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ABSTRACT

Edge networks pose unique challenges for machine learning and network man-

agement. The primary objective of this dissertation is to study deep learning and

adaptive control aspects of edge networks and to address some of the unique chal-

lenges therein. This dissertation explores four particular problems of interest at the

intersection of edge intelligence, deep learning and network management.

The first problem explores the learning of generative models in edge learning set-

ting. Since the learning tasks in similar environments share model similarity, it is

plausible to leverage pre-trained generative models from other edge nodes. Appeal-

ing to optimal transport theory tailored towards Wasserstein-1 generative adversarial

networks, this part aims to develop a framework which systematically optimizes the

generative model learning performance using local data at the edge node while ex-

ploiting the adaptive coalescence of pre-trained generative models from other nodes.

In the second part, a many-to-one wireless architecture for federated learning at

the network edge, where multiple edge devices collaboratively train a model using

local data, is considered. The unreliable nature of wireless connectivity, together

with the constraints in computing resources at edge devices, dictates that the local

updates at edge devices should be carefully crafted and compressed to match the wire-

less communication resources available and should work in concert with the receiver.

Therefore, a Stochastic Gradient Descent based bandlimited coordinate descent algo-

rithm is designed for such settings.

The third part explores the adaptive traffic engineering algorithms in a dynamic

network environment. The ages of traffic measurements exhibit significant variation

due to asynchronization and random communication delays between routers and con-

trollers. Inspired by the software defined networking architecture, a controller-assisted

distributed routing scheme with recursive link weight reconfigurations, accounting for
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the impact of measurement ages and routing instability, is devised.

The final part focuses on developing a federated learning based framework for

traffic reshaping of electric vehicle (EV) charging. The absence of private EV owner

information and scattered EV charging data among charging stations motivates the

utilization of a federated learning approach. Federated learning algorithms are de-

vised to minimize peak EV charging demand both spatially and temporarily, while

maximizing the charging station profit.
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Chapter 1

INTRODUCTION

1.1 Overview

The recent advancements in edge networks, e.g., content delivery networks and

femtocell networks, provoked the exponential growth of the network traffic. To man-

age the negative impacts of this growth, internet service providers (ISPs) has to

implement denser coverage by deploying more small cells at the expense of opera-

tional and capital costs. Recent projections on the number of edge devices indicate

that the total number may reach 125 billion by 2030 ([70]), which may lead to further

revenue losses. Therefore, recently there have been growing concerns towards the

efficiency of cloud based schemes. Consequently, there has been a paradigm shift to-

wards edge networks and edge computing, because of their benefits in mitigating the

ever-growing traffic and because of the increasing availability of the local computing

resources in edge devices. A key advantage of edge networks is their integrity with

the cloud-based systems as well as their individual operation ability, which qualifies

edge networks as a robust framework.

However, the edge networks have its unique challenges along with its prospects.

The data on the edge is often distributed across edge devices. Therefore, the accuracy

of the edge learning and network management algorithms heavily hinges upon the col-

lection of these data or the expensive local processing of the data. These approaches

either increase the communication cost or require expensive computational resources.

To this end, contemporary edge networking and learning algorithms must optimize

the trade-off between the communication and computational costs by efficiently utiliz-
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ing the local computational resources to mitigate the amount of traffic between edge

devices. This technical dissertation studies and develops various machine learning and

traffic engineering algorithms for the edge networks [39, 40, 168, 167, 89, 166, 37].

1.1.1 Deep Learning for Edge Networks

In accordance with the reports forecasting the hundreds of billions of edge de-

vices [70, 69], the number of learning tasks is going to grow during the next decade.

To match this unprecedented growth, both the network capacity and computational

resources in the cloud networks must be enhanced. Edge intelligence envisions the

efficient utilization of both the data and computational resources on edge networks

to mitigate the burden on the cloud, which arises due to the overwhelming number

of learning tasks to be completed under tight timing constraints. To this end, the

efficient data/model transfer and distributed computation techniques are need to be

engineered, which pose unique challenges associated with edge networks.

One particular problem arises in training generative adversarial networks (GANs)

in the absence of enough number of data samples. On the grounds that the cloud

has abundant computing resources, the conventional method for AI at the edge is

that the cloud trains the AI models with the data uploaded from edge devices, and

then pushes the models back to the edge for on-device inference (e.g., Google Edge

TPU). However, an emerging view is that this approach suffers from overwhelming

communication overhead incurred by the data transmission from the edge devices to

the cloud, as well as potential privacy leakage. GANs have proven that they can

address the problem related to the communication costs and privacy leakage. Recent

studies further illustrated that GANs are an effective way of transferring data samples

for continual learning as well.

To address these fundamental challenges, this dissertation discusses a new frame-
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work, in which the edge network fuses a single GAN model by making use of the

previously trained local GAN models and maintains it. Hence, the edge network

benefits from less traffic, since a GAN model is much smaller in size than the local

datasets at edge devices. Subsequently, new edge devices can utilize this model to

quickly train a new local GAN model of high quality by only using small amounts

of data samples available to them. To enable the process of incorporating the edge

network knowledge and local data samples, a novel adaptive deep learning technique

is developed in this dissertation [39].

A second well-established approach to mitigating the excessive traffic in edge

learning applications is to locally perform computations up to the capability of edge

devices rather than directly transmitting data samples to the cloud. To this end,

locally computing gradients and only transmitting the important dimensions of gra-

dients can substantially mitigate communication cost in exchange of the acceptable

usage of local computational resources. In many edge networks, mobile and IoT de-

vices collecting huge amounts of data are often connected to each other or a central

node wirelessly. The unreliable nature of wireless connectivity, together with con-

straints in computing resources at edge devices, puts forth a significant challenge

for the computation, communication and coordination required to learn an accurate

model at the network edge [166].

1.1.2 Adaptive Algorithms for Edge Networks

With the explosive growth of video streaming services and the Internet of Things

(IoT) devices at the network edge, the data traffic between cloud services and edge

devices thrived to record highs in both directions. According to a recent report [31],

the amount of IP traffic has enormously increased over the last two decades and

is expected to grow threefold in the next 5 years. In order to sustain the current
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quality of service requirements of their users and to prevent the deterioration of

network robustness, ISPs will need to invest more on their network infrastructures by

deploying more routers, base stations and small cells in the near future. Alternatively,

less expensive approaches, including cellular traffic offloading onto Device-to-Device

(D2D) communications [15, 41, 66] and traffic engineering techniques [53, 146, 19,

160, 152], have been proposed in the literature to sustain the growth in the IP traffic.

The techniques deploying D2D provide additional bandwidth and capacity for the

traffic growth, but the extra capacity is limited by the amount of short distance

communications. On the other hand, the traffic engineering based techniques grant

high flexibility by making the use of the network resources to control the link load

utilization, but are complex to implement. In particular, the better utilization of the

network resources could provide the considerable share of the required capacity for

the staggeringly growing IP traffic.

Traffic engineering techniques have been developed for efficient use of network

resources in both conventional OSPF-based networks and software-defined networks

(SDNs) operating under tight quality of service constraints [53, 19, 152, 160]. Traffic

engineering policies can be determined based on the traffic measurements collected

throughout the network by a centralized controller. Unfortunately, out-of-date traffic

measurements and rapid fluctuations in traffic demand constitute an inaccurate global

view of the network at the controller, diminishing the effectiveness of traffic engineer-

ing techniques. For better utilization of network resources, contemporary networks

need to quickly adapt to changing network environment and satisfy tight timing con-

straints. To address the above problems, this technical dissertation studies adaptive

traffic engineering on edge and backbone networks while taking into consideration the

threat of denial of service (DoS) attacks. Accordingly, a local information-based, yet

controller-aided, adaptive traffic routing algorithm is engineered [37].
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1.2 Summary of Main Contributions

The main body of this dissertation is organized into four chapters. Chapter 2

studies the adaptive coalescence of generative models over edge networks by utilizing

the powerful Optimal Transport (OT) theory. A systematic framework to enable fast

edge learning of generative models via the adaptive coalescence of pre-trained gen-

erative models from other edge nodes and local samples at a new node is proposed.

In particular, by treating the knowledge transferred from each node as a Wasserstein

ball centered around its local pre-trained generative model, the problem is cast as

a constrained optimization problem, which optimizes the edge learning of generative

models. Further, a two-stage approach is proposed to efficiently solve the constrained

optimization problem, i.e., barycenter problem, where a barycenter for the K pre-

trained generative models is found recursively offline in the cloud. Subsequently, the

barycenter between the empirical distribution at the target edge node and the coa-

lesced generative model is computed via fast adaptation. The algorithm is supported

with analytical results and it is shown that the final barycenter is indeed an interpo-

lation of the given two generative models. Finally, the experimental results illustrate

the efficacy of the proposed recursive algorithm for edge networks.

Chapter 3 studies the impact of wireless medium and bandlimited communications

on learning a deep neural network model across an edge network. An integrated learn-

ing and communication scheme is considered where multiple edge devices send their

local gradient updates over multi-carrier communications to the receiver for learning.

Bandlimited communication imposes sparse communication of gradient information

between edge devices and edge server, facilitating a bias on true gradient information.

The devices are subject to power constraints, giving rise to a key question on how

to allocate transmission power across dimension, at each edge device, based on the
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gradient update values and channel conditions. Thus, joint optimization of the power

allocation and the learning rate is explored to obtain the best estimate of the gradient

updates and minimize the impact of the communication error. A centralized solution

to this problem is investigated as a benchmark, and then a sub-optimal distributed

solutions amenable to practical implementation is devised. Further, the impact of

synchronization errors across devices in this setting is studied.

Chapter 4 constructs a framework for efficient optimization electric vehicle (EV)

charging pricing. In the absence of EV owner information, charging stations must

adopt a learning based approach to maximize their profit while taking into consider-

ation the charging queues during peak charging hours. Optimal EV charging prices

should minimize the waiting duration for charging and also maximize the profit of

charging stations. To this end, charging stations train a deep neural network model

to predict EV demand for charging at every charging station at any time. Subse-

quently, the optimal prices are numerically computed by using the trained neural

network model. Through developed framework, peak demand for EV charging is

spread both spatially and temporarily for improved quality of service via monetary

incentives. Consequently, EV owners benefit from decreased charging duration and

charging stations gains additional profit from increased quality of service.

Chapter 5 proposes an adaptive algorithm for routing IP traffic amenable to edge

networks. In consideration of timing constraints and robustness, chapter 4 adopts cen-

tralized load-sensitive routing, and employs a flexible controller to assist distributed

routing for improving network utilization. The employed controller iteratively up-

dates OSPF weights and deploys these weights on legacy routers. The legacy routers

then determine their own forwarding tables using the OSPF weight set announced

by the controller and forward traffic accordingly. In consideration of tight timing

constraints, the controller employs a lightweight, load-sensitive OSPF weight update
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algorithm, which cannot minimize, but only mitigates network congestion. Conse-

quently, network benefits from robustness and flexibility at the cost of optimality,

while satisfying tight timing constraints.

Finally, Chapter 6 concludes the dissertation.
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Chapter 2

CONTINUAL LEARNING OF GENERATIVE MODELS WITH LIMITED

DATA:FROM WASSERSTEIN-1 BARYCENTER TO ADAPTIVE

COALESCENCE

2.1 Introduction

The past few years have witnessed an explosive growth of Artificial Intelligence

of Things (AIoT) devices at the network edge. On the grounds that the cloud has

abundant computing resources, the conventional method for AI at the network edge

is that the cloud trains the AI models with the data uploaded from edge devices, and

then pushes the models back to the edge for on-device inference (e.g., Google Edge

TPU). However, an emerging view is that this approach suffers from overwhelming

communication overhead incurred by the data transmission from edge devices to

the cloud, as well as potential privacy leakage. It is therefore of great interest to

obtain generative models for the edge data, because they require a smaller number

of parameters than the data volume and it is much more parsimonious compared

to sending the edge data to the cloud, and further they can also help to preserve

data privacy. Clearly, continual learning fits naturally in edge applications. Taking a

forward-looking view, this chapter focuses on continual learning of generative models

for edge intelligence.

There are a variety of edge devices and edge servers, ranging from self-driving

cars to robots, from 5G base station servers to mobile phones. Many edge AI applica-

tions (e.g., autonomous driving, smart robots, safety-critical health applications, and

augmented/virtual reality) require edge intelligence and continual learning capability
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via fast adaptation with local data samples to adapt to dynamic application envi-

ronments. Although deep generative models can parametrize high dimensional data

samples at edge nodes effectively, it is often not feasible for a single edge server to

train a deep generative model from scratch, which would otherwise require humongous

training data and high computational power [159, 147, 141].

A general consensus is that learning tasks across different edge nodes often share

some model similarity. For instance, different robots may perform similar coordina-

tion behaviors according to the environment changes. With this sight, we advocate

that the pre-trained generative models from other edge nodes are utilized to speed up

the learning at a given edge node, and seek to answer the following critical questions:

(1) “What is the right abstraction of knowledge from multiple pre-trained models for

continual learning?” and (2) “How can an edge server leverage this knowledge for

continual learning of a generative model?”

The key to answering the first question lies in efficient model fusion of multiple

pre-trained generative models. A common approach is the ensemble method [23,

109] where the outputs of different models are aggregated to improve the prediction

performance. However, this requires the edge server to maintain all the pre-trained

models and run each of them, which would outweigh the resources available at edge

servers. Another way for model fusion is direct weight averaging [121, 86]. Because the

weights in neural networks are highly redundant and no one-to-one correspondence

exists between the weights of two different neural networks, this method is known

to yield poor performance even if the networks represent the same function of the

input. As for the second question, Transfer Learning is a promising learning paradigm

where an edge node incorporates the knowledge from the cloud or another node with

its local training samples. [147, 141, 159]. Recent work on Transferring GANs [147]

proposed several transfer configurations to leverage pre-trained GANs to accelerate
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the learning process. However, since the transferred GAN is used only as initialization,

Transferring GANs suffers from catastrophic forgetting.

To tackle these challenges, this work aims to develop a framework which explicitly

optimizes the continual learning of generative models for the edge, based on the adap-

tive coalescence of pre-trained generative models from other edge nodes, using optimal

transport theory tailored towards GANs. To mitigate the mode collapse problem due

to the vanishing gradients, multiple GAN configurations have been proposed based on

the Wasserstein-p metric Wp, including Wasserstein-1 distance [16] and Wasserstein-2

distance [87, 91]. Despite Wasserstein-2 GANs are analytically tractable, the corre-

sponding implementation often requires regularization and is often outperformed by

the Wasserstein-1 GAN (W1GAN). With this insight, in this chapter we focus on the

W1GAN (WGAN refers to W1GAN throughout).

2.1.1 Basic Setting

Specifically, we consider a setting where an edge node, denoted Node 0, aims to

learn a generative model. It has been shown that training a WGAN is intimately

related to finding a distribution minimizing the Wasserstein distance from the under-

lying distribution µ0 [17]. In practice, an edge node has a limited number of samples

with empirical distribution µ̂0, which is distant from µ0. A naive approach is to train

a WGAN based on the limited local samples only, which can be captured via the op-

timization problem given by minν∈P W1(ν, µ̂0), with W1(·, ·) being the Wasserstein-1

distance between two distributions. The best possible outcome of solving this opti-

mization problem can generate a distribution very close to µ̂0, which however could

still be far away from the true distribution µ0. Clearly, training a WGAN simply

based on the limited local samples at an edge node would not work well.

As alluded to earlier, learning tasks across different edge nodes may share model

10



𝜇 3
, 𝜇
4
, …
, 𝜇
𝐾
−
1

𝜇0

Offline Training in Cloud Con�nual Learning at Edge

𝜈∗𝜈𝐾
∗

𝜇𝐾

𝜇2

𝜇1

Node 𝐾

Node 2

Node 1

Node 0

Figure 2.1: Continual Learning of Generative Models Based on Coalescence of Pre-
trained Generative Models {µk, k = 1, . . . , K} and Local Dataset at Edge Node 0
(Denoted by µ̂0).

similarity. To facilitate the continual learning at Node 0, pre-trained generative mod-

els from other related edge nodes can be leveraged via knowledge transfer. Without

loss of generality, we assume that there are a set K of K edge nodes with pre-trained

generative models. Since one of the most appealing benefits of WGANs is the ability

to continuously estimate the Wasserstein distance during training [16], we assume

that the knowledge transfer from Node k to Node 0 is in the form of a Wasserstein

ball with radius ηk centered around its pre-trained generative model µk at Node k,

for k = 1, . . . , K. Intuitively, radius ηk represents the relevance (hence utility) of

the knowledge transfer, and the smaller it is, the more informative the corresponding

Wasserstein ball is. Building on this knowledge transfer model, we treat the continual

learning problem at Node 0 as the coalescence of K generative models and empirical

distribution µ̂0 (Figure 2.1), and cast it as the constrained optimization problem:

min
ν∈P

W1(ν, µ̂0), s.t. W1(ν, µk) ≤ ηk,∀k ∈ K. (2.1)

Observe that the constraints in problem (2.1) dictate that the optimal coalesced gen-
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erative model, denoted by ν∗, lies within the intersection of K Wasserstein balls

(centered around {µk}), exploiting the knowledge transfer systematically. It is worth

noting that the optimization problem (2.1) can be extended to other distance func-

tionals, e.g., Jensen-Shannon divergence.

2.1.2 Main Contributions

The contributions of this work are summarized as follows.

i) We propose a systematic framework to enable continual learning of generative

models via adaptive coalescence of pre-trained generative models from other edge

nodes and local samples at Node 0. In particular, by treating the knowledge trans-

ferred from each node as a Wasserstein ball centered around its local pre-trained

generative model, we cast the problem as a constrained optimization problem which

optimizes the continual learning of generative models.

ii) Applying Lagrangian relaxation to (2.1), we reduce the optimization problem

to finding a Wasserstein-1 barycenter of K+ 1 probability measures, among which K

of them are pre-trained generative models and the last one is the empirical distribu-

tion (not a generative model though) corresponding to local data samples at Node 0.

We propose a barycentric fast adaptation approach to efficiently solve the barycenter

problem, where the barycenter ν∗K for the K pre-trained generative models is found

recursively offline in the cloud, and then the barycenter between the empirical distri-

bution µ̂0 of Node 0 and ν∗K is solved via fast adaptation at Node 0. A salient feature

in this barycentric approach is that generative replay, enabled by pre-trained GANs,

is used to annihilate catastrophic forgetting.

iii) It is known that the Wasserstein-1 barycenter is notoriously difficult to an-

alyze, partly because of the existence of infinitely many minimizers of the Monge

Problem. Appealing to optimal transport theory, we use displacement interpola-
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tion as the theoretic foundation to devise recursive algorithms for finding adaptive

barycenters, which ensures the resulting barycenters lie in the baryregion.

iv) From the implementation perspective, we introduce a “recursive” WGAN con-

figuration, where a 2-discriminator WGAN is used per recursive step to find adaptive

barycenters sequentially. Then the resulting barycenter in offline training is treated

as the meta-model initialization and fast adaptation is carried out to find the gen-

erative model using the local samples at Node 0. A weight ternarization method,

based on joint optimization of weights and threshold for quantization, is developed

to compress the generative model and enable efficient edge learning. Extensive ex-

periments corroborate the efficacy of the proposed framework for fast edge learning

of generative models. Further, our experimental studies corroborate that W1-based

recursive WGAN configuration performs better than the W 2
2 -based one.

2.2 Related Work

Optimal transport theory has recently been studied for deep learning applications

(see, e.g., [24, 10, 133]). [2] has developed an analytical solution to the Wasserstein

barycenter problem. Aiming to numerically solve the Wasserstein barycenter prob-

lem, [32, 33, 34] proposed smoothing through entropy regularization for the discrete

setting, based on linear programming. [122] employed posterior sampling algorithms

in studying Wasserstein barycenters, and [14] characterized Wasserstein barycenters

for the discrete setting (cf. [123, 157, 119]). It is worth mentioning that [119] pre-

sented a layer-wise model fusion algorithm for DNNs that utilizes optimal transport

to align neurons in this discrete setting; in contrast, our proposed framework en-

ables adaptive coalescence of pre-trained generative models for both continuous and

discrete cases.

GANs [55] have recently emerged as a powerful deep learning tool for obtaining
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generative models. [16] has introduced Wasserstein metric in GANs, which can help

mitigate the vanishing gradient issue to avoid mode collapse. Though gradient clip-

ping is applied to ensure 1-Lipschitz conditions, it may still lead to non-convergence.

