, are: purple, turquoise 

(ALS-Ox), blue, grey, light cyan, yellow, midnight blue, magenta, pink, light yellow, 

salmon (ALS-TD), cyan, green-yellow, light green, grey60, green (ALS-Glia), red, brown, 

black, and tan. Eigengenes were enriched for gene ontology and Bonferroni-adjusted p-

values are shown (Fisher’s exact test, one-sided). Subtype-specific expression of 

eigengenes was determined using dummy regression (two-tailed), with the β coefficient 

presented as a heatmap. A positive β coefficient denotes subtype upregulation of transcripts 

comprising the particular eigengene. 
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Figure 3.17: Transcripts comprising the turquoise eigengene are elevated in the ALS-Ox 

subtype, with GLRA3, HTR2C, SLC17A6, and SLC17A8 shown – also found in the cortex 

ALS-Ox eigengene.  
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3.4   Discussion and Conclusion  

 

While previous works arrive at similar findings related to the presentation of molecular 

phenotypes in ALS patients, associations with clinical parameters had not yet been 

established8,237,317. Collectively, survival analysis and WGCNA weakly link subtype 

presentation in the postmortem cortex and spinal cord to variability in disease duration and 

age at onset. Univariate survival analysis leveraging the majority agreement approach 

arrives at the same conclusion in the cortex and spinal cord cohorts when performed 

independently and together. The ALS-Glia subtype is seen to have the shortest disease 

duration while ALS-Ox typically shows the longest. After correcting for other relevant 

covariates like age, sex, and disease group using the Cox proportional hazard survival 

framework, the effects due to subtype are diminished. In most cases, sex and disease group 

were seen to contribute more to differences in patient hazard, yet results continued to 

indicate a lower risk of death associated with the ALS-Ox subtype, relative to ALS-TD 

patients. Using a more indirect approach, WGCNA provides the ability to link the 

expression of gene subsets to clinical measures through correlation. In the cortex cohort, 

maroon (ALS-TD) and gold (ALS-Glia) eigengenes were significantly correlated with 

ALS clinical parameters. The Glia eigengene was negatively correlated with disease 

duration, arriving at a similar conclusion as the univariate survival analysis. In the spinal 

cord cohort, clustering challenges linked to cell compositional differences made the 

stratification of Glia and TD subtypes difficult, which was subsequently observed in the 

WGCNA analysis. The ALS-Ox eigengene is recaptured, however assignment of Glia and 

TD eigengenes limited broad agreement between cortex and spinal cord results. 
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Importantly, the identified relationship between elevated inflammatory gene 

expression and shorter disease duration, in ALS-Glia patients, is well supported by 

previous works24,34,356. Using ALS mouse models expressing mutant SOD1, Beers et al.24 

and Biollée et al.34 both show that microglia become activated and accelerate disease 

progression, while Yamanaka et al.356 leveraged Cre-mediated gene excision to 

demonstrate astrocytes also modulate progression through microglial activation. While 

these studies do not find associations between glial activation and age at onset, the cortex 

WGCNA analysis captures a statistically significant positive correlation between 

inflammatory gene expression and age of onset – potentially a consequence of differences 

in sample size between these works and our own. Lending additional support to these 

findings, Humphreys et al.151 consider spinal cord samples from the same cohort266 and 

identify activated microglia modules (eigengenes) negatively correlated with disease 

duration. Similar associations with disease duration are identified in the spinal cord 

WGCNA using the top 5,000 most variable features, but contrary to results from the cortex, 

report weak negative correlations with age of onset in the two eigengenes enriched for 

immunological responses. As previously discussed, different associations with age of onset 

between the cortex and spinal cord cohorts likely reflects challenges associated with 

stratifying ALS-Glia and ALS-TD patients using spinal cord expression.  

Worth discussing briefly, the majority agreement approach using both the cortex and 

spinal cord subtypes shows surprising intra-patient agreement, with < 20% of patients 

classified as discordant. Further, survival and age of onset differences between subtypes 

become more pronounced and suggest that there may be real benefit in the repeat 
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characterization of patient samples to obtain a more robust assessment of subtype. 

However, the benefit from repeat sampling may present an unnecessary burden to living 

patients if successfully translated beyond bulk tissue expression, but may aid ongoing 

postmortem research. 

Findings from this Chapter provide an important link between clinical variability and 

phenotypic heterogeneity in the cortex and spinal cord of ALS patients. Univariate survival 

consistently shows a shorter survival duration in patients that present as ALS-Glia in a 

majority of the tissue regions characterized. After adjusting for other important covariates 

like age, sex, and disease group (ALS-FTLD, ALS/Alzheimer’s, ALS-SOD1, and ALS-

TDP), differences in survival dependent on subtype become considerably weaker and non-

significant – although the oxidative stress phenotype is generally associated with a lower 

hazard (0.5–0.9) compared to the other two subtypes. Converging with findings from 

survival analyses, WGCNA in both the cortex and spinal cord identifies immunological 

co-expressed gene subsets significantly and negatively correlated with the duration of the 

disease. In the cortex, the eigengene showed specificity for the ALS-Glia subtype through 

dummy regression but was assigned to the ALS-TD subtype in the spinal cord. Conflicting 

findings are attributed to cell compositional differences between the cortex and spinal cord, 

as shown in Figures 2.13E and 2.14, and suggest the cortex eigengenes may be less 

influenced by bulk tissue RNA-sequencing bias. Further, cortex immune eigengene shows 

an association with age of onset, findings that are observed in the ALS-Glia subtype 

following a direct t-test comparison (with FDR correction) of subtype age of onsets, 

defined by the majority agreement approach in all available tissues – shown in Figure 3.8B. 
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This effect persists when considering patients that present as a single subtype in all tissue 

samples considered, shown in Figure 2.20F, but sample number limits the interpretation to 

some extent. While associations with survival duration and age of onset are important for 

establishing a role for phenotypic heterogeneity in ALS, additional work is needed to 

determine if and how the molecular subtypes contribute to site of symptom onset, rate of 

progression, disease comorbidity, or genetic risk. Lending some support to this statement, 

genetic mutations to the SOD1 protein were found to be dependent on ALS subtype in the 

spinal cord cohort, although stratification bias towards the ALS-TD subtype and chi-

squared tests in the cortex indicate the effect is weak, if at all present, as seen in Figures 

2.12, 3.4, 3.6. Broadly, findings from this Chapter provide an important foundation for the 

design of more effective clinical trials by demonstrating phenotypic heterogeneity captures 

some of the variability observed in patient survival. 
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Chapter 4 

 

DIFFERENTIAL EXPRESSION IDENTIFIES MARKER GENES ELEVATED IN THE 

CORTEX AND SPINAL CORD OF ALS-OX PATIENTS 

 

4.1   Introduction 

 

 By demonstrating that the ALS subtypes capture some of the clinical heterogeneity 

observed in patients, a need arises to enable the stratification of patients using quantifiable 

markers with direct benefits in clinical trial design. Working to address this need, one group 

leveraged patient derived clinical measures in a multivariate statistical model, but report 

limited predictive success343, indicating accuracy may be improved by including molecular 

measures like gene or protein expression. More recently, another group applied proteomics 

to identify a set of 59 proteins in patient CSF that was able to stratify fast progressors (>1 

unit decrease in ALSFRS-R per month) from slow progressors (<0.5 unit decrease in 

ALSFRS-R per month) and validated their predictive performance in an independent 

patient cohort337. Broadly, both groups demonstrate the feasibility of stratifying ALS 

patients using clinical and molecular measures, while the latter study hints at the 

advantages of utilizing a systems biology framework to address this need. Building on the 

results from Chapters 2 and 3, analyses are performed to identify transcripts that achieve 

clinically useful stratification accuracy. 

In the fourth chapter of this dissertation, differential expression analysis was 

applied in an effort to identify subtype-specific transcript expression and establish marker 
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genes. Elevated expression of marker genes B4GALT6, GABRA1, GAD2, GLRA3, HTR2A, 

PCSK1, and SLC17A6 was observed in both the postmortem cortex and spinal cord of ALS-

Ox patients and shown to be independent of the count normalization approach used. 

Similarly, overexpression of genes MYL9, ST6GALNAC2, and TAGLN was observed in the 

cortex and spinal cord of ALS-Glia patients, although stratification challenges with the 

immunological subtype in the spinal cord and similar FTLD expression in the cortex 

restricts the utility to some extent. Leveraging ALS-Ox marker genes, supervised learning 

shows these features are sufficient to stratify the oxidative stress subtype from all other 

patient samples, including FTLD and non-neurological controls, with appreciable 

sensitivity and specificity. Three holdout cohorts were tested, and strong classifier 

performance was maintained in each, demonstrating technical and methodological batch 

effects are weaker than the phenotype signal used for stratification. Results from this 

chapter provide a promising foundation for the translation of ALS-Ox marker genes. While 

limitations are considered in detail in Chapter 5.2, it is important to emphasize that the 

findings from this dissertation cannot be extended to living patients, and additional 

confirmatory studies should be carried out to examine marker genes expression premortem 

and longitudinally throughout the disease course.  
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4.2   Methods 

 

4.2.1   Differential Expression 

 

Differential expression analysis was performed separately in the cortex and spinal 

cord cohorts. In the cortex cohort, transcript counts were normalized to the median-of-

ratios scale using DESeq2 size factor estimation to better allow comparison between 

patient samples208. Subtype-specific differential expression of transcripts was determined 

using a multifactor design equation, accounting for sequencing platform, RIN, and site of 

sample collection covariates. One ALS-TD sample (CGND-HRA-01732) did not have a 

RIN value available and was subsequently excluded from the analysis due to an incomplete 

design equation. Pairwise analysis was performed using the constrast() argument, for all 

combinations. Genes and TEs with an FDR adjusted p-value ≤ 0.05 were considered to be 

significant. All patient samples from the cortex, including controls (n = 586; n = 267 

female, n = 319 male), were considered during normalization. Counts on the median-of-

ratios scale were log2 transformed before plotting. For heatmap presentation, z-scores were 

calculated using ALS patients to establish gene-wise mean expression and deviation, with 

expression values on the log2 median-of-ratios scale. FDR adjusted p-values, derived from 

DESeq2 differential expression were –log10 transformed prior to plotting. A few additional 

genes not included in the 1,681 features used for classification, enrichment, and 

networking, were also considered during the univariate analysis out of disease 

relevance and include TARDBP, OXR1, BECN1, BECN2, SOD1, UBQLN1, UBQLN2, 
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UCP2, and TXN. Many of these added genes were used during unsupervised clustering as 

some of the top 10,000 most variable features calculated by median absolute deviation. 

In the spinal cord cohort differential transcript expression between ALS subtypes 

was considered using DESeq2208 with counts presented on the log2 scale, following size 

factor normalization (median-of-ratios). All patient samples were used to estimate size 

factors for normalization (n = 519 samples). A multifactor design equation was 

implemented, which included platform, site, RIN, tissue, and subtype covariates. Pairwise 

comparisons were performed using the contrast() argument, and FDR-adjusted p-values < 

0.05 were considered to be significant. For presentation as a heatmap, transcript expression 

was z-score normalized, and observations that fell outside four standard deviations were 

adjusted to ±4 for plotting purposes only. FDR-adjusted p-values were –log10 transformed 

prior to plotting. Differential expression analysis from the cortex was determined 

previously99 and reused in the presentation of subtype marker genes in Chapter 4.3.3. 

 

4.2.2   Supervised Classification 

 

 Supervised classification was applied to two separate scenarios: (1) in the cortex 

cohort exclusively using 299 subtype-specific transcripts shared between sequencing 

platform subgroups and (2) in both cohorts using ALS-Ox marker genes. In the first 

scenario, machine learning classifiers were developed in Python (Version 3.8.8, Python 

Software Foundation, Wilmington, DE) using the Scikit-learn framework260 (Version 

0.24.1). Supervised classifiers were constructed using training and testing datasets 
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generated from a 70% / 30% split of the ALS NovaSeq cohort (n = 255 transcriptomes). 

100-fold cross validation was applied to assess performance in the testing cohort. The ALS 

HiSeq cohort (n = 196 transcriptomes) was designated as the holdout dataset to assess 

performance metrics when classifying new patient samples. Transcript counts on the VST 

scale were utilized during classifier development. Classifier recall, precision, and F1 scores 

were calculated for all ALS subtypes after each round of cross validation. Four different 

models were considered, k-nearest neighbors (KNN), linear support vector classification 

(Linear SVC), multilayer perceptron (MLP), and random forest (RF). To limit the inclusion 

of platform-dependent genes, the top 1000 features (by gene score175) were further filtered 

so that only genes and TEs shared between the two sequencing platform cohorts were 

retained, totaling 299. The k-nearest neighbor classifier was built with k neighbors = 5, 

distance calculated using the Manhattan metric, weights = distance, and all other 

parameters as default. The linear SVC classifier was constructed using class weights 

defined by the proportion of subtypes in the NovaSeq cohort, max iterations = 100,000 and 

default for all other parameters. The multilayer perceptron neural network was built using 

three hidden layers (five total), with 100 ‘neurons’ comprising each hidden layer, learning 

rate = 0.0001, hyperbolic tangent activation function, random state = 1, max 

iterations = 10,000 and default settings for all remaining parameters. Finally, the random 

forest was developed using n estimators = 1000, oob score = True, class weights defined 

by the proportion of subtypes in the NovaSeq cohort, and default for all other parameters. 

