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ABSTRACT

Physical inactivity is a major contributor to chronic illnesses and mortality glob-

ally. However, most interventions to address it rely on static, aggregate models that

overlook idiographic (i.e., individual-level) dynamics, limiting intervention effective-

ness. Leveraging mobile technology and control systems engineering principles, this

dissertation provides a novel, comprehensive framework for personalized behavioral

interventions that have been tested experimentally under the Control Optimization

Trial (COT) paradigm. Through careful design of experiments, elaborate signal pro-

cessing and model estimation, and judicious formulation of behavior intervention

optimization as a control system problem, this dissertation develops tools to over-

come challenges faced in the large-scale dissemination of mobile health (mHealth)

interventions. A novel Three-Degrees-of-Freedom Kalman Filter-based Hybrid Model

Predictive Control (3DoF-KF HMPC) controller is formulated for physical activity

interventions and evaluated in a clinical trial, demonstrating its effectiveness.

Furthermore, this dissertation expands on understanding the underlying dynamics

influencing behavior change. Engineering principles are applied to develop a concep-

tual approach to generate dynamic hypotheses and translate these into first-principle

dynamic models. The generated models are used in concert with system identification

principles to enhance the design of experiments that yield dynamically informative

data sets for behavioral medicine applications. Additionally, sophisticated search,

filtering, and model estimation algorithms are applied to optimize and personalize

model structures and estimate dynamic models that account for nonlinearities and

“Just-in-Time" (JIT; moments of need, receptivity, and opportunity) context in be-

havior change systems. In addition, the pervasive issue of data missingness in inter-

ventions is addressed by integrating system identification principles with a Bayesian

inference model-based technique for data imputation. The findings in this dissertation
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extend beyond physical activity, offering insights for promoting healthy behaviors in

other applications, such as smoking cessation and weight management.

The integration of control systems engineering in behavioral medicine research, as

demonstrated in this dissertation, offers broad impacts by advancing the field’s under-

standing of behavior change dynamics, enhancing accessibility to personalized behav-

ioral health interventions, and improving patient outcomes. This research has the po-

tential to radically improve behavioral interventions, increase affordability and acces-

sibility, inspire interdisciplinary collaboration, and provide behavioral scientists with

tools capable of addressing societal challenges in mHealth and preventive medicine.
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Chapter 1

INTRODUCTION

1.1 Motivation

Significant advances in technology in recent decades have ushered the develop-

ment of sophisticated computational and mathematical tools, which have resulted in

an improved understanding of many scientific phenomena through control theory and

systems approaches (Luenberger, 2012; Åström and Murray, 2021). Specifically, the

scope and applications of control system engineering principles have expanded beyond

traditional engineering applications like aerospace (Eren et al., 2017), chemical pro-

cesses (Ogunnaike and Ray, 1995; Prett and García, 1988), and power systems (Liu

et al., 2016); control engineering principles have been applied to solve challenging

problems in social and natural sciences including economic, environmental, robotic,

and biomedical systems (Leonard et al., 1992; Ford and Ford, 1999; de Wit et al.,

2012; Kurzhanski and Vályi, 1997). This is a consequence of the methodical ap-

proach that control system engineering provides, with the capability of identifying a

dynamical model for the system of interest and designing a model-based controller to

achieve a desired magnitude, speed, and shape of response while abiding by system

restrictions and operational constraints.

An exciting and growing application of control systems engineering lies in the

medical field. Traditionally, healthcare-oriented studies focus on generalized reduc-

tionist statistical analysis over a population (or subgroups of populations) which are

effective to an extent yet lack the capability of exploring dynamic responses on an

individualized level (Cloutier and Wang, 2011; Hekler et al., 2013). In light of the ad-
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vances in sensors and methods to gather “intensive” temporally dense data sets, there

is recognition in the behavioral and medical fields for the need for computational dy-

namic models that can lead to a better understanding of phenomena and determine

treatment delivery at an individual level. Control systems engineering principles pro-

vide formal approaches to analyze time-series data and shift the paradigm towards

personalized, data-centric treatment strategies that maximize desired outcomes for

each individual while minimizing risks (Kitano, 2002; Ahn et al., 2006). Such goals

must be achieved while taking into account system limitations and restrictions due

to medical and logistical constraints.

The application of control systems in data-driven personalized healthcare can

be split into two main categories: clinical applications aiding in the treatment of

chronic illnesses and disorders (O’Shea, 2012), and behavioral medicine aiming to

prevent or delay and manage the onset of chronic and relapsing disorders through

adaptive interventions (Collins et al., 2004; Rivera et al., 2007b, 2018). Examples in

this significant field of application can be found in diverse settings. On the clinical

side, examples of efforts in the last decades include: directing chemotherapy towards

tumors, to reduce the side effects of the treatment (Nacev et al., 2012); MPC-based

controller in optimal delivery of insulin to diabetic patients through an “artificial

pancreas”, to reduce the adverse effects of high or low glucose blood levels and bring

normalcy to the patient’s life (Gondhalekar et al., 2016); and optimizing drug delivery

and dosage in the treatment of fibromyalgia (Deshpande et al., 2014).

With regards to behavioral medicine, it has been established that unhealthy

habits such as smoking, poor diet, and physical inactivity are major contributors

to chronic illnesses including cancer, cardiovascular disease, arthritis, and Type 2 di-

abetes (Fielding, 1985; Booth et al., 2012; Saint-Maurice et al., 2020). The impact

of chronic illnesses on society, in terms of healthcare expenditure and reduced pro-
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ductivity, is quite vast; it has been estimated that annual costs of smoking in the

US are in the proximity of 300 billion dollars (US Department of Health and Human

Services and others, 2014; Klein et al., 2021). Moreover, such conditions reduce the

quality of life of patients and have been estimated to contribute more than 50% to

preventable deaths (Hekler et al., 2013). Taking these facts into consideration, this

work is focused on the application of control systems engineering principles in be-

havioral medicine, with the aim of the dissemination of preventive interventions on

a large scale to improve individual and public health. The main goals proposed in

this dissertation include: assessing the effectiveness of dynamical systems modeling

in capturing human behavior, improving the effectiveness of system identification ex-

perimental design and dynamic modeling approaches in behavioral interventions with

human subjects, and establishing a framework to deploy Model Predictive Control

(MPC) strategies and evaluate these online, in real-world settings. In support of the

concepts in this dissertation, there are efforts in establishing the control optimization

trial (COT; Hekler et al. (2018)) framework for automated, personalized, optimal

behavioral interventions and studies such as YourMove (R01CA244777, 2020) and

JustWalk Just-In-Time-Adaptive-Intervention (JITAI; R01LM013107 (2020)) provide

the means to validate the proposed work in experimental settings.

There have been a number of significant contributions to the application of con-

trol systems engineering principles in behavioral medicine that have taken place in

recent years. In Rivera et al. (2018), a general outline for procedures to construct

control-oriented dynamic models and design adaptive behavioral interventions was

presented. Such procedures are inspired by the work done to obtain dynamical mod-

els for the Theory of Planned Behavior (TPB; Navarro-Barrientos et al. (2011)), and

Social Cognitive Theory (SCT; Martín et al. (2014, 2020); Martín (2016)), which

are highly regarded theories of behavior change and have been applied in behavioral
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interventions for gestational weight gain (Dong et al., 2012, 2013; Dong, 2014; Guo,

2018; Guo et al., 2020) and physical activity (Martín et al., 2015a; Martín et al.,

2016a,b) respectively. Other studies in this area have also explored the application of

control systems engineering principles to gain insights into the dynamics of smoking

cessation and to optimize behavioral interventions for this purpose (Timms et al.,

2013, 2014a,b,c,d; Timms, 2014).

In understanding problems related to physical activity (PA) behavior change and

adaptive interventions, the use of fluid analogies (Rivera et al., 2018) has led to the

interpretation of behavior change theories like SCT into a semi-physical dynamic sys-

tem that can be computationally modeled using engineering principles such as mass

conservation (Martín et al., 2020; El Mistiri et al., 2022b). In previous work, system

identification principles have been applied in experiment design for the JustWalk in-

tervention and model estimation from the experimental data (Freigoun et al., 2017;

Martín, 2016). Furthermore, control strategies have been studied to deliver adap-

tive behavioral interventions using three-degree-of-freedom Hybrid Model Predictive

Control (HMPC; Nandola and Rivera (2013)). However, the work has been limited

to hypothetical representative models (Martín et al., 2016a) and black-box dynamic

models estimated from JustWalk data (Cevallos et al., 2022; Khan et al., 2022; El Mi-

stiri et al., 2023), which did not cover the full scope of the problem due to limitations

of the original JustWalk study. These include the lack of a priori knowledge of the

system in terms of the dominant time constant, as well as the absence of continuous

measurements for SCT constructs of interest (where five-point Likert scales used to

represent each construct did not provide sufficient variability in the measurements).

Moreover, the prior work on PA behavioral interventions focused on behavior on a

daily level and left much to be desired with regard to understanding multi-timescale

dynamics and Just-In-Time (JIT) states associated with behavior change.
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In this work, we leverage the prior knowledge from earlier research to advance the

understanding of dynamical process systems associated with human behavior and be-

havior change, especially for PA interventions. Analysis of the previous JustWalk ex-

perimental data provides a solid foundation to improve and enhance the experimental

design and input signals designed for the ongoing behavioral interventions promoting

PA: control optimization trial YourMove, and JustWalk JITAI ; these interventions

focus on promoting higher levels of PA, in the form of the number of steps walked

daily, for sedentary adults. Additionally, this dissertation presents data analysis for

the micro-randomized trial (MRT) study under the name of HeartSteps II, focusing

particularly on hypothesizing dynamic models for engagement in PA interventions

and addressing the common challenge of missing data in behavioral interventions.

The work presented in this dissertation plays a vital role in the development of the

control optimization trial (COT) framework, in which a comprehensive approach to

developing personalized optimal interventions is established, from system identifica-

tion experiment design and individualized model estimation to control system design

and implementation, as shown in Fig. 1.1 and Fig. 1.2.

In Chapter 4, closed-loop MPC strategies to overcome challenges with the lack

of consistent measurements, while providing personalized PA interventions are pre-

sented. In YourMove, significantly improved experiment design, model estimation,

and HMPC strategies are based on the observations made from analyzing JustWalk

data, as shown in Chapters 5 and 6 of this dissertation. The psychoactive behavioral

constructs of interest in the interventions are self-perceived and measured through

means of self-reporting and self-reflection. These constructs have proven to be difficult

to measure consistently, which can have a major impact on data analysis, estimated

models accuracy, and the degree to which behavioral interventions can be personal-

ized. Methods to elicit greater variability in the measurements are considered in this
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work, as well as the approach followed to address missing data points in YourMove,

as discussed in Chapter 6. The culmination of research efforts over the last years in

the application of system identification and control systems engineering principles in

adaptive behavioral interventions have come to fruition with the proposed strategies

in one of the first of its kind large-scale clinical trials involving HMPC closed-loop

adaptive intervention promoting PA in YourMove.

Figure 1.1: Simulation Results Illustrating the Proposed Control Optimization Trial

(COT) Behavioral Intervention Phases, Based on a Representative Participant from

JustWalk. Highlighted in Cyan is the System Identification Phase, and in Green is the

Maintenance Phase, While the Unhighlighted Areas Represent the Initiation Phase.

Aspects of the COT Are Discussed in Chapters 4, 5, and 6.

The concept of just-in-time adaptive intervention (JITAI; Perski et al. (2022);

Klasnja et al. (2015); Nahum-Shani et al. (2015)) has been introduced in the field

of behavioral science to address a key gap in the field’s understanding of dynamic

processes of behavior change. Therefore, in JustWalk JITAI an unconventional in-
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put signal design is introduced to identify and model the multi-timescale dynamics

(within-day and on a daily level) associated with PA behavior change and JIT states.

JIT states are hypothesized to present conditions where the provision of support is

only administered when it is expected to yield favorable results to counter notifica-

tion fatigue experienced by participants; this is presented in Chapter 2. As described

in Chapter 3, singular spectrum analysis (SSA; Golyandina et al. (2001)) is used to

study the separability of the output signal into uncorrelated components that de-

scribe the idiosyncratic forces influencing behavior change at different time scales.

Additionally, a nonlinear black-box modeling technique is examined in the form of

Model-on-Demand (MoD; Stenman (1999)) to identify and model JIT states and

multi-timescale dynamics.

Figure 1.2: Schematic Depicting the Proposed Structure for Control Optimization

Trial (COT) Behavioral Interventions, and Their Relation to the Chapters in This

Dissertation.

In MRTs, such as HeartSteps II, input signal design is substituted by fully ran-

domizing the selection of intervention components to yield data informative of the

effect of these components under different conditions. In this work, analysis of the
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HeartSteps II data focuses on utilizing fluid analogies to generate a dynamic hypoth-

esis describing engagement in PA interventions and then translating it to a dynamic

model. The developed model is utilized in implementing model-based Bayesian infer-

ence methods for data imputation, as presented in Chapter 7.

Fundamental and practical questions addressed in this dissertation to further our

understanding of behavior change dynamics, develop controllers/decision policies, and

the ability to disseminate personalized optimal mHealth intervention as a part of the

COT framework include:

1. What system identification experiment’s design is needed to estimate and val-

idate useful dynamic models for behavior change? What is the proper amount

of excitation needed from the input signal design? What magnitudes and du-

ration of the input signals are needed to obtain informative data while keeping

participants engaged?

2. What are the advantages and disadvantages of linear dynamical models for

behavior change? When do nonlinear modeling techniques perform more effec-

tively? Can nonlinear modeling techniques capture idiosyncrasies in behavior

change dynamics in the context of JIT states?

3. How can the SCT fluid analogy model be enhanced to represent separate and

possibly competing dynamics for constructs?

4. How can control strategies be developed to personalize PA interventions based

on objectively measured signals while minimizing the effect of missingness (when

data imputation is not possible)?

5. How to best formulate a generalized robust predictive controller that can imple-

ment the logical conditions in intervention components? How can a controller

8



be personalized for each individual without the need to significantly adjust the

controller structure?

6. How can one best determine the appropriate features and regressor orders for

dynamic model estimation, and do so in an efficient manner?

7. How can a systematic and practical tuning approach be developed to inde-

pendently meet requirements for setpoint tracking, measured, and unmeasured

disturbance rejection? The tuning approach must be intuitive to help in the

dissemination of personalized closed-loop interventions on a large scale.

8. What are the proper approaches to impute missing data, and mitigate the

negative impact of missingness on estimated models?

1.2 Personalized Input Signal Design

Mobile health (mHealth) and wireless behavioral interventions focus on delivering

intervention components to users in context (Hekler et al., 2013). This has been

made possible through the advances in sensor technology and the popularity of smart

devices (smartphones and smartwatches), as they provide access to temporally dense

behavioral data, especially in terms of physical activity (Hekler et al., 2016). However,

not all data sets are created alike; data sets may not be informative because of the lack

of proper excitation. In system identification, input signal design plays an essential

role in experimental design that leads to the generation of informative data sets, which

can be used to estimate control-oriented dynamic models (Rivera et al., 2002). This

is done by assuring the manipulated variables in the system are changed in a way

that excites harmonics in the frequency domain covering a desired bandwidth, while

abiding by operational and logistical limitations. Consequently, input signal design

can be formulated as an optimization problem, where frequency and time domain

9



requirements serve as constraints.

There is a growing interest in applying system identification approaches, including

experimental design, in behavioral health and medicine (Hekler et al., 2016; Martín

et al., 2015b; Galvanin et al., 2011). Such a task must be done judiciously, as most

input signal design methods are developed with industrial applications in mind, and

do not take into account the intricacies of human subjects and personalized adaptive

behavioral interventions. The goal of model estimation is to obtain idiographic (i.e.,

individual) control-oriented dynamic models that can be used to deliver personal-

ized interventions. Therefore, input signals must be designed for each participant to

account for the individual’s uniqueness and limitations.

The concept of “plant-friendly” input signal design has been introduced in Rivera

et al. (2002) for industrial applications, where operational requirements including sig-

nal duration, amplitude, and rate of change for chemical processes are considered as

part of the time domain constraints for multisine signals. Plant-friendliness has then

been extended to “patient-friendly” input signal design in Deshpande et al. (2014) for

applications in clinical trials in the treatment of fibromyalgia. The application of this

concept was examined in the input signal design for JustWalk (Martín et al., 2015a,b;

Riley et al., 2015; Freigoun et al., 2017), where the input signals were designed with

limited a priori knowledge of the dynamics associated with PA behavior change. In

this dissertation, knowledge gained from JustWalk data analysis is leveraged to guide

the efforts in designing input signals for the ongoing PA behavioral interventions

YourMove and JustWalk JITAI. For both interventions multisine input signals are

designed (to define the daily goals given to participants in the intervention) based

on a predetermined desired range of effective frequencies, where the signal’s distribu-

tion and phases are selected based on the solution to the optimization problem that

minimizes certain signal aspects like its crest factor, (Guillaume et al., 1991).
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Figure 1.3: Depicts the Hypothesized Relationship Between Steady-State Goals

and Daily Step Counts, Based on the Baseline Performance Prior to the Intervention,

(Martín et al., 2020).

One of the main observations made from analyzing JustWalk experimental data is

the significant impact of the daily goals range on the estimated models. It hypothe-

sizes that the relationship between daily goals and the performance of the participant

is nonlinear, following an “inverted U” shape as shown in Fig. 1.3 (Martín et al., 2020).

This means that the goals given on a certain day must be deemed ambitious but doable

by the participant, in order to maximize the benefits of the intervention. As the con-
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cept of “ambitious yet achievable” goals depends on the participant’s perception and

performance, it is important to design the input signals in an individualized manner.
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Figure 1.4: Combined PRBS and RMLS That Defines the Decision Rule Signal for

JustWalk JITAI in the Time Domain (Top). The Spectral Power Density of the Final

Decision Rules Signal (Bottom) in Comparison to the PRBS Base.

To personalize daily goals, the signal is scaled based on the average performance

of the participant, which can be accomplished in different manners. For example, in

YourMove the goal range for all cycles is defined based on the average performance of

the participant in a baseline stage; this is discussed in more detail in Chapter 6. On

the other hand, in JustWalk JITAI (presented in Chapter 2) the highest goal given in

an input signal cycle varies based on the average performance in the previous cycle.

This is a non-conventional approach in input signal design and is done to capture
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the hypothesized nonlinearity in the system. Moreover, the proposed input signals

for JustWalk JITAI, include a modified Pseudo-Random Binary Sequence (PRBS)

with a three-level Multi-Level Random Sequence (MLRS) to provide variance and

excitation needed in identifying JIT states, as illustrated in Fig. 1.4. A detailed

description of the input signal design for JustWalk JITAI is provided in Chapter 2.

1.3 Modeling Physical Activity Behavior Change

Theories of behavior change, such as Social Cognitive Theory (SCT; Bandura

(1986)) and Self-Determination Theory (SDT; Deci and Ryan (2012)), are concep-

tual postulations of the interrelations between personal and environmental factors

influencing behavior. Such theories provide a detailed narrative description of the hy-

pothesized interconnections between the various constructs shaping human behavior.

This narrative description is equivalent to a conceptual model that can be inter-

preted into a computational model through various statistical modeling techniques,

especially with the underlying assumption of the linearity of the relations between

the constructs. Various modeling techniques have been applied in the past, including

Structural Equation Modeling (SEM; Bollen (1989)) which proved to be effective in

modeling steady-state behavior and developing path analysis diagrams for a visual

representation of the conceptual model. However, SEM models represent static sys-

tems and do not capture the dynamic nature of the system’s responses to changes

over time. In Rivera et al. (2007b), the concept of fluid analogy was introduced

as the means to obtain dynamic process models for behavior change systems that

are akin to inventory systems in supply chain management (Schwartz et al., 2006).

This approach has shown great promise in dynamically modeling theories of behav-

ior change like the Theory of Planned Behavior (TPB) based on a path diagram

(Navarro-Barrientos et al., 2011). The derived TPB dynamic model along with a
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physiological energy balance model has been applied as the basis for behavioral in-

terventions for weight loss and body composition change, particularly in the case of

gestational weight gain problems (Navarro-Barrientos et al., 2011; Dong et al., 2012,

2014; Guo, 2018; Guo et al., 2020).

Social Cognitive Theory (SCT) is a well-regarded theory of behavior change; many

behavioral interventions have been developed based on SCT (Lopez et al., 2011), in-

cluding mHealth interventions for eating habits and physical activity (Norman et al.,

2007). SCT is the result of decades of work by behavioral scientists, starting with

social learning theory (Bandura and Walters, 1963), which expanded on the learn-

ing theory beyond conditioning to clarify social factors like observational learning,

and social support that influence acquiring new behaviors or concepts. Self-Efficacy

Theory (Bandura, 1977) was then introduced to explain elements of cognition like

self-regulation, and self-reflection that can influence behavior based on an individ-

ual’s perception, which served as the foundation for SCT (Bandura, 1986). What

distinguishes SCT is the reciprocity of influence between self-efficacy, social learning

elements, and behavior, where the interrelations between the various constructs can

sway behavior through nested loops.

In Martín et al. (2020), the fluid analogy approach has been applied to obtain

a dynamic model for a theory of behavior change, consistent with SCT. A fluid

analogy representation of a subsection of SCT is shown in Fig 1.5. In this context,

ηi represents the level in inventory i, γij represents the gain between inventory i and

the inflow/outflow j, βiz denotes the gain in inventory i due to changes in inventory

z, and ζi is for unmeasured disturbances, where i, j, z are integers. The principle

of mass conservation is then applied to each inventory to obtain a dynamic model

representation of the system where

Accumulation = Inflow −Outflow (1.1)
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This hypothesized fluid analogy SCT dynamic model served as the basis for the

JustWalk intervention, which was a physical activity behavioral intervention promot-

ing healthy levels of daily steps to sedentary adults (Riley et al., 2015; Martín, 2016;

Freigoun et al., 2017; Phatak et al., 2018; Korinek et al., 2018).

Figure 1.5: Schematic Depicting the Fluid Analogy of a Simplified SCT Model in

an Open-Loop Setting, Adapted from Martín et al. (2020).

In this dissertation, the focus is on the Operant-Learning Self-Efficacy (OLSE)

subsystem of the SCT. The OLSE subsystem consists of the Operant-Learning (OL)

recycle loop between Behavior (η4) and Behavioral Outcomes (η5), and the Self-

Efficacy (SE) recycle loop including Behavior and Self-Efficacy (η3). A hypothetical
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representation of the OLSE subsystem is utilized as the basis for simulations to im-

prove control strategies for PA behavioral interventions (Chapter 4). One of the

goals of the ongoing experiments is to validate the OLSE subsystem model through

grey-box modeling techniques (Bohlin, 1994), expand on the fluid analogy model in

collaboration with behavioral scientists, and establish a control framework to deliver

optimal individualized PA interventions. In order to validate the model, an improved

input signal design is devised, utilizing the knowledge gained from JustWalk, to gen-

erate more informative data sets. As the system of interest includes psychoactive

behavioral constructs, elaborate techniques are applied to collect adequate measure-

ments of the behavioral constructs of interest (i.e., not limited to a five-point Likert

scale), which are described in Chapter 6. These should increase compliance from the

participants with measurements, and elicit greater variability in the collected data.

One of the hypotheses when modeling PA behavior change systems is the separate

and distinct (possibly competing) impact different facets of constructs like Behavioral

Outcomes (e.g., fitness and fatigue) can have on PA levels. To mimic such dynamics,

separate inventories can be designated for each of the expected behavioral outcomes.

This results in the ability to model a variety of higher-order dynamics (e.g., under-

damped, inverse response) based on the gains and time constants for each inventory.

This approach can be applied to estimate models of the different behavioral out-

comes of interest separately, depending on the considered behavior and the ability

to measure each behavioral outcome independently, as detailed in Chapter 4. In the

ongoing SCT-inspired PA behavioral interventions, efforts to separately measure fa-

tigue and fitness as behavioral outcomes are underway. In the same principle, other

constructs in SCT can be partitioned into distinct inventories to model hypothesized

higher-order dynamics associated with the construct.

Additionally, in this dissertation, the use of fluid analogies as a tool to generate
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dynamic hypotheses and models is expanded. In collaboration with behavioral scien-

tists, an SDT-inspired fluid analogy model describing engagement in the HeartSteps II

intervention is constructed. To address the prevalent issue of missingness in behav-

ioral interventions, this hypothesized model is used as the basis for a model-based

Bayesian inference imputation approach, which allows quantifying the uncertainty

from both data imputation and scarcity, as detailed in Chapter 7.

One of the challenges faced in the dissemination of large-scale behavior change

interventions is the uniqueness of the responses from each individual to the different

intervention components and exogenous factors. To overcome this challenge in this

work, a stochastic search algorithm is used to optimize the model structure for each

individual in a timely manner and seamlessly deploy the closed-loop intervention

phase of the experiment. Particularly, discrete Simultaneous Perturbation Stochastic

Approximation (DSPSA; Wang and Spall (2011)) is utilized for both feature and order

selection in model estimation for each participant in YourMove. The effectiveness of

this approach is detailed in Chapter 6, along with the proposed mechanism to fit the

estimated individualized models into a generalized model structure that is utilized in

the predictive model structure in the HMPC-based closed-loop intervention stages.

The main aims of the JustWalk JITAI study involve the identification of JIT states

and the multi-timescale dynamics associated with PA behavior change. This imposes

new challenges in modeling the system. To overcome such challenges, sophisticated

signal processing and modeling techniques are utilized to decompose the output signal

into its components, reduce noise, and capture the system’s nonlinearities with respect

to the JIT context. Particularly, SSA is used to study the separability of Behavior

into components, and then reconstruct the Behavior signal without noise components.

Additionally, MoD is implemented as a data-centric modeling approach combining

local and global model estimation to capture the nonlinearities in systems associated
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with PA behavior change. A detailed account of these techniques and an analysis of

the obtained results from JustWalk JITAI are presented in Chapter 3.

1.4 Control Strategies for Personalized Optimal Adaptive Behavioral Interventions

Prior work at Arizona State University’s Control Systems Engineering Lab (CSEL)

in the JustWalk study (in collaboration with behavioral scientists), has provided a

good foundation for understanding behavior change associated with PA interventions

(Riley et al., 2015; Freigoun et al., 2017; Phatak et al., 2018; Korinek et al., 2018; Kha

et al., 2022). While the experimental data in JustWalk was not adequate to validate

aspects of the semi-physical SCT model (for reasons that included the inability to

measure behavioral constructs of interest beyond a five-point Likert scale for each

construct and lackluster compliance by the participants in responding to the daily

surveys used to measure psychological constructs), the knowledge obtained from the

data analysis was still of a great value. JustWalk has led to: 1) an improved input

signal design based on a priori knowledge; 2) refined measurement collection methods

related to the psychoactive constructs of interest, to elicit more variability as well as

higher participant compliance; 3) partial validation of the SCT fluid analogy structure

(much of the model remains unfalsified); 4) an insight into the best approaches to

utilize black-box modeling techniques in estimating models to predict the daily step

count (Freigoun et al., 2017; Kha et al., 2022); and 5) the ability to test HMPC

formulation and control strategies, based on the modeled participant behavior, in

simulation (Cevallos et al., 2022; Khan et al., 2022; El Mistiri et al., 2023). All of

these have played an essential role in the design and implementation of the ongoing

PA-oriented behavioral interventions (JustWalk JITAI and YourMove).

One of the main takeaways from the JustWalk study is the importance of per-

sonalization of the daily step targets, with respect to what a participant would deem

18



“ambitious yet achievable”. In this dissertation, control strategies to bring this con-

cept into application in a closed-loop behavioral intervention setting are presented.

The proposed closed-loop control strategies can be applied to various types of par-

ticipants, depending on the participant’s level of compliance with the daily surveys

utilized to measure self-reported psychoactive constructs, yielding different levels of

personalization. The main aim of the closed-loop control scheme is to personalize

the intervention and provide each participant with ambitious enough daily step goals

guiding them towards the desired intervention outcome of 10,000 steps per day while

mitigating the probability of disengagement and dropping out of the intervention be-

cause of extremely ambitious goals. The proposed MPC strategies provide the main

framework for the personalization of the interventions through controller tuning and

constraint enforcement. To individualize the intervention without relying on self-

reported measurements, the state-space representation of the SCT model has been

manipulated to augment Goal Attainment as an output. This allows for imposing

output constraints on the Goal Attainment, to ensure providing achievable goals by

the controller.

Initially, the developed closed-loop control strategies are evaluated utilizing a hy-

pothetical representation of a subsystem in the SCT semi-physical model. This is an

essential step toward the implementation of closed-loop behavioral interventions on a

large scale. Chapter 4 presents a detailed account of the devised control strategies, for

different levels of complexity and individualization of the closed-loop system. Further-

more, Auto Regressive with eXogenic inputs (ARX; Ljung (1999)) model estimation

has been performed on experimental JustWalk data, to obtain participant-specific

models. Estimated models for representative JustWalk participants are utilized to

evaluate the validity of the devised control strategies in a robust three-degrees-of-

freedom Kalman filter-based Hybrid Model Predictive Control (3DoF-KF HMPC;
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depicted in Fig. 1.6) formulation for a participant-based PA intervention, in a sim-

ulation environment. Simulation results for a representative participant illustrating

the performance of the devised controller formulation in setpoint tracking and distur-

bance rejection are presented in Chapter 5 of this dissertation. Additionally, in this

chapter, the robustness of the proposed 3DoF-KF HMPC is evaluated using Monte

Carlo simulation.

Kalman Filter-II

Optimizer

Kalman Filter-I

Process

Constraints

Objective

 FunctionPrediction Model

Filter

White noise

Filter

Figure 1.6: Block Diagram Schematic Depicting the Proposed Three-Degrees-Of-

Freedom By Means of Kalman Filter HMPC (3DoF-KF HMPC) Structure, Aiming

to Achieve Setpoint Tracking While Effectively Accounting for Both Measured and

Unmeasured Disturbances. The Controller Utilizes External Filters to Adjust the

Speed of Response for Measured Disturbances Rejection and Setpoint Tracking. Ad-

ditionally, Nested Kalman Filters Are Utilized to Tune for Unmeasured Disturbances

Separately (Khan et al., 2022).

The devised closed-loop control strategies for PA interventions are adopted and

meticulously refined in YourMove, to accommodate for unforeseen conditions encoun-

tered in a real-world implementation. This is an iterative process, which resulted in
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what is dubbed the “digital PA coach tuning” control strategy. A detailed account

of the algorithm followed in adaptively adjusting controller tuning and controller re-

configuration, along with clinical trial results for the first of its kind COT study

(YourMove) are presented in Chapter 6.

1.5 Data Missingness and Imputation

Missing data is a prevalent issue in randomized controlled trials (RCTs) in both

medical and behavioral intervention studies (Jakobsen et al., 2017; Bell et al., 2014a).

In work done by Rioux and Little (2021), 96% of reviewed studies between 2015 and

2019 reported a degree of missing data that impacted outcomes. The best approach

in intervention studies is to mitigate data loss by experiment design. Despite any

measures taken to limit missingness, the loss of data points in such studies is typ-

ically unavoidable, due to low levels of participant compliance, technical issues, or

participant dropout. Moreover, improper handling of the missing data points can

add bias to the data and reduce variance. The ramifications of data loss can be quite

significant, particularly in longitudinal studies, as it can cloud conclusions and re-

duce the quality of estimated models, especially when the duration of the experiment

is limited. Note that MATLAB’s System Identification toolbox does not support

model estimation with missing data points or provide sophisticated data imputation

tools. The impact of missing data points can be even more severe when real-time

decision-making is done based on feedback measurements of the outputs of interest.

Consequently, the loss of any measurement can render the optimization problem in

the decision-making algorithm unsolvable and halt the intervention. This is indeed

the case in the HMPC-guided closed-loop portion of YourMove intervention.

To reduce data loss in the ongoing behavioral interventions, positive reinforce-

ment and participant compliance monitoring policies are followed, along with other
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measures. The proposed measures include:

• The use of smartwatches (Fitbit Versa 3) as the device to measure the daily

step count, which is the most significant output signal in the intervention.

• Positive reinforcement for compliance, where participants will be financially re-

warded with gift cards for completing the self-reported surveys used to measure

the psychoactive constructs of interest.

• Automated monitoring for compliance levels of the participants, where text

messages and notifications are sent to participants whose compliance level is

low to nudge them to partake in the daily surveys and wear the measuring

device more consistently.

• Minimizing the burden associated with responding to the daily surveys, by

reducing the number of questions in each survey. Furthermore, survey questions

are worded carefully in an easy-to-read manner, and are mainly focused on the

two psychological constructs relevant to the OLSE subsystem of the SCT model

(Self-Efficacy and Behavioral Outcomes).

• In YourMove, the daily surveys are provided to the participants through the

smartwatch watchface, which is expected to reduce the burden of answering the

surveys as questions are now present on the participant’s wrist.

In principle, the measures taken above should reduce missing data points. However,

a degree of loss is expected in the experimental data. Therefore, policies to handle

missing data points, and methods for data imputation must be considered as a part

of the data analysis, not only to interpolate missing data points within a set but also

to extrapolate incidents of data loss online. This is particularly significant for the
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closed-loop control stages of YourMove, as data imputation must be conducted in

real-time to allow for the intervention to proceed uninterrupted.

In this dissertation, a sophisticated model-based Markov Chain Monte Carlo

(MCMC) Bayesian inference approach for data imputation is explored. Particularly,

this approach is studied in imputing missing data points as a part of data analysis for

the HeartSteps II study. Details regarding the model used in this Bayesian inference

imputation approach and results highlighting its capability of propagating and quan-

tifying uncertainty due to data imputation are presented in Chapter 7. On the other

hand, for YourMove a simple rolling average approach is utilized to impute missing

data points, as described in Chapter 6. This is done because of limitations faced in

the available computational power and time to impute missing data points online in

the closed-loop stages of the study.

1.6 Contributions of The Dissertation

This dissertation presents a comprehensive control optimization trial (COT) frame-

work for the delivery of optimal personalized behavior interventions based on system

identification and control systems engineering principles. Moreover, this dissertation

validates the effectiveness of this comprehensive approach through a unique clinical

trial, providing unprecedented results and insights. In this dissertation prior knowl-

edge is leveraged to design improved input signals for system identification in PA

interventions, providing more informative data sets. Additionally, novel signal pro-

cessing and modeling approaches are utilized to further the understanding of behavior

change idiosyncrasies in the context of JIT states. Finally, a sophisticated model-

based approach for data imputation is evaluated to address the ubiquitous problem

of data loss in behavior change interventions.

The contributions of this dissertation in terms of designing informative open-
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loop system identification experiments for physical activity (PA) behavior change

interventions and modeling behavior change systems related to physical activity are

summarized as follows:

• Design of input signals to generate informative experimental data to identify and

estimate just-in-time (JIT) states and the multi-timescale dynamics associated

with behavior change in PA-oriented interventions. This input signal design is

based on a novel unconventional method aimed at identifying JIT states, as a

part of the Just Walk JITAI intervention.

• Development and evaluation of improved approaches to personalize input signal

design for the goal-setting component in PA behavioral interventions. Two

proposed approaches are tested in real-world settings as a part of YourMove

and JustWalk JITAI.

• Enhancement of the dynamical systems model for Social Cognitive Theory

(SCT) to incorporate separate and possibly competing dynamics for different

facets of behavioral constructs. This improvement to SCT produces higher-

order systems and can mimic different observed phenomena in behavior change

systems.

• Development of a computational dynamical systems model for participant en-

gagement in mHealth interventions.

• Application of a signal processing technique, particularly Singular Spectrum

Analysis (SSA), to study the separability of behavior into its uncorrelated com-

ponents covering different frequencies and remove noise in an informed man-

ner. This provides the means to study idiosyncratic forces influencing behavior

change at different time scales.
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• Integration of input signal design in JustWalk JITAI, SSA, and Model-on-

Demand (MoD) in a novel approach to capture nonlinearities associated with

behavior change at different frequencies of interest and in context of JIT states.

• Implementation of the Discrete Simultaneous Perturbation Stochastic Approx-

imation (DSPSA) algorithm to optimize model order and features in an ARX

structure in an idiographic manner. This allows for the estimation of participant-

specific models (online) within the limited time available for model estimation

in YourMove.

The contributions of this dissertation in terms of closed-loop optimal personalized

behavior change interventions, particularly for the physical inactivity problem, are

summarized as follows:

• Development of MPC-based closed-loop control strategies to deliver optimal

personalized behavioral interventions promoting healthy levels of PA, even un-

der circumstances with limited measurement capabilities and plant-model mis-

match.

• Expanding the mixed logical dynamical (MLD) structure implementation in

behavior change interventions to include logical conditions based on decisions

made in previous instances of the intervention. This is particularly formulated

to incorporate granting financial rewards as part of the optimization objective

function over the entirety of the move horizon.

• Extension of the devised control strategies and integrating them with a robust

three-degrees-of-freedom Kalman filter-based Hybrid Model Predictive Control

(3DoF-KF HMPC) formulation.
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• Evaluation of the efficacy of the synergism between the devised system iden-

tification experiment, formulated 3DoF-KF HMPC, and control strategies in

delivering personalized closed-loop PA interventions in real-world settings. This

is done as a part of a first-of-its-kind COT study, under the name of YourMove.

Last but not least, this dissertation contributes to solving the problem of data

loss and missingness commonly faced in behavior change interventions. This is done

through the evaluation of a model-based Bayesian inference data imputation ap-

proach, utilizing Markov Chain Monte Carlo methods to propagate and quantify the

combined uncertainty due to data scarcity as well as data imputation.

1.7 Dissertation Outline

After this introductory chapter, the dissertation continues in Chapter 2 with a

detailed description of the SCT dynamical systems model. The translation of the

fluid analogy model of SCT into a system of differential equations is presented and

explained. In addition, the operationalization of JIT state conditions is explained

and the design of the JustWalk JITAI (R01LM013107, 2020) study is described, in-

cluding the two main intervention components (goal setting and inspiring bouts).

Additionally, this chapter illustrates the integration of the intervention components

into the SCT model, highlighting the within-day component in the form of bouts of

notifications aimed to inspire the participant to engage in PA. This chapter presents

an innovative input signal design for the JustWalk JITAI intervention components,

allowing the operationalization of JIT into a decision rules signal that dictates the

conditions under which notifications can be sent. The proposed input signal design

also provides an adaptive approach for the personalization of the goal-setting interven-

tion component. Chapter 2 highlights the use of simulations based on the developed

SCT model to guide elements of the input signals design for JustWalk JITAI.
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Chapter 3 presents a detailed description of a novel signal processing and model

estimation method that can be used to understand and model idiosyncrasies in be-

havior change systems in the context of JIT states. Particularly, SSA is utilized

to study the separability of the output signal into different groups of uncorrelated

components, decompose the signal into its components, and then construct a filtered

output signal from its most relevant components excluding noise. In addition, this

chapter introduces MoD and highlights its capability of estimating localized models

under a global structure, which can be utilized to capture nonlinearities associated

with behavior change systems in the context of JIT states. Results for a representa-

tive JustWalk JITAI participant presented in Chapter 3 serve as proof of concept for

the effectiveness of this method in analyzing and modeling the impact of exogenous

signals on behavior change systems at different time-scales, while taking into account

JIT state conditions.

Chapters 4 and 5 focus on the development of closed-loop framework and control

strategies promoting PA. In Chapter 4, a reduced SCT model (focusing on the OLSE

subsystem) is utilized to study and develop control strategies that deliver person-

alized closed-loop interventions, while considering possible limitations faced in the

availability of reliable measurements for psychoactive SCT constructs, and plant-

model mismatch. The control strategies presented in Chapter 4 apply a classical

MPC formulation and are based on hypothetical participants representing extreme

ends at the spectrum of possible participant adherence in PA-oriented interventions.

These control strategies are further examined in Chapter 5 in a simulation setting,

utilizing a HMPC formulation and a participant-specific black-box model estimated

for a representative JustWalk participant. In Chapter 5, details regarding the estima-

tion of the participant-specific ARX model are provided. In addition, the 3DoF-KF

HMPC controller formulation is presented, highlighting its capability to make deci-
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sions based on categorical and logical conditions. This is particularly important for

granting rewards as a part of the positive reinforcement component of the interven-

tion, where financial rewards are granted based on the participant’s performance with

respect to controller decisions made at the previous sampling instance. Furthermore,

in Chapter 5 Monte Carlo simulations are utilized to examine the robustness of the

devised 3DoF-KF HMPC formulation in the face of plant-model mismatch.

Chapter 6 in this dissertation is dedicated to the real-world implementation of

the first COT study, YourMove (R01CA244777, 2020). In this chapter, the unique

aspects of YourMove are highlighted along with the challenges faced and the methods

devised to overcome them. Chapter 6 presents refinements to the input signal design

used in the YourMove as a part of the system identification stage. Additionally,

as YourMove is a large-scale study (including 190+ participants in the closed-loop

intervention) a stochastic search algorithm is utilized, which allows for the estimation

of idiographic models that can be fixed in a generalized structure for all participants

through state-space model manipulation. This generalized model structure serves as

the predictive model structure in the 3DoF-KF HMPC controller formulation for all

participants, yet allows the personalization of the closed-loop intervention for each

participant through the estimated participant-specific model parameters, tuning, and

constraints assignment. Furthermore, in Chapter 6 a detailed account of the adaptive

controller tuning and reconfiguration strategies, dubbed “digital PA coach tuning”, is

provided. Unprecedented results from the ongoing YourMove study are presented

and discussed in Chapter 6 for representative participants, along with preliminary

findings and lessons learned from YourMove to date.

In Chapter 7 a dynamic model for engagement in physical activity interventions is

hypothesized and a sophisticated model-based data imputation approach is evaluated.

Particularly, the hypothesized model aims to provide a theoretical background for
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modeling engagement in PA interventions, in light of the available HeartSteps II

data. In this chapter, the use of fluid analogy as a tool for hypothesis generation

is highlighted. Moreover, the hypothesized model serves as the basis for a Bayesian

inference technique to handle data loss, allowing informed imputation of missing

data points while propagating uncertainty due to data imputation and scarcity into

estimated models.

Chapter 8 concludes this dissertation with a summary of the important conclu-

sions and the advances achieved through real-world implementation of control systems

engineering principles in behavior change interventions. This chapter also presents

recommendations regarding future directions for the research. Chapters in this disser-

tation are written in the form of stand-alone papers based on published and submitted

papers.
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Chapter 2

ENHANCED SOCIAL COGNITIVE THEORY DYNAMIC MODELING AND

SIMULATION TOWARDS IMPROVING THE ESTIMATION OF

“JUST-IN-TIME” STATES

2.1 Introduction

Inactivity has led to an increase in chronic diseases within populations (Booth

et al., 2012). Physical inactivity causes an increased deterioration of body functions

resulting in various illnesses like obesity, diabetes, heart disease, cancer, rheumatoid

arthritis, and more. On the other hand, maintaining healthy levels of physical activity

(PA) can work as a preventive measure against all of these illnesses, or at least delay

their onset (Booth et al., 2012; Saint-Maurice et al., 2020); an increase from 4,000 to

8,000 steps/day reduces the risk for all-cause mortality by 51% for adults. Despite

the various public physical activity awareness campaigns over the years, there is a

low prevalence of healthy PA levels in the general population; about 80% of adults in

the US do not meet the recommended CDC guidelines of 150 minutes of moderate to

vigorous physical activity exercises (Olson et al., 2018). Thus, the question is not if

PA is beneficial for health, but rather how to support people to engage and sustain

healthy PA levels. Control systems engineering has proven to be very beneficial in

many fields, and the adoption of system identification and dynamic control strategies

in the behavioral medicine field is an area of significant promise in research (Rivera

et al., 2018; Hekler et al., 2016). Prospects include the dissemination of interventions

on a large scale to the general population, that can help fight addiction and adopt

healthy behavior.
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One of the reasons the field of behavioral medicine struggles to help people be

active is because of limited understanding of the dynamic processes that occur in

real-world contexts that facilitate or hinder a person’s ability to be active (Hekler

et al., 2016; Kessler and Glasgow, 2011). Much of behavioral intervention develop-

ment relies on relatively static theoretical models and corresponding interventions.

While “tailoring” is a key concept for behavioral interventions, which in the field in-

volves defining if/then rules to adjust the provision of support to a person based on

some assessment of that person in a given instance, the field has largely moved for-

ward improving knowledge about processes using methods designed more to test if

interventions or intervention components work or not, on average for a population.

These methods, particularly if used on data sets that only have snapshots of data

(e.g., data gathered once every 3 months, which is still common in the field), pro-

duce limited to no insights about dynamic processes, particularly as they manifest

in real-world contexts. Thus, the field’s dominant methods and approaches provide

only limited insights into dynamical processes.

With the increased availability of temporally dense data afforded by digital tech-

nologies, there has been a re-emergence of the use of idiographic methods, which

refers to data analysis explicitly designed to study predictions and patterns within

time series data corresponding to a single individual. These temporally dense time

series data have also enabled the use of control systems methods, such as dynami-

cal systems modeling, system identification, and controller design to guide dynamic

decision-making. In particular, prior work has illustrated the value of dynamical

systems modeling for specifying dynamic predictions relevant to behavior change in

context (Martín et al., 2020), the value of system identification for producing infor-

mative data about dynamic processes related to behavior change (Hekler et al., 2016),

and the possibility of creating controllers to drive digital health interventions (Martín
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et al., 2016a).

Building on this prior work, a key gap in the field’s understanding of dynamic pro-

cesses of behavior exists with regard to multi-timescale prediction and, by extension,

decision-making. In particular, the field has advanced the concept of a just-in-time

adaptive intervention (JITAI; Perski et al. (2022); Klasnja et al. (2015); Nahum-Shani

et al. (2015)), which involves both provision of support when a person has the need

for a specific type of support, the opportunity to respond favorably to the support,

and receptivity to receiving the support, which can then contribute to adaptations

over time that results in meaningful behavior change (e.g., meeting and sustaining

behavioral targets). Thus, it is not only important to provide good “just-in-time”

support, but to also make sure said support is contributing towards meaningful be-

havior change over time. This issue could be conceptualized as a multi-timescale

problem in that robust prediction and decision-making are needed both in shorter

timescale (e.g., deciding whether to send a notification to invite a person to plan a

bout of walking in the next 3 hours) and longer timescales (e.g., establishing “am-

bitious but doable” step goals in a given day that can facilitate gradual increases

towards clinically meaningful targets).

The purpose of this chapter is to describe and design innovative input signals

design to study multi-timescale dynamics that are part of a digital health intervention,

JustWalk JITAI. This work leverages prior work, particularly a dynamical model

of the Social Cognitive Theory (SCT), that encapsulates prior domain knowledge

about behavioral processes that influence physical activity. Specifically, we use SCT

to simulate plausible responses of participants to different signal design processes to

estimate the plausible data quality that will be produced from the input signal design.

The chapter is organized as follows: Section 2.2 gives a brief description of SCT.

Section 2.3 presents components and the thought process for the behavior change
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experiment. Section 2.4 details the input signal design, while in Section 2.5 simulation

results of the examined case studies are presented and discussed. Section 2.6 provides

conclusions along with implications for future work.

2.2 Social Cognitive Theory (SCT)

Theories of behavior change like SCT utilize psychological constructs to hypothe-

size how different factors may impact behavior. SCT allows for the prediction of the

ability of an individual to engage in determined behavior, by explaining the intercon-

nections between various factors influencing behavior, including previous experience

(Bandura, 1989). The constructs in the SCT can be measured using sensors or in-

ferred from other signals. Fluid analogies utilize engineering principles, such as the

conservation of mass, to represent theories of behavior change like SCT as dynamic

mathematical models. The work done in Martín et al. (2020) describes a dynamical

model for the SCT which can be seen in Fig. 2.1 in a fluid analogy representation.