[59] proposed to use gradient penalty to overcome the shortcomings due to weight

clipping. Using optimal transport theory, recent advances of Wasserstein GANs have

shed light on understanding generative models. Recent works [87, 91, 79] proposed

multiple transport theory based GAN configurations using quadratic Wasserstein-2

cost. Furthermore, [85] devised a computationally efficient method for computing the

generator when the cost function is convex. In contrast, for the Wasserstein-1 GAN,

the discriminator may utilize one of infinitely many transport maps from underlying

empirical data distribution to the generative model [10, 133], and it remains open to

decipher the relation between the model training and the transport maps. Along a

different line, a variety of techniques have been proposed for more robust training of

GANs [101, 159, 46, 118]. [46] proposed a multi-discriminator GAN configuration for

robust training of GANs. Since samples from the same underlying distribution are fed

to every discriminator, this technique does not attempt to find a barycenter. [159] ex-

tends [46] by proposing a method to train a generator leveraging pre-trained discrim-

inators on distinct empirical distributions, which resembles the ensemble technique

since each discriminator is trained on a single mode of the dataset and the generator

directly learns an ensemble distribution by using these discriminators. Herein, we

develop a WGAN configuration for computing Wasserstein-1 barycenter models, and

the proposed framework is capable of learning novel generative models in addition to

ensemble distributions.

Pushing the AI frontier to the network edge for achieving edge intelligence has

recently emerged as the marriage of AI and edge computing [170]. There are sig-

nificant challenges since AI model training generally requires tremendous resources
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that greatly outweigh the capability of resource-limited edge nodes. To address this,

various approaches have been proposed in the literature, including model compression

[113, 156, 139], knowledge transfer learning [98, 140], hardware acceleration [131, 142],

collaboration-based methods [90, 169]. Different from these existing studies, this

work focuses on continual learning of generative models at the edge node. Rather

than learning the new model from scratch, continual learning aims to design algo-

rithms leveraging knowledge transfer from pre-trained models to the new learning

task [128], assuming that the training data of previous tasks are unavailable for the

newly coming task. Generative replay is gaining more attention where synthetic

samples corresponding to earlier tasks are obtained with a generative model and

replayed in model training for the new task to mitigate forgetting [108, 104]. In

this work, by learning generative models via the adaptive coalescence of pre-trained

generative models from other nodes, the proposed “recursive” WGAN configuration

facilitates fast edge learning in a continual manner, which can be viewed as an innova-

tive integration of a few key ideas in continual learning, including the replay method

[116, 150, 99, 107] which generates pseudo-samples using generative models, and the

regularization-based methods [77, 83, 110, 44] which sets the regularization for the

model learning based on the learned knowledge from previous tasks, in continual

learning [35].

2.3 Adaptive Coalescence of Wasserstein-1 Generative Models

In what follows, we first recast problem (2.1) as a variant of the Wasserstein

barycenter problem. Then, we propose a two-stage recursive algorithm, characterize

the geometric properties of geodesic curves therein and use displacement interpolation

as the foundation to devise recursive algorithms for finding adaptive barycenters.
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2.3.1 A Wasserstein-1 Barycenter Formulation via Lagrangian Relaxation

Observe that the Lagrangian for (2.1) is given as follows:

L({λk}, ν) = W1(ν, µ̂0) +
K∑
k=1

λkW1(ν, µk)−
K∑
k=1

λkηk, (2.2)

where {λk ≥ 0}1:K are the Lagrange multipliers. Based on [136], problem (2.1) can

be solved by using the following Lagrangian relaxation with λk = 1
ηk
,∀k ∈ K, and

λ0 = 1:

min
ν∈P

K∑
k=1

1

ηk
W1(ν, µk) +W1(ν, µ̂0). (2.3)

It is shown in [120] that the selection λk = 1
ηk
,∀k ∈ K, ensures the same levels of

robustness for (2.3) and (2.1). Intuitively, such a selection of {λk}0:K strikes a right

balance, in the sense that larger weights are assigned to the knowledge transfer mod-

els (based on the pre-trained generative models {µk}) from the nodes with higher

relevance, captured by smaller Wasserstein-1 ball radii. For given {λk ≥ 0}, (2.3)

turns out to be a Wasserstein-1 barycenter problem (cf. [2, 122]), with the new com-

plication that µ̂0 is an empirical distribution corresponding to local samples at Node

0. Since µ̂0 is not a generative model per se, its coalescence with other K general

models is challenging.

2.3.2 A Two-Stage Adaptive Coalescence Approach for Wasserstein-1 Barycenter

Problem

Based on (2.3), we take a two-stage approach to enable efficient learning of the

generative model at edge Node 0. The primary objective of Stage I is to find the

barycenter for K pre-trained generative models {µ1, . . . , µK}. Clearly, the ensemble

method would not work well due to required memory and computational resources.

With this insight, we develop a recursive algorithm for adaptive coalescence of pre-

trained generative models. In Stage II, the resulting barycenter solution in Stage I is
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treated as the model initialization, and is further trained using the local samples at

Node 0. We propose that the offline training in Stage I is performed in the cloud, and

the fast adaptation in Stage II is carried out at the edge server (in the same spirit as

the model update of Google EDGE TPU), as outlined below:

Stage I: Find the barycenter of K pre-trained generative models across K edge

nodes offline. Mathematically, this entails the solution of the following problem:

min
ν∈P

K∑
k=1

1

ηk
W1(ν, µk). (2.4)

To reduce computational complexity, we propose the following recursive algorithm:

Take µ1 as an initial point, i.e., ν∗1 = µ1, and let ν∗k−1 denote the barycenter of

{µi}1:k−1 obtained at iteration k−1 for k = 2, . . . , K. Then, at each iteration k, a new

barycenter ν∗k is solved between the barycenter ν∗k−1 and the pre-trained generative

model µk.

Stage II: Fast adaptation to find the barycenter between ν∗K and the local dataset at

Node 0. Given the solution ν∗K obtained in Stage I, we subsequently solve the following

problem: minν∈P W1(ν, µ̂0) + W1(ν, ν∗K). By taking ν∗K as the model initialization,

fast adaptation based on local samples is used to learn the generative model at Node

0.

2.3.3 A Preliminary Review on Optimal Transport Theory

This section provides a brief overview of optimal transport theory, which serves

as the theoretic foundation for the proposed two-stage adaptive coalescence algo-

rithm for fast edge learning of generative models. In particular, it is known that the

Wasserstein-1 barycenter is difficult to analyze, because of the existence of infinitely

many minimizers of the Monge Problem. We will review related geometric properties

of geodesic curves therein and introduce displacement interpolation.
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Optimal transport theory has been extensively utilized in economics for decades,

and has recently garnered much interest in deep learning applications (see, e.g.,

[24, 10, 133]). Simply put, optimal transport theory aims to find the most efficient

transport map from one probability distribution to another with respect to a prede-

fined cost function c(x, y). The optimal distribution preserving the transport map

can be obtained by solving the Monge problem.

Definition 1. (Monge Problem) Let (X , d) and P(X ) denote a complete and sep-

arable metric space, i.e., a Polish space, and the set of probability distributions on X ,

respectively. Given µ ∈ P(X ) and ν ∈ P(Y) defined on two Polish spaces which are

connected with a Borel map T , the Monge problem is defined as:

inf
T :T#µ=ν

∫
X
c(x, T (x))dµ(x). (2.5)

In Definition 1, T is referred as the distribution preserving transport map and #

denotes the push-forward operator. In lieu of the strict constraint, there may not

exist an optimal transport map for the Monge problem. A relaxation of the Monge

problem leads to Kantorovich’s optimal transport problem.

Definition 2. (Kantorovich Problem) Given µ ∈ P(X ) and ν ∈ P(Y) are two

probability distributions defined on two Polish spaces, the Kantorovich problem is

defined as:

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y), (2.6)

where Π(µ, ν) is the admissible set with its elements satisfying:

πµ#γ = µ, πν#γ = ν, (2.7)

where πµ and πν are two projector transport maps.
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In Definition 2, γ is referred as the transference plan and the admissible set Π is

a relaxation to T#µ = ν. A transference plan can leverage mass splitting in contrast

to transport maps, and hence can result in a solution under the semi-continuity as-

sumptions. Mass splitting further enables the reputed Kantorovich duality, as shown

in the following lemma, facilitating an alternative and convenient representation of

the Kantorovich problem.

Lemma 1. (Kantorovich Duality, [132]) Let µ ∈ P(X ) and ν ∈ P(Y) be two

probability distributions defined on Polish spaces X and Y, respectively, and let c(x, y)

be a lower semi-continuous cost function. Further, define Φc as the set of all measur-

able functions (ϕ, ψ) ∈ L1(dµ)× L1(dν) satisfying:

ϕ(x) + ψ(y) ≤ c(x, y), (2.8)

for dµ-almost all x ∈ X and dν-almost all y ∈ Y. Then, the following strong duality

holds for c-concave function ϕ:

inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) = sup
(ϕ,ψ)∈Φc

∫
X
ϕ(x)dµ(x) +

∫
Y
ψ(y)dν(y). (2.9)

As the right hand side of (2.9) is an optimization over two functions, efficient

gradient algorithms can be employed to learn the optimal solution. (2.9) can be

further simplified using c-transform [133], in which ψ(y) can be replaced by the c-

transform ϕc(y) = infx∈X c(x, y)−ϕ(x), and ϕ is referred as the Kantorovich potential.

The following lemma establishes the existence of a Kantorovich potential that can also

represent the Monge problem.

Lemma 2. (Existence of Optimal Transport Plan, [9]) For a lower semi-

continuous cost function c(x, y) defined on X × Y, there exists at least one γ ∈

Π(µ, ν) solving the Kantorovich problem. Furthermore, if c(x, y) is continuous and

19



real-valued, and µ has no atoms, then the minimums to both Monge and Kantorovich

problems are equivalent, i.e.,

inf
T :T#µ=ν

∫
X
c(x, T (x))dµ(x) = inf

γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y). (2.10)

Lemma 2 indicates that there exists at least one transport map which are solutions

to the Kantorovich problem. We here remark that not all transference plans are

necessarily transport maps. Lemma 2 further facilitates a connection between dataset

interpolation and the proposed Wasserstein GAN configuration in this chapter, along

with the McCann’s celebrated displacement interpolation result [94].

2.3.4 From Displacement Interpolation to Adaptive Barycenters

As noted above, in practical implementation, the W1-GAN often outperforms

Wasserstein-p GANs (p > 1). However, the Wasserstein-1 barycenter is notoriously

difficult to analyze due to the non-uniqueness of the minimizer to the Monge Problem

[133]. Appealing to optimal transport theory, we next characterize the performance of

the proposed two-stage recursive algorithm for finding the Wasserstein-1 barycenter of

pre-trained generative models {µk, k = 1, . . . , K} and the local dataset at Node 0, by

examining the existence of the barycenter and characterizing its geometric properties

based on geodesic curves.

The seminal work [94] has established the existence of geodesic curves between

any two distribution functions σ0 and σ1 in the p-Wasserstein space, Pp, for p ≥ 1. It

is shown in [133] that there are infinitely many minimal geodesic curves between σ0

and σ1, when p = 1. This is best illustrated in N dimensional Cartesian space, where

the minimal geodesic curves between ς0 ∈ RN and ς1 ∈ RN can be parametrized as

follows: ςt = ς0 + s(t)(ς1− ς0), where s(t) is an arbitrary function of t, indicating that

there are infinitely many minimal geodesic curves between ς0 and ς1. This is in stark
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contrast to the case p > 1 where there is a unique geodesic between ς0 and ς1. In a

similar fashion, there exists infinitely many transport maps, T 1
0 , from σ0 to σ1 when

p = 1. For convenience, let C(σ0, σ1) denote an appropriate transport cost function

quantifying the minimum cost to move a unit mass from σ0 to σ1. It has been shown

in [133] that when p = 1, two interpolated distribution functions on two distinct

minimal curves may have a non-zero distance, i.e., C(T̂ 1
0 #σ0, T̃

1
0 #σ0) ≥ 0, where #

denotes the push-forward operator, thus yielding multiple minimizers to (2.4). For

convenience, define F := µ̂0 ∪ {µk}1:K .

Definition 3. (Baryregion) Let gt(µk, µ`)0≤t≤1 be any minimal geodesic curve be-

tween any pair µk, µ` ∈ F , and define the union R :=
⋃K
k=1

⋃K+1
`=k+1 gt(µk, µ`)0≤t≤1.

The baryregion BR is given by BR =
⋃
σ∈R

⋃
$∈R,$ 6=σ gt(σ,$)0≤t≤1.

Intuitively, BR encapsulates all possible interpolations through distinct geodesics

between any two distributions in F . Since each geodesic has finite length, BR defines

a bounded set in P1. Next we restate in Lemma 3 the renowned Displacement In-

terpolation result [94], which sets the foundation for each recursive step in finding a

barycenter in our proposed two-stage algorithm. In particular, Lemma 3 leads to the

fact that the barycenter ν∗ resides in BR.

Lemma 3. (Displacement Interpolation, [132]) Let C(σ0, σ1) denote the min-

imum transport cost between σ0 and σ1, and suppose C(σ0, σ1) is finite for σ0, σ1 ∈

P(X ). Assume that C(σs, σt), the minimum transport cost between σs and σt for any

0 ≤ s ≤ t ≤ 1, is continuous. Then, the following holds true for any given continuous

path gt(σ0, σ1)0≤t≤1:

C(σt1 , σt2) + C(σt2 , σt3) = C(σt1 , σt3), 0 ≤ t1 ≤ t2≤t3≤1.

In the adaptive coalescence algorithm, the kth recursion defines a baryregion,

B{ν∗k1 ,µk}, consisting of geodesics between the barycenter ν∗k−1 found in (k − 1)th re-
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cursion and generative model µk. Clearly, B{ν∗k ,µk} ⊂ BR. Viewing each recursive step

in the above two-stage algorithm as adaptive displacement interpolation, we have the

following main result on the geodesics and the geometric properties regarding ν∗ and

{ν∗k}1:K .

Proposition 1. (Displacement Interpolation for Adaptive Barycenters)

The adaptive barycenter, ν∗k , obtained at the output of kth recursive step in Stage

I, is a displacement interpolation between ν∗k−1 and µk and resides inside BR. Fur-

ther, the final barycenter ν∗ resulting from Stage II of the recursive algorithm resides

inside BR.

Remark 1. It is worth pointing out that different orders for adaptive coalescence may

lead to different final barycentric W1GAN models, although the resulting ν∗ resides in

BR always. Had the quadratic Wasserstein cost W 2
2 been used, the final barycenter ν∗

would be unique in BR. However, the corresponding implementation using W 2
2 poses

significant challenges [91, 79] and is often outperformed by W1GAN, which we will

elaborate further in Section 2.5 and in Appendix 2.9.2 and 2.9.3.

2.4 A Preliminary Review on Wasserstein GANs

2.4.1 From Vanilla Generative Adversarial Networks (GAN) to Wasserstein-1 GAN

A generative adversarial network is comprised of a generator and discriminator

neural networks. Random noise samples are fed into the generator to generate data

samples of certain structure at the output of the generator. The generated (or fake)

samples are then fed into the discriminator along with real-world samples taken from

the dataset. The discriminator acts as a classifier and incurs a loss when mislabeling

takes place. From a game theoretic point of view, the generator and the discriminator

play a zero-sum game, in which the generator seeks to manipulate the discriminator to
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classify fake samples as real by generating samples similar to the real-world dataset.

In principle, GAN training is equivalent to solving for the following optimization

problem:

min
G

max
D

V (D,G) = min
G

max
D

Ex∼µ[logD(x)] + Ez∼ϑ[log(1−D(G(z)))]

= min
G

max
D

Ex∼µ[logD(x)] + Ey∼ν [log(1−D(y))], (2.11)

where D and G represent the discriminator and generator networks, respectively. Let

µ, ν and ϑ denote the distributions from empirical data, at generator output and at

generator input, respectively. The latent distribution ϑ is often selected to be uniform

or Gaussian. The output of the generator, denoted y = G(z, θG) ∼ ν, is composed

by propagating z through a nonlinear transformation, represented by neural network

parameter θG. Model parameter θG entails ν to reside in a parametric probability

distribution space QG, constructed by passing ϑ through G. It has been shown in

[55] that the solution to (2.11) can be expressed as an optimization problem over ν

as:

min
ν∈QG

− log(4) + 2 · JSD(µ||ν), (2.12)

where JSD denotes Jensen-Shannon divergence. Clearly, the solution to (2.12) can

be achieved at ν∗ = µ, and the corresponding θ∗G is the optimal generator model

parameter.

The vanilla GAN training process suffers from the mode collapse issue that is often

caused by vanishing gradients during the training process of GANs [16]. In contrast

to JSD, under mild conditions the Wasserstein distance does not incur vanishing

gradients, and hence exhibits more useful gradient properties for preventing mode

collapse. The training process of Wasserstein-1 distance based GAN can be expressed

as solving an optimization problem minν∈QG W1(ν, µ). Since the c-transform of the
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Kantorovich potential admits a simpler and more convenient form for W1, i.e., ϕc =

−ϕ, the Wasserstein-1 GAN cost function can be rewritten as:

W1(ν, µ) = sup
||ϕ||L≤1

{Ex∼µ[ϕ(x)]− Ex∼ν [ϕ(y)]} , (2.13)

where ϕ is constrained to be a 1-Lipschitz function. Following the same line as in

the vanilla GAN, ϕ in (2.13) can be characterized by a neural network, which is

parametrized by model parameters θD. Consequently, training a Wasserstein-1 GAN

is equivalent to solve the following non-convex optimization problem through training

the generator and discriminator neural networks:

min
G

max
||ϕ||L≤1

{Ex∼µ[ϕ(x)]− Ey∼ν [ϕ(y)]} = min
G

max
||ϕ||L≤1

{Ex∼µ[ϕ(x)]− Ez∼ϑ[ϕ(G(z))]} .

(2.14)

We here note that ϕ must be selected from a family of 1-Lipschitz functions. To this

end, various training schemes have been proposed in the literature.

2.4.2 From Wasserstein-1 Barycenter to Multi-Discriminator GAN Cost

Problem (2.3) can be expressed in terms of Kantorovich potentials by applying

Kantorovich’s Duality as:

min
ν∈P

K∑
k=1

1

ηk
W1(ν, µk)+W1(ν,µ̂0)= min

ν∈P

K∑
k=1

1

ηk
sup

(ϕk,ψk)∈Φc

{∫
X
ϕk(x)dµk(x)+

∫
Y
ψk(y)dν(y)

}
+ sup
(ϕ0,ψ0)∈Φc

{∫
X
ϕ0(x)dµ̂0(x) +

∫
Y
ψ0(y)dν(y)

}
. (2.15)
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By using c-transformation, we have ψk(y) = ϕck(y). In particular, for the Wasserstein-

1 distance, we have that ϕck(y) = −ϕk(y), and hence (2.15) is further simplified as:

min
ν∈P

K∑
k=1

1

ηk
W1(ν, µk) +W1(ν, µ̂0) = min

ν∈P

K∑
k=1

1

ηk
max
‖ϕk‖L≤1

{Ex∼µk [ϕk(x)]− Ey∼ν [ϕk(y)]}

+ max
‖ϕ0‖L≤1

{Ex∼µ̂0 [ϕ0(x)]− Ey∼ν [ϕ0(y)]}

=min
G

max
{‖ϕk‖L≤1}0:K

{Ex∼µ̂0 [ϕ0(x)]− Ez∼ϑ[ϕ0(G(z))]}

+
K∑
k=1

1

ηk
{Ex∼µk [ϕk(x)]− Ez∼ϑ[ϕk(G(z))]} . (2.16)

Therefore, a barycenter of K distributions can be obtained by minimizing the cost in

(2.16) through a specially designed GAN configuration.

