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ABSTRACT

Any permutation in the finite symmetric group can be written as a product of

simple transpositions si = (i i+ 1). For a fixed permutation σ ∈ Sn the products of

minimal length are called reduced decompositions or reduced words, and the collection

of all such reduced words is denoted R(σ). Any reduced word of σ can be transformed

into any other by a sequence of commutation moves or long braid moves. One area

of interest in these sets are the congruence classes defined by using only braid moves

or only commutation moves. This document will present work towards a conjectured

relationship between the number of reduced words and the number of braid classes.

The set R(σ) can be drawn as a graph, G(σ), where the vertices are the reduced

words, and the edges denote the presence of a commutation or braid move between

the words. This paper will present brand new work on subgraph structures in G(σ),

as well as new formulas to count the number of braid edges and commutation edges

in G(σ).

The permutation σ covers τ in the weak order poset if the length of τ is one less

than the length of σ, and there exists a simple transposition si such that σ = τsi.

This paper will cover new work on the relationships between the size of R(σ) and

R(τ), and how this creates a new method of writing reduced decompositions of σ as

products of permutations α and β, where both α and β have a length greater than

one.

Finally, this thesis will also discuss how these results help relate the number of

reduced words and the number of braid classes in certain cases.
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Chapter 1

INTRODUCTION

The topic of sets of reduced words is popular in the field of combinatorics. We

look at permutations in the symmetric group on n objects, and consider all possible

ways to write that permutation under certain conditions. Then we can study the

structure of the set of all possible ways to write the same permutation. This can be

done using a variety of different methods, including graphical representations of the

set, or looking at the congruence classes in the set.

This research began with what appeared to be a simple question about the relative

size of sets of congruence classes in a set of reduced words, and the size of the set

itself. As we attempted to answer this question, we discovered that the problem was

more complicated than originally thought. When we attempted to apply tools from

the existing literature to this problem, we discovered that we could not answer our

questions for arbitrary permutations. We would need to create new tools in order to

move forward.

In this chapter, we will discuss the basic definitions of the symmetric group, as

well as the existing results and tools we will use in our research. In Chapter 2 we will

cover our new results for subgraph structures in graphs for sets of reduced words. In

Chapter 3 we will discuss new bounds on the relative sizes of sets of reduced words

for permutations that are closely related in the weak order poset. In Chapter 4 we

will cover our work generalizing which subgraphs we can consider, and our work on

the relative size of the sets of congruence classes and the size of the related sets of

reduced words. And in Chapter 5 we will discuss what our results mean, and how

the research may progress in the future.
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1.1 The Symmetric Group

In this section, we rely heavily on the definitions and conventions in [2] and [15].

Definition 1.1. Let A be a finite set containing n elements. We define SA as the set

of bijections from A to itself. For simplicity’s sake, we write this as A = {1, 2, . . . , n},

or A = [n], and use the notation Sn. This is a group under composition of functions,

and the elements in this set are called permutations. The identity for the group is

denoted e.

Definition 1.2. For n ≥ 2, we define the generators of Sn as follows: si = (i i+1) is

called a simple transposition. Each si swaps the elements i and i+1, where 1 ≤ i < n.

These generators also have specific relationships:

s2i = e (1.1)

sisj = sjsi, for |i− j| > 1 (1.2)

sisi+1si = si+1sisi+1, for |i− j| = 1 (1.3)

Definition 1.3. The second relation, labeled (1.2), is called a commutation relation,

while the third relation, labeled (1.3), is called a braid relation.

The braid relation is sometimes referred to as a Yang-Baxter relation.

Definition 1.4. Let σ ∈ Sn. We will write σ in one line notation as

σ = [a1 . . . an]

where σ(i) = ai.

Using the generators in Definition 1.2, we will also write

σ = sx1sx2 . . . sxk

2



On occasion, we may also represent this permutation as the word

x1x2 . . . xk.

Definition 1.5. Let σ = [a1 . . . an], and p = p1 . . . pm, for m ≤ n and pi ∈ Z>0

for all 1 ≤ i ≤ m. The permutation σ contains the pattern p if there exist indices

i1 < . . . < im such that ai1 . . . aim are in the same order as p1 . . . pm. That is, pj < pk

if and only if aij < aik . If σ does not contain p, then σ is p pattern avoiding.

For example, σ = [321] is 312 pattern avoiding, while the permutation ω = [53421]

contains the pattern 312.

Definition 1.6. For σ ∈ Sn, written in one line notation as σ = [a1 . . . an], we define

the descent set of σ as follows: D(σ) = {i ∈ [n] | ai > ai+1}.

For any element σ ∈ Sn, there is some minimum number of si’s required for a

product that will produce σ. For example, in S3, the cycle σ = (1 3) can be written

as the product of length 3: s2s1s2 = (2 3)(1 2)(2 3). We denote this word of σ as

212, since σ = s2s1s2. Furthermore, this is a reduced word for σ since it is of minimal

length.

Definition 1.7. Let σ ∈ Sn. Suppose that si1 . . . sik is a reduced decomposition of

σ. Then all reduced decompositions will be k elements long, so the length of σ is

denoted as `(σ) = k.

Once we have the minimum length of the word σ as a product of si’s, we look

at the set of all of the reduced words of σ. For example, if σ = (1 3), we have two

reduced words: {212, 121}.

Definition 1.8. For σ ∈ Sn, we will denote the set of all reduced words as R(σ).

3



The generating relations in Definition 1.2 can be used to produce the lattice for

the weak order poset of Sn.

Definition 1.9. The right weak order poset is a partial order defined on Sn, denoted

W (Sn). W (Sn) is a bounded lattice for all n ≥ 2.

The cover relations are defined on the addition or removal of a single simple

transposition on the right hand side. That is, τ l σ if and only if τsi = σ for some

i ∈ D(σ). Then `(τ) = `(σ)− 1.

In general, if τ ≤ σ, then there exists a collection of simple transpositions such

that τsi1 . . . sik = σ, where `(τ) = `(σ)− k.

There is a similar definition for the left weak order poset, but we will only consider

the right weak order in this paper.

[1234]

[2134] [1324] [1243]

[2314] [3124] [1342] [2143] [1423]

[4123] [3214] [3142] [2413] [1432] [4123]

[3241] [2431] [3412] [4213] [4132]

[3421] [4231] [4312]

[4321]

{}

1 2 3

12 21 23 13 32

123 121 231 132 232 321

1231 1232 2312 1321 2321

12312 12321 23121

123121

Figure 1.1: Two Representations of W (S4).

In Figure 1.1, we see two ways to represent W (S4). On the left, the vertices are

labeled by the one line notation of the permutations. On the right, the vertices are

labeled by one of the reduced words for each permutation.

4



Throughout this document, we will use the cover relations in W (Sn) extensively.

For σ ∈ Sn, the set D(σ) gives us all the elements that σ covers in W (Sn). The set

of permutations covered by σ, {σsi | i ∈ D(σ)}, will give us a way to partition the

set R(σ) into smaller sets. We will discuss this in more detail in Chapter 2.

Remark 1.10. As we move forward, we will use Greek letters like σ to denote a

permutation, while we will use standard lower case letters like w to denote a reduced

word of a permutation, with the exception of the following permutation.

Definition 1.11. For any n ∈ N, the longest element in Sn is denoted w0, where in

one line notation we have

w0 = [n n− 1 . . . 3 2 1]

The length of this permutation is `(w0) =
(
n
2

)
.

Because w0 ∈ Sn is well studied, there are a few reduced decompositions we can

immediately write down once we have selected our n. For example,

s1s2 . . . sn−1s1s2 . . . sn−2 . . . s1s2s3s1s2s1

and

sn−1sn−2sn−1s1s2 . . . sn−1s1s2 . . . sn−2 . . . s1s2s3

are both reduced decompositions for w0.

Definition 1.12. Let r1, r2 ∈ R(σ) for some σ ∈ Sn. We say that r1 and r2 are in

the same commutation class if we can perform a series of commutation moves on r1

to produce r2, and vice versa. We denote the collection of commutation classes of σ

as C(σ).

Definition 1.13. Let r1, r2 ∈ R(σ) for some σ ∈ Sn. We say that r1 and r2 are in

the same braid class if we can perform a series of braid moves on r1 to produce r2,

and vice versa. We denote the collection of braid classes of σ as B(σ).

5



1.2 Graphs of Sets of Reduced Words

If we wish to study a set of reduced words, and the congruence classes in each set,

simply looking at the set as a list may not be the best method. We will now discuss

how to build a graph for our set of reduced words, with the focus on the commutation

and braid relations between words.

Definition 1.14. Let σ ∈ Sn. We produce an undirected graph whose vertex set is

R(σ). If two words are associated by commutation moves, we give a solid edge in the

graph, and if they are associated by braid moves, we give a dashed edge. We call this

graph G(σ).

Example 1.15. Consider a permutation σ ∈ S5, where σ = [42315]. Figure 1.2

shows the graph G(σ).

12321 13231

31231

13213

31213 32123G([42315]) =

Figure 1.2: The Graph of the Set of Reduced Words of σ = [42315]

Theorem 1.16 ([2], Theorem 3.3.1). The graph G(σ) is connected.

Definition 1.17. If we contract all the commutation edges in G(σ), the vertices of

this quotient graph will be C(σ), the commutation classes of R(σ). We will denote

this as

Gc(σ) = G(σ)/ < commutation moves > .

If we delete the braid edges in G(σ), the connected components that remain will

be C(σ). We will denote this graph as G′c(σ).

6



Definition 1.18. If we contract all the braid edges in G(σ), the vertices of this

quotient graph will be B(σ), the braid classes of R(σ). We denote this as

Gb(σ) = G(σ)/ < braid moves > .

If we delete the commutation edges in G(σ), the connected components that re-

main will be B(σ). We will denote this graph as G′b(σ).

Using σ = [42315], Figure 1.3 shows the graph of the commutation classes of R(σ),

while Figure 1.4 shows the graph of braid classes of R(σ).

Gc([42315]) = 12321 {13231, 31231, 13213, 31213} 32123

Figure 1.3: The Quotient Graph Gc(σ)

Gb([42315]) = {12321,13231}

13213

31231

{31213, 32123}

Figure 1.4: The Quotient Graph Gb(σ)

Theorem 1.19 ([3], Theorem 3.1 ). The graphs Gc(σ) and Gb(σ) are bipartite.

Commutation moves and the quotient graph Gc(σ) have been studied extensively.

For example, see [3], [6], [16], or [17]. Less is known about Gb(σ). This is where we

will focus most of our efforts in later sections.

1.3 Young Tableaux and Reduced Words

Definition 1.20. We say that λ = (λ1, . . . , λr) is a partition of the number m into r

parts if λ1 ≥ λ2 ≥ . . . ≥ λr > 0 and m = λ1 + . . .+ λr. We denoted this as λ ` m.
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Definition 1.21. Let λ = (λ1, . . . , λr) be a partition of the number m. A Young

tableau of shape λ is an array of m boxes having r left-justified rows where row i has

λi boxes, 1 ≤ i ≤ r, and the boxes contain the numbers from the set [m].

We will be using what is commonly referred to as English notation for our tableaux,

where λ1 is the largest part of our partition, and the remaining parts/rows are non-

increasing. Consider the tableau in Figure 1.5.

1 2 3

3 4 5

4

Figure 1.5: A Young tableau of shape λ = (3, 3, 1)

Definition 1.22. Let λ ` m. We will have a standard Young tableau of shape λ if

there is a bijection between [m] and the numbers in the Young diagram. Additionally,

the rows and columns must be increasing from left to right, and from top to bottom.

The example in Figure 1.5 is not a standard Young tableau, but the example in

Figure 1.6 is:

1 2 5

3 6 7

4

Figure 1.6: A Standard Young Tableau of Shape λ = (3, 3, 1)

Definition 1.23. Let λ ` m. We define fλ as the number of standard Young tableaux

of shape λ.

Young tableaux are widely studied for representation theory, as well as just for

their own sake. We used [8] and [11] as resources for the basics of Young tableaux.
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We study standard Young tableaux as a representation of the symmetric group.

A well known correspondence between the sets of objects is the Robinson-Schensted-

Knuth Correspondence [12].