Table 2.1 lists the SCT components considered in this chapter along with their

associated symbols. In the fluid analogy, the main SCT behavioral constructs are

considered as inventories (tanks) in an inventory system with the level inside each

vessel representing system outputs. Brief descriptions of the main system outputs

included in this work are as follows:

1. Self-efficacy: The perceived capability and desire to engage in a targeted be-

havior, given constraints, obstacles, and demands.

2. Outcome Expectancies: The perceived chance that engaging in behavior will

lead to certain outcomes.

3. Behavioral Outcomes: The outcomes (e.g. fatigue, fitness) resulting from en-

gagement in a certain behavior.
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4. Behavior: The actual behavior of interest. This can represent different char-

acteristics of behavior (e.g. frequency, intensity, duration). For this study, the

behavior of interest is the amount of steps taken per day.

Figure 2.1: Schematic Illustrating the Fluid Analogy of the Social Cognitive Theory

Model (Rivera et al., 2018; Martín et al., 2020).

Based on SCT, behavioral constructs are influenced by exterior stimuli from var-

ious factors as well as from interactions between the constructs, which is depicted by

how inventory levels change over time based on influences of inflows/outflows into the

system (system inputs) and deviations in connected inventories. The inputs consid-

ered in this work are described below:

1. External Cues: Represents exogenous stimuli to the system (e.g. assigned goals,

a friend’s invite) which triggers Behavior or Behavior increase.
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2. Perceived barriers and obstacles: Represents external conditions that directly

impact Self-Efficacy (e.g. busyness, seasonal illness).

3. Environmental context: External and environmental conditions that can have a

positive or negative impact on the experience at which Behavior occur and the

Behavioral Outcomes as a consequence (e.g. weather, weekday vs weekend).

Table 2.1: List of the SCT Inputs and Outputs Considered in This Chapter from

Martín et al. (2020).

Name Symbol

Inflows/Outflows (system inputs)

Perceived barriers and obstacles ξ5

Environmental context ξ7

External Cues ξ8

Inventory levels (system outputs)

Outcome expectancies η2

Self-efficacy η3

Behavior η4

Behavioral outcomes η5

Cues to action η6

2.3 Intervention Design: JustWalk JITAI

JustWalk JITAI intervention design follows a similar structure to the previous

behavior change experiment (JustWalk) in the goal-setting component, where in an

open-loop setting participants are given a specific amount of steps to walk each day
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as the daily goal (Martín et al., 2020). In an extension to what was done in JustWalk,

in this intervention the maximum and minimum values of the daily goals in each

cycle are adjusted based on the average performance of the previous cycle. For the

initial cycle of the intervention, the maximum and minimum values are decided based

on the participant’s performance at the baseline period, where the behavior of the

participant is measured before the intervention starts. This allows for maintaining

ambitious yet achievable daily goals personalized for each participant for each cycle.

The second component of JustWalk JITAI is the walking notifications, which

consist of within-day messages designed to inspire a person to take a short (e.g., 10

minutes) walk. This intervention component is designed with a focus on studying the

notion of a just-in-time (JIT) state, which involves the degree to which the notification

is well-matched to a particular moment. To operationalize this, three conditions about

the current moment are taken into account:

• Need (N): Whether the participant has not met or progressed enough towards

the given daily goal.

• Opportunity (O): Whether the participant has a window of opportunity to go

on a walk within the upcoming sampling period (based on calendar input or

recognized patterns).

• Receptivity (R): If the participant has received less than 3 messages within the

day.

Three combinations of the conditions are chosen as the decision rules for the walking

notifications component: 1) N+O, 2) N+R, 3) N+O+R also known as the JIT decision

rule.

The premise of the walking notifications component is to examine the dynamic

responses to the provision of support within moments that are more or less likely to
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be “just-in-time”; meaning a moment when a person has the need, opportunity, and

receptivity to a given intervention. By nudging participants to plan for PA when they

are in “just-in-time states” the yield of the walking notifications should increase while

maintaining a minimal burden on participants. Theoretically, this should maximize

walking notifications benefits and minimize notification fatigue.

Participants in the intervention are given a Fitbit Versa 3 device to track their

daily step count. Daily goals are delivered through a smartphone application that

syncs with the Fitbit device to obtain measurements and store them in a database

on a secure server. Measurement of other output psychological constructs like Self-

Efficacy (η3), and Behavioral Outcomes (η5) are taken through surveys known as

ecological momentary assessments (EMAs; Shiffman et al. (2008)) provided to partic-

ipants at different times of the day. Multiple specifically articulated survey questions

are designed to assess each construct and the average score is utilized.

In this chapter, the SCT model is simplified by excluding the Self-Management

Skills inventory (η1). Moreover, only Perceived barriers/obstacles (ξ5) and Environ-

mental contexts (ξ7) are considered as disturbances out of the system’s exogenous

inputs. As per exogenous inputs, only External Cues (ξ8) are considered including

both intervention components: goal setting (ξgs8 ) and walking notifications (ξib8 ). This

yields a simplified system of ordinary differential equations (ODEs) that can be seen

in (2.1-2.5) below:

τ2
dη2
dt

= β25 η5(t)− η2(t) + ζ2(t) (2.1)

τ3
dη3
dt

= γ35 ξ5(t) + γ311 ξ11(t) + β34 η4(t)− η3(t) + ζ3(t) (2.2)

τ4
dη4
dt

= β42 η2(t) + β43 η3(t) + β45 η5(t) + β46 η6(t)− η4(t) + ζ4(t) (2.3)

τ5
dη5
dt

= γ57 ξ7(t) + β54 η4(t)− η5(t) + ζ5(t) (2.4)

τ6
dη6
dt

= γgs68 ξ
gs
8 (t) + γib68 ξ

ib
8 (t)− η6(t) + ζ6(t) (2.5)
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In a departure from previous work, the SCT model in equations (2.3) - (2.5) has

been modified to accommodate for within-day effects (like walking notifications) on

the numerical solution generated during integration. This is essential in the simula-

tions presented in this chapter, where the model is used to achieve an informative

input signal design for the system of interest. The process of input signal design is

iterative by nature, and the built simulation allows for examining different designs on

hypothetical participants to set expectations and validate decisions made in the de-

sign. For instance, by simulating extreme scenarios, a rough estimate of the amount

of notifications being sent to a participant throughout the intervention is obtained.

This allows for the assessment of the expected notification burden associated with

each decision rule.

2.4 Input Signal Design

To elicit dynamic responses over the timescales of interest, two different input

signals are designed in JustWalk JITAI for the separate components of the interven-

tion: goal setting and walking notifications. All designed signals follow the guidelines

presented in Gaikwad and Rivera (1996), and Rivera et al. (2002), in which equa-

tion (2.6) is highlighted to define the effective frequency range of the input signal

based on a a priori knowledge and estimates of the dominant system time constant.

ω∗ =
1

βsτHdom
≤ ω ≤ αs

τLdom
= ω∗ (2.6)

τLdom and τHdom represent the higher and lower bounds for the estimated dominant time

constant of the system. αs and βs dictate the input signal’s content of high and low

frequency respectively.

For goal setting, a multisine (MS) signal is utilized. The input signal design

parameters shown in (2.7) are chosen based on obtained knowledge from previous

42



work (see Section 5.3.2 and El Mistiri et al. (2023)).

τLdom = 1 days, τHdom = 2 days, αs = 2, βs = 2 (2.7)

The design parameters lead to a cycle length of 26 days as seen in Fig. 2.2. The

MS signal determines the daily goals given to participants throughout the 260 days

intervention, in 10 cycles. For each cycle the lower bound in goals is determined by

the average steps taken per day from the previous cycle with a 2,000 steps/day range.

This design is expected to generate an added transient in the output signals, which

will have to be accounted for in the subsequent analysis of the experimental data.
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Figure 2.2: Multisine Base Cycle for the Goal Setting Input Signal in the Time

Domain (Top) Along with Its Spectral Power Density (Bottom).

The effective frequency range of the signal is related to the design parameters

through (2.6). This yields persistence of excitation between ω∗ ≈ 0.25 rad/day to

ω∗ ≈ 2 rad/day for the designed MS signal, as it is highlighted in the power spectrum

of the signal seen in Fig. 2.2.
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Figure 2.3: Base PRBS Signal for the Decision Rules Signal in the Time Domain

(Top). Spectral Density of the Base PRBS Signal (Bottom).

For the walking notifications component, the three decision rules for sending

prompts to participants are tested against fully randomized prompts, to study the

effectiveness and dynamics of the decision rules. The purpose of the decision rules is

to minimize the burden on participants and notification fatigue by prompting engage-

ment in PA when participants are most likely to respond. To construct this categorical

four-level input signal an innovative method is used where a pseudo-random binary

sequence (PRBS) is utilized as the base for the design. Then, a random multi-level

sequence (RMLS) is superimposed over one of PRBS’s binary levels. Input signal

design parameters for the PRBS are chosen as seen in (2.8).

τLdom = 3 days, τHdom = 3.5 days, αs = 2, βs = 2 (2.8)

This results in a 60 days cycle with nr = 4 shift registers and switching time Tsw = 4

days, as can be seen in Fig. 2.3. The parameters are chosen to cover the most
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important dynamics of the system by introducing variability in a sufficient frequency

without allowing the system to settle. Four cycles of the designed PRBS signal are

needed to cover 240 days of the study; then the walking notifications element is taken

offline for the remainder of the experiment.

Fig. 2.3 provides further confirmation regarding the chosen guidelines for the base

PRBS input signal, as it can be seen that the spectral power density contains sufficient

persistent excitation by the number of harmonics included in the effective frequency

range between ω∗ ≈ 0.14 rad/day to ω∗ ≈ 0.67 rad/day.

A uniformly distributed RMLS with three levels is superimposed over the base

PRBS signal, where the signal equals 1. The three-level RMLS is generated with a

different realization at each instant that the PRBS signal switches to 1. This allows

for superimposing a new random sequence at each instant it is needed, without any

repetitions across cycles as can be seen in Fig. 2.4, which reduces the bias from the

possibility of participants recognizing any repetitive patterns.

The switching time for the RMLS signal is one day, enabling the introduction of

more variability at a higher frequency to the decision rules input signal. This adds

persistence of excitation to the high frequencies while maintaining the excitation in the

lower frequencies at the effective frequency range as Fig. 2.4 illustrates. Moreover, the

decision framework of the walking notifications component allows for identification of

higher frequency dynamics through the effect of the notifications sent to participants

within-day.

The utilization of the decision rule input signal for the walking notifications com-

ponent, along with the goals signal for the goal setting component assures covering

a wide range of system dynamics over the different time scales of interest. Despite

the overlap in the effective frequency ranges of the designed input signals, each of

them is unique in the component it covers, and the two signals are orthogonal to

45



one another in nature. This can be confirmed by applying cross-correlation analysis

to the designed input signals. The input signal design is made with the purpose of

providing persistence of excitation across both low and high frequency and generating

dynamically informative experimental data suitable for various modeling approaches.
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Figure 2.4: Combined PRBS and RMLS Constructing the Decision Rule Signal in

the Time Domain (Top). Spectral Power Density of the Final Decision Rules Signal

in Comparison to the PRBS Base (Bottom).

2.5 Simulation Results & Discussion

The SCT model presented above is utilized to simulate the designed interven-

tion on two types of hypothetical participants: an adherent (ideal) participant, and
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a non-adherent participant. The simulations also cover two different scenarios per

participant: intervention without the presence of perceived barriers and unpleasant

experiences versus when such disturbances occur. The goal of the intervention is

to increase the amount of steps participants take per day, and ideally reach 10,000

steps/day. All simulations assume inactive participants with 2,000 steps/day as the

baseline and the intervention starting at day zero. High-frequency noise is added to

the behavior as part of the system, to mimic the variability in the amount of steps

taken per day, as observed in previous work. Other stochastic conditions are incor-

porated into the simulation through the unmeasured disturbances at each inventory.

In this section, the results obtained for each of the scenarios are presented and the

insights they provide into the intervention and input signal design are discussed.

To account for the opportunity condition in simulations, a calendar signal is devel-

oped with a hypothetical schedule for the participants. The time within-day is divided

into eight periods of three hours, where the first two periods and the last period of the

day are excluded to avoid sending prompts while participants are asleep. The avail-

ability of the participant in the remaining five periods within the day is randomly

generated. This calendar signal is utilized in all simulations when the opportunity is

considered in the decision rules.

2.5.1 Adherent participant: No Disturbances

In this scenario, the participant is very adherent to the given goals, as the Cues

to action level sharply increases with the increase in the daily goals. This participant

can be classified as an overachiever; behavior levels significantly exceed the given

goals on the majority of the intervention days. This can be also observed in the

Goal Attainment signal, as the signal is positive for most of the intervention (approx-

imately 71.2% of the intervention days). This leads to the progression in the daily
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goals towards the target of 10,000 steps/day based on the previous cycle’s average

performance. The majority of the significantly negative Goal Attainment values are

associated with the beginning of a new cycle of goal setting as a result of the higher

values for daily goals. Consequently, it is observed that the participant’s Self-Efficacy

decreases upon significant increases in the goals in a new MS cycle. This particular

observation helped inform the decision on an ambitious yet achievable upper bound

for goals in each cycle. This particular participant does not take long to adjust their

behavior and reach an average behavior level that meets or exceeds the given goals.
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Figure 2.5: Simulated Results Illustrating the Response of an Adherent Participant

to the Designed Input Signals, in the Absence of Any Disturbances.

The Self-Efficacy of this adherent participant increases over time as behavior in-

creases closer to the desired intervention outcome. This adds to the participant’s

ability to engage in PA and walk more steps per day, which contributes to the partic-

ipant overachieving the upper range of their given goals in each cycle. At the peaks
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of Self-Efficacy the participant exceeds the daily goals by close to 4,000 steps per

day increasing the average step count for that cycle, just before a new cycle with

significantly higher goals is introduced. The observed trend in the Behavioral Out-

comes and Outcome Expectancies is a gradual increase with the increase in Behavior,

which is slower than what is observed with Self-Efficacy. Behavioral Outcomes in-

crease as the benefits of the increased PA levels are observed by the participant, and

higher Outcome Expectancies follow. This contributes to Behavior itself as part of

the Operant-Learning (OL) loop.

Table 2.2: Notification Rates (in Notifications/day) for Each Decision Rule Per

Scenario.

Scenario N+O N+R JIT

Adherent with no disturbances 0.52 0.67 0.33

Adherent with disturbances 0.50 0.84 0.51

Non-Adherent with no disturbances 1.7 1.7 1.2

Non-Adherent with disturbances 1.8 1.8 1.3

This scenario illustrates an adherent participant who would be able to meet the

daily goals most of the time, therefore, not satisfying the need condition in the decision

rules for majority of the intervention. This is indeed the case observed in the simu-

lation results where the total amount of notifications sent to this participant is the

least out of all presented scenarios, at 236 (144 randomized and 92 non-randomized

notifications). It is also observed that the decision rules work as they are designed;

the JIT decision rule offers the least amount of burden when a participant meets

the daily goals as observed in Table 2.2. The second lowest notification rate in this

scenario is achieved when the need and opportunity decision rule (N+O) is enforced.
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Lastly, when the need and receptivity decision rule (N+R) is followed, the notifica-

tion rate is approximately double what is seen in the JIT rule. In all decision rules,

the observed daily notifications rate and the amount of notifications sent in total are

significantly less than the randomized notifications periods.

2.5.2 Adherent Participant: With Disturbances

In this scenario, the response of the same adherent hypothetical overachiever is

simulated when the participant faces challenges. Such challenges are demonstrated

by the exogenous disturbances in the form of Perceived Obstacles & Barriers, and

Environmental Context. This is done to mimic real-life situations where undesired

environmental factors like weather (i.e., rain, heat waves, etc.) might not allow par-

ticipants to exercise or walk in their normal routine. Another exogenous factor that

can impact engagement in PA is in the form of daily life obstacles participants per-

ceive and face, like coming down with a seasonal illness or having to accommodate

for unforeseen work/school/social life demands. In Fig. 2.6 it is observed that this

participant’s response in this scenario is very similar to the previous case. The main

differences are seen in the Self-Efficacy and Behavioral Outcomes as they are neg-

atively impacted by the Perceived Barriers, and the bad Environmental Contexts

respectively. Consequently, Outcome Expectancies and Behavior are at lower levels

than what is seen in Section 2.5.1.

Despite the negative impact of the considered exogenous disturbances, this par-

ticipant still manages to adapt to higher goals quite effectively. The participant

overachieves the daily goals by a decent margin as illustrated in Fig. 2.6 by the Goal

Attainment signal; this participant meets or exceeds the daily goals for 63.5% of the

intervention. Based on this described nature of the Behavior, this participant can

be classified as a goal-oriented, determined person who is not easily deterred by any
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obstacles or inconveniences.
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Figure 2.6: Simulation That Illustrates the Response of an Adherent Participant to

the Designed Input Signals, in the Presence of Disturbances in the Form of Perceived

Barriers/Obstacles and Bad Environmental Context.

Positive Goal Attainment in this scenario is lower than what is seen in the previ-

ous case, as a result, more inspiring bout prompts are sent to the participant, due to

meeting the need condition more frequently. The participant receives 263 total noti-

fications in this simulation (144 randomized and 119 non-randomized notifications).

The rates of notifications for the decision rules change when disturbances occur in

contrast to the case seen in Section 2.5.1. Table 2.2 shows that the highest increase

in notification rates is seen in the N+R decision rule periods. The notification rate

for the JIT rule also increases when exogenous disturbances occur. Surprisingly, the

rate of notifications for the N+O decision rule decreases in this scenario. This implies

that the differences between the two scenarios for the adherent participant are not
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only limited to the levels of the considered constructs; there is a shift in the periods

at which goals are met as well as the percentage of days the behavior exceeds the

given goals.
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Figure 2.7: Notifications Sent Throughout the Intervention (Middle), the Decision

Rules (Bottom) and Goal Attainment (Top) Associated with Notifications Sent Each

Day for the Adherent Participant in the Presence of the Disturbances.
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2.5.3 Non-adherent Participant: No Disturbances

In this scenario, the participant is not adherent to the given goals, which is evident

in the Cues to action levels. The participant fails to achieve the desired 10,000 steps

per day target, yet is more active by the end of the intervention. As it can be seen in

Fig. 2.8 the average level for behavior increases overall, however, the Goal Attainment

is progressively negative. This participant managed to meet or exceed daily goals

only for 34.6% of the intervention. Due to underperformance by this participant, the

given goals never reach 10,000 steps per day as intended by design, and the maximum

value for the given goals is around 6,500 steps/day. The negative Goal Attainment

values lead to a significant decrease in the Self-Efficacy levels for this participant.

Such low levels negatively impact the participant’s drive to meet the daily goals and

most likely will lead to the participant dropping out of the intervention, or becoming

absolutely disengaged with the goals and daily EMAs. The disengagement scenarios

have not been included in this chapter and will be pursued in future work for more

representational simulations.

Behavioral Outcomes and Outcome Expectancies increase at a very high rate for

the first half of the intervention. For the second half of the intervention, the rate of

change in both constructs decreases and is negative by the end of the intervention.

The sustained gains in Behavioral Outcomes and outcome expectancies are the main

contributors to the increase in this participant’s average daily step count. Therefore,

this participant can be classified as an experience-oriented participant rather than

goal-oriented.

The amount of walking notifications sent in this scenario is 428 notifications in

total (144 randomized and 284 non-randomized notifications). In this scenario, there

is an increase in the notification rates for each of the examined decision rules, as
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Figure 2.8: Simulation Illustrating the Response of a Non-Adherent Participant to

the Designed Input Signals, in the Absence of Disturbances.

expected, because of the negative Goal Attainment for most of the intervention. As

can be seen in Table 2.2 the biggest increase in the notification rates compared to

the adherent participant scenarios is observed in the N+O decision rule periods, fol-

lowed by the increase in notification rate for N+R decision rule, which is significantly

higher than the adherent participant cases. The JIT decision rule shows the minimum

increase in this scenario.

2.5.4 Non-adherent Participant: With Disturbances

The non-adherent participant performs worse from an intervention standpoint

when faced with exogenous disturbances. The same changes in Perceived Barri-

ers/Obstacles and Environmental Contexts as the ones examined in Section 2.5.2 are

applied in this scenario. As a result, the average step-count for this participant only
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slightly increases above the baseline by the end of the intervention. As expected from

this non-adherent participant, the 10,000 steps/day target is never reached and the

highest given daily goal is close to 5,700 steps/day in this scenario. The lower daily

goals are a result of the participant having negative Goal Attainment for 31.2% of the

intervention. The negative Goal Attainment values lead to lower Self-Efficacy and

reduced PA levels as a consequence; the Self-Efficacy levels are the lowest out of all

examined scenarios. It can also be observed in Fig. 2.9 that the non-adherent par-

ticipant is more sensitive to exogenous disturbances than the adherent participant;

Self-Efficacy and Behavioral Outcomes drop more significantly when inconvenient

circumstances occur.
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Figure 2.9: Simulation Illustrating the Response of a Non-Adherent Participant to

the Designed Input Signals, in the Presence of Disturbances in the Form of Perceived

Barriers/obstacles and Bad Environmental Context.

As this participant is experience-oriented, the significant decrease in the Behav-
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ioral Outcomes as a result of bad Environmental contexts leads to noticeably lower lev-

els in Outcome Expectancies than the case for this participant without disturbances.

Consequently, the contribution of the OL loop to the Behavior levels is minimal. This

leads to the average level of Behavior decreasing closer to the baseline value towards

the end of the intervention. This underperforming non-adherent participant is more

likely to drop out of the study due to the negative impact on Self-Efficacy as well as

the lower values of Behavioral Outcomes and Outcome Expectancies.
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Figure 2.10: Notifications Sent Throughout the Intervention (Middle), the Decision

Rules (Bottom) and Goal Attainment (Top) Associated with Notifications Sent Each

Day for the Non-Adherent Participant in the Presence of the Disturbances.
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The overall amount of notifications sent in this scenario is the highest at 459

notifications with 144 randomized notifications and 315 non-randomized notifications.

This is to be expected as the participant does not manage to meet the goals for

the majority of the intervention. Consequently, the highest notification rates for all

decision rules are observed in this scenario. The most significant increase in the

notification rates is observed for the N+O decision rule, as shown in Table 2.2. The

second highest increase is observed in the N+R rule. Also, the highest notification

rate for the JIT decision rule is seen in this scenario. The notification rates for the

three decision rules are all substantially lower than those of the randomized periods for

all simulated scenarios, which shows that the decision rules are working as designed.

The simulation results shown above are a major factor in shaping the specifics

of the decision rules and having rough expectations of what is to come when the

intervention goes online. By examining hypothetical participants ranging in behavior

from being highly adherent to absolutely non-adherent, an informative, balanced

intervention can be achieved. This should result in insightful experimental data that

allows for modeling the interesting multi-timescale dynamics of behavior change.

2.6 Conclusions

This chapter serves as a proof of concept of the effectiveness of system identi-

fication approaches in input signal design for behavioral intervention experiments.

Through the utilization of a priori knowledge from previous work and simulation,

the iterative input signal design process can be optimized to establish behavioral in-

terventions, which provide dynamically informative experimental data covering the

important multi-timescale dynamics associated with behavior change. This is the

aim of the JustWalk JITAI, where the innovative design of the input signals for goal

setting and walking notifications allow for systematic examination of behavior change
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dynamics at high frequencies (e.g. within-day) while maintaining a low burden on

participants. To reduce the burden on participants even further, in future work meth-

ods such as pattern recognition will be utilized for the opportunity condition, rather

than an external calendar signal. The measured experimental data should allow for

estimation and validation of control-oriented models through sophisticated system

identification methods including grey-box approaches and black-box approaches in

the form of Auto Regressive with eXogenic inputs (ARX; Ljung (1999)) and Model-

on-Demand (MoD; Stenman (1999)). The obtained idiographic dynamical models

can be applied in optimal personalized behavioral interventions through sophisticated

control algorithms like model predictive control (MPC). Furthermore, the estimated

models provide insight into the best control strategies per individual even in cases

where measurements of some of the psychological constructs are not easily attainable.

The adoption of system identification approaches in behavioral science can lead

to a better understanding of the multi-timescale dynamic processes of behavior on

an idiographic level, that allows for personalized provision of intervention support

following the notions of just-in-time state. This should maximize the gains from

behavioral interventions and allow for fostering healthy behavior in participants. The

implementation of judiciously designed, personalized JITAIs for PA on a large scale

should improve the quality of life and life expectancy of both participants and the

community overall.
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Chapter 3

SYSTEM IDENTIFICATION AND SIGNAL PROCESSING IN

UNDERSTANDING “JUST-IN-TIME” STATES FOR PHYSICAL ACTIVITY:

ANALYSIS OF THE JUSTWALK JITAI INTERVENTION

3.1 Introduction

The benefits of physical activity (PA) to health are numerous; an increase from

4,000 to 8,000 steps/day is linked to the reduction of all causes of mortality by 51%

(Saint-Maurice et al., 2020). However, the majority of the population does not meet

the recommended CDC guidelines for PA, therefore most people do not reap the ben-

efits of healthy levels of PA (Olson et al., 2018). Although digital behavior change

interventions (DBCIs) have demonstrated their potential in promoting healthy be-

haviors including PA, the efficiency of classical DBCIs is hurdled by various obstacles

(Schoeppe et al., 2016). Much of traditional behavior medicine focuses on static

models on a nomothetic level (i.e., group or population level), that only examine if

an intervention component has positive outcomes without explaining the dynamics

and drivers behind behavior change. Consequently, traditional studies do not take

into account idiosyncrasies within a group or a population, and on a deeper level

idiosyncrasies within an individual over time. Hence, there is a lack of understanding

of the dynamic and possibly context-varying nature of systems associated with be-

havior change, especially on an individual level. Therefore, the delivery of behavioral

interventions is not personalized or optimized to ensure the effectiveness of DBCIs in

promoting sustained healthy behavior.

The availability of temporally dense PA data afforded by advances in and pop-
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ularity of wearable technologies that track PA levels (e.g., FitBit) has set the stage

for the re-emergence of idiographic data analysis methods. Such methods are par-

ticularly geared towards understanding behavior change dynamics on an individual

level, by analyzing and predicting patterns within time series data corresponding to

each individual. These temporally dense longitudinal data sets provide unprecedented

opportunities to apply system identification, and control systems engineering prin-

ciples to implement data-driven solutions to problems faced in behavioral medicine,

in terms of optimization and personalization of decision-making in an intervention

(Hekler et al., 2016). However, many challenges are faced in extracting value out of

data, both on exploratory and predictive levels. Hence, it is particularly important to

focus on 1) the design of experiments to provide dynamically informative data sets;

and 2) developing and improving signal processing and model estimation methods

that can capture nonlinearities of the system and idiosyncrasies in context.

In behavioral medicine, the concept of “just-in-time" adaptive interventions (JI-

TAIs) has been introduced to improve the understanding of the impact of context and

multi-timescale dynamics associated with behavior change, and by extension increase

the efficiency of decision-making. The essence of JITAIs is in the provision of support

only when a participant has the need for a certain kind of support, the opportunity

to act on the support, and the receptivity to respond positively to that support. This

can result in meaningful and sustained adaptations of healthy behavior over time in

what is known as “just-in-time” (JIT) states. Therefore, it is imperative to under-

stand the JIT context to address JITAIs as an optimization problem, where robust

prediction and decision-making are needed to provide the support that contributes

towards sustainable healthy behavior change. In pursuit of exploring and understand-

ing these concepts, a digital health intervention study (JustWalk JITAI ; Park et al.

(2023)) has been developed, and the results of these are presented in this chapter.
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JustWalk JITAI is one of the first empirical studies of JIT states based on sys-

tem identification principles. To facilitate understanding and analyzing such complex

dynamic phenomena, innovative input signals are designed and implemented in the

design of experiment, and advanced data-driven modeling techniques are utilized in a

comprehensive approach. This chapter provides a brief overview of elements compris-

ing the proposed approach and examines its application on a representative JustWalk

JITAI participant. The results presented demonstrate the significant potential of

a comprehensive system identification approach in improving the understanding of

behavior change systems, in context.

This chapter is arranged as follows. Section 3.2 provides a brief description of

the JustWalk JITAI study and the input signal design. Section 3.3 details the im-

plemented estimator, and its advantages in terms of modeling behavior change in

context, while in Section 3.4 a brief summary of Singular Spectrum Analysis (SSA)

is provided. In Section 3.5, results of the proposed approach are presented and dis-

cussed for a representative participant. Section 3.6 provides conclusions along with

implications for future work.

3.2 Study Description & Input Signal Design

JustWalk JITAI is an NIH-funded study aimed at advancing the understanding

of multi-timescale dynamics and JIT states context for supporting PA, in the form

of daily Step Count. As this is a unique study, addressing advanced problems in

behavioral science, a new and innovative design of experiments is introduced. The

intervention was designed to provide informative data on short and long-timescale

dynamics in behavior change systems related to PA, within-day, and between-day

respectively. This is essential in operationalizing JITAIs as a multi-timescale robust

optimization problem, where support is only provided at JIT states, in a manner
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that ensures the provided support contributes towards sustained behavior change.

To accomplish this, two intervention components are utilized: 1) adaptive daily goals

and 2) walking notifications (see Chapter 2).

In the adaptive daily goals component, each participant is given daily targets of

the number of steps they should meet on a given day, to help them move towards

eventually meeting national PA recommendations, which were dictated by a person-

alized realization of the designed multisine signal for this component. To adapt the

signal to the performance of each participant, the maximum and minimum amount

of daily step goals in each cycle are adjusted based on the performance in the previ-

ous cycle. Consequently, this intervention component is further personalized to each

participant, by providing ambitious yet achievable goals. This aspect of the design

produces informative data that captures the longer-term dynamics at high and low

participant performance.

The walking notifications component of the JustWalk JITAI focuses on within-

day dynamics and JIT states. This component consists of inspiring messages sent to

participants within-day on 4 decision points (once every 3 hours starting at 7 am),

to invite them to go on a short walk (e.g., 10 minutes). The decision on whether to

send a notification or not at every decision point is dictated by a decision rules signal

designed for this intervention component. This input signal is designed to test the

effectiveness of notifications sent on what is perceived as full or partial JIT states in

comparison to fully randomized notifications. To operationalize this, three conditions

about the current moment are taken into account:

• Need (N): If the participant is not on track to meet the given daily goal.

• Opportunity (O): Whether the next 3-hour window is predicted to be an op-

portune window for the participant to engage in PA, based on a previously
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developed algorithm .

• Receptivity (R): If the participant has received less than 6 notifications, and

responded favorably (i.e., walked) to half of the notifications sent to them in

the last 72 hours.

Three different combinations of the JIT conditions to send notifications are chosen as

the decision rules in the intervention: 1) N+R, 2) N+O, 3) N+O+R which is labeled

as the JIT decision rule. These three combinations are compared to fully randomized

decisions.

To design a categorical input signal for the walking notifications component,

the approach described in Chapter 2 is followed: a pseudo-random binary sequence

(PRBS) is generated to serve as the base signal. Then, a three-level uniformly dis-

tributed random multi-level sequence (RMLS) is superimposed on one of the binary

levels in the PRBS signal. This is done to evaluate the impact of the different JIT

states combinations in comparison to fully randomized notifications, as well as to

study the dynamic nature of the response to the notifications under different condi-

tions. A detailed description of the input signal design is provided in Chapter 2 and

El Mistiri et al. (2022a); details regarding the study design and experimental protocol

are published in Park et al. (2023).

3.3 Model-on-Demand (MoD)

One of the main objectives of the JustWalk JITAI is to explore the multi-timescale

dynamics and the dynamic impact of JIT states on PA behavior change. In this chap-

ter, the focus is on understanding the dynamic nature of the system in the context

of JIT states. To reach this aim, Model-on-Demand (MoD; Braun et al. (2001)) is

utilized, which is a sophisticated data-centric modeling approach. MoD is an adap-
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tive modeling approach, which does not rely on a global model, making it a perfect

candidate to explore and explain JIT states. As demonstrated in Fig. 3.1, in MoD

a weighted least-squares regression problem in (3.2) is solved to fit the data in a

bounded neighborhood around each operating point k, under a specified global re-

gressor structure [na nb nk]. Therefore, MoD combines both local and global modeling.

Hence, in MoD, the estimation data is not discarded, rather a subset of the data is

used to estimate a local model at each operating point on demand.

Figure 3.1: Schematic Illustrating MoD Adaptive Selection of Regressor Neighbor-

hood Size At an Operating Point, (Braun, 2001).

In this chapter, MoD formulation is described for a single input single output

(SISO) system, however, the same formulation can be extended to multi input multi

output (MIMO) systems (Braun et al., 2001). For a SISO process with a nonlinear

structure:

yk = m(φk) + ek (3.1)

where m(·) is an unknown nonlinear mapping and ek is an error term. The error is
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modeled as a random signal with zero mean and variance σ2
k. The MoD predictor

estimates output predictions, ŷk, based on a local neighborhood of the regressor space

φ, as depicted in Fig. 3.1. This is done by solving the optimization problem in (3.2),

at each operating point k.

θ̂ = arg min
θ

N∑
i=1

ℓ (yi − m̂(φi, θ))Kh

(
∥φi − φk∥M

h

)
(3.2)

where

θ̂ = [θ̂0 θ̂1 θ̂2 · · · θ̂preg ] (3.3)

represents parameters of the local polynomial model of the regressors, and φ∗ is the

regressor vector at the point ∗ ∈ {i, k}, which can be defined differently for different

model structures. Nonlinear and linear model structures can be used to define the

local model in (3.2). Due to the computational simplicity of estimating parameters for

linear or quadratic model structures, as they are linear in the unknown parameters,

in this chapter a model structure akin to a linear ARX is utilized:

φ∗ = [y∗−1 · · · y∗−na u1,∗−nk1
· · · u1,∗−nb1−nk1+1 · · · unu,∗−nknu

· · · unu,∗−nbnu−nknu+1]
T

where na denotes the output order in the regressor (as in the number of previous

output lags), nb denotes the number of previous lags in the input, and nk denotes the

input delay in the model. For a MIMO system, na is specified for each output in a

matrix reflecting interactions between outputs, and nb and nk are specified for each

input-output combination. i is the sample instance from the estimation database of

length N . The length of the parameter vector preg is determined by the length of the

regressor vector dreg, where preg = dreg for the linear case, and preg = dreg+dreg(dreg+

1)/2 for the quadratic case. The weighting of the data points in the neighborhood of k

is performed through a kernel-based function Kh(·), where higher weights are given to

points closer to c based on their scaled distance in regressor space and bandwidth h.
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The distance scaling function is defined as

∥φ̃∥M =
√
φ̃TMφ̃ (3.4)

where φ̃ = φi−φk, and M is the scaling matrix obtained from the inverse covariance

of the regressors. The bandwidth h is selected adaptively through an iterative process

to optimize over local information criteria (e.g., AIC, GCV), within a user-defined

range [imin, imax] for neighborhood size.

Assuming a local model structure that is linear in the unknown parameters a MoD

estimate is computed through least squares regression.

m(φk, θ) = θ0 + θT1 (φi − φk) (3.5)

where θ0 and θ1 are the minimizers estimated by solving the least squares problem

expressed in (3.2), utilizing the model structure presented in (3.5). The one-step-

ahead prediction is therefore given by

ŷk = α + θ̂T1 φi (3.6)

where

α = θ̂0 − θ̂T1 φk (3.7)

Solving the local regression problem around the neighborhood of k produces a single

prediction ŷk corresponding to the current operating conditions defined by the regres-

sor φk. To obtain a prediction at other operating points in the regressor space, the

estimation database is called again and both the relative weights and the selection

of data are updated to optimize a new local model at the new operating point. This

distinguishes MoD from global modeling techniques in which the model is estimated

for the overall data only once, and then the data is discarded. Additionally, the

adaptive computation of bandwidth h, which governs the trade-off between bias and

66



variance errors in model estimation, has a significant impact on the estimated linear

local models.

In MoD, the regressor structure used in φ(t), the local polynomial order that ap-

proximates m(·), kmin, kmax, and the goodness-of-fit (GoF) criterion can be specified

to influence the estimated model; these variables impact the size of the neighborhood

chosen to fit the local model. Additionally, the window function is also specified

by the user, a tricube window function is most commonly used as it has attrac-

tive features like being continuously differentiable and a known value of zero at the

boundaries (Braun, 2001). It is important to select a minimum neighborhood size

imin sufficiently large to avoid ill conditions in parameter estimation. On the other

hand, imax can be set as the entirety of the data set length, however, that can lead

to a high computational for large data sets. Hence, informed decisions are necessary

in the selection of the neighborhood range, to assure the efficiency of model estima-

tion. Moreover, optimizing over the local information criteria in selecting the optimal

neighborhood size iopt represents a classic trade-off between bias and variance; a large

neighborhood size reduces variance-induced error while increasing error due to bias

from fitting a local model over a large data set.

The MoD approach fits perfectly with understanding the dynamics of JIT states,

as the estimated local models depend on the operating condition at each point. Five

input signals (nu = 5) are utilized to define conditions in regressor space, including

designed intervention components and other exogenous signals, as follows:

• Step Goals (u1): the daily step goal given to a participant, as described in

Section 3.2.

• Decision Rules (u2): defines the utilized JIT rule for sending notifications on a

specific day, as defined in Section 3.2.
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• Viewed Walking Notifications (u3): number of walking notifications viewed by

the participant on a day.

• Temperature (u4): the recorded highest daily temperature.

• Weekend (u5): a binary signal representing whether a given day is a weekend

(1) or a weekday (0).

The modeled output of interest is PA behavior y, in terms of daily Step Count, which

also serves as part of the regressor φk to define context at each point.

3.4 Noise Reduction & Signal Separability: Singular Spectrum Analysis (SSA)

There are several challenges faced in analyzing data related to PA behavior sys-

tems. For instance, the accuracy of the measurements can be heavily influenced by

the quality of the sensors used in activity tracking, and the algorithms utilized to filter

the raw data (Bender et al., 2017). In addition, the availability of the measurement

and its quality are predicated on participants’ adherence to wearing the measurement

device. As a result, missingness can exist on no wear days and measurement levels can

be significantly low on low wear-time days, which does not represent the actual be-

havior. Additionally, the collected Step Count signal represents the aggregate impact

of idiosyncratic forces impacting behavior on different timescales. For example, life

rhythms (e.g., work, weekends) can contribute to the daily Step Count in a periodic

manner, which is independent of the overall trend caused by intentional engagement

in PA. Hence, to understand PA behavior change in context, it is desired to reduce

the noise in the measurement and analyze the different components that constitute

the overall measurement.

In this work, we rely on Singular Spectrum Analysis (SSA) to reduce noise in

the Step Count measurement and study its separability. SSA is a Singular Value
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Decomposition (SVD) based nonparametric technique for signal processing and time

series analysis. SSA is beneficial in analyzing different aspects of the system, like

investigating the separability of the measured signal to its components, filtering mea-

surement noise, and studying causality (Hassani and Zhigljavsky, 2009). In SSA,

time series data is decomposed into a sum of its components by performing SVD on

the Hankle matrix of the original data. Each component in the sum is then desig-

nated into groups of trend, periodic, quasi-periodic, or noise components. Moreover,

cross-correlated components can be grouped and summed to capture their collective

characteristics. Finally, the filtered output signal is constructed through the sum of

the most relevant system components, excluding noise.

The Hankel matrix H is constructed by transferring the one-dimensional output

signal Y = [y1 y2 . . . yN ] of length N into a series of L-lagged vectors as follows:

H = [h1 h2 . . . hM ] =



y1 y2 . . . yM

y2 y3 . . . yM+1

...
... . . . ...

yL yL+1 · · · yN


(3.8)

where M = N −L+1, and L is an integer such that 2 ≤ L < N which represents the

window length utilized to construct the Hankel matrix. L is a user-selected parameter

and must be sufficiently large to capture important system dynamics. In this work, the

window length L is selected based on the periodicity observed in the autocovariance

of the output signal. This is done by obtaining the mean distance between lags at

which peaks in the autocovariance occur. L is then selected to include all lags within

twice the mean distance between peaks.

SVD is then performed on H to decompose it into a total of L rank-one bi-

orthogonal elementary matrices. The eigenvalues of HHT are represented by λi in

descending order (λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0), while their corresponding or-
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thonormal left and right eigenvectors are denoted by Ui and Vi respectively, where

i = 1, · · · , L. Therefore, the Hankel matrix can be re-written as the linear combina-

tion of L matrices

H =
L∑
i=1

Hi (3.9)

where

Hi =
√
λiUiV

T
i (3.10)

Each matrix Hi represents a component of the output signal, which is then Hankelized

into Ĥi by calculating the antidiagonal average. Consequently, the summation of the

Hankel matrices of all output signal components Ĥi represents the Hankel matrix

of the original signal H. Time series signals YSSA,i for each component i are then

extracted from each Hankelized component matrix Ĥi. As a result, the original signal

is the summation of the reconstructed components

H =
L∑
i=1

Ĥi ⇒ Y =
L∑
i=1

Ŷi (3.11)

The relevance of each component ri is determined by its contribution to the sum of

all real singular values

ri = 100

√
λi∑L

i=1

√
λi

(3.12)

A threshold value Th is selected to filter out the least relevant components, where

the subset of the selected important components is of size d, where

d = max(i | ri > Th ∀ i = 1, · · · , L) (3.13)

Because of SSA’s formulation, high-frequency components -which are often associ-

ated with noise- represent the least contribution to the total of the singular values

(
∑L

i=1

√
λi). Therefore, this step effectively represents noise reduction in the recon-

struction of the filtered output signal YSSA.

YSSA =
d∑

i=1

Ŷi (3.14)
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Subsequently, cross-correlated signals from the selected reconstructed components

(Ŷ1, . . . , Ŷd) are aggregated to represent their collective impact in each group (e.g.,

trend, seasonality 1) at its respective frequency range.

3.5 Results & Discussion

In this section, results for the implementation of the proposed signal processing

and model estimation approach on data for a representative JustWalk JITAI par-

ticipant are presented and discussed. The separability of the Step Count signal is

demonstrated by analyzing the SSA decomposed signal components. Moreover, the

effectiveness of MoD in modeling behavior change in context is illustrated.

3.5.1 SSA: Noise Reduction and Signal Separability

The autocovariance function of the measured Step Count signal for this partici-

pant indicated a periodicity of seven lags. Consequently, a window length of L = 15

days is utilized. This results in the decomposition of the system into 15 different

components, the time series and spectral power densities of which are presented in

Fig. 3.2a and Fig. 3.2b, respectively. By analyzing the amplified frequencies in the

spectral power density of each component and their patterns in the time domain, a

threshold value Th = 4% is utilized to filter out higher-frequency components. This

results in reducing the number of relevant components to d = 5. These components

are used to reconstruct the SSA-filtered output signal shown in Fig. 3.3. The nor-

malized root mean square error (NRMSE) of the SSA-filtered output signal is 45.3%,

illustrating that it captures most of the important system dynamics.

Results in Fig. 3.3 demonstrate the effectiveness of SSA in noise reduction. This

is evident in how the SSA-filtered signal appears as a smoothed version of the original

signal; maintaining important dynamics, while excluding high-frequency changes that
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Figure 3.2: (A) Time Series, (b) Spectral Power Density of the Step Count Compo-

nents (Ŷi ∀ 1 ≤ i ≤ L) Decomposed By SSA, Along with Their Relevance (ri).
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can be attributed to noise. Moreover, the impact of significantly high and low data

points, which can be considered outliers that do not represent the actual system

dynamics, is reduced in the SSA-filtered time series.
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Figure 3.3: Original (Y ) and SSA-Filtered (YSSA) Daily Step Count Signals in

Steps/day, Along with Residuals.

By analyzing the cross-correlation between the relevant components, they are

found to form three distinct groups, with each group covering a different frequency

range:

1. Trend : contains the first component, which covers low frequencies and repre-

sents the underlying slower dynamics of changes in the Step Count trend.

2. Seasonality 1 : consistent of the second and third components. This group covers

intermediate frequencies, where periodicity is observed in a 7 days pattern.
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3. Seasonality 2 : covers higher frequencies, with an observed periodicity over 3-4

days span. The fourth and fifth components are grouped in this set.

The reconstructed signals for each group are presented in Fig. 3.4. The obtained

results illustrate that the collected daily Step Count signal is separable. Addition-

ally, these results demonstrate that the benefit of SSA goes beyond noise reduction;

SSA breaks down time series data components into uncorrelated groups that capture

different features of the overall behavior. Consequently, each component can be mod-

eled independently to help understand the dynamic nature of the idiosyncratic forces

influencing behavior change in context, at different frequencies.
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Figure 3.4: Reconstructed Signals of Uncorrelated Groups of SSA Components for

Step Count. The Reconstructed Groups Are Arranged from Top to Bottom Based on

Their Increasing Covered Frequencies.
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3.5.2 Model Estimation and cross-validation

As illustrated in the previous section, SSA is effective in noise reduction and

decomposing the Step Count signal into uncorrelated groups of components that

cover different frequencies. In combination with MoD, this provides the opportunity

to analyze and model the idiosyncracies that influence change in the walking behavior

of the participant, at their respective frequencies, by performing model estimation on

each group of components (trend, seasonality 1, and seasonality 2) separately. To

investigate the added benefit of this approach, in this section, the MoD estimator is

utilized to model 1) the raw unfiltered Step Count, 2) the SSA-filtered signal, and

3) the grouped SSA reconstructed components. In addition, to evaluate the added

benefit of the MoD estimator, we contrast its performance in each of these scenarios

against a global ARX model of the same regressor structure.

To compare the estimated models across the three cases mentioned above on

common ground, the following data preprocessing and model estimation procedure is

utilized for each case. First of all, the data is standardized to ensure well-conditioned

matrices in model estimation. The data is then segmented into sub-experiments,

where each experiment contains two consecutive goal-setting cycles. Consequently,

five different sub-experiments are constructed, with 52 days of the intervention in each

sub-experiment. The selected regressor order is [na nb nk] = [4 4 1] for both the MoD

and ARX estimators. Data for each sub-experiment is then transferred to regressor

space φ, reducing the number of data points available in each sub-experiment to 48.

The sub-experiments are then grouped into estimation and validation data groups,

where four sub-experiments are designated for estimation, and one is for validation,

yielding a total of five possible combinations. Sub-experiments’ data in regressor space

is then merged based on their group to allow for model estimation and cross-validation
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across all possible combinations, following the approach in Section 5.3.2, where the

combination with the highest weighted NRMSE fit index is selected (El Mistiri et al.,

2023).

A linear local polynomial is utilized in the MoD estimator for all examined cases.

Additionally, Akaike Information Criterion (AIC) is utilized as a GoF measure for

the localized models, with a variance penalty of 3. Because of data scarcity, the

neighborhood size has been fixed to the maximum number of available data points

in regressor space, which is done by selecting imin = imax = 192. Consequently,

the variations in the local models are only dependent on the kernel-based weighting

function of the relevance of points in the neighborhood around k, which is selected

as a tricube kernel.

Case I: Model Estimation Based on Raw Data

Simulation results for the estimated models utilizing the unfiltered Step Count sig-

nal in the estimation database are presented in Fig. 3.5. As illustrated in Fig. 3.5,

the combination of estimation validation/estimation data that resulted in the high-

est weighted average NRMSE fit for the MoD estimator utilizes the last four sub-

experiments for estimation, while the first sub-experiment is designated for validation.