2.5 Recursive WGAN Configuration for Continual Learning

Based on the above theoretic results on adaptive coalescence via Wasserstein-1

barycenters, we next turn attention to the implementation of computing adaptive

barycenters. Notably, assuming the knowledge of accurate empirical distribution

models on discrete support, [33] introduces a powerful linear program (LP) to com-

pute Wasserstein-p barycenters, but the computational complexity of this approach

is excessive. In light of this, we propose a WGAN-based configuration for finding the

Wasserstein-1 barycenter, which in turn enables fast learning of generative models

based on the coalescence of pre-trained models. Specifically, (2.3) can be rewritten

as:

min
G

max
{ϕk}0:K

Ex∼µ̂0 [ϕ0(x)]− Ez∼ϑ[ϕ0(G(z))] +
K∑
k=1

1

ηk
{Ex∼µk [ϕk(x)]− Ez∼ϑ[ϕk(G(z))]} ,

(2.17)

where G represents the generator and {ϕk}0:K are 1−Lipschitz functions for discrim-

inator models, respectively. Observe that the optimal generator DNN G∗ facilitates
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Figure 2.2: A 2-discriminator WGAN for Efficient Learning of the kth Barycenter
Generator in Offline Training, Where x Denotes the Synthetic Data Generated from
Pretrained Models.

the barycenter distribution ν∗ at its output. We note that the multi-discriminator

WGAN configuration have recently been developed [46, 62, 97], by using a common

latent space to train multiple discriminators so as to improve stability. In stark con-

trast, in this work distinct generative models from multiple nodes are exploited to

train different discriminators, aiming to learn distinct transport plans among gener-

ative models.

A naive approach is to implement the above multi-discriminator WGAN in a

one-shot manner where the generator and K + 1 discriminators are trained simulta-

neously, which however would require overwhelming computation power and memory.

To enable efficient training, we use the proposed two-stage algorithm and develop a

recursive WGAN configuration to sequentially compute 1) the barycenter ν∗K for the

offline training in the cloud, as shown in Figure 2.2; and 2) the barycenter ν∗ for the

fast adaptation at the target edge node, as shown in Figure 2.3. The analytical rela-

tion between one-shot and recursive barycenters has been studied for Wasserstein-2

distance, and sufficient conditions for their equivalence is presented in [22], which,
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would not suffice for Wasserstein-1 distance, because of the existence of multiple

Wasserstein-1 barycenters. Proposition 1 shows that any barycenter solution to re-

cursive algorithm resides inside a baryregion, which can be viewed as the counterpart

for the one-shot solution. We have also developed the bound on the gap between

one-shot and recursive algorithms, which can be found in Appendix 2.9.3. We next

highlight a few important advantages of the “recursive” WGAN configuration for the

Barycentric Fast Adaptation algorithm.

2.5.1 A 2-discriminator WGAN Implementation per Recursive Step to Enable

Efficient Training

At each recursive step k, we aim to find the barycenter ν∗k between pre-trained

model µk and the barycenter ν∗k−1 from last round, which is achieved by training a

2-discriminator WGAN as follows:

min
Gk

max
ψk,ψ̃k

λψk
{
Ex∼µk [ψk(x)]− Ez∼ϑ[ψk(Gk(z))]

}
+ λψ̃k

{
Ex∼ν∗k−1

[ψ̃k(x)]− Ez∼ϑ[ψ̃k(Gk(z))]
}
, (2.18)
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Algorithm 1 Offline Training to Solve the Barycenter of K Pre-trained Generative

Models
1: Inputs: K pre-trained generator-discriminator pairs {(Gk, Dk)}1:K of corresponding source

nodes k ∈ K, noise prior ϑ(z), the batch size m, learning rate α

2: Set G∗1 ← G1, ψ̃∗1 ← rand() or ψ̃∗1 ← D1; //Barycenter initialization

3: for iteration k = 2, ...,K do

4: Set Gk ← G∗k−1, ψ̃k ← rand(), ψk ← rand() (or ψ̃k ← ψ ∈ {ψ̃∗k−1, ψ
∗
k−1}, ψk ← Dk) and

choose λψ̃k
, λψk

;

5: while generator Gk has not converged do

6: Sample batches of prior samples {z(i)}mi=1, {z(i)

ψ̃k
}mi=1, {z(i)

ψk
}mi=1 independently from prior

ϑ(z);

7: Generate synthetic data batches {x(i)

ψ̃k
}mi=1 ∼ ν∗k−1 and {x(i)

ψk
}mi=1 ∼ µk by passing {z(i)

ψ̃k
}mi=1

and {z(i)
ψk
}mi=1 through G∗k−1 and Gk, respectively;

8: Compute gradients gψ̃k
and gψk

:

9:
{
gω ← λω∇ω 1

m

∑m
i=1

[
ω(x

(i)
ω )− ω(Gk(z(i))

]}
ω=ψ̃k,ψk

;

10: Update both discriminators ψk and ψ̃k: {ω ← ω + α ·Adam(ω, gω)}ω=ψk,ψ̃k
;

11: Compute gradient gGk ← −∇Gk 1
m

∑m
i=1

[
λψk

ψk(Gk(z(i))) + λψ̃k
ψ̃k(Gk(z(i)))

]
;

12: Update generator Gk: Gk ← Gk − α ·Adam(Gk, gGk);

13: end while

14: Assign G∗k ← Gk

15: end for

16: return generator G∗K for barycenter ν∗K , discriminators ψ̃∗K , ψ∗K .

where ψ and ψ̃ denote the corresponding discriminators for pre-trained model Gk and

barycenter model G∗k−1 from the previous recursive step, respectively (See Algorithm

1).

2.5.2 Model Initialization in Each Recursive Step

For the initialization of the generator Gk, we use the trained generator G∗k−1 in

last step. G∗k−1 corresponds to the barycenter ν∗k−1, and using it as the initialization
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Algorithm 2 Fast Adaptation Algorithm to Solve for Learning the Generative Model

at Node 0.
1: Inputs: Final generator G∗K , final discriminators ψ̃∗K , ψ∗K , noise prior ϑ(z), the batch size m,

learning rate α

2: Set G∗0 ← G∗K , ψ̃∗0 ← rand() or ψ̃∗0 ← ψ ∈ {ψ̃∗K , ψ∗K};

3: while generator G0 has not converged do

4: Sample batches of prior samples {z(i)}mi=1 and {z(i)

ψ̃0
}mi=1 independently from prior ϑ(z);

5: Get real data batch {x(i)
ψ0
}mi=1 ∼ µ̂0 and generate synthetic data batch {x(i)

ψ̃0
}mi=1 ∼ ν∗K by

passing {z(i)

ψ̃0
}mi=1 through G∗K ;

6: Compute gradients gψ̃0
and gψ0

:
{
gω ← λω∇ω 1

m

∑m
i=1

[
ω(x

(i)
ω )− ω(G0(z(i))

]}
ω=ψ̃0,ψ0

;

7: Update both discriminators ψ0 and ψ̃0: {ω ← ω + α ·Adam(ω, gω)}ω=ψ0,ψ̃0
;

8: Compute gradient gG0 ← −∇G0 1
m

∑m
i=1

[
λψ0ψ0(G0(z(i))) + λψ̃0

ψ̃0(G0(z(i)))
]
;

9: Update generator G0: G0 ← G0 − α ·Adam(G0, gG0);

10: end while

11: Assign G∗0 ← G0

12: return Generator G∗0 for barycenter ν∗0 .

the displacement interpolation would move along the geodesic curve from ν∗k−1 to µk

[87]. It has been shown that training GANs with such initializations would accelerate

the convergence compared with training from scratch [147]. Finally, ν∗K is adopted

as initialization to enable fast adaptation at the target node. As the barycenter ν∗K

solved via offline training, a new barycenter ν∗ between local data (represented by

µ̂0) and ν∗K , can be obtained by solving the problem:

min
G0

max
ψ0,ψ̃0

λψ0{Ex∼µ̂0 [ψ0(x)]−Ez∼ϑ[ψ0(G0(z))]}

+λψ̃0
{Ex∼ν∗K [ψ̃0(x)]− Ez∼ϑ[ψ̃0(G0(z))]}, (2.19)

i.e., by training a 2-discriminator WGAN, and fine-tuning the generator G0 from G∗K

would be notably faster and more accurate than learning the generative model from

local data only (See Algorithm 2 and Fig. 2.4).
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Algorithm 3 Fast Adaptive Learning of the Ternary Generative Model for Edge

Node 0
1: Inputs: Training dataset S0, generator G∗K for the barycenter ν∗K , offline barycenter discrim-

inators ψ∗K , ψ̃∗K , noise prior ϑ(z), the batch size m, learning rate α, the number of layers

LG = Lψ = Lψ̃ = L;

2: Set G0 ← G∗K , ψ̃0 ← rand() and ψ0 ← rand() (or ψ̃0 ← ψ̃∗K and ψ0 ← ψ∗K);

3: while generator G0 has not converged do

4: for l := 1 to L do

5:
{
w′lω ← Tern(wlω , Slω ,∆

±
lω

)
}
ω=ψ̃k,ψk

;

6: w′lG ← Tern(wlG , SlG ,∆
±
lG

);

7: end for

8: Sample batches of prior samples {z(i)}mi=1 from prior ϑ(z);

9: Sample batches of training samples {xi0}mi=1 from local dataset S0;

10: for l := L to 1 do

11: Compute gradients
{
g∆±lω

}
ω=ψ̃k,ψk

:
{
g∆±lω

←∇∆±lω

1
m

∑m
i=1

[
ω0(x

(i)
0 )−ω0(G0(z(i))

]}
ω=ψ̃k,ψk

;

12: Update
{

∆±lω
}
ω=ψ̃k,ψk

:
{

∆±lω ← ∆±lω + α · g∆±lω

}
ω=ψ̃k,ψk

;

13: Compute gradient g∆±lG
: g∆±lG

← −∇∆±lG

1
m

∑m
i=1

[
ψ0(G0(z(i))) + ψ̃0(G0(z(i)))

]
;

14: Update ∆±lG : ∆±lG ← ∆±lG − α · g∆±lG
;

15: end for

16: Repeat steps 3-5 using updated thresholds;

17: for l := L to 1 do

18: Compute gradients
{
gwlω

}
ω=ψ̃k,ψk

:
{
gwlω

←∇wlω

1
m

∑m
i=1

[
ω0(x

(i)
0 )−ω0(G0(z(i))

]}
ω=ψ̃k,ψk

;

19: Update {wlω}ω=ψ̃k,ψk
:
{
wlω ← wlω + α ·Adam(wlω , gwlω

)
}
ω=ψ̃k,ψk

;

20: Compute gradient gwlG
: gwlG

← −∇wlG
1
m

∑m
i=1

[
ψ0(G0(z(i))) + ψ̃0(G0(z(i)))

]
;

21: Update wlG : wlG ← wlG − α ·Adam(wlG , gwlG
);

22: end for

23: Repeat step 3-5 using updated full-precision weights;

24: end while

25: return Ternary generator G0.
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Figure 2.4: The Illustrations of Barycenters in P2 Space. Blue Lines Represent the
Displacement Interpolation Between Any Pair of Distributions. 7-edge Star Is One
of the Analytical Barycenter Solutions to Wasserstein-1 Barycenter Problem. 4-edge
and 5-edge Stars Show the Barycenter Solutions Obtained in the First and Second
Recursions, Respectively, of the Proposed Recursive Algorithm.

2.5.3 Fast Adaptation for Training Ternary WGAN at Node 0

As outlined in Algorithm 2, fast adaptation is used to find the barycenter between

ν∗K and the local dataset at Node 0. To further enhance edge learning, we adopt the

weight ternarization method to compress the WGAN model during training. The

weight ternarization method not only replaces computationally-expensive multiplica-

tion operations with efficient addition/subtraction operations, but also enables the

sparsity in model parameters [61]. Specifically, the ternarization process is formulated

as:

w′l=Sl · Tern
(
wl,∆

±
l

)
= Sl ·


+1, wl > ∆+

l

0, ∆−l ≤ wl ≤ ∆+
l

−1, wl < ∆−l

(2.20)

where {wl} are the full precision weights for lth layer, {w′l} are the weights after

ternarization, {Sl} is the layer-wise weight scaling coefficient and ∆±l are the layer-

wise thresholds. Since the fixed weight thresholds may lead to accuracy degradation,

Sl is approximated as a differentiable closed-form function of ∆±l so that both weights
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and thresholds can be optimized simultaneously through back-propagation [63]. Let

the generator and the discriminators of WGAN at Node 0 be denoted by G0, ψ̃0 and

ψ0, which can be parametrized by the ternarized weights {w′lG}
LG
lG=1, {w′lψ̃}

Lψ̃
lψ̃=1 and

{w′lψ}
Lψ
lψ=1, respectively. The barycenter ν∗ at Node 0, captured by G∗0 , can be obtained

by training the ternary WGAN via iterative updates of both weights and thresholds,

which takes three steps in each iteration: 1) calculating the scaling coefficients and the

ternary weights for G0, ψ̃0 and ψ0, 2) calculating the loss function using the ternary

weights via forward-propagation and 3) updating the full precision weights and the

thresholds via back-propagation (See Algorithm 3).

2.5.4 Recursive Configuration and The Impact of for Recursive Coalescence Order

Even though the multi-discriminator GAN can lead to a Wasserstein-1 barycenter

in principle, training a many-discriminator GAN in a one-shot manner is overwhelm-

ing for memory-limited edge nodes. The proposed 2-stage recursive configuration

is designed to address the memory problem by ‘converting’ the one-shot formula-

tion to a nested Wasserstein barycenter problem. In a nutshell, a 2-discriminator

GAN configuration suffices to obtain a shape-preserving interpolation of all distri-

butions. As discussed above, the Wasserstein-1 barycenter problem not necessarily

constitutes a unique solution due to the non-uniqueness of geodesic curves between

distributions in the probability space. Proposition 1 asserts that any solution to each

pairwise Wasserstein-1 barycenter problem, referred as a barycenter in this chapter,

resides inside the baryregion formed by {µk}1:K . Consequently, the final barycenter

ν∗, obtained at the end of all recursions, also resides inside the baryregion. However,

the 2-stage recursive configuration may not obtain the same barycenter solution to

Wasserstein-1 barycenter problem. Through the intuition that the Wasserstein ball

radius ηk = 1
λψk

for pre-trained model k represents the relevance (and hence utility)
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of the distribution k, larger weights λk = 1/ηk would be assigned to the nodes with

higher relevance. Since we introduce the recursive WGAN configuration, the order of

coalescence (each corresponding to a geodesic curve) may impact the final barycentric

WGAN model, and hence the performance of Barycentric Fast Adaptation. To this

end, we compute the coalescence of models of nodes with higher relevance at latter

recursions to ensure that the final barycentric model is closer to the models of nodes

with higher relevance. For fairness, we have used ηk = ηm,∀k 6= m (except otherwise

stated) and the same order of training across different baselines.

2.5.5 From Optimal Transport Theory to Wasserstein-2 GAN

Similar to the Wasserstein-1 GAN, the Wasserstein-2 GAN aims to minimize

W 2
2 (ν, µ), which reduces to the following problem:

arg min
ν

inf
γ∈Π(µ,ν)

∫
X ,Y

‖x− y‖2

2
dγ(x, y). (2.21)

By applying the Kantorovich duality to (2.21), we can obtain [132]:

arg min
ν

W 2
2 (ν, µ) = arg min

ν
sup

(ϕ,ψ)∈Φc

∫
X
ϕ̃(x)dµ(x) +

∫
Y
ψ̃(y)dν(y) (2.22)

= arg min
ν

sup
(ϕ)∈Convex

[∫
X

(
‖x‖2

2
− ϕ(x)

)
dµ(x) +

∫
Y

(
‖y‖2

2
− ϕ∗(y)

)
dν(y)

]
(2.23)

= arg min
ν

∫
X

‖x‖2

2
dµ(x) +

∫
Y

‖y‖2

2
dν(y)

− min
(ϕ)∈Convex

[∫
X
ϕ(x)dµ(x) +

∫
Y
ϕ∗(y)dν(y)

]
, (2.24)

where ϕ∗ is the convex (Fenchel) conjugate of ϕ and is stated as:

ϕ∗(y) = max
x∈X

(〈x, y〉)− ϕ(x). (2.25)

Different from the Wasserstein-1 distance, the quadratic Wasserstein-2 function re-

quires ϕ and ψ to be convex conjugates, which is a much harder constraint to en-
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force on neural networks than ϕ = −ψ in the W1GAN case. To overcome these

challenges, recent studies utilized the property (∇ϕ)−1(y) = ∇ϕ∗(y) of the unique

solution [79, 111, 127, 93] and the cycle consistency [79, 174]. For the sake of com-

parison, we use the W2GAN architecture developed very recently in [79] to compare

the practical performances of both W1GAN and W2GAN on the Barycentric Fast

Adaptation technique developed herein.

The W2GAN technique developed in [79] numerically solves the following problem:

min
ν

min
ϕ,ψ∈Convex

Ex∼µ[ϕ(x)]+Ey∼ν [〈∇ψ(y),y〉−ϕ(∇ψ(y))]+
%

2
Ey∼ν [‖∇ϕ ◦∇ψ(y)−y‖2

2]

(2.26)

=min
G

min
ϕ,ψ∈Convex

Ex∼µ[ϕ(x)] + Ez∼ϑ[〈∇ψ(G(z)), G(z)〉 − ϕ(∇ψ(G(z)))]

+
%

2
Ez∼ϑ[‖∇ϕ ◦ ∇ψ(G(z))−G(z)‖2

2], (2.27)

where the third term is the regularization, enforcing the convex conjugate constraint.

Each expectation above can be approximated by a Monte Carlo estimate to apply a

stochastic gradient descent algorithm for numerical computation as in the W1GAN

counterpart. It is worth pointing out that (2.27) is an approximation to the W 2
2

function. Indeed, W 2
2 function does not qualify to be a metric as it does not satisfy

the triangle inequality. Note that although W 2
2 does not induce a metric space, it

constitutes geodesics, but the geodesics induced by W 2
2 function and W2 metric are

different.

2.5.6 From Wasserstein-2 to Multi-Discriminator GAN Architecture

Instead of (2.3), we could target the Wasserstein-2 barycenter problem:

ν† = arg min
ν∈P

W 2
2 (ν, µ̂0) +

K∑
k=1

1

ηk
W 2

2 (ν, µk), (2.28)
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which can be expressed in terms of the Kantorovich potentials as:

ν† = arg min
ν∈P

sup
(ϕ̃0,ψ̃0)∈Φc

{∫
X
ϕ̃0(x)dµ̂0(x)+

∫
Y
ψ̃0(y)dν(y)

}

+
K∑
k=1

1

ηk
sup

(ϕ̃k,ψ̃k)∈Φc

{∫
X
ϕ̃k(x)dµk(x)+

∫
Y
ψ̃k(y)dν(y)

}
(2.29)

By using the c-transformation and the property ψ̃k(y) = ϕ̃c(y) = ϕ̃∗(y), we obtain:

ν†=arg min
ν∈P

{∫
X

‖x‖2

2
dµ̂0(x)+

∫
Y

‖y‖2

2
dν(x)− min

ϕ0∈Convex

[∫
X
ϕ0(x)dµ̂0(x)+

∫
Y
ϕ∗0(y)dν(y)

]
+

K∑
k=1

1

ηk

[∫
X

‖x‖2

2
dµk(x)+

∫
Y

‖y‖2

2
dν(x)− min

{ϕk}∈Convex

[∫
X
ϕk(x)dµk(x)+

∫
Y
ϕ∗k(y)dν(y)

]]}
(2.30)

Finally, the numerical problem for finding a W 2
2 based barycenter can be expressed

as follows by fusing the estimate cost given in [79] and (2.30):

min
G

{
min

ϕ0,ψ0∈Convex
(Ex∼µ̂0 [ϕ0(x)] + Ez∼ϑ[〈∇ψ0(G(z)), G(z)〉 − ϕ0(∇ψ0(G(z)))]

+
%0

2
Ez∼ϑ[‖∇ϕ0 ◦ ∇ψ0(G(z))−G(z)‖2

2]
)

+
K∑
k=1

1

ηk

[
min

{ϕk,ψk}∈Convex
(Ex∼µk [ϕk(x)] + Ez∼ϑ[〈∇ψk(G(z)), G(z)〉 − ϕk(∇ψk(G(z)))]

+
%k
2
Ez∼ϑ[‖∇ϕk ◦ ∇ψk(G(z))−G(z)‖2

2]
)]}

. (2.31)

The numerical optimization problem defined in (2.31) can be implemented using

a generative adversarial network architecture. In particular, each of G, {ϕk}, {ψk}

can be represented with 2K + 3 DNN models in total. As discussed in Section

2.5, a recursive WGAN configuration constitutes a better memory efficiency for edge

devices in comparison to a single-shot WGAN configuration. A recursive W2GAN
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configuration attempts to solve the following problem at each recursion:

min
Gk

{
min

{ϕk,ϕ̃k,ψk,ψ̃k}∈Con.