All models were constructed using the ‘one-vs-rest’ multi-class strategy. 
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In the second scenario, the multi-class problem from the first scenario was 

simplified to the binary case of predicting “ALS-Ox” or “not ALS-Ox”. Classifiers to 

stratify ALS-Ox from all other patients (‘NotOx’) – including FTLD (n=42 cortex 

samples99) and non-neurological controls (n=93 cortex samples99 and n=91 spinal samples) 

– were developed using an 80% / 20% train/test split and three unique holdout cohorts 

comprised of (i) all cortical transcriptomes, (ii) all spinal cord transcriptomes, and (iii) all 

samples analyzed by HiSeq. 100-fold cross-validation was used to estimate F1 scores, with 

predictions made using the max distance metric and the first component. PLS-DA was 

performed using the ‘Mixomics’ library in R279. Using the same train/test split, cross-

validation, and holdout cohorts, additional classifiers were developed in Python (Version 

3.9.10, Python Software Foundation, Wilmington, DE) using the scikit-learn framework260 

(Version 1.3.0). Five different models were considered, which included k-nearest 

neighbors (KNN), linear discriminant analysis (LDA), multilayer perceptron (MLP), 

random forest (RF), and support vector machine classification (SVM). Default parameters 

were maintained unless otherwise noted. For the k-nearest neighbor classifier the number 

of neighbors was set to 8. For the SVM, a linear kernel was used with the regularization 

parameter, ‘C’ set to 0.025. Finally, the multilayer perceptron classifier was built using 

three hidden layers, with 100 ‘neurons’ comprising each hidden layer. The learning rate 

was set to 0.0001, while alpha was set equal to 1E-5.  
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4.2.3   Quantification of Truncated STMN2 

 

Given relevant work from Tam et al.317 and Prudencio et al.266 – which consider 

TARDBP, truncated stathmin-2, and transposable element expression – these features are 

reexamined in the context of the stratified ALS cohort. Quantification of the normal length 

and truncated form of STMN2 were determined previously by Prudencio et al. and provided 

by the NYGC ALS Consortium266. In brief, the relative abundance (as a percentage of total 

expression) of truncated STMN2 was determined by parsing splice junction tables from 

STAR and dividing transcripts uniquely mapping to exon 1 through exon 2a by all reads 

coming from exon 1 on the fragments per kilobase of exon per million mapped fragments 

(FPKM) scale266. Computational methods for the quantification of transposable elements 

with gene locus resolution are detailed in Chapter 2.2.3. 

 

4.3   Results 

 

4.3.1   Differential Expression in the Cortex Cohort 

 

To provide additional insight into subtype-specific gene expression, differential 

expression analysis was performed, considering the 1,681 features used in classification, 

enrichment, and WGCNA. Transcript counts were normalized using DESeq2 size factor 

estimation208 and log2 transformed (additional details in Methods section). Shown in 

Figures 4.1, 4.2, 4.3, and 4.4, the heatmap and violin plots reflect ALS-Glia, ALS-Ox, and 
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ALS-TD specific transcript expression. Out of the 36 highly differentially expressed 

transcripts selected to support the characterization of the three ALS phenotypes, 33 were 

observed to have distinctive expression in a single subtype following differential 

expression, independent of the RNA-seq platform used for analysis. Feature assignment by 

gene score generally supports these findings, with 24 of 33 clustering transcripts assigned 

to the same subtype regardless of the platform used for sequencing, shown in Table 4.1. A 

few interesting features show rather large differences in normalized expression between 

controls and ALS subtypes, which may suggest simple thresholding could be used to 

distinguish the two cohorts, presented in Figure 4.5. To lend additional strength to these 

findings, a differential expression analysis was performed considering FTLD controls and 

ALS-FTLD patients exclusively. As seen in Figure 4.6, despite shared pathological 

mechanisms in these two patient cohorts, ALS-FTLD patients maintain distinct expression 

of features presented in Figure 4.5. Importantly, some of these genes and transcripts have 

not been previously associated with ALS neurodegeneration, offering additional insight 

into disease pathologies and potential targets for diagnostic or therapeutic development. 
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Figure 4.1: Subtype-specific transcript expression. (A) Heatmap showing expression of 36 

subtype-specific transcripts for all patient samples considered in this study. Count values 

are adjusted for RIN, site of sample preparation, and sequencing platform covariates. 

Expression is z-score normalized, using ALS patient expression to define the mean and 

standard deviation. Control samples with a z-score < –4 are adjusted to –4 for plotting 

purposes. (B) Presentation of FDR-adjusted p-values following pairwise differential 

expression analysis. P-values are –log10 transformed prior to plotting. Gray colored entries 

indicate an adjusted p-value > 0.05. P, DESeq2 differential expression using the negative 

binomial distribution, two-tailed, FDR method for multiple hypothesis test correction. 
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Figure 4.2: Supplemental transcripts for the ALS-Glia subtype. Violin plots show ALS-

Glia specific expression for 16 supporting genes: (top left) ALOX5AP, APOBR, APOC1, 

CCR5, CD68, CLEC7A, CR1, FPR3, MSR1, NCF2, NINJ2, ST6GALNAC2, TLR8, 

TNFRSF25, TREM1, and VRK2. Genes are generally associated with glial activation, 

neuroinflammation, and a pro-apoptotic phenotype. p-values have been adjusted for RIN, 

site of collection, and sequencing platform covariates. P, DESeq2 differential expression 

using the negative binomial distribution, two-tailed, FDR method for multiple hypothesis 

test correction. 
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Figure 4.3: Supplemental transcripts for the ALS-Ox subtype. ALS-Ox specific gene 

expression is shown as violin plots, and include: (top left) B4GALT6, BECN1, COL4A6, 

COX4I2, CP, GABRA6, GPR22, MYH11, MYL9, NDUFA4L2, NOS3, NOTCH3, PCSK1, 

SOD1, TAGLN, and UBQLN1. Supporting genes are generally associated with synaptic 

signaling, blood-brain barrier integrity, oxidative stress, and proteotoxic stress. P, DESeq2 

differential expression using the negative binomial distribution, two-tailed, FDR method 

for multiple hypothesis test correction. 
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Figure 4.4: Supplemental transcripts for the ALS-TD subtype. ALS-TD specific feature 

expression is shown as violin plots, and include: (top left) ADAT3, COL6A3, EGLN1P1, 

ENSG00000263278, ENSG00000268670, ENSG00000279233, ITGBL1, KRT8P13, 

LINC00176, LINC00638, MIR219A2, NKX6-2, RPS20P22, SLX1B-SULT1A4, TP63, and 

TUB-AS1. Supporting genes are generally associated with transcriptional regulation. P, 

DESeq2 differential expression using the negative binomial distribution, two-tailed, FDR 

method for multiple hypothesis test correction. 
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Figure 4.5: Characteristic gene expression distinguishes ALS patients from controls. 

Genes strongly differentially expressed between ALS patients and controls. Violin plots 

indicate simple thresholding could be utilized to distinguish ALS patients from controls 

and some genes further show subtype-specific upregulation or downregulation. Of notable 

interest, elevated expression of STH in the brain is known to serve as a marker for 

Parkinson’s and other neurodegenerative diseases, including FTLD, and is observed to be 

strongly downregulated in all ALS patients. These findings offer a potential marker for the 

stratification of FTLD patients and ALS patients with FTLD comorbidity. P, DESeq2 

differential expression using the negative binomial distribution, two-tailed, FDR method 

for multiple hypothesis test correction. 
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Figure 4.6: Differential expression analysis considering features distinguishing ALS-

FTLD from FTLD. Features presented in Figure 4.5 are reconsidered, excluding FTLD– 

ALS patients. Differential expression between ALS-FTLD and FTLD patients is 

maintained, further suggesting these features are specific to ALS pathology. P, DESeq2 

differential expression using the negative binomial distribution, two-tailed, FDR method 

for multiple hypothesis test correction. 
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Table 4.1: Subtype specificity for transcript expression determined by NMF gene score175. 

Transcript gene scores are calculated in the NovaSeq and HiSeq subsets independently, 

and generally show strong agreement between the two Illumina sequencing platforms. 

Genes that were considered in the differential expression analysis exclusively are marked 

‘N/A’. 

 

 

Transcript NovaSeq Subtype HiSeq Subtype 
AIF1 ALS-Glia ALS-Ox 

APOC2 ALS-Glia ALS-Glia 

CD44 ALS-Glia ALS-Glia 

CHI3L2 ALS-Glia ALS-Glia 

CX3CR1 ALS-Glia ALS-Ox 

FOLH1 ALS-TD ALS-Glia 

HLA-DRA ALS-Glia ALS-Glia 

TLR7 ALS-Glia ALS-Glia 

TMEM125 ALS-Glia ALS-Glia 

TNC ALS-Glia ALS-Glia 

TREM2 ALS-Glia ALS-Glia 

TYROBP ALS-Glia ALS-Glia 

COL18A1 ALS-Glia ALS-Glia 

GABRA1 ALS-Ox ALS-Ox 

GAD2 ALS-Ox ALS-Ox 

GLRA3 ALS-Ox ALS-Ox 

HTR2A ALS-Ox ALS-Ox 

OXR1 N/A N/A 

SERPINI1 ALS-Ox ALS-Ox 

SLC6A13 ALS-Glia ALS-TD 

SLC17A6 ALS-Ox ALS-Ox 

TCIRG1 ALS-Glia ALS-Glia 

UBQLN2 N/A N/A 

UCP2 N/A N/A 

AGPAT4-IT1 ALS-TD ALS-Glia 

CHKB-CPT1B ALS-TD ALS-TD 

COL3A1 ALS-Glia ALS-Ox 

ENSG00000205041 ALS-TD ALS-TD 

ENSG00000258674 ALS-TD ALS-TD 

ENSG00000273151 ALS-TD ALS-Glia 

GATA2-AS1 ALS-TD ALS-TD 

HSP90AB4P ALS-TD ALS-TD 

LINC01347 ALS-TD ALS-TD 

miR24-2 ALS-TD ALS-Glia 

MIRLET7BHG ALS-TD ALS-TD 

NANOGP4 ALS-TD ALS-Glia 
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4.3.2   Differential Expression in the Spinal Cord Cohort 

 

Differential expression was applied to identify subtype-specific transcript 

expression in the spinal cord cohort. After adjusting for sex, site of collection, RIN, tissue, 

and sequencing platform covariates, transcript expression that uniquely defines each 

subtype is recovered regardless of analytical platform, as shown in Figure 4.7A. 

Differential expression p-values, after FDR adjustment and –log10 transformation, are 

presented in Figure 4.7B as heatmaps, using pairwise comparisons for all group 

combinations. Expression of transcripts stratifying ALS-Glia and ALS-TD subtypes in the 

spinal cord is weaker, evident in the heatmap and the differential expression p-values 

relative to the cortex99, and likely reflects differences in cell type composition in the spinal 

cord as seen in Figures 2.13 and 2.14.  

Spinal cord differential expression analysis is extended by considering other 

relevant transcripts, including those found to stratify this cohort when considering 

postmortem cortex transcriptomes99. Neuroinflammatory genes AIF1, CD68, HLA-DRA, 

TREM2, and TYROBP were among the most elevated transcripts in the cortex of ALS-Glia 

patients99 but not the spinal cord, likely reflecting regional differences in cell type 

populations, shown in Figure 4.8. Further these transcripts were included in the 1282 glial 

marker genes removed prior to clustering – which may partially explain the similar 

expression of these transcripts in ALS-Glia and ALS-TD subtypes. Oxidative and 

proteotoxic stress genes BECN1, OXR1, SERPINI1, SOD1, and UBQLN2 generally show 

weaker differences in spinal cord expression when compared to the other two subtypes and 
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again implicate cell compositional differences. Interestingly, transcriptional regulators 

miR24-2 and NKX6-2 show specificity for the postmortem cortex, and NKX6-2 expression 

is most elevated in the spinal cord of ALS-TD patients, relative to the other two subtypes. 