Edelman and Greene generalized this correspondence in [5]. They took reduced

words for σ, and generated pairs of tableaux (P,Q). They use a variation on a

standard bumping algorithm to generate the pairs of tableaux. Q will be a standard

Young tableau that keeps track of the order in which the boxes of our diagrams were

created. P will have the letters of a reduced word of σ, and will not necessarily be

standard.

There are formulas that will allow us to calculate how many standard Young

tableaux of shape λ exist. If we wish to study the sizes of sets of reduced words, this

correspondence gives us another way to count the number of elements in R(σ). We

will not formally define the Edelman Greene bumping algorithm here, but we will

look at an example of how to use it to generate the tableaux pairs.

Example 1.24. Consider σ = s1s2s1. We note that R(σ) = {121, 212}, so we will

look at the tableau for each of these words.

(A) Consider first w = 121. We look at the word from right to left. We create the

first boxes in our tableaux pair. Into the tableau on the left we will place the first

letter 1, and on the right we will also place a 1 to signify that this was the first box

created.

1 1

Figure 1.7: Example 1.24 (A): Step One in the Edelman-Greene Correspondence

Next we create another box for each of our tableaux. Because the next letter in

our word, 2, is greater than 1, we create the second box in the same row as the first.

9



We place the letter 2 in the new box in the left tableau. We will also place a 2 in the

equivalent box on the right as the second box created.

1 2 1 2

Figure 1.8: Example 1.24 (A): Step Two in the Edelman-Greene Correspondence

We finish by placing the remaining letter 1 in the box held by 2 in the left tableau.

However, the bumping algorithm will not allow repeated numbers in the same row,

so we increase it to a 2 as well. The bumped 2 will now sit in the second row, in the

new box created for the tableaux. In the right tableau, we place a 3 for the third box

created. We note that the tableau on the right is a standard Young tableau.

1 2 1 2

2 3

Figure 1.9: Example 1.24 (A): Step Three in the Edelman-Greene Correspondence

(B) We repeat this process with the second word, w = 212. Again reading from

right to left, we create the first boxes, and place our first letter 2 in the left diagram,

and the number 1 in the right.

2 1

Figure 1.10: Example 1.24 (B): Step One in the Edelman-Greene Correspondence

We move on to the next letter. Since 1 is less than 2, the letter 1 will bump the

2 from the first row down to the second, which is where our new box will sit in both

tableaux. Because of this bumping, we have two copies of the same tableau:

10



1 1

2 2

Figure 1.11: Example 1.24 (B): Step Two in the Edelman-Greene Correspondence

And finally, we place the last letter 2 at the end of the first row and get the final

pair of tableaux in Figure 1.12.

1 2 1 3

2 2

Figure 1.12: Example 1.24 (B): Step Three in the Edelman-Greene Correspondence

The tableau on the left is the same tableau that we got for the first reduced word.

The tableau on the right is the other standard Young tableau for this staircase shape.

In fact, there are only two standard Young tableau for this staircase shape, and only

two reduced words for σ. This is not a coincidence, and we will discuss this more in

the next section.

1.4 Existing Results

The following results are existing bounds on the various congruence classes in

R(σ).

Proposition 1.25 ([7], Proposition 2.12). |B(σ)| = 1 if and only if σ has a reduced

word of the form i(i + 1)i or of the form i(i + ε)(i + 2ε) · · · (i + kε) for some fixed

ε ∈ {±1} and k ≥ 0.

Theorem 1.26 ([7], Theorem 3.6). For any permutation σ,

|B(σ)|+ |C(σ)| − 1 ≤ |R(σ)| ≤ |B(σ)| · |C(σ)|

11



We have some recursions for the size of the sets we care about, such as the following

result by Elnitsky.

Theorem 1.27 ([6], Proposition 2.3). If σ = [w1 . . . wn] is the identity permutation,

then |C(σ)| = 1. Otherwise,

|C(σ)| =
∑

∅6=A⊂D(σ), |i−j|>1∀i,j∈A

(−1)|A|+1

∣∣∣∣∣C
(
σ
∏
i∈A

si

)∣∣∣∣∣
where D(σ) = {i | wi > wi+1} is the standard descent set for the word σ.

The following recursions are well known results for reduced words and braid

classes.

Theorem 1.28. For σ ∈ Sn,

|R(σ)| =
∑
i∈D(σ)

|R(σsi)|

Theorem 1.29. For σ ∈ Sn,

|B(σ)| =

 ∑
i∈D(σ)

|B(σsi)|

− ∑
i,i+1∈D(σ)

|B(σsisi+1si)|

The following result by Stanley tells us how the Edelman Greene Correspondence

can be used to calculate the size of R(σ).

Theorem 1.30 ([14], Corollary 3.1). Let σ ∈ Sn. Then there exist integers aλ ≥ 0

such that

|R(σ)| =
∑
λ``(σ)

aλf
λ

If σ is vexillary, that is, 2143 pattern avoiding, there is a λ ` `(σ) such that

|R(σ)| = fλ
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This last statement is what we noted in example 1.24, since σ = s1s2s1 is vexillary.

Lastly, we will also use the following result from Reiner on the number of braid

edges in G(w0).

Theorem 1.31 ([9], Theorem 1 ). Let db(v) be the number of braid edges incident to

the vertex v in G(σ). For σ = w0 ∈ Sn,

∑
v∈G(σ)

db(v) = |R(σ)|

Theorem 1.31 was used by Tenner in [17] to find the average number of commu-

tation edges incident to any vertex in G(w0). And in [13], Schilling et. al. used this

result to find the average number of braid edges that are incident to the connected

components in G′c(w0).
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Chapter 2

SUBGRAPH STRUCTURES

As n becomes larger, and we consider longer permutations σ ∈ Sn, the set R(σ)

can become extremely large. This means that we would like to be able to break up

the set R(σ) into smaller, more manageable pieces. If we knew how to consider those

smaller pieces, we would be able to make general statements about the larger set. For

this reason, we will consider induced subgraphs inside G(σ).

We have not found much information in the existing literature about relationships

between the sets R(σ) and R(τ) when τ l σ in the weak order. So we will begin by

considering these graphs, G(σ) and G(τ), and the relationships between them.

2.1 Subgraphs and the Number of Edges in G(σ)

Definition 2.1. An induced subgraph H of G is such that V (H) ⊂ V (G) and E(H)

is defined as the subset of E(G) that have both end points in V (H). We will denote

this subgraph relation in the standard way: H ≤ G.

Proposition 2.2. Let σ, τ ∈ Sn, n ≥ 2 such that τ l σ in the weak order lattice.

Then G(τ) is an induced subgraph of G(σ).

Proof. If τ l σ in the weak order lattice, then there is some i ∈ D(σ) such that

τsi = σ. Let t ∈ R(τ). Then ti ∈ R(σ). This is how we will consider R(τ) as a subset

of R(σ).

In fact, this is also how we can consider G(τ) as a subgraph of G(σ). If there is a

commutation edge from t1 to t2 in G(τ), then there is a commutation edge from t1i

to t2i in G(σ). The same applies for braid edges in G(τ). This is how we map edges

from G(τ) to G(σ).
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Additionally, we can look at V (G(τ)) as a subset of V (G(σ)), and consider an

edge in G(σ) incident to two vertices contained in V (G(τ)). This edge must already

be contained in G(τ), because any commutation or braid move is happening between

words in R(τ), since these vertices are of the form τ1si and τ2si.

Therefore, G(τ) is an induced subgraph of G(σ).

Corollary 2.3. Let σ, τ ∈ Sn, n ≥ 2 such that τ ≤ σ in the weak order lattice. Then

G(τ) is an induced subgraph of G(σ).

Proof. Consider the chain in the weak order lattice

τ l τ1 l τ2 l . . .l τk l σ

where each element in the chain covers the previous element. We know such a chain

exists because τ ≤ σ. From the previous proposition, we can construct the following

chain of induced subgraphs:

G(τ) ≤ G(τ1) ≤ G(τ2) ≤ . . . ≤ G(τk) ≤ G(σ)

So we have that G(τ) ≤ G(σ).

Corollary 2.4. Let τ ∈ Sn, n ≥ 2. Then G(τ) is an induced subgraph of G(w0).

Proof. This result is an immediate consequence of the previous corollary.

We now have a way to break G(σ) into subgraphs. Using this new method, we

can now begin to ask questions about the braid edge and commutation edge degrees

for vertices v in G(σ).

Definition 2.5. Let σ ∈ Sn. For G(σ), we define db(v) to be the braid edge degree

of a vertex v. That is, db(v) counts the number of braid edges incident to v in the

graph G(σ).
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Definition 2.6. Let σ ∈ Sn. For G(σ), we define dc(v) to be the commutation edge

degree of a vertex v. That is, dc(v) counts the number of commutation edges incident

to v in the graph G(σ).

Definition 2.7. Let σ, τ ∈ Sn be such that `(σ) = `(τ) = l. Let si1si2 . . . sil be

a reduced decomposition of σ. We say that σ and τ are equivalent if there exists

a reduced decomposition of τ , sj1sj2 . . . sjl such that ia − ia+1 = ja − ja+1 for all

1 ≤ a < l. The existence of one such pair of matched decompositions will mean that

there is a way to match both sets of reduced words with each other, and that this

equivalence is on the sets of reduced words for the two permutations.

For example, τ = [321456] and σ = [123654] are equivalent permutations because

we can match 5 with 2 and 4 with 1 in order to get a matching between the reduced

decompositions s2s1s2 and s5s4s5. This will also extend to the other elements in R(τ)

and R(σ).

Definition 2.8. Let w
(k,i)
0 be defined as follows

w
(k,i)
0 =

 1 . . . i− 1 i i+ 1 . . . i+ k − 1 i+ k . . . n

1 . . . i− 1 i+ k − 1 i+ k − 2 . . . i i+ k . . . n


Note that w

(k,i)
0 ∈ Sn is equivalent to w0 in Sk, where k ≤ n. We are allowed to

say these are equivalent in Sn because Sk is a subgroup of Sn for all 2 ≤ k ≤ n.

We also note that si will be the transposition with the smallest index in the reduced

decomposition for w
(k,i)
0 . This tells us that the descent set will be {i, i+1 . . . , i+k−2},

which we will sometimes refer to using the interval notation [i, i+ k − 2].

For example, s1s2s1 ∈ S6 and s4s5s4 ∈ S6 are both equivalent to w0 ∈ S3, but

we would write them as

w
(3,1)
0 =

 1 2 3 4 5 6

3 2 1 4 5 6

 , and w
(3,4)
0 =

 1 2 3 4 5 6

1 2 3 6 5 4


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For a permutation σ ∈ Sn, we want to look at the degree of a vertex u in G(σ).

This vertex can also be considered as part of an induced subgraph G(τ), where τsi =

σ, and `(τ) = `(σ)− 1. We will denote this as u = ui, where u ∈ R(τ) and u ∈ R(σ).

We note that the degree of u in G(σ) could be larger than the degree of u in G(τ).

We would like to find a way to relate
∑

u∈G(τ) db(u) and
∑

u∈G(σ) db(u).

Example 2.9. Let σ, τ ∈ Sn. Recall from Theorem 1.28 that we can partition R(σ)

over the descent set. We partition into disjoint subsets R(σsi) where i ∈ D(σ).

Each R(σsi) forms the vertex set for the induced subgraph G(σsi). This also

tells us that for a reduced decomposition of σ, this final si determines which induced

subgraph the vertex is contained in. From Proposition 2.2, we also note that any edge

between words of the form wsi and vsj where i 6= j will not be properly contained in

any of the induced subgraphs.

Consider w0 ∈ S4. The graph G(w0) has been drawn in Figure 2.1.

(12132)1 (12312)1

(12321)2

(13231)2

(13213)2(31231)2

(31213)2

(32123)2

(32132)3(32312)3

(21232)1

(21323)1

(23123)1 (21321)3

(23121)3

(23212)3

Figure 2.1: The Graph G(w0) for w0 ∈ S4
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The induced subgraphs highlighted in different colors: G(w0s1) is drawn black,

G(w0s2) in blue, and G(w0s3) in red. There are also four edges in green that only

appear in G(w0).