[
1

ηk
(Ex∼µk [ϕk(x)]+Ez∼ϑ[〈∇ψk(Gk(z)),Gk(z)〉−ϕk(∇ψk(Gk(z)))]

+
%k
2
Ez∼ϑ[‖∇ϕk ◦ ∇ψk(Gk(z))− Gk(z)‖2

2]
)

+
1

η̃k

(
Ex∼ν∗k [ϕ̃k(x)] + Ez∼ϑ[〈∇ψ̃k(Gk(z)),Gk(z)〉 − ϕ̃k(∇ψ̃k(Gk(z)))]

+
%̃k
2
Ez∼ϑ[‖∇ϕ̃k ◦ ∇ψ̃k(Gk(z))− Gk(z)‖2

2]

)]}
. (2.32)

We note that the recursive W2GAN configuration consists of 5 DNNs rather than

the 3 DNNs in the case of the recursive W1GAN configuration. The additional 2

discriminator DNN models are needed to mimic the convex conjugate of ψk. In a

similar fashion, the fast adaptation stage numerically solves the following problem:

min
G0

{
min

{ϕ0,ϕ̃0,ψ0,ψ̃0}∈Conv.

[
1

η0

(Ex∼µ̂0 [ϕ0(x)]+Ez∼ϑ[〈∇ψ0(G0(z)),G0(z)〉−ϕ0(∇ψ0(G0(z)))]

+
%0

2
Ez∼ϑ[‖∇ϕ0 ◦ ∇ψ0(G0(z))− G0(z)‖2

2]
)

+
1

η̃0

(
Ex∼ν∗K [ϕ̃0(x)] + Ez∼ϑ[〈∇ψ̃0(G0(z)),G0(z)〉 − ϕ̃0(∇ψ̃0(G0(z)))]

+
%̃0

2
Ez∼ϑ[‖∇ϕ̃0 ◦ ∇ψ̃0(G0(z))− G0(z)‖2

2]

)]}
. (2.33)

The recursive W2GAN configuration can, in theory, obtain a unique barycenter at

each recursion. However, its practical implementation is challenging due to the convex

conjugate constraint arising from the Kantorovich duality for W 2
2 function.

2.5.7 Implementation Challenges in W 2
2 -based GAN

The practical success of W1GAN can be largely attributed to the elegant struc-

tural relation between Kantorovich potentials, i.e., ϕ = −ψ. Unfortunately, when

the quadratic cost W 2
2 is used, Kantorovich potentials translate to ϕ = ψ∗, where

∗ denotes the convex conjugate. Note that W2 is a metric but W 2
2 is not. When
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implementing the W 2
2 -based GAN, both Kantorovich potentials are estimated by 2

distinct DNNs that must satisfy the convex conjugate constraint, which is practically

challenging. Very recent studies [87, 91, 79] attempt to enforce the convex conjugate

constraint between these DNNs through approximations or regularization under cer-

tain assumptions, but it remains not well understood. In this chapter, we have carried

out experimental studies to compare the performance of W1 and W 2
2 based recursive

WGAN configurations, and our findings corroborate that W1GAN performs better.

2.6 Experiments

2.6.1 Datasets, Models and Evaluation

We extensively examine the performance of learning a generative model, using the

Barycentric Fast Adaptation algorithm, on a variety of widely adapted datasets in

the GAN literature, including CIFAR10, CIFAR100, LSUN and MNIST [42, 80, 161].

In experiments, we used various DCGAN-based architectures [103] depending on the

dataset as different datasets vary in image size, feature diversity and in sample size,

e.g., image samples in MNIST has less diversity compared to the rest of the datasets,

while LSUN contains the largest number of samples with larger image sizes. Further,

we used the weight ternarization method [63] to jointly optimize weights and quan-

tizers of the generative model at the target edge node, reducing the memory burden

of generative models in memory-limited edge devices. Details on the characteristics

of datasets and network architectures used in experiments are relegated to the sup-

plementary materials. The implementation details for all the results are provided in

the supplementary materials.

The Frechet-Inception Distance (FID) score [65] is widely adopted for evaluating

the performance of GAN models in the literature [29, 147, 58], since it provides
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a quantitative assessment of the similarity of a dataset to another reference dataset.

Therefore, we use the FID score to evaluate the performance evolution of the two-stage

adaptive coalescence algorithm and all baseline algorithms during training. We here

emphasize that a smaller FID score of a GAN indicates that it has better performance.

Note that to avoid one-sided scores and make a fair comparison, other evaluation

metrics, in addition to the FID score, are also leveraged to quantify the performance of

all algorithms. A more comprehensive discussion of FID and other metrics is relegated

to the supplementary materials. In all experiments, we use the entire dataset as the

reference dataset.

To demonstrate the improvements by using the proposed framework based on

barycentric fast adaptation, we conduct extensive experiments and compare perfor-

mance with 3 distinct baselines: 1) Transferring GANs [147]: a pre-trained GAN

model is used as initialization at Node 0 for training a new WGAN model by using

local data samples. 2) Ensemble method : The model initialization, obtained by using

pre-trained GANs at other edge nodes, is further trained using both local data from

Node 0 and synthetic data samples. 3) Edge-Only : only local dataset at Node 0 is

used in WGAN training. Due to the lack of sample diversity at the target edge node,

the WGAN model trained using local data only is not expected to attain good per-

formance. In stark contrast, the WGAN model trained using the proposed two-stage

adaptive coalescence algorithm, inherits the diversity from the pre-trained models at

other edge nodes, and results in better performance compared to its counterparts.

Needless to say, if the entire dataset were available at Node 0, the best performance

would be achieved.

2.6.2 Experiment Setup

We consider the following two scenarios: 1) The overlapping case: the classes of
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the data samples at other edge nodes and at Node 0 overlap; 2) The non-overlapping

case: the classes of the data samples at other edge nodes and at Node 0 are mutu-

ally exclusive. In overlapping experiments, the corresponding dataset is equally split

into 2 sub-datasets and sub-datasets are used to pre-train 2 WGAN models indepen-

dently. Subsequently, Algorithm 1 and Algorithm 2 are used consecutively to find

the barycenter and the final WGAN model at Node 0, respectively. The few data

samples to be used in the fast adaptation stage are randomly selected from all classes

in the dataset. For the Transferring GANs method, the first pre-trained model is

further trained on the second sub-dataset using transfer learning to compute a fused

model. In the final stage, the few data samples from all classes in the dataset are

used to train a WGAN model at Node 0 by leveraging the fused model via transfer

learning again. In the Ensemble method, the pre-trained models are used to generate

a synthetic dataset. The synthetic dataset is combined with the few data samples

from all the classes in the dataset and the combined dataset is leveraged to train a

final WGAN model at Node 0. Lastly, the Edge-only method only leverages the few

data samples from all the classes in the dataset to train a WGAN model at Node 0.

In non-overlapping experiments, randomly drawn samples from the first 40% of the

classes in the dataset are allocated into the first node and randomly drawn samples

from the second 40% of the classes are allocated into the second node. The same

steps as in the overlapping case are followed by using these two sub-datasets until

the final stage. In the final stage, a few data samples are randomly selected from the

remaining 20% of the classes and are placed in Node 0.
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(a) MNIST: Non-overlapping Case.
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(b) MNIST: Overlapping Case.
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(c) CIFAR10: Overlapping Case.
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Figure 2.5: Comparison of Convergence of Barycentric Fast Adaptation with Various
Baselines.

2.6.3 Continual Learning Against Catastrophic Forgetting

We investigate the convergence and the generated image quality of various training

scenarios on CIFAR100 and MNIST datasets. As illustrated in Figure 2.5 and 2.6,
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Figure 2.6: Image Samples from 4 Different Approaches for CIFAR10: From Top
Row to Bottom Row; the Images Generated by Edge-Only (at 90000 Iterations),
Ternary Barycentric Fast Adaptation (at 5000 Iterations), Transferring GANs (at
1000 Iterations) and Barycentric Fast Adaptation (at 1000 Iterations) Algorithms.
Last Row Illustrates Some Real Images.

Barycentric Fast Adaptation clearly outperforms all baselines. Transferring GANs

suffers from catastrophic forgetting, because the continual learning is performed over

local data samples at Node 0 only. On the contrary, the Barycentric Fast Adaptation

and the ensemble method leverage generative replay, which mitigates the negative

effects of catastrophic forgetting. Further, observe that the ensemble method suffers

because of the limited data samples at Node 0, which are significantly outnumbered

by synthetic data samples from pre-trained GANs, and this imbalance degrades the

applicability of the ensemble method for continual learning. On the other hand,

the Barycentric Fast Adaptation can obtain the barycenter between the local data

samples at Node 0 and the barycenter model trained offline, and hence can effectively

leverage the abundance of data samples from edge nodes and the accuracy of local

data samples at Node 0 for better continual learning.

2.6.4 Impact of Number of Pre-trained Generative Models

To quantify the impact of cumulative model knowledge from pre-trained generative

models on the learning performance at the target node, we consider the scenario

where 10 classes in CIFAR10/MNIST are split into 3 subsets, e.g., the first pre-

train model has classes {0, 1, 2}, the second pre-trained model has classes {2, 3, 4}
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and the third pre-trained model has the remaining classes. One barycenter model is

trained offline by using the first two pre-trained models and the second barycenter

model is trained using all 3 pre-trained models, respectively, based on which we

evaluate the performance of Barycentric Fast Adaptation with 1000 data samples at

the target node. Figure 2.5(b) and 2.5(c) showcase that the more model knowledge is

accumulated in the barycenter computed offline, the higher image quality is achieved

at Node 0. As expected, more model knowledge can help new edge nodes in training

higher-quality generative models. In both figures, the Barycentric Fast Adaptation

outperforms Transferring GANs.

2.6.5 Impact of the Number of Data Samples at Node 0

Figure 2.5(e) further illustrates the convergence across different number of data

samples at the target node on CIFAR10 dataset. As expected, the FID score gap be-

tween Barycentric Fast Adaptation and Edge-Only method decreases as the number

of data samples at the target node increases, simply because the empirical distribu-

tion becomes more ‘accurate’. In particular, the significant gap of FID scores between

Edge-Only and the Barycentric Fast Adaptation approaches in the initial stages in-

dicates that the barycenter found via offline training and adopted as the model ini-

tialization for fast adaptation, is indeed close to the underlying model at the target

node, hence enabling faster and more accurate edge learning than Edge-Only.

2.6.6 Impact of Wasserstein Ball Radii

The Wasserstein ball radius ηk for pre-trained model k represents the relevance

(hence utility) of the knowledge transfer which is intimately related to the capability

to generalize beyond the pre-trained generative models, and the smaller it is, the more

informative the corresponding Wasserstein ball is. Hence, larger weights λk = 1/ηk
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would be assigned to the nodes with higher relevance. We note that the weights are

determined by the constraints and thus are fixed. Since we introduce the recursive

WGAN configuration, the order of coalescence (each corresponding to a geodesic

curve) may impact the final barycentric WGAN model, and hence the performance

of Barycentric Fast Adaptation. To this end, we compute the coalescence of models

of nodes with higher relevance at latter recursions to ensure that the final barycentric

model is closer to the models of nodes with higher relevance.

2.6.7 Ternary WGAN-based Barycentric Fast Adaptation

With the model initialization in the form of a full-precision barycenter model

computed in offline training, we next train a ternary WGAN with 2 discriminators

for the target node to compress the generative model further. In particular, we use

the same split of classes as the experiment illustrated in Figure 2.5(e), and compare

the image quality obtained by Ternary WGAN-based fast adaptation against both

full precision counterpart and Edge-Only. It can be seen from the FID scores (Figure

2.5(f)), the ternary WGAN-based Barycentric Fast Adaptation results in negligible

performance degradation compared to its full precision counterpart, and is still much

better compared to the Edge-Only approach.
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(c) IS for the Overlapping Case with 20 Data

Samples at Node 0.
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(f) FID Score for the Overlapping Case with 20

Data Samples at Node 0.

Figure 2.7: Performance Evaluation Comparisons of Various WGAN Model Training
Techniques Using FID and Inception Scores. Note That Higher Inception Score and
Lower FID Score Indicate Better Performance.
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2.6.8 Performance Evaluation Using Inception Score

In addition to the FID score, we also use Inception Score (IS), another widely used

metric, to signify the robustness of the performance evaluation. Each of the 3 different

numerical experiments is repeated 5 times, and the performance evaluation using FID

and Inception scores is illustrated in Figure 2.7. Clearly, both FID and IS evaluations

corroborate the superior performance of the Barycentric Fast Adaptation algorithm,

as well as the small deviation from the mean performance. The worst and best case

performances of the Barycentric Fast Adaptation and its counterparts are illustrated

in Table 2.1 and 2.2. Best-Mean, Worst-Mean, Best and Worst denote the best mean

performance, the worst mean performance, the best performance in all 5 runs and the

worst performance in all 5 runs for the corresponding metrics, respectively. Table 2.1

and 2.2 further showcase the superior performance of Barycentric Fast Adaptation in

comparison to its counterparts, particularly when the number of available samples at

Node 0 is limited.

An important observation herein is that both FID and IS quantify the quality

and the class diversity of the generated images. Specifically, the FID score leverages

another large dataset (reference dataset) (the whole dataset in our experiments) to

relatively compute the quality and class diversity of the generated images, whereas IS

does not utilize a reference dataset, i.e., IS is absolute. A significant implication of this

difference is that the FID score of a generated dataset can be different with respect to

different reference datasets, while IS will be constant. Therefore, IS cannot quantify

the effects of generator overfitting as well as the FID score does. In Figure 2.7(c)

and 2.7(f), only 20 data samples are used to train the WGAN generator models, and

hence the final WGAN models are prone to extreme overfitting. The WGAN models

might generate the same images even for different values of z, i.e., the image diversity
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Table 2.1: Performance Comparisons of Different WGAN Model Training Algo-
rithms.

Metric\ Experiment
Inception Score

Best-Mean Worst-Mean Best Worst

Fast Adaptation 3.28± 0.13 3.11± 0.08 3.42 2.95

F
ig

.
2.

7(
a)

,
2.

7(
d
)

Edge-Only 3.06± 0.11 2.85± 0.18 3.33 2.67

Transferring GANs 2.78± 0.32 2.55± 0.15 3.11 2.40

Fast Adaptation 2.45± 0.13 2.31± 0.13 2.58 2.12

F
ig

.
2.

7(
b
),

2.
7(

e)

Edge-Only 2.34± 0.08 2.13± 0.09 2.42 2.03

Transferring GANs 2.35± 0.16 2.07± 0.07 2.50 1.97

Fast Adaptation 2.40± 0.12 2.28± 0.16 2.55 2.12

F
ig

.
2.

7(
c)

,
2.

7(
f)

Edge-Only 2.53± 0.27 2.05± 0.19 2.91 1.86

Transferring GANs 2.74± 0.19 2.19± 0.13 2.96 2.07

within every class might be very low. In accordance with the generator overfitting

phenomenon, we observe that the FID scores for all 3 methods are stationary after

2000 iterations in Figure 2.7(f), whereas the IS curves continue to improve for Edge-

Only and Transferring GANs in Figure 2.7(c). This indicates generator overfitting

occurs in WGAN model trained with the Edge-Only and Transferring GANs methods,

whereas both the IS and FID scores for the Barycentric Fast Adaptation method are

stationary, indicating no generator overfitting.
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Table 2.2: Performance Comparisons of Different WGAN Model Training Algo-
rithms.

Metric\ Experiment
Frechet-Inception Distance

Best-Mean Worst-Mean Best Worst

Fast Adaptation 175± 7 185± 4 169 195

F
ig

.
2.

7(
a)

,
2.

7(
d
)

Edge-Only 206± 7 222± 9 194 239

Transferring GANs 203± 11 226± 8 193 236

Fast Adaptation 294± 5 300± 4 287 306

F
ig

.
2.

7(
b
),

2.
7(

e)

Edge-Only 326± 11 332± 7 319 341

Transferring GANs 312± 8 319± 4 305 326

Fast Adaptation 297± 7 302± 4 291 314

F
ig

.
2.

7(
c)

,
2.

7(
f)

Edge-Only 311± 13 333± 12 300 348

Transferring GANs 306± 10 312± 7 300 325

2.6.9 Image Morphing via Barycentric Fast Adaptation

The proposed barycentric fast adaptation approach is useful for many applications,

including image morphing [118], clustering [33], super resolution [82] and privacy-

aware synthetic data generation [117] at edge nodes. To get a more concrete sense,

Figure 2.8 illustrates a comparison of image morphing using three methods, namely

Barycentric Fast Adaptation, Transferring GANs and ensemble. Observe that Trans-
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Figure 2.8: The Illustrations of Image Morphing Using 3 Different Techniques: I)
Barycentric Fast Adaptation, II) Transferring GANs and III) Ensemble Method.
5000 Samples from Classes “2” and “9” in MNIST Are Used in Experiments and
Horizontal Axis Represents Training Iterations.

ferring GANs quickly morphs images from class “2” to class “9”, but forgetting the

previous knowledge. In contrast, Barycentric Fast Adaptation morphs class “2” to

a barycenter model between the two classes “2” and “9,” because it uses genera-

tive replay in the training, thus mitigating catastrophic forgetting. In addition, the

transition from “2” to “9” is smoother in comparison to its counterparts, because

barycentric transformation is shape-preserving. The ensemble method learns both

classes “2” and “9” at the end, but its morphing process takes longer.

2.7 Performance Comparison of W1GAN and W2GAN-based Fast Adaptation

To compare the performance of the recursive W1GAN and W2GAN configura-

tions, we design two numerical experiments on MNIST dataset. In the overlapping

classes experiment setup, we split the the classes in MNIST into two equal subsets

and place all the samples from each half to two different edge nodes. The edge server

collects the pretrained models from both of the edge nodes and trains a barycen-

ter W1GAN/W2GAN model. This barycenter model is then leveraged at a target

edge Node 0, which encompasses only 1000 (or 100) samples from all 10 classes, by

performing the fast adaptation. In the non-overlapping classes experiment setup,
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(a) Comparison of Convergence over MNIST: The Overlapping Case

with 1000 Samples at Node 0.
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(b) Comparison of Convergence over MNIST: The Non-overlapping

Case with 200 Samples at Node 0.

Figure 2.9: The Convergence Rate Comparison of the Barycentric Fast Adaptation
for W1 and W 2

2 .

we split the the classes in MNIST into three subsets: 1) all the samples from first 4

classes are placed into the first edge node, 2) all the samples from the second 4 classes

are placed in the second edge node, 3) and 200 (or 20) samples from the remaining

2 classes are placed on the target edge Node 0. Subsequently, the same experiment

setup described in overlapping classes setting is used. We have used the same DNN

architecture used in [79] for both recursive W1GAN and W2GAN configurations since

DNNs must be convex in W2GAN setting.
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(a) Comparison of Convergence over MNIST: The Overlapping Case

with 100 Samples at Node 0.
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(b) Comparison of Convergence over MNIST: The Non-overlapping

Case with 20 Samples at Node 0.

Figure 2.10: The Convergence Rate Comparison of the Barycentric Fast Adaptation
for W1 and W 2

2 .

As illustrated in Figure 2.9 and 2.10, in all experiments, the Wasserstein-1 based

recursive configuration outperforms the quadratic Wasserstein-2 based recursive con-

figuration. In particular, we observe the worse performance in overlapping setting,

suggesting that the recursive W2GAN configuration cannot leverage the previous

network knowledge as efficient as its W1GAN counterpart.
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2.8 Conclusions

In this work, we propose a systematic framework for continual learning of gener-

ative models via adaptive coalescence of pre-trained models from other edge nodes.

Particularly, we cast the continual learning problem as a constrained optimization

problem that can be reduced to a Wasserstein-1 barycenter problem. Appealing to

optimal transport theory, we characterize the geometric properties of geodesic curves

therein and use displacement interpolation as the foundation to devise recursive algo-

rithms for finding adaptive barycenters. Next, we take a two-stage approach to effi-

ciently solve the barycenter problem, where the barycenter of the pre-trained models

is first computed offline in the cloud via a ”recursive” WGAN configuration based

on displacement interpolation. Then, the resulting barycenter is treated as the meta-

model initialization and fast adaptation is used to find the generative model using

the local samples at the target edge node. A weight ternarization method, based on

joint optimization of weights and threshold for quantization, is developed to compress

the edge generative model further. Extensive experimental studies corroborate the

efficacy of the proposed framework.