The obtained results demonstrate that both models underestimate the performance

of the participant, as they do not follow the peaks in the Step Count Y . This can

be attributed to a possible exogenous signal that is not included in the model struc-

ture. Therefore, further analyses, including feature selection, are needed to examine

possible improvements to the black box-model structure by incorporating behavioral

constructs such as Perceived Busyness and Environmental Context. In this case, the

MoD estimator outperforms the ARX-based estimator as illustrated by NRMSE fit

indices for the estimation and overall data. However, the MoD estimator underper-

76



forms the ARX-based estimator in cross-validation, as evident by the lower NRMSE

fit index for the MoD estimator over the validation data (21.61% for MoD vs 30.18%

for ARX).

Figure 3.5: Case I Simulation Results for MoD and ARX-Based Estimators Com-

pared to the Unfiltered Step Count Signal Y . Estimation Sub-Experiments Are High-

lighted in Grey, Whereas the Validation Sub-Experiment is Highlighted in Cyan.

Case II: Model Estimation Based on SSA Reconstructed Components

In this case, the procedure described above is repeated for each of the reconstructed

correlated SSA components presented in Fig. 3.2 (Trend, Seasonality 1, Seasonality 2).

As the three reconstructed components are not correlated, no interactions between

the outputs are included in model estimation. Hence, each of the outputs is estimated

independently, then they are augmented to provide the overall model. Furthermore,

as described in (3.14) the SSA-filtered signal YSSA is constructed as the summation
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of the reconstructed relevant components. Therefore, the augmented model can be

manipulated to predict the SSA-filtered Step Count signal YSSA.

Figure 3.6: Case II Simulation Results for MoD and ARX-Based Estimators for

Each of the Uncorrelated Reconstructed SSA Components (Trend, Seasonality 1,

Seasonality 2). Estimation Sub-Experiments Are Highlighted in Grey, Whereas the

Validation Sub-Experiment is Highlighted in Cyan.

Simulation results for the estimated models for this case are presented in Fig. 3.6.

The Trend component represents the longer-term underlying dynamics behind be-

havior change. Therefore, this component is used in selecting the combination of

estimation/validation sub-experiments in model estimation, where the combination

that yields the highest weighted average NRMSE fit for the validation and overall

data in the Trend component is selected. As a result, the second sub-experiment

is utilized for validation while the first, third, fourth, and fifth sub-experiments are
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designated for model estimation. As demonstrated in Fig. 3.6, both the MoD and

ARX-based estimators perform well in capturing the periodic dynamics in the Sea-

sonality 1 and Seasonality 2 signals, with a slight advantage to MoD as illustrated by

the NRMSE fits summarized in table 3.1.

Table 3.1: Summary of the NRMSE Fit Indices of the MoD and ARX-Based Esti-

mators for Each of the Reconstructed Uncorrelated SSA Components of Step Count.

Method Estimation Fit (%) Validation Fit (%) Overall Fit (%)

Trend

MoD 12.85 -36.12 39.85

ARX -27.02 -42.57 29.10

Seasonality 1

MoD 73.35 67.00 72.76

ARX 64.57 65.56 65.10

Seasonality 2

MoD 49.11 37.14 48.24

ARX 42.06 36.52 41.74

As evident in table 3.1 and Fig. 3.6, both estimators do not perform very well

in modeling the trend component. This is especially the case for the second sub-

experiment, which is utilized for cross-validation. It is worth noting that the NRMSE

fit indices for the estimation and overall data for the MoD estimator are decently

high, illustrating its outperformance over the ARX-based estimator. Despite the

low cross-validation NRMSE fit for the trend component, the combined model for all

components performs well in terms of capturing the dynamics of the SSA-filtered Step
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Count signal YSSA and therefore the actual Step Count Y , as illustrated in Fig. 3.7.

While utilizing SSA components in the estimation database is effective in model-

ing the unfiltered Step Count Y (as evident in Fig. 3.7b) this approach yields slightly

lower NRMSE fits for both of the MoD and ARX-based estimators when utilizing the

unfiltered Step Count Y in the estimation database. The added benefit of utilizing the

reconstructed signals from uncorrelated SSA components in the estimation database

is that it allows analyzing and studying each component separately. As a result, it

sheds light on the unique dynamic changes of each component in response to changes

in the exogenous inputs. To improve results from this approach and reach its full

potential feature and order selection need to be optimized for each component sepa-

rately, instead of using the same inputs and orders for all reconstructed components,

which will be examined in future work.

Case III: Model Estimation Based on SSA-filtered Step Count

In this case, the model estimation procedure described above is applied with the

SSA-filtered Step Count signal YSSA as the only output in the estimation database.

Therefore, the estimated models are less impacted by the noise in the measured

output. Fig. 3.8 illustrates the performance of both the MoD and ARX-based es-

timators of the same regressor orders in a simulation setting, over both estimation

and validation data. As evident in Fig. 3.8a, MoD produces better results than the

ARX-based global model in predicting the SSA-filtered Step Count based on the pre-

sented NRMSE fit indices. The outperformance of the MoD estimator, utilizing the

SSA-filtered output signal YSSA in the estimation database, is further highlighted in

comparison with the unfiltered Step Count Y , as demonstrated in Fig. 3.8b.

Note that both estimators, in this case, yielded sufficiently high NRMSE fit indices

for cross-validation against unfiltered Step Count signal Y . Matter of fact, the cross-
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(a) SSA-filtered Step Count YSSA

(b) Unfiltered Step Count Y

Figure 3.7: Case II Simulation Results of the Combined Model Estimated Using the

MoD and ARX-Based Estimators Compared to (a) the SSA-Filtered Step Count Sig-

nal YSSA, And (b) the Unfiltered Step Count Signal Y . Estimation Sub-Experiments

Are Highlighted in Grey. The Validation Sub-Experiment is Highlighted in Cyan.
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(a) SSA-filtered Step Count YSSA

(b) Unfiltered Step Count Y

Figure 3.8: Case III Simulation Results of the Combined Model Estimated Using the

MoD and ARX-Based Estimators Compared to (a) the SSA-Filtered Step Count Sig-

nal YSSA, And (b) the Unfiltered Step Count Signal Y . Estimation Sub-Experiments

Are Highlighted in Grey. The Validation Sub-Experiment is Highlighted in Cyan.
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validation fit indices, in this case, are higher than the estimators of the same structure

in Case I (relying on the unfiltered Step Count signal in the estimation database).

This is significant, as it illustrates the effectiveness of the proposed SSA approach

in noise reduction. SSA filters out noise components from the output measurement

in a systematic manner, which allows for modeling and analyzing the underlying

dynamics behind behavior change without being overshadowed by high-magnitude

noise in the output measurement. Another important takeaway is that SSA noise

reduction has a more significant impact on the performance of MoD. This is evident

in the cross-validation fit which almost doubles in Case III when compared to Case I,

see table 3.2. The sensitivity of the MoD estimator to noise is believed to be caused

by its reliance on localized model estimation. At each operating point, MoD estimates

coefficients for the model parameters, within the global structure, based on data in

the neighborhood of the operating condition. Hence, the localized models are heavily

impacted by measurement noise. Consequently, when the impact of noise on the

localized models is reduced, MoD is capable of estimating local models that predict

the unfiltered output signal Y with higher NRMSE fits, in comparison to the same

estimator utilizing unfiltered Step Counts Y in the estimation database.

While improvements from using MoD might seem small in terms of NRMSE fit

indices, the real added benefit of the MoD estimator is that it optimizes over localized

models under a global structure. Therefore, MoD yields improved global fits with local

models that vary in dynamics with respect to the operating conditions. This provides

the framework needed to analyze idiosyncrasies in a participant’s behavior in context.

Overall, the obtained models illustrate the effectiveness of the proposed input

signal design in providing dynamically informative data sets. This is particularly ev-

ident in the obtained NRMSE fits, which are sufficiently high for all examined cases,

despite the high magnitude noise in systems associated with behavior change. Addi-
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tionally, signal processing through SSA successfully decomposes behavior signal into

independent components at different frequencies and reduces noise. The integration

of innovative input signal design, SSA, and MoD provides a sophisticated approach

to model, analyze, and understand behavior change systems in context of JIT states

and at different frequencies. The effectiveness of this approach is asserted by the

performance of the presented estimators in predicting the unfiltered Step Count Y ,

as summarized in Table 3.2.

Table 3.2: Summary of the NRMSE Fit Indices of the MoD and ARX-Based Esti-

mators for Each of the Reconstructed Uncorrelated SSA Components of Step Count.

Method
Step Count Y SSA-filtered Step Count YSSA

Validation Fit (%) Overall fit (%) Validation Fit (%) Overall fit (%)

Case I

MoD 21.61 30.92 N/A N/A

ARX 30.18 22.71 N/A N/A

Case II

MoD 19.71 27.08 23.09 50.92

ARX 18.91 23.55 20.16 42.55

Case III

MoD 40.45 29.76 50.17 54.99

ARX 38.38 26.31 49.55 50.26
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3.5.3 MoD: Analyzing Behavior in Context

Having validated the MoD estimator, in this section, the benefit of the estimator in

explaining PA behavior change in context is explored. To allow for more data points

to be included in estimating localized models, the entirety of the available data is

included in the MoD estimation database. Consequently, the total length of the

MoD estimator’s database is N = 256 in regressor space. The neighborhood range is

updated accordingly to kmin = kmax = 256. The MoD estimator is then implemented

in simulation for hypothetical scenarios, to illustrate the impact of changing operating

conditions on the obtained responses.

To showcase the difference between the MoD and ARX-based estimators, the sim-

ulation conditions are fixed for the exogenous environmental inputs, while some inter-

vention components are manipulated. In this scenario, Temperature is held constant

at u4 = 30◦C, and it is assumed that the intervention occurs on a weekday u5 = 0.

As per intervention components, the JIT decision rule is implemented, while Step

Goals start initially at an ambitious level u1 = 10, 000 steps/day, then are reduced to

a less challenging level u1 = 6, 000 steps/day. During the periods of ambitious and

non-ambitious goals, an impulse of walking suggestions is sent to the participant and

assumed to be viewed, u3 = 3 notifications/day for five consecutive days.

As illustrated in Fig. 3.9 impulse responses for the MoD estimator vary signifi-

cantly based on operating conditions. During the first impulse of notifications, the

Step Goal signal is at an ambitious level relative to the steady state value of the Step

Count. Under such operating conditions, the sent walking suggestions have a signifi-

cant positive impact on the Step Count. The daily Step Count increases by a factor of

930 steps/day at the peak, due to the Viewed Walking Notifications u3. Meanwhile,

the second impulse of notifications, with the same magnitude and duration, has a di-
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minished effect on the system. Viewed Walking Suggestions in this case, contribute to

an increase of only 285 steps/day when the given goal is lower than the steady-state

value of the Step Count. Moreover, variations in MoD’s impulse responses extend

beyond the magnitude of the gain, and include the speed and shape of response as

seen in Fig. 3.9. On the other hand, the ARX-based estimated model yields the same

impulse responses, regardless of the operating conditions.

Figure 3.9: Impulse Responses for MoD and ARX-Based Estimators in a Simulated

Hypothetical Scenario Illustrating the Change in MoD Responses for a Representative

JustWalk JITAI Participant At Different Operating Conditions.

From a behavioral science perspective, variations in responses to the same im-

pulse of notifications can be attributed to the participant’s perception of the utility

of the received notification with respect to the context at which the notifications

are received. For instance, if the support through the notification is provided while

the goal is not achieved (i.e., there is a need for support) then it is of high utility.
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Therefore, the participant acts upon the viewed notifications, and they materialize as

efforts toward the goal. Conversely, when support is provided without the need for it

(e.g., when the given goals are easily attainable), then its perceived value diminishes

and it can be burdensome for the participant. Hence, it does not lead to the intended

positive outcomes. Therefore, the obtained MoD simulation results for these hypo-

thetical scenarios, presented in Fig. 3.9, fit perfectly within JIT concepts and explain

idiosyncrasies in the responses of this representative JustWalk JITAI participant to

walking suggestions based on context. The same analysis can be extended to various

scenarios, including at different Decision Rules u2, to study and predict their impact.

3.6 Conclusions & Future Work

In this work, a comprehensive system identification approach to studying PA be-

havior change is presented based on experimental results from JustWalk JITAI. This

approach includes: informed input signal design, signal processing, and noise reduc-

tion, as well as a data-driven model estimator geared towards capturing nonlinearities

in the system based on operating conditions. The findings in this chapter illustrate

the cumulative effect of this approach in analyzing and understating idiosyncrasies in

the dynamics of PA-related behavior change, based on context.

The input signal design is based on a priori knowledge and provides dynamically

informative data sets at frequencies of interest. Furthermore, SSA utilization in Step

Count time series analysis is remarkably effective in reducing measurement noise in an

informed manner, and studying the separability of the measured output signal. The

analysis shows that the daily Step Count has separable uncorrelated groups of com-

ponents that can be analyzed independently. Finally, MoD is an excellent alternative

approach to global modeling that captures nonlinearities associated with behavior

change systems and JIT states. The full potential of this approach culminates in
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the development of efficient personalized JITAIs within the control optimization trial

(COT; see Chapter5 and Chapter 6) framework, which can be disseminated on a large

scale to reduce physical inactivity and improve public health.

Future efforts will include further personalization of the MoD estimator for each

participant, through the incorporation of algorithms to optimize over input and order

selection for the global MoD estimator structure. Similarly, feature and order selection

algorithms will be explored in optimizing the global model structure for each of the

reconstructed signals of uncorrelated groups of SSA components for Step Count, to

reach the full benefit of this approach. Furthermore, the presented comprehensive

system identification approach will be applied to intraday data (i.e., sampled at 3

hours intervals) to help understand the multi-timescale dynamics associated with

JIT states and PA behavior change.

88



Chapter 4

MODEL PREDICTIVE CONTROL IN MHEALTH: A DECISION FRAMEWORK

FOR OPTIMIZED PERSONALIZED PHYSICAL ACTIVITY INTERVENTIONS

4.1 Introduction

Physical activity (PA) offers enormous benefits to both personal and public health.

According to a study by Saint-Maurice et al. (2020), an increase in daily steps from

4,000 to 8,000 steps/day can reduce the risk for all-cause mortality by 51% in adults;

including reduced risk of cancer and heart disease. Notwithstanding, the prevalence of

those who engage in regular physical activity in the general population is low; about

53% of adults in the US, 44% in Australia, and 40% in the UK are sedentary (Cen-

ters for Disease Control and Prevention, 2021; Australian Government Department

of Health, 2021; Department for Digital Culture, 2017). Over the years, extensive re-

search has been conducted to explore the most effective approaches for implementing

behavioral interventions. However, the translation of these interventions into large-

scale, impactful initiatives have faced significant challenges. Nonetheless, there is

hope for affordable real-world interventions that can improve public health. Control

systems engineering principles have been applied to solve challenging problems in so-

cial and natural sciences including economic, environmental, robotic, and biomedical

systems (Leonard et al., 1992; Ford and Ford, 1999; de Wit et al., 2012; Kurzhanski

and Vályi, 1997). Particularly for healthcare systems, areas for research for control

systems engineering can be split to two categories: 1) clinical application in terms of

automation of treatment dosage and delivery, especially in cases of chronic illnesses

like diabetes and fibromyalgia (Gondhalekar et al., 2016; Deshpande et al., 2014).
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2) behavioral medicine aiming to prevent or delay and manage the onset of chronic

and relapsing disorders (Collins et al., 2004; Rivera et al., 2007b). Based on recent

advances in digital technology and the availability of PA data through smartphones

and other devices, control systems engineering has emerged as a promising tool in this

regard, leveraging the availability of physical activity data to design and implement

effective interventions (Hekler et al., 2016; Conroy et al., 2011). By harnessing the

power of technology and principles of system identification and control systems en-

gineering, mobile health (mHealth) interventions can be tailored to individual needs

and delivered in a way that maximizes their impact. Because of the importance of

modeling to control engineering, it is essential to choose appropriate health behavior

theories and apply a sound dynamical systems methodology to generate meaningful,

and ultimately useful, control-oriented models.

A sound behavioral theory provides guidance regarding the underlying forces and

factors that drive a particular behavior (e.g., walking) and the interconnections be-

tween behavior and its various influences. These theories elucidate behavior through

various psychological constructs, which in principle are akin to latent variables used

in the chemical processing industry. A specific construct may not be measured, yet its

dynamics can be inferred by examining its interrelationships with measurable com-

ponents (Tham et al., 1991). Examining such constructs from this prism can lead

to a deeper understanding of behavior change and facilitate effective interventions.

Social Cognitive Theory (SCT; Bandura (1986)) has been regarded as one of the most

influential theories of behavior change, and has been widely used in health behavior;

the dynamical model for SCT developed in Martín et al. (2020) is considered in this

work.

Model Predictive Control (MPC) is widely popular in chemical process industries

and beyond, including various other domains. This is mainly due to its versatility,
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Figure 4.1: Schematic Illustrating the Receding Horizon Strategy for MPC. Adapted

from Rivera et al. (2018).

simplicity, and capability to optimize control decisions under constraints (Bordons

and Camacho, 2007; Prett and García, 1988; García et al., 1989). In MPC a receding

horizon algorithm is implemented, where a model of the system is utilized to forecast

the impact of future changes in manipulated variables on system states and outputs

over a prediction horizon p (Figure 4.1). By solving the optimization problem in

(4.1), future moves in the manipulated variables ∆u(k) are determined over a move

horizon m subject to specified constraints. Subsequently, only the first move in the

manipulated variables is implemented and the computations are repeated at each
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sampling instant utilizing feedback measurements from the current state of the process

(García et al., 1989).

min
[∆u(k),...,∆u(k+m)]

p∑
l=1

||ΓY
l (y(k + l|k)− r(k + 1))||22 +

m∑
l=1

||Γu
l u(k + l − 1)− ur||22

+
m∑
l=1

||Γ∆u
l ∆u(k + l − 1)||22

(4.1)

where ur denotes setpoint targets for manipulated variables, and yr represents the

desired setpoint for the output y. ΓY , Γu and Γ∆u represent controlled variable,

manipulated variable, and move suppression weight matrices, respectively. ΓY , Γu,

Γ∆u, p and m are adjustable controller parameters. MPC enables the enforcement of

constraints on controlled (y), manipulated (u), and move size (∆u) variables:

ymin ≤ y(k + i) ≤ ymax ∀ 1 ≤ i ≤ p (4.2)

umin ≤ u(k + i) ≤ umax ∀ 0 ≤ i ≤ m− 1 (4.3)

∆umin ≤ ∆u(k + i) ≤ ∆umax ∀ 0 ≤ i ≤ m− 1 (4.4)

In the unconstrained scenario, the optimization problem highlighted in (4.1) is sim-

plified to a linear system of equations (Ax = b) that can be solved with a closed-form

solution. Conversely, when constraints are introduced, the optimization problem

defined by (4.1)-(4.4) forms a quadratic objective function with linear inequality con-

straints, which is a readily solvable Quadratic Programming (QP) problem (García

et al., 1989).

The work presented in Rivera et al. (2017) introduced hybrid model predictive

control (HMPC) as an approach with significant potential to deliver PA behavioral

interventions. The sole output of interest was walking behavior (measured with steps

per day), while manipulated variables, namely goals and expected reward points in

the intervention, were limited to predefined discrete levels. In this chapter, the hy-

brid formulation is set aside and instead, emphasis is placed on exploring diverse
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control strategies with continuous variables to determine if these result in desired

intervention outcomes. The findings in this chapter demonstrate that judicious prob-

lem formulation and constraint enforcement can guide the controller toward making

user-friendly decisions; maximizing the benefits of the intervention while minimizing

the risk of participant disengagement and dropouts. Furthermore, in this chapter,

we investigate MPC strategies using an enhanced SCT model that takes into account

the possibility of dual, competing behavioral outcomes, such as fitness and fatigue.

Both the modeling of this phenomenon and the suitability of MPC-based strategies

under these conditions are examined.

The conclusions and diverse insights developed in this chapter have significant

implications for the design of the YourMove intervention, which is being developed in

collaboration with the Design Lab at the University of California San Diego (UCSD)

as part of the activities conducted under the NIH grant R01CA244777 (R01CA244777,

2020). The chapter is organized as follows: Section 4.2 describes the simulation model

and intervention design, Section 4.3 presents and discusses simulation results for the

various optimization problem formulations, while Section 4.4 ends with conclusions

and implications for future work.

4.2 Simulation Model & Intervention Design

This section describes a fluid analogy process model that serves as the basis for

the computational analysis performed in this work, along with some of the details

of control-oriented behavioral interventions for physical activity, which is reflected in

current efforts such as YourMove.
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4.2.1 Social Cognitive Theory (SCT)

In SCT, it is postulated that behavior interacts with personal and environmental

factors in nested loops, allowing the possibility to predict the ability of an individual

to engage in a certain behavior based on endogenous and exogenous factors. Some

constructs in SCT are self-perceived and subjective, which are measured through

Ecological Momentary Assessment (EMA; Shiffman et al. (2008)) surveys provided

to participants daily. On the other hand, other constructs, such as steps per day, can

be directly measured (Martín, 2016). The work done by Martín et al. (2020) describes

a fluid analogy process model for the main constructs of SCT , which is amenable to

closed-loop control approaches. In this chapter, the SCT subsystem involving Self-

Efficacy (η3), Behavior (η4), and Behavioral Outcomes (η5), depicted in Figure 4.2, is

considered. This subsystem is comprised of Operant Learning (OL) and Self-Efficacy

(SE) loops (Loeber et al., 2006), which is subsequently referred to in this chapter as

an OLSE system.

4.2.2 Fluid Analogy Formulation for SCT

The fluid analogy relates to the dynamic interrelations of SCT components over

time. In this analogy, the main SCT constructs are modeled as tanks (inventories),

while the other components are treated as inflows/outflows to the inventory system.

The fluid analogy provides a structure and framework to readily obtain a mathemat-

ical model from the SCT following conservation principles such as mass conservation

(Hekler et al., 2016; Martín, 2016; Navarro-Barrientos et al., 2011; Spruijt-Metz et al.,

2015a). By applying conservation of mass to each inventory, a system of ODEs is ob-

tained to represent the schematic shown in Figure 4.2.

τ3
dη3
dt

= γ311 ξ11(t) + β34 η4(t)η3(t) + ζ3(t) (4.5)
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Figure 4.2: Schematic Depicting the Fluid Analogy of the SCT Model for an Op-

erant Learning-Self-Efficacy (OLSE) System in an Intervention Setting Including the

Implementation of MPC Controller. Adapted from Martín et al. (2020)

τ4
dη4
dt

= γ48 ξ8(t) + γ49 ξ9(t) + β43 η3(t) + β45 η5(t)− η4(t) + ζ4(t) (4.6)

τ5
dη5
dt

= γ510 ξ10(t) + γ57 ξ7(t) + β54 η4(t)− η5(t) + ζ5(t) (4.7)

τi represents the time constant for inventory i, γij represents the gain between in-

ventory i and the inflow/outflow j, βiz denotes the gain in inventory i for changes in

inventory z, and ζi is for unmeasured disturbances, where i, j, z are integers. To ensure

the outflows from each inventory are physically realizable, the following constraints
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are needed:

0 ≤ β43 < 1 (4.8)

0 ≤ β45 < 1 (4.9)

0 ≤ β34 + β54 < 1 (4.10)

The primary inventory for the intervention is Behavior (η4), which is measured

in the form of daily step-count in steps/day. This construct can encompass various

characteristics (e.g., duration, frequency, and type) and their fluctuations over time

(Martín, 2016; Martín et al., 2020). In this study, the chosen time frame is on a

daily level. However, it is important to note that this framework can be extended

to different temporal granularities (e.g., weekly level) based on the behavior of in-

terest. Self-efficacy (SE; η3) is a fundamental component of SCT and represents the

individual’s perceived capability to engage in the behavior of interest. The level of

SE can fluctuate over time depending on other main constructs in the SCT model

(e.g., Behavior) as well as other exogenous variables. Understanding the dynamic

relationship between SE and the other constructs is essential in comprehending the

factors that impact an individual’s motivation and ability to engage in desired behav-

iors. Another significant construct in SCT is Behavioral Outcomes (BO; η5), which

depicts the physical and psychological consequences of engaging in a particular be-

havior. These Behavioral Outcomes can include aspects such as fatigue and positive

reinforcement. BO can be influenced by external factors including environmental

context and the presence of financial or psychological incentives.

4.2.3 Intervention Design & Development

In an intervention setting like the one being implemented in YourMove, indi-

vidualized goal targets are given to participants on a daily basis (Hekler, 2021;
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R01CA244777, 2020). Participants who successfully meet their daily goals earn

points, which can be accumulated and later exchanged with financial rewards in the

form of gift cards. The number of expected points for each day and the daily step

goals are communicated to participants through a digital user platform, such as a

smartphone. To integrate the intervention into the SCT system the following signals

(which correspond to inflows and outflows in Figure 4.2) are included.

• Goals (ξ8; u8): These represent the daily step target given to a participant and

directly influence Behavior.

• Expected Points (EP; ξ9; u9): The number of points a participant expects to

earn, should they meet the daily target. EP is hypothesized to serve as mo-

tivation to meet the given daily goal. A maximum of 500 points/day can be

earned.

• Granted Points (GP; ξ10): The amount of granted points, which is equivalent

to ξ9 when a participant achieves the daily step goal. This is accomplished

through the following condition:

δGA = 1 ⇔ y4 ≥ u8; ξ10 = δGAu9 (4.11)

• Goal Attainment (GA; y7; ξ11): The difference between the behavior and given

goal:

y7 = ξ11 = η4 − ξ8 (4.12)

Goals and EP can be independently manipulated, whereas GP and GA depend

on meeting the daily goal as expressed in (4.11) and (4.12) respectively. GP signal

provides positive reinforcement for meeting the given daily goal and influences BO

(η5). It is important to recognize that GA can serve as both an inflow (when behavior
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surpasses the given goal) and as an outflow (when the goal is not achieved); this

signal has a significant impact SE. The main exogenous input to the system in this

work is Environmental Context (ξ7), which represents environmental factors that can

influence Behavior through the OL loop. In the context of this chapter, one particular

exogenous input taken into account is ambient temperature. This stochastic signal

is considered as a measured disturbance that can impact Behavior by deviating from

the participant’s ideal temperature to exercise, directly impacting BO, and therefore

influencing engagement in PA.

MATLAB and Simulink are utilized to implement the simplified SCT model and

MPC controller depicted in Figure 4.2 in a simulation environment. A state-space

representation of the system shown in equations (4.5) - (4.7) and (4.12) is utilized

to design the controller. MATLAB’s Model Predictive Control toolbox is used to

implement the various control strategies proposed in this chapter, through the differ-

ent tools provided by the toolbox like slack and dynamic constraint implementation.

Hypothetical models postulated in this work represent two different expected types

of participants:

1. Participant A: An adherent participant, who responds well to the given daily

goals.

2. Participant B: A non-adherent participant, who is not goal-oriented, and may

not follow the daily goals.

It is worth mentioning that these two types of participants (A and B) repre-

sent extreme and opposing ends of the spectrum of possible responses expected from

participants in the intervention. The majority of people should exhibit behavior in

between the examined extremes. Moreover, a participant’s response to the interven-

tion is not fixed and can move across the spectrum over time due to various personal
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and environmental factors (e.g., seasonality, sickness, busyness).

The purpose of the simulations in this work is to explore different MPC strategies,

starting with the simplest case and then introducing more sufficient problem specifica-

tions based on behavioral scientists’ feedback on the feasibility and likely limitations.

Furthermore, simulations are implemented to gain insight in terms of the response

of the hypothetical participants to the devised control strategy and tuning, and the

robustness of the controller in cases of plant-model mismatch.

4.3 Results and Discussion

In this section, control strategies supported by simulation results for the hypo-

thetical (adherent and non-adherent) participants are presented and discussed. The

control strategy is built based on the hypothetical adherent participant with six dif-

ferent scenarios that increase in complexity:

1. SE loop unconstrained.

2. SE loop with constraints on SE.

3. SE loop with constraints on GA.

4. OLSE system with constraints on GA and the presence of disturbances.

5. A dual competing dynamics behavioral outcomes OLSE system with constraints

on GA and stochastic disturbances.

6. A dual competing dynamics behavioral outcomes OLSE system with constraints

on GA and stochastic disturbances in the presence of nonlinearity that intro-

duces plant-model mismatch.

Subsequently, to test the performance of the devised control strategy under condi-

tions of plant limitations and plant-model mismatch, it is evaluated on the hypothet-
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ical non-adherent participant for the case of a dual competing dynamics behavioral

outcomes OLSE system with constraints on GA and stochastic disturbances, as well

as in the presence of nonlinearities in the model that lead to plant-model mismatch.

In all conducted simulations an initial goal level of ξ8initial = 1, 000 steps/day is as-

sumed as a baseline. While this value may seem relatively low, it provides insights

into the performance of the control strategies at extreme initial conditions. The de-

sired outcome of the simulated intervention strategies and scenarios is to achieve a

sustained level of 10,000 steps/day for the behavior of the participants. The findings

from each of the cases are discussed, along with their implications for future work.

4.3.1 Participant A: Adherent Participant

An adherent participant follows step goals and overcomes obstacles to meet them

on daily basis. In mathematical terms, this translates to a gain greater than or equal

to one between the Goals and Behavior. To simulate this expected behavior from

adherent participants the following model parameters are utilized:

• τ3 = 1, τ4 = 2, τ5 = 5.

• γ311 = 1.3, γ48 = 1, γ49 = 0.3, γ57 = 4, γ510 = 5.

• β34 = 0.5, β43 = 0.2, β45 = 0.2, β54 = 0.4.

The combination of model parameters shown above results in a gain between Goals

and Behavior of approximately 1.26, which is similar to the gain estimated from

system identification analysis for a representative Just Walk participant as presented

in Section 5.3.2 and in El Mistiri et al. (2023).
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Self-Efficacy (SE) loop: Unconstrained Case

This initial case represents the least amount of problem specification. The control

strategy does not include constraint enforcement, with move suppressive weights set

at Γ∆u = diag(1, 1). As the main output of interest is Behavior, weights on setpoint

tracking for the controlled variables are selected as (ΓY = diag(0, 1, 0)), while no

target tracking for the manipulated variables is implemented (Γu = 0). As a result,

many issues arise from this inadequate problem specification. As evident in Figure 4.3,

significant moves occur in the manipulated variables. These large moves, especially in

the Goals, imply assigning very ambitious goals that cannot be immediately achieved.

Consequently, this leads to largely negative GA at the beginning of the intervention,

resulting in a notable decline in SE.

This scenario illustrates a short and excessively ambitious intervention, which

may not be a successful approach for promoting the adoption of sustained healthy

behavior. While Behavior rapidly increases to surpass the given goals by the 5th day

of the intervention, the demanding nature of the intervention causes the observed

significant drop in SE, and can potentially result in participant disengagement and

dropout (Hekler, 2021; Klasnja, 2021). Moreover, the observed extensive use of EP

in this control strategy suggests its overreliance on financial rewards to encourage the

participant to achieve the given daily goals. Thus, this control strategy is deemed im-

practical for its excessive usage of EP, which exceeds the maximum allowable amount

of points per day.

The results obtained in this scenario highlight the importance of judicious formu-

lation of the optimization problem, and the need for imposing sensible constraints

in such interventions, on both controlled and manipulated variables. To successfully

implement MPC in PA behavioral interventions, it is essential to recognize that there
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Figure 4.3: Simulation Results from Applying an Unconstrained MPC Controller

on the Self-Efficacy Loop for an Adherent Participant. The Controller Parameters

Are: p = 100, m = 50, ΓY = diag(0, 1, 0), Γu = 0, Γ∆u = diag(1, 1).

are physical and budgetary limitations associated with the manipulated variables.

For example, a participant can only walk a finite amount of steps within a day, and

only a certain amount of EP can be awarded on a given day to abide by an affordable

budget for the intervention. These limitations are comparable to limitations faced

in chemical processes, such as limits in the opening of a valve, or safety limits on

an exothermic reaction. It is crucial to address these constraints to ensure that the

intervention is practical and feasible, as presented in subsequent scenarios.
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Self-Efficacy (SE) loop: Constrained Self-Efficacy

To account for the physical and financial limitations of the system, constraints are

applied to the manipulated variables. These constraints, as described in (4.13) and

(4.14), are applied to all the constrained cases presented in this work.

0 ≤u8(k + i) ≤ 15000 [steps/day], ∀ 0 ≤ i ≤ m− 1 (4.13)

0 ≤u9(k + i) ≤ 500 [points/day], ∀ 0 ≤ i ≤ m− 1 (4.14)

Maintaining a sufficient level of SE is imperative to mitigate participant dropout.

Hence, a SE output is constrained at a specified level below its initial value, as

follows:

η3initial − 500 ≤ y3(k + i) ≤ ∞ ∀ 0 ≤ i ≤ p (4.15)

The results presented in Figure 4.4 provide interesting insights into the impact of

the implemented constraints and tuning. Despite the lower move suppression weights

(Γ∆u = diag(0.1, 0.1)), the intervention in this constrained scenario takes approxi-

mately 11 days for the controlled variable response to settle, which is twice as long

as the unconstrained case. This slower response is a direct consequence of constraint

enforcement, where moves in the manipulated variables are obtained through an op-

timal solution of the QP problem. As a result, initial manipulated variables moves

are significantly lower than the unconstrained case. Figure 4.4 illustrates the appli-

cation of the constraints on both EP and SE. Although EP is changed abruptly by

the controller, the constraint is not violated and the EP signal is phased off by the

end of the intervention.

Despite improved controller performance, this case demonstrates an idealistic sce-

nario, where measurements of Self-Efficacy are available at all times. In real life situ-

ations, missingness in measurements for behavioral constructs is commonplace due to

participants’ lack of compliance with EMAs. Additionally, in this case, the increase
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in the daily goals is quite rapid. This is specifically evident in the initially negative

GA values, which progressively decrease until the Behavior response is around the

settling time. To overcome this issue the controller can be tuned for higher move

suppression weights, especially for Goals.
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Figure 4.4: Simulation Results from Applying a Constrained MPC Controller on

the Self-Efficacy Loop for an Adherent Participant, with a Lower Bound Constraint

on Self-Efficacy. Controller Parameters Are: p = 100, m = 50, ΓY = diag(0, 1, 0),

Γu = 0, and Γ∆u = diag(0.1, 0.1). Enforced Constraints Are: 0 steps/day ≤ u8 ≤

15000 steps/day, 0 points/day ≤ u9 ≤ 500 points/day, and η3i − 500 ≤ y3 ≤ ∞. All

Results Are in Terms of Deviation from Steady-state.
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Self-Efficacy (SE) loop: Constrained Goal Attainment

A practical shortcoming of the scenario shown in Section 4.3.1 is that the Self-Efficacy

is a behavioral construct perceived by the participant, and cannot be easily mea-

sured; continuous measurements are not available for this construct, as its values are

restricted to discrete Likert scale through the EMA answers. Another challenge faced

in measuring behavioral constructs like SE is the prevalence of missing data points

throughout the intervention, as participants can be inconsistent with answering EMA

surveys daily. In cases of unreliable SE measurement, alternative signals can be used

by the controller to infer SE levels. In this case, GA is utilized as it is an input to

the SE inventory in (4.5), and can be readily estimated through (4.12).

In this control strategy, several adjustments are made to formulate the optimiza-

tion problem more sufficiently. Firstly, to mitigate the negative impact of negative

Goal Attainment on SE a lower bound of -100 steps/day is placed on the GA output.

This is done to guide the participant toward providing “ambitious yet achievable”

goals. Additionally, to steer clear of reliance on financial rewards, u9r = 0 points/day

is set as a target for EP, with an associated weight Γu(2, 2) = 1. The remaining tuning

parameters and constraints are maintained the same as in Section 4.3.1. The control

strategy and tuning implemented in this case are highly effective in attaining the de-

sired outcome. As illustrated in Figure 4.5, the controlled variable response reaches

95% settling time approximately by day 32 of the intervention, which is significantly

slower than the previous cases. However, this slower settling time is achieved by

making modest changes in the goals over a longer timeframe to reach steady-state.

As a result, GA signal is positive throughout the intervention, without violating the

enforced lower constraint, which is a clear indication of the effectiveness of this control

strategy and tuning. This successful constraint enforcement prevents any significant
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Figure 4.5: Simulation Results from Applying a Constrained MPC Controller on

the Self-Efficacy Loop for an Adherent Participant, with a Lower Bound Constraint

Applied on Goal Attainment. Controller Parameters Are: p = 100, m = 50, ΓY =

diag(0, 1, 0), Γu(2, 2) = 1, and Γ∆u = diag(0.1, 0.1). Enforced Constraints Are: 0 ≤

u8 ≤ 15000 steps/day, 0 ≤ u9 ≤ 500 points/day, and −100 ≤ y7 ≤ ∞ steps/day.

All Results Are in Terms of Deviation from Steady-state.

drops in SE, demonstrating the positive impact of incorporating constraints on the

readily available GA signal. Additionally, the use of EP remains within the upper

constraint of 500 points/day and follows the 0 points/day target, after the desired

level of Behavior is reached. This approach avoids any potential financial dependency

on EP to maintain healthy levels of PA.
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OLSE System: Constrained Goal Attainment with Disturbances

In this scenario, the scope of the simulation is broadened by including the Behav-

ioral Outcomes inventory to conform to the full OLSE system shown in Figure 4.2.

This increases problem complexity through: 1) nonlinearity resulting from the con-

ditionality of awarding granted points based on the feedback signal of participant’s

behavior, and 2) additional (higher-order) dynamics. This scenario further illustrates

the controller’s ability to operate under stochastic conditions, as a random temper-

ature disturbance is introduced on day 40. The constraints from the prior case are

applied in this scenario, with the addition of 50 points/day as an upper move size

constraint for change in EP (∆u9). The GP signal is provided to the controller as a

measured disturbance.

This case shows the ability of the controller to maintain specifications and effec-

tively control a more complex system in the presence of stochastic disturbances. The

controlled variable response settles within 20 days, which is faster than the case in

Section 4.3.1 due to the added gains from the OL loop. All constraints are maintained

throughout the simulation, as seen in Figure 4.6. EP increases up until the large in-

crease in GA, around day 20. After that point, EP use is close to 0 points/day

following the set manipulated variable target, to the instant the random tempera-

ture disturbance is introduced at day 40. Consequently, EP is minimally utilized to

maintain behavior at the desired levels. The concept of the “transfer of variance” is

observed in the fluctuations in the manipulated variables after the introduction of

the noisy temperature disturbance; the controller effectively maintains the desired

behavior setpoint by optimally adjusting the manipulated variables in response to

changes in ∆T .
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Figure 4.6: Simulation Results from Applying a Constrained MPC Controller on

OLSE System for an Adherent Participant, in the Presence of a Measured Random

Disturbance (Deviations of the Average Daily Temperature from the Participant’s

Preference). Controller Parameters Are: p = 100, m = 50, ΓY = diag(0, 1, 0, 0),

Γu(2, 2) = 1, and Γ∆u = diag(0.1, 0.1). The Following Constraints Are Applied:

0 ≤ u8 ≤ 15000 steps/day, 0 ≤ u9 ≤ 500 points/day, −∞ ≤ ∆u9 ≤ 50 points/day ,

and −100 ≤ y7 ≤ ∞ steps/day. All Results Are in Terms of Deviation from Steady-

state.

Dual Behavioral Outcomes Dynamics OLSE System: Constrained Goal

Attainment with Disturbances

In real-world circumstances, multiple behavioral outcomes can exist with different

speeds and distinct impacts on Behavior. For instance, when initially engaging in
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PA Fatigue may be more prominent. However, over time Fatigue impact diminishes

while Fitness takes effect, especially if the participant maintains engagement in the

intervention and PA. To model these separate and potentially competing dynamics of

Behavioral Outcomes, an enhancement is made to the SCT model. This enhancement

involves the inclusion of separate inventories for the mentioned expected outcomes

(Fatigue; ηftg5 , and Fitness ; ηfit5 ). Figure 4.7 provides a visual representation of

the corresponding fluid analogy for the Operant-Learning recycle loop, incorporating

these two outcomes. To model the dual dynamics on behavioral outcomes, equation

(4.7) is replaced with a set of ODEs (4.16)-(4.18) representing the system. These

equations capture the distinct dynamics and interactions between Fatigue and Fit-

ness, acknowledging their distinct dynamics and impacts on BO, and by extension on

Behavior.

τ fit5

dηfit5

dt
= γ510 ξ10(t) + βfit

54 η4(t)− ηfit5 (t) + ζfit5 (t) (4.16)

τ ftg5

dηftg5

dt
= γ57 ξ7(t) + βftg

54 η4(t)− ηftg5 (t) + ζftg5 (t) (4.17)

τ5
dη5
dt

= βfit
45 ηfit5 − βftg

45 ηftg5 − η5(t) + ζ5(t) (4.18)

Assuming an instantaneous effect of Fatigue and Fitness on the overall Behavioral

Outcome (i.e., Behavioral Outcome Performance), τ5 = 0, which simplifies (4.18) as

follows.

η5 = βfit
45 ηfit5 − βftg

45 ηftg5 + ζ5(t) (4.19)

This dual Behavioral Outcomes Operant-Learning subsystem is of a second-order

and can yield a variety of BO dynamic responses (e.g., underdamped, overshoot,

inverse response). The specific dynamic characteristics of the response are depen-

dent on the choice of participant parameters. The selected coefficients for the added
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OL subsystem components in the presented simulations for both participants are as

follows:

1. τ fit5 = 2, τ ftg5 = 1, τ5 ≈ 0.

2. γ57 = 4, γ510 = 5.

3. βfit
45 = 0.5, βftg

45 = 0.2, β45 = 0.2, βfit
54 = 0.8, βftg

54 = 0.7.

Figure 4.7: Schematic Illustrating an Operant-Learning Loop Illustrating Dual (and

Competing) Behavioral Outcome Dynamics, with Fitness and Fatigue in the Loop.
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The incorporation of the dual dynamics of Bheavioral Outcomes in the OL recy-

cle loop introduces a higher-order SCT system, which increases the complexity of the

system presented in Section 4.3.1. In this scenario, the same control strategy and con-

troller tuning presented in Section 4.3.1 are implemented, with the main distinction

being the inclusion of Fatigue and Fitness BO dynamics in the controller’s internal

model. Additionally, on day 50 of the intervention a random temperature distur-

bance is introduced in this scenario. The obtained simulation results provide further

evidence of the controller’s effectiveness in handling stochastic conditions within a

complex system.

As demonstrated in Figure 4.8, the response of the controlled variable settles

within the span of approximately 24 days from the beginning of the intervention.

This is longer than what is seen in the previous case, because of the initial negative

effect of Fatigue on the amount of daily steps count. Consequently, the participant

struggles to meet their assigned daily goals initially, resulting in low GA values at the

beginning of the intervention. However, GA remains above the lower constraint of

−100 steps/day constraint and progressively increases along with the Behavior over

time. More importantly, the initial low GA values do not lead to a significant decrease

in SE levels. This indicates that the participant’s perceived capability in achieving

the provided goals is not significantly impacted, despite the initial challenges. All

enforced constraints are satisfied including the constraint on the move size for EP

at 50 points/day. Additionally, EP usage is within budget, following constraints,

and is phased off to minimal utilization after reaching the 10,000 steps/day setpoint.

The inclusion of a manipulated variable target on EP proves to be highly effective in

maintaining EP close to 0 points/day, even under stochastic conditions after day 50.

The controller only utilizes EP when necessary, which is essential to avoid financial

rewards utilization as the main driver for maintaining healthy behavior. Additionally,
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this demonstrates the feasibility of such control strategies, making them a viable

option for the dissemination of such interventions on a large scale.
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Figure 4.8: Simulation Results from Applying Constrained MPC on Dual BO Dy-

namics OLSE System for an Adherent Participant in the Presence of a Measured

Random Disturbance (Deviations of the Average Daily Temperature from the Par-

ticipant’s Preference). A Low Bound is Applied on Goal Attainment. The Con-

troller Parameters Are: p = 100, m = 50, ΓY = diag(0, 1, 0, 0, 0), Γu(2, 2) = 1,

and Γ∆u = diag(0.1, 0.1). The Following Constraints Are Applied: 0 ≤ u8 ≤

15000 steps/day, 0 ≤ u9 ≤ 500 points/day, −∞ ≤ ∆u9 ≤ 50 points/day , and

−100 ≤ y7 ≤ ∞ steps/day. All Results Are in Terms of Deviation from Steady-

state.

Figure 4.9 demonstrates the higher-order dynamics of the OL loop in this scenario.
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This is evident in the overshoot observed in the close-loop response. This figure also

illustrates the different and competing components of Behavioral Outcomes, and their

impact on the dynamic response in terms of both speed and shape of response. For

instance, in this scenario Behavioral Outcomes Performance settles within 27 days

from the beginning of the intervention, which is slower than the previous case which

settled within 21 days. This is due to the slower fitness (ηfit5 ) response, and the nature

of the competing components.
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Figure 4.9: Simulation Results for an Adherent Participant Illustrating the Closed-

Loop Responses of Fitness, Fatigue, and Behavioral Outcomes Performance for the

Adherent Participant.

Dual Behavioral Outcomes Dynamics OLSE System with Nonlinearity:

Constrained Goal Attainment with Disturbances

In real-world interventions, the difficulty in reaching higher levels of PA increases as

Behavior levels increase; when participants reach a certain threshold in their daily
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step count, it becomes more challenging to increase PA levels in terms of daily steps.

This can be attributed to many factors, like busyness and not being able to designate

more time to exercise or walk. Up until this point in the chapter, the majority of

cases examined have involved linear, time-invariant models. However, it is essential

to consider cases of nonlinearity. Therefore, to model such nonlinear dynamics in this

scenario, the gain γ48 varies exponentially with respect to the difference between Be-

havior (η4) and the threshold as a fraction of the desired outcome of 10,000 steps/day

as follows:

γ48(t) = c+ be−α(η4(t)−TH)/10000 (4.20)

where

b =
γ48f − γ48i
e−α − 1

, and c = γ48i − b (4.21)

The threshold level selected in this simulation is TH = 8, 000 steps/day, with the

initial value of the gain parameter representing this hypothetical adherent participant

at γ48i = 1, and the final value γ48f = 0.6. This yields an exponential decay in the

overall system gain between Behavior and Goals from 1.26 to 0.58. Consequently, a

gradual change in the participant’s behavior occurs past the selected threshold: from

being able to meet and overachieve the goals by 26%, to only being able to accomplish

58% of a goal given to them on a certain day.

As a result of this nonlinearity in the participant’s behavior model, a mismatch

between the plant and controller model occurs once the Behavior levels reach the

defined threshold. In closed-loop simulation results for this scenario, shown in Figure

4.10 below, the impact of the nonlinearity can be clearly observed after the participant

surpasses the threshold of 8,000 steps/day on the 21st day of the intervention. The

rate of the increase in Behavior decreases rapidly, which leads to the controller in-

creasing the daily goals, surpassing 10,000 steps/day. In this scenario, the controlled
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variable reaches 95% of the desired target on the 30th day of the intervention.
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Figure 4.10: Simulation Results from Applying Constrained MPC on Dual BO Dy-

namics OLSE System for an Adherent Participant, in the Presence of Nonlinearity and

a Measured Random Disturbance. A Low Bound is Applied on Goal Attainment. The

Controller Parameters Are: p = 100, m = 50, ΓY (2, 2) = 1, Γu(2, 2) = 1, and Γ∆u =

diag(0.1, 0.1). The Following Constraints Are Applied: 0 ≤ u8 ≤ 15000 steps/day,

0 ≤ u9 ≤ 500 points/day, and −∞ ≤ ∆u9 ≤ 50 points/day . Adaptive Lower

Constraint is Applied on GA Starting with −100 steps/day ≤ y7, Then Gradually

Decreasing to −5000 steps/day ≤ y7. All Results Are in Terms of Deviation from

Steady-state.