The edges between subgraphs are what we are particularly interested in. We will

now focus on counting how many of these edges will exist in G(σ).

Proposition 2.10. Let σ ∈ Sn, and i, j ∈ D(σ). Suppose that wsi, usj ∈ R(σ),

where w ∈ R(α), u ∈ R(β) and α, βlσ. Suppose that (wsi)− (usj) is an edge in the

graph G(σ).

1. If u 6= w, but i = j, then α = β and the edge appears in the induced subgraph

G(α).

2. If i 6= j, then the vertices appear in two disjoint subgraphs of G(σ), and so this

edge is not properly contained in any induced subgraph.

Proof. Case 1 was already proven in Proposition 2.2. For Case 2, if i 6= j, then wsi

appears in R(σsi), which is disjoint from R(σsj) which contains usj. This means that

the two vertices appear in disjoint induced subgraphs. Thus the edge (wsi) − (usj)

connects the two subgraphs in G(σ), but is not properly contained in either one.

Now that we have a better idea of what edges appear only in G(σ) and not in any

of the induced subgraphs, we have the following proposition:

Proposition 2.11. Let σ, τ ∈ Sn, n ≥ 2 such that τ l σ in the weak order lattice.

Suppose that τsi = σ, where i ∈ D(σ).

1. If i−1, i, i+1 ∈ D(σ), then there are |R(σsisi+1si)|+|R(σsisi−1si)| braid edges

incident to the vertices of G(τ) that are not contained in the induced subgraph

G(τ).
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2. If only i, i+ 1 ∈ D(σ), (or i− 1, i ∈ D(σ)), then there are |R(σsisi+1si)| braid

edges incident to the vertices of G(τ) that are not contained in the induced

subgraph G(τ).

3. If neither of these cases is true, then the only braid edges incident to the vertices

of G(τ) are the braid edges that are incident to two vertices from G(τ).

Proof. Consider σ, τ ∈ Sn such that τ l σ, and suppose that i, i + 1 ∈ D(σ) and

σsi = τ .

Note that since i, i + 1 ∈ D(σ), then σ = [a1 . . . an] will be such that ai > ai+1 >

ai+2. We can consider σsi = [. . . ai+1aiai+2 . . .], and σsi+1 = [. . . aiai+2ai+1 . . .]. We

note that i ∈ D(σsi+1) and i + 1 ∈ D(σsi). We can continue in this manner to get

the portion of weak order lattice in Figure 2.2.

σ

σsi σsi+1

σsisi+1

σsisi+1si

σsi+1si

Figure 2.2: When i, i+ 1 ∈ D(σ), We Have This Sublattice In W (Sn)

Let α = σsisi+1si so that σ = αsisi+1si. Equivalently, we have that σ =

αsi+1sisi+1.

We want to be able to count the number of reduced words of σ that have a braid

move in those last three positions that use the letters i and i+1. This means we really

need to count the number of ways we can write α. This will simply be |R(σsisi+1si)|.

We note that all vertices that end in the letters i, i+ 1, i will be contained in the

subgraph G(σsi), where τ = σsi. All vertices that end in the letters i + 1, i, i + 1
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will be contained in the subgraph G(σsi+1). Then the number of braid edges between

these subgraphs will be equal to |R(σsisi+1si)|.

The same reasoning allows us to conclude that if i− 1, i, i+ 1 ∈ D(σ), there are

|R(σsisi+1si)|+ |R(σsisi−1si)| “new” braid edges incident to vertices in G(τ).

Similarly, if we cannot write σ = αsisi±1si for this particular i, then the only pos-

sible braid edges that can be incident to the vertices of G(τ) must be fully contained

in the induced subgraph.

The following is an immediate consequence of Proposition 2.11.

Corollary 2.12. Let σ ∈ Sn. Then

∑
v∈G(σ)

db(v) =

 ∑
i∈D(σ)

∑
u∈G(σsi)

db(u)

+ 2 ·
∑

i,i+1∈D(σ)

|R(σsisi+1si)|

where we consider db(u) in G(σsi) on the right hand side, and u = ui ∈ G(σ) on the

left hand side.

This is a brand new way to count the number of braid edges in a graph of a set of

reduced words. Now we have methods of breaking G(σ) into subgraphs, and a way to

count the braid edges in G(σ). Since we want to understand the congruence classes

in B(σ), this is a step closer to that goal.

Because the arguments are very similar, we decided to prove a similar result that

will allow us to count the number of commutation edges in G(σ).

Proposition 2.13. Let σ, τ ∈ Sn, n ≥ 2 such that τ l σ in the weak order lattice.

Suppose that τsi = σ, where i ∈ D(σ). Let Ii = {j | j ∈ D(σ) and |j − i| > 1}.

1. If Ii 6= ∅, then there are
∑

j∈Ii |R(σsisj)| commutation edges incident to the

vertices of G(τ) that are not contained in the induced subgraph.
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2. If Ii = ∅, then the only commutation edges incident to the vertices of G(τ) are

the commutation edges that are incident to two vertices from G(τ).

Proof. Consider σ, τ ∈ Sn such that τ l σ. Suppose that i, j ∈ D(σ) are such that

|i− j| > 1, and σsi = τ .

Since i, j ∈ D(σ), and letters i and j commute with each other, there exist reduced

decompositions of σ such that σ = αsisj and σ = αsjsi. We want to be able to count

the number of reduced words of σ that have a commutation move in those last two

positions that use the letters i and j. This means we really need to count the number

of ways we can write α. This will simply be |R(σsisj)|.

We note that all vertices that end in the letters j i will be contained in the

subgraph G(σsi), where τ = σsi. All vertices that end in the letters i j will be

contained in the subgraph G(σsj). Then the number of commutation edges between

these subgraphs will be equal to |R(σsisj)|.

The same reasoning allows us to conclude that for all k ∈ Ii, then there are

|R(σsksi)| “new” commutation edges incident to vertices in G(τ).

Similarly, if Ii = ∅ then we cannot write σ = βsjsi = βsisj for this particular i,

then the only possible commutation edges that can be incident to G(τ) must be fully

contained in the induced subgraph.

The following is an immediate consequence of Proposition 2.13.

Corollary 2.14. Let σ ∈ Sn. Then if dc(v) counts the number of commutation edges

incident to v in G(σ),

∑
v∈G(σ)

dc(v) =

 ∑
i∈D(σ)

∑
u∈G(σsi)

dc(u)

+ 2 ·
∑

i,j∈D(σ) i−j>1

|R(σsjsi)|

where we consider db(u) in G(σsi) on the right hand side, and u = ui ∈ G(σ) on the

left hand side.
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Now that we have a way to count both types of edges over induced subgraphs, we

need to consider the types of induced subgraphs we could encounter.

2.2 The Weak Order Lattice

In addition to understanding the number of new braid or commutation edges we

will have in G(σ), we want information about what types of induced subgraphs we

might be dealing with. What sorts of permutations might we have for τ l σ? We

already know a certain amount about w0 ∈ Sn, so we ask if we will ever encounter a

graph G(σ) where multiple subgraphs are equivalent to a G(w
(k,i)
0 ) for some k, i ∈ N.

If we look at Figure 1.1, we see that w
(3,1)
0 and w

(3,2)
0 are both present in the lattice.

We also note that they do not cover the same permutations, and they are not covered

by the same permutations. This leads us to the following proposition.

Proposition 2.15. Let σ ∈ Sn be such that σ is not equivalent to a w
(k,i)
0 , for k > 2.

Further suppose that it is not covered by a permutation equivalent to w
(k,i)
0 for any i.

The permutations covered by σ are {σsj | j ∈ D(σ)}.

1. There exists k, i such that σsj is equivalent to w
(k,i)
0 for at most one j,

2. There exists k, i,m and i ≤ m ≤ i + k − 1 such that σsj is equivalent to a

w
(k,i)
0 sm for at most one j.

Proof. This will come from the descent sets for each σsj, and the lattice structure of

W (Sn). We will consider σsx and σsy for x, y ∈ D(σ). Let `(σ) = l.

1. Suppose that σsx = w
(kx,i)
0 and σsy = w

(ky ,j)
0 . Since these permutations each

have the same length, l − 1, kx = ky while the minimum index i and j could be

distinct.

Consider σsx first. We can draw part of the weak order lattice containing σ and

σsx in order to get an idea of what the descent sets must look like.
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σ

σsx = w
(k,i)
0 σsy = w

(k,j)
0

w
(k,i)
0 si+k−2. . .w

(k,i)
0 si

Figure 2.3: Proposition 2.15 Part 1

We write D(σsx) = {i, i + 1, . . . , i + k − 2}. Let A ⊂ [n] such that x ∈ A,

A∩[i, i+k−2] = ∅ and {i−1, i+k−1} ⊂ A. We note that x could be i−1 or i+k−1,

and we could end up with D(σ) = [i, i+k−3]∪{x}, or D(σ) = [i+1, i+k−2]∪{x}.

However, in both of these cases, y ∈ D(σ) would be such that D(σsy) 6= D(w
(k,i)
0 ) for

any i, k.

Since D(σsy) only contains consecutive elements, this tells us two things: (i) x

must be either i− 1 or i+ k − 1, and (ii) D(σ) = D(σsx) ∪ {x}.

Similar reasoning tells us that in order for D(σsx) to only contain consecutive

elements then y must either equal x, or one of the following: if x = i + k − 1, then

y = i and if x = i − 1, then y = i + k − 2. Without loss of generality, consider

D(σ) = {x = i− 1, i, i+ 1, . . . , i+ (k − 2) = y}.

Then since we claim both σsx and σsy are equivalent to w
(k,j)
0 for some j, we

have that σsx = w
(k,i)
0 and σsy = w

(k,i−1)
0 . This also means we know two different

reduced decompositions for σ using decompositions for the w
(k,j)
0 ’s that we discussed

in Chapter 1: (sxsi . . . si+k−3 . . . sxsisx)sy and (sisi+1 . . . sy . . . sisi+1si)sx.

But this means

σ =

 1 . . . i− 1 i i+ 1 . . . i+ k − 2 i+ k − 1 . . . n

1 . . . i+ k − 1 i+ k − 3 i+ k − 4 . . . i− 1 i+ k − 2 . . . n


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and

σ =

 1 . . . i− 1 i i+ 1 . . . i+ k − 2 i+ k − 1 . . . n

1 . . . i i+ k − 1 i+ k − 2 . . . i+ 1 i− 1 . . . n


which are not equivalent permutations. In fact, the only way we could have both

reduced decompositions for σ is if k = 2, and σ = sxsy. Since we assume k > 2, σ

can only cover at most one permutation equivalent to w
(k,i)
0 for some i.

2. Since the meet and join of a lattice are well defined, if σsx and σsy are covered

by the same τ ≡ w
(k,i)
0 , then σ = τ . So they must be covered by different τ ’s: w

(k,i)
0

and w
(k,j)
0 . We can draw a picture of the part of the weak order lattice that contains

these permutations:

σw
(k,i)
0 w

(k,j)
0

σsx σsy

Figure 2.4: Proposition 2.15 Part 2

We know that D(w
(k,i)
0 ) = {i, i+1, . . . , i+k−2}, and that x cannot be an element

in this set. Let σsx = w
(k,i)
0 sa. Then we know that D(σsx) = D(w

(k,i)
0 ) − {a}, and

that x 6= a. Similarly, D(σsy) = D(w
(k,j)
0 )− {b} for y 6= b, where σsy = w

(k,i)
0 sb.

So we have σ = (w
(k,i)
0 sa)sx = (w

(k,j)
0 sb)sy. As before, without loss of generality,

let a = i and b = j, and we would then write σ as

σ =

 . . . i i+ 1 . . . i+ k − 1 i+ k . . . x x+ 1 . . .

. . . i+ k − 2 i+ k − 1 . . . i i+ k . . . x+ 1 x . . .



σ =

 . . . j j + 1 . . . j + k − 1 j + k . . . y y + 1 . . .

. . . j + k − 2 j + k − 1 . . . j j + k . . . y + 1 y . . .


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Even allowing for any other a ∈ D(w
(k,i)
0 ) and b ∈ D(w

(k,j)
0 ), we note that the only

way that we can have this equality is if k = 2, a = b, and i = j, a contradiction.