2.9 Appendix A: Analytical Results

2.9.1 Proof of Proposition 1 for Wasserstein-1 GAN

Proof. Let {µk}1:K be any set of probability measures on a refined forming set and ν∗k

denote a continuous probability measure with no atoms, which minimizes the problem

min
νk

W1(µk, νk) + W1(ν∗k−1, νk) [10]. By Proposition 4, there exists multiple refined

forming sets, and the proceeding proof holds true for any refined forming set induced

by the original set of probability distributions. The proceeding proof utilizes the

geodesic property and the existence of a barycenter in Wasserstein-1 space, for which
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the details can be found in [132, 10] and [81], respectively. Let the barycenter at

iteration k = 1 be selected as ν∗1 = µ1 and suppose that α 6∈ BR is a distribution

satisfying

min
ν2

W1(µ2, ν2)+W1(ν∗1 , ν2) = W1(µ2, α)+W1(µ1, α) (2.34)

at recursion k = 2. Note that if α 6∈ BR, α cannot reside on the geodesic curve

gt(µ1, µ2)0≤t≤1 since gt(µ1, µ2)0≤t≤1 ∈ BR. By considering any distribution β2 which

resides on geodesic curve gt(µ1, µ2), we can also show that:

W1(µ1, β2) +W1(µ2, β2) = W1(µ1, β2) +W1(β2, µ2)

= W1(µ1, µ2) < W1(µ1, α) +W1(α, µ2)

= min
ν2

W1(µ2, ν2) +W1(ν∗1 , ν2), (2.35)

indicating that β attains a lower cost than the minimizer ν∗2 , which is a contradiction,

indicating that ν∗2 must reside in BR. Similarly, ν∗3 must also reside in BR:

W1(µ3, β3) +W1(ν∗2 , β3) = W1(µ3, β3) +W1(β3, ν
∗
2)

= W1(µ3, ν
∗
2) < W1(µ3, α) +W1(α, ν∗2). (2.36)

By induction, βk ∈ BR attains a lower cost compared with α 6∈ BR at the kth iteration:

W1(µk, βk) +W1(ν∗k−1, βk) = W1(µk, βk) +W1(βk, ν
∗
k−1)

= W1(µk, ν
∗
k−1) < W1(µk, α) +W1(α, ν∗k−1). (2.37)

Hence, ν∗k = βk ∈ BR, ∀k. Consequently, all barycenters to at each iteration must

reside in the baryregion BR.

Similarly, we can show that for stage II the following holds:

W1(µ0,βK) +W1(ν∗K , βK) = W1(µ0, βK) +W1(βK , ν
∗
K)

= W1(µ0, ν
∗
K) < W1(µ0, α) +W1(α, ν∗K). (2.38)

Consequently, ν∗ also resides in BR, which completes the proof.
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2.9.2 Remark 1 for Quadratic Wasserstein-2 Cost Function

For ease of exposition, we herein restate the seminal result by [2].

Proposition 2. [2] The barycenter of {(µk, λk)}k, i.e., arg min
ν

∑K
k λkW

2
2 (µk, ν), con-

stitutes a unique solution ν∗ if {µk}1:K vanishes on small sets. The unique solution

is characterized as ν∗ = ∇φk]µk, where φk is a convex potential defined in terms of

the Kantorovich potentials ( 3.5 in [2]).

Corollary 1. If K = 2, the set of barycenters ν∗t is characterized as:

ν∗t = arg min
ν

tW 2
2 (µ1, ν) + (1− t)W 2

2 (µ2, ν) = (tid + (1− t)∇φ∗)]µ1, (2.39)

where id is the identity map and ∇φ∗ is the conjugate Brenier’s map between µ0 and

µ1.

Corollary 1 implies that v∗t is the geodesic curve between µ1 and µ2. Hence, the

solution to the W 2
2 barycenter problem with K = 2 and fixed weight pair (t, 1 − t)

always resides on the geodesic curve between µ1 and µ2 [94, 2].

Proof. (Displacement Interpolation for Adaptive Barycenters with W 2
2 Cost Func-

tion). Let {µk}1:K be a set of probability measures on a refined forming set, which

vanish on small sets, and ν∗k denote a continuous probability measure with no atoms,

which minimizes the problem min
νk

W1(µk, νk)+W1(ν∗k−1, νk) [10]. The following proof

builds upon Corollary 1. We consider the following barycenter sequence generated by

the recursive W2GAN configuration:

S={ν∗1 =µ1, ν
∗
2 = arg min

ν
tW 2

2 (µ2, ν) + (1− t)W 2
2 (ν∗1 , ν),

. . . , ν∗K = arg min
ν

tW 2
2 (µK , ν) + (1− t)W 2

2 (ν∗K−1, ν)}.
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For ease of exposition we assign µ1 as the unique barycenter in the first recursion,

i.e., ν∗1 = µ1 ∈ BR. In iteration 2, the new barycenter can be stated in terms of the

previous barycenter as

ν∗2(t, 1− t) = arg min
ν

tW 2
2 (µ2, ν) + (1− t)W 2

2 (ν∗1 , ν)

= ((1− t)id + t∇φ∗)]ν∗1 . (2.40)

We note that ν∗2(t, 1 − t) = ((1 − t)id + t∇φ∗)]ν∗1 defines a geodesic between µ2 and

ν∗1 , and hence ν∗2(t, 1 − t) ∈ BR by definition. Further, the barycenter, ν∗2(t, 1 − t),

is unique by Proposition 2 and Corollary 1. By induction, the kth barycenter is

expressed as

ν∗k(t, 1− t) = arg min
ν

tW 2
2 (µk, ν) + (1− t)W 2

2 (ν∗k−1, ν)

= ((1− t)id + t∇φ∗)]ν∗k−1. (2.41)

As before, ν∗k(t, 1 − t)((1 − t)id + t∇φ∗)]ν∗k−1 ∈ BR and ν∗k(t, 1 − t) is the unique

barycenter for a fixed (t, 1− t) pair, and hence we conclude that all the barycenters

in the sequence S reside inside the baryregion BR. Similarly, for the fast adaptation

stage, the final barycenter ν∗ can be shown to reside on the geodesic ((1 − t)id +

t∇φ∗)]ν∗K between ν∗K and µ̂0:

ν∗(t, 1− t) = arg min
ν

tW 2
2 (µ̂0, ν) + (1− t)W 2

2 (ν∗K , ν)

= ((1− t)id + t∇φ∗)]ν∗K , (2.42)

and hence ν∗ ∈ BR, which completes the proof.

2.9.3 Bounds on the Gap Between One-shot Barycentric and Recursive

Barycentric Algorithms

The W1 barycenter problem is analytically challenging, because the geodesic curve

between two distributions is not unique, which may lead to multiple barycenters at
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every recursion [please see Example 7.4, in [133]]. Proposition 1 shows that all of

the barycenters reside inside the baryregion BR, for any {λk}. It follows that BR

also provides a bound on the gap between the one-shot and recursive Wasserstein

barycenter problems, under the W1 cost function. For the W2 cost function, it is

shown in [22] that the approximation gap can be driven to be 0. Proposition 3

demonstrates how to achieve this by using the proposed recursive algorithm.

Proposition 3. Let {λ1, λ2, . . . , λK} and {λµ1 , λµ2 , . . . , λµK} denote the weights of

the distributions {µ1, µ2, . . . , µK} in one-shot and recursive W2 barycenter problems,

respectively, and let {λν∗1 , λν∗2 , . . . , λν∗K} denote the weights of the barycenters in re-

cursive W2 barycenter problem. The solutions of one-shot and recursive W2 barycen-

ter problems are the same if λν∗k =
∑k
`=1 λ`/∑k+1

`=1 λ` and λµk = λk/∑k+1
`=1 λ` are satisfied

∀k ∈ K.

Proof. Without loss of generality, we assume
∑K

i=1 λi = 1. Then, from Corollary 1,

we have that

K = 1→ ν∗1 =µ1;

λν∗1 =λµ1 = λ1

K = 2→ ν∗1 =µ1, ν
∗
2 = (λν∗1 i.d.+ λµkT

ν∗1
µ2

)]ν∗1 ;

λν∗1 =λ1/λ1+λ2, λµ2 = λ2/λ1+λ2

K = 3→ ν∗1 =µ1, ν
∗
2 =T

ν∗1
ν∗2
]ν∗1 =(λν∗1 i.d.+ λµkT

ν∗1
µ2

)]ν∗1 ;

ν∗3 =(λν∗2T
ν∗1
ν∗2

+ λµ3T
ν∗1
µ3

)]ν∗1

=(λν∗2λν∗1 i.d.+ λν∗2λµ2T
ν∗1
µ2

+ λµ3T
ν∗1
µ3

)]ν∗1 ;

λν∗1 =λ1/λ1+λ2, λµ2 = λ2/λ1+λ2,

λν∗2 =λ1+λ2/λ1+λ2+λ3, λµ3 =λ3/λ1+λ2+λ3. (2.43)
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By induction, we have:

K = k → ν∗i =(λν∗i−1
T
ν∗1
ν∗i−1

+λµiT
ν∗1
µi

)]ν∗1 ,∀i=1, . . . , k;

λν∗i =
∑i
j=1 λj/∑i+1

j=1 λj,

λµi+1
=λi+1/∑i+1

j=1 λj,∀i = 1, . . . , k − 1. (2.44)

Then, for K = k + 1, we can show:

K = k + 1→ ν∗i+1 = (λν∗i T
ν∗1
ν∗i

+ λµi+1
T ν
∗
1

µi+1
)]ν∗1

= (λν∗i (λν∗i−1
T
ν∗1
ν∗i−1

+ λµiT
ν∗1
µi

) + λµi+1
T ν
∗
1

µi+1
)]ν∗1

=(λν∗i λν∗i−1
T
ν∗1
ν∗i−1

+λν∗i λµiT
ν∗1
µi

+λµi+1
T ν
∗
1

µi+1
)]ν∗1 ,∀i=1, . . . , k

λν∗i =
∑i
j=1 λj/

∑i+1
j=1 λj, λµi+1

=λi+1/
∑i+1
j=1 λj,∀i=1, . . . , k (2.45)

which completes the proof.

2.9.4 Refined Forming Set

The following definition identifies a more compact forming set for baryregions

when they exist.

Definition 4. (Refined Forming Set) Let {µk}k∈κ be a subset of the forming

set {µk}1:K for a set κ ⊂ K, and let BR(κ) represent the baryregion facilitated by

{µk}k∈κ. The smallest subset {µk}k∈κ∗, satisfying BR(κ∗) ⊇ BR, is defined as the

refined forming set of BR.

A refined forming set can characterize a baryregion as complete as the original

forming set, but can better capture the geometric properties of the barycenter prob-

lem. In particular, a refined forming set κ∗ dictates that {µk}k∈κ∗ engenders exactly

the same geodesic curves as in BR.

Proposition 4. (Non-uniqueness) A refined forming set of {µk}1:K is not neces-

sarily unique.
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Proof. To prove Proposition 1, it suffices to construct a counter example. Consider a

forming set {µk}1:4 with the probability measures µ1 = δ(0,0), µ2 = δ(1,0), µ3 = δ(0,1),

and µ4 = δ(1,1), where δ(a,b) is the delta function with value 1 at (x, y) = (a,b) and 0

otherwise. Further, let {µk}k∈{1,4} and {µk}k∈{2,3} be two subsets of the forming set.

Then, the length of the minimal geodesic curve between µ1 and µ4 can be computed

as:

W1(µ1(x), µ4(y)) = inf
γ∈Π(µ1,µ4)

∫
X×Y

d(x, y)dγ(x, y)

=

∫
Y

∫
X
d([0, 0]T , [1, 1]T )δ([0,0]T ,[1,1]T )dxdy = 2. (2.46)

By recalling that there exist infinitely many minimal geodesics satisfying (2.46), we

check the lengths of two other sets of geodesics that traverse through µ2 and µ3,

respectively. First, for µ2,

W1(µ1(x), µ4(y)) ≤ W1(µ1(x), µ2(z)) +W1(µ2(z), µ4(y))

= inf
γ∈Π(µ1,µ2)

∫
X×Z

d(x, z)dγ(x, z) + inf
γ∈Π(µ2,µ4)

∫
Z×Y

d(z, y)dγ(z, y)

=

∫
Z

∫
X
d([0, 0]T , [1, 0]T )δ([0,0]T ,[1,0]T )dxdz+

∫
Y

∫
Z
d([1, 0]T , [1, 1]T )δ([1,0]T ,[1,1]T )dzdy

= 2 ≤ W1(µ1(x), µ4(y)), (2.47)

based on the triangle inequality and the definition of first-type Wasserstein distance.

Similarly for µ3, we can show that

W1(µ1(x), µ4(y)) ≤ W1(µ1(x), µ3(z)) +W1(µ3(z), µ4(y)) ≤ W1(µ1(x), µ4(y)), (2.48)

through the selections γ(x, z) = δ([0,0]T ,[0,1]T ) and γ(z, y) = δ([0,1]T ,[1,1]T ). As a result,

there exists at least a single minimal geodesic between µ1 and µ4 passing through

µ` for ` ∈ {2, 3}, indicating that µ2, µ3 ∈ R({µk}k∈{1,4}) and BR({µk}k∈{1,4}) ⊇ BR.

Observing that there exists no smaller forming set than {µk}k∈{1,4}, we conclude that

{µk}k∈{1,4} is a refined forming set.
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Following the same line, we can have that {µk}k∈{2,3} is another refined forming

set of {µk}1:4 by first showing the following three inequalities:

W1(µ2(x), µ3(y)) =

∫
Y

∫
X
d([1, 0]T , [0, 1]T )δ([1,0]T ,[0,1]T )dxdy = 2, (2.49)

W1(µ2(x), µ3(y)) ≤ W1(µ2(x), µ1(z)) +W1(µ1(z), µ3(y)) ≤ W1(µ2(x), µ3(y)), (2.50)

W1(µ2(x), µ3(y)) ≤ W1(µ2(x), µ4(z)) +W1(µ4(z), µ3(y)) ≤ W1(µ2(x), µ3(y)), (2.51)

where the transport maps γ(x, z) = δ([1,0]T ,[0,0]T ) and γ(z, y) = δ([0,0]T ,[0,1]T ) for (2.50),

and γ(x, z) = δ([1,0]T ,[1,1]T ) and γ(z, y) = δ([1,1]T ,[0,1]T ) for (2.51). Consequently, there

exists at least a single minimal geodesic between µ2 and µ3 passing through µ` for

` ∈ {1, 4}, indicating that µ1, µ4 ∈ R({µk}k∈{2,3}) and BR({µk}k∈{2,3}) ⊇ BR. Since

there exists no smaller forming set than {µk}k∈{2,3}, we have that {µk}k∈{2,3} is another

refined forming set, thereby completing the proof of non-uniqueness.

2.10 Appendix B: Algorithms and Experiment Settings

2.10.1 Algorithms

For the proposed two-stage adaptive coalescence algorithm, the offline training

in Stage I is done in the cloud, and the fast adaptation in Stage II is carried out

at the edge server, in the same spirit as the model update of Google EDGE TPU.

Particularly, as illustrated in Figure 2.11, each edge node sends its pre-trained gen-

erative model (instead of its own training dataset) to the cloud. As noted before,

the amount of bandwidth required to transmit data from an edge node to cloud is

also significantly reduced by transmitting only a generative model, because neural

network model parameters require much smaller storage than the dataset itself.

58



Figure 2.11: Illustration of Offline Training in the Cloud: Each Edge Node Sends
Pre-trained Generative Model (Instead of Datasets) to the Cloud, Based on Which
the Cloud Computes Adaptive Barycenters Using the Recursive Configuration.

2.10.2 Experiment Settings

This section outlines the architecture of deep neural networks and hyper-parameters

used in the experiments.

Network architectures deployed in the experiments

Figures 2.12, 2.13 and 2.14 depict the details of the DNN architecture used in our

experiments; the shapes for convolution layers follow (batch size, number of filters,

kernel size, stride, padding); and the shapes for network inputs follow (batch size,

number of channels, heights, widths).
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Figure 2.12: The DNN Architecture Used in Experiments for LSUN Dataset.

Hyper-parameters used in the experiments

All experiments are conducted in PyTorch on a server with RTX 2080 Ti and 64GB

of memory. The selection of most parameter values, e.g., the number of generator

iterations, batch size, optimizer, gradient penalty factor, and the number of discrim-

inator iterations per generator iterations, follows [16, 59, 147]. For other parameters,

we select the values giving the best performance via trial-and-error. In Table 2.4 and

2.5 all hyper-parameters are listed. We have considered different ranges of values for

different parameters. The number of generator iterations (fast adaptation) ranges

from 800 up to 100000. For better illustration, the figures depict only the iterations
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Figure 2.13: The DNN Architecture Used in Experiments for CIFAR10 and CI-
FAR100 Datasets.

until satisfactory image quality is achieved. For the number of samples at the tar-

get edge node, 500 ∼ 10000 samples in CIFAR10, 20 ∼ 500 samples in MNIST and

500 ∼ 1000 samples in LSUN and CIFAR100 are used. Each experiment is smoothed

via a moving average filter for better visualization. More details and instructions to

modify the hyper-parameters are available in the accompanying code, which will be

publicly available on GitHub once the review process is over.
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Table 2.3: Legend for Parameters Illustrated in Tables 2.4 and 2.5.

Parameter Name Abbreviation

Number of Generator Iterations (Offline Training) A

Number of Generator Iterations (Fast-Adaptation) B

Batch Size C

Optimizer Parameters D

Number of Discriminator Iterations per Generator Iteration E

Gradient-Penalty Factor F

Number of Samples in Node 0 G

Number of Training Samples H

Average Duration of Pretraining/Transfering per Iteration I

Average Duration of Trainining Barycenter per Iteration J

Table 2.4: List of Hyper-parameters Used in All Experiments with CIFAR10
Database.

CIFAR10

Ab.\Fig. 2.5(e) 2.20(a) 2.5(c) 2.7(a), 2.7(d) 2.7(b), 2.7(e) 2.7(c), 2.7(f)

A 100000 100000 5000 5000 5000 5000

B 5000 2000 3000 5000 5000 5000

C 64 64 64 64 64 64

D Adam(β1 = 0.5, β2 = 0.999, l.r.= 0.0001)

E 5 5 5 5 5 5

F 10 10 10 10 10 10

G Varies 1000 1000 100 50 20

{λk} Equal Equal Equal Equal Equal Equal

H 50000 50000 50000 50000 50000 50000

I 0.755 seconds 0.756 seconds

J 1.480 seconds 1.482 seconds
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Table 2.5: List of Hyper-parameters Used in All Experiments with CIFAR100,
MNIST and LSUN Databases.

CIFAR100

Ab.\Fig. 2.18(b) 2.17(b) 2.19(a) 2.21(a) 2.21(b) 2.22(b) 2.22(a) 2.5(d)

A 10000 10000 10000 10000 5000 5000 10000 10000

B 10000 10000 10000 10000 5000 5000 10000 7000

C 64 64 64 64 64 64 64 64

D Adam(β1 = 0.5, β2 = 0.999, l.r.= 0.0001)

E 5 5 5 5 5 5 5 5

F 10 10 10 10 10 10 10 10

G 1000 Varies 500 500 1000 1000 5000 400

{λk} Equal Equal Equal Varies Equal Equal Equal Equal

H 50000 50000 50000 50000 50000 50000 50000 50000

I 0.755 seconds 0.756 seconds

J 1.480 seconds 1.482 seconds

MNIST LSUN

Ab.\Fig. 2.16(a) 2.16(b) 2.5(a) 2.19(b) 2.5(b) 2.18(a) 2.5(f) 2.17(a)

A 1000 1000 3000 1000 1000 10000 10000 10000

B 800 800 1000 800 800 10000 10000 5000

C 256 256 256 256 256 64 64 64

D Adam(β1 = 0.5, β2 = 0.999, l.r.= 0.0001)

E 5 5 5 5 5 5 5 5

F 10 10 10 10 10 10 10 10

G Varies Varies 8 100 20 1000 1000 Varies

{λk} Equal Equal Equal Equal Equal Equal Equal Equal

H 60000 60000 60000 60000 60000 100000 100000 100000

I 0.535 seconds 1.055 seconds

J 1.020 seconds 2.125 seconds
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Figure 2.14: The DNN Architecture Used in Experiments for MNIST Dataset.