 

 

 

Figure 4.7: Differential expression identifies transcripts in the spinal cord that stratify 

subtypes and ALS-Ox markers shared between the cortex and spinal cord. (A) Heatmap 

showing z-score normalized expression following transformation to the median-of-ratios 

scale for each subtype. For plotting, z-scores < –4 or > 4 are adjusted to –4 and 4, 

respectively. All presented genes have mean raw counts > 10 and are expressed uniquely 

in a single ALS subtype. A total of 519 spinal cord samples are shown along the columns, 

grouped by subtype. (B) Heatmaps showing –log10 transformed differential expression 

FDR-adjusted p-values using pairwise comparisons. Gray cells indicated an adjusted p-

value > 0.05. 
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Figure 4.8: The neuroinflammatory subtype (ALS-Glia) is obscured in the ALS spinal 

cord. Transcripts found to stratify this ALS cohort using the postmortem cortex99 are 

reconsidered in the spinal cord. ALS-Glia cortex transcripts AIF1, CD68, HLA-DRA, 

TREM2, and TYROBP show weak or non-significant differences in expression compared 

to the other two subtypes in the spinal cord. Genes associated with proteotoxic and 

oxidative stress are elevated in the cortex of ALS-Ox patients but not in the spinal cord, 

seen in the expression of BECN1, OXR1, SERPINI1, SOD1, and UBQLN2 yet tissue 

composition at the cellular level may partially explain these differences. NKX6-2 but not 

miR24-2, both associated with the regulation of transcription, showed weak but consistent 

upregulation in the cortex and spinal cord of ALS-TD patients. 
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4.3.3   ALS-Ox Marker Genes 

 

Most notably, a total of ten transcripts are identified with consistently elevated 

expression, irrespective of tissue region in the postmortem ALS central nervous system, 

relative to the other subtypes and non-neurological controls in this cohort. Seven of these 

transcripts were specific for the ALS-Ox subtype, presented in Figure 4.9, while the 

remaining three were specific for ALS-Glia shown in Figure 4.10. A total of 1,104 unique 

tissue transcriptomes were considered, from 5 distinct regions of the central nervous 

system, corresponding to 222 ALS patients, 88 non-neurological controls, and 42 

frontotemporal dementia (FTLD) patients. ALS-Ox marker genes GABRA1, GAD2, 

GLRA3, HTR2A, PCSK1, and SLC17A6 collectively implicate changes to synaptic 

signaling, with elevation of inhibitory receptors and enzymes involved in the biosynthesis 

of inhibitory neurotransmitters. Upregulation of ST6GALNAC2 in ALS-Glia samples and 

B4GALT6 in ALS-Ox suggests protein glycosylation may play a surprisingly central role 

in the presentation of ALS subtype. As may be expected, expression of the subtype marker 

genes was generally different in the cortex and spinal cord regions. Notably, ALS-Ox 

marker genes were found to better stratify this patient cohort when considering spinal cord 

expression, evident in the FDR-adjusted p-values, which offers promise for clinical 

translation. Difficulty stratifying ALS-Glia and ALS-TD patients in the spinal cord may 

limit the practicality of Glia marker transcripts. Further ALS-Glia marker genes were non-

significantly or weakly upregulated in the cortex when compared to FTLD patients, 

suggesting disease mimics may not be easily distinguishable from the Glia subtype.  
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To demonstrate differential gene expression is not dependent on median-of-ratios 

transcript normalization, marker gene expression is considered following FPKM 

normalization in a refined set of ALS patients with observations available from both the 

postmortem cortex and spinal cord (n = 192 ALS patients, 88 non-neurological controls) – 

shown in Figure 4.11. ALS patient samples were binned into one of three categories in an 

effort to capture the spectrum of phenotypes typically observed in most patients, which 

include: “Concordant ALS-Ox” (100% of tissue samples are ALS-Ox), “At least 50% 

ALS-Ox”, and “Generally not ALS-Ox” (<50% of tissue samples are ALS-Ox). All ALS-

Ox marker genes show a decreasing trend in the median expression as intra-patient 

concordance for the ALS-Ox subtype decreases. Further, patients that generally do not 

present as ALS-Ox maintain marker gene expression at a level similar to non-neurological 

controls. Recognizing that the transcripts per million (TPM) count unit is better suited for 

cross-sample comparison, future works should examine ALS-Ox marker gene expression 

using TPM counts derived from alignment procedures. Collectively, these findings show 

the ALS-Ox marker genes defined in this work provide a foundation to stratify ALS 

patients and account for the moderate intra-patient concordance observed between the 

cortex and spinal cord CNS regions.  

Finally, to provide additional insight into the subset of patients that demonstrated 

perfect subtype concordance throughout the postmortem cortex and spinal cord (Figure 

2.20), marker gene expression, genetic risk, and truncated STMN2 abundance are 

considered in this subset (nALS-Glia = 5, nALS-Ox = 12, nALS-TD = 19) and compared to all other 

patients (n=177). A total of six patients were 100% concordant in the spinal cord (2 or 
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more observations) but did not have observations from the cortex available and were 

subsequently excluded from the analysis. These excluded de-identified IDs include: 15-

215-48, 97-126-29, PF-UCL-12, PF-UCL-28, 97-125-35, PF-UCL-62. Similarly, in the 

cortex, three patients were 100% concordant (2 or more observations) but did not have 

observations from the spinal cord available and were also excluded from this analysis. De-

identified IDs subject to exclusion include: 13-191-47, NEUVZ387WGH, 

NEUZV622ZHF. As seen in Figure 4.12, median ALS-Ox marker gene expression was 

elevated in the perfectly concordant patient subset, compared to all other groups including 

FTLD mimics in the cortex. For most genes in either region, expression in the “Not 100% 

Concordant” category spans the entire count range indicating that thresholding is 

insufficient to accurately stratify patients. FTLD patients show similar expression of ALS-

Glia marker genes in the cortex, but tissue region dependent differences are clearly 

observed for MYL9, TAGLN, and ST6GALNAC2 suggesting additional work could 

demonstrate specificity for the ALS-Glia spinal cord. As presented in Figure 4.13, elevated 

expression of truncated STMN2 was less distinct in the ALS-Ox spinal cord and cortex 

relative to the other two subtypes and patients without full concordance. Interestingly, 

genetic mutation showed a significant association with perfectly concordant patient 

subtype (p = 0.0124). Excluding 13 concordant ALS-TD patients with an unknown 

hexanucleotide repeat expansion length, five of the six remaining individuals were positive 

for the C9orf72 mutation as seen in Figure 4.13. Collectively, marker gene expression in 

the perfectly concordant patient subset lends additional strength to their association with 

ALS molecular subtype and implicates a genetic component in ALS-TD concordance. 
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Figure 4.9: ALS-Ox marker genes in the postmortem cortex and spinal cord. Marker genes 

show coherent elevated expression throughout the central nervous system. Expression is 

separated both by subtype and CNS region for (A) B4GALT6, (B) GABRA1, (C) GAD2, 

(D) GLRA3, (E) HTR2A, (F) PCSK1, and (G) SLC17A6. All counts are presented on the 

log2 transformed median-of-ratio scale. All differential expression p-values are FDR 

adjusted. 
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Figure 4.10: ALS-Glia marker genes in the postmortem cortex and spinal cord. Expression 

is separated both by subtype and CNS region for (A) MYL9, (B) ST6GALNAC2, and (C) 

TAGLN. All counts are presented on the log2 transformed median-of-ratio scale. All 

differential expression p-values are FDR adjusted. 
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Figure 4.11: ALS-Ox marker gene expression on the FPKM count scale. Sample-level 

expression of ALS-Ox marker genes after grouping by ALS-Ox percentage, calculated by 

taking the number of intra-patient samples defined as ALS-Ox divided by the total number 

of samples from the patient. Transcript expression is normalized by library size to the 

FPKM scale. Concordant ALS-Ox patients were defined as ALS-Ox in all available tissue 

samples, while the ‘generally not ALS-Ox’ category is defined as less than 50% of samples 

classified as ALS-Ox. A total of 53 unique samples were included in the ‘Concordant ALS-

Ox’ category, 393 samples in the ‘at least 50% ALS-Ox’, 410 samples in ‘generally not 

ALS-Ox’, and 184 control samples – corresponding to 206 ALS patients and 88 non-

neurological controls. 
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Figure 4.12: Marker gene expression in the perfectly concordant patient subset presented 

in Figure 2.20. Marker gene expression is presented on the DESeq2 median-of-ratios scale 

for samples originating from the (A) postmortem cortex or (B) spinal cord. In the cortex, a 

total of 9, 27, and 28 unique tissue samples are included in the ALS-Glia, ALS-Ox, and 

ALS-TD categories, respectively. 42 FTLD mimics are included and the remaining 380 

transcriptomes are included in the “Not 100% Concordant” category. In the spinal cord, a 

total of 10 ALS-Glia, 22 ALS-Ox, and 38 ALS-TD transcriptomes comprise the perfectly 

concordant categories, with the remaining 346 samples as “Not 100% Concordant”. 
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Figure 4.13: Truncated Stathmin-2 expression and genetic risk in the perfectly concordant 

patient subset in Figure 2.20. Full length and truncated Stathmin-2 expression presented on 

the transcript per million (TPM) or raw count scales in the (A) postmortem cortex and (B) 

spinal cord. In the cortex, a total of 9, 27, and 28 unique tissue samples are included in the 

ALS-Glia, ALS-Ox, and ALS-TD categories, respectively. 42 FTLD mimics are included 

and the remaining 380 transcriptomes are included in the “Not 100% Concordant” 

category. In the spinal cord, a total of 10 ALS-Glia, 22 ALS-Ox, and 38 ALS-TD 

transcriptomes comprise the perfectly concordant categories, with the remaining 346 

samples as “Not 100% Concordant”. (C) Genetic mutations in the perfectly concordant 

subset, with chi-squared test of independence indicating a significant association between 

(concordant) subtype and C9orf72 mutation with (p = 0.0009) and without (p = 0.0124) the 

‘unknown’ category. 
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4.3.4   Supervised Classification 

 

In an effort to demonstrate the feasibility of patient stratification using postmortem 

cortex gene expression and facilitate clinical translation, supervised learning algorithms 

were leveraged to construct four subtype classifiers. To limit sequencing platform batch 

effects, only the features shared between the top 1,000 NovaSeq and HiSeq genes (by gene 

score) were included, totaling 299 transcripts. An independent validation cohort was not 

publicly available at the time of analysis, so it was decided to “holdout” all patient samples 

analyzed by HiSeq in an effort to reduce overestimation of classifier performance when 

applied to new cohorts. Predictive performance for each subtype was considered using the 

‘one-vs-rest’ multi-class classification framework. As may be expected given the 

presentation of hybrid subtypes seen in Figure 2.22 and differential expression results 

presented in Figure 4.1, sensitivity and specificity metrics in the holdout cohort were 

relatively poor for all classifiers constructed, as shown in Figure 4.14. High F1 scores in 

the training and testing cohorts are expected and classification results in the cortex broadly 

highlight the challenges in using large gene panels to stratify ALS patients.  

Building on the promising identification of seven ALS-Ox marker genes 

consistently upregulated in the cortex and spinal cord (Figure 4.9), a second round of 

classifiers were constructed using FPKM normalized expression of these features 

exclusively. In each case, classifier performance was assessed using FPKM normalized 

expression, an 80/20 train-test split, 100-fold cross validation, two classes (“Ox” and 

“NotOx”), and three different holdout (validation) cohorts comprised of all (i) postmortem 
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spinal cord samples (ii) postmortem cortex samples and (iii) HiSeq samples. The first 

holdout cohort estimates predictive accuracy when assigning spinal cord subtype using 

cortex expression, while the opposite is true in the second holdout cohort. The final holdout 

cohort is designed to better estimate predictive accuracy when applied to new patient 

cohorts accounting for instrument-dependent expression. While it may be reasonable to 

assume that predicting the cortex phenotype using spinal cord expression is more clinically 

useful as it limits diagnostic invasiveness, models were constructed for both cases to 

demonstrate the capability of the subtype-specific transcripts to stratify the cohort 

regardless of region-dependent expression differences.  

With the aim of reducing clinical diagnostic burden, classifiers were constructed 

from all three-gene combinations of ALS-Ox marker genes and screened for predictive 

power using partial least squares discriminate analysis279 (PLS-DA). After training and 

testing the classifiers, the three-gene combination of GAD2, GLRA3, and SLC17A6 was 

found to slightly outperform other gene combinations when predicting subtype in the spinal 

cord validation cohort (AUC = 0.927), shown in Figure 4.15A. Conversely, when training 

on the spinal cord cohort, HTR2A, SLC17A6, and B4GALT6 gene set showed the highest 

predictive accuracy after application to the cortex validation cohort (AUC = 0.881), shown 

in Figure 4.15B. In the HiSeq validation cohort, B4GALT6, GLRA3, SLC17A6, and 

demonstrated the highest predictive accuracy (AUC = 0.831), suggesting these transcripts 

may be more invariant to differences in sample preparation and instrumentation, as seen in 

Figure 4.15C. Furthermore, the same gene combination of B4GALT6, GLRA3, and 

SLC17A6 demonstrated the highest average AUC across all three validation cohorts (AUC 
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= 0.873), indicating these genes may be most robust for assigning ALS-Ox patient subtype. 