Note the GA signal is positive throughout the first 20 days of the intervention. Af-

terward, as the system gains change, the participant is not able to meet the daily goals,
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which results in negative GA from day 21 and on-words. To avoid an offset in the

controlled variable due to the output constraints on SE and GA, dynamic constraints

are implemented in this case: after the Behavior level surpasses the threshold, the

lower constraint on SE and GA are gradually relaxed (from -100 to -5000 steps/day

for GA). This allows the controller to increase the daily goals higher, close to 15,000

steps/day by the end of the intervention, to guide the participant towards the set-

point. Consequently, GA values progressively decrease through the simulation. The

sustained negative values of GA lead to the observed significant drop in SE levels.

EP utilization in this scenario does not violate the defined upper bound and move

size constraints. However, EP usage is close to the maximum allowed value for the

majority of the simulation and is not phased off when the participant reaches the

setpoint.

This control strategy introduces adaptive constraint enforcement in a behavioral

intervention setting. While such a strategy guides the participant to the desired

setpoint (which is considered a success from a control engineering standpoint), it

has significant drawbacks from a behavioral science perspective. The significantly

and sustainably negative values of GA, as well as the substantial drop in SE can

have a negative impact on the participant and increase the possibility of participant

disengagement and dropout. Moreover, the sustained utilization of EP throughout the

intervention, even after Behavior levels settle at the setpoint, may form dependency

of the participant on the financial incentives. Hence, this control strategy is not ideal

for dealing with cases similar to the one explored in this scenario; from a behavior

intervention standpoint, providing “ambitious yet achievable” goals is more important

than reaching the desired setpoint.

An alternative approach to easing the lower bounds on GA and SA is the utiliza-

tion of slack variables as a part of the optimization objective function. Through this

116



0 10 20 30 40 50 60 70 80 90

0

5000

10000

O
u

tp
u

t 
v
a
ri
a
b

le
s

Behavior

SE

GA

StepTarget

BO

0 10 20 30 40 50 60 70 80 90
0

5000

10000

G
o

a
ls

 (
u

8
)

0

200

400

600

E
x
p

e
c
te

d
P

n
ts

 (
u

9
)Manipulated variables

0 10 20 30 40 50 60 70 80 90

time (days)

0

200

400

600

G
ra

n
td

P
n
ts

 (
1
0
)

-10

0

10

20

T
 (

7
)

Disturbances

Constrained MPC on Dual BO Dynamics OLSE System

Figure 4.11: Simulation Results from Applying Constrained MPC on Dual BO

Dynamics OLSE System for an Adherent Participant, in the Presence of Nonlin-

earity and a Measured Random Disturbance. A Low Bound is Applied on Goal

Attainment. The Controller Parameters Are: p = 100, m = 50, ΓY (2, 2) = 1,

Γu(2, 2) = 1, and Γ∆u = diag(0.1, 0.1). The Following Constraints Are Applied:

0 ≤ u8 ≤ 15000 steps/day, 0 ≤ u9 ≤ 500 points/day, −∞ ≤ ∆u9 ≤ 50 points/day ,

and −100 ≤ y7 ≤ ∞ steps/day. All Results Are in Terms of Deviation from Steady-

state.

approach, lower output constraints can be “softened” through the inclusion of their

respective slack variable values, which are determined as a part of the QP solution.

In this approach, the lower constraint on GA and SE is optimally adjusted based on

an assigned weight for the slack variable terms in the optimization function. Through
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MATLAB’s MPC toolbox, the slack weight for both SE and GE is set to 0.5 in this

simulation, the results of which can be seen in Figure 4.11. The difference between

the two constraint relaxation approaches can be clearly observed by comparing Fig-

ures 4.10 and 4.11 after the 21st day of the intervention, when the decrease in the gain

between Goals and Behavior occurs. The use of low slack weights in the constraint

softening approach leads to a clear offset between the controlled variable and the set-

point, where Behavior settles at close to 1400 steps/day shy from the setpoint. This

is a result of enforcing “soft” lower bound constraints on both GA and SE, where it

can be observed that the GA values slightly violate the lower constraint; GA reaches

-500 steps/day when the overshoot happens in Goals between days 21 and 33.

The negative values of GA lead to a decrease in SE past the 21st day of the

intervention. However, as GA values are only slightly negative in this simulation, the

drop in SE levels is not very significant and does not violate the enforced constraint

on SE. Therefore, the participant is less likely to disengage and drop out of the

intervention with this control strategy. Moreover, the use of slack variables in this

control strategy maintains the Goals signal at reasonable levels; the goals signal settles

approximately at 8700 steps/day and the goals never exceed 10,000 steps on any day

of the intervention. While this control strategy results in an offset, it is the more

suitable strategy for closed-loop behavioral interventions, based on the feedback of

behavioral scientists.

4.3.2 Non-Adherent Participant

In the previous subsections, control strategies for behavioral interventions aimed at

improving physical activity levels for an adherent participant have been developed.

However, not all participants involved in PA interventions will abide by the daily

goals. Even adherent participants may enter into cycles of noncompliance due to
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factors such as stress or busyness. Hence, it is important to test the performance of

the proposed control strategy on simulation conditions for a non-adherent participant.

The following model parameters are utilized to represent such a participant:

• τ3 = 3, τ4 = 1, τ5 = 1.

• γ311 = 0.45, γ48 = 0.46, γ49 = 1.3, γ57 = 2, γ510 = 5.

• β34 = 0.5, β43 = 0.67, β45 = 0.25, β54 = 0.54.

The combination of these parameters for the non-adherent participant yields a gain

of 0.53 between Goals and Behavior. This translates to the participant not following

goals closely, and most likely their inability to achieve the goals for the majority

of the intervention. Hence, it is essential to examine the devised control strategies

and assure their compatibility with non-adherent participants; in terms of delivering

“ambitious yet achievable” goals and robustness to plant-model mismatch.

Dual Behavioral Outcomes Dynamics OLSE System: Constrained Goal

Attainment with Disturbances and Plant Limitations

As can be seen in Figure 4.12 the devised strategy performs well in terms of increasing

the number of daily steps in the case of the non-adherent participant. This is evident

in the “ambitious yet achievable” goals given to the participant due to the constraint

on GA of −100 steps/day. It is important to note that slack variables have been

implemented in this case, to assure the feasibility of the optimization problem and

‘soften’ the constraints on both SE and GA. The utilized slack variable weight for

both output constraints is at 0.5. The participant does not meet the daily goals

within the first 6 days of the intervention, however, due to the increase in SE and

BO, as a result of the accumulation of the benefits of fitness in the OL recycle loop,

the participant achieves the daily goals from day 7 to day 27.
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Figure 4.12: Simulation Results from Applying Constrained MPC on Dual BO

Dynamics OLSE System for a Non-Adherent Participant, in the Presence of a Mea-

sured Random Disturbance (Deviations of the Average Daily Temperature from the

Participant’s Preference). A Low Bound is Applied on Goal Attainment. Con-

troller Parameters Are: p = 100, m = 50, ΓY = diag(0, 1, 0, 0, 0), Γu(2, 2) = 1,

and Γ∆u = diag(0.1, 0.1). The Following Constraints Are Applied: 0 ≤ u8 ≤

15000 steps/day, 0 ≤ u9 ≤ 500 points/day, −∞ ≤ ∆u9 ≤ 50 points/day , and

−100 ≤ y7 ≤ ∞ steps/day. All Results Are in Terms of Deviation from Steady-

state.

Despite the controller’s best effort to guide such a participant towards the setpoint

of 10,000 steps/day, an offset between the setpoint and the number of daily steps is

observed. The participant’s behavior settles within 30 days from the beginning of
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the intervention at a level a little below 5,000 steps/day. This is mainly due to plant

limitations, where the overall gain between Goals and Behavior for this participant

does not allow for achieving the desired setpoint, without significantly violating the

GA constraint. Consequently, at steady state, GA is negative, and the GA constraint

is not met due to the use of slack. This is indeed the case, despite the use of the

EP and financial rewards to motivate the participant. While the utilization of EP

abides by the upper constraint of 500 points/day and the move size constraint of 50

points/day, financial incentives are never phased off in this simulation because the

participant never reaches the desired setpoint at any point of the intervention.

Dual Behavioral Outcomes Dynamics OLSE System with Nonlinearity:

Constrained Goal Attainment with Disturbances

Human behavior is highly intricate and subject to time-varying dynamics and nonlin-

ear changes, especially as individuals adapt to different situations and seek to improve

their life conditions. As the aim of behavioral interventions is to aid participants in

adopting healthier behaviors and facilitate such behavior change, it is imperative for

the controller to be robust to changes in system dynamics and successfully guide par-

ticipants toward the desired behavior in such situations. For instance, it is possible

for an individual who started the intervention as a non-adherent and not goal ori-

ented participant to change their response to the daily goals over time, because of the

benefits they see from the intervention or changes in life rhythms leading to the indi-

vidual having more time to engage in the intervention. Consequently, a plant-model

mismatch would occur as system dynamics, especially gains would change over time.

In the simulation results shown in Figure 4.13 the controller response to nonlinear

changes in system dynamics, leading to plant-model mismatch is presented. In this

scenario, the gain between the daily goal and the Behavior inventory (γ48) increases
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exponentially with the increase of the output following the expression presented in

(4.20). Initially, the same accumulative value for the gain between Goals and Be-

havior is the same as the previous case at 0.53, which is accomplished through the

utilization of (γ48i = 0.46). This is the case until the participant reaches a threshold

of 4500 steps/day. After this threshold, as the participant experiences the benefits of

their increased walking behavior, the gain increases gradually to reach (γ48f = 0.6)

resulting in an accumulative gain between Goals and Behavior of 1. Consequently,

the participant overcomes all limitations and is able to meet and exceed the daily

goals. While the plant model in this case exhibits nonlinear dynamics, the controller

model is linear and is based on the initial gain value (γ48i).

As observed in Figure 4.13, the controller performs very well in terms of providing

the participant with “ambitious yet achievable” goals throughout the majority of the

intervention and guiding the participant to the desired intervention outcome. At

the beginning of the intervention, it is seen that the closed-loop response is very

similar to the case shown in Section 4.3.2, which is expected as the same model for

the non-adherent participant is utilized initially. The controller gradually increases

the daily goals while abiding by the lower bound output constraint on GA of -100

steps/day, and incrementally increasing the use of EP by 50 points/day until reaching

the upper bound constraint of EP of 500 points/day. By day 10 of the intervention,

EP are fully utilized and the participant starts achieving the daily goal and receiving

financial rewards in the form of GP based on their increased daily step-count.

After day 20, the participant’s Behavior surpasses the threshold of 4500 steps/day.

As a result γ48 increases, therefore, increasing the influence of Behavior in the SE

and OL recycle loops. With the observed benefits of the increased Behavior level

and Fitness effects outweighing Fatigue in Behavioral Outcomes, the positive OL

recycle loop contribution to the daily step-count increases. Moreover, the positive
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Figure 4.13: Simulation Results from Applying Constrained MPC on Dual BO

Dynamics OLSE System for a Non-Adherent Participant, in the Presence of Non-

linearity and a Measured Random Disturbance (Deviations of the Average Daily

Temperature from the Participant’s Preference). A Low Bound is Applied on Goal

Attainment. Controller Parameters Are: p = 100, m = 50, ΓY = diag(0, 1, 0, 0, 0),

Γu(2, 2) = 1, and Γ∆u = diag(0.1, 0.1). The Following Constraints Are Applied:

0 ≤ u8 ≤ 15000 steps/day, 0 ≤ u9 ≤ 500 points/day, −∞ ≤ ∆u9 ≤ 50 points/day ,

and −100 ≤ y7 ≤ ∞ steps/day. All Results Are in Terms of Deviation from Steady-

state.

Goal-Attainment yields higher SE levels, and subsequently higher SE recycle loop

contribution to Behavior. This accumulative effect leads to a further rise in Behavior

levels over the following days of the intervention, which in turn increases the gain
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between Goals and Behavior. Therefore, the mismatch between the controller model

and plant model becomes more prominent the further the participant progresses in

the intervention.

Despite the mismatch between the plant and controller models, the closed-loop re-

sponse seen in Figure 4.13 illustrates the effectiveness of the control strategy and the

linear MPC in delivering a personalized optimal intervention. This is done while abid-

ing by all the constraints enforced on SE and GA. Moreover, by the 44th day of the

intervention, the output variable settles at the desired setpoint, and EP use is phased

off following the set target on the manipulated variable to avoid financial dependency.

Moreover, minimal EP use is observed after the introduction of the stochastic tem-

perature disturbance on the 50th intervention day. The obtained simulation results

serve as a proof of concept to the use of judiciously formulated linear MPC control

strategies in delivering personalized optimal behavioral interventions, in spite of the

nonlinearities that can be found in complex systems related to behavior change.

4.4 Summary and Conclusions

In this study, a variety of strategies for personalized PA behavioral interventions

relying on MPC have been proposed and evaluated. The analysis is based on simulated

models based on Social Cognitive Theory for adherent and non-adherent participants,

representing expected extremes of behavior by intervention participants. The analysis

begins with a simple unconstrained scenario for a SE loop subsystem, then develops

into more complex higher-order systems including plant-model mismatch and nonlin-

earities. Through this process, significant decisions relating to problem specifications

and constraint enforcement are made based on the expertise of behavioral scientists.

An iterative approach is utilized, where feedback from experts guiding the increasing

complexity of the system, as well as adjustments to the control strategy and tun-
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ing, ensures the obtained applicability of the developed control strategies in real-life

interventions.

The findings presented in this chapter illustrate the advantages of proper prob-

lem formulation and provide a proof of concept for the use of fluid analogies and

MPC in operating behavioral interventions. The presented simulation results demon-

strate that MPC, with sensibly formulated objective function and constraints, pro-

vides a compelling approach for delivering personalized physical activity interventions,

even under circumstances with limited measurement capabilities and plant-model

mismatch. The presented findings have played an essential role in furthering the

exploration of control strategies for behavioral interventions, and have been imple-

mented Three Degrees-of-Freedom Kalman Filter Hybrid Model Predictive Control

(3DoF-KF HMPC) formulation as presented in Chapter 5, Khan et al. (2022) and

El Mistiri et al. (2023). More details about the 3DoF-KF HMPC formulation and

results of its implementation in a simulation setting for a representative JustWalk

participant are presented in Chapter 5. The full potential of this research is realized

through the integration of system identification and control in what is referred to as a

“control optimization trial” (COT; Hekler et al. (2018)), which is part of the ongoing

YourMove study (R01CA244777, 2020) (see Chapter 6). Using system identification

concepts, especially input signal design and model structure selection, will enable

estimating participant-specific parameters for the SCT model from dynamically in-

formative experimental data (Rivera et al., 2018). While the primary focus of this

chapter is on deterministic conditions, the gained insights expand the comprehension

of the impact and outcomes of various control strategies and have been applied in

real-life stochastic conditions, in YourMove. The developed control strategies in this

chapter are refined in YourMove based on participants’ responses to the closed-loop

intervention, as described in Section 6.5. In addition, preliminary results for repre-
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sentative YourMove participants are presented in Chapter 6. The experimental data

obtained from YourMove trial will aid in identifying the characteristics of noise and

stochastic conditions associated with PA interventions, which will then be integrated

into future simulations to further explore these different control strategies in more

realistic conditions. Moreover, future efforts include formalizing and automating con-

troller tuning to streamline personalized MPC-based interventions with minimal user

involvement for the purpose of disseminating such interventions on a large scale and

improving public health.

126



Chapter 5

SYSTEM IDENTIFICATION AND HYBRID MODEL PREDICTIVE CONTROL

IN PERSONALIZED MHEALTH INTERVENTIONS FOR PHYSICAL ACTIVITY

5.1 Introduction

Various chronic health conditions, including cardiovascular disease, breast and

colon cancer, obesity, diabetes, and arthritis are linked to insufficient levels of physical

activity (McGinnis et al., 2002). Such chronic conditions can reduce the quality of

life for patients and may have fatal consequences. Physical activity (PA) can work as

a preventative measure; recent studies show that walking 8,000 steps/day on average

can reduce the risk of such conditions by 51% in comparison to averaging 4,000

steps/day (Booth et al., 2012; Saint-Maurice et al., 2020).

Despite this information being available to the public, many people do not meet

the recommended guidelines for PA on a weekly basis (Olson et al., 2018). Mobile

health (mHealth) technologies provide new avenues to study behavior, especially re-

lated to PA through temporally rich data, and can deliver efficient, scalable, and user-

friendly interventions to promote healthy behavior. Smart devices (e.g., smartphones,

wearables) play an important role in terms of measuring PA levels and delivering in-

tervention components at the right times and in the right context for users. Yet,

the majority of mHealth PA interventions developed by researchers have only been

evaluated in short-term trials (e.g., 4 weeks to 6 months) with moderate effects and

limited scope (Payne et al., 2015), lacking the ability to evaluate their effectiveness

in real-world circumstances (Hekler et al., 2016).

Systems related to behavior change are complex and involve both time-invariant

127



and time-varying dynamics, especially in the case of physical activity (Conroy et al.,

2011). However, traditional behavioral medicine approaches are centered around

static modeling that does not encompass the full scope of the system (Hekler et al.,

2016). In recent years, the application of control system engineering principles in

behavioral medicine brought about a paradigm shift in understanding the dynamic

nature of behavior change and delivering behavioral interventions (Timms et al.,

2014b; Deshpande et al., 2014; Guo et al., 2020; Martín et al., 2020). Goals include

the development of a synergistic approach between system identification (to estimate

individualized dynamic models for behavior change), and control design (to opera-

tionalize personalized decision-making framework for interventions) in what is known

as the control-optimization-trial (COT; Hekler et al. (2018)). This approach is highly

appealing, as it can be implemented to systematically guide participants toward at-

taining and sustaining healthy levels of PA.

One of the best-recognized theories of behavior change is Social Cognitive Theory

(SCT; Bandura (1986)), which has been used as the basis for many behavioral inter-

ventions. SCT provides a causal framework to understand changes in behavior over

time, as it relates personal and environmental factors to behavior and allows for pre-

dicting engagement in determined behavior. In the work done by Martín et al. (2020)

a control-oriented dynamic model of the SCT was developed utilizing fluid analogy.

To validate the hypothesized model structure and estimate parameters on an idio-

graphic (i.e., individual) level, system identification experiments have been designed

utilizing personalized input signals in an open-loop PA intervention setting (Martín

et al., 2015a,c). Based on these ideas, a pilot mHealth intervention called JustWalk

has been developed with the analysis presented in various articles (Freigoun et al.,

2017; Korinek et al., 2018; Phatak et al., 2018), which illustrate the effectiveness of

“ambitious yet achievable” daily goals and positive reinforcement of goal achievement
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as intervention components to study and improve behavior.

Figure 5.1: Simulation Illustrating Control Optimization Trial (COT) Behavioral

Intervention Phases. Highlighted in Cyan is the System Identification Phase, and

in Green is the Maintenance Phase, While the Unhighlighted Areas Represent the

Initiation Phase.

In this work, black-box modeling techniques are examined in obtaining idiographic

dynamic models for representative JustWalk participants. The estimated models are

then utilized to test a developed decision-making algorithm for an adaptive mHealth

intervention promoting PA (in terms of daily steps) among sedentary adults, in a

simulation setting. Control strategies developed in Chapter 4 are utilized to ensure

“ambitious yet achievable” daily goals in the simulated close-loop intervention (El Mi-

stiri et al., 2022b). This is done to evaluate the COT approach, with emphasis on

system identification considerations, ahead of real-world implementation. Two inter-

vention phases are included to ensure the longevity and success of the intervention

results: 1) a behavioral initiation phase where individuals are progressively guided to

desired healthy levels of PA through the introduction of daily step goals which are
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reinforced by rewards, 2) a maintenance phase where rewards are gradually decreased

based on the participant’s enhanced ability to continue to engage in the desired be-

havior and to avoid dependency on the financial rewards in sustaining the healthy

behavior.

In Chapter 4, a standard MPC formulation was implemented to devise con-

trol strategies for PA intervention, which were tested in simulation using the devel-

oped SCT-based model to represent hypothetical participants. These devised control

strategies are expanded upon in this chapter, where the decision-making framework

for intervention delivery is based on a hybrid model predictive control formulation

(HMPC; Nandola and Rivera (2013); Khan et al. (2022)). In previous work, HMPC-

based solutions were considered in behavioral health interventions for smoking ces-

sation, fibromyalgia treatment, and gestational weight loss (Deshpande et al., 2014;

Timms et al., 2014d; Dong et al., 2014; Downs et al., 2018). An initial formulation

of HMPC for physical activity based on a hypothetical model of SCT is proposed

in Martín et al. (2016a). Mixed logical dynamical (MLD) framework is utilized in

the HMPC-based decision policy, to describe categorical and logical decisions associ-

ated with intervention components. Three-degree-of-freedom tuning is implemented

to allow for adjusting the speed of response to setpoint tracking, measured, and un-

measured disturbance rejection independently. The controller is reconfigured through

the adjustment of manipulated variable target weights, to operationalize the shift be-

tween initiation and maintenance phases. The obtained simulation results illustrate

the effectiveness of the synergy between system identification (to estimate participant-

specific models), and the devised controller formulation (to address hybrid system

dynamics, setpoint tracking, disturbance rejection, and controller reconfiguration), in

facilitating personalized optimal PA interventions. This is a vital step towards the

dissemination of behavioral interventions promoting PA on a large scale.
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This chapter is organized as follows: in Section 5.2 a description of SCT and the

different components of the intervention is presented. Section 5.3 gives an overview

of the design of the JustWalk intervention and the use of system identification meth-

ods to estimate a dynamic model using data from representative participants. Sec-

tion 5.4 presents HMPC-based intervention controller formulation corresponding to

the model estimated in Section 5.3, including discrete and logical constraints and con-

troller reconfiguration. Section 5.5 presents a simulation study utilizing the estimated

participant-specific models, to test the performance of the control strategy (based on

Chapter 4) in guiding personalized PA interventions in the presence of disturbances.

Finally, Section 5.6 provides a summary of the conclusions.

5.2 SCT-based adaptive behavioral intervention

The desired outcome of the intervention is to elevate physical activity levels, mea-

sured in the number of steps walked per day, among sedentary adults. This is achieved

by reaching the recommended weekly average of 10,000 steps per day (or at least an

increase of +3,000 steps per day from the baseline measurement). The design and

implementation of the behavior change intervention are inspired by the aforemen-

tioned popular theory of behavior change SCT (Riley et al., 2016; Phatak et al.,

2016). SCT is a well-substantiated behavioral theory, in which change in behavior

is described through the interactions between behavior, psychoactive constructs, and

environmental factors. In SCT human agency plays a significant role where individ-

uals proactively self-reflect, self-regulate, and organize based on perceived outcomes,

which allows for prediction of an individual’s ability to engage in a determined be-

havior over time. Some of the prominent SCT constructs are:

• Self-Efficacy (η3): represents the self-perceived capability to do what is needed

to engage in a given behavior.
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• Behavior (η4): represents different characteristics of the behavior of interest

(e.g., duration, frequency, and type), in this case, the number of daily steps.

• Behavioral Outcomes (η5): represents the perceived psychological and physical

outcomes (e.g., praise, fatigue) from engaging in the behavior.

Figure 5.2: Simplified SCT Model in a Fluid Analogy, Based on (Martín et al.,

2020).

The work done in Martín et al. (2020) presents a dynamic model of SCT describing

the constructs and their interconnections, which is derived based on a fluid analogy.

Fig. 5.2 depicts a simplified version of the SCT model in a fluid analogy where

each ξi represents an input (as inflow/outflow), ηi is an output (as an inventory

level), γij and βij represent the interrelational gains between the different various
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inputs and inventories, ζi is an external disturbance and i, j are integers representing

inventory and input numbers. By applying the conservation of mass on each inventory,

the dynamic model of the system is described by the following ordinary differential

equations:

τ2
dη2
dt

= β25 η5(t)− η2(t) + ζ2(t) (5.1)

τ3
dη3
dt

= γ35 ξ5(t) + γ311 ξ11(t) + β34 η4(t)− η3(t) + ζ3(t) (5.2)

τ4
dη4
dt

= β42 η2(t) + β43 η3(t) + β45 η5(t) + β46 η6(t)− η4(t) + ζ4(t) (5.3)

τ5
dη5
dt

= γ57 ξ7(t) + β54 η4(t)− η5(t) + ζ5(t) (5.4)

τ6
dη6
dt

= γ68 ξ8(t)− η6(t) + ζ6(t) (5.5)

In an intervention setting, individualized daily goals are provided to participants

aiming to increase their PA levels. Upon achieving the given daily goals, participants

earn points which can be transferred to rewards chosen as part of a wellness program

(e.g., water bottles, gift cards, etc). Daily step goals and expected points are delivered

to the participants through a digital user platform, like a smartphone. To utilize the

SCT model in the intervention, the following input signals are included:

• Goals (ξ8; u8): represent the daily step target and directly influence behavior.

• Expected Points (EP; ξ9; u9): the amount of points a participant expects to get,

if they meet the daily target. A maximum of 500 points/day can be earned.

• Granted Points (GP; ξ10): the amount of points granted, which is equivalent to

ξ9 when a participant meets or exceeds their step goal for the day.

• Goal Attainment (GA; y7; ξ11): represents the difference between the behavior

and given goal.
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Figure 5.3: Schematic Depicting a Personalized PA Intervention Based on a

Participant-Specific Model, as Used in JustWalk and YourMove.

y7 = ξ11 = η4 − ξ8 (5.6)

In Martín et al. (2016a), simulations are evaluated based on an enhanced SCT

model with individualized self-regulation via internal cues, to mimic the process of

the internalization of daily step goals (e.g., 10,000 steps) perceived as attainable by

the individual. Self-regulatory mechanisms in human behavior can be modeled as a

feedback process allowing for individuals to remain on track towards a defined goal, by

the means of self-correcting and adjusting (Carver and Scheier, 1998). Internal model

control (IMC; Morari and Zafiriou (1989)) is used to constitute an autoregulator

through internalized cues to actions that depend on the transfer function between

input ξ4 and output η4.

In this chapter, the use of JustWalk experimental data to estimate participant-

specific models eliminates the need to define a self-regulator. Additionally, difficul-

ties during JustWalk to obtain reliable measurements of the psychoactive constructs

(Self-Efficacy, Behavioral Outcomes) motivate the use of the Goal-Attainment signal

to infer whether intervention participants are reacting negatively to goals that are
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extremely ambitious and unattainable. Insights provided in Chapter 4 form the basis

for this work and are utilized to facilitate “ambitious yet achievable” goals (El Mistiri

et al., 2022b). The description of the JustWalk intervention and the use of system

identification methods to obtain dynamic modeling are presented in the next section.

5.3 JustWalk Intervention

JustWalk was an SCT-based mHealth adaptive intervention application developed

as a part of a study to promote PA for overweight sedentary adults. The main aim of

the study was to understand dynamics associated with PA behavior change, through

the estimation of individualized computational models utilizing system identification

principles. To effectively measure PA levels (in terms of daily step count) a smart-

watch activity tracker (Fitbit Zip, provided to participants as part of the study) was

used as a part of the infrastructure to deliver the intervention. The tracker automat-

ically synchronized with a front-end Android app, JustWalk. A back-end server was

deployed to deliver daily goals and expected points and store the gathered data. Re-

cruitment happened on a national level, for participants who fit the criteria of being

generally healthy, inactive, 40 to 65 years of age, with a body mass index (BMI) of 25

to 45 kg/m2, owned an Android phone compatible with Fitbit Zip and were willing

to participate in the mHealth intervention for 14 weeks.

Participants in the walking intervention received daily step goals through the

JustWalk app (presented in Fig. 5.4), and expected points which turned into daily

granted points if the given goal was achieved that day. Upon accumulating the granted

points past a certain threshold, participants were able to convert the points into

Amazon gift cards. Throughout the study, participants were also nudged to complete

a series of daily morning and evening ecological momentary assessment surveys (EMA;

Shiffman et al. (2008)) to measure SCT constructs of interest (e.g., self-efficacy in the
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Figure 5.4: The JustWalk App Interface.

achievement of the daily goal, quality of sleep, perceived busyness etc.).

The study lasted for 14 weeks, including a two-week baseline period, in which step

goals were not provided to capture the participants’ behavior prior to the introduction

of intervention components. Individualized step goals were then given to participants

based on their median daily step count calculated from the baseline period. This was

done in an effort to incorporate a personalized “ambitious yet achievable” range of

step goals in the input signal design. All the collected data was stored both locally

and on the back-end server.

5.3.1 JustWalk Input Signal Design

Pseudo-random input signals were designed for the JustWalk intervention (Hekler,

2015), to generate data for system identification. A detailed account of the designed
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multisine input signals for Goals, and Expected Points is covered in Martín et al.

(2015b). A “zippered” approach (Rivera et al., 2009) is followed to design input

signals that are orthogonal in the frequency domain, therefore, they are uncorrelated.

This allows for independently estimating transfer functions and uncertainty for the

effect of each input on the outputs of interest. The multisine signals for the two

manipulated inputs un were generated through (5.7), where n = {8, 9}.

un(k) = λn

Ns/2∑
j=1

√
2α[n,j] cos(ωjkTs + ϕ[n,j]), ωj =

2πj
NsTs

, j = 1, . . . , Ns (5.7)

where λn is a factor for scaling the signal, Ns is the number of samples per period,

Ts is the sampling time. For the jth harmonic of the signal, each variable has the

following meaning: α[n,j] specifies the relative power of the harmonic, ωj specifies the

frequency, and ϕ[n,j] is the phase. Factors α[n,j] are chosen to assure orthogonality of

the designed signals in the frequency domain; by assigning non-zero Fourier coefficient

at a specific frequency in one signal, and a zero-valued Fourier coefficient at the same

frequency for the other. This abides by the concept of the “zippered” input signal

design (Rivera et al., 2009), as can be seen in Fig. 5.5. For nu input channels and ns

independently excited sinusoids, the Fourier coefficients are specified as

α[n,j] =


1 if j = nu(i− 1) + (n− 7)

for i = 1, 2, . . . , ns

0 otherwise

(5.8)

Following Nyquist-Shannon sampling theorem (Shannon, 1949), the bound for Ns is

defined as:

Ns ≥ 2nuns (5.9)

For the selected ns = 3 excited sinusoids in nu = 2 input channels, (5.9) yieldsNs ≥ 12

days. Ns = 16 days was selected, which is a feasible duration for each cycle. The
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intervention was designed to run for five cycles, resulting in designed input signals of

80 days overall. Minimal crest factor for the signal was obtained through the selection

of phases ϕ[n,j], following the approach illustrated in Guillaume et al. (1991).
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Figure 5.5: Representation of a ‘‘Zippered” Spectra Design for Number of Designed

Inputs nu = 2, and ns = 3 Excited Harmonic Frequencies Per Input Channel.

The amplitudes of the designed input signals (u8 and u9 in Fig. 5.6) were chosen

based on limited a priori knowledge available in literature (King et al., 2013; Adams

et al., 2013). For the expected points, budgetary restrictions dictated the maximum

number of possible points to grant on a given day; the signal was generated to be

within the range of 0 to 500 points/day. The maximum step goal given to each

participant was personalized based on the baseline performance in an attempt to give
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ambitious, yet not overly ambitious goals. If the median baseline performance of the

participant was below 3,000 steps/day, the factor utilized for the maximum step goals

was 2.5 times the baseline median. On the other hand, if the median performance for

the baseline period was above 7,500 steps/day, 1.75 was the factor utilized to avoid

giving extremely ambitious goals (above 15,000 steps/day). For a participant with

a median baseline performance between 3,000 and 7,500 steps/day, the used factor

was 2. Other exogenous input signals were considered like perceived busyness, and

average daily temperature, which were measured via EMA surveys and other means

through the JustWalk app.

5.3.2 ARX Model Structure Estimation & Validation

In this section, model estimation strategies used on the JustWalk experimental

data are described, and the obtained results of fitting Auto Regressive with eXogenic

inputs (ARX; Ljung (1999)) dynamic models are presented. The use of black-box

parametric modeling methods such as ARX plays a fundamental role in reaching

the goal of identifying semi-physical (grey-box) personalized models that fit the SCT

structure indicated in Section 5.2. Firstly, standard non-parametric estimation meth-

ods, like correlational analysis, were applied to provide insight into the correlation

across the various combinations of input and output signals measured in the JustWalk

study. While the effectiveness of the correlational analysis is hindered by the limited

duration of the study, this initial step is still useful in terms of selecting the inputs

and outputs to consider for the ARX model structure (Phatak et al., 2018). Including

all measured exogenous signals in the model estimation (specifically Perceived Bar-

riers and Perceived Busyness) can be very computationally demanding and impose

challenges. Such challenges include cross-correlation between such exogenous signals

that can make model estimation difficult, and handling missing data points (due to
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low compliance with the EMAs from participants). To address the aforementioned

challenges, it is necessary to have access to extensive and informative datasets. How-

ever, acquiring such datasets in human subject research while minimizing participant

burden can be challenging.

Least squares linear regression was performed, to minimize the model’s predic-

tive error based on the preprocessed data. Model structure can be abbreviated as

ARX-[na nb1 ,. . . ,nbnξ
nk1 ,. . . ,nknξ

], where nξ is the number of considered inputs.

A full expression of the ARX model is as follows:

yk +
na∑
l=1

alyk−l =

nξ∑
j=1

nbj−1∑
i=0

b(i+1)(j)ξj,k−nkj−i +ek (5.10)

where yk is the output, ξj,k is the measured input j, and ek is the prediction error,

all measured or estimated on day k. Moreover, regularization has been included in

the least squares linear regression presented in (5.11), to assure the reduction of the

impact of noise-induced variance (Pillonetto et al., 2014; Ljung et al., 2015)

θ̂ = argmin
θ

1

N

N∑
k=1

(yk − ŷk|θ)
2 + λ(θ − θ∗)TR(θ − θ∗) (5.11)

where θ represents model parameters, yk and ŷk|θ are the measured and estimated out-

put on day k, respectively. λ and R are regularization coefficients, and N represents

the total duration of the data. Due to the limited duration of the input signal cycle,

kernel regularization methods cannot be applied, and therefore, the regularization

coefficients are manually chosen.

Data Preprocessing and Model Structure Selection

Accounting for missing data points through interpolation, shifting signals like Behav-

ior and Granted Points by a sample to temporally align data, and mean subtraction

are essential parts of data preprocessing. As the aim is to estimate idiographic mod-

els, the model orders for each input j (nbj) and the output (na) vary per participant.
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To optimize the model orders, ARX order selection is evaluated. In this procedure,

a range of orders for each input and output is specified, and then an exhaustive

search over all the possible combinations ensues. Subsequently, the combination of

orders that gives a stable ARX model with the lowest mean-square-error (MSE) over

the validation data (reflecting on the model with the best predictive performance) is

selected. This procedure can be computationally demanding, especially when consid-

ering a wide range of orders. The SCT fluid analogy model developed in Martín et al.

(2020) and shown in Section 5.2, as well as the work done in Freigoun et al. (2017),

imply that low-order models can adequately represent behavior change dynamics for

PA interventions. Therefore, the order ranges chosen for the order selection are lim-

ited to na, nbj ∈ {1, 2, 3} for all inputs and the output of interest. From inspecting the

experimental data, the assumption of a basic unit input lag (i.e., nkj = 1 ∀j) was

determined to be reasonable. Moreover, because of the observed stationary nature of

the data, noise characteristics over the course of the intervention are deduced to be

stationary.

To determine the inputs to consider, extensive work has been done to evaluate all

possible input combinations for each participant (Phatak et al., 2018; Freigoun et al.,

2017). For the representative participant in Fig. 5.6, a 5-input model consisting of the

signals in Table 5.1 is sufficient. It is important to note that Goals (u8), and Expected

Points (u9) are statistically independent manipulated inputs, while Granted Points

(u10) depends on the fulfillment of the Goals. Environmental Context: Temperature

(ξ7T ) presents an exogenous signal in the form of changes in the average daily temper-

ature and Environmental Context: Weekend (ξ7wknd) is a binary signal indicating if

the day is a weekend day. Both signals correspond to measured disturbance variables.
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Table 5.1: List of Measured Signals Included in the Estimated ARX Model and

Their Correspondence with the Variables in the SCT Model According to Fig. 5.3.

Goal-Attainment ξ11 = y7 = y4−u8 Can Be Considered as Both an Output and Input

to the System and Can Be Estimated from the Available Signals.

Name Symbol

Input Signals (inflows/outflows)

Environmental Context (Temperature) ξ7T

Environmental Context (Weekend) ξ7wknd

Goals u8

Expected Points u9

Granted Points u10

Output Signals (inventory level)

Behavior η4 = y4

Estimation and Validation of Model Parameters

This subsection covers model estimation and the accompanying validation utilizing

Just Walk experimental data and the 5-input ARX model structure presented above.

Model validation is one of the most important aspects of system identification (Ljung,

1994), and it is constituted by a number of validation procedures. Cross-validation is

one type of validation procedures in which the model fit percentage is evaluated over

data that is not used in the estimation step. Traditionally in system identification,

a certain percentage of the data is designated for estimation, and the remainder

for validation. The underlying assumption behind this approach is that the noise

characteristics of the system remain unchanged throughout the experiment. However,
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in behavior interventions, it is expected that noise characteristics will change over

time, due to seasonality (e.g., holidays, summer, etc) and life rhythms (e.g., work,

vacation, school, intervention “fatigue” etc).

As mentioned in Section 5.3.1, the input signal consists of five repeated multi-

sinusoids, where each cycle can be designated as a sub-experiment. The sub-experiments

can then be partitioned into two groups of data (estimation and validation), with each

combination containing two or three estimation sub-experiments, resulting in a total

of 20 possible combinations to be evaluated. This approach is examined in this sub-

section, where all possible combinations are evaluated for a representative JustWalk

participant along with order selection. Normalized root mean square error (NRMSE)

fit index (F ) is used to compute a quantifiable measure of the goodness of the model

F = 100×
(
1− ||yk − ŷk||2

||yk − ȳ||2

)
(5.12)

yk is the measured output, ŷk is the simulated output, ȳ is the mean of all measured

yk values, and || · ||2 indicates a vector l2-norm.

NRMSE fits computed for each sub-experiment are averaged over the designated

estimation and validation cycles to obtain a measure of the goodness of fit of the model

on estimation (Fe) and validation (Fv) respectively. The overall fit percentage of the

model (Fo) is calculated by applying (5.12) on the overall data, without partitioning

it into sub-experiments. Subsequently, a weighted average Fave of the obtained fit

indices is utilized to select the best model.

Fave = WvFv +WoFo (5.13)

where Wv,Wo are the averaging weights for validation, and overall fit indices respec-

tively. As the main focus of model estimation is to obtain the best predictive model

for utilization as the internal model in a HMPC guided closed-loop intervention, the

averaging weight for validation is selected to be the highest at Wv = 0.6.
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Table 5.2: Table Summarizing ARX Orders Obtained for All the Possible Combi-

nations of Estimation and Validation Cycles, with a Minimum of Two Estimation

Cycles. For Each Combination, NRMSE Fit Percentage for Each Cycle is Shown and

Highlighted with Magenta for Estimation, and Cyan for Validation, Along with the

Average Overestimation and Validation Cycles (Fe and Fv), and the Overall Data Fit

Percentage (Fo). The Selected Model is Based on the Maximum Weighted Average

Fit Percentage (Fave), Which is the Case for Row 13 (Highlighted in Yellow).

Table 5.2 presents a summary of results obtained from this system identification

approach with the 5-input ARX model for this representative participant. The best

model is selected based on the weighted average fit percentage (the results for which

are presented in row 13 -highlighted in yellow- in Table 5.2) which provides the selected

model an edge in terms of prediction ability. On the other hand, if the best model

was selected based on the overall fit only, the model summarized in row 14 would have

been chosen, which lacks significantly in the validation fit. This is illustrated vividly

by the NRSME fit percentage for the 5th cycle, where it is negative for the model in

the 14th row (meaning it performs worse than the average of the data in that cycle).
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Figure 5.6: Time Series Plot Representing the Results of the Estimated ARX Model

for This Representative Participant. Five Input Sequences Corresponding to Mea-

sured Disturbances (Temperature and Weekend) and Manipulated Variables (Goals,

Expected Points and Granted Points) Are Shown from the Top. The Bottom Plot In-

cludes Simulated Behavior (Estimated from an ARX Model with Regularization), Ac-

tual Behavior and Daily Goals (All in steps/day). Estimation and Validation Data Re-

gions Are Highlighted in Magenta and Cyan, Respectively. The Overall NRMSE Fit

Percentage is 28.07% (with 26.44% Fit for Estimation Regions and 38.62% Fit for Val-

idation Regions). The ARX Model is Estimated Through Regularized Least-Squares

Regression, Based on the Model Order Obtained Through Order Selection na = 1,

nb = [1 3 3 1 1], nk = [1 1 1 1 1]. Regularization Parameters λ = 102 and R = 1.

Fig. 5.6 illustrates the difference between actual output measurements and the

prediction from a 5-input ARX model with the structure in (5.10). As shown in the

figure with the magenta highlighted regions of the plot, the cycles selected to estimate
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the model are the 2nd, 3rd, and 5th cycles, while cycles 1 and 4 are validation cycles.

order selection yielded: na = 1, nb = [1 3 3 1 1], with fixed values for the delays at

nk = [1 1 1 1 1], while the selected regularization parameters are λ = 102 and R = 1.

The estimated model reflects, in addition to a good fit to validation data, a good

fit for the entire data set (consisting of both estimation and validation data). The

estimated regularized ARX model of the 5-input system yields an overall NRMSE

index at 28.07% (an average of 38.62% fit over the validation sub-experiments and

26.44% for estimation sub-experiments). By integrating the overall fit criterion with

the fit to cross-validation data, a balance is achieved between accurate prediction and

model precision across the entire data set.

Assessment of Participant Characteristics

The estimated ARX model provides the basis for simulation as the plant and the

controller model. It is essential that the estimated model not only provides a good fit

to the data, yet it should be control-oriented and provide important insight regarding

the most impactful signals for a specific participant to personalize the intervention.

Step responses from the idiographic ARX models represent another validation proce-

dure that can be used to confirm or rebuke hypotheses and reveal precise participant-

specific information about the response dynamics including directionality, magnitude,

and speed of response.

For instance, from Fig. 5.7, one can predict that this representative JustWalk will

typically reach approximately 85% of the desired daily step goals within the first

day of goal announcement. Expected Points input has the most significant impact

on the number of steps walked out of the manipulated variables, while Goals have

the lowest gain magnitude (which balances out as Goals are on average an order of

magnitude higher than Expected and Granted Points). The direction of the gains
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in the obtained step responses agree with behavioral scientists’ expectations, which

increases the confidence in the estimated model.
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Figure 5.7: Step Responses of the 5-Input Model Estimated for a Representative

JustWalk Participant. Steady-State Gains for Each Input Are Highlighted At the

Top of Each Step Response. The Unit Step Responses Are Arranged Left to Right

as Temperature, Weekend, Goals, Expected Points, and Granted Points with Steady-

State Gains of 57.70, -63.50, 1.32, 3.5, and 2.66 Respectively.

5.4 HMPC formulation for adaptive PA intervention

The aim of the adaptive intervention is to guide people towards achieving and

maintaining a desired level of 10,000 daily steps, while abiding by some important

physical and operational restrictions, such as:

• Upper and lower constraints for goals and points (u8, u9, and u10) are determined

based on personalized conditions for each participant and budgetary restrictions.
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• The ability to reconfigure the intervention online to enforce different phases.

During different phases, some of the intervention components can be partially

activated or deactivated. For example, in the maintenance phase of the inter-

vention, which is reached by achieving and maintaining the desired behavior

target for a period of time, the positive reinforcement component of the in-

tervention through financial rewards (in the form of points) can be gradually

reduced and taken offline.

A detailed description of the HMPC formulation along with the decision policy for

the intervention is provided in the following subsections.

5.4.1 3DoF-KF HMPC Framework

The control strategy for the PA behavioral intervention must satisfy all the re-

quirements, constraints, and intricacies associated with the intervention as part of

the objective function formulation over the prediction and move horizons. Hence, a

hybrid model predictive control (HMPC) strategy (Nandola and Rivera, 2013; Khan

et al., 2022) is examined and applied to this problem (depicted in Fig. 5.8), as it

accounts for hybrid dynamics via mixed logical dynamic (MLD) representation; this

allows for incorporating the natural constraints and logical arguments associated with

the problem as part of the prediction model and objective function. In hybrid dy-

namical systems, both discrete and continuous events can occur simultaneously and

can be modeled by a combination of differential (or difference) equations and logical

conditions. This enables obtaining dynamic responses to continuous, categorical, or

binary changes. The controller is designed with the ability to handle the following

tasks, and tune the response to each independently:

• Setpoint Tracking: Goals and Expected Points are assigned to guide the
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participant toward reaching the overall target of 10,000 daily steps.

• Measured Disturbance Rejection: The controller effectively adjusts the

Goals and Expected Points to mitigate the effect of measured external distur-

bances. (e.g., Environmental Context).

• Unmeasured Disturbance Rejection: Moves in the manipulated variables

are optimized to counter the effect of unknown (hence, unmodeled) external

influences (e.g., illness, social life events, etc).

Kalman Filter-II

Optimizer

Kalman Filter-I

Process

Constraints

Objective

 FunctionPrediction Model

Filter

White noise

Filter

Figure 5.8: Block Diagram Schematic Depicting the Proposed Three-Degrees-Of-

Freedom By Means of Kalman Filtering HMPC Structure, Aiming to Achieve Setpoint

Tracking While Effectively Accounting for Both Measured and Unmeasured Distur-

bances. The Controller Utilizes External Filters to Adjust the Speed of Response

for Measured Disturbances Rejection and Setpoint Tracking. Additionally, Nested

Kalman Filters Are Utilized to Tune for Unmeasured Disturbances Separately (Khan

et al., 2022).
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In model predictive control a receding horizon algorithm is followed, in which

values of the manipulated variables over a given move horizon are determined online

by solving an optimization problem. To solve the optimization problem and obtain

the control movements over the move horizon a predictive model of the system is

utilized. The same model is then used to compute system outputs over a prediction

horizon with the current plant state estimate (i.e., output measurements) serving as

the initial state for prediction. At each sampling instant, only the first move in the

manipulated variables is applied, and then the whole process is repeated over the

shifted move and prediction horizons.