Therefore, at most one of the σsj’s can be covered by a w
(k,i)
0 for some i.

We want to compare
∑

v∈G(σ) db(v) with |R(σ)|. From Theorem 1.31, we know

that for w0 ∈ Sn, these two quantities are equal. From our work with Corollary 2.12,

we know how we will be adding braid edges as we go up the weak order lattice. And

we have just shown that a permutation can cover at most one element equivalent to

w
(k,i)
0 , which could be helpful when trying to prove that w0 “maximizes” the braid

edge degrees in its related graph.

We have now finished answering our initial questions about subgraphs in G(σ).

We had looked for existing results on subgraphs in order to answer questions about

the number of braid classes in R(σ). When we were unable to find the answers to our

questions, we produced the work in this chapter. After finding these new formulas

and other results, we were able to answer some of those original questions on braid

classes. Those new results will be discussed in detail in Chapter 4.
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Chapter 3

RATIOS OF SETS OF REDUCED WORDS

As in the last chapter, we are interested in a relationship between the structures

of the sets R(τ) and R(σ) when τ l σ in the Weak Order Lattice. In this chapter,

we are concerned with relationships between the sizes of these sets.

As we have noted before, we have a lot of information about w0 ∈ Sn, but less

information about an arbitrary permutation. We want to have some idea of how large

our induced subgraphs can get. For example, will we ever have a subgraph G(σsi),

i ∈ D(σ), that is significantly larger that all other subgraphs?

The difficulty is that there are relatively few known relationships between these

sets. What is known was discussed in Chapter 1. Another difficulty is that we have

to know more about σ in order to make assumptions about the structure of G(σ), and

how that might relate to the relative size of G(σsi). We will discuss some of these

challenges first, followed by new results about different families of permutations.

3.1 Examples and Difficulties

For this next section, we will look at constructing R(σ) from an inductive point

of view. We will then use this understanding of the set to prove results about the

relationship between |R(σ)| and |R(τ)| when τ l σ.

Consider a permutation σ ∈ Sn. We know that we can look at i ∈ D(σ), and

consider σ = τsi for some τ ∈ Sn. We can use this structure of σ in order to build

words in R(σ) from words t ∈ R(τ) by appending the letter i in the right most spot.

In addition to this sort of embedding of R(τ) ⊂ R(σ), which we discussed in Chapter

2, we would like to go further, and construct all of R(σ).
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Since ti ∈ R(σ), we can generate all words in R(σ) by considering all the commu-

tation and braid moves possible between letters of t, and i. In particular, we want to

be able to keep track of i, and so we will define the following:

Definition 3.1. Let σ ∈ Sn be such that σ = sa1sa2 . . . sal , where `(σ) = l. We say

that i is in the support of σ if i = aj for some 1 ≤ j ≤ l.

For a reduced word w ∈ R(σ), we will refer to letters j in position x, where

1 ≤ x ≤ l.

For i ∈ D(σ), define C
(i)
x as the collection of reduced words of σ where this

particular letter i sits in position x.

For an arbitrary permutation, any element i ∈ D(σ) will be in the support of σ,

but not all elements in the support of σ will appear in D(σ).

For any t ∈ R(τ), C
(t)
`(σ) is well defined, as i does not need to commute anywhere

for the word ti to be in R(σ).

Example 3.2. Let σ = [153264] = s4s2s3s2s5 where D(σ) = {2, 3, 5}. Since there

are three descents, we will look at three different inductive constructions of R(σ).

Case 1: We can consider τ1 = s4s2s3s2, where σ = τ1s5. We note that the only

braid moves for σ come from braiding elements in τ1, and that our extra transposition

s5 is not part of any braid moves. So we build R(σ) in a very straightforward manner.

We see that R(τ1) = {4232, 4323, 2432}. We can take each of these words for τ1

and build the set R(σ). We will use the notation in Definition 3.1 to keep track of

how we formed the words from t ∈ R(τ1) and 5. Let C
(5)
t be the collection of reduced
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words of R(σ) with 5 in position t. Then we have the following collection of C
(5)
t ’s:

C
(5)
5 = {42325, 43235, 24325}

C
(5)
4 = {42352, 43253, 24352}

C
(5)
3 = {42532, 43523, 24532}

C
(5)
2 = {45232, 45323}

The number of reduced words of σ we get from an element in R(τ1) relies on

where 4 is sitting in the word, as it is the only element that does not commute with

5. Additionally, there are restrictions on how far right 4 can go in a word t, since

there are elements in the support of τ1 that do not commute with 4. We will return

to this difficulty later on.

We also note that in each word of σ, the letters from t appear in the same order

as they did in their original word for τ1.

Case 2: Next we have τ2 = s4s2s3s5 where σ = τ2s2. We see that there are

no braid moves between elements in R(τ2). However, there are braid moves between

elements in R(σ). This means that s2 will be used in all braid moves between elements

of R(σ). This is the difficulty that we remarked on after Definition 3.1.

We want to still keep track of where 2 sits in the word, and build the sets C
(2)
t

based on that information. However, after a braid move we will try to keep track of

the right most 3 that 2 has been replaced with. We will color this letter in red after

a braid move. We will denote these sets of reduced words of σ as C
(2)
t
′.

This makes our job of building up to R(σ) more difficult. We can use the same

method as before, but we will have to also take into account some special words.

Note that R(τ2) = {4235, 2435, 2453, 4253, 4523}. Then we have
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C
(2)
5 = {42352, 24352, 24532, 42532, 45232}

C
(2)
4 = {42325, 24325}

C
(2)
5
′ = {45323, 43523, 43253}

C
(2)
4
′ = {43235}

We note that for any word with a highlighted 3, the letters from t ∈ R(τ2) appear

in a different order than they did in the original word. We also see that there is a

special symmetry for words where s2 is part of a braid move.

Case 3: Finally we have τ3 = s4s3s2s5 where σ = τ3s3. Once again, we will have

to use s3 in order to get the braid moves for words in R(σ).

Note that R(τ3) = {4325, 4352, 4532}. Already we expect to have more words for

σ similar to the special word from Case 2. We know that there are words in R(σ)

that do not have s4 as the left-most transposition. We have the following:

C
(3)
5 = {43253, 43523, 45323}

C
(3)
4 = {43235}

C
(3)
5
′ = {45232, 42532, 24532, 42352, 24352}

C
(3)
4
′ = {42325, 24325}

It is a bit easier to see what is happening in this case. In words for R(τ3), we have

letters that cannot commute with each other, but by a braid move that uses 3, we

have something that acts like a commutation move on those factors of τ3.

We can now sum up all of our cases as follows: for permutations σ and τi

|R(τ1)| ≥
1

4
|R(σ)| |R(τ2)| ≥

1

3
|R(σ)| |R(τ3)| ≥

1

4
|R(σ)|
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As we move forward in the chapter, we will be looking for bounds that will ap-

proach the bounds that we found in this example. However, we will need to be careful

considering the difficulties we had in keeping track of the letters in cases 2 and 3.

3.2 Fully Commutative Permutations

There are families of permutations where the number of reduced words is easily

counted without requiring the aid of another combinatorial objects. One such family

is fully commutative permutations. Recall Definition 1.5 on pattern avoidance.

Definition 3.3. A permutation σ ∈ Sn is call fully commutative if it is 321 pattern

avoiding. That is, there are no braid edges in G(σ).

Example 3.4. We note that σ = [23418567] = s1s2s3s7s6s5 is fully commutative,

while τ = [24318567] = s1s2s3s7s6s5s2 is not.

While looking at fully commutative permutations σ ∈ Sn, we began to study the

types of simple transposition blocks that could be present in a reduced decomposition.

Consider the following reduced decompositions:

s4s5s3s4, s1s2s3s4s5, and s1s3s5

All of these reduced decompositions produce fully commutative permutations. Addi-

tionally, we can combine these patterns and still produce fully commutative permu-

tations. For example, consider the following reduced decomposition:

s6s5s7s6s4s3s2s1s10s14

These combinations of simple transposition blocks leads us to the following re-

mark.

Remark 3.5. A reduced decomposition of a fully commutative permutation may con-

tain combinations of simple transposition blocks of the following forms:
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1. Let ε ∈ {±1} be fixed. Then we consider sisi+εsi+2ε . . . si+kε.

2. Let I be an index set where all i, j ∈ I are such that |i − j| > 1. Then each

pair of elements si1 , si2 with i1, i2 ∈ I commute completely with each other.

3. For 2 ≤ i ≤ n− 2, consider sisi+1si−1si.

Unfortunately, this leads to many possible varieties of permutations. We will focus

on certain subfamilies to help us attempt to understand the structure of R(σ) for an

arbitrary fully commutative permutation σ.

Definition 3.6. Let σ ∈ Sn be such that σ = sa1sa2 . . . sal . We will call σ completely

commutative if it is of type 2 from Remark 3.5. That is, if there are no pairs of indices

ai, aj such that |ai − aj| = 1.

Lemma 3.7. Let σ ∈ Sn be completely commutative, containing only patterns of

type 2 from Remark 3.5. Then |R(w)| = l! where `(σ) = l. Furthermore, for all

i, j ∈ D(w), |R(wsi)| = |R(wsj)|.

Proof. Since each sai commutes with each of the other saj ’s in the factorization of σ,

each of the l positions in w, there are no restrictions on which factor can be in that

spot. Therefore, there are l! ways to write σ.

From Theorem 1.28, we know that |R(σ)| =
∑

i∈D(σ) |R(σsi)|. For each i ∈ D(σ),

`(σsi) = l− 1. Additionally, each σsi is completely commutative as well. So, we have

|R(σsi)| = (l − 1)! for all i ∈ D(σ), as desired.

We can also have permutations that are almost completely commutative.

Proposition 3.8. Let σ ∈ Sn be written as σ = sa1sa2 . . . sal, where `(σ) = l.

Suppose there is a unique pair of indices ai, aj such that |ai−aj| = 1. Without loss of
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generality, suppose that sai appears to the left of saj in the factorization of σ. Then

|R(σ)| =
l∑

k=2

(k − 1) · (l − 2)! =
l!

2

Furthermore, for all ax ∈ D(σ) such that ax 6= aj, ai, then

|R(σsax)| =
l−1∑
k=2

(k − 1) · (l − 3)!

If ax = aj, ai, then |R(σsax)| = (l − 1)!.

Proof. For the first claim, we note that sai and saj are the only factors that do not

commute with each other. Let saj sit in position k, where 2 ≤ k ≤ l. Then sai has

k − 1 positions to the left of saj that it can sit in. Additionally, all other factors of

w have complete freedom around sai and saj . Thus there are (k − 1) · (l − 2)! ways

to write w when saj appears in position k. Vary over all possible k and we get the

desired size of |R(σ)|.

Using this result, we get the size of |R(σsax)| =
∑l−1

k=2(k − 1) · (l − 3)!. Using the

previous proposition, we know that if we do not have any restrictions on what the

factors can commute with, then |R(σ)| = l!. So, if ax = aj or ai, (depending on which

is the larger integer), then wsax will not have any restrictions on commutation. Thus,

we have |R(σsax)| = (l − 1)! as desired.

At this point, we have run through all of the families of fully commutative permu-

tations where the size of R(σ) is easy to calculate. We will move onto more complex

families of permutations now.

Definition 3.9. A permutation is called Grassmannian if it has a unique descent.

These types of permutations must have the following structure:

σ = [a1 a2 . . . ai b1 b2 . . . bj]
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where ax < ax+1 for all 1 ≤ x ≤ i, ai > b1, and by < by+1 for all 1 ≤ y ≤ j.

Permutations of type 1 and type 3 in Remark 3.5 are Grassmannian. The fol-

lowing propositions tells us more about the sets of reduced words for Grassmannian

permutations.

Proposition 3.10. Let σ ∈ Sn be written as σ = τsb. If ε ∈ {±1}, and τ is of the

form sisi+εsi+2ε . . . si+kε, and b = i+ (k + 1)ε, then

|R(τ)| = |R(σ)| = 1

For permutations with larger sets of reduced words, we have the following.