When compared to the PLS-DA classifier using all seven ALS-Ox marker genes, a 

decrease in predictive power is observed in the spinal cord holdout (AUC = 0.922), the 

cortex holdout (AUC = 0.861), and the HiSeq holdout (AUC = 0.809).  

Leveraging results from PLS-DA, the classification analysis was extended by 

performing supervised machine learning using k-nearest neighbor (KNN), linear 

discriminant analysis (LDA), random forest (RF), support vector machine classifier 

(SVM), and multilayer perceptron (MLP) classification frameworks260. Classifiers were 

constructed using FPKM normalized expression of (i) the best three gene combination from 

PLS-DA (B4GALT6, GLRA3, SLC17A6), shown in Figure 4.16 and (ii) all seven ALS-Ox 

marker genes, shown in Figure 4.17. Using the top three discriminatory genes, the SVM 

classifier demonstrates the highest overall predictive accuracy when stratifying ALS-Ox 

and “not ALS-Ox” with median F1 scores from the test cohort ranging between 0.62–0.73 

for ALS-Ox and 0.83–0.90 for ‘not ALS-Ox’, and holdout cohort AUCs ranging from 

0.86–0.89. Similar performance is observed in the MLP classifier. In agreement with 

results observed during PLS-DA, the seven gene classifier generally demonstrated worse 

predictive accuracy in the cortex (AUCs = 0.84–0.86) and spinal cord (AUCs = 0.76–0.86) 

holdout cohorts, as seen in Figure 4.17A and 4.17B. However, improved predictive 

accuracy was seen when the seven-gene classifiers were applied to the HiSeq holdout 

cohort, with AUCs ranging from 0.86–0.91, shown in Figure 4.17C, suggesting the seven-

gene classifier may outperform the three-gene as the ‘strength’ of batch effects and 

confounding covariates increases. Collectively, classification results demonstrate that the 
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set of ALS-Ox marker genes established in this work can achieve appreciable stratification 

accuracy when predicting patient phenotype between regions of the central nervous system 

– with different cell type composition – or when using different instrumentation for 

quantification of gene expression. 

 

 

Figure 4.14: Supervised classification in the postmortem cortex cohort exclusively using 

299 features. (A) F1 scores from 100-fold cross validation with the NovaSeq cohort are 

shown as boxplots, with n=208 patients in the training cohort and n=89 patients in the test 
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cohort. Four classification methods were considered (KNN, MLP, RF, and linear SVC) 

and predictive metrics are separated by subtype label. The MLP classifier demonstrated the 

highest average F1 score for the ALS-Glia subtype (0.80), while the RF classifier showed 

the best performance when predicting the ALS-Ox (0.93) and ALS-TD subtypes (0.90). 

The median is indicated by the solid black line, and first and third quartiles are captured by 

the bounds of the box. Boxplot whiskers are defined as the first and third quartiles –/+ 

interquartile range times 1.5, respectively, and outliers are denoted as solid black points. 

Minimum and maximum values are captured by the lowermost and uppermost points, 

respectively, or whisker bound if no outliers are shown. (B) ROC plot showing false 

positive rate (1-specificity) versus the true positive rate (sensitivity) for the KNN classifier 

when applied to the holdout (HiSeq) cohort. Given the multi-class nature of this analysis, 

three classifiers were constructed accounting for each binary case, using a ‘one-versus-

rest’ approach. (C) ROC plot showing predictive metrics for the MLP classifier. (D) 

Sensitivity and specificity metrics for the random forest classifier when applied to the 

holdout cohort. (E) ROC plot for the linear SVM classifier show similar performance to 

the RF and MLP models. Using net reclassification improvement and integrated 

discrimination improvement methodology no single classifier was observed to outperform 

the others in the case of Glia vs rest. The SVM classifier was determined to outperform all 

other classifiers for the Ox vs rest case, and both the MLP and SVM classifiers were 

superior when compared to the RF model in the TD vs rest case. 
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Figure 4.15: Three-gene PLS-DA classifiers for ALS-Ox patients. Partial least squares 

discriminate analysis with expression of transcripts normalized to the FPKM scale using 

library size and transcript length estimates from GRCh38.p12. In each case, visualization 

of patients is first performed using ALS-Ox marker genes, taking the mean FPKM 

expression magnitude – for the three-gene combination – from each available tissue 

sample. Majority assigned subtype is color-coded with the postmortem cortex and spinal 

cord presented in the upper and lower half circles, respectively. The PLS-DA classifier was 

then trained and tested using an 80/20 split of (A) all postmortem cortex samples, and 

validated using all spinal cord samples, (B) all postmortem spinal cord samples, and 

validated on the cortex holdout, and (C) all NovaSeq samples, and validated on the HiSeq 

holdout. Following PLS-DA, the training cohort is plotted using the first two components. 

Test cohort F1 metrics are presented as boxplots for 100 rounds of cross validation 

predicting ALS-Ox against all other samples, including non-neurological controls 

(‘Other’). Lastly, ROC plots showing application of the PLS-DA classifier to each of the 

three holdout cohorts. The top gene combination is provided for each holdout cohort, and 

the B4GALT6, GLRA3, SLC17A6 trio was found to have the highest average AUC across 

all three holdout datasets.   
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Figure 4.16: Supervised classification of ALS-Ox samples using expression of B4GALT6, 

GLRA3, and SLC17A6 marker genes. Five different classification algorithms were 

considered. F1 scores obtained from 100-fold cross validation in the test cohort are 

presented first and separated by classification level (‘Ox’ vs ‘NotOx’). A combined total 

of 1,104 ALS and control samples are considered, with n=377 (~34%) assigned the ALS-

Ox label. The five classifiers were constructed and applied to three different 

holdout/validation cohorts comprised of (A) all postmortem spinal cord samples (n=519), 

(B) all postmortem cortex samples (n=585), and (C) all samples analyzed by HiSeq 

(n=415). ROC plots are presented second, for each classifier, and show sensitivity and 1-

specificity metrics when applied to the specified holdout cohort. 
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Figure 4.17: Supervised machine learning classifiers using all seven ALS-Ox marker 

genes. Five different classifiers were constructed, using FPKM normalized expression. F1 

scores from 100 rounds of cross validation are presented as boxplots, for each classifier 

considered. F1 scores are separated by class level (ALS-Ox and ‘Not ALS-Ox’). A 

combined total of 1,104 ALS and control samples are considered, with n=377 (~34%) 

assigned the ALS-Ox label. Classifiers were constructed and applied to three different 

holdout cohorts comprised of (A) all postmortem spinal cord samples (n=519), (B) all 

postmortem cortex samples (n=585), and (C) all samples analyzed by HiSeq (n=415). ROC 

plots are presented second, for each classifier, and show sensitivity vs 1-specificity metrics 

when applied to the specified holdout cohort. 
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Table 4.2. Confusion matrix for the three gene classifiers presented in Figure 4.16A, which 

uses the cortex transcriptomes for training and the spinal cord for validation.  

 
Three Gene Confusion Matrix 
 
             Classifier 

Predicted 

ALS-Ox Not ALS-Ox 

KNN Observed 

ALS-Ox 105 33 

Not ALS-Ox 104 277 

LDA Observed 

ALS-Ox 92 46 

Not ALS-Ox 64 317 

MLP Observed 

ALS-Ox 101 37 

Not ALS-Ox 76 305 

RF Observed 

ALS-Ox 100 38 

Not ALS-Ox 76 305 

SVM Observed 

ALS-Ox 97 41 

Not ALS-Ox 42 339 

 

Table 4.3. Confusion matrix for the three gene classifiers presented in Figure 4.16B, which 

uses the spinal cord transcriptomes for training and the cortex for validation.  

 
Three Gene Confusion Matrix 
 
             Classifier 

Predicted 

ALS-Ox Not ALS-Ox 

KNN Observed 

ALS-Ox 148 91 

Not ALS-Ox 59 287 

LDA Observed 

ALS-Ox 103 136 

Not ALS-Ox 20 326 

MLP Observed 

ALS-Ox 131 108 

Not ALS-Ox 30 316 

RF Observed 

ALS-Ox 115 124 

Not ALS-Ox 26 320 

SVM Observed 

ALS-Ox 113 126 

Not ALS-Ox 24 322 
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Table 4.4. Confusion matrix for the three gene classifiers presented in Figure 4.16C, which 

uses the NovaSeq transcriptomes for training and the HiSeq for validation.  

 
Three Gene Confusion Matrix 
 
             Classifier 

Predicted 

ALS-Ox Not ALS-Ox 

KNN Observed 

ALS-Ox 112 32 

Not ALS-Ox 49 222 

LDA Observed 

ALS-Ox 77 67 

Not ALS-Ox 28 243 

MLP Observed 

ALS-Ox 97 47 

Not ALS-Ox 31 240 

RF Observed 

ALS-Ox 98 46 

Not ALS-Ox 36 235 

SVM Observed 

ALS-Ox 80 64 

Not ALS-Ox 28 243 

 

Table 4.5. Confusion matrix for the classifiers developed using all seven ALS-Ox marker 

genes presented in Figure 4.17A. Cortex transcriptomes are used for model training and 

the spinal cord is used to validate predictive performance.  

 
Seven Gene Confusion Matrix 
 
             Classifier 

Predicted 

ALS-Ox Not ALS-Ox 

KNN Observed 

ALS-Ox 106 32 

Not ALS-Ox 119 262 

LDA Observed 

ALS-Ox 85 53 

Not ALS-Ox 92 289 

MLP Observed 

ALS-Ox 89 49 

Not ALS-Ox 84 297 

RF Observed 

ALS-Ox 92 46 

Not ALS-Ox 65 316 

SVM Observed 

ALS-Ox 92 46 

Not ALS-Ox 38 333 
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Table 4.6. Confusion matrix for the classifiers developed using all seven ALS-Ox marker 

genes presented in Figure 4.17B. Spinal cord transcriptomes are used for model training 

and the cortex is used to validate predictive performance.  

 
Seven Gene Confusion Matrix 
 
             Classifier 

Predicted 

ALS-Ox Not ALS-Ox 

KNN Observed 

ALS-Ox 166 73 

Not ALS-Ox 62 284 

LDA Observed 

ALS-Ox 100 139 

Not ALS-Ox 36 310 

MLP Observed 

ALS-Ox 148 91 

Not ALS-Ox 48 298 

RF Observed 

ALS-Ox 144 95 

Not ALS-Ox 47 299 

SVM Observed 

ALS-Ox 120 119 

Not ALS-Ox 36 310 

 

Table 4.7. Confusion matrix for the classifiers developed using all seven ALS-Ox marker 

genes presented in Figure 4.17C. NovaSeq transcriptomes are used for model training and 

the HiSeq is used to validate predictive performance.  

 
Seven Gene Confusion Matrix 
 
             Classifier 

Predicted 

ALS-Ox Not ALS-Ox 

KNN Observed 

ALS-Ox 116 28 

Not ALS-Ox 44 227 

LDA Observed 

ALS-Ox 85 59 

Not ALS-Ox 35 236 

MLP Observed 

ALS-Ox 107 37 

Not ALS-Ox 36 235 

RF Observed 

ALS-Ox 103 41 

Not ALS-Ox 32 239 

SVM Observed 

ALS-Ox 80 64 

Not ALS-Ox 26 245 
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4.3.5   TDP-43 Associated Pathology and Truncated Stathmin-2 

 

Given the near ubiquitous nature of TDP-43 cellular inclusions in ALS patients, 

expression of the transcript encoding the protein, TARDBP, was examined in both the 

cortex and spinal cord cohorts with all ALS patients and controls. No significant 

differences in TARDBP expression were observed between any of the ALS subtypes, as 

seen in Figure 4.18. These findings are generally supported by the foundational study from 

Neumann et al.243, which identify extensive post translation modification 

(hyperphosphorylation) to the TDP-43 protein, but conflict with findings from Tam et al. 

in a subset of the ALS cohort considered in this dissertation317. Larger sample size and 

different normalization procedures may explain some of the discrepancy in subtype 

TARDBP expression. 

TDP-43 is known to participate in the transcriptional regulation of the STMN2 gene, 

where cytoplasmic mislocalization of TDP-43 is associated with cryptic exon splicing and 

the truncation of the normal length STMN2 transcript, resulting in a non-functional protein 

and impaired axonal regeneration and neuromuscular junction maintenance20,152,179,201,229. 

