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ABSTRACT  

   

Over the last several centuries, mathematicians have developed sophisticated 

symbol systems to represent ideas often imperceptible to their five senses. Although 

conventional definitions exist for these notations, individuals attribute their personalized 

meanings to these symbols during their mathematical activities. In some instances, 

students might (1) attribute a non-normative meaning to a conventional symbol or (2) 

attribute viable meanings for a mathematical topic to a novel symbol. This dissertation 

aims to investigate the relationships between students’ meanings and personal algebraic 

expressions in the context of one topic: infinite series convergence. To this end, I report 

the results of two individual constructivist teaching experiments in which first-time 

second-semester university calculus students constructed symbols (called personal 

expressions) to organize their thinking about various topics related to infinite series. My 

results comprise three distinct sections. First, I describe the intuitive meanings that the 

two students, Monica and Sylvia, exhibited for infinite series convergence before 

experiencing formal instruction on the topic. Second, I categorize the meanings these 

students attributed to their personal expressions for series topics and propose symbol 

categories corresponding to various instantiations of each meaning. Finally, I describe 

two situations in which students modified their personal expressions throughout several 

interviews to either (1) distinguish between examples they initially perceived as similar 

or (2) modify a previous personal expression to symbolize two ideas they initially 

perceived as distinct. To conclude, I discuss the research and teaching implications of my 

explanatory frameworks for students’ symbolization. I also provide an initial theoretical 
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framing of the cognitive mechanisms by which students create, maintain, and modify 

their personal algebraic representations. 
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CHAPTER 1 

INTRODUCTION 

Unlike most scientific disciplines, mathematics takes objects of analysis that are 

not perceivable by the five senses (Duval, 2006). For example, it is impossible to see a 

function, hear a number, or smell a probability. Instead, individuals construct 

mathematical concepts in their minds (Steffe & Thompson, 2000) and use representations 

to convey their ideas through language, diagrams, graphs, and algebraic notations (Duval, 

2006). These representations play a critical role in individuals organizing, synthesizing, 

and conveying their thinking; without them, communication between individuals cannot 

occur (Vergnaud, 2009). Mathematics education researchers have recognized the 

importance of representations in the learning and teaching of mathematics for decades 

(e.g., Austin & Howson, 1979; Halliday, 1975; Pimm, 2019; Presmeg et al., 2016) and 

have adopted or proposed various theories or perspectives by which to study this topic 

(e.g., Duval, 2006; Glasersfeld, 1995; Godino & Font, 2010; Goldin, 2008; Iori, 2017; 

Radford, 2013; Vergnaud, 1998) 

In this dissertation study, I focus on students’ construction of algebraic 

representations. Over the last 500 years, mathematicians have transitioned from 

presenting many arguments verbally or in written language to symbolic representations of 

mathematics (Mazur, 2014). In contemporary mathematics classrooms, algebraic 

notations are often privileged in textbooks and teacher instruction for infinite series 

(González-Martín et al., 2011). However, students’ acquisition of appropriate meanings 

for conventional algebraic symbols is often difficult. For example, some students spend a 

disproportionate amount of time interpreting symbolic notation when reading 
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mathematical arguments (Inglis & Alcock, 2012; Shepherd & van de Sande, 2014). 

Additionally, Gray and Tall (1994) stated that conventional mathematicians often 

attribute multiple meanings to a single expression (e.g., considering Σ𝑛=1
10 1

𝑛
 to denote an 

additive process and a sum) and posited that the ability to ascribe multiple ideas fluidly to 

a symbol was a necessary condition to succeed in mathematics coursework. In some 

cases, students who cannot fluidly attribute multiple meanings to a single expression 

create novel notation to convey distinct ideas (Eckman & Roh, 2022a, in revision).  

Researchers have often chosen to study algebraic representations within targeted 

grains of analysis, such as students’ interpretation of conventional notation (Akgün et al., 

2012; Barahmand, 2021; Eckman et al., 2023; Shepherd & van de Sande, 2014), students’ 

collective construction of community inscriptions for instructional topics (e.g., 

Thompson, 2002; Zandieh et al., 2017), and students’ construction of individualized 

notation for organizing their thinking (Eckman et al., 2023; Eckman & Roh, 2022a, in 

revision). In this dissertation, I have chosen to investigate individual students’ creation 

and use of algebraic representations to organize their thinking. I have two reasons for this 

choice. First, I was fascinated by the instances I found in my previous work (e.g., 

Eckman & Roh, 2022a, in revision) where students (1) attributed non-normative 

meanings to conventional notation or (2) constructed novel symbols to denote ideas for 

which conventional symbols exist. Consequently, I hoped to document and categorize 

more instances where students’ individual symbolization did not match convention but 

seemed capable (in my mind) of functioning as a legitimate representation. Second, I 

believed that individual interviews would provide a more comfortable setting for students 

to (potentially) introduce and reason about non-normative symbolization than group or 
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classroom settings, where the pressures of interpersonal communication with peers might 

inhibit (in my mind) students’ creativity.  

Although theories of representation (e.g., Duval, 2006; Glasersfeld, 1995; Godino 

& Font, 2010; Radford, 2013; Vergnaud, 1998) are generally broad enough to apply to 

multiple contexts, I chose to narrow my focus to students’ algebraic representations for 

one particular topic: infinite series convergence. I focused my study on students’ 

symbolization of series for two reasons. First, González-Martín et al. (2011) have stated 

that algebraic notations are privileged in calculus textbook prose and teacher instruction. 

Second, previous researchers have found evidence that students’ development of both 

meaning and symbolization for infinite series is difficult. For example, some researchers 

have claimed that summation notation, the conventional representation for series, is 

difficult for students to utilize in their work (Eckman & Roh, 2022a, under review; Katz, 

1986; Strand et al., 2012; Strand & Larsen, 2013). Martin (2013) has also positioned 

series as an intersection of several topics to which researchers have stated that students 

struggle to provide viable meaning toward, such as limit (e.g., Cottrill et al., 1996; 

Sierpińska, 1987; Swinyard & Larsen, 2012; Williams, 1991), sequence and sequence of 

partial sums (e.g., Martin et al., 2011; Martínez-Planell et al., 2012; Oehrtman et al., 

2014; Roh, 2008, 2010), and infinity (e.g., Kidron, 2002; Kidron & Tall, 2015; Kidron & 

Vinner, 1983; Lakoff & Núñez, 2000). 

I now summarize my motivation for my dissertation study and propose my 

research questions. I chose to study student symbolization because representations 

constitute the only method by which they can externally organize or convey their ideas 

about mathematical topics. I narrowed my focus to students’ algebraic representations 
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because (1) algebraic notations have become ubiquitous as a form of mathematical 

communication and (2) mathematicians fluidly attribute various meanings to similar 

symbols according to their needs (implying that students who do not develop this ability 

will struggle to succeed in a mathematics classroom; Dawkins & Zazkis, 2021; Gray & 

Tall, 1994). I chose to investigate individual students’ attribution of meaning to symbols 

to remove their feeling of necessity to symbolize according to convention and promote 

more creative uses of symbols as instantiations of their meanings. Finally, I chose the 

topic of infinite series because (1) there is a substantial amount of research categorizing 

students’ meanings for topics related to series, (2) algebraic notation is privileged in 

instruction for series, and (3) the traditional method to symbolize series is problematic for 

some students. To study individual student attribution of meaning to algebraic 

representations in the context of infinite series, I propose the following research 

questions: 

• RQ1: What meanings for series convergence do first-time university calculus 

students conceive before receiving formal instruction on infinite series? 

• RQ2: How do students symbolize their meanings for mathematical topics in 

the context of infinite series? 

• RQ3: How do students’ symbols and attribution of meaning to these symbols 

change as their thinking about infinite series evolves over time? 

Two grains of analysis are inherent in my research questions: (1) individual 

student meanings and symbolization at a particular moment (RQ1, RQ2) and (2) the 

coevolution of the relationship between students’ meanings and representations over time 

(RQ3). To address both grains of analysis, I conducted two individual constructivist 
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teaching experiments (Steffe & Thompson, 2000) comprising an intake interview, seven 

teaching episodes, and an exit interview with first-time second-semester calculus 

students. In the following section, I summarize the structure of this dissertation, in which 

I describe my preparation for this study, how I collected and analyzed my research data, 

the results of my analysis, and the implications of the study for future research and 

teacher instruction. 

Structure of the Dissertation 

 This dissertation is comprised of eight chapters. The current chapter, Chapter 1, 

has three purposes. These purposes include (1) providing a motivation and rationale for 

my dissertation study, (2) presenting the research questions that guided my study design 

and analysis, and (3) sharing an overall summary of the dissertation document.  

 In the next chapter, Chapter 2, I provide an overview and synthesis of the 

literature that influenced my dissertation study. In this chapter, I divide my discussion 

into two portions. In the first portion, I address (1) research on the conventional 

presentation of infinite series in textbooks and teacher instruction and (2) empirical 

research on students’ meanings for various concepts related to infinite series 

convergence. In the second section, I address students’ symbolization of infinite series. 

Specifically, I summarize (1) research related to summation notation (the conventional 

algebraic representation for series) and (2) empirical studies of students’ attempts to 

symbolize infinite series.  

 In the third chapter, Chapter 3, I discuss theories related to the role of 

symbolization and representations in mathematics education. This chapter contains three 

major sections. In the first section, I provide the history of representations in mathematics 
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education research and a basic description of theories of symbolization used by 

contemporary researchers. In the second section, I provide a more detailed comparison of 

three of these theories to justify my choice of radical constructivism as my perspective 

for this dissertation study. In the final section, I describe the radical constructivist 

interpretations of Piagetian constructs related to individual student cognition. This 

chapter aims to identify my chosen theoretical perspective and introduce some of the 

initial constructs that I leveraged to create the methodology for this study. 

 In the fourth chapter, Chapter 4, I describe the structure of my dissertation study, 

the data collection methodology, and the analysis methods that I used to prepare the 

results for this study. This chapter contains four major sections. In the first section, I 

summarize Steffe and Thompson’s (2000) five components of a constructivist teaching 

experiment and how these components were reflected in my data collection methods. In 

the second section, I summarize the timeline of this dissertation study and describe how 

the pilot studies I conducted influenced my choice of interview tasks. In the third section, 

I summarize my data collection methods, including (1) my use of a screening survey and 

intake interview to identify my two study participants (i.e., Monica and Sylvia), (2) 

background information about each student, and (3) a summary of the interview tasks 

across the nine interviews. For more detailed information about my interview tasks, 

please refer to Appendix B (screening survey) and Appendix C (interview protocols). In 

the final section, I describe my data analysis, which I conducted in the spirit of grounded 

theory (Strauss & Corbin, 1998). 

 I have separated the results of this dissertation study into three major sections, 

which I will address in individual chapters. In Chapter 5, I describe Monica’s and 
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Sylvia’s intuitive meanings for infinite series convergence that emerged during the intake 

interview. Specifically, I describe one overarching meaning for convergence the students’ 

exhibited and three implications of this meaning that influenced their actions while 

reasoning about individual series. The material in Chapter 5 is primarily related to my 

first research question, what meanings for series convergence do first-time university 

calculus students conceive before receiving formal instruction on infinite series?  

In Chapter 6, I propose an explanatory framework for contextualizing the number 

and types of meanings Monica and Sylvia attributed to their various inscriptions and 

expressions during the teaching experiment. Specifically, I describe three meanings that 

the students attributed to their symbols and six inscription types they created to re-present 

these meanings to themselves. The material in Chapter 6 is related to my second research 

question, how do students symbolize their meanings for mathematical topics in the 

context of infinite series?  

In Chapter 7, I discuss two situations in which students’ meanings and 

symbolization coevolved over more than one interview. First, I describe Monica’s 

construction of two distinct mathematical expressions to denote ideas she considered 

similar. Second, I present Sylvia’s modification of the inscriptions comprising one 

mathematical expression to indicate several examples that she considered to be distinct 

but share certain properties. The material in Chapter 7 is related to my third research 

question, how do students’ symbols and attribution of meaning to these symbols change 

as their thinking about infinite series evolves over time? 

In the final chapter, Chapter 8, I discuss the implications of each results chapter 

with regard to future research and teacher instruction of infinite series. I also present an 
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initial iteration of a theoretical framework to describe the cognitive mechanisms by which 

students construct and modify their representations during the course of their symbolizing 

activity. 
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CHAPTER 2 

LITERATURE REVIEW 

The purposes of this chapter are to ground this dissertation study within the 

current literature regarding (1) students’ meanings for and (2) students’ symbolization of 

infinite series convergence. There are two main sections within this chapter. In the first 

(and largest) section, I address literature related to students’ meanings for infinite series 

convergence (purpose 1). My goals concerning purpose (1) are to provide insight into 

how my participants might reason about series and further justify the relevance of my 

research topic. In the second section, I describe research related to how students might 

symbolize infinite series convergence (purpose 2). My goal regarding the second section 

is to highlight difficulties students might experience with conventional notation and the 

explanatory power students might obtain by creating personalized expressions to 

symbolize series components. The second section also serves to motivate my theoretical 

perspective chapter, Chapter 3, in which I summarize various general theories of 

symbolization in mathematics and present the theoretical framing of this dissertation 

study.  

Literature Related to Students’ Meanings for Infinite Series Convergence 

In this section of the literature review chapter, I address students’ meanings and 

symbolization within a single context: infinite series convergence. There are three 

components to this section. First, I discuss the current state of infinite series instruction in 

calculus classrooms. In particular, I will describe a normative meaning for infinite series 

convergence and discuss how textbooks and instructors present content related to series. 

Second, I summarize the findings from several empirical studies related to students’ 
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meanings for topics pertaining to infinite series, such as sequence, partial sums, limit, and 

infinity. This section aims to provide insight into how students think about each topic and 

the difficulties they might encounter while reasoning about series convergence. Finally, I 

offer an overall summary of the section and contextualize the relevance of this literature 

to my dissertation study. 

Conventional Meanings for Series in Textbooks and Instruction 

 The purpose of this section is to overview the current state of infinite series 

coursework in calculus classrooms. I focus on three major areas: (1) the normative 

meaning and symbolization of infinite series in calculus classrooms, (2) how infinite 

series are portrayed in mathematics textbooks, and (3) how instructors present infinite 

series in their instructional sequences. Through this literature review, I highlight the 

prevalence of algebraic representations of series in coursework and the potentially 

productive nature of graphical representations of series in instruction. 

The Normative Meaning and Symbolization of Infinite Series 

The topic of infinite series convergence is central to many key findings in 

advanced mathematics and informs approximation techniques in physics, engineering, 

and other physical sciences (Azevedo, 2021). Infinite series convergence is not a 

simplistic concept but is rather an intersection of many complex mathematical ideas, 

including sequence, limit, and infinity (Martin, 2013). Much research has been done on 

the individual topics of sequence (e.g., McDonald et al., 2000; Oehrtman et al., 2014; 

Przenioslo, 2006; Roh, 2008, 2010b, 2010a), limit (e.g., Cornu, 1991; Cottrill et al., 1996; 

Roh, 2008; Sierpińska, 1987; Swinyard & Larsen, 2012; Tall & Vinner, 1981; Williams, 

1991), and infinity (e.g., Kidron & Tall, 2015; Lakoff & Núñez, 2000; Sierpińska, 1987). 
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Less work has been done in the area of infinite series, although some researchers have 

highlighted the importance of the sequence of partial sums (Martínez-Planell et al., 

2012), the usefulness of graphs in helping students reinvent the definition of series 

convergence (Martin et al., 2011), students’ struggles to conceive of series convergence 

appropriately (e.g., Akgün et al., 2012; Barahmand, 2017, 2021; Eckman & Roh, 2022b; 

Kidron, 2002; Kidron & Vinner, 1983), and students’ struggles with creating or 

interpreting representations of series (Alcock & Simpson, 2004, 2005; Eckman & Roh, 

2022a; Strand et al., 2012; Strand & Larsen, 2013).  

Broadly speaking, the aforementioned studies have revealed three major obstacles 

with regard to students’ learning of series. First, students struggle to conceive of a 

sequence as a function (McDonald et al., 2000), which renders the sequence of partial 

sums useless for reasoning about infinite series (Martínez-Planell et al., 2012). Second, 

students’ conceptions of limit and infinity often preclude them from developing a 

conventional meaning for series convergence (Barahmand, 2017, 2021; Kidron, 2002; 

Kidron & Vinner, 1983). Third, many students struggles to create or interpret algebraic 

representations of series (Alcock & Simpson, 2004, 2005; Eckman & Roh, 2022a; Strand 

et al., 2012; Strand & Larsen, 2013), which is the privileged medium by which many 

textbooks portray this topic (González-Martín et al., 2011). Additionally, students’ 

notions of sequence or series behavior and convergence vary from instance to instance 

(Alcock & Simpson, 2002; Martínez-Planell et al., 2012; Roh, 2008), while the notational 

conventions for representing these ideas (e.g., summation notation, function notation for 

general summands) remain consistent. 
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The normative notation employed by many calculus textbooks (e.g., Larson & 

Edwards, 2015; Stewart, 2012) and instructors to denote an infinite series is summation 

(Σ) notation. The general form of an infinite series, the expression ∑ 𝑎𝑛
∞
𝑛=1 , is comprised 

of four distinct inscriptions: (1) the inscription Σ, which represents an additive process; 

(2) the lower index 𝑛 = 1, which denotes the indexing variable of a series and the 

position of the first summand of interest in the series calculation; (3) the inscription ∞, 

which denotes that there is no final summand of interest in the calculation (implying that 

the additive process never terminates); and (4) the argument 𝑎𝑛, which denotes the 

general summand of the series in terms of the indexing variable. The entire expression 

∑ 𝑎𝑛
∞
𝑛=1  can have one of two distinct meanings. First, the expression can denote the 

process of summing the infinite terms of the sequence of summands {𝑎𝑛}𝑛=1
∞ . Second, the 

expression can indicate this infinite additive process's metaphorical “result” (c.f. Lakoff 

& Núñez, 2000). I further discuss students’ meanings for infinity later in this chapter.  

Mathematicians employ the sequence of partial sums, which provides 

successively more accurate approximations of the value of the infinite series, to bridge 

the process and metaphorical result meanings mathematicians attribute to the expression 

∑ 𝑎𝑛
∞
𝑛=1 . To determine the true value of the infinite series, mathematicians determine the 

limit of the sequence of partial sums, which they might algebraically denote as (1) 

lim
𝑛→∞

𝑆𝑛, where 𝑆𝑛 = ∑ 𝑎𝑖
𝑛
𝑖=1 , or (2) ∑ 𝑎𝑛

∞
𝑛=1 = lim

𝑛→∞
∑ 𝑎𝑖

𝑛
𝑖=1 . Similar to the expressions 

for infinite series, mathematicians can also attribute to their algebraic expression ∑ 𝑎𝑖
𝑛
𝑖=1  

the process of constructing (e.g., writing the terms of) the sequence of partial sums or the 

resulting sequence as a holistic cognitive entity. 
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How Textbooks Portray and Symbolize Infinite Series 

The purpose of this section is to (a) describe predominant features of textbook 

instruction on infinite series in North American calculus textbooks, (b) compare the 

representations predominantly used in textbooks with those shown as productive in the 

research literature, and (c) further justify the relevance of studying students’ 

symbolization of infinite series as a research topic. I chose to review North American 

textbooks to further comprehend the conventional tasks that my students were likely to 

encounter in their coursework. I describe two textbook analyses: (1) González-Martín et 

al.’s (2011) analysis of infinite series-related content in a selection of Canadian calculus 

textbooks, and (2) my analysis of infinite series exposition from four American 

textbooks: Callahan et al. (1995), Larson and Edwards (2015), Stewart (2012), and 

Thompson et al. (2019). 

González-Martín et al. (2011) analyzed the material on infinite series in 17 

calculus textbooks used in at least one university course. They concluded that, with rare 

exceptions, each text presented series in a largely decontextualized manner with few 

visual or graphical examples. For example, most homework exercises were algebraically-

based and included visuals were typically portraits, decorative photographs, and 

reminders of ancillary mathematical concepts engrained within an example (such as an 

arbitrary example of the graph of a function). Consequently, González-Martín et al. 

(2011) stated that algebraic representations of series are privileged within the 

mathematics community, despite research showing positive impacts on student thinking 

through reasoning about sequence and series convergence graphically (e.g., Martin et al., 

2011; Roh, 2010b). 
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 In my analysis of American calculus textbooks, I also determined a strong 

preference for algebraic examples of series and few graphical examples (which were 

generally confined to the introductory sections of the unit and Taylor Series). However, 

the instructional methods for series varied across texts. For example, two prominent 

American calculus textbooks (i.e., Larson & Edwards, 2015; Stewart, 2012) order their 

content by presenting sequences, series, a myriad of convergence tests, Taylor 

polynomials, Taylor series, and then power series. In contrast, other textbooks (Callahan 

et al., 1995; see also Thompson et al., 2019) initially present series as an approximation 

process to determine values of a function within a certain degree of accuracy. These 

textbooks then present infinite series convergence as a method to produce “exact 

answers” for the sum of a series. Still, all four textbooks primarily engage students in 

constructing or reasoning about algebraic representations of series to determine a series’ 

convergence or value. 

 In summary, many North American calculus textbooks primarily present their 

infinite series content algebraically. As a result, students must learn to meaningfully 

express their thinking about series through summation notation (the normative 

convention for representing infinite series convergence) to reason and communicate 

about series in their coursework. Consequently, studying how students map their thinking 

to the summation notation or other representations they create while reasoning about 

series can provide insight into how to improve students’ access to the privileged algebraic 

representations of infinite series. 

 I make one final comment about the authors’ use of the sequence of partial sums 

in the textbooks that I reviewed. Although Larson and Edwards (2015) claimed that 
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determining the value of a series is an important question, many of their homework 

exercises merely required students to assess convergence using a convergence test. One 

potential disadvantage of limiting students’ work to determining convergence is that 

students rarely utilize the sequence of partial sums. I acknowledge that the exact value of 

convergence cannot be determined for most series. However, providing students with few 

opportunities to reason with the sequence of partial sums in their work may lead them to 

dismiss (or forget) the relevance of this idea (Martínez-Planell et al., 2012). Limiting 

examples that explicitly address the sequence of partial sums may also be problematic for 

students’ future coursework in higher division mathematics classes, where they must 

utilize or prove properties of infinite series (Martínez-Planell et al., 2012). One method to 

increase students’ use of the sequence of partial sums in their coursework might be to 

provide more examples where students must approximate the value of a series within a 

particular error bound using graphs (see tasks in Martin et al., 2011; Roh, 2010b) or 

tables (see sample problems in Callahan et al., 1995; Thompson et al., 2019). 

Research on Instruction for Infinite Series 

This section briefly addresses how instructors present infinite series in the 

classroom. I offer two examples: the first focuses on primarily algebraic instruction 

(González-Martín et al., 2011), and the second focuses on the potential positive effects of 

introducing visual representations during instruction on series (Lindaman & Gay, 2012). 

First, González-Martín et al. (2011) interviewed five Canadian calculus 

instructors to determine common instructional practices regarding infinite series. Most 

instructors described instructional sequences primarily utilizing formal language and 

algebraic examples (which reflected the presentational approaches in their textbooks). 
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When the interviewers asked how the instructors might deepen students’ conceptual 

understanding of series, many proposed algorithmic tasks that lacked visual, graphical, or 

figural representations. The few instructors who did discuss conceptual tasks related to 

convergence stated that creating such examples for series was extremely difficult.  

Second, Lindaman and Gay (2012) reported a classroom experiment comparing 

students’ exam performance on series-related problems for a control and reform classes. 

In the reform class, the authors presented visual and graphical examples of series 

convergence, asked the students to complete written reflections about series, discuss 

thought-provoking questions during each class session, and participate in collaborative 

activities (e.g., jigsaw activity). The reform class students scored better on the series-

related questions on the chapter exam, midterm, and final than the lecture-oriented 

control class students.  

While the goal of this dissertation is not to study instructional practices about 

infinite series, the two studies I have summarized in this section informed the design of 

my teaching experiments tasks. For example, Lindaman and Gay (2012) utilized visual 

and graphical examples of series convergence. Other researchers (e.g., Martin et al., 

2011; Roh, 2008, 2010a, 2010b) have also shown the positive effects that graphical 

representations of sequences can have on students’ meanings for convergence. 

Additionally, González-Martín et al.'s (2011) report that instructors’ commonly use 

formal algebraic examples of series in their instruction heightens the necessity to study 

how students construct and utilize these representations in their work. In Chapter 4, I 

describe my incorporation of graphs and other visualizations into my study design. 
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Summary of the Conventional Portrayal of Infinite Series 

 In this portion of the literature review chapter, I have (1) summarized a normative 

meaning and symbolization for infinite series convergence, (2) presented an analysis of 

how textbooks conventionally portray the topic of infinite series, and (3) described 

various instructional practices for teaching the topic of infinite series. In all three 

sections, the data that I presented confirm that investigating students’ creation of an 

algebraic system by which they can meaningfully describe infinite series is a relevant 

research topic. I also presented data indicating that presenting visual and graphical 

examples of sequences (e.g., the sequence of partial sums) can be helpful for students to 

construct productive meanings for convergence. Including graphical tasks related to 

series convergence became an important part of my task design for this study, which I 

discuss in more detail in Chapter 4. 

Students’ Acquisition of Meaning for Infinite Series 

In the following sections, I describe research related to students’ meanings for 

general sequences, the sequence of partial sums, limit, and infinity. I address each topic 

in an individual subsection and summarize the major points of each topic at the end of 

this section. My discussion aims to present infinite series as a complex topic comprising 

various concepts for which students must construct viable meanings to reason 

productively about convergence. For example, a student who reasons productively about 

infinite series convergence must leverage their meanings for two topics: sequences (e.g., 

sequence of partial sums) and limit (or convergence). Additionally, the student’s image of 

limit will be influenced by her meaning for infinity.  
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Research on Students’ Meanings for Sequence 

 Most empirical studies investigating student thinking about sequences have 

focused on properties of sequences, such as the limit of a sequence (e.g., Cornu, 1991; 

Oehrtman et al., 2014; Roh, 2008; Williams, 1991) or sequence as a particular case of 

function (e.g., Breidenbach et al., 1992; Sierpinska, 1992). Additionally, some 

researchers have categorized students’ general meanings for sequences. For example, 

McDonald, Mathews, and Strobel (2000) proposed two independent student conceptions 

for sequence. In the first case, some students considered a sequence as a list of numbers, 

separated by commas, that portrayed a pattern. Przenioslo (2006) reported that such 

students might believe a sequence needs to have a discernable pattern (e.g., explicit, 

recursive, graphical). Sierpińska (1987) stated that such students conceive of a sequence 

as a well-ordered set. In the second case, McDonald et al. (2000) reported students who 

conceived of a sequence as a type of function defined by a correspondence between the 

index and terms of the sequence. Przenioslo (2006) conjectured that students’ ability to 

identify various representations of sequences (e.g., numeric, diagrammatic, graphical) 

related to their perception of a sequence as an ordering of terms or a correspondence 

between an index and a set of terms. The second case (i.e., sequence as a function) 

reflects the conventional method in which mathematicians consider a sequence. However, 

some scholars (e.g., Martínez-Planell et al., 2012; McDonald et al., 2000) have reported 

(1) fewer students consider a sequence as a function than as a list, and (2) that there are 

different levels of operational ability for students within each conception of a sequence.1 

 
1 Both McDonald et al., (2000) and Martínez-Planell et al. (2012) employed APOS theory (e.g., Dubinsky, 

1991) to describe the various levels of actions that students with each conception for sequence were 

capable of performing. 
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Research on Students’ Meanings for Partial Sums 

 Research on student thinking about the sequence of partial sums is almost 

nonexistent. The research that does exist addresses students’ coordination of visual and 

symbolic representations for partial sums (Kar et al., 2011), students’ construction of 

novel symbolic representations for partial sums (Eckman & Roh, 2022a, in revision), 

students’ difficulties in constructing the general term of the sequence of partial sums 

(Eckman & Roh, under review, in revision; Kar et al., 2011), and students’ use of the 

sequence of partial sums to reason about series convergence (Martin, 2013; Martínez-

Planell et al., 2012).  

This small body of literature makes five major claims about students’ reasoning 

about partial sums. First, many students experience little difficulty reasoning about or 

symbolizing individual partial sums (Eckman & Roh, 2022a, 2022b). Second, students 

often struggle to construct symbolic representations of a sequence of partial sums from a 

visual depiction and vice versa (Kar et al., 2011). Third, students who can verbally 

describe the process of computing an arbitrary partial sum may not convey their thinking 

through conventional algebraic symbols (Eckman & Roh, 2022b). Fourth, many students 

struggle to construct an explicit rule for the general term of the sequence of partial sums 

(Eckman & Roh, in revision; Kar et al., 2011). Instead, students might employ recursive 

rules or representational variables to reason about terms in the sequence of partial sums 

(Eckman & Roh, in revision). Finally, students often struggle to apply the sequence of 

partial sums to reason about convergence (Martínez-Planell et al., 2012), with many 

students initially reasoning about series convergence by considering a single, dynamic 

partial sum (Eckman & Roh, 2022b; Martin, 2013).  
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 In summary, students often comprehend the nature of partial sums but struggle to 

(1) construct a general term by which to define the sequence of partial sums and (2) 

utilize the sequence of partial sums to reason about the value of an infinite series. Since 

the limit of the sequence of partial sums is the value of a series, improving students’ 

comprehension of the sequence of partial sums is a worthwhile research pursuit. 

Increasing students’ exposure to the sequence of partial sums is particularly relevant 

because some calculus textbooks (e.g., Larson & Edwards, 2015; Stewart, 2012) only 

sporadically acknowledge this topic, which may prompt students to lose sight of the 

relevance of partial sums in series convergence (Martínez-Planell et al., 2012). 

Research on Students’ Meanings for Convergence, Limit, and Infinity 

This section aims to provide an overview of the research on convergence, limit, 

and infinity and apply this research to students’ meanings for infinite series. There are 

two parts to this section. In the first part, I summarize a naturalistic meanings students 

might possess for series convergence and three approaches students might consider while 

determining whether a series converges with this meaning. In the second part, I review 

literature related to various ways in which students at all levels have considered the limit 

concept. In particular, I summarize research related to (1) two meanings students might 

possess for convergence of a sequence or function and (2) four meanings students might 

possess for infinity. For each meaning of infinity, I also contextualize this meaning in 

research related to student thinking about series convergence. 

Research on the limit concept is vast and covers several major mathematical 

topics. For example, some limit-oriented research has focused on students’ meanings for 

the limit of a function (Cornu, 1991; Cottrill et al., 1996; Swinyard & Larsen, 2012; Tall 
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& Vinner, 1981; Williams, 1991). Other research has primarily investigated students’ 

meanings for the limit of a sequence (e.g., Barahmand, 2017; Oehrtman et al., 2014; Roh, 

2008, 2010; Sierpińska, 1987). Additional studies have focused on the limit concept in 

relation to infinite or power series (e.g., Barahmand, 2021; Kidron, 2002; Martin, 2013; 

Martínez-Planell et al., 2012). Other studies have covered miscellaneous topics related to 

infinite series convergence, such as using technology to think about actual infinity while 

approximating an infinite series (Kidron, 2002), students’ attempts to construct 

definitions for series convergence (Martin et al., 2011), and comparing students’ attempts 

to determine the value of a series (1) algebraically and (2) within word problems (Akgün 

et al., 2012).  

The research that I cited in the previous paragraph implies that most students 

either (1) conceive of limit as a dynamic process consistent with approaching a value of 

the independent variable while tracking values of the function or (2) construct a rigorous 

definition of limit logically equivalent with the formal definition. The dynamic process 

meaning for limit is common (Cornu, 1991; Cottrill et al., 1996) and may be a 

prerequisite for developing more formalized thinking about the limit concept (Swinyard 

& Larsen, 2012). Developing a rigorous meaning for limit is not intuitive or easy to 

construct for students (Roh, 2008; Swinyard & Larsen, 2012), although there are 

instructional recommendations for helping students to make this transition (e.g., Martin et 

al., 2011; Roh, 2010b; Swinyard & Larsen, 2012).  

In the following two sections, I discuss specific student meanings for the limit 

concept in the context of infinite series (i.e., series convergence). First, I will address 

students’ intuitive approaches to series convergence before receiving formal instruction 



  22 

on infinite series. Second, I  provide a general description, grounded in empirical studies, 

of the evolution of student thinking with regard to limit and certain activities that can 

facilitate productive student meanings for series convergence.  

Students’ Intuitive Meanings for Series Convergence. Eckman and Roh 

(2022b) reported three distinct approaches two students with no exposure to the sequences 

and series unit in second-semester calculus employed to determine (1) whether a series 

converged and (2) the value to which a series converged. The students were named 

Monica and Sylvia.2 The findings that I report in this section are an abbreviated version of 

the dissertation findings that I report in Chapter 5 and serve as a preview of the topics that 

I will discuss in that chapter. 

The overarching image of convergence the students leveraged to reason about 

convergence was a dynamic running total approaching an asymptotic value or an 

asymptotic running total meaning. The students employed three approaches in different 

interview moments to consider the running total's behavior while reasoning about the 

convergence of various series. In the first approach, decreasing summands convergence, 

Monica and Sylvia reasoned that if the values of the summands consistently decreased for 

each successive term in a series, then the running total must approach an (asymptotic) 

value and converge. In the second approach, monotone running total divergence, the 

students reasoned that (some) monotone series would diverge because they envisioned 

the value of the running total perpetually increasing (or decreasing), eventually 

surpassing any potential upper (or lower) bound (i.e., asymptotic value). In the final 

 
2 Monica and Sylvia are the same students that I report in the results section of this dissertation. The data 

that I report in this paragraph came from their intake interview and was reported during the 2022 PME-NA 

conference. 
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approach, running total recreation through grouping, the students combined successive 

terms in an alternating series to create an almost monotone series. Then they reasoned 

about the new series to determine the convergence of the original series. Eckman and 

Roh (2022b) considered the three approaches to constitute meanings in the moment 

(Thompson et al., 2014). They also reported that students’ meanings for series 

convergence changed across the series they presented in their study. I provide a more 

detailed analysis of Monica and Sylvia’s initial reasoning about series convergence in 

Chapter 5. 

 Each method I described in the previous paragraph shows a necessary (but 

insufficient) property of convergent or divergent series. For example, it is a necessary 

(but insufficient) property of convergent series that the magnitude of the summands 

approaches zero as the index increases without bound. It is a necessary (but insufficient) 

property of a monotone divergent series that the sequence of partial sums perpetually 

increases (or decreases). Finally, grouping terms to reason about convergence in an 

alternating series is a property of an absolutely convergent (but not conditionally 

convergent) series. To differentiate between instances where the intuitive notions of 

decreasing summands convergence, monotone running total divergence, and running 

total recreation through grouping are appropriate, a student must develop the ability to 

reason about series through the sequence of partial sums (Martínez-Planell et al., 2012, 

make a similar claim about series convergence in general). Consequently, studying how 

students develop a more rigorous sense of series convergence from their intuitive 

methods, particularly through constructing and reasoning with the sequence of partial 

sums, is a relevant line of research work. 
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Students’ Meanings for Limit of a Sequence and Function. The purpose of this 

subsection is to present research on the various types of meaning that students exhibit for 

the limit concept, including their ideas about infinity and series convergence. In 

particular, I review two ways in which Swinyard and Larsen (2012) and Oehrtman et al. 

(2014) reported students’ reasoning about limit points. The authors called these two 

methods for conjecturing and justifying limit points domain-first and range-first 

perspectives. I devote one paragraph to defining and contextualizing each term. 

A student with a domain-first perspective might, by initially focusing on the 

inputs of the function and then the corresponding outputs, determine a limit candidate but 

be unable to justify his chosen value. Such students will often consider the limit concept 

to denote a dynamic process of function values tending to an asymptotic value (Cornu, 

1991; Roh, 2008; Tall & Vinner, 1981; Williams, 1991) or a cluster point (Cornu, 1991; 

Roh, 2008). Researchers have also reported that students with a domain-first perspective 

often use terms such as “approaching,” “close enough,” or “infinitely close” to justify 

their choice of a limit point (Swinyard & Larsen, 2012; Williams, 1991).  

Formal definitions of convergence3 at infinity rely on a range-first perspective or 

focus on universally quantified error bounds (e.g., “for all 𝜖 > 0”) for the dependent 

variable of the function (as opposed to a dynamic process of the independent variable 

increasing without bound). Students’ transition from domain to range-first perspectives is 

often tricky. For example, researchers have reported that students struggle to quantify 

error bounds defined linguistically (e.g., “infinitely close,” “close enough;” Swinyard & 

 
3One such formal definition is “a sequence (𝑎𝑛) converges to a real number a if, for every positive number 

𝜖, there exists an 𝑁 ∈ ℕ such that whenever 𝑛 ≥ 𝑁 it follows that |𝑎𝑛 − 𝑎| < 𝜖 (Abbott, 2015, p. 43). 
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Larsen, 2012) and in terms of 𝜖 (Roh 2008, 2010a). Still, research has shown that certain 

tasks, such as explicitly asking students to quantify error bounds (Swinyard & Larsen, 

2012), engaging in graphing activities (Martin et al., 2011; Roh, 2008, 2010a, 2010b), 

and using manipulatives (Roh, 2010b) might help students to adopt formal definitions of 

limit and convergence more easily. 

Students’ Meanings for Infinity and Convergence. The notion of infinity is 

present in both the limit concept and the nature of infinite sequences and series. Two 

general conceptions of infinity have existed since the time of Aristotle: potential infinity 

and actual infinity (Lakoff & Núñez, 2000). Potential infinity refers to dynamic processes 

that continue without end, and actual infinity is “infinity conceptualized as a real ‘thing’” 

(Lakoff & Núñez, 2000, p. 158). Sierpińska (1987) leveraged the notions of potential and 

actual infinity to describe four ways a student’s conception of infinity might impact his 

meaning for the limit of a sequence: a finitist attitude, a potentialist model, a potentialist 

actualist model, and an actualist model. In the following sections, I describe Sierpińska's 

(1987) findings and relate her constructs to the work that has been conducted on students’ 

meanings for infinite and Taylor series.  

 The finitist attitude and its relationship to series. A student might believe that 

infinity does not exist or only exists theoretically and cannot be rigorously applied to a 

limit problem. Sierpińska (1987) called this meaning a finitist attitude towards infinity. 

To such a student, infinity is an abstract idea that cannot be applied to specific situations, 

including those involving the limit concept. Students with a finitist attitude generally 

believe that every sequence has a last term and that this term either approximates the 

limit or is the limit value. 
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 Students who apply a finitist attitude to series might assume that properties of 

finite addition apply to infinite addition. For example, Barahmand (2021) reported the 

results of a questionnaire on infinite series given to a group of Iranian high school 

students asked to compare two divergent series, 𝐴 = ∑ 𝑛∞
𝑛=1  and 𝐵 = ∑ 2𝑛∞

𝑛=1 . Some of 

the students stated that 𝐵 > 𝐴 because they considered the 𝑖th partial sum of 𝐵 to be 𝐵𝑖 =

2 + 4 + ⋯ 2𝑖 = 2(1 + 2 + ⋯ 𝑖) = 2𝐴𝑖, or twice the value of the corresponding partial 

sum of series 𝐴. This generalized process of comparing partial sums is a critical element 

of the comparison test for series convergence. However, these students' decision to make 

general statements about the values of two divergent series by comparing partial sums 

indicates that the students likely considered the series to terminate at a large, finite 

number. 

 The potentialist model and its relationship to series. Some students might apply a 

meaning consistent with potential infinity to describe the limit of a sequence as a dynamic 

process of approaching a value. Sierpińska (1987) called this meaning a potentialist 

model for limit. The potentialist model is consistent with a domain-first perspective. 

Sierpińska (1987) stated that students adopting the potentialist model envision the limit of 

a sequence as a function of time. In this case, a student might say that a sequence can 

approach (but never reach) a limit value because the process of generating sequence 

terms will never end. This way of thinking is consistent with reports of students 

considering sequence convergence (e.g., Roh, 2008) and series convergence (e.g., 

Eckman & Roh, 2022b; Martin, 2013) as a dynamic value approaching an asymptotic 

value. 
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The potentialist actualist model and its relationship to series. A student with a 

domain-first perspective who envisions the limit concept as a never-ending process of 

generating and evaluating sequence values could consider (hypothetically, of course) 

what might occur if the process were to end after an infinite amount of time. Sierpińska 

(1987) stated that such a student possesses a potentialist actualist model for limit. As 

with the finitist attitude, a student whose meaning for the limit concept contains a 

potentialist actualist model will consider the limit of a sequence to be the ultimate term. 

However, a student with a potentialist actualist model for limit considers the limit process 

as an infinite, dynamic process that has (theoretically) ended. For example, Barahmand 

(2021) stated that most students comparing 𝐴 = ∑ 𝑛∞
𝑛=1  and 𝐵 = ∑ 2𝑛∞

𝑛=1  selected that 

𝐴 > 𝐵 because, to these students, when the infinite series was completed, series 𝐴 (the 

sum of the natural numbers) would have all the elements of series 𝐵 (the sum of the even 

numbers) as well as all of the odd numbers. These students likely envisioned both the 

individual terms of the series and the result of adding these terms. Students utilizing a 

potentialist actualist model of infinity to reason about convergence are likely in the 

process of reconciling potential and actual infinity.  

 The actualist model and its relationship to series. Although Sierpińska (1987) did 

not report an optimal student meaning for limit, she did provide a fourth set of meanings 

related to students who considered actual infinity. Sierpińska (1987) called these 

meanings the boundist and infinitesimalist models of the limit concept. Students with a 

boundist model for limit distinguished sequences as bounded or boundless and identified 

the values that bound the sequence. Students who exhibited an infinitesimalist model for 
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limit stated that the limit of a sequence is a value such that the difference between the 

limit and the tail of the sequence is infinitely small.  

Martin (2013) reported two methods of determining Taylor Series convergence 

analogous to Sierpińska's (1987) boundist model. First, some individuals created closer 

approximations of a desired function by appending terms to a single Taylor polynomial 

until a pre-determined condition was reached. This image of convergence, called a 

dynamic partial sum image, was the most common image for series displayed by the 

participants in the study. Second, some mathematicians and students focused on (1) 

evaluating a Taylor series at a desired value of the independent variable of the target 

function and (2) appending terms to a corresponding Taylor polynomial until they 

achieved their desired approximation accuracy. This image of convergence, called a 

particular x image, was used by participants who wanted to determine convergence at a 

single point and not over an interval. These two meanings are similar to Sierpińska's 

(1987) boundist model since the mathematicians and students focused on creating a 

Taylor polynomial approximating the series within a certain bound.  

Martin (2013) reported two other methods of determining Taylor Series 

convergence that I consider analogous to Sierpińska's (1987) infinitessimalist model. 

First, some mathematicians focused on the distance between the function and the 

approximation (i.e., error or remainder) going to zero in the expanded Taylor series. In 

other words, these mathematicians envisioned a dynamic process of simultaneously 

appending additional terms to a Taylor polynomial and imagining the distance between 

the function and the approximating Taylor polynomial shrinking. Second, most 

mathematicians stated at some point during their interviews that the sequence of Taylor 
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polynomials (i.e., sequence of partial sums) converged to the Taylor series. In each case, 

the mathematicians envisioned either directly (i.e., focusing on the distance between the 

Taylor polynomial and series shrinking) or indirectly (i.e., focusing on “convergence”) 

that the difference between the Taylor polynomial and the target function becomes 

negligible as the number of terms increases without bound. 

Summary of Research on Students’ Meanings for Infinite Series 

 The literature on students’ conceptions for sequence, partial sums, limit, and 

infinity provides substantial insight into students’ meanings for these topics. For 

example, students often consider sequences as ordered lists or as a function mapped 

between an index and the values in the list. Students have little trouble reasoning about 

individual partial sums but struggle to construct or symbolize the sequence of partial 

sums. Students’ intuitive sense of series convergence is often that of a running total (i.e., 

dynamic sum) approaching an asymptote. Students attempting to develop a more formal 

notion of the limit concept often struggle to (1) transition their thinking to consider error 

bounds, (2) quantify these error bounds, and (3) reconcile the competing notions of 

potential and actual infinity to contextualize a limit value. Researchers have identified 

explicit teaching interventions to help students overcome their obstacles for many of 

these topics, including explicitly asking students to quantify error bounds (Swinyard & 

Larsen, 2012), providing opportunities to reason about convergence graphically (Martin 

et al., 2011; Roh, 2010b), and utilizing manipulatives to address issues of quantification 

(Roh, 2010b). The complexity of student thinking related to convergence (as reported in 

the literature) justifies further research in students’ meanings for infinite series. 

Additionally, the obstacles posited by several researchers (e.g., Kidron, 2002) regarding 
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comprehending and symbolizing infinite series highlight the need for additional research 

on how students represent their meanings through symbolic expressions.  

Students’ Symbolization of Infinite Series 

The goal of this study is to compare students’ meanings for infinite series 

convergence with their methods of symbolizing their meanings. Symbolization research 

is vital for infinite series because most instruction and examples students experience for 

this topic are grounded in algebraic symbols (González-Martín et al., 2011). Additionally, 

many researchers (e.g., Eckman & Roh, 2022a; González-Martín et al., 2011; Kidron, 

2002; Martínez-Planell et al., 2012) have described the dual meaning of notations related 

to addition (e.g., summation notation), which mathematicians use to describe infinite 

series as a process or an infinite sum according to their needs. Thus, students wishing to 

participate in discussions about infinite series in their calculus coursework must develop 

an ability to normatively utilize summation (or some other) notation to convey their 

thinking about series. 

In this section, I present two major ideas. First, I summarize the research on 

students’ and mathematicians use and interpretation of summation notation as a 

representational system. Second, I summarize research related to students’ development 

of representations to denote their thinking about components of infinite series. This 

section aims to (1) showcase how students might experience difficulty conveying their 

thinking about infinite series through conventional notations and (2) highlight the 

advantages that encouraging students to create novel representations affords with regard 

to modeling student thinking.  



  31 

Research on Summation Notation as a Representational System 

Little research explicitly targets the usefulness of summation notation as a 

symbolic system and students’ use of summation notation as a convention. The research 

that exists primarily critiques or studies students’ conceptions of the indices of 

summation notation. For example, Katz (1986) suggested that the separation of the upper 

and lower indices in the summation notation (i.e., 𝑚, 𝑛 in ∑ 𝑎𝑖
𝑛
𝑖=𝑚 ) might encourage 

students to disassociate these bounds and overstate the relationship between the variable 𝑖 

and the lower index 𝑚. Katz’s (1986) remark is syntactic, and his recommended change 

to the notation, ∑ 𝑎𝑖
𝑚,𝑛
𝑖  serves to (1) remove the equal sign from the expression and (2) 

make the relationship between the indices more explicit.  

Strand et al. (2012) reported two ways in which second-semester calculus students 

struggled to interpret the indices in summation notation. First, students were often unsure 

how to increment the summation index when approximating the area under a curve.4 For 

example, Strand and Larsen (2013) hypothesized that a student who wrote the expanded 

notation ∑ (𝑖 − 1)4
𝑖=2 = (2 − 1) + (4 − 1) + (6 − 1) + (8 − 1) considered the lower 

index 𝑖 = 2 to imply that the space between each value of the index was two units. 

Second, students struggled to determine whether the upper index value referred to the 

number of summands in the sum, the final index value by which to evaluate the general 

term, or both.5 Although Strand and Larsen (2013) did not provide this interpretation in 

their report, it is possible that the student who wrote ∑ (𝑖 − 1)4
𝑖=2 = (2 − 1) + (4 − 1) +

 
4 Conventionally, the increment of the index is one because the domain associated with summation notation 

is the natural numbers. However, the increment of the index is not given explicitly in the notation. 
5 Conventionally, the upper index refers to the final index value. The upper index only refers to the number 

of summands in a sum if the lower index value is 1. 
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(6 − 1) + (8 − 1) interpreted the upper index 4 to represent the number of summands 

that he needed to generate. If this were the case, then the students’ work can be explained 

in the following manner: 

1. The lower index 𝑖 = 2 simultaneously refers to the initial value of the index 

and the distance between each subsequent value of the index. So, the domain 

of the index is the set {2, 4, 6, 8, … } 

2. The upper index 4 refers to the number of summands in the finite sum, 

meaning there will be four summands. These summands are calculated using 

the index values 𝑖 = 2, 4, 6, 8 

3. Thus, the expression ∑ (𝑖 − 1)4
𝑖=2  can be expanded as  

∑ (𝑖 − 1)4
𝑖=2 = (2 − 1) + (4 − 1) + (6 − 1) + (8 − 1). 

While the purpose of this dissertation is not to provide productive instructional 

practices for teaching summation notation as a convention, the publications I reported in 

the previous paragraphs provide insights into necessary areas of focus while introducing 

this notation. In particular, instructors should (1) focus their discussion on the properties 

of the indices when discussing summation notation for denoting additive processes and 

(2) distinguish between the starting value of the index, the domain of the index, the final 

value of the index, and the number of summands in a particular sum. One possible 

approach might be to present the students with a finite sum written in expanded form, 

such as 3 + 7 + 11 + 15, and an expression in summation notation with a starting value 

other than 1 (e.g., ∑ 4(𝑖 − 5) + 38
𝑖=5 ). The instructor might then provide students with 

two peer interpretations (Halani et al., 2013) in which hypothetical students (1) expand 

the summation notation using the method I described above based on Strand and Larsen’s 
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(2013) data and (2) expand the notation in a normative way. Such an activity would likely 

provide students insight into the role and rules for indices in summation notation. 

Research on Students’ Symbolization of Infinite Series  

 There is very little research on students’ construction of representations to 

describe infinite series convergence. In the following paragraphs, I summarize the results 

from my work on individual student symbolization for two students: Emily and Cedric. I 

have previously reported the results of Emily’s notation construction in Eckman and Roh 

(2022b; under review) and Cedric’s symbolizing practices in Eckman and Roh (in 

revision). 

Both students participated in two exploratory interviews to reason about and 

create personalized representations to symbolize arbitrary partial sums. I devote one 

section to describing Emily’s symbolization, another to describing Cedric’s 

symbolization, and a final section to summarizing the contributions the two studies 

provide to understanding students’ symbolization of infinite series. 

Emily’s Symbolization of Infinite Series 

 During her first interview, Emily developed a novel set of inscriptions by which 

she described the process of computing the value of an arbitrary partial sum. These 

inscriptions functioned (to her) as a literal translation of a written rule she constructed to 

describe how she computed partial sums. In the second interview, Emily introduced a 

modified version of summation notation to denote a “holistic” image of a partial sum or 

series. She then began to use her novel notation to describe series for which she could not 

discern a general summand and summation notation to denote series whose general term 

she could describe. After the interviewer encouraged Emily to reflect on how she might 
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represent a series whose general term she could not discern using summation notation, 

she constructed an inscription for an unknown general summand that she could use in her 

modified summation notation. After this moment, Emily used her newly constructed 

notation purposefully to describe individual partial sums, arbitrary partial sums, and 

infinite series. 

Cedric’s Symbolization of Infinite Series 

 Cedric introduced summation notation on the first task but had several non-

normative meanings and inscriptions he included in his summation notation. For 

example, Cedric initially believed that the upper index could only be equal to infinity and 

openly wondered whether writing a finite value in the upper index constituted an act of 

mathematical heresy. Cedric also compared summation notation to a computer loop. He 

used this metaphor to propose a novel symbol as the placeholder for the series’ closed-

form general summand rule. Like Emily, Cedric struggled to symbolize and give meaning 

to series for which he could not construct a rule for the general term of summation.  

During Cedric’s second interview, he introduced a new inscription, ☺, to describe 

three potential scenarios he envisioned regarding the general term of a series: (1) he 

knows a general term exists and he can describe this term, (2) he knows a general term 

exists, but he cannot yet describe the term, and (3) the general term does not exist 

because the summands have been generated randomly. After this moment, Cedric 

purposefully used his modified version of summation notation to represent specific 

partial sums, arbitrary partial sums, and infinite series. 
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Summary of Emily’s and Cedric’s Symbolization 

 Emily and Cedric successfully created representation systems to symbolize 

arbitrary partial sums and infinite series. Eckman and Roh’s (under review) report of 

Emily’s symbolization focused on her thinking and how the meanings she attributed to 

her inscriptions changed over time. In particular, they noted Emily’s conception of the 

general term of a series changed from the result of a carried-out process to an arbitrary 

placeholder for an unknown (but imagined) rule. Emily’s attribution of her new meaning 

to a pre-existing inscription (to which she had previously attributed her “carried-out 

process” meaning) allowed her to purposefully use her representations to describe any 

partial sum or series which we presented. Eckman and Roh’s (in revision) report of 

Cedric’s symbolization focused on instructional interventions that helped orient Cedric 

towards productive reflection on his meanings and symbolization of infinite series. 

Specifically, they noted that engaging Cedric in Radford’s (2000) three-phase approach 

to symbolizing (i.e., verbally reason, construct a written rule, create a symbol) and asking 

him to apply his symbols to model phenomena in new situations culminated in Cedric’s 

construction of a flexible notational system by which he could describe any series which 

we presented. Additionally, Eckman and Roh (in revision) noted that providing Cedric 

the flexibility to construct his own notation and asking him to compare instantiations of 

his notation for consistency promoted opportunities for reflection, resulting in new 

inscriptions or attributing additional meanings to existing inscriptions. 

 The results from Eckman and Roh’s (under review, in revision) reports on Cedric 

and Emily justify the relevance of this dissertation and other studies investigating 

students' construction of representations to organize or convey their thinking in the 
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context of infinite series. In the next section of the literature review chapter, I broaden the 

scope of the discussion on students’ symbolization to a description of general theories of 

representation in mathematics education. 

Summary of Literature Review Chapter 

 This chapter had two purposes: (1) to summarize literature related to students’ 

meanings for infinite series and (2) to summarize literature related to students’ 

symbolization of series. In the first section of this chapter, I described how textbooks and 

instructors portray infinite series and summarized empirical studies related to students’ 

meanings this topic (purpose 1). I concluded that the research literature provides 

substantial insight into how students think about sequences, partial sums, convergence, 

and infinity. Additionally, I stated that my work has the potential to provide further 

insight into the intuitive ways students might consider series convergence and how their 

thinking changes over time. In the second section of this chapter, I described research 

related to the convention of summation notation and students’ attempts to construct 

personal representations for arbitrary partial sums (purpose 2). I concluded that studying 

students’ symbolization of infinite series is a productive line of research. It can provide 

novel insights into how students think about series and how they use conventional and 

novel symbols to communicate their meanings for this topic. In the next chapter, Chapter 

3, I introduce the theoretical framing I will utilize to report my dissertation data. 

Specifically, I leverage the radical constructivist perspective on Piaget's (2001) theory of 

reflective abstraction as a lens to study students’ symbolization practices and the nature 

of the algebraic representations they create to convey their thinking. 

 



  37 

CHAPTER 3 

THEORETICAL PERSPECTIVE 

In this chapter, I discuss theories related to the role of symbolization and 

representational in mathematics education. This chapter contains three major sections. In 

the first section, I provide the history of representations in mathematics education 

research and a basic description of theories of symbolization used by contemporary 

researchers. In the second section, I provide a more detailed comparison of three of these 

theories to justify my choice of radical constructivism as my perspective for this 

dissertation study. In the final section, I describe the radical constructivist interpretations 

of Piagetian constructs related to individual student cognition. I also present various 

constructs related to students’ symbolization that I have described in other research 

reports. Overall, the goals of this chapter are to (1) describe the importance of 

representations in mathematics and mathematics education research, (2) justify my 

chosen theoretical perspective for this study, and (3) provide an initial description of the 

theoretical constructs I leveraged to construct my tasks, guide my interactions with 

students, and inform my analysis.   

Theories of Representation in Mathematics Education Research 

Representations (e.g., words, graphs, symbols, gestures) constitute a fundamental 

component of communication (Vergnaud, 2009). They are also the primary mechanism 

by which individuals access mathematical ideas not discernable by their five senses 

(Duval, 2006). “Without words and symbols, representation and experience cannot be 

communicated” (Vergnaud, 2009, p. 92). Over the last 500 years, mathematicians have 

gradually moved from describing mathematics verbally to symbolically (Cajori, 1993; 
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Mazur, 2014). In modern mathematics classrooms, instructors expect students to 

comprehend mathematical ideas and adopt the corresponding normative forms of 

representations mathematicians employ to communicate about these topics. For these 

reasons, students’ development of the ability to construct and employ appropriate 

representations in their mathematics coursework is an essential topic for research study 

and instructional focus. 

A Brief History of Mathematics Education Research and Representations 

Mathematics education researchers have studied the role of representations in 

mathematical discourse for decades. In the 1970s, early mathematics education 

researchers studied representations by adopting constructs from the field of linguistics. 

For example, these researchers hosted conferences to compare linguistics to mathematics 

(see Austin & Howson, 1979, for a summary). They also adopted linguistic constructs 

such as register (Halliday, 1975) to describe students’ symbolization (see also Duval, 

1999, 2006; Pimm, 2019).  

Researchers later attempted to describe representations by leveraging linguistics 

or semiotics theories. For example, Glasersfeld (1995) adopted the linguistics theory 

proposed by Ferdinand de Saussure (1857-1913; Switzerland) to provide a cognitively 

oriented description of students’ symbolization. Alternately, other researchers have used 

the principles of semiotics proposed by Charles Sanders Peirce (1839-1914; United 

States) to propose sociocultural-oriented theories of symbolization (Presmeg et al., 2016; 

Radford, 2006, 2008, 2013) or cross-cutting theories encompassing both individual 

cognition and community activities (Font et al., 2007, 2013; Godino et al., 2007; Godino 

& Font, 2010). 
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Other mathematics education researchers have attempted to construct original 

theories of representation. For example, Goldin (2008) described students’ construction 

of representational systems to convey their neurological activity to others. Additionally, 

Vergnaud (1998, 2009) presented representations and Piagetian schemes as two distinct 

but related concepts through which individuals come to communicate their experiences. 

Mathematics education researchers have also studied various forms of representation, 

including visual imagery (e.g., Alcock & Simpson, 2004; Arcavi, 2003), graphs (e.g., 

David et al., 2019; Moore & Thompson, 2015), and algebraic notation (e.g., Lannin et al., 

2006; Radford, 2000; Tillema, 2007; Zandieh et al., 2017).  

The Relationship between Representations and Cognition 

The role of representations in mathematics is to coordinate three facets of 

semantic meaning: (1) the representation, (2) the thing being represented, and (3) the 

entity (e.g., individual, community) which maintains the meaning. The various theories of 

representation I described in the previous section attribute different degrees of variability 

to individual facets and the nature of the relationships between the three facets. In the 

following paragraphs, I will use the inscriptions (1), (2), and (3) to refer to the individual 

facets during my description. 

Most theories of representation, including those based in part on linguistics 

(Duval, 2006; Glasersfeld, 1995), semiotics (Presmeg et al., 2016; Radford, 2008), or 

mathematics education research (Goldin, 2008; Vergnaud, 2009), claim that 

mathematical concepts (2) and symbolic notations (1) are distinct entities. Additionally, 

many of these same researchers claim that representations (1) play a crucial role in 

thinking and reasoning mathematically (2). For example, students use representations to 
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think about mathematics (Duval, 2006; Vergnaud, 2009), carry out operations in contexts 

that enable them to modify their thinking (Radford, 2013), develop connections between 

components of their experience (Font et al., 2007) and construct complex syntactical 

structures to model these connections (Goldin, 2008). Inherent in students’ development 

of representation systems is their acquisition of the ability to reason about the underlying 

semantic content of the representation (Glasersfeld, 1995; Radford, 2013). 

Within the various theories for representation, there are several characterizations 

of the ontological nature of what is being represented (2). For example, some theories 

characterize social interactions as the impetus by which society (3) passes historical 

forms of representation (and subsequent culturally-preserved meanings) from generation 

to generation (e.g., Radford, 2008). In this case, the meaning (2) is a series of actions and 

reflections embedded into students’ minds through participating in cultural events 

(Radford, 2013). In contrast to the sociocultural interpretation of meaning, other theories 

posit that cognition (3) is the motor by which individuals construct forms of 

representation (1) to which they attribute their model for a particular experience (2) (e.g., 

Glasersfeld, 1995; Vergnaud, 2009). In these cognitive-psychology-based theories, the 

thing being represented (2) is an idiosyncratic, cobbled-together set of components of 

previous experience, which the student imputes to a semiotic representation (1).  

There are also theories of representation that attempt to address both individual 

and social aspects of representation and knowledge. One example is the Onto-Semiotic 

Approach (Font et al., 2007; Godino & Font, 2010). While theories of representation 

from a sociocultural and cognitive psychology perspective describe the entity that 

maintains the meaning (3) from a single perspective (e.g., the individual or the 
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community), the Onto-Semiotic Approach takes facet (3) as a parameter that can be 

assigned according to the entity (e.g., individual, department, school, country) which 

appears (to the researcher) to maintain the coordination of the thing being represented (2) 

and the representation (1). 

Comparing Three Approaches to Describing Students’ Symbolization 

 In the previous section, I provided a global description of theories of 

representation within the field of mathematics education. In this section, I share examples 

of how a researcher might employ particular representation theories in their data 

collection and analysis. I also state the types of research questions each perspective 

affords and how these questions align (or do not) with my research goals for this 

dissertation study. This section aims to (1) contrast major theoretical perspectives for 

describing students’ symbolizing practices and (2) justify my choice of theoretical 

perspective.  

The three theories that I will summarize include the following:  

1. Radford’s (2006, 2013) theory of knowledge objectification, which focuses on 

symbolization as a social process oriented towards gaining access to 

institutionalized knowledge or systems;  

2. Duval’s (1999, 2006) semio-cognitive (semiotic and cognitive) approach, 

which describes symbolization as the ability to represent a concept using 

various forms of semiotic representations, including the ability to fluidly 

construct (normatively) equivalent representations both within and across 

these forms of representation; and 
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3. Glasersfeld's (1995) interpretation of Piaget’s (2001) theory of reflective 

abstraction focuses on symbolization as an individual process oriented toward 

constructing an individualized symbol with a corresponding meaning. 

Glasersfeld’s (1995) views are commonly called a radical constructivist 

perspective. 

I devote one subsection to each perspective. I conclude this section by comparing each 

theory to my research questions to justify my choice of theoretical perspective, Piaget’s 

theory of reflective abstraction (as described by Glasersfeld).  

Theory of Knowledge Objectification: Symbolizing Activity as a Social Process 

Radford’s (2006, 2013) theory of knowledge objectification focuses on the social 

activities by which students become exposed to representations, such as students’ 

acquisition of (conventional) algebraic notations during instructional sequences in the 

classroom. In the theory of knowledge objectification, “knowledge is an ensemble of 

culturally and historically constituted embodied processes of reflection and action” 

(Radford, 2013, p. 10), and “objectification is a social process of progressively becoming 

critically aware of encoded forms of thinking” (Radford, 2013, p. 27). According to 

Radford’s (2013) theory, the learning process consists of students engaging in social 

activity to become aware of social and cultural practices. The individual imbues these 

activities with meaning—thus constructing a knowledge object that can mediate the 

individual’s participation in social activity in the future. Consequently, an individual 

creates expressions to represent what she perceives as potential invariants involved in the 

social activity (Iori, 2017). A researcher who adopted the theory of knowledge 

objectification would likely agree with Bagni (2005a, 2005b), who claims that the 
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historical processes through which conventional mathematical topics emerged can 

provide critical insights into how students might learn about particular concepts.   

A researcher might propose this question while adopting the theory of knowledge 

objectification to examine students’ symbolizing activity related to infinite series: what 

social activities might a student need to engage in to generalize the notion of the limit of 

the sequence of partial sums as the value of an infinite series? To answer this question, 

the researcher would likely adopt a similar methodology to Radford (2000), who had 

groups of students examine a sequence portrayed in a diagram and determine (1) the 

value of several terms in the sequence, (2) a written rule to determine the value of any 

term in the sequence, and (3) a symbolic rule—based upon the written rule—by which 

the group could calculate the value for any term in the sequence. These three steps could 

be modified as follows to investigate students’ meanings for the sequence of partial sums: 

(1) have students approximate the value of the limit within several specific error bounds, 

(2) determine a written rule (i.e., definition) to determine the value of the limit within any 

given error bound, and (3) develop a symbolic rule—based upon the written rule—for 

representing the process of finding the limit and its subsequent value (if it exists). Martin 

et al. (2011) adopted methodological steps (1) and (2) of the approach that I described to 

study students’ conception of series pointwise convergence by conjunction with the 

principle of guided reinvention from the Realistic Mathematics Education approach 

(Freudenthal, 1973). 
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Semio-Cognitive Approach: Symbolizing Activity as Corresponding 

Representations 

Some theories on students’ acquisition and use of algebraic expressions focus on 

students’ development of systems of semiotic representation, including students’ ability 

to translate an expression into an equivalent form in a different system of representation 

(e.g., algebraic expression, graph, written language rule, drawing). Duval’s (1999, 2006) 

semio-cognitive approach describes mathematical activity as an interaction between 

mathematical objects and forms of semiotic representation or signs. In the semio-

cognitive approach, a mathematical object is “the invariant of a set of phenomena or the 

invariant of some multiplicity of possible representations” (Duval, 2006, p. 129) and the 

purpose of semiotic sign systems is to “provide the capacity of substituting some signs for 

others” (Duval, 2006, p. 106; italics in original). Additionally, students’ development of 

signs and sign systems is essential to their development of mathematics because they 

cannot observe mathematical objects empirically—their only access to these objects is 

through semiotic representations.  