2.11 Appendix C: Experiments and Further Discussion

2.11.1 Evaluation Metrics

An overview of FID score

Quantifying the quality of images is an important problem for performance com-

parison in the literature on GANs. A variety of metrics have been proposed in the

literature to quantify image quality with the consideration of over-fitting and mode

collapse issues. This chapter adopts the FID score [65], which has been shown to be

able to accurately evaluate image quality and over-fitting, independent of the number

of classes. Since most of the datasets considered in this chapter (CIFAR10, LSUN and
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Figure 2.15: The DNN Architecture Used for Extracting Features in MNIST Images
and Computing the Modified FID Scores.

MNIST) only contain 10 classes and they are further split into subsets, using a metric

independent of classes is essential for our study, and the metrics highly dependent on

the number of classes, e.g., Inception score (IS), may not be appropriate here.

Similar to IS, a pre-trained ‘Inception’ network is utilized to extract useful features

for obtaining the FID score, such that the features of real and fake images can then

be used to compute correlations between these images so as to evaluate the quality

of images. A perfect score of 1 can be obtained only if the features of both real and

fake datasets are the same, i.e., fake images span every image in the real datasets.

Consequently, if a generative model is trained only on a subset of the real-world

dataset, the model would over-fit the corresponding subset and does not capture the

features of the remaining real samples, thus yielding a bad FID score.

Modified FID score for MNIST dataset

Since the ‘Inception’ network is pre-trained on ‘ILSVRC 2012’ dataset, both IS and

FID scores are most suitable for RGB images (e.g., CIFAR), which however cannot

accurately capture the valuable features in MNIST images, simply because ‘ILSVRC

2012’ dataset does not contain MNIST classes.
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(a) Evolution of Image Quality on MNIST Using FID Score Under

Different Number of Samples at Target Edge Node.

(b) Evolution of Image Quality on MNIST Using Modified FID Score

Under Different Number of Samples at Target Edge Node.

Figure 2.16: Image Quality Performance of Two Stage Adaptive Coalescence Algo-
rithm in Various Scenarios.

To resolve these issues, we particularly train a new neural network to extract useful

features for MNIST dataset. The network architecture of the corresponding DNN is

shown in Figure 2.15. Fully trained network achieves an accuracy rate of 99.23%

for classifying the images in MNIST. Though the corresponding architecture is much

simpler in comparison to the ‘Inception’ network, the high classification accuracy

indicates that the network can extract the most valuable features in MNIST dataset.

To further demonstrate the difference between FID and modified FID scores, we

evaluate the results of Experiment 4 using both approaches, as shown in Figure 2.16(a)
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(a) Evolution of Image Quality on LSUN Using FID Score Under Dif-

ferent Number of Samples at Target Edge Node.

(b) Evolution of Image Quality on CIFAR100 Using FID Score Under

Different Number of Samples at Target Edge Node.

Figure 2.17: Image Quality Performance of Barycentric Fast Adaptation in Various
Scenarios.

and 2.16(b), respectively. It can be seen that upon convergence, the FID scores for the

‘Edge-Only’ with different number of samples are similar, whereas the modified FID

scores under different cases are more distinct from each other and correctly reflect

the learning performance. Besides, ‘Edge-Only’ with 20 samples incorrectly performs

better than ‘Edge-Only’ with 100 samples in the FID score, while ‘Edge-Only’ with

20 and 100 samples perform as expected with the modified FID score. Hence, the

modified FID score can better capture the image features compared with the FID
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(b) Convergence of Barycentric Fast-adaptation Compared to 3 Differ-

ent Baselines: Case for CIFAR100.

Figure 2.18: Image Quality Performance of Barycentric Fast Adaptation in Various
Scenarios.

score, and is a more suitable metric to evaluate the image quality in experiments

with MNIST.

2.11.2 Additional Experiments on MNIST, CIFAR10, CIFAR100 and LSUN

Tabulated FID scores

We first present the best achieved FID scores for all different experiments illustrated

in Section 2.6. Table 2.6 showcases that Barycentric Fast Adaptation achieves better
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image quality than its counterparts at the end of training. This is due to the fact that

the Barycentric Fast Adaptation leverages barycentric model from offline training,

while counterpart techniques relies on the few samples at Node 0.

Fine-tuning via fast adaptation

We investigate the convergence and the image quality of various training scenarios

on MNIST, CIFAR10, CIFAR100 and LSUN datasets. To demonstrate the improve-

ments by using the proposed framework based on Barycentric Fast-Adaptation, we

conduct extensive experiments and compare performance with 3 additional baselines:

1) Edge-Only : only local dataset with few samples at the target edge node is used in

WGAN training; 2) Weight-Average: an initial model for training a WGAN model

at the target edge node is computed by weight-averaging pre-trained models across

other edge nodes, and then Barycentric Fast-Adaptation is used to train a WGAN

model; 3) Whole Data at Node 0: the whole dataset available across all edge nodes is

used in WGAN training.

As illustrated in Figure 2.16(b), 2.17(a) and 2.17(b), Barycentric Fast Adaptation

outperforms Edge-Only in all scenarios with different sizes of the training set. In

particular, the significant gap of modified FID scores between two approaches in the

initial stages indicates that the barycenter found via offline training and adopted as

Table 2.6: The Final FID Scores Achieved for Distinct Experiment Setups in Figure
2.5.

FID Scores for Edge-Only Ensemble Trans. GAN Bary. Fast Adapt.

MNIST/Overlap. 563.66 N/A 550.42 266.51

CIFAR10/Overlap. 184.41 N/A 179.80 151.54

CIFAR100/Overlap. 190.13 N/A 187.16 182.37

LSUN/Overlap. 291.75 N/A N/A 279.87

MNIST/Non-overlap. 879.02 832.06 833.23 613.81
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(a) Convergence of Ternarized and Full Precision Barycentric Fast

Adaptation Methods on CIFAR100.

(b) Convergence of Image Quality of Ternarized and Full Precision

Barycentric Fast Adaptation Techniques on MNIST.

Figure 2.19: Image Quality Performance of Two Stage Adaptive Coalescence Algo-
rithm in Various Scenarios.

the model initialization for fast adaptation, is indeed close to the underlying model

at the target edge node, hence enabling faster and more accurate edge learning than

Edge-Only. Moreover, upon convergence, the Barycentric Fast Adaptation approach

achieves a better FID score (hence better image quality) than Edge-Only, because

the former converges to a barycenter residing between the coalesced model computed

offline and the empirical model at target edge node. We further notice that Barycen-

tric Fast Adaptation noticeably addresses catastrophic forgetting problem apparent
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Figure 2.20: Image Quality Performance of Two Stage Adaptive Coalescence Algo-
rithm in Various Scenarios.

in Transferring GANs and Edge-Only, but cannot eliminate it completely in Figure

2.17 and 2.18. As it is illustrated in Figure 2.21, catastrophic forgetting can be elim-

inated by selecting appropriate ηk values. As expected, the modified FID score gap

between two approaches decreases as the number of data samples at the target node

increases, simply because the empirical distribution becomes more ‘accurate’.

Figures 2.18(a) and 2.18(b) compare the performance of Barycentric Fast-Adaptation

on LSUN and CIFAR100 with additional 2 baselines Weight-Average and Whole Data

at Node 0. Again, Barycentric Fast-Adaptation outperforms all baselines in the ini-

tial stages of training, but as expected, Whole Data at Node 0 achieves the best

FID score upon convergence as it utilizes whole reference dataset. Unsurprisingly,

Weight-Average performs poorly since weight averaging does not constitute a shape-

preserving transformation of pre-trained models, while Barycentric Fast-Adaptation

can by utilizing displacement interpolation in the Wasserstein space.
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Ternary WGAN based fast adaptation

Following the same spirit of the experiment for LSUN, we compare the image quality

obtained by ternary WGAN-based fast adaptation against both full precision coun-

terpart and Edge-Only for CIFAR100, CIFAR10 and MNIST datasets. It can be seen

from the modified FID scores (Figure 2.19(b), 2.20(a) and 2.19(a)) that the ternary

WGAN-based fast adaptation facilitates image quality in between its full precision

counterpart and the Edge-Only approach, which indicates that the ternary WGAN-

based fast adaptation provides negligible performance degradation compared to the

full precision method.

2.11.3 Additional Experiment Settings

This subsection features additional experiment setups, which are not considered

as primary use cases for the proposed Barycentric Fast Adaptation, but might provide

useful insights regarding the algorithm.

The impact of Wasserstein ball radii

To demonstrate the impact of the Wasserstein ball radii, we design an experiment with

different radius values in the fast adaptation stage. The CIFAR100 dataset is equally

split to 2 edge nodes and an offline barycenter is computed with equal Wasserstein

ball radii. We trained 3 different models for fast adaptation with varying weights

λk = 1/ηk. As noted in Section 1, radius ηk represents the relevance (hence utility) of

the knowledge transfer, and the smaller it is, the more informative the corresponding

Wasserstein ball is. As illustrated in Figure 2.21(a), the performance of Barycentric

Fast Adaptation improves as the weight λk increases, because the knowledge transfer

from the offline barycenter is more informative. Consequently, the fast adaptation

benefits from the coalesced model more, which mitigates the effects of catastrophic
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(a) Evolution of Image Quality on CIFAR100 for Different Wasserstein

Ball Radii Values.

(b) Evolution of the Quality of Images Generated by Fast Adaptation

Using Pre-trained Model or Using Few Samples at Target Node.

Figure 2.21: Image Quality Performance of Two Stage Adaptive Coalescence Algo-
rithm in Various Scenarios. CIFAR100 Dataset is Used in All Experiments.

forgetting, leading to better image quality.

Pre-training WGAN at target edge node

In this experiment, we explore the possible effects of using a pre-trained WGAN

model, which is trained using the local samples at the target edge node, instead of

using the samples at target edge node as in the proposed barycentric fast adaptation

phase. Specifically, the CIFAR100 dataset is split into 2 equal size subsets and each
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(a) Evolution of the Quality of Images Generated by Fast Adaptation

for Different Number of Data Samples with Same Data Classes at Edge

Nodes.

(b) Evolution of the Quality of Images Generated by Fast Adaptation

for Disjoint Dataset at Target Node.

Figure 2.22: Image Quality Performance of Two Stage Adaptive Coalescence Algo-
rithm in Various Scenarios. CIFAR100 Dataset Is Used in All Experiments.

subset is placed on one of two edge nodes, based on which an offline barycenter model

is trained. In addition, another WGAN model is pre-trained using local samples at

the target edge node as in Edge-Only. Subsequently, model fusion is applied using

the offline barycenter model and the pre-trained WGAN model at the target edge

node. Figure 2.21(b) demonstrates that the performance of this approach is negatively

impacted, when compared to the proposed Barycentric Fast Adaptation.

74



Disjoint classes at the target edge node

In this experiment, we investigate the performance degradation of fast adaptation

when the datasets in the source edge nodes and at the target edge node do not have

data samples from the same class. To this end, two disjoint subsets from CIFAR100,

50 classes and 40 classes, are placed on 2 edge nodes, from which an offline barycenter

is trained. A subset of samples from the remaining 10 classes are placed on the target

edge node. Figure 2.22(b) shows the performance benefit of Barycentric Fast Adapta-

tion compared to Edge-Only. As expected, Barycentric Fast Adaptation with disjoint

classes yield less knowledge transfer from offline training to fast adaptation (yet they

still share common features), but perform better than its Edge-Only counterpart.

The impact of sample sizes

Next, we explore if the offline barycenter model offers any benefit to fast adaptation

when all the edge nodes possess the same dataset classes, but with different sample

sizes. For this purpose, 250, 200 and 50 disjoint samples are sampled from each

class in CIFAR100 and placed at two edge nodes and target node, respectively. We

here notice that the offline barycenter is now just a barycenter of two close empirical

distributions, which share the same underlying distributions. Therefore, this setup is

more suitable to transfer learning rather than edge learning. Nonetheless, Barycentric

Fast Adaptation utilizes the additional samples from offline training, in the same spirit

to transfer learning and improves FID score in comparison to Edge-Only, which only

has access to 5000 samples (Figure 2.22(a)).

2.11.4 Additional Synthetic Images

In this section, we present more synthetic images generated using Edge-Only,

Transferring GANs, Barycentric Fast Adaptation and ternarized Barycentric Fast
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Figure 2.23: Image Samples Generated at 1000th Iteration Using Barycentric Fast
Adaptation on CIFAR10 Dataset.

Adaptation techniques. Figure 2.23, 2.24 and 2.25 illustrate 100 additional im-

ages generated by Barycentric Fast Adaptation, Transferring GANs and ternarized

Barycentric Fast Adaptation techniques, respectively. For Barycentric Fast Adap-

tation and Transferring GANs, the synthetic images are collected at iteration 1000,

since both techniques attains a good FID score at early stages of training. However,

Transferring GANs suffers from catastrophic forgetting in latter stages of training,

while Barycentric Fast Adaptation can significantly prevent catastrophic forgetting,

generating high quality synthetic images even at latter stages of training. We collected

synthetic images from ternary Barycentric Fast Adaptation at iteration 5000 since as

expected it takes longer for this technique to converge to a good generative model.

However, it saves significant memory in comparison to full precision Barycentric Fast

Adaptation at the expense of negligible performance degradation.

Finally, Figure 2.26 and 2.27 show images generated using Edge-Only at iterations

5000 and 90000 iterations, respectively. As it can be observed from the images in

Figure 2.26, Edge-Only has not converged to a good GAN model yet at iteration

5000. Observe that the image quality at iteration 90000 in Figure 2.27 is significantly

better, since the Edge-Only has converged to the empirical distribution at Node 0,

but it is still as not good as that generated by using Barycentric Fast Adaptation.
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Figure 2.24: Image Samples Generated at 1000th Iteration Using Transferring GANs
on CIFAR10 Dataset.

Figure 2.25: Image Samples Generated at 5000th Iteration Using Ternarized
Barycentric Fast Adaptation on CIFAR10 Dataset.

Figure 2.26: Image Samples Generated at 5000th Iteration Using Edge-Only on
CIFAR10 Dataset.

Figure 2.27: Image Samples Generated at 90000th Iteration Using Edge-Only on
CIFAR10 Dataset.
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Chapter 3

FEDERATED LEARNING OVER WIRELESS NETWORKS

3.1 Introduction

In many edge networks, mobile and IoT devices collecting a huge amount of data

are often connected to each other or a central node wirelessly. The unreliable nature

of wireless connectivity, together with constraints in computing resources at edge

devices, puts forth a significant challenge for the computation, communication and

coordination required to learn an accurate model at the network edge. In this chapter,

we consider a many-to-one wireless architecture for distributed learning at the network

edge, where the edge devices collaboratively train a machine learning model, using

local data, in a distributed manner. This departs from conventional approaches which

rely heavily on cloud computing to handle high complexity processing tasks, where one

significant challenge is to meet the stringent low latency requirement. Further, due to

privacy concerns, it is highly desirable to derive local learning model updates without

sending data to the cloud. In such distributed learning scenarios, the communication

between the edge devices and the server can become a bottleneck, in addition to the

other challenges in achieving edge intelligence.

In this chapter, we consider a wireless edge network with M devices and an edge

server, where a high-dimensional machine learning model is trained using distributed

learning. In such a setting with unreliable and rate-limited communications, local

updates at sender devices should be carefully crafted and compressed to make full

use of the wireless communication resources available and should work in concert with

the receiver (edge server) so as to learn an accurate model. Notably, lossy wireless
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communications for edge intelligence presents unique challenges and opportunities

[172], subject to bandwidth and power requirements, on top of the employed multiple

access techniques. Since it often suffices to compute a function of the sum of the local

updates for training the model, over-the-air computing is a favorable alternative to the

standard multiple-access communications for edge learning. More specifically, over-

the-air computation [54, 1] takes advantage of the superposition property of wireless

multiple-access channel via simultaneous analog transmissions of the local messages,

and then computes a function of the messages at the receiver, scaling signal-to-noise

ratio (SNR) well with increasing number of users. In a nutshell, when multiple edge

devices collaboratively train a model, it is plausible to employ distributed learning

over-the-air.

We seek to answer the following key questions: 1) What is the impact of the

wireless communication bandwidth/power on the accuracy and convergence of the

edge learning? 2) What coordinates in local gradient signals should be communicated

by each edge device to the receiver? 3) How should the coordination be carried out

so that multiple sender devices can work in concert with the receiver? 4) What is the

optimal way for the receiver to process the received noisy gradient signals to be used

for the stochastic gradient descent algorithm? 5) How should each sender device carry

out power allocation across subcarriers to transmit its local updates? Intuitively, it

is sensible to allocate more power to a coordinate with larger gradient value to speed

up the convergence. Further, power allocation should also be channel-aware.

To answer the above questions, we consider an integrated learning and commu-

nication scheme where multiple edge devices send their local gradient updates over

multi-carrier communications to the receiver for learning (Figure 3.1). Let K denote

the number of subcarriers for communications, where K is determined by the wireless

bandwidth. First, K dimensions of the gradient updates are determined (by the re-

79



Device 2

Broadcast of updated model parameters
Local Dataset 1

subcarriers

∑

∑

∑

∑

C
o

m
m

o
n

 s
el

ec
�

o
n

 o
f 
𝑘

co
o

rd
in

at
es

Local Dataset 2

subcarriers

Local Dataset 𝑀

Device 𝑀 subcarriers

Device 1
Receiver

Wireless medium

Joint
model
update

Figure 3.1: A Bandlimited Coordinate Descent Algorithm for Distributed Learning
over Wireless Multi-access Channel.

ceiver) to be transmitted. Multiple methods can be used for selecting K coordinates,

e.g., selecting the top-k (in absolute value) coordinates of the sum of the gradients or

randomized uniform selection. This chapter will focus on randomly uniform selection

(we elaborate further on this in Section 3.5). During the subsequent communica-

tions, the gradient updates are transmitted only in the K-selected dimensions via

over-the-air computing over K corresponding sub-carriers, each experiencing time-

varying channel conditions and hence time-varying transmission errors. The devices

are subject to power constraints, giving rise to a key question on how to allocate

transmission power across dimension, at each edge device, based on the gradient up-

date values and channel conditions. Thus, we explore joint optimization of the power

allocation and the learning rate to obtain the best estimate of the gradient updates

and minimize the impact of the communication error. We investigate a centralized
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solution to this problem as a benchmark, and then devise sub-optimal distributed

solutions amenable to practical implementation. We note that we have also studied

the impact of errors of synchronization across devices in this setting.

The main contributions of this chapter are summarized as follows:

• We take a holistic approach to study federated learning algorithms over wireless

MAC channels, and the proposed bandlimited coordinated descent(BLCD) al-

gorithm is built on innovative integration of computing in the air, multi-carrier

communications, and wireless resource allocation.

• We characterize the impact of communication error and compression, in terms

of its resulting gradient bias and mean squared error (MSE), on the convergence

performance of the proposed algorithms. Specifically, when the communication

error is unbiased, the BLCD algorithm would converge to a stationary point

under very mild conditions on the loss function. In the case the bias in the

communication error does exist, the iterates of the BLCD algorithm would

return to a contraction region centered around a scaled version of the bias

infinitely often.

• To minimize the impact of the communication error, we study joint optimization

of power allocation at individual devices and learning rates at the receiver. Ob-

serve that since there exists tradeoffs between bias and variance, minimizing the

MSE of the communication error does not necessarily amount to minimizing the

bias therein. Our findings reveal that optimal power allocation across different

sub-carriers should take into account both the gradient values and channel con-

ditions, thus generalizing the widely used water-filling policy. We also develop

sub-optimal distributed solutions amenable to implementation. In particular,

due to the power constraints at individual devices, it is not always feasible to
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achieve unbiased estimators of the gradient signal across the coordinates. To ad-

dress this complication, we develop a distributed algorithm which can drive the

bias in the communication error to (close to) zero under given power constraints

and then reduce the corresponding variance as much as possible.

3.2 Related Work

Communication-efficient SGD algorithms are of great interest to reduce latency

caused by the transmission of the high dimensional gradient updates with minimal

performance loss. Such algorithms in the ML literature are based on compression via

quantization [7, 149, 20, 151], sparsification [4, 125, 8] and federated learning [78] (or

local updates [124]), where lossless communication is assumed to be provided. At

the wireless edge, physical-layer design and communication loss should be taken into

consideration for the adoption of the communication-efficient algorithms.