Prudencio et al.266 previously quantified expression of truncated STMN2 in this cohort, 

therefore an extension to this analysis was performed by considering truncated and normal 

length STMN2 in the context of the identified cortex subtypes, presented in Figure 4.19. 

Although no subtype was seen to characteristically express truncated STMN2 in the cortex, 

ALS-Ox samples had significantly upregulated expression of the full length STMN2 

transcript. In the ALS-Ox spinal cord, statistically significant upregulation of the STMN2 
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transcript and the truncated pathological form associated with TDP-43 cryptic exon 

splicing is observed when compared to the ALS-TD subtype, shown in Figure 4.20. These 

findings are unexpected, given that a hyperactive TDP-43 pathology is reported in ALS-

TE patients by Tam et al.317 and our own enrichment and differential expression results 

continue to implicate changes to transcriptional regulation in the ALS-TD subtype. 

Intuitively, overexpression of the STMN2 cryptic exon is to be expected20, yet to the 

contrary cryptic exon expression is lowest in the ALS-TD subtype. Thus, results indicate 

that additional work is needed to clarify the role of the TDP-43 protein and its association 

with cryptic exon splicing in ALS-TD patients. One possible explanation could be 

phenotype-dependent clearance of truncated transcripts with ALS-TD patients best 

“primed” for degradation, but quantification or methodological bias cannot be ruled out. 

Lending support to the proposed subtype-dependent variability in cryptic exon expression, 

a TDP-43 repressed exon in the UNC13A gene is only observed in a subset of patient 

samples (< 40%)46,212. 

As demonstrated by Tam et al. and others197,206,317, the TDP-43 protein serves as an 

extensive transcriptional regulator of non-coding RNA, binding both DNA and RNA to 

modulate expression64. TDP-43 interacts with a diversity of non-coding RNA classes 

including intronic, antisense, intergenic, long and short non-coding, 3` and 5` untranslated 

regions, and LINE, SINE, and LTR retrotransposons317. As a consequence of the 

demonstrated link between TDP-43 and retrotransposon expression, TEs were quantified 

in both the cortex and spinal cord cohorts with gene locus resolution using SQuIRE359. 

Worth noting, TE features considered in this work differs from that of Tam et al.317 given 
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their TE quantification pipeline160 sums gene locus expression from the same family, a step 

that was found to introduce undesirable batch effects following hierarchical clustering and 

co-expression analyses99. TE expression was considered in both the cortex and spinal cord 

cohorts using the quality control and expression thresholds detailed in Chapter 2.2.3. Only 

TEs that passed median absolute deviation and sequencing platform filtering steps are 

considered herein, totaling 426 in the cortex and 86 in the spinal cord. After adjusting for 

chromosome length (in Mbp), no chromosomes were found to be overrepresented in the 

cortex but interesting differences are observed in the spinal cord, as seen in Figure 4.21 – 

although lower feature number may partially explain the results. Examining 

retrotransposon expression at the family level, analogous to the TE features considered by 

Tam et al.317, LINE, SINE, and SINE-VTNR-Alu elements are seen to contribute most to 

the observed TE expression profile, in agreement with other works97,239 – presented in 

Figure 4.22. TE expression was not a defining characteristic of a single subtype, as seen in 

Figures 2.9E and 2.10, and differentially expressed retrotransposons are observed in each 

cortex subtype, presented in Figures 4.23, 4.24, and 4.25. In the spinal cord cohort, fewer 

globally expressed TEs are recovered, yet results continue to show a lack of specificity for 

retrotransposon expression in a single subtype as seen in Figure 4.26. Interestingly, ALS-

Glia spinal cord samples generally continue to show lower expression of TEs relative to 

the other two subtypes. Taken together, TE expression is altered in ALS when compared 

to controls and broad differences are observed in expression levels between subtypes 

(Figure 2.9, 2.10, and 4.26A) – although these differences don’t associate strongly with TE 

sequence similarity (family). Continued work is needed to clarify the role of TE expression 
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in the presentation of ALS subtypes and studies considering genome-wide methylation in 

tandem may provide significant new insight.  

 

 

 

 

Figure 4.18: Expression of transcript TARDBP, encoding ALS disease-associated protein 

TDP-43, is presented to show expression differences between subtypes are not observed in 

the postmortem spinal cord, as well as the cortex. These findings support TDP-43 

pathology occurring at the protein level rather than transcript level. 
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Figure 4.19: Truncated and normal length Stathmin-2 in the postmortem cortex. A Mann-

Whitney U test (two-sided) was used to assess statistical significance in tSTMN-2 

expression on both the (A) TPM scale and (B) raw count scale. After adjusting p-values 

for multiple hypothesis testing using the Bonferroni method, truncated STMN2 expression 

was not observed to have any association with ALS subtype. (C) Full length transcript 

STMN2 counts on TPM scale, evaluated using the Mann-Whitney U test (two-sided), with 

Bonferroni-adjusted p-values shown. (D) Full length transcript STMN2 counts on the 

DESeq2 median-of-ratios scale. Healthy control donors and FTLD patients are included, 

in an effort to improve the estimation of size factors for normalization. P, DESeq2208 

differential expression using the negative binomial distribution, two-tailed, FDR method 

for multiple hypothesis test correction. 
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Figure 4.20: Expression of full length and truncated STMN2 in the spinal cord. (A) A two-

sided Mann-Whitney U test was used to assess statistical significance in STMN2 and 

truncated STMN2 expression on both TPM scale and raw count scale. After adjusting p-

values for multiple hypothesis testing using the Bonferroni method36, truncated STMN2 

expression was elevated in the postmortem spinal cord of ALS-Ox patients when compared 

to the ALS-TD subtype on both count scales, further supporting phenotypic differences 

between ALS-Ox and ALS-TD patients. These finds are somewhat surprising, given ALS-

TD pathology appears more closely linked to transcription as compared to ALS-Ox. (B) 

Truncated STMN2 counts on the TPM scale are replotted for visual clarity. No statistically 

significant differences in the expression of STMN2 or truncated STMN2 are observed 

between ALS-Glia and ALS-TD subtypes. 
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Figure 4.21: Assessment of chromosome origin for TEs identified in the cortex (left) and 

spinal cord (right). Only the TEs included in the top genes selected by gene score and 

shared by both sequencing platforms were considered in the analysis, totaling 426 non-

redundant transcripts in the cortex and 86 in the spinal cord. Frequency was adjusted for 

chromosome length in Mbp. 

 

 

 

 

Figure 4.22: Assessment of transposon family for TEs identified in the cortex (left) and 

spinal cord (right). For the cortex, family names with <1% frequency were not printed but 

pie chart colors match the legend presented in Figure 2.10A.  
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Figure 4.23: ALS-Glia specific transposable element expression in the cortex, with eight 

representative transcripts shown. The ALS-Glia subtype was defined by downregulated 

expression of TEs, as compared to other ALS subtypes and controls. P, DESeq2 differential 

expression using the negative binomial distribution, two-tailed, FDR method for multiple 

hypothesis test correction. 

 

 

 

 

Figure 4.24: ALS-Ox specific transposable element expression in the cortex, with eight 

representative transcripts shown. The ALS-Ox subtype was defined by upregulated 

expression of long interspersed nuclear elements (LINEs), short interspersed nuclear 

elements (SINEs), and long terminal repeats (LTRs). P, DESeq2 differential expression 

using the negative binomial distribution, two-tailed, FDR method for multiple hypothesis 

test correction. 

 



 
 

193 
 

 

Figure 4.25: ALS-TD specific transposable element expression in the cortex, with eight 

representative transcripts shown. The ALS-Ox subtype was defined by upregulated 

expression of long interspersed nuclear elements (LINEs), short interspersed nuclear 

elements (SINEs), and long terminal repeats (LTRs). P, DESeq2 differential expression 

using the negative binomial distribution, two-tailed, FDR method for multiple hypothesis 

test correction. 
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Figure 4.26: Retrotransposon expression in the ALS spinal cord. TEs were only considered 

if they passed filtering by median absolute deviation and were shared between sequencing 

platform subgroups, totaling 86 non-redundant transcripts. (A) A heatmap showing spinal 

cord TE expression in 519 samples (n=428 ALS and 91 controls) with count values 

normalized by DESeq2 and z-score transformed before plotting. Three differentially 

expressed TEs are shown for (B) ALS-Glia samples, (C) ALS-Ox samples, and (D) ALS-

TD samples. Expression values are normalized to the DESeq2 median-of-ratios scale and 

log2 transformed prior to plotting. P, DESeq2 differential expression using the negative 

binomial distribution, two-tailed, FDR method for multiple hypothesis test correction. 
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4.4   Discussion 

 

The implications and relevance of differentially expressed transcripts are 

considered in the context of each ALS subtype, and is followed by a more general 

discussion of the results obtained in this Chapter. 

 

4.4.1   ALS-Glia  

 

In the ALS-Glia subtype from the cortex cohort, significantly elevated expression 

of microglia, astrocyte, and oligodendrocyte marker genes is observed (AIF1317, CCR5109, 

CD44219, CD6832, CHI3L2285, CR188, CX3CR156, HLA-DRA141, MSR1172, TLR751, 

TMEM12553, TNC53, TREM2171, and TYROBP171,366). ALS-Glia upregulation of CHI3L2, 

CX3CR1, FOLH1, HLA-DRA, ALOX5AP, CCR5, CR1, FPR3, NCF2, TLR8, and 

TNFRSF25 generally indicates a pro-neuroinflammatory and pro-apoptotic disease 

phenotype29,88,114,119,177,190,205,213,224,226,285. ALS-Glia negative enrichment for PI3K/AKT 

signaling further supports a pro-apoptotic disease phenotype144. Elevated expression of 

TREM2, TYROBP, and CLEC7A may suggest a compensatory neuroprotective mechanism, 

where the activated (DAM) microglia state enhances phagocytic clearance and slows 

neurodegeneration171,316. The DAM phenotype is also known to promote ROS generation 

and neuroinflammation298, obscuring the relationship between disease-associated 

microglia and ALS-Glia pathogenesis. Alterations to lipid metabolism in the ALS-Glia 

subtype are evidenced by APOBR, APOC1, and APOC2 overexpression compared to ALS-

Ox and ALS-TD patients, and may further reflect the elevated APOE and LPL expression 
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seen in disease-associated microglia161,171. Interestingly, upregulated expression of 

transcripts CX3CR1, TYROBP and TREM2 in this subtype possibly suggests dysregulation 

or competition between homeostatic and activated microglia phenotypes171. Relatedly, 

increased expression disease associated astrocyte135 (DAA) marker genes is observed in 

the ALS-Glia subtype, including ITIH3, KCNIP4, PDGFD, ST6GALNAC5, and TNC. 

Interestingly, ALS-Glia expression of DAA genes suggests the astrocyte population in 

these patients captures both disease-associated and homeostatic phenotypes, when 

compared to healthy control donors.  

Consistent with the cortex ALS-Glia subtype, characteristic expression of many Fc-

gamma receptors and MHC Class II molecules are seen. Heightened VRK2 expression 

suggests some anti-apoptotic regulation occurs in ALS-Glia patients234. Overexpression of 

FOLH1 may provide evidence for glutamate excitotoxicity susceptibility in the ALS-Glia 

subtype119. Elevated transcription of ST6GALNAC2 suggests alterations to post-

translational protein O-glycosylation, while NINJ2 expression may support the proclivity 

for neuronal damage and death. Although additional work is needed to better understand 

the consequences of the apparently dichotomous microglial phenotypes in the ALS-Glia 

frontal and motor cortex, these results clearly demonstrate that a subset of ALS patients 

are defined by glial activation and elevated inflammatory signaling. More generally, 

activated microglia and astrocytes are known promote cytotoxicity in motor neurons198,369, 

providing a direct framework linking the neuroinflammatory phenotype in ALS-Glia 

patients to more rapid disease progression. 
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In the spinal cord, ALS-Glia specific expression was primarily recovered from 

genes associated with neuroinflammation and included: CD59, CD300E, CFH, IL1R1, 

SAMHD1, SELP, and TMEM173 (STING1). Outside of the expected neuroinflammatory 

phenotype and more closely resembling the ALS-Ox cortex phenotype, elevation of 

AHNAK implicates blood-spinal cord barrier and calcium homeostasis disruptions while 

expression of IQGAP1, LAMC1, MAP7, and VIM suggests changes to cytoskeletal and 

extracellular matrix organization. In line with findings from the cortex, glycosylation gene 

ST6GALNAC2 remains upregulated in the spinal cord of ALS-Glia samples, while elevated 

B4GALNT2 and GLT8D2 lends additional support for the relevance of this post-

translational modification in the presentation of ALS subtype. Additionally, MYL9 and 

TAGLN genes remain overexpression in the ALS-Glia spinal cord when compared to the 

other two subtypes. Broad downregulation of CAPN3 autocatalytic protease relative to 

non-neurological controls suggests proteotoxic stress is a conserved phenotype in the spinal 

cord of all ALS patients. Of the transcripts associated with the ALS-Glia subtype in the 

spinal cord, AHNAK, CAPN3, CD59, CFH, CHEK2, IL1R1, LAMC1, MAP7, SAMHD1, 

STING1, and VIM have been previously linked to CNS injury, neurodegeneration, or ALS 

specifically14,41,112,130,135,209,261,273,293,318,331,333. Interestingly, SAMHD1 has been shown to 

regulate L1 retrotransposon expression318 and overexpression in ALS-Glia patients 

continues to support a role for TEs in ALS neurodegeneration. While not directly 

associated with neurodegeneration, P-selectin (SELP) has been shown to mediate the 

microglial phenotype in glioblastoma, with elevated P-selectin protein levels associated 

with a more aggressive tumor proliferation and invasion361, in good agreement with the 
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ALS-Glia phenotype and established clinical associations. Elevated expression of STING1 

in the spinal cord of ALS-Glia patients implicates the recently elucidated cGAS-STING 

signaling pathway in age- and neurodegenerative-related inflammation and microglia 

activation130. Finally, in agreement with the DAA phenotype observed in the cortex, 

elevated expression of DAA marker gene VIM continues to implicate reactive astrocytes 

in the ALS-Glia phenotype135. 