Proposition 3.11. Suppose that σ ∈ Sn is Grassmannian, with descent i. Then

|R(σ)| = |R(σsi)|.

Proof. Since |R(σ)| =
∑

i∈D(σ) |R(σsi)|, and |D(σ)| = 1, we have that |R(σ)| =

|R(σsi)| as desired.

Now that we have a better understanding of the structure of fully commutative

permutations, we are prepared to prove the following proposition.

Proposition 3.12. Let σ ∈ Sn be fully commutative. Then for i ∈ D(σ) and

`(σ) = l,

|R(σsi)|
|R(σ)|

≥ 1

l

Proof. Consider σ = τsi where i ∈ D(σ).

First we note that since σ is fully commutative, the letter i will not be a part of

any braid moves. Thus, it either commutes with a letter in t ∈ R(τ), or it does not.

Consider all possible sets C
(i)
x , where i sits in position x in words of σ. We know

that σ = τsi, so we have at least one way to place i: ti for any t ∈ R(τ). Thus C
(i)
l

is non-empty, and |R(τ)| = |C(i)
l |.
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Note that for any x, because i can only commute with other letters, |C(i)
x | ≤ |R(τ)|.

Then since

R(σ) =
⋃

1≤x≤l

C(i)
x

we have that

|R(σ)| ≥ l · |R(τ)|

If there is a letter in τ that will not commute with i, the inequality would be strict.

Therefore, for any i ∈ D(σ),

|R(σsi)|
|R(σ)|

≥ 1

l

as desired.

This bound for fully commutative permutations will be sharp, because we have

equality in Lemma 3.7.

3.3 Vexillary Permutations

Consider σ, τ ∈ Sn such that τlσ, and `(σ) = l. Then we note that from Stanley

[14], we have

|R(τ)| =
∑
λ`l−1

aλf
λ and |R(σ)| =

∑
µ`l

aµf
µ

where aλ, aµ ∈ Z≥0.

In the previous section, we were able to find a lower bound for ratios of fully

commutative elements. Using tableaux and the results from Stanley, we can arrive

at the following lower bound for sets of reduced words of vexillary permutations σ.

Proposition 3.13. Let σ, τ ∈ Sn such that τ l σ, and let `(σ) = l. If both σ and τ

are vexillary, then

|R(τ)|
|R(σ)|

≥ 1

l
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Proof. If both permutations are vexillary, then there exist tableaux λ and µ such that

|R(τ)| = fλ =
(l − 1)!∏
(i,j)∈λ hi,j

and |R(σ)| = fµ =
l!∏

(i,j)∈µ hi,j

where the h(i,j)’s are the hook length numbers that count the number of cells below,

to the right of, and including the cell in row i and column j.

Note that additionally, λl µ, so
∏

(i,j)∈λ hi,j ≤
∏

(i,j)∈µ hi,j. Then,

|R(τ)|
|R(σ)|

=
fλ

fµ

=
(l − 1)!∏
(i,j)∈λ hi,j

·
∏

(i,j)∈µ hi,j

l!

=
1

l
·
∏

(i,j)∈µ hi,j∏
(i,j)∈λ hi,j

≥ 1

l

We have found the same lower bound for fully commutative and vexillary permu-

tations.

Because of our interest in w0 ∈ Sn, we are very interested in understanding

vexillary permutations. Thus, we will work towards a better bound for some vexillary

permutations.

Suppose that both τ and σ are vexillary permutations, with τlσ. For a removable

border box in the diagram for σ, we note that we have the following ratio:

|R(τ)|
|R(σ)|

=
a1 · a2 · · · · · aj · b1 · b2 · · · · · bk

(a1 − 1)(a2 − 1) · · · (aj − 1)(b1 − 1)(b2 − 1) · · · (bk − 1)

where the ai’s are the hook lengths from the column we removed the box from, and

the bi’s are the hook lengths from the row we removed the box from. This leads us

to the following remark.
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Remark 3.14. While the bound of 1
l

is achieved by certain types of fully commutative

permutations, including completely commutative permutations, we do not expect that

it will be attained by most vexillary permutations. In particular, i ∈ D(σ) would need

to commute with everything else in the support of σ in order to achieve this bound.

From the above remark, we will consider a better bound for w0 and the elements

it covers in the weak order lattice.

We know the hook length numbers for the staircase tableau, so we should be able

to 1) find calculations for any of the ratios between |R(w0)| and |R(w0si)|, and 2)

find which one of these ratios will be the smallest. Removal of the box from row 1

and row n− 1 will give the smallest ratios.

Proposition 3.15. For w0 ∈ Sn, n ≥ 3, j ∈ D(w0), we know that `(w0) =
n(n− 1)

2
,

so

|R(w0sj)|
|R(w0)|

≥
∏n−1

i=1 2i− 1∏n−2
i=1 2i

· 2

n(n− 1)

With equality for j = 1 and j = n− 1.

Proof. The formula above is exactly the calculation for hook length ratios when j = 1

and j = n− 1. We claim that this is also the minimum of all such ratios.

Consider removing the border box from row 2. Here is where the calculation will

differ:

|R(w0sj)|
|R(w0)|

≥ 3 ·
∏n−2

i=1 2i− 1

2 ·
∏n−3

i=1 2i
· 2

n(n− 1)

It has the same number of factors, but

3

2
>

2n− 3

2n− 2

Similar replacements happen in every row except for rows 1 and n− 1.
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3.4 Other Permutations

Fully commutative and vexillary permutations are well-studied families, which is

why we considered them first. Now we move into arbitrary permutations that contain

braid moves, but are not vexillary.

First we note that one of our results, Lemma 3.7 can be weakened and generalized

for permutations containing braid moves.

Corollary 3.16. Let σ ∈ Sn be written as σ = τ sb and let `(σ) = l. If |b − i| > 1

for all si in the support of τ , then

|R(τ)| = 1

l
|R(σ)|

Note that when involving a braid move, we maximize |R(σ)| if i(i+ 1)i commutes

with everything else in the support of σ. Consider for example σ = s2s3s1s2s1 with

five reduced words versus ω = s4s5s1s2s1 with twenty.

Proposition 3.17. Let σ ∈ Sn be written as σ = τsisi+1si where `(τ) = `(σ) − 3.

Let `(σ) = l. If si and si+1 commute with every sj in the support of τ , then

|R(σsi)|
|R(σ)|

≥ 1

l

Proof. Fix a decomposition of τ , and consider specifically i ∈ D(σ). We want to

compare |R(σ)| and |R(σsi)|.

Suppose that for every sj in the decomposition of τ , |i− j| > 1 and |i+1− j| > 1.

Then we have (
l

3

)
· 2

ways to place sisi+1si. Therefore, we have

|R(σ)| = |R(τ)|
(
l

3

)
· 2
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For σsi, we construct a similar argument. For a fixed decomposition of τ , we have(
l − 1

2

)
ways to place sisi+1. Therefore,

|R(σsi)| = |R(τ)|
(
l − 1

2

)
and thus

|R(σsi)|
|R(σ)|

=
|R(τ)|

(
l−1
2

)
|R(τ)|

(
l
3

)
· 2

=
(l − 1)!

2!(l − 3)!

3!(l − 3)!

2 · l!

=
3

2 · l
≥ 1

l

For an arbitrary permutation with braid moves, we can use a similar argument to

what we used for fully commutative permutations in Proposition 3.12, but the bound

is worse.

Proposition 3.18. Let σ ∈ Sn be written as σ = τsisi+1si where `(τ) = `(σ) − 3.

Let `(σ) = l. Then,

|R(σsi)|
|R(σ)|

>
1

2(l − 2)

Proof. Fix a reduced decomposition for σ that ends in si on the right. We know that

si can be used in a braid move, because σ = τsisi+1si = τsi+1sisi+1.

Recall cases 2 and 3 from Example 3.2. For any decomposition where i can

commute to the left and be in an additional braid move, we could have i+1 commute

back out to the right, producing reduced words for σ that are not simply letters of
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reduced words w ∈ R(ω) with i in position x. In fact, so long as i did not have to

commute past i+ 2, this has the potential to double the number of reduced words of

σ we could get from a single reduced word of ω.

The maximum number we could get from one decomposition would be if we com-

mute i all the way to the left, minus two spots for i i+ 1, perform a braid move and

commute out again. This gives 2(l − 2) new decompositions.

Therefore,

|R(σ)| < 2(l − 2)|R(σsi)|

which in turn gives us

|R(σsi)|
|R(σ)|

>
1

2(l − 2)

Unlike the others, this bound is not tight. If sisi+1 cannot move out of the left

most spots, it is because si+1 cannot commute to the right. Thus after the braid

move, our si+1 cannot commute back out, and we only have (l − 2) + 1 new words.

At the moment, this is the best bound we can prove for a non-vexillary permuta-

tion with braid moves. We did attempt to use Stanley’s theorems with tableau to go

further, and we will discuss the problems with that approach below.

Example 3.19. For w0 ∈ S4, we have the following staircase tableau:

Figure 3.1: The Young Diagram for λ = (3, 2, 1)

There are three border boxes that can be removed, and each of those three tableau

are used to calculate the size of the set of reduced words of one of the permutations
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covered by w0 in the weak order lattice of S4:

Figure 3.2: The Young Diagrams for λ1 = (2, 2, 1), λ2 = (3, 1, 1), and λ3 = (3, 2)

For vexillary permutations σ, that cover only vexillary permutations, we can use

the fact that |R(σ)| = fµ to find each |R(σsi)|. In particular, we use the one-to-

one relationship between the elements in the sum fµ =
∑

µ− f
µ− and the elements

in the sum |R(σ)| =
∑

i∈D(σ) |R(σsi)| to calculate each |R(σsi)| = fµ− for some

µ− ` `(σ)− 1. However, it is not always this easy.

If a permutation is not vexillary, we do not have that particular information about

the rows and columns. But we will have at least as many distinct shapes as we have

descents.

Example 3.20. For the completely commutative non-vexillary permutation σ =

s1s3s5, we have the following calculation from Theorem 1.30:

|R(σ)| = 2 · f (2,1) + f (1,1,1) + f (3) = 2 · (f (1,1) + f (2)) + f (1,1) + f (2)

There are three elements in the first sum, and three descents in D(σ). Additionally,

|R(τ)| = f (1,1) + f (2)

but here we lose track of which elements from the sum for |R(σ)| will correspond with

the calculations for |R(τ)|. For example, we are not guaranteed that the calculation

for |R(σs1)| only uses elements from f (2,1), or only f (1,1,1) + f (3). It could use a mix

of those numbers to arrive at the calculation we have.
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Remark 3.21. For fully commutative permutations τ and σ, τ l σ, we know from

Theorem 1.30 that

|R(τ)| =
∑
λ`l−1

aλf
λ and |R(σ)| =

∑
µ`l

aµf
µ

However, we have not been able to make any general statements about a relationship

between aλ and aµ.

Example 3.22. Consider σ = s1s3s4s3, and τ1 = s1s3s4, τ2 = s1s3. Note that both

τ1 and τ2 are fully commutative. We find that

|R(σ)| = f (2,1,1) + f (3,1) + f (2,2)

|R(τ1)| = f (1,1,1) + f (2,1)

|R(τ2)| = f (1,1) + f (2)

Examples 3.20 and 3.22 have led us to the following conjecture:

Conjecture 3.23. The fully commutative permutations ω where |i − j| > 1 for all

i, j ∈ D(ω) will produce non-zero aλ’s for every λ ` l(ω). As soon as we introduce

an extra si that does not commute with every sj present in ω, we start to have some

aλ = 0.

Remark 3.24. If τ l σ in the weak order, then for every λ such that aλ 6= 0 for

|R(τ)|, there is at least one aµ 6= 0 for |R(σ)| such that λ l µ in the Young lattice.

Unfortunately, this does not help us with the ratios of the sums, as there is still too

much that is unknown about the relationship between these pairs aλf
λ and aµf

µ

As with Chapter 2, we started this work because we were unable to find any

existing papers to answer our questions about the relationship between |R(σ)| and

|R(σsi)|. At the beginning, we were interested in these new results as a better way
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to understand Theorem 1.28, and how we could use it to answer questions about

braid classes. However, after the work done in this chapter, we had a much better

understanding not only of the permutations τ l σ, but also of the complications that

come with braid relations.