Duval (2006) uses the term representational register to describe a sign system 

where representations in the sign system can be transformed. He describes these 

transformations in two ways: a treatment, or transformation that stays within the same 

register (e.g., 3𝑥 + 2 = 2𝑥 + 5 is equivalent to 𝑥 = 3), and a conversion, where a 

transformation results in an equivalent semiotic representation in another register (e.g., 

constructing the graph of 𝑓(𝑥) = 3𝑥). In the semio-cognitive approach, researchers only 

posit students’ mathematical comprehension of a concept when they can coordinate at 

least two registers to discuss the topic.  
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A researcher who adopts Duval’s (1999, 2006) semio-cognitive approach to 

examine students’ symbolizing activities about infinite series might propose this 

question: what cognitive difficulties do students experience as they attempt to create 

equivalent algebraic representations for series (e.g., lim
𝑛→∞

∑ 𝑎𝑖
𝑛
𝑖=1 , ∑ 𝑎𝑖

∞
𝑖=1 , lim

𝑛→∞
𝑆𝑛) and 

corresponding graphical representations? To answer this question, the researcher would 

likely create tasks that prompt subjects to construct or identify an equivalent (to the 

researcher) representation for a given representation. The researcher would then analyze 

the data to (1) describe the different methods in which the subjects produced the 

researcher’s desired answer, (2) partition these desirable responses into treatments and 

conversions between semiotic representations to describe the subjects’ mathematical 

activity, and (3) investigate the difficulty of each treatment or conversion by comparing 

across subjects to see which transformations were accomplished by the largest or fewest 

number of subjects (for an example of this kind of study, see Sipes, 2019). 

(Glasersfeldian) Reflective Abstraction: Symbolizing Activity as Individual Meaning 

Some theories on students’ acquisition and use of algebraic expressions focus on 

students’ reflection and abstraction of their experiences and subsequent imputation of the 

results of these abstractions to individually meaningful signs. Glaserfeld’s (1995) 

interpretation of Piaget’s (2001) theory of reflective abstraction (often called a radical 

constructivist perspective) examines students’ acquisition of knowledge as a 

psychological endeavor by which individuals organize neurological stimuli to construct a 

model of their experience or experiential reality. Piaget defined the cognitive entities 

comprising an individual’s experiential reality as schemes. In the simplest sense, schemes 

consist of an individual’s organization of the neurological stimuli relayed to the brain, the 
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actions the individual enacted based on the stimuli, and the consequences of those 

actions. Schemes also induce what Thompson et al. (2014) called a space of implications, 

or the set of possible actions that an individual might make and the outcomes he 

anticipates from each action. Schemes constitute a dynamic system of meanings that 

continuously evolve as the individual persists through experiential reality (Thompson et 

al., 2014).  

From a radical constructivist perspective, the purpose of a symbol is to activate a 

scheme, which evokes a sophisticated re-presentation of a previous experience in the 

individual’s mind. In other words, the purpose of a symbol is to stand as a proxy for some 

component of previous experience (e.g., relationship, operation, concept). In this way, 

symbols serve as a recollection tool and the mechanism by which inferences occur (i.e., 

space of implications leading to action).  

A researcher who adopts a radical constructivist perspective to examine students’ 

symbolizing activity concerning infinite series might ask this question: what components 

of students’ experience do they leverage while reasoning about infinite series 

convergence, and in what ways do they attribute these schemes to representations? To 

answer this question, the researcher would likely (1) construct a set of tasks related (in 

the researcher’s mind) to series convergence, (2) have the students work through these 

problems, (3) repeatedly ask each student to describe his or her meaning for the different 

components of each task, and (4) attempt to elucidate instances of potential cognitive 

conflicts inherent (to the researcher) in the students’ reasoning to induce changes in the 

students’ schemes.  
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In this sort of study, the researcher would have three goals. First, the researcher 

would determine the types of tasks a student could readily reason through, the 

representations they appear to employ comfortably, and the corresponding meanings the 

student’s reasoning and symbolizing activity about series convergence affords (a process 

Piaget called assimilation). Second, the researcher would seek to determine tasks that 

evoke cognitive conflict within students’ symbolizing practices and how they resolve 

these conflicts (a process Piaget called accommodation). The researcher’s report would 

summarize her models for (1) how students discerned commonalities among the various 

examples related to infinite series and attributed these commonalities to representations, 

(2) the nature of the representations students created to convey their meanings, (3) the 

instances where the student experienced cognitive conflict and their resolution of this 

conflict, and (4) propose the meanings by which students operated in each of these 

situations.6 I discuss the processes of assimilation and accommodation in more detail 

later in this chapter. 

Comparing the Three Theories to my Research Questions 

 In Chapter 1, I proposed the following three research questions to guide my study: 

• Research Question 1 (RQ1): What meanings for series convergence do first-

time university calculus students conceive before receiving formal instruction 

on infinite series? 

 
6 These three points fall in line with the three results chapters that I present in this dissertation. In Chapter 

5, I address a common meaning for series convergence possessed by both students in my study. In Chapter 

6, I describe the various meanings students’ attributed to their symbols. In Chapter 7, I address how 

students resolved their cognitive conflicts about how to symbolize certain situations about series. 
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• Research Question 2 (RQ2): How do students symbolize their meanings for 

mathematical topics in the context of infinite series? 

• Research Question 3 (RQ3): How do students’ symbols and attribution of 

meaning to these symbols change as their thinking about infinite series 

evolves over time? 

The theories I outlined in the previous section can provide insight into these questions for 

various objects of analysis. For example, adopting the theory of knowledge 

objectification (Radford, 2013) would allow me to investigate groups of students’ 

meanings for symbols to represent infinite series and how the evolution of the thinking 

within the group correlates with the group’s symbolic expressions. Adopting Duval’s 

(2006) semio-cognitive approach would enable me to describe various representational 

transformations that individual students perform within and across types of semiotic 

representations as they attempt to reason about infinite series. Although both Duval’s 

(2006) semio-cognitive approach and Radford’s (2013) theory of knowledge 

objectification can provide insight into my research questions, the foci of the theories do 

not align with my goals for this study. For example, I wish to study individuals’ 

symbolizing activities, not the activity of a collaborative group. Additionally, I hope to 

study students’ creation of individual symbolic expressions (and corresponding 

meanings), not their correlations between various forms of representations.  

Adopting Glasersfeld’s (1995) interpretation of Piaget’s theory of reflected 

abstraction allows me to focus on individual student attribution of meaning to individual 

symbolic expressions. Additionally, the radical constructivist approach enables me to 

describe students’ symbolization as a process of reflections and abstractions whose 
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purpose is to modify cognitive structures. Consequently, I choose to adopt radical 

constructivism for my theoretical perspective in this study. In the following section, I 

provide a more in-depth explanation of (1) the essential constructs in the Glaserfeldian 

interpretation of Piaget concerning student cognition and (2) the constructs that I have 

previously introduced (e.g., Eckman & Roh, 2022a, in revision) to describe students’ 

symbolization practices. 

 The Radical Constructivist Perspective on Individual Student Cognition 

This section consists of two major components. First, I describe several Piagetian 

constructs (e.g., re-presentation, assimilation, accommodation) from a radical 

constructivist perspective. These constructs form the overarching ontological perspective 

that I adopted in this study to describe individual student learning and cognition. In the 

second section, I share several of my own theoretical constructs (e.g., symbolizing 

activity; personal, communicative, and conventional expressions) that I have previously 

reported in other studies (e.g., Eckman et al., accepted; Eckman & Roh, 2022) to 

motivate the methodology for this study that I describe in Chapter 4. 

Piaget’s Theory of Reflected Abstraction (According to Radical Constructivists) 

Glaserfeld’s (1995) interpretation of Piaget’s (2001) theory of reflective 

abstraction (often called a radical constructivist perspective) frames acquisition of 

knowledge as a psychological endeavor by which an individual organizes neurological 

stimuli to construct a model of her experience, or experiential reality. A consequence of 

maintaining models of experience is that humans can metaphorically re-experience 

components of their previous experience as if they were occurring in the moment, a 

process called a re-presentation (Glasersfeld, 1995). Such re-presentations can occur 
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consciously (e.g., recalling an event to tell a story) or subconsciously (e.g., an unexpected 

smell elicits a memory or emotion). In other words, to re-present is to consider the past in 

the present. Individuals develop cognitive structures called schemes by reflecting on and 

coordinating various re-presentations of situations, actions, and consequences, 

Many scholars use Piaget’s notion of scheme as a theoretical construct (Dubinsky, 

1991; Glasersfeld, 1995; Thompson et al., 2014; Vergnaud, 2009), but definitions for 

scheme vary amongst researchers. I adopt the definition proposed by Thompson et al. 

(2014) that a scheme is “an organization of actions7, operations, images, or schemes—

which can have many entry points that trigger action—and anticipations of outcomes of 

the organization’s activity” (p. 11). In the simplest sense, schemes consist of (1) an 

individual’s organization of the neurological stimuli relayed to the brain, (2) the actions 

the individual enacted based on the organization of the stimuli, and (3) the consequences 

of those actions. The construction of schemes allows an individual to consider 

components of his current experience as re-presentations of what he has experienced 

before. The activation of a scheme also induces what Thompson et al. (2014) called a 

space of implications, or set of possible actions, that an individual might make, and the 

corresponding outcomes he anticipates from each action.  

The primary mechanisms by which individuals utilize or modify their schemes are 

assimilation and accommodation. An individual assimilates an experience when he 

associates his current experience with a scheme constructed through his previous 

experience. In other words, an individual imbues his current experience with meaning by 

 
7 I use the term action throughout this section in the sense of Piaget, who said that actions consisted of “all 

movement, all thought, or all emotions that respond to a need” (Piaget, 1968, p. 6). 
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(1) associating it with previous experiences and (2) making inferences regarding how to 

act based on their re-presentation of his previous experiences (Johnckheere et al., 1958; 

Thompson, 2013). An accommodation occurs when an individual experiences cognitive 

conflict and must modify their schemes to permit assimilation (Tallman, 2015). Thus, 

schemes constitute a dynamic system of meanings that continuously evolve as the 

individual persists through experiential reality (Thompson et al., 2014). I discuss how the 

notions of assimilation and accommodation relate to students’ symbolizing activity in the 

discussion section of Chapter 7 of this dissertation. 

I introduced the constructs scheme, re-presentation, assimilation, and 

accommodation to contextualize Glasersfeld’s (1995) definition for a (linguistic) symbol: 

“a word will be considered a symbol, only when it brings forth in the user an abstracted 

re-presentation” (p. 99). In other words, the cognitive purpose of a symbol (in the 

Glasersfeldian sense) is to activate a scheme which evokes a sophisticated re-presentation 

of a previous experience in the individual’s mind. An individual might re-present several 

kinds of experience through a symbol, such as a process, concept, or relationship, and 

their corresponding spaces of implications. The actions, properties, and implications an 

individual re-presents through a symbol constitute the meaning he attributes to that 

symbol. My description of meaning is similar to that of Piaget, who likely considered 

meaning and understanding synonymous with assimilation to a scheme (Thompson, 

2013; Thompson et al., 2014). Thompson et al. (2014) further characterize meanings at 

the moment as the space of implications existing when an individual assimilates a 

particular moment of their experience to a scheme. Throughout the remaining sections of 
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this chapter, I will refer to the material a student re-presents through a representation they 

create as the meaning (in the moment) that they attribute to that symbol. 

Preliminary Constructs: Symbolizing Activity and Types of Symbols 

 In this section, I describe the construct symbolizing activity, which I have 

previously used (e.g., Eckman et al., accepted; Eckman & Roh, 2022) to describe 

students’ use of representations in mathematics. Additionally, I present three types of 

symbols to contextualize how students and mathematicians utilize representations. The 

three types of symbols I describe include personal, communicative, and conventional 

expressions. I have separated the constructs into subsections to facilitate easier reading of 

this section. 

Symbolizing Activity 

I begin by describing the construct symbolizing activity. Eckman and Roh (under 

review) provided the following definitions for symbolizing activity, symbolization, and 

symbol: 

We define symbolizing activity as a process of mental activities that entails 

students’ creation or interpretation of a perceptible artifact (writing, drawing, 

gesture, verbalization) to organize, synthesize, or communicate their thinking. We 

refer to symbolization as the status of completing the symbolizing activity and the 

perceptible artifacts as symbols (p. 3). 

Our use of the term symbolizing activity is similar to and different from other 

researchers. For example, Tillema (2007, 2010) employed a radical constructivist 

perspective in his studies but primarily used symbolizing activity to describe 

interpersonal communications between students about their symbolization. Additionally, 
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Zandieh et al. (2017) used the term symbolizing activity to refer to groups of students 

who collectively created, debated, and modified symbolic expressions for linear algebra 

concepts. In this study, I define symbolization to broadly encompass a range of activities, 

including individuals’ creation of symbols to organize their thinking, convey their ideas 

to others, create shared symbolizing norms, or interpret representations presented as 

conventions by an authority figure. 

Personal Expression  

I now describe three types of symbols that students might use in their symbolizing 

activity. The first of these symbol types is a personal expression. Eckman and Roh (under 

review, a) defined a personal expression in the following way: 

We use the term personal expression to describe students’ investment of 

meaning to a self-generated form of representation. In other words, a personal 

expression is created by an individual to re-present (to himself) or convey (to 

others) his meaning for a particular topic. There are two components to a personal 

expression: a meaning and a perceptible artifact to which the student attributes 

their meaning. A perceptible artifact includes any action or product a student 

produces to convey their meanings (writing, drawing, gesture, verbalization), 

which another individual might observe with his or her five senses (pp. 3-4).  

The two portions of a personal expression, the meaning and perceptible artifact, comprise 

a student’s attempt to re-present their thinking for a particular situation. In this 

dissertation, I primarily focus on students’ creation of algebraic personal expressions. A 

student’s algebraic personal expression may (or may not) have an equal sign and may (or 

may not) reflect traditional mathematical notation (Eckman & Roh, 2022a). Additionally, 
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students might attribute novel meanings to their expressions whose perceptible artifact 

appears to mirror convention (Eckman et al., 2023; Eckman & Roh, in revision). 

 Algebraic personal expressions often contain more than one written component to 

which an individual ascribes meaning. I use the term inscription to refer to each of these 

components. Eckman and Roh (under review) define an inscription as “a written mark 

utilized by an author to succinctly describe a property, action, or relationship that the 

author has envisioned (p. 4).” I use the term inscription in this context to refer to 

instances when a student creates a personal expression for a single situation and it is not 

clear (to the researcher) whether the student might apply the same personal expression 

structure to re-present other situations which the individual perceives as similar.  

When a student creates a general expression which she uses across examples she 

perceives as similar, I use the term inscription to refer to the syntactic positions of the 

expression and the term mark to refer to the perceivable artifact that a student writes for 

an inscription in a particular personal expression. For example, suppose a student chooses 

to construct the personal expression 𝑓(𝑥) = 2𝑥 + 3 to re-present a linear relationship 

between two covarying quantities. In this case, the inscriptions within the expression 

would be 𝑓, ( ), 𝑥, = ,2, 𝑥, +, and 3, and the student would attribute a particular meaning 

(e.g., function name, rate of change) to each inscription. However, if the researcher asked 

the student to compare two linear relationships and the student created the expressions 

𝑓(𝑥) = 2𝑥 + 3 and 𝑔(𝑥) = −3𝑥 − 5, the researcher would need a method to 

differentiate between the symbols that the student used in each expression for her 

inscriptions. In this case, I use the term inscription to refer to common symbols in both 

expressions (e.g., function name) and the term mark to refer to what the student writes for 
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the “function name” inscription in each expression (e.g., the student wrote the mark 𝑔 for 

the function name inscription in personal expression 2). I provide more insight into 

students’ uses of marks, inscriptions, and personal expressions in Chapters 6 and 7 of this 

dissertation.  

 The constructs of personal expression, inscription, and mark provide several 

theoretical advantages to researchers. First, the definition of personal expression allows a 

researcher to clearly distinguish between a student’s meaning and the perceptible artifact 

he constructs to re-present his meaning. For example, describing students’ symbolization 

in terms of personal expressions allows a researcher to clearly describe situations in 

which a student attributes a normative meaning to novel symbols or a non-normative 

meaning to conventional notation. Second, my distinction between inscription and mark 

accounts for situations in which students might write different things across instantiations 

of personal expressions through which (in the researcher’s mind) the student is re-

presenting similar experiences. For example, I report an instance in Chapter 7 where a 

student successfully modified her personal expression by introducing a new mark for one 

of her inscriptions, allowing her to re-present an additional class of situations through her 

altered expression. The purpose of my constructs is not to discuss students’ meanings or 

representations separately. Instead, I employ personal expression, inscription, and mark 

to describe students’ coordination of meanings and perceptible artifacts and the 

coevolution of these concepts as students’ thinking evolves.   

Communicative Expression  
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The second type of symbol that a student might utilize within their symbolizing 

activity is a communicative expression. Eckman and Roh (under review) defined a 

communicative expression in the following way: 

We propose the term communicative expressions to describe expressions 

that students use within communicative discourse with others. In other words, a 

communicative expression is a perceptible artifact whose meaning is negotiated 

within a group of individuals through communicative discourse. For such 

expressions the users of the expressions in the moment of communication may or 

may not be the creator of the expression (p. 4).  

Interpersonal communication is at the heart of communicative expressions, which 

adds a broad range of dimensionality to this construct. For example, the evoked meaning 

by the perceiver of a communicative expression (in the moment of interaction) may not 

match the intended meaning of the expression creator. An individual might propose their 

personal expression as a medium through which a community might discuss a particular 

idea. However, the personal expression becomes a communicative expression at the 

moment the group of individuals begins to negotiate the use and meaning of the 

expression. This negotiation can happen informally within groups of students (Zandieh et 

al., 2017) or in formal situations where an instructor asks students to adopt a 

mathematical convention in their symbolizing activity (Eckman et al., 2023). Finally, 

individuals can maintain individualized meanings for a communicative expression (and 

its inscriptions) even if they have verbally agreed on a shared definition for the 

expression (Thompson, 2002).  

Conventional Expressions  
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The third type of symbol that a student might utilize within their symbolizing 

activity is a conventional expression. Eckman and Roh (under review) defined a 

conventional expression as “the lexicon of normative representations that mathematicians 

uphold as conventional forms of communication within the mathematical community (p. 

5). Students are often exposed to conventional expressions while reading mathematics 

textbooks and attending mathematics classes. In contrast with personal and 

communicative expressions, the student has little to no negotiating power regarding the 

meaning that they are supposed to (in the eyes of some authority) re-present through 

conventional expressions. In other words, personal expressions are created by 

individuals, communicative expressions are negotiated within communities, and 

conventional expressions are (expected to be) passively received and adopted by 

authorities.  

An individual may employ the syntax of a conventional expression as a 

component of a personal expression she creates during her symbolizing activity. 

However, in the moment of creation, the student ascribes her individualized meaning to 

the conventional syntax, rendering the conventional expression personal. For instance, a 

student might choose to write re-present the series 1 + 2 + 3 + 4 + ⋯ using the 

conventional expression ∑ 𝑛∞
𝑛=1  but consider both 𝑛 inscriptions to refer to the position of 

the summands in the series (which is conventional for the lower index 𝑛 but 

unconventional for the general summand 𝑛). Still, even if the student had re-presented a 

meaning analogous to the conventional interpretation of the expression ∑ 𝑛∞
𝑛=1 , her 

attributed meaning (and corresponding perceptible artifact) would have been her own 

creation, or personalized expression of her meaning. 
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Summary of Theoretical Perspective Chapter 

 The purposes of this chapter were to (1) describe the importance of 

representations in mathematics and mathematics education research, (2) justify my 

chosen theoretical perspective for this study, and (3) provide an initial description of the 

theoretical constructs I leveraged to construct my tasks, guide my interactions with 

students, and inform my analysis. For goal (1), I presented two distinct arguments. First, I 

provided an overview of several theories related to representations in mathematics 

education to justify symbolization as a relevant research topic and summarize the 

longevity of this representation research in mathematics education. Second, I juxtaposed 

how theories of mathematics education define representations, what is being represented, 

and the entity maintaining the representation differently. 

 With regard to goal (2), I showed three specific examples of how a researcher 

conducting a study on student symbolization might leverage different theories of 

representation to collect, analyze, and report data. I compared each of these examples to 

my research questions to justify my choice of a radical constructivist perspective as a 

guiding theoretical lens for this study.    

 For goal (3), I described several Piagetian constructs from a radical constructivist 

perspective to highlight how I construed student learning and cognition in relation to this 

study. I also presented several theoretical constructs I have proposed in my previous work 

to describe students’ symbolization, including symbolizing activity, personal expression, 

communicative expression, and conventional expression as (1) processes of mental 

actions students engage in to create or interpret representations and (2) the purposes of 

these representations and the power the student possesses to negotiate their meaning.  
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In the next chapter, Chapter 4, I present the methodological information related to 

this study, including data collection and data analysis methods. In Chapters 6 and 7, I 

provide empirical data to verify and extend the constructs I presented in this chapter.  
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CHAPTER 4 

METHODOLOGY 

The purpose of this chapter is to review the methodological principles that I 

employed to collect and analyze the data for this dissertation study. My data comprised 

two individual nine-session constructivist teaching experiments (Steffe & Thompson, 

2000) with first-time second-semester university calculus students. The interviews 

consisted of intake and exit clinical interviews (Clement, 2000) and seven exploratory 

teaching interviews (Castillo-Garsow, 2010; Moore, 2010; Sellers, 2020) focused on 

students’ construction of appropriate meanings and personal expressions to reason about 

infinite series convergence. For my analysis, I employed principles of grounded theory 

(Strauss & Corbin, 1998), including open and axial coding, to interpret my data and 

prepare the results section. 

This chapter comprises four major sections. In the first section, I describe the five 

components of a constructivist teaching experiment presented by Steffe and Thompson 

(2000) and how I incorporated these components into my study. This section contains a 

large portion of logistical information related to the roles of the researchers, the 

technology I utilized to create tasks and host interviews, and how I recorded and 

maintained the data. In the second section, I summarize the timeline of my dissertation 

study and a general schedule of my data collection interviews. In the third section, I 

describe my data collection methods in detail. Specifically, I address (1) the screening 

survey and intake interview process and analysis by which I selected my two participants, 

(2) background information for each participant, and (3) a description of the tasks that I 

provided for each participant for each interview in the study. In the final section, I present 
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my data analysis methods for interpreting, contextualizing, and reporting the results in 

Chapters 5, 6, and 7.  

Constructivist Teaching Experiment Methodology 

 In this study, I utilized the constructivist teaching experiment methodology 

(Steffe & Thompson, 2000) to inform the overarching design of my tasks. The primary 

purpose of a teaching experiment is for a researcher to experience students’ reasoning 

and learning over time. Such reasoning and learning might include students’ language, 

actions, and thinking patterns, including mistakes that a student consistently makes 

(Steffe & Thompson, 2000). A researcher conducting a teaching experiment models 

students’ mathematical meanings and posits hypotheses related to the conceptual 

boundaries of these meanings (Steffe & Thompson, 2000). For example, in my study, I 

carefully modeled students' meanings for infinite series convergence, how they attributed 

these meanings to their personal expressions, and how the relationship between their 

meanings and symbols changed over time.  

 A constructivist teaching experiment consists of several methodological 

components. These components include (1) a teacher-researcher, (2) a witness to the 

teaching sessions, (3) one or more students, (4) a series of teaching episodes, and (5) a 

method to record the teaching experiment (Steffe & Thompson, 2000). I address these 

components in the subsections below and delineate how I incorporated each element into 

my study.  

Component 1: The Teacher-Researcher 

 In each interview, I served as the teacher-researcher. The role of a teacher-

researcher is to direct the teaching experiment, manage the design and modification of 
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tasks and task sequences, interview participants during teaching episodes, and supervise 

both ongoing analysis (between each teaching episode) and retrospective analysis (after 

the conclusion of the teaching experiment). During the teaching sessions, the teacher-

researcher must attempt to perform two distinct tasks: (1) develop viable models for the 

depth and breadth of meanings students employ during the tasks (what Steffe & 

Thompson, 2000, called students’ mathematics) and (2) assist the students in constructing 

viable meanings to aid them during the tasks (Castillo-Garsow, 2010). Performing these 

two tasks requires the teacher-researcher to coordinate both an in-the-moment perspective 

of the interactions between teacher and student and an introspective perspective of these 

interactions reminiscent of a researcher and his subject (Castillo-Garsow, 2010).  

Component 2: The Witness 

 My advisor, Dr. Kyeong Hah Roh, served as the witness during the teaching 

experiment sessions. The witness of a constructivist teaching experiment has two primary 

responsibilities. First, they maintain an observer’s perspective on the interactions between 

the teacher-researcher and the student(s) during each interview. Second, the witness 

corroborates or challenges the conclusions of the teacher-researcher during each stage of 

analysis (Castillo-Garsow, 2010). For example, Dr. Roh intermittently provided in-the-

moment questions to me through the Zoom chat feature to consider during interviews. 

Additionally, she participated in various debriefing and preparation interviews in which 

we discussed our current models for each student’s thinking and how to prepare tasks to 

inspire productive reflections in the upcoming interviews. 
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Component 3: The Students  

 A teaching experiment can be conducted with an individual or a group of students 

(Steffe & Thompson, 2000). For this study, I chose to investigate individual students’ 

creation and modification of personal expressions for series convergence. To this end, I 

chose two first-time second-semester university calculus students, Monica and Sylvia, to 

participate in individual teaching experiments. I selected each student after they 

completed a screening survey and an intake interview. I provide additional information 

regarding why I selected Monica and Sylvia (as opposed to other students) during the 

data collection section of the methodology chapter. 

Component 4: A Series of Teaching Episodes 

 Steffe and Thompson (2000) provided little detail about the overarching structure 

of the teaching episodes in a teaching experiment. In the following subsections, I describe 

two reasons for this lack of specificity regarding the sessions of a teaching experiment. 

First, I address how their meanings for “experiment” and “teaching” allow a flexible 

interview and task structure that can be modified at any time during the experiment. 

Second, I address how various types of interviews, such as clinical and exploratory 

teaching, can occur during a teaching experiment according to the interviewer's needs.  

The Meanings of Experiment and Teaching  

Steffe and Thompson (2000) stated that the term “experiment” in constructivist 

teaching experiment relates to generating and testing hypotheses regarding students’ 

mathematics. For example, as the teacher-researcher, I began a teaching episode with a 

model for each student’s thinking and actions based on her reasoning during the previous 

teaching session. However, since no model is perfect (Box, 1976), it was inevitable that 
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at some point during the episode, the student acted in a manner that appeared (to me) to 

be spontaneous, novel, and surprising. In these moments, I constructed a new hypothesis 

for the student’s actions and immediately tested my new hypothesis. If the new 

hypothesis failed, I either (1) adopted a new hypothesis and proceeded with the current 

task or (2) presented a spontaneous task that appeared to be a natural and intuitive 

evolution of the conversation (even if I didn’t have a well-formulated hypothesis for why 

the new task might be useful). For example, I describe an instance in Chapter 7 where I 

allowed Monica to reason about partial sums graphically and presented spontaneous tasks 

and questions within this discussion that helped her to coalesce her thinking about this 

topic. 

The term “teaching” in a constructivist teaching experiment refers to the 

interactions the teacher-researcher initiates with students based on their image of their 

actions (Steffe & Thompson, 2000). As the teacher-researcher, I sometimes introduced a 

specific task or dialogue to compare the students’ consequent actions against a hypothesis 

and corresponding model for the students’ mathematics that I was considering. I present 

two instances of specific tasks that I prepared between the Day 1 and Day 2 interviews to 

address my model of students’ thinking about partial sums (i.e., Monica) or 

symbolization (i.e., Sylvia) in Chapter 7. However, there were other times during the 

interviews when I was unsure how to model a student’s actions. In these cases, I tried to 

move forward in what appeared (to me) to be a naturalistic way to further the discussion 

on the topic at hand.  

A methodological consequence of these meanings of “teaching” and “experiment” 

is that the structure and order of tasks in a teaching experiment are fluid, evolving with 
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the hypotheses the teacher-researcher generates during the episode. Consequently, Steffe 

and Thompson (2000) state that the results of a teaching experiment are unique to the 

students involved in the teaching experiment (due to their idiosyncratic meanings). 

Additionally, the results of a teaching experiment cannot be easily generalized or directly 

replicated.  

Types of Interviews Comprising the Teaching Episodes  

One goal of a teaching experiment is to help a student achieve a particular 

learning goal (Steffe & Thompson, 2000). Since teaching experiments often comprise 

several teaching episodes, the nature of individual interviews can differ. For example, 

some interviews (or tasks) may be more formal, allowing the interviewer to model 

student thinking in preparation for a teaching task or assess student thinking after an 

instructional sequence. Alternately, some interviews may primarily consist of tasks 

designed to perturb student thinking toward reflection and construction of new ideas. In 

the paragraphs below, I address the role of each type of interview in my study: formal 

interviews (i.e., clinical interviews) and teaching interviews (i.e., exploratory teaching 

interviews). 

A clinical interview constitutes a formalized setting where the interviewer 

presents a task to a student and then observes the student’s actions (Clement, 2000). A 

clinical interview aims to monitor and model student thinking without providing teaching 

or other interventions that might directly impact students’ thinking about the interview 

topic. In my study, I used the clinical interview format to conduct an intake and exit 

interview with each student. The purpose of the intake interview was to observe students’ 

naturalistic approaches to determining series convergence. I have previously reported the 
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results of my analysis of the intake interview data in Eckman and Roh (2022a). The exit 

interview aimed to discern the efficacy of the instructional interventions I presented 

during the teaching interviews regarding students’ meanings and symbolization for series 

convergence. In this way, the clinical interview format fits the intake and exit interview 

purposes: to evaluate and model student thinking without interventions designed to elicit 

reflection and changes in thinking. In other words, the intake and exit interviews served 

as diagnostic and assessment tools rather than teaching mechanisms or interventions. 

The exploratory teaching interview, first proposed by Moore (2010) and Castillo-

Garsow (2010), was adopted as a method for completing the exploratory teaching phase 

of Steffe and Thompson’s (2000) constructivist teaching experiment methodology 

(Sellers, 2020). The purpose of an exploratory teaching interview is to propose or refine 

models for student thinking, similar to a clinical interview (Sellers, 2020). However, 

exploratory teaching interviews differ from clinical interviews in that the teacher-

researcher in the exploratory teaching interviews actively seeks to perturb and change 

student thinking rather than merely describing the interviewee’s mental actions (Castillo-

Garsow, 2010; Moore, 2010; Sellers, 2020). Exploratory teaching interviews can occur 

independently, as a prerequisite for a teaching experiment (Sellers, 2020), or during a 

teaching experiment (Moore, 2010). The exploratory teaching interview format aligns 

with the purposes of the teaching sessions for this study: to actively perturb and attempt 

to resolve students’ thinking related to series and the students’ corresponding personal 

expressions to represent these topics. In this way, the exploratory teaching interviews 

constituted an interactive experience designed to promote reflection and learning, rather 

than a diagnostic or assessment tool.  
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Component 5: Method to Record the Teaching Experiment 

 I conducted the teaching experiment virtually through the Zoom platform due to 

the continued prevalence of the COVID pandemic at the time of my data collection. I 

recorded each interview simultaneously through the Zoom recording feature and the 

Camtasia screen recording application. The Zoom recording feature captured (1) the 

audio, (2) the webcam video of the teacher-researcher and the student, and (3) any screen 

sharing that occurred throughout the teaching experiment. The Camtasia recording 

captured the teacher-researcher’s screen, including the interview protocol, the Zoom 

application window, and any chat messages shared between the teacher-researcher and 

the witness. 

 I constructed and embedded most of the interview tasks for this study into the 

Microsoft OneNote application. The only exception was the 𝜖-strip applet, which 

functioned much better on the Geogebra website than as an embedded file in OneNote. I 

selected the OneNote application because (1) it allowed for collaborative work between 

simultaneous users and (2) it synced annotations made between devices while preserving 

the absolute position of the annotations on the OneNote file. I also saved each OneNote 

file for use in figures, tables, and data analysis. 

The largest disadvantages to using Microsoft OneNote were that (1) the 

application did not sync video playback (or GeoGebra applet manipulation) between 

devices and (2) there was often a lag between when the student wrote something on their 

screen and when it appeared on my screen. To mitigate these issues, I asked the student to 

share their screen through the Zoom application while working on the tasks. Viewing the 

student’s shared screen allowed me to see their annotations in real time (removing 
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disadvantage 2) and their video playback or GeoGebra applet behavior (removing 

disadvantage 1). I also shared my screen during the times when I was playing a video for 

the student or modifying an applet to allow the student to see my work.   

Timeline of Dissertation Study and Overview of Interview Sessions 

The following table, Table 1, shows an abbreviated schedule for the research 

activities involved in this study (a more detailed plan for the interviews will appear later 

in the next subsection).  

Table 1 

Data Collection, Analysis, and Defense Schedule for Dissertation Study 

Timeline Participants Research Activity Method  

Fall 2019-

Spring 2020 
Four volunteers 

Pilot Study 1: Refining 

Tasks 

Clinical interview 

Fall 2020-

Spring 2021 
Four volunteers 

Pilot Study 2: Refining 

Tasks 

Clinical interview 

Summer 

2021 
Three volunteers 

Pilot Study 3: Refining 

interview protocol and 

tasks 

Exploratory teaching 

interviews 

Fall 2021 

Second-semester 

calculus student 

volunteers 

Recruit participants from 

second-semester calculus 

Screening survey 

Theoretical sampling 

Two students 

-Intake interview 

-Seven exploratory 

teaching interviews 

-Exit interview 

Teaching experiment 

(clinical interview, 

exploratory teaching 

interview) 

Spring 2022-

Spring 2023 

Teacher-

researcher 

Witness 

Ongoing analysis 

Retrospective Analysis 

Grounded theory 

Fall 2022-

Spring 2023 

Teacher-

researcher 

Write the results of the 

study 

N/A 

Summer 

2023 

Teacher-

researcher 

Dissertation defense Presentation 

 

I completed three formal pilot studies in preparation for my dissertation study during the 

2019-2020 and 2020-2021 academic years. These pilot studies aimed to test potential 
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dissertation tasks and types of participants. While I was unable to construct rigorous 

research artifacts from the data I collected during Pilot Study 1 and Pilot Study 2, I have 

submitted or published various reports from Pilot Study 3 (i.e., Eckman & Roh, 2022a, in 

revision, under review). I collected my dissertation data during the Fall 2021 semester 

and have published a research report detailing students’ intuitive meanings for series 

convergence during the intake interview (i.e., Eckman & Roh, 2022b).  

I engaged in ongoing analysis of the data from each teaching experiment session 

to prepare for future interviews. I conducted a retrospective analysis of the data from the 

Spring 2022 semester through the conclusion of writing this dissertation in the Spring 

2023 semester. Although I did some writing during my initial analysis, I wrote most of 

the dissertation during the Spring 2023 semester. I completed the dissertation defense 

during the Summer 2023 session to fulfill the requirements to graduate with a Ph.D. in 

mathematics education from Arizona State University.  

In the following sections, I describe (1) my pilot studies and their influence on my 

methodology for my dissertation study and (2) a schedule of interviews and tasks that I 

presented during the interview sessions of the dissertation study. 

Pilot Study Data and its Influence on my Dissertation Study 

 In this section, I address the nature of my three pilot studies and how they 

influenced my task design and study participant selection for my dissertation study. I will 

not address Pilot Study 1 or Pilot Study 2 in any other place in this dissertation study. I 

have previously reported several results from Pilot Study 3 (Eckman & Roh, 2022a, 

under review, in revision) and have commented on this study in several places throughout 

this dissertation. I address each pilot study in an individual subsection. 
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Pilot Study 1  

I conducted Pilot Study 1 during the 2019-2020 academic year to investigate four 

second-semester calculus students’ meanings for the limit of the sequence of partial sums 

and infinite series using conventional notation. For Pilot Study 1, I designed tasks that 

required students to construct symbolic representations of the sequence of partial sums of 

a sequence of real numbers in the context of physical situations (e.g., comparing the 

number of seats in subsets of rows in an auditorium).  

 There were two outcomes from Pilot Study 1 that contributed to my task design 

for this study. First, I conceived a preliminary version of my personal expression 

construct during my analysis of Pilot Study 1. Second, my reflection on students’ 

difficulties reasoning about the sequence of partial sums influenced my decision to 

prepare separate tasks addressing individual partial sums, the sequence of partial sums, 

and the limit of the sequence of partial sums in my dissertation study. I also determined 

from this study that I wanted to select dissertation study participants who had not yet 

experienced formal instruction in sequences and series in a second-semester calculus 

course (at least at the beginning of the teaching period). 

Pilot Study 2  

I conducted Pilot Study 2 during the 2020-2021 academic year to examine four 

first-semester calculus students’ meanings for series convergence and the limit value of a 

convergent series. I chose to investigate series convergence in Pilot Study 2 because I 

recognized from my analysis of Pilot Study 1 that students’ thinking about series 

convergence was likely to be different from their thinking about partial sums and the 

limit of the sequence of partial sums.  
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During my analysis of Pilot Study 2, I identified three unconventional student 

meanings related to series convergence. First, several students stated an infinite series 

could not converge because it has no end, a phenomenon reported by previous 

researchers (e.g., Sierpińska, 1987; Akgün et al., 2012). Second, some students suggested 

monotonic series can't converge because the magnitude of the partial sums perpetually 

increases (Eckman & Roh (2022b) called meaning monotone running total divergence). 

Finally, several students stated that if the values of the summands in a series converge to 

zero, the series will converge (Eckman & Roh (2022b) called this meaning decreasing 

summands convergence). My reflection on these three unconventional meanings for 

series convergence influenced the types of series I included in my dissertation study 

tasks.  

Pilot Study 3  

The goal of Pilot Study 3 was to examine second-semester calculus students’ 

ability to construct and utilize personal expressions to re-present partial sums, series 

convergence, and the value to which a series might converge. I purposefully selected 

students who had not (at the beginning of the interviews) received formal instruction on 

sequences and series. Pilot study 3 was broadly successful and provided substantial 

insights into students’ symbolizing activity. For example, I have presented various 

reports about two students, Emily and Cedric, and their symbolizing activity related to 

arbitrary partial sums and series (e.g., Eckman & Roh, 2022a, under review, in revision).  

In preparation for Pilot Study 3, I modified my tasks and interview protocol based 

on my findings from Pilot Studies 1 and 2. For example, I leveraged my findings from 

Pilot Study 1 to construct different tasks related to specific and arbitrary partial sums. I 
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also revised the series I presented during the tasks based on my findings from Pilot Study 

2. Finally, I created a video defining inscriptions and personal expressions to introduce 

these ideas to the students and provide an example of creating a novel personal 

expression (I describe this video later in the chapter). I also aligned my task sequence 

with methodological tools reported in the literature, such as Radford's (2000) three-stage 

process to create symbolic sequence rules and some of Zazkis and Hazzan's (1998) 

questioning techniques.  

My analysis of the Pilot Study 3 data prompted me to include a formal 

opportunity for students to reflect upon their meanings for their personal expressions at 

the beginning of each teaching session. After completing the three pilot studies and 

successfully defending my dissertation prospectus, I determined that my interview 

protocols and study design were sufficient to begin my formal dissertation study. 

Overview of the Teaching Experiment Sessions and Tasks 

The purpose of this section is to overview the structure of the study, learning and 

research goals, and interview tasks comprising each teaching episode. For this study, I 

conducted two individual constructivist teaching experiments (Steffe & Thompson, 2000) 

with second-semester calculus students. The teaching episodes were comprised of an 

intake interview, seven teaching interviews, and an exit interview. The intake interview 

aimed to determine students’ intuitive meanings for series convergence; the purpose of 

the exit interview was to discern the changes in students’ thinking and symbolization of 

series convergence that took place throughout the teaching experiment. The seven 

teaching experiment days can be divided into three major sections.  
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The first section comprised Days 1-4. In this section of the experiment, the 

students constructed personal expressions to reason about specific partial sums, arbitrary 

partial sums, sequences, sequences of partial sums, and series. The overarching learning 

goal for the first section was for students to construct and confidently utilize a set of 

personal inscriptions by which they could organize their thinking about topics related to 

series convergence. The overarching research goals for the first section were to (1) 

investigate the meanings that students exhibited for the sequence of partial sums, (2) 

determine which ideas related to sequences and series the students believed merited 

symbolizing, and (3) model how students’ meanings and symbolization coevolved over 

time.  

The second section comprised Days 5-6. This section of the teaching experiment 

was modeled mainly after Roh's (2010) 𝜖-strip activity, which I modified to focus on the 

sequence of partial sums. The learning goals for this section of the teaching experiment 

were for the students to (1) develop a conventional meaning for sequence convergence, 

(2) adopt a corresponding written rule through which to re-present their meaning, and (3) 

symbolize the various graphical components of the 𝜖-strip activity by assimilating them 

to their existing inscriptions or creating new inscriptions. The research goals for this 

second section were (1) to continually monitor the coevolution of students’ meanings and 

symbolization and (2) to examine the relationship between students’ symbolization of 

series scenarios presented numerically and graphically. 

The final section comprised the Day 7 interview. The purpose of the Day 7 tasks 

was to determine whether students’ reasoning about the sequence of partial sums during 

Days 1-4 and the convergence of the sequence of partial sums on Days 5-6 would provide 
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insights (to them) about infinite series convergence. The learning goals for Day 7 were 

that the students would (1) symbolize their written rule for sequence convergence; (2) 

posit relationships between sequences, sequences of partial sums, and infinite series; and 

(3) construct (and symbolize) a written rule for series convergence based (in part) on their 

written rule for sequence convergence. The research goals for Day 7 included (1) 

examining how students coordinate various inscriptions and expressions to symbolize 

mathematical statements, (2) investigating the relationships students conceive between 

sequences, sequences of partial sums, and series, and (3) determining how students’ 

thinking about sequence of partial sums convergence influences their meanings for series 

convergence. 

In summary, the teaching experiment focused on (a) students’ creation of personal 

expressions to re-present the sequence of partial sums (Days 1-4), (b) students’ 

development of written rules and symbols to re-present sequence convergence (Days 5-

6), and (c) how students’ meanings for the sequence of partial sums influenced their 

thinking and symbolization of infinite series convergence (Day 7). The intake and exit 

interviews served as benchmark assessments to determine students’ initial meanings for 

series convergence (intake interview) and the effects of the teaching experiment on their 

thinking and symbolization of infinite series (exit interview). The following table, Table 

2, summarizes the basic structure of the teaching experiment. 
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Table 2 

Structure and Overarching Themes of Teaching Experiment 

Section Purpose Research Goals 

Intake Pre-assessment • Model students’ intuitive meanings for series 

convergence 

Days 1-4 Develop personal 

expressions for 

sequence of 

partial sums 

• Investigate the meanings that students exhibited for the 

sequence of partial sums 

• Investigate students’ development of personal 

expressions to re-present their thinking about the 

sequence of partial sums 

• Monitor the coevolution of students’ meanings and 

symbolization over time 

Days 5-6 Develop written 

rule and symbols 

for sequence of 

partial sums 

convergence 

• Investigate students’ development of written rules and 

personal expressions to re-present their thinking about 

the convergence of the sequence of partial sums 

• Examine the relationship between students’ 

symbolization of series presented numerically and 

graphically 

• Monitor the coevolution of students’ meanings and 

symbolization over time 

Day 7 Compare 

convergence of 

sequence of 

partial sums and 

infinite series 

• Examine how students coordinate various inscriptions 

and expressions to symbolize mathematical statements 

• Investigate the relationships students conceive between 

sequences, sequences of partial sums, and series 

• Determine how students’ thinking about sequence of 

partial sums convergence influences their meanings for 

series convergence 

Exit Post-assessment • Evaluate changes in students’ meanings and 

symbolization for infinite series convergence throughout 

interviews 

 

The following table, Table 3, provides an even more detailed description of the 

topics of each interview, including the dates and task names for each participant’s 

interviews. Each student participated in an intake interview near the beginning of October 

2021. After I selected Monica and Sylvia as participants, I scheduled a recurring weekly 

interview to conduct the remainder of the teaching episodes. Monica generally attended 

her interviews at the regularly scheduled times, apart from the week of Thanksgiving 

(Day 6) and finals week (Day 7). Sylvia experienced a medical issue between Day 2 and 
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Day 3, requiring her to reschedule the Day 3 interview. Additionally, she rescheduled the 

Day 6 interview due to Thanksgiving. Both students scheduled their exit interviews at a 

convenient time (for them) during finals week, which happened to be on the same day. In 

the following section, I describe each teaching episode's tasks, research, and learning 

goals. 



 

   

7
7
 

    Table 3 

    Exploratory Teaching Interview Dates and Topics for Each Student 

Interview Monica Sylvia 

Tasks Date Tasks Date 

Intake Task 1: Analyze six series for convergence values 

Task 2: Provide a general definition for series convergence 

10/08 Task 1: Analyze six series for convergence values 

Task 2: Provide a general definition for series convergence 

10/12 

Day 1 Task 1: Determine specific summand and partial sums in various 

series 

Task 2: Create a written rule (in English) for describing an arbitrary 

partial sum 

Task 3: Transcribe a series 
Task 4: View personal expressions video and create personal 

expression for arbitrary partial sum 

10/20 Task 1: Determine specific summand and partial sums in various series 

Task 2: Create a written rule (in English) for describing an arbitrary 

partial sum 

Task 3: Transcribe a series 

Task 4: View personal expressions video and create personal expression 
for arbitrary partial sum 

10/21 

Day 2 Task 1: Compare integral notation to summation notation for 
representing partial sums8 

Task 2: Use personal expressions to describe specific partial sums, 

arbitrary partial sums, and infinite series 

10/27 Task 1: Creating personal expressions to describe series with alternating 
patterns of + and – signs 

Task 2: Using personal expressions to describe specific partial sums, 

arbitrary partial sums, and infinite series 

10/28 

Day 3 Task 1: Compare contrasting graphs for sequences (e.g., continuous, 
dots) 

Task 2: Instruction on sequence, series, and sequence of partial sums 

Task 3: Create a personal expression for sequence of partial sums 

11/03 Task 1: Using personal expressions to describe series with random 
summands 

Task 2: Instruction on sequence, series, and sequence of partial sums 

Task 3: Create a personal expression for sequence of partial sums 

11/08 

Day 4 Task 1: Categorize inscriptions in glossary 

Task 2: Compare inscriptions for sequence and sequence of partial 

sums in table 
Task 3: Compare graphs of sequences and initial attempt to symbolize 

components of sequence graphs 

Task 4: Initial task about convergence in the context of graphs 

11/10 Task 1: Categorize inscriptions in glossary 

Task 2: Compare inscriptions for sequence and sequence of partial sums 

in table 
Task 3: Compare graphs of sequences and initial attempt to symbolize 

components of sequence graphs 

Task 4: Initial task about convergence in the context of graphs 

11/11 

Day 5 Task 1: Construct inscription for general term of a sequence 

Task 2: Introduction of GeoGebra applet for 𝜖-strip activity 

Task 3: Symbolize graphical components of 𝜖-strip activity 

11/17 Task 1: Construct inscription for general term of a sequence 

Task 2: Introduction of GeoGebra applet for 𝜖-strip activity 

Task 3: Symbolize graphical components of 𝜖-strip activity 

11/18 

Day 6 Task 1: Compare inscriptions in glossary to screenshot of 𝜖-strip 

activity 

Task 2: 𝜖-strip activity: comparing two definitions for convergence 

11/26 Task 1: Compare inscriptions in glossary to screenshot of 𝜖-strip activity 

Task 2: 𝜖-strip activity: comparing two definitions for convergence 

11/23 

Day 7 Task 1: Symbolize chosen definition for convergence of a sequence of 
partial sums 

Task 2: Discuss similarities and differences between sequence, 

sequence of partial sums, and series 
Task 3: Construct a personal written rule for series convergence 

12/06 Task 1: Symbolize chosen definition for convergence of a sequence of 
partial sums 

Task 2: Discuss similarities and differences between sequence, sequence 

of partial sums, and series 
Task 3: Construct a personal written rule for series convergence 

12/02 

Exit Task 1: Analyze six series for convergence values 

Task 2: Provide a general definition for series convergence 

12/09 Task 1: Analyze six series for convergence values 

Task 2: Provide a general definition for series convergence 

12/09 

 
8 There were two “review” tasks that students participated in at the beginning of some interviews that are not listed here. First, I had Monica review the personal expressions videos on 

Days 2-4 and Sylvia review the video on Days 2-3. Second, I had each student review their glossary of inscriptions before beginning the first new task in each interview.  
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Summary of Data Collection Methods 

 In this section, I summarize the data collection portion of my dissertation study. I 

separate my discussion into three major subsections. First, I describe my use of a 

screening survey to recruit four potential candidates to participate in this study. This 

section constitutes the only place in this dissertation where I describe my screening 

survey, so I provide a detailed description of the survey items, dissemination, and 

analysis of the survey data. I also describe the intake interview tasks and the analysis 

methods by which I selected the two finalists to serve as study participants for the 

remainder of the study. Second, I describe the backgrounds of each of the two finalists. In 

the final subsection, I describe the tasks, learning goals, and research goals for each 

interview comprising this experiment.  

Recruiting Student Participants for the Dissertation Study.  

In this section, I address my processes for recruiting two students to participate in 

the individual teaching experiments comprising the data for study. In brief, I used a 

screening survey to select four potential candidates from all undergraduate second-

semester calculus students interested in my study. I then conducted an intake interview 

with each of the four possible candidates. Finally, I used the data from the intake 

interviews to select the two participants for this study. 

This section contains four distinct portions. First, I address the sampling theory I 

utilized with my screening survey, theoretical sampling (Patton, 2002). Second, I review 

the items on my screening survey. Third, I describe the logistics of disseminating the 

survey. Finally, I discuss my survey analysis. I discuss my survey analysis in this chapter 
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because I want to focus the results chapters (i.e., Chapters 5, 6, 7) solely on the data from 

the two finalist candidates.  

Theoretical Sampling 

To select the participants in my study, I conducted theoretical sampling (Patton, 

2002) through disseminating a screening survey (Lavrakas, 2008). Theoretical sampling 

occurs according to the theoretical needs of the researcher and the evolving constructs 

that emerge throughout the various stages of the empirical research process (Coyne, 

1997). Theoretical sampling differs from random sampling, where study subjects are 

spontaneously selected to participate according to criteria determined before the start of 

the experiment. Theoretical sampling is also different from (1) what Schatzman and 

Strauss (1973) called selective sampling, where a researcher chooses participants in 

qualitative research according to time and resource constraints (Coyne, 1997). 

From my empirical pilot study data analysis, I identified several prerequisite 

criteria that I envisioned would be necessary for my participants to succeed in my 

dissertation study. These criteria included: (1) the ability to make additive comparisons 

between sums of fractions, (2) the ability to recognize the graph or algebraic rule 

describing a functional relationship, and (3) a working definition for sequence 

convergence that is not logically equivalent to the formal definition for convergence. 

From these criteria, I constructed a screening survey to identify undergraduate first-time 

second-semester calculus students who had the potential to be productive study 

participants. 
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Structure and Items on Screening Survey 

The purpose of the screening survey was to identify a small group of finalist 

candidates who portrayed my desired methodological (e.g., first-time second-semester 

calculus student) and theoretical criteria (e.g., desired meanings for fractions, graphs, and 

convergence) for the study. I have summarized the structure of the screening survey in 

Table 4. The survey consisted of (1) a consent form; (2) demographic information 

regarding students’ major and math course experience; and (3) nine survey items 

addressing topics such as comparing partial sums (Items 1a-1b), understanding of graphs 

of functions and algebraic rules for functions (Items 2a-2d), interpreting the value of a 

convergent series (Item 3a), and providing definitions for series convergence (Items 3b-

3c). Four survey items (Items 1a, 2a, 2c, 3a) were multiple choice, and the remainder 

were free response (Items 1b, 2b, 2d, 3b, 3c). 

Disseminating the Survey  

I prepared the survey in the Qualtrics platform and enlisted the undergraduate 

mathematics chair to send a link to all students enrolled in second-semester calculus 

courses at the university (see Appendix B for a copy of the recruitment email). I provided 

students with approximately one week to complete the survey. I received 14 viable 

survey responses by the survey close date. The 14 students who completed the screening 

survey were either (1) currently enrolled in a second-semester calculus course (12 

students) or (2) enrolled in another course but had taken some portion of a second-

semester calculus course in the current or previous semesters (2 students). Twelve 

students had previously taken either AP Calculus AB or BC in high school (or both), and 

six of these students self-reported that they had passed the corresponding AP exam.



 

  

8
1

 

    Table 4 

    Screening Survey Structure and Item Description 

Item Description Item Type 

Consent Form • Information about survey and consent to participate Single check-box 

Preliminary questions • Demographic information: 

1) Name, email, campus student attended 

2) Declared major 

3) Math courses taken in previous semesters 

4) Experience with AP Calculus AB or BC in high school 

5) Current mathematics course 

Multiple response 

Item 1a: Additive 

comparison of fractions 
• Compare the values of two sums of fractions using the inscription >, <, or =. 

• Students provide justification for their choice of inscription. 

Multiple choice  

Justification 

Item 1b: Follow-up 

questions 
• Student provides an explanation of what their chosen inscription for Item 1a means (to them). 

• Student provides an example of how they might use their chosen inscription for Item 1a in 

another situation. 

Open response 

Item 2a: Graph of a 

function 
• Given a function rule and domain, choose the corresponding function graph from a set of four 

possible graphs. 

• Students provide justification for their choice of graph.  

Multiple choice 

 

Justification 

Item 2b: Function 

evaluation 
• Describe how to evaluate a function algebraically (given a function rule) at a given value of the 

independent variable. 

Open response 

Item 2c: Determining 

algebraic rule for 

function graph 

• Given a graphical representation of a linear function, choose the appropriate closed-form, 

explicit rule which produces the graph shown. 

• Students provide justification for their choice of rule  

Multiple choice 

 

Justification 

Item 2d:  • Given a value of the dependent variable of a function, describe how to find the corresponding 

value of the independent variable of the function. 

Open-ended 

response 

Item 3a • Determine the truth value of a statement about the convergent value of a geometric series (i.e., 

∑
1

2𝑛
∞
𝑛=0  converges to 2) written in expanded form. 

• Students provide justification for their choice of truth value 

Multiple-choice 

response 

 

Justification 

Item 3b • Students describe what the phrase “a series converges” means (to them). Open-ended 

response 

Item 3c • Students complete the statement “A series converges if_____.” Open-ended 

response 

End Screen • Information about compensation, timeframe for hearing back about interviews, researcher 

contact information 
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The respondents’ major focus of study included engineering (5 students), computer 

science or a related field (4 students), astrophysics (2 students), applied math for life and 

social sciences (1 student), mathematics education (1 student), and political science (1 

student). 

Survey Analysis and Selection of Potential Candidates 

 I utilized four distinct criteria to sort and rank the students to select four potential 

candidates for intake interviews. First, I awarded each student one point for providing a 

normative response to each of the three multiple-choice questions on the survey that I 

considered to constitute prerequisite knowledge (Items 1a, 2a, 2c). Of the 14 respondents, 

five students answered at least one of these prerequisite questions incorrectly. I 

subsequently eliminated these five students from consideration for the study, leaving nine 

remaining potential candidates.  

Second, I examined the students’ responses to multiple-choice Item 3a (decide the 

truth value of a statement about a specific convergent geometric series) to determine the 

students’ justification of convergence (all nine remaining candidates provided the 

normative truth value for the statement). Additionally, I inspected the students’ open 

responses to Items 3b and 3c (discuss convergence generally) to determine the students’ 

intuitive meanings for convergence. As I inspected students’ responses, I found that two 

students had been allowed to complete the survey without providing responses to Items 

3a, 3b, and 3c. I eliminated these two students from consideration for the study, leaving 

seven remaining potential candidates.  

The tables below, Table 5 and Table 6, contain samples of the seven remaining 

students’ justifications for the convergence of a specific series (Table 5) and their 
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intuitive meanings for series convergence (Table 6). Although I only provide sample 

responses from individual students, the count columns in Table 5 and Table 6 indicate 

how many of the seven potential candidates offered similar responses.   

Table 5 

Types of Students’ Justifications for Specific Series Convergence (Item 3b) 

Justification Definition Example Count 

Convergence 

Test 

The student 

justifies the 

statement by 

appealing to a 

convergence test. 

The above sequence is what we consider to be a 

geometric sequence (in that the equation for the 

following sequence would be the summation (n=0 to 

infinity) of 1/(2^n), because the denominator in each 

term doubles with each subsequent term. Using the 

geometric series test, [rewrite the equation so that it 

is in geometric form: an=(1/2)^(n-1)] we are able to 

determine that the series is convergent because r<1 

(r value is 1/2 in the above equation). Therefore, the 

sum of the sequence can be determined by S=a1/(1-

r), in that a1 is the first term. Therefore the sum of 

the equation is S=2, and the series must therefore 

converge to 2. 

2 

Approaching 

Asymptote 

The student 

justifies the 

statement by 

imagining a 

dynamic process of 

approaching 2. 

Unclear from 

response what the 

student believes is 

approaching 2. 

You are approaching 2 at a decreasing pace but 

eventually the distance away from 2 would be so 

small one would effectively arrive at 2. I thought of 

this as an example of distance in which a person is 

taking steps towards a doorway in a way such that 

each step is half the size of the step before it. 

Eventually they would be taking such small steps, 

and be so close, that an observer would conclude the 

individual is in the doorway. 

2 

Sum 

Approaching 

Asymptote 

The student 

justifies the 

statement by 

referencing the 

sum of something 

approaching 2. 

If all the fractions were summed, it would slowly 

reach two.  

 

2 

Unclear The student’s 

justification was 

unclear to the 

researcher. 

It’s a series. 

 
1 

 

The data in Table 5 show that the most common justification for the geometric 

series ∑ (
1

2
)

𝑖
∞
𝑖=0  converging was describing a process of some quantity (e.g., sum) 
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approaching the limit value of 2 (approaching asymptote: 2 students; sum approaching 

asymptote: 2 students). The other students either appealed to a convergence test (i.e., the 

geometric series formula; 2 students) or provided an unclear response (1 student). The 

data in Table 6 also indicate that many students (four responses) envisioned convergence 

in terms of a potentially infinite process. The remainder of the students described notions 

of infinite closeness, boundedness, or a conversion process of changing from one number 

value to another.  

Table 6 

Students’ Intuitive Meanings for Series Convergence (Item 3c) 

Intuitive 

Meaning 

Definition Example Count 

Potential 

Infinity 

The student describes 

convergence as a process 

of approaching a value. 

A series converging means that the series is 

approaching a certain number. In other words, 

the limit of the series is not infinite and is a real 

number. It is the opposite of a divergent series, 

which fails to approach any real number. 

4 

Infinite 

Closeness 

The distance between the 

value of the series and 

the limit value is 

infinitesimally small. 

This means that the "series" gets infinitely close 

to a single real number that the series is 

basically equal to the number; unlike infinity. 

1 

Changing into 

the limit value 

The series dynamically 

changes from a pre-limit 

value to the limit value. 

To me, it means how far a number is reached. 

Almost as if number one was "converting" to 

number two so we "converge" while we reach 

number 2. 

1 

Bounded The series is bounded by 

the limit value. 

As a function goes to infinity, its sum goes to a 

value that we can determine to be finite 
1 

 

 For the third step of the analysis, I assigned binary values of coherence to the 

students’ open responses to Items 3a-3c. I defined a coherent response as one in which 

the student appeared (to the researcher) to be expressing an idea that was clear (to the 

student) in a substantive way. In contrast, an incoherent response appeared (to the 

researcher) to be rambling, betray a lack of confidence, or provide an unclear (to the 

researcher) justification for any problem. I determined that all but one of the seven 
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responses were coherent. An example of an incoherent response was the response in 

Table 5 that I coded as “unclear” (i.e., It’s a series). 

 For the final step of the analysis, I assigned an elaboration score (on a scale of 1 

to 3) to the students’ justification responses to their choice of truth value for the statement 

in Item 3a (convergence of geometric series). I assigned an elaboration score of “1” if a 

student provided a short response (1 sentence) that made a claim but contained no attempt 

to justify the claim. I assigned an elaboration score of “2” if the student provided a 

medium-length response (approximately two sentences) that might include an example 

that the student did not explicitly relate to their response. I provided an elaboration score 

of “3” if a student provided a detailed response (more than 3 sentences) including an 

example, explanation, justification, or correlation between the various components of the 

students’ response. The following table, Table 7, provides an example of each type of 

elaboration response (the count column refers to the number of students who received the 

same elaboration score, not the number of students providing the same response). 

Table 7 

Student Screening Survey Response Examples by Elaboration Score 

Elaboration 

Score 

Example Count 

1 The sum of all the values converges to 2. 4 

2 The ratio between values is 1/2 which is less than one meaning that the series 

must converge. By setting the series equal to a variable, C, we can 

algebraically manipulate it to get the formula C-C/2=1 meaning that C must 

be 2. 

1 

3 You are approaching 2 at a decreasing pace but eventually the distance away 

from 2 would be so small one would effectively arrive at 2. I thought of this as 

an example of distance in which a person is taking steps towards a doorway 

in a way such that each step is half the size of the step before it. Eventually 

they would be taking such small steps, and be so close, that an observer 

would conclude the individual is in the doorway. 

2 
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 After concluding the four steps of analysis, I provided a rank to each of the seven 

remaining student responses on a scale of 0 to 3 (with 3 being the highest rank, i.e., most 

desirable interviewee). I summarize how I rated and ranked each of the students I 

analyzed with the criteria in Table 8. I assigned a rank of 1 to students who described a 

convergence test during their response on Item 3a, 3b, or 3c. My rationale for giving 

these students a low rank was a concern that these students might procedurally use 

convergence tests to justify the convergence of series (which I wanted to avoid).  

Table 8 

Four Criteria Analysis for Screening Survey Data and Ranking of Students 

Student Criteria 1: 

Score (Items 

1a, 2a, 3c) 

Criteria 2a: 

Justification 

(Item 3a) 

Criteria 2b: 

Meaning for 

convergence 

(Items 3b, 

3c) 

Criteria 3: 

Coherence 

(Items 3a-

3c) 

Criteria 4: 

Elaboration 

Score (Item 

3a) 

Major Rank 

Ann 3 Sum 

Approaching 

Asymptote 

Changing 

into Limit 

Value 

Yes 1 Engineering 3 

James 3 Approaching 

Asymptote 

Infinite 

Closeness 

Yes 1 Engineering 3 

Monica 3 Approaching 

Asymptote 

Potential 

Infinity 

Yes 3 Political 

Science 

3 

Justin 3 Unclear Bounded No 1 Engineering 2 

Sylvia 3 Sum 

Approaching 

Asymptote 

Potential 

Infinity 

Yes 1 Applied 

Mathematics 

for Life and 

Social 

Sciences 

2 

Pablo 3 Convergence 

Test 

Potential 

Infinity 

Yes 3 Engineering 1 

Patrick 3 Convergence 

Test 

Potential 

Infinity 

Yes 2 Engineering 1 

 

I ranked the remaining five students (i.e., Ann, James, Monica, Justin, and Sylvia) 

using two qualifications. First, I wished to achieve the maximal variety between their 

justification of the geometric series convergence (Item 3a; Criteria 2a) and their meaning 

for convergence (Items 3b, 3c; Criteria 2b). Second, I wanted to rank students lower who 

had a deficiency in one of the criteria (e.g., justification, elaboration) compared to the 
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other students. Consequently, I ranked Justin as a two because of his brief response to 

Item 3a and Sylvia as a two because her justification was similar to Ann’s. Her meaning 

for convergence was also similar to Monica’s (and Monica had a much higher elaboration 

score). I ranked the remaining students—Ann, James, and Monica—as 3’s because they 

represented two different justifications for the geometric series convergence and three 

meanings for convergence.  

Intake Interview and the Selection of Two Participants for the Teaching Experiment 

 In this section, I describe the process by which I conducted intake interviews and 

selected the finalists to participate in the teaching experiment. This section comprises 

three parts. In the first part, I overview the logistical hurdles that I needed to surmount as 

I attempted to conduct the interviews. In the second part, I briefly describe the content 

and tasks of the intake interview. Finally, I describe how I chose the official participants 

for the teaching experiment. 

Logistical Issues Conducting Intake Interviews. After completing my analysis 

of the screening survey data, I contacted each student that I had given a rank of 3 (i.e., 

Ann, James, Monica) for an intake interview. My original intention was to conduct intake 

interviews with three students from which I would select my two finalists. Ann and 

Monica responded to my emails and scheduled intake interviews. However, James did 

not respond to my requests to schedule an interview (despite repeated reminder emails). 

Consequently, I contacted the students I had given a rank of 2 (i.e., Justin, Sylvia). 

I asked them whether they would like to participate in intake interviews. Both students 

quickly responded to my message, so I scheduled interviews with both students. As a 

result, I conducted intake interviews with four students (i.e., Ann, Monica, Justin, 
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Sylvia), two of which I had given a rank of 3 (i.e., Ann, Monica), and two of which I had 

given a rank of 2 (i.e., Justin, Sylvia).    

Content and Tasks of the Intake Interview. The 90-minute intake interview 

simultaneously functioned as the final vetting stage to select two teaching experiment 

participants and an opportunity to create an initial model of my participants’ thinking 

about series convergence. The intake interview consisted of two major tasks. In the first 

task, I presented six series to the students created by a hypothetical student named 

Abigail (see Table 9).  