Power allocation for over-the-air computation is investigated for different scenar-

ios in many other works [45, 92, 148, 171, 25] including MIMO, reduced dimensional

MIMO, standard many to one channel and different channel models. In related works

on ML over wireless channels, [173, 155, 163, 12, 11, 13, 3, 112] consider over-the-air

transmissions for training of the ML model. The authors in [12] propose sparsifica-

tion of the updates with compressive sensing for further bandwidth reduction, and

recovered sum of the compressed sparse gradients is used for the update. They also

apply a similar framework for federated learning and fading channels in [11]. [173]

considers a broadband aggregation for federated learning with opportunistic schedul-

ing based on the channel coefficients for a set of devices uniformly distributed over a

ring. Lastly, [112] optimize the gradient descent based learning over multiple access

fading channels. It is worth noting that the existing approaches for distributed learn-

ing in wireless networks do not fully account for the characteristics of lossy wireless
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channels. It is our hope that the proposed BLCD algorithms can lead to an innova-

tive architecture of distributed edge learning over wireless networks that accounts for

computation, power, spectrum constraints and packet losses.

3.3 Federated Learning over Wireless Multi-access Networks

3.3.1 Distributed Edge Learning Model

Consider an edge computing environment with M devices M = {1, . . . ,M} and

an edge server. As illustrated in Figure 3.1, a high-dimensional ML model is trained at

the server by using an SGD based algorithm, where stochastic gradients are calculated

at the devices with the data points obtained by the devices and a (common) subset

of the gradient updates are transmitted through different subcarriers via over-the-air.

The general edge learning problem is as follows:

min
w∈Rd

f(w) :=
1

M

M∑
m=1

Eξm [l(w, ξm)], (3.1)

in which l(·) is the loss function, and edge device m has access to inputs ξm. Such

optimization is typically performed through empirical risk minimization iteratively.

In the sequel, we let wt denote the parameter value of the ML model at communication

round t, and at round t edge device m uses its local data ξm,t to compute a stochastic

gradient gmt (wt) := ∇l(wt, ξm,t). Define gt(wt) = 1
M

∑M
m=1 g

m
t (wt). The standard

vanilla SGD algorithms is given as:

wt+1 = wt − γgt(wt) (3.2)

with γ being the learning rate. Nevertheless, different updates can be employed for

different SGD algorithms, and this chapter will focus on communication-error-aware

SGD algorithms.
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3.3.2 Bandlimited Coordinate Descent Algorithm

Due to the significant discrepancy between the wireless bandwidth constraint and

the high-dimensional nature of the gradient signals, a sparse variant of the SGD algo-

rithm over wireless multiple-access channel, named as bandlimited coordinate descent

(BLCD), is proposed in which at each iteration only a common set of K coordinates,

I(t) ⊂ {1, . . . , d} (with K � d), of the gradients are selected to be transmitted

through over-the-air computing for the gradient updates. The details of coordinate

selection for the BLCD algorithm are relegated to Section 3.6. Worth noting is that

due to the unreliable nature of wireless connectivity, the communication is assumed

to be lossy, resulting in erroneous estimation of the updates at the receiver. Moreover,

gradient correction is performed by keeping the difference between the update made

at the receiver and the gradient value at the transmitter for the subsequent rounds, as

gradient correction dramatically improves the convergence rate with sparse gradient

updates [125]. For convenience, we first define the gradient sparsification operator as

follows.

Definition 5. CI : Rd → Rd for a set I ⊆ {1, . . . , d} as follows: for every input

x ∈ Rd,
(
CI(x)

)
j

is (x)j for j ∈ I and 0 otherwise.

Since this operator CI compress a d-dimensional vector to a k-dimension one,

we will also refer this operator as compensation operator in the rest of the chapter.

With a bit abuse of notation, we let Ct denote CI(t) for convenience in the following.

Following [73], we incorporate the sparsification error made in each iteration (by the

compression operator Ct) into the next step to alleviate the possible gradient bias

therein and improve the convergence possible. Specifically, as in [73], one plausible

way for compression error correction is to update the gradient correction term as
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Algorithm 4 Bandlimited Coordinate Descent Algorithm

1: Input: Sample batches ξm,t, model parameters w1, initial learning rate γ, spar-

sification operator Ct(.), ∀m = 1, . . . ,M ; ∀t = 1, . . . , T.

2: Initialize: rmt := 0.

3: for t = 1 : T do

4: for m = 1 : M do

5: gmt (wt) := stochasticGradient(f(wt, ξm,t))

6: umt := γgmt (wt) + rmt

7: rmt+1 := umt − Ct(umt )

8: Compute power allocation coefficients b∗km, ∀k = 1, . . . , K.

9: Transmit b∗ � Ct(umt )

10: end for

11: Compute gradient estimator Ĝt(wt)

12: wt+1 := wt − Ĝt(wt).

13: Broadcast wt+1 back to all transmitters.

14: end for

follows:

rmt+1 = umt − Ct(umt ), (3.3)

umt , γgmt (wt) + rmt , (3.4)

in which rmt+1 keeps the error in the sparsification operator that is in the memory of

user m at around t, and umt is the scaled gradient with correction at device m where

the scaling factor γ is the learning rate in equation (3.2). (We refer readers to [73] for

more insights of this error-feedback based compression SGD.) Due to the lossy nature

of wireless communications, there would be communication errors and the gradient

estimators at the receiver would be erroneous. In particular, the gradient estimator
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Figure 3.2: The Illustration of the Operation of Bandlimited Coordinate Descent
Algorithm.

at the receiver in the BLCD can be written as:

Ĝt(wt) =
1

M

M∑
m=1

Ct (umt ) + εt, (3.5)

where εt denotes the random communication error in round t. In a nutshell, the

bandlimited coordinate descent algorithm is outlined in Algorithm 4 (Figure 3.2).

Recall that gt(wt) = 1
M

∑M
m=1 g

m
t (wt) and define rt , 1

M

∑M
m=1 r

m
t . Thanks to the

common sparsification operator across devices, the update in the SGD algorithm at

communication round t is given by:

wt+1 = wt −
[
Ct(γgt(wt) + rt) + εt

]
. (3.6)

To quantify the impact of the communication error, we use the corresponding com-

munication error free counterpart as the benchmark, defined as follows:

ŵt+1 = wt − Ct(γgt(wt) + rt). (3.7)

It is clear that wt+1 = ŵt+1 − εt. For convenience, we define w̃t , wt − rt. It can be

shown that w̃t+1 = w̃t−γgt(wt)− εt. Intuitively, wt+1 in (3.6) is a noisy version of the
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iterate ŵt+1 in (3.7), which implies that w̃t+1 is a noisy version of the compression-

error correction of ŵt+1 in (3.7), where the “noisy perturbation” is incurred by the

communication error.

3.3.3 BLCD Coordinate Transmissions over Multi-access Channel

Beginning of round 𝑡

End of round 𝑡

Edge Devices
(Transmi�ers)

Edge Server
(Receiver)

Sample the next subset 𝐼𝑡 of
coordinates using the joint seed

and compute gradients

Transmit selected coordinates of 
gradients {𝐶𝑡 𝑥𝑡

𝑚
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Update joint model 
parameters

Broadcast updated model parameters

Figure 3.3: A Multi-access Communication Protocol for Bandlimited Coordinate
Selection and Transmission.

A key step in the BLCD algorithm is to achieve coordinate synchronization of

the transmissions among many edge devices. To this end, we introduce a receiver-

driven low-complexity multi-access communication protocol, as illustrated in Figure

3.3, with the function Ct(x) denoting the compression of x at round t. Let I(t) (of size

K) denote the subset of coordinates chosen for transmission by the receiver at round
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t. Observe that the updates at the receiver are carried out only in the dimensions I(t).

Further, the edge receiver can broadcast its updated iterate to participant devices,

over the reverse link. This task is quite simple, given the broadcast nature of wireless

channels. In the transmissions, each coordinate of the gradient updates is mapped

to a specific subcarrier and then transmitted through the wireless MAC channel, and

the coordinates transmitted by different devices over the same subcarrier are received

by the edge server in the form of an aggregate sum.

When there are many edge devices, over-the-air computation can be used to take

advantage of superposition property of wireless multiple-access channel via simulta-

neous analog transmissions of the local updates. More specifically, at round t, the

received signal in subcarrier k is given by:

yk(t) =
M∑
m=1

bkm(t)hkm(t)xkm(t) + nk(t) (3.8)

where bkm(t) is a power scaling factor, hkm(t) the channel gain, and xkm(t) the message

of user m through the subcarrier k, respectively, and nk(t) ∼ N (0, σ2) is the channel

noise.

To simplify notation, we omit (t) when it is clear from the context in the following.

Specifically, the message xkm = (Ct(u
m
t ))l(k) given the learning algorithm for a one-

to-one function l(k) = (I(t))k, which indicates the k-th element of I(t), transmitted

through the k-th subcarrier. The total power that a device can use in the trans-

mission is limited in practical systems. Without loss of generality, we assume that

there is a power constraint at each device, given by
∑K

k=1 |bkmxkm|
2 ≤ Em, ∀m ∈

{1, . . . ,M}. Note that bkm hinges heavily upon both hm = [h1m, . . . , hKm]> and

xm = [x1m, . . . , xKm]>, and a key next step is to optimize bkm(hm,xm). In each round,

each device optimizes its power allocation for transmitting the selected coordinates of

its update signal over the K subcarriers, aiming to minimize the communication error
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so as to achieve a good estimation of Gt(wt) (or its scaled version) for the gradient

update, where

Gt(wt) ,
1

M

M∑
m=1

Ct(u
m
t ). (3.9)

From the learning perspective, based on {yk}Kk=1, it is of paramount importance

for the receiver to get a good estimate of Gt(wt). Since nk(t) is Gaussian noise, the

optimal estimator is in the form of

(
Ĝt(wt)

)
k

=


αl(k)yl(k), k ∈ I(t)

0 otherwise

(3.10)

where {αk}Kk=1 are gradient estimator coefficients for subcarriers. It follows that the

communication error (i.e., the gradient estimation error incurred by lossy communi-

cations) is given by:

εt = Ĝt(wt)−Gt(wt). (3.11)

We note that {αk}Kk=1 are intimately related to the learning rates for the K coordi-

nates, making the learning rate effectively {γαk}Kk=1. It is interesting to observe that

the learning rates in the proposed BLCD algorithm are essentially different across

the dimensions, due to the unreliable and dynamically changing channel conditions

across different subcarriers.

3.4 Impact of Communication Error and Compression on BLCD Algorithm

Recall that thanks to the common sparsification operator across devices, the up-

date in the SGD algorithm at communication round t is given by:

wt+1 = wt −
[
Ct(γgt(wt) + rt) + εt

]
. (3.12)
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Needless to say, the compression operator Ct plays a critical role in sparse transmis-

sions. In this chapter, we impose the following standard assumption on the compres-

sion rate of the operator.

Assumption 1. For a set of the random compression operators {Ct}Tt=1 and any

x ∈ Rd, it holds

E ‖x− Ct(x)‖2 ≤ (1− δ) ‖x‖2 (3.13)

for some δ ∈ (0, 1].

We impose the following standard assumptions on the non-convex objective func-

tion f(·) and the corresponding stochastic gradients gmt (wt) computed with the data

samples of device m in round t. (We assume that the data samples {ξm,t} are

i.i.d. across the devices and time.)

Assumption 2. (Smoothness) A function f : Rd → R is L-smooth if for all x, y ∈ Rd,

it holds

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2 . (3.14)

Assumption 3. For any x ∈ Rd and for any m = 1, . . . ,M , a stochastic gradient

gmt (x),∀t, satisfies

E[gmt (x)] = ∇f(x), E ‖gmt (x)‖2 ≤ G2 (3.15)

where G > 0 is a constant.

It follows directly from [73] that E[‖rt‖2
2] ≤ 4(1−δ)

δ2
γ2G2. Recall that w̃t+1 = w̃t −

γgt(wt) − εt and that w̃t+1 can be viewed as a noisy version of the compression-

error correction of ŵt+1 in (3.7), where the “noisy perturbation” is incurred by the

communication error. For convenience, let Et[εt] denote the gradient bias incurred

by the communication error and Et[‖εt‖2
2] be the corresponding mean square error,

where Et is taken with respect to channel noise. Let η = L−1+2γ
γ(2−ργ)

with 0 < ρ < 2 and
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let f ∗ denote the globally minimum value of f . We have the following main result on

the iterates in the BLCD algorithm.

Theorem 1. Under Assumptions 1, 2 and 3, the iterates {wt} in the BLCD algorithm

satisfies that

1

T + 1

T∑
t=0

‖∇f(wt)‖2 − η‖Et[εt]︸ ︷︷ ︸
bias

‖2


2

≤ 1

T + 1

T∑
t=0

 Lη

L− 1 + 2γ
Et[‖εt‖2

2]︸ ︷︷ ︸
MSE

+
(
1 + η2

)
‖Et[εt]︸ ︷︷ ︸

bias

‖2
2


+

2

T + 1

f(w0)− f ∗

γ(2− ργ)
+

(
L

ρ

2(1− δ)
δ2

+
1

2

)
2LγG2

2− ργ
. (3.16)

Proof. Recall that w̃t = wt − rt. It can be shown that w̃t+1 = w̃t − γgt(wt) − εt.

As shown in (3.19), using the properties of the iterates in the BLCD algorithm and

the smoothness of the objective function f , we can establish an upper bound on

Et[f(w̃t+1)] in terms of f(w̃t), the corresponding gradient ∇f(wt), and the gradient

bias and MSE due to the communication error. Then, (3.16) can be obtained after

some further algebraic manipulations.We here restate equations (3.6) and (3.7) as

follows:

wt+1 =wt − [Ct(γgt(wt) + rt) + εt] (3.17)

ŵt+1 =wt − Ct(γgt(wt) + rt) (3.18)

It is clear that wt+1 = ŵt+1−εt. For convenience, we define w̃t = wt−rt = ŵt−rt−εt−1.
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It can be shown that w̃t+1 = w̃t − γgt(wt)− εt and:

Et[f(w̃t+1)]≤f(w̃t)+〈∇f(w̃t),Et[w̃t+1−w̃t]〉+
L

2
Et[‖w̃t+1 − w̃t‖2]

= f(w̃t)−〈∇f(w̃t), γEt[gt(wt)]+Et[εt]〉+
L

2
Et[‖γgt(wt)‖2]

+
L

2
Et[‖εt‖2]+LEt[〈γgt(wt), εt〉]

= f(w̃t)−〈∇f(wt), γEt[gt(wt)]+Et[εt]〉−〈∇f(w̃t)−∇f(wt), γEt[gt(wt)]+Et[εt]〉

+
L

2
Et[‖εt‖2

2]+LEt[〈γgt(wt), εt〉]+
L

2
Et[‖γgt(wt)‖2

≤ f(w̃t)−γ‖∇f(wt)‖2
2−〈∇f(wt),Et[εt]〉+

ρ

2
‖γ∇f(wt)+Et[εt]‖2

2+
L2

2ρ
Et[‖rt‖2

2]

+
L

2
Et[‖εt‖2

2]+L〈∇f(wt),Et[εt]〉+
Lγ2

2
Et‖gt(wt)‖2

2

≤ f(w̃t)−γ‖∇f(wt)‖2
2+(L− 1)‖∇f(wt)‖‖Et[εt]‖+

ρ

2

(
γ2‖∇f(wt)‖2

2+‖Et[εt]‖2
2

+ 2γ〈∇f(wt),Et[εt]〉)+
L2

2ρ
Et[‖rt‖2

2]+
L

2
Et[‖εt‖2

2]+
Lγ2

2
G2

≤ f(w̃t)− γ‖∇f(wt)‖2
2 + (L− 1 + 2γ)‖∇f(wt)‖‖Et[εt]‖+

γ2ρ

2
‖∇f(wt)‖2

2

+
L2

2ρ
Et[‖rt‖2

2] + ‖Et[εt]‖2
2 +

L

2
Et[‖εt‖2

2] +
Lγ2

2
G2

= f(w̃t)− γ
[
1− ρ

2
γ
]
‖∇f(wt)‖2

2 + (L− 1 + 2γ)‖∇f(wt)‖‖Et[εt]‖

+
L2

2ρ
Et[‖rt‖2

2] + ‖Et[εt]‖2
2 +

L

2
Et[‖εt‖2

2] +
Lγ2

2
G2. (3.19)

Based on [73], we have that:

Et[‖rt‖2
2] ≤ 4(1− δ)

δ2
γ2G2. (3.20)

By using equations 3.19 and 3.20, it follows that:

1

T + 1

T∑
t=0

{
γ(1− ρ

2
γ)‖∇f(wt)‖2

2 − (L− 1 + 2γ)‖Et[εt]‖‖∇f(wt)‖
}

≤ 1

T + 1
[f(w0)− f ∗] +

L2

ρ

2(1− δ)
δ2

γ2G2 +
Lγ2

2
G2 +

1

T + 1

T∑
t=0

[
‖Et[εt]‖2

2

+
L

2
Et[‖εt‖2

2]

]
(3.21)
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Through some further algebraic manipulation, we have that:

1

T + 1

T∑
t=0

(
‖∇f(wt)‖2 −

L− 1 + 2γ

γ(2− ργ)
‖Et[εt]‖2

)2

≤ 2

T + 1

f(w0)− f ∗

γ(2− ργ)
+

(
L

ρ

2(1− δ)
δ2

+
1

2

)
2LγG2

2− ργ

+
1

T + 1

T∑
t=0

[
L

γ(2− ργ)
Et[‖εt‖2

2] +

(
1 +

(L− 1 + 2γ)2

γ2(2− ργ)2

)
‖Et[εt]‖2

2

]
(3.22)

For convenience, let η = L−1+2γ
γ(2−ργ)

, and define a contraction region as follows:

Cβ = {‖∇f(wt)‖2 ≥ (η + ∆)‖Et[εt]‖2} . (3.23)

It follows from (3.22) that iterates in the BLCD algorithm returns to the contraction

region infinitely often with probability one. Further, when setting γ = 1√
T+1

, we have

that:

1

T + 1

T∑
t=0

(
‖∇f(wt)‖2 −

L− 1 + 2γ

γ(2− ργ)
‖Et[εt]‖2

)2

≤ L

(2− ργ)

1

T + 1

T∑
t=0

Et[‖εt‖2
2] +

(
1 +

(L− 1 + 2γ)2

γ2(2− ργ)2

)
1

T + 1

T∑
t=0

‖Et[εt]‖2
2

+
f(w0)− f ∗

(1− 1
2
ργ)

+
1√
T + 1

(
L

ρ

2(1− δ)
δ2

+
1

2

)
2LG2

2− ργ
, (3.24)

which completes the proof.

Remarks. Based on Theorem 1, we have a few observations in order.

• We first examine the four terms on the right hand side of (3.16): The first two

terms capture the impact on the gradient by the time average of the bias in the

communication error εt and that of the corresponding the mean square, denoted

as MSE; the two items would go to zero if the bias and the MSE diminish; the

third term is a scaled version of f(w0) − f ∗ and would go to zero as long as

γ = O(T−β) with β < 1; and the fourth term is proportional to γ and would go

to zero when γ → 0.
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• If the right hand side of (3.16) diminishes as T →∞, the iterates in the BLCD

algorithm would “converge” to a neighborhood around η‖Et[εt]‖2, which is a

scaled version of the bias in the communication error. For convenience, let

ε̄ = lim supt‖Et[εt]‖2, and define a contraction region as follows:

Aγ = {wt : ‖∇f(wt)‖2 ≤ (η + ∆)ε̄} . (3.25)

where ∆ > 0 is an arbitrarily small positive number. It then follows that the

iterates in the BLCD algorithm would “converge” to a contraction region given

by Aγ, in the sense that the iterates return to Aγ infinitely often. Note that f is

assumed to any nonconvex smooth function, and there can be many contraction

regions, each corresponding to a stationary point.

• When the communication error is unbiased, the gradients would diminish to

0 and hence the BLCD algorithm would converge to a stationary point. In

the case the bias in the communication error does exist, there exists intrinsic

tradeoff between the size of the contraction region and η‖Et[εt]‖2. When the

learning rate γ is small, the right hand side of (3.16) would small, but η can

be large, and vice verse. It makes sense to choose a fixed learning rate that

would make η small. In this way, the gradients in the BLCD algorithm would

“concentrate” around a (small) scaled version of the bias.

• Finally, the impact of gradient sparsification is captured by δ. For instance,

when (randomly) uniform selection is used, δ = k
d
. We will elaborate on this in

Section 3.6.

Further, we have the following corollary.