The HMPC controller in this work utilizes the state-space structure seen below:

xk+1 = Axk +B1uk +B2δk +B3zk +Bddk (5.14)

yk = Cxk + d′k + vk (5.15)

E5 ≥ E2δk − E4yk − E1uk + E3zk + Eddk − E6uk−1 − E7yk−1 (5.16)

where x = [xTc xTd ]
T , xc ∈ Rncx , xd ∈ {0, 1}ndx , and u = [uTc uTd ]

T , uc ∈ Rncu , ud ∈

{0, 1}ndu are system states and inputs with continuous and discrete elements; y ∈ Rny

is the output vector; d, d′, and v are measured disturbances, unmeasured distur-

bances, and measurement noise, respectively. δ ∈ {0, 1}nδ and z ∈ Rnz are binary

and discrete auxiliary variables that serve the purpose of converting discrete and log-

ical decisions into their equivalent linear inequality constraints represented in (5.16).

nx = nc
x + nd

x, nu = nc
u + nd

u, ndist, and ny are the total number of states, inputs,

measured disturbances and outputs, respectively. The impact of unmeasured dis-

turbances is considered on the outputs only. Assuming that the system of interest

is open-loop stable, the unmeasured disturbances (d′) are considered as a stochastic

signal described by the following model:

ζk+1 = Awζk +Bwwk (5.17)
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d′k = Cwζk (5.18)

where the eigenvalues of Aw are all inside the unit circle, and wk is an integrated

white noise. Assuming that the unmeasured disturbance signal consists of uncorre-

lated components, therefore, Bw = Cw = I and Aw = diag{Λ1, · · · , Λny}, where

Λi = 0,∀i for single-integrating disturbances (i.e., Type I) and Λi = 1,∀i for double-

integrating disturbances (i.e., Type II). The model for the unmeasured disturbances

is then augmented into the state-space model system as follows:

Xk+1 = AXk + B1∆uk + B2∆δk + B3∆zk + Bd∆dk + Bw∆wk (5.19)

yk = CXk + vk (5.20)

where,

Xk = [∆xTk ∆ζTk ηTk ]
T , A =


A BvCw 0

0 Aw 0

CA CBvCw +DvCwAw I



Bi =


Bi

0

CBi

 ,Bw =


0

Bw

DvCwBw

 , C =

[
0 0 I

]
, i = 1, 2, 3, d

For the objective function, a standard quadratic cost function is used to compute

the moves in the manipulated variables through the optimization problem as

J ≜
p∑

i=1

∥yk+i − yr∥2Wy
+

m−1∑
i=0

∥∆uk+i∥2W∆u
+

m−1∑
i=0

∥uk+i − ur∥2Wu

+

p−1∑
i=0

∥δk+i − δr∥2Wδ
+

p−1∑
i=0

∥zk+i − zr∥2Wz

(5.21)

where m and p are the move and prediction horizons, respectively. The matrices Wy,

and W∆u are the penalty weights on the error, and move size, while Wu, Wδ, and
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Wz are the penalty weights on manipulated variables, auxiliary binary variables, and

auxiliary discrete variables targets respectively. The problem is formulated as a track-

ing control system where yr, ur, δr, and zr are the references for the outputs, inputs,

binary and discrete auxiliary variables, respectively. The solution of the optimization

problem is obtained by finding the sequences of control actions that minimize J as

min
[δk+i]

p−1
i=0 ,[zk+i]

p−1
i=0

[uk+i]
m−1
i=0

,[ψk+i]
p
i=1

,

J +

p∑
i=1

∥ψk+i∥2Ws
(5.22)

subject to the logical constraints described in (5.16) and the following input/output

constraints:

ymin − ψk+i ≤ yk+i ≤ ymax + ψk+i, 1 ≤ i ≤ p

umin ≤ uk+i ≤ umax, 0 ≤ i ≤ m− 1

∆umin ≤ ∆uk+i ≤ ∆umax, 0 ≤ i ≤ m− 1

ψk+i ≥ 0, 1 ≤ i ≤ p

(5.23)

ψ ∈ Rny is a vector for slack variables, and Ws is the slack weights matrix.

Output constraints are softened as their respective weights in Ws approach zero,

and become “hard” constraints as their weights are close to infinity. The capability

of the framework to allow for “soft” constraint enforcement is essential in assuring

obtaining a feasible solution at each sampling instance, especially with the presence

of unpredictable events that can significantly impact the outputs.

In this work, a three-degree-of-freedom (3DoF) tuning structure is incorporated

into the HMPC formulation. This assures the ability to tune the speed of response for

setpoint tracking, measured and unmeasured disturbance rejection independently by

selecting the parameters αj
r, αl

d and f j
a ∈ [0 1], for j = 1, · · · , ny, and l = 1, · · · , ndist.

A filter matrix F (q, αr) for setpoint tracking is defined as

F (q, αr) = diag{f(q, α1
r), · · · , f(q, αny

r )} (5.24)
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where each element can be implemented as a Type I or Type II discrete-time filter.

In this work, only step changes are considered for setpoints. Hence, Type I filter is

used for all elements:

f(q, αj
r) =

(1− αj
r)q

q − αj
r

, j = 1, · · · , ny (5.25)

For the measured disturbances rejection, measured and forecasted disturbances are

independently processed through the filter matrix F (q, αd). Based on the observed

dynamics of the system and the lack of double-integrated disturbances, Type I filters

are deemed sufficient:

F (q, αd) = diag{f(q, α1
d), · · · , f(q, α

ndist
d )} (5.26)

f(q, αl
d) =

(1− αl
d)q

q − αl
d

, l = 1, · · · , ndist (5.27)

This structure of the separate filters for setpoint tracking and measured distur-

bance rejection constitutes two degrees of freedom. In both setpoint tracking and

measured disturbance rejection, the speed of response can be adjusted for each out-

put j and each measured disturbance l independently, by adjusting their respective

filter time-constant αj
r and αl

d; a lower value for the filter time-constant results in a

quicker response, while a time-constant closer to one corresponds to a slower response.

For the third degree of freedom, a Kalman filter is utilized to compute future states

based on the system’s model and current feedback measurements yk. To decouple the

dynamics of measured and unmeasured disturbances, the Kalman filter is utilized in

two stages as presented in Nandola and Rivera (2013), and Khan et al. (2022). In the

first stage, the actual states Xk are estimated as X̂k by considering both measured

disturbances dk and unmeasured disturbances, as described in (5.28) and (5.29).

X̂k|k−1 = AX̂k−1|k−1 + B1∆uk−1 + B2∆δk−1 + B3∆zk−1 + Bd∆dk−1 (5.28)

X̂k|k = X̂k|k−1 +Kf (yk − CX̂k|k−1) (5.29)
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where X̂k|k−1 is the estimated value of X̂ at sampling instant k based on k − 1,

and X̂k|k is the corrected value at instant k given the feedback measurement yk.

As the measured disturbances signal dk is included in (5.28), the correction term

in equation (5.29) accounts for the impact of unmeasured disturbances. The gain

matrix Kf directly impacts the correction term, and therefore, the speed of response

in the unmeasured disturbance. Finally, the estimated filtered states Xfilt utilized

in the objective function for the controller incorporate the impact of both filtered

measured disturbances dfilt,k and unmeasured disturbances. This is done by utilizing

the prediction error resulting from equations (5.28)-(5.29).

Xfilt,k|k−1 = AXfilt,k−1|k−1 + B1∆uk−1 + B2∆δk−1 + B3∆zk−1 + Bd∆dfilt,k−1 (5.30)

Xfilt,k|k = Xfilt,k|k−1 +Kf (yk − CX̂k|k−1) (5.31)

where Xfilt,k|k−1 is the estimated value of Xfilt at sampling instant k based on k− 1,

and Xfilt,k|k is the corrected value at instant k given the feedback measurement yk.

The terms in equation (5.31), excluding the final term, capture the effect of the filtered

measured disturbances. Whereas, the correction term in equation (5.29) accounts for

the impact of the unmeasured disturbances. This ensures that the designated tuning

for measured disturbance rejection, represented by αj
d, is decoupled from unmeasured

disturbance rejection. In the same manner, the effect of unmeasured disturbances on

each output is tuned separately through the gain matrix Kf .

Kf = [0 F T
b F T

a ]
T (5.32)

where,

Fa =diag
{
f 1
a , · · · , f

ny
a

}
Fb =diag

{
f 1
b , · · · , f

ny
b

}
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f j
b =

(f j
a)

2

1 + Λj − Λjf
j
a

, 1 ≤ j ≤ ny (5.33)

and

f j
a →0 as ωj/σj → 0 (5.34)

f j
a →1 as ωj/σj → ∞ (5.35)

This parameterization of Kf does not require solving the Riccati equation to ob-

tain an optimal value for the filter gains, hence, estimating covariance matrices for

unmeasured disturbances is not needed. Furthermore, the work done in Lee et al.

(1994) and Lee and Yu (1994) shows direct links to robustness. Moreover, through

this parameterization, the impact of unmeasured disturbance on each output j can be

tuned separately by adjusting the parameter f j
a , where Fa corresponds to the outputs,

and Fb corresponds to the augmented estimated unmeasured disturbance states, as

described in (5.19). For the coefficients of the unmeasured disturbance filter f j
a , a

smaller value indicates a slower response. On the other hand, as the value is closer

to 1 a faster response is expected. The gain matrix Kf is also important in terms of

handling plant-model mismatch through the control system feedback.

By applying 3DoF filtering and propagating the filtered states and signals over the

prediction horizon p, two separate output prediction signals are obtained as expressed

in equations (5.36) and (5.37).

Yfilt,k+1 = ΦXfilt,k +H1Uk +H2δ̄k +H3Zk +HdDfilt,k −H11uk−1 −H21δk−1

−H31zk−1 −Hd1dfilt,k−1

(5.36)

Yk+1 = ΦX̂k +H1Uk +H2δ̄k +H3Zk +HdDk −H11uk−1 −H21δk−1

−H31zk−1 −Hd1dk−1

(5.37)

Yfilt,k+1 is the output prediction vector accounting for the effects of the filtered mea-

sured disturbance dfilt and is used to formulate the objective function. Whereas,
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Yk+1 is used in enforcing equality and inequality constraints as it accounts for the

unfiltered measured disturbance d through the estimated state X̂k, where

Yk+1 =



yk+1

yk+2

...

yk+p


, Uk =



uk

uk+1

...

uk+m−1


, δ̄k =



δk

δk+1

...

δk+p−1


, Zk =



zk

zk+1

...

zk+p−1



Dfilt,k =



dfilt,k

dfilt,k+1

...

dfilt,k+p−1


, Yfilt,k+1 =



yfilt,k+1

yfilt,k+2

...

yfiltk+p


, Dk =



dk

dk+1

...

dk+p−1



Hi =



CBi 0 · · · 0 0

CABi − CBi CBi · · · 0 0

CA2Bi − CABi CABi − CBi · · · ...
...

...
... . . . ...

...

CAp−1Bi − CAp−2Bi CAp−2Bi − CAp−3Bi · · · CABi − CBi CBi



Φ =


CA
...

CAp

 , Hi1 =



CBi

CABi

...

CAp−1Bi


, i = 2, 3, d
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H1 =



CB1 0 · · · 0 0

CAB1 − CB1 CB1 · · · 0 0

CA2B1 − CAB1 CAB1 − CB1
. . . ...

...
...

... . . . CB1
...

CAm−1B1 − CAm−2B1 CAm−2B1 − CAm−1B1 · · · CAB1 − CB1 CB1

CAmB1 − CAm−1B1 CAm−1B1 − CAm−2B1 · · · CA2B1 − CAB1 CAB1

...
...

...
...

...

CAp−1B1 − CAp−2B1 CAp−2B1 − CAp−1B1 · · · CAp−m+1B1 − CAp−mB1 CAp−mB1


The inequality constraints representing logical conditions expressed in (5.16) are

propagated p steps ahead. For 1 ≤ i ≤ m

E5 ≥ E2δk+i−1 − E4yk+i−1 − E1uk+i−1 + E3zk+i−1 + Eddk+i−1 − E6uk+i−2 − E7yk+i−2

For i = m+ 1

E5 ≥ E2δk+m − E4yk+m − E1uk+m−1 + E3zk+m + Eddk+m − E6uk+m−1 − E7yk+m−1

For m+ 1 < i ≤ p

E5 ≥ E2δk+i−1 −E4yk+i−1 −E1uk+m−1 +E3zk+i−1 +Eddk+i−1 −E6uk+m−1 −E7yk+i−2

As a result,

Ē5 ≥ Ē2δ̄k + Ē3Zk + Ē1Uk + Ē4Yk + ĒdDk + Ē6uk−1 + Ē7yk−1 (5.38)

where

Ēi = diag{Ei, · · · , Ei}, i = 2, 3, d, Ēj =

[
−Ej 0 · · · 0

]T
, j = 6, 7
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Ē5 =



E5

E5

...

E5


, Ē1 =



−E1 0 · · · 0

−E6
. . . . . . 0

0
. . . . . . ...

0
. . . −E6 −E1

0
. . . 0 −E6 − E1

...
... 0

...

0 · · · · · · −E6 − E1



, Ē4 =



−E4 0 · · · 0

−E7 −E4
. . . 0

0
. . . . . . ...

... . . . −E7 −E4



Equation (5.38) is simplified by substituting Yk from (5.37), then it is rewritten as

follows:

E5 ≥ E2δ̄k + E3Zk + E1Uk + EdDk + E4X̂k − E41uk−1 − E42δk−1 − E43zk−1

− E4ddk−1 + E6uk−1 + E7yk−1

(5.39)

where

Ei =
(
Ēi + Ē4H̄i

)
, E4 = Ē4Φ̄, Ej = Ēj, j = 5, 6, 7, E4i = Ē4H̄i1, i = 1, 2, 3, d

Φ̄ =

 C

Φ(1 : (p− 1)ny, :)

 , H̄i =

 [0]ny

Hi(1 : (p− 1)ny, :)

 , i = 1, 2, 3, d, 11, 21, 31, d1

Here ny is number of outputs, [0]ny denotes matrix with ny rows that has all the

elements 0 and ∗(1 : (p− 1)ny, :) represents the rows from row 1 to row (p− 1)ny of

the matrix ∗ including all its columns.

The objective function in (5.22) can be written in vector format, utilizing Yfilt,k+1

from (5.36).

min
Uk, δ̄k,

Zk, Ψk+1

J
△
=||Yfilt,k+1 − Yr,filt,k+1||2Ŵy

+ ||Uk − Ur||2Ŵu
+ ||δ̄k − δ̄r||2Ŵd

+ ||Zk −Zr||2Ŵz
+ ||RuUk −Ru0uk−1||2Ŵdu

+ ||Ψk+1||2Ŵs

(5.40)
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Subject to the logical constraints in (5.39) and:

Ymin −Ψk+1 ≤ Yk+1 ≤ Ymax +Ψk+1

Umin ≤ Uk ≤ Umax

∆Umin ≤ ∆Uk ≤ ∆Umax

Ψk+1 ≥ 0

(5.41)

where Ŵ∗ = diag(W∗), and

Ru =



I 0 · · · 0 0

−I I · · · 0 0

0 −I . . . ...
...

...
... . . . . . . ...

0 0 · · · −I I


; Ru0 =



I

0

...

0


, Ψk+1 =



ψk+1

ψk+2

· · ·

ψk+p



Yr,filt is the filtered output reference vector, Ur, δ̄r, and Zr are the reference

vectors for the inputs, auxiliary binary variables and auxiliary continuous variables

respectively, as shown below:

Yr,filt,k+1 =

[
yTr,filt,k+1 yTr,filt,k+2 · · · yTr,filt,k+p

]T
(5.42)

Ur =

[
uTr,k uTr,k+1 · · · uTr,k+m−1

]T
(5.43)

δ̄r =

[
δTr,k δTr,k+1 · · · δTr,k+p−1

]T
(5.44)

Zr =

[
zTr,k zTr,k+1 · · · zTr,k+p−1

]T
(5.45)

By substituting (5.36) and (5.37) into (5.40) and (5.41) respectively, then rear-

ranging the equation to separate quadratic and linear terms to formulate the problem

in a standard MIQP format:

min
ξk

Jk
△
=

1

2
ξTk Hξk + GT ξk (5.46)
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Sξk ≤ b (5.47)

where ξk represents the manipulated variables optimized over at each sampling instant

k described by:

ξk = [UT
k δ̄Tk ZT

k Ψk
T ]T

H represents the quadratic terms of the MIQP optimization problem. For the op-

timization problem to be solvable H must be symmetric and positive definite or

semi-definite.

H = 2



H1
T ŴyH1 + Ŵ∆u + Ŵu H1

T ŴyH2 H1
T ŴyH3 0

H2
T ŴyH1 H2

T ŴyH2 + Ŵd H2
T ŴyH3 0

H3
T ŴyH1 H3

T ŴyH2 H3
T ŴyH3 + Ŵz 0

0 0 0 Ŵs


(5.48)

Additionally, the linear terms of the optimization problem are combined in

G = 2[g1 g2 g3 0]T (5.49)

where

g1 = Xfilt,k
TΦT ŴyH1 − Yr,filt

T ŴyH1 − Ur
T Ŵu +Dfilt,k

THd
T ŴyH1

− uk−1
T (Ru0

T Ŵ∆uRu +H11
T ŴyH1)− δk−1

TH21
T ŴyH1

− zk−1
TH31

T ŴyH1 − dfilt,k−1
THd1

T ŴyH1

(5.50)

g2 = Xfilt,k
TΦT ŴyH2 − Yr,filt

T ŴyH2 − δ̄Tr Ŵd +Dfilt,k
THd

T ŴyH2

− uk−1
TH11

T ŴyH2 − δk−1
TH21

T ŴyH2 − zk−1
TH31

T ŴyH2

− dfilt,k−1
THd1

T ŴyH2

(5.51)

g3 = Xfilt,k
TΦT ŴyH3 − Yr,filt

T ŴyH3 −Zr
T Ŵz +Dfilt,k

THd
T ŴyH3

− uk−1
TH11

T ŴyH3 − δk−1
TH21

T ŴyH3 − zk−1
TH31

T ŴyH3

− dfilt,k−1
THd1

T ŴyH3

(5.52)
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In (5.47), equality and inequality constraints representing logical and categorical con-

straints in (5.39) as well as input/output constraints in (5.41) are depicted in S and

b as follows:

S =



s1

s2

s3

s4

−s3

s5


; s1 =



E1

E2

E3

0



T

, s2 =



H1

H2

H3

−Ip(ny)



T

, s4 =



−H1

−H2

−H3

−Ip(ny)



T

(5.53)

s3 =

Im(nu) [0]m(nu)×p(nd) [0]m(nu)×p(nz) [0]m(nu)×p(ny)

Ru [0]m(nu)×p(nd) [0]m(nu)×p(nz) [0]m(nu)×p(ny)

 , s5 = [0 0 0 − Ip(ny)]

b =



E5 − E4X̂k − EdDk + E41uk−1 + E42δk−1 + E43zk−1 + E4ddk−1 − E6uk−1 − E7yk−1

Ymax − ΦX̂k −HdDk +H11uk−1 +H21δk−1 +H31zk−1 +Hd1dk−1

Umax

∆Umax +Ru0uk−1

−Ymin + ΦX̂k +HdDk −H11uk−1 −H21δk−1 −H31zk−1 −Hd1dk−1

−Umin

−∆Umin −Ru0uk−1

0


Here nu, nd and nz are dimensions of the inputs, the auxiliary binary variables δ and

the auxiliary continuous variables z, respectively.

To formulate the physical activity closed-loop intervention problem based on the

described JustWalk intervention, the following input and output vectors are used:

u = [u8 u9 u10]
T , nu = 3 (5.54)

y = [y4 y7]
T , ny = 2 (5.55)
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d = [ξ7T ξ7wknd]
T , nd = 2 (5.56)

5.4.2 Logical and Discrete Constraints

The hybrid nature of the HMPC formulation enables constraining the manipulated

variables to sets of discrete predefined values. This is particularly important for in-

terventions that require the use of predefined values for the intervention components,

like the case with medical dosages of a drug, or in smoking cessation. For a demon-

stration, the possible set of step Goals is assumed as u8,k ∈ U8 = {Cv1, · · · , Cvnu8},

and the possible set of Expected Points is u9,k ∈ U9 = {Cvnu8+1, · · · , Cvnu8+nu9
}.

Therefore, the logical and discrete auxiliary variables are defined as follows:

δj,k = 1 ⇔ zj,k = Cvj, j = 1, · · · , nu8 + nu9 (5.57)

To enforce this condition

zj,k = Cvjδj,k, j = 1, · · · , nu8 + nu9 (5.58)

Furthermore, the following constraints must be included to guarantee that only one

value can be assigned to each of the manipulated variables at each sampling time:

nu8∑
j=1

δj,k = 1, u8,k =

nu8∑
j=1

zj,k (5.59)

nu8+nu9∑
j=nu8+1

δj,k = 1, u9,k =

nu8+nu9∑
j=nu8+1

zj,k (5.60)

The effect of all entries on a given day can only be quantified on the outputs past

midnight (when the day is over), as the amount of steps taken on a day is recorded

until 11:59 pm, then it resets to zero at the beginning of the next day. The output

measurements are then shifted to be temporally aligned with their associated inputs

on a given day. As the logic behind awarding the points is a part of the HMPC
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formulation, it is essential to account for output measurement limitations and assure

that the Expected Points convert to Granted Points at the beginning of the next

day. Therefore, the auxiliary logical variable δGA on day k is set as true when the

performed steps meet or exceed the given goal on the previous day (k−1), as follows:

δGA,k = 1 ⇔ y4,k−1 ≥ u8,k−1 (5.61)

A set of linear conditions corresponding to the logical constraints, with the same

feasible set, is obtained through the application of a big-M reformulation (Martín

et al., 2016a). The following constraints are included to assign the suitable values

of δGA:

y4,k−1 − u8,k−1 ≤ δGA,k [ymax
4 − umin

8 ] (5.62)

y4,k−1 − u8,k−1 ≥ [1− δGA,k] [y
min
4 − umax

8 ] (5.63)

The Granted Points are represented by the auxiliary variable zGA, where u10,k =

zGA,k−1. At the beginning of each day, the points awarded are set to equal the amount

announced on the previous day, if the goal has been met (u10,k = u9,k−1)

u9,k−1 − zGA,k ≤ [1− δGA,k][u
max
9 − umin

10 ] (5.64)

u9,k−1 − zGA,k ≥ [1− δGA,k][u
min
9 − umax

10 ] (5.65)

No points are awarded (u10 = 0) if the goals are not achieved.

zGA,k ≥ δGA,ku
min
10 , zGA,k ≤ δGA,ku

max
10 (5.66)

The constraints described above in (5.57) - (5.66) are included into the system pre-

sented in (5.16) by defining the values for matrices E1, E2, E3, E4, E5, E6, E7, and Ed

through Hysdel (Torrisi and Bemporad, 2004).
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5.4.3 Maintenance Phase

The maintenance phase of the intervention is activated upon reaching and sus-

taining the desired target for the behavior for a determined number of days. In this

phase, the HMPC algorithm is reconfigured to maintain the behavior at the desired

level with minimal use of financial rewards, to avoid financial dependency in sustaining

the healthy behavior. The controller algorithm should also be able to reactivate the

use of the points in case of a significant relapse in the behavior. The reconfiguration

of the HMPC performance is accomplished by adjusting the penalty weights in the

objective function according to the considerations of each phase of the intervention.

In the initiation phase, the main aim is to achieve the desired daily step count.

The reference point for the output is represented by yr = [yr4 yr7]
T , where yr4 is the

desired step target (e.g., 10,000 steps/day). Therefore, the penalty weight matrix Wy

is set to impose setpoint tracking only on the behavior y4, where Wy = diag{1, 0}.

The remaining weight matrices in (5.21) are set to approximately zero in this phase.

The maintenance phase is activated when the intervention target has been con-

sistently achieved for at least ns − 2 times during the last ns days. This is the case

when the participant’s behavior falls within a predefined tolerance tol4 region from

the intervention target of 10,000 steps/day. To enforce this condition, a new auxiliary

logical variable δgoal(k), which is not included in the general formulation of HMPC

by (5.14)-(5.16), is defined as

δgoal,k−i = 1 ⇔ |y4,k−i − yr4| ≤ tol4

i = 0, · · · , ns − 1

(5.67)

Therefore, the maintenance phase is enabled at sampling time k if

ns−1∑
i=0

δgoal,k−i ≥ ns − 2 (5.68)
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During this phase, it is necessary to reconfigure the controller to target low point

usage (u9). The input targets ur = [ur8 ur9 ur10]
T are adjusted in this phase,

where ur9 = 0, and an appropriate value must be assigned to the corresponding

weight in the manipulated variables penalty weights matrix Wu = diag{0, wu9 , 0}

(e.g., wu9 = 1).

5.5 Results and Discussion

In this section, results for a closed-loop simulation for a representative JustWalk

participant are presented. Regularized ARX model estimated from JustWalk experi-

mental data in Section 5.3.2 is implemented as the controller model for the HMPC,

in an effort to provide personalized interventions. Two main cases are presented in

this section: A) a nominal case: where there is no mismatch between the controller

and the plant model, and B) a non-nominal case: where 100 different realizations of

the estimated regularized ARX model are utilized as the plant model, in a Monte-

Carlo simulation to test the controller robustness under plant-model mismatch. The

intervention starts at day zero with the aim to change the sedentary lifestyle of the

participant, averaging 5,000 steps/day, to a more active lifestyle averaging 10,000

steps/day. This simulation scenario is inspired by the performance observed in previ-

ous physical activity interventions with similar components (King et al., 2013). The

manipulated variables are Goals (u8), Expected Points (u9), and Granted Points (u10).

The disturbances considered in the simulations are Evironmental Context: Temper-

ature (ξ7T ) in the form of deviations from the mean temperature, and Evironmental

Context: Weekend (ξ7wknd) which can have a significant impact on Behavior (y4).

Moreover, given its importance, the system model has been augmented to include

Goal Attainment (y7) as a system output, which allows for constraint enforcement on

this signal, as illustrated in Chapter 4 and in El Mistiri et al. (2022b).
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HMPC tuning parameters are chosen as follows: the sampling time Ts = 1 day,

the prediction horizon p = 20 days, and the move horizon m = 10 days. Min-

imum and maximum bounds for the manipulated variables are umin = [0 0 0]T ,

umax = [∞ 500 500]T , ∆umin = [−∞ − ∞ − ∞]T , ∆umax = [∞ ∞ ∞]T . Output

constraints are ymin = [0 − 100]T , ymax = [∞ ∞]T . To assure the convexity of the

optimization problem, small values are assigned to move suppression weights (W∆u)

in both intervention phases, while the weights for the manipulated variables matrix

(Wu) are adjusted based on the intervention phase.

A target for Expected Points (ur9) is set at 150 points/day in the initiation

phase with a penalty weight of wu9 = 0.5, to limit the controller towards rea-

sonable use of financial rewards. The manipulated variable reference is then ad-

justed to ur9 = 0 points/day in the maintenance phase with an associated weight

wu9 = 1, to pursue the target more assertively. In a departure from the approach

followed in previous work where predefined categorical values were enforced for all

manipulated variables, only Expected Points are constrained to categorical levels

while Goals are of a continuous nature in this simulation. The categorical val-

ues of the positive reinforcement intervention component are defined by the set

U9(k) = {0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500} with nu8 = 0 and nu9 = 10.

Consequently, the HMPC formulation is applied to enforce the big-M logical condi-

tion for the Granted Points (u10), and discrete values for the Expected Points (u9).

To trigger controller reconfiguration into the maintenance phase of the intervention,

Behavior must fall within a tolerance region of tol4 = 600 steps/day from the desired

setpoint value of 10,000 steps/day for 6 days out of the last ns = 8 days. The unmea-

sured disturbance is assumed to follow a Gaussian distribution with d′(k) ∼ N (0, 300).

Additionally, no plant-model mismatch is considered. To allow for a progressive in-

crease on the performed steps and adequate disturbance rejection the following 3DoF
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tuning parameters are selected αr = [0.9 0]T , αd = [0.75 0]T , fa = [0.6 0]T .

5.5.1 Nominal Case

Fig. 5.9 presents simulation results of the application of the HMPC controller

in delivering optimal personalized PA interventions in a nominal case, without con-

sidering a plant-model mismatch. For setpoint tracking, it can be observed that the

output response tracks the filtered reference closely, despite the presence of stochastic

unmeasured disturbance, and measured disturbances in the form of fluctuations in

temperature and the change in operating conditions between weekday and weekend.

The output response reaches 95% settling time within 26 days from the beginning

of the intervention, as specified by the value of α1
r = 0.9 for Behavior (y4). This is

accomplished with reasonable use of the Expected and Granted Points, following the

selected value for the target ur9 in the initiation phase. By day 30, the participant’s

performance satisfies the condition in (5.68), which activates the maintenance phase

(highlighted in green). In the maintenance phase, the use of the positive reinforce-

ment component of the intervention through financial rewards is minimal, following

the set target of 0 points/day in this phase, through the higher value of its associated

weight wu9 = 1.

On day 40 of the intervention, a significant decrease in the temperature occurs,

which lasts for 8 days. This pulse in the disturbance decreases the participant’s step

count outside of the tolerance region, leading to the re-introduction of the initia-

tion phase to help guide the participant toward the desired setpoint. As observed in

Fig. 5.9, controller reconfiguration allows for the use of the financial rewards to influ-

ence the participant’s step count towards the desired level of PA (10,000 steps/day)

and counter the impact of the temperature disturbance. Moreover, the benefits of

the anticipation feature can be observed as the controller starts ramping up the daily
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Figure 5.9: Closed-Loop Simulation Results from the Implementation of HMPC in a

Personalized Intervention for a Representative JustWalk Participant, in the Presence

of Measured Disturbances (Temperature and Weekend/Weekday) and Unmeasured

Stochastic Disturbance. The Controller Tuning Parameters Are: p = 20, m = 10,

αd = [0.75 0]T , αr = [0.9 0]T , Fa = diag(0.6, 0), Wy = diag(1, 0), Wu = diag(0, 0.5, 0)

(Initiation Phase), and W∆u = diag(0.01, 0, 0). The Following Constraints Were

Used: 0 ≤ u8 ≤ 15000 steps/day, 0 ≤ u9 ≤ 500 points/day, −∞ ≤ ∆u8 ≤ ∞,

−∞ ≤ ∆u9 ≤ ∞, −100 ≤ y7 ≤ ∞. For the Maintenance Phase, ns = 8 Days,

Wu = diag(0, 1, 0), and tol4 = 700 steps/day.

goals delivered to the participant a day prior to the forecasted drop in the temperature

(on day 39). As illustrated in the figure, the controller performs very well in terms

of measured disturbance rejection, which is accomplished through the anticipation

feature and the selected tuning parameters. Consequently, Behavior is back within

the tolerance region by day 46 of the intervention and remains in this region for the

next 6 days, which leads to the re-activation of the maintenance phase on day 52.
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The constraint on the Goal Attainment (y7) is satisfied throughout the interven-

tion, despite the simulated exaggerated sudden decrease in temperature (∆T = 25◦ F).

This extravagant drop in temperature is simulated to test the controller’s capabilities,

and it shows that the controller algorithm is capable of rejecting substantial amounts

of measured and unmeasured disturbances within the defined constraints for the nom-

inal case. However, to ensure that the controller’s optimization problem is solvable

without running into infeasibilities even in the presence of plant-model mismatch,

slack variables are utilized as a part of the controller formulation (5.22). In this work,

a slack weight of Ws = diag(0, 10) is assigned so the output constraint is “soft" enough

to not render the mixed integer quadratic programming (MIQP) problem infeasible,

yet “hard" enough to be enforced throughout most of the intervention.

5.5.2 Robustness Analysis

In closed-loop behavioral interventions, controllers are designed to modify or guide

a participant’s behavior toward a desired outcome. However, due to the complexity of

human behavior and the scarcity of available data, it can be challenging to accurately

estimate the underlying model that governs individual responses. This uncertainty

in the estimated idiographic model can lead to inaccurate predictions and reduce

the effectiveness of the controller. Furthermore, behavior change systems may pos-

sess time-varying dynamics (Shiyko et al., 2014), where model parameters may vary

over time depending on various factors (e.g., environment, seasonality, notification

fatigue, etc). This can also reduce the predictive capabilities of the estimated linear

time-invariant (LTI) idiographic model, and impact the reliability of the formulated

controller. Additionally, the presence of unmeasured (therefore, unmodeled) inputs

to the system can substantially impact the controller’s effectiveness. Therefore, dis-

crepancies between the controller model and the actual behavior of a participant must

169



be considered to ensure the robustness of the controller.

In the presence of uncertainty, Monte Carlo simulation is a reliable technique

to evaluate the performance of a control system in terms of stability and stochastic

robustness (Ray and Stengel, 1993). Monte Carlo simulation incorporates randomness

in the analysis of controller performance, by randomly sampling from the distributions

of uncertainty in the estimated model parameters. This allows for the exploration

of various possible scenarios, which provides a comprehensive understanding of the

controller’s robustness. Hence, to assess the robustness of the proposed controller

formulation, tuning, and control strategy in non-nominal scenarios a Monte Carlo

simulation has been implemented, and the results of which are presented in this

section.

100 different realizations within one standard deviation from the deterministic

equivalent of the estimated regularized ARX model (presented in Section 5.3.2) are

randomly sampled utilizing the covariance matrix. The sampled realizations of the

model are then implemented as the plant model, while the controller model is kept

as the mean realization, creating a plant-model mismatch. The obtained results from

the Monte Carlo simulation shown in Fig. 5.10 illustrate the robust performance of

the controller in the presence of a mismatch. This can be observed in the response

of the controlled variable (Behavior) as all realizations (plotted in green) are kept

within a tight bound around the nominal case. This is accomplished through the

array of manipulated variable responses seen in green in the figure; the controller op-

timally moves the manipulated variables for each realization, despite the presence of

mismatch, while abiding by all the constraints and conditions specific to the problem.

Consequently, there is a wide variety of observed responses in the manipulated vari-

ables, that are needed to maintain the outputs of the sampled plant realizations close

to the filtered setpoint. This illustrates the success of the proposed controller formu-
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lation, tuning, and control strategy in handling uncertainty and variability in model

parameters, by reducing the variance in the controlled variable to a family of plant

models by adjusting the manipulated variable responses based on feedback signals.

Figure 5.10: Closed-Loop Monte Carlo Simulation Results from the Implemen-

tation of HMPC in a Personalized Intervention for JustWalk Participant A, in the

Presence of Measured Disturbances (Temperature and Weekend/Weekday) and Un-

measured Stochastic Disturbance. The Controller Tuning Parameters Are: p = 20,

m = 10, αd = [0.75 0]T , αr = [0.9 0]T , Fa = diag(0.6, 0), Wy = diag(1, 0),

Wu = diag(0, 0.01, 0) (Initiation Phase), and W∆u = diag(0.01, 0, 0). The Follow-

ing Constraints Were Used: 0 ≤ u8 ≤ 15000 steps/day, 0 ≤ u9 ≤ 500 points/day,

−∞ ≤ ∆u8 ≤ ∞, −∞ ≤ ∆u9 ≤ ∞, −100 ≤ y7 ≤ ∞. For the Maintenance Phase,

ns = 8 Days, Wu = diag(0, 1, 0), and tol4 = 700 steps/day.

More importantly, all of the presented realizations resulted in stable closed-loop

responses, without running into infeasibility. It is important to note that in some

of the randomly sampled scenarios the constraint on Goal Attainment is violated for
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periods of the intervention. This is indeed the case in all realizations where the gains

of the manipulated variables (especially Goals) are insufficient to facilitate positive

Goal Attainment. Such scenarios demonstrate the importance of the addition of the

slack variable in the controller formulation to soften constraints and render the MIQP

problem feasible. Moreover, these scenarios bring into consideration the inclusion of

dynamic upper constraints on Goals based on the average participant performance

over the last 7 days, to ensure “ambitious yet achievable” goals are given, as presented

in Chapter 6.

5.6 Conclusions and Future Work

This chapter presents the estimation of a dynamic model for a system that repre-

sents changes in PA levels. PA data for a representative JustWalk participant is di-

vided into estimation and validation sub-experiments based on the designed multisine

input signal cycles. The partitioned data is then utilized in estimating a regularized

ARX model with order selection in an exhaustive search over all possible combina-

tions of estimation and validation sub-experiments. The significance of the proposed

approach to search over all the possible estimation and validation combinations is

that it provides a model geared towards output prediction while maintaining a good

fit throughout the overall data.

The estimated models are then utilized as the controller and plant models to test

(in simulations) the proposed HMPC formulation in delivering personalized behav-

ioral interventions promoting healthy levels of PA, specifically in the form of daily

step count. Moreover, 100 realizations of the estimated model are generated by ran-

domly sampling from the distribution of uncertainty around model parameters. The

various realizations of the model are then utilized as the plant model, while the con-

troller model is kept as the deterministic equivalent, in a Monte Carlo simulation to
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examine the robustness of the controller in the presence of discrepancies between the

plant model and the estimated model parameters.

Simulation results demonstrate the effectiveness of the HMPC algorithm as the

decision-making framework in individualized PA behavioral interventions. The HMPC-

based controller performs very well for the considered participants in terms of setpoint

tracking, and disturbance rejection (measured and unmeasured) both in the nominal

scenario and in the presence of a plant-model mismatch. As a part of the proposed

HMPC algorithm, the controller is reconfigured to enable a maintenance phase, in

which financial rewards are reduced or tuned off. Controller reconfiguration helps

participants maintain healthy levels of PA in the maintenance phase, without relying

on financial rewards to sustain the healthy behavior.

The work presented in this chapter is part of a series of growing applications of sys-

tems identification and control systems engineering principles in behavioral medicine,

that were initially carried out as part of the JustWalk intervention at Arizona State

University (ASU). The explored simulations are vital in the evaluation of the pro-

posed controller formulation, and provide the means to troubleshoot and enhance the

controller algorithm prior to real-world implementation. This will be carried out as

a part of YourMove study, in one of the first of its kind closed-loop behavioral inter-

ventions promoting healthy levels of PA, which is built in collaboration between the

University of California, San Diego and ASU (R01CA244777, 2020). One of the main

aims of YourMove study is to include this framework in the design of a long-term

behavioral health intervention that incorporates system identification, initiation, and

maintenance phases, in what is known as the control optimization trial (COT; Hekler

et al. (2018)), as described in the next chapter. This is an essential step towards

the dissemination of user-friendly adaptive behavioral interventions on a large scale,

thereby improving individual and public health.
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Chapter 6

INPUT SIGNAL DESIGN, MODEL ESTIMATION, AND HYBRID MODEL

PREDICTIVE CONTROL STRATEGIES IN THE CONTROL OPTIMIZATION

TRIAL FRAMEWORK: ANALYSIS OF YOURMOVE, A PHYSICAL ACTIVITY

INTERVENTION

6.1 Introduction

With the availability of temporally rich data through mHealth technologies, the

study of idiographic modeling and interventions (on an individual level) has been

reinvigorated. Control systems engineering methods, such as system identification

and control systems design, can be used on such data to obtain dynamic models

on an individual level and deliver personalized optimal adaptive behavioral inter-

ventions; these are thought to be more successful than static interventions (Hekler

et al., 2018). Prior work has demonstrated the value of input signal design in ob-

taining informative data sets to learn about the dynamics associated with behavior

change (Hekler et al., 2016), the ability of dynamic modeling techniques to predict

dynamic responses of behavior change to perturbations in various system components

(Martín et al., 2020; Freigoun et al., 2017), and the effectiveness of different model

predictive control (MPC) strategies to deliver optimal personalized physical activity

(PA) interventions guiding participants towards healthy behavior in simulation envi-

ronments as presented in Chapters 4 and 5 (Martín et al., 2016a; El Mistiri et al.,

2022b; Cevallos et al., 2022). The main hurdles limiting the dissemination of PA

interventions on a large scale include the lack of a thorough understanding of the

dynamic processes behind behavior change, missingness arising from noncompliance
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by participants, and the absence of a conceptual framework to deliver and automate

interventions individualized for each participant. Building on prior work, in this chap-

ter each of these challenges is addressed, specifically for one of the first of its kind

behavior change studies implementing the concept of the control optimization trial

(COT; Hekler et al. (2018)) framework, under the name of YourMove.

The aim of YourMove is to evaluate the effectiveness of the synergism between

system identification and control systems engineering principles in delivering person-

alized optimal behavioral interventions, and establish a framework on which such

COT-based interventions can be automated to enable their dissemination on a large

scale (from model estimation to controller implementation). To accomplish this, in

YourMove participants undergo three different stages: 1) a baseline stage, where PA

levels of the participants are observed prior to being assigned daily targets; 2) a sys-

tem identification experiment stage, where designed pseudo-random input signals are

introduced to generate informative data to ideographically (on an individual level)

estimate predictive dynamical models for PA behavior change; and 3) a closed-loop

intervention stage, where a hybrid model predictive control (HMPC; El Mistiri et al.

(2023); Khan et al. (2022); Cevallos et al. (2022); Nandola and Rivera (2013)) algo-

rithm is the decision-making framework driving personalized optimal interventions to

improve PA levels. The closed-loop intervention stage is divided into two different

sub-stages: 1) an initiation phase, where the controller guides the participants towards

the desired target of meaningful PA levels by adjusting daily goals and financial in-

centives, and 2) a maintenance phase, where the use of the financial rewards is phased

off. Fig. 6.1 illustrates system identification and closed-loop stages in COT-based PA

interventions like YourMove.

As the closed-loop intervention stage relies on the idiographic models from the

system identification stage, it is essential to estimate predictive models that properly
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represent each individual’s behavior change dynamics to assure the personalization of

the closed-loop intervention and robustness of the controller. This starts with an input

signal design that provides enough excitation to the system in the frequency range of

interest, thus facilitating the estimation of adequate participant-specific models for

closed-loop control. Moreover, to allow the scalability of the intervention we develop

a framework to estimate personalized models for over 190 participants, online, and

to fit the models in a generalized structure for the HMPC-guided closed-loop phase

of the intervention. Finally, to ensure the delivery of “ambitious yet achievable” in a

robust and personalized manner, behavioral scientists’ input is leveraged to structure

controller tuning and reconfiguration in an adaptive manner, based on participant’s

responses.

The purpose of this chapter is to describe the challenges faced in implementing

YourMove, detail the steps devised to overcome these challenges, and present prelim-

inary results and findings from the first COT-based study. This chapter is organized

as follows: Section 6.2 briefly describes YourMove. Section 6.3 presents a detailed

description of the input signals designed for YourMove. In Section 6.4 the methods

utilized to estimate participant-specific models and fit them into a generalized model

structure are detailed. The algorithm followed in controller tuning and reconfigura-

tion in the closed-loop stage of the intervention is outlined in Section 6.5. Results

for three representative YourMove participants illustrating their performance across

the three stages of the COT framework are presented and discussed in Section 6.6.

Section 6.7 concludes with preliminary findings from the ongoing YourMove study

and directions for future work.
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Figure 6.1: Simulation Results Illustrating the Stages of the Control Optimization

Trial (COT) Behavioral Intervention, Based on a Representative Participant from

JustWalk. Highlighted in Cyan is the System Identification Stage, and in Green

is the Maintenance Phase, While the Unhighlighted Areas Represent the Initiation

Phase.

6.2 YourMove Intervention

YourMove is a physical activity intervention based on Social Cognitive Theory

(SCT; Bandura (1989)), utilizing the same intervention components in JustWalk as

presented in Chapters 4 and 5. The purpose of the trial is to develop the framework

for personalized closed-loop behavior change interventions and test their effectiveness

against a control group of participants that has a fixed daily step goal of 10,000 steps

per day. For a robust, personalized closed-loop intervention, an adequate under-

standing of the dynamics behind PA behavior change must be developed through a

predictive model estimated utilizing system identification principles. For the dynamic

predictive idiographic model to be informative and capture the important dynamics
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for decision-making by the HMPC algorithm, the input signal design must provide

enough excitation of states, encompassing the bandwidth of the system for each indi-

vidual. To measure system signals, especially PA levels, smartwatch activity trackers

(Fitbit Versa 3) are provided to all participants as a part of the trial. The capabilities

of the Versa 3 replace the need for a mobile app, as intervention components (daily

goals and points) are delivered to the participants through the watch. Each evening

participants are also nudged to complete a series of daily micro ecological momentary

assessments (EMA; Shiffman et al. (2008)) as seen in Fig. 6.2, where more than one

survey question is asked per SCT construct. This should capture more variability

in each construct, yielding more reliable and informative measurements. The used

EMA survey questions in YourMove are presented in Table 6.1. In addition, using

the Versa 3, other measurements such as daily resting heart rate and weather infor-

mation are collected, which can be used as exogenous “disturbances” in the dynamic

modeling of the behavior change system. A back-end server is used to communicate

the personalized daily goals in all stages of the intervention, as well as store all the

gathered data for modeling and future secondary analysis.

YourMove is a unique adaptive mHealth intervention designed to guide overweight

sedentary adults towards healthy levels of PA. What distinguishes YourMove from

previous studies is the duration and the nature of the intervention. Unlike previous

studies, in YourMove individuals participate in the trial for a total duration of a

full year, in an effort to monitor the long-term gains of the intervention and help

participants sustain improvements to PA levels. Another aspect of the uniqueness of

YourMove is that it is one of the first of its kind in terms of testing the effectiveness of

closed-loop control interventions in real-world circumstances. Therefore, YourMove

serves as a proof of concept for control engineering-based interventions. To accomplish

this aim, the study is designed with three main stages. The baseline stage lasts for
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(a) YourMove idol watch-face (b) EMA watch-face

Figure 6.2: Examples of the Custom Watch-Face Variations Provided to Partici-

pants in YourMove. (a) Shows the Idol Watch-Face Displaying the Daily Step Goal,

Progress Towards the Goal, and Rewards. (b) Shows an Example of One of the

Micro-EMA Survey Questions.

10 days, where the performance of the participants prior to the delivery of daily

step goals is observed. This is significant in terms of establishing “ambitious but

achievable” step goal ranges for each participant, and baseline average performance

to quantify the benefits of the intervention after it is done. The second stage is the

system identification experiment, where the designed personalized (based on median

baseline performance) pseudo-random input signals are delivered to participants on

a daily basis in the form of daily Goals (u8) and Expected Points (u9) with the

aim of generating informative enough experimental data to estimate individualized

dynamic models for each participant. The system identification stage is assigned

to last for a total of 132 days (4.4 months). Finally, for the remainder portion of
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Table 6.1: EMA Survey Questions Used in YourMove Study, Along with Their

Respective Behavioral Constructs.

Construct Survey Question

Self-Efficacy (η3)

Being active is a top priority tomorrow.

Being active is a top priority tomorrow.

No matter what, I’m going to be active tomorrow.

Behavioral Outcomes (η5)

Being active makes me feel more fit.

In general, I feel energetic after being active?

In general, I feel fatigued after being active?

Enviornmental Context (ξ7Typicalness)
Tomorrow’s schedule will help me be active.

Circumstances will help me be active.

Perceived Barriers (ξ5)
I expect obstacles to being active.

Overall, being active will be hard tomorrow.

the study, the closed-loop intervention stage is deployed where participant-specific

HMPC controllers are commissioned to guide each participant toward reaching the

intervention target of 10,000 steps per day and maintain that level until the end of the

intervention. HMPC formulation has proven to show a lot of potential as it has been

previously tested in simulations on both hypothetical models (Martín et al., 2016a),

and idiographic models estimated from JustWalk experimental data for representative

participants as illustrated in Chapter 5 and in Cevallos et al. (2022); Khan et al. (2022)

and El Mistiri et al. (2023).

One of the main limitations faced in the JustWalk study was the burden on partic-

ipants associated with answering EMA surveys on the mobile app. This hindered the

ability to consistently measure SCT constructs like Self-Efficacy and Behavioral Out-

comes, limiting estimation to multi-input-single-output (MISO) models with the only
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output being Behavior (measured objectively). The use of the interactive watch-face

of the Versa 3 for micro EMA delivery in YourMove is done to reduce the burden on

participants, by seamlessly providing the EMA survey questions at the wrists of the

participants, as seen in Fig. 6.2b, and allowing participants to “snooze” the surveys so

they could be answered later, in case momentary circumstances do not allow a partic-

ipant to immediately respond. Furthermore, the use of micro EMA survey questions,

where multiple survey questions are geared towards measuring each of the important

SCT constructs for the dynamic model, should yield more realiable mreasurements

with higher variability. The obtained measurements of the SCT constructs of interest

should enable modeling the system in a multi-input-multi-output (MIMO) structure,

where all SCT constructs prominent to PA behavior change can be considered for

the closed-loop intervention stage, which is important for implementing personalized

control strategies like the ones proposed in Chapter 4 and in El Mistiri et al. (2022b).