Table 9 

Abigail’s Six Series Presented to Students During Intake Interview 

Series  Rule Expanded Form Series type 
Sequence of 

Partial Sums 

Value of 

Convergence 

1 ∑
3

√𝑛

∞

𝑛=0

 
3

√1
+

3

√2
+

3

√3
+ ⋯ 

p-series 

(0 < 𝑝 < 1) 

Monotone 
increasing 

divergent 

 

2 ∑
2(−1)𝑛−1

𝑛5

∞

𝑛=1

 
2

15
−

2

25
+

2

35
− ⋯ 

Alternating 

p-series 

(𝑝 > 1) 

Oscillating 
convergent 

≈ 1.94 

3 

∑ ∑[10−2𝑛−1 − 10−2(𝑛+1)−1𝑖]

99

𝑖=1

∞

𝑛=1

  

= ∑
495

10000
(

1

100
)

𝑘∞

𝑘=0

 

99

103
+

98

103
+ ⋯ +

1

103
+  

99

105
+ ⋯ +

1

105
+  

99

107
+ ⋯ +

1

107
+ ⋯  

Geometric 

Monotone 

increasing 
convergent 

1

20
 

4 ∑
(200 − 2𝑛)(−1)𝑛

𝑛 + 1

∞

𝑛=0

 
200

1
−

198

2
+

196

3
− ⋯ 

Alternating 

series 

Oscillating 

divergent 
 

5 

∑ 𝑎𝑖

∞

𝑖=0

 

(where 𝑎𝑖 corresponds to the 𝑖𝑡ℎ 

decimal place of 𝜋 and 𝑎0 = 3.) 

3 + .1 + .04 + ⋯ 

Decimal 
expansion of 

irrational 

number 

Monotone 

increasing 
convergent 

𝜋 

6 ∑(.07) ∙ (−1)𝑛

∞

𝑛=0

 . 07 − .07 + .07 − ⋯ 
Alternating 

series 

(Grandi’s) 

Oscillating 
divergent 

 

 

For each series, I asked the student two questions I found in the Larson and 

Edwards (2015) calculus textbook: (1) Does the series converge? and (2) If the series 
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converges, what value does the series converge to? In the second task, I asked the student 

to describe their general image of series convergence. I describe Monica and Sylvia’s 

responses to these interview tasks in detail in Chapter 5. 

Analysis of Intake Interview Data to Determine two Study Participants. The 

analysis of the intake interview consisted of three distinct phases. First, I categorized the 

students’ responses to the convergence of each of the six series (see Table 10). Through 

this stage of the analysis, I realized that the students’ responses were very similar for 

some series (e.g., Series 6) but largely dissimilar for the remainder of the series.  

In the second stage of the analysis, I categorized the meanings for series 

convergence that the students described after reviewing the six series (see Table 11). 

Through this analysis stage, I recognized that Monica and Sylvia portrayed similar 

meanings for series convergence as a dynamic partial sum stabilizing toward a particular 

value (see Eckman & Roh, 2022b for a summary of these meanings). In contrast, Ann 

always estimated with the same error bound (0.001, which she referred to as “three 

significant figures). Justin seemed to focus on evaluating large partial sums, which he 

would then round to a convenient (to him) value (he did not exhibit a consistent pattern 

with his rounding during the interview). I also found that Ann, Justin, and Sylvia utilized 

calculators to reason about infinite series, while Monica preferred to reason verbally and 

graphically about series. 
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Table 10 

Intake Interview Students’ Convergence Responses for Abigail’s Six Series 

 Series 1 Series 

2 

Series 

3 

Series 4 Series 5 Series 

6 

Monica 

Converge Y N Y N Y Y Y Y Y N 

Value Unsure  Unsure  0 𝜋 4 3.2 

and 

4 

Any 

upper 

bound 

 

Sylvia 

Converge Y N Y N Y N Y Y Y N 

Value 4  Unknown 

value 
larger 

than 4 

 2  200 𝜋 0  

Ann Converge Unsure N Y Y N Y N 

Value   1.944 Unsure  3.141  

Justin Converge Y Y Y Y Y Y Y N 

Value 189000 1 0 0.1 100 137.5 3.14  

Note: Y means the student said “Yes, the series converges,” and N means “No, the series does not 

converge” 

Table 11 

Intake Interview Students’ General Images of Convergence 

Student Meaning for Convergence 

Monica Three implications of an asymptotic running total meaning (see Eckman & Roh, 2022b) 

1) If the terms in a series perpetually decrease, the series converges. 

2) If the value of the running total perpetually increases, the series diverges. 

3) If a monotone series can be constructed from an alternating series, the alternating 

series converges. 

Sylvia Three implications of an asymptotic running total meaning (see Eckman & Roh, 2022b) 

1) If the terms in a series perpetually decrease, the series converges. 

2) If the value of the running total perpetually increases, the series diverges. 

3) If a monotone series can be constructed from an alternating series, the alternating 

series converges. 

Ann Two different meanings: 

1) A series converges if it is bounded within a certain tolerance. The most common 

error bound that Ann used was 0.001, which she referred to as “three significant 

figures.” 

2) The value of convergence is the sum of all the series terms. 

Justin Three different meanings: 

1) The value of a series (in the general sense) is equivalent to the area under a curve. 

2) The running total stays the same (in the long run) for a convergent series and 

increases for a divergent series. 

3) To determine the value of a series, add a large finite number of terms in the series 

and round off to a convenient value. 

 

In the final stage of the analysis, I evaluated each student’s experiences with 

calculus courses (see Table 12). Although all four students had stated that they had not 
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taken second-semester calculus before during the screening survey, two students revealed 

during the intake interview that they had previous experiences with university calculus. 

First, Ann revealed that she had taken an accelerated second-semester calculus over the 

summer and was re-taking second-semester calculus during the current (Fall) semester. 

Second, Justin stated that he had taken second-semester calculus twice before (once 

passing with a low grade, once withdrawing) and was repeating the course a third time in 

an attempt to improve his grade in the course. 

Table 12 

Intake Interview Students’ Previous Experience with Calculus Courses 

Student Previous Experience with Calculus 

Courses 

Notes 

Monica AP Calculus AB and BC in high 

school 

Passed the AP Calculus AB exam but did not 

take AP Calculus BC exam 

Sylvia AP Calculus AB in high school Passed the AP Calculus AB exam 

Ann AP Calculus AB in high school, first-

semester calculus, second-semester 

calculus 

Took second-semester university calculus 

during the Summer 2021 session 

Justin AP Calculus AB in high school, first-

semester calculus, second-semester 

calculus 

Took second-semester calculus three times, 

passing with a low grade, withdrawing, and 

currently enrolled (respectively) 

 

 As I considered how to prioritize the three phases of my analysis toward selecting 

two finalists, I recalled my commitment after Pilot Study 3 to only interview students 

with no prior collegiate experience with the sequence and series unit of second-semester 

calculus. Thus, I placed the highest priority on the third phase of my analysis (i.e., 

students’ previous calculus experience) and a lower priority on the other two phases (i.e., 

convergence responses, meanings for convergence). As a result, I immediately eliminated 

Justin as a participant in my study due to his repeated attendance in second-semester 

calculus courses. I carefully weighed whether to include Ann, who had one previous 

semester of second-semester calculus experience but whose thinking about convergence 
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was distinctly different than either Monica’s or Sylvia’s. Ultimately, I decided to 

eliminate Ann because I was unsure how much of the meanings she exhibited for series 

convergence during her interview were a result of her previous instruction about 

sequences and series. Eliminating Justin and Ann left me with two final participants, 

Monica and Sylvia, who each accepted an invitation to participate in the entire teaching 

experiment. 

Background Information about Study Participants 

 In this section, I provide background information about the two participants in the 

teaching experiments, Monica and Sylvia. This information includes their self-reported 

mathematical background, academic major, and other demographic information for 

which they gave permission for me to share to contextualize their identities. I devote one 

subsection to each student. 

Monica 

Monica was a female, white and Hispanic fourth-year undergraduate student 

majoring in political science. She was enrolled in the second-semester calculus course 

because she had recently added a mathematics minor to her degree program (in addition 

to two other minors in Russian and Spanish). Because she added a mathematics minor, 

Monica determined she would need an additional (fifth) year to complete her 

undergraduate degree. Monica aspired to law school. Monica had previously taken both 

AP Calculus AB (first-semester calculus) and AP Calculus BC (second-semester 

calculus) in high school, and self-reported passing the AB exam (but not taking the BC 

exam). At the collegiate level, Monica took College Algebra during her first semester. 

She claimed that the second-semester calculus course was her first mathematics course 
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since that time (an approximately three-year gap in formal mathematics instruction). 

Monica reported enjoying collegiate-level calculus more than high-school-level calculus 

because of her increased access to academic resources and being able to attend her 

smaller recitation class in conjunction with her large lectures. 

Sylvia 

Sylvia was a first-year female Hispanic (Mexican-American) student double 

majoring in (1) applied mathematics for the life and social sciences and (2) disability 

studies with a minor in psychology. Sylvia had taken an AP Calculus AB course in high 

school and passed the corresponding AP exam. At the collegiate level, Sylvia was 

enrolled in a research-based second-semester calculus course and self-reported doing well 

with her course materials and exams. 

Teaching Experiment Days and Interview Tasks for Monica and Sylvia 

In this section, I address the nature of each of the seven teaching interviews and 

the exit interview, including the associated tasks and goals. I am purposefully brief in my 

descriptions due to the sheer number of tasks comprising the nine interviews of this 

study.  

For each interview, my description follows a similar trajectory. First, I provide an 

overview of the number and types of tasks in each interview. Second, I briefly describe 

each task and its corresponding learning and research goals. I typically include tables and 

figures to contextualize further the tasks described in this section. I rarely address specific 

student data or meanings in this section, except where necessary to contextualize or 

justify a difference in the tasks presented to a student on a particular day. For a more 
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detailed account of the tasks and student data, please see the full interview protocols in 

Appendix C. 

Day 1  

The structure of the Day 1interview was the same for both students and consisted 

of four major tasks. For the first task, I asked the students to describe how they would 

determine a specific summand and partial sum for various series in expanded form (with 

five or six summands visible in each series; see Figure 1 for a screenshot of Series 1 and 

Table 13 for a list of the six series). The learning goal for this task was for students to 

repeatedly consider specific summands and partial sums and begin to generalize how they 

might determine these quantities for an arbitrary series. The research goal for this task 

was to model students’ meanings for partial sums and how these meanings evolved as 

students reasoned about various series.  

Figure 1 

Screenshot of Ivy’s Series 1 

 

For the second task, I asked each student to construct a written rule (in English) to 

describe how to determine the value of an arbitrary partial sum (see Figure 2). The 

learning goal for this task was for students to consciously reflect on their reasoning from 

Task 1 and create a written description for their actions which they could later reference 
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while creating symbols. The research goal for the second task was to model the process 

by which students reflected on their thinking from Task 1 to construct their written rule 

for Task 2.  

Table 13 

Ivy’s Series for the Day 1 Exploratory Teaching Interview 

Series Expanded Form Series type 
Partial Sums 

Behavior 
Converge Limit Value 

∑
2

√𝑛
4

∞

𝑛=0

 
2

√1
4 +

2

√2
4 +

2

√3
4 + ⋯ p-series 

Monotone 

increasing 
No  

∑
5

𝑛

∞

𝑛=1

 
5

1
+

5

2
+

5

3
+

5

4
+ ⋯ p-series 

Monotone 
increasing 

No  

∑
3

𝑛5

∞

𝑛=1

 
3

15
+

3

25
+

3

35
+

4

35
+ ⋯  p-series 

Monotone 
increasing 

Yes ≈ 3.11 

∑(−1)𝑛 (
6

𝑛2
)

∞

𝑛=1

 
6

1
−

6

4
+

6

9
−

6

16
+ ⋯ Alternating series Oscillating Yes ≈ −4.93 

∑(.04) ∙ (−1)𝑛

∞

𝑛=0

 . 04 − .04 + .04 − ⋯ 
Alternating series 

(Grandi’s) 
Oscillating No  

∑(−1)𝑛 (
𝑛 + 3

𝑛2 − 𝑛 + 7
)

∞

𝑛=0

 
3

7
−

4

7
+

5

9
−

6

13
+ ⋯ Alternating series Oscillating Yes ≈ −0.27 

 

Figure 2 

Prompt and Sylvia’s Response for Written Rule Creation Task 

 

For the third task, I asked the students to create a written transcription of a series 

that I showed them in a brief video (see Figure 3). There was no explicit learning goal for 
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this task other than for students to (possibly) become aware of the way in which they 

interpret series written in expanded form. The research goal for this task was to determine 

the inscriptions (or groups of inscriptions) within the written series on which students 

focused, and the order in which these students focused on these inscription groups.  

Figure 3 

Task Prompt for Series Transcription Task  

 

In the final task, I presented a video9 describing and providing examples of the 

constructs inscription and personal expression. I then asked the students to create 

personal expressions by which to re-present an arbitrary partial sum (see Figures 4, 5; the 

script for the video is included in the interview protocol in Appendix C and is available to 

view at https://youtu.be/PdKkhZVPulA). The learning goal for the fourth task was for 

 
9 There are certain terms that I introduce in the video, such as operational, relational, and vicarious 

inscriptions, which should not be construed as theoretical constructs. Rather, I employed these terms as a 

way to categorize a few basic purposes of mathematical notation that seemed relevant to me at the time I 

created the video. 

https://youtu.be/PdKkhZVPulA
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students to construct a personal expression comprised of one or more inscriptions they 

defined in a glossary, by which they could re-present the series they encountered during 

the Day 1 interview (see Figure 6). The research goal for the final task was to determine 

the portions of each student’s reasoning they believed merited symbolizing, whether the 

students utilized conventional or novel inscriptions in their expression, and how the 

students combined inscriptions to create expressions.  

Figure 4 

Task Prompt for Personal Expression Creation Task 

 

Figure 5 

Screenshot from Personal Expressions Video 
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Figure 6 

Example of Blank Glossary 

 

Day 2  

The structure of the second interview was similar for both students and consisted 

of two preliminary tasks and two major tasks. The two preliminary tasks recurred to some 

degree in many interviews10. The first preliminary task was to review the personal 

expressions video the student saw during the Day 1 interview. The learning goal for this 

task was for students to repeatedly reflect on the nature of inscriptions and personal 

expressions to inspire their use and creation of these symbols during the interview. The 

research goal for the video review was to determine whether students’ areas of focus with 

the video content changed throughout the interviews. The second preliminary task was to 

review the inscriptions the student had written in their glossary. The learning goal for this 

task was for students to reinforce the prior meanings they attributed to their inscriptions 

and modify them (if necessary) to reflect their current thinking about series11. The 

 
10 I had Monica review the personal expressions videos on Days 2-4 and Sylvia review the video on Days 

2-3. I had each student review their glossary of inscriptions before beginning the first new task in each 

interview.  
11 I asked students to write modifications to their glossary in a different color each day. 
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research goal for this task was to model students’ evolution of thinking about their 

inscriptions and their meta-level reasoning about categories of inscriptions.   

For the first major task, I presented each student with an opportunity to reason 

about a non-normative meaning or symbolization that they had proposed during the Day 

1 interview. Monica’s task involved comparing two potential definitions of a partial sum 

as area under a curve, one involving integral notation and one involving summation 

notation (see Table 14). Sylvia’s task involved symbolizing series with various patterns 

of + and – signs (see Table 15). The learning goals were to help students become more 

confident in the personal expressions they created during Day 1. The research goals were 

(1) to determine how Monica would resolve her perturbation about competing 

expressions for partial sums and (2) find Sylvia’s boundary of representation for her non-

normative notation. I describe each student’s work with their particular tasks in more 

detail in Chapter 7. 

Table 14 

Two Definitions and Symbols for Partial Sums Monica Compared on Day 2 

Definition Name Definition 

Yolanda The 𝑛th partial sum of Ivy’s 1st series can be determined by computing 

the summation ∑
2

√𝑛4
𝑛
1 , which represents the exact area under the curve of 

the function 𝑓(𝑛) =
2

√𝑛4  when it is evaluated at each position from  

1 to 𝑛. 

Zeb The 𝑛th partial sum of Ivy’s 1st series can be determined by computing 

the summation ∑
2

√𝑛4
𝑛
1 , which represents the approximate area under the 

curve of the function 𝑓(𝑛) =
2

√𝑛4  using Riemann sums with width 1 from 

1 to 𝑛. 
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Table 15 

The Five Series Sylvia Symbolized with her Novel Notation on Day 2 

Label Series 

A 1 +
1

3
+

1

9
+

1

27
+

1

81
+

1

243
+

1

729
+ ⋯  

B −1 −
1

3
−

1

9
−

1

27
−

1

81
−

1

243
−

1

729
− ⋯  

C 1 +
1

3
+

1

9
−

1

27
−

1

81
+

1

243
+

1

729
− ⋯  

D 1 −
1

3
+

1

9
−

1

27
−

1

81
+

1

243
+

1

729
− ⋯  

E −1 +
1

3
+

1

9
+

1

27
−

1

81
+

1

243
+

1

729
− ⋯  

 

Figure 7 

Monica’s Prompt for Symbolizing Series with Personal Expressions  

 

For the second task, I asked the students to utilize (or modify) their personal 

expressions to symbolize specific partial sums, arbitrary partial sums, and the infinite 

series they encountered during the Day 1 interview (see Figure 7). The learning goal for 

this task was (again) to help students reinforce or modify their personal expressions to 

utilize their inscriptions to reason about series confidently. The research goal for this task 
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was to determine how students might modify their personal expressions to symbolize 

various situations (e.g., infinite series, series with no readily discernable general 

summand). 

Day 3 

The structure of the third interview was similar for both students. The interview 

consisted of the same two preliminary tasks from Day 2 (i.e., review personal expressions 

video, review glossary) and three major tasks. Of the three major tasks I presented during 

Day 3, the first was different for each student, but the final two were the same. Monica’s 

first task was to investigate three potential graphs of her image of partial sums resembled 

(1) a smooth curve (see Figure 8, Mario’s graph), (2) a step function (see Figure 8, 

Natalie’s graph), and (3) a sequence (see Figure 8, Oscar’s graph). The learning goal for 

this task was for Monica to determine that the graph corresponding to her summation-

notation-like personal expressions for partial sums and series would produce a set of dots. 

The research goal for this task was to determine the role that contrasting prompts (what 

Halani et al., 2013, called peer interpretations) might play in resolving Monica’s 

lingering doubts about whether the “graph” corresponding to the running total of a series 

would be continuous or disjoint.  

Sylvia’s first task was to describe how she might symbolize various series that 

exhibited random behavior in either (1) the number of alternating + and – signs 

separating summands or (2) the values of the summands in a series (see Figures 9a, 9b). 

The learning goal for this task was for Sylvia to reinforce or modify her personal 

expressions she created during the Day 2 interview to symbolize series exhibiting a 

random behavior. The research goal for this task was to find Sylvia’s boundary of 
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representation for her non-normative inscription. I provide additional details regarding 

Sylvia’s actions during this task in Chapter 7. 

Figure 8 

Three Potential Graphs Related to the “Running Total” of a Series 

  

Figure 9a (left), 9b (right) 

Sylvia’s Symbolization of Series with Random Operator Signs (9a) and Random 

Summands (9b) 

  

For the second major Day 3 task, I presented a mini-lecture on the normative 

definitions for a sequence and a sequence of partial sums. The learning goals for this task 

were to (1) address any unproductive meanings students exhibited for sequences during 

prior interviews and (2) provide a normative definition for the sequence of partial sums in 

preparation for students’ symbolization of this concept. There was no major research goal 
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for this task other than to monitor and address students’ meanings for sequence and 

sequence of partial sums in preparation for the next interview task.  

For the final major Day 3 task, I asked each student to construct personal 

expressions by which they could re-present the sequence of partial sums (see Table 16). I 

also asked each student to posit a relationship between a sequence of partial sums and a 

series. The learning goal for this task was for students to construct or modify a personal 

expression by which they could re-present the sequence of partial sums. The research 

goals for this task were to (1) determine whether the students constructed a new 

expression for the sequence of partial sums or modified an existing expression, (2) 

determine what components of the sequence of partial sums students believed merited 

symbolizing, and (3) what relationship (if any) the students perceived between a 

sequence of partial sums and a series. 

Table 16 

Students’ Personal Expressions for the Sequence of Partial Sums on Day 3 

Student Inscriptions for Sequence of Partial Sums 

Monica 

 

Sylvia 
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Day 4 

The structure of the fourth interview was similar for both students and consisted 

of one preliminary task for Monica and the same four major tasks for each student. 

Monica’s preliminary task consisted of a final viewing of the personal expressions video 

(Sylvia did not view the video on Day 4 because she adeptly summarized the video at the 

beginning of her Day 4 interview).  

The first major task consisted of categorizing the various inscriptions the students 

had created in their glossary during the Day 1 to Day 3 interviews. The learning goal for 

this activity was for the students to begin to reason about the types of meanings they 

attributed to their inscriptions, which I hoped would aid them in their transition from 

primarily algebraic to graphical reasoning about series convergence at the end of the 

interview. The research goal for this activity was to examine the symbolization categories 

each student proposed, how they sorted their inscriptions into these categories, and how 

students’ categorizations differed from the researchers’ models of students’ 

symbolization.  

The second major task was to reason numerically and symbolically about various 

components of a given sequence and its corresponding sequence of partial sums (see 

Figure 10). The learning goal for this task was for students to become comfortable 

symbolizing various components of the sequence of partial sums, including the index, 

specific terms, specific term values, and arbitrary terms and values. The research goal for 

this task was to investigate how students’ personal expressions differed for sequences and 

sequences of partial sums and the relationship between their inscriptions for specific and 

arbitrary components of the sequences. 
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Figure 10 

Monica’s Symbolization of a Sequence and Sequence of Partial Sums 

 

   

For the third major task, I showed students a Desmos-generated graph of the 

sequence and sequence of partial sums they had reasoned about during Task 2. I then 

asked the students to define and symbolize various graph components (see Figure 11). 

These components included individual points on each graph, the axes, and a rule that 

would generate the points on the graph. The learning goal for this task was for students to 

develop productive meanings for various components of the graph of a sequence. The 

research goal for this task was to determine the degree to which students assimilated the 
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graphical components of the sequences to the personal expressions they created during 

the previous interviews.  

For the final major task, I asked the students to speculate whether each sequence 

converged based on their interpretation of the graph. This task had no particular learning 

goal, as its purpose was merely to assess the students’ images of convergence after the 

first four days of the teaching experiment. The research goal of this task was to compare 

the students’ meanings for convergence at the end of Day 4 with the meanings they 

expressed in the intake interview to determine whether their thinking had evolved. 

Figure 11 

Screenshot of Graph of Sequence Task from Day 4 

 

Day 5 

The structure of the fifth interview was similar for both students and consisted of 

the same three major tasks. In the first task, I asked the students to review their 

symbolization of a sequence and sequence of partial sums from their Day 4 work and 

state whether they could symbolize the terms of each sequence with any expressions 



 

  107 

beyond those they wrote during Day 4. The research goals for this task were (1) to 

determine whether each student believed they could convey the values of sequence terms 

through their various inscriptions and (2) to discern students’ abilities to symbolize the 

general summand of the sequence of partial sums. Although there was no explicit 

learning goal for the first task, I conjectured that students might become more confident 

in their ability to re-present a sequence or sequence of partial sums through their 

expressions during the activity. 

 For the second task, I presented a version of Roh’s (2010b) 𝜖-strip activity for 

various sequences of partial sums in a dynamic Geogebra applet. I then asked students to 

(1) state whether the sequence converged, (2) justify their responses, and (3) create an 

initial rule to describe sequence convergence (see Figure 12; link to 

applet: https://www.geogebra.org/m/ykrby8du). Due to the sophisticated nature and 

number of controls within the applet, I controlled the applet and asked the student to 

provide instructions for how they wished me to modify it. The learning goals for this task 

were for students to become familiar with the applet and create an informal rule for 

sequence convergence for reference during the Day 6 interview. The research goals for 

this task were (1) to model the evolution of students’ intuitive thinking about sequence 

convergence, (2) to monitor what connections (if any) students made between sequence 

of partial sums convergence and series convergence, and (3) to investigate any 

spontaneous connections students might make between their personal expressions and the 

graphical task about sequence convergence. 

 

 

https://www.geogebra.org/m/ykrby8du
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Figure 12 

Example of GeoGebra Applet for 𝜖-strip Activity from Day 5 

 

 For the final task, I explicitly asked each student whether they wished to create or 

modify any inscriptions to re-present components of the GeoGebra applet they utilized 

during Task 2. The learning goal for this task was for students to create or modify 

inscriptions to re-present to themselves graphical components of a sequence of partial 

sums and their intuitive rule for sequence convergence. The research goals for this task 

were to determine (1) which components of the graphs that the students symbolized, (2) 

the nature of any new inscriptions that students created, and (3) whether students 

assimilated any of the ideas they reasoned about during the graphical tasks to their 

existing inscriptions. 

Day 6 

The structure of the sixth interview was slightly different for each student but 

consisted of the same two tasks. The first task was for the students to compare their 

glossary inscriptions that they had created during Days 1-4 (before I introduced graphs of 

sequences) to a screenshot of the 𝜖-strip activity and determine whether they could re-

present any components of the screenshot with each inscription (see Figure 13 for the 
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screenshot). The learning goal for this task was for students to connect the inscriptions 

they created while reasoning about sequences and series symbolically to the graphical 

representations of sequences they encountered in the 𝜖-strip activity. The research goal 

for this task was to determine which inscriptions (if any) the students appeared able to re-

present their non-visual and visual reasoning about sequence and series. 

Figure 13 

Screenshot of 𝜖-strip Activity from Day 6 

 

 For the second task, I presented each student with two hypothetical written rules 

for sequence of partial sums convergence, which I modified from the rules proposed by 

Roh (2010b). I have included a screenshot of these two rules in Figure 14 and a list of the 

sequences of partial sums I presented to students in Table 17 below. I then asked the 

students to evaluate several sequences of partial sums from the perspective of each 

definition to determine which rules they preferred to describe sequence convergence. The 

trajectory of this task largely followed the same steps that Roh (2010b) proposed in her 

report (although the sequences I presented differed from Roh’s sequences). The learning 

goal for this task was for students to determine which rules they preferred to describe 
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sequence of partial sums convergence in preparation for symbolizing their adopted rule 

during the Day 7 interview. The research goals for this task included (1) attending to 

students’ thinking about the convergence of a sequence, (2) how their thinking changed 

as they proceeded through the 𝜖-strip activity, and (3) whether the students made any 

connections between their inscriptions and the activity or between sequence convergence 

and series convergence. 

Figure 14 

Adam’s and Benjamin’s Rules for the 𝜖-strip Activity on Day 6 

 

 
 

Although each student participated in the same tasks during the Day 6 interview, I 

modified the trajectory of each activity based on each student’s actions. For example, in 

the first task I found that Monica could apply several of her inscriptions to the screenshot 

during the first task. In contrast, Sylvia could not conceive of her inscriptions conveying 

any component of the graphical screenshot. Consequently, I was able to spend more time 

with Sylvia on the 𝜖-strip activity and then return to the first task at the end of the 

interview. In the second task, Monica struggled to apply either Adam or Benjamin’s rules 

to discuss convergence during the 𝜖-strip activity. In Monica’s case, I used the remainder 

of the interview time trying (unsuccessfully) to help her make sense of the rules. In 

contrast, Sylvia could make sense of both rules and eventually selected Benjamin’s rule 
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(logically equivalent to the normative definition of sequence convergence) as her 

preferred rule.  

Table 17 

Five Sequence for the 𝜖-strip Activity on Day 6 

Series  

Number 
Series Partial Sums Expanded form Converges? 

1 ∑
2

√𝑛4

∞

𝑛=1

 
2

√1
4 ,    

2

√1
4 +

2

√2
4 ,    

2

√1
4 +

2

√2
4 +

2

√3
4 , …  Yes 

2 ∑
5

𝑛

∞

𝑛=1

 
5

1
,    

5

1
+

5

2
,    

5

1
+

5

2
+

5

3
, …  No 

3 ∑
3

𝑛5

∞

𝑛=1

 
3

15 ,    
3

15 +
3

25 ,    
3

15 +
3

25 +
3

35 , …  Yes 

4 ∑(−1)𝑛 (
6

𝑛2)

∞

𝑛=1

 
6

1
,    

6

1
−

6

4
,    

6

1
−

6

4
+

6

9
, …  Yes 

5 ∑(.04) ∙ (−1)𝑛

∞

𝑛=0

 . 04,   .04 − .04,   .04 − .04 + .04, …  No 

 

Day 7 

The structure of the seventh interview consisted of the same three tasks for each 

student. In the first task, I asked each student to symbolize either Adam’s or Benjamin’s 

rules. To give the students more space to write inscriptions, I separated each rule into 

several lines (see an example of Adam’s Rule in Figure 15). The learning goal for the 

first task on Day 7 was for the students to symbolize their preferred written rule for 

sequence of partial sums convergence by leveraging inscriptions from their glossary to 

fulfill these tasks. The research goals for this task were to (1) determine whether each 

student was able to assimilate the various components of the rule they were trying to 

symbolize to their existing inscriptions, (2) investigate any modifications that students 

made to their existing inscriptions to convey their rule, and (3) record any new 
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inscriptions the students created during their symbolization process. Another research 

goal for this task was to discern how students would combine the various inscriptions 

they utilized in their symbolizing activity into a cohesive unit to convey their chosen rule 

holistically. 

Figure 15 

Separation of Adam’ Rule for Symbolization During Day 7 

Adam’s Rule 

The sequence of partial sums   

converges to the value ________,  

if, for any 𝝐-strip,  

infinitely many points are inside the strip,  

where the strip is centered at 𝒚 = ________.  

 

 

In the second task, I asked the students to verbally compare their meanings for 

sequence, sequence of partial sums, and infinite series. Specifically, I asked each student 

to discuss their envisioned relationships between each concept. There were two learning 

goals for this task. First, I wanted to reinforce the relationships students had previously 

conceived between (1) a sequence and sequence of partial sums and (2) a sequence and 

series. When I asked students about these relationships, I primarily asked clarifying 

questions; I did not seriously attempt to perturb student thinking. Second, I hoped the 
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students would conceive a connection between the value to which the sequence of partial 

sums converges and the value of the corresponding infinite series. If a student could not 

describe a relationship between a sequence of partial sums and a series, I asked more 

targeted questions as a minor intervention designed to (potentially) move the student 

toward conceiving a relationship between these two concepts. The research goal for this 

task was to determine the overarching relationships between these topics that students 

had developed throughout the teaching experiment. In particular, I wanted to informally 

determine whether the students’ exposure to the 𝜖-strip activity in the context of the 

sequence of partial sums influenced their thinking about series convergence. 

In the final task, I presented the students with a partially filled-out personal 

written rule for series convergence and asked each student to construct a written rule for 

series convergence (see an example for Sylvia in Figure 16). The verbiage in the prompt 

read, “An infinite series converges to the value ___, if _____.” I allowed the students to 

use their inscriptions or written English to complete the rule. The learning goal for this 

task was for each student to construct their own rule for series convergence for the 

culmination of the teaching experiment (Sylvia successfully did this, but Monica did not). 

The research goals for this task were to (1) determine whether a student would construct 

their rule in written English, symbols, or both; and (2) determine to what degree (if any) 

the students’ previous definitions of sequence of partial sums convergence influenced 

their definitions of series convergence. 
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Figure 16 

Sylvia’s Written Rule Template for Series Convergence for Day 7 

 

Exit Interview 

I conducted the exit interviews three to seven days after the Day 7 interview. The 

exit interview was in the clinical interview format, so I did not attempt to perturb or 

influence student thinking. Consequently, there were no learning goals for the tasks 

during the exit interview (only research goals). The exit interview contained two 

preliminary tasks and three major tasks. Of the three major tasks, one was identical to the 

intake interview (i.e., analyze hypothetical student Abigail’s six series), one was highly 

similar to a task from the intake interview (i.e., describe general convergence), and the 

final task was not included in the intake interview. I describe each of the preliminary and 

major tasks in the paragraphs below.  

The first preliminary task was finalizing each student’s pseudonym, confirming 

their background information, and ascertaining their willingness to have me report their 

background information. The second preliminary task was to show each student the final 

version of their glossary from the end of the Day 7 interview and confirm with the 

student that the glossary was fully updated and accurate. The research goal for these tasks 

was to verify that the student data (e.g., glossary) was accurate and to confirm that I had 

consent to report the student’s data and identity at the end of the study. 
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For the first major task, I asked the students to revisit the hypothetical student 

Abigail’s series from the intake interview and determine whether (1) each series 

converged and (2) if the series converged, its value of convergence. I also prepared and 

offered to show a new GeoGebra applet containing (1) the sequence of partial sums 

corresponding to each of Abigail’s series, (2) the ability to reason about the sequences 

with 𝜖-strips, and (3) the rules for convergence (i.e., Adam’s rule and Benjamin’s rule). I 

only provided this resource to students if they requested to see the applet while reasoning 

about one of Abigail’s series, and I controlled the applet in these situations (link to 

applet: https://www.geogebra.org/calculator/nfxc9nvu). The research goals for this task 

were to (1) determine how the students’ responses to the series convergence questions 

differed from their responses during the intake interviews, (2) evaluate what role the 

inscriptions the students created emerged in their work, (3) evaluate what role the 𝜖-strip 

activity played in their reasoning, and (4) to assess whether the students could 

normatively determine series convergence and values after the teaching experiment.  

For the second major task, I presented the following two questions (from Larson 

& Edwards, 2015) to the students and asked them to provide a written response (see 

Figure 17): 

1. How can I tell whether any series converges? 

2. If a series converges, how can I determine the value to which it converges? 

After the students responded to the tasks, I also asked them to describe their answers 

symbolically (if possible). The research goal for this task was to assess how students’ 

general meanings for series convergence changed from the intake to the exit interview. In 

particular, I was interested in whether (1) students’ responses were similar to the general 

https://www.geogebra.org/calculator/nfxc9nvu
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rule they created for series convergence at the end of Day 7 and (2) the role of the 𝜖-strip 

activity and their previous inscriptions in their responses. 

Figure 17 

Screenshot of Exit Interview Task 2 

 

 For the final task, I asked the students to respond to Items 3A and 3C from the 

screening survey (see Figure 18). After the student completed the two items and 

explained their responses, I also asked the students to symbolize their general series 

convergence rule they wrote for Item 3C. The research goals for presenting these survey 

items again were to (1) investigate whether the students leveraged their general rule from 

Task 2 to evaluate a claim about the convergence of a specific series and (2) determine 

whether the students’ general rules for series convergence they constructed during Task 3 

evolved from their rules they constructed in Task 2. 
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Figure 18 

Screening Survey Items 3A and 3C for Exit Interview Task 3 

  

Summary of Data Analysis Methods 

 This section describes my analysis of the data I collected through the teaching 

experiment. I analyzed my data in the spirit of grounded theory (Strauss & Corbin, 1998) 

and conducted two phases of analysis: ongoing and retrospective. This section has two 

distinct parts. First, I describe the nature of my ongoing analysis throughout the teaching 

experiment. In the second section, I describe my analysis methods for each of the three 

results chapters I present in this dissertation (i.e., Chapters 5, 6, and 7). 

Ongoing Analysis 

 My ongoing analysis of data and preparation for subsequent interviews during the 

teaching experiment consisted of three actions: 

• Action 1: A 30–60-minute meeting before each interview to overview tasks and 

goals for each teaching session 
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• Action 2: A 30–60-minute debriefing session immediately following each 

teaching episode 

• Action 3: Individual planning session between interviews 

In the following paragraphs, I describe how the teacher-researcher (myself) and the 

witness (Dr. Roh) fulfilled each of these three actions throughout the teaching 

experiment. 

Action 1: Overview Meeting Before Each Teaching Session 

The teacher-researcher (myself) and the witness (Dr. Roh) met at least once for 

30-60 minutes before each interview session to prepare or finalize our plans for a 

teaching episode. In each meeting, we (1) reviewed the upcoming interview protocol, (2) 

tested computerized tasks to ensure they functioned properly, (3) discussed our current 

models of student thinking and how our tasks would elicit, perturb, or help to reconcile 

student thinking, and (4) made modifications to our planned tasks to address any insights 

we had into the students’ thinking during or between meetings. We also met directly 

before each interview session to test recording equipment and review our learning and 

research goals for a particular session before the student arrived. 

Action 2: Debriefing Session Following Each Teaching Episode 

The teacher-researcher (myself) and the witness (Dr. Roh) met for 30-60 minutes 

after each interview. During our post-interview debrief sessions, we discussed (1) the 

components of the interview that I believed had gone well, (2) any logistical or task-

based issues that had emerged during the interview, (3) my model of the student’s 

thinking and challenges I had experienced in creating or confirming my model, and (4) 
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hypothetical tasks to prepare for the next interview session. I recorded each debrief 

session and referred to them (as needed) in my preparations for upcoming interviews.  

Action 3: Individual Planning Between Interviews 

The individual planning action of my ongoing analysis comprised several 

activities. First, I reviewed the video data or field notes after each interview session 

before preparing the tasks for the next teaching episode. Second, I created updated 

interview tasks (and a corresponding updated protocol) to reflect our initial interview 

plan changes. Third, I communicated with the witness (Dr. Roh) to receive feedback on 

the newly-created or updated tasks. Lastly, I created a final version of the updated tasks 

based on the feedback I received from the witness and prepared the corresponding 

OneNote or GeoGebra activities. 

Retrospective Analysis 

 I began my Retrospective analysis after completing the teaching experiment. My 

analysis was rooted in the principles of grounded theory (Strauss & Corbin, 1998). This 

section is comprised of five parts. First, I provide an overview of grounded theory 

emphasizing open and axial coding. Second, I describe the general analysis techniques I 

used to organize and make an initial pass at the data. In the third section, I describe my 

fine-grained analysis with regard to the students’ intuitive meanings for series 

convergence, which informed the results I present in Chapter 5. In the fourth section, I 

describe my fine-grained analysis related to the meanings the students attributed to their 

symbols, which informed the results I present in Chapter 6. In the final section, I describe 

my fine-grained analysis with respect to the students’ development and modification of 
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personal expressions over multiple teaching interview sessions, which informed the 

results I present in Chapter 7. 

A Brief Overview of Grounded Theory 

The purpose of grounded theory is to provide a way to create theory with minimal 

researcher bias through microanalysis of data. In other words, a researcher who adopts 

grounded theory to inform her analysis aims to produce a theory grounded in empirical 

data. Grounded theory takes place in two major stages: open coding and axial coding.  

Open coding involves the identification of categories of interest within the data 

and their ensuing properties. Open coding requires a sizeable period to conduct 

microanalysis techniques such as (1) line-by-line analysis of students’ words in transcript 

data and (2) the construction of detailed field notes to categorize participants written 

work. During the microanalysis, a researcher designates categories to represent 

phenomena in the data by breaking the data “into discrete incidents, ideas, events, and 

acts” and giving each piece of data a corresponding name or code (Strauss & Corbin, 

1998, p. 105). The researcher examines every part of data from multiple viewpoints to 

elicit as many codes and properties as possible. As the researcher continues to analyze 

and reanalyze the data, key categories, properties, and dimensions emerge. After the open 

coding process, the researcher has typically identified a list of key codes and related 

properties that describe the phenomena of interest within the study. The codes generated 

during open coding are descriptive but not sufficiently robust to constitute a theory 

(Strauss & Corbin, 1990). 

Axial coding aims to build a theory that can explain phenomena rather than 

merely describe them. To engage in axial coding, the researcher makes the codes 
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generated during the open coding process the object of his analysis. As the researcher 

reflects upon his codes and the underlying properties that comprise each code, he will 

begin to perceive relationships between the codes. For example, some codes constitute a 

subcategory of another code, or an underlying property informing a code might connect 

this code with several other codes to create a more general code. In other words, axial 

coding “begin[s] the process of reassembling data that were fractured during open 

coding” (Strauss & Corbin, p. 124). As the researcher repeatedly analyzes his codes and 

revisits the data, he will perceive a small number of overarching categories that subsume 

or relate to all other categories. The overarching codes generated during axial coding are 

theoretical and can serve as constructs to explain the phenomena in the data. The 

researcher continues the open and axial coding processes until his theoretical constructs 

can explain all phenomena of interest within the data, which Strauss and Corbin (1998) 

called theoretical saturation. After the researcher reaches theoretical saturation, he 

recontextualizes his theoretical constructs into the data to verify that his theory is based 

on clear cases of empirical data.  

In the following section, I describe my general approach to contextualizing my 

data during my initial pass at analysis. I consider this next section to constitute the open 

coding stage of my analysis. In the final three parts of the analysis section, I describe my 

fine-grained analysis by which I conceived the results that I present in the next three 

chapters of this dissertation. I consider my descriptions in the final three parts of this 

section to constitute the axial coding stage of my analysis. 
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Open Coding: An Initial Deep Pass at the Data 

The open coding stage of my data analysis consisted of reviewing all of the video 

data, creating detailed, moment-by-moment field notes for each interview, and 

transcribing what I considered to be key moments. During this stage of my data analysis, 

I focused my attention on three specific narratives. First, I carefully analyzed the intake 

interview data to categorize the various claims that Monica and Sylvia made about series 

convergence. Since I had transcribed the entirety of these interviews, I identified each 

moment in these interviews where the students (1) made a claim about series 

convergence, (2) posited a convergence value for a series, or (3) introduced a graph to 

reason about series. I also provided a short description (i.e., open code) for each meaning 

that the student exhibited in the moments when she was reasoning about the convergence 

of a particular series. In the next section, Axial Coding 1, I describe my coordination of 

these open codes into one overarching axial code (i.e., asymptotic running total meaning) 

and three sub-codes (i.e., decreasing summands convergence, monotone running total 

divergence, running total recreation through grouping) to explain the students’ actions 

throughout the interview. I report the results of this analysis in Chapter 5. 

The second narrative on which I focused during my initial moment-by-moment 

analysis of the video data was the inscriptions that the students created and the meanings 

they appeared to attribute to these inscriptions. Initially, I created a typewritten version of 

each students’ glossary and the meaning that the students appeared to attribute to their 

inscription. As I reviewed more and more of the video data, I begin to categorize 

students’ meanings for particular inscriptions (at specific moments) as analogous. As a 

result, I began to create codes to refer to these inscriptions and categorize moments under 
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inscription categories. Later in this section, I describe how I fit these various moments of 

inscription meaning into three overarching meanings (i.e., process, concept, relational) 

and six inscription types (i.e., command operator, create operator, indicator, 

placeholder, connector, comparator) Sylvia and Monica constructed to re-present these 

meanings. I report the results of this analysis in Chapter 6. 

The final narrative that I focused on was how students’ meanings for their 

inscriptions changed over time. During the open coding stage of my analysis on this 

focus, I sorted my notes on students’ in-the-moment meanings by inscription and 

examined the trajectory of students’ meanings for various inscriptions across teaching 

episodes. I also examined how students modified the inscriptions within the personal 

expressions that they used repeatedly throughout the teaching episodes. Through these 

processes, I leveraged my axial codes and sub-codes to construct cognitive models for the 

relationships between Monica’s and Sylvia’s thinking and their symbolization. In the 

final section of this chapter, I describe my fine-grained analysis of these two students’ 

symbols over multiple teaching episodes. I report the results of this analysis in Chapter 7.  

Axial Coding 1: Students’ Intuitive Meanings for Series Convergence 

 In my preparation to write Chapter 5 (Results Part 1) of this dissertation, I 

analyzed the open codes that I had created during my preliminary analysis of the intake 

interview data to organize my descriptive categories into an explanatory framework. 

During my analysis, an overarching theme emerged: both students repeatedly made 

reference to the value of the series increasing by adding consecutive summands and 

seemed to most frequently decide whether a series converged by postulating that the 

series would (or would not) tend toward a specific value. I considered using the term 
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“partial sum” to describe the students’ image of adding consecutive summands but 

eventually decided against this idea because neither student indicated (to me) that they 

were actively coordinating an indexing variable with the result of adding summands. 

Instead, I decided to use the term running total to refer to the dynamic sum the students 

constructed by adding consecutive summands. I decided to use the term asymptote to 

refer to the value(s) that the students imagined the running total tending toward. My use 

of the word asymptote differs slightly from mathematicians’ conventional use of this 

term. For example, there were times that the students claimed a series would converge to 

one or more values (i.e., asymptotic values). Additionally, students did not always claim 

that the smallest possible bound was the value to which a series converged. Finally, the 

students would sometimes claim that a series converged to a value that the running total 

actually achieved. In this study, I use the term asymptote to refer to a (possibly unique) 

value for which the distance between each successive value of the running total and the 

asymptotic value is less than or equal to the previous value (of the running total). I 

created an amalgam of the two terms I described in this paragraph, the asymptotic 

running total meaning, to portray students’ intuitive image of successively adding 

summands in a series and moving closer toward a particular value.  

 Although Monica and Sylvia exhibited meanings other than the asymptotic 

running total meaning during some moments of the interview, I found that the majority 

of their reasoning could be explained in terms of (1) saying that a series converged 

because they perceived that a running total would perpetually move toward a particular 

value or (2) that a series did not converge because it did not tend toward any values (i.e., 

was unbounded). In particular, I organized many of Monica and Sylvia’s arguments into 
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three categories: decreasing summands convergence, monotone running total divergence, 

and running total recreation through grouping. I have previously reported these 

meanings in a conference proceedings (Eckman & Roh, 2022b) and provide an expanded 

description of these ideas in Chapter 5 of this dissertation. The purposes of this expanded 

description are to (1) verify and extend my previously reported findings and (2) provide 

researchers and instructors with additional insight into how students might initially 

consider the topic of series convergence. 

Axial Coding 2: Students’ Meanings they Attribute to their Inscriptions for Series 

 In my preparation to write Chapter 6 of this dissertation, I examined the various 

open codes I created to describe the meanings that Monica and Sylvia attributed to their 

personal expressions throughout the interviews. Some of the students’ meanings appeared 

to match (or at least resemble) conventional meanings for operators, variables, 

placeholders, and relationships. However, there were instances of unique student 

inscriptions or meanings that did not appear to follow convention. For example, there 

were instances where the students would use an inscription as a name or an injunction to 

create something. As I continued to reflect on the meanings Monica and Sylvia attributed 

to their inscriptions, three broad categories of meaning began to emerge. First, students 

would attribute processes that they envisioned to an inscription. Second, students would 

impute attributes or values of quantities to an inscription. Finally, students would use 

certain inscriptions to re-present a relationship they perceived between the meanings they 

attributed to two inscriptions or expressions. Within each of these categories, I also 

perceived two distinct sub-meanings that Monica and Sylvia re-presented at different 

times throughout the interview.  
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 Although Monica and Sylvia’s attributed meanings to their personal expressions 

often evolved during their interviews, I found that I could categorize nearly every 

instance of their symbolization as re-presenting a process, concept, or relationship. In 

Chapter 6, I provide instances of each type of symbolization and contrast these examples 

by sub-meaning. The purpose of the results I present in Chapter 6 is to provide a 

theoretical framework by which instructors and researchers can better comprehend 

students’ symbolizing activity. 

Axial Coding 3: The Coevolution of Students’ Meanings and Expressions  

In preparation to write Chapter 7 of this dissertation, I examined the transcripts, 

field notes, and open codes I had created for Monica’s and Sylvia’s personal expression 

templates that they used repeatedly across several interviews. I found that Monica and 

Sylvia most frequently (and confidently) used personal expression templates during the 

first portion of the teaching episodes (i.e., Days 1-3). Through my organization and 

analysis of my codes for the meaning for each inscription, I perceived two different 

stories related to Monica’s and Sylvia’s development of personal expression templates. In 

Monica’s case, she began re-presenting partial sums through a single personal expression 

template but later constructed two distinct templates through which to re-present different 

(to her) but similar (to me) mathematical ideas. In Sylvia’s case, she developed an initial 

personal expression template but later found that she could not immediately re-present 

her thinking about certain types of series through her template. Eventually, Sylvia 

introduced additional inscriptions to re-present the properties of series that she had not 

previously considered and incorporated these inscriptions into her existing personal 

expression template.  
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As I considered how to align Sylvia’s and Monica’s stories, I recalled two 

categories from the theoretical framework I presented for Emily’s symbolization in 

Eckman and Roh (under review). In this framework, I define Category 2 symbolization as 

an instance where a student constructs two distinct personal expressions for related (in 

the mind of a researcher) topics. I define Category 3 symbolization as moments where a 

student attributes two distinct ideas (to them) to a single personal expression. In the 

context of my framework, I considered Monica’s symbolization as Category 2 and 

Sylvia’s symbolization as Category 3. In Chapter 7, I provide further information 

regarding how these students’ personal expressions evolved over several teaching 

episodes.  
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CHAPTER 5 

RESULTS PART 1: STUDENTS’ INTUITIVE MEANINGS FOR INFINITE SERIES 

CONVERGENCE 

 In this chapter, I describe Monica and Sylvia’s intuitive meanings for infinite 

series convergence that emerged during the intake interview. The material in Chapter 5 is 

primarily related to my first research question, what meanings for series convergence do 

first-time university calculus students conceive before receiving formal instruction on 

infinite series? I have reported about Monica and Sylvia’s intuitive meanings for series 

convergence in a previous conference report (i.e., Eckman & Roh, 2022b). In this 

chapter, Chapter 5, I provide a more extensive report of both students’ thinking and 

actions throughout their intake interviews to provide additional credence to the results I 

have previously reported. 

 In the following table, Table 18, I present definitions for the theoretical constructs 

I utilized in Eckman and Roh (2022b) to describe students’ intuitive meanings for 

convergence. These definitions include the ideas on which students would focus to 

determine whether a series converged (i.e., running total, asymptotic value) and the 

meanings of series convergence that informed their arguments. I separated the meanings 

that informed the students’ arguments into two levels through my axial coding of the data 

from Monica’s and Sylvia’s intake interviews. At the foundational level, I defined three 

arguments that students utilized to evaluate series convergence (i.e., decreasing 

summands convergence, monotone running total divergence, running total recreation 

through grouping). I synthesized these three arguments under a single overarching 

meaning, which I called an asymptotic running total meaning for convergence.  
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Table 18 

Definitions for Constructs Related to Convergence Meanings 

Construct Definition 

Running Total 
A dynamic sum students construct by adding consecutive 

summands. 

Asymptotic Value 

A (possibly unique) number for which the distance between each 

successive value of the running total and the asymptotic value is 

less than or equal to the previous value (of the running total). If 

such asymptotic value(s) exist, the series converges to these 

value(s). 

Asymptotic Running 

Total Meaning 

Students make a decision about whether a series converges by 

determining if the running total appears to approach an asymptotic 

value.  

Decreasing Summands 

Convergence 

Students state that a series converges by arguing that if each 

consecutive summand in an infinite series is smaller than the 

previous summand, the running total will eventually tend toward 

an asymptotic value.  

Monotone Running 

Total Divergence 

Students claim that a monotone series does not converge by 

arguing that the running total perpetually increases (or decreases) 

and will eventually surpass every potential bound (i.e., asymptotic 

value) that might indicate convergence. 

Running Total 

Recreation through 

Grouping 

Students group the terms in an alternating series to create a new 

series with a monotone running total. The students then argue 

about that the series converges based on their perception of the 

running total in the new series.  

 

 This chapter is comprised of five major sections. In the first section, I describe the 

asymptotic running total meaning as an overarching meaning for series convergence and 

provide instances of Monica’s and Sylvia’s exhibition of this meaning. In the second, 

third, and fourth sections, I describe three arguments that I classified as sub-meanings of 

ART (i.e., decreasing summands convergence, monotone running total divergence, 

running total recreation through grouping) and examples of Monica’s and Sylvia’s use 

of these arguments in their reasoning about series convergence. In Chapter 8, I discuss 

the relevance of my results to the field of mathematics education and how my findings 

can influence instructional practices. 
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Asymptotic Running Total: An Overarching Meaning for Convergence 

 Eckman and Roh (2022) said the following about Monica and Sylvia’s 

overarching meaning for series convergence: 

Both students exhibited similar meanings for series convergence, which appeared 

to involve imagining a dynamic running total approaching an asymptotic value as 

additional summands are calculated into the running total. We call this meaning 

an asymptotic running total meaning (p. 1017). 

In this excerpt, the term running total refers to a dynamic sum that a student creates by 

iteratively adding consecutive summands in a series and tracking the value of this 

quantity. The term asymptotic value refers to a (possibly unique) number for which the 

student believes that the distance between each successive value of the running total and 

the value is less than or equal to the previous value (of the running total). The asymptotic 

running total (ART) meaning is analogous to what Martin (2013) called a dynamic 

partial sum image of convergence, or “iteratively adding terms until some condition was 

reached” (e.g., approaching an asymptote) (p. 273).  

I use the term running total instead of dynamic partial sum for two reasons. First, 

neither Monica nor Sylvia used the term “partial sum” during the intake interview or gave 

the impression that they were considering a sequence of partial sums. Rather, they 

seemed to focus solely on (1) the current value of the dynamic sum and (2) the long-term 

trajectory they envisioned for this dynamic sum if they continued to add more summands 

to its current value. In other words, these students did not envision the running total as a 

covariational relationship (Thompson & Carlson, 2017) between an indexing variable for 

the summands and the resultant value of the summands. For this reason, using the term 
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“partial sum” (and the corresponding implicit reference to the sequence of partial sums) 

seemed incongruous (to me) with the ideas that the students were considering during the 

interview. Second, Martin’s (2013) use of the term dynamic partial sum was in the 

context of Taylor Series (a topic typically taught after infinite series) and I wanted to 

distinguish between these two related (but distinct) topics. In the following sub-sections, I 

describe each students’ exhibition of an ART meaning for series convergence during the 

intake interview. 

Monica’s Use of ART Meaning to Make Sense of Series Convergence 

 Monica leveraged an ART meaning to reason about hypothetical student Abigail’s 

Series 2, Series 5, and the general series convergence task. In the case of Series 5 and the 

general series task, she imagined the series converged because (to her) the running total 

approached one or more asymptotic values. In the case of Series 2, she imagined that the 

series did not converge because (to her) the running total did not approach any 

asymptotic values. In the following paragraphs, I address Monica’s actions for these tasks 

separately. 

Abigail’s Fifth Series: ∑ 𝒂𝒊
∞
𝒊=𝟎  (where 𝒂𝒊 corresponds to the 𝒊𝒕𝒉 decimal place of 𝝅 and 

𝒂𝟎 = 𝟑)  

Abigail’s hypothetical fifth series was the infinite decimal expansion of 𝜋, which 

is convergent by definition. I presented the expanded from of this series as 3 + .1 +

.04 + .001 + .0005 + .00009 + .000002 + ⋯. Monica’s initial reaction was to compare 

the fifth series to her metaphor of approaching a doorway.  

Monica: So this one right away made me think of that example I talked about, 

where you were like walking towards the door frame. Where, these 
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numbers [i.e., summands]12 are so small and even just in one, two, seven, I 

don't know, like parts of it [i.e., by the 7th summand], we've already seen 

like a very small number. So if we were to continue on 100 more times or 

1000 more times, these numbers [i.e., summands] would be so, so, so 

insanely small that to, you know, like the naked eye or even like some 

calculator, it's like, it would be way too small for even them, like they 

would round up. So my first thought is that it [Abigail’s fifth series] does 

converge.  

 I then asked Monica to describe whether the series converged and the value to 

which she believed that the series converged.  

Interviewer: Any idea what the series might converge to, if it does converge? 

Monica: (…)13 Like, if I were to take these numbers here and just add these [i.e., 

first seven summands], it would be 3.141592, right? (…) Is that 𝜋? Is that 

related? Anyway. Oh. I don't know. 

Interviewer: I mean, 𝜋 starts with 3.14, so at least it matches that far. 

Monica: OK. (…) so it looks like we're adding on a value almost like to the end is 

what I'm thinking [i.e., appending another decimal place to the running 

total]. So I don't think that we would ever equal four. (…) If I had to say it 

[Abigail's 5th series] converges, then I would say that it does, and it does 

at four. 

 
12 Text in brackets [ ] should be read as inclusionary language intended to improve the readability of a 

quote. 
13 Ellipses (…) denote omitted text. I have generally omitted pauses and repetitious language to improve 

the readability of the students’ comments throughout the results chapters.  
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Interviewer: (…) So why did you choose four? 

Monica: Because the, the more you add on, the larger this number [i.e., running 

total] gets. And it is getting larger by, you know, not a lot, but it is getting 

larger. So it's getting further from three and closer to four. But it won't 

reach four. 

Interviewer: OK. (…) What if I were to say the series converges to 3.5 instead of 

four? 

Monica: Oh, well, then maybe you, oh, OK. But then that was my issue, because 

the number of 3.1 does not round up to four. So. Maybe it converges to 

three point, I don't know. (pauses) The things that I do know, though, 

about this are that: I would argue we're starting at three and that the 

number, every time we add on something, it's getting bigger. It's getting 

bigger at a decreasing rate, and I do not think that we will ever reach four, 

I don't even think we'll reach (…) 3.2. But I don't know how to decide 

what it [Abigail's 5th series] converges to. 

Interviewer: (…) Could this series converge to both 3.2 and four? 

Monica: (pauses) Yes. The way that I'm thinking about it. Yes. 

 In this excerpt, Monica initially wondered whether the series was equivalent to 

the irrational number 𝜋. After my noncommittal response to her question, she proposed 

that the fifth series converged to four14. Monica justified her choice by saying that she 

 
14 Although Monica did not explicitly state why she chose four in this transcript, she later said that she 

chose four because it was a whole number. 
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imagined that for each summand added to the running total, the running total moves 

closer to four and further from three. When I proposed 3.5 as a potential convergence 

value, Monica stated that the running total increased at such a decreasing rate that (she 

predicted) the running total would never reach the value 3.2. When Monica continued to 

express uncertainty about the convergence value, I explicitly asked whether Monica 

believed the fifth series converged to both 3.2 and 4. Monica confirmed that she 

considered the series to converge to both values. However, she seemed unsure how to 

justify her answer. Based on this example, I have defined the term asymptotic value as 

one or more values that the student believes the running total approaches, rather than the 

mathematically conventional definition of asymptote as the limit value of a function as 

the independent variable approaches infinity. 

 At this point, I invited Monica to construct a graph to help her explain her 

reasoning. Monica’s graph appeared to be of a running total approaching an asymptotic 

value (see Figure 19). 

Monica: So same thing here, we're starting at a value that is not zero (draws 

coordinate plane)15. I'm going to say this is three [i.e., the y-coordinate of 

the starting point of curve that she drew]. And then (draws smooth, 

monotone increasing curve that appears to taper off as x-increases) I 

haven't added this in the other graphs (…) but I really think that it would 

help (…) to draw like an asymptote. (…) [I]n the same way where I was 

like, it [i.e., running total] would never actually hit zero before [a 

 
15 Italicized text in parentheses generally indicates gestures or student actions performed at the same time 

(or between) as the words spoken in the quote. 
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reference to her asymptote from Abigail’s 4th series], it is never going to 

hit 3.2 here [i.e., for Abigail's 5th series]. 

Figure 19 

Monica’s Graph of the Running Total for Abigail’s 5th Series 

 

After completing her graph of the running total for Abigail’s hypothetical 5th series 

(including drawing an asymptote at the value 𝑦 = 3.2), Monica claimed that the 

asymptote represented (to her) the value to which the series converged. Additionally, 

Monica claimed that convergence occurred when the running total approached the 

asymptote. In this moment, Monica exhibited an overarching meaning for series 

convergence consistent with an ART meaning. 

 However, Monica’s meaning of convergence as a running total approaching an 

asymptote did not include a unique convergence value. For instance, when I drew a 

second (red) horizontal line above Monica’s (black) asymptote and asked Monica 

whether the fifth series also converged to this hypothetical “asymptote” (see Figure 20), 

she responded: 

Monica:  I think it's the same. 

Interviewer: So what do you mean by that's "the same?" 
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Monica: Like I would say that the red one [Derek's line] is four and the black one 

[Monica’s line] is 3.2. But I think it's fair to say that this shape will never, 

will never touch either of those [values]. 

Interviewer: OK, so we could think of either of those [lines] as being a value that 

the series converges to?  

Monica: Right. But that doesn't make, then you could just say anything [is an 

asymptotic value]. So I don't know, because then what's stopping you from 

putting the number 20 next to that? Nothing. So. I don't know. 

Figure 20 

Monica’s Graph with Two Asymptotic Values Drawn for Convergence 

 

Monica’s response indicates that she did not consider (at least in this moment) that a 

convergent series converges to a unique value. Instead, she claimed that any horizontal 

line with which her graph of the running total did not intersect (i.e., upper bound) was an 

asymptotic value. Monica further stated that each of these “asymptotic” values could be 

considered a convergence value for the series, since the running total will “approach” 

(i.e., consistently move closer to) the asymptotic values but fail to achieve them. Monica 

recognized the troublesome nature of such a claim but was unable to reconcile her 
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thinking about convergence and asymptotes to posit another relationship between these 

two concepts.  

Abigail’s Second Series: ∑
𝟐(−𝟏)𝒏−𝟏

𝒏𝟓
∞
𝒏=𝟏   

Abigail’s hypothetical second series was the alternating convergent p-series 

∑
2(−1)𝑛−1

𝑛5
∞
𝑛=1 , which I presented in the expanded form 

2

15 −
2

25 +
2

35 −
2

45 +
2

55 − ⋯. 

Monica’s initial reasoning about the second series was to look for patterns across the 

numerators and denominators of the visible summands. Additionally, Monica noted the 

alternating signs in the series. She stated that (to her) these signs implied that “numbers 

[are] canceling each other out.” Although she had no idea of the convergence value, 

Monica eventually guessed that the second series converged. 

 When I asked Monica to say more about her thoughts on the convergence of the 

second series, she expressed discomfort with the term “convergence” (implying that she 

was unsure of the definition of this term). 

Interviewer: Tell me what you are thinking. 

Monica: So where I'm stuck right now is I'm thinking about like limits. (…) I'm 

not sure if something approaching a limit is the same thing as it 

converging to that value. And I remember, like in the first part of this, we 

had to do that like Qualtrics survey. (…) I wrote about how (…) like if I 

was walking towards the door and (…) each step I took was half the size 

of the previous step. (…) I would eventually, effectively get to the door, 

even though technically on (…) paper, there's always like a smaller 

fraction of the other stuff I could take. But if somebody just walked in and 
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they're like, "Where's [Monica]?" They would say, "She's in the doorway." 

Like, it would look like I was in the doorway. And so in that, then I would 

say that it did converge, and I would be like effectively at that point [i.e., 

the doorway], even though I never technically arrived there.  

 In this excerpt, Monica shared a metaphor she wrote on her screening survey 

about approaching a door and her position becoming indistinguishable (to an observer) 

from being inside the doorway (see Figure 21).  

Figure 21 

A Recreation of Monica’s Screening Survey Justification for Convergence 

Explain the truth value of the following statement and your rationale for choosing this truth value. 

 

 

Monica’s Response: [This statement is true.] [I imagine that] you are approaching 2 at a decreasing pace 

but eventually the distance away from 2 would be so small one would effectively arrive at 2. I thought of 

this as an example of distance in which a person is taking steps towards a doorway in a way such that each 

step is half the size of the step before it. eventually they would be taking such small steps, and be so close, 

that an observer would conclude the individual is in the doorway. 

 

In her metaphor, Monica envisioned herself as the running total and the doorway as the 

asymptotic value. While Monica acknowledged that she was taking steps (i.e., 

referencing individual summands in sequence), her focus was on her position (i.e., the 

value of the running total) and its relationship to the doorway (i.e., the asymptotic value). 

Monica continued to refer to her “approaching the doorway” metaphor throughout the 

interview sessions, and this metaphor seemed to comprise her primary image of the 

mathematical concept of limit (and, eventually, convergence). 
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General Series Questions 

After Monica finished reasoning about Abigail’s hypothetical six series (a 

variation of Grandi’s series that I provided in the expanded form . 07 − .07 + .07 −

.07 + .07 − ⋯), I presented two general questions about series: (1) How can I tell 

whether a series converges? and (2) If a series converges, how can I determine the value 

to which it converges? Monica’s responses to these questions revealed that her primary 

meaning for convergence was a running total was approaching an asymptotic value: 

Monica: So for the first question [i.e., How can I tell whether a series 

converges?]. The first thing I thought of was (…) the limits thing, where 

are we approaching with every (…) next iteration of this series? Are we 

approaching a value or infinity? (…) Because the thing that stood out to 

me about the last one [Abigail's 6th series] was that every time you added 

on one more piece of the series, it did not go the same direction the last 

one had gone. And even in the one where we were adding and subtracting 

and then adding and subtracting [i.e., Abigail's 4th series], but the numbers 

were decreasing, you still saw like a general trend towards, a number, 

which in that case was zero. So that's what I would say when I'm thinking 

about, how can I tell whether [a] series converges? (…) Like I'm interested 

in, what it's approaching and how adding on each next piece of the series 

is getting it closer to that value.  

Interviewer: OK. 

Monica: So then the last one [series 6] where it [i.e., subsequent summand] was 

like essentially undoing what the previous one had done. That was why I 
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said it [series 6] wasn’t converging. Because there was not like one overall 

direction it was going. 

Interviewer: OK. Now, when you say one direction “it” was going. Just to clarify, 

what do you mean by the “it” that’s going somewhere? 

Monica: The series as a whole, or like the sum of the series as a whole [i.e., 

running total]. So like, if I were to take…like one plus two plus three plus 

four. And on this like, huge number line and I just go up all the way to like 

a very large number, and that number that was getting big, closer and 

closer to infinity. And then I went to the 200th part of that series. I can be 

like, Yeah, that’s still getting close to infinity, and I could go to the 1000th 

part and it would be like, yeah, it still goes to infinity.  

In this excerpt, Monica initially compared convergence to her image of limit 

(similar to her response for Abigail’s 2nd series). She then presented three cases of series 

that she was imagining. In the first case, she referenced Abigail’s 6th series and her 

perception that the running total for this series did not approach any particular values as 

she added subsequent summands. In the second case, she referenced Abigail’s 4th series 

and stated that the series appeared (to her) to tend toward a particular number (i.e., zero) 

because of the alternating operator signs and the decreasing summand magnitudes. In the 

final case, Monica spontaneously introduced the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ and 

stated that, in this instance, the series would not converge because the value of the 

running total would increase without bound. 