 

4.4.2   ALS-Ox 

 

The cortex ALS-Ox subtype is defined by oxidative stress, evidenced by 

upregulated expression of OXR1 and SOD1 and downregulation of CP (ceruloplasmin), 

UCP2, and oxidative phosphorylation genes NDUFA4L2, TCIRG1, and 

COX4I26,165,207,220,250. NDUFA4L2 and BECN1 expression further implicate impaired 

autophagy in ALS-Ox pathology242,354. Subtype-specific expression of many synaptic 

signaling associated genes are observed, including: GABRA1 (GABA receptor), GABRA6, 

GAD2 (catalyzes production of GABA), GLRA2 (glycine receptor), GLRA3, HTR2A 

(serotonin receptor), KCNV1 (voltage-gated ion channel), KCNMB1, PCSK19, SLC6A13 

(GABA transporter), SLC17A6 (glutamate transporter), SLC17A8 (glutamate transporter), 

and TCIRG1 (proton transporter associated with synaptic vesicle formation165). Together, 

the upregulated transcription of GABRA1, GABRA6, GAD2, GLRA2, and GLRA3 and 

downregulation of SLC6A13 strongly suggest increased inhibition in the ALS-Ox frontal 

and motor cortex. Increased expression of SLC17A6 and SLC17A8 is hypothesized to 

reflect a neuronal process to alleviate reduced excitability. Elevated transcription of 
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BECN1, PFDN4, SERPINI1 (neuroserpin), UBQLN1, and UBQLN2 suggests proteotoxic 

stress is also a defining characteristic of this ALS subtype9,103,146,147,317.  

Downregulation of NOS3, NOTCH3, MYH11, MYL9, and TAGLN in the cortex may 

implicate pericyte and vascular smooth muscle cell dysfunction and alterations to the 

blood-brain barrier in ALS-Ox patients158,313,314. Similar to the ALS-Glia subtype, 

B4GALT6 overexpression suggests changes to the O-glycosylated proteome. Evidence for 

alterations to the extracellular matrix, in the frontal and motor cortex of ALS-Ox patients, 

is observed in the downregulated expression of ADAMTSL4, ADAMTS7, ADAMTS14, 

COL1A1, COL1A2, COL2A1, COL3A1, COL4A6, COL6A3, COL8A1, COL14A1, 

COL18A1, and TAGLN. Interestingly, Collins et al. demonstrate that alterations to the 

extracellular matrix persist at the protein level71. Importantly, upregulated transcription of 

marker genes GABRA1, GAD2, HTR2A, and PCSK1 is observed in ALS-Ox patients, 

which have been previously reported to be downregulated in Alzheimer’s patients319, 

suggesting distinct synaptic signaling pathological mechanisms. Taken together, these 

results generally suggest ALS-Ox patients reflect more traditional neurodegenerative 

themes, such as oxidative and proteotoxic stress, impaired blood-brain barrier function, and 

alterations to synaptic signaling. 

In the ALS-Ox spinal cord, elevated expression of genes B4GALT6, GABRA1, 

GAD2, GLRA3, HTR2A, PCSK1, and SLC17A6 persists, leading us to define these seven 

transcripts as marker genes. Expression levels are dependent on tissue region but remain 

consistently overexpressed in ALS-Ox patients relative to FTLD and non-neurological 

controls. In agreement with findings from the cortex, ALS-Ox specific transcript 
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expression in the spinal cord was generally associated with neuronal signaling and 

included: GABRG3, GRIA1, GRIN2A, GRM1, KCNH6, KCNS2, NTS, PCLO, RIMS2, 

SCN3A, SLC35F4, SYN2, SYT1, and UNC13C. Oxidative and proteotoxic stress 

phenotypes are weaker in the ALS-Ox spinal cord as compared to the cortex, seen in the 

expression of genes BECN1, OXR1, SOD1, and UBQLN2. Similar to the Glia phenotype, 

upregulation of glycosylation genes B4GALT6 and GALNT14 suggests this PTM plays a 

role in disease heterogeneity. Interestingly, CPNE4 has been previously linked to ALS as 

a SNP-associated risk gene353 and spatially associated with type 1 excitatory dorsal neurons 

in the spinal cord of adults355. Elevated expression of EFNA5 and NMNAT2 suggests a 

neuroprotective mechanism in the spinal cord of ALS-Ox patients122,283 – in good 

agreement with ALS-Ox survival. Expression of UNC13C has not been previously 

associated with ALS, however TDP-43 mediated cryptic splicing of paralog UNC13A (and 

UNC13B46) is detected in a subset of ALS patients in two separate studies46,212 and uniquely 

elevated expression in ALS-Ox patients may implicate a related pathological mechanism.  

 

 
4.4.3   ALS-TD  

 

The defining characteristic of ALS-TD patients in the cortex is the dysregulation of 

transcription, evident by the overexpression of pseudogenes (EGLN1P1, 

ENSG00000213197, HSP90AB4P, KRT8P13, NANOGP4, RPS20P22), intronic and 

antisense transcripts (AGPAT4-IT1, GATA2-AS1, TUB-AS1, ENSG00000205041, 

ENSG00000263278, ENSG00000268670, and ENSG00000273151), long non-coding 

RNA (LINC00176, LINC00638, LINC01347), and nonsense-mediated decay mRNA 
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(ARHGAP19-SLIT1, C1QTNF3-AMACR, CHKB-CPT1B, and SLX1B-SULT1A4). 

Upregulated expression of microRNAs miR24-2, miR219A2, miR3648-1, and 

MIRLET7BHG, relative to the other ALS cortex subtypes, provides additional support for 

transcriptional and translational dysregulation in ALS-TD patients. miR24-2 has been 

previously shown to participate in many diseases, including neurodegeneration, serving to 

regulate cellular proliferation, differentiation, and apoptosis65. miR219A2 is known to 

modulate oligodendrocyte differentiation and remyelination and has been previously 

reported to be downregulated in the brains of Alzheimer’s patients287,340. MIRLET7BHG 

(LET-7B host gene) is also known to regulate gene expression and has been shown to 

interact with glial receptor TLR7 to promote neurodegeneration193. Therefore, 

downregulation of TLR7 in the ALS-TD subtype may reflect a neuroprotective state. 

Altered expression of transcription factors NKX6-2 and RUNX3, relative to controls, further 

emphasizes transcription as a central pathological mechanism in ALS-TD patients.  

Similar to the cortex ALS-Ox subtype, downregulation of transcripts encoding 

extracellular matrix proteins and characteristic expression of some transposable elements 

is observed. Surprisingly, TARDBP (encoding TDP-43) transcription was not a defining 

feature of ALS-TD patients and expression was relatively conserved across ALS subtypes, 

with only moderate upregulation observed compared to healthy controls. Transcription of 

ADAT3 in ALS-TD patients suggests that the pathological dysregulation of transcription 

and translation extends to tRNAs291. Consistent with the ALS-TD cortex phenotype, 

elevated expression of many novel mRNA transcripts was observed, with some examples 

being ENSG00000258674, ENSG00000279233, ENSG00000279712, ENSG00000228434, 
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ENSG00000234913, and ENSG00000250397. Downregulation of TP63 suggests 

alterations to TP53 signaling and an anti-apoptotic phenotypic state in the ALS-TD 

subtype357. This interpretation is further supported by the survival analyses, given ALS-

TD patients generally demonstrated a longer median disease duration and lower hazard 

relative to ALS-Glia patients. Taken together, these results suggest poor control of gene 

transcription in ALS-TD frontal and motor cortices and provide additional insight into the 

role of TEs in this subtype.  

Extending findings from the cortex, the ALS-TD subtype in the spinal cord 

similarly implicates transcription, seen in the upregulation of transcripts DDX18P2, 

ENSG00000185332 (TMEM105 lncRNA), ENSG00000250608 (NUDT16-DT), 

ENSG00000275620 (FLJ16779 lncRNA), ENSG00000280087, ENSG00000285492, 

LINC01091, LINC02977, LINC03002, MITCH1P1, OTOAP1, PDE4DIPP7, SLC28A1 

(pyrimidine nucleoside importer), and TCF23. Differential expression was generally 

weaker in the ALS-TD spinal cord, and likely reflects technical and cell compositional bias 

associated with stratification of patients using bulk spinal cord transcriptomes. Illustrating 

these challenges, APOBR, APOC1, and FPR3 were found to be upregulated in the ALS-

Glia cortex but were most elevated in the ALS-TD spinal cord, suggesting an unclear but 

possibly relevant role for these genes in mechanistic heterogeneity. Few ALS-TD 

transcripts show previous links to neurodegeneration, however NCF2 is reportedly 

upregulated in ALS in response to neuroinflammation and clearly illustrates a phenotypic 

spectrum by providing a direct link to increased oxidative stress via ROS production335. 

Although not directly related to neurodegeneration, NLRP12 has been shown to be an 
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important inhibitor of inflammation and NF-κB signaling10,245, and ALS-TD upregulation 

begins to suggest a separate (possibly neuroprotective) inflammatory response when 

considered in the context of characteristic ALS-Glia gene expression.  

 
 

4.4.4   Concluding Thoughts 

 
 
Through differential expression analysis, consistent elevation of marker genes 

B4GALT6, GABRA1, GAD2, GLRA3, HTR2A, PCSK1, and SLC17A6 is seen in the 

postmortem cortex and spinal cord of ALS-Ox patients. These marker genes offer an 

important foundation for future patient stratification, as it is demonstrated that their 

association with the ALS-Ox phenotype is not dependent on normalization scale and 

supervised learning differentiates this phenotype from all others – including FTLD controls 

– regardless of tissue region or sequencing platform used for characterization. An 

additional three genes, MYL9, ST6GALNAC2, TAGLN show consistent upregulation in the 

ALS-Glia cortex and spinal cord relative to the other two subtypes, but are similarly 

expressed in FTLD controls, suggesting they may have less utility for patient stratification. 

Moreover, while additional work is needed to link the subtypes to clinical heterogeneity – 

including rate of progression, genetic risk, exposure, and lifestyle – a clear trend emerges 

in phenotype-dependent differences in survival with the inflammatory subtypes typically 

most aggressive and the ALS-Ox subtype less so. Survival differences between ALS-Ox 

and ALS-TD need further clarification, however marker genes provide a preliminary but 
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important foundation for improved clinical trial design by enabling the stratification of 

ALS-Ox patients from others, including FTLD mimics.  

Among the inflammatory genes associated with ALS, the chitinases (CHIT1, 

CHI3L1) have been considered extensively, with many groups demonstrating that elevated 

expression is linked to ALS progression and disease duration120,156,307,326,336. Consistent 

with these studies, and others285, elevated expression of another member of the chitinase 

family, CHI3L2, is shown to be uniquely upregulated in ALS-Glia frontal and motor 

cortices. Similarly, mutations to the GLT8D1 gene have been previously linked to fALS74, 

and elevated expression of the related gene GLT8D2 was found in the ALS-Glia spinal 

cord. Cyclophilin A (PPIA) has been previously linked to TDP-43 pathology and 

neurodegeneration in mice256 and elevated in the CSF of sporadic ALS patients257. Elevated 

expression of Cyclophilin C (PPIC) in the spinal cord of ALS-Glia patients lends additional 

support for the participation of these molecular chaperones in disease pathology.    