Additionally, the validation of the dynamic model presented in Section 4.2.2 through

semi-physical grey-box modeling methods should be possible with the availability of

consistent measurements for the key SCT construct.

Recruitment for YourMove is done within California, as participants need to be

physically present in San Diego for baseline measurements, in a large-scale study

including over 380 participants. Recruitment criteria for the intervention are defined

as inactive, healthy, adults between the ages 25 to 65, living in the United States of

America, who are willing to participate in the mHealth intervention for a long-term

period of 365 days. In the following section, a detailed description of the input signal

design process for You Move, utilizing the multisine design guidelines illustrated in

Braun et al. (2002) and Rivera et al. (2002), is presented.
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6.3 YourMove Input Signal Design

The pseudo-random nature of multisine signals makes them attractive to use as

input signals for system identification, as their deterministic features can be speci-

fied to precisely accommodate theoretical and practical requirements, yet they mimic

random noise. They can be designed to provide excitation at frequencies of interest;

therefore, multisine signals are used for the manipulated inputs Goals and Expected

Points for the system identification stage of YourMove intervention. Similar to equa-

tion (5.7), the multisine signals for the two inputs {u8, u9} are defined as follows:

ui(k) = λi

ns∑
j=1

√
2α[i,j] cos(ωjkTs + ϕ[i,j])

ωj =
2πj
NsTs

, j = 1, . . . , ns

(6.1)

where Ts is the sampling time, λi is a scaling factor, ns represents the number of ex-

cited sinusoidal harmonics, and Ns denotes the period length in terms of samples. For

the jth harmonic of the signal, each variable has the following meaning: α[i,j] stands

for the Fourier coefficient specifying the relative power of the harmonic, ωj specifies

the frequency, ϕ[i,j] is the phase, i represents the input number where i = {8, 9} for

the inputs of interest, and nu is the total number of inputs.

Following the guidelines presented in Braun et al. (2002), in the design of plant-

friendly multisine signals the effective frequency range can be specified by selecting

the design parameters based on the estimated range of the dominant time constant

of the system τHdom and τLdom, and the user-defined parameters αs and βs to dictate the

covered high and low-frequency content respectively, as expressed in (2.6) and (6.2).

ω∗ =
1

βsτHdom
≤ ω ≤ αs

τLdom
= ω∗ (6.2)

where ω∗ and ω∗ represent the lower and upper bounds of the effective frequency range.

To satisfy the plant-friendly design guidelines and the Nyquist-Shannon sampling
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theorem, the following inequality must be satisfied.

Ns ≥ max(
2πβsτ

H
domnu

Ts
, 2nuns) (6.3)

Input signal design in system identification is an iterative process, that requires

some prior knowledge of the system dynamics of interest. In this work, a priori

knowledge from analyzing the experimental data from previous studies, particularly

JustWalk is leveraged (see Section 5.3.2). One of the main observations from JustWalk

data analysis is that the dynamic response of Behavior is quite fast for changes

in the examined input variables as can be seen in Freigoun et al. (2017), Cevallos

et al. (2022) and El Mistiri et al. (2023). For the majority of the participants in

JustWalk, the time constant has been estimated to be at approximately 1 day. Hence,

in the input signal design for YourMove, the selected guideline parameters for the

estimated dominant time constant have been set to τHdom = 1 day = τLdom. As the

decisions for the Goals and Expected Points are done on a daily level, the sampling

time is set to Ts = 1 day. Additionally, analysis of the JustWalk data shows the

importance of high-frequency dynamics in modeling the system, to allow the controller

to make the right decisions. At the same time, the uncertainty associated with the

steady-state gains for the inputs analyzed in JustWalk illustrates that low-frequency

dynamics are significant in determining adequate gains for the manipulated variables

of interest. Hence, the values for the user-defined coefficients are chosen to enforce a

wide effective frequency range (βs = 3.5 and αs = 1). The lower and upper bounds on

the number of excited sinusoidal harmonics ns are set based on the “plant-friendly”

multisine design guidelines and the Nyquist-Shannon sampling theorem, respectively,

as expressed in (6.4)

.
Ns

2nu

≥ ns ≥
βsαsτ

H
dom

τLdom
(6.4)

to abide by the guidelines, ns ≥ 4, the value for the excited sinusoids is selected at
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ns = 5, which provides excitation of state to harmonics beyond the higher bound of

the effective frequency range ω∗, and allows for more power to higher frequencies.

To model the fast dynamics associated with PA behavior change, the input sig-

nals must generate dynamically informative data across all frequencies. Hence, in a

departure from what was done in JustWalk (where the high-frequency non-excited

harmonics were attenuated to have an amplitude of 0 like seen in Section 5.3.1 and

Fig. 6.3). In YourMove the relative amplitude for non-excited high-frequency dy-

namics is selected as hf = 0.5. This provides all the remainder harmonics with a

relative amplitude of 50% of the low-frequency excited harmonics, which can prove to

be very significant for decision-making by the HMPC in the closed-loop intervention

stage of YourMove. This is also important for future secondary data analysis, where

MoD and other sophisticated predictive frameworks can be used to model and study

higher frequency dynamics for each individual. To ensure that the input signals are

optimally distributed between the maximum and minimum values of the sequence,

crest factor minimization is performed following Guillaume et al. (1991).

The concept of statistical independence of the designed input signals to one an-

other is very important. Uncorrelated input signals promote unbiased estimation and

hence facilitate transfer functions for each input independently. There are multiple

approaches to assure statistical independence of the two input signals, which are cov-

ered in detail in Rivera et al. (2007a) and Lee and Rivera (2006); in this work, the

focus is on shifted and zippered approaches to multisine design.

6.3.1 Zippered Multisine

In the “zippered” approach the orthogonality between input signals is assured by

alternating the excited harmonics for each input in the frequency domain, yielding

highly uncorrelated signals (Rivera et al., 2009). This is done by assigning Fourier
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Figure 6.3: Schematic Illustrating the Common Practice in Multisine Input Signal

Design Where the Relative Amplitude for Harmonics Past ω∗ is 0.

coefficients (α[i,j]) to be non-zero for input i at certain frequencies, while the remainder

of the inputs are assigned zero Fourier coefficients at the same frequencies, as can

be seen in the spectral power density in Fig. 6.4. To independently excite ns = 5

harmonics, for nu = 2, the Fourier coefficients α[i,j] are selected as follows:

α[n,j] =


1 if j = nu(j − 1) + (i− 7)

for j = 1, 2, . . . , ns

0 otherwise

(6.5)

To fit the excited harmonics in an alternating pattern, the zippered approach

requires more low-frequency information, as can be seen by the harmonic to the left

of the lower frequency bound in Fig 6.4. Therefore this approach requires a relatively
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Figure 6.4: Power Spectral Density of the Designed Inputs in a Two-Channel Sig-

nal, Illustrating the Alternating Harmonics in the Zippered Spectra Approach. The

Dashed Vertical Lines from Left to Right Represent the Low and High Effective Fre-

quency Bounds ω∗ and ω∗ Respectively.

longer duration for each cycle, which is a disadvantage. To provide enough excitation

for five independent harmonics, across two input signals, the overall duration of the

signal per cycle must be Ns ≥ 44 days according to (6.3), which could be significantly

long for a behavioral intervention study. The chosen value for the duration of the

period Ns = 44 days as can be seen in Fig. 6.5.

As expected, the orthogonality in the frequency domain produces uncorrelated

inputs, which is verified by the correlation analysis shown in Fig. 6.6. It can be seen
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Figure 6.5: Time-domain Depiction of the Designed Zippered Input Signals (u8,

u9) in YourMove. Ns = 44 days, Ts = 1 day, for ns = 5 Excited Low Frequency

Harmonics Per Signal.

that the correlation coefficients for all lags are negligible and well within the standard

error bounds of three standard deviations (3σ), illustrating that the signals cannot,

with a 99% confidence interval be distinguished from white noise.

6.3.2 Shifted Multisine

In the shifted approach, the input signal design is generated for only one input

channel (nu = 1), and then subsequent channels are shifted relative to the other

inputs to increase statistical independence. The advantage of this approach is that it
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Figure 6.6: Cross-correlation Coefficients for Zippered Signals for the First 40 Lags,

with Standard Error Bounds of 3σ.

results in shorter cycles, where according to (6.3) Ns ≥ 22 days. As can be seen in

Fig. 6.7, a value of Ns = 22 days has been selected to allow for executing more cycles

within the duration of the study designated for the system identification experiment.

Shifting of the input signal introduces phase differences that promote orthogonal-

ity. Note that in the shifting process, the cross-correlation between the input signals

is more likely to be prominent as the number of input signals increases. For the sys-

tem of interest, only two of the inputs can be independently manipulated (Goals and

Expected Points), which allows for shifting the signals by half a full cycle. This can
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Figure 6.7: Time-domain Depiction of the Designed Shifted Signal in Two Input

Channels (u8, u9). Ns = 22 days, Ts = 1 day, for ns = 5 Excited Low Frequency

Harmonics.

be observed in Fig. 6.7 where the signals are shifted by t = Ns/2 = 11 days. This is

also evident in the correlation coefficients at lags k = {−11, 11}, where their values

are relatively close to the confidence bounds of 3σ2 as seen in Fig. 6.8.

Because the signals for the two input channels are shifted copies of one another,

they share the same Fourier coefficient values α[i,j] for all harmonics. Consequently,

both signals have equally excited harmonics at the same frequencies and equivalent

power spectral densities, as can be seen in Fig. 6.9 by the overlapping sinusoidal

harmonics.
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Figure 6.8: Cross-correlation Coefficients for the Designed Shifted Input Signals for

the First 20 Lags, with Confidence Bounds of 3σ2.

6.3.3 Selection of Input Signal Approach

As noted in the previous subsections, each multisine design approach has its advan-

tages and disadvantages. This trade-off exists between the statistical independence

of the designed inputs and the duration of each cycle, which impacts the decision to

select one approach over the other. In terms of cross-correlation of the input signals,

it is clear that the zippered approach provides better signals due to the orthogonality

of the signals in the frequency domain and, therefore, their guaranteed statistical

independence. On the other hand, in the shifted multisine the correlation coefficients

for Ns/2 lags in each cycle are relatively significant and can affect the estimation of
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Figure 6.9: Power Spectral Density of the Designed Shifted Input Signal for Two

Channels Illustrating the Overlap in the Harmonics. Ns = 22 days, Ts = 1 day, for

ns = 5 Excited Low Frequency Harmonics.

the impact of each input separately. The impact of such correlation coefficients on

the data analysis is minimal as long as the duration of each cycle provides enough

time for the responses to settle before Ns/2 = 11 days. This is the hypothesized case

for the system of interest, where an estimated settling time between 5 to 6 days is

expected based on the takeaways from JustWalk data analysis. Additionally, as the

overall input signals are cyclical, utilizing each cycle separately for model estimation

and validation can reduce the impact of the correlated input signals. Consequently,

the shifted approach provides input signals that are expected to be sufficiently uncor-
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related for the purpose of the experiment, with enough cycles to support meaningful

cross-validation (described in the next paragraph).

One of the most important procedures in system identification is cross-validation.

In cross-validation the model performance (in terms of fit percentages, such as Normalized-

Root-Mean-Square-Error; NRMSE) is evaluated over data points that have not been

used in the estimation step. This is significant as it provides information about how

well the model is able to predict the outputs under different conditions and input

changes than the ones examined in the estimation process. Traditionally in system

identification, the data is split into two consecutive segments where one is utilized for

estimation, and the other for validation. This approach assumes that the underly-

ing noise characteristics in the system remain the same throughout the experiment.

Based on the work done on JustWalk data, it is safe to assume that the noise char-

acteristic associated with PA behavior change systems are mean-centric as seen in

Section 5.3.2, however, they vary in nature over time (Freigoun et al., 2017). To ac-

count for such phenomena, the approach of segmenting the data into sub-experiments

based on input signal cycles allows for testing different combinations of estimation

and validation data, to reach a better-performing model encompassing the stationary

yet varying noise characteristics in behavior change systems.

The shifted multisine approach has the advantage in the aspect of overall signal

duration, as shown in the previous subsections. Each cycle in the designed shifted

multisine inputs has a duration of 22 days, which allows for executing a total of 6

cycles per the designated period for the system identification stage of 132 days. As a

result, different combinations of estimation and validation data can be tested for each

individual (35 combinations of three or four estimation cycles), to obtain individual-

ized models that describe behavior change under different noise characteristics. The

zippered multisine inputs inherently require more low-frequency information to ac-
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commodate for the alternating excited harmonics, see Fig 6.4, which results in longer

signals. Consequently, the selected design parameters yield a 44 days cycle, which

allows only three cycles per the designated system identification period, and obstructs

the ability to test different estimation/validation combinations. If the zippered input

signals were deployed for 6 cycles, double the duration of the system identification

stage would be needed, which would limit the time designated for the closed-loop

control intervention stage and hinder the ability to achieve the main aim of the study

(evaluating the controller performance in real-world situations). To reduce the dura-

tion of the zippered multisine signal, the low-frequency harmonics must be reduced,

which would result in less informative input signals. Hence, the shifted approach is

the one selected for YourMove, as it allows for executing more cycles in less overall

time while maintaining excited harmonics in both high and low frequencies (and with

acceptable cross-correlations).

6.3.4 Personalization of the Input Signals

The concept of personalization of the input signals stems from the goal of estimat-

ing participant-specific models. Unlike nomothetic approaches where a generalized

model is estimated for a whole population (or subgroups of the population), in the id-

iographic approach a model is estimated for each individual separately. As observed

in previous work, each participant can have a specific set of dynamics and gains

that influence behavior change. Differences between individuals can include distinct

shapes and speeds of response, as well as magnitudes and directions of steady-state

gains for each considered input. Hence, it is important to design individualized input

signals, that can yield participant-specific models, ultimately resulting in personalized

optimal closed-loop interventions. In YourMove the personalization of the interven-

tion starts from the system identification stage, where each participant is given their
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own unique input signal design. This is accomplished by two measures: 1) a unique

realization of the input signals is automatically generated when a new participant

is recruited in the study, and 2) the baseline stage median performance is used to

operationalize “ambitious yet achievable” goals for each participant. Therefore, the

goals factor signal shown in Fig. 6.7 is scaled based on the baseline stage performance

and then multiplied by the median baseline stage step count to define the maximum

number of step goals given in the system identification stage.

Goals = Baseline Median+ Scaled Goals Factor ×Baseline Median (6.6)

A priori knowledge from JustWalk and other studies specifying PA behavioral

profiles (King et al., 2013; Adams et al., 2013) provide guidance in selecting the am-

plitudes of the designed input signals, especially Goals. Due to physical limitations,

and psychological factors the relationship between the daily step targets and the ac-

tual amount of steps walked per day is hypothesized to be nonlinear (an “inverted U”

curve, as described in Martín et al. (2020)); there is a finite number of steps a person

can walk on a certain day (similar to saturation limits in a chemical process), also

a hypothesized negative impact of too ambitious daily goals on the Self-Efficacy of

personnel and consequently their daily PA levels. To provide personalized ambitious

(yet not extremely ambitious goals) the median of baseline performance for each par-

ticipant is used to set both the minimum value for Goals given to a participant, as well

as to define the individualized range for the goals signal in the system identification

experiment. If the baseline stage performance median is equal to or lower than 3,000

steps per day, the goal factor is scaled to be between 0 to 1.50. A goal factor between

0 and 0.5 for a median Behavior in the baseline stage is between 3,000 to 5,500 steps

per day. Finally, the goal factor for higher-performing participants is between 0 and

0.25. This is done in an effort to guide participants towards higher performance and
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test each participant’s ability to meet and exceed their baseline performance while

leaving room for the controller to help the participants reach 10,000 steps per day on

average. Furthermore, this gain scaling scheme should maintain the daily goals in the

system identification stage close enough to the baseline performance and well below

elevated values of daily goals that can have a negative impact. As per the Expected

Points, financial constraints in the intervention limit the maximum number of points

available to be rewarded is limited to 500 points, therefore, the signal is linearly scaled

to span from 0 to 500 points.

The full potential of this work is reached when the estimated idiographic mod-

els are utilized in the closed-loop control for personalized optimal interventions, as a

part of this unique COT study. Therefore, it is essential to devise a thorough frame-

work to properly model an individual’s behavior change dynamics and facilitate an

efficient and meaningful closed-loop intervention stage. As the number of partici-

pants recruited for this study is relatively large (in comparison to other behavioral

intervention studies) at 380+ participants, it is imperative to codify the proposed

modeling framework, to assure repeatability across all participants and reduce hu-

man involvement in the process. These are crucial steps towards the dissemination of

meaningful behavior interventions promoting healthy behavior on a large scale and

benefiting public health. In the next section, the main challenges faced in optimizing

the modeling framework are detailed along with approaches to overcome them.

6.4 YourMove Idiographic Modeling for a Generalized Intervention Structure

A practical and also fundamental challenge to the dissemination of PA behavioral

interventions on a large scale (e.g., YourMove with 190+ intervention participants)

lies in the form of the uniqueness of the responses from each individual to the diverse

intervention components and exogenous factors. It is impossible to deliver an optimal
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personalized intervention to individuals without an adequate understanding of system

dynamics and a “good enough” model that reflects the speed and amplitude of each

individual’s dynamic response to the various changes in environmental, and personal

factors, as well as to the intervention components. This is indeed one of the biggest

challenges faced in the ongoing COT YourMove study, especially when it comes to

finding the optimal model structure for each individual in a timely manner, to be

able to seamlessly deploy the closed-loop intervention phase of the experiment. To

overcome such an obstacle, different measures must be taken into account in the design

and implementation of the study. In the previous section, the effort to personalize

the input signals in order to generate unique signals exclusive to each participant

has been explained, with the benefit of the defined “ambitious yet achievable” goal

ranges for each individual, based on their baseline performance. In this section, the

strategies that will be used to operationalize idiographic model estimation for the

participants are discussed in detail and a road map for the deployment of such large-

scale interventions is drawn.

6.4.1 DSPSA in Estimating Individualized ARX Models

Participant-specific models representing responses to the various changes in per-

sonal, and environmental factors that influence Behavior and other psychological con-

structs are not only unique in their gains and coefficients, but they are also unique in

the selected inputs (features) constructing a model. For example, while some individ-

uals might be heavily influenced by environmental factors like temperature and day

(e.g., weekday vs. weekend), such factors may not have any effect on the outputs of in-

terest for other individuals. Hence, there is a significant need for personalized models

to describe each individual’s dynamics. In system identification, a common practice

is to apply correlation analyses for all the considered input and output combinations

196



to be able to determine which inputs should be selected for a model. However, such

an approach is inconclusive when the duration of the available data is limited, espe-

cially if there is insufficient variability. Because of the nature and aims of YourMove

study, budgetary and time constraints, the duration designated for the system iden-

tification experiment is limited to 132 days. With sampling carried on a daily level

Ts = 1 day, this means only 132 data points per measurement including all the inputs

and outputs are available in the best-case scenario. Moreover, lack of the ability to

consistently and objectively measure all the components in the system (especially for

self-reported psychoactive constructs like Self-Efficacy), and the high amplitude noise

characteristics believed to be a part of behavior change systems, hinder the ability

of correlation analyses to effectively reflect on the best input-output combinations to

model the system for each individual.

In prior work, an exhaustive search method has been proposed where all possible

input combinations for each individual were tested using black-box modeling tech-

niques like ARX with order selection, which showed some promise (Freigoun et al.,

2017). However, a major disadvantage of this approach is how computationally and

time-intensive it is; it can take hours or days to perform an exhaustive search for

one participant. For instance, the total number of possible combinations of features

Ncombinations for each output grows exponentially with respect to the number of con-

sidered features n, in accordance with (6.7).

Ncombinations = 2n − 1 (6.7)

In addition to feature selection, searching over the optimal regressor order (for ev-

ery selected input-output combination) significantly increases the number of possible

combinations (Kha et al., 2022). In the case of YourMove, ideally, three outputs are

considered (Self-Efficacy η3, Behavior η4 and Behavioral Outcomes η5) and 7 different
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inputs/features. This renders the exhaustive search method impractical, due to the

effort needed to explore all possible feature and regressor order combinations to model

the system for each of the 190 participants. Hence, there is a need for hyper-heuristic

search algorithms to replace exhaustively searching over all the possible combinations,

and effectively optimize over model structure (in terms of included inputs and model

orders associated with each input-output combination) in the limited time available

for system identification. This is an essential step before commissioning the controller

in YourMove intervention. To accomplish this, discrete Simultaneous Perturbation

Stochastic Approximation (DSPSA; Wang and Spall (2011)) is utilized.

SPSA is a widely accepted non-deterministic, simulation-based optimization ap-

proach, where simultaneous stochastic perturbations of the system replace the need

for traditional gradient descent methods (Spall, 1998). SPSA is particularly practical

for noisy systems where an explicit solution for the objective function is not available.

Variations of SPSA can be applied for binary sets (BSPSA; Aksakalli and Malekipir-

bazari (2016)) like the case with feature selection, and discrete variables (DSPSA;

Wang and Spall (2011), and Wang and Spall (2014)), which is required to search

over discrete values of regressor orders. The work done by Aksakalli and Malekipir-

bazari (2016) illustrates the benefits of BSPSA in feature selection, as it was found to

slightly outperform other hyper-heuristic algorithms like Binary Genetic Algorithms,

Sequential Backward Selection, and Sequential Forward Selection in small data sets,

and the performance difference was found to be a lot more significant in favor of

BSPSA in larger data sets. Additionally, in Wang and Spall (2013) DSPSA has been

further examined and its rate of convergence is presented. The effectiveness of SPSA

and its variations has been demonstrated in solving problems spanning various fields

including public health (Wang and Spall, 2014), supply chain management (Schwartz

et al., 2006), and behavioral medicine (Kha et al., 2022).
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Figure 6.10: Depicts a Stochastic Algorithm Minimizing a Loss Function (Spall,

1998).

Building on the work done in Kha et al. (2022), DSPSA is applied to optimize

over a multi-input-multi-output (MIMO) ARX structure in YourMove. This is done

by providing an initial guess of all model parameter values, θ̂. To approximate a

gradient for the system, the objective function J(θ̂) is estimated at new values for the

model parameters at each iteration, which are obtained through random, opposing-

directions simultaneous perturbations, similar to the example shown in Fig. 6.10. As

the SPSA is applied for discrete values (binary for feature selection, and integers for

regressor orders), the perturbed parameter values are bounded and rounded to the
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nearest integer. The approximated gradient is then used to update parameter values

at each iteration. The entire process is then repeated for a total of N iterations, which

is a user-defined value. The optimization objective function of DSPSA is formatted

as a loss function, L, which can be expensive to calculate at each iteration or not

attainable explicitly. The available noisy measurement of the loss function can be

defined as

J(θ) = L(θ) + ϵ(θ) (6.8)

where ϵ(θ) is zero mean noise. Therefore, by minimizing the expected value of the

noisy measurement E(J(θ)), the loss function is minimized

min
θ∈ϕ

L(θ) = min
θ∈ϕ

E(J(θ)) (6.9)

where ϕ is the feasible values domain. Through iterating over and updating θ, SPSA

follows a logic similar to the gradient descent to minimize the objective function.

To avoid over-parameterization of the ARX models, regressor orders (na, nb, and

nk) must be constrained within reasonable bounds ({nlb
a , n

ub
a }, {nlb

b , n
ub
b }, and {nlb

k , n
ub
k }).

Additionally, as the feature selection optimization is of a binary nature, the search

over features must be constrained to binary values ({0, 1}). Hence, upper and lower

bounds are defined for all considered parameters ub and lb respectively, where ub =

[ub1, ub2, . . . , ubp], lb = [lb1, lb2, . . . , lbp], and p is the total number of parameters to

optimize over. In this case, a constrained DSPSA algorithm must be applied, where

in each iteration k if any of the model parameter values obtained from the random

perturbations is outside of its defined bounds, it is projected onto the feasible bounds.

Therefore the projection operator Ψ(θk) = [Ψ1(θk1),Ψ2(θk2), . . . ,Ψp(θkp)] is defined
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as follows:

Ψi(θi) =


ubi if θi > ubi

θi if lbi ≤ θi ≤ ubi

lbi if θi < lbi

(6.10)

A step-by-step detailed summary of the constrained DSPSA algorithm as de-

scribed in Wang and Spall (2014), Aksakalli and Malekipirbazari (2016), and Kha

et al. (2022) is presented below:

1. Provide an initial guess for parameter values θ̂0 ∈ Zp, where Zp donates the

multivariate space of discrete values of p dimensions.

2. Generate the random perturbation vector for iteration k, ∆k = [∆k1,∆k2, . . . ,∆kp]
T

where the probability distribution of ∆k is specified by the user. In this case a

Bernoulli ±1 is utilized with a probability of 0.5.

3. The middle point of the hypercube π(θ̂k) = ⌊Ψ(θ̂k)⌋+1p/2 is defined, where ⌊·⌋

is the floor operator, and 1p is a vector of ones of the p dimension.

4. Evaluate the objective function J(θ̂k) at directionally opposing perturbed values

θ̂+k = [Ψ(π(θ̂k) + ck∆k)] and θ̂−k = [Ψ(π(θ̂k) − ck∆k)], where [·] is the round

operator and ck is a user-defined sequence gains vector that can be specified for

each model parameter separately.

5. Estimate the gradient ĝk(θ̂k) from the evaluated objective function at the per-

turbed values of parameters vector θ̂+k and θ̂−k as follows:

ĝk(θ̂k) =
J(θ̂+k )− J(θ̂−k )

2ck∆k

(6.11)

The approximated gradient value is then used to update the parameters

θ̂k+1 = θ̂k − akĝk (6.12)
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where the diminishing step size ak = a/(1+A+k)α is specified by user’s choice

for coefficients a > 0, A ≥ 0, 0.5 < α ≤ 1.

6. Repeat steps 1 through 5 for N iterations and report the bounded and rounded

parameter values [Ψ(θ̂)] that minimize the objective function.

This DSPSA algorithm is utilized to optimize ARX model structures for all com-

binations of estimation-validation data grouping, following the approach presented

in Section 5.3.2). For YourMove, with a total of Ncycles = 6 input signal cycles, the

considered combinations include three (50%) and four (66.67%) cycles for estimation,

Se = {3, 4}. Consequently, a total of Nev = 35 combinations of estimation-validation

cycles are possible, for which DSPSA is utilized to search over features and regressor

orders.

Nev =
∑
r∈Se

Ncycles!

(r!(Ncycles − r)!)
(6.13)

The Normalized Root Mean Square Error (NRMSE) is utilized to quantify the

goodness of fit of the estimated ARX models for Nev combinations of estimation-

validation data, and it serves as the objective function for the DSPSA. As seen in

equation (6.14), NRMSE is calculated by utilizing simulated output from the esti-

mated model Ŷ , the measured output Y , and the mean of the measured output Ȳ ,

where || · ||2 is the l2-norm of the vector.

F (θ) = 100×

(
1− ||Y − Ŷ ||2

||Y − Ȳ ||2

)
(6.14)

For each estimation-validation data combination j, model fits are calculated for each

cycle, then separately averaged for validation cycles F j
v (θ

j) and for estimation cycles

F j
e (θ

j) to obtain a good sense of the performance of the model for prediction (over

the validation cycles), and in fitting the dynamics observed in estimation cycles,
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respectively. Furthermore, the goodness of fit of the model is calculated for the full

data set by applying (6.14) to obtain an overall fit F j
o (θ

j).

The aim of the DSPSA is to maximize the model’s goodness of fit, especially for

prediction (validation). Hence, a weighted average of the goodness of fit index F j
wa(θ

j)

is calculated as shown in (6.16) and utilized to construct the objective function utilized

to approximate the gradient (6.11), for each of the available data combinations j.

argmax
θj∈Zp

J j(θj) = argmin
θj∈Zp

− J j(θj) (6.15)

where

J j(θj) = F j
wa(θ

j) = WvF
j
v (θ

j) +WeF
j
e (θ

j) +WoF
j
o (θ

j) (6.16)

Wv,We, andWo represent the averaging weights for validation, estimation, and overall

fit percentages, respectively. In this context, the weight for the validation fit index is

the highest at Wv = 0.6, to prioritize the model’s ability to predict each participant’s

response to the intervention components.

The obtained values of model structure parameters θ̂jk are stored for each iter-

ation in the search over the optimal model structure for each estimation-validation

data combination. Additionally, all calculated fit indices are saved. Finally, the model

structure that provides the highest weighted average fit Fwa across all DSPSA iter-

ations, for all data combinations is selected. This process is repeated for all of the

three outputs of interest.

For the sake of the repeatability of the results and secondary data analysis in

YourMove, a unique seed number is randomly generated for each participant, which

dictates the realization of the stochastic search in DSPSA. As order and feature se-

lection search is a non-convex optimization problem, convergence is not guaranteed.

Therefore, a sufficiently large number of iterations N is needed to adequately search

over DSPSA parameters space. Then, the combination of orders and features with
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the highest weighted average NRMSE fit Fwa is selected, as long as it satisfies spec-

ified conditions to ensure the operability of the controller. However, utilizing more

iterations increases the computational time associated with DSPSA, while the ben-

efit diminishes in terms of improving NRMSE fits (Kha et al., 2022). Particularly

for YourMove, computational time is quite costly with the limited period available

for model estimation before initiating the controller phase. In YourMove, partici-

pants are enrolled automatically into the controller phase, in batches of around 1-4

participants, upon completion of the system identification phase. Model estimation

and controller decisions take place on the server (online and overnight) within a lim-

ited window of four hours. Accounting for this trade-off, the default total number

of iterations is set up to N = 10 iterations, which averages around 20 minutes per

participant to estimate MISO models for all outputs of interest and construct a full

model, utilizing the available computational resources on the server.

As presented in Section 5.3.2, cross-validation fits are not the only criterion for

model validation. Another important criterion is the nature of the estimated dy-

namics, which can be represented in the characteristics of the step responses. In the

context of YourMove, for the closed-loop intervention to be applicable, the steady-

state gain between the main intervention component, Goals u8 = ξ8, and Behavior

y4 = η4 must be positive. That is

P (∞) = lim
s→0

y4(s)

u8(s)
> 0 (6.17)

Otherwise, the optimal solution of the optimization problem, based on the predictive

model, would be trivial; the controller would deliver the minimum amount of Goals

allowed within constraints. Therefore, to ensure the practicality and applicability

of the controller, the selected model for each participant cannot describe a negative

steady-state gain in Behavior with respect to Goals.
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To satisfy this requirement, an iterative procedure is followed. In this procedure,

condition (6.17) is checked for all of the 350 models estimated for Behavior (a model

per each of the 10 iterations for 35 possible data combinations). The model that

satisfies the gain condition and has the highest weighted fit average Fwa is selected.

If none of the 200 estimated ARX models satisfies the condition in (6.17), then a new

seed number is generated participant and the number of iterations is increased by 5

iterations for this participant, in an effort to expand the search space to find a better

model. This procedure is repeated until a model that abides by (6.17) is reached, or

the number of DSPSA iterations reaches N = 25. Finally, if no model is found that

satisfies the gain condition, the model with the largest Fwa is selected and adjusted

to have zero gain between Goals and Behavior.

Based on a priori knowledge from the JustWalk data analysis (see Section 5.3.2),

PA behavior change systems are not of a high order (Kha et al., 2022; El Mistiri et al.,

2023; Freigoun et al., 2017). Hence, the upper and lower bounds on possible model

orders for all inputs and outputs are specified as:

nlb
a = 1, nub

a = 3 (6.18)

nlb
b = 1, nub

b = 3 (6.19)

nlb
k = 1, nub

k = 1 (6.20)

For the initial values utilized to construct θ̂0, all features are selected, and model

orders are selected as na = 2, nb = 2, and nk = 1 for all outputs and estimation-

validation data combinations. The remainder of the DSPSA user-specified parameters

utilized in YourMove study are selected based on previous work and recommendations

by Wang (2013), which are presented in Table 6.2.

In model estimation for each output, interrelationships between outputs are not

considered in YourMove. This is done as the outputs of Self-Efficacy and Behavioral
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Table 6.2: DSPSA Parameters Used in YourMove Study.

Parameter Value Parameter Value

A 0.10N a 0.25

α 0.501 c 1

Outcomes are self-reported constructs, which are subject to higher rates of missing-

ness. Moreover, with the limited number of available data samples and the total num-

ber of considered exogenous inputs, interrelations between outputs are not considered

to avoid ill-conditioned matrices. The estimated MISO models for each participant

are combined in a generalized model structure to implement in the controller phase,

which is described in the following subsection.

6.4.2 Generalized Predictive Model for HMPC

As mentioned in the earlier sections, the idiographic ARX models estimated

through DSPSA are unique to each participant, not only in terms of dynamics but

also in terms of the inputs utilized to estimate the model and the modeled outputs

(based on the availability of measurements and the optimal feature selection from

DSPSA). Hence, a common structure is needed to serve as the predictive model in

the HMPC formulation, which provides a generalized framework to commission the

controller for all participants, yet allows for the personalization of the closed-loop

intervention for each participant through tuning and constraints assignment.

To accomplish this task for each participant, the estimated DSPSA ARX idio-

graphic MISO models are converted into a minimal discrete-time state-space repre-

sentation with no direct feedthrough (nk ̸= 0), then augmented into a multi-output
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model:

xk+1 = Axxk +Bξk (6.21)

yk = Cxk (6.22)

where ξ ∈ Rnξ represents all the considered exogenous inputs, y ∈ Rny is for all the

modeled outputs, and x ∈ Rnx is a vector representing all the identified states. For

each input-output relationship, if the particular input is not selected by DSPSA its

coefficients are set to 0 in the B matrix. Then, the estimated coefficients in the state-

space model are rearranged to populate the predictive model in the devised 3DoF-KF

HMPC, introduced in 5.4.1.

xk+1 =Axxk +B1uk +B2δk +B3zk +Bddk (6.23)

yk = Cxxk + d′k + vk (6.24)

E2δ(k) ≤E5 + E4y(k) + E1u(k)− E3z(k)− Edd(k) (6.25)

where x ∈ Rnx , and u ∈ Rnu are modeled system states and manipulated variables;

y ∈ Rny is the output vector; d, d′, and v are modeled measured disturbance inputs,

unmeasured disturbances, and measurement noise, respectively. δ ∈ {0, 1}nδ and

z ∈ Rnz are binary and discrete auxiliary variables that are introduced to convert dis-

crete, logical decisions into their equivalent linear inequality constraints represented

in (6.25). Variables nx, nu, ndist, and ny are the total number of states, controller

manipulated inputs, measured disturbances, and outputs, respectively.

In a departure from prior work (Khan et al., 2022; Martín et al., 2016a; Cevallos

et al., 2022), the manipulated inputs are considered continuous, rather than fixed

categorical values. This reduces the complexity of the controller formulation, as the

only logical condition considered in the decision-making is for awarding the Granted

Points through the “big-M” matrix.
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The manipulated inputs for the controller are fixed in the following sequence:

u = [u8 u9 u10]
T , nu = 3 (6.26)

The representative coefficients for the manipulated variables in matrix B1 follow the

same sequence in a column arrangement. As per the measured disturbances, the

columns in matrix Bd are ordered in accordance with the fixed arrangement of the

measured disturbance inputs vector as follows:

d = [ξ7T ξ7wknd ξ7PredTypical ξ5]
T , nd = 4 (6.27)

In the same principle, the outputs for the system are arranged as shown in (6.28),

and the corresponding coefficients in the rows of matrix Cx are organized accordingly.

Note that y7 represents the goal attainment, which is augmented into the state-space

representation after the estimation of the system model, where y7 = y4 − u8.

y = [y3 y4 y5 y7]
T , ny = 4 (6.28)

This generalized formulation provides the ability to accommodate the various

models estimated for each of the participants; by assigning values of zero to the

coefficients corresponding to inputs not selected by the DSPSA, and also for outputs

that cannot be modeled due to a lack of adequate measurements. This generalized

model structure also maintains an intuitive, straightforward scheme for constraint

enforcement and tuning of the controller.

The states obtained from the minimal realization of the estimated DSPSA ARX

model are arbitrary states that lack physical meaning. Furthermore, the number of

states representing each output varies between participants based on the regressor

orders for each modeled output. Hence, the controller formulation is geared towards

the optimization of the measured output, rather than state feedback. This allows us

to tune and constrain the outputs in a meaningful way that is guided by recommen-

dations from behavioral scientists.
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6.4.3 Missingness and Data Imputation

Because of the limited time available for online computations, it is not possible to

implement model-based or sophisticated methods for data imputation in YourMove.

Therefore, a simple method is utilized to impute missing data points on the server

utilizing the moving average. In this method, the moving average of the last 7 days is

calculated and used to replace the missing data point for the respective measurement.

Both the raw signals (with missingness) and the imputed signals are stored separately

in the database, for future secondary data analysis. Moreover, the imputed signals

are used to impute any missing future data points. Following this approach, when a

participant stops wearing their activity tracker or responding to EMA surveys, the

measurement signal settles at a constant value.

6.5 Control Strategies

As illustrated in Chapters 4 and 5, judicious formulation of the optimization prob-

lem in MPC for closed-loop behavioral interventions is crucial for its success. The

implementation of the 3DoF-KF HMPC formulation, in one of the first of its kind

COT interventions, is the fruit of years of research and meticulous consideration.

This served as the basis for the real-world implementation in the ongoing YourMove

study. As this intervention is quite extensive in scale (190+ participants in total to be

enrolled in the closed-loop intervention), a wide variety of participant-specific models

and responses are encountered. Therefore, sophisticated tuning rules and logical con-

ditions are devised, under the guidance of behavioral scientists in our team, to ensure

the robustness of the controller, the automation of the intervention, and the delivery

of personalized interventions that lead to meaningful behavior change. In this sec-

tion, the utilized tuning rules and logical conditions in YourMove are described, along
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with the reasoning behind them. Default tuning parameters used in the closed-loop

intervention are presented in Table 6.3. The algorithm followed in adaptively adjust-

ing controller tuning and controller reconfiguration (dubbed by behavioral scientists

in the team as “digital PA coach tuning”) is essential for the implementation of per-

sonalized closed-loop interventions with minimal human input and is summarized in

Fig. 6.11. It is important to note that controller reconfiguration and adaptive tuning

parameter adjustment are done through external conditions. They are not a part of

the logical conditions in the MLD matrices in the HMPC formulation.

6.5.1 Default Tuning

In YourMove, default controller design parameters are chosen to provide partic-

ipants with challenging, but achievable, goals and guide them toward healthy levels

of PA. By design, the selected controller tuning parameters are based on the assump-

tion that the participant is engaged in the intervention, and is capable of successfully

attaining the provided daily goals as they are gradually increased toward the desired

level of PA. However, if a participant finds the provided daily Goals extremely am-

bitious, or easily attainable under the default controller design, then the controller

is reconfigured and the tuning parameters are adaptively adjusted. The selected pa-

rameters are the result of careful considerations, behavioral scientists’ feedback, and

preliminary simulations based on the estimated models of the first batch of enrolled

participants.

The 3DoF-KF HMPC formulation enables independent and simplified tuning for

setpoint tracking, measured disturbance rejection, and unmeasured disturbance rejec-

tion by selecting the desired closed-loop speed of response, as explained in Chapter 5.

For setpoint tracking, the 3DoF-KF HMPC is formulated to track a single output,

which is the measured daily step count, Behavior y4. Hence, its respective weight
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in the output reference tracking penalty weights matrix Wy is set to one, while the

remainder of the outputs are given a weight of zero. The setpoint for Behavior is set

at y4,r = 10, 000 steps/day, based on established CDC recommendations. Moreover,

the reference filter in this case is only utilized for this output, as expressed in (6.29).

Wy = diag(w3,y, w4,y, w5,y, w7,y) = diag(0, 1, 0, 0) (6.29)

αr = [α1
r α2

r α3
r α4

r ]
T = [0 0.9 0 0]T (6.30)

For measured disturbance rejection, a Type-I filter is utilized, as only step distur-

bances are expected to influence the system. The selected filter parameters for the

considered measured disturbances are presented in (6.31).

αd = [α1
d α2

d α3
d α4

d]
T = [0.5 0.2 0.4 0.4]T (6.31)

A Kalman filter is implemented to provide the third degree of freedom in controller

tuning, which accounts for unmeasured disturbances are plant-model mismatch inde-

pendently from setpoint tracking and measured disturbance rejection, as described in

Section 5.4. Reliable measurements influencing controller decisions in the closed-loop

intervention are Behavior y4 and Goal Attainment y7. Therefore, their respective

weights are set according to (6.32) to correct for the difference between predicted

values and actual measurements from the feedback signals.

Fa = diag(f 1
a , f

2
a , f

3
a , f

4
a ) = diag(0, 0.2, 0, 0.5) (6.32)

Moreover, a lower constraint is enforced y7 to ensure the provision of moderately

ambitious Goals. The lower bound on Goal Attainment is selected at y7,min = −2, 500

steps/day to define an acceptable margin by which a goal on a certain intervention day

can be missed by the controller. This margin is based on the expertise of behavioral

scientists in the research team, and falls within one standard deviation observed in
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step count data; this constraint is “softened” through the implementation of slack

(see Section 5.4). The respective slack weight for Goal Attainment is set by default

at Ws(4, 4) = 5 to provide the controller with room to challenge the participants.

In addition, an upper constraint is also placed on Goal Attainment y7,max = 2, 000

steps/day, to steer the controller towards providing daily goals that can be exceeded by

a significant margin based on the estimated participant-specific model. In summary,

ymin = [y3,min y4,min y5,min y7,min]
T = [−∞ −∞ −∞ − 2, 500]T (6.33)

Ws = diag(w3,s, w4,s, w5,s, w7,s) = diag(0, 0, 0, 5) (6.34)

ymax = [y3,max y4,max y5,max y7,max]
T = [−∞ −∞ −∞ 2, 000]T (6.35)

Both Goal Attainment constraints and the slack weight are adaptively adjusted within

the intervention for each participant, based on the participant’s performance as de-

scribed subsequently in this section.

In the default controller design, target reference tracking is not implemented on the

manipulated variables, as the weight matrix for manipulated variables target tracking

Wu is set to minimal values. Wu is not set to zero, to guarantee that the quadratic

coefficients matrix in the objective function H is positive semi-definite. This is also

the case for the movesize suppression penalty weight matrix W∆u; see Table 6.3.

To ensure sensibility and practicality of the delivered intervention components,

daily goals and financial incentives, upper and lower constraints are placed on the

manipulated variables and their movesize. The lower constraints on the Expected

Points u9,min and Granted Points u10,min are placed to guarantee that their values are

positive, as expressed in 6.36. On the other hand, a lower constraint on Goals u8,min

is enforced to guarantee that the delivered daily goals are not below a certain level,

even when the participant’s performance drops significantly. The level at which Goals

are constraints for each participant depends on the participant’s median performance
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in the baseline phase. If the baseline median is greater than 7,000 steps/day, the

participant is considered an active participant. In such cases, the lower bound on

goals is selected at u8,min = 5,000 steps/day. The constraint is lowered to u8,min =

4,000 steps/day for less active participants in the baseline phase, with a median

between 5,000 to 6,999 steps/day. Finally, for the least active participants in the

baseline phase, with a median less than 5,000 steps/day, the lower bound is specified

as u8,min = 3,000 steps/day.

umin = [u8,min u9,min u10,min]
T = [u8,min 0 0]T (6.36)

As for upper constraints in the manipulated variables, they are set based on physical

and financial limitations. The upper bounds on Expected Points and Granted Points

are set to 500 points/day, to fall within budgetary constraints for the study. On the

other hand, the upper bound on Goals is defined as u8,max = 15, 000 steps/day, to

avoid providing the participants with extremely high daily goals.

umax = [u8,max u9,max u10,max]
T = [15, 000 500 500]T (6.37)

Upper bounds are also placed on the movesize for Goals ∆u8,max = 2,000 steps/day,

to ensure that any increase in the daily goals is gradual and allows the participant to

adapt and internalize increases in PA levels:

∆umax = [∆u8,max ∆u9,max ∆u10,max]
T = [2, 000 ∞ ∞]T (6.38)

6.5.2 Maintenance Reconfiguration

The aim of the COT framework is to facilitate sustained behavior change toward

healthy behaviors. An essential part of this framework is the maintenance phase,

where different components of the intervention can be phased off. In YourMove, the

financial rewards component of the intervention (i.e., Expected Points and Granted
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Points) are used minimally in the maintenance phase, to avoid financial dependency.

When the maintenance phase is activated, the controller is reconfigured by adjusting

the target on Expected Points u9,r to 0 points/day and pursuing this target through

its associated weight w9,u = 1. The maintenance phase is activated when the partici-

pant’s performance is within a predefined tolerance bound for at least ntol − 1 times

during the last ntol days, as described in (6.39).

δM ⇔
ntol−1∑
i=0

(|y4,k−i − y4,r| ≤ tol)i ≥ ntol − 1 (6.39)

If the participant relapses and their performance does not satisfy the maintenance

activation condition defined in (6.39), then the initiation face is reactivated, and the

controller is reconfigured to the default formulation and tuning.

Table 6.3: Default Control Design Parameters for YourMove.

Parameter Value Parameter Value

p 20 ∆u9,min −∞

m 10 ∆u10,min −∞

Wu diag(0, 0.01, 0) tol 500 steps/day

W∆u diag(0.01, 1× 10−6, 0) Wu (maintenance phase) diag(0, 1, 0)

∆u8,min −∞ ntol 7 days

6.5.3 Stagnation in Disturbance Measurements

One of the issues faced in behavior change interventions in general, including

YourMove, is the limited ability to measure important psychological constructs that

should influence (or be influenced) by the intervention. Chapters 4 and 5 present a

robust control strategy to overcome this challenge in regards to output constraints for
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Figure 6.11: Flowchart Summarizing the Algorithm Followed in Tuning the Con-

troller Based on the Participant’s Performance.
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PA interventions, which is followed in YourMove. However, the problem of missing-

ness persists with EMA-measured behavioral constructs considered as disturbances

in the controller model (Perceived Barriers ξ5, and Perceived Typicalness of Context

ξ7Typicalness). Based on this observation, the control strategy utilized in YourMove

must account for such circumstances.

In many cases for these particular constructs, participants either elect to provide

the same answer to the EMA surveys or not comply with EMA measurements. In both

scenarios, measurements for these constructs stagnate at a constant level that does

not represent the true exogenous factors impacting the system. Consequently, be-

havioral scientists advise that these disturbances should not influence the closed-loop

intervention decisions made by the controller. To mitigate the impact of stagnation

in EMA-measured disturbances on the controller’s objective function, we take ad-

vantage of the 3DoF-KF HMPC formulation and the rolling mean approach for data

imputation. This is done by adjusting the initial value of the measured disturbances

to equal the 7-day moving average. As a result, stagnant disturbance measurements

for the mentioned behavioral constructs do not influence controller decisions.