Monica’s responses to the second question (If a series converges, how can I 

determine the value to which it converges?) were brief and reinforced her earlier 
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comments about a running total approaching an asymptote. She stated “the value to 

which it [the series] converges is what you're approaching as you're continuing on, every 

single, like, next part of the series.” She also compared the process of convergence to her 

“walking toward the door” analogy. 

In summary, Monica employed an asymptotic running total meaning in three 

different situations throughout the intake interview. First, she reasoned algebraically and 

graphically about Abigail’s 5th series to state that the decimal expansion of 𝜋 converged 

to 3.2 and 4. In this instance, Monica considered any upper bound of the decimal 

expansion to constitute a possible convergence value. Second, Monica leveraged her limit 

metaphor or approaching a doorway to reason about Abigail’s 2nd series and attributed 

this metaphor to the term “convergence.” Finally, during the general series questions, 

Monica reiterated her image of convergence as a running total approaching an asymptote. 

She also presented two instances of non-convergence that failed (in her mind) to meet 

this criterion: (1) a series whose running total oscillates between two values (i.e., 

Abigail’s 6th series) and (2) a series whose running total increases without bound (i.e., the 

sum of the natural numbers). I discuss further instances of Monica’s reasoning about 

series convergence (and how they relate to the ART meaning) later in this chapter. 

Sylvia’s Use of ART Meaning to Make Sense of Series Convergence 

 Sylvia exhibited clear instances of the ART meaning less frequently than Monica. 

In the following paragraphs, I describe two places during the interview, Series 2 and 

Series 6 (both alternating series), where Sylvia explicitly described her reasoning about 

convergence as a running total approaching an asymptote. 

Abigail’s Second Series: ∑
𝟐(−𝟏)𝒏−𝟏

𝒏𝟓
∞
𝒏=𝟏   
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Abigail’s hypothetical second series was the alternating convergent p-series 

∑
2(−1)𝑛−1

𝑛5
∞
𝑛=1 , which I presented in the expanded form 

2

15 −
2

25 +
2

35 −
2

45 +
2

55 − ⋯. 

Sylvia’s initial response to Abigail’s second series was that it would not converge 

because the alternating signs would cause the running total to fluctuate in value and not 

approach “one final value.” From her initial response, I hypothesized that Sylvia was 

conditioning the convergence of Abigail’s 2nd series on whether she could imagine its 

running total approaching a single value. I then asked Sylvia to clarify why she believed 

that Series 2 did not converge, and she stated the following: 

Sylvia: Well, I don't know. Because if you have something [i.e., running total] 

that kind of fluctuates up and down, like I guess in theory, that kind of 

makes it [i.e., running total] unstable, so it's not going to like lead to one 

final number [i.e., asymptotic value]. But I guess you could also have like, 

like a wave that goes up and down, but then it [i.e., running total] kind of 

stabilizes and the, the max[ima] and the min[ima] get kind of smaller. Um. 

Because the values [i.e., summands] are getting smaller, because you start 

with two and then you go to some fraction. I'm sorry, this is confusing.  

 In this excerpt, Sylvia recognized that because the signs of the summands 

alternate, the running total value will increase and decrease with each additional 

summand. Her subsequent comment that such an “unstable” running total might not “lead 

to one final number” indicates that (at this moment) she imagined convergence as a 

running total approaching an asymptotic value. In the later part of the excerpt, Sylvia 

began to consider the decreasing magnitudes of the summands and that the distance 
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between each iteration of the running total slowly decreases (which she compared to a 

wave whose amplitude decreases for each consecutive period).  

Sylvia quickly leveraged her image of decreasing amplitudes in the moments 

following her response above to claim that Series 2 converged. When I asked her whether 

she would like to draw a graph to help her better describe her thoughts, she created the 

graph in Figure 22, which she described in the following way: 

Sylvia: So, I'm just going to draw like, this is my graph (draws two axes 

representing quadrant 1), like my (…) 𝑥 and 𝑦 axis, and say this is two 

(draws horizontal line and writes "2" to the left of the vertical axis as 

label). And then this red is what I'm imagining [for the running total]. This 

looks like you're going to start at two and then go down and then go up a 

little bit more than you went down (draws small, smooth curve going 

down toward zero and curving back up to almost 2). So you're almost back 

at two (…) but not quite. And (…) like each fluctuation is getting smaller 

and smaller and smaller (continues to draw waves with smaller and 

smaller periods that are approaching line y = 2). That's what I think.  

Figure 22 

Sylvia’s Graph of the Running Total for Abigail’s 2nd Series 
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 In this excerpt, Sylvia stated that (to her) the distance between subsequent values 

of the running total decreases. Although Sylvia did not explicitly state the convergence 

value in this transcript, she later stated that she believed Series 2 converged to two. This 

belief is also evidenced in the behavior of the red line (denoting the running total) in 

Figure 22, which seems to slowly move upward toward the line that Sylvia used to re-

present the value of two.  

 Although Sylvia changed her position on the convergence of Series 2 during the 

interview, I considered her image of convergence (in these moments) to be grounded in 

imagining the value of the running total moving progressively closer to two. For instance, 

before Sylvia recognized that the magnitudes of the summands decreased for consecutive 

summands, she claimed that Series 2 would not converge because she believed the 

fluctuations of the running total would not allow its value to move toward a specific 

value. After Sylvia construed the summand magnitudes as decreasing, she claimed that 

Series 2 converged (to the first summand's value) because she envisioned that 

successively decreasing fluctuations in the running total would cause it to approach an 

asymptotic value. Sylvia employed similar reasoning while considering Abigail’s 6th 

series. 

Abigail’s Sixth Series: ∑ (. 𝟎𝟕)𝒊−𝟏∞
𝒊=𝟏 .  

Abigail’s hypothetical sixth (and final) series was a modification of Grandi’s 

series ∑ (1)𝑖−1∞
𝑖=1 = 1 − 1 + 1 − 1 + ⋯. To reduce the possibility of students 

recognizing the series, I modified the series to ∑ (. 07)𝑖−1∞
𝑖=1 , which I presented in the 

expanded form . 07 − .07 + .07 − .07 + .07 − ⋯. Sylvia’s initial reaction to Series 6 was 

that it converged to zero. However, she quickly questioned her claim and determined to 
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draw a graph of the running total to confirm her thinking (see Figure 23). Sylvia 

described her graph in the following way: 

Sylvia: OK. I, let me draw what I'm thinking right now. (draws a horizontal and 

vertical axis to form quadrant 1) So this is [.07] (draws a horizontal line 

and labels the line 0.716 to the left of the vertical axis). This is our friend, 

the series (draws smooth red curve fluctuating between horizontal line at 

0.7 and horizontal axis). We drop to zero and then we go back and then 

we drop to zero. Oh. (Continues to draw more periods of the curve) OK, I 

revert my statement. I'm going to say that since this [the drawn curve] 

fluctuates between zero and 0.7, that it [Abigail's 6th series] doesn't 

converge. Because it just goes straight up and down from [.07]. I don't 

know what else to say.  

In this excerpt, Sylvia initially created her graph of the running total to confirm 

her belief that Series 6 converged to zero. However, once she began considering the 

running total's behavior as more summands were added to its value, she quickly decided 

that Series 6 did not converge. When I asked Sylvia why her thinking changed, she stated 

the following: 

Sylvia: Um. I think before when I thought it converged, I think I was thinking that 

like, like [Series 2 and Series 4] that followed the plus, minus [i.e., 

alternating series]. But those each had fractions [i.e., summands] that were 

getting smaller and they were like, it was doing this wave thing, and the 

wave was kind of making its way back up to the initial value. I thought 

 
16 Sylvia initially stated the value 0.7 instead of 0.07. She later recognized this oversight. 
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that's what was happening here. But then when I drew the graph, I realized 

it just strictly bounces up and down from zero to .07 and so it's not going 

to land on a specific value. Because, in my head, when you're converging 

to something, like, (…) say you get pretty far on in the series and you're 

adding and subtracting, the next value that you add is going to get you 

closer to that number that (…) you think you're converging to. But for this 

one [i.e., Series 6]? If you say, like, right here (cursor is placed at the end 

of drawn curve, aligned with horizontal line at 0.7), we stop at plus 0.7, 

(…) the next turn would bring you just straight to zero. And then the next 

one would bring you straight to 0.7, or .07. So it [i.e., the running total] 

just bounces up and down. 

Figure 23 

Sylvia’s Graph of the Running Total for Abigail’s 6th Series 

 

In this excerpt, Sylvia stated that she initially thought that Series 6 would converge 

because she anticipated that the magnitudes of the summands would decrease (like her 

image of Series 2). However, as she began to evaluate the behavior of the running total, 

she quickly realized that the running total in Series 6 would never approach a specific 

value. 

Sylvia leveraged ART meaning to make claims about the convergence of both 

Series 2 and Series 6, although her decisions regarding convergence were different in 
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each case. For Series 2, Sylvia claimed that since the fluctuations of the running total 

would decrease, these fluctuations would eventually become essentially non-existent, 

allowing the running total to approach a “final value” (i.e., asymptotic value). For Series 

6, Sylvia claimed that since the fluctuations of the running total were uniform, the 

running total would fail to approach a final value. In each instance, Sylvia’s image of the 

behavior of the running total was central to her decision regarding whether she believed a 

particular series converged.  

Monica and Sylvia expressed their asymptotic running total meaning in many 

ways. In the following sections, I explicitly address three of the implications of their ART 

meaning: decreasing summands convergence, monotone running total divergence, and 

running total recreation through grouping. Each implication constitutes a cognitive 

meaning for convergence and a particular manifestation of the overarching asymptotic 

running total meaning. Consequently, I will alternately use the terms “meaning” and 

“implication” in the paragraphs below. I further discuss the relevance of these sub-

meanings with regard to research and instructional practices in Chapter 8. 

ART Implication 1: Decreasing Summands Convergence 

 Eckman and Roh (2022) defined decreasing summands convergence in the 

following way: 

One implication of an asymptotic running total meaning is that a student might 

believe that if each consecutive summand in an infinite series is smaller than the 

previous summand, the running total will eventually trend toward one specific 

value, suggesting that the series will converge. We call this implication 

decreasing summands convergence. In conventional mathematics, the notion of 
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decreasing summands is a necessary but insufficient property of a convergent 

series (the most famous example of this principle is the harmonic series, ∑
1

𝑛
∞
𝑛=1 ; 

p. 1018). 

Additionally, a student reasoning about a series using a decreasing summands 

convergence meaning focuses primarily on the behavior of the summands, and their 

dialogue may not include explicit references to the running total. 

 Both students’ actions at different moments in their interviews aligned with a 

decreasing summands convergence meaning. In the following paragraphs, I delineate 

these students’ meanings for convergence by series (as opposed to by student, which I did 

in the previous section). Specifically, I will address both students’ reasoning about 

Abigail’s first series and Sylvia’s response to the general series convergence question at 

the end of the first interview. 

Abigail’s First Series: ∑
𝟑

√𝒏

∞
𝒏=𝟎  

Abigail’s hypothetical first series was the divergent p-series ∑
3

√𝑛
∞
𝑛=0 , which I 

presented in the expanded form 
3

√1
+

3

√2
+

3

√3
+

3

 √4
+

3

√5
+ ⋯. Each student exhibited a 

decreasing summands convergence meaning for Series 1 in the moments when they 

believed that this series converged. In the following paragraphs, I address each student 

individually. 

 Monica’s verbal comments about the convergence of Series 1 focused on the 

decreasing nature of the summands. 

Monica: In the question, ‘Does it converge?’ I guess I was thinking [about] where 

[are] all (…) these positive numbers [i.e., summands] adding up to? Um, 



 

  149 

and my thought was that as these (…) denominators continue to increase, 

this number [i.e., summands] will keep getting smaller and smaller, but it 

will still be positive. (…) But then we're going to add on continually, 

continually smaller numbers. 

Interviewer: OK. 

Monica: Wait, maybe not, because if you have the square root of like a really, 

really big number, it's still going to be a big number, but then that [big 

number] in the denominator would make it [i.e., the summand] still a 

small value. (…) So three over a really big number would be a small 

value. So I would say that it converges because eventually these 

[summands in the series] would become like, really, really, really small 

number that you have three over a really, really big number in the 

denominator. Um. (…) Ooh, I don't know.  

Interviewer: (…) So, tell me what you’re thinking. 

Monica: OK, so I'm stuck now deciding whether or not it [i.e., Series 1] 

converges. I've decided for sure that we're adding on positive numbers. 

I've also decided that every number you add on is smaller than the 

previous number that we added. So in my head of thinking of like a graph 

that's looking like this (makes a motion like a decreasing function) where 

like the farther you go down the number line [i.e., further out in the 

sequence of summands], the smaller the value is.  

In this excerpt, Monica presented three ideas: (1) every summand in Series 1 would be 

positive, (2) the value of each subsequent summand would be smaller than the previous, 
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and (3) the process of adding consecutive summands she imagined comprising the 

infinite series would never end. As she tried to reconcile these three ideas, she initially 

stated that despite the summands all being positive (idea 1), the values of the summands 

would become small enough to become essentially zero (idea 2), which implied (to her) 

that the series would converge. However, when she tried to incorporate the infinite 

additive process inherent in her image of a series (idea 3), she began to question whether 

Series 1 converged. Ultimately, Monica determined that Series 1 did not converge. I 

describe her change in thinking (which relied on her integration of idea 3 into her 

reasoning about idea 1 and idea 2) in my discussion of monotone running total 

divergence.  

Sylvia initially stated that Series 1 converged, stating that “the fact is, it's [i.e., 

summands] getting smaller, like as you add one, so I'm going to guess that, it does 

converge.” When I asked to which value Series 1 converged, Sylvia proposed four as the 

convergence value. However, Sylvia quickly changed her mind, first questioning whether 

Series 1 converged at all before claiming that the series converged to an unknown value 

larger than four. 

Sylvia: OK, now I’m thinking that the series doesn’t converge and like it [i.e., 

running total] keeps adding up and getting bigger and approaches like 

infinity or something like that. 

(omitted dialogue) 

Interviewer: OK (…) can you say a little bit more about any of the stuff that 

you’re thinking? 
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Sylvia: Um (…) If you picture like a perfect square root like three over the square 

root of nine is three over three, and that’s one [
3

√9
=

3

3
= 1]. But then if 

you had like three over the square root of 81, that’s one-third [
3

√81
=

1

3
]. 

So…each item in a series that you’re adding on (brings up hand and 

mimics placing summands of series sequentially) is getting smaller. Yes, it 

is getting smaller. So it’s going to… converge to something, but it’s not 

going to be four. Yes, that’s my view. 

In this excerpt, Sylvia initially claimed that the running total would perpetually increase, 

which she believed would result in the non-convergence of Series 1. However, when I 

asked her to clarify her thinking, she reverted to her initial argument that the decreasing 

summands in the series would eventually cause Series 1 to converge. Although Sylvia 

could not provide a specific value to which she believed the series converged, she 

reasoned that the decreasing summands were sufficient for the running total to stabilize 

towards an asymptotic value.  

Sylvia continued to refer to the behavior of the summands in relation to the 

running total throughout her interactions with Abigail’s series. However, she did not 

make another targeted claim about decreasing summands being a sufficient condition for 

convergence until I asked her to describe series convergence generally.   

General Series Convergence Questions.  

Sylvia’s response and graph (see Figure 24) that she drew to answer the general 

series convergence  questions revealed that her primary meaning for convergence was of 

decreasing summands convergence, an implication of her asymptotic total meaning: 
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Sylvia: It's hard to determine a rule [for series convergence] because there's so 

many different examples [of Abigail’s series]. But, I think one thing, that 

could potentially help, determine if a series converges would be, like, if 

the values of the terms, like in the pattern that they're going, if they, get 

smaller, I guess, and they keep getting smaller and they follow the same 

pattern. Because if they're getting smaller, then like, I don't know if this 

makes sense, but I'm imagining like a graph and it's approaching zero. 

Interviewer: OK. 

Sylvia: Like the values of the terms, not, not necessarily the sum of the terms, 

(…) what they converged to, but the values of them [i.e., the summands of 

the series]. So like if, like, you start here at, so this is like one (draws a 

horizontal and vertical axis to make quadrant 1 and marks the value "1" 

on the vertical axis) and then each fraction gets smaller and smaller, and 

smaller and we're approaching zero (draws monotone decreasing, concave 

up curve moving from y-intercept (0,1) down toward horizontal axis). 

We're not touching it. Like, if that's what the value of the terms are doing, 

then I'm going to say that that helps you determine if it's converging. But it 

might not tell you what it [the series] converges to. 
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Figure 24 

Sylvia’s Graph for the General Series Convergence Question 

 

 In this excerpt, Sylvia claimed that a common theme she perceived across all of 

Abigail’s hypothetical series was that for the convergent series, the magnitude of the 

summands always decreased. She also drew a graph (whose trace she used to refer to the 

summands in the series, not the running total) to reinforce her thinking about decreasing 

summands implying series convergence. However, Sylvia admitted that her decreasing 

summands convergence meaning only allowed her to determine whether a series 

converged, not the value to which it converged. 

ART Implication 2: Monotone Running Total Divergence 

Eckman and Roh (2022) defined monotone running total divergence in the 

following way: 

Another implication of an asymptotic running total meaning is that a student 

might believe that since the running total perpetually increases (or decreases) in a 

monotone series, the running total will eventually surpass every potential upper 

bound (i.e., asymptotic value) that might indicate convergence. We call this 

implication monotone running total divergence (p. 1018).  

Both students’ actions at different moments in their interviews aligned with a 

monotone running total divergence meaning. In the following paragraphs, I address 
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Monica’s transition from decreasing summands convergence to monotone running total 

divergence for Abigail’s first series and both students’ reasoning about Series 3.  

Abigail’s First Series: ∑
𝟑

√𝒏

∞
𝒏=𝟎  

Abigail’s hypothetical first series was the divergent p-series ∑
3

√𝑛
∞
𝑛=0 , which I 

presented in the expanded form 
3

√1
+

3

√2
+

3

√3
+

3

 √4
+

3

√5
+ ⋯. Monica initially reasoned 

about this series using a decreasing summands convergence meaning (see the previous 

section for details about this moment). However, she began to question the sufficiency of 

this meaning when she struggled to reconcile three ideas: (1) every summand in Series 1 

is positive, (2) the value of each subsequent summand is smaller than the previous, and 

(3) the process of adding consecutive summands she imagined comprising the infinite 

series never ends. In an effort to reconcile her three ideas, she resorted to a graphical 

argument (see Figure 25). 

Monica: OK, so I'm stuck now deciding whether or not [Abigail’s first series] 

converges. I've decided for sure that we're adding on positive numbers. 

I've also decided that every number you add on is smaller than the 

previous number that we added. (…) This is what I'm thinking here (draws 

graph rapidly decreasing toward zero in Quadrant 1). (…) So that's the 

idea that I'm thinking of in the individual values, in, we're looking at, like 

the 𝑦-axis, where they [the summands in the series] remain positive the 

whole time, they're approaching zero. (…) And so that's going to make the 

fractions smaller and smaller, but never negative. And also not zero. 
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Figure 25 

Monica’s Graph for the Summands of Abigail’s 1st Series 

 

 In this excerpt, Monica reconciled ideas (1) (i.e., all summands positive) and (2) 

(i.e., summands decrease toward zero) by drawing a graph with a decreasing curve. 

However, Monica still seemed unsure how to incorporate idea (3) (i.e., the infinite 

additive process) into her reasoning about the convergence of Series 1. To redirect her 

toward idea (3), I asked Monica to state whether she believed that Series 1 converged. In 

response, she said: 

Monica: Um, that it does not [converge]. Because it's approaching infinity 

because you're constantly adding on more values. 

Interviewer: OK, so you're constantly adding on more values and so you're 

approaching infinity. Can you say a little more about what you mean by 

that? 

Monica: Yes, as we're doing this, even though the fact each fraction is getting 

smaller and smaller, (…) those [the summands] would still be, although 

they'd be very small, they'd still be like whole, or they'd still be like 

positive numbers that you're adding on to the previous part of the 

expression. 

(omitted dialogue) 
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Interviewer: And once again, what do you mean by "approaches infinity?" 

Monica: Like, this number [the running total] would just keep getting bigger, and 

every additional, like three over, like a piece you added on would make it 

[the running total] an even bigger number. Not by a lot, because you [i.e., 

the summands] would be so small, but, but it [the running total] would be 

continually getting more positive. 

In this excerpt, Monica applied her notion of positive, decreasing summands (ideas 1 and 

2) to the behavior of the running total. In this way, Monica came to envision that if she 

were to perpetually add the summands of Series 1 (idea 3), then the running total for this 

series would continually increase. Monica then claimed that the monotone increasing 

nature of the running total for Series 1 precludes convergence. Monica continued to 

primarily reason about non-alternating series with her monotone running total divergence 

meaning for the remainder of intake interview. 

Inherent in Monica’s response is a belief that an increasing running total will 

eventually surpass every upper bound (i.e., asymptotic value). In other words, a student 

exhibiting a monotone running total divergence meaning will claim that there is no 

asymptotic value toward which the running total will tend for a particular series. In this 

case, the student will likely state that the series fails her condition of convergence (i.e., 

the existence of an asymptotic value for the running total to approach), which implies (to 

her) that the series does not converge.  
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Abigail’s Third Series: ∑ ∑ [
𝟏

𝟏𝟎𝟐𝒏+𝟏 −
𝒊

𝟏𝟎𝟐𝒏+𝟑]𝟗𝟗
𝒊=𝟏

∞
𝒏=𝟏  = ∑

𝟒𝟗𝟓

𝟏𝟎𝟎𝟎𝟎
(

𝟏

𝟏𝟎𝟎
)

𝒌
∞
𝒌=𝟎   

Abigail’s hypothetical third series was the convergent geometric series 

∑
495

10000
(

1

100
)

𝑘

.∞
𝑘=0  However, before presenting this series to the students, I expanded 

each term in the geometric series into a finite series of the form ∑ [
𝟏

𝟏𝟎𝟐𝒏+𝟏 −
𝒊

𝟏𝟎𝟐𝒏+𝟑]99
𝑖=1 , 

where 𝑛 corresponded with the index values of the original geometric series. The 

expanded form of this series that I presented to the students was  

99

103 +
98

103 + ⋯ +
1

103 +
99

105 + ⋯ +
1

105 +
99

107 + ⋯ +
1

107 + ⋯.  

Monica’s initial reasoning about the third series mirrored her strategy for making 

sense of Series 1: (1) she looked for patterns across the numerators and denominators of 

the visible summands and (2) claimed that the third series would not converge because 

the value of the running total would perpetually increase.  

 I then asked Monica to discuss any similarities and differences she perceived 

between the methods she used to determine the convergence of the first three series. 

Interviewer: What are some similarities and differences that you're seeing 

between the series that you've looked at so far in terms of determining 

convergence or not convergence? 

Monica: (…) [T]his one [i.e., Abigail's third series], like it seems a lot more 

straightforward because you're just continually adding on more and more 

numbers. They're all positive. There's no negatives anywhere. There's no 

like, like I wrote, like thinking that something might cancel out. There's no 

thought of that [i.e., terms cancelling out] in these [series] that are all 

positive [summands]. (…) Like the main thing that's guiding this [my 
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thinking] is that they're all positive numbers that are being added to each 

other. [This] is really like my main decision-making thing here, which is 

what made this subtraction one [i.e., Abigail's second series], I guess, like 

a lot more challenging for me, like deciding an answer. 

In this excerpt, Monica again emphasized (similar to Series 1) that her primary focus for 

determining convergence was thinking about the behavior of the running total as 

additional summands are computed into this quantity. She also acknowledged her belief 

that series with monotone running totals (e.g., Abigail’s first, third series) will approach 

infinity. However, she admitted she was unsure of the behavior of alternating series.  

 Sylvia attempted to reason about the convergence of Series 3 by computing the 

sum of the first five summands in the series. Her subsequent recognition that the running 

total would perpetually increase influenced her thinking about whether the series would 

converge. 

Sylvia: I'm just intrigued [by Series 3]. I would like to. Um, 98 over 10 to the fifth 

plus 97 over 10 to the fifth (types first three summands in calculator) is 

0.294. (types in fourth summand) 0.39 (indicating sum of first four 

summands). Oh, so that's getting greater [i.e., the running total]. Oh, 

because you're adding them. (types in fifth summand to yield a partial sum 

of 0.485). Yeah, I'm going to say that it [Abigail's third series] doesn't 

converge because it kind of seems like each value [i.e., partial sum] is 

getting greater and greater. (Navigates back to OneNote from the 

calculator and places cursor on Abigail's third series) And you're just 
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going to keep adding until you get to some big infinity number. Well, it's 

not a number [i.e., infinity]. But, yeah. 

Interviewer: OK. So when you said each "value" is getting bigger and bigger, 

what is this "value" that you're, you're referring to? 

Sylvia: Oh, like the sum of each of the terms, like just a couple of the times that I 

did here. (Navigates back to calculator and places cursor just above the 

calculated sum of the first five summands) 

In this excerpt, Sylvia relied on a calculator to help her reason about the behavior of the 

running total. She recognized that each summand in Series 3 would be positive and that 

the summands were decreasing. Still, based on her calculations, she concluded that (1) 

the running total would perpetually increase and (2) that this implied that Series 3 did not 

converge.  

 Sylvia’s decision that Series 3 did not converge conflicted with her earlier 

statements about Series 1, where she claimed that although the running total perpetually 

increased, the series would ultimately converge. When I asked Sylvia about this possible 

contradiction, she said that she recognized that her thinking about Series 3 “kind of broke 

that pattern” that she used to think about Series 1. However, she was unable to explain 

why it made sense (to her) to reason about each series in a different way, which is 

consistent with the findings of Alcock & Simpson (2002) that students can exhibit 

different meanings for various sequences and series. 

ART Implication 3: Running Total Recreation through Grouping 

 Eckman and Roh (2022b) described Monica and Sylvia’s reasoning that 

corresponded with running total recreation through grouping in the following way: 
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A final implication of an asymptotic running total meaning is that a student might 

believe that if she groups the terms in an alternating series to construct a uni-

directional running total, the series will converge. We call this implication 

running total recreation through grouping (p. 1019).  

In the following paragraphs, I describe how each students’ reasoning about Series 4 

reflected a running total recreation through grouping meaning for series convergence. 

Abigail’s Fourth Series: ∑
(𝟐𝟎𝟎−𝟐𝒏)(−𝟏)𝒏

𝒏+𝟏

∞
𝒏=𝟎 .  

Abigail’s hypothetical fourth series was the alternating divergent series 

∑
(200−2𝑛)(−1)𝑛

𝑛+1
∞
𝑛=0 , which I presented in the expanded form 

200

1
−

198

2
+

196

3
−

194

4
+

192

5
−

⋯. While reasoning about this series, Monica claimed that Series 4 converged to zero and 

Sylvia claimed that the series converged to 200. In each instance, the students justified 

their conjectures by regrouping the summands in the series. I address each student’s 

responses to this series in the paragraphs below. 

Monica (tentatively) claimed that Series 4 converged to zero by combining 

successive summands into a new series and reasoning about the running total of the new 

series (see Figure 26):  

Monica: I think that if I were to say that it [series 4] does converge, then I would 

also say that it converges to zero. 

Interviewer: OK. Can you say a little bit more about that? 

Monica: (…) So in this case, instead of seeing like each individual adding on a 

fraction is one thing (places hands close together with small space 
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between), I’m kind of grouping them together, where we are subtracting 

and adding and that, I’m grouping that together in my head. 

Interviewer: OK, could you could you like, mark on the screen what it is that 

you’re grouping together just so that I’m sure that I know? 

Monica: Yes. So I would put these together (draws a bracket above second and 

third summand) and then I would put these together (draws a bracket 

above the fourth and fifth summand)… and I take the number 200 and I, 

do these two things do it (cursor indicates second and third summands), 

I’m going to have a number here (moves cursor between third summand 

and minus sign separating third and fourth summand) that’s less than 200, 

but still very close to it. So basically, what I’ve decided is if you were to 

sum these two values (moves cursor back to indicate second and third 

summands), you would have a very small number and you subtract 

those… So that, that’s what makes me think that this [i.e., the running 

total] is getting smaller and smaller and smaller and smaller. 

Figure 26 

Monica’s Grouping of Summands for Abigail’s 4th Series 

 

In this excerpt, Monica acknowledged not imagining the original Series 4 while 

reasoning about convergence. Instead, she considered the implications of combining each 

pair of consecutive summands to recreate a new series. In this new series, she began with 



 

  162 

the first summand, 200, and then appended the sum of each pair of summands to this 

value. Monica recognized that (according to her grouping of summands) each pairwise 

sum would be negative, and her newly-constructed version of Abigail’s 4th series was of 

the form 200 + (small negative value) + (small negative value) + ⋯. Monica then 

reasoned that the running total of her new series would perpetually decrease. Monica 

concluded that her new series converged to zero, which implied (to her) that Abigail’s 4th 

series also converged to zero. Monica claimed that Series 4 converged to zero (as 

opposed to some other convergence value) because (1) she believed the running total of 

the new series would perpetually decrease and (2) she did not think this value would ever 

become negative. 

Similar to Monica, Sylvia’s argument hinged on combining the summands of 

Series 4 to create a new series with a monotone running total (see Figure 27):  

Sylvia: So I’m going to say that this one [series 4] converges. And I think I’m 

going to follow the same logic that I did with [series 2,] that it kind of (…) 

drops some and increases a little bit less than it dropped (draws concave-

up curve starting from (0, 200) that stops before reaching 𝑦 = 200), if 

that makes sense. And then it, like each wave gets smaller (draws more 

waves with decreasing amplitudes that progressively move closer and 

closer to horizontal line at y = 200). And I would say my guess is that it 

converges to 200. 

(omitted dialogue) 

Interviewer: So, can you explain a little bit more to me about how you’re…seeing 

that come about [convergence to 200]? 
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Sylvia: So I guess like, if we start at 200, we subtract 99, we’ll get 101, and then 

you add one ninety-six over three [
196

3
], and that number is smaller than 

99. Yes. And so you’re going to go back up and essentially cancel out 

some of the, the subtraction that you did. But not like all the way, like 

you’re not going to get back up to 200. 

Interviewer: OK. 

Sylvia: And then you’re going to go down a little bit more, but not as great as just 

went up. And then, like, follow that pattern. 

Interviewer: So there. So it’s like you’re imagining that every time we jump up, 

we’re jumping up farther than we drop down. And so over time, we’re 

slowly moving back up towards 200. 

Sylvia: Yes. 

Figure 27 

Sylvia’s Graph of the Running Total for Abigail’s 4th Series 

 

In this excerpt, Sylvia imagined computing the sum of the first two summands 

(i.e., 200 and -99), which resulted in a value of 101. She then imagined that adding the 

third summand would move the running total value toward 200 (but not reach it). Sylvia 

then imagined that adding the fourth summand into the running total would cause the 
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value to decrease toward 101 (but not reach it). In Sylvia’s graphical re-presentation of 

her thinking, the oscillating wave she drew (1) decreased in amplitude with each 

subsequent period and (2) gradually moved upward toward the value of 200. In my 

clarification of Sylvia’s thinking, she confirmed that each pair of consecutive summands 

would yield (to her) a net positive value. In other words, Sylvia grouped the summands of 

Series 4 to create a new series of the form 101 + (small positive value) +

(small positive value) + ⋯, whose running total she imagined would perpetually 

increase. Sylvia then claimed that the new series would converge to 200, which implied 

(to her) that Series 4 converged to 200. Sylvia could not provide a detailed justification 

for why she claimed that Series 4 converged to 200.17  

For Monica and Sylvia, their conclusions about the convergence of Series 4 

emerged from reasoning about a different series comprised of re-grouped summands 

from the original series. The students’ purpose in performing the regrouping exercise was 

to create a series with a monotone running total that would perpetually increase (in 

Sylvia’s case) or decrease (in Monica’s case) toward a particular asymptotic value. For 

this reason, I consider running total recreation through grouping to be an implication of 

an overarching ART meaning. Specifically, students’ reconception of the series to reflect 

a simpler (to them) running total and their indication of values toward which they 

envision the running total moving align with my description of ART.  

After Monica and Sylvia performed their regrouping actions, the notion of 

monotone running total divergence disappeared from their reasoning. Instead, the 

 
17 Sylvia also claimed that Series 2 (another alternating series) converged to the value of the initial 

summand. Hence, one of Sylvia’s rationales for claiming that Series 4 converges to 200 was because she 

had previously made a similar claim for Series 2. 
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decreasing summands of the re-grouped series appeared sufficient (in the students’ 

minds) to make claims about convergence and convergence value. Sylvia and Monica 

only employed the running total recreation through grouping meaning while reasoning 

about alternating series whose summands did not exhibit uniform magnitude. Of the three 

alternating series I presented during the intake interview (i.e., Abigail’s 2nd, 4th, and 6th 

series), the students showed clear evidence of this reasoning during their work on Series 

4. However, other anecdotal evidence of this reasoning exists (i.e., Sylvia’s initial claim 

that Series 6—Grandi’s series—converged to zero might have emerged from re-grouping 

summands).  

Summary of Chapter 5 Results 

In this chapter, I presented one overarching construct to describe Monica’s and 

Sylvia’s intuitive meanings for series convergence (i.e., asymptotic running total 

meaning) and three implications of this meaning (i.e., decreasing summands 

convergence, monotone running total divergence, running total recreation through 

grouping) that characterized their actions during the intake interview. The results that I 

have reported constitute several unique contributions to the literature. For instance, I 

identified that students with no formal instruction on series convergence might focus on 

the behavior of a series’ running total to decide whether they believed a series converged. 

This construct is similar and different from Martin's (2013) description of a dynamic 

partial sum. My definition of running total is similar to a dynamic partial sum in that a 

student’s running total corresponds to what a mathematician would call a “partial sum.” 

A running total differs from a dynamic partial sum because students intuitively reasoning 

about series convergence through a running total do not (in the researcher’s mind) 
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coordinate the running total with an indexing variable. My extension of the Martin’s 

(2013) idea of a dynamic partial sum to students’ intuitive reasoning about series 

convergence provides an additional way for researchers to characterize students’ thinking 

about infinite series. 

Another unique contribution to the literature from my results in Chapter 5 is my 

characterization of decreasing summands convergence, monotone running total 

divergence, and running total recreation through grouping as students’ attempts to 

reconcile three ideas about series. These three ideas include (1) the signs of the 

summands (e.g., all positive, alternating), (2) the behavior of the summands (i.e., 

increasing, decreasing, constant) and its corresponding impact on the running total, and 

(3) that the process of adding summands into the running total would never terminate 

(i.e., potential infinity). I summarize how Monica’s and Sylvia’s coordination of these 

various ideas influenced their exhibited meaning in the paragraphs below. 

When the students foregrounded idea (2), focusing primarily on the behavior of 

the summands, they were most likely to exhibit decreasing summands convergence. For 

instance, Monica’s initial conception of Series 1 was that it converged because the 

magnitude of each summand was smaller than the previous. At the end of her intake 

interview, Sylvia stated that the common theme she perceived across all convergent 

series was that the summands decreased. While decreasing summands is necessary for 

series convergence, Sylvia’s comment implies that she also considered decreasing 

summands a sufficient condition for convergence. Since a student reasoning with 

decreasing summands convergence is focused primarily on the behavior of the 
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summands, the running total is typically present in their thinking but often an 

afterthought in their verbal explanations of their actions. 

When the students considered all three ideas simultaneously about a non-

alternating series, they were most likely to focus on the behavior of the running total and 

exhibit monotone running total divergence. For instance, Monica’s recognition that the 

running total in Series 1 would perpetually increase influenced her statement that the 

running total would increase without bound. Similarly, Sylvia’s calculations of the first 

few values of the running total for Series 3 convinced her that the running total would 

perpetually increase, which implied (to her) that the series would not converge. In these 

instances, the students coupled their image of the signs of the summands (idea 1) with 

their conception of the series as a non-terminating entity (idea 3) to construe the running 

total as an entity that eventually surpasses all possible bounds. Although Monica and 

Sylvia often acknowledged that the values of the summands would become incredibly 

small (idea 2), this notion was subsumed by their image of a monotone increasing 

running total. 

When the students successfully constructed a monotone running total (idea 1) by 

combining the summands in an alternating series, they would most likely exhibit running 

total recreation through grouping. In these instances, Monica and Sylvia seemed to focus 

on the monotone nature of the groups of summands (idea 1) and how the relative 

magnitude of each group behaved (e.g., decreased; idea 2). Although neither student 

could fully explain their reasoning, Monica and Sylvia believed their reconstructed 

monotone running totals were bounded. Depending on the signs of the summands (idea 
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1), the students claimed that the alternating series would either converge to the initial 

value (increasing summands; Sylvia) or zero (decreasing summands; Monica). 

Finally, my categorization of Monica’s and Sylvia’s intuitive meanings for series 

convergence serves as a useful instructional tool by which educators might better 

introduce the topic of infinite series or intervene when students exhibit unconventional 

meanings for convergence. Specifically, instructors might (1) have students intuitively 

reason about series convergence as an asymptotic running total and then leverage the 

corresponding discussion to motivate the need to introduce an indexing variable to track 

the covariation of summand position and value or (2) ask targeted questions about 

students’ beliefs about the signs, behavior, or process of adding summands in a series 

during individual discussions to better identify and mitigate students’ struggles with 

comprehending these topics. I summarize the meanings, implications, and focal ideas I 

presented in Chapter 5 in Table 19 on the next page. 
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    Table 19 

 

    Summary of Meanings and Implications Presented in Chapter 5 

 
Meaning Definition Implications Definition Focal Ideas 

Asymptotic 

Running Total 

Meaning 

Students make a decision 

about whether a series 

converges by determining 

if the running total 

appears to approach an 

asymptotic value. 

Decreasing 

Summands 

Convergence 

Students state that a series 

converges by arguing that if each 

consecutive summand in an infinite 

series is smaller than the previous 

summand, the running total will 

eventually tend toward an 

asymptotic value. 

• The behavior of the 

summands for a non-

alternating series 

Monotone 

Running 

Total 

Divergence 

Students claim that a monotone 

series does not converge by arguing 

that the running total perpetually 

increases (or decreases) and will 

eventually surpass every potential 

bound (i.e., asymptotic value) that 

might indicate convergence. 

• The signs of the 

summands are uniform 

• The behavior of 

summands for a non-

alternating series 

• Process of indefinitely 

adding summands 

Running 

Total 

Recreation 

through 

Grouping 

Students group the terms in an 

alternating series to create a new 

series with a monotone running 

total. The students then argue about 

that the series converges based on 

their perception of the running total 

in the new series. 

• Regrouping summands 

in an alternating series 

to create a monotone 

series of summands 

• The behavior of the 

summands in the 

regrouped series 
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CHAPTER 6 

RESULTS PART 2: STUDENTS’ CONSTRUCTION OF SYMBOLS TO RE-

PRESENT THEIR MEANINGS FOR INFINITE SERIES  

 In Chapter 6, I propose an explanatory framework for contextualizing the types of 

meanings that Monica and Sylvia attributed to their various inscriptions and expressions 

during the teaching experiment. The material in Chapter 6 is related to my second 

research question, how do students symbolize their meanings for mathematical topics in 

the context of infinite series? The categories for students’ symbolization that I present in 

this chapter, Chapter 6, have emerged through my grounded theory-based data analysis 

(Strauss & Corbin, 1998). The three central categories of meaning I present constitute the 

axial codes I created from my analysis of secondary categories I identified through open 

coding. The primary reasons I share this framework are (1) to categorize the various 

meanings that students might attribute to their inscriptions during their symbolizing 

activity and (2) to highlight that students’ inscriptions and meanings are distinct entities 

that do not always align in ways that reflect mathematical convention.  

 This chapter is comprised of three major sections. In the first section, I present a 

group of organizational constructs to describe students’ general personal expressions and 

some syntactical properties of these expressions. In the second section, I describe the 

three meanings Monica and Sylvia attributed to their inscriptions during their 

symbolizing activity: process, concept, and relational. For each meaning, I also describe 

two categories of inscriptions that Monica and Sylvia created to re-present these 

meanings. In sharing these examples, I reference the interview and task related to each 

interaction to contextualize students’ actions with regard to the teaching experiment. If a 
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reader desires further clarification about the purpose, role, and fit of a task within the 

broad context of the teaching experiment, please refer to Chapter 4 for additional 

information. In the final section, I summarize the categories and constructs that I present 

in this chapter. I discuss the implications of these results and future research directions in 

Chapter 8. 

Personal Expression Template, Fixed and Cloze Inscriptions, and Mark Set 

In the course of my analysis of Monica’s and Sylvia’s symbolization, I introduced 

several terms by which I characterized the syntactic nature of the symbols they created. I 

describe these constructs before providing empirical examples of student symbolization 

so that I can use these terms to better contextualize the perceptible artifacts Monica and 

Sylvia created across examples. These terms include personal expression template, fixed 

inscription, cloze inscription, and mark set. I describe each term individually in the 

paragraphs below. 

Throughout Monica and Sylvia’s symbolizing activity, I noticed that they 

frequently employed similar personal expressions (in the syntactic sense) to symbolize 

situations they perceived as analogous (e.g., myriad partial sums). In light of this 

realization, I introduced the term personal expression template to describe the general 

structure of a class of expressions that Monica and Sylvia modified (according to their 

needs) to symbolize various situations (or quantities) they perceived to have analogous 

structures or properties. I use the term template to refer to Monica’s and Sylvia’s 

decisions to fix certain inscriptions across personal expressions (e.g., Σ) and allow others 

to vary from instantiation to instantiation of their expressions (e.g., indices of 

summation). I use the term personal expression to refer to the perceptible artifacts that 
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Monica and Sylvia created as instantiations of their personal expression template to re-

present their meaning for a particular experience. Although I focus this dissertation on 

algebraic personal expressions, I consider the construct personal expression template to 

refer to any linguistic (e.g., words), pictorial (e.g., diagrams), symbolic (e.g., notation), 

visual (e.g., body language), or auditory (e.g., music, spoken language) representation 

that an individual might use to re-present or convey their meanings in a particular 

moment.  

Since the marks that Monica and Sylvia wrote for the inscriptions in their 

personal expression templates were sometimes fixed and other times varied, I introduced 

two terms to differentiate this property of the inscriptions in their templates: fixed 

inscriptions and cloze inscriptions. I used the term fixed inscription to code instances 

where Monica and Sylvia used a single written mark uniformly for every instantiation of 

an inscription in their personal expression template. For example, Sylvia used the 

inscription Σ in every personal expression she created to re-present a partial sum or series 

throughout the interviews. In this case, I considered Σ to be a fixed inscription within 

Sylvia’s personal expression template for a partial sum (I describe Sylvia’s personal 

expression template in Chapter 7). I used the term cloze inscription to code instances 

where Monica and Sylvia used different marks across at least two instantiations of a 

particular inscription for personal expression template. For example, Monica and Sylvia 

each used various numerical marks to re-present the upper and lower indices of 

summation for their personal expression templates for partial sums (e.g., the upper 

bounds in the expressions Σ1
37𝑓(𝑛) and Σ1

76𝑓(𝑛)). My use of the term cloze inscription 

stems from Taylor’s (1953) introduction of a cloze procedure (also called a cloze 
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activity). Taylor (1953) introduced the cloze procedure as a psychological measure of 

reading comprehension in which a student is asked to fill in spaces in a sentence where 

words have been systematically removed (e.g., I _______ to the store to buy 

_________.). In the case of student symbolization, I considered a cloze inscription to be a 

component of a personal expression in which a student might write various marks across 

different instantiations of her expression template.  

Once I recognized that Monica and Sylvia sometimes used more than one mark 

for an inscription across instantiations of their personal expression template, I needed a 

way to describe the collection of marks that they used (or appeared capable of using) 

during their symbolizing activity. As a result, I introduced the term mark set to refer to 

the set of marks Monica and Sylvia utilized (or that I imagined they might utilize) across 

their instantiations of a specific inscription (in the context of their personal expression 

template). I considered the mark set for the students’ fixed inscriptions to be singular 

since I anticipated that Monica and Sylvia would always use the same mark in each 

instantiation of a personal expression template. In contrast, I considered the mark set for 

the students’ cloze inscriptions to be nonsingular and comprised of a finite or infinite 

number of possible marks that Monica and Sylvia used (or I imagined they might use) to 

re-present the variable (or measurable) attributes of the quantities they imagined. 

The following table, Table 20, contains a summary of the major constructs that I 

introduced in this section. In the following sections, I will use these terms to 

contextualize how Monica and Sylvia symbolized their meanings for various topics 

related to infinite series convergence. Specifically, I will address the personal expression 

template at play in each student symbolization example, the nature of the focal inscription 
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(i.e., fixed or cloze), and the character of the corresponding mark set for the inscription. 

Although I often discuss inscriptions within the context of a personal expression or 

personal expression template, I do not generally apply these categories to students’ 

meanings they attribute to their expressions (although many such connections seem 

plausible).   

Table 20 

Definitions for Personal Expression Template, Inscriptions, and Marks 

Term Definition 

Personal Expression 

Template 

A representational device that an individual can modify according to 

her needs to symbolize various situations (or quantities) she perceives 

to have analogous structures or properties 

Fixed Inscription 
A single written mark that a student uses uniformly in every 

instantiation of her personal expression template 

Cloze Inscription 

A component of a personal expression in which a student might write 

various marks across different instantiations of her expression 

template 

Mark Set 

The set of marks a student utilizes (or the researcher imagines a 

student might utilize) across her instantiations of a specific inscription 

(in the context of a personal expression template) 

 

Three Types of Meanings that Students Attribute to their Inscriptions 

 In the following sections, I describe specific examples of the three types of 

meanings that emerged through my analysis of Monica’s and Sylvia’s attribution of 

meaning to their inscriptions during various moments of their symbolizing activity. These 

categories included process, concept, and relational meanings. I provide a short 

description for each category of meaning below. 

First, I observed many instances in which Monica or Sylvia would use an 

inscription to re-present a particular action they carried out (or imagined carrying out) 

while reasoning about a situation. Some of these actions were relatively simplistic or 
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algorithmic (e.g., add a finite number of summands), while other actions were more 

complex and required a certain degree of flexibility and creative reasoning (e.g., 

determine a closed-form rule for the general summand of a series). I coded these 

meanings, in which Monica and Sylvia attributed the carrying out of an action to an 

inscription, as a process meaning.  

Second, I observed instances where Monica and Sylvia used inscriptions to re-

present a topic, an attribute of a quantity, or the value of a quantity. The students 

sometimes used these inscriptions as mnemonic labels to indicate a particular concept 

(e.g., 𝑓 is for “function”) and other times as placeholders for the value of a quantity (e.g., 

𝑛 in the expression 𝑓(𝑛) denotes values of the function’s independent variable). I coded 

these meanings, in which Monica and Sylvia re-presented an attribute or value of a 

quantity (or a general topic) as a concept meaning. 

Finally, I observed instances where Monica and Sylvia attempted to re-present a 

relationship they envisioned between the meanings they attributed to two inscriptions or 

expressions. In my analysis, I observed two ways these students would symbolize the 

relationships they envisioned. On the one hand, they introduced new inscriptions (e.g., =) 

that they used to re-present the relationship they envisioned between the (meanings they 

attributed to the) two expressions. On the other hand, they spatially placed the 

inscriptions to create an expression (e.g., base with subscript), to which they imputed the 

relationship they envisioned between the (meanings they attributed to the) inscriptions. I 

coded these meanings, in which Monica and Sylvia re-presented a relationship between 

two ideas they had previously symbolized, as a relational meaning. 
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The following table, Table 21, provides a summary for the general categories of 

meaning that I presented in this section. The table also includes the inscription categories 

that emerged from my analysis of the inscriptions to which students attributed each 

meaning. These inscription types included command and create operators (i.e., process 

meaning), indicators and placeholders (i.e., concept meaning), and connector and 

comparator inscriptions (i.e., relational meaning). In the following sections, I provide 

empirical examples for each meaning and inscription type in Table 21. 

Table 21 

Meanings Monica and Sylvia Attributed to their Inscriptions 

Meaning Definition Inscription Types 

Process A student uses an inscription to re-present carrying 

out an action (or imagining carrying out an action) 
• Command 

Operator 

• Create Operator 

Concept A student uses an inscription to re-present an attribute 

or value of a quantity, or a general topic 
• Indicator 

• Placeholder 

Relational A student uses an inscription (or spatial placement of 

existing inscriptions) to re-present a relationship they 

envision between two or more ideas they have 

attributed to other symbols 

• Connector 

• Comparator 

    

Meaning Type 1 for an Inscription: Process 

 A student who attributes a process meaning to an inscription or an expression will 

re-present a dynamic process through their symbol. In Monica’s and Sylvia’s 

symbolization, such inscriptions were often fixed (i.e., contained singular mark sets). In 

the following subsections, I define two inscription types to which Monica and Sylvia 

attributed a process meaning: (1) command and (2) create operators. 
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Process Inscription Type 1: Command Operator  

In my analysis of Monica and Sylvia’s symbolizing activity, I identified some 

instances in which they used inscriptions to re-present processes that appeared (to me) to 

be algorithmic or automatic. In other words, the students used their inscriptions to re-

present processes for which the procedural steps were well known (to them), the actions 

within each step of the process were relatively algorithmic (to them), and the character of 

the process’s result was fairly certain (to them). I used the term command operator to 

categorize the inscriptions to which Monica and Sylvia attributed these predictable 

processes. In the following paragraphs, I present two examples of Monica’s and Sylvia’s 

use of inscriptions as command operators. 

Example 1: Monica’s Use of ∫ to Re-present a Command for an Additive 

Process. Monica spent a significant amount of time during the Day 1 and Day 2 

interviews wondering whether she should use an integral sign (∫ ) to symbolize an 

algorithmic process of adding consecutive values to determine the value of a partial sum. 

For example, Monica initially proposed the expression ∫
𝟓

𝒙

𝟑𝟕

𝟏
𝒅𝒙 (see Figure 28) to 

symbolize the 37th partial sum of Ivy’s 2nd series, a divergent p-series which I presented 

in the expanded form 
𝟓

𝟏
+

𝟓

𝟐
+

𝟓

𝟑
+

𝟓

𝟒
+

𝟓

𝟓
+

𝟓

𝟔
+ ⋯. When I asked her to summarize her 

reasoning about determining the 37th partial sum for this series, Monica stated the 

following: 

Monica: Ok, so if I were to try to find the sum of the first set of terms and I didn’t 

want to just add them all by hand, because it was a very large number [of 

summands] that I was trying to find [the sum]. I would make the series 
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into a function like this (indicates general summand 
5

𝑥
 in integration 

notation) and then I would integrate that function. And the bounds of that 

integral would be wherever you were starting, what term number you were 

starting on to what term number you were finishing on. So, if you were 

like 2nd to 10th, I would do 2 to 10 with whatever function you’ve made by 

just looking at your series. 

Figure 28 

Monica’s use of ∫  as a Command Operator to Re-present Partial Sums 

 

In this excerpt, Monica stated that if she did not want to manually compute the sum of a 

given number of summands in a series, she would construct an expression using an 

integral sign to re-present performing this computation. Inherent in Monica’s response is 

the notion that the integral symbol constitutes a command to evaluate successive function 

values and add them together (within the constraints determined by the indices with 

which she ornamented the integral inscription).  

 During the Day 2 interview, Monica reasoned about a written rule for determining 

a partial sum I provided from a hypothetical student named Yolanda (see Figure 29). The 

purpose of this task was to help Monica select a predominant expression for partial sums 

by presenting two contrasting definitions for partial sums, one using an integral sign (∫ ; 

Yolanda’s argument) and the other using a summation sign (Σ; Zeb’s argument). While 
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reasoning about Yolanda’s argument, Monica described her meaning for integration in 

the following way: 

Monica: Here, with Yolanda (…) every single, infinitely close together point on 

this line you’re also adding together, where there’s no room between 

them. You’re not just going, just the y-value at 1, just the y-value at 2. 

And that’s the difference between the two [Yolanda and Zeb]. 

Figure 29 

Yolanda’s Definition for Partial Sums from the Day 2 Interview 

 

In this excerpt, Monica again described the idea she re-presented through the inscription 

∫ as an additive process. Monica also indicated the algorithmic nature of the process she 

envisioned as adding together “every single, infinitely close together point on this line.”   

In these instances, I considered ∫ 𝑓(□)𝑑□
□

□
 to constitute Monica’s personal 

expression template for re-presenting her image of adding together all function outputs 

between two values of the domain. In each case, it appeared that Monica used the 

inscription ∫ as a fixed inscription with a singular mark set (comprising only ∫ ). At other 

times during the Day 1 and Day 2 interviews, Monica struggled to decide whether to use 

the inscription ∫ or Σ to re-present computing a partial sum and created two distinct 

personal expressions by which she could re-present this process. I discuss Monica’s 

symbolizing activity with regard to these templates in more in more detail in Chapter 7.   
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Example 2: Sylvia’s Use of ? _? to Re-present the Process of Randomly 

Generating Values. Sylvia proposed the inscription ?_? to re-present her image of a 

randomly generated summand value while reasoning about Ivy’s 7th series at the end of 

the Day 2 interview. Ivy’s seventh series was the infinite expansion of a non-terminating 

decimal, which I presented in the expanded form 

𝟏+. 𝟑+. 𝟎𝟓+. 𝟎𝟎𝟗+. 𝟎𝟎𝟎𝟏+. 𝟎𝟎𝟎𝟎𝟒+. 𝟎𝟎𝟎𝟎𝟎𝟎+. 𝟎𝟎𝟎𝟎𝟎𝟎𝟗 + ⋯.  

Sylvia initially symbolized Series 7 with her personal expression template Σ□
□□, 

which she introduced during the Day 1 interview and consistently utilized during the Day 

2 interview to symbolize partial sums and series (inscription definitions in Figure 3018). 

Figure 30 

Sylvia’s Glossary Entries19 Related to her Expression Template Σ□
□□ 

 

 

 
18 Although Sylvia only wrote the inscription Σ in her glossary, every personal expression she constructed 

during the Day 1 and Day 2 interview for a partial sum or series included indices and a general summand. 
19 The black type-written text is what Sylvia initially wrote during her creation of the inscriptions during 

the Day 1 interview. The orange hand-written text reflects changes or additions that Sylvia made to her 

glossary during the Day 2 interview. 
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When I asked Sylvia if she could describe a pattern to generate the subsequent summands 

of the series, Sylvia stated that she could not discern a pattern because the summands 

appeared (to her) to be randomly generated. I then proposed a hypothetical situation 

where Ivy constructed Series 7 using a random number generator and asked Sylvia 

whether she could re-present the random pattern through her expression 𝑣(𝑛) (through 

which she had previously re-presented general summands of several series). Sylvia said 

that she could not and instead proposed the expression Σ𝑛=1
∞ (10□)(𝑟𝑎𝑛𝑑𝑜𝑚 #) to re-

present the series (see Figure 31): 

Sylvia: I guess you could still use this (writes Σ), you could still write 𝑛 to 1 and 

whatever you call it, I’ll just keep infinity up here (writes indices 𝑛 = 1 

and ∞). (…) I’m really bad at finding patterns in between series, but what 

I’m envisioning is you could have some kind of thing here, with like a 

base 10 and then this would be like, there would be something up here 

(draw’s a box for an exponent on the base 10), like a, (…) you could have 

a negative 𝑛. (…) Yeah, I don’t really know what the pattern would be. 

But you would have something that denotes that you would end up with a 

1

100
 or 

1

1000
 or one over yahdah yahdah yah, and then you would multiply it 

times something that represents a random number (writes “random #” in 

parentheses being multiplied by base 10). Yeah. 

Interviewer: Ok. So, that first ten with the box is being used to represent the 

appropriate decimal place, if you will. 

Sylvia: Yeah, so that is like (…) not constant, but that’s the one thing that’s not 

random. Like each decimal point, like you divide by 10.  



 

  182 

Figure 31 

Sylvia’s Personal Expression for Ivy’s 7th Series 

 

In this excerpt, Sylvia distinguished between three ideas while constructing her 

personal expression Σ𝑛=1
∞ (10□)(𝑟𝑎𝑛𝑑𝑜𝑚 #). First, she used the inscription Σ to denote 

the summation process inherent in a partial sum or series. Second, she used the indices 

𝑛 = 1 and ∞ to describe the summands in the series she imagined comprising the 

summation. Finally, she used the rule (10□)(𝑟𝑎𝑛𝑑𝑜𝑚 #) to describe the nature of the 

summands in Series 7. Sylvia further separated her rule for the series into two 

components: (1) she re-presented the decreasing decimal place values for each 

subsequent summand using the inscription 10□ and (2) she re-presented the use of a 

random number generator to determine the value of a particular summand using the 

expression (𝑟𝑎𝑛𝑑𝑜𝑚 #). In other words, Sylvia attributed the algorithmic process of 

generating a digit value and placing it in a corresponding summand to her expression 

(𝑟𝑎𝑛𝑑𝑜𝑚 #). 

 When I asked Sylvia if she could construct an inscription by which to re-present 

the idea she had attributed to her expression (𝑟𝑎𝑛𝑑𝑜𝑚 #) instead of writing out English 

words, she proposed the inscription ?_?, which she defined as “random # (or random 

pattern).” (see Figure 30 above). When I asked Sylvia to describe what she meant by 

random, she stated: “There’s an equal chance for it to be any number, any pattern, any 
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thing. There is no, like, there is no systemic reason as to why this was chosen.” Sylvia 

went on to describe that she envisioned re-presenting values, patterns, or any property of 

a series that appeared random through her inscription ?_?. Although Sylvia’s more 

general conception of random that she expressed in this moment was likely a 

conglomeration of more meanings than just an algorithmic command meaning, the 

impetus for Sylvia’s construction of her inscription ?_? was her image of a random 

number generator systematically generating values that became summands in Ivy’s Series 

7.  

Throughout the remainder of the Day 2 and Day 3 interviews, Sylvia used the 

inscription ?_? (and only this inscription) to denote components of series (e.g., summand 

values, patterns in operator signs) that she considered to be random. In these cases, I 

considered Sylvia’s symbol ?_? to constitute a fixed inscription with a singular mark set 

(consisting of only ?_?).  

In Chapter 7, I provide insight into how Sylvia’s personal expression template 

Σ□
□□ evolved throughout the interviews for Days 1-3 to include the idea of randomness 

(and other concepts as well). The example that I have shared of Sylvia’s general 

symbolization of series with random components in this section also aligns with the 

symbolizing activity of Cedric, whose three distinct symbols for various series (based on 

his ability to discern a closed-form rule for the general summand) I report in Eckman and 

Roh (in revision). 

Process Inscription Type 2: Create Operator  

During certain moments of their symbolizing activity, Monica and Sylvia used 

inscriptions to re-present processes for which they could describe the procedural steps 
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generally (but not precisely), the action steps of the process appeared (to them) to be 

investigative and have a high degree of variability, and the character of the result was 

uncertain (to them). I used the term create operator to categorize inscriptions to which 

the students attributed this sort of inventive process.  

A create operator differs from a command operator in that students believe that 

the process they re-present through a create operator cannot be easily automated and 

requires the judgment of a reasoning entity to enact the process and decide whether the 

outcome is appropriate. In contrast, a student using a command operator typically 

believes they can enact the process algorithmically or through a technological medium 

(i.e., computer, calculator) and accept the result of the process with little question. Since 

individuals attribute meaning to their inscriptions, no mathematical symbols are 

inherently command or create operators. In Chapter 8, I distinguish between the types of 

conventional expressions that mathematicians use to distinguish between each type of 

inscription. 

Example 1: Emily’s Use of ≁ as a Create Operator. I have previously reported 

one student, Emily, who created the inscription ≁ to re-present her process of 

constructing a rule to generate the summands of a series (Eckman & Roh, 2022a). In the 

analysis of my dissertation data, I categorized Emily’s inscription ≁ as a create operator. 

I considered Emily’s inscription  ≁ to constitute a create operator because Emily could 

re-present a generalized injunction to create a general summand but needed to mentally 

enact the steps of her process to determine the nature and appropriateness of a general 

summand for a particular series. Unlike the process she re-presented to find the value of 

specific partial sums through her command operator 𝚺, Emily could not perceive 
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particular attributes of the process that she could symbolize in relation to her operator 

inscription (e.g., index of summation, an iterative process of evaluating a function fule). 

Instead, Emily could only re-present the general idea of testing potential patterns until she 

found one through which she could generate the summands of the series.   

Example 2: Sylvia’s Use of 
?
#

 as a Create Operator. Sylvia also constructed a 

create operator to re-present the process of discerning the pattern for a particular series. 

In her case, she proposed a question mark whose lower dot she replaced with a pound 

sign (see Figure 32). In this paper, I will symbolize Sylvia’s inscription using the 

inscription 
?
#

. Sylvia first proposed this inscription after I asked her about any 

discrepancies she perceived between her proposed inscriptions and her written rule 

describing partial sums during the Day 1 interview: 

Sylvia: Um, I guess there is not an inscription for finding out how to find the 

pattern [for the summands in a series]. But I don’t know if that’s 

something that you could like represent symbolically, because that’s kind 

of like a brain process, not an operational process. Does that make sense? 

Interviewer: Ok, so say a little more about what you mean by that. Why (…) 

couldn’t you make an inscription for this [idea of ‘find the pattern’]? 

Sylvia: Um, I guess because, it’s, well I guess you could because like if you, 

because I mean adding is also something you do in your brain. But I don’t 

know how you would represent, because (…) there are a lot of different 

options, there are a lot of different directions that like the pattern could go 

in, the pattern between the terms. So, I guess it would be hard to (…) I 
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don’t know how to explain it, but it would just be like a question mark, 

like what’s going on in the series. 

Interviewer: Ok, do you want to make question mark an inscription? I mean, you 

don’t have to but. 

Sylvia: Sure. I’ll put a question mark, but instead of the dot it will be pound sign, 

and that represents (writes “represents the process of figuring out the 

relationship/pattern between terms in a series”).  

Figure 32 

Sylvia’s Create Operator 
?
#

  for Discerning the Pattern of a Series 

 

 In this excerpt, Sylvia initially stated that she was uncertain whether she could 

symbolize her meanings for the creative process of discerning a pattern for the summands 

in a series. She also distinguished the investigative process of determining a pattern from 

an operational process (e.g., adding together summands to calculate the value of a partial 

sum). Sylvia eventually proposed the inscription 
?
#

 to re-present her overarching 

uncertainty of the exact process and result she would engage in to determine a pattern for 

the summands in a particular series. 

 After Sylvia wrote her inscription in her glossary, I attempted to clarify what she 

was re-presenting through her inscription. In particular, I wanted to ascertain whether she 
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was able to re-present a closed-form rule for generating summands through her 

inscription 
?
#

. 

Interviewer: So, I’m going to try and restate what I think you, what I understand 

you to be saying. So, you’re saying that for this fourth inscription, the 

question mark with the pound sign, that that’s representing to you the 

process of going out and figuring out the relationship and the pattern. 

Sylvia: Mmm-hmm. 

Interviewer: So, is that different from, “Oh, now I’ve found it” [i.e., the pattern]? 

Sylvia: Um, I guess like the thought “Oh, I know the process” is the result of 

whatever that inscription entails. But what I’m trying to say is like, there’s 

a difference between the Sigma [i.e., Σ] and the question/pound sign [i.e., 

?
#

]. Because like the Sigma produces a value, or it produces like something 

that represents a value, like you get a number. But with the fourth 

inscription, there’s not really a number, there’s not a tangible outcome. It’s 

more of like an understanding, or, like an Aha! moment. 

Interviewer: Ok, so it’s more of an Aha! moment (…) and then like you found a 

pattern. So that’s kind of the outcome of the inscription, that fourth one? 

Sylvia: Mm-hmm. 

Interviewer: Ok, so if you were to actually try and write down the pattern, would 

you need a different inscription? 

Sylvia: Yes. 
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In this excerpt, Sylvia stated the outcome of the process she re-presented through 

her inscription 
?
#

 is that she would know a pattern by which she could model the 

summands of a series. She also distinguished between an earlier inscription, Σ, that she 

had created to re-present the algorithmic process of computing a sum from consecutive 

summands, and 
?
#

, which she created to re-present the mental process of investigating and 

determining a summand pattern for a series. However, when I asked Sylvia whether she 

could re-present the character of the pattern with her inscription, she stated that this was 

not possible (for her). Instead, she proposed utilizing a different inscription. Immediately 

after the episode in the current transcript, Sylvia proposed using the expression 𝑣(𝑛) to 

re-present an open or closed-form rule for the pattern she discovered through the creative 

process she re-presented through her inscription 
?
#

. 

Throughout the remainder of the Day 1 interview, Sylvia continued to use her 

inscription 
?
#

 (and only this inscription) to denote her creative process of making sense of 

the summands in a series and determining a formulaic pattern to generate the summands. 

In this case, I considered the inscription 
?
#

 to be fixed with a singular mark set 

(comprising only the mark 
?
#

). In later interviews (e.g., Day 2), Sylvia incorporated her 

inscription 
?
#

 into her personal expression template for Σ□
□□ for describing partial sums 

and series. I address her actions in more detail in Chapter 7. 

In summary, Monica used the inscription ∫ and Sylvia used the inscription ?_? to 

re-present processes that they considered algorithmic or automated, and whose results 
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they could easily predict and interpret (e.g., the result of an integral computation, the 

output of a random number generator). In contrast, Emily used the inscription ≁ and 

Sylvia used the inscription 
?
#

 to re-present creative processes that they (theoretically) 

knew how to complete but whose exact steps they could not define without actually 

enacting the process (e.g., determine a pattern by which to describe the general summand 

of a series). In both instances, the students re-presented processes that guided their 

actions toward and interpretation of infinite series, an essential cognitive action in 

learning mathematics (Dubinsky, 1991; Glasersfeld, 1995; Sfard, 1991). Still, their ability 

to algorithmatize (and symbolize) the steps and components of the process resulted in 

different inscriptions that served (to them) different purposes for reasoning about series. 