Briefly considering the results from a similar stratification analysis performed at 

the protein level using patient CSF337, seven of the 59 features reliably differentiating fast 

and slow progressors at four different pairwise comparisons of collection timepoints are 

also differentially expressed between ALS subtypes at the postmortem transcript level (CP, 

CFB, CD300A, FAM19A2, KNG1, RBP4, SERPIND1). An additional 19 transcripts 

mirrored findings at the protein level performed by Vu et al.337, which reported a total of 

198 proteins stratifying fast and slow progressors for one or more timepoint comparisons, 

and included: APOC2, read through transcript C1QTNF3-AMACR, CBLN4, FAM19A1, 

FCGR3A, FRZB, GDA, IGF2, ITIH2, ITIH3, NGFR, ALS-Ox marker gene PCSK1, QPCT, 
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SELL, SERPINA3, SERPINA5, SERPINI1, SST, and VSTM2A. Shared features at the 

protein and transcript level offer additional support for the relevance of these features in 

ALS patient heterogeneity and indicate additional insight should be gained by considering 

both system levels in a multi-omics framework. Moreover, elevated abundance of the 

protein encoded by ALS-Ox marker gene PCSK1 in the CSF of slow ALS progressors 

matches findings at the transcript level in the postmortem cortex and spinal cord, and 

indicates translation of subtype markers genes to living patients should be readily feasible.   
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Chapter 5 

 

CONCLUSIONS AND FUTURE WORK 

 

 This chapter outlines the major significance and contributions of each of the 

specific aims that were described in the dissertation abstract and introduction. Also 

included are publications and conference presentations that contributed to the production 

of this dissertation, and others that occurred concurrently. Challenges and limitations with 

this work are discussed, and followed by possible future directions for clinical translation. 

A supplemental analysis is provided in the future directions section which considers the 

expression of marker genes and subtype-specific transcripts from the cortex in patient-

derived induced pluripotent stem cells (iPSCs). 

 

5.1   Significance and Contributions 

 

5.1.1   Chapter 2 

 

 Clinical and mechanistic heterogeneity observed in ALS has traditionally been 

poorly understood and has contributed to limited success in clinical trials. To address this 

gap in understanding, a publicly available ALS cohort (GSE153960) was stratified using 

postmortem bulk gene expression from the cortex and spinal cord. Three distinct molecular 

subtypes are recovered, and enrichment defines these subtypes by elevated inflammatory 
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signaling (ALS-Glia), altered synaptic signaling and oxidative stress (ALS-Ox), and 

dysregulated transcription (ALS-TD). While stratification in the spinal cord was hindered 

by technical and bulk tissue bias, intra-patient concordance is statistically significant and 

strengthens the notion that subtype presentation is generally conserved throughout the 

patient’s central nervous system and contributes to patient heterogeneity. Further, 

concordance analysis shows the lumbar region of the spinal cord is most concordant with 

the phenotype presented in the frontal and motor cortex. Through bootstrapping, it is 

demonstrated that ALS patient samples can present in hybrid phenotype states, but show 

that this interpretation, and overall phenotype presentation, may be driven in part by cell 

composition bias encountered by bulk tissue RNA-sequencing. Outcomes from this work 

led to one peer-reviewed publication99 and a second in preparation98. Collectively in this 

chapter, results show that patients can be grouped into molecular subtypes with similar 

postmortem gene expression patterns that recapitulate many mechanistic phenotypes 

identified by genetic ALS models321. Findings expand upon previous gene expression-

based stratification studies8,237,317, linking additional genes to ALS phenotypic variability 

and providing additional insight into the role of retrotransposon expression leading to the 

redefinition of one subtype (ALS-TD).  

 

5.1.2   Chapter 3 

 

 Previous works show no association between molecular subtype and clinical 

heterogeneity but are generally limited by sample size8,237,317. Our consideration of more 
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than 200 ALS patients provided increased statistical power and enabled the detection of a 

weak but persistent subtype association with survival. Using the previously described 

majority agreement approach, ALS-Glia patients repeatedly show a significantly shorter 

disease duration compared to ALS-Ox patients, with the general trend non-significantly 

maintained after correcting for other relevant covariates like age, sex, and disease 

comorbidity through Cox regression. A similar trend towards a later age of onset is 

observed in ALS-Glia patients and good agreement with survival and age of onset 

associations in the results from the cortex WGCNA analysis is found. Additional support 

for findings in this chapter are seen in a recent study which identifies 59 primarily 

inflammatory proteins which differentiate fast progressors from slow progressors using the 

ALSFRS-R rate of decline337. Outcomes from this work led to one peer-reviewed 

publication99 and a second in preparation98. Collectively in this chapter, an important link 

is established between clinical variability (survival, age of onset) and ALS mechanistic 

heterogeneity observed through postmortem gene expression. Moreover, this link implies 

that the stratification of patients can lead to improved clinical trial outcomes by grouping 

similarly risked patients into a single cohort and excluding those likely to have an 

inherently lower or higher risk of death. 

 

5.1.3   Chapter 4 

 

 The lack of prognostic biomarkers capable of stratifying patients has limited 

clinical trial success and the design of more personalized and effective therapeutics. To 
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address this need, differential expression was used to identify the consistent elevation of 

marker genes B4GALT6, GABRA1, GAD2, GLRA3, HTR2A, PCSK1, and SLC17A6 in the 

postmortem cortex and spinal cord of ALS-Ox patients. These marker genes offer an 

important foundation for future patient stratification, as their association with the ALS-Ox 

phenotype is shown to be independent of the normalization scale. Furthermore, supervised 

learning differentiates this phenotype from all others, including FTLD controls, regardless 

of tissue region or sequencing platform used for characterization. An additional three 

genes, MYL9, ST6GALNAC2, TAGLN show consistent upregulation in the ALS-Glia cortex 

and spinal cord relative to the other two subtypes, but are similarly expressed in FTLD 

controls, suggesting they may have less utility for patient stratification. Outcomes from 

this work led to one peer-reviewed publication99 and a second in preparation98. The marker 

genes established in this chapter provide a preliminary but important foundation for 

improved clinical trial design by enabling the stratification of ALS-Ox patients from others, 

including FTLD mimics. 

 

5.1.4   Contributions 

 

 The following lists peer-reviewed publications and conference oral and poster 

presentations that contributed to this dissertation. Items donated with * indicate the 

contribution is unrelated to this dissertation but concurrent.  

 

List of Publications 
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• Jarrett Eshima, Taylor Renee Pennington, Raiyan Choudhury, Jordan M. 

Garcia, John Fricks, Barbara S. Smith. (2024). Elevated expression of 

B4GALT6, GABRA1, GAD2, GLRA3, HTR2A, PCSK1, and SLC17A6 are 

postmortem markers for the ALS-Ox subtype. [in preparation]. Preprint 

available at: https://www.medrxiv.org/content/10.1101/2024.03.21.24304538v1 

• Taylor Renee Pennington, Jarrett Eshima, Barbara S. Smith. (2023). 

Identification of volatile metabolites produced from gut microbial levodopa 

metabolism using an untargeted metabolomics approach. BMC Microbiology, 

[in review].* 

•  Jarrett Eshima, Taylor Pennington, Youssef Abdellatif, Joel F. Lusk, Angela 

Ponce Olea, Benjamin D. Ambrose, Ethan Marschall, Christopher Miranda, 

Paula Phan, Christina Aridi, Barbara S. Smith. (2023). An engineered culture 

vessel and flow system to improve the in vitro analysis of volatile organic 

compounds. Nature Communications Engineering, [in review].* 

• Jarrett Eshima, Samantha A. O’Connor, Ethan Marschall, NYGC ALS 

Consortium, Robert Bowser, Christopher L. Plaisier, Barbara S. Smith. (2023). 

Molecular subtypes of ALS are associated with differences in patient prognosis. 

Nature Communications, 14(1), 95. 

• Christopher Miranda, Madeleine Howell, Joel Lusk, Ethan Marschall, Jarrett 

Eshima, Trent Anderson, and Barbara S. Smith. (2021). Automated 

Microscope-Independent Fluorescence Guided Micropipette. Biomedical 

Optics Express, 12(8), 4689-4699.* 

https://www.medrxiv.org/content/10.1101/2024.03.21.24304538v1
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• Jarrett Eshima, Trenton J. Davis, Heather D. Bean, John Fricks, Barbara S. 

Smith. (2020). A Metabolomic Approach for Predicting Diurnal Changes in 

Cortisol. Metabolites, 10(5), 194.* 

• Jarrett Eshima, Stephanie Ong, Trenton J. Davis, Christopher Miranda, 

Devika Krishnamurthy, Abigael Nachtsheim, John Stufken, Christopher 

Plaisier, John Fricks, Heather Bean, and Barbara S. Smith. (2019). Monitoring 

changes in the healthy female metabolome across the menstrual cycle using 

GC×GC-TOFMS. Journal of Chromatography B, 1121, 48-57.* 

• Joel Lusk, Christopher Miranda, Madeleine Howell, Matthew Chrest, Jarrett 

Eshima, and Barbara S. Smith. (2019). Photoacoustic Flow System for the 

Detection of Ovarian Circulating Tumor Cells Utilizing Copper Sulfide 

Nanoparticles. ACS Biomaterials Science & Engineering, 5(3), 1553-1560.* 

List of Poster Presentations 

• Jarrett Eshima, Samantha A. O’Connor, Ethan Marschall, NYGC ALS 

Consortium, Robert Bowser, Christopher L. Plaisier, Barbara S. Smith 

“Transcriptomic-based stratification identifies molecular subtypes of ALS with 

differences in prognosis”, Poster Presentation, Society for Neuroscience. San 

Diego, California (2022). 

• Jarrett Eshima, Samantha A. O’Connor, Ethan Marschall, NYGC ALS 

Consortium, Robert Bowser, Christopher L. Plaisier, Barbara S. Smith “ALS 

patient stratification identifies pathological subtypes in postmortem cortex 
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transcriptomes”, Poster Presentation, St. Jude Future Fellow Research 

Conference. Memphis, Tennessee (2022). 

• Jarrett B. Eshima, Joel F. Lusk, Benjamin D. Ambrose, Taylor Pennington, 

Paula Phan, Youssef Abdellatif, Barbara S. Smith “Identification of Volatile 

Biomarkers in a Controlled Microenvironment”, Poster Presentation, Arizona 

Biomedical Research Commission. Phoenix, AZ (2022).* 

• Jarrett B. Eshima, Aris Mosely, Mireya Herrera, Gilbert Ramos, Lora 

Nordstrom, Gwenn Levit, and Barbara S. Smith “Applying Multi-omics for the 

Identification of Early Psychosis Diagnostic Biomarkers”, Virtual Poster 

Presentation, Arizona Biomedical Research Commission. Phoenix, AZ 

(2021).* 

• Jarrett B. Eshima, Joel F. Lusk, Benjamin D. Ambrose, Ethan B. Marschall, 

Esther Sim, Yuka Sugamura, Alison Haymaker, Barbara S. Smith “Biodome: 

Identification of Ovarian Cancer Volatile Biomarkers in a Controlled 

Microenvironment”, Virtual Poster Presentation, Arizona Biomedical Research 

Commission. Phoenix, AZ (2021).* 

• Jarrett Eshima, Esther Sim, Joel F. Lusk, Ethan B. Marshall, Barbara S. Smith 

“Monitoring Ovarian Cancer Progression Through Metabolic Biomarkers”, 

Poster Presentation in Cancer Technologies Track, Biomedical Engineering 

Society. Philadelphia, PA (2019).* 

• Jarrett Eshima, Trenton J. Davis, Heather D. Bean, John Fricks, Barbara S. 

Smith “A Metabolomic Approach to Non-Invasively Track Changes in Cortisol 
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for Mental Health Applications”, Poster Presentation in Bioinformatics, 

Computational and Systems Biology Track, Biomedical Engineering Society. 

Philadelphia, PA (2019).* 

• Stephanie Ong, Jarrett Eshima, Christopher Miranda, Trenton Davis, Heather 

Bean, and Barbara S. Smith “Monitoring Women's Fertility Through Volatile 

Biomarkers”, Poster Presentation in Diagnostics and Imaging Tract, MCTB 

Symposium, Tempe, AZ (2017).* 

• Vi Nguyen, Jarrett Eshima, Samantha Brenna, and Barbara S. Smith 

“Identifying Volatile Hormone Signatures for Monitoring Female Reproductive 

Health”, Poster Presentation in Molecular and Cellular Engineering Functional 

Materials and Sensors Track, Biomedical Engineering Society. Phoenix, AZ 

(2017).* 

• Stephanie Ong, Jarrett Eshima, Christopher Miranda, Trenton Davis, Heather 

Bean, and Barbara S. Smith “Monitoring Women's Fertility Through Volatile 

Biomarkers”, Poster Presentation in Cellular and Molecular Bioengineering 

Track, Biomedical Engineering Society. Phoenix, AZ (2017).* 

• Jarrett Eshima, Stephanie Ong, and Barbara S. Smith “Identification of 

Volatile Metabolic Biomarkers Correlated to Changes in Hormone Levels”, 

Poster Presentation in Translational Biomedical Engineering Track for 

Undergraduates, Biomedical Engineering Society. Phoenix, AZ (2017).* 

List of Oral Presentations 
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• Jarrett Eshima, Samantha A. O’Connor, Ethan Marschall, NYGC ALS 

Consortium, Robert Bowser, Christopher L. Plaisier, Barbara S. Smith “A 

stratification of ALS patient transcriptomes idnetifiese molecular subtypes 

associated with differences in patient prognosis”, Invited Oral Presentation, 

ABRC-Flinn Foundation 8th Annual Research Conference. Phoenix, AZ (2023). 