While these complications did prevent us from proving our desired lower bound

for all permutations, it lead us in new directions. From here, we were able to come

up with additional methods of breaking G(σ) into subgraphs which we will discuss in

detail in the next chapter.

At some point in the future we intend to return to working on the lower bound

for |R(σsi)|/|R(σ)|, but we will not continue to study that problem in this document.
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Chapter 4

BRAID CLASSES AND SETS OF REDUCED WORDS

The question that motivated all of this research was as follows: if σ ∈ Sn is

allowed to become arbitrarily long, will there be any identifiable relationship between

the number of reduced words for σ and the number of braid classes in R(σ)?

After extensive work with examples for n = 4, 5, 6, 7, 8, using Sage to help find

the sizes of the sets of reduced words, we arrived at the following conjectures.

Conjecture 4.1. For all σ ∈ Sn,

1

2
|R(σ)| ≤ |B(σ)| ≤ |R(σ)|.

Conjecture 4.2. For all σ ∈ Sn,

0 ≤ |C(σ)| ≤ 1

2
|R(σ)|+ 1.

These conjectures have proven to be far more involved than they appear. We have

determined that Conjecture 4.1 can be used as the key to moving forward. For one

thing, the recursion for the braid classes is significantly easier to work with than the

recursion for the commutation classes. Another point in favor of directing our efforts

towards the braid classes is that we are expecting there to be far fewer braid edges in

an arbitrary G(w). This is because the conditions for a commutation move are easier

to meet than the conditions for a braid move. Consider i and j in two consecutive

spots in a word when |i− j| > 1, versus i(i+ 1)i in three consecutive spots.

We also determined that if we could prove Conjecture 4.1, we could use Theorem

1.26 in order to prove Conjecture 4.2 as a corollary, since it relates |R(σ)|, |B(σ)|,

and |C(σ)| with each other. We will discuss this idea more in Section 4.
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4.1 General Work

First, we tried a simple application of the braid class recursion from Theorem 1.29

and induction on the length of σ ∈ Sn.

Base Case: Suppose that l(σ) = 2. Then the permutation either has one reduced

word, i(i± 1), or two, ij where |i− j| > 1. In either case, there is no way to perform

a braid move in a permutation of length two, we have that |B(σ)| = |R(σ)|, which

does not contradict our conjecture.

Induction Step: Suppose that l(σ) = k + 1 and for all permutations ω ∈ Sn such

that l(ω) ≤ k, that |B(ω)| ≥ 1

2
|R(ω)|. Then using the recursion from Theorem 1.29,

and Theorem 1.28 we have

|B(σ)| =

 ∑
i∈D(σ)

|B(σsi)|

− ∑
i,i+1∈D(σ)

|B(σsisi+1si)| (4.1)

≥

 ∑
i∈D(σ)

1

2
|R(σsi)|

− ∑
i,i+1∈D(σ)

|B(σsisi+1si)| (4.2)

=

(
1

2
|R(σ)|

)
−

∑
i,i+1∈D(σ)

|B(σsisi+1si)| (4.3)

≥
(

1

2
|R(σ)|

)
−

∑
i,i+1∈D(σ)

|R(σsisi+1si)| (4.4)

which will not be greater than
1

2
|R(σ)| so long as at least one of the |R(σsisi+1si)|’s

is non-zero.

Not only were we unable to prove our conjecture, but we also note that the lower

bound we found in inequality 4.4 is significantly smaller than we believe to be true.

Consider for example, σ = [4321]. We find that |B(σ)| = 8 =
1

2
|R(σ)|. Now consider

the bound calculated below:(
1

2
|R(σ)|

)
−

∑
i,i+1∈D(σ)

|R(σsisi+1si)| = 8− 2 = 6
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We can also attempt this by induction on the descent set rather than the length,

with similar results. Thus we determined that we cannot use induction with well

known existing results to prove our conjectures.

These attempts led us to look into what is known about |R(σ)| and |R(τ)| for

τ ≤ σ in the weak order lattice. We discovered that the relationship between |R(σ)|

and |R(τ)| had not been studied, so we began to rephrase the problem. We translated

our conjectures from braid classes into braid edges. At this point, we still needed to

understand how the graphs G(τ) and G(σ) were related, and if understanding the

relationship between |R(σ)| and |R(τ)| would help us prove the Conjectures. These

questions led to the new research in Chapters 2 and 3.

In the next section, we will consider a particular family of permutations, and find

a smaller lower bound for |B(σ)| than the conjectured
1

2
|R(σ)|.

4.2 A Special Case

We will restrict our attention to the permutations w
(k,i)
0 ∈ Sn.

Theorem 4.3. For w0 ∈ Sn, |B(w0)| ≥
1

2
|R(w0)| − 1.

Proof. We will consider the graph G′b(w0). Recall that the connected components of

this graph are the braid classes of G(w0). We would like to show that there are at

least
1

2
|R(w0)| − 1 connected components.

Suppose to the contrary that there are less than
1

2
|R(w0)| − 1 connected compo-

nents in G′b(w0). Then if |R(w0)| is even, we have at most
1

2
|R(w0)| − 2 components,

and if |R(w0)| is odd, then there are at most
1

2
|R(w0)| −

3

2
components.

We can partition our vertex set over the connected components. Suppose there are

m connected components, and let Vi be the vertex set for one of these components,
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for 1 ≤ i ≤ m <
1

2
|R(w0)| − 1. Then,

V (G′b(w0)) =
⋃

1≤i≤m

Vi

We note that a graph with V vertices and k components must have at least V −k

edges, since a component with Vi vertices must have a spanning tree with Vi−1 edges.

We assume there are m components, where m ≤ 1

2
|R(w0)| − i, for i ∈

{
3

2
, 2

}
. Thus,

we can subtract off a maximum of
1

2
|R(w0)| − i edges.

We also see that each of the connected components in G′b(w0) will at minimum be

trees, which means we have at least

∑
v∈V (G(w0))

dG′b(w0)(v) ≥ 2|R(w0)| − 2

Thus, for i ∈
{

3

2
, 2

}
, we have

∑
v∈V (G(w0))

dG′b(w0)(v) = 2E(G′b(σ))

≥ 2|R(w0)| − 2− 2

[
1

2
|R(w0)| − i

]
> |R(w0)|

for either choice of i.

This contradicts Reiner’s result in Theorem 1.31 that states that the sum of the

braid degrees exactly equals the size of the set of reduced words.

How does this allow us to get closer to our conjecture? Consider the following

definition.

Definition 4.4. Let σ ∈ Sn, and let S ⊂ R(σ). We will consider S ⊂ V (G(σ)), and

define

A(S) = |S| −
∑

v∈S⊂G(σ)

db(v) (4.5)
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We will define a special case A(σ) as

A(σ) = |R(σ)| −

 ∑
v∈G(σ)

db(v)

 (4.6)

If we are able to prove that for an arbitrary permutation σ ∈ Sn that we have

A(σ) > 0, then we would know that there are at most
1

2
|R(σ)| braid edges in our

graph G(σ). We could use Theorem 4.3 to write a similar proof, and find that

|B(σ)| ≥ 1

2
|R(σ)| − 1. While these bounds on the congruence classes are not exactly

what we conjectured, they are close. If we could prove this lower bound, we would

be able to use Theorem 1.26 to prove a similar weaker result for the number of

commutation classes.

4.3 Permutation Shuffling

Before we can discuss equation (4.6) in further detail, we will describe generaliza-

tions of our work in Chapter 2 for new families of subgraphs. We will also generalize

our work from Chapter 3 to describe how we can generate R(σ) by breaking the

permutation into pieces. First, an example.

Example 4.5. Consider the permutation σ = [2431] = s1s2s3s2 with descent set

D(σ) = {2, 3}.

1232

1323 3123

Figure 4.1: The Graph G([2431])

We note that the braid edge itself is a copy of G([1432]), which is w
(3,2)
0 , and has

the same descent set as σ. Starting with the words 1323 and 1232, we attempt to
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move the letter 1 to the right. We note that after moving the letter 1, we do not have

a second full copy of G([1432]). We would need both the vertices 2132 and 3123, as

well as a braid edge between them. There are two problems with this: there is no

braid move between those reduced words, and 2132 is not a reduced word of σ.

Next we consider σ = [32154] = s4s1s2s1 with descent set D(σ) = {1, 2, 4}. We

have

4121

4212 2412

1421

2142

1241

2124

1214

Figure 4.2: The Graph G([32154])

In this picture, we have four copies of the vertex set of G([321]), with 4 sitting

in different spots through the reduced words for 121. We focus on this permutation

because the longest string of consecutive elements in D(σ) is the descent set for w
(3,1)
0 .

As the letter 4 moves through the word from left to right, we have effectively blocked

braid edges from appearing in the middle portion of the graph.

Using ideas from the graphs in this example, we will now discuss how to consider

subgraphs in G(σ) that may not be of the form G(σsi), i ∈ D(σ).

Lemma 4.6. Let σ ∈ Sn. Suppose that D(σ) contains a string of m consecutive

elements, with smallest element in the string i: {i, i+ 1, . . . , i+m− 1}. Then there

is a reduced word in R(σ) of the form uv where v ∈ R(w
(k,i)
0 ), for k = m+ 1.

Proof. Let σ = [a1a2 . . . an] ∈ Sn. We recall that i ∈ D(σ) if and only if ai > ai+1.

We also recall that for any j, σsj = [a1a2 . . . aj+1aj . . . an].
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Suppose that {i, i + 1, . . . i + m − 1} ⊂ D(σ) is a string of consecutive elements.

This means that

ai > ai+1 > . . . > ai+m−1

Let τ
(j,k)
σ be defined as follows:

τ (j,k)σ := σsjsj+1 . . . sj+k−1 = [a1 . . . aj−1aj+1 . . . aj+kaj . . . an]

where τ
(0,0)
σ = σ, and τ

(j,1)
σ = σsj.

We note that for the set {i, i + 1, . . . i + m − 1} ⊂ D(σ), if j = i and k = m, we

have

τ (i,m)
σ = σsisi+1 . . . si+m−1 = [a1 . . . ai−1ai+1ai+2 . . . ai+mai . . . an]

We see that {i, i+ 1, . . . i+m− 2} ⊂ D(τ
(i,m)
σ ), while i+m− 1 /∈ D(τ

(i,m)
σ ).

Furthermore, `(τ
(i,m)
σ ) = `(σ) −m. Since i ∈ D(σ), `(τ

(i,1)
σ ) = `(σ) − 1. We will

still have i + 1 ∈ D(τ
(i,1)
σ ), and we can see that `(τ

(i,2)
σ ) = `(σ)− 2. Inductively, this

process continues until we have `(τ
(i,m)
σ ) = `(σ)−m.

Let σ(1) = τ
(i,m)
σ . We will now consider

τ
(i,m−1)
σ(1) = σ(1)sisi+1 . . . si+m−2 = [a1 . . . ai−1ai+2 . . . ai+mai+1ai . . . an]

We note that

i+m− 1, i+m− 2 /∈ D(τ
(i,m−1)
σ(1) ) and {i, i+ 1, . . . i+m− 3} ⊂ D(τ

(i,m−1)
σ(1) )

We also have `(τ
(i,m−1)
σ(1) ) = `(σ(1)) − (m − 1) = `(σ) −m − (m − 1) using the same

argument on descents as before. Let σ(2) = τ
(i,m−1)
σ(1) .

Inductively, for 1 ≤ x ≤ m− 3, we have that the permutation σ(x+1) = τ
(i,m−x)
σ(x) is

such that

σ(x+1) = σ(x)sisi+1 . . . si+m−(x+1) = [a1 . . . ai−1ai+x . . . ai+mai+x−1 . . . ai+1ai . . . an]
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where {i, . . . , i+m−(x+2)} ⊂ D(σ(x+1)), {i+m−(x+1), . . . , i+m−1}∩D(σ) = ∅,

and `(σ(x+1)) = `(σ)−
∑m−x

b=0 m− b.