Meaning Type 2 for an Inscription: Concept 

In my analysis of Monica’s and Sylvia’s symbolization, I found other instances in 

which the students appeared to symbolize attributes or values of quantities that they 

envisioned. I define quantity in the sense of Thompson (1994), who stated that quantities 

are constructed by individuals and are comprised of three components: (1) an object or 

entity, (2) an attribute of the object or entity, and (3) a method to measure the attribute (or 

belief in such a possibility). I decided to use the term concept meaning to refer to 

instances where Monica and Sylvia used an inscription or expression to re-presents a 

quantity or its values. I also divided the inscriptions to which they attributed concept 

meanings into two types: indicators and placeholders. In my analysis of Monica’s and 

Sylvia’s symbolization, I found that their indicator inscriptions were often fixed and their 

placeholder inscriptions were either fixed or cloze (i.e., having a nonsingular mark set). In 

the following subsections, I describe each inscription type individually.   
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Concept Inscription Type 1: Indicator 

In my analysis, I found that Monica and Sylvia typically re-presented an attribute 

(but not necessarily the value) of a quantity through their indicator inscriptions. Their 

most frequent use of indicators was to create a name or a label for an idea they were 

considering during the interviews. In my review of Monica and Sylvia’s data, every 

inscription I coded as an indicator included a singular mark set (although ornamental 

inscriptions such as subscripts they attached to their indicators were often cloze 

inscriptions). In the following paragraphs, I share three examples of student’s attribution 

of an indicator meaning to an inscription during the teaching experiment. 

Example 1: Monica’s Use of 𝒅𝒙 as a Concept Indicator. Monica used the 

inscription 𝒅𝒙 during the Day 1 and Day 2 interviews as a syntactic ornamentation of her 

personal expression template ∫ □𝒅□
□

□
 for re-presenting a summation of function values 

over a finite interval. For example, during her symbolization of Ivy’s Series 6 (i.e., 
𝟑

𝟕
−

𝟒

𝟕
+

𝟓

𝟗
−

𝟔

𝟏𝟑
+

𝟕

𝟏𝟗
−

𝟖

𝟐𝟕
+ ⋯) on Day 1, Monica initially symbolized the 37th partial sum of 

the series as ∫ (−𝟏)𝒏+𝟏 (𝒏+𝟐)𝟑𝟕

𝟏
𝒅𝒙. When I pointed out Monica’s use of both 𝒏 and 𝒙 in 

her personal expression, she quickly changed 𝒅𝒙 to 𝒅𝒏, writing ∫ (−𝟏)𝒏+𝟏 (𝒏+𝟐)𝟑𝟕

𝟏
𝒅𝒏 

(see Figure 33). When I asked Monica why she had made this change, she said: 

Monica: Just so that they’re all the same variable. Cause there’s no 𝑥’s. I don’t 

know what 𝑑𝑥 even does, I just know it goes at the end of an integral. 
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Figure 33 

Monica’s Personal Expression for Ivy’s 6th Series 

 

Although Monica’s remark was brief and anecdotal, it revealed a profound insight 

into the meaning she ascribed to her inscription 𝑑𝑛. Specifically, she employed 𝑑□ as a 

fixed component of her personal expression template ∫ □
□

□
𝑑□ to indicate the concept of 

integration. In other words, Monica appended the suffix 𝑑𝑥 at the end of an integral not 

to re-present a mathematical meaning but to follow a mathematical convention. While 

Monica did show that she possessed a nonsingular mark set for 𝑑□ (which included the 

marks 𝑑𝑥, 𝑑𝑛, and possibly others), her initial writing of the mark 𝑑𝑥 and her justification 

for changing 𝑑𝑥 to 𝑑𝑛 was purely syntactic. Thus, I consider the expression 𝑑□ to be 

fixed within Monica’s personal expression template ∫ □
□

□
𝑑□, but the second inscription of 

this expression to be a cloze inscription (since Monica wrote more than one mark for this 

inscription across instantiations of her template). 

Example 2: Sylvia’s Use of CV as a Concept Indicator. After introducing the 𝝐-

strip activity for sequence of partial sums convergence during the Day 5 interview, I 

asked Sylvia whether she could symbolize any of the graphical portions of the activity. 

Sylvia was unable to symbolize anything on her own but eventually proposed the 
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inscription CV to re-present “convergence value” after I explicitly asked her to create an 

inscription for the value to which a sequence converged. 

During the glossary review activity at the beginning of Day 6, I presented Sylvia 

with a screenshot of the 𝜖-strip activity. I then asked her to review what she imagined her 

inscription CV to refer to on the screenshot. The following transcript and Sylvia’s 

drawing in Figure 34 show her response to my question: 

Sylvia: The convergence value? I think that I would label that. I guess that’s what 

you’re representing here with this black line (writes CV next to horizontal 

line for ‘center’ of the 𝜖-strip), I think that was like the guesstimate. 

Interviewer: Ok, gotcha. Is there anything else in this picture that you would use 

CV for?  

Sylvia: Um, I guess you could maybe label the whole 𝑦-axis as CV but that would 

be like a more general term. And then like. 

Interviewer: So can you say a little bit more about that? 

Sylvia: Just that like, if you, for any like general graph if you were to graph it like 

this and you found the convergence value it would be some value on the 

𝑦-axis. And, so like, what I just wrote, what I’m circling (circles CV next 

to center line) that’s like a specific convergence value, like specific to this 

sequence. But then, if you wrote over here (writes CV by vertical axis) it 

would be kind of like the general [convergence value]. 

Interviewer: So, by general convergence value, (…) I’m just not sure what you 

mean. So, by general convergence value what do you mean? 
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Sylvia: Um, like those are possibilities, kind of, for a convergence value, (erases 

CV from vertical axis) but like having it as a specific for the graph, it 

uncomplicates things. So I’d probably just leave it there. 

Figure 34 

Sylvia’s Use of CV to Re-present Components of the 𝜖-strip Activity 

 

In this excerpt, Sylvia utilized her inscription CV to re-present to herself two 

distinct ideas. First, she reaffirmed her definition from the conclusion of the Day 5 

interview that CV denoted (to her) the value to which a particular series converged. 

Second, she labeled the vertical axis as CV to indicate a more general sense of the 

convergence value of an arbitrary series. Unfortunately, I did not understand her general 

comment during the interview and Sylvia quickly discarded her re-presentational claim 

when I expressed unsurety regarding her meaning. Still, in the moment of her description, 

Sylvia recognized that (1) all convergent sequences will converge to values she could re-

present through the vertical axis and (2) she could symbolically re-present this property 

❶ 

❷ 
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of convergent sequences with her inscription CV. I considered Sylvia’s inscription CV to 

be an indicator (and not a placeholder) inscription because she indicated that she could 

re-present the general attribute of convergence value through her inscription but did not 

reveal whether she believed that she could directly substitute a numerical value for CV in 

an applied problem. Throughout her symbolizing activity, Sylvia used CV as a fixed 

inscription with a singular mark set (consisting of the lone element CV). 

Example 3: Monica’s Use of 𝑺 as a Concept Indicator. During the Day 3 

interview, I introduced the concept of the sequence of partial sums to Monica during a 

mini-lesson. After providing a conventional explanation for this sequence, I asked 

Monica to construct a personal expression by which she could re-present the sequence of 

partial sums. Monica subsequently constructed the personal expression 𝑺𝒑 to re-present 

this idea (she claimed that the inscription 𝑺 stood for “sum” and the inscription 𝒑 

corresponded to the 𝒑th summand in the series; see Figure 35).  

Figure 35 

Monica’s Expression 𝑆𝑝 for the Sequence of Partial Sums   

 

During the Day 4 interview, I presented Monica with an opportunity to reason 

about and symbolize components of a sequence and its corresponding sequence of partial 

sums using tables (see Figure 36). During this activity, Monica began attributing the 

notion of “partial sum” to her inscription 𝑝. For example, when I asked Monica why she 
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wrote the personal expression 𝑆𝑝 = 𝑝1, 𝑝2, 𝑝3, … to describe the sequence of partial sums, 

she said, 

Monica:  The p on the left means, what 𝑝1 is, or what 𝑝2 is, or what 𝑝3 is. And 

then the 𝑆 means they’re making a sequence out of all these individual p’s. 

So you wouldn’t like put in a number for p. 

Figure 36 

Monica’s Symbolization for Components of a Sequence of Partial Sums 

 

In this excerpt, Monica modified her use of the inscription 𝑝, which she used in earlier 

interviews to denote the upper bound of summation when computing a partial sum, to an 

indicator for the value of a partial sum (with a corresponding subscript to distinguish 

which partial sum she was re-presenting at a particular moment). Monica also changed 

the meaning she re-presented through her inscription 𝑆 from a “sum” to a “sequence.”  

Monica’s change in attributed meaning for 𝑆 persisted for the remainder of the 

Day 4 interview. For instance, when I asked Monica to symbolize a traditional sequence 

(not a sequence of partial sums), she stated: 



 

  196 

Monica: “I guess if I did, it would be, I would use the 𝑆 because I made, I’ve 

decided the 𝑆 is for sequence. And then I think that I would put, I think 

that I would put 𝑎 here (writes 𝑆𝑎) to mean a sequence of these terms [i.e., 

traditional sequence]. So 𝑆 means that you’re going to make a sequence of 

some kind, and then the subscript is telling you what’s going to make up 

the sequence, like what’s going to be between the commas. And in this 

case I have like 𝑎’s [i.e., traditional sequence terms], versus 𝑝’s for the 

partial sums [i.e., sequence of partial sums terms].” 

Monica continued using her personal expression template 𝑆□ throughout the Day 5 

interview, saying that for a traditional sequence, she could use any letter for a subscript 

except for 𝑝 (i.e., 𝑆𝑝; reserved for sequence of partial sums), 𝑛 (i.e., 𝑆𝑛; reserved as a 

variable for the position of the sequence terms), or 𝑠 (i.e., 𝑆𝑠; reserved for the idea of 

sequence). In this case, I consider the subscript Monica attached to her inscription 𝑆 to 

constitute a cloze inscription with a nonsingular mark set (comprising all but a few 

lowercase English letters) that she employed to distinguish between various sequences 

she was considering within an example. In contrast, I considered Monica’s inscription 𝑆 

to constitute a fixed inscription with a singular mark set (comprising only 𝑆) that she 

employed as a mnemonic device to re-present the notion of sequence.  

In summary, there were three distinct ways that Monica and Sylvia used indicator 

inscriptions to re-present an attribute of a concept. In the first example, Monica used her 

expression 𝑑𝑥 as a syntactic mechanism by which to indicate (and possibly verify) the 

concept of integration. In the second example, Sylvia used her expression CV to re-

present (1) the horizontal line in the 𝜖-strip activity corresponding to the convergence 
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value of a sequence and (2) the vertical axis of the graph, which she used to re-present 

her envisioned property that all convergent sequences would converge to real numbers. In 

the final example, Monica used her expression 𝑆□ to (eventually) re-present her meaning 

for a sequence. She also used the subscript of her inscription 𝑆 to re-present particular 

sequences she was considering in specific situations. In each of these three examples, 

Monica and Sylvia used the primary inscriptions that I described (i.e., 𝑑𝑥, CV, 𝑆) to re-

present attributes of quantities (i.e., integration concept, convergence value, sequence) 

and not necessarily a particular value for these quantities. In the next section, I describe 

these students’ efforts to symbolize values for the attributes of certain quantities they 

envisioned.  

Concept Inscription Type 2: Placeholder 

In my analysis, I also identified other instances in which Monica and Sylvia chose 

to use their inscriptions to re-present one or more values for a particular quantity they 

envisioned. Consequently, I introduced the term placeholder to describe the inscriptions 

to which these students attributed one (or more) values of a quantity they were 

considering. In the following subsections, I describe two names by which I further 

categorize Monica’ and Sylvia’s inscriptions to which they attributed placeholder 

meanings: parameter and variable20. I adopt the definitions of these constructs proposed 

by Thompson et al. (2019), which I share in each section. 

 
20 A third category of placeholder inscription might be constant. In this instance, students might re-present 

the value of a quantity that they envision to be uniform in all situations, such as 𝜋 or 𝑒. However, since 

almost none of my interview tasks focused on these types of values, there is not sufficient data in this study 

to discuss constant placeholders. 
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Placeholder Inscription Type 1: Parameter. Thompson et al. (2019) described a 

parameter as an inscription to which a student attributes one fixed value of a quantity 

fixed within a situation but whose value can vary from situation to situation. In Monica’s 

and Sylvia’s symbolizing activity, they sometimes symbolized parameters with numeric 

inscriptions (e.g., 1, 2.5, 1.734) and other times with non-numeric inscriptions (e.g., 𝒔, 𝒑). 

Consequently, I used the terms fixed and cloze inscriptions to refer to each case of 

symbolization. In general, Monica and Sylvia used various numeric inscriptions as 

placeholder parameters across their instantiations of their personal expression templates, 

which I coded as a cloze inscription. However, when the students reasoned about their 

personal expression templates in the glossary or in open form, they frequently employed 

the same mark for each instantiation of a placeholder in the arbitrary template. I coded 

the inscriptions in these arbitrary reasoning situations as fixed. In the following 

paragraphs, I provide two examples from Monica using placeholder parameter 

inscriptions. 

Example 1: Monica’s Use of 𝒑 as as a Placeholder Parameter Inscription. 

During the Day 2 tasks, Monica used the personal expression template 𝜮𝟏
𝒏𝒇(𝒏) to 

symbolize specific and arbitrary partial sums (where she could replace the general 

inscription 𝒏 and the general expression 𝒇(𝒏) with a particular summand position and 

general summand rule, respectively). For example, she created the expression 𝜮𝟏
𝟕𝟔 𝟐

√𝒏
𝟒  for 

the 76th partial sum of Ivy’s 1st series (i.e., 
𝟐

√𝟏
𝟒 +

𝟐

√𝟐
𝟒 +

𝟐

√𝟑
𝟒 +

𝟐

√𝟒
𝟒 +

𝟐

√𝟓
𝟒 +

𝟐

√𝟔
𝟒 + ⋯) and the 

expression 𝜮𝟏
𝒏 𝟐

√𝒏
𝟒   for an arbitrary partial sum (see Figure 37).  
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Figure 37 

Monica’s Personal Expressions for Ivy’s 1st Series 

 

After Monica’s construction of personal expressions for Series 1, I decided to 

address her use of the inscription 𝑛 to re-present (1) the position of the summands in a 

series and (2) the upper limit of summation (e.g., the 𝑛th partial sum). While Monica had 

at times indicated that she viewed the upper limit 𝑛 as a fixed value and the 𝑛 in her 

function expression 𝑓(𝑛) as a variable taking on multiple values, I was unsure of the 

degree to which she had authentically reflected on these contrasting uses of the same 

inscription.  

 To problematize Monica’s potential symbolization issue, I attempted to utilize 

Monica’s personal expression to highlight her use of 𝑛 to re-present a fixed and varying 

quantity in the same expression. To this end, I asked her whether she used 𝑛 to refer to 

only one summand position while symbolizing the 76th partial sum with her expressions 

𝑛 = 76 and Σ1
76 2

√𝑛
4 . Monica confirmed that she intended only to have 𝑛 denote one value 

for Question 1 (i.e., symbolize the 76th partial sum). I then stated that I was going to use 

Monica’s personal expression Σ1
𝑛 2

√𝑛
4  from Question 2 (i.e., symbolize an arbitrary partial 

sum) to symbolize the 98th partial sum of Series 1 and changed the expression to Σ1
98 2

√98
4  
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(see Figure 38). In response to my attempt to adopt Monica’s personal expression, she 

said: 

Monica: I would still leave it as 𝑛 [the 𝑛 in the general summand]. (…) Just cause 

that’s just representing the function and you’re going to have to (…) do it 

by hand, not just that specific number [i.e., 98], but, you would (…) have 

to do it for 1 and for 2 and for 3 and for 4 as well. 

Figure 38 

Monica’s Use of 𝑛 for Two Different Purposes 

 

In response to Monica’s comment, I stated that Monica had portrayed 𝑛 as a 

single value in her expression for Question 1 but was now saying that 𝑛 stood for more 

than one value in her expression for Question 2. In response, Monica stated: 

Monica: Okay, I guess that’s not correct. Well, [in Question 1] it [i.e., 𝑛] stands 

for the position that you’re evaluating, like, at that time. So, if you wanted 

to find the 98th term, then 𝑛 would be 98. But if you want to find the 76th 

term, n would be 76. That one is not like a fixed definition, I guess. 

In this excerpt, Monica portrayed her inscription 𝑛 for the upper index as a 

parameter, or a value that is fixed in a particular situation (e.g., finding the 98th partial 

sum) but can vary from situation to situation (e.g., 𝑛 would be 76 when finding the 76th 

partial sum).  
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I considered letting Monica persist with her double use of the inscription 𝑛, but 

ultimately suggested that she create different inscriptions to denote the upper limit of 

summation and the position of the summands. I justified my intervention because I 

conjectured that Monica would need a separate inscription to construe as the independent 

variable for the sequence of partial sums (e.g., 𝑎𝑖 = Σ𝑛=1
𝑖 𝑏𝑛) later in the teaching 

experiment. In response to my suggestion, Monica created a new inscription, 𝑝, which 

she added to her glossary. 

Monica’s wrote that the information she wished to re-present through her 

inscription 𝑝 was the “upper bound of a partial sum” (see Figure 39). When I asked 

Monica to clarify what she meant by “upper bound,” she proposed an additional symbol, 

Σ1
𝑝𝑓(𝑛), to re-present “the sum of 𝑓(𝑛) when evaluated at positions from [1, 𝑝]. Partial 

sum” (see Figure 40).  

Figure 39 

Monica’s Inscription 𝑝 for the Upper Bound of a Partial Sum 

 

Figure 40 

 Monica’s Expression Σ1
𝑝𝑓(𝑛) for a Partial Sum 

 

I then asked whether Monica wanted to change her personal expressions for 

Questions 1-3 about Series 1 that she created earlier in the task. In response, Monica 
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proposed changing the “𝑛 that was causing issues to a 𝑝,” modifying her expression 𝑛 =

76 to 𝑝 = 76 (Question 1) and her expression Σ1
𝑛 2

√𝑛
4  to Σ1

𝑝 2

√𝑛
4  (Question 2; see Figure 

41). In this case, Monica’s meaning for 𝑝 was a fixed value corresponded to the position 

of the partial sum and her meaning for 𝑛 was the whole number values in the interval 

[1, 𝑝] comprising the input values to 𝑓(𝑛). 

Figure 41 

Monica’s Personal Expressions after Introducing the Inscription 𝑝 

 

                    

 

Monica continued to use the inscription 𝑝 to refer to the upper limit of summation 

for a partial sum until Day 5, when she attributed the idea of “partial sum” to the 

inscription 𝑝 in her expression 𝑆𝑝 (see Example 3 from the Concept Indicator section of 

this chapter). After this change in attributed meaning, Monica proposed using the 

inscription 𝑚 to re-present the upper limit of summation for a partial sum. She continued 

to use the inscription 𝑚 for the remainder of the teaching experiment.  

When describing a placeholder in terms of a fixed or cloze inscription, I found it 

necessary to differentiate between Monica’s arbitrary reasoning about her personal 

expression template and her reasoning about specific partial sums in the interview tasks. 

In the context of the interview tasks, I consider the upper limit of summation in Monica’s 

personal expression template to be a cloze inscription because she used various numerical 
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marks for this inscription. In the context of her arbitrary reasoning about her personal 

expression template, I consider her inscription 𝑝 (and subsequently, 𝑚) to be a fixed 

inscription with a singular mark set (whose lone element changed at various times 

according to her needs).  

Example 2: Monica’s Use of Subscripts as Placeholder Parameter Inscriptions. 

In my description of Monica’s use of the personal expression template 𝑺□ as an indicator 

for a particular sequence, I shared a transcript discussion in which Monica used a variety 

of subscripts by which to differentiate between various sequences. Soon after this 

discussion, Monica began utilizing the personal expression template 𝑺□𝒏
 to re-present a 

particular sequence. Monica’s most common instantiation of this template was 𝑺𝒂𝒏
, 

through which she re-presented her idea of “sequence” with the inscription 𝑺 and the 

value of the 𝒏th term in the sequence with the expression 𝒂𝒏. When I asked Monica 

about her predominant use of 𝒂 as her 1st-level subscript inscription (as opposed to other 

marks), she said the following:  

Monica: Um, because if you’re just working on one sequence and we just 

defined 𝑎 as meaning, like, those values, then I would just use 𝑎. But I 

could have picked a different letter for 𝑎. 

Interviewer: Ok. So, in what situation would you imagine needing to use 𝑆𝑎𝑛
 and 

𝑆𝑏𝑛
? 

Monica: If you were like, comparing two sequences. And so, 𝑆𝑎𝑛
 meant 

something different than what 𝑆𝑏𝑛
 means, then, that would be, I think, a 

justified time to use a different letter other than 𝑎, that wasn’t also being 
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used for, like, something else. Like, I wouldn’t use 𝑆𝑛𝑛
 because I’ve 

already used 𝑛. 

Interviewer: Ok, so 𝑎 would work for most problems that you’re going to use. But 

if you have several sequences you’re comparing to each other, then you 

would use further letters as needed. 

Monica: Yeah. Yes. 

In this excerpt, Monica stated that her first-level subscript referred to the values of 

a particular sequence. In other words, Monica envisioned that for a specific situation, she 

would attribute the values of one sequence to the 1st-level subscript inscription in her 

expression 𝑆□𝑛
. For this reason, I classify Monica’s 1st-level subscript inscription as a 

placeholder parameter. 

I also classified Monica’s 1st-level subscript as a cloze inscription, as opposed to 

my classification of her use of 𝑝 as a fixed inscription for an upper bound of summands 

for a partial sum. I classified the 1st-level subscript as a cloze inscription because 

although Monica typically re-presented the attribute of sequence values through the mark 

𝑎, she acknowledged that she could use other marks, such as 𝑏, for this inscription. 

Consequently, Monica’s mark set for her first level subscript in her personal expression 

template 𝑆□𝑛
 to be comprised of all lowercase English letters with the exception of 𝑠 and 

𝑛.21 

 
21 I considered removing 𝑝 as a possible mark for this inscription as well. Monica was very clear that 𝑆𝑝 

denoted (to her) the sequence of partial sums, which she seemed to consider a distinctly different entity 

than a typical sequence. 
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Placeholder Inscription Type 2: Variable. Thompson et al. (2019) refer to a 

variable as an inscription to which a student attributes multiple (varying) values of a 

quantity within a situation. In the following paragraphs, I provide one example from 

Monica of her use of inscriptions as placeholder variables. 

Example 1: Monica’s Use of Placeholder Variable Inscriptions for Independent 

Variables of Functions. In this excerpt, I describe Monica’s use of different marks for 

her original inscription 𝒏, which she used to denote the summand positions of a series 

that would be evaluated in the function 𝒇(𝒏) in her personal expression template 𝜮𝟏
𝒑

𝒇(𝒏) 

for a partial sum.  

At the end of Monica’s Day 2 interview, I spontaneously introduced a series 

whose general summand changed at some point in the series. The specific series I 

presented was 1 + 2 + 3 + 4 + 5 + 8 + 11 + 14 + ⋯, which I described to Monica as 

having a (recursive) pattern of adding 1 for the first five summands and the (recursive) 

pattern of adding 3 for the next few summands (see Figure 42; the vertical black line was 

added by Monica). I then asked Monica how she would symbolize this series. 

Figure 42 

Spontaneously Introduced Series at the End of Day 2 Interview 
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Monica’s initial reaction was that she could not symbolize the spontaneous series 

with the inscriptions in her glossary. Eventually, she proposed dividing the series into 

multiple pieces and defining a different function for each piece. The following transcript 

shows Monica’s reasoning process for constructing the expression (Σ1
5𝑛) + (Σ6

10𝑓(𝑥)) +

(Σ11
15𝑓(𝑘)) to re-present this spontaneous series (see Figure 43). 

Monica: So this would not work [i.e., symbolizing the spontaneous series] with 

what I have written in my, like, glossary. (…) But if you, if I had to find, 

like, a sum of some kind, I would break it apart (creates black dividing 

line between summands 5 and 6 in the series) and then I would do all of 

this, the first half, as one [expression], where my function would be just 

𝑓(𝑛) is just 𝑛, right, so like 1 is just the first position, 2 is the second. And 

then here [indicates right of black line] this I would have to do another one 

[i.e., expression] where 𝑓(𝑛) is a different function. So, yeah, like if they 

don’t have the same pattern then I couldn’t do anything that I’ve done so 

far. 

(omitted dialogue) 

Interviewer: Ok, so let’s play make believe for a minute, can you just write out 

what you would do for this [i.e., symbolizing the spontaneous series]? And 

I mean, let’s make this even more consistent, we’ll imagine that the 

[summand] pattern changes every five terms. 

Monica: Ok, Ok. (writes expression (𝛴1
5𝑛) + (𝛴6

10𝑛) and then attempts to 

determine an explicit rule for generating summands 6 to 10 with which to 

replace 𝑛) Uh, wait, I don’t know what I would even do, this is so bad! 
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Interviewer: That’s ok, let’s just pretend, let’s just pretend that you know the 

pattern. 

Monica: Ok, (erases 𝑛 in Σ6
10𝑛) I will pick a different letter just so that these are 

clear, these are clearly not the same things going on (writes (Σ1
5𝑛) +

(Σ6
10𝑓(𝑥))). 

Interviewer: Ok, and we haven’t even made up what the pattern is for the next 

five [summands], but yeah. 

Monica: Right, but and then, I would put, instead of 𝑓(𝑥), I would put, yeah, a 

different function is like the point that I would want to make, and that 

would be, 𝑓 of, you know, 𝑓(𝑘) or whatever. 

Interviewer: Ok, so go ahead and just write that out, what you would imagine the 

third one [i.e., expression] being. 

Monica: (writes (𝛴1
5𝑛) + (𝛴6

10𝑓(𝑥)) + (𝛴11
15𝑓(𝑘))). If the pattern changes every 

five positions, then I would do this, and I would have to know what it was 

also, what the pattern change was, to make an 𝑓(𝑘) or to make an 𝑓(𝑛). 

This should be 𝑓(𝑛), I just made 𝑓(𝑛) equal to 𝑛, so I kind of skipped a 

step. 

Figure 43 

Monica’s Personal Expression for the Spontaneous Series 
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 In Monica’s initial reasoning about symbolizing the spontaneous series, she 

referred to two functions through which she wished to re-present (1) the first five 

summands of the series and (2) the remainder of the series. Although Monica recognized 

that the function rules required to generate these summands would differ, she referred to 

each function using the expression 𝑓(𝑛). However, after Monica failed in her attempt to 

construct a closed-form, explicit rule for generating the summands of the series in terms 

of her inscription 𝑛, she began to write different expressions to re-present the summands 

(i.e., 𝑓(𝑛), 𝑓(𝑥), 𝑓(𝑘))22. As Monica created the various expressions she used to re-

present to the spontaneous series, she stated that she used different inscriptions for each 

independent function variable because the functions were clearly different (to her).  

In this instance, Monica leveraged her personal expression template Σ1
𝑝𝑓(□) to 

construct various instantiations for the summands in the spontaneous series. In each 

instantiation, the numerical mark that she substituted for her inscription 𝑝 served as a 

placeholder parameter (in the context of that expression) that was fixed in the situation. 

In contrast, the non-numerical marks she utilized to denote the summands for each 

section of the series served as placeholder variables (in the context of each expression) 

whose values varied according to the constraints of the index values ornamenting the 

inscription Σ. Additionally, Monica used multiple marks, including 𝑛, 𝑥, and 𝑘 in the 

instantiations of her template. Thus, I consider the placeholder variable through which 

Monica re-presented the summand positions of the spontaneous series to be a cloze 

inscription with a mark set corresponding to (at least) the lower-case letters 𝑛, 𝑥, and 𝑘. 

 
22 Monica’s symbolization could also be considered an instance of using function notation (or at least the 

function name) as an idiom (Musgrave & Thompson, 2014). 
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 Monica probably chose to use different inscriptions for the independent variable 

in each function rule for one of two reasons. First, Monica may have chosen to use 

different inscriptions in each function rule expression (i.e., 𝑓(𝑛), 𝑓(𝑥), 𝑓(𝑘)) because she 

recognized that the inputs for each function were different values. In this instance, she 

might have considered it necessary to use different inscriptions to denote the positions 1-

5, 6-10, and 11-15 of the spontaneous series. Second, Monica may have chosen to use 

different inscriptions in each function rule expression because she recognized that each 

function's explicit, closed-form rules would differ. In this case, it might have made no 

sense to Monica to use the inscription 𝑛 twice to write 𝑓(𝑛) = 𝑛 for the first five 

summands and 𝑓(𝑛) = 3𝑛 − 10 for the next five summands. Instead, Monica may have 

considered it more authentic to use the function rules 𝑓(𝑛) = 𝑛 and 𝑓(𝑥) = 3𝑥 − 10 to 

denote what she considered distinct function rules with distinct input values.  

Monica’s symbolization also exhibited similarities and differences from the 

conventional methods that mathematicians use to describe piecewise functions, such as 

𝑓1(𝑛) = 𝑛 for 𝑛 = 1, … ,5; 𝑓2(𝑛) = 3𝑛 − 10 for 𝑛 = 6, … ,10. Similar to the conventional 

example I provided, Monica used the same inscription 𝑓 in each piece of her rule for the 

spontaneous series. There was no clear evidence at this moment for the meaning that 

Monica attributed to the inscription 𝑓, although previously in the interview she had 

expressed that 𝑓 was a syntactic convention to denote a function (similar to her use of 𝑑𝑥 

with integral notation; see Example 1 of concept indicator inscriptions). Monica also 

introduced distinct marks to re-present the different rules she perceived for each piece of 

the function. However, instead of introducing a placeholder parameter ornamentation 
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(e.g., subscript on 𝑓1), Monica attributed this meaning to the marks 𝑛, 𝑥, and 𝑘 (her 

independent variable inscriptions).  

Although the data does not permit a rigorous justification of Monica’s 

symbolization, I offer the following conjecture. In the conventional symbolization 

example for the spontaneous series that I provided in the previous paragraph, there were 

five distinct ideas in the expression. First, the inscription 𝑓 is a concept indicator to 

denote the name of the function (and the function concept). Second, the subscripts in the 

expressions 𝑓1 and 𝑓2 convey the distinctive nature of each piece of the function. Third, 

the variable 𝑛 denotes the values of the independent variable of the function. Fourth, the 

expression 𝑛 = 1, … ,5 conveys the relevant values of the domain with regard to a 

particular piece of the function. Finally, the entire expression 𝑓1(𝑛) denoted the output 

values for one piece of the function.  

Monica likely attributed all five ideas I presented in the previous paragraph to her 

symbolization. For instance, Monica appeared to attribute the concept of function to her 

inscription 𝑓 (idea 1), the values of the independent variable to the argument of 𝑓 (i.e., 

𝑛, 𝑥, 𝑘; idea 3), and the entire expression 𝑓(𝑥) to the output values for the second piece of 

the function (idea 5). Monica also likely attributed the relevant values of the domain for 

each piece of the function (idea 4) to the indices of summation (i.e., Σ6
10𝑓(𝑥)). However, 

Monica chose to re-present the distinctive nature of each piece-wise rule (idea 2) by 

writing different inscriptions for the independent variable of the functions (i.e., 𝑛, 𝑥, 𝑘) 

instead of through an indexing subscript. While Monica’s use of 𝑛, 𝑥, and 𝑘 for 

independent variables allowed her to re-present both idea 2 (different piece-wise rules) 

and idea 3 (values of the independent variable) through these inscriptions, her 
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simultaneous imputation of both ideas likely made it more difficult for her to convey her 

thinking. Additionally, the attribution of two distinct concept meanings to the same 

inscription (i.e., parameter and variable) made it difficult for me (at that moment) to fully 

comprehend Monica’s meanings for her symbolization. Due to time constraints, I could 

not inquire further into Monica’s use of different inscriptions for the independent variable 

of her function rules.  

Meaning Type 3 for an Inscription: Relational 

I also identified other moments during the interviews where Monica and Sylvia 

employed inscriptions (or spatial placements of inscriptions) to re-present relationships 

between ideas they were envisioning. In Monica’s and Sylvia’s symbolization, such 

inscriptions or spatial orientations were often uniform across examples. From the 

examples I identified, I defined two types of inscriptions to which Monica and Sylvia 

imputed relational meanings: connectors and comparators. In the following paragraphs, I 

describe two examples of Monica and Sylvia’s use of connector inscriptions and one 

example of Monica’s use of a comparator inscription. 

Relational Inscription Type 1: Connector 

During certain moments of their symbolizing activity, Monica and Sylvia 

appeared to use an inscription (or spatial placement of existing inscriptions) to re-present 

a coordination they envisioned between two components of the same process or quantity. 

I use the term connector to refer to the particular inscription (e.g., =) or spatial placement 

of the inscriptions in an expression (e.g., base and subscript) through which Monica and 

Sylvia re-presented this coordinated relationship they envisioned. 
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In this section, I share two examples of Monica and Sylvia’s use of connectors to 

symbolize relationships they constructed between various ideas. I first describe Sylvia’s 

use of a relational inscription to connect an attribute of a quantity and the value of a 

quantity that she envisioned. I then revisit Monica’s use of subscripts to present how a 

student might spatially orient the inscriptions within an expression to re-present a 

relationship.  

Example 1: Sylvia’s Connector Inscription “=” to Relate Process and Result. 

Sylvia attributed several meanings to her inscription “=” throughout the first five days of 

the interview. Despite this myriad of meaning, the most consistent idea she attributed to 

her inscription = was a relationship between a process and its result. In the following 

paragraphs, I describe Sylvia’s various meanings she attributed to her fixed inscription = 

(and the commonality of the relational meaning) throughout these sessions of the 

teaching experiment. 

Sylvia initially incorporated the inscription = as a component of other expressions 

in her glossary. For example, at the conclusion of the Day 1 interview, Sylvia proposed 

the expression 𝑝(𝑛) = to (1) denote the pattern to summands in a series (i.e., attribute) 

and (2) the formula by which to generate the value of this term (i.e., value; see Figure 

44). When I asked Sylvia to construct a personal expression for Ivy’s 4th Series (i.e., 
6

1
−

6

4
+

6

9
−

6

16
+ ⋯), Sylvia wrote the expression Σ−𝑛=1

+n=37
𝑝(𝑛) =

6

𝑛2 (see Figure 45). In her 

description of her expression, Sylvia referred to her entire expression 𝑝(𝑛) =
6

𝑛2 as the 

“pattern” for the series. Sylvia also stated that she chose to use the inscription 𝑝 in her 



 

  213 

glossary because p is the first letter of the word “pattern,” which is evidence that she 

considered the inscription 𝑝 to be an indicator of the concept of pattern. 

Figure 44 

Sylvia’s Glossary Entry for her Expression 𝑝(𝑛) = 

 

Figure 45 

Sylvia’s Personal Expression for Ivy’s 4th Series 

 

During the Day 2 interview, Sylvia introduced the expression 𝑣(𝑛) = to 

differentiate between finding a recursive pattern for generating consecutive summands 

and an explicit rule for generating a particular summand (see Figure 46)23.  

Figure 46 

Sylvia’s Glossary Entry for her Expression 𝑣(𝑛) =  

 

 
23 During the Day 3 interview, Sylvia stated that the inscription 𝑣 in 𝑣(𝑛) = stood for “value” (i.e., value of 

a summand in the series), which implies she still used the inscription 𝑣 as an indicator of the kind of 

function she wanted to re-present.  
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However, when I asked Sylvia to symbolize partial sums and series, she no longer used 

the compound expression of 𝑣(𝑛) and its closed-form rule (separated by the inscription 

=), as she had during the Day 1 interview (see Figure 47). 

Figure 47 

Sylvia’s Personal Expression for Series B 

 

During the Day 3 interview, I explicitly asked Sylvia to describe why she had 

included the inscription = in her expression 𝑣(𝑛) = in her glossary. Sylvia’s response 

indicated her desire to re-present a connection between the summand values of the series 

and the formula by which she could generate these values: 

Interviewer: My next question for you is, for this 𝑣(𝑛) down here and the 𝑝, on 

both of these I see an equal sign. But on some of your other inscriptions, 

like the first three for example, there are no equal signs. So I was 

wondering why you put an equal sign on those [symbols]. 

Sylvia: I don’t know if it adds, well, it kind of does add something to the 

inscription. Because it kind of suggests that there is supposed to be an 

answer, kind of. Like, for 𝑣(𝑛) you’re trying to find out the formula. (…) 

But yeah, the 𝑣(𝑛) =, I don’t know. I guess it just, I kinda just wanted it 
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to be obvious that something is supposed to follow that. Kind of like a ‘fill 

in the blank’ moment. 

Interviewer: Ok, so it’s indicating, or possibly indicating that there is something 

that is supposed to be on the other side [of the equals sign]? 

Sylvia: Mm-hmm. 

Interviewer: (…) When you’re imagining what is going to be on the other side of 

that equal sign, what are you imagining? We’ll start with 𝑣(𝑛). 

Sylvia: Um, some kind of formula involving 𝑛 that you can plug in 𝑛, so like the 

3rd term or the 5th term, and then you’ll get the value of that term in the 

series. 

In this excerpt, Sylvia initially questioned her reason for including the inscription 

= with her expression 𝑣(𝑛) = in her glossary. As she reflected, she ultimately stated that 

she included the inscription = to serve as a reminder that she should complete the 

expression 𝑣(𝑛) = with a closed-form rule for the general summand of a series. In this 

moment, Sylvia attributed two meanings to the inscription =. First, she used the 

inscription = to re-present the connection she envisioned between her expression 𝑣(𝑛) in 

her personal expression template Σ𝑛=□
□ 𝑣(𝑛) and the formula by which she would 

calculate the values of these summands. Second, she used the inscription = as a 

command operator to re-present the process of finding the closed-form explicit rule for 

the general summand to complete an instantiation of her personal expression template 

𝑣(𝑛) = □. Still, the primary purpose of Sylvia’s inscription = (in the context of her 

personal expression template 𝑣(𝑛) = □) was to re-present the relationship between the 

summands of a series and a formula by which she could determine these values.  
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As Sylvia continued to use her inscription = during the Day 4 and Day 5 

interviews, her verbal definitions for this inscription aligned more and more with that of a 

command operator. Finally, on Day 5, Sylvia formally added the inscription = as a line 

item in her glossary with the definition “tells you to find the exact pattern or formula of 

something” (see Figure 48). Still, Sylvia self-identified her inscription = as describing a 

relationship between an inscription such as 𝑣(𝑛) that she used to re-present an attribute of 

a quantity and an expression which she could use to re-present the actual value of the 

quantity (if she could determine it). 

Figure 48 

Sylvia’s Definition for the Inscription =  

 

Example 2: Monica’s Use of Subscripts as Connectors to Spatially Relate an 

Attribute of a Quantity and its Value. As I discussed previously in this chapter, Monica 

developed the personal expression template 𝑺□𝒏
 over the course of the interviews for 

Days 3-5 to re-present her images of various sequences. In these moments, Monica used 

the inscription 𝑺 as an indicator to re-present the general concept (i.e., attribute) of a 

sequence, her 1st-level subscript as a placeholder parameter to distinguish sequences 

within a situation, and her inscription 𝒏 as a placeholder variable to re-present the 

positions of the terms in the sequence. 
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Although Monica did not explicitly justify her use of subscripts during the 

interview, I consider her spatial placement of the various inscriptions in her template 

𝑆□𝑛
to constitute a relational inscription. Specifically, Monica used each subscript level to 

differentiate between specific conditions of a general attribute she was considering. For 

example, Monica stated that she chose the inscription 𝑆 to denote the concept of 

“sequence” but introduced a subscript as a distinguishing agent when she had to reason 

about more than one sequence in a situation (see Example 2 in the Placeholder: Parameter 

section of this chapter). In this way, Monica’s subscript (1) implied a relationship 

between her general concept of sequence and a specific sequence she was considering 

and (2) showed spatial deference to the general concept of sequence.  

Monica used the 2nd-level subscript as a placeholder variable to re-present the 

positions of the various terms within a specific sequence. Thus, when Monica wrote 𝑆𝑎𝑛
, 

she re-presented (1) the broad concept of “sequence” through her inscription 𝑆, (2) the 

narrower notion of a specific sequence through the 1st-level subscript 𝑎, and (3) the 

localized idea of term positions for a specific sequence (with a specific rule for 

generating term values) through her 2nd-level subscript 𝑛. Monica’s use of subscripts 

constitutes her spatial construal of each inscription as a connector (in addition to the other 

meanings she previously ascribed to these inscriptions individually). 

Relational Inscription Type 2: Comparator  

During my analysis, I found a moment in which Monica introduced an inscription 

to compare the values of two quantities she envisioned within the same context. In this 

instance, Monica’s symbolizing activity was not oriented toward showing a connection 

between a process and result (i.e., Sylvia’s use of =) or an attribute of a single quantity 
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and its value (i.e., Monica’s use of subscripts). Rather, Monica attempted to re-present 

her method for comparing the values of two quantities for the purpose of making an 

inference about the quantities’ relationship. I used the term comparator to code instances 

in which Monica or Sylvia attributed a comparative process (and resulting implications of 

the comparison) to a particular inscription. In the paragraphs below, I describe Monica’s 

use of the inscription > to compare the value of the terms in the sequence of partial sums 

against the lower bound of an 𝜖-strip during the Day 5 interview. 

Example 1: Monica’s Use of > as a Comparator to Relate Partial Sums and 

Error Bounds. At the end of the Day 5 interview, I introduced the 𝝐-strip activity in the 

context of the sequence of partial sums. In the activity (see Figure 49 for an example), I 

portrayed partial sums as dots, a possible convergence value with a black horizontal line, 

and an error bound 𝝐 around the potential convergence value as a translucent horizontal 

yellow region. Additionally, I differentiated between the partial sums inside the 𝝐-strip 

(which I colored red) and the dots outside the strip (which I colored purple). During the 

task, I chose a center value and presented several values of 𝝐 to Monica, asking for each 

value of 𝝐 how many dots she believed were inside the 𝝐-strip and how many dots were 

outside of the strip. After several iterations of this task for various values of 𝝐, I asked 

Monica to provide a general description for how she might determine the number of dots 

inside or outside the 𝝐-strip. In response, Monica said: 

Monica: Well, I guess you could find what y-value you get, like, if the bottom of 

our yellow region [i.e., 𝜖-strip] was its own line, what the y-value is there, 

and then make some kind of, like inequality where you have, your 

sequence with a variable and you solve with this inequality where it’s less 
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than whatever that lower line is. And then you would solve for 𝑛, which 

would be your position, and then that would be the number, I think, of 

points that were outside of it on the bottom line.  

Figure 49 

Screenshot from 𝜖-strip Activity on Day 5 

 

In Monica’s response, she described (1) determining the value corresponding to 

the lower bound of the 𝜖-strip and (2) constructing an inequality by which she could 

determine the value of 𝑛 (i.e., position in the sequence) corresponding to the final dot 

outside of the 𝜖-strip. In many ways, Monica’s intuitive reasoning about determining the 

number of dots outside the strip corresponds to the formal definition for limit of a 

sequence. For instance, the formal definition of sequence uses an inequality to denote the 

region covered by a particular 𝜖-strip. Also, to prove that a sequence converges to a given 

value, a student must construct a rule for determining a finite number of terms outside the 

𝜖-strip for any positive value of 𝜖.  

At this moment, I conjectured that Monica was considering how to symbolize the 

relationship she conceived between the partial sums, 𝜖-strips, and potential convergence 
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value. When I asked Monica how she might write out her image of the points inside and 

outside the strip, she began to formulate an expression (although she could not initially 

complete it). 

Monica: Um, I guess I would do p sub n is less than (writes 𝑝𝑛 >). Um, I don’t 

know how to write this, where I want it to be, like. (pauses) 

Interviewer: So, why don’t you explain to me what it is that you’re hoping to 

write one more time and then maybe we can come up with inscriptions 

later that will do this work for us. 

Monica: Well, I think that what I want is “center minus epsilon” [after 𝑝𝑛 >]. 

Interviewer: Ok. 

Monica: Because I want, what I was saying earlier, where like if you have, if you 

could make the (…) lower line created by this like 𝜖 in our like yellow 

region, if you could define what that is as like a 𝑦-value, or yeah, then 

your 𝑝𝑛’s that are less than that are going to be below it and outside of it. 

In this excerpt, Monica began to construct an expression by which to re-present 

the dots outside of the 𝜖-strip. Her expression included the following components: (1) the 

expression 𝑝𝑛, which she had previously used to re-present the partial sums in a series or 

terms in the sequence of partial sums and (2) the inscription >, which she used to re-

present the relational concept of “less than.”24 Although Monica was unable to complete 

her personal expression in this moment, she stated that she wanted to re-present the 

 
24 In conventional mathematics, the inscription > is typically referred to as “greater than.” Still, in Monica’s 

verbal explanations, she referred to the inscription > as “less than,” which I take to imply that she was re-

presenting the idea of “𝑝𝑛 less than (quantity)” rather than the conventional “𝑝𝑛 greater than (quantity).”  
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quantity “center minus epsilon” with the remainder of her expression and that she could 

use this quantity to symbolize the partial sums that were outside of the 𝜖-strip. 

In response to Monica’s comment, I recommended that she construct inscriptions 

for the ideas of “center” and “epsilon.” She accepted my suggestion and created the 

inscription 𝐶 for center and 𝐿 for epsilon (she initially wanted to use the letter E for 

epsilon but had used this inscription in a previous interview for another purpose). Monica 

then returned to her incomplete personal expression 𝑝𝑛 > and included her new 

inscriptions (see Figure 50): 

Monica: So, this would be all of the terms that are outside of the shaded region. 

(…) Um, 𝐶 is your center, 𝐿 is the epsilon, so this 𝐶 − 𝐿 is giving you the 

lower bound of that shaded region. And then, you’re solving for 𝑛 which 

is going to give you the term number [i.e., partial sum] of what is less than 

that [the lower line on the 𝜖-strip with value 𝐶 − 𝐿]. So, any, like, terms 0 

or 1 through, yeah, term 1 through this 𝑛 are going to be outside of your 

shaded region depending on what your 𝐿 is. 

Interviewer: OK. And then, so terms 1 through 𝑛 will be outside of the shaded 

region and the implication is that everything else is inside the shaded 

region? 

Monica: Yep, inside, yeah, because then it [i.e., partial sum] will no longer be less 

than this value [i.e., 𝐶 − 𝐿]. 
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Figure 50 

Monica’s Personal Expression for the Partial Sums Outside of an 𝜖-strip    

 

In this excerpt, Monica used the inscription > to show a comparative relationship 

between the values of two quantities that she envisioned: (1) the last partial sum in the 

sequence of partial sums whose value was outside the 𝜖-strip and (2) the lower bound of 

the 𝜖-strip. Monica used the inscription > to re-present her distinction that if the value of 

a partial sum were less than 𝐶 − 𝐿, then that partial sum would exist outside the 𝜖-strip. 

Monica also used her expression 𝑝𝑛 to re-present that there would be 𝑛 dots outside of 

the 𝜖-strip and that these 𝑛 dots would correspond with terms 𝑝1, … , 𝑝𝑛 of the sequence of 

partial sums.  

Summary of Chapter 6 Results 

 In this chapter, I presented three broad meanings that Monica and Sylvia 

attributed to their inscriptions during their symbolizing activity. I categorized these 

meanings as process, concept, and relational.  

I used the term process meaning to denote instances where the students re-

presented carrying out an action through their inscription. I introduced two inscription 

types to categorize Monica’s and Sylvia’s attribution of process meanings: command and 

create operators. The students generally attributed an algorithmic and predictable (to 

them) action to a command operator and an inventive injunction to a create operator. 
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Monica’s and Sylvia’s process-oriented inscriptions were also fixed and did not vary 

from instantiation to instantiation of their corresponding personal expression templates. 

I employed the term concept meaning to describe moments where Monica and 

Sylvia used an inscription to re-present an attribute or value of a quantity (or a general 

topic) they envisioned. I introduced two inscription types to organize their attribution of 

concept meanings: indicators and placeholders. The students generally attributed an 

attribute or topic to an indicator inscription (which often served as a mnemonic device) 

and the values of a quantity to a placeholder. I further categorized inscriptions to which 

Monica and Sylvia attributed one value to a placeholder in a given situation as 

parameters and those that they attributed more than one value as variables. Monica and 

Sylvia’s indicator inscriptions were generally fixed, although Monica frequently 

ornamented her indicators with subscripts to re-present multiple instances of a topic 

within a single example. The students’ placeholder inscriptions were typically cloze, and 

the students employed various marks for their placeholder inscriptions according to their 

needs (although they typically used the same mark when defining or reasoning about a 

placeholder arbitrarily). 

I utilized the term relational meaning to categorize moments in which Monica 

and Sylvia employed an inscription (or spatial placement of inscriptions) to re-present a 

relationship between two ideas they envisioned. I introduced two inscription types to 

categorize Monica’s and Sylvia’s attribution of relational meanings: connector and 

comparator. The students generally re-presented a coordination between (1) a process 

and result or (2) an attribute of a quantity and its values through a connector. Monica re-

presented a contrast between the values of two quantities within a situation using her 
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comparator. Monica’s and Sylvia’s spatial placement of connectors in their personal 

expression templates were fixed but the marks they used as relational inscriptions were 

sometimes cloze (e.g., Monica’s use of various marks for subscripts). I summarize the 

meanings, inscription categories, and properties of these inscriptions in Table 22 on the 

next page. 
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    Table 22 

    Summary of Meanings, Inscription Types, and Properties Presented in Chapter 6 

Meaning Definition Inscription Type Definition Examples Fixed or Cloze? 

Process 

Re-presenting a 

particular action a 

student has 

previously carried 

out (or imagines 

carrying out) while 

reasoning about a 

situation 

Command 

Operator 

An inscription a student uses to re-present a process for 

which the procedural steps are well known (to her), the 

actions within each step of the process are relatively 

algorithmic (to her), and the character of the process’s 

result is fairly certain (to her) 

Σ 

?_? 

∫  

Fixed 

Create Operator 

An inscription a student uses to re-present a process for 

which she can describe the procedural steps generally 

(but not precisely), the action steps of the process are 

investigative and have a high degree of variability (to 

her), and the character of the result is uncertain (to her) 

≁ 

?
#

 
Fixed 

Concept 

Re-presenting a 

topic, an attribute 

of a quantity, or the 

value of a quantity 

Indicator 
An inscription a student uses to re-present an attribute 

(but not necessarily the value) of a quantity 

𝑑𝑥 

𝐶𝑉 

𝑆 

Fixed 

Placeholder 
An inscription a student uses to re-present one or more 

values for a particular quantity they envision 

Parameter:  
𝑝, 𝑚, 𝑆𝑎 

Numerical: 

Cloze 

 

Non-numerical: 

Fixed or Cloze 

Variable:  

𝑓(𝑥), 𝑓(𝑛), 𝑓(𝑘) 

Numerical: 

Cloze 

 

Non-numerical: 

Fixed or Cloze 

Relational 

Re-presenting a 

relationship a 

student envisions 

between the 

meanings they 

attribute to two 

inscriptions or 

expressions 

Connector 

An inscription (or spatial orientation of inscriptions) a 

student uses to re-present a coordination they envision 

between two components of the same process or quantity 

= 

𝑆□𝑛
 

Spatial 

Placement: 

Fixed 

 

Marks: Fixed or 

Cloze 

Comparator 

An inscription a student uses to re-present a comparative 

process (and resulting implications of the comparison) of 

the values of two quantities they envision in the same 

situation 

> 

Spatial 

Placement: 

Fixed 
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CHAPTER 7 

RESULTS PART 3: THE COEVOLUTION OF STUDENTS’ MEANINGS AND 

PERSONAL EXPRESSIONS FOR INFINITE SERIES OVER TIME  

 The material in Chapter 7 is related to my third research question, how do 

students’ symbols and attribution of meaning to these symbols change as their thinking 

about infinite series evolves over time? This chapter is comprised of three major sections. 

In the first section, I describe Monica’s creation of two distinct personal expression 

templates to re-present related ideas (in her mind) for summing function values over an 

interval. In the second section, I review Sylvia’s iterative construction of a single 

personal expression template (and corresponding inscriptions) through which she could 

re-present various types of partial sums and series that she considered to have different 

properties. I discuss the research and instructional implications of this work, along with 

an initial theoretical framework for describing the coevolution of students’ meanings and 

personal expression templates (grounded in Piaget’s theory of reflected abstraction) in 

Chapter 8.  

 The two examples that I share in this chapter largely emanated from my analysis 

of Monica and Sylvia’s symbolization of partial sums and series from Days 1-3 in the 

teaching experiment. I chose to present data from these interview days because (1) my 

analysis of the later interview days involved more topics and forms of representation 

(e.g., convergence definitions, graphs) and (2) Monica and Sylvia did not create 

standalone personal expression templates for any of the major topics during these days. 

Through my analysis of Monica and Sylvia’s symbolizing activity about partial 

sums and series during Days 1-3, I identified (1) the standalone personal expression 
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templates they flexibly used to re-present these topics and (2) the meanings they 

attributed to each inscription within their templates. In the following sections, I describe 

each student’s chronological development and modification of their personal expression 

templates to re-present their meanings for partial sums and infinite series. 

Example 1: Monica’s Construction of Two Personal Expression Templates for Sums 

 As I have reported in previous chapters in this dissertation, Monica initially 

attempted during the Day 1 interview to use an integral sign (∫ ) to re-present partial 

sums and series. The purpose of this section is to chronicle her initial struggle and final 

resolution of whether to use the integral sign (∫ ), the summation symbol (Σ), or both to 

re-present her image of a partial sum. In the following sections, I address Monica’s 

symbolizing activity during Day 1 and Day 2 and her eventual decision to create two 

distinct but related personal expression templates for adding function values. 

Day 1: Using Integrals and Summation to Reason about Partial Sums 

 Monica introduced integral notation while reasoning about how to compute the 

value of the 37th partial sum for Ivy’s 1st Series during the Day 1 interview. Series 1 was 

the divergent p-series ∑
2

√𝑛
4

∞
𝑛=0 , which I presented in the expanded form 

2

√1
4 +

2

√2
4 +

2

√3
4 +

2

√4
4 +

2

√5
4 +

2

√6
4 + ⋯. Monica initially proposed manually adding together the first 37 

summands to determine the value of the 37th partial sum. As she continued to reflect, she 

speculated whether she could compute the value of the partial sum more efficiently. She 

briefly considered using factorial notation (which dynamically decreases by whole 

number values, e.g., 37! = 37 ∙ 36 ∙ … ∙ 2 ∙ 1) but disregarded this idea because she 

recognized that a partial sum contains an additive (and not multiplicative) operation. 
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After the interviewer asked her to compute the sum of the first three summands in a 

calculator, Monica proposed using integral notation (e.g., ∫
2

√𝑥
4

37

1
𝑑𝑥) to simplify the 

calculation of the 37th partial sum (see Figure 51). When the interviewer asked Monica 

why she adopted integral notation, she said the following: 

Monica: Ok, (…) I would think of, like an integral being, like in this case would 

be like the area under a curve. Um, and then in this case I’ve created like 

this expression [i.e., 
2

√𝑥
4 ], that would be my curve. And then I’m looking 

for the sum, so it  [i.e., ∫
2

√𝑥
4

37

1
𝑑𝑥] would be like all the space underneath 

from 1 to 37. 

Interviewer: Ok, when you say “all the space underneath from 1 to 37” is that 

(Monica interrupting: under the curve) the area under the curve? 

Monica: Right, right, right, right, right. That’s what, I don’t know. That would be 

my other guess. But I’m really not confident in that. 

Figure 51 

Monica’s use of Integral Notation to Re-present the 37th Partial Sum 

 

 Monica’s comments in this excerpt imply that she was trying to assimilate the 

notion of computing the value of a partial sum to her personal expression template 

∫ □𝑑𝑥
□

□
, which she had previously used in her calculus courses to re-present the idea of 
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function integration. This personal expression template consisted of five inscriptions (see 

Figure 52): (1) the fixed command operator ∫ , which Monica used to alternately re-

present determining the area under a curve and adding all function output values between 

two input values; (2) the cloze placeholder subscript of the inscription ∫ , which Monica 

used to re-present the position of the first summand comprising a partial sum, (3) the 

cloze placeholder superscript of the inscription ∫ , which Monica used to re-present the 

final summand comprising a partial sum; (4) the cloze placeholder argument of ∫ , which 

Monica used to re-present the function whose area (or output values) she was adding 

together; and (5) the fixed indicator 𝑑𝑥, which Monica used as a syntactic convention to 

re-present the concept of integral.25 

Figure 52 

Monica’s Integral-based Personal Expression Template for a Partial Sum 

 

As Monica began to reason about Ivy’s 2nd series, she began to question whether 

it was appropriate for her to symbolize a partial sum with her inscription ∫ . Ivy’s second 

series was the divergent p-series ∑
5

𝑛
∞
𝑛=1 , which I presented in the expanded form 

5

1
+

5

2
+

 
25 Although there is no explicit evidence of this claim in the previous transcript excerpt, I do provide 

evidence to substantiate this claim in Chapter 6. 
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5

3
+

5

4
+

5

5
+

5

6
+ ⋯. When I asked Monica to describe how she would compute the 37th 

partial sum, she stated that she would either (1) add up the first 37 summands manually 

or (2) use the integral ∫
5

𝑥

37

1
𝑑𝑥 (see Figure 53) to compute this value. Although Monica 

re-presented Monica also stated that she was unsure whether it was “correct” to use an 

integral (in the normative sense) but that using an integral made sense to her for 

computing partial sums. 

Figure 53 

Monica’s Use of an Integral to Re-present a Partial Sum 

 

 After seeing Monica use an integral to re-present the 37th partial sum for two 

series in a row, I decided to further clarify her use of this symbol and the relationship she 

perceived between partial sums and integration. Monica’s response to my question 

revealed that she was still unsure whether her image of integral as “area under the curve” 

aligned with her conception of a partial sum. 

Interviewer: What is it that this integral is going to tell you that helps you to get 

the sum of the first 37 terms? 
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Monica26: So, if I were to just evaluate, like, just put in 37 [for 𝑥 in the expression 

5

𝑥
], that would not be all of them [i.e., summands], right, that would just be 

one [summand] (…) but it wouldn’t be like, you’re not adding the rest of 

them from 1 to 37. Um, so, the, I got my bounds here from, I want to 

know [summands] 1 to 37 (…) Which, now that I’m saying this I’m a little 

bit concerned because I don’t know if this [i.e. the integral] would equal 

the same number. If I were to do it all by hand, and (…) if this was just 

like a random problem by itself, I don’t know if those two numbers [i.e., 

integral and manually-computed sum] would be the same. 

Interviewer: Why, can you say a little bit more about why you might be 

concerned? 

Monica: Um, because (…) in my, like an integral, (…) I’m worried that that 

might be including more than just, like all the numbers between 1 and 2 as 

well. I don’t know if that is correct though. 

Interviewer: Ok, let me see if I can kind of frame what you’re thinking. So, you’re 

thinking about the first term to the 37th term. (Monica: Mm-hmm) And 

you’re trying to compare just adding them up by hand in Desmos or 

something with the integral (Monica: Right). And you’re worried about, if 

I remember right, you said the numbers between 1 and 2. (Monica: Yes). 

So, what do you mean by that? 

 
26 This response is a combination of three distinct responses that Monica provided, separated by interviewer 

questions to clarify the meanings of her terminology. Rather than present the interviewer clarifying 

questions in the transcript, I added the appropriate terminology in brackets that I gleaned through my 

questions. 
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Monica: (long pause) Like if I’m thinking about it backwards, if you were to ask 

me to write out, explain to you what this integral means, I don’t think that 

I would write it out as 
5

1
+

5

2
+

5

3
. Because I, an integral, like the area under 

the curve, is like everything, not just on, like, where the whole numbers 

are. 

Interviewer: I see. So I’m going to try to rephrase what I feel like you’re saying in 

terms of a question. What is the connection between (…) area under the 

curve and 
5

1
+

5

2
+

5

3
 up to 

5

37
? 

Monica: Well, I thought they were the same, and now I’m starting to question 

whether they are or are not the same. 

 In this excerpt, Monica initially stated that she adopted integral notation to 

describe the 37th partial sum because she recognized that she needed to evaluate her 

general summand 
5

𝑥
 for each whole number value from 1 to 37. However, she quickly 

questioned her choice of notation because she was concerned about non-whole number 

values between 1 and 37. Specifically, she recognized that she would not use non-whole 

number values of 𝑥 to compute the value of the 37th partial sum but was uncertain 

whether these values would be incorporated into a computation utilizing an integral sign. 

Monica presented two reasons for her uncertainty. First, she stated that if she were to 

write out a manual computation for an integral27, she did not believe that she would write 

the expanded form of Ivy’s 2nd series (i.e., 
5

1
+

5

2
+

5

3
+

5

4
+

5

5
+

5

6
+ ⋯). Second, she 

 
27 An integral, by definition, cannot be manually computed by writing a string of summands and adding 

them together. However, based on her response, Monica seemed to believe this was possible (or at least 

imaginable). 
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presented an image of integral as area under the curve, which she claimed encompassed 

all values of the independent variable (not merely the whole number values).  

 At this point of the interview, I considered Monica to be thoroughly perturbed 

regarding (1) how to describe a partial sum without resorting to a manual summing of 

individual summands in a calculator and (2) whether a partial sum was a special instance 

of an integral. I subsequently asked Monica to say a little more about her confusion, 

which prompted her to introduce a series of graphical representations to help her further 

grapple with her cognitive conflict (see Figures 54a, 54b). 

Monica: If I were to draw graphs of both of these things, for this actual, like, 

series here [i.e., Ivy’s 2nd series], the graph would look (draws two axes to 

make quadrant 1) (…) in my head I’m picturing like a Riemann sum more 

than I’m picturing like, I don’t even know if this makes sense. (draws 

curve increasing with a decreasing rate) (…) So, what I see this series as 

is we’re adding up, like, if this is like 1, 2, 3, 4 (draws a mark on the curve 

and corresponding marks on the horizontal axes) we’re adding up all 

these y-values here with whatever 
5

1
 is, and 

5

2
 is, (makes marks on vertical 

axis for summand values) and I’m realizing I drew this graph very 

incorrectly. Um, we’re like adding up what these numbers are. And I’m 

not sure that’s the same thing, whereas this graph here (draws a curve that 

is decreasing with a decreasing rate) (…) would be like the entire area 

underneath here (shades the entire area under the curve in her 2nd graph). 

And I’m not sure that those are the same thing. And that’s why I thought 

about Riemann sum because, then, you know, you make like the 
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rectangles based on the 𝑦-value. And I don’t know if those are the same 

because I feel like they’re not. 

Figures 54a (left), 54b (center), and 54c (right) 

Monica’s Graphs Related to Partial Sums (10a), Integration (10b), and Riemann Sums 

(10c) 

 

I then prompted Monica to draw her image of a Riemann sum on her graphs and further 

compare the difference (in her mind) between a Riemann sum and an integral (see Figure 

54c). 

Interviewer: Could you draw in what you’re imagining with these rectangles and 

Riemann sums? 

Monica: (draws in rectangles on unshaded graph) Except that my issue with this 

is that like with Riemann sums you are adding up the area of these 

rectangle but in this series I would think that you are adding only the 𝑦-

value of them, not the entire area. So like, when you’re doing a Riemann 

sum you multiply like, the rectangle, to get like length times width. I 

wouldn’t, that’s not how I would describe the series, though, this is just 

the 𝑦-value, like this (indicates first summand 
5

1
) is the 𝑦-value of this 

function at 1, when 𝑥 is 1. That’s not the same thing as this entire area 

(indicates rectangle). 
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Interviewer: Ok, and how are they different? 

Monica: Actually, if the base is 1, then it is the same, right? Because you’re 

multiplying the number [the 𝑦-coordinate] by 1. So maybe they are the 

same. Ok, I still think that this integral is maybe correct. I think that this is 

my best like, guess at least. 

Interviewer: Ok, can you summarize what your guess is? 

Monica: Yeah. So, I. Ok, so if I were to try to find the sum of the first set of terms 

and I didn’t want to just add them all by hand, because it was a very large 

number that I was trying to find. I would make the series into a function 

like this (indicates general summand 
5

𝑥
 in integration notation) and then I 

would integrate that function. And the bounds of that integral would be 

wherever you were starting, what term number you were starting on to 

what term number you were finishing on. So, if you were like 2nd to 10th, I 

would do 2 to 10 with whatever function you’ve made by just looking at 

your series. 

 Monica’s response to my question about the relationship between Riemann sums 

and integrals is significant for several reasons. First, Monica provided a normative 

explanation of a Riemann sum and (eventually) decided that placing rectangles with a 

width of 1 on the graph of the general summand28 would perfectly produce the summands 

of a series. Second, Monica equated an integral and a Riemann sum using rectangles with 

width 1, and claimed that for this reason, she would continue to use integral notation to 

 
28 Monica exclusively drew continuous graphs during the first interview. However, she failed to clarify 

(and the interviewer did not explicitly ask) regarding the domain of the graphs she drew.  
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re-present (to herself) specific partial sums. Finally, Monica consciously decided to adopt 

integral notation as her first personal expression, which necessitated her assimilation of 

her image of partial sums into her scheme for integration.  