• Jarrett Eshima, Trenton J. Davis, Heather D. Bean, John Fricks, Barbara S. 

Smith “Predicting Diurnal Changes in Cortisol using a Metabolic Approach for 

Mental Health Applications”, Invited Oral Presentation, Arizona Biomedical 

Research Commission. Phoenix, AZ (2020).* 

Provisional and Non-Provisional U.S. Patents 

• Provisional U.S. Patent Application No. 62/912,868, “Minimally Invasive 

Metal Detector”* 

• Non-Provisional U.S. Patent Application No. 17/715,352, “Devices and 

Systems for Non-Destructive Collection and Monitoring of Biological 

Volatiles”* 

• Non-Provisional U.S. Patent Application No. 18/621,914, “Biomarkers for 

Amyotrophic Lateral Sclerosis Stratification” 

 

5.2   Challenges and Limitations 

 

 One important limitation of this dissertation stems from the strict consideration of 

postmortem gene expression from ALS patients. Additional work is necessary before the 
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patient stratification marker genes can be truly leveraged to improve clinical trials and 

enable the design of more personalized therapeutics, most importantly the translation to 

living patients. The detection of elevated mRNA or translated protein in CSF and plasma 

presents challenges due to rapid clearance, generally low concentrations, and strict 

regulation through the blood brain and blood spinal cord barriers. Additionally, 

longitudinal studies would be necessary to demonstrate the biomarker tracks with the 

disease course before early patient stratification can be realized. Offering promise for 

eventual translation, seven transcripts differentially expressed between ALS-Glia and 

ALS-Ox samples were among 59 CSF-derived proteins found to stratify fast and slow ALS 

progressors337, although MYL9, ST6GALNAC2, and TAGLN were not among the reported 

features. Furthermore, significant differences in the expression of truncated STMN2 

between ALS-Ox and ALS-TD patients suggests sensitive assays targeting established 

pathological transcripts may offer secondary use in the stratification of patients, in addition 

to diagnosis.  

 Another limitation of these findings stems from the dependency of the bulk tissue 

expression profile on cell compositional differences, both in the region of the CNS 

characterized and between the same region in different patients. The consequences of this 

dependency are discussed in Chapter 1.3.4 and throughout this dissertation, however 

looking forward, significant insight should be gained from single cell RNA-sequencing 

approaches and help clarify the contribution of individual cell types to the overall ALS 

subtype spectrum.  
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 Significant challenges were encountered during the clustering of spinal cord 

transcriptomes and required the removal of covariate dependent genes and glial cell marker 

genes and restricting the number of genes to 5,000. Technical bias remained but the 

concordance analysis and discovery of marker genes lends strength to the overall validity 

of the subtypes identified in this dissertation. Importantly, enrichment differences between 

subtypes were generally weaker in the spinal cord compared to the cortex, although the 

ALS-Ox phenotype remains clearly distinguishable. Additionally, difficulties were 

encountered during the development of the Cox multivariate survival models. Through 

much trial and error, it was determined that the safest use was to avoid the consideration 

of all tissue regions simultaneously, which would imply the implementation of a patient 

specific random effect term. This application is supported by the coxme R package, but the 

repeat measure at death, rather than across the disease course than is the typical 

implementation, led to the eventual application presented in this dissertation. More 

experienced survival statisticians may consider using Supplemental Dataset 2 in the second 

publication associated with this work to replicate findings and address the knowledge 

limitations encountered here. All scripts used in this dissertation have also been made 

publicly available at: https://github.com/BSmithLab. More specific to the results, Cox 

regression shows the effect due to subtype is generally weaker than sex and disease 

comorbidity and suggests that more work is needed to clarify the influence of molecular 

variability on survival – although other works generally arrive at similar conclusions 

relating neuroinflammation and shorter disease duration24,34,114,198,316,356. Finally, no 

subtype marker genes were available for the hybrid subtyping analysis performed in 

https://github.com/BSmithLab
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Chapter 2 and the analysis required the use of subtype-specific eigengenes defined in the 

WGCNA analysis from Chapter 3. The original analysis from Patel et al.259 had validated 

subtype marker genes from TCGA and single cell resolution, and our approach leaves room 

for improvement and additional study. 

With the use of publicly available transcriptomic data, a few additional limitations 

were encountered. Certain influential covariates, like postmortem interval, agonal stage, 

and hospitals where postmortem samples were obtained, were not available for 

consideration. Similarly, the use of cerebellum expression as quality controls to address 

technical and biological covariates were unavailable for all patients. The ability to associate 

subtype with unavailable patient measures, like rate of functional decline through 

ALSFRS-R measures, neuroimaging data, or physiological recordings presents additional 

opportunities to link molecular heterogeneity to clinical variability. Disease mimics other 

than FTLD were not available for consideration, and marker gene specificity should be 

validated against mechanistically similar diseases like AD, Parkinson’s, SMA, PLS, 

Progressive supranuclear palsy, and PMA. Lastly, independent verification of RNA 

expression levels in tissue by RT-qPCR or immunostaining could not be performed, 

representing an important next step in successful translation. 

 

5.3   Future Directions 

 

 Most promisingly, stratification of fast and slow ALS progressors using 

quantitative proteomics and decline in the ALSFRS-R by Vu et al.337 found ALS-Ox 

marker gene PCSK1 is elevated in slow progressors when comparing first and last CSF 
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collection timepoints. Agreement between study findings at the transcript and protein level 

offer a highly favorable foundation for successful translation of stratification (prognostic) 

biomarkers. Conversely, cell compositional differences throughout the spinal cord may 

introduce unwanted variability in the quantified protein abundance of stratification 

biomarkers like PCSK1, although the concordance analysis in Chapter 2 provides an initial 

recommendation to leverage lumbar-derived CSF, where feasible – coincidentally 

advantageous given current health practices. Assuming the expression of proteins encoded 

by the subtype marker genes remain good predictors of patient variability across the wider 

sporadic population, developing minimally invasive assays to quantify protein expression 

in patient CSF should enable the stratification of living patients for improved clinical trial 

design. To establish concrete guidelines and robust predictive models using CSF 

expression levels, longitudinal measures should be retrospectively validated against 

subtype obtained from the postmortem cortex transcriptome. Moreover, other established 

measures, both molecular (phosphorylated neurofilaments, IL-8184, MCP-1184, 

Transthyretin269, Cystatin C269, SERPINA4337, among others337) and clinical (site of 

symptom onset, genetic mutations, diagnostic delay, etc.), should be considered in the same 

model in an effort to achieve higher stratification accuracies343. Along the same line and 

discussed previously, future works should examine associations between patient subtype 

presentation and other responsive clinical measures like ALSFRS-R, neuroimaging, forced 

vital capacity, hand held dynamometry, motor unit number estimation, and electrical 

impedance myography. Large scale efforts like Target ALS and Answer ALS21 provide a 

crucial resource foundation for these recommended future directions. Putative prognostic 
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biomarkers should be integrated with other relevant measures into a single predictive 

model with special care given to the analytical and normalization procedures implemented 

to maximize assay accessibility and minimize batch effects and variability. The predictive 

models can then be leveraged by clinicians, patient organizations, governments, and the 

pharmaceutical industry to guide patient enrollment into clinical trials and accelerate the 

development of phenotype-specific therapeutics or repurposing of existing drugs. 

 Stemming from cell compositional differences and the difficulty encountered 

during the stratification of ALS-Glia and ALS-TD subtypes using spinal cord 

transcriptomes, the use of protein abundance from lumbar-derived CSF to separate these 

two groups is anticipated to encounter challenges. To help circumvent this, one possible 

strategy may be to link the ALS-Glia phenotype in the cortex to variable expression profiles 

in isolated peripheral blood mononuclear cells (PBMCs) from patient blood. Given blood-

brain barrier disruption is a common hallmark of neurodegenerative diseases and the 

migration of these cells to the brain have been observed, these cells may reflect underlying 

differences in patient phenotype, especially in the context of ALS-Glia neuroinflammation. 

Given the mechanisms implicated in the ALS subtypes and known genetic 

associations with ALS, an opportunity was noticed to consider marker gene expression in 

patient-derived iPSCs to determine the feasibility in leveraging these cell models for 

mechanistic research, drug discovery, and drug repurposing. To accomplish this, publicly 

available RNA-sequencing data was utilized from NCBI Gene Expression Omnibus 

Accession: GSE21096982. This work performs bulk cell line RNA-seq on eight different 

iPSC lines derived from 3 “healthy donors”, 3 ALS patients with mutations to TDP-43, 
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and 2 ALS patients with mutations to the SOD1 protein. Low sample number restrict this 

analysis, however differential expression analysis only weakly demonstrates an association 

between genetic mutation and marker gene expression with TDP-43 iPSCs more closely 

resembling the ALS-TD subtype.  

As seen in Figure 5.1, ALS-Ox marker gene SLC17A6 is elevated in SOD1 iPSCs 

compared to TDP43 iPSCs and are similarly expressed in patient frontal and motor cortex 

tissue. The remaining ALS-Ox marker genes show limited differences in expression, 

although the expected trend is weakly seen in B4GALT6 and GABRA1. ALS-TD cortex 

genes CHKB-CPT1B, ENSG00000205041, LINC01347, and miR24-2 are weakly elevated 

in TDP-43 iPSCs compared to SOD1and match expression levels observed in patient 

cortical tissue. ALS-Glia marker genes and DAM transcript TREM2 were generally not 

uniquely expressed in the motor neurons differentiated from SOD1- and TDP-43 ALS 

patient iPSCs and suggest more complicated cell models, like organoids, are required to 

successfully recapitulate the disease phenotype. More broadly given these findings, SOD1 

iPSCs are hypothesized to serve as a more appropriate model system for the identification 

of ALS-Ox specific drug targets and therapies, while iPSCs harboring pathological 

mutations to the TDP-43 protein will better serve the discovery of ALS-TD drug targets 

and therapies. Follow-up analyses with larger patient numbers and single cell resolution 

should clarify the preliminary associations observed here, however other groups have 

arrived at similar conclusions223. 

Outside of the development of more phenotype specific cell models, future works 

may also look to consider ALS subtype presentation in other CNS tissue regions like the 
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choroid plexus and cerebellum to better understand associations with the blood brain 

barrier and better address expression covariates. While disease duration was used as the 

clinical measure to stratify the cohorts, consideration of other relevant clinical measures 

like ALSFRS-R may provide additional insight and strengthen existing associations. 

Independent validation of elevated marker gene expression should be performed in other 

patient cohorts to demonstrate that the effects observed in this work are not dependent on 

the myriad of covariates known to influence postmortem bulk tissue gene expression. To 

the contrary and lending strength to the findings in this work, 85% agreement is reported 

in the subtypes assigned to 140 shared postmortem cortex samples independently 

considered by Tam et al.317. Eventually, successful translation of marker genes and 

stratification of living patient cohorts will enable the design of more effective clinical trials, 

guide selection of maximal response measures in the clinic, spur the development of more 

personalized therapeutics, and better inform the patient and entire caretaking team of 

probable event timelines. 
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Figure 5.1: ALS patient-derived iPSC expression of subtype marker genes. ALS patient 

expression from the cortex are plotted as open points and iPSC expression is overlaid as 

solid points. SOD1 iPSCs are plotted in the ALS-Ox group while TDP-43 iPSCs are plotted 

in the ALS-TD group. (A) ALS-Ox marker genes B4GALT6, GABRA1, GAD2, GLRA3, 

HTR2A, PCSK1, and SLC17A6. (B) ALS-Glia marker genes MYL9, ST6GALNAC2, and 

TAGLN and disease associated microglia marker TREM2. (C) Four representative 

transcripts, CHKB-CPT1B, ENSG00000205041, LINC01347, and miR24-2 differentially 

expressed in the ALS-TD postmortem cortex. All expression is presented on the DESeq2 

normalized median-of-ratios scale following a log2 transformation.  
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