Now consider σ(m−2) = τ
(i,m−(m−3))
σ(m−3) :

σ(m−2) = [a1 . . . ai−1ai+m−2ai+m−1ai+mai+m−3 . . . ai+1ai . . . an]

From the above one line notation, we see that σ(m) := σ(m−2)sisi+1si will be such that

{i, i+ 1, . . . i+m− 2} ∩D(σ(m)) = ∅. Additionally,

`(σ(m)) =

(
`(σ)−

m−3∑
b=0

m− b

)
− 3 = `(σ)−

(
m+ 1

2

)
Let u ∈ R(σ(m)). Tracing our products from σ(m) back to σ(1), let v be the word

i(i+ 1)i (i+ 2)(i+ 1)i . . . (i+ k − 1)(i+ k − 2) . . . (i+ 1)i

We see that `(v) =
(
m+1
2

)
, and that we can verify that v ∈ R(w

(m+1,i)
0 ).

By construction, we have uv ∈ R(σ) as desired.

Definition 4.7. Let σ ∈ Sn be such that [i, i+ k− 2] ⊂ D(σ) is a set of consecutive

elements. From Lemma 4.6, we note that there are permutations α, β ∈ Sn such

that β = w
(k,i)
0 , and u = u1u2 . . . ul(α) ∈ R(α) and v = v1v2 . . . vl(β) ∈ R(w

(k,i)
0 ) can be

concatenated to produce uv ∈ R(σ). In order to distinguish the letters, we will color

the letters of u blue, and the letters of v red.

A shuffle of the letters of uv will be defined in the following way:

1. A commutation or braid move using only the blue letters of u, or using only the

red letters of v.

2. A commutation move using one blue letter ui of u and one red letter vj of v.

3. A braid move that uses two blue letters uiui+1 of u and one red letter vj of v,

or vice versa.
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None of the above shuffle types will change the color of the letters. After any

finite sequence of shuffles of any type, we will no longer have the word uv. We will

still refer to each new shuffle as a shuffle of the letters of uv.

Example 4.8. Consider σ = [165324] = s4s5s2s3s4s2s3s2. We can use Lemma 4.6 to

write 45 ∈ R(α), 234232 ∈ R(β), and 45234232 ∈ R(σ).

1. Using a shuffles of type 1, we have 45434234 ∈ R(σ).

2. Using a shuffle of type 2, we have 42534232 ∈ R(σ).

3. Using a shuffle of type 3, we have 54534234 ∈ R(σ)

We see that for the first type of shuffle, we start with u ∈ R(α) and shuffle letters

to get a ∈ R(α). For a fixed pair a ∈ R(α) and b ∈ R(β), the second type of shuffle

will commute where the letters of a and b sit. The third shuffle type will be a mix of

blue letters forming a word a′, and red letters form a word b′. However, a′ /∈ R(α) and

b′ ∈ R(β), which will make the words formed after a shuffle of type 3 more difficult

to discuss.

We know that we can start with any word in R(σ), and generate the full set by

performing all possible commutation and braid moves among the letters. So we can

use the letters of uv to fully generate R(σ) in the standard way.

The question is whether we can keep track of the letters of u ∈ R(α) and v ∈ R(β)

as we perform the shuffle process?

Lemma 4.9. Let α, β, σ ∈ Sn, with u ∈ R(α), v ∈ R(β) and uv ∈ R(σ) as described

in Lemma 4.6 and Definition 4.7. We can fully construct R(σ) by looking at all

possible ways that the letters of uv can shuffle through each other.

Proof. Consider uv ∈ R(σ), where u = u1 . . . ul(α) ∈ R(α) and v = v1 . . . vl(β) ∈ R(β).

51



We will color all the letters descended from u blue, and all the letters descended from

v red.

Let w ∈ R(σ) be an arbitrary word that is distinct from uv. We know that there

is a finite sequence of commutation and braid moves that will transform uv into w.

Since G(σ) is connected, let us consider this as a path of m vertices in G(σ).

(uv)− (a2)− · · · − (am−1)− (w)

To travel from uv to a2, we either perform a commutation move or a braid move

of the letters of uv. This will be a shuffle of the letters of uv.

Inductively, each aj in this path will have all the letters colored blue and red,

since no shuffle type will change the colors of the letters. We will always have the

same number of blue letters and red letters, since none of the shuffles will recolor the

letters. Thus, the letters of w will be a mix of `(α) blue letters and `(β) red letters.

Because w was an arbitrary element of R(σ), every element of the set will be

formed from a series of shuffles of the letters of uv.

Our work on splitting σ into pieces α and β, and shuffling the letters of their

respective reduced words, is similar to permutation inflations. Permutation inflations

are related to grid drawings of permutations, and use patterns in the one line notation

in consecutive spots to write reduced words. For more information on inflations, we

recommend [1] or [4].

We pursued this new shuffle method rather than the inflations because we could

use our α and β construction for any arbitrary permutation, rather than being re-

stricted to a particular family.

Example 4.10. With the knowledge from Lemma 4.9, we will look at a slightly more

complex example of G(σ), though we will not draw the full graph: σ = [3215476] =
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s4s6s1s2s1 with descent set D(σ) = {1, 2, 4, 6}. The longest string of consecutive

descents is {1, 2}.

From Lemma 4.6 α = [1235476] and β = [3214567]. Note that as we shuffle

a ∈ R(α) and b ∈ R(β), we will only perform shuffle moves of the first and second

type. We will consider 46121 ∈ R(σ) as our starting point.

For any reduced word of σ, we can select where 121 or 212 will sit, and then the

remaining two spots can have either 4 or 6. Thus we will have |R(σ)| = 2
(
5
3

)
· 2 = 40.

We can begin to construct the graph as follows:

46121

46212 64212

64121

42612

41621

62412

61421

42162

41261

62142

61241

Figure 4.3: Part of the Graph G([3215476])

The square of vertices to the far left can be viewed as a copy of of the standard

product graph G([1235476])×G([3214567]). The commutation edges in that square

are copies of the single edge from G([1235476]), while the braids are copies of the single

braid edge in G([3214567]). As we shuffle the elements 4 and 6 to the right, notice

that we do not have edges inherited from G([1235476]) or G([3214567]) anymore. We

have the vertex set of G([1235476])×G([3214567]), but no internal edges.

We would continue moving forward in this manner, sometimes with those internal

edges present, but most of the time they will not be.
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Definition 4.11. Let α, β, σ ∈ Sn, with a ∈ R(α), b ∈ R(β) and ab ∈ R(σ) as

described in Lemma 4.6 and Definition 4.7. Let CI denote all the words in R(σ)

where the letters from a ∈ R(α) sit in the positions contained in I, where I ⊂ [`(σ)]

and |I| = `(α). We will call this a configuration, CI .

After a shuffle of type 3, we would consider sets labeled C ′I . We would still be

looking at where the red letters descended from a would sit, but we would want to

be able to differentiate this set from CI . This is similar to how we labeled the sets in

Example 3.2.

Definition 4.12. Let α, β, σ ∈ Sn, with u ∈ R(α), v ∈ R(β) and uv ∈ R(σ) as

described in Lemma 4.6 and Definition 4.7. We define HI to be the induced subgraph

of G with the vertex set CI .

If there is a commutation move or braid move between letters of a1, a2 ∈ R(α),

then there is an edge between all vertices of the form a1b and a2b, for any b ∈ R(β).

Similarly, in a collection or reduced words CI , any time there is a commutation or

braid move between a1, a2 ∈ R(α), and the letters used in these particular moves

are sitting in consecutive spots in the words contained in CI , there will be an edge

between those vertices for all b ∈ R(β).

Note that not all configurations will result in a subgraph with |R(α)||R(β)| ver-

tices. This is because not all letters of a reduced word of α need to commute with all

letters of a word of β. See Example 4.5.

For the moment let us consider permutations σ ∈ Sn where uv ∈ R(σ) is such

that we only have shuffles of type 1 and 2.

Lemma 4.13. Let α, β, σ ∈ Sn, with u ∈ R(α), v ∈ R(β) and uv ∈ R(σ) as described

in Lemma 4.6 and Definition 4.7. Further suppose that for all si in the support of α
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and all sj in the support of β, |i − j| ≥ 1. That is, there will not be any shuffles of

the type 3 from Definition 4.7. Then

|R(σ)| ≤ |R(α)||R(β)|
(
`(σ)

`(α)

)
Proof. We assume that there will not be any shuffles of type 3 in R(σ). So we only

need to consider whether letters from u ∈ R(α) commute with letters in v ∈ R(β),

or not.

Let CI be defined as in as in Definition 4.11, where we have chosen the set I such

that |I| = `(α) and I ⊂ `(σ). There are
(
`(σ)
`(α)

)
choices for the set I. Furthermore,

because there are no shuffles of type 3, we have

R(σ) =
⋃

I⊂[`(σ)], |I|=`(α)

CI

This is a disjoint union, and some sets CI could be empty.

Let us define new sets AI as follows:

AI = {w | a ∈ R(α) in positions in I, b ∈ R(β) in the remaining positions}

Each of the sets AI will have size |AI | = |R(α)||R(β)|.

These sets may contain words which are not in R(σ). Let a = a1 . . . a`(α) ∈ R(α),

and b = b1 . . . b`(β) ∈ R(β). Suppose that there are letters in these words ai and bj

such that |ai − bj| = 1. Then any index set I that places the letter ai to the right of

letter bj will mean that AI contains words that are not in R(σ).

For any index set I, CI ⊂ AI so that |CI | ≤ |AI |. There is no way for CI to be

larger than AI , since AI already contains all possible words formed from a ∈ R(α) in

positions in I.

If CI = AI for all index sets I, then

|R(σ)| = |R(α)||R(β)|
(
`(σ)

`(α)

)
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If there are letters in a word a ∈ R(α) that do not commute with letters in

b ∈ R(β), then there is some index set J such that CJ 6= AJ . In which case,

|R(σ)| < |R(α)||R(β)|
(
`(σ)

`(α)

)
Therefore, we have the desired inequality.

The shuffling process and configuration subgraphs that are described in the lem-

mas and definition above gives us a way to divide our graphs up into copies of G(α)

and G(β).

Lemma 4.14. Let α, β, σ ∈ Sn, with u ∈ R(α), v ∈ R(β) and uv ∈ R(σ) as described

in Lemma 4.6 and Definition 4.7.

If we arrive at CI using only shuffles of type 1 and 2, then HI will be a subgraph

of G(α) × G(β). HI does not need to be an induced subgraph. If a shuffle of type 1

from Definition 4.7 exists in this configuration, then each of those edges from G(α)

is replaced with |R(β)| copies of the same edge.

If we arrive at CI using all three types of shuffles, HI will not necessarily be a

subgraph of G(α)×G(β), because a type 3 shuffle changes α and β.

The reason we want to look at this family of subgraphs is because we know a lot

about G(w
(k,i)
0 ), and we know exactly what A(σ) is when σ = w

(k,i)
0 . However, for an

arbitrary σ, we have less information about G(σsj) for j ∈ D(σ).

Lemma 4.15. Let α, β ∈ Sn. Then

∑
v∈G(α)×G(β)

db(v) = |R(α)| ·
∑

u∈G(β)

db(u) + |R(β)| ·
∑
t∈G(α)

db(t)

Proof. We will consider G(α) × G(β) as follows: let v ∈ G(α) × G(β) be labeled as

(a, b) for a ∈ R(α) and b ∈ R(β).
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There is a braid edge between (a, b) and (a′, b′) if and only if there is a braid move

between a and a′ and b = b′, or if there is a braid move between b and b′ and a = a′.

Therefore, the braid degree of v ∈ G(α) × G(β) depends on the braid degrees of

a ∈ G(α) and b ∈ G(β). That is, v = (a, b) is such that db(v) = d
G(α)
b (a) + d

G(β)
b (b).

In order to calculate
∑

v∈G(α)×G(β) db(v), we have to be able to vary over a ∈ R(α)

and b ∈ R(β).