Monica also used her personal expression template ∫ □𝑑□
□

□
 to re-present the 37th 

partial sum for Ivy’s 6th series. After she reasoned about Series 6, I asked Monica to 

compare the methods she employed to determine specific summands (Question 1) and 

partial sums (Question 2) across the series. While describing her thinking about partial 

sums, Monica spontaneously introduced the idea of summation notation. She noted that 

although she had more experience with integrals than summation, she had started to use 

summation notation in her calculus coursework29. Monica stated she was extremely 

unsure of the conventional meaning for summation notation but believed this notation 

might be the appropriate way to symbolize a partial sum. When I asked Monica to 

contrast integral and summation notation in the context of the graphs she created for 

Series 2 (see Figures 54a-54c), she stated: 

Monica: The integral to me, I don’t think is the same thing as (…) this Riemann 

sum situation. Because here, we’re just using, like, this is the 𝑦-value 

we’ve got when 𝑥 is 1 (indicates 
5

1
), and this is the 𝑦-value when 𝑥 = 2 

(indicates 
5

2
). And nowhere in this series are we incorporating like the 𝑦-

value when 𝑥 is a number between 1 and 2. Because that’s not like part of 

this here. But that would be, I think, part of the integral. And that was 

 
29 The sequences and series unit for Monica’s calculus course took place between her Day 1 and Day 5 

interviews. 
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where I was like, these don’t feel like they’re the same thing. (…) I’m 

imagining that’s why the summation exists, and I’m, I would think that 

that’s the difference between those two things. But I don’t really know 

what the summation, like, is. But that’s the thing that felt wrong about the 

integral, was that I would think that you would have 
5

1.1
, 

5

1.2
, and (…) you 

would have like all these numbers in the middle.  

In this excerpt, Monica stated that she believed the intention of summation notation was 

to compute the value of partial sums but was unsure whether this was the conventional 

meaning for this notation. She continued to contrast her image of a partial sum as a 

summation of function values corresponding to whole-numbered inputs with an image of 

an integral as a summation of all function values between the lower and upper bound.  

 Despite Monica’s continued waffling between the command operator she wanted 

to utilize in her personal expression template for partial sums (i.e., ∫  or Σ), her meanings 

for computing partial sums seemed (to me) to have stabilized. For instance, Monica 

created a concise two-step written rule for determining the value of a partial sum in a 

series that largely mirrored convention (see Figure 55). When I asked Monica whether 

she envisioned utilizing an integral symbol (∫ ) or a Σ (Sigma) with her written rule, she 

again expressed unsurety about the relationship between an integral and a Sigma. In 

particular, she stated she felt more comfortable using the integral but had recently been 

introduced to the inscription Σ in her coursework. Additionally, Monica recalled seeing 

examples where a summation and integral were used in the same problem (a possible 

reference to the integral test), which lead her to speculate that the expression Σ1
𝑛𝑛 might 
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change to ∫ 𝑛
𝑛

1
𝑑𝑛. Monica symbolized this relationship by drawing an arrow between 

both expressions (see Figure 55). When I asked Monica to clarify how she envisioned 

symbolizing a partial sum (instead of presenting the methods she saw in her coursework), 

Monica again stressed that she would prefer to (1) manually compute the value of a 

partial sum if there were a limited number of summands or (2) use an integral to compute 

the value of the partial sum instead of a Σ.  

Figure 55 

Monica’s Written Rule and Symbolization of Partial Sums 

 

 During the personal expression creation task, Monica proposed the personal 

expression template Σ□
□□ to re-present her image of a partial sum (see Figure 56). Her 

personal expression template was comprised of four distinct inscriptions. First, Monica 

used the inscription Σ as a fixed command operator to re-present the additive process of 

computing the value of a partial sum from a set of summands. Second, Monica used the 

subscript of Σ as a cloze placeholder to re-present the position of the first summand 

comprising a partial sum. Third, Monica used the superscript of Σ as a cloze placeholder 

to re-present the position of the final summand comprising a partial sum. Finally, Monica 
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used the argument of Σ as a cloze placeholder to re-present the pattern (or function rule) 

by which she could generate the summands of the series. 

Figure 56 

Monica’s Summation-based Personal Expression Template for Partial Sums 

 

When Monica included her personal expression template in her glossary, she 

wrote her template in the form Σ1
𝑛𝑓(𝑛) (see Figure 57). In her glossary, Monica proposed 

the inscription 𝑛 (i.e., Inscription 3) to convey “the number of the term that you are 

looking for” in the context of a partial sum. She initially considered writing “the value of 

the term” but accepted my proposal of the word “position” in place of “value.” When I 

asked Monica why she preferred “position,” she shared that she considered the general 

summand to be a function, and the “value” of the function referred to the output of the 

function (in her mind). Second, Monica proposed the expression 𝑓(𝑛) (i.e., Inscription 4) 

to convey “a function that, when evaluated at n, will produce the value of n in the series.” 

Monica stated that the purpose of the function was to “define the pattern that you are 

seeing in the series.” When the interviewer asked what Monica meant by “the pattern,” 

Monica described the general summand of a series. Finally, Monica proposed the 

expression Σ1
𝑛𝑓(𝑛) (i.e., personal expression template) to re-present a specific partial sum 

of a series. She stated that the information she wished to convey through Σ1
𝑛𝑓(𝑛) was 
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“evaluating not just 𝑛, but we’re evaluating the function we’ve created [i.e., 𝑓(𝑛)]. And 

then the bounds there are (…) from 1 to whatever partial sum you are looking for.” In 

other words, Monica wished to use her expression Σ1
𝑛𝑓(𝑛) to re-present her process of 

iteratively evaluating the function at whole-number values of the index from 1 to 𝑛 and 

then adding these function values together to compute the 𝑛th partial sum. 

Figure 57 

Monica’s Glossary at the Conclusion of the Day 1 Interview 

  

As a clarifying question, I highlighted the two instances of the inscription 𝑛 in 

Monica’s expression Σ1
𝑛𝑓(𝑛), and asked her whether these inscriptions had the same 

meaning (to her). In response to my question, Monica again brought up the notion of an 

integral. After a few clarifying questions to try and determine why Monica had 

spontaneously reintroduced the idea of an integral, Monica eventually said she was 

“representing all of the terms.” When I asked Monica what she meant by “representing 

all of the terms,” she said the following: 

Monica: I’m treating this like an integral. 
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Interviewer: And once again, when you’re saying “like an integral,” what do you 

mean by that? 

Monica: I’m assuming it has the same rules here. Like, I’m assuming it works the 

same. 

Interviewer: (…) When you saying it “has the same rules” as an integral, I’m 

trying to understand what you mean by that.   

Monica: So, what I want to happen is that this 𝑓(𝑛) (…) would be 𝑓(1) and then 

also 𝑓(2) and then also 𝑓(3). That’s what I’m trying to say. And I don’t 

know if that is what that symbol means [i.e., 𝑓(𝑛)], but that’s what I want 

it to mean. That’s what, I’m hoping a symbol exists that means that. And 

that’s what I want to be using here.  

 In this excerpt, Monica revealed that she considered her expression 𝑓(𝑛) to 

denote an iterative process of evaluating the function 𝑓 at each whole number value 

between 1 and 𝑛. She also continued to compare her images of partial sums and integrals. 

As I continued to ask clarifying questions about Monica’s integral-partial sum 

connection, she eventually stated that she considered both ideas to constitute similar 

processes. Specifically, she imagined each concept to imply evaluating a function rule at 

multiple values of the domain and then performing an operation on the resultant function 

values. 

 At the end of the first interview, it was clear that Monica had constructed two 

distinct personal expression templates: ∫ □𝑑𝑥
□

□
 and Σ□

□□. To Monica, these expressions 

were highly similar and she attributed analogous (or identical) meanings to corresponding 

inscriptions in each template. For example, Monica re-presented the idea of adding 
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function values through both ∫  and Σ. However, Monica was (1) unsure whether she 

could re-present her image of a partial sum as Reimann rectangles through her inscription 

∫ . In the case of the subscript, superscript, and argument in each personal expression 

template (i.e., Inscriptions 2, 3, and 4), Monica attributed identical (in my mind) 

meanings to each corresponding inscription. However, Monica’s Inscription 5 from her 

integral expression template (i.e., 𝑑𝑥) was unique to this template and did not occur in the 

other template. 

Day 2: Creating Two Distinct Personal Expression Templates for Adding Function 

Values 

In preparation for the Day 2 interview, I decided to present Monica with 

contrasting hypothetical definitions (and symbolizations) of partial sums to help her 

reason through the unsurety she exhibited during Day 1 regarding potential differences 

between her command operators ∫ and Σ. The two prompts (presented by hypothetical 

students) included (1) Yolanda, who utilized integral notation to describe partial sums, 

and (2) Zeb, who used summation notation to describe partial sums (see Figure 58). I also 

incorporated Monica’s image of “area under the curve” into each definition based on her 

frequent reference to this idea during the Day 1 interview.  

When I presented the two contrasting statements, Monica stated that Yolanda and 

Zeb’s arguments reflected her issue with symbolizing partial sums from the Day 1 

interview. She then expressed a slight preference for Zeb’s argument. When I asked her 

why she preferred Zeb’s argument, she referenced the inclusion of the word "position" as 

an indication (to her) that Zeb was only considering whole-number function inputs. In 

contrast, she claimed that Yolanda’s argument included non-whole number inputs 
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(Monica specifically referred to all real numbers between 1 and 2) and stated that the 

point of an integral was to add up “infinitely small” Riemann sums.  

Figure 58 

Yolanda and Zeb’s Definitions for Partial Sums 

 

 

  

 After Monica’s initial response, I asked her to draw graphs to help her convey her 

image of what each student was describing in their argument. For Yolanda’s argument, 

Monica drew a monotone decreasing curve and shaded the region between the curve and 

the horizontal axis (see Figure 59). Monica claimed that Yolanda’s expression ∫
2

√𝑛
4

𝑛

1
𝑑𝑛 

represented the “entire space” or area under the curve that she had drawn. For Zeb’s 

argument, Monica drew a similar curve but (1) partitioned the horizontal axis into unit 

increments and (2) marked the corresponding function values on the trace of the curve 

(see Figure 60). Monica then stated that for Zeb’s argument, only the function values she 

had marked would be computed and there would be “space” between the various 
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summands. For Yolanda’s argument, Monica stated that every function value on the trace 

of the curve would be added together to constitute the area under the curve: 

Monica: Here, with Yolanda (…) every single, infinitely close together point on 

this line you’re also adding together, where there’s no room between 

them. You’re not just going, just the y-value at 1, just the y-value at 2. 

And that’s the difference between the two [Yolanda and Zeb], and that’s 

also, this is what I was wanting to say last week (…) where I was stuck on 

the idea that somehow they’re different [i.e., integral and summation]. 

This is how they’re different, I think. 

Figure 59 

Monica’s Graph Corresponding to Yolanda’s Argument 

 

Figure 60 

Monica’s Graph Corresponding to Zeb’s Argument 

  

In this excerpt, Monica declared that she could distinguish between the meaning 

of integration and summation. Specifically, her graphical distinction between Zeb’s 
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argument as only incorporating whole-number function inputs (see Figure 59) and 

Yolanda’s argument as incorporating all real-number function inputs (see Figure 60) 

allowed her to cognitively separate her meanings (and symbolization) for these ideas. In 

other words, it appeared that Monica had consciously chosen to re-present a Reimann 

sum through her command operator Σ and an exact area under the curve through her 

inscription ∫ . Since Monica’s meaning for partial sum computation corresponded more 

closely with her image of a Reimann sum, in this moment she seemed poised to accept 

her personal expression template Σ□
□□ as her primary method to symbolize partial sums.  

To confirm my hypothesis, I highlighted the term “area under the curve” in each 

argument and asked Monica to describe how she felt about Zeb’s use of this phrase. 

Monica responded that she felt uncomfortable with Zeb’s use of “exact area under the 

curve.” The interviewer then asked Monica whether she wished to modify the language in 

Zeb’s argument, which she agreed was a good idea. Monica briefly considered removing 

the phrase “exact area under the curve” completely, claiming that the final phrase “when 

it is evaluated at each position from 1 to 𝑛” would supersede the idea of area under the 

curve. Monica then clarified that her biggest problem in Zeb’s argument was his use of 

the word “exact” and that she imagined rectangular Riemann sums to represent the “area” 

to which Zeb was referring. The interviewer then asked Monica to incorporate the 

rectangular Riemann sums that she was imagining (see Figure 61). 
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Figure 61 

Monica’s Use of Rectangles to Re-present Riemann Sums 

 

 As Monica completed her drawing, she discussed three other ideas. First, she 

briefly questioned whether the top left edge (red rectangles) or top right edge (green 

rectangles) of the rectangles should intersect the trace of the function. Monica eventually 

decided the top left edge was most appropriate because she imagined that this side of 

rectangle corresponded with the input value of the function. Second, Monica stated that 

she did not believe that Yolanda’s and Zeb’s expressions would compute the same value. 

This comment is evidence that she re-presented two distinct (in her mind) processes 

through the expressions ∫
2

√𝑛
4

𝑛

1
𝑑𝑛 and Σ1

𝑛 2

√𝑛
4 . Monica’s final idea emerged when the 

interviewer asked whether she still believed the phrase “area under the curve” was 

appropriate for Zeb’s argument. In response, Monica said that she preferred the language 

“represents the y-values of the function 𝑓(𝑛) =
2

√𝑛
4 , which are added together when it is 

evaluated at each position from 1 to 𝑛.” After a final clarification of Monica’s meanings 

for the term “function” and her inscription 𝑓(𝑛), I decided to introduce the second task of 

the interview. 

 The outcome of Monica’s comparison of Yolanda and Zeb’s arguments was that 

she successfully differentiated between the meanings she wished to re-present through 
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her command operators Σ and ∫ . In the graphical sense, Monica determined to re-present 

the exact area under a curve through her inscription ∫ and a Reimann sum (with 

rectangles of width 1) through her inscription Σ. In the algorithmic sense, Monica decided 

to re-present the sum of all function outputs from all real-number inputs between two 

bounds through her personal expression template ∫ □𝑑□
□

□
 and the sum of all whole-

number values between function inputs through her personal expression template Σ□
□□. In 

this way, Monica created distinct looking (to her) personal expression templates to re-

present two related (to her and to me) ideas about summing function values over an 

interval of the independent variable.  

Example 2: Sylvia’s Construction of One Personal Expression Templates for Series 

 In this section, I overview Sylvia’s development of a single robust personal 

expression template through which she could (eventually) re-present every type of series 

that we discussed during Days 1-3 of the teaching episodes. Similar to Monica’s example 

in the previous section, I present Sylvia’s story linearly. The primary reason that I present 

Sylvia’s symbolizing activity as it unfolded in real time is to highlight her introduction of 

new inscriptions and updated mark sets over time to re-present more and more examples 

of infinite series. I present Sylvia’s experiences on each interview day in a separate 

subsection. 

Day 1: Developing an Initial Personal Expression Template 

Unlike Monica, Sylvia did not introduce a personal expression by which to re-

present partial sums until I prompted her to do so. Instead, Sylvia verbally described the 

values of specific summands for several of Ivy’s series (nearly always providing the 

appropriate value). To determine the value of a partial sum, Sylvia consistently stated that 
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she would (1) generate the summands comprising the partial sum and (2) add the 

summands in a calculator.  

 During the personal expression generation activity at the conclusion of the Day 1 

interview, Sylvia proposed three different inscriptions by which she could re-present 

partial sums for various series: Σ, (−Σ), and Σ−
+ (see Figure 62). Sylvia made a conscious 

decision to reject some notational conventions when constructing her inscriptions, a 

choice likely emanating from her belief that the story of a mathematician creating a 

personalized expression for a triangle was “inspirational.” As evidence of this claim, I 

provide two excerpts from Sylvia at different moments in the Day 1 interview. The first 

excerpt comes from Sylvia’s initial reaction to the personal expressions video, in which I 

presented (1) an example showing mathematicians presenting different inscriptions to 

symbolize a similar idea and (2) a parting thought that all conventional mathematical 

symbols were initially introduced by a single mathematician. 

Sylvia: (While reflecting on the personal expressions video after watching for the 

first time) Um, I guess, well what I’m thinking (…) [is] like the 

expressions and like things can be represented in a lot of different ways. 

And there are conventional ways to represent them, but those conventional 

ways used to be just one random person writing something out and then 

everybody else kind of agreed with them and it became conventional. So it 

was kind of like an inspirational, motivational, be your own person kind of 

thing. 
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In this excerpt, Sylvia stated that a major theme she perceived from the video was that 

individuals can construct their own inscriptions. She called this idea “inspirational” and 

implied that the video motivated her to be individualistic with her symbolization. 

Figure 62 

Sylvia’s Glossary at the Conclusion of the Day 1 Interview 

 

 The second excerpt comes from Sylvia’s construction of personal expressions at 

the end of Day 1. Sylvia had constructed an initial inscription Σ to re-present a partial 

sum but felt that she needed to modify her inscription to differentiate alternating and non-

alternating series. 

Sylvia: (After writing her first inscription Σ but before writing a definition for this 

inscription) When I look at that [i.e., inscription Σ] I think of that, you’re 

only adding like positive values and so I’m trying to think of something 

that would represent like you, the terms switch off being positive and 
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negative, so you’re kind of adding and subtracting, adding and subtracting. 

Um. 

Interviewer: Ok, (…) so for this Greek letter that you have at the top, that’s 

indicating that you are adding together a bunch of things that are positive 

but doesn’t [include] this idea of switching between addition and 

subtraction signs, and that’s what you’re thinking about right now? 

(Sylvia: Mm-hmm) Ok. 

Sylvia: Well, I guess you could always just like stick a negative one in there and 

raise it to a power and have that power switch off. But that’s boring. 

(laughs) Um, what kind of, I guess. Ooh! So what if it (…) (screen freezes 

and Sylvia needs to refresh OneNote page; dialogue omitted from this 

interaction) Ok, we’ll do the same thing (writes 𝛴 on the second row of 

her glossary below the 𝛴 on the first row), but we’re going to add (…) a 

little plus sign here and a little minus sign there (adds subscript – and 

superscript + to 𝛴 on second row of glossary), and that means, uh, kind of 

like an integral, you start at the bottom with the lower limit so you’re 

going to subtract the second term and then add the third term. 

Interviewer: Ok, so the minus sign is referring to what is happening between the 

first and second term? So like, the first either plus or minus that you see 

[in the series]? 

Sylvia: Mm-hmm. 

Interviewer: And then the top [plus sign] is referring to what [operator sign] is 

coming next? 
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Sylvia: Yeah. 

In this excerpt, Sylvia initially proposed using the normative symbolization for the terms 

of an alternating series (i.e., appending the expression (−1)𝑛 or (−1)𝑛+1 to the general 

summand). However, she quickly noted that such an idea was “boring” to her and instead 

proposed a novel expression, Σ−
+, by which to re-present the alternating terms in a series 

(where the lower limit denoted the operator signs following each summand in an odd 

position and the upper limit denoted the sign following each even-positioned summand). 

When I asked Sylvia to construct definitions for her symbols Σ and Σ−
+, she wrote that she 

considered Σ to denote “summing a series with only positive terms” and Σ−
+ to convey 

“summing a series, but (…) the operation between summands switches back and forth 

starting with subtraction.” She then created a third inscription, −(Σ), through which she 

re-presented “summing a series with only negative values.” In the case of her symbols Σ 

and (−Σ), she also referred to the behavior of the running total for each series 

perpetually increasing or decreasing (respectively). 

Sylvia’s symbolization constituted her attempt to “ be [her] own person” in her 

symbolizing activity. As a result of this process, she created a personal expression 

template □Σ□
□, comprised of four inscriptions: (1) the inscription box to the left of Σ, (2) 

the inscription Σ, (3) the subscript inscription box for Σ, and (4) the superscript 

inscription box for Σ (see Figure 63). In the paragraphs below, I briefly summarize the 

meaning Sylvia attributed to each inscription, the inscription type, and corresponding 

mark set. 
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Figure 63 

Sylvia’s Initial Personal Expression Template for Partial Sums and Series 

 

 

Sylvia used Inscription 1 (i.e., box to the left of Σ) to re-present whether the 

operator signs between summands in a series were uniformly positive or negative. 

Although Sylvia only used the mark − for inscription 1 to denote uniformly negative 

summands, it is likely that she considered the inscription + could be written (but was 

conventionally unnecessary) to indicate a series with uniformly positive terms. For this 

reason, I consider inscription 1 to constitute cloze placeholder inscription with the mark 

set {−, +}.  

Sylvia used Inscription 2 (i.e., Σ) to re-present the process of adding together 

summands of a series to compute a partial sum. In this case, I consider Sylvia’s 

inscription Σ to constitute a fixed command operator inscription with the mark set {Σ}.  

Sylvia used Inscription 3 (i.e., lower index of Σ) to re-present the operator sign 

separating the first and second summands in an alternating series. Although Sylvia only 

used the mark – for inscription 3 when defining her expression in the glossary, I 

conjectured that Sylvia would also be able to use the personal expression Σ+
− in her 

symbolizing activity to re-present an alternating series whose first operation sign was +. 
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For this reason, I coded inscription 3 as a cloze placeholder inscription with the mark set 

{−, +}. 

Sylvia used Inscription 4 (i.e., upper index of Σ) to re-present the operator sign 

separating the second and third summands in an alternating series. For the same reasons I 

provided in my description of Inscription 3, I coded Inscription 4 as a a cloze placeholder 

inscription with the mark set {−, +}. 

After having Sylvia compare her symbols in her glossary to her written rule for 

determining the value of a partial sum (which I describe in Chapter 6), I presented a final 

interview task, asking her to use her glossary entries to symbolize the 37th partial sum of 

Ivy’s 4th Series. Sylvia had briefly reasoned about Series 4 earlier in the interview, an 

alternating series which I presented in the expanded form 6

1
−

6

4
+

6

9
−

6

16
+

6

25
−

6

36
+ ⋯. 

Sylvia’s initially created the expression Σ−
+𝑝(𝑛) =

6

𝑛2 to re-present the 37th partial sum. 

However, when I asked her to explain how her expression conveyed the idea of the 37th 

partial sum, she modified her personal expression template (see Figure 64): 

Sylvia: Oh, the 37th [partial sum]. Hmm. Ok, that does not represent the 37th 

[partial sum]. 

Interviewer: What, then what does it represent? What were you trying to represent 

there? 

Sylvia: I guess this just represents, the series, well, I don’t really know what it 

represents. But like, I would, if I put (…) 𝑛 equals 1, and then I’m going 

to say, at the top we’re going to add when 𝑛 equals 37. (writes 𝑛 = 1 

below Σ and 𝑛 = 37 above  Σ) 
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Interviewer: And what are the 𝑛 equals 1 and 𝑛 equals 37 showing here? 

Sylvia: Um, like the, you start at 𝑛 equals 1 and you stop at 𝑛 equals 37, the 

terms. 

Interviewer: Ok, all right. I think that makes sense to me. So I’ll ask the original 

question again, uh, why did you write what you did and how does this 

show the 37th partial sum. 

Sylvia: Um, so I wrote the Σ with the plus minus because this one starts with the 

adding, er, subtracting the second term. And then the pattern I represented 

with 𝑝(𝑛) equals, and the six stays constant, and then, it’s the number, like 

the number of the term that you’re on, you square that and you get the 

denominator. So, yeah. And then it goes from 1 to 37. 

Figure 64 

Sylvia’s Personal Expression for the 37th Partial Sum of Ivy’s 4th Series 

 

 In this excerpt, Sylvia believed that her original expression Σ−
+𝑝(𝑛) =

6

𝑛2 did not 

convey enough information for her to be able to re-present a specific partial sum. To 

rectify this issue, she introduced two additional inscriptions (i.e., an additional subscript 

and superscript for Σ) by which to denote the first and last summands necessary to 

compute the value of a particular partial sum. With Sylvia’s additional inclusion of a 
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function rule for the general summand of Series 4, I considered her personal expression 

template to now be of the form □Σ□□
□□

□ (see Figure 65 for inscription numbering). I have 

previously described the meanings I coded for Sylvia’s attribution of meaning to 

Inscriptions 1-4 (which did not appear to change in this instantiation of the template) but 

describe my codes for her meanings for Inscriptions 5-7 in the paragraphs below. 

Figure 65 

Sylvia’s Updated Personal Expression Template for Partial Sums and Series 

 

 

Sylvia used Inscription 5 (i.e., box furthest to the right of Σ) to re-present a 

function rule by which she could generate the summands of the series necessary to 

compute the value of a partial sum. At this stage of the interview, Sylvia appeared to use 

the relational connector inscription = to re-present the indicator expression 𝑝(𝑛) she had 

created for the summand pattern and an expression for the closed-form rule of this 

pattern. Although Sylvia used a relational inscription for Inscription 5 in this instance, 

after the Day 1 interview she typically wrote either a general expression for the pattern 

(e.g., 𝑝(𝑛), 𝑣(𝑛)) or the closed-form rule for the pattern (e.g., 
6

𝑛2
). Based on this 

occurrence during the other teaching episodes, I classify Inscription 5 as a cloze concept 
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inscription30 with a mark set consisting of the expression 𝑝(𝑛) and all possible algebraic 

function rules that Sylvia was capable of creating. 

Sylvia used Inscription 6 (i.e., new subscript for Σ) to re-present the position of 

the first summand in the partial sum. In this moment of the interview, Sylvia wrote an 

expression of the form 𝑛 = □ for Inscription 6 in her personal expression template. In 

this expression, I consider the box to constitute a fixed placeholder inscription with a 

singular mark set {1}. The reason I coded this inscription with a singular mark set in this 

moment of the interview is because Sylvia had only created one instantiation of her 

personal expression template that contained Inscription 6. Although Sylvia utilized other 

marks for Inscription 6 during Day 2 and Day 3 (which I coded as evidence that 

Inscription 6 became a cloze placeholder inscription), I cannot rigorously claim Sylvia 

used her inscription in this way using Day 1 data. I also do not have sufficient data to 

make rigorous claims as to the meanings Sylvia attributed to the inscriptions 𝑛 and = in 

Inscription 6, although I think it likely that Sylvia used these inscriptions relationally to 

connect her function rule to the index values. 

Sylvia used Inscription 7 (i.e., new superscript for Σ) to re-present the position of 

the final summand necessary to compute the value of a partial sum. In this moment, the 

expression that Sylvia wrote was of the same form as what she wrote for Inscription 6 

(i.e., 𝑛 = □). I also coded Sylvia’s Inscription 7 as a fixed placeholder inscription with 

the singular mark set {37}. Although I consider it highly likely that Sylvia could have 

immediately replaced her expression 37 with another inscription or expression for a 

 
30 I use the term concept inscription rather than the more specific categories indicator and placeholder 

because it was not clear (in this moment of the interview) which of these meanings Sylvia was attributing 

to Inscription 5. 
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different partial sum (e.g., 78th partial sum), there is no data to verify this possibility in 

this moment of the interview. During her symbolization of other partial sums and series 

during Day 2 and Day 3, Sylvia fluidly modified Inscription 7 in her template to re-

present various marks, which I coded as evidence that Inscription 7 became a cloze 

placeholder inscription with a non-singular mark set. 

At the conclusion of the Day 1 interview, Sylvia showed evidence that she was 

able to symbolize the following types of series through her 7-inscription personal 

expression template □Σ□□
□□

□: 

1) Partial sums for a series with only positive summands 

2) Partial sums for a series with only negative summands 

3) Partial sums for a series whose summands were separated by alternating signs 

(where each operator occurred 1 time before switching to the other operator). 

Day 2: Introducing New Marks and Inscriptions to Re-present Operator Sign 

Patterns 

 At the beginning of the Day 2 interview, I had Sylvia review the symbols in her 

glossary and make any modifications she felt were necessary. During the review, Sylvia 

made two modifications. First, she modified her definition of her inscription Σ to include 

the idea of a series as the sum of a sequence (see orange writing in Figure 66). Second, 

she introduced two expressions to re-present different components of her Day 1 symbol 

𝑝(𝑛): the expression 𝑣(𝑛) = to re-present the function by which she could generate 

summands in a series and the expression 𝑝(𝑛) = (which she later modified to 𝑝 =) to re-

present a recursive pattern she could use to generate successive summands (see orange 

writing in Figure 66). Since I had no teaching-related interactions with Sylvia between 
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the end of the Day 1 interview and this portion of the Day 2 interview, Sylvia’s 

modifications likely resulted from either personal reflection or her experiences in her 

calculus course during the week between interviews. 

Figure 66 

Sylvia’s Glossary Modifications at the Beginning of her Day 2 Interview 

 

 

 For the first task of the Day 1 interview, I prepared five new series, which I 

labeled with capital letters (see Table 23). I chose the five series such that each series 

portrayed the same summand magnitudes (i.e., the summands from the geometric series 

Σ𝑛=0
∞ 1

3𝑛
 ) but exhibited increasingly difficult patterns of alternating signs. The purposes of 

this task were to (1) discern whether Sylvia would continue to utilize her personal 

expression template from Day 1 (which included distinct inscriptions for summand 

magnitude and operator signs) and (2) determine whether Sylvia was able to construct 
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instantiations of her template for series with successively more complex operator 

patterns. When I presented the task to Sylvia, I asked her to create a personal expression 

for the 43rd partial sum for each of the five series. 

Table 23 

The Five Series Sylvia Reasoned About During the First Task of Day 2 

Series Name Expanded Form Properties 

A 1 +
1

3
+

1

9
+

1

27
+

1

81
+

1

243
+

1

729
+ ⋯ 

Series Rule: ∑
1

3𝑛
∞
𝑛=0  

Convergent 𝑝-series 

Converges to 
3

2
 

 

B 

 
−1 −

1

3
−

1

9
−

1

27
−

1

81
−

1

243
−

1

729
− ⋯ 

Same as Series A except 

all summands are 

negative 

C 1 +
1

3
+

1

9
−

1

27
−

1

81
+

1

243
+

1

729
− ⋯ 

Same as Series A except 

signs alternate every two 

summands 

D 1 −
1

3
+

1

9
−

1

27
−

1

81
+

1

243
+

1

729
− ⋯ 

Same as Series A except 

signs alternate for 

gradually increasing 

number of summands 

 

E 

 
−1 +

1

3
+

1

9
+

1

27
−

1

81
+

1

243
+

1

729
− ⋯ 

Same as Series A except 

signs appear to alternate 

randomly 

 

 Sylvia had little difficulty constructing personal expressions for the 43rd partial 

sum of either Series A or Series B, and quickly produced the expressions Σ𝑛=1
43 𝑣(𝑛) and 

−Σ𝑛=1
43 𝑣(𝑛) (respectively; see Figure 67). In these moments, Sylvia’s symbolization 

differed in subtle ways from her personal expression at the end of the Day 1 interview. 

For example, Sylvia did not write an explicit function rule for the general summand of 

either Series A or Series B. Also, Sylvia did not write the expression “𝑛 =” in the upper 

index of summation. While the Day 1 data was readily available on another OneNote tab, 

in this moment of the interview I did not think to ask Sylvia about her changes in the 

style of inscriptions that she used in her template. At best, I can merely conjecture that 
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Sylvia’s stylistic changes were a result of seeing multiple instantiations of conventional 

summation notation in her calculus coursework. 

Figure 67 

Sylvia’s Personal Expressions for Series A and Series B on Day 2 

 

 

 

While reasoning about Series C, Sylvia quickly noted that the series had “two 

adding, two subtracting” (a reference to the number and type of repeating operators) and 

wrote the expression Σ2+
2−𝑣(𝑛). When I asked whether she needed to include “𝑛 equals 1 

and 43,” she modified her personal expression to Σ2+
2−

(𝑛=1)

43
𝑣(𝑛) (see Figure 68).  
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Figure 68 

Sylvia’s Personal Expressions for Series C and Series D on Day 2 

 

 

 

Because Sylvia seemed to assimilate Series C so easily to her personal expression 

template, I decided to also have her symbolize Series D before rigorously questioning her 

thinking. After confirming that the number of operator signs would perpetually increase 

throughout the series, Sylvia proposed using a new mark 𝑘 for her operator-describing 

inscriptions (see Figure 68): 

Sylvia: Well that [i.e., changing number of operator signs] in and of itself needs 

like its own, uh, its own little pattern. (…) (writes 𝛴) so we’ll still have 

this (writes 𝑛 = 1 for lower index), we’re going to the 43rd [summand], 



 

  262 

and then I want this [i.e., inscription for re-presenting operator sign 

pattern] to be its own series [i.e., sequence] of 1, 2, 3, 4, 5, but I don’t 

want it to be 𝑛. So, I guess I could put 𝑘 minus (writes 〈𝑘〉 − for lower 

operator sign inscription). I’ll try to explain in a minute. (…) And then 𝑘 

plus (writes 〈𝑘〉 + for upper operator sign inscription). And then I also 

want 𝑘 to cycle, not cycle, but go from 1, 2, 3, 4, 5, only whole numbers 

(writes 𝑣(𝑛)). 

Interviewer: Ok. 

Sylvia: So, yes, Ok. So the Σ is the same, 𝑛 equals 1 to 43. The 𝑣(𝑛) is the same, 

that gets you like the actual value of the term you’re adding. The 𝑘 with 

the chevrons (i.e., 〈 〉) and the minus, the chevrons represent like that this 

is a sequence.   

In this excerpt, Sylvia symbolized two new patterns for the operator signs in an 

alternating series using her personal expression template □Σ□□
□□

□. In Series C, Sylvia 

constructed the expressions 2+ and 2- for Inscriptions 3 and 4 in her template (i.e., the 

operator sign pattern placeholder inscriptions) to re-present a series whose operator signs 

alternated in constant sets of two. In this moment, Sylvia attributed a new meaning to 

Inscriptions 3 and 4 and introduced additional marks by which to re-present these 

meanings, increasing these inscriptions’ mark set from {+, −} to (at minimum) {+, −,2 +

,2−}. Later, as Sylvia reasoned about Series D, she introduced the expressions 〈𝑘〉 − and 

〈𝑘〉 + as additional marks by which she could re-present a varying number of operator 

signs through Inscriptions 3 and 4.  
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After Sylvia’s initial reasoning about Series D, I asked her to summarize what 𝑘 

meant (to her). Her response reiterated her meanings for both Series C and D and 

confirms the claims I made in the previous paragraph. 

Interviewer: Remind me, what does 𝑘 stand for? 

Sylvia: 𝑘 is going to be similar to 𝑛 and goes on, only whole numbers. It’s kind of 

like another index, but it’s going, it’s different from 𝑛 because when 𝑛 is, 

when 𝑛 is 4, I don’t want 4 minuses, if that makes sense.  

Interviewer: Ok, I think that makes sense and I think, I think I understand why 

you feel the need to use a different letter than 𝑛. So you said like 𝑘 is this 

group of whole numbers, so what are these, what is this group of whole 

numbers being used to represent, this 𝑘? 

Sylvia: How many plus or minus signs are going to be used consecutively. So like 

before we had two plus, two minus, the Series C, and so that represented 

like two plusses in a row, two minuses in a row, two plusses in a row, two 

minuses in a row. And so the 𝑘 here, I don’t really know if the use of, like 

a series is appropriate. But I don’t what else to use it, to represent it as, so 

I’m just going to leave it like that for now. But, so when 𝑘 is 1, we’ll have 

one minus, one plus. When 𝑘 is 2, we’ll have two minuses, two plusses in 

a row. When 𝑘 is 3, and so forth. 

Interviewer: Ok, that makes sense. So could you use that idea of 𝑘 in Series C? I 

see that you’re using slightly different inscriptions on each one of these. 

And so, I’m wondering if there is a way to potentially combine any of 

them. And if not, that’s okay. I’m just curious. 
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Sylvia: I think, well Series C is different in that the, the amount of plusses versus 

minuses, I hate saying the word plusses and minuses, because it sounds so 

wrong. But, anyway, I don’t know how else to say it. But, um, like that’s 

constant. It stays at 2 the entire time. But for Series D it increases each 

time. So, we’d also need a variable for this second, for Series [D]. 

Interviewer: So, for Series C because the number of these operators is constant, 

they always come two at a time, we don’t need 𝑘. 

Sylvia: Yes. 

Interviewer: But in Series D, the rate at which they are coming is changing, so we 

need that variable 𝑘. 

Sylvia: Yes. 

In this excerpt, Sylvia confirmed that she considered Series C and Series D to 

constitute two distinct situations that required different personal expressions. However, 

Sylvia was able to use the same personal expression template to symbolize each series. 

Her symbolizing actions imply that she had successfully assimilated both Series C and D 

into her general scheme for infinite series, although her use of separate marks for 

Inscriptions 3 and 4 indicate that she believed each series to possess distinctly different 

conditions for a particular attribute (i.e., operator sign pattern).  

Sylvia was unable to successfully construct a personal expression for Series E 

during Task 1. In particular, she struggled to symbolize the apparently random (to her) 

operator sign pattern in this series. When I asked her what she would need to know to 

complete her personal expression template (which was complete except for Inscriptions 3 

and 4) she underlined the ellipses for the series and stated that if she could see the 
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operators for the remainder of the series, then she could likely come up with a pattern in 

terms of 𝑘 and write it in the spot of Inscriptions 3 and 4.  

At the conclusion of Task 1 in the Day 2 interview, Sylvia showed evidence that 

she was able to symbolize the following types of series through her 7-inscription personal 

expression template □Σ□□
□□

□: 

1) Partial sums for a series with only positive summands 

2) Partial sums for a series with only negative summands 

3) Partial sums for a series whose summands were separated by a constant 

number of alternating signs 

4) Partial sums for a series whose summands were separated by a non-constant 

number of alternating signs which could be modeled using a closed form rule 

whose input is the set of whole numbers. 

Sylvia also indicated that there was one situation that she could not re-present through her 

personal expression template: a series whose operator signs alternated in a way that 

appeared random.  

Day 3: Introducing New Marks and Inscriptions to Re-present Randomness 

At the end of the Day 2 interview, Sylvia created a new inscription, ?_?, by which 

she re-presented randomly selected (to her) summand values while symbolizing Ivy’s 7th 

Series. She also applied her inscription 
?
#

 while symbolizing Ivy’s 6th Series to re-present 

a series whose summands appeared to follow a pattern but for which she had been unable 

to find a closed-form rule for the pattern. I address Sylvia’s meanings for these 

inscriptions in more detail in Chapter 6.  
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As I prepared for the Day 3 interview, I wondered whether Sylvia would be able 

to incorporate her new inscription ?_? into the mark set for Inscriptions 3 and 4 to re-

present the random operator signs in Series E. As a result, I created two tasks which I 

considered to have the potential to provide further insight into the situations Sylvia might 

symbolize through her personal expression template. The first task was to review three 

scenarios for the general summand of a series: (1) Sylvia could identify a closed form 

rule for a general summand, (2) Sylvia could not identify a closed form rule for a general 

summand but believed such a rule could be defined, and (3) Sylvia believed that the 

summands in a series were randomly generated and could not be modeled with a closed 

form rule. The second task was to reintroduce Series E (which had random operator 

signs) and Series 7 (which had random summands) and ask Sylvia whether her new 

inscriptions (e.g., ?_?) might allow her to re-present these series through her personal 

expression template. 

During the first task, Sylvia reiterated her claims at the end of Day 2 about the 

types of series that she could re-present through her personal expression template. This 

data confirmed (to me) that Sylvia could now re-present (at least) three distinct (to her) 

situations through Inscription 5 in her personal expression template (i.e., general 

summand box; see Figure 69) 

1. A general summand pattern that she could explicitly describe, which she re-

presented either through an algebraic expression or the general expression 

𝑣(𝑛), 
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2. A general summand pattern that appeared to exhibit a pattern but which she 

could not (yet) explicitly describe, which she re-presented through her 

inscription 
?
#

, or 

3. A situation in which summands appeared to be randomly generated, which she 

re-presented through her inscription ? _?. 

Since I already described the inscriptions 
?
#

 and ?_? in detail in Chapter 6, I do not 

reexamine Sylvia’s meanings for these inscriptions in any further detail in this section. 

Figure 69 

Sylvia’s Methods for Symbolizing Various Summand Patterns  

 

 For the second task, I displayed Series E and Series 7 to Sylvia again and asked 

whether she could create personal expressions for (1) the 36th partial sum and (2) each 

series. In my instructions, I told Sylvia that I had picked these particular series because 

components of these series appeared to be random and that she had struggled at times 

during Day 2 to symbolize each series. Sylvia quickly produced four personal 
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expressions to answer the two questions for each series, using her indicator inscription for 

a random attribute of a series in each expression (see Figure 70) 

Sylvia: [For Series E,] I would still use this (writes 𝛴), I would still use 𝑛 equals 1 

to 36, and then I might use the question mark, this thing here [indicating 

inscription ?_?] for the minus and plus signs (writes ?_?(−) for 

Inscription 3 and ?_?(+) for Inscription 4). And then I would use 𝑣(𝑛) 

here (writes 𝑣(𝑛) for Inscription 5).  

(omitted dialogue) 

Sylvia: And then for this guy [i.e., Series 7], same idea (writes 𝛴𝑛=1
36 ). Instead of 

𝑣(𝑛), because we don’t, because for Series E it looks like it’s 1 over 3 to 

the 𝑛 minus 1 [i.e., 
1

3𝑛−1], something like that, yeah. And so you know the 

formula, you know the value, or like what’s happening in the terms. But 

for this guy, you don’t really know what’s going on but you know they’re 

all positives [i.e., summands]. So then I would do 1 over ten (writes 
1

10𝑘 for 

Inscription 5), I think that’s where I would use 𝑘, times a random constant 

(writes 
1

10𝑘 (? _? ) for Inscription 5). Oh wait, that would be 𝑘 minus 1, 

because the first one [i.e., summand] is a whole number (writes 

1

10𝑘−1
(? _? ) for Inscription 5). 
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Figure 70 

Sylvia’s Personal Expressions for Series E and Series 7 on Day 3 

 

In these excerpts, Sylvia fluidly used her inscription ?_? to re-present either a 

random pattern of alternating operator signs or random summand values in the series. 

Sylvia’s response also confirmed my hypothesis that she would assimilate the mark ?_? 

into her mark set for Inscriptions 3 and 4 to re-present Series E through her personal 

expression template.  

In a final effort to push Sylvia’s symbolization, I asked her how she might re-

present a new series that exhibited both the random operator sign pattern of Series E and 

the random summands of Series 7. For this spontaneous task, I did not write an example 

series posited the hypothetical situation of combining the properties of Series E and 

Series 7 to create a new series. The transcript below includes our interaction and Sylvia’s 

subsequent expressions (see Figure 71). 
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Interviewer: Let’s pretend for a minute that I copy the random plus and minus 

signs from Series E and I paste those random signs down into the bottom 

series. So now we’ve got a situation where we’ve got random signs and 

random terms. How would you answer those two questions, 36th partial 

sum and the series, if that were to happen where you have random signs 

and random values? 

Sylvia: Um, I would just do the same, do you want me to write it?  

Interviewer: Yeah, go ahead and write it. You can just write it off to the side 

somewhere.  

Sylvia: Ok. I would do the same thing (writes 𝛴𝑛=1
36 ) but I would include the 

random plus and minuses (writes ?_?(−) for subscript Inscription 3 

and ?_?(+) for superscript Inscription 4). And this (writes (
1

10𝑛−1)(? _? ) 

for Inscription 5).   

Figure 71 

Sylvia’s Symbolization of Random Operator Signs and Summand Values 

 

 In this excerpt, Sylvia immediately assimilated the situation I presented to her and 

easily produced a personal expression through which she could re-present a series she 

imagined having random operator signs and random summand values. This example was 
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especially powerful because Sylvia did not have an exact series written on her screen 

from which to construct her expression. Rather, her symbolizing activity occurred 

entirely within her mind, and the only perceivable artifacts from which she could reason 

were incomplete versions of the situation she was imagining. This final episode 

confirmed my hypothesis that Sylvia could re-present each of the following series types 

through her personal expression template □Σ□□
□□

□ 

1. Partial sums for a series with only positive summands (with a known, 

knowable, or random summand pattern) 

2. Partial sums for a series with only negative summands (with a known, 

knowable, or random summand pattern) 

3. Partial sums for a series whose summands were separated by a constant 

number of alternating signs (with a known, knowable, or random summand 

pattern) 

4. Partial sums for a series whose summands were separated by a non-constant 

number of alternating signs which could be modeled using a closed form rule 

whose input is the set of whole numbers (with a known, knowable, or random 

summand pattern) 

5. Partial sums for a series whose summands were separated by a random 

number of alternating signs which cannot be modeled with a closed form rule 

(with a known, knowable, or random summand pattern). 

I make one final comment about Sylvia’s symbolization before the discussion 

section. After producing her personal expressions in Figure 71, I asked Sylvia whether it 

was problematic for her to use the same mark (i.e., ?_?) for Inscription 3, Inscription 4, 
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and Inscription 5 in the same personal expression. Sylvia initially stated that she did not 

need to distinguish between the inscription marks because each inscription implied 

randomness. However, she quickly decided that the random numbers generated by each 

inscription would likely be different. As a result, she decided to use a different number of 

bars for each instance of the inscription ?_? in her personal expression to distinguish the 

random processes she was re-presenting (see Figure 72). Sylvia’s action in this moment 

consisted of introducing a metric for differentiating random processes, which required her 

to (1) reconceive her inscription ?_? as an expression, (2) redefine the bar in her 

inscription ?_? as a placeholder parameter inscription, and (3) define a new mark set for 

the bar inscription (i.e., {−, =, ≡, … }.This example shows that the evolution of students’ 

symbolizing activity includes not only attributing new meanings to existing inscriptions, 

but reconceiving inscriptions as expressions to re-present the interrelatedness of 

inscriptions (and their corresponding meanings) within a personal expression template. 

Figure 72 

Sylvia’s Final Personal Expression for the Hypothetical Random Series 

 

Summary of Chapter 7 Results 

In this chapter, I presented two scenarios in which Monica and Sylvia developed 

and then modified personal expression templates as their meanings for partial sums and 
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series evolved. In the first scenario, I presented Monica’s initial attribution of partial 

sums to her pre-existing template  ∫ □𝑑□
□

□
, which she had used in her coursework to re-

present (1) the area under a curve and (2) the sum of a function’s output values over all 

real-number inputs of an interval of its domain. As Monica began to reason about partial 

sums and integrals graphically, she recognized that she was envisioning a partial sum as a 

Riemann sum and an integral as an area under a curve. At the end of the Day 1 interview, 

Monica introduced a new personal expression template, Σ□
□□, to re-present her image of a 

partial sum but was still unable to rigorously describe specific differences in the 

meanings she attributed to her two personal expression templates. During the Day 2 

interview, I introduced two contrasting prompts by hypothetical students who proposed 

using Monica’s personal expression templates to denote integrals and partial sums. 

Through this activity, Monica consciously decided to re-present her image of integral 

through her expression template ∫ □𝑑□
□

□
 and her image of partial sums through her 

template Σ□
□□. In other words, Monica created two personal expression templates to 

distinguish different cases of adding function values she envisioned. 

In the second scenario, I presented Sylvia’s construction of a personal expression 

template, □Σ□
□□, which she used to describe (1) the pattern of the operators in a series and 

(2) the summands of a series. During the Day 2 interview, I presented series with various 

predictable and random patterns of operator signs to determine whether Sylvia could re-

present partial sums from these series through her template. After Sylvia successfully 

modified the types of inscriptions she could include in her template to re-present the 

series from Day 2, I presented more examples of series on Day 3 that focused on 

randomly generated summands and operator signs. At the conclusion of the Day 3 
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interview, Sylvia’s expression template had evolved to the form □Σ□□
□□

□, which she could 

use to re-present series whose patterns and components she (1) knew, (2) did not know 

but believed could be modeled with a closed-form rule, and (3) appeared (to her) to be 

randomly generated.   

The following tables, Tables 24 and 25, summarize the final versions of each 

student’s personal expression templates at the end of the interview periods that I have 

described in the chapter. In Table 24, I describe Monica’s two personal expression 

templates, the meanings she re-presented through each template, and my categorization 

of the various inscriptions within the templates. In Table 25, I provide a similar 

description of Sylvia’s personal expression template and corresponding inscriptions.



 

 

    Table 24 

    Monica’s Distinct Personal Expression Templates for Re-presenting Addition of Function Values 

Template  Re-presentable Situations Meaning of Inscriptions 

 

1. The addition of the output 

values of a function with a 

domain of all real numbers 

between two bounds 

 

2. The area under a real-valued 

function curve between two 

points of its domain 

1. Fixed command operator denoting the area under a curve 

and adding all function output values between two input 

values  

2. Cloze placeholder subscript denoting the lower bound of 

the function domain in the context of the addition problem 

3. Cloze placeholder superscript to denote the upper bound 

of the domain 

4. Cloze placeholder argument of ∫ to denote the function 

whose output values are being added together 

5. Cloze indicator, which Monica used as a syntactic 

convention to re-present the concept of integral and the 

independent variable of the function 

 

1. The addition of the output 

values of a function with a 

domain of all whole numbers 

between two bounds 

2. Fixed command operator to denote the additive process of 

computing the value of a partial sum from a set of 

summands.  

3. Cloze placeholder subscript to denote the position of the 

first summand comprising a partial sum.  

4. Cloze placeholder superscript to denote the position of the 

final summand comprising a partial sum.  

5. Cloze placeholder to denote the pattern (or function rule) 

to generate the summands of the series. 
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    Table 25 

    Sylvia’s Personal Expression Template for Partial Sums and Series 

Template  Re-presentable Situations Meaning of Inscriptions 

 

1. Partial sums for a series with 

only positive summands  

2. Partial sums for a series with 

only negative summands  

3. Partial sums for a series 

whose summands were 

separated by a constant 

number of alternating signs  

4. Partial sums for a series 

whose summands were 

separated by a non-constant 

number of alternating signs  

5. Partial sums for a series 

whose summands were 

separated by random 

numbers of alternating signs  

1. Cloze placeholder inscription to denote a series with 

uniform negative summands (-) or uniform positive 

summands (no mark written) 

2. Fixed command operator to denote the process of adding 

together summands in a series to compute a partial sum or 

reason about a series 

3. Cloze placeholder inscription to denote (1) the first visible 

operator in a series or (2) a definable pattern or randomly 

generated number for the odd-ordered sets of operator 

signs in a series 

4. Cloze placeholder inscription to denote (1) the second 

visible operator in a series or (2) a definable pattern or 

randomly generated number for the even-ordered sets of 

operator signs in a series 

5. Cloze placeholder inscription to denote either an explicit or 

arbitrary rule for the general summand of a series 

6. Cloze placeholder inscription to denote the position of the 

first summand in a partial sum or series 

7. Cloze placeholder inscription to denote the position of the 

final summand in a partial sum or the indefinite ending of a 

series 

 

 

2
7
6
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CHAPTER 8 

DISCUSSION 

In this chapter, I contextualize the results of the previous three chapters related to 

Monica’s and Sylvia’s intuitive meanings for infinite series (Chapter 5), their creation of 

inscriptions to re-present ideas related to series and convergence (Chapter 6), and their 

development of personal expression templates to re-present classes of series (Chapter 7). 

The purpose of Chapters 5, 6, and 7 was to provide insight into the three research 

questions motivating my dissertation study: 

• RQ1: What meanings for series convergence do first-time university calculus 

students conceive before receiving formal instruction on infinite series? 

• RQ2: How do students symbolize their meanings for mathematical topics in 

the context of infinite series? 

• RQ3: How do students’ symbols and attribution of meaning to these symbols 

change as their thinking about infinite series evolves over time? 

In the following sections, I address each research question individually. I have 

divided each section into three general parts. In the first part of each section, I describe 

the research implications for my results, including connections to previous literature and 

the unique contributions of this study to the mathematics education literature. In the 

second part of each section, I provide examples of how instructors might implement my 

work to facilitate productive symbolizing activities within their classrooms. In the final 

part of each section, I briefly address potential future research directions for my work in 

students’ symbolization. 
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RQ1: Students’ Intuitive Meanings for Series Convergence 

 The purpose of Chapter 5 was to address my first research question, what 

meanings for series convergence do first-time university calculus students conceive 

before receiving formal instruction on infinite series? In the following subsections, I 

address the research and teaching implications of my results and the future directions of 

my studies of students’ meaning for infinite series. 

Research Implications for Students’ Meanings for Series Convergence 

The results I presented in Chapter 5 provide unique and relevant contributions to 

the mathematics education literature on students’ meanings for series convergence. For 

instance, I identified that students with no formal instruction on series convergence might 

focus on the behavior of a series’ running total to decide whether they believed a series 

converged. This construct is similar and different from Martin's (2013) description of a 

dynamic partial sum. My definition of running total is similar to a dynamic partial sum in 

that a student’s running total corresponds to what a mathematician would call a “partial 

sum.” A running total differs from a dynamic partial sum because students intuitively 

reasoning about series convergence through a running total do not (in the researcher’s 

mind) coordinate the running total with an indexing variable. My extension of the 

Martin’s (2013) idea of a dynamic partial sum to students’ intuitive reasoning about 

series convergence provides an additional way for researchers to characterize students’ 

thinking about infinite series. 

Many researchers have described students’ image of limits or convergence as a 

function or sequence moving toward a value (e.g., Roh, 2005, 2008; Swinyard & Larsen, 

2012). My empirically grounded definition of an asymptotic value as one or more values 
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a student believes a running total will perpetually move validates these previous findings. 

My characterization of three implications of the asymptotic running total meaning further 

extends these results to show empirical examples of how students might reason about 

particular series to determine whether their running totals indicate convergence. 

A unique contribution to the literature from my results in Chapter 5 is my 

characterization of decreasing summands convergence, monotone running total 

divergence, and running total recreation through grouping as students’ attempts to 

reconcile three ideas about series. These three ideas include (1) the signs of the 

summands (e.g., all positive, alternating), (2) the behavior of the summands (i.e., 

increasing, decreasing, constant) and its corresponding impact on the running total, and 

(3) that the process of adding summands into the running total would never terminate 

(i.e., potential infinity). I summarize how Monica’s and Sylvia’s coordination of these 

various ideas influenced their exhibited meaning in the paragraphs below. 

When the students foregrounded idea (2), focusing primarily on the behavior of 

the summands, they were most likely to exhibit decreasing summands convergence. For 

instance, Monica’s initial conception of Series 1 was that it converged because the 

magnitude of each summand was smaller than the previous. At the end of her intake 

interview, Sylvia stated that the common theme she perceived across all convergent 

series was that the summands decreased. While decreasing summands is necessary for 

series convergence, Sylvia’s comment implies that she also considered decreasing 

summands a sufficient condition for convergence. Since a student reasoning with 

decreasing summands convergence is focused primarily on the behavior of the 
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summands, the running total is typically present in their thinking but often an 

afterthought in their verbal explanations of their actions. 

When the students considered all three ideas simultaneously about a non-

alternating series, they were most likely to focus on the behavior of the running total and 

exhibit monotone running total divergence. For instance, Monica’s recognition that the 

running total in Series 1 would perpetually increase influenced her statement that the 

running total would increase without bound. Similarly, Sylvia’s calculations of the first 

few values of the running total for Series 3 convinced her that the running total would 

perpetually increase, which implied (to her) that the series would not converge. In these 

instances, the students coupled their image of the signs of the summands (idea 1) with 

their conception of the series as a non-terminating entity (idea 3) to construe the running 

total as an entity that eventually surpasses all possible bounds. Although Monica and 

Sylvia often acknowledged that the values of the summands would become incredibly 

small (idea 2), this notion was subsumed by their image of a monotone increasing 

running total. 

When the students successfully constructed a monotone running total (idea 1) by 

combining the summands in an alternating series, they would most likely exhibit running 

total recreation through grouping. In these instances, Monica and Sylvia seemed to focus 

on the monotone nature of the groups of summands (idea 1) and how the relative 

magnitude of each group behaved (e.g., decreased; idea 2). Although neither student 

could fully explain their reasoning, Monica and Sylvia believed their reconstructed 

monotone running totals were bounded. Depending on the signs of the summands (idea 
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1), the students claimed that the alternating series would either converge to the initial 

value (increasing summands; Sylvia) or zero (decreasing summands; Monica). 

The results I presented in Chapter 5 provide three unique contributions to the 

research literature. First, my distinction of a running total from a dynamic partial sum 

allows researchers to differentiate between students’ use of individual partial sums to 

reason about series convergence and their coordination of the partial sums with an 

indexing variable to create a sequence of partial sums. Second, my characterization of 

Monica and Sylvia’s asymptotic running total meaning for series convergence and three 

corresponding implications provides insight into how students’ intuitive reasoning 

strategies to determine series convergence might be grounded within a single overarching 

meaning. Finally, my description of three foundational ideas Monica and Sylvia 

attempted to coordinate throughout the interview tasks serves as an organizational tool 

for the meanings that I proposed in this chapter and might be used by future researchers 

to describe other student meanings for convergence or prepare interview tasks. 

Teaching Implications for Students’ Meanings for Series Convergence 

In this section, I share two instructional implications of the results I presented in 

Chapter 5. In both instances, I offer an instructional situation and propose a hypothetical 

instructional activity by which an educator might implement my results to improve 

students’ construction of meaning for series convergence. 

In the first situation, suppose that an instructor introduces the concepts of partial 

sums and the sequence of partial sums during their initial lecture on infinite series 

convergence. The results that I presented from Monica and Sylvia imply that many 

students might focus primarily on the values of partial sums and fail to comprehend the 
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nature of the sequence of partial sums. To address this potential issue, the instructor 

might consider having her students intuitively reason about the convergence of several 

infinite series (e.g., Abigail’s series I presented during my intake interview tasks). The 

instructor could then (1) monitor the resultant discussion to determine students’ reasoning 

about a running total, (2) present and define the idea of a running total to her students, 

and (3) propose using an indexing variable to track the value of the running total over 

time, and (4) define the coordination of the indexing variable with the running total as the 

sequence of partial sums. A significant focus of instructor actions (3) and (4) would be to 

state that the running total is a single quantity and the sequence of partial sums denotes a 

covariational relationship between two quantities (i.e., a whole-number index and the 

running total; Thompson & Carlson, 2017). In this way, the instructor could leverage 

many students’ intuitive focus for reasoning about series (i.e., the running total) to define 

the conventional method to evaluate convergence (i.e., the sequence of partial sums). 

In the second situation, suppose that an instructor asks his students to discuss 

whether a series converges in small groups and finds at least one instance of each 

implication of the ART meaning among the students. In this instance, the instructor may 

wish to present pre-made hypothetical student arguments (similar to the Yolanda and Zeb 

task I describe in Chapter 7) for each implication and ask the students to compare these 

statements. The resulting discussion will make the students more likely to determine 

whether one or all implications appear viable for the sequence in question. During or 

after the discussion, the instructor could then introduce the three underlying ideas 

students coordinate while reasoning about convergence that I presented earlier in this 

section (i.e., sign of summands, behavior of summands, process of adding summands) 
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and use these ideas to motivate the necessary and sufficient conditions for convergence. 

The instructor might continue to refer to these three ideas throughout the sequence and 

series unit to contextualize various convergence tests. In this way, the instructor could 

make the various meanings students might have for series explicit objects of analysis and 

provide an easier way for students to map their intuitive thinking about convergence to 

conventional portrayals of convergence. 

Future Research Directions to Investigate Students’ Meanings for Series 

Convergence 

In this section, I present two future research directions that I intend to pursue with 

regard to RQ1. First, in my continued analysis of my dissertation data, I intend to 

compare the intuitive meanings that Monica and Sylvia exhibited during the intake 

interview with those they exhibited for series convergence during the exit interview. 

Specifically, I want to address three major interventions that Monica and Sylvia 

experienced during the teaching experiment and the impacts these interventions appeared 

to have on their thinking. First, each student participated in four interview sessions 

focusing on symbolizing components of infinite series and developing an understanding 

of the sequence of partial sums. Second, each student participated in three interview 

sessions focusing on graphical reasoning about infinite series convergence, adopting an 

appropriate written rule for series convergence, and symbolizing this rule. Finally, each 

student participated in an instructional unit on sequences and series in their mathematics 

courses and reviewed these same materials in preparation for their final exam (which they 

took during the same week as the exit interview). In my future work, I plan to describe (if 
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the data permits) how these interventions emerged as Monica and Sylvia reasoned about 

Abigail’s six series during the exit interview.  

The intuitive meanings for series that I have proposed in this dissertation and the 

additional meanings that I will present through the comparison paper I described in the 

previous paragraph will prepare me with the theoretical tools to investigate students’ 

meanings for series convergence at other levels of mathematics. In particular, I am 

interested how secondary students and students with mathematical proof-course 

experience consider the convergence of series. Through such studies, I hope to confirm 

the existence of the constructs I present in this dissertation and discover additional 

meanings individuals have for series convergence.   

RQ2: Students’ Attribution of Meaning for Series to Inscriptions 

 The data I presented in Chapter 6 provided a preliminary answer to my second 

research question, how do students symbolize their meanings for mathematical topics in 

the context of infinite series? In the following subsections, I address the research and 

teaching implications of my results and the future directions of my studies on students’ 

attribution of meaning to the inscriptions in their personal expressions. 

Research Implications for Students’ Creation of Inscriptions 

The results I presented in Chapter 6 contributes to the mathematics education 

literature on students’ meanings for series convergence. For example, I have empirically 

confirmed Gray and Tall's (1994) claim that students can attribute one or more meanings 

to their symbolic expressions. I have also extended Gray and Tall’s work by proposing 

three distinct meanings Monica and Sylvia attributed to their inscriptions: process, 

concept, and relational. In the following paragraphs, I describe two unique contributions 
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of my results in Chapter 6 to the research literature: (1) coordinating students’ meanings 

with the types of inscriptions through which they convey their meanings and (2) 

identifying certain symbolizing norms by comparing my proposed inscription types with 

mathematical conventions. 

Contribution 1: Coordinating Meanings and Inscription Types 

A unique contribution of my dissertation study is my coordination of the three 

meanings I presented in the previous paragraph with six types of inscriptions that Monica 

and Sylvia utilized during their symbolizing activity (see Figure 73). First, I categorized 

these students' inscriptions to re-present processes as command or create operators. For 

instance, Monica and Sylvia used command operators such as ∫ and ?_? to re-present 

algorithmic processes such as computing a sum or generating a random value 

(respectively). Sylvia also used her inscription 
?
#

 as a create operator to re-present the 

process of investigating and determining a rule for the general summand of a series. 

Second, I labeled the inscriptions through which Monica and Sylvia re-presented topics, 

attributes, or values of quantities as indicators or placeholders. For example, Sylvia and 

Monica used indicators to re-present general attributes of a quantity such as integral (𝑑𝑥), 

a convergence value (𝐶𝑉) and a sequence (𝑆). Monica also used placeholders to re-

present a single value of a quantity (i.e., parameter; 𝑝), multiple fixed values across 

instantiations of a personal expression template in a comparative example (i.e., 

parameter; 𝑆□), and multiple quantity values through a single inscription (i.e., variable; 

𝑛, 𝑥, 𝑘). Finally, I described the inscriptions through which Monica and Sylvia re-

presented relationships between one or more meanings they had symbolized as connector 
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or comparator inscriptions. For instance, Sylvia used the inscription = as a connector to 

re-present the process-result relationship she envisioned between the summands in a 

series and the closed-form rule of the series that would generate those summands. 

Additionally, Monica spatially placed subscripts as syntactic connectors in her personal 

expression template 𝑆□𝑛
 to re-present different instantiations of a general concept (e.g., 

sequence) about which she needed to reason within the context of a single example. 

Finally, Monica used the inscription > as a comparator to re-present her metric by which 

she could designate the number of terms in the sequence of partial sums that fell outside a 

particular error bound. 

Figure 73 

The Three Meanings and Inscription Types from Chapter 6 

 

The framework I summarized in the previous paragraph will allow researchers to 

more clearly attribute (1) the meanings that a student attributes to an inscription and (2) 

the purpose of the inscription in the students’ symbolizing activity. The framework also 

allows for the flexibility to categorize different meanings that students might attribute to 

an inscription across or within individual moments. Although I constructed this 

framework while evaluating student’s attributed meanings for individual inscriptions, my 
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constructs have the theoretical potential also to describe students’ expressions comprising 

more than one inscription. I describe several ways in which I hope to refine this 

framework through my future work later in this section. 

Contribution 2: Comparing Students’ Symbolization with Mathematical Norms 

 I constructed the framework I presented in Chapter 6 and the previous section by 

analyzing Monica’s and Sylvia’s empirical data from their symbolizing activity in the 

context of infinite series. Still, my research has the potential to provide insights students’ 

symbolization beyond the context of infinite series. For example, my work with students’ 

symbolization in one context can provide insights into the mathematical norms31 that 

students and the mathematical community have for utilizing algebraic representations. In 

the following sections, I compare my framework for meaning and inscription pairings 

with the conventional meanings for various mathematical symbols. This discussion aims 

to highlight how Monica’s and Sylvia’s symbolization differed from mathematical 

norms. 

Conventional Use of Command and Create Operators to Convey Process 

Meanings. In the context of conventional expressions, mathematicians have defined a 

myriad of inscriptions that function as command operators, including +, −,×,÷, 𝚺, 𝚷, and 

𝒅

𝒅𝒙
 (to name a few). In conventional mathematics, command operators are often fixed (i.e., 

have a singular mark set). Still, there are exceptions where mathematicians use then one 

mark to convey the same concept (e.g., multiplication, function composition, derivative 

 
31 I use the term norm in the sense of Dawkins and Weber (2017). 
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notation). Monica’s and Sylvia’s use of command operators generally aligned with 

mathematical convention. 

While mathematicians have developed inscriptions to convey the termination of a 

creative process (e.g., boxed answers, Q.E.D. or ∎ at the end of a proof), there is not (to 

my knowledge) a conventional inscription to denote the enactment of the creative 

process. Instead, mathematicians typically use linguistic inscriptions in task prompts as 

create operators, such as prove, construct, find, determine, show, simplify, and justify. 

Thus, the create operators that Sylvia and Emily presented during the dissertation and 

pilot studies (respectively) are truly novel in the context of mathematical symbolization. 

Additionally, Sylvia and Emily expressed initial discomfort at constructing create 

operators and seemed to require the creative symbolizing license I provided during the 

interview to justify their use of these inscriptions. As a result, I considered these students’ 

introduction and use of create operators to be a violation (in their minds) of a 

mathematical symbolizing norm. 