In the 3DoF-KF HMPC formulation, deviation variables are utilized in the con-

troller derivation (see Section 5.4). Moreover, in the implementation of the controller,

all measured variables are considered in terms of deviation from initial values, which

are assumed to be at steady-state. When measurements of behavioral constructs

considered as measured disturbances become unreliable due to a lack of compliance

from participants, their value settles at a constant level. This level is equivalent to

the level a specific participant keeps on providing for EMA surveys, or the moving

average value used for data imputation. In both cases, the utilization of the moving

average as the initial condition for disturbances at each decision point for the con-

troller cancels out the impact of such stagnant measurements on decision-making; the
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effect of these disturbances on the system is treated as an unmeasured disturbance.

As the 3DoF-KF HMPC formulation utilizes Kalman filtering to ensure robustness

to unmeasured disturbances, this procedure for canceling out faulty measurements

does not negatively affect the performance of the controller, however, it can reduce

the degree of personalization of the closed-loop intervention.

6.5.4 “Open-Loop” Policy

As described in Chapters 4 and 5, when a low steady-state gain between Behavior

and Goals exists in the predictive model, the optimal solution for MPC controller is

to increase the goals as much as possible to push the participants towards more PA.

As a result, extremely ambitious daily goals would be given to participants, which

is not an effective way to influence sustained healthy behavior change. The devised

control strategy addressed this problem, through setpoint tacking on the controlled

variable (Behavior y4) while constraining the readily available secondary output of

GA. However, in cases of extremely low or negative steady-state gain in Behavior

with respect to Goals, this formulation of the controller’s objective proves ineffective.

Moreover, it is observed that some of YourMove participants reach levels of daily

steps that exceed the closed-loop setpoint of 10,000 steps/day, who can be labeled as

“overachievers”. For overachievers, a setpoint of 10,000 steps/day on the controller

variable leads to providing lower Goals than the participant’s performance. This

defeats the purpose of the controller, as it would discourage the participant from

overachieving and increasing their PA levels.

Therefore, there is a need to reconfigure the controller for such participants, to

ensure the benefit of the intervention and provide “ambitious yet achievable” goals.

This is done by disabling setpoint tracking on the controlled variables, Wy = 0.

Instead, a target on Goals u8,r is set in place. This reconfiguration is applied for
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both low gain and overachieving participants, with the logical conditions to activate

it specified in (6.40).

δolp = 1 ⇔ δlowgain ∨ δoverachiever (6.40)

Where δlowgain is the established condition for low-gain tuning, specified by

δlowgain = 1 ⇔ lim
s→0

y4(s)

u8(s)
≤ 0.2 (6.41)

and δoverachiever is the condition to reconfigure the controller for overachievers, as

defined by

δoverachiever = 1 ⇔

(
7∑

i=1

(y4,k−i > 12, 000)i ≥ 5

)
∧

(∑7
i=1 y4,k−1

7
> 10, 000

)
(6.42)

The levels to which the Goals target is adjusted depends on both the participant’s

model and performance. The low-gain tuning policy is activated when the modeled

steady-state gain between Behavior y4 and Goals u8 for a given participant satisfied

the condition shown in (6.41). Under this tuning policy, the target for Goals is set

to u8,r = 10, 000 steps/day, to gear the controller towards providing daily step goals

that lead the participants to more PA.

u8,r = 10, 000 steps/day,Wu(1, 1) = 1 ⇔ δlowgain (6.43)

On the other hand, when a participant’s performance satisfies the conditions for

overachievers specified in (6.42), a Goals target of u8,r = 13, 500 steps/day is followed.

In addition, there is no need to provide financial incentives for overachievers. Hence,

the financial rewards component of the intervention is turned off for participants who

satisfy (6.42). This is done by adjusting the upper bound on the Expected Points to

zero, that is umax(2) = 0 points/day:

u8,r = 13, 500 steps/day, umax(2) = 0 points/day ⇔ δoverachiever (6.44)
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In this tuning scheme for overachievers, the controller does not give points in contrast

to the minimal use of the financial rewards approach followed in the maintenance

phase. It is worth noting that in both cases of the open loop policy tuning, Goal

Attainment y7 constraints are enforced and adaptively tightened to ensure the delivery

of achievable goals.

6.5.5 GA Constraints Tightening

A core control strategy utilized in YourMove is the implementation of output

constraints on the Goal Attainment y7 measurement to ensure the provision of “am-

bitious yet achievable” Goals. Therefore, it is crucial to carefully select constraint

levels on GA to reach a balance between pushing the participants towards higher lev-

els of PA and providing attainable goals to maintain engagement in the intervention.

This is particularly relevant for cases where gains of the manipulated variables (espe-

cially Goals) for the estimated participant-specific models are insufficient to facilitate

positive Goal Attainment ; see Section 5.5.2. The implementation of slack to relax

constraints on GA ensures the feasibility of the optimization problem. However, it al-

lows the violation of the constraints, and consequently, the provision of very ambitious

daily goals that can lead to participant dropout. To counter this effect, constraints on

GA and the slack weight associated with them are dynamically adjusted in YourMove

based on the participant’s performance over the last 7 days.

The default tuning parameters utilized in YourMove, shown in Table 6.3, are se-

lected to allow the controller to challenge the participants initially. The default tuning

provides the controller with room to deliver ambitious goals through the selected small

values for the lower constraint on GA and its corresponding slack weight.

ymin(4) = −2, 500 steps/day,Ws(4, 4) = 5 (6.45)
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These selected values are the result of careful considerations and simulations, incorpo-

rating behavioral scientists’ feedback. As the intervention progresses, it is important

to adjust these tuning parameters based on the participant’s performance. For partic-

ipants who find the daily goals extremely challenging and fail to exceed them, stricter

GA constraints and slack weights are gradually utilized as the number of days with

negative GA increases within the last 7 days of the intervention. This is done adap-

tively, based on logical conditions considering the feedback signal of each participant’s

performance, which are presented below in the order by which they occur.

The adaptive tightening of GA constraints starts when a participant does not meet

the daily goals on three out of the last 7 days, as shown in (6.46). In this case, the

lower bound on GA and the slack weight are increased to ymin(4) = −2, 000 steps/day

and Ws(4, 4) = 25, respectively.

δGA−3 = 1 ⇔
7∑

i=1

(y7,k−i < 0)i = 3 (6.46)

ymin(4) = −2, 000 steps/day,Ws(4, 4) = 25 ⇔ δGA−3 = 1 (6.47)

In addition, based on the expertise of behavioral scientists in the research team,

the most recent days are more reflective of the participant’s conditions and ability

to achieve the provided goals. Hence, a higher emphasis should be placed on the

participant’s performance on the most recent days. Therefore, a higher slack weight

is utilized when the goals are not achieved in the last three days, in accordance with

(6.48)-(6.49), to “harden” GA constraints further:

δGA−3r = 1 ⇔
3∑

i=1

(y7,k−i < 0)i = 3 ⇒ Ws(4, 4) = 30 (6.48)

Ws(4, 4) = 30 ⇔ δGA−3r = 1 (6.49)

In a similar manner, a tighter GA constraint enforcement is implemented when
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Goal Attainment is negative for four out of the last 7 days, as shown in (6.50)-(6.53).

δGA−4 = 1 ⇔
7∑

i=1

(y7,k−i < 0)i = 4 (6.50)

ymin(4) = −1, 500 steps/day,Ws(4, 4) = 35 ⇔ δGA−4 = 1 (6.51)

Note that in this case the slack weight on GA constraints is significantly increased

when the goals are not achieved for the last four consecutive days prior to the decision

point k.

δGA−4r = 1 ⇔
4∑

i=1

(y7,k−i < 0)i = 4 (6.52)

Ws(4, 4) = 55 ⇔ δGA−4r = 1 (6.53)

In cases where Goal Attainment remains negative despite the adjustments made to

controller tuning, a more aggressive approach is followed to ensure the attainability of

the daily step goals, by adjusting input and output constraints as well as slack weights:

δGA−5g = 1 ⇔
7∑

i=1

(y7,k−i < 0)i ≥ 5 (6.54)

ymin(4) = −1, 000 steps/day ⇔ δGA−5g = 1 (6.55)

What distinguishes this approach is the enforcement of significantly stricter con-

straints, especially on the manipulated variable Goals u8. In this approach, the up-

per constraint on u8 is dynamically adjusted based on the average of the participant’s

performance for the last 7 days, as expressed in (6.56):

umax(1) =

∑7
i=1 y4,k−1

7
+2, 000 ⇔

(
δGA−5g ∧

∑7
i=1 y4,k−1

7
+ 2, 000 < 15, 000

)
(6.56)

To provide the optimization problem with feasible constraints, the lower constraint

on bound Goals is also reduced

umin(1) = 1, 000steps/day ⇔ δGA−5g (6.57)
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Moreover, the penalty weight for slack is gradually increased as the number of days

with negative Goal Attainment increases, as described in (6.58)-(6.60).

Ws(4, 4) = 65 ⇔

(
δGA−5g ∧

7∑
i=1

(y7,k−i < 0)i = 5

)
(6.58)

Ws(4, 4) = 75 ⇔

(
δGA−5g ∧

7∑
i=1

(y7,k−i < 0)i = 6

)
(6.59)

Ws(4, 4) = 100 ⇔

(
δGA−5g ∧

7∑
i=1

(y7,k−i < 0)i = 7

)
(6.60)

Furthermore, the implementation of an upper constraint on Goal Attainment can

be utilized to ensure the provision of ambitious daily goals. This is done for cases

where a participant consistently outperforms the provided Goals by a significant mar-

gin, without satisfying the condition for overachievers defined in (6.42). Multiple

reasons can lead to such circumstances, including plant-model mismatch. To account

for such scenarios, an upper output constraint is placed on GA when the participant

overachieves Goals by at least a 3,000 steps/day margin for more than four out of

the last 7 days. Additionally, the upper constraint on GA is dropped, as expressed

in (6.61)-(6.62).

δGA+5 = 1 ⇔
7∑

i=1

(y7,k−i ≥ 3, 000)i ≥ 5 (6.61)

ymin(4) = −∞, ymax(4) = 300 steps/day ⇔ δGA+5 = 1 (6.62)

6.5.6 Expected Points Reconfiguration

It is observed that the DSPSA ARX estimated models for some participants might

not select Expected Points as a relevant input for the participant. Moreover, some

models characterize negative steady-state gain between Behavior y4 and Expected

Points u9. Under such circumstances, the controller is reconfigured by adjusting the
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target on Expected Point u9,r and its associated penalty weight.

δlowEPgain = 1 ⇔ lim
s→0

y4(s)

u9(s)
≤ 0 (6.63)

u9,r = 250 points/day,Wu(2, 2) = 1 ⇔ δlowEPgain (6.64)

This is done to steer the controller towards offering financial incentives, in the form

of Expected Points, to motivate the participants to engage in more PA.

6.5.7 Transitioning Back to Default Tuning

Participants’ engagement in PA and compliance with wearing the activity-tracking

device can vary tremendously within the span of the study. For instance, the effect of

wearing a new activity tracker can lead to a temporary increase in the number of steps

a person takes per day at the beginning of the intervention. In addition, participants’

ability to engage in PA may decrease at different periods of the intervention due

to various life events (e.g., undergoing surgery, or getting a new job). Therefore, a

participant’s average performance can drop at any time. Similarly, a participant’s

average performance can bounce back abruptly, once the life events subside or the

participant adapts to them (e.g., recovering to good health, or adapting to a new

work schedule). When such life events unfold, they can render the transition to

default tuning and controller formulation infeasible, because of unrealizable default

constraints on the manipulated variable Goals u8.

The infeasibility in this case is caused by conflicting upper movesize constraint

∆u8,max and the lower input constraint u8,min. To guarantee the feasibility of the

controller’s objective function and a smooth transition back to the default controller

configuration, the movesize constraint for Goals ∆u8 is adaptively adjusted as ex-

pressed in (6.65)-(6.66). Relaxing the movesize constraint in this manner guarantees

the feasibility of delivering a daily goal for the participant that reflects the observed
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bounce back in the participant’s Behavior levels.

δms = 1 ⇔ u8,k−1 +∆u8,max ≤ u8,min (6.65)

∆u8,max = u8,min − u8,k−1 + 500 ⇔ δms (6.66)

6.6 Preliminary Results

The YourMove is currently still underway (Spring 2024), with 94 participants

enrolled in the controller phase. The final results of this study will be analyzed in

future work, once the year-long study is over for the entire study cohort. A total

of 380+ participants are to be enrolled in the study. Half of the participants in

YourMove are randomly selected in the COT intervention group receiving the closed-

loop intervention. The other half of the cohort is assigned to the control group,

receiving a fixed 10,000 steps/day daily step goal throughout the intervention. In

this section, preliminary results for representative participants in the COT group are

presented and discussed.

YourMove is the first COT study implemented in collaboration with the Herbert

Wertheim School of Public Health and Human Longevity Science at the University

of California San Diego. The implementation of an automated personalized closed-

loop optimal PA intervention on a large scale has brought about challenges, exposed

bugs, and uncovered many technical issues. A bug in the code base affected the

DSPSA ARX model estimation step for the first few batches of participants, but

this was corrected. The bug led to the selection of the highest weighted average

NRMSE fit model out of the DSPSA models estimated only for the last iteration

in each combination of estimation-validation data, rather than selecting the model

with the highest weighted average NRMSE fit across all estimated models. This bug

was caught and fixed on September 22nd, 2023, and has impacted every participant
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who was enrolled in the controller phase before that date (approximately 30% of

the intervention group) to a varying extent. DSPSA ARX model estimation was

re-executed during the closed-loop stage of the intervention for affected participants.

Two out of the three representative participants presented in the subsequent section

were affected by this technical issue.

6.6.1 Participant A

Participant A is an example of an adherent participant who is engaged in the

intervention. This participant was able to wear their watch throughout the observed

study days, averaging 1,319 minutes/day of fitbit wear-time throughout the inter-

vention. As can be seen in Fig. 6.12, in the baseline stage this participant did well,

averaging approximately 6,647 steps/day with a median of 6,405 steps/day. Conse-

quently, a scaled goals factor between 0 to 0.25 was utilized to personalize the input

signals realizations for this participant, as described in Section 6.3.4. As a result, the

range covered by Goals u8 in the system identification stage is between 6,405 and

8,005 steps/day. On the 11th day of the intervention, the participant received the

first daily step goal at the beginning of the system identification stage. This initial

participant engagement in the intervention is evident in the noticeable increase in

Behavior y4 levels upon the introduction of the intervention components.

In the first cycle of the system identification stage of the intervention, this partic-

ipant’s Behavior peaked at the highest level observed throughout this stage at 19,632

steps/day, significantly outperforming the provided goals. As seen in Fig. 6.12, Be-

havior y4 decreased off that peak and settled at a level slightly higher than the range

covered by the personalized Goals signal. This participant managed to reach or ex-

ceed the daily goals for all but one day out of the 132 days in the system identification

stage. Moreover, the average step count for this participant over the system identi-
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fication is 9,485 steps/day, which is 1,480 steps/day higher than the maximum goal

given in that period. This can indicate that the provided daily goals were not ade-

quately challenging for this participant, which can lead to a mismatch between the

estimated dynamics from the system identification data and the plant dynamics dur-

ing the closed-loop intervention (when more challenging goals were provided). One of

the possible causes of this issue is the short duration of the baseline stage; the use of

the median of 10 days might not be a good representation of the participant’s base-

line. Secondary data analyses, including cross-participant analyses, will help explore

such possibilities and guide future COT experiments, by revising and improving the

logic utilized in the personalization of the input signal design to deliver “ambitious

yet achievable” goals.

The presented model dynamics for this participant are the result of the corrected

DSPSA ARX model estimation done on September 22nd, 2023. The DSPSA ARX

algorithm did not select Temperature ξ7T , Expected Points u9, and Granted Points

u10 as relevant inputs for the model estimated for this participant; only Weekend

ξ7wknd, Perceived Barriers ξ5, Perceived Typicalness ξ7Typicalness, and Goals u8 were

selected, as illustrated by the unit step responses in Fig. 6.13. The model with

the highest weighted average NRMSE fit Fwa was estimated utilizing data from the

first four cycles (66.67%). Goodness-of-fit NRMSE indices for the estimated model

are 9.30% over validation data, 3.87% over estimation data, and 10.15% across the

overall dataset collected in the system identification stage. While the fit percentages

of the estimated model for this participant are not significantly high, some important

system dynamics are explained by the estimated model. For instance, one of the

noticeable characteristics of the observed Behavior for this participant in the system

identification stage is that the majority of the days with a significantly high daily

step count occur on weekends, and on days where Perceived Typicalness ξ7 is high.

226



Figure 6.12: Participant A Data for the Three COT Stages of YourMove Study.

The Open-Loop Stages (Consisting of Baseline and System Identification Stages) Are

Highlighted in Red and Cyan, Respectively. The Closed-Loop Stage of the Controller

Consists of the Initiation Phase (Unhighlighted), and the Maintenance Phase (High-

lighted in Green).

On the other hand, the participant does not significantly exceed the daily goals on

weekdays, or when ξ7 is low. As observed in Fig 6.13, the magnitude of the steady-

state gains for these two inputs are the highest in the estimated participant-specific

model. Moreover, the inverse response estimated for the impact of Weekend ξ7wknd

contribute to the peaks observed in the participant’s Behavior in response to the

pulses representing weekends in the input signals. Finally, due to the range of the

provided Goals u8 during the system identification experiment, the model is most

likely underestimating the impact of higher goals on the participant’s response. While
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the gain between Goals u8 and Behavior y4 is positive at 0.337, the implemented Goals

range most likely did not produce a dataset informative of the dynamics between the

outputs and Goals at a level where the provided goals are more challenging for the

participant. The work done by Martín et al. (2020) proposes that the relationship

between Goals u8 and daily step count y4 is nonlinear, following an inverted U shape.

Under such an assumption, extremely ambitious and not sufficiently ambitious goals

can lead to the underestimation of the impact of adequately challenging Goals on the

participant’s response.
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Figure 6.13: Unit Step Responses for the Estimated Model Dynamics for Partici-

pant A, Along with Their Respective Steady-state Gains.

Despite the challenges faced in model estimation, the re-estimation of this par-

ticipant’s model due to the reported bug in the code, and the low goodness-of-fit
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for the estimated participant-specific model, the performance of the controller in the

closed-loop phases of the intervention is excellent, and matches expectations based on

previous work and simulations. On the 143rd day of the intervention, the closed-loop

stage of the intervention started as illustrated by the introduction of the setpoint

reference y4,r and filtered setpoint reference y4,r,filt. The controller was commissioned

under default tuning in the initiation phase for the first 10 days of the closed-loop

stage of the intervention. As illustrated in Fig. 6.12, during this period the controller

guided the participant towards the desired setpoint of 10,000 steps/day by gradually

increasing Goals u8 and utilizing Expected Points u9. By the 153rd day of the inter-

vention, the participant’s performance was consistently within the tolerance region

and met the condition for maintenance, described in (6.39), activating the mainte-

nance phase. Consequently, the controller is reconfigured and the use of the financial

rewards (u9 and u10) was phased off. The controller provided the participant with

“ambitious yet achievable” goals consistently, while Behavior y4 remained within the

healthy behavior zone consistently from the activation of the maintenance phase. As

observed in Fig 6.12, Goal Attainment y7 constraints were satisfied on most days

within this period of the intervention, the only violation of the lower constrain y7,min

happened on day 158 and was within an acceptable margin. On the 193th day of

the intervention, the DSPSA ARX model estimation algorithm was rerun for this

participant after fixing the bug. As a result, a new participant-specific model was

estimated and then utilized for the remainder of the closed-loop stage of the inter-

vention. The introduction of a new participant-specific model did not have a visible

impact on the controller’s performance. It did not cause transient or abrupt changes

in the manipulated variables for this participant.

By the 200th day of the intervention, a shift in the participant’s behavior possibly

occurred. This is evident in the sudden change in the participant’s Behavior y4 levels
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on weekdays; the participant’s step count was significantly lower on weekdays than

their average performance thus far in the intervention as can be seen in Fig. 6.12.

This shift in the participant’s behavior could possibly be attributed to a change in

system dynamics, which can be attributed from a behavioral science perspective to a

change in life rhythms (e.g., starting a new job, change in work or school schedule,

etc). Moreover, despite the change in the daily step count behavior from this par-

ticipant, levels of EMA-measured disturbances included in the system model remain

within the same range observed in the days prior to this behavioral shift. This in-

dicates that another possible cause for the shift in the participant’s behavior can be

an unmeasured disturbance that started taking effect on day 200. In either case, the

implemented 3DoF-KF HMPC formulation is robust to both plant-model mismatch

and unmeasured disturbances through the Kalman filter implementation. Exist in-

terviews at the end of the intervention will help in identifying the possible root cause

for such a shift in behavior through qualitative survey questions. After day 200, the

participant did not achieve the given daily goals on the observed weekdays with low

step counts which led to the violation of the lower constraint on the Goal Attainment.

During these periods of low participant performance on weekdays, the controller ini-

tially increased the daily goals to push the participant toward a higher level of PA.

However, when the participant did not respond well, GA constraints were tightened

through controller reconfiguration, as described in Section 6.5.5. Consequently, up-

per and low constraints on Goal Attainment y7,max and y7,min were adjusted based

on the participant’s performance and more achievable Goals were delivered to the

participant by the controller, as can be seen in Fig 6.12.

Due to the low Behavior levels for this participant on weekdays after the 200th

day of the intervention, the condition for maintenance was not met consistently. As a

result, the initiation phase was reactivated whenever the condition in (6.39) was not
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satisfied. This allowed the controller to utilize Expected Points u9 and Granted Points

u10, to motivate the participant to engage in more PA each time the initiation phase

was reactivated and GA levels remained negative. Note that Expected Points use

followed the manipulated variable target u9,r = 250 point/day, as described in (6.63)-

(6.64), because of the zero steady-state gain between Behavior and Expected Points

in the participant-specific model estimated on day 193. The participant responded

well to the reactivation of the initiation phase. Each time the initiation phase was

reactivated, Behavior y4 level improved and rose back to the healthy behavior zone,

which reintroduced the maintenance phase, as illustrated in Fig. 6.12. Additionally,

after the 200th day of the intervention, the participant reached significantly high

Behavior levels after every dip in their performance. This can be attributed to the

participant compensating for missing the provided Goals on the previous days.

The presented results illustrate the effectiveness of the 3DoF-KF HMPC-based

closed-loop intervention for this participant. The average level of the participant’s

Behavior in the closed-loop stage of the intervention is 11,383 steps/day, which is

above the desired setpoint for the daily step count and higher than the average of the

baseline and the system identification stages. In addition, the judicious formulation of

the controller’s objective function through the implementation of adaptive controller

tuning and reconfiguration led to the provision of “ambitious yet achievable” goals for

the majority of the intervention. This robustness of the 3DoF-KF HMPC formulation

proved to be effective, even when the utilized participant-specific model did not have

high goodness-of-fit indices, and in the presence of a plant-model mismatch. This is

particularly illustrated by the consistent controller performance, despite the change in

the predictive model that occurred on day 193 of the intervention for this participant.
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6.6.2 Participant B

Participant B is another adherent participant in YourMove; this participant aver-

aged 1,265.5 minutes/day of wear-time over the presented days of the study. Since the

beginning of the intervention, Participant B has been very active. This is evident in

their performance in the baseline stage. Participant B averaged 15,500 steps/day over

the 10 baseline days with a median of 14,964 steps/day. Hence, the scaled goals factor

signal was scaled to be between 0 and 0.25, resulting in a Goals u8 range of 3,741

steps/day in the system identification stage (between 14,964 to 18,705 steps/days).

On the first day of the system identification stage, the participant did not meet the

daily goal. However, the participant responded to the high daily Goals well at first

by increasing their Behavior levels and reaching daily step counts as high as 23,530

steps/day in the first system identification cycle, as illustrated in Fig.6.14.

Despite the best efforts to adjust to the elevated Goals range, it proved to be very

challenging for this participant. As evident in Fig. 6.14, the participant was not able

to meet the provided ambitious daily goals and maintain high levels of Behavior after

the first goals cycle. Matter of fact, this participant achieved positive Goal Attainment

only on 57 days out of the 132 days system identification stage (48.18%). Furthermore,

the average Behavior level for this participant over the system identification stage is

15,506 steps/day. This indicates that the daily goals provided in this were extremely

challenging for the participant, which can lead to underestimating the impact of

adequately challenging Goals on Behavior, causing a mismatch between the dynamics

of the model estimated based on system identification stage data and the real system

dynamics. The challenging Goals signal range in the system identification phase

provided to this participant affirms the need for improvements to the personalization

of the input signals; the provided daily Goals in the system identification experiment
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Figure 6.14: Participant B Data for the Three COT Stages of YourMove Study.

The Open-Loop Stages (Consisting of Baseline and System Identification Stages) Are

Highlighted in Red and Cyan, Respectively. The Closed-Loop Stage of the Controller

Consists of the Initiation Phase (Unhighlighted), and the Maintenance Phase (High-

lighted in Green).

should capture the response of the participant to “ambitious yet achievable” goals.

The examined model for this participant is the result of the corrected DSPSA

ARX model estimation done on September 22nd, 2023. All seven considered inputs

were selected DSPSA ARX algorithm as demonstrated in the unit step responses

presented in Fig. 6.15. The order of the ARX model for this participant is na = 3,

nb = [1 3 1 1 2 3 2], and nk = [1 1 1 1 1 1 1]. Four out of the six system identi-

fication cycles (66.67%) were utilized to estimate this model. The four cycles used

as estimation sub-experiments for this participant are the first, second, fourth, and
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sixth cycles. The estimated participant-specific model yielded NRMSE goodness-of-

fit indices of 15.86%, 14.17%, and 17.38% over the validation, estimation, and overall

data, respectively. Note that the steady-state gain between Goals u8 and Behavior

y4 is at 0.139, which is low enough to place this participant in the “open-loop” control

policy in the closed-loop stage of the intervention, see Section 6.5.4. This is the result

of the elevated Goals levels provided to the participant in the system identification

stage. Contrary to Participant A, Participant B was less active over weekend days;

Participant B walked 1,423 steps/day less on weekends compared to weekdays over

the system identification stage. This is reflected in the unit step response dynamics

for Weekend ξ7wknd, presented in Fig. 6.15, where the inverse underdamped response

captures the immediate decrease in Behavior levels on weekends.

Closed-loop data for Participant B showcases another successful personalized closed-

loop 3DoF-KF HMPC-based intervention, as demonstrated in Fig.6.14. Because of

the high daily step count for this participant at the end of the system identification

stage, the condition for maintenance was met from the first day of the closed-loop

stage of the intervention. As a result, this participant entered the closed-loop stage

directly in the maintenance phase, and there was no need for an initiation phase.

Therefore, the use of the financial rewards component of the intervention was mini-

mal after day 143. Additionally, the high performance of Participant B at the end of

the system identification stage satisfied the condition for overachievers in the “open-

loop” control policy, where the target reference tracked by the controller objective

function is on the manipulated variables, see Section 6.5.4. Therefore, the controller

was reconfigured to follow a target of u8,r = 13,500 steps/day each time the condition

in (6.42) was satisfied. In addition, because of the low gain between Behavior and

Goals in the estimated participant-specific model, Participant B satisfied the low gain

condition (6.41) in the “open-loop” control policy as well. Consequently, each time
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Figure 6.15: Unit Step Responses for the Estimated Model Dynamics for Partici-

pant B, Along with Their Respective Steady-state Gains.

this participant’s Behavior y4 levels did not satisfy the condition for overachievers,

the controller was reconfigured to the low-gain tuning in the “open-loop” policy by

adjusting the target on Goals to u8,r = 10,000 steps/day.

The results for Participant B illustrate the effectiveness of the maintenance re-

configuration in helping participants sustain healthy levels of PA. As observed in

Fig. 6.14, Participant B enrolled in the controller stage directly in the maintenance

phase, and remained in the maintenance phase throughout the presented 189 days of

the closed-loop 3DoF-KF HMPC-based part of the intervention. The average daily

step count for this participant over the presented closed-loop stage of the intervention

is 13,087 steps/day, approximately 2,000 steps/day lower than the average Behavior
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level in the system identification stage. However, the average over the closed-loop

stage is considerably higher than the 10,000 steps/day level recommended by vari-

ous health agencies, including the CDC. This participant walked more than 10,000

steps/day on all but two days out of the observed 189 days of the closed-loop stage.

This was achieved through the provision of “ambitious yet achievable” goals through-

out the closed-loop stage of the intervention. As evident in the Goal Attainment y7

signal in Fig. 6.14, Participant B met or exceeded the given Goals on most of the

days in the closed-loop stage. Additionally, the lower constraint on Goal Attainement

y7,min was violated on four days only in this stage. In three out of those four occur-

rences, the margin for violation of the constraint was negligible. The only significantly

negative Goal Attainment in the closed-loop for Participant B occurred on day 236 of

the intervention, where the participant was more than 8,000 steps/short of achieving

the goal. This is believed to be an outlier that could have been possibly caused by

technical issues in data collection, which will be investigated further in secondary

data analyses after the experiment is over for all participants. The predictive model

for Participant B was re-estimated on day 190 of the intervention, after correcting

the described bug in the DSPSA ARX code base. The presented closed-loop data

in Fig. 6.14 do not show that the introduction of the new model on day 190 caused

transient or had a negative impact on the controller’s decisions. The only observed

anomaly in the Goals provided by the controller happened between days 239 to 241

of the intervention, where the given Goals were very low. These low levels of Goals

are believed to be caused by technical issues that impacted measurements on day 236

of the intervention, especially for EMA-measured disturbances.

Closed-loop results for Participant B further affirm the robustness of the 3DoF-

KF HMPC formulation and the effectiveness of the “digital PA couch tuning” rules in

implementing personalized PA behavior change interventions, facilitating the adop-
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tion and maintenance of healthy levels of PA. Even when the conditions of the system

identification experiment were not ideal, the estimated participant-specific model did

not have high NRMSE fit indices, technical issues were faced, and the participant-

specific model was changed during the closed-loop stage, the judicious and robust

formulation of the controller’s objective function managed to deliver “ambitious yet

achievable” daily goals and assisted Participant B in sustaining healthy PA levels.

6.6.3 Participant C

Participant’s C adherence is on par with the previously presented participants.

Participant C wore their Fitbit device every day of the reported intervention days,

averaging 1,267 minutes/day of wear-time. As illustrated in Fig. 6.16, Participant

C was active during the baseline stage, over which this participant averaged 9,920

steps/day with a median of 10,132 steps/day. Consequently, the Goals input signal

was scaled utilizing a scaled goals factor between 0 and 0.25, as described in Section

6.3.4. Therefore, the personalized Goals signal in the system identification stage

covered the range between 10,132 and 12,665 steps/day. Following the baseline stage,

the system identification stage was introduced on the 11th day of the intervention, in

which the participant responded well to the level of the delivered Goals.

During the system identification stage of the intervention, the covered Goals u8

range proved to be adequately challenging for Participant C. This is evident in Par-

ticipant’s C performance throughout this stage, where they were able to meet or

exceed the daily Goals on 72 out of the 132 days of the system identification stage,

reaching 54.6% positive Goal Attainment throughout that period. Additionally, the

average Behavior y4 level for Participant C is 11,179 steps/day which is higher than

their baseline average. This indicates that this participant responded well and was

engaged with the Goals intervention component during this stage. As a result, the
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participant’s average performance in this stage exceeded the CDC-recommended daily

step count of 10,000 steps/day. Another interesting observation about Participant C’s

engagement in the intervention is noted in the EMA-measured disturbances. As can

be seen in Fig. 6.16, Participant C responded to EMA surveys in the system identi-

fication stage in a different manner than in the closed-loop stage. On the majority

of the system identification days, Participant C responded with the same answer to

almost all EMA survey questions or did not respond at all. This can indicate that

Participant C was not very engaged with daily micro-EMA surveys during this stage.

The lack of variability in the EMA-measured exogenous signals can lead to the mis-

representation of real system dynamics in the estimated dynamic model, because of

the lack of persistence of excitation in the signals (Ljung, 1999). On the other hand,

in the closed-loop stage, especially after day 180 of the intervention, Participant C

started providing varying answers to EMA survey questions. This may indicate a

possible shift in the participant’s behavior and engagement in the intervention, par-

ticularly in EMA surveys, during the closed-loop stage which can cause plant-model

mismatch.

The implementation of the DSPSA search algorithm in ARX model estimation

yielded the highest NRMSE goodness-of-fit index in model cross-validation out of

the three representative participants presented in this work. NRMSE fit percentages

for Participant C are 26.47%, 13.40%, and 7.57% for validation, estimation, and

overall data, respectively. The orders of the DSPSA selected model with the highest

weighted average fit percentage Fwa are na = 2, nb = [2 1 3 3 3 2 2], and nk =

[1 1 1 1 1 1 1]. Data for the first, second, third, and fifth input signal cycles were

utilized as estimation sub-experiments (66.67% estimation data), whereas the fourth

and sixth sub-experiments were used in cross-validation (33.33% validation data). As

demonstrated in Fig. 6.17, DSPSA selected all features in the estimated ARX model
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Figure 6.16: Participant C Data for the Three COT Phases of YourMove Study.

Baseline, System Identification, and Maintenance Phases Are Highlighted in Red,

Cyan, and Green, Respectively.

for Participant C.

The dynamics and steady-state gain between Behavior y4 and Goals u8 in the esti-

mated participant-specific model for Participant C reflect their response to “ambitious

yet achievable” daily goals, based on the covered Goals range and the participant’s

performance in the system identification stage. The steady-state gain in Behavior

with respect to a unit step change in Goals is 0.672, as illustrated in Fig. 6.17. One

of the interesting dynamics in the model estimated for Participant C is observed

in the unit step response for Expected Points u9. The inverse initial response and

the negative direction of the gain imply that the participant-specific model predicts

that Behavior y4 will slightly increase initially upon receiving Expected Points before
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Figure 6.17: Unit Step Responses for the Estimated Model Dynamics for Partici-

pant C, Along with Their Respective Steady-state Gains.

significantly decreasing and settling at a lower level. It is important to analyze the re-

sponse to Expected Points u9 in unison with the unit step response to Granted Points

u10, as both signals form the financial rewards positive reinforcement component of

the intervention. It is noteworthy to highlight that by the superposition principle,

the combined steady-state gain of the financial rewards component is negative. This

means that the participant-specific model predicts that Participant C will walk less

upon receiving Expected Points, whether the participant is granted the points upon

achieving the given goal or not. This is contrary to the aim of the positive reinforce-

ment component of the intervention and can be indicative that the estimated model

might not represent the actual dynamics of the financial rewards intervention com-
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ponent for this participant. Additionally, the negative steady-state gain for Expected

Points in the estimated participant-specific model had implications on the controller

implementation, as it led to controller reconfiguration following section 6.5.6.

On day 143 of the intervention, the controller was commissioned as the participant

entered the closed-loop stage of the intervention. Participant C concluded the system

identification stage with high Behavior levels, therefore, the maintenance phase was

activated from the first day of the closed-loop stage, as demonstrated in Fig. 6.16. On

the second day of the closed-loop stage, Participant C missed the given goal with a

significant margin due to low Fitbit wear-time, which violated the lower constraint on

Goal Attainment y7,min. In response, the controller delivered lower Goals. Participant

C returned to wearing their Fitbit watch consistently, therefore the measured Behav-

ior increased back to levels within the tolerance region. However, the maintenance

condition was violated due to underperformance on day 145. As a result, the initi-

ation phase was activated for one day, on day 147, and then the maintenance phase

was reactivated. Fluctuations in Participant C’s Behavior levels caused the controller

to deactivate and reactivate the maintenance phase throughout the closed-loop stage

based on the condition defined in (6.39). While this was intended by design, the rapid

switching from one configuration to another is not desired. To counter this effect, a

longer number of previous data points ntol or a higher tolerance region should be

utilized in the maintenance condition in future studies.

The switch in Participant C’s engagement and responses to EMA surveys after day

180 of the intervention impacted the controller’s decisions, as illustrated in Fig. 6.16.

The dynamics captured in the participant-specific model were estimated based on

the data gathered in the system identification stage, which showed different charac-

teristics in terms of EMA-measured disturbances variability and levels. As a result,

the predicted controlled variable values over the prediction horizon in the 3DoF-KF
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HMPC algorithm at each decision point were low. Consequently, the controller deliv-

ered lower Goals to not violate constraints on the Goal Attainment over the prediction

horizon. Despite plant-model mismatch, the controller adjusted the delivered Goals

based on the feedback signal and guided Participant C back to the healthy behavior

zone every time the participant relapsed. The controller’s response could be made

more aggressive through intuitive adjustments to tuning parameters. For instance,

a higher value for the Kalman filter coefficient f 2
a corresponding to Behavior would

lead to more aggressive moves in the manipulated variables through feedback error

correction, as expressed in the 3DoF-KF HMPC formulation in Section 5.4.1. An-

other possible approach to deal with scenarios where EMA-measured disturbances

negatively impact prediction accuracy is by reducing the speed of response to such

measured disturbances. This can be done through the 3DoF formulation, by increas-

ing the filter coefficients corresponding to EMA-measured disturbances (α3
d and α4

d).

Moreover, the observed chattering in the Expected Points u9 is attributed to the

estimated characteristics of the dynamics response of Behavior to changes in Expected

Points. Based on the negative steady-state gain for Expected Points, the controller

was reconfigured to target a manipulated variable reference of u9,r = 250 points/day.

However, the predicted negative effect of this manipulated variable on the Behavior

y4, based on the participant-specific model, conflicted with the objective of reaching

setpoint reference for Behavior y4,r. Therefore, the controller fluctuated the expected

points in the observed manner to balance between the targets in the objective function

and mitigate the impact of Expected Points. To counter this effect in future imple-

mentations, the penalty weight on the manipulated variable reference w9,u should be

lowered, giving the target on the controlled variable a higher priority.

The closed-loop intervention results for Participant C demonstrate the effective-

ness of the 3DoF-KF HMPC formulation in delivering a personalized behavioral inter-
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vention, assisting the participant toward reaching and maintaining healthy behavior.

This is demonstrated in the way the controller guided the participants back towards

a healthy level of daily step counts each time the participant relapsed. Moreover,

the provided daily goals to Participant C were achievable and challenged the partici-

pant as needed to bring them back to the set reference. The lower constraint on the

Goal Attainment y7,min was only violated on a few occasions, which was negligible

margins. On the other hand, the upper constraint y7,max was violated on a majority

of the closed-loop intervention stage, indicating that the provided Goals could have

been more challenging. To make the Goals more challenging in future COT studies,

constraint tightening should be performed on the upper constraint in a similar man-

ner to the lower constraint tightening in the “digital PA coach tuning”. Nonetheless,

over the observed 143 days of the closed-loop stage of the intervention, Participant C

averaged a Behavior level of 10,307 steps/day.

6.7 Preliminary Findings & Future Work

As the YourMove study is still ongoing at the time of writing this dissertation, it

is important to note that the presented results and findings are specific to the consid-

ered participants with high Fitbit wear time and cannot yet be generalized. Future

data analysis, after the conclusion of the study, will shed light on the effectiveness of

the proposed COT intervention framework and the 3DoF-KF HMPC formulation in

delivering PA behavioral interventions on a population level, in contrast to the control

group which was given a constant daily goal of 10,000 steps/day. However, the COT

framework is geared toward personalized optimal behavioral interventions. Hence,

analyzing idiographic results is crucial to understanding the shortcomings in Your-

Move and improving the effectiveness of personalized optimal closed-loop behavioral

interventions in another essential step towards their implementation on a large scale.
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The real-world implementation results of the COT framework in YourMove offer

an unprecedented opportunity to evaluate the unique nature by which each partici-

pant responds and interacts with the intervention components, throughout the three

stages of the intervention. The learned lessons for each stage of the COT will form

the foundation and provide needed a priori knowledge for future COT interventions.

From analyzing the data of the three presented participants in this work, it is clear

that revisions are needed to the personalization of the input signal design for the

system identification stage. While the utilized procedure in YourMove yielded an

adequately defined “ambitious yet achievable” Goals range for Participant C, that

was not the case for the other presented participants. The delivered Goals in the sys-

tem identification stage were not challenging enough for Participant A, and extremely

challenging for Participant B. This has negative implications from both behavioral sci-

ence and control systems engineering perspectives. From a behavioral science point

of view, extremely or insufficiently challenging daily goals can lead to participant

dissociation with intervention components, even participant dropout. Additionally,

the collected system identification data in such cases does not represent the true

participant-specific dynamics when the delivered daily goals are challenging and push

the participant toward healthy behavior. We propose the utilization of an adaptive

input signal personalization approach in future work, which can be done by utilizing

the participant’s average Behavior level over the one cycle to define the Goals range

for the next cycle similar to work presented in Chapter 2 and in El Mistiri et al.

(2022a).

In YourMove a black-box model estimation method is applied, specifically ARX,

with DSPSA to search over model features and orders for each participant. While

this approach proved to be sufficient in estimating participant-specific models, it

has its limitations. For instance, this approach does not allow explicit constraint
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enforcement on the direction of the estimated model steady-state gains. Consequently,

some of the estimated model dynamics do not capture the expected outcomes from

the intervention components (e.g., negative steady-state gains between Behavior and

Expected Points for Participant C). While this is desirable in exploratory analysis

aiming to understand the causal ideographic effect of each intervention component,

it has ramifications on the closed-loop intervention implementation. Measures were

taken in YourMove to mitigate the impact of estimated participant-specific models

with negative steady-state gain between Behavior and Goals on the personalized

closed-loop stage of the intervention. This came at a computational cost in the

model estimation step, by expanding the search space for the DSPSA as explained in

Section 6.4.1. It also led to the delivery of less personalized closed-loop interventions

for such participants, through the utilization of the “open-loop” control policy.

Furthermore, the estimated idiographic models based on the system identifica-

tion stage data are linear and do not capture any possible time or parameter-varying

system dynamics. This results in a more significant plant-model mismatch in cases

where a participant’s behavior shifts, based on the participant’s context and con-

ditions in the closed-loop stage of the intervention (e.g., Participant A and Par-

ticipant C). Therefore, we recommend the utilization of either “physics informed”

modeling approaches to enable imposing constraints on the estimated steady-state

gains, or other approaches that capture context-varying dynamics for each partici-

pant, e.g., Linear Parameter Varying (LPV; Mohammadpour and Scherer (2012)) and

Model-on-Demand (MoD; Stenman (1999)). Additionally, there is a need to update

the data set used in model estimation to include data points encompassing the new

system dynamics, after the shift in the participant’s behavior. This introduces new

challenges that need to be studied and addressed before the next COT study. For

instance, there is a need for a reliable algorithm to detect and flag possible shifts
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in the participant’s behavior. Once a shift in behavior is identified, the controller is

decommissioned and a new stage of the system identification can be initiated for at

least one cycle. An alternative option is to detune the controller in a new closed-loop

system identification stage. Upon the end of the new identification stage, the data set

is updated and the model is re-estimated in approaches like semi-physical modeling

and LPV, whereas for MoD updating the estimation database is sufficient.

One of the main takeaways from YourMove is the robustness of the 3DoF-KF

HMPC algorithm and its ability to deliver personalized interventions even when the

estimated participant-specific models had low NRMSE fits. The estimated model for

each participant does not need to be perfect, it just needs to be good enough to allow

the controller to make informed decisions specific to the participant. This is evident

in the presented closed-loop data for the three representative participants in this

work. However, this does not mean that there is no added benefit from having more

idiographic models that estimate participant-specific dynamics; better participant-

specific models lead to more personalized closed-loop interventions. The successful

implementation of optimal personalized closed-loop intervention for each of the pre-

sented participants is the result of the judicious formulation of the HMPC objective

function, the robust 3DoF-KF structure which allows intuitive tuning, and adaptively

tuning and reconfiguring the controller based on each participant’s response. One of

the possible improvements to the devised control strategies is the addition of upper

constraint tightening on GA, in order to provide participants with more challenging

daily goals when they significantly outperform the given Goals for consecutive days.

Another possible improvement to the controller reconfiguration for overachievers is

abandoning reference tracking for both controlled and manipulated variables. Instead,

the objective function should be formulated to constraint the controller variable (Be-

havior y4) within a region based on the moving average of the performance of the
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participant, to ensure the delivery of challenging Goals for overachievers

YourMove serves as a proof of concept for the effectiveness of the COT framework

in delivering behavior change interventions, in general, and PA interventions in par-

ticular. Based on the presented results in this work, the closed-loop stage within the

COT framework yielded the desired outcomes for engaged participants, who abided by

wearing their Fitbit watches and put in efforts toward achieving the delivered goals.

YourMove is the first COT intervention to our knowledge, in which control systems

engineering principles were used to deliver closed-loop interventions. The unique data

collected in your YourMove move, the lessons learned from the real-world implemen-

tation of the 3DoF-KF HMPC formulation, and the insights gained from full data

analysis after the conclusion of the study provide the base over which future COT

interventions will be built.
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Chapter 7

MODELING AND SYSTEM IDENTIFICATION OF USER ENGAGEMENT IN

MHEALTH INTERVENTIONS USING A BAYESIAN APPROACH FOR

MISSING DATA IMPUTATION

7.1 Introduction

Digital behavior change interventions (DBCIs) such as Just-In-Time Adaptive

Interventions (JITAIs) have demonstrated efficacy in addressing a range of health

behaviors including physical activity (Nahum-Shani et al., 2015). A meta-analysis

of 22 studies comprising of 1,757 adults found that DBCIs increased total physical

activity among participants in randomized controlled trial (RCT) studies (n = 8)

(SMD = 0.28, 95% CI: 0.01 - 0.56, p = 0.04) and pre-post design studies (n =

6) (SMD = 0.25, 95% CI: 0.09 - 0.41, p = 0.002). The increase in moderate-to-

vigorous physical activity (MVPA) was found to be 52 minutes per week on average

(SMD = 0.47, 95% CI: 0.32 - 0.62, p < 0.001) and a reduction in sedentary time

of 58 minutes per day (SMD = -0.45; 95%CI: -0.69, -0.19, p < 0.001) (Stockwell

et al., 2019). However, despite the demonstrated effectiveness of DBCIs to positively

impact physical activity, this effectiveness is heavily impacted by user engagement

with DBCIs. Participants who fail to engage with the technology used to deliver and

tailor interventions (e.g., smartphone-based app, wearable activity tracker) will have

limited exposure to the behavior change techniques within the technological system

(Cole-Lewis et al., 2019). A recent 2021 meta-analysis of 11 studies using physical

activity-focused DBCIs found a significant association between DBCI engagement

and increased physical activity (0.08, 95% CI: 0.01 -0.14, SD 0.11). This association
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was found to be consistent across three measures including the number of activities

completed by the user, the number of unique logins, and subjective measures of the

users’ experience of engagement (Mclaughlin et al., 2021).

DBCI engagement can be conceptualized as a multi-faceted construct that includes

affective and cognitive dimensions, which are typically captured through the user’s

self-reported subjective experience. Additionally, behavioral dimensions of DBCI en-

gagement typically manifest through the user’s distinct interactions with the system

and are primarily measured passively by the technology itself. Behavioral measures

of engagement are often the most readily observable aspect of engagement in mobile

health interventions as they typically result in a variety of digital traces (e.g., the

number of application page views, the amount of time spent using an application, the

number of self-report questions completed, etc. (Perski et al., 2017; Yardley et al.,

2016)). Engagement with DBCIs is thus an inherently dynamic process as it will

change over time based on several factors including ever-changing contextual condi-

tions and various psychological states. These influences on DBCI engagement are

often difficult to detect. However, by leveraging mobile technology, information on

exogenous or environmental factors (e.g., temperature, precipitation, location) can

be collected passively via mobile sensors. Additionally, the use of ecological momen-

tary assessment (EMA; Shiffman et al. (2008)) can be leveraged to capture real-time

psychological measures (e.g., perceived busyness, commitment) via self-report meth-

ods. The combination of these data streams provides a unique opportunity for the

development of dynamic computational process models that can specify and test dy-

namic hypotheses of the relationships between DBCI engagement and these influences

over time.