Therefore, our calculation will be∑
v∈G(α)×G(β)

db(v) =
∑
t∈G(α)

∑
u∈G(β)

db(t) + db(u)

=
∑
t∈G(α)

 ∑
u∈G(β)

db(t) +
∑

u∈G(β)

db(u)


=

∑
t∈G(α)

|R(β)|db(t) +
∑

u∈G(β)

db(u)


=

∑
t∈G(α)

|R(β)|db(t) +
∑
t∈G(α)

∑
u∈G(β)

db(u)

= |R(β)| ·
∑
t∈G(α)

db(t) + |R(α)| ·
∑

u∈G(β)

db(u)

as desired

Before moving on, we need to discuss a few features of these w
(k,i)
0 permutations.

Lemma 4.16. The permutations w
(k,i)
0 are invariant under conjugation. If we want

to know how many braid moves we will have in position j, where 1 ≤ j ≤ `(w
(k,i)
0 )−2,

we need only consider how many braid edges we will have when j = `(w
(k,i)
0 )− 2.

While this was not explicitly proven by Reiner in [9], it is a consequence of the

work done in that paper.

Proof. From Chapter 2, we note that there are going to be∑
j,j+1∈D(σ)

|R(σsjsj+1sj)|
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braid edges that use the last three positions in decompositions of σ. These are the

braid edges that connect the induced subgraphs of G(σ).

We also note that because of the structure of w0, any of these moves can be cycled

into any position inside w0 and be performed there. The number |R(σsjsj+1sj)|

represents all the possible decompositions of w0 with a particular type of braid move

at the end, and will allow us to count the number of decompositions of σ with that

braid move shifted in as well. We sum over all possibilities of i, i + 1 ∈ D(w
(k,i)
0 ) to

account for all braid moves.

Between the work we have done on subgraphs in this section, and in Chapter 2,

we now have enough information to move forward with our question about a lower

bound for |B(σ)|.

4.4 Cases for the Lower Bound for |B(σ)|

Lemma 4.17. Suppose that D(σ) = [i, i + k − 1] ∪ J , where k is the length of the

longest string of consecutive elements in D(σ). Then

1. If k = 1,

A(σ) = |R(σ)| −

 ∑
v∈G(σ)

db(v)

 > 0

2. If J = {j} and σ = sjw
(k,i)
0 , then A(σ) > 0

3. If J = ∅ and σ = w
(k,i)
0 , then A(σ) = 0

Proof. First, we note that point three above is exactly Theorem 1.31. Thus we will

focus on proving the other two parts of our lemma.

Let σ ∈ Sn where l(σ) = l and D(σ) = [i, i + k − 1] ∪ J for some k, i ∈ Z such

that no string of consecutive elements in J has length greater than k.

Suppose that for all τ ∈ Sn where l(τ) < l, exactly one of the following is true:
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1. τ = w
(k,i)
0 , and A(τ) = 0,

2. τ 6= w
(k,i)
0 , and A(τ) > 0.

We want to show that A(σ) > 0 as well.

Case 1: Let k = 1. That is, suppose that D(σ) does not contain any consecutive

elements. Then we select any j ∈ D(σ), and consider the word aj ∈ R(σ) where

a ∈ R(σsj).

If D(σ) = {j}, Proposition 3.11 notes that |R(σ)| = |R(σsj)|. Then A(σ) =

A(σsj) > 0 by our induction hypothesis.

If |D(σ)| > 1, Proposition 2.15 notes that at most one j ∈ D(σ) will produce

σsj = w
(k,i)
0 . Using Corollary 2.12, we have

∑
v∈G(σ)

db(v) =

 ∑
x∈D(σ)

∑
u∈G(σsx)

db(u)

+ 2 ·
∑

x,x+1∈D(σ)

|R(σsxsx+1sx)|

=
∑

x∈D(σ)

∑
u∈G(σsx)

db(u)

because there are no consecutive elements in the set D(σ).

We assume that A(σsx) = 0 for at most one descent x, and A(σsy) > 0 for all

other descents y. There are at least two elements in D(σ), and therefore,

∑
v∈G(σ)

db(v) =
∑

x∈D(σ)

∑
u∈G(σsx)

db(u)

<
∑

x∈D(σ)

(|R(σsx)|)

= |R(σ)|

and therefore, A(σ) > 0.

Case 2: Let `(α) = 1. Suppose that α = sj, β = w
(k,i)
0 , so that jv ∈ R(σ) for v ∈

R(w
(k,i)
0 ). Because D(σ) = [i, i+k−1]∪{j}, we will know that j /∈ {i−1, i+k}. Then
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j commutes with every letter in u ∈ R(β), so we can split up G(σ) into subgraphs

Ht as defined in Definition 4.12, where 1 ≤ t ≤ `(β) + 1.

Since j commutes with everything in u ∈ R(β), we know that j cannot be used in

a braid move, and that |V (Ht)| = |R(β)|. Thus each of the Ht’s is joined to another

Ht−1 and Ht+1 by commutation edges.

In any three consecutive positions in β, there are
∑

m,m+1∈D(β) |R(βsmsm−1sm)|

braid moves, corresponding to braid edges. Since β is a w
(k,i)
0 , we also know that

|R(β)| = 2 · |Eb(β)| =
∑

v∈G(β)

db(v)

which means that

|R(β)| = 2 ·

(l(β)− 2)
∑

m,m+1∈D(β)

|R(βsmsm−1sm)|

 =
∑

v∈G(β)

db(v)

For t = 1, l(β)+1, the subgraph Ht has exactly |R(β)| vertices, and
∑

v∈Ht
db(v) =

|V (Ht)|.

For t = 2, l(β), the subgraph Ht has exactly |R(β)| vertices, but

∑
v∈Ht

db(v) = 2 ·

(l(β)− 3)
∑

m,m+1∈D(β)

|R(βsmsm−1sm)|

 < |R(β)|

For all other 3 ≤ t ≤ l(β)− 1, the subgraph Ht has exactly |R(β)| vertices, but

∑
v∈Ht

db(v) = 2 ·

(l(β)− 4)
∑

m,m+1∈D(β)

|R(βsmsm−1sm)|

 < |R(β)|

Thus ∑
v∈G(σ)

db(v) < |R(σ)|

so that A(σ) > 0 as desired.

Note that the cases we have proven in Lemma 4.17 relied heavily on the work we

did in Chapter 2, and the work we did constructing the shuffles and the subgraphs
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they create in Section 4.3. This Lemma also covers all of the cases we have been able

to prove.

Remark 4.18. Consider α = sj where j ∈ {i − 1, i + k}, and σ = sjw
(k,i)
0 . Then sj

will not commute with every letter in a w ∈ R(w
(k,i)
0 ), so the argument above will not

work.

Suppose that j = i− 1. Let S
(i)
n = 〈si, si+1, . . . , si+n−1〉. Let Ht be the subgraph

with vertices formed from the reduced words with j sitting in position t. Each Ht

will be joined to Ht−1 and Ht+1, if they exist, by commutation edges. We also know

that

Ht =
⋃

τ∈S(i+1)
k−1 , l(τ)=t−1

G(τ)×G(τ−1w
(k,i)
0 )

So we know that 1 ≤ t ≤
(
k−1
2

)
+ 1.

Working through examples by hand and using Maple, we found that

0 < A(s1w
(3,2)
0 ) < A(s1w

(4,2)
0 ) < A(s1w

(5,2)
0 ) < A(s1w

(6,2)
0 )

However, for k > 4, when we look at H(k−1
2 ) and use Definition 4.4, A(H(k−1

2 )) < 0.

In each of our examples, A(H2) was considerably larger than A(H(k−1
2 )). Similarly,

A(H(k−1
2 )−1) < 0, but A(H3) − A(H(k−1

2 )−1) > 0, and so on. We considered pairing

off the subgraphs in this manner, but we were unable to use this to prove that

A(s1w
(k,2)
0 ) > 0 for all k. We have also been unable to find the first m such that

A(Hm) < 0 for each s1w
(k,2)
0 .

We have also been unable to prove that we will always have A(σ) > 0. It must be

true, because 1 cannot contribute to any braid moves. But we have not been able to

write a rigorous argument.

Remark 4.19. In order to use induction to prove in general that A(σ) > 0, we would

need to be able to understand the family of σ’s in Remark 4.18. We would also need

61



to be able to understand the structure of G(αw
(k,i)
0 ) where l(α) > 1 that have descent

sets D(α) ∩ {i− 1, i+ k} 6= ∅.

We would also need to understand what happens for a ∈ R(α) that share letters

with b ∈ R(w
(k,i)
0 ).

Theorem 4.20. Let σ ∈ Sn be one of the permutations covered by Lemma 4.17.

Then

|B(σ)| ≥ 1

2
|R(σ)| − 1 and |C(σ)| ≤ 1

2
|R(σ)|+ 2

Proof. We can follow all of the steps of the proof of Lemma 4.3, replacing w0 with σ.

The proof is dependent on arriving at

∑
v∈G(w0)

db(v) > |R(w0)|

which is a contradiction for w0.

If σ is one of the permutations in Lemma 4.17, then A(σ) > 0, and this is also a

contradiction for σ.

Thus |B(σ)| ≥ 1

2
|R(σ)| − 1. By Theorem 1.26,

|B(σ)|+ |C(σ)| − 1 ≤ |R(σ)|

We can now rewrite this as

1

2
|R(σ)| − 1 + |C(σ)| − 1 ≤ |R(σ)|

which means that

|C(σ)| ≤ 1

2
|R(σ)|+ 2

as desired.

While not complete for arbitrary permutations, this theorem represents all current

knowledge of the relationship between |B(σ)| and |R(σ)|. We used all of our new
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results on subgraphs to arrive at this result, and believe that additional work on our

new families of subgraphs will be required to prove any more cases.

We also believe that A(σ) > 0 for all σ ∈ Sn, for n > 2. If we can make additional

progress on this part of the problem, we would be able to prove more cases. We intend

to return to this in the future, as well as considering the problem from other angles.
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Chapter 5

CONCLUSION

When we began working on this problem, we hoped to be able to use existing

recursions in our proofs along with induction. Because of the weaknesses inherent in

this type of argument, we had to go a different direction and were able to find brand

new information about the structure of R(σ).

Working on the graphs G(σ), we discovered new facts about induced subgraphs

G(σsi) for i ∈ D(σ). Using this new information about how to break G(σ) into a

union of subgraphs, we were also able to find new recursions for the number of braid

and commutation edges in G(σ). Progressing from there, we were able to find the

maximum number of subgraphs that will have the same structure as w
(k,i)
0 . We were

also able to go from σ into σsi and si, to considering reduced decompositions of σ

as a product α and β. This gave us yet another new method of splitting G(σ) into

induced subgraphs.

At the same time as we were investigating subgraph structures, we also found

lower bounds for R(σsi)/|R(σ)| for i ∈ D(σ). We worked on this problem, because

it was one of the road blocks we encountered when trying to use existing recursions.

Proving these bounds gave us a greater understanding of how we can move from

one induced subgraph in G(σ) to another, and allowed us to define our permutation

shuffles.

While neither of these topics were part of our original problem, they were both

important as they led to a greater understanding of R(σ), and the structure of G(σ),

which is what we wished to do over the course of this dissertation research.

Finally, we returned to the main question that got us started on this work. Using
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the work we did on the subgraphs of G(σ), we were able to prove lower bounds for

|B(σ)| in certain cases.

At this point, we still have a few open questions. We wish to return to the work

done in Chapter 3, in order to improve our lower bounds for |R(τ)/|R(σ)| when

τ l σ. We would like to consider other families of permutations ω that are counted

by combinatorial objects, and use those objects to calculate the size of R(ω). It was

through the construction of these lower bounds that we were able to construct our

permutation shuffles, so further work in this area should lead to greater understanding

of general permutations as well.

We also wish to continue to work on proving our lower bound for |B(σ)| for

arbitrary permutations σ ∈ Sn. We believe that we can continue to make progress

using Lemma 4.6 to split up σ into α and β, but we need to continue to work on

smaller cases and our inductive hypothesis. Because our proof Lemma 4.17 relied so

heavily on the framework of subgraphs and permutation shuffles that we created in

this document, we may need to continue generalizing our study of subgraphs, and

their average braid degrees, in order to be able to prove Theorem 4.20 for arbitrary

permutations. We hope to be able to answer this question in the future, as well as

consider other tools that may allow us to prove the conjectured bounds for |B(σ)|

and |C(σ)|.
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