Conventional Use of Placeholders and Indicator Inscriptions to Convey 

Concept Meanings. In the realm of conventional expressions, mathematicians have 

defined myriad inscriptions that serve as indicators, such as the capital letters 𝑨, 𝑩, and 𝑪 

for set (or matrix) names, the inscriptions 𝒇, 𝒈, and 𝒉 for function names, and the 

inscriptions 𝒂𝒊, 𝒃𝒋, and 𝒄𝒌 to describe terms in sequences. In conventional mathematics, 

indicators are almost always cloze inscriptions. Additionally, mathematicians ascribe 

different numbers of values of a quantity to an inscription according to their needs. 

Monica’s and Sylvia’s creation and use of indicators was similar and different from 

mathematical convention. For example, both students used inscriptions to name or label 
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attributes of quantities they deemed important in a particular task. However, these 

students (1) sometimes used inscriptions as (1) merely mnemonic recall devices (e.g., 

Monica’s use of 𝒇 and 𝑺 for “function” and “sequence”) or (2) syntactic conventions of a 

personal expression template (e.g., Monica’s use of 𝒅𝒙 and 𝒅𝒏 as a suffix for her integral 

notation). Additionally, the students typically used fixed inscriptions for their indicators. 

These students’ use of fixed indicators differs from mathematical convention, in which 

mathematicians often prefer particular marks for their indicators but can utilize 

unfamiliar or foreign marks for their expressions if the need arises. 

Mathematicians have also defined myriad inscriptions that function as 

placeholders, such as 𝑥 and 𝑦 for variable real numbers, 𝑎 and 𝑏 for fixed components of 

an exponential function. Similar to indicators, mathematicians have developed norms for 

which marks are typically used for certain placeholders. Consequently, most 

placeholders in conventional mathematics are cloze inscriptions, meaning that the mark 

set corresponding to these inscriptions is non-singular (e.g., all lowercase letters, all 

capital letters. Mathematicians also fluidly assign a particular number of values to a 

placeholder according to the meaning they wish to convey through their inscription. For 

example, a mathematician might use a mark to convey exactly one value of a quantity 

(e.g., the vertical intercept 𝑎 of a particular exponential function). The mathematician 

might also use a mark to convey all the values of a quantity within its domain (e.g., the 

independent variable 𝑥 of a linear function). Monica’s and Sylvia’s use of placeholders 

was similar and different from convention. For example, both students used placeholders 

to re-present one or more values of a quantity they envisioned during a particular task. 
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However, the students did not always exhibit fluidity in the number of marks they 

attributed to their inscriptions, often opting to use fixed placeholders.  

Conventional Use of Connector and Comparator Inscriptions to Convey 

Relational Meanings. In the context of conventional expressions, mathematicians have 

defined many relational inscriptions to coordinate or compare mathematical ideas, such 

as <, >, =, ≠, →,∩,∪, ⊆, ∝, ≈, ≅, ≡, and ∈. Relational inscriptions are generally fixed, 

although mathematicians sometimes employ different relational inscriptions across 

textbooks or mathematical fields (e.g., congruence notation). Generally speaking, 

mathematicians use relational inscriptions fluidly to denote the process of determining 

the relationship between two expressions or the resulting relationship (i.e., as a connector 

and comparator simultaneously). For example, a mathematician examining the 

relationship between two proportional quantities 𝒙 and 𝒚 might construct the expression 

𝒙 ∝ 𝒚 to re-present this relationship. In this instance, the mathematician would likely be 

able to re-present either the process she employed to determine the proportionality of 𝒙 

and 𝒚 or the proportional relationship itself. Monica’s and Sylvia’s use of relational 

inscriptions during some interview moments aligned with convention. For example, 

Sylvia utilized her inscription = to denote the closed-form rule for a general summand 

and the resultant summands during the later teaching episodes. Additionally, although I 

categorized Monica’s use of > in her expression 𝒑𝒏 > 𝑪 − 𝑳 during Day 5 as a 

comparator in Chapter 6, Monica’s use of this expression implied that she not only used 

the inscription to compare partial sums with the bottom border of 𝝐-strips but to re-

present the partial sums satisfying this condition as well. 
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In contrast, a student might only re-present a process through the expression 𝑥 ∝

𝑦 and demand that the constant of proportionality be set equal to the original expression 

(e.g., 𝑥 ∝ 𝑦 = 2). In this case, I would say that this student assigned a connector meaning 

to the relational inscription = in which he coordinates the notion of proportionality (an 

attribute two quantities share) with the constant of proportionality (the measurement of 

the quantitative relationship). In Sylvia’s initial symbolization of a partial sum at the end 

of the Day 1 interview, she wrote 𝑝(𝑛) =
6

𝑛2
 for the general summand in her personal 

expression. In this instance, Sylvia appeared (to me) to merely re-present a process-result 

connection between the general summand rule she constructed and not a comparison 

(such as substitutional equality) that would have allowed her to only utilize 𝑝(𝑛) or 
6

𝑛2 in 

her expression. 

My comparison between Monica’s and Sylvia’s inscriptions and the conventional 

expressions of mathematics reveals three potential norms related to symbolization. First, 

it seems that mathematicians are reticent to use algebraic symbols to convey creative 

processes such as proving, simplifying, or constructing rules to describe phenomena. 

Second, it seems that mathematicians develop the ability to utilize various marks for their 

indicator and placeholder inscriptions. In contrast, Monica and Sylvia often used fixed 

indicators and placeholders as mnemonic devices to recall particular attributes or values 

of quantities. Finally, mathematicians tend to use relational inscriptions simultaneously as 

connectors and comparators. In contrast, there were some instances where Monica and 

Sylvia used a relational inscription as only a connector or comparator (and not both). 

Although this discussion is limited in data and scope, my description of some potential 
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symbolizing norms in mathematics serves as a productive foundation for future research 

work to identify the norms and practices of the mathematics community.    

Teaching Implications of My Explanatory Framework for Instruction 

The conventional examples of symbolization I shared in the previous paragraphs 

reinforce Gray and Tall's (1994) claim that mathematicians can attribute multiple 

meanings to a particular inscription within and across situations. However, the data I 

shared in Chapter 6 indicates that students sometimes attribute only one meaning to their 

inscriptions at a particular moment. Furthermore, many of the multi-interview examples I 

shared in Chapters 6 and 7 show that students’ attributed meanings to their inscriptions 

can change over time. In brief, my data and discussion imply that students’ symbolizing 

activity is fragmented and in flux when compared with mathematicians. 

The explanatory framework and constructs that I have presented in this chapter 

provide the linguistic symbols and theoretical ideas by which instructors can begin to (1) 

describe their students’ symbolization and (2) better convey their symbolizing activity 

during instruction to their students. For example, an instructor who perceives that his 

student consistently uses the inscription 𝑓 when using function notation might anticipate 

(based on my framework) that the student is using their inscription as an indicator. The 

instructor might confirm his conjecture by asking what does the inscription 𝑓 mean to 

you? to discern whether the student is using 𝑓 merely as a mnemonic device. The 

instructor might also present a problem situation in which a student must symbolize and 

compare two distinct function rules to determine the students’ mark set for their function 

name inscription. In either case, the resulting conversation about symbolization norms 

within mathematics would likely assist the student in constructing future expressions that 
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more closely conform to mathematical convention, thereby ensuring that the student can 

more clearly communicate their thinking to others in their future symbolizing activity. 

Future Research Directions to Investigate Students’ Attribution of Meaning to 

Expressions 

 In my future work, I intend also to categorize the meanings students ascribe to 

entire expressions and groups of related expressions. For example, in my pilot study data 

(see Eckman & Roh, 2022a), I reported Emily’s creation of her expression 𝐴 ≁ 𝐵 to re-

present the process of determining a rule by which she might generate the second 

summand in a series (𝐵) given the value of the first summand (𝐴). Although Emily re-

presented the creative process through her inscription ≁, she specified which iteration of 

the creative process she envisioned through her inclusion of 𝐵 and 𝐴 in her expression.  

In future studies, I might also study students' moment-by-moment attribute of 

meaning to their expressions (as opposed to my analysis in Chapter 6, where I primarily 

focused on individual inscriptions). For example, I can further review the data in this 

study to categorize the various personal expressions (and combinations of expressions) 

that Sylvia and Monica created throughout the interview sessions. My analysis of 

Sylvia’s and Monica’s personal expressions related to partial sums in Chapter 7 provides 

a preliminary example of how I might report such data. Still, my report in Chapter 7 

focuses on the evolution of these students’ personal expression templates over time 

(which differs from the moment-by-moment categorization I propose here). 

Other avenues of future research I wish to investigate are (1) students’ joint 

symbolizing activity in the context of communicative expressions and (2) students’ 

attempts to adopt conventional expressions during direct instruction. I have initially 
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attempted to address some of these ideas in the context of students’ interpretation of set-

builder notation and their construction of Euler diagrams (Eckman et al., 2023). Still, the 

results of this dissertation study imply that the continued study and categorization of 

students’ symbolization across several grains of analysis is a potentially profitable line of 

future research work. 

RQ3: Coevolution of Student Meanings and Personal Expression Templates 

 The purpose of Chapter 7 was to describe empirical examples of students’ 

symbolizing activity to provide initial insight into the research question how do students’ 

symbols and attribution of meaning to these symbols change as their thinking about 

infinite series evolves over time? In the following subsections, I address the research and 

teaching implications of my results and the future directions of my studies on students’ 

coevolution of their meanings and personal expression templates for infinite series topics.  

Research Implications for Students’ Personal Expression Templates 

The results I presented in Chapter 7 contributes to the mathematics education 

literature on students’ symbolization and evolution of meaning. For example, my 

characterization of Monica’s and Sylvia’s development of one or more distinct personal 

expressions to re-present related ideas affirms the relevance of my previous work on 

Emily’s symbolization (Eckman & Roh, 2022a, under review). Additionally, my 

documentation of the emergence of students’ personal expressions from their meanings 

for series topics lends further credence to other researchers who have studied student 

cognition and symbolization in tandem (e.g., O’Bryan, 2020; O’Bryan & Carlson, 2016).  

In Chapter 7, I described two instances of symbolization. In the first example, 

Monica created two distinct personal expression templates, ∫ □𝑑□
□

□
 and Σ□

□□, by which 
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she re-presented the summation of all function values evaluated at (1) all real numbers 

(i.e., integral) or (2) all whole numbers (i.e., summation) of the independent variable over 

an interval. In Monica’s case, this single difference in additive process merited a different 

command operator, which required two distinct personal expression templates. In the 

second example, Sylvia constructed a single, intricate personal expression of the form 

□Σ□□
□□

□, by which she could eventually symbolize every kind of series that I presented 

during the interview sequence. In Sylvia’s case, nearly every time she experienced a 

cognitive conflict in which she was unsure how to apply her personal expression 

template, she invented a new mark or inscription by which to re-present her new 

situation.  

Although Monica’s symbolization (generally) mirrored convention and Sylvia’s 

inscriptions were often novel, each student exhibited behaviors common in mathematics. 

On the one hand, Monica worked hard to create personal expressions which aligned (in 

her mind) with mathematical convention. As a result, she rarely introduced novel 

notation. On the other hand, Sylvia perpetually considered how to integrate novel 

situations into the symbols she had already created. Sylvia’s final personal expression 

template was robust enough to model many classes of series and intricate enough to show 

the nuances of a particular series.  

In the following section, I apply Monica and Sylvia’s symbolizing examples I 

described in Chapter 7 to propose a preliminary theoretical framing of the evolution of 

students’ symbolization. In doing so, I return to the Piagetian notions of scheme, 

assimilation, and accommodation. This theoretical framing constitutes one of the primary 
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contributions of this dissertation study to the mathematics education field and an initial 

attempt to (theoretically) generalize the results of my study. 

A Theoretical Discussion on Coevolution of Students’ Meanings and Personal 

Expressions 

 This section aims to theoretically frame a cognitive relationship between the 

mental actions that students engage in and the perceptible artifacts they create while 

constructing personal expressions. The major forces at work in students’ construction of 

personal expressions include (1) students’ meanings in the moment (Thompson et al., 

2014), (2) the collection of personal expression templates the student has constructed 

through their experiences, and (3) the re-presentable meanings the student has imputed to 

the inscriptions in the template (and the expression itself). In the following paragraphs, I 

propose various theoretical constructs to contextualize the relationship between these 

three forces. 

The domain of representations consists of all perceptible artifacts (e.g., writing, 

drawing, gesture, verbalizations) that an individual might use to re-present (to himself) or 

convey (to others) his meanings. I call each element of the domain of representations a 

personal expression template32. A personal expression template is a representational 

device that an individual can modify according to her needs to symbolize various 

situations she perceives to have analogous structures or properties. I use the term 

personal expression to refer to an individual’s construction of an instantiation of her 

 
32 Although I focus this dissertation on algebraic personal expressions, the construct personal expression 

template can refer to any linguistic (e.g., words), pictorial (e.g., diagrams), symbolic (e.g., notation), visual 

(e.g., body language), or auditory (e.g., music, spoken language) representation that an individual might use 

to re-present or convey their meanings in a particular moment. 
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personal expression template to reflect on or convey information about her experience. I 

use the term template to refer to students’ decisions to use fixed marks for certain 

inscriptions and allow others to vary from instantiation to instantiation of the expression. 

Every personal expression template has a corresponding set of schemes comprising every 

meaning an individual might spontaneously re-present through that personal expression 

template at a given moment. This relationship is summarized in Figure 74 below. 

Figure 74 

The Domain of Representations, Expression Templates, and Set of Schemes 

 

 When an individual engages in symbolizing activity, she first compares the 

meaning she wishes to symbolize with the personal expression templates in her domain 

of representations (this process is most often completed subconsciously). There are two 

possible outcomes of this comparative activity. In the first case, the individual might 

discern a personal expression template whose set of schemes contains a component of her 

previous experience she believes to be analogous to her current meaning. In this instance, 
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she might construct an instantiation of her identified personal expression template to re-

present or convey her meaning. For example, when Sylvia quickly and capably 

constructed personal expressions for Series A and Series B (which I described in Chapter 

7), she assimilated these series to a scheme corresponding to her personal expression 

template □Σ□□
□□

□. In the second case, the individual might be unable to determine (at least 

initially) a personal expression template in her domain of representations through which 

she might re-present or convey her meaning. For example, Sylvia initially struggled to 

symbolize Series E, and Monica struggled at the end of Day 1 about whether to use 

summation or integral notation to symbolize a partial sum.  

 The two outcomes of the comparative symbolizing activity I described in the 

previous paragraph are analogous to the Piagetian notions of assimilation to a scheme 

and accommodation. I use assimilation in the sense of Glasersfeld (1995), who stated that 

assimilation comprises “treating new material as an instance of something known” 

(Glasersfeld, 1995, p. 62, italics in original). In the first outcome, a student treats her 

meaning as an instantiation of a previous experience that she has attributed to a personal 

expression template in her domain of representations. For example, when Sylvia reasoned 

about Series A, she assimilated her experience to a scheme whose space of implications 

(Thompson et al., 2014) included her personal expression template □Σ□□
□□

□, through 

which she re-presented her meaning.  

In Figure 75, I portray the mental actions Sylvia may have enacted to assimilate 

her meaning for Series A (i.e., the green triangle, which I call Meaning∗) to her personal 

expression template □Σ□□
□□

□,  (i.e., Template 4) in her domain of representations. The 

black arrows in Figure 75 denote the mental processes by which Sylvia likely compared 
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her meaning for Series A, Meaning∗ to each template in her domain of representations to 

check whether one of the meanings she previously attributed to each template 

corresponded with Meaning∗ (i.e., her meaning for Series A). The red border around 

Template 4 indicates Sylvia’s successful identification of her personal expression 

template □Σ□□
□□

□ as a medium through which she has re-presented other series she 

considers analogous to Meaning∗ (i.e., Series A). Finally, the bidirectional red arrow 

connecting Template 4 to the box for Meaning∗ denotes the product of the assimilation. 

The arrow beginning from Template 4 and terminating at Meaning∗ represents the 

Sylvia’s ability to re-present Meaning∗ (i.e., Series A) through Template 4 (i.e., □Σ□□
□□

□). 

The arrow beginning from Meaning∗ and terminating at Template 4 denotes the Sylvia’s 

mapping of Meaning∗ to Template 4 to re-present or convey her thinking about other 

series in her future symbolizing activity. Throughout Sylvia’s symbolizing activity for 

Series A, she exhibited little difficulty constructing or describing her personal expression, 

which is a common characteristic of assimilation to a scheme.  
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Figure 75 

A Cognitive Mapping of Immediate Assimilation in Symbolization 

 

In the second outcome of the meaning-expression comparison activity, the student 

attempts (but initially fails) to coordinate her meaning with a personal expression 

template. In this case, the students’ recognition that there is no element in her domain of 

representations through which she can (immediately) re-present her meaning typically 

induces a state of cognitive conflict, or perturbation. To resolve the cognitive conflict, 

the student might employ one of three tactics: construct a new personal expression 

template, consciously attribute her meaning to an existing personal expression template, 

or abandon her attempt to symbolize her idea. Each of these tactics are an instance of the 

Piagetian notion of accommodation. I use the term accommodation to refer to an 

individual’s resolution of a perturbation by “modif[ying] or construct[ing] cognitive 
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schemes to accommodate for…unexpected experience[s]” (Tallman, 2015, p. 61). I 

provide additional details about each accommodation tactic in the paragraphs below. 

For the first case of accommodation tactics, a student might construct a new 

personal expression template or modify an inscription within an existing template to re-

present her meaning (see Figure 76). For example, Sylvia constructed symbols such 

as ?_? and 
?
#

, which she added to the mark sets for various inscriptions of her personal 

expression template, to re-present additional examples of infinite series she had not 

previously considered. In Figure 76, I show the mental actions Sylvia may have enacted 

to introduce her inscription ?_? to re-present Meaning∗ (e.g., the random operators of 

Series E; denoted with a purple star) through her personal expression template □Σ□□
□□

□. In 

this case, I have used the term Template∗ (highlighted in red) to show Sylvia’s addition 

of a new inscription (e.g., ?_?) through which she could re-present Meaning∗ (i.e., the 

randomly generated operators of Series E). The set of schemes corresponding to 

Template∗ is singular, indicating that in the moment of creation, Sylvia could only re-

present Meaning∗ (i.e., the random operators of Series E) through her expression 

Template∗. 
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Figure 76 

A Cognitive Mapping of Accommodation by Creating a New Template 

 

A second symbolizing accommodation tactic a student might employ is 

consciously attributing her meaning to an existing personal expression template. For 

example, Monica deliberately chose to attribute her meaning for partial sums to her 

personal expression template ∫ □𝑑□
□

□
 during the Day 1 interview, even though she felt a 

calculator might not return the appropriate answer. Figure 77 shows Monica’s likely 

mental actions, which corresponded with accommodation case (2). In effect, Monica 

consciously chose to impute Meaning∗ (i.e., computing the value of a partial sum) to an 

already-existing template in her domain of representations (i.e., Template 4, her template 

for integration). I visually depict Monica’s extrapolation of her Template 4 (i.e., ∫ □𝑑□
□

□
) 

to include Meaning∗ (i.e., the partial sums of Ivy’s Series) by appending a rectangular 

region to Template 4’s ovular set of schemes to  include the purple star corresponding to 

Meaning∗.  
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Monica exhibited less confidence in her symbolization (accommodation case 2) 

than Sylvia (accommodation case 1), indicating that her  imputation of Meaning∗ to 

Template 4 may not have (at least initially) carried the same re-presentational power as 

the prior meanings she had re-presented through Template 4. After struggling to viably 

re-present Ivy’s Series with her template ∫ □𝑑□
□

□
 at the beginning of the Day 1 interview, 

Monica rejected her template ∫ □𝑑□
□

□
 as a method to re-present computing partial sums. 

Instead, she introduced a new template, Σ□
□□ (which constituted an instance of 

accommodation case 1). Monica then used her new personal expression template Σ□
□□ 

successfully to re-present various partial sums and series for the remainder of the 

teaching experiment.  

Figure 77 

A Cognitive Mapping of Accommodation by Appending Meanings to Templates 

 

A final accommodation tactic a student might employ is to abandon her endeavors 

to symbolize her meaning through a particular form of expression. For example, I briefly 
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discussed in Chapter 6 how Sylvia was unwilling to construct a personal expression for 

any component of the 𝜖-strip activity until I requested that she create an inscription to re-

present the center of the 𝜖-strip. If I had not intervened, Sylvia would have left that 

interview task without a personal expression to re-present her experience in future 

interview sessions. In Figure 78, I show the mental actions corresponding Sylvia’s 

symbolizing activity, which corresponds to accommodation case (3).  

Figure 78 

A Cognitive Mapping of Accommodation by Rejecting all Templates 

 

In this figure, I use the black and red symbol ⨂ to denote Sylvia’s rejection of each of her 

personal expression templates as mediums to re-present Meaning∗ (e.g., properties of the 

𝜖-strip). While I do not claim that Sylvia cognitively checked every template in her 

domain of representations, she likely imagined that if she were to check every template,33 

 
33 I also include Template∗ in Figure 78 to highlight that Sylvia might have considered  (and subsequently 

rejected) the idea of creating a new personal expression template by which to re-present Meaning∗. 
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none would be sufficient for her to re-present Meaning∗ (i.e., properties of the 𝜖-strip). 

The result of accommodation case (3) was that Sylvia had no readily-available personal 

expression template by which to re-present her Meaning∗ (i.e., properties of an 𝜖-strip). 

Each case of perturbation resolution I referred to in the previous paragraphs 

requires a different modification of the elements in the domain of representations and 

their corresponding sets of schemes. In accommodation case (1), a student constructs a 

new element in her domain of representations (i.e., a personal expression template) to 

which she attributes her meaning (which becomes the set of schemes for the new 

template). I anticipate that a case (1) student could readily utilize her new personal 

expression to re-present her meaning in future experience. For example, Sylvia employed 

her new inscription ?_? (and updated template) in later tasks to describe series with 

randomly generated operators and summand values.  

In accommodation case (2), the student identifies an existent element in her 

domain of representations to which she spontaneously imputes her meaning (thereby 

creating a new element in the set of schemes for that template). I anticipate that a case (2) 

student would be capable of re-presenting her new meaning through her expression 

template in the future. However, her ability to do so may be tenuous or inconsistent due 

to the existence of other meanings with greater longevity within her set of schemes 

corresponding to the expression template. For example, Monica used her integral-based 

personal expression template several times throughout the Day 1 interview to re-present 

partial sums. However, she eventually rejected her initial template and proposed a Σ-

based template instead to re-present the unique components of partial sums that she 

believed to be incongruous with her meanings for integration.  



 

  306 

In accommodation case (3), the student rejects the elements of her domain of 

representations as potential mediums for re-presenting her meaning and chooses not to 

create a personal expression template. In such a case, the student’s functional 

accommodation (Steffe & Thompson, 2000) may resolve the perturbation but prove 

unviable if she encounters a similar (to her) situation during her future symbolizing 

activity. For example, Sylvia’s initial rejection of my invitation to symbolize properties 

of the 𝜖-strips may have allowed her to progress through the end of the Day 5 interview 

but did not help her to complete the tasks for the Day 6 interview (in which I had her 

repeatedly reason with and eventually symbolize several components of the 𝜖-strips).  

I acknowledge that not all accommodations result in valid symbolization (from a 

mathematically conventional perspective). Still, a student’s accommodation results in an 

“act of learning” that she believes constitutes a viable symbolization (at least in the 

moment of the accommodation; Glasersfeld, 1995, p. 66). 

Teaching Implications of My Explanatory Framework for Students’ Symbolizing 

Activity 

Although I do not expect instructors to present my theoretical framing of students’ 

symbolization during their lectures, they can implement the ideas I have discussed into 

their interactions with their students. I present two such examples in the paragraphs 

below. 

First, instructors who internalize and look for the various types of students’ 

cognitive accommodations I described may gain greater power in orienting students 

toward appropriate symbolization. For example, instructors might begin to consider a 

student’s inappropriate (in the conventional sense) symbolization as a possible indication 
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that he may be attempting to attribute productive meanings for a topic to a personal 

expression template he created for a previous idea (i.e., accommodation case 2). In this 

instance, the instructor could determine the meanings the student intended to convey 

through his expression and re-orient his (the students’) symbolizing activity toward a 

conventional expression.  

Second, instructors might allow individual students the ability (in the context of a 

classroom discussion) to persist in using a novel inscription or expression to symbolize 

their thinking (accommodation case 1). For instance, an instructor who allows a student 

to attempt to symbolize a partial sum or series with integral notation might foster a 

productive classroom discussion about the similarities between integral and summation 

notation and why mathematicians. The result of such a discussion would likely be a more 

explicit understanding (in the student's mind) of the various inscriptions in both 

conventional expressions and a surer knowledge of how to appropriately symbolize 

components of infinite series.  

Future Research Directions to Investigate Students’ Development of Expression 

Templates 

 My ultimate goal in conducting this dissertation study was to construct a 

theoretical framework for categorizing students’ attribution of meanings to their personal 

algebraic representations and the coevolution of these two ideas. In Chapter 6, I presented 

several constructs to describe the syntactical components of a personal expression 

template (i.e., fixed inscription, cloze inscription, mark set). In Chapter 8, I introduced 

another set of constructs to describe the cognitive structures and mechanisms by which 

individuals maintain and assign meaning to their personal expression templates (i.e., 
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domain of representations, set of schemes). Throughout this dissertation, I have also 

attempted to ground my analysis and results in the Piagetian notions of assimilation and 

accommodation and the Glasersfeldian idea of re-presentation. As a result, the first 

research project I would like to pursue is verifying that my constructs can reliably explain 

individual students’ symbolizing activities in other contexts (and other forms of 

representation). In the algebraic sense, I might study students’ construction of personal 

expressions for ideas conventionally ascribed to fractions or combinatorics counting 

formulas. In the realm of other forms of symbolization, I might continue my study of 

students’ construction of diagrammatic personal expressions in the context of set-theory 

and proof (Eckman et al., 2023).  

As I stated in my discussion related to my Chapter 6 results, I recognize that I 

have done very little work related to communicative and conventional expressions. In my 

future research, I hope to investigate students’ collective creation of expressions to 

facilitate communication and students’ attempts to adopt conventional expressions in the 

context of direct instruction. I hope that through constructing a grounded theory of 

individual student symbolization, I can continue to provide explanatory frameworks for 

students’ symbolizing activity across multiple grains of analysis and mathematical 

contexts.  
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Invitation to Participate in Full Set of Interviews 

[Student], 

 
Thank you for your participation in an initial interview for Derek Eckman's 
dissertation study. At this time, we invite you to participate in a series of 
approximately seven (7) weekly research interviews as part of Derek 
Eckman's dissertation study. Please review the following information before 
committing to the interview sequence: 
 
1) The weekly research interview will take place at a regularly scheduled 
time, and each interview will take approximately 90 minutes. Please fill out the 
WhenIsGood poll below to indicate the times at which you are available. 
 
Link: http://whenisgood.net/dedissertation 
 
2) You will be compensated for each interview with a $20 Amazon gift card. 
If you requested a single payment at the end of the interview cycle, you would 
receive a single lump-sum gift card ($140 for seven interviews) after the study. If 
you withdraw from the study you will only receive gift cards for the 
interviews that you complete. 
 
3) The weekly interviews will continue through the remainder of the semester. 
The final interview will likely take place during or after finals week. We want to 
schedule the last interview at a time convenient to you after you have completed 
your final exams. 
 
Please reply to this email to confirm whether or not you can participate in 
further research interviews. 
 
Respectfully, 
 
 
Derek Eckman, M.A. 
Ph.D. Candidate 
School of Mathematical and Statistical Sciences 
Arizona State University 

 

  

https://whenisgood.net/dedissertation
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Consent Form-Interview Participants  

Infinite Series: Convergence, Properties, and Relationships 
 

Dear Student Volunteer:  
 

I am a graduate student in the Mathematics Education Ph.D. program housed in the School of Mathematical 

and Statistical Sciences, College of Liberal Arts and Sciences at Arizona State University.  I am conducting 

a research study to explore college students’ reasoning about infinite series through task-based 

interviews.     
 

I am inviting your participation, which will consist of a series of 90-minute interview outside of class 

meetings over Zoom.  
 

Your participation in this study will allow the mathematics education community to identify necessary 

changes to develop a more effective curriculum and instruction on infinite series for future students. There 

are no foreseeable risks or discomforts to your participation.  
 

There will be compensations for you when you want to participate in this study: You will be given a $20 

Amazon gift card for each interview that you complete during this study.  

 

The interview will be held remotely via a zoom meeting. For research purposes, the interview will 

be audio- and video-recorded and your written work during the interviews will be photo-copied. The data 

collected from you will be retained at the principal investigator’s office and then be destroyed when 

research related to this study ends (no later than 10 years from when the data were collected.)     
 

The responses to your interview will be kept strictly confidential. Your name will not be used in any 

description or publication of this research. Instead of your real name, a pseudonym might be used in all 

professional presentations and written papers related to this research.  
 

Your participation in this study is voluntary. You must be 18 or older to participate in the study. The 

interviews will take place outside of your classes and the results of the interview will not influence your 

grades. You have the right not to answer any question, and to stop your participation at any time. If you 

choose not to participate or to withdraw from the study at any time, there will be no penalty, and it will not 

affect your grade. 

  

If you have any questions concerning the research study, please contact me at: dceckman@asu.edu. If you 

have any questions about your rights as a subject/participant in this research, or if you feel you have been 

placed at risk, you can contact the Chair of the Human Subjects Institutional Review Board, through the 

ASU Office of Research Integrity and Assurance, at (480) 965-6788. Please let me know if you wish to be 

part of the study.  

 

Respectfully,  

  

Derek Eckman, MA  

ECA 302  

School of Mathematical and Statistical Sciences  

Arizona State University  

dceckman@asu.edu  
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Consent for videotaping in this research  

  

I acknowledge that this study involves videotaping during individual interviews, and I grant permission to 

videotape during my interviews. I sign it freely and voluntarily.  

  

Date:_______________________________  

  

Signed:______________________________  

(Principal Investigator)  

  

Name:______________________________  

(Participant)  

  

Signed:______________________________  

(Participant)  
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Form to Check Out iPad and Apple Pencil for Study Participants 

Dear ______________________________: 

 

Thank you for your willingness to serve as a research participant for Derek Eckman’s 

dissertation study. To participate in the interviews, you will need to check out an iPad 

and Apple Pencil from Dr. Kyeong Hah Roh. The check-out process includes 1) filling 

out a consent form to participate in the research interviews, 2) filling out this equipment 

loan form to record your intent to borrow and be responsible for the iPad and Apple 

Pencil, and 3) an in-person meeting with Dr. Kyeong Hah Roh in her campus office 

(Wexler 737) to pick up and prepare your iPad. 

 

 

Timeframe for Loan of the iPad and Apple Pencil: 

You will be able to use this iPad as if it were your device for the duration of the Fall 

2021 semester. However, you must return the iPad before December 15, 2021, to Derek 

Eckman or Dr. Kyeong Hah Roh, or you will be charged for the cost of purchasing a new 

iPad.  

 

The device will be reset to the factory default settings on or after January 1, 2021. At 

that time, all information saved to the iPad that is not backed up to another account or 

device will be permanently deleted. The research team reserves the right to, at its 

discretion, determine whether sufficient damages (physical or functional) have occurred 

to the iPad to warrant financial charges to the student. 

 

Please note that any final financial compensation for participating in research 

interviews will not be processed until the iPad is returned or financial charges are 

paid.  

 

Necessary Steps to set up the iPad for interviews: 

When you set up an appointment with Derek Eckman to check out the iPad, you will be 

asked to do the following: 

Before your appointment with Dr. Roh-- 

1) Set up a 60-minute meeting with Dr. Roh in her in Wexler 737 (7th floor) via 

email (khroh@asu.edu) 

2) Set up an Apple ID if you do not have one already (student checking out the iPad)  

3) Fill out the consent form to participate in research interviews and this form via 

DocuSign 

 

At your appointment with Dr. Roh— 

1) Dr. Roh will confirm that you have filled out the appropriate forms 

2) Sign into the iPad with your ASURITE id and set up the iPad with the student’s 

Apple ID 

3) Download the Zoom and OneNote apps for research interviews if necessary 

mailto:khroh@asu.edu


 

  324 

4) Test both apps and the Apple Pencil to ensure that everything connects and works 

correctly 

*Due to coronavirus restrictions and common courtesies, please wear a mask and 

practice proper sanitation before, during, and after the appointment  

 

Recommendations for the care of the iPad and Apple Pencil: 

Please keep the following in mind as you use the iPad this semester: 

• We are not providing you a case to protect your iPad. Please do not leave the iPad 

in a place where it might be easily dropped or damaged. We need iPads to 

conduct our research, and you will still be charged if the iPad is broken 

accidentally. 

• We are not providing you a convenient place to keep your Apple Pencil. We 

encourage you to determine a safe place to keep your Apple Pencil so that you do 

not lose it. Apple Pencils currently retail for $100, and we will charge you if you 

lose the pencil. 

• Be smart with the content you install, download, or stream on this iPad. This iPad 

is a school-issued device, so you will not enjoy the same privacy that you would 

on a personal device. A member of the research team will handle this iPad after 

you return it to check for functionality issues and perform a hard-reset of the 

device.  

• We strongly recommend that you keep the iPad and Apple Pencil in their boxes 

when they are not being used and that you secure the devices when you are not 

using them or transporting them. You will still have to pay for a stolen iPad and 

Apple Pencil. 

 

Questions: 

If you have any questions about this form, please reach out to Dr. Kyeong Hah Roh 

(khroh@asu.edu) or Derek Eckman (dceckman@asu.edu). We will be able to address 

specific questions about your use of the iPad during this semester. If you have questions 

regarding the administration of this equipment loan, student charges for lost or damaged 

items, or complicated  

technological issues, please contact Renate Mittelman (renate@asu.edu) or Luis 

Gutierrez (lfgutier@mainex1.asu.edu). 

 

 

My signature below attests that I have read this document and agree to the terms 

therein.  

_______________________                _______________________             ___________ 

Student Name      Student Signature    Date 

 

_______________________   __________________________ 

Principal Investigator Name   Principal Investigator Signature 

mailto:khroh@asu.edu
mailto:dceckman@asu.edu
mailto:renate@asu.edu
mailto:lfgutier@mainex1.asu.edu
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APPENDIX B 

SCREENING SURVEY RECRUITMENT AND ITEMS 
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Recruitment E-mail Sent to Second-semester Calculus Students 

Title: Participants Needed for Student Meanings for Infinite Series Study 

 

Body: 

 

Second-semester calculus students: 

 

My name is Derek Eckman, and I am a Ph.D. candidate in mathematics education under 

the direction of Dr. Kyeong Hah Roh. For my dissertation study, I plan to conduct a set of 

individual interviews with a small number of Calculus II students to explore (1) their 

meanings for infinite sequences and series and (2) their use of various mathematical 

expressions to describe sequences and series. I anticipate that the students who participate 

in this study will participate in eight (8) weekly 90-minute interviews, for which they will 

be compensated with a $20 Amazon gift card per interview. 

 

To determine the participants of this study, I am inviting any student interested in 

participating in the study to complete a brief survey at the following Survey Link. The 

survey consists of questions about your mathematical background and interpretations for 

certain mathematical topics and should take no more than 30 minutes to complete. Please 

complete the survey by Wednesday, September 29, to be considered for 

participation in the study. All students who complete the survey and are not selected to 

participate in further interviews will be entered into a raffle to win one of two $20 

Amazon gift cards. 

 

If you are selected to participate in a set of interviews, the interviews will take place 

remotely over Zoom at a regularly scheduled weekly time. Student participants will also 

sign a consent form to participate in the interviews (see attached) which provides more 

detailed information on the background of this study. 

 

If you have any questions about the nature or structure of this study, please reach out to 

me via email (dceckman@asu.edu). 

 

Thank you for your time and I look forward to your participation in my dissertation 

study. 

 

 

 

Derek Eckman 

Ph.D. candidate 

Mathematics Education 

Arizona State University 

 

https://asu.co1.qualtrics.com/jfe/form/SV_0rgZ98ayZdjfs9w
mailto:dceckman@asu.edu
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Screening Survey Items
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APPENDIX C 

INTERVIEW PROTOCOLS FOR ALL INTERVIEWS 
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Intake Interview Protocol 

Intake Interview: Meanings for series convergence 
 

Overview:  
The purpose of this interview is to: 

(1) Determine students’ intuitive meanings for infinite series and their convergence;  

(2) Introduce students to Abigail’s series 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Consent form 

• Have student’s ASU email address handy for sending Amazon gift card 

 
Task 0: Introduction and student information (~5 minutes) 
 

Interviewer: Welcome to the interview, I am happy to see you and appreciate your 

willingness to participate in my research. The purpose of this interview is to investigate 

how you think about infinite series. Throughout the interview, I would encourage you to 

think out loud and describe what is going on inside your head as you work.  

 Before we begin, could you tell me a little about your background in mathematics 

and your current program of study at Arizona State University? 

 

Task 1: Reasoning about series convergence (~40 minutes) 
 

Interviewer: In order to complete the interview tasks, you will need to open the OneNote 

file that I sent you. I will share my screen and demonstrate how to utilize the OneNote 

file (interviewer shares screen). I have put each interview task on a separate page. For 

each task, you may need to read, write, or watch a video. OneNote will preserve all of 

your annotations in the place that you make them, which will minimize the need to erase. 

You are not required to use a calculator for any of the tasks, but one is available on the 

online version of OneNote if you would like to use it. Simply go to Insert→Math, type in 

an expression, and then click “Evaluate.”  

I will ask you to share your desktop while we go through these tasks so that I can 

see the problem, your work, and the calculator (if you choose to use it). Do you have any 

questions? Are you able to access the OneNote file? Can you (1) share your screen and 

(2) go to the “Background information” page for “Student ____” and write answers to the 

questions on the screen? (Student shares screen and opens OneNote file). 

 

Interviewer: Today we are going to look at several series presented by a student named 

Abigail. For each of Abigail’s series, I will ask you the same two questions:  
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(1) Does the series converge? How can you tell? 

(2) If the series converges, what value does it converge to? How can you tell? 

Please note that I am more interested in the processes by which you approach these 

problems than by any numerical results (or “correct answers”) that you produce. For 

example, if I were to give you the problem 1 + 2, I would not want you to merely answer 

“3.” Rather, I would want an explanation such as “I’m thinking of putting one chip 

together with two other chips and counting the total number of chips, which is 3.” I will 

likely ask you to summarize your methods for examining the series from time to time. 

Remember, I am not concerned whether or not you are able to produce a textbook 

“correct” answer; rather, I am only interested in what you are thinking. 

Finally, I am not expecting you to be able to answer all of these questions. 

You are welcome to skip or respond “I don’t know” to any question. In this 

instance, I will ask you “What would you need to know in order to answer the 

question?” OK, let’s get started. Please click on Abigail’s first series and answer the two 

questions. 

 

Series Expanded Form Series type 
Sequence of 

Partial Sums 
Converge 

Limit 

Value 

∑
3

√𝑛

∞

𝑛=0

 
3

√1
+

3

√2
+

3

√3
+ ⋯ 

p-series 

(0 < 𝑝 < 1) 

Monotone 

increasing 
No  

∑
2(−1)𝑛−1

𝑛5

∞

𝑛=1

 
2

15 −
2

25 +
2

35 − ⋯ 

Alternating 

p-series 

(𝑝 > 1) 

Oscillating Yes ≈ 1.94 

∑ ∑[10−2𝑛−1

99

𝑖=1

∞

𝑛=1

− 10−2(𝑛+1)−1𝑖]  

= ∑
495

10000
(

1

100
)

𝑘∞

𝑘=0

 

99

103 +
98

103 + ⋯ +
1

103 +
99

105
+ ⋯ +

1

105
+  

99

107 + ⋯ +
1

107 + ⋯  

Geometric 
Monotone 

increasing 
Yes 

1

20
 

∑
(200 − 2𝑛)(−1)𝑛

𝑛 + 1

∞

𝑛=0

 
200

1
−

198

2
+

196

3
− ⋯ 

Alternating 

series 
Oscillating No  

∑ 𝑎𝑖

∞

𝑖=0

 

(where 𝑎𝑖 corresponds to 

the 𝑖𝑡ℎ decimal place of 𝜋 

and 𝑎0 = 3.) 

3 + .1 + .04 + ⋯ 

Decimal 

expansion of 

irrational 

number 

Monotone 

increasing 
Yes 𝜋 

∑(.07) ∙ (−1)𝑛

∞

𝑛=0

 . 07 − .07 + .07 − ⋯ 

Alternating 

series 

(Grandi’s) 

Oscillating No  

 

The student attempts to answer the two questions for each series, which are presented 

one at a time on different OneNote pages. After the student has completed the questions 

for each series, the interviewer will ask the following questions: 
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Questions: 

1)  To confirm, you stated that this series (does/does not) converge, and that the series 

converges to ____, correct? How did you determine this? 

2) What similarities or differences did you perceive between this series and Abigail’s 

other series? 

3) Any other questions that the interviewer feels to ask to clarify students’ thinking or 

meanings. 

 

Abigail’s 1st series 
 

3

√1
+

3

√2
+

3

√3
+

3

√4
+

3

√5
+ ⋯ 

 

Abigail’s 2nd series 
 

2

15
−

2

25
+

2

35
−

2

45
+

2

55
− ⋯ 

 

Abigail’s 3rd series 
 

99

103
+

98

103
+ ⋯ +

1

103
+

99

105
+ ⋯ +

1

105
+

99

107
+ ⋯ +

1

107
+ ⋯ 

 

Abigail’s 4th series 
 

200

1
−

198

2
+

196

3
−

194

4
+

192

5
− ⋯ 

 

Abigail’s 5th series 
 

3 + .1 + .04 + .001 + .0005 + .00009 + .000002 … 

 

Abigail’s 6th series 
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. 07 − .07 + .07 − .07 + .07 − ⋯ 

 

Task 2: Reasoning about general series convergence (~20 minutes) 
 

After the student completes the two questions for all series: 

 

Interviewer: Now that you have completed all the series, I am going to ask you to 

address the two questions that we have answered for each of Abigail’s series in a general 

way (Interviewer navigates to “Series Question” page). In other words: 

 

(1) How can I tell whether a series converges? 

(2) If a series converges, how can I determine the value to which it converges? 

 

I am going to ask you to write an answer to each of these questions on this screen. Take 

your time, and I will ask you to explain your answers when you are finished. 

 

Student answers questions and interviewer asks the student to explain each response. 

 

Interviewer: Thank you for your participation today. I am interviewing several students 

on these tasks, and I will ask some of the students to continue to participate in weekly 

interviews throughout the course of the semester. You would be compensated the same 

amount for each interview, and we would set up a weekly time to meet. Would you be 

willing to participate in further interviews? If so, can we set up a time to meet each week? 

(Interviewer sets up a time to meet with the student). We will meet each week over Zoom 

and use OneNote during each session to discuss topics related to sequences and series. 

Do you have any further questions about this interview or my research study? If not, 

thank you for your time and I look forward to seeing you next week. 
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Day 1 Interview Protocol 

Day 1: Establishing a personal expression 
 

Overview:  
The purpose of this interview is to: 

 

(1) Further investigate students’ intuitive meanings for partial sums, infinite series and 

their convergence;  

(2) Determine which symbolic components of the longhand series notation that students 

attend to and their reasons for doing so;  

(3) Determine how students might describe the process of determining partial sums and 

series convergence in words; and  

(4) Determine how the students might symbolize their image of partial sums and series 

convergence. 

 

To-do list before Interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Consent form 

• Have student’s ASU email address handy for sending Amazon gift card 

 

Introduction and Student Information (~5 minutes) 
 

Interviewer: Thank you for participating in the interview today. The purpose of this 

interview is to investigate how you think about infinite series. Throughout the interview, 

I would encourage you to think out loud and describe what is going on inside your head 

as you work. 

 

I want to also keep track of the material you are covering in your calculus course. 

Can you tell me a little bit about the material that your instructor presented over 

the last week? 

 

I will be reporting the results of this study for my dissertation and in future journal 

publications. In each publication, I will be referring to you by a pseudonym. If you 

have a particular pseudonym that you would like to be known by, please let me 

know today or sometime during the study. 

 

Task 1: Reasoning about Partial Sums (~20 minutes) 
 

Interviewer: In order to complete the interview tasks, you will need to open the OneNote 

file that I sent you. I will share my screen and demonstrate how to utilize the OneNote 

file (interviewer shares screen). I have put each interview task on a separate page. For 
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each task, you may need to read, write, or watch a video. OneNote will preserve all of 

your annotations in the place that you make them, which will minimize the need to erase. 

I will ask you to share your desktop while we go through these tasks so that I can see the 

problem, your work, and the calculator (if you choose to use it). You are not required to 

use a calculator for any of the tasks, but you may share your screen and use the Desmos 

(desmos.com) calculator at any time if you wish. Do you have any questions? Are you 

able to access the OneNote file and write on the screen? (Student shares screen and 

opens OneNote file). 

 

Interviewer: Please navigate to “Ivy’s Series 1” in the OneNote file. For this task, I have 

included a group of infinite series created by a student named Ivy. For each of Ivy’s 

series, I will ask you the same two questions:  

(2) How would you determine the 37th summand (or written term) in the series? 

(3) How would you determine the sum of the first 37 terms in the series? 

Please note that I am more interested in the processes by which you approach these 

problems than by any numerical results (or “correct answers”) that you produce. For 

example, if I were to give you the problem 1 + 2, I would not want you to merely answer 

“3.” Rather, I would want an explanation such as “I’m thinking of putting one chip 

together with two other chips and counting the total number of chips, which is 3.” I will 

likely ask you to summarize your methods for examining the series from time to time. 

Additionally, I am interested in any similarities or differences that you see between the 

processes that you use to investigate each of the series. Hence, I will frequently ask you 

to compare the methods that you use for each new series to the methods that you have 

used in previous series. Please be open and honest in all your answers. Remember, I am 

not concerned whether or not you are able to produce a textbook “correct” answer; rather, 

I am only interested in what you are thinking. 

Finally, I am not expecting you to be able to answer all of these questions. 

You are welcome to skip or respond “I don’t know” to any question. In this 

instance, I will ask you “What would you need to know in order to answer the 

question?” OK, let’s get started.  

 

Series Expanded Form Series type 
Partial Sums 

Behavior 
Converge Limit Value 

∑
2

√𝑛
4

∞

𝑛=0

 
2

√1
4 +

2

√2
4 +

2

√3
4 + ⋯ p-series 

Monotone 

increasing 
No  

∑
5

𝑛

∞

𝑛=1

 
5

1
+

5

2
+

5

3
+

5

4
+ ⋯ p-series 

Monotone 

increasing 
No  

∑
3

𝑛5

∞

𝑛=1

 
3

15
+

3

25
+

3

35
+

4

35
+ ⋯  p-series 

Monotone 

increasing 
Yes ≈ 3.11 

∑(−1)𝑛 (
6

𝑛2)

∞

𝑛=1

 
6

1
−

6

4
+

6

9
−

6

16
+ ⋯ Alternating series Oscillating Yes ≈ −4.93 

∑(.04) ∙ (−1)𝑛

∞

𝑛=0

 . 04 − .04 + .04 − ⋯ Alternating series (Grandi’s) Oscillating No  
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∑(−1)𝑛 (
𝑛 + 3

𝑛2 − 𝑛 + 7
)

∞

𝑛=0

 
3

7
−

4

7
+

5

9
−

6

13
+ ⋯ Alternating series Oscillating Yes ≈ −0.27 

 

 

Questions: 

1) Can you explain one more time how you determined the 37th summand/partial 

sum? 

2) How was your approach for this series similar or different from the previous 

series? 

3) Is the student making a distinction between sequence and sequence of partial 

sums? 

 

 

Task 2: Writing a Written Rule for a Partial Sum (~20 minutes) 

 
Interviewer: I appreciate the work that you have done so far and the good job you have 

done at explaining your thinking. Could you summarize one more time for me the 

similarities and differences that you found while working through each of Ivy’s 

series? Thank you.  

 When we compute the sum for the first 𝑛 terms in a series, we determine what is 

called the 𝑛th partial sum of the series. For example, if you add the first 37 summands 

together, you have found the 37th partial sum. If you add the first 15 terms together, you 

have found the 15th partial sum. If you add the first 1234 terms together, you have found 

the 1234th partial sum.  

For our next activity, please go to the Written Rule Task on the OneNote. I would 

like you to use the similarities and differences that you have found and create a written 

note that you could share with a friend describing how to find a partial sum for any finite 

number of summands. Specifically, I would like you to (interviewer reads task prompt) 

 

Construct a written note, say for a fellow group member, detailing how to 

find the determine the sum of any finite number of terms in any series (such 

as the first 12 terms, the first 189 terms, and so on). 

 
Your note will be in written English, although you are welcome to write numbers if you 

would like. Please do not write symbolic notation such as algebra for this task. Do you 

have any questions? Please think out loud as you construct your written note. After you 

have finished your written note, I will have you explain it to me. 

 

(Student proceeds to construct a written rule) 

 

Questions: 

1) Can you explain your written rule to me? 

2) Why did you put this word/phrase/sentence in your rule? What does it mean? 
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3) (Interviewer selects one of Ivy’s series) Using your rule, could you explain to me 

how to compute the partial sum when 𝑛 = 79? 

4) Will your written rule work for any value of 𝑛? Why or why not? 

5) It seems that earlier in the interview you were doing _____________________ 

when thinking about partial sums, but I do not see it included in your plan. Why 

did you not include it? 

 

 

Task 3: The Transcription Task (~15 minutes) 
 

Interviewer: For our next activity, I am going to have you transcribe an infinite series. 

Go ahead and navigate to the Writing Series Task in the OneNote file. You should see a 

YouTube video embedded there. Do you see the video? All right, this is how the activity 

will work—in a moment, I will have you play the video. The video includes an 

instruction screen that asks you to memorize an infinite series expression. The video will 

then show you the expression for about 6 seconds, after which time the expression will 

disappear. Do not write anything until after the expression disappears from the screen. 

After the expression disappears, I would like you to recreate what you can remember 

from the expression on the OneNote page. After you have finished recreating the 

expression, I will ask you some questions about what you wrote. We might repeat this 

activity 2-3 times. Do these instructions make sense? Are you ready? Okay, then play the 

video and get ready to transcribe the expression. 

 

(Subject plays video and transcribes the expression) 

 

Interviewer: How do you feel about your expression? (Don’t worry, you will have 

another shot at copying the expression in a minute.) Now, I want to ask you a few 

questions: 

1) Where did you look first when the expression appeared? 

2) Why were these components important for you to be able to transcribe the series? 

3) I noticed that you paused between writing (thing 1) and (thing 2). Why did you 

pause there? 

4) Would you like to make another attempt at transcribing the video? Before we 

replay the video, is there anything that you plan to specifically look for the next 

time you see the expression? 

All right, I am going to have you erase what you have written and attempt a new 

transcription. Are you ready to try transcribing again? All right, play the video one more 

time. 

 

(Subject plays video and transcribes and expression) 

 

Interviewer: I have a few more questions now that you have completed the activity a 

second time: 

1) How do you feel about your expression now? 
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2) Did your approach to transcribing the series change when you re-watched the 

video? How so? 

3) I noticed that you paused between writing (thing 1) and (thing 2). Why did you 

pause there? 

4) Do you want to watch the video one more time? If so, before we replay the video, 

is there anything that you plan to specifically look for the next time you see the 

expression? 

 

(Interviewer shows the expression) 

1) What similarities and differences are there between your expression and the 

expression on the screen? 

2) What do you think that these components that you did not write might represent in 

this expression? 

 

 

Task 4, Activity 1: Personal Expressions Video (~10 min) 
 

Interviewer: (If there is time left in interview) I have one final task for you to complete 

in today’s interview. The task involves constructing an algebraic expression from your 

written expression. How do you think you might create an algebraic expression that 

details the same process that you described in words? 
 
In a few minutes, I will ask you to create an expression. However, first I would like to 

show you a short video that reviews the ways in which algebraic symbols, which I call 

inscriptions, are used in mathematics. 

 

(Interviewer plays video) 

 

Video script 

Mathematicians have written down their discoveries for centuries to convey ideas to 

others and make sense of their own thinking. In the last 700 years, most mathematical 

topics, including algebra, calculus, and logic have begun to use algebraic inscriptions to 

simplify communication. But what is an inscription, and what can it be used to represent? 

 

An inscription is a “a written mark utilized by an author to succinctly represent a 

property, action, or relationship that the author has envisioned.” There are three types of 

inscriptions that mathematicians typically use: Operational, Relational, and Proxy. 

 

An operational inscription indicates a task to be performed, such as adding the total 

number of sheep in a village or dividing 35 pieces of chocolate among you and 5 friends.  
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A relational inscription indicates a relationship between the values, magnitudes, or 

properties of two quantities. For example, we can use relational inscriptions to describe 

the relationship between the number of candies or sheep that two people have.  

 

Vicarious inscriptions serve as representations for stable and complete mathematical 

concepts, such as function, integral, the set of all real numbers, or even the variable 𝑥. 

Vicarious inscriptions can also be ornamented with superscripts or subscripts to provide 

greater detail or dimensionality to the original idea represented by the inscription.  

 

Inscriptions are often combined to represent even more complex mathematical ideas. I 

call these combinations of inscriptions mathematical expressions. Mathematical 

expressions come in two types: conventional expressions and personal expressions. 

 

Let’s illustrate the difference between conventional expressions and personal expressions 

with an example. Suppose that three mathematicians draw a triangle and want to 

represent that triangle in their writing without drawing the original triangle. The 

mathematicians agree to label the vertices of the triangle with the capital letters A, B, C, 

the sides of the triangle with the lowercase letters a, b, c, and the angles of the triangle 

with their corresponding measures. The first mathematician decides to represent the 

triangle using the vertices and writes Δ𝐴𝐵𝐶. The second mathematician decides to 

represent the triangle using the sides and writes Δ𝑎𝑏𝑐. The third mathematician decides 

to represent the triangle using the vertices and angle measures. She writes 

Δ𝐴68.5𝐵64.7𝐶46.8. Each mathematician has created his or her personal expression for the 

original triangle. However, the mathematicians must collaborate together to determine a 

conventional expression that they can use to communicate clearly and coherently with 

each other.  

 

Mathematical expressions are utilized throughout the world in classrooms, textbooks, and 

homework assignments. Most of these expressions are conventional expressions, but 

remember: each conventional expression was once a personal expression, used by a 

single mathematician to represent a mathematical property, action, or relationship in a 

succinct way. 

 

Questions: 

1) What did you understand from the video? 

2) Do you want to see another example? (Be prepared with function notation 

example) 

 

Task 4, Activity 2: Constructing a Personal Expression (~25 min) 
 

Interviewer: Now, I would like you to create a personal expression that describes how to 

determine the sum for any finite number of terms in any series. Since this is a personal 

expression, you are welcome to either use inscriptions that you are already familiar with 

or invent your own. To keep track of the meanings for each of your inscriptions, I have 
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prepared a glossary for you (interviewer indicates glossary). I will ask that for each 

inscription that you decide to use, you include the inscription and your definition for the 

inscription in the glossary. All right, let’s go! 

 

(Student creates personal expression and fills out glossary) 

 

Questions: 

1) What does (each) inscription represent? 

2) How is this inscription correlated to your written response? 

3) Why did you place the inscription where you did in your personal expression? 

4) Did you exclude any components of your written response from your personal 

expression? Why? 

5) Did you include any components in your personal expression that were not in 

your written response? Why? 

 

(If time) Have the student model a partial sum with their personal expressions. 

 

 

 

 

 

 

End of Day 1 Interview 

 

Interviewer: Thank you so much for taking the time to interview today. I appreciate 

what we have been able to accomplish, and I feel that you did a very good job of 

expressing your thinking. Please feel free to reach out to me at any time in the future if 

you have questions regarding my research. Finally, I need to clarify an email address to 

which I can send your Amazon gift card. Is (student’s ASU email address) okay? 
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Day 2 Interview Protocol 

Day 2: Reasoning and Modeling with Personal Expressions 
 

Overview: The purpose of this interview is to have the student reason about and 

make revisions to their personal expressions while modeling both individual 

partial sums and the infinite series. The student’s revisions to their personal 

expressions will (potentially) provide greater flexibility from a syntactical 

standpoint and greater fluency from a semantic standpoint in preparation for 

creating a personal expression for the sequence of partial sums and beginning to 

explore convergence during Day 3. 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Consent form 

• Have student’s ASU email address handy for sending Amazon gift card 

 

Review Task 1 & 2: Daily video and Glossary review 

 
Interviewer: It has been a week since our first interview. How is your semester going? 

What topics have you covered in the last week in you calculus class? What do you 

remember from our interview last week? 

 

(interviewer addresses questions and provides any necessary background information) 

 

Interviewer: Before we begin, I wanted to make sure that you are able to access the 

OneNote file for this week. (student confirms that they have opened the OneNote file). I 

will share my screen to show you the setup for today’s interview and then have you share 

your screen when you do the work just like we did last week. (interviewer shares screen 

of OneNote file).  

For our first activity today, I would like you to rewatch the mathematical 

expressions video and review your inscriptions that you created during the last interview. 

Remember that you are building your own personal expressions and it is normal to make 

adjustments to your expression as you proceed. If you choose to change any component 

of your inscription or introduce a new personal expression, we will simply update the 

glossary with a new inscription, idea the inscription is designed to convey, or both. In 

every interview throughout the remainder of the study, we will begin with this activity. 

(Interviewer plays video) 

 

Questions: 

1) How has your understanding of the video changed as you watched it this time? 
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2) (For each inscription in the student’s glossary) Last week, you constructed this 

inscription to convey ____________ (interviewer reads students’ definition). Can 

you review for me what you mean by this inscription? 

3) What is the domain of your inscription 𝑓(𝑛)? Is this domain the same for all 

series? 

 

I would also like to review the inscriptions that you created yesterday in your glossary. 

For each inscription, will you please answer the following questions: 

1) What does this inscription mean to you? 

2) Would you like to modify your inscription before we begin today’s interview 

tasks? 

 

Task 1a: Instructional Provocation (Monica): Contrasting Prompts 
 

Interviewer: Today’s interview will consist of 2 tasks, which are going to focus on ways 

in which you might use the personal expression that you created last week to give 

meaning to Ivy’s series. For the first task, I would like you to read and interpret the 

following arguments by students Xavier, Yolanda, and Zeb and tell me which argument 

most accurately describes how to compute the 127th partial sum of the Ivy’s 1st series.  

 

1) Could you read Xavier’s argument? 

2) What does this argument mean to you? 

3) Could you draw a graph to represent how you are interpreting this argument? 

4) How does your graph relate to Ivy’s first series? 

 

5) Could you read Yolanda’s argument? 

6) What does this argument mean to you? 

7) Could you draw a graph to represent how you are interpreting this argument? 

8) How does your graph relate to Ivy’s first series? 

 

9) Could you read Zeb’s argument? 

10) What does this argument mean to you? 

11) Could you draw a graph to represent how you are interpreting this argument? 

12) How does your graph relate to Ivy’s first series? 

 

13) Which argument do you believe best describes the 129th partial sum of Ivy’s 

first series? Why did you choose this argument? 

14) Which graph do you believe best describes the 129th partial sum of Ivy’s first 

series? Why did you choose this graph? 
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Xavier’s Argument 

The 129th partial sum of Ivy’s 1st series can be determined by computing the 

integral ∫
𝟐

√𝒏
𝟒 𝒅𝒏

𝟏𝟐𝟗

𝟏
, which represents the exact area under the curve of the 

function 𝒇(𝒏) =
𝟐

√𝒏
𝟒  from 𝒏 = 𝟏 to 𝒏 = 𝟏𝟐𝟗. 

 

 

Yolanda’s Argument 

The 129th partial sum of Ivy’s 1st series can be determined by computing the 

summation ∑
𝟐

√𝒏
𝟒

𝟏𝟐𝟗
𝟏 , which represents the exact area under the curve of the 

function 𝒇(𝒏) =
𝟐

√𝒏
𝟒  when it is evaluated at each position from 𝒏 = 𝟏 to 𝒏 = 𝟏𝟐𝟗. 

 

 

Zeb’s Argument 

The 129th partial sum of Ivy’s 1st series can be determined by computing the 

summation ∑
𝟐

√𝒏
𝟒

𝟏𝟐𝟗
𝟏 , which represents the approximate area under the curve of 

the function 𝒇(𝒏) =
𝟐

√𝒏
𝟒  using Riemann sums with width 1 from 𝒏 = 𝟏 to 𝒏 = 𝟏𝟐𝟗. 

 

Task 1b: Instructional Provocation 2 (Sylvia): Devil’s Advocate 
 

Interviewer: Today’s interview will consist of 2 tasks, which are going to focus on ways 

in which you might use the personal expression that you created last week to give 

meaning to Ivy’s series. For the first task, I am going to show you several variations of a 

series that differ only in terms of the signs between the terms. I would like you to create a 

personal expression for the 43rd partial sum for each of the following series. 

 

1) Can you explain how your personal expression represents the 43rd partial sum? 

Why did you write it this way? 

2) It seems that you have very different personal expressions for each of the series, 

even though the only differences between the series are the operators. Do you 

think there is a more efficient way to construct your personal expression? If so, 

how would you change it? 
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Series A 

𝟏 +
𝟏

𝟑
+

𝟏

𝟗
+

𝟏

𝟐𝟕
+

𝟏

𝟖𝟏
+

𝟏

𝟐𝟒𝟑
+

𝟏

𝟕𝟐𝟗
+ ⋯ 

 

Series B 

−𝟏 −
𝟏

𝟑
−

𝟏

𝟗
−

𝟏

𝟐𝟕
−

𝟏

𝟖𝟏
−

𝟏

𝟐𝟒𝟑
−

𝟏

𝟕𝟐𝟗
− ⋯ 

 

Series C 

𝟏 +
𝟏

𝟑
+

𝟏

𝟗
−

𝟏

𝟐𝟕
−

𝟏

𝟖𝟏
+

𝟏

𝟐𝟒𝟑
+

𝟏

𝟕𝟐𝟗
− ⋯ 

 

Series D 

𝟏 −
𝟏

𝟑
+

𝟏

𝟗
−

𝟏

𝟐𝟕
−

𝟏

𝟖𝟏
+

𝟏

𝟐𝟒𝟑
+

𝟏

𝟕𝟐𝟗
− ⋯ 

 

Series E 

−𝟏 +
𝟏

𝟑
+

𝟏

𝟗
+

𝟏

𝟐𝟕
−

𝟏

𝟖𝟏
+

𝟏

𝟐𝟒𝟑
+

𝟏

𝟕𝟐𝟗
− ⋯ 

 

 

Task 2: Using a personal expression to model the SPS with Ivy’s series 

(45-60 min) 
 

Interviewer: Last week you developed the written rule “___________” and the personal 

expression “___________” to represent the sum of any number of terms in any of Ivy’s 

series. (interviewer indicates students’ rules on the shared screen). I am going to ask you 

to use your rules to represent several of Ivy’s series. In particular, I will ask you to use 

your personal expression to represent the following three things: 

1) The 76th partial sum in each series 

2) The 𝑛th partial sum in each series 
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3) The infinite series itself 

After you represent each series, I will ask you what components of your 

expression were similar or different compared to previous expressions. Finally, after you 

have looked at all of the series that we have time for, I will ask how you might represent 

the sum for any number of terms in any series, and how you might represent the infinite 

series for any series. Do you have any questions? Very good, let’s begin. 

 

Possible questions to ask: 

1) What does (each) inscription represent? 

2) Why did you place the inscription where you did in your personal expression? 

3) Does your personal expression coincide with your written rule? What differences 

(if any) exist between the two? 

4) Is your personal expression equivalent to Ivy’s series? Why or why not? 

5) What are the similarities and differences between the expressions that you are 

creating to answer question 1 and the expressions that you are using to answer 

question 2? 

 

 

Task 3 (optional): Representing components of Patricia’s series with 

personal expression (30 min) 

 
Interviewer: One of the reasons that mathematicians create personal and conventional 

expressions is to represent a broad class of mathematical topics. In the next part of the 

interview, I want to show you a different series presented by another student, Patricia. 

(Interviewer shows Patricia’s series) I want to highlight several parts of Patricia’s series 

and ask you whether or not you can use your personal expression (or some form of your 

personal expression) to represent that component of the series. If you believe that you can 

represent the portion of Patricia’s series that I highlight with your personal expression, I 

will ask you to show me a specific expression that represents the highlighted components.  

If you do not believe that you can represent the portion of Patricia’s series that I 

highlighted with your personal expression, I will ask whether you might introduce a new 

inscription to your expression or otherwise modify your personal expression so that you 

could represent this highlighted portion of Patricia’s series and how you would do this. If 

you do not believe that you can modify your personal expression to represent the 

highlighted component of Patricia’s series, then I will ask you to create another personal 

expression to represent the highlighted component of the series.  

If you create a new personal expression, we will also write the new inscriptions 

and the information that they are designed to convey in the glossary. Do you have any 

questions? This series of activities should take up the remainder of the interview. 

 

 

 

Patricia’s Series 
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Create a personal expression to represent the sum of the first 53 terms in Patricia’s 

series. 

 

 

13 +
13

4
+

13

9
+

13

16
+

13

25
+

13

36
+

13

49
+

13

64
+ ⋯ 

 

 

 

 

 

 

Components of Patricia’s Series to Highlight 
Use a personal expression to model  

𝑎5 = 𝑆5 − 𝑆4 
 

Use a personal expression to model 

𝑎10 + 𝑎11 + 𝑎12 = 𝑆12 − 𝑆9 
 

Use a personal expression to model 

∑ 𝑎𝑖

∞

𝑖=4

= 𝑎4 + 𝑎5 + 𝑎6 + ⋯ 

 

Use a personal expression to model 

 

∑ 𝑎𝑖

∞

𝑖=1

− 𝑎4 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎5 + 𝑎6 + 𝑎7 + 𝑎8 + ⋯ 

(If the student seems to have symbolized the index of the SPS) 

 

Use a personal expression with an index shift to represent 

∑ 𝑎𝑖

∞

𝑖=4

= ∑ 𝑎𝑗+3

∞

𝑗=1

= 𝑎4 + 𝑎5 + 𝑎6 + ⋯ 

 

 

Questions: 

1) Why did you (or did not) use your personal expression to represent this 

component of Patricia’s series? 
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2) What does (each) inscription in your expression represent? 