Despite the dynamic nature of DBCI engagement, the majority of the literature

on this topic focuses on engagement as a static phenomenon, primarily using cross-
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sectional measures (Spruijt-Metz et al., 2015b). This approach also follows the current

paradigm in behavioral science of focusing on modeling behavior change processes

through group-level (nomothetic) studies and analyses. Typically, this methodology

utilizes between-participant studies aiming to estimate the effect of an intervention

at a population or group level, or, to identify associations between predictors and

the behavior of interest. While this methodology can potentially identify if there is

a relationship between variables, these approaches fail to explain the dynamic nature

of the change between variables over time and in context. Therefore, insights gained

from these approaches cannot inform decision-making when it comes to the optimal

intervention approach for a specific individual in a given context, instead of what

works best on average for a given population (Just-in-Time Adaptive Interventions

(JITAIs; Perski et al. (2022); Klasnja et al. (2015); Nahum-Shani et al. (2015))). In

this work, the focus is instead on individual-level (idiographic) analytic approaches.

The utilization of system identification methods to model mobile health application

use as an engagement-related behavior is studied. Models and results are presented

based on data from HeartSteps II , a year-long micro-randomized trial (MRT) in the

physical activity domain (Spruijt-Metz et al., 2022).

Missing data remains a persistent problem in the analysis of health and behavioral

data and is a prominent feature of the HeartSteps II study data (Rioux and Little,

2021; Hayati Rezvan et al., 2015). If not addressed properly, missing data can po-

tentially introduce bias into conclusions or negatively impact statistical inference. A

review of randomized controlled trials (RCTs) published between July and December

2013 in BMJ, JAMA, Lancet, and the New England Journal of Medicine found that

95% of the reviewed studies (n = 73/77) reported some missing outcome data. Among

those studies, the most commonly used approach was complete case analysis (45%,

n = 33/77) (Bell et al., 2014b). In fact, complete case analyses and similar deletion

250



approaches are the most commonly used methods for handling missing data across

health and behavioral science studies (Karahalios et al., 2012; Lang and Little, 2018).

In this chapter, we take a Bayesian approach to model-based imputation of missing

data based on Markov Chain Monte Carlo (MCMC) methods (Hoffman et al., 2014).

7.2 Materials and Methods

7.2.1 HearSteps II

This work relies on data from a year-long micro-randomized trial (MRT), the

HeartSteps II trial (Spruijt-Metz et al., 2022). MRTs are closely related to just-in-

time adaptive interventions (JITAIs), but use a randomized selection of intervention

components to yield data for the purpose of optimizing the intervention components

for eventual delivery as a JITAI. The goal of the HeartSteps II intervention is to

encourage walking and other types of physical activity (Spruijt-Metz et al., 2022). The

HeartSteps II intervention components are based on self-determination theory (SDT;

Deci and Ryan (2012)). In behavior change theories like SDT changes in behavior

are hypothesized to occur due to interactions between behavior, psychological, and

environmental factors.

As one of the main objectives of HeartStep II is to understand the impact of

context and timing on intervention delivery, intervention components were designed

to influence participants’ physical activity related behaviors across several timescales:

• Within-day, participants are provided with two types of contextually tailored

activity suggestions: anti-sedentary messages and walking suggestions.

• On a daily basis, HeartSteps II delivers motivational messages designed to pro-

mote commitment to exercise and self-monitoring of step count and minutes of

activity.
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• Once per week, HeartSteps II provides an opportunity for self-reflection on the

participants’ current physical activity routine including creating or reviewing

physical activity plans and goals for the following week.

All of the above components were available on-demand. The detailed description of

HeartSteps II study protocol including inclusion and exclusion criteria is presented

in (Spruijt-Metz et al., 2022).

In addition to delivering intervention components, the HeartSteps II smartphone

application collects responses to a wide range of self-report questions prompted at a

variety of frequencies. Further, HeartSteps II uses a Fitbit wearable activity tracker

to collect step count and activity duration data. HeartSteps II recruited participants

who were overweight, but otherwise healthy adults between the ages of 18-65 located

in the greater Los Angeles County region (n=96).

A primary focus of this modeling effort was to analyze the impact of an individual’s

contextual conditions (e.g., psychological and environmental) on engagement related

behaviors. While engagement with digital behavior change interventions (DBCIs)

is comprised of multidimensional factors including affective, cognitive, and behav-

ioral components, this study operationalized engagement through the total of daily

application page views. App page views is a key indicator of app engagement as

higher app page view counts indicate a potentially higher level of exposure and op-

portunity for engagement with intervention content including activity planning and

activity suggestions. The number of unique app page views was collected passively

via the smartphone based HeartSteps II app and then was aggregated to the daily

level representing the sum total app page views per day.

The HeartSteps II app passively measured several indicators of behavior and

context-specific information such as the number of intervention messages received

by the participant each day as well as the daily average temperature in the partic-
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ipant’s location. Other mobile sensors like the Fitbit device passively recorded the

participant’s step count as the primary measure of daily physical activity. The Fitbit

also provided a passive measure of the daily wear time; both were computed as a

daily sum of minute-level measurements. Finally, the day of the week was captured

as an important activity-related variable due to weekly activity patterns and trends.

More specifically, this study focused on weekday/weekend as an indicator variable.

These constructs are summarized in Table 7.1 along with the variable names used to

represent each construct in the hypothetical models.

Table 7.1: HeartSteps II Construct and Variables.

Construct Variable

Inventory levels (system outputs)

App Engagement η1

Perceived Exercise Commitment η2

Step Count η3

Inflows/Outflows (system inputs)

Perceived Busyness ξ1

Perceived Restedness ξ2

Messages Received ξ3

Weekend ξ4

Wear Time ξ5

Temperature ξ6

The use of ecological momentary assessment (EMA) provided an opportunity to

collect daily self-reported information on an individual’s level of commitment to ex-
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ercise, their projected level of busyness, and their perceived level of restedness that

day. These data were captured via daily questionnaires delivered by the HeartSteps II

app. The questions respectively were, “How committed do you feel this morning to

be physically active today?,” “How busy is your day going to be today?,” and "How

well rested do you feel this morning?" Each of these constructs is measured using a

single self-report question with responses on a five-point Likert scale.

7.2.2 Theory-Based Dynamic Modeling

The application of fluid analogies in behavioral medicine has provided a frame-

work to translate prominent behavior change theories (e.g., Social Cognitive Theory,

Theory of Planned Behavior) into dynamical models that can be utilized to guide the

design of personalized behavioral interventions combating unhealthy behaviors such

as physical inactivity, and smoking (Rivera et al., 2018). Moreover, fluid analogies

have been proposed as a tool to help behavioral scientists hypothesize new behavior

change models and derive dynamic models based on such hypotheses. In this work,

dynamic hypotheses are proposed to explain changes in engagement over time of a

representative participant from the HeartSteps II intervention.

In fluid analogies, output variables are modeled as inventory levels, whereas ex-

ogenous variables are represented as inflows/outflows to the inventories. In Fig. 7.1,

we provide a graphical representation of a hypothesized exercise commitment model

describing connections between app engagement, exercise commitment, and Fitbit

step count. It is hypothesized in this model that engagement with the intervention

app (App Engagement, η1), operationalized as the number of app page views per

day, increases the participant’s commitment to participate in physical activity as a

part of the intervention. Reciprocally, an increase in participant’s Perceived Exercise

Commitment (η2) leads to a proportional increase in App Engagement. Moreover, the
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Figure 7.1: Fluid Analogy Representation of the Hypothesized DBCI App Engage-

ment Model.
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reciprocal interaction between Perceived Exercise Commitment and the daily levels

of physical activity, operationalized by the Step Count (η3), is also captured in the

exercise commitment loop presented in Fig. 7.1. Finally, exogenous variables that are

hypothesized to significantly impact the system including Perceived Busyness (ξ1),

Perceived Restedness (ξ2), Messages Received (ξ3), Weekend (ξ4: as a binary variable

indicating whether an intervention day is on the weekend of not), Wear Time (ξ5) of

the Fitbit device, and Temperature (ξ6) are specified in the model.

By applying the principle of conservation of total mass to each inventory, an

ordinary differential equation representation of the hypothesized system dynamics is

obtained as shown below:

τ1
dη1
dt

= γ11 ξ1(t) + γ12 ξ2(t) + γ13 ξ3(t) + γ14 ξ4(t) + β12 η2(t)− η1(t) (7.1)

τ2
dη2
dt

= γ21ξ1(t) + γ22ξ2(t) + γ24ξ4(t) + β21η1(t) + β23η3(t)− η2(t) (7.2)

τ3
dη3
dt

= γ31ξ1(t) + γ34ξ4(t) + γ35ξ5(t) + γ36ξ6(t) + β31η1(t) + β32η2(t)− η3(t) (7.3)

where τi and ηi represents the time constant for inventory i, respectively. γij repre-

sents the gain between inventory i and the inflow/outflow ξj, βiz denotes the gain in

inventory i for changes in inventory z, and ζi is for unmeasured disturbances, where

i, j, z are integers.

7.2.3 Bayesian-Based Data Imputation

To impute missing data in this study, model-based Bayesian inference in Dynamic

Bayesian Networks models (DBNs; Murphy et al. (2002)) is utilized (van de Schoot

et al., 2021). Specifically, we constructed a discrete-time dynamic Bayesian network

model, as shown in Fig. 7.2, with a structure based on that of the fluid analogy model

presented in the previous section. The exogenous variables (inputs) with missing
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data points (Perceived Busyness and Perceived Restedness) are assumed to have a

normally distributed first-order autoregressive dynamic structure, where the mean

depends linearly on the previous measurement with an unknown but time-invariant

standard deviation. On the other hand, all the endogenous system variables (outputs)

are considered to be normally distributed with means that are dependent on a linear

combination of current and previous values of variables (e.g., nodes), as presented

in Fig. 7.2, also with a time-invariant unknown standard deviation. Weights in the

linear combinations are given normal prior distributions, while the unknown standard

deviations are assumed to have exponential prior distributions. The corresponding

probabilistic model is described below.

η1,k ∼ N (w11η1,k−1 + w12η2,k + g11ξ1,k + g12ξ2,k (7.4)

+ g13ξ3,k + g14ξ4,k + ce1, se1)

η2,k ∼ N (w22η2,k−1 + g21ξ1,k + g22ξ2,k (7.5)

+ g24ξ4,k + c2, s2)

η3,k ∼ N (w33η3,k−1 + w31η1,k + w32η2,k + g31ξ3,k (7.6)

+ g34ξ4,k + g35ξ5,k + c3, s3)

where

ξ1 ∼ N (d1ξ1,k−1 + ci1, si1) (7.7)

ξ2 ∼ N (d2ξ2,k−1 + ci2, si2) (7.8)

w∗, g∗, c∗ ∼N (0, 1) and s∗ ∼ Exp(0.1) (7.9)

In this work, we use Markov chain Monte Carlo (MCMC) methods to sample

from the joint posterior distribution of the DBN’s unknown model parameters and

missing data variables conditioned on the observed variables (Hoffman et al., 2014).
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Figure 7.2: Graphic Representation of the Dynamic Bayesian Network Model Rep-

resentation of the Hypothesized Model, Used to Impute Missing Data Points in a

Markov Chain Monte Carlo Sampling Approach.
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The sampled model parameters are then discarded and the sampled missing data

values are retained. This process results in multiple imputations of the missing data

variables. As this approach utilizes MCMC methods, the number of samples obtained

from this process can be specified. The DBN model is implemented and inference is

performed using the BayesLDM toolbox (Tung et al., 2022).

7.2.4 Data Analysis

The HeartSteps II data set consists of time series of sensor-based and self-reported

measurements for all of the variables used in the proposed model. However, all vari-

ables are subject to some amount of missingness. An exclusion criterion was defined

based on missingness of the constructs presented in Table 7.1, where participants

with missingness exceeding 40% were excluded. A representative participant with

the least amount of missingness (30.05%) was selected for the data analysis presented

in this chapter.

The data set for the representative participant was then segmented into sequences

with at least 7 consecutive data points, which allowed enough data in each segment to

fit the expected regressor structures for black-box modeling techniques. Furthermore,

a maximum of 5 consecutive missing data points were allowed between sequences.

Given that this participant’s engagement with the application and intervention com-

ponents was poor in the first 99 days of the intervention, data pre-processing and

model estimation were implemented on data points from day 100 to the end of the

intervention. This resulted in a total of five data segments of varying lengths that

were designated as sub-experiments. The sub-experiments were grouped into valida-

tion and estimation groups, where 28.9% of the data was assigned for validation and

the remainder for estimation, as seen in Fig. 7.4. This procedure reduced the total

available data to 252 days, with missing data points on 10 days (3.97% missingness).
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This data set is referred to as the “raw data” in this work.

Next, the data was standardized using the means and standard deviations of the

available data points. Missing data values in the standardized raw data were then

imputed using the BayesLDM toolbox, based on the model structure in Fig. 7.2 and

assumptions provided in Section 7.2.3. As the data of interest is ordinal by nature,

the imputed data set was de-standardized, and then the imputed data points were

rounded to the nearest integer. Data points representing the behavioral constructs

of interest (Perceived Exercise Commitment, Perceived Busyness, Perceived Rested-

ness) were projected onto the upper and lower constraints of the five-point Likert

scale used for such measurements. 1,000 different imputed data sets were generated,

each of which represented a different realization of the sampled missing data points.

The mean of the 1,000 sampled imputed data sets was obtained, rounded, and then

bounded to the ordinal values. Lastly, 100 realizations of the data sets were randomly

selected and re-standardized to perform black-box model estimation utilizing Auto

Regressive with eXogenic inputs (ARX; Ljung (1999)) structure.

To evaluate the performance of the Bayesian inference approach, other standard

imputation methods were also considered: backward-fill pandas development team

(2022), forward-fill Team (2022), and linear interpolation. Backward and forward fill

methods produce ordinal values, within the measurement ranges. On the other hand,

the data set imputed with linear interpolation was also rounded to integer values,

based on the range of possible measurements for the behavioral constructs. Further-

more, all imputed data sets were segmented into sub-experiments consistent with

the sequences of the non-imputed data. For the imputed data, each sub-experiment

period started on the same time (day) index as its equivalent in the raw data, how-

ever, each sub-experiment is slightly longer (by two sampling instances on average)

as a consequence of data imputation. All imputed data sets were utilized to estimate
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ARX models.

ARX models belong to the family of parametric black-box model estimation tech-

niques that utilize input-output measurements to estimate the dynamics between the

measurements, without knowing the causal structure behind them. These models can

be used to confirm relationships between the variables of interest, which can be essen-

tial in the confirmation of hypothesized models and the estimation of semi-physical

models. ARX time series models are a linear representation of a dynamic system in

discrete time, as shown in (7.10).

y (k) +
na∑
l=1

aly (k − l) =

nξ∑
j=1

nbj−1∑
i=0

b(i+1)(j)ξj
(
k − nkj − i

)
+ e (k) (7.10)

where y(k) represents the measured output, ξj(k) is the measured input j, and e(k)

represents the prediction error. k represents the time step. al represent autoregres-

sive model parameters up to the output regressor order na and b(i)(j) denotes model

coefficient for regressor i up to the regresor order nbj , for input j. nkj represents the

delay in each input. Model parameters are estimated using least squares regression

as shown in (7.11) where θ̂ represents a vector of model parameters as arranged in

regressor space.

θ̂ = argmin
θ

1

N

N∑
t=1

(y(t)− ŷ(t|θ))2 (7.11)

One of the advantages of utilizing ARX models lies in the simplicity of their linear

structure, which makes the optimization problem in (7.11) readily solvable. This

allows the use of various algorithms to optimize over model structure through order

and input selection (Banerjee et al., 2024a). Consequently, more insight regarding the

dynamic nature of the relationships between variables of interest can be gained and

used to validate/falsify hypotheses and guide future dynamic hypotheses generation

regarding the causal dynamics of a system, particularly behavior change systems.

An order selection algorithm was applied on the standardized raw data set, where
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all the possible order combinations are searched over from a select range of orders for

each variable. The combination that minimizes the mean square error (MSE) over val-

idation data was ultimately selected. The specified order sets were na, nbj ∈ {1, 2, 3}

for all inputs and the output of interest, while nkj ∈ {0, 1}. The selected order was

then utilized to estimate parameters for models from the raw data, every realization of

the Bayesian inference imputed data, and the other considered standard interpolation

methods. By fixing the order of all the estimated models to the one obtained from

the raw data, we were able to compare the same number of model parameters across

all estimated models. Additionally, because the Bayesian inference approach follows

MCMC methods, the uncertainty propagates to the various realizations of the sam-

pled imputed data points under the assumptions made about distributions, as well

as to the estimated ARX model parameters. This approach yielded 105 estimated

models, which were then further analyzed and vetted in terms of their fit percentage

over the validation data, step responses, gains, and uncertainties. The approach can

be extended to quantify the uncertainty in regressor orders as well, by performing

order selection on the various realizations of the imputed data sets.

To further examine the BayesLDM performance in comparison to the considered

traditional interpolation methods, additional data points were withheld at random in

the input variables prone to missingness (Perceived Exercise Commitment, Perceived

Busyness, Perceived Restedness). This provides “ground truth” to evaluate the error

in the imputed data points. This is done by calculating the root mean square error

(RMSE) to obtain a measure of how close the imputed data points are to the actual

values. Values for the variables mentioned above were withheld for 75 days from the

raw data, resulting in an overall missingness of 33.73% (85 days with missingness

out of the total 252 days). The data analysis procedure mentioned above was then

repeated, from data imputation to model estimation based on the regressor structure
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obtained from order selection on the raw data. The results obtained are presented

and discussed in the ensuing sections.

To quantify model fits, we use normalized root mean square error (NRMSE) fit

index. The standard NRMSE statistic is shown in (7.12) where y(k) is the measured

output, ŷ(k) is the model output, ȳ is the mean of all measured y(k) values, and || · ||2

indicates a vector l2-norm.

F = 100×
(
1− ||y(k)− ŷ(k)||2

||y(k)− ȳ||2

)
(7.12)

The NRMSE fit index is calculated for each of the segmented sub-experiments sep-

arately and then averaged over the sub-experiments designated for validation and

estimation data. Due to the differences in the duration of each sub-experiment, each

sub-experiment is weighted by the ratio of its duration to the length of the overall

data to ensure its impact on the fit index for validation and estimation is proportion-

ate to its size. Lastly, to provide all estimated models with the exact same conditions,

only the raw data set is utilized to evaluate model fits.

7.3 Results

The ARX regressor orders obtained from the implementation of the order selection

algorithm on the raw data was na = 3, nb = [3 1 2 3 2], and nk = [0 1 0 1 1] which

yields a total of 14 parameters to be estimated. To validate the estimated models,

two criteria are considered:

• Model cross-validation where the performance of the models was assessed in

terms of the normalized root mean square error (NRMSE) over validation data

that was not used in model estimation.

• The characteristics of the step responses of the estimated models (steady-state

gains, directional, speed, and shape of response).
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The step responses of the model estimated from the raw data are shown in Fig. 7.3,

along with their steady-state gains, and the NRSME fit over the entire raw data

set. Simulation results of the estimated model in comparison with the raw data are

presented in Fig. 7.4, which shows data segmented into sub-experiments highlighted

based on their grouping (estimation in grey; validation in light-blue) along with their

weighted average fit index.

Table 7.2: Performance of the Four Examined Imputation Methods: Mean Real-

ization of the Bayesian Inference Approach, Forward-fill, Backward-fill, and Linear

Interpolation. The Presented Values Are in Terms of the RMSE, Based on the Differ-

ence Between the Imputed Values and the Actual Withheld Values for 75 Randomly

Selected Intervention Days for Perceived Busyness (ξ1), Perceived Restedness (ξ2),

and Perceived Exercise Commitment (η2).

Method ξ1 ξ2 η2

Bayesian Inference 1.35 1.27 1.44

Forward-fill 1.95 1.83 2.91

Backward-fill 1.94 1.80 2.41

Linear Interpolation 1.58 1.51 2.35

The performance of the BayesLDM toolbox in imputing values for the withheld

data points is presented in Table 7.2. In this table, the root mean square error

(RMSE) values for each of the examined imputation methods show how close the

imputed data points are to the actual values of the variables prone to missingness.

For the sake of visual clarity and brevity, simulation results and fit indices of

only one realization of the Bayesian inference imputed data points are shown and

compared to the other imputation methods. The considered realization to represent
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Table 7.3: Summary of the Fit Indices of the ARX Models Estimated from the Raw

Data and Data Imputed By Four Different Methods.

Method Estimation Fit (%) Validation Fit (%) Overall Fit (%)

10 missing data points (3.97% missingness)

Raw Data 51.11 36.55 46.89

Bayesian Inference 51.07 36.68 46.91

Forward-fill 51.04 36.67 46.88

Backward-fill 51.11 36.72 46.95

Linear Interpolation 51.07 36.70 46.92

data withheld for 75 days (33.73% missingness)

Bayesian Inference 50.91 37.05 46.90

Forward-fill 51.29 35.99 46.87

Backward-fill 50.03 36.28 46.05

Linear Interpolation 50.93 36.58 46.75

BayesLDM imputed data is the mean of the 1,000 sampled data points, whereas, the

remainder 100 realizations are utilized to illustrate the propagation of uncertainty

into the estimated model parameters. Table 7.3 below provides a summary and a

comparison of the model fits estimated from data imputed by the four considered

imputation methods. Simulation results of the ARX model estimated from the mean

realization of the Bayesian imputation approach are shown in Fig. 7.4 and Fig. 7.5

for the cases of 3.97% and 33.73% missingness, respectively.

The step responses of all the estimated models (from the various imputation meth-

ods and realizations and the raw data) are shown in Fig. 7.6 and Fig. 7.7, for 3.97%

and 33.73% missingness, respectively. In these figures, the step responses of the mod-
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els reported in Table 7.3 are shown in opaque lines, whereas the step responses of

models estimated based on the 100 randomly selected BayesLDM imputed data real-

izations are plotted in transparent green lines to highlight the propagated uncertainty

into estimated model dynamics.

7.4 Discussion

The model orders obtained through minimizing the MSE fits for the raw validation

data, over the specified order ranges, confirm the presence of relationships between the

examined variables as specified by the fluid analogy model presented in Section 7.2.2.

While the ODE directly describing the relationship between the inputs and App En-

gagement (7.1) is of a first-order, the overall dynamics of the ODEs system (7.1)-(7.3)

is of a third-order. Hence, it falls well within expectations of the hypothesis to have

third-order dynamics between the specified inputs and App Engagement (η1). Fur-

thermore, the obtained cross-validation fit percentages of the estimated ARX model

(36.55% validation, and 46.89 % overall as shown in Table 7.3) are considered very

good for noisy systems associated with behavior change. This increases confidence in

the estimated models and the obtained regressor orders.

The observed dynamics of the step responses (shown in Fig.7.3 and Fig.7.6) fur-

ther asserts confidence in the estimated models, and by extension, in the hypotheses

about the system dynamics; they agree with literature in terms of the direction of the

gains between the selected inputs and the modeled output. One of the interesting ob-

servations in the step responses is the lead-lag dynamics between Perceived Busyness,

Messages Received and App Engagement. This indicates the fast nature of the effect

of such inputs on the output of interest, which shows that the impact of messages sent

in the intervention happens within day and affirms the need for studying the multi-

timescale dynamics in behavior change systems. Consequently, a higher sampling rate
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Figure 7.3: Unit Step Responses of the 5-Input ARX Model Estimated from the Raw

Data, Along with Their Steady-State Gains. The Step Responses Are Arranged Left

to Right as Perceived Busyness, Perceived Restedness, Messages Received, Weekend,

and Perceived Exercise Commitment with Gains of -0.304, -0.154, 3.22, 6.20, 0.0674

Respectively.

is needed to properly estimate the dynamic relationship between the mentioned vari-

ables. In addition, lead-lag dynamics translate to direct feed-through conditions in

state-space representation of the model, which requires special accommodations when

implementing model-based control schemes like Model Predictive Control (MPC) to

automate personalized behavioral interventions. This is particularly the case as the

direct feed-through exists between the potential manipulated and controlled variables

in closed-loop conditions (Messages Received and App Engagement respectively).

Simulation results of the models estimated from the raw data, and the mean of

1,000 realizations of the data imputed through Bayesian inference, shown in Fig. 7.4
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Figure 7.4: Time Series Plot Representing the Results of the Estimated ARX Models

for a Representative HeartSteps II Participant Utilizing Raw Data and the Mean

Realization of the Bayesian Inference Imputation for the Case of 3.97% Missingness.

Five Input Sequences Corresponding to Exogenous Variables (Perceived Busyness,

Perceived Restedness, Messages Received, and Weekend) and Endogenous Variable

(Perceived Exercise Commitment) Are Shown. The Bottom Plot Includes Actual and

ARX Predicted `App Page Views in Views/day. Estimation and Validation Data

Regions Are Highlighted in Magenta and Cyan, Respectively. The ARX Models Are

Estimated Through Least-Squares Regression, Based on the Model Order Obtained

Through Order Selection na = 3, nb = [3 1 2 3 2], and nk = [0 1 0 1 1].

and Fig. 7.5 for the cases of 3.97% and 33.73% missingness respectively, illustrate

that the estimated models do a decent job of tracking the actual App Engagement

throughout the peaks and troughs in the data. The estimated models under-predict

sudden significant increases in App Engagement, which can be attributed to unmea-
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sured inputs to the system. From an initial look at the presented results, it may seem

that the benefit of the imputed data points is incremental, especially when comparing

the fit indices presented in Table 7.3. However, this is exactly the intended result, as

data imputation is only meant to provide more data points while maintaining the in-

tegrity of the dynamics in the data. This is also evident in the step responses shown

in Fig. 7.6; the examined imputation methods yield models with similar results in

terms of the shape of responses and gains.

Case deletion is an acceptable approach only when missingness is low. However,

as the amount of missing data points increases case deletion becomes impractical,

especially for idiographic modeling. For instance, in the scenario of withholding data

on 75 days of the intervention, only 49 data points were left to perform model es-

timation after segmenting the data into sequences with at least 7 consecutive data

points. This high rate of missingness (88.56%) made it impossible to estimate an

informative model if the data set with holdouts was treated as the raw data set. The

BayesLDM toolbox provides a powerful model-based approach to data imputation

through MCMC methods, which enables us to perform data analysis and model esti-

mation even when missingness is high. Moreover, the added benefit of the Bayesian

inference approach to imputation is the ability to propagate and quantify the com-

bined uncertainty from data imputation and data scarcity. This can have important

applications for closed-loop optimal behavioral interventions, where the estimated

uncertainty can be utilized to ensure the robustness of the designed controllers and

their ability to account for the various sources of uncertainty.

As can be observed in Fig. 7.6, the models estimated from the randomly se-

lected realizations of the Bayesian inference sampled data (highlighted in transparent

green) span a range of possible step responses around the mean realization. The

range spanned by these realizations covers all the results obtained from the standard
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Figure 7.5: Time Series Plot Representing the Results of the Estimated ARX Mod-

els for a Representative HeartSteps II Participant Utilizing Raw Data and the Mean

Realization of the Bayesian Inference Imputation for the Case of 33.73% Missing-

ness (Withholding Data Points on 75 Days). Five Input Sequences Corresponding

to Exogenous Variables (Perceived Busyness, Perceived Restedness, Messages Re-

ceived, and Weekend) and Endogenous Variable (Perceived Exercise Commitment)

Are Shown. The Bottom Plot Includes Actual and ARX Predicted `App Page Views

in Views/day. Estimation and Validation Data Regions Are Highlighted in Magenta

and Cyan, Respectively. The ARX Models Are Estimated Through Least-Squares

Regression, Based on the Model Order Obtained Through Order Selection na = 3,

nb = [3 1 2 3 2], and nk = [0 1 0 1 1].

imputation methods shown in the Figure. Moreover, notice that the variation in

the gains is lower for passively measured variables: Messages Received and Weekend.
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Such variables are measured continuously and do not suffer from missingness. Hence,

their values are used in the BayesLDM approach to impute the missing data points

of the other considered variables in the DBN model. Additionally, it is important to

consider the fact that the step response dynamics and gains of the model estimated

from the raw data fall within the span of credible interval uncertainty quantified by

the Bayesian inference imputation realizations for the majority of the examined in-

puts. The only exceptions to this outcome are observed in the step responses to the

Perceived Restedness and Received Messages, as can be seen in Fig. 7.6. The main

reason behind this observation is the interactions and correlations between the model

parameters. In the presence of more data points, the dynamics of the system can be

better explained by a different combination of model parameters, which yields dif-

ferent sets of gains for the considered inputs. This falls within the trade-off between

bias and variance in model estimation.

The advantages of the Bayesian inference approach to data imputation can be

especially seen in the case of data holdouts (33.73% missingness). This is particularly

evident in Table 7.2, where the performance of the model-based BayesLDM approach

outshines traditional interpolation methods. The calculated MSE values for the mean

realization of the Bayesian inference sampled data are the lowest amongst the exam-

ined imputation methods, which indicates that BayesLDM imputation estimated the

closest values, by significant margins, to the true withheld values of the EMA mea-

sured behavioral constructs of interest. Therefore, the BayesLDM approach performs

very well even in cases where the missingness in the data is high.

This observation is further illustrated by the step responses for this case, shown

in Fig. 7.7, where only the step responses of the model estimated from the mean re-

alization of the Bayesian inference imputed data coincide with those estimated from

the raw data (with 3.97% missingness). This is evident in the shape and speed of

271



Figure 7.6: Unit Step Responses of the 5-Input ARX Models Estimated from the

Raw Data and the Imputed Data Sets in the Case of 3.97% Missingness. Step Re-

sponses of the Main Estimated Models Are Shown in Opaque Lines. The Captured

Uncertainty from 100 Randomly Selected Bayesian Inference Imputed Data is High-

lighted in Transparent Green.

response, as well as the direction of the gains for all considered inputs. On the other

hand, the models estimated from the data imputed through traditional interpolation

methods do not agree with the step responses of the ARX model estimated from the

raw data for some of the considered inputs. This is particularly noticeable, in varying

degrees, in the step responses for Perceived Busyness and Perceived Restedness, as

demonstrated in Fig. 7.7. Moreover, as more data points are imputed in this case,

the propagated uncertainty due to data imputation is higher. This observation is
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Figure 7.7: Unit Step Responses of the 5-Input ARX Models Estimated from the

Raw Data and the Imputed Data Sets in the Case of 33.73% Missingness. Step Re-

sponses of the Main Estimated Models Are Shown in Opaque Lines. The Captured

Uncertainty from 100 Randomly Selected Bayesian Inference Imputed Data is High-

lighted in Transparent Green.

illustrated by the wider span of uncertainty (highlighted in transparent green) for

all considered inputs. The obtained results demonstrate that the BayesLDM tool-

box provides a powerful approach to performing model-based data imputation while

maintaining the integrity of the dynamics in the data and propagating the uncertainty

from data imputation into the estimated model of the system in a quantifiable man-

ner. Consequently, the obtained optimal solutions in well-established robust control

schemes, such as stochastic model predictive control (SMPC; Mesbah (2016)), can
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differ significantly based on the provided probabilistic uncertainty distribution.

7.5 Conclusions

In this chapter, we introduce a theory-driven dynamic hypothesis describing the

changes in participant engagement in HeartSteps II study over time, translate the hy-

pothesis to a dynamic model using engineering principles in a fluid analogy, and tackle

the ubiquitous issue of missingness faced in such studies. We propose the implemen-

tation of model-based Bayesian inference methods to impute the missing data points

and illustrate its benefits over traditional interpolation methods. Longitudinal data

from HeartSteps II for a representative participant is utilized to test the proposed

imputation approach, and examine the suggested dynamic hypothesis. The findings

in this chapter confirm some of the assumptions underlying the proposed dynamic

hypotheses, particularly the influence of the examined inputs on App Engagement,

which ultimately provides more insight into the dynamic nature of engagement in

DBCIs. The proposed theory-based, semi-physical engagement model remains unfal-

sified. The insights gained from this chapter will lead to future efforts in designing

more informative experiments to validate the model, with the ultimate aim of better

understanding the dynamics of engagement in DBCIs and improving their efficiency.

The findings in this chapter also demonstrate the benefits of using a model-based

Bayesian inference approach for data imputation, especially in terms of estimating

the model uncertainty due to missing data. Because the Bayesian inference approach

follows MCMC methods, it allows for quantifying uncertainty in missing data points

by propagating it into the estimated models. This can have significant applications in

the implementation of closed-loop behavioral interventions, ensuring the robustness of

the designed controller, and contributing to the dissemination of optimal personalized

closed-loop interventions on a large scale.
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Chapter 8

SUMMARY, CONCLUSIONS AND FUTURE WORK

8.1 Summary and Conclusions

This dissertation has demonstrated the effectiveness of applying system identifica-

tion and control systems engineering principles in behavioral interventions, with phys-

ical activity interventions presented as a proof of concept. Mobile health (mHealth)

interventions have gained traction in recent years. This is particularly the case

for physical activity interventions, because of the availability of temporally dense

data through advances in wearable technology (e.g., smartwatches, activity trackers).

While the efficacy of behavioral interventions in promoting healthy behaviors has

been demonstrated during active intervention periods, the sustained impact of such

interventions remains limited. This is mainly because full knowledge of the dynamic

nature of behavior change on an individual level is not available and a framework

to personalize and automate the delivery of such interventions over long periods is

lacking. System identification and control system engineering principles provide a

synergistic approach to address these gaps in knowledge and facilitate the delivery of

personalized interventions (Hekler et al., 2016; Rivera et al., 2018). This dissertation

builds on previous work by establishing and validating the control optimization trial

(COT) framework.

The main challenges limiting the dissemination of physical activity interventions

on a large scale include the absence of a validated first-principle model structure de-

scribing the dynamics of behavior change. Previous work by Martín et al. (2020)

proposed a dynamical systems model based on Social Cognitive Theory (SCT; Ban-
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dura (1986)), which served as the basis for the design of a system identification

experiment under the name of JustWalk. This work extends the previously postu-

lated model to include separate and possibly competing dynamics of different facets of

SCT behavioral constructs, particularly fatigue and fitness as measurable behavioral

outcomes. Additionally, the enhanced model is used to formulate improved Model

Predictive Control (MPC) strategies for closed-loop interventions and test these in

simulated settings ahead of real-world implementation. The strategies developed ad-

dress important limitations faced in behavioral interventions, such as unreliable mea-

surements for behavioral constructs that may result from poor participant adherence

(see Chapter 4).

Control strategies for physical activity interventions presented in this work are ex-

pressed in a Three Degrees-of-Freedom by means of Kalman Filtering Hybrid Model

Predictive (3DoF-KF HMPC) formulation. HMPC relies on a Mixed Logical Dy-

namics (MLD) framework that incorporates categorical and logical conditions into

the controller objective as linear inequality constraints, resulting in a mixed integer

quadratic programming (MIQP) problem. In this dissertation, the HMPC formu-

lation is improved to incorporate conditions based on decisions made in previous

instances and feedback from the participant’s responses. This allows for incorporat-

ing decisions relating to intervention components over the move horizon (e.g., having

positive reinforcement with financial rewards), improving the efficiency of the con-

trol strategy. This dissertation evaluates the performance and the robustness of the

3DoF-KF HMPC controller in delivering personalized interventions in Monte Carlo

simulations for a representative JustWalk participant, utilizing black-box Auto Re-

gressive with eXogenic inputs (ARX; Ljung (1999)) model estimation, as presented

in Chapter 5. The use JustWalk data in validating the devised 3DoF-KF HMPC

formulation for physical activity interventions is instrumental in the development of
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the first COT study YourMove (R01CA244777, 2020).

Additionally, this dissertation has leveraged findings and knowledge gained from

analyzing JustWalk data in improving input signals design for two separate studies

YourMove and JustWalk Just-In-Time-Adaptive-Intervention (JITAI) (R01LM013107,

2020). For YourMove, a priori knowledge from JustWalk guided the use of multi-

sines signals for the two components of the intervention (goal-setting and positive

reinforcement). In particular, the time constants obtained from models estimated for

representative JustWalk participants are used to define parameters in input signal

design based on “plant-friendly” guidelines Deshpande et al. (2014). Furthermore,

the insights gained from JustWalk data analysis provided the basis for selecting the

effective frequency range for the designed input signals, using more excited harmon-

ics, and utilizing a relative amplitude for non-excited high-frequency harmonics of 0.5

(see Chapter 6).

In YourMove, the input signals are personalized in two ways: 1) different realiza-

tions of the design input signals are generated for each participant on the first day of

the system identification stage, and 2) the maximum and minimum values of the de-

livered goals in the goal-setting component of the intervention for each participant are

dictated by the participant’s median performance in the baseline stage. In addition,

to estimate personalized ARX models in YourMove, Discrete Stochastic Perturbation

Simultaneous Approximation (DSPSA; Wang and Spall (2011)) is used to optimize

model structure (online and overnight) for each participant, in terms of model orders

and selected features, as presented in Chapter 6.

The work summarized above formed the pillars over which the first COT study

was built, under the name of YourMove. Based on monitoring YourMove closed-loop

results the utilized control strategies are updated, generating the “digital PA coach

tuning” algorithm for adaptive controller tuning and controller reconfiguration based
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on each participant’s performance. This dissertation presents unprecedented closed-

loop intervention results for representative YourMove participants, illustrating the

effectiveness of the devised control strategies and robustness of the 3DoF-KF HMPC

formulation in real-world experimental settings. As YourMove is still underway, the

findings presented in this dissertation remain to be generalized. However, these show

significant potential for the efficacy of personalized optimal closed-loop intervention

in guiding participants towards healthy levels of daily steps and helping them sustain

this healthy behavior over extended periods of time.

In addition, the work in this dissertation explores multi-timescale dynamics of

behavior change processes in the context of just-in-time (JIT) states, forming the

groundwork for the development closed-loop just-in-time adaptive interventions (JI-

TAIs; Perski et al. (2022); Klasnja et al. (2015); Nahum-Shani et al. (2015)). JIT

states are conceptualized as conditions over which the participant would respond fa-

vorably to support provided as a part of the intervention. Therefore, support provided

in JIT states can contribute to adaptations over time that result in sustained behavior

change. To further understand these concepts, a comprehensive system identification

and signal processing approach is researched in one of the first empirical studies of JIT

states based on system identification principles under the name of JustWalk JITAI.

In this dissertation, innovative input signals are designed and implemented in

JustWalk JITAI, providing informative data sets through the excitation of harmonics

at frequencies of interest, while operationalizing JIT states as one of the intervention

components, as described in Chapter 2. Moreover, advanced data-driven signal pro-

cessing and modeling approaches are evaluated on a representative JustWalk JITAI

participant. Specifically, singular spectrum analysis (SSA; Elsner and Tsonis (2013))

is used for noise reduction and to study the separability of the measured behavior

signal into uncorrelated components describing behavior change dynamics at different
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frequencies. In addition, the use Model-on-Demand (MoD; Stenman (1999)) is ex-

plored as a technique that can capture nonlinearities associated with behavior change

systems in context of JIT states. MoD is a data-driven approach that estimates local

models based on data in a neighborhood in regressor space around each operating

point under a global structure. The results presented in Chapter 3 in this disser-

tation demonstrate the efficacy of the input signal design in providing dynamically

informative data; the effectiveness of SSA in systematically filtering noise in behavior

signals and decomposing physical activity behavior signals into signals that explain

the overall trend and cyclicality; and the benefit of MoD as a modeling approach that

can explain idiosyncrasies of behavior change within JIT context.

Finally, the work in this dissertation leverages data from the HearSteps II study

in examining dynamical process models for engagement in physical activity inter-

ventions, and addressing the ubiquitous problem of data missingness in mHealth

interventions. Fluid analogies developed in collaboration with behavioral scientists

are used to conceptualize a model for engagement in HeartSteps II, and consequently

translate it into a computational model. This computational model is transferred to

a Dynamic Bayesian Network representation that serves as the basis for a Bayesian

inference technique for data imputation, utilizing Markov Chain Monte Carlo meth-

ods to sample from the joint posterior distribution of model parameters and missing

data points given the observed variables through the BaysLDM toolbox (Tung et al.,

2022). This method allows for informed data imputation by incorporating under-

lying assumptions about system dynamics into the posterior distribution capturing

uncertainty due to both data scarcity and missingness. Consequently, multiple real-

izations of the sampled data are obtained. ARX model estimation is performed on

the different realizations of the imputed data sets, propagating the uncertainty into

the estimated system dynamics, as presented in Chapter 7.
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Overall, this dissertation contributes to a legacy of continuous innovations in the

application of system identification, signal processing, and control systems engineering

principles in behavioral medicine. The culmination of years of research has come

to fruition in the implementation and clinical evaluation of one of the first-of-its-

kind closed-loop behavioral interventions following the COT framework, in another

step toward improving the efficiency and accessibility of mHealth interventions. The

tools developed, data generated, and findings in this research work provide a strong

foundation and provide necessary knowledge for future COT interventions, in diverse

application settings.

8.2 Future Research Directions

This dissertation has presented preliminary results from the first COT study

(YourMove) demonstrating the potential of personalized optimal behavioral inter-

ventions based on control system engineering principles. The tools and approaches

developed, and lessons learned in this work can be extended toward developing future

COT interventions, including the currently under-development Healthy Moms Zone

2.0 study (HMZ 2.0; R01DK134863 (2020)). Furthermore, data from YourMove and

JustWalk JITAI provides many research opportunities for scientific exploration and

furthering the understanding of the dynamic nature of behavior change systems.

8.2.1 Within-day Models

In the presented work, SSA and MoD have been implemented on daily-level data.

To better understand the dynamic responses of participants to notifications sent

within a day, this approach can be applied to data where the accumulative step

count on each day is sampled at a higher rate (e.g., 3-hour window). This produces

significantly longer data sets, however, measurement noise should increase. In addi-
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tion, within-day signals contain oscillatory behavior due to resetting the accumulative

step count to zero at the beginning of every day. Therefore, SSA can be used to de-

compose this signal into components, separating the overall trend from daily periodic

patterns and discarding noisy components. As a result, multi-timescale models can

be estimated by modeling each group of correlated components separately.

MoD can also be used to estimate models for each SSA decomposed component

of the accumulative step count signal. With the implemented input signal design and

the available inputs, the obtained models should be able to capture short-term and

long-term dynamic responses of notifications sent at different conditions, including

JIT states. This is especially the case, as longer databases will allow including more

exogenous inputs (e.g., day of the week, time of the day, etc) in the MoD estimator’s

database, to better define conditions of the operating point in regressor space.

8.2.2 YourMove JITAI

The algorithms and methods developed and explored throughout this work can be

combined to deliver a closed-loop JITAI, following the COT framework, which can be

called YourMove JITAI. To conduct such a study, the input signal design presented

in this work can be refined and improved after secondary data analysis of experimen-

tal JustWalk JITAI data for all participants. In this extension of YourMove, data

imputation can be handled utilizing the Bayesian inference techniques presented in

this work (see Chapter 7) based on a DBN representation of the OLSE subsystem of

the SCT model (see Chapter 4), instead of utilizing the moving average over the last

observed data points.

Optimization over intervention components in JITAIs can be formulated as a

multi-timescale dynamic problem, which provides opportunities to investigate meth-

ods to judiciously formulate such a complex closed-loop problem. For instance, de-
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cisions regarding sending notifications need to be made within-day. On the other

hand, decisions pertaining to goal-setting, expected points, and which decision rules

to use for notifications must be made on a daily level. Two approaches are proposed

to accomplish this task, which can be applied using the different tools and methods

evaluated in this dissertation:

Daily Level Control

This approach is the simpler approach of the two. In this approach, only one con-

troller is commissioned for decision-making on all intervention components on a daily

level, while actuation on sending notifications within day is left to the same algo-

rithm implemented in JustWalk JITAI. The decision rules by which notifications are

actuated are considered as a categorical manipulated variable. The controller can be

formulated by integrating MoD within the 3DoF-KF HMPC structure (illustrated in

Fig. 8.1), allowing it to make personalized optimal decisions while considering the

impact of conditions at the operating point, including JIT states.

To construct the database for the MoD optimizer, SSA can be used to reduce

measurement noise in the daily step count signal. Another possible implementation

to investigate is the utilization of the accumulative daily step count signal, sampled

at a higher rate (e.g., 3-hour window). SSA can be used to decompose this signal

into its components, and then reconstruct the signal excluding high-frequency com-

ponents. Consequently, a smoothed signal of the accumulative daily step count can

be obtained, which then can be resampled on a daily level and used in the MoD

estimator’s database.
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Figure 8.1: Block Diagram Schematic Representing a Proposed MoD-Based 3DoF-

KF MPC for Setpoint Tracking of a Process Subject to Constraints, Measured and Un-

measured Disturbances. Logical and Categorical Decisions Can Be Included Through

the Hybrid Formulation, By Utilizing MLD Matrices and Mixed Integer Quadratic

Programming (Banerjee et al., 2024b).

Hierarchical Control

This approach is an extension of the previous one, in which the control problem is

broken down into two separate optimization problems. The outer controller can be

formulated following Section 8.2.2, allowing it to manipulate intervention components

on a daily level, including providing daily goals and expected points, as well as select-

ing the decision rules followed in sending notifications. The inner controller handles

decision-making on an intraday level, including granting points upon achieving the

goal given on a certain day and whether to send notifications or not, at each decision

point within the day. The HMPC formulation can be used to translate the logical con-
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ditions defined by the decision rules manipulated variable, selected by the daily-level

controller, into linear inequality constraints for the inner controller. Additionally,

MoD optimizer can be used to estimate a local predictive model for the controller

at each decision point, following 3DoF-KF MOD-HMPC structure. The MoD opti-

mizer database for the intraday controller can be constructed by applying SSA on the

3-hour sampled accumulative daily step count as proposed in Section 8.2.1.

8.2.3 Semiphysical Modeling

First-principle models based on fluid analogies have been proposed to generate dy-

namic hypotheses and translate conceptual theories of behavior change into computa-

tional models explaining the dynamic nature of behavior change (Hekler et al., 2016;

Rivera et al., 2018). In this work, a fluid analogy SCT-based dynamic process system

model is presented and used as the basis for the design of YourMove and JustWalk

JITAI studies. Data from both studies has been used to estimate participant-specific

utilizing black-box modeling techniques. The obtained models partially validate some

aspects of the proposed dynamical process system SCT model, however, further re-

search and investigation are needed to fully validate the model structure. The infor-

mative datasets obtained from both studies (YourMove and JustWalk JITAI ) provide

opportunities to accomplish this task and further the understanding of the dynamic

nature of behavior change. Grey-box modeling methods can be used to leverage the

experimental data from these studies in validating the first-principle model of SCT

derived from the fluid analogy and estimating participant-specific model parameters.

As demonstrated in this dissertation, the application of system identification, sig-

nal processing, data science, and control systems engineering in behavioral medicine

is of great promise. Prospects include furthering the understanding of the dynamic

nature of behavior change through the lens of dynamical process systems, analyzing
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and estimating models that capture idiosyncrasies within a population and idiosyn-

crasies for individuals in context, and automating the delivery of optimal personalized

behavioral interventions. All of these contribute to the paradigm shift in behavioral

medicine and serve the purpose of the dissemination of preventive interventions on a

large scale to improve individual and public health.
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