3) Why did you place the inscription where you did in your personal expression? 
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Day 3 Interview Protocol 

Day 3: Personal Expression and Graph of SPS 
 

Overview: The purposes of this interview are to (1) encourage students to adopt a 

normative definition of sequence and the graph of a sequence, (2) construct a 

personal expression for the sequence of partial sums, and (3) begin to reason about 

sequence of partial sums convergence using graphs.  

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Check embedded GeoGebra file and make sure that it loads properly 

Follow-up from previous week & daily video review 

 
Interviewer: It has been a week since our first interview. How is your semester going? 

What topics have you covered in the last week in your calculus class? What do you 

remember from our interview last week? 

 

(interviewer addresses questions and provides any necessary background information) 

 

Interviewer: Before we begin, I wanted to make sure that you are able to access the 

OneNote file for this week. (student confirms that they have opened the OneNote file). I 

will share my screen to show you the setup for today’s interview and then have you share 

your screen when you do the work just like we did last week. (interviewer shares screen 

of OneNote file).  

I would like to start by having you rewatch the mathematical expressions video and 

review your inscriptions that you created during the last interview. Remember, if you 

choose to change any component of your inscription or introduce a new personal 

expression, we will update the glossary. (Interviewer plays video) 

 

Questions: 

4) How has your understanding of the video changed as you watched it this time? 

5) (For each inscription in the student’s glossary) Last week, you constructed this 

inscription to convey ____________ (interviewer reads students’ definition). Can 

you review for me what you mean by this inscription? 

6) (Monica) It seems like last week you were unsure how to distinguish between 

a sequence and a series. Do you have a better idea now? 

7) (Sylvia) How would you describe the difference between a sequence and a 

series? 

8) (Sylvia) In our last interview, we talked about three different types of series: 

(a) series with a pattern that we know, (b) series that we believe have a 

pattern but we are unsure about part of the pattern or the whole pattern, 
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and (c) series that we are pretty sure have completely random terms. In our 

last interview, you used different inscriptions for each of these ideas. Could 

you clarify for me how you would use each of these inscriptions in terms of a 

specific series? 

 

Task 1a: Instructional Provocation (Monica): Contrasting Prompts 
 

Interviewer: For our first activity today, I would like to present you with three different 

graphical interpretations of series from three different students: Mario, Natalie, and 

Oscar. I wonder whether you agree with some, all, or none of the statements as 

appropriate ways to think about the series. Please examine the following graphs carefully 

and share your thoughts with me. 

 

Mario’s graph 
Mario creates the following graph to think about the series 

𝟐𝟑 +
𝟐𝟑

𝟐
+

𝟐𝟑

𝟑
+

𝟐𝟑

𝟒
+ ⋯.  

What does this graph represent to you? 
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Natalie’s graph 

Natalie creates the following graph to think about the series 

𝟐𝟑 +
𝟐𝟑

𝟐
+

𝟐𝟑

𝟑
+

𝟐𝟑

𝟒
+ ⋯.  

What does this graph represent to you? 

 

 

Oscar’s graph 

Oscar creates the following graph to think about the series 

𝟐𝟑 +
𝟐𝟑

𝟐
+

𝟐𝟑

𝟑
+

𝟐𝟑

𝟒
+ ⋯.  

What does this graph represent to you? 
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Questions: 

1) Which of the following graphs could be used to meaningfully think about the 

series? Why? 

2) What does this point represent (Interviewer circles a point that falls on the graph 

of the sequence)? 

3) What does this point represent (Interviewer circles a point or empty space that is 

not on the normative graph of the sequence)? 

 

Task 1b: Instructional Provocation (Sylvia): Symbolizing Random 

Series 
 

Interviewer: At the end of our last interview, you introduced several inscriptions to 

describe series with random alternating signs and randomly generated summands. Before 

we proceed to our next task, I would like to reintroduce two of these series to you, Series 

E and Ivy’s 7th series. Can you construct personal expressions to represent each of these 

series with the inscriptions from your glossary? 

 

Series E 

−𝟏 +
𝟏

𝟑
+

𝟏

𝟗
+

𝟏

𝟐𝟕
−

𝟏

𝟖𝟏
+

𝟏

𝟐𝟒𝟑
+

𝟏

𝟕𝟐𝟗
− ⋯ 

 

Ivy’s 7th Series 

𝟏+. 𝟑+. 𝟎𝟓+. 𝟎𝟎𝟗+. 𝟎𝟎𝟎𝟏+. 𝟎𝟎𝟎𝟎𝟒+. 𝟎𝟎𝟎𝟎𝟎𝟎+. 𝟎𝟎𝟎𝟎𝟎𝟎𝟗 + ⋯ 

 

Questions: 

1) Why did you use the inscriptions that you did in your personal expressions? 

2) What are you trying to convey through each inscription in your personal 

expression? 

3) Suppose a series had random signs like Series E and randomly generated 

summands like Ivy’s 7th Series? What sort of personal expression would you for 

this kind of a series? 

4) If there is more than one instance of randomness in a series, can you use the same 

inscription for each kind of randomness? 

 

Task 2a: Mini-lecture on sequence (Part 1) 

 
Notes: For Monica, provide all instruction. For Sylvia, determine whether her 

understanding of sequence seems normative. If it is, then only highlight the crucial 
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components of a sequence before defining the sequence of partial sums. If Sylvia’s 

meanings for sequence do not appear to be normative, then proceed with the full 

instruction. 

 
Interviewer: Before we continue, I wanted to take a minute to clarify what we in 

mathematics mean by a sequence and a series, and how these two terminologies refer to 

different things in mathematics. Sequences are usually written with the terms separated 

by commas, as in 1, 1/2, 1/3, 1/4, …., or as in 1/4, 1/3, 1/2, 1, …. Although 1, 1/2, 1/3, 

1/4 are in both sequences, we treat 1/4 in the first sequence differently than 1/4 in the 

second sequence as their positions in the sequence are different. The 1/4 is in the fourth 

position in the first sequence whereas 1/4 is in the first position in the second sequence. 

Likely, we in mathematics consider a sequence as an ordered set of numbers. The 

“ordered” in this description of a sequence means that each number in the set has a 

specific position. This means that each value, 1, 1/2, 1/3,1/4, etc. in each sequence is 

assigned a specific position 1, 2, 3, 4, etc. So there are two things that we need to clarify 

when talking about numbers listed in a sequence: are you talking about the positions 1, 2, 

3, 4 or the value at the positions, 1, ½, 1/3, ¼ etc.? For the value at a position, we will use 

the word “term” in mathematics. For instance, for the “4th term,” we are indicating the 

value that is in the 4th position in the sequence. So in the first sequence, the 4th term will 

be 1/4 and in the second sequence, the 4th term will be 1.  

Another way we can think about a sequence is by using the notion of a function. 

We can treat the positions 1st, 2nd, 3rd, etc. as values of the independent variable in a 

function and the terms 1st term, 2nd term, 3rd terms, etc. as value of the dependent variable 

of the function corresponding to the positions. For instance, the first sequence 1, ½, 1/3, 

¼, … can be viewed as a function where all positive integers 1, 2, 3, 4, … are values of 

the independent variable and unit fractions 1, ½, 1/3, ¼, etc. are values of dependent 

variable of a function.  

In conventional mathematics, the domain of a sequence as a function would be the 

positive integers (often including 0). In other words, when we define a function on only 

positive integers, we call the function a sequence.  

I noticed that you consider f(n) is a function defined at the position of a non-

integer such as here (pick a value between 1 and 2 on the x-axis). But if we follow this 

mathematical convention about sequence, none of the non-positive integers can be 

positions (i.e., values of the independent variable) of the sequence. Consequently, the 

graph of sequence visually appears as a set of “dots,” similar to Oscar’s graph. For all 

future sequence graphs that I present during our interviews, the graphs will consist only 

of a set of dots. 

 

Questions: 

1) Do you have any questions about the nature of a sequence and it’s graph? 

2) Review question 1: What is a sequence? 

3) Review question 2: What is the domain of a sequence? 

4) Review question 3: Describe the graph of a sequence. 

5) Review question 4: What are the differences between a sequence and a series? 
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Task 2b: Mini-lecture on SPS (Part 2) 
 

Interviewer: I now want to create a new sequence from Oscar’s sequence (𝑣(𝑛) =
23

𝑛
 or 

𝑓(𝑛) =
23

𝑛
).  

The positions of the new sequence that we will create are still positive integers. 

The term for the 1st position of the new sequence is still the first term of Oscar’s 

sequence. 

The second term of the new sequence is then the sum of the first and second terms of 

Oscar’s sequence. 

The third term of the new sequence is then the sum of the first, second, and third terms of 

Oscar’s sequence. 

In this manner, we can create a new sequence from Oscar’s sequence. 

Mathematicians call such a new sequence the sequence of partial sums.  

We may also call the first term of the new sequence as the first partial sum of Oscar’s 

sequence, the second term of the new sequence as the second partial sum of Oscar’s 

sequence, etc.  

This relationship holds for all terms in the sequence of partial sums. So, if I wanted to 

determine the 198th term in the sequence of partial sums, I would determine the 198th 

partial sum.  

 

Questions: 

1) What is the domain of a sequence of partial sums? 

2) Will the graph of a sequence of partial sums appear similar to Mario’s graph, 

Natalie’s graph, or Oscar’s graph? 

 

Task 3a: Constructing a Personal Expression for the Sequence of 

Partial Sums 

 
Interviewer: Please move to the “Sequence of Partial Sums 1” tab on the OneNote file. 

On this tab, I have included a copy of Ivy’s series and your glossary. For this activity, I 

am going to ask you to construct a personal expression to represent the sequence of 

partial sums for each of the series below. We will also add your new personal expression 

to your glossary. After you create a personal expression, I will ask you to represent the 

sequence of partial sums for each of Ivy’s series with your personal expression. 

 

Question: 

1) Create a personal expression to model the sequence of partial sums for each 

of Ivy’s series. 

 

Task 3b (optional): Introducing the graph of sequence of partial sums 
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Interviewer: I appreciate you creating a personal expression for the sequence of partial 

sums. I would now like to return to the graph of a sequence of partial sums. Please go to 

the “Sequence of Partial Sums 2” tab. On this tab, I have included a graph of the 

sequence of partial sums for Ivy’s first series along with the first few terms of the 

sequence of partial sums written out (next week I will try to use your personal expression 

to represent the sequence of partial sums). Before we look at the graph in more detail, I 

wanted to ask you about the following: 

1) (Interviewer circles point on graph) What does this point mean? 

2) (Interviewer indicates each axis on the graph) How should we label the axes 

for this graph? 

Interviewer: Thank you. For the rest of this activity, I want you to return to the two 

questions from our very first interview, this time in terms of the sequence of partial sums. 

1) Does the sequence of partial sums converge? 

2) If the sequence of partial sums converges, what does it converge to? 

Interviewer: We will work through Ivy’s first three series today (if we have time), and 

will look at the rest of Ivy’s series in the coming interviews. 

 

The interviewer presents each SPS to the student and asks the following questions: 

1) Does the sequence of partial sums converge? 

2) If so, what value does the sequence converge to? How can you tell? 

3) If not, why does the sequence not converge? 

4) What does it mean for the sequence to converge? 

5) Does the sequence of partial sums converge to (value relatively far from student’s 

proposed limit, value relatively close to student’s proposed limit)? Does the 

sequence converge to both? How does your rule show your thinking? (interviewer 

will tweak the wording of students’ rules according to his understanding of 

students’ explanations and ask for students’ approval of all changes) 

6) (interviewer points out inconsistencies between students’ rules and students’ 

reasoning): I see that you wrote this (“____”), but it seems to me that by your 

written rule, this sequence should/should not converge to (value). How might you 

modify your rule so that this is not the case? 

 

The goal of this section of the teaching session is to thoroughly perturb and confuse 

the student with their conceptions of limit (this is highly likely to be the case, but not 

guaranteed). In this way, I can promote the necessity of 𝝐 and the 𝝐-strips to give 

meaning to the concept of limit. 
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Day 4 Interview Protocol 

Day 4: Graph of SPS and Introduction to Convergence 
 

Overview: The learning goals for this interview are to (0) differentiate between 

series and sequence, (1) differentiate between the SPS and the double summation 

𝑎1 + (𝑎1 + 𝑎2) + (𝑎1 + 𝑎2 + 𝑎3) + ⋯, (2) develop meaning for the graphical 

representation for the SPS, (3) begin to build a verbal definition for convergence 

of a sequence of partial sums, and (4) develop inscriptions to represent the SPS 

and its convergence. The research goals for this interview are (1) to investigate 

MONICA’s separation of inscriptions indicating a process from those indicating a 

result, (2) model MONICA’s preliminary meanings for sequence convergence, 

and (3) to determine whether MONICA perceives any relationships between the 

convergence of the sequence of partial sums and infinite series. 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Open Desmos graphing file 

 

Follow-up from previous week & daily video review 

 
Interviewer: What topics have you covered in the last week in your calculus class? What 

do you remember from our interview last week? 

 

(interviewer addresses questions and provides any necessary background information) 

 

Interviewer: Before we review the personal expressions video today, I want to ask you a 

question. What do you believe are the important ideas from the video? (Interviewer plays 

video) Was there anything new or different that you noticed in the video this time? 

 

Interviewer: I want to review your inscriptions in a slightly different way this week. 

Instead of having you describe what you mean by each inscription, I am going to ask you 

to label each inscription by type. You may label the inscriptions as relational using an 

“R,” operational using an “O,” vicarious using a “V,” or you may come up with your own 

label for the type of inscription and write it next to the inscription. After you complete 

this exercise, I will ask you why you labeled each inscription as that particular type. 

 

Questions: 

1) Why did you label this/these inscription(s) with this type? 

2) Why did you create this inscription type? What kind of information do 

inscriptions of this type generally convey? 
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Task 1: Comparing Inscription Types in Glossary 
 

Interviewer: Over the last three interviews, you have developed several inscriptions to 

describe partial sums, series, and sequences. Before we begin the first official task of the 

interview, I wanted to ask you for similarities and differences you imagine between your 

inscriptions. In particular, I would like to see whether you can group your inscriptions 

into categories. I will allow you to group and categorize your inscriptions in whatever 

way you would like. If possible, assign a meaningful name for each inscription category. 

If you cannot think of a meaningful name, give each category a generic name so that we 

can use these names later in the interview to talk about your inscriptions. 

 

(Give the student time to reflect, think, and categorize inscriptions in her glossary) 

 

Questions: 

1) Can you summarize the categories you created for me? 

2) Why did you include inscriptions a, b, c, and d in category 1? 

3) What is the difference between category 1 and category 2? 

4) Were there any inscriptions you felt were difficult to categorize? Why? 

5) Were there any inscriptions that you felt belonged in more than one category (or 

no categories)? Why? 

 

Task 2: Differentiating a Sequence from a Sequence of Partial Sums 
 

Interviewer: For the last three interviews, we have focused primarily on infinite series. 

For today, I would like to focus on building sequences and representing components of 

these sequences with your inscriptions. We will build three different sequences using a 

new series, 2 +
2

7
+

2

49
+ ⋯. To help make this process easier, I have created a table for 

each sequence in which you can record your inscriptions and numerical calculations. For 

an example, I will fill out a portion of the first table. I will begin by filling out the bottom 

portion of the table. Remember that a sequence coordinates two components: a position 

value and a term value. In the bottom portion of the table, I have separated the table to 

indicate these two quantities. In the past you have used the inscription 𝑛 to indicate 

position in a sequence and 𝑎𝑛 to indicate the value of the 𝑛th term in the sequence. I have 

filled in the “Position value” portion of the table and want you to fill in the “term value” 

section. For example, based on the new series, I know that the term 𝑎1 is equal to 2, the 

term 𝑎2 is equal to 
2

7
≈ .286, and 𝑎3 is equal to 

2

49
≈ .041. I will write these values in the 

“term value” cells next to the inscriptions 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 to show the numerical values for 

the first three terms of the sequence. Can you fill out the term value section for the 𝒏th 

term of the sequence?  

 

(The student fills in the “Term Value” column) 
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Interviewer: Thank you for filling out the table. We will now fill out the top portion of 

the table. In the first row we will write the sequence using symbolic inscriptions from 

your glossary. For example, I can fill in the top row by listing the terms of the sequence 

using your inscription 𝑎𝑛 for the term in the sequence at the 𝑛th position, separating each 

term with commas (Interviewer writes 𝑎1, 𝑎2, 𝑎3, … in top row of table). In the second 

row, you will write out the sequence using the numerical values that you calculated in 

Desmos, such as 2, .286, .041. In the final row, you will give the sequence a name or 

type. For the first example, I will write “original sequence” because this is the sequence 

upon which the other two sequence tables will be based. I will have you name the future 

sequences (Interviewer writes “Original sequence” in the second row of the table).  

 

New series (presented to the student in expanded form) 

Series Expanded Form Series type 
Partial Sums 

Behavior 
Converge 

Limit 

Value 

∑ 2 (
1

7
)

𝑛∞

𝑛=0

 2 +
2

7
+

2

49
+

2

343
+ ⋯  geometric 

Monotone 

increasing 
Yes 

7

3
 

 

Student version of Table 1 

 

Sequence Inscription (symbolic):  

 

 

Sequence Inscription (numeric):  

Sequence Type:  

Position 

inscription 

Position 

value 

Term inscription Term Value 

 

1   

2   

3   

⋮  ⋮ 

   

⋮  ⋮ 
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Possible completed version of Table 1 

Sequence Inscription: 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … 

Sequence Inscription: 𝟑, . 𝟎𝟗𝟒, . 𝟎𝟏𝟐, … 

Sequence Type: Original Sequence 

Position 

inscription 

Position 

value 

Term inscription Term Value 

𝒏 

1 𝑎1 3 

2 𝑎2 .094 

3 𝑎3 .012 

⋮ ⋮ ⋮ 
𝑝 𝑎𝑝 3

𝑝5
 

⋮ ⋮ ⋮ 
∞* 𝑎∞* 3

𝑝∞
* 

* Student may or may not write this in, but we wanted to leave the space open just in 

case. 

 

Interviewer: I have two more tables that I would like you to fill out. In each table, the 

position values of the sequence stay the same but the way in which the terms values are 

determined changes. In the next sequence, the 𝑛th term of the sequence is determined by 

adding the first 𝑛 terms of the original sequence. I have represented the terms of this new 

sequence using your inscriptions from the original sequence, which I am calling a 

conventional inscription. However, if you have other inscriptions from your glossary that 

you would prefer to use, please write them in the “Term inscription (personal)” column. 

As before, I want you to calculate the term value (where possible) for each position in the 

sequence. After you finish calculating, you can write the sequence using inscriptions in 

the first row, using numbers in the second row, and create a written name for the 

sequence in the third row. 

 

Questions: 

1) (for each inscription type) Why did you choose this inscription?  

2) Can you label each inscription by the types that you created in the during our 

review activity? 

a. (for each inscription) Why did you label this inscription as type “_____”? 

b. (for inscriptions of same type) What are the relationships between the 

inscriptions of type “_____________”? 
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Student version of Table 2 

 

Sequence Inscription (symbolic):   

Sequence Inscription (numeric):  

Sequence Type:  

Position 

inscription 

Position 

value 

Term inscription 

(conventional) 

Term 

inscription 

(personal) 

Term 

Value 

 

1    

2    

3    

⋮ ⋮ ⋮ ⋮ 

    

    

 

Possible completed version of Table 2 

𝒎𝟏, 𝒎𝟐, 𝒎𝟑, … 
𝟑, 𝟑. 𝟎𝟗𝟒, 𝟑. 𝟏𝟎𝟔, … 

Partial Sums Sequence 

Position 

inscription 

Position 

value 

Term inscription 

(conventional) 

Term inscription 

(personal) 

Term Value 

𝒏 

1 𝑎1 𝑚1 3 

2 𝑎1 + 𝑎2 𝑚2 3.094 

3 𝑎1 + 𝑎2 + 𝑎3 𝑚3 3.106 

⋮ ⋮ ⋮ ⋮ 

𝑝 
𝑎1 + 𝑎2 + 𝑎3 + ⋯

+ 𝑎𝑝 
𝑚𝑝 ∑ 𝑓(𝑛)

𝑝

𝑛=1
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∞  
𝑎1 + 𝑎2 + 𝑎3 + ⋯

+ 𝑎∞ 
𝑚∞ ∑ 𝑓(𝑛)

∞

𝑛=1

 

 

Interviewer: The final table represents the first few terms of a sequence that examines 

the sum of the first 𝑛 partial sums. This last sequence doesn’t have a name—do you have 

a recommendation for how we should name this sequence? (If student does not 

recommend name, state that Dr. Roh and I  started calling this sequence “gorilla.”)  I am 

going to ask you to fill out the table for the “______________________” sequence as 

best you can. 

 

Student version of Table 3 

 

Sequence Inscription (symbolic):  

Sequence Inscription (numeric): 

Sequence Type: 

Position 

inscription 

Position 

value 

Term inscription 

(conventional) 

Term 

inscription 

(personal) 

Term 

Value 

 

1    

2    

3    

⋮  ⋮ ⋮ 

    

    

 

Possible completed version of Table 3 

𝒔𝟏, 𝒔𝟐, 𝒔𝟑, … 
𝟑, 𝟔. 𝟎𝟗𝟒, 𝟗. 𝟐𝟎𝟎, … 

Sequence of Partial Sums 

Position 

inscription 

Position 

value 

Term inscription (conventional) Term 

inscription 

(personal) 

Term 

Value 
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𝒏 

1 𝑎1 𝑠1 3 

2 𝑎1 + (𝑎1 + 𝑎2) 𝑠2 6.094 

3 𝑎1 + (𝑎1 + 𝑎2) + (𝑎1 + 𝑎2 + 𝑎3) 𝑠3 9.200 

⋮ ⋮ ⋮ ⋮ 
𝑝 𝑎1 + (𝑎1 + 𝑎2) + ⋯

+ (𝑎1 + ⋯ + 𝑎𝑝) 

𝑠𝑝 ?? 

∞  𝑎1 + ⋯ + (𝑎1 + ⋯ + 𝑎∞) 𝑠∞ ?? 

 

 

Interviewer: We are not going to focus on “_______________” in the future. Beginning 

with our next interview, we plan to focus almost exclusively on the second sequence, 

which you called “_________________”. We are now going to start talking about the 

graphs of these three sequences. Can you create a graph for what you believe each of 

these sequences will look like? 

 

 

Task 3: Graph of the SPS 
 

(link to Desmos file: Day 4 Graphs (desmos.com)) 

 

Interviewer: On the next OneNote tab, there is a link to a Desmos graphing file with the 

actual graphs of the three sequences. I am going to share my screen to show you how this 

file works. There is a slider at the top of this file that allows you to change the value of 𝑔 

between 1 and 3. If 𝑔 = 1, you will see the graph of the original sequence. If 𝑔 = 2, you 

will see the graph of the second sequence, which I will rename “________________” to 

follow your name. If 𝑔 = 3, you will see the graph of “Gorilla,” which I will rename 

“_____________” to match your name. If you click the little wrench icon in the top right 

corner you can set the limits of your graphing window, or you can zoom with your mouse 

or touchpad.  

 

Questions (ask for each graph): 

1) We are now going to look at graph ___, which represents the ___________. 

(Interviewer circles a point on the graph). What does this point represent? 

a. What is the term value? 

b. How would you use your inscriptions to represent: 

i. Term value 

ii. Position value 

2) (Interviewer indicates the axes of the graph) How should we label the axes of 

this graph? 

3) Which rule would you use to generate this graph, and what inscriptions will 

you use to represent this rule? (Interviewer recommends creating new 

inscription and adding to the glossary if necessary) 

 

https://www.desmos.com/calculator/zbtm0mhqfj
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Task 4 (optional): Introduction to limit of sequence 
 

Interviewer: I am now going to reintroduce the two questions that we have used many 

times throughout this interview in terms of sequences: 

1) Does the (sequence) converge? How can you tell? 

2) If the (sequence) converges, what value does it converge to? How can you tell? 

For each of the sequence graphs, can you answer these two questions for me? 

 

Interviewer: Now that you have thought about convergence for each of these sequences, 

I want to end today’s activities by asking you to create inscriptions to represent sequence 

convergence and the value to which the sequence converges. 

 

Day 5 Interview Protocol  

Day 5: Convergence of the SPS and the 𝝐-strip activity 
 

Overview: The learning goals for this interview are to (1) develop personal 

criteria for the convergence of the sequence of partial sums, (2) develop 

inscriptions to represent pertinent (to the student) parts of this criteria, and (3) 

assimilate to this criterion to determine the value to which a convergent sequence 

of partial sums does or does not converge. The research goals for this interview 

are to (1) begin to categorize the ways in which students employ inscriptions (e.g., 

class of examples, generalized particular, command, process, result, proxy), (2) 

determine which components of sequence convergence students believe merit 

creating inscriptions, and (3) model the evolution of students’ thinking and their 

inscriptions as they transition from primarily algebraic to primarily graphical 

reasoning. 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Check embedded GeoGebra file and make sure that it loads properly 

o Load file through GeoGebra site as a backup 

• Have student’s ASU email address handy for sending Amazon gift card 

 

Follow-up from previous week 
 

Interviewer: What topics have you covered in the last week in your calculus class? 

When is your upcoming calculus exam? What do you believe are the important ideas 

from the inscriptions video? (Interviewer will not show inscriptions video this week, but 

will provide any important information student forgets). 
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Interviewer: I want to review your inscriptions this week in the same way we did last 

week. Instead of having you describe what you mean by each inscription, I am going to 

ask you to label each inscription by type. After you complete this exercise, I will ask you 

why you labeled each inscription as that particular type. 

 

 

Review Task: Debugging inscriptions in the glossary 
 

Student 1: Monica 

 

Interviewer: I remember from our previous interview that you started using the letter 

“S” with a subscript to talk about various sequences. For example, if I had the sequence 
2

√1
4 ,

2

√2
4 ,

2

√3
4 ,

2

√4
4 , … (interviewer writes this sequence next to glossary), you could write 

something like 𝑆𝑎 =
2

√1
4 ,

2

√2
4 ,

2

√3
4 ,

2

√4
4 , … to describe this sequence? Am I remembering 

correctly? You also stated that if I created a sequence of partial sums based on the 

original sequence, like 
2

√1
4 ,

2

√1
4 +

2

√2
4 ,

2

√1
4 +

2

√2
4 +

2

√3
4 , …  (interviewer writes this sequence 

below 𝑆𝑎) then I could write something like 𝑆𝑝 =
2

√1
4 ,

2

√1
4 +

2

√2
4 ,

2

√1
4 +

2

√2
4 +

2

√3
4 , … . Am I 

remembering this correctly too? It seems like if I had another sequence, then using your 

inscriptions, I could write other sequences, such as 𝑆𝑏 = 1,
1

2
,

1

3
,

1

4
, … or 𝑆𝑐 =

1, −1, 2, −2, 3, −3, …. Am I interpreting your use of this inscription correctly? If I kept 

writing other sequences (interviewer makes vertical dots to indicate other unwritten 

examples) then I could eventually write other sequences such as 𝑆𝑜 = 3, 1,
1

3
,

1

9
,

1

27
, …,  

𝑆𝑝 = 2, 1.7, 1.4, 1.1, 0.8, …, or 𝑆𝑞 =
2

7
,

6

14
,

18

28
,

54

56
, …. Am I still on track with how you are 

using these inscriptions? (Student will likely interject at this point of the “debugging.” 

If not, continue to make sequences for 𝑺𝒙, 𝑺𝒚, and 𝑺𝒛. If there are still no student issues 

at this point, provide one more sequence and ask how you should name it now that you 

have run out of letter subscripts). 

 

Interviewer will allow the student to respond to the debugging activity and then 

attempt to resolve any perturbations that the student has. Such resolutions may 

include: 

• Changing her inscription for the sequence of partial sums so that it does not utilize 

the S_letter structure 

• Designating p as a special subscript that can only be utilized to discuss the 

sequence of partial sums. MONICA might consequently reject the second 

sequence S_p. 

• In either case, ask about simplifying the original sequence of partial sums to 

decimal approximations and whether she would still label this sequence as S_p.  
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Task 1: Construct Inscriptions for General Term of a Sequence 
 

(Note: in the instructions below, I refer to Monica’s inscriptions. Use Sylvia’s 

inscriptions when addressing her symbolization) 
 

Interviewer: Please navigate to the tab labeled “Sequence Inscriptions.” In our last 

interview, we filled out two tables for an original sequence and another sequence made 

up of partial sums. I have copied your table from last time for the sequence of partial 

sums onto this page. If I remember correctly from last time, you stated that the first term 

in the sequence of partial sums, 𝑝1, is the same as 𝑎1. (Interviewer points to definition of 

𝑆𝑝 in glossary). You also stated that the third term in the sequence of partial sums, 𝑝3, is 

equivalent to 𝑎1 + 𝑎2 + 𝑎3. So it seems that in the “Term Inscription” column of the 

table you could have written either 𝑝1, 𝑝2, and 𝑝3 or you could have written 𝑎1, 𝑎1 + 𝑎2, 
and 𝑎1 + 𝑎2 + 𝑎3.  

1) Do you agree? Why or why not? 

2) Why did you choose to write 𝑝1, 𝑝2, and 𝑝3? 

3) Are there any other inscriptions from your glossary that you could have used 

instead of 𝑝1, 𝑝2, and 𝑝3? For example, could you have written ____________? 

(interviewer picks various inscriptions from the table, but research focus is on 

presenting summation notation inscription for arbitrary partial sum to student’s 

attention). 

 

Interviewer will try to get the student to consider whether she can model terms in 

the sequence of partial sums with summation. Some of the following situations 

might occur: 

1) The student may accept summation notation as a viable replacement for 𝑝1, 𝑝2, 

and 𝑝3. 

2) The student may reject summation notation and state that this inscription can only 

be used in the context of series (not sequences) 

3) The student may reject summation notation and state that this inscription denotes 

a command or process, whereas 𝑝1, 𝑝2, and 𝑝3 represent values in the sequence 

(or results of an additive process). 

a. For example, a student might write 𝑝3 = ∑ 𝑎𝑛
3
𝑛=1 = 𝑎1 + 𝑎2 + 𝑎3 but 

perceive 𝑝3 as a label for the term, the summation as the rule for 

determining the term value, and the string of summands as the term value 

itself. 

 

Task 2: 𝝐-strip activity (Iteration 1) 
 

Task 2, Part 1: Reasoning about Convergence without 𝝐-strip  
Interviewer: Today we are going to explore three sequences of partial sums and try to 

answer the two questions that I presented last time: 

1) Does this sequence of partial sums converge? 
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2) If the sequence of partial sums converges, what does it converge to? 

I am hoping that as you do this activity, you will begin to think of some sort of general 

rule that you can use to determine whether a sequence of partial sums converges. As you 

examine the sequences of partial sums, I will attempt to create an initial version of a 

general rule based on your actions and write it on the screen. We can then change or 

update the rule as you go through the exercises if you feel that you need to.  

I will be using a GeoGebra applet today to dynamically present several sequences 

of partial sums. For this activity, I will run the applet, but you may annotate in whatever 

way you would like. 

 

Sequences of partial sums for day 5 

Series 
Series Expanded 

Form 
Partial Sums Expanded form Iteration 

∑
2

√𝑛
4

∞

𝑛=0

 
2

√1
4

+
2

√2
4

+
2

√3
4

+ ⋯ 

2

√1
4

,
2

√1
4

+
2

√2
4

,
2

√1
4

+
2

√2
4

+
2

√3
4

, … 

 

First Iteration   

(Week 6) 
∑

5

𝑛

∞

𝑛=1

 
5

1
+

5

2
+

5

3
+

5

4
+ ⋯ 

5

1
,
5

1
+

5

2
,
5

1
+

5

2
+

5

3
, … 

∑
3

𝑛5

∞

𝑛=1

 
3

15
+

3

25
+

3

35
+

4

35
+ ⋯  

3

15
,

3

15
+

3

25
,

3

15
+

3

25
+

3

35
, … 

 

The interviewer shows the sequences of partial sums to the student individually and 

asks the following questions: 

 

1) How would you label the axes for the graph we will produce for the first sequence 

of partial sums? 

2) Interviewer starts animation and stops at approximately 𝒏 = 𝟑𝟎. 

a. Does the sequence of partial sums converge? 

b. If so, what value does the sequence converge to? How can you tell? 

i. I have created an input box for us to record the value to which 

you believe that the series converges. The input box is titled 

“Center,” and it will become clearer why I have given the box 

this name later in the interview. If we put in a value such as 

Center = 50, then a horizontal line will appear at the value 

______________ = 50 (Interviewer uses student’s axis name). We 

can use this value as a way to check whether the values to 

which we believe that the sequence of partial sums converges. 

ii. What inscription can we use to describe the value to which you 

believe the series converges? Please add this inscription to your 

glossary. 

c. (If student says the sequence does not converge, interviewer picks a 

value) Why does the sequence not converge to the value 

________________? 
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3) Interviewer starts and stops the animation at approximately 𝒏 = 𝟕𝟎 and 𝒏 =
𝟏𝟎𝟓 while asking the same questions. 

4) After finishing the questions for each value of 𝒏, the interviewer will ask the 

following: 

a. What does it mean for the sequence to converge? 

i. Based on what you have said, I will write a preliminary rule 

for sequence convergence: “_________________________.” As 

we go through the next sequence of partial sums, we may 

modify this rule as you see fit. I am hoping that you can create 

a rule to describe the convergence for any sequence of partial 

sums. 

b. (If applicable, interviewer points out inconsistencies between students’ 

rules and students’ reasoning): I see that you wrote this (“____”), but it 

seems to me that by your written rule, this sequence should/should not 

converge to (value). How might you modify your rule so that this is not the 

case? 

5) Interviewer shows graphs of SPS 2 and SPS 3 and asks the same questions.  

6) After SPS, the interviewer adds the following questions: 

a. Does the sequence of partial sums converge to _______? (value relatively 

far from student’s proposed limit, value relatively close to student’s 

proposed limit)  

b. Does the sequence converge to both values?  

c. How does your rule show your thinking? (interviewer will tweak the 

wording of students’ rules according to his understanding of students’ 

explanations and ask for students’ approval of all changes) 

 

The goal of this section of the teaching session is to thoroughly perturb and confuse 

the student with their conceptions of limit (this is highly likely to be the case, but not 

guaranteed). In this way, I can promote the necessity of 𝝐 and the 𝝐-strips to give 

meaning to the concept of limit. 

 

Task 2, Part 2:  Introducing 𝝐-strips (~20 min) 

 

(Note: The interviewer will present the SPS in the following order: SPS3, SPS2, SPS1) 

 

Interviewer: It seems like we need something else to help us really give meaning to the 

idea of limit. So, I am going to introduce an idea called an 𝜖-strip (interviewer shows 𝜖-

strip, centered at student’s chosen limit value on SPS 3 with animated 𝜖 cycling through 

interval [.001,2]). This bar extends horizontally across the graph (not vertically), and has 

the line “_____=______” (interviewer uses student’s inscriptions and axis name) running 

down the center of the strip. The value of 𝜖 is the distance between the center of the strip 

(the value of ___) and the top or bottom of the strip. The value of 𝜖 can be any positive 

integer (large or small), although I am limited by this program with the span of values 

that I can display. (Interviewer runs animation to show 𝜖 varying.) Now, I am going to 
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stop the animation at some value of 𝜖 (interviewer pauses the animation at a value of 𝜖 

that seems to capture a majority of the dots on the screen).  

1) How many dots are inside the strip?  

2) How many dots are outside the strip?  

3) It would take a long time to actually count all of the dots, so is there a 

different way that we can refer to the number of dots inside or outside the 

strip? 

(Interviewer repeats this process and questions several times while 𝝐-strip is centered at 

the limit value) 

 

Interviewer: Now, let me move the 𝜖-strip another location (interviewer moves the 𝜖-

strip so it is centered at another value—not the limit—and starts/pauses animation 

again).  

1) How many dots are inside the strip?  

2) How many dots are outside of the strip?  

3) How are you determining this, i.e., what is your thought process for 

determining your answer?  

 

Task 3: Inscriptions from the 𝝐-strip activity 
 

Interviewer: In the last 10 minutes of the interview, I wanted to ask you whether this 

activity has given you any new ideas for which you would like to create an inscription. 

You have already created the inscription _________ for the value to which a series 

converges. However, are there any other ideas that you have seen in the graphs or during 

the activities that you want to represent using an inscription? 

 

(Student creates new inscriptions.) For each inscription, the interviewer asks: 

 

1) What does this inscription mean?  

2) Why did you create this inscription?  

3) Which category should we give to this inscription? 

 

Task 4 (optional): The Two Definitions of Convergence (~20 min) 

Interviewer: So far during this interview, you have come up with the following rule for 

determining whether a sequence of partial sums converges and the value that it converges 

to: (________________________________________). (interviewer reads student rule). 

I think that it might be difficult for you to discover 𝜖-strips and come up with a written 

rule for sequence of partial sums convergence using 𝜖-strips all in the same day. So, 

rather than have you invent a written rule for sequence convergence using 𝜖-strips from 

scratch, I am going to introduce two rules that have been presented by previous students. 

I am going to call these written rules “Adam’s Rule” and “Benjamin’s Rule” (interviewer 

shows the two definitions).  
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I am going to write your inscription for the value that the sequence converges to 

each of these rules. (Interviewer edits rules to reflect student’s inscriptions) Could you 

read these two rules aloud? What are the similarities and differences between these 

two rules?  

 

 

Adam’s Rule 

The sequence of partial sums converges to the value ___ 

if, for any 𝝐-strip, infinitely many points are inside the 

strip, where the strip is centered at 𝒚 = ______. 
 

 

 

Benjamin’s Rule 

The sequence of partial sums converges to the value ____ 

if, for any 𝝐-strip, finitely many points are outside the 

strip, where the strip is centered at 𝒚 =  ______ . 
 

 

Interviewer: Thank you. Now I want to look at the graphical representations for each 

sequence of partial sums and see whether you think either of these definitions (or both) 

might serve as a good written rule for determining the limit of a sequence of partial sums. 

Keep in mind the two questions that we typically ask ourselves. First, does the sequence 

converge? Second, if the sequence converges, what value does it converge to? Once you 

have chosen a value for ___ (if appropriate), then I will run the 𝜖 animation to help you 

think about whether you have found the value of the limit. I will ask similar questions as 

the ones I asked before as we go through each sequence of partial sums. Finally, after 

each sequence of partial sums I will ask which of the rules seems most appropriate to you 

to describe determining the convergence and limit value of a sequence of partial sums. 

 

The student goes through each sequence of partial sums and does the following: 

1) Hypothesizes whether the sequence of partial sums converges 

2) Hypothesizes a value to which the SPS converges 

3) Interviewer plays animation to increase students attention on the value of 𝜖 

varying. At regular intervals, the interviewer will pause the animation and ask 

how many dots are inside the strip and outside the strip. 

4) Interviewer makes minor changes to the proposed value of 𝑆 that make no 

change, little change, and large change to the number of dots that are 

inside/outside the strip and asks the student whether any of these values could be 

the limit. 

5) The interviewer asks the student which rule(s) (in his/her thinking) best convey 

the idea of limit of SPS. 
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Note to interviewer: 

• This setup will also accompany the next teaching session (2 days total). On day 

1, the interviewer will present p-series that have monotone increasing sequences 

of partial sums. On day 2, the interviewer will introduce oscillating sequences 

of partial sums, including Grandi’s series and the series with a complex general 

term. Once the student settles on either Adam & Benjamin both being necessary 

or just Benjamin being necessary (either is sufficient to define limit of 

sequence), the interviewer might consider doing a comparison task with many 

types of sequences (e.g., the original series from day 1, day 2) to further 

reinforce students’ thinking before proceeding to the symbolization of 

components of the rule. 
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Day 6 Interview Protocol 

Day 6: Convergence of SPS and the 𝝐-strip activity (part 2) 
 

Overview: The learning goals for this interview are to (1) develop personal 

criteria for the convergence of the sequence of partial sums, (2) develop 

inscriptions to represent pertinent (to the student) parts of this criteria, and (3) 

assimilate to this criterion to determine the value to which a convergent sequence 

of partial sums does or does not converge. The research goals for this interview 

are to (1) categorize the ways in which students correlate inscriptions with 

graphical representations, (2) determine which graphical and structural 

components of sequence convergence students believe merit creating inscriptions, 

and (3) model the evolution of students’ thinking and their inscriptions as they 

transition from primarily algebraic to primarily graphical reasoning. 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Check embedded GeoGebra file and make sure that it loads properly 

o Load file through GeoGebra site as a backup 

• Have student’s ASU email address handy for sending Amazon gift card 

 

Follow-up from previous week 
 

Interviewer: What topics have you covered in the last week in your calculus class? What 

do you believe are the important ideas from the inscriptions video? (Interviewer will not 

show inscriptions video this week, but will provide any important information student 

forgets). 

 

Task 1: Creating Inscriptions for 𝝐-strip Activity 
 

Interviewer: I want to review your inscriptions this week by showing you a screen shot 

from the GeoGebra activity that we were doing last week. In particular, I want to know 

whether your inscriptions can be used to represent components of this picture. You may 

discuss your inscriptions in any order that you would like, but I would like you to think 

about each inscription. 

 

Questions: 

1) Can this inscription be used to describe a portion of the picture? Why or why not? 

2) Could I modify this inscription so that it could be used? How so? 

3) You have not used your inscriptions to describe this component of the picture. 

How might you represent this using an inscription? 
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Student 2: Sylvia 
 

Interviewer: Last week, you told me that your instructor used the graph of the sequence 

of partial sums in your class sometime during the unit on infinite series. When he showed 

the graph, what sorts of things did he discuss about the graph? In particular, how did he 

use the graph to talk about the two big questions that we have discussed: Does the 

sequence converge? and What value does the sequence converge to? 

 

Task 2: 𝝐-strip activity (Iteration 2) 
 

Task 2, Part 1: Reasoning about Convergence without 𝝐-strip  
Interviewer: Today we are going to explore three sequences of partial sums and try to 

answer the two questions that I presented last time: 

3) Does this sequence of partial sums converge? 

4) If the sequence of partial sums converges, what does it converge to? 

In our last session, you developed a general rule that you could use to determine whether 

a sequence of partial sums converges. Your criteria were: 

 

SYLVIA If the sequence gets closer and closer to one real number, then it 

converges to that number. If the sequence gets infinitely large, then it 

diverges (keeps increasing without limit). 

MONICA If the values of 𝑃𝑛 are approaching a horizontal asymptote that they get 

very close to but do not touch (i.e., limit), the the sequence of partial 

sums converges to that limit. 

 

Today, I want you to come up with a written rule for sequence of partial sums 

convergence using 𝜖-strips. To help you out, I want to present the criteria that two of my 

previous students, Adam and Benjamin, developed. (Interviewer shows rules). Can you 

read each of these rules? What do each of these rules mean? What are the differences 

between the two rules?  

 

 

Adam’s Rule 

The sequence of partial sums converges to the value ___ 

if, for any 𝝐-strip, infinitely many points are inside the 

strip, where the strip is centered at 𝒚 = ______. 
 

 

 

Benjamin’s Rule 
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The sequence of partial sums converges to the value ____ 

if, for any 𝝐-strip, finitely many points are outside the 

strip, where the strip is centered at 𝒚 =  ______ . 
 

 

I am hoping that as you do this activity, you will decide which rule or rules work 

best as a personal criterion to think about sequence of partial sums convergence. I will be 

using a GeoGebra applet today to dynamically present several sequences of partial sums. 

For this activity, I will run the applet, but you may annotate in whatever way you would 

like. 

 

Sequences of partial sums for day 6 
Series  

Number 
Series Partial Sums Expanded form Converges? 

1 ∑
2

√𝑛4

∞

𝑛=1

 
2

√1
4 ,    

2

√1
4 +

2

√2
4 ,    

2

√1
4 +

2

√2
4 +

2

√3
4 , …  Yes 

2 ∑
5

𝑛

∞

𝑛=1

 
5

1
,    

5

1
+

5

2
,    

5

1
+

5

2
+

5

3
, …  No 

3 ∑
3

𝑛5

∞

𝑛=1

 
3

15 ,    
3

15 +
3

25 ,    
3

15 +
3

25 +
3

35 , …  Yes 

4 ∑(−1)𝑛 (
6

𝑛2)

∞

𝑛=1

 
6

1
,    

6

1
−

6

4
,    

6

1
−

6

4
+

6

9
, …  Yes 

5 ∑(.04) ∙ (−1)𝑛

∞

𝑛=0

 . 04,   .04 − .04,   .04 − .04 + .04, …  No 

 

The interviewer shows SPS 3 to the student and asks the following questions: 

 

7) How would you label the axes for the graph we will produce for the first sequence 

of partial sums? 

8) Interviewer starts animation and stops at approximately 𝒏 = 𝟑𝟎. 

a. Does the sequence of partial sums converge? 

b. If so, what value does the sequence converge to? How can you tell? 

i. Can you explain to me why the sequence does (or does not) 

converge using your rule? How about Adam’s rule? How 

about Benjamin’s rule?  

c. (Interviewer picks a value close to the student’s chosen value if 

converges or any value the sequence passes through if the series 

diverges.)  

i. Can you explain to me why the sequence does not converge to the 

value ________________ using (your rule, Adam’s rule, 

Benjamin’s rule)? 
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ii. (If student says sequence converges) Does the sequence converge 

to both values? 

d. Which rule or rules seem most appropriate to describe sequence 

convergence? 

9) Interviewer starts and stops the animation at approximately 𝒏 = 𝟕𝟎 and 𝒏 =
𝟏𝟎𝟓 while asking the same questions. 

10) Interviewer shows graphs of SPS 4, SPS 5, and SPS 6 (if time) and asks the 

same questions.  

Task 3: Inscriptions from the 𝝐-strip activity 
 

Interviewer: In the last 10 minutes of the interview, I wanted to ask you whether this 

activity has given you any new ideas for which you would like to create an inscription. 

You have already created the inscription _________ for the value to which a series 

converges. However, are there any other ideas that you have seen in the graphs or during 

the activities that you want to represent using an inscription? 

 

(Student creates new inscriptions.) For each inscription, the interviewer asks: 

 

4) What does this inscription mean?  

5) Why did you create this inscription?  

6) Which category should we give to this inscription? 

 

 

Note to interviewer: 

• This setup will also accompany the next teaching session (2 days total). On day 

1, the interviewer will present p-series that have monotone increasing sequences 

of partial sums. On day 2, the interviewer will introduce oscillating sequences 

of partial sums, including Grandi’s series and the series with a complex general 

term. Once the student settles on either Adam & Benjamin both being necessary 

or just Benjamin being necessary (either is sufficient to define limit of 

sequence), the interviewer might consider doing a comparison task with many 

types of sequences (e.g., the original series from day 1, day 2) to further 

reinforce students’ thinking before proceeding to the symbolization of 

components of the rule. 
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Day 7 Interview Protocol 

Day 7: Symbolizing Convergence of SPS 
 

Overview: The learning goals for this interview are to (1) develop personal 

criteria for the convergence of the sequence of partial sums, (2) develop 

inscriptions to represent pertinent (to the student) parts of this criteria, and (3) 

assimilate to this criterion to determine the value to which a convergent sequence 

of partial sums does or does not converge. The research goals for this interview 

are to (1) categorize the ways in which students correlate inscriptions with 

graphical representations, (2) determine which graphical and structural 

components of sequence convergence students believe merit creating inscriptions, 

and (3) model the evolution of students’ thinking and their inscriptions as they 

transition from primarily algebraic to primarily graphical reasoning. 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Check embedded GeoGebra file and make sure that it loads properly 

o Load file through GeoGebra site as a backup 

• Have student’s ASU email address handy for sending Amazon gift card 

 

Follow-up from previous week 
 

Interviewer: What topics have you covered in the last week in your calculus class?  

 

Interviewer: Since this is our last interview, I want to be sure that we have your glossary 

entirely filled out. As you can see, you have not provided information for some of your 

inscriptions. Can you fill out the rest of the glossary for the inscriptions in your glossary? 

 

Questions: 

1) What does this inscription represent? 

2) Can you create a graphical representation that also corresponds to this inscription? 
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Review Task 1a (Monica): Types of Inscriptions (Part I) 

 
It seems that in our last interview, there were times when you weren’t entirely sure how 

to correlate your inscriptions with some of the graphs that I presented. To take a deeper 

look at how you might connect your inscriptions with graphs of sequences, I have 

prepared two graphs that are related in some way to the following sequence (interviewer 

indicates sequence) and a list of seven inscriptions from your glossary that you have used 

to reference components of various sequences. For each inscription, can you tell me 

whether you can represent any of the following for me using that inscription? 

1) A single point on the graph 

2) The 31 dots on the screenshot of the graph 

3) A sequence (i.e., the sequence represented by the graph if it were to keep going)  

If the student cannot represent one of the ideas with an inscription, recommend that 

she create a new inscription. 

 

Sequence 10,
20

5
,

40

25
,

80

125
, … 

 

Inscriptions 

𝑓(𝑛) = 10 (
2

5
)

𝑛−1

 ∑ 10 (
2

5
)

𝑛−1𝑚

1

 ∑ 𝑓(𝑛)

𝑚

1

 ∑ 𝑝𝑛

𝑚

1

 

𝑎𝑛 = 𝑎1, 𝑎2, 𝑎3, … 𝑆𝑝 = 𝑝1, 𝑝2, 𝑝3, … ∑ 𝑓(𝑛)

∞

1

  

 

Graph 1: 
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Graph 2 

 
 

Review Task 1b (Monica): Types of Inscriptions (Part II) 
 

Interviewer: As I thought about your inscriptions, I wondered if there were any 

connections between certain inscriptions. (Interviewer hand writes inscriptions on 

OneNote using iPad). 
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Example 1: You have an inscription, 𝑝𝑛 for a partial sum and another inscription, 

Σ1
𝑚𝑓(𝑛) also listed as a partial sum. Do you think that we could say 

something like 𝒑𝒎 = 𝚺𝟏
𝒎𝒇(𝒏), or would this not work for your 

inscriptions? How might you use one (or both) of these inscriptions to 

represent some portion of the graphs? 

Example 2: You have two inscriptions, 𝑎𝑛 and 𝑓(𝑛), which represent the value of a 

term given position 𝑛. Do you think that we could say something like 

𝒇(𝒏) = 𝒂𝒏, or would this not work for your inscriptions? How might you 

use one (or both) of these inscriptions to represent some portion of the 

graphs? 

Example 3: You have two inscriptions, 𝑆𝑝 = 𝑝1, 𝑝2, 𝑝3, … and Σ1
𝑚𝑝𝑛, which 

incorporate the inscription 𝑝𝑛. Do you think that we could say something 

like 𝑺𝒑 = 𝚺𝟏
𝒎𝒑𝒏, or would this not work for your inscriptions? How might 

you use one (or both) of these inscriptions to represent some portion of the 

graphs? 

 

 

Task 1: Personal Expression for Convergence (SPS case) 

 
Interviewer: Over the last several interviews, we have looked at the convergence of the 

sequence of partial sums using 𝜖-strips. Today, I am going to return to the idea of 

personal expressions. Your goal for today will be to create personal expressions to 

represent components of Benjamin’s rule.  

 I made this table to help you think about creating personal expressions. In the 

table, I have separated each phrase of Benjamin’s rule onto a separate line. You do not 

have to adopt my method, but I thought this set-up might give you ideas about how to 

represent Benjamin’s rule using your inscriptions. For instance, you may create one 

personal expression to represent the entire section, or, if you wish, you may construct 

multiple personal expressions to represent different phrases or subsections. Do you have 

any questions so far? 

 

Adam’s Rule 

The sequence of partial sums   

converges to the value ________,  
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if, for any 𝝐-strip,  

infinitely many points are inside the strip,  

where the strip is centered at 𝒚 = ________.  

 

Benjamin’s Rule 

The sequence of partial sums   

converges to the value ________,  

if, for any 𝝐-strip,  

finitely many points are outside the strip,  

where the strip is centered at 𝒚 = ________.  

 

 

First, I want to know whether you can use any of the inscriptions in your current glossary 

to describe portions of Benjamin’s rule. After we have discussed all of the elements in 

your glossary, I will ask if you would like to use any additional inscriptions or 

expressions. If you wish to create any new inscriptions or expressions, we will add them 

to the glossary. If you do not wish to create any new inscriptions or expressions, we will 

move on to the next task. Do you have any questions? Ok, let’s begin. 

 

Interviewer proceeds through the student’s glossary entries and asks the following 

questions for each inscription/expression: 

1) Could you use this inscription/expression to describe components of the first 

section? Why or why not?  

2) (If YES) Does this inscription/expression represent the entire first section? Why 

or why not? What might you need to add/delete from the inscription/expression to 

represent the entire first section? 
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3) Could you use this inscription/expression to describe components of the last 

section? Why or why not?  

4) (If YES) Does this inscription/expression represent the entire last section? Why 

or why not? What might you need to add/delete from the inscription/expression to 

represent the entire last section? 

5) (AFTER going through entire glossary) Are there any other inscriptions or 

expressions that you want to create to represent part of the first section or the last 

section? 

a. What are you trying to represent with this inscription/expression? 

b. Why was this idea not represented with the inscriptions/expressions that 

you already have? 

c. Can you update the table to show your new representation for the first/last 

section with your new inscription/expression? 

 

Interviewer: Now that you have constructed inscriptions to represent sequence of partial 

sums convergence, I would you to utilize your personal expression to model the 

convergence for specific sequences of partial sums. For example, you said that this series 

(interviewer indicates series) converges to the value (______). Could you represent this 

sequence of partial sums converging to this particular value with your personal 

expression? (Interviewer repeats this question for all sequences of partial sums that the 

student claimed converged). 

 

 

Task 2: Relationship Between Sequences and Series 
 

Interviewer: We have spent a lot of time over the last two interviews discussing 

sequence of partial sums convergence. I want to return to the concept of infinite series. In 

a few minutes, I am going to have you construct a written rule and a personal expression 

to represent series convergence. Before doing this, I wanted to ask you to reflect on the 

following two questions: 

1) What relationships do you believe exist between a sequence, a sequence of partial 

sums, and an infinite series? 

2) Suppose a sequence of partial sums converges to a value such as 5. Does this tell 

you anything about the corresponding infinite series? 

 

Sequence 
𝟑

𝟏
, −

𝟒

𝟒
,

𝟓

𝟗
, −

𝟔

𝟏𝟔
, … 

Sequence of Partial 

Sums 

3

1
,

3

1
−

4

4
,

3

1
−

4

4
+

5

9
, … 

Infinite Series 
3

1
−

4

4
+

5

9
−

6

16
+ ⋯ 
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Interviewer: You claim that the relationship between an infinite series and its 

corresponding sequence of partial sums is (_____________________). Do you think that 

this relationship holds between all series and sequences of partial sums? Specifically, do 

you think that the relationship holds for (series that the student said converged) and 

(series that the student said did not converge)? Why or why not? 

 

Interviewer: After discussing similarities between sequences, sequences of partial sums, 

and series, I would like you to try to construct a written rule to determine infinite series 

convergence. You may use any language that makes sense to you, but I would like you to 

write your rule entirely in English, if possible. If you decide to use an inscription in your 

rule, please provide an explanation for why you chose to include that inscription (as 

opposed to an English word).   

 

 

Monica’s Rule 

An infinite series converges to the value _____, if _______________ 

______________________________________________________________________ 

 

 

 

 

 

Sylvia’s Rule 

An infinite series converges to the value _____, if ________________ 

______________________________________________________________________ 

 

 

Interviewer: When we first discussed infinite series convergence, you stated that the 

series (________) converged to (_____________). Please use Monica’s/Sylvia’s rule to 

justify that the series converges to (____________). Could your rule work for any 

series? Why or why not? 
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Task 3: Personal Expression for Convergence (series case) 
 

Interviewer: We are almost to the end of the interview tasks. In fact, this will be the last 

task before we begin our final debriefing session. Over the last few days, you have 

constructed written rules and personal expressions for sequence convergence and series 

convergence. I am going to put all of your rules and personal expressions on the screen at 

the same time (Interviewer organizes screen with all rules and expressions sorted by 

sequence and series.) 

 

Interviewer: In our last interview, you stated that the relationship between a sequence of 

partial sums and a series is (________________________). Will you review what you 

meant by this relationship and tell me if you are still thinking the same way? The 

purpose of this final task is for you to construct a personal expression for infinite series 

and use it to model convergent series and the values that the series converge to.  

1) Can you use any of your previous personal expressions to model a convergent 

infinite series? 

2) What new inscriptions or personal expressions might you have to create to 

represent an infinite series that converges to a specific, finite value? 

3) Create a personal expression to represent and infinite series that converges to a 

specific, finite value. 

4) I noticed that you had this idea (____________) in Carly’s written rule for series 

convergence but that it does not appear to be represented in your personal 

expression? Am I interpreting your expression in the way you intend? How might 

you modify your expression to include the idea (___________)? 

 

(The student creates a personal expression for infinite series convergence) 

 

Interviewer: In our previous interviews, you said that the series (________) converged 

to (____). Can you use your personal expression for series convergence to represent this 

idea? (Interviewer presents several series, paying careful attention to whether the values 

that the series converge to correspond to the values that the sequence of partial sums 

converged to). 

 

Final Reflection 
 

At the end of the final task, the student should have constructed several personal 

expressions and inscriptions. The interviewer will  prepare a glossary containing all of 

the inscriptions that the student has introduced over the course of the interviews and 

these personal expressions. The student will do the following: 

 

1) Describe the inscriptions in each personal expression 
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2) Provide a specific instantiation of his personal expression and describe the 

situation being represented 

3) Describe what motivated him to construct each personal expression 

4) Indicate whether any of his personal expressions have been subsumed by 

another, or if each personal expressions represent distinct situations and 

cannot be substituted. 

After the student has responded to these four questions, I will present one final task. In 

this task, I will present the following two questions to the student, one at a time. I will 

ask the student to respond to these questions and will only ask clarifying questions. At 

the conclusion of these questions, I will end the interview. 

 

Question 1: Suppose that an infinite series converges to the value of 4.23. What might 

this imply about the corresponding sequence of partial sums? 

 

Question 2: Suppose that a sequence of partial sums converges to the value of -1.12. 

What might this imply about the corresponding infinite series? 

 

 

Interviewer: I appreciate all the time that you have spent with me during these last 

couple of months to help me investigate students’ thinking about infinite series and 

sequences of partial sums. I would like to schedule a final exit interview with you, but 

then we will be finished with the study. 

 

*Interviewer Note: Be sure to ask about compensation and confirm method of 

payment for after the exit interview!
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Exit Interview Protocol 

Exit Interview Protocol 
 

*Interviewer note: the exit interview will be nearly identical to the intake interview. 

 

Overview:  
The research goals for this interview are to: 

(1) Determine how students’ meanings for series convergence have changed 

throughout the interviews. 

(2) Determine which ideas from the teaching experiment the students transfer to a 

general discussion on series 

(3) Determine the role that the students’ personal expressions play in discussing 

series convergence. 

 

To-do list before interview: 
• Set up OneNote file for student 

• Send link to OneNote file to student 

• Prepare GeoGebra applet for Abigail’s series 

• Prepare Qualtrics Screening Survey for student 

• Have student’s ASU email address handy for sending Amazon gift card 

 
Task 1: Reasoning about series convergence (~40 minutes) 
 

Interviewer: Please navigate to Task 1 in the OneNote file. For each of the tasks, I have 

included a different infinite series created by a student named Abigail. For each of 

Abigail’s series, I will ask you the same two questions:  

(3) Does the series converge? How can you tell? 

(4) If the series converges, what value does it converge to? How can you tell? 

Please note that I am more interested in the processes by which you approach these 

problems than by any numerical results (or “correct answers”) that you produce. For 

example, if I were to give you the problem 1 + 2, I would not want you to merely answer 

“3.” Rather, I would want an explanation such as “I’m thinking of putting one chip 

together with two other chips and counting the total number of chips, which is 3.” I will 

likely ask you to summarize your methods for examining the series from time to time. 

Remember, I am not concerned whether or not you are able to produce a textbook 

“correct” answer; rather, I am only interested in what you are thinking. 

 I have also created a version of the 𝜖-strip activity for the sequence of partial 

sums corresponding to each series. You are welcome to use these graphs if they are 

helpful to you in making a determination about whether or not a particular series 

converges. I will not show these graphs to you unless you ask me, so do not feel like you 

are obligated to use them. 
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Finally, I am not expecting you to be able to answer all of these questions. 

You are welcome to skip or respond “I don’t know” to any question. In this 

instance, I will ask you “What would you need to know in order to answer the 

question?” OK, let’s get started. Please answer the two questions for Abigail’s first 

series on Task 1. 

 

 

Series Expanded Form Series type 
Sequence of 

Partial Sums 
Converge 

Limit 

Value 

∑
3

√𝑛

∞

𝑛=0

 
3

√1
+

3

√2
+

3

√3
+ ⋯ 

p-series 

(0 < 𝑝 < 1) 

Monotone 

increasing 
No  

∑
2(−1)𝑛−1

𝑛5

∞

𝑛=1

 
2

15 −
2

25 +
2

35 − ⋯ 

Alternating 

p-series 

(𝑝 > 1) 

Oscillating Yes ≈ 1.94 

∑ ∑[10−2𝑛−1

99

𝑖=1

∞

𝑛=1

− 10−2(𝑛+1)−1𝑖]  

= ∑
495

10000
(

1

100
)

𝑘∞

𝑘=0

 

99

103
+

98

103
+ ⋯ +

1

103
+

99

105
+ ⋯ +

1

105
+  

99

107 + ⋯ +
1

107 + ⋯  

Geometric 
Monotone 

increasing 
Yes 

1

20
 

∑
(200 − 2𝑛)(−1)𝑛

𝑛 + 1

∞

𝑛=0

 
200

1
−

198

2
+

196

3
− ⋯ 

Alternating 

series 
Oscillating No  

∑ 𝑎𝑖

∞

𝑖=0

 

(where 𝑎𝑖 corresponds to 

the 𝑖𝑡ℎ decimal place of 𝜋 

and 𝑎0 = 3.) 

3 + .1 + .04 + ⋯ 

Decimal 

expansion of 

irrational 

number 

Monotone 

increasing 
Yes 𝜋 

∑(.07) ∙ (−1)𝑛

∞

𝑛=0

 . 07 − .07 + .07 − ⋯ 

Alternating 

series 

(Grandi’s) 

Oscillating No  

 

The student attempts to answer the two questions for each series, which are presented 

one at a time on different OneNote pages. After the student has completed the questions 

for each series, the interviewer will ask the following questions: 

 

Questions: 

1)  To confirm, you stated that this series (does/does not) converge, and that the series 

converges to ____, correct? How did you determine this? 

2) What similarities or differences did you experience between this series and Abigail’s 

other series? 

3) How can you use your inscriptions to describe the convergence of the series and the 

value that the series converges to? 

4) Any other questions that the interviewer feels to ask to clarify students’ thinking or 

meanings. 
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If a student asks to examine a sequence of partial sums graph: 

1) Why do you want to use this graph? What might it help you to determine? 

2) What does this point represent on the graph? How would you determine the values of 

the point? 

3) How does the sequence of partial sums (or its graph) help you to answer the two 

questions about infinite series convergence? 

 

 

Task 2: Reasoning about general series convergence (~20 minutes) 
 

After the student completes all series: 

 

Interviewer: Now that you have completed all the series, I will ask you to address the 

two questions that we have answered for each of Abigail’s series in a general way. The 

following two questions are not about Abigail’s series, but some mysterious series that 

we encounter. In other words, 

 

(4) How can I tell whether the mysterious series converges? 

(5) If the mysterious series converges, how can I determine the value to which it 

converges? 

(6) How could you use your inscriptions to represent your answer to questions (1) 

and (2)? 

(7) Could you compare your answer to (3) to Adam’s or Benjamin’s rule? 

(Interviewer navigates to Task 7). I will ask you to write an answer to each of these 

questions on this screen. Take your time, and I will ask you to explain your answers when 

you are finished. 

 

Student answers questions and interviewer asks the student to explain each response. 

 

Task 3: Complete the Screening Survey One More Time (~20 minutes) 

 
Interviewer: I would like to ask a favor at the end of this interview. At the beginning of 

this study, I had you complete a screening survey to determine the students I wanted to 

interview. Would you be willing to work through the screening survey one more time 

before you leave to (1) explain your thinking as you take the survey and (2) provide 

constructive criticism for how I have structured the survey and worded the questions? 

You will not have to type your responses; rather, I want you to read the questions and 

respond verbally, telling me how you are reasoning about each question as you go. Are 

you willing to do this? Thank you. 

 

(The student takes the screening survey one last time) 
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Interviewer: Thank you so much for your efforts during this study. The last thing that I 

want to do is make sure that we have sorted out how much you will be paid and how I 

will send you the money. By my records, you have attended (____) interviews, so I owe 

you $(____). Did I count correctly? Okay. What is an email address or other method for 

me to send you the money? Thank you. I will send you the money sometime within the 

next week. Again, I appreciate your sacrifice to participate in these interviews, and I wish 

you the best in the future. Your input will help me not only finish my dissertation and 

earn my Ph.D. at ASU, you will help me further research in mathematics education and 

present new findings that will further humankind’s knowledge. 
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APPENDIX D 

HUMAN SUBJECTS APPROVAL LETTER 
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