Corollary 2. Under Assumptions 1, 2, and 3, we have that if Et[εt] = 0 and γ =
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1√
T+1

, the BLCD algorithm converges to a stationary point and satisfies that

1

T+1

T∑
t=0

‖∇f(wt)‖2
2

≤ 1

2− ρ√
T+1

2(f(w0)−f ∗)√
T + 1

+
2LG2

√
T+1

(
L

ρ

2(1−δ)
δ2

+
1

2

)
+

L

T + 1

T∑
t=0

Et[‖εt‖2
2]︸ ︷︷ ︸

MSE

 (3.26)

3.5 Communication Error Minimization via Joint Optimization of Power

Allocation and Learning Rates

Theorem 1 reveals that the communication error has a significant impact on the

convergence behavior of the BLCD algorithm. In this section, we turn our attention to

minimizing the communication error (in term of MSE and bias) via joint optimization

of power allocation and learning rates.

With loss of generality, we focus on iteration t (with abuse of notation, we omit

t in the notation for simplicity). Recall that the coordinate updates in the BLCD

algorithm, sent by different devices over the same subcarrier, are received by the

edge server as an aggregate sum, which is used to estimate the gradient value in

that specific dimension. We denote the power coefficients and estimators as b ,

[b11, b12, . . . , b1M , b21, . . . , bKM ] and α , [~α1, . . . , ~αK ]. In each round, each sender

device optimizes its power allocation for transmitting the selected coordinates of

their updates over the K subcarriers, aiming to achieve the best convergence rate.

We assume that the perfect channel state information is available at the corresponding

transmitter, i.e., hm = [h1m, . . . , hKm]> is available at the sender m only.

Based on (3.11), the mean squared error of the communication error in iteration

t is given by

Et[‖εt‖2
2] = E

[ ∥∥∥Ĝt(wt)−Gt(wt)
∥∥∥2
]

(3.27)

where the expectation is taken over the channel noise. For convenience, we denote

Et[‖εt‖2
2] as MSE1, which can be rewritten as the sum of the variance and the square
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of the bias:

MSE1(α, b) =
K∑
k=1

[ M∑
m=1

(
αkbkmhkm −

1

M

)
xkm︸ ︷︷ ︸

bias in kth coordinate

]2

+
K∑
k=1

σ2α2
k︸ ︷︷ ︸

variance

(3.28)

Recall that {αk}Kk=1 are intimately related to the learning rates for the K coordinates,

making the learning rate effectively {γαk}Kk=1.

3.5.1 Centralized Solutions to Minimizing MSE (Scheme 1)

In light of the above, we can cast the MSE minimization problem as a learning-

driven joint power allocation and learning rate problem, given by:

P1: min
α,b

MSE1(α, b) (3.29)

s.t.
K∑
k=1

|bkmxkm|2 ≤ Em, ∀m (3.30)

bkm ≥ 0, αk ≥ 0 ∀k,m (3.31)

which minimizes the MSE for every round. The above formulated problem is non-

convex because the objective function involves the product of variables. Nevertheless,

it is biconvex, i.e., for one of the variables being fixed, the problem is convex for the

other one. In general, we can solve the above bi-convex optimization problem in the

same spirit as in the EM algorithm, by taking the following two steps, each optimizing

over a single variable, iteratively:

P1-a: min
α

MSE1(α, b) s.t. αk ≥ 0, ∀k

P1-b: min
b

MSE11(α, b)

s.t.
K∑
k=1

|bkmxkm|2 ≤ Em, ∀m,

bkm ≥ 0, ∀k,m.
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Since P1-a is unconstrained,for given {bkm}, the optimal solution to P1-a is given

by:

α∗k=max

{(∑M
m=1 xkm

)(∑M
m=1 bkmhkmxkm

)
M
[
σ2 +

(∑M
m=1 bkmhkmxkm

)2] , 0

}
. (3.32)

Then, we can solve P1-b by optimizing b only. Solving the sub-problems P1-a and

P1-b iteratively leads to a local minimum, however, not necessarily to the global

solution.

Observe that the above solution requires the global knowledge of xkm’s and hkm’s of

all devices, which is difficult to implement in practice. We will treat it as a benchmark

only. Next, we turn our attention to developing distributed sub-optimal solutions.

3.5.2 Distributed Solutions Towards Zero Bias and Variance Reduction (Scheme 2)

As noted above, the centralized solution to P1 requires the global knowledge of

xkm’s and hkm’s and hence is not amenable to implementation. Further, minimizing

the MSE of the communication error does not necessarily amount to minimizing the

bias therein since there exists tradeoffs between bias and variance. Thus motivated,

we next focus on devising distributed sub-optimal solutions which can drive the bias

in the communication error to (close to) zero, and then reduce the corresponding

variance as much as possible.

Specifically, observe from (3.28) that the minimization of MSE cost does not neces-

sarily ensure Ĝ to be an unbiased estimator, due to the intrinsic tradeoff between bias

and variance. To this end, we take a sub-optimal approach where the optimization

problem is decomposed into two subproblems: In the subproblem at the transmitters,

each device m utilizes its available power and local gradient/channel information to

compute a power allocation policy in terms of {b1m, b2m, . . . , bKm}. In the subproblem

at the receiver, the receiver finds the best possible αk for all k = 1, . . . , K. Another
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complication is that due to the power constraints at individual devices, it is not always

feasible to achieve unbiased estimators of the gradient signal across the coordinates.

Nevertheless, for given power constraints, one can achieved unbiased estimators of

a scaled down version of the coordinates of the gradient signal. In light of this,

we formulate the optimization problem at each device (transmitter) m to ensure an

unbiased estimator of a scaled version ζm of the transmitted coordinates, as follows:

Device m: max
{bkm}k=1:K

ζm (3.33)

s.t.
K∑
k=1

b2
kmx

2
km ≤ Em, bkm≥0, (3.34)

ζmxkm − bkmhkmxkm = 0, ∀k = 1, . . . , K, (3.35)

where maximizing ζm amounts to maximizing the corresponding SNR (and hence

improving the gradient estimation accuracy). The first constraint in the above is the

power constraint, and the second constraint is imposed to ensure that there is no bias

of the same scaled version of the transmitted signals across the dimensions for user

m. The power allocation solution can be found using Karush-Kuhn-Tucker (KKT)

conditions as follows:

ζ∗m =

√√√√ Em∑K
k=1

x2km
h2km

, b∗km =
ζ∗m
hkm

, ∀k. (3.36)

Observe that using the obtained power allocation policy in (3.36), all K transmitted

coordinates for device m have the same scaling factor ζm. Next, we will ensure zero

bias by choosing the right α for gradient estimation at the receiver, which can be

obtained by solving the following optimization problem since all transmitted gradient

signals are superimposed via the over-the-air transmission:

Receiver side: min
{αk},

K∑
k=1

ν2
k(αk, {b∗km}) (3.37)

s.t. ek(αk, {b∗km}) = 0, αk ≥ 0, ∀k = 1, . . . , K, (3.38)
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where ek and ν2
k denote the bias and variance components, given as follows:

ek(αk, {b∗km}) = αk

(
M∑
m=1

ζ∗mxkm

)
− 1

M

M∑
m=1

xkm,

ν2
k(αk, {b∗km}) = α2

kσ
2, (3.39)

for all k = 1, . . . , K. For given {ζ∗m}, it is easy to see that

α∗k =
1
M

∑M
m=1 xkm∑M

m=1 ζ
∗
mxkm

' 1∑M
m=1 ζ

∗
m

, ∀k. (3.40)

We note that in the above, from an implementation pointview, since {xkm} is not

available at the receiver, it is sensible to set α†k ' 1∑M
m=1 ζ

∗
m

. Further, {ζ∗m} is not

readily available at the receiver either. Nevertheless, since there is only one parameter

ζ∗m from each sender m, the sum
∑M

m=1 ζ
∗
m can be sent over a control channel to the

receiver to compute α†k. It is worth noting that in general the bias exists even if Em

is the same for all senders.

Next, we take a closer look at the case when the number of subchannels K is large

(which is often the case in practice). Suppose that {xkm} are i.i.d. across subchannels

and users, and so are {hkm}. We can then simplify ζ∗m further. For ease of exposition,

we denote E[x2
km] = ϕ2 + x̄2 and E

[
1

h2km

]
= $2. When K is large, for every user m

we have that:

ζ∗m =

√
Em√∑K
k=1

x2km
h2km

=⇒
when K
is large

ζ∗m ≈
√
Em√

K(ϕ2 + x̄2)$2
(3.41)

As a result, the bias and variance for each dimension k could be written as:

ek(α
∗
k, {b∗km}) =

M∑
m=1

[ √
Em∑M

m=1

√
Em
− 1

M

]
xkm, ∀k. (3.42)

ν2
k =

K$2(ϕ2 + x̄2)(∑M
m=1

√
Em

)2σ
2, ∀k. (3.43)

Observe that when Em is the same across the senders, the bias term Et[εt] = 0 in the

above setting according to (3.42).
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3.5.3 A User-centric Approach Using Single-User Solution (Scheme 3)

In this section, we consider a suboptimal user-centric approach, which provides

insight on the power allocation across the subcarriers from a single device perspective.

We formulate the single device (say user m) problem as

P2: min
{bkm},{αk}

K∑
k=1

[(
αkbkmhkm − 1

)
xkm

]2

+ σ2

K∑
k=1

α2
k

s.t.
K∑
k=1

|bkmxkm|2 ≤ Em; bk ≥ 0, αk ≥ 0, ∀k.

Theorem 2. The optimal solution {b∗km, α∗k} to P2 is given by:

(b∗km)2 =

[√
σ2

λx2
kmh

2
km

− σ2

h2
kmx

2
km

]+

, ∀k, (3.44)

α∗k =
b∗kmhkmx

2
k

σ2 + (b∗km)2h2
kmx

2
km

, ∀k, (3.45)

where λm is a key parameter determining the waterfilling level:

K∑
k=1

[√
1

λm

√
x2
kmσ

2

h2
km

− σ2

h2
km

]+

= Em. (3.46)

Proof. Note that there are no terms with bk in P2, all in terms of b2
k. By defining the

auxiliary variables b̃k = b2
k, h̃k = h2

k/σ
2 and x̃k = 1/x2

k, we re-formulate P2 as:

P2-1: min
b̃

K∑
k=1

(b̃kh̃k + x̃k)
−1

s.t.
K∑
k=1

b̃k
x̃k
≤ E

b̃k ≥ 0, ∀k

(3.47)

which is a convex problem and can be solved in a closed form. Lagrangian function

can be formed as:

L22(b̃,λ,µ) =
K∑
k=1

(b̃kh̃k + x̃k)
−1 + λ(

b̃k
x̃k
− E)−

K∑
k=1

µkb̃k (3.48)
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leading to the KKT conditions:

∂L12(b̃,λ,µ)

∂b̃k
= −h̃k(b̃kh̃k + x̃k)

−2 +
λ

x̃k
− µk = 0, (3.49)

K∑
k=1

b̃∗k
x̃k
≤ E, b̃∗k ≥ 0, (3.50)

λ ≥ 0, µk ≥ 0, (3.51)

λ

(
E −

K∑
k=1

b̃∗k
x̃k

)
= 0, µkb̃

∗
k = 0. (3.52)

For µk=0, and λ > 0, it leads to the solution:

b̃∗k = max

{√ h̃kx̃k
λ
− x̃k

h̃k
, 0

}
=

[√ h̃kx̃k
λ
− x̃k

h̃k

]+

(3.53)

with E =
∑K

k=1

b̃∗k
x̃k

. By combining both equations, we obtain:

E =
K∑
k=1

[√
h̃kx̃kλ

′ − x̃k
h̃kx̃k

]+

(3.54)

for λ′ =
√

1/λ. It can be solved by a water-filling algorithm, where the solution can

be found by increasing λ′ until the equality is satisfied. After obtaining the optimal

λ′, it can be placed in b̃∗k and we can take b∗k =
√
b̃∗k as a solution to P2.

Observe that Theorem 2 reveals that the larger the gradient value (and the smaller

channel gain) in one subcarrier, the higher power the it should be allocated to in

general, and that {xkm/hkm)} can be used to compute the water level for applying

the water filling policy.

Based on the above result, in the multi-user setting, each device can adopt the

above single-user power allocation solution as given in Theorem 2. This solution can

be applied individually without requiring any coordination between devices.

Next, we take a closer look at the case when the number of subchannels K is large.

Let Ēm denote the average power constraint per subcarrier. When K is large, after
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some algebra, the optimization problem P2 can be further approximated as follows:

P3: min
bkm

E
[

x2
kmσ

2

b2
kmh

2
kmx

2
km + σ2

]
s.t. E

[
b2
kmx

2
km

]
≤ Ēm, bkm ≥ 0, (3.55)

where the expectation is taken with respect to {hkm} and {xkm}. The solution for

k = 1, . . . , K is obtained as follows:

b∗km =

√[
σ|xkm|−1

hkm
√
λm
− σ2

x2
kmh

2
km

]+

(3.56)

λm <
h2
kmx

2
km

σ2
k

⇒ b∗km > 0 (3.57)

We can compute the bias and the variance accordingly.

3.6 Coordinate Selection for Bandlimited Coordinate Descent Algorithms

The selection of which coordinates to operate on is crucial to the performance of

sparsified SGD algorithms. It is not hard to see that selecting the top-k (in abso-

lute value) coordinates of the sum of the gradients provides the best performance.

However, in practice it may not always be feasible to obtain top-k of the sum of the

gradients, and in fact there are different solutions for selecting k dimensions with

large absolute values; see e.g., [11, 71]. Note that each device individually trans-

mitting top-k coordinates of their local gradients is not applicable to the scenario of

over-the-air communications considered here. Sequential device-to-device transmis-

sions provides an alternative approach [115], but these techniques are likely to require

more bandwidth with wireless connection.

Another approach that is considered is the use of compression and/or sketching

for the gradients to be transmitted. For instance, in [11], a system that updates SGD

via decompressing the compressed gradients transmitted through over-the-air com-

munication is examined. To the best of our knowledge, such techniques do not come
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with rigorous convergence guarantees. A similar approach is taken in [71], where

the sketched gradients are transmitted through an error-free medium and these are

then used to obtain top-k coordinates; the devices next simply transmit the selected

coordinates. Although such an approach can be taken with over-the-air computing

since only the summation of the sketched gradients is necessary; this requires the

transmission of O(k log d) dimensions. To provide guarantees with such an approach

O(k log d + k) up-link transmissions are needed. Alternatively, uniformly selected

O(k log d + k) coordinates can be transmitted with similar bandwidth and energy

requirements. For the practical learning models with non-sparse updates, uniform

coordinate selection tend to perform better. Moreover, the common K dimensions

can be selected uniformly via synchronized pseudo-random number generators with-

out any information transfer. To summarize, uniform selection of the coordinates is

more attractive based on the energy, bandwidth and implementation considerations

compared to the methods aiming to recover top-k coordinates; indeed, this is the

approach we adopt.

3.7 Experimental Results

In this section, we evaluate the accuracy and convergence performance of the

BLCD algorithm, when using one of the following three schemes for power allocation

and learning rate selection (aiming to minimize the impact of communication error):

1) Scheme 1: the bi-convex program based solution, 2) Scheme 2: the distributed

solution towards zero bias in Section 3.5; 3) Scheme 3: the single-user solution. We

use the communication error free scheme as the baseline to evaluate the performance

degradation. We also consider the naive scheme (Scheme 4) using equal power allo-

cation for all dimensions, i.e., bkm =
√
E/
∑K

k=1 x
2
km.

In our first experiment, we consider a simple single layer neural network trained
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Figure 3.4: Testing Accuracy over Training Iterations for αk = 1/8, Eavg = 0.1 and
a Batch Size of 4. Training Model Consists of a Single Layer Neural Network with
7840 Differentiable Parameters.

on the MNIST dataset. The network has 7840 parameters. K = 64 dimensions are

uniformly selected as the support of the sparse gradient transmissions. For conve-

nience, we define Eavg as the average sum of the energy (of all devices) per dimension

normalized by the channel noise variance, i.e., Eavg = EM E[h2
km]/Kσ2. Without loss

of generality, we take the variance of the channel noise as σ2 = 1 and {hkm} are

independent and identically distributed Rayleigh random variables with mean 1. The

changes on Eavg simply amount to different SNR values. In Table 3.1 and Figure 3.4,

we take K = 64, M = 8, batch size 4 to calculate each gradient, and the learning rate

γ = 0.01. In the second experiment, we expand the model to a more sophisticated

5-layer neural network with 61706 parameters. We use 10 workers with varying batch

sizes and we utilize K = 1024 sub-channels for sparse gradient signal transmission.

It can be seen from Figure 3.4 that in the presence of the communication er-

ror, the centralized solution (Scheme 1) based on bi-convex programming converges

quickly and performs the best, and it can achieve accuracy close to the ideal error-free
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Table 3.1: Training Accuracy (%) of the Standard Update Against Eavg

Eavg Equal-Power Distributed Bi-Convex Communication-error Free

0.01 83.19 82.42 89.07 91.52

0.05 85.13 86.45 90.25 91.52

0.1 88.24 90.03 90.67 91.52

0.5 89.87 90.42 91.02 91.52

1 89.90 90.85 91.14 91.52

10 90.05 91.10 91.20 91.52

scenario. Further, the distributed solution (Scheme 2) can eventually approach the

performance of Scheme 1, but the single-user solution (Scheme 3) performs poorly,

so does the naive scheme using equal power allocation (Scheme 4). Clearly, there

exists significant gap between its resulting accuracy and that in the error-free case,

and this is because the bias in Scheme 3 is more significantly. Table 3.1 summarizes

the accuracy after the complete training in the first experiment.

Next, Figures 3.5 and 3.6 and Table 3.2 depict the results in the second experiment

using a much larger-scale deep neural network. It can be observed from Figures 3.5

and 3.6 that the SNR can have significant impact of the final accuracy. It is interesting

to observe that when the SNR grows, the distributed solution (Scheme 2) can achieve

accuracy close to the ideal error-free case, but the single-user solution (Scheme 4)

would not. It is worth noting that due to the computational complexity of bi-convex

programming in this large-scale case, Scheme 4 could be solved effectively (we did not

present it here). Further, the batch size at each worker can impact the convergence

rate, but does not impact the final accuracy.
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Figure 3.5: Testing Accuracy over Training Iterations for 10 Workers and a Batch
Size of 256. Training Model Consists of a 5-layer Deep Neural Network with 61706
Differentiable Parameters.

Figure 3.6: Testing Accuracy over Training Iterations for 10 Workers and a Batch
Size of 4. Training Model Consists of a 5-layer Deep Neural Network with 61706
Differentiable Parameters.

3.8 Conclusions

In this chapter, we consider a many-to-one wireless architecture for distributed

learning at the network edge, where multiple edge devices collaboratively train a ma-
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Table 3.2: Final Training Accuracy (%) of the Standard Update Against Eavg for a
Batch Size of 256.

Eavg 0.01 0.05 0.1 1

Distributed Soln. (Scheme 2) 90.47 95.23 96.40 96.42

Communication Error-free 96.49 96.49 96.49 96.49

chine learning model, using local data, through a wireless channel. Observing the

unreliable nature of wireless connectivity, we design an integrated communication

and learning scheme, where the local updates at edge devices are carefully crafted

and compressed to match the wireless communication resources available. Specifi-

cally, we propose SGD-based bandlimited coordinate descent algorithms employing

over-the-air computing, in which a subset of k-coordinates of the gradient updates

across edge devices are selected by the receiver in each iteration and then transmit-

ted simultaneously over k sub-carriers. We analyze the convergence of the algorithms

proposed, and characterize the effect of the communication error. Further, we chap-

ter joint optimization of power allocation and learning rates therein to maximize the

convergence rate. Our findings reveal that optimal power allocation across different

sub-carriers should take into account both the gradient values and channel conditions.

We then develop sub-optimal solutions amenable to implementation and verify our

findings through numerical experiments.

3.9 Appendix

3.9.1 Derivation of Equation 3.32

Proof. Since P1-a is convex, the Lagrangian function is given as:

L1a(α,λ) = MSE1(b,α) +
K∑
k=1

λkαk (3.58)
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Then, the Karush-Kuhn-Tucker (KKT) conditions are given as follows:

∂L1a(α,λ)

∂αk
= 2

( M∑
m=1

bkmhkmxkm

)( M∑
m=1

(
αkbkmhkm −

1

M

)
xkm

)
+ 2σ2αk + λk = 0

λk ≥ 0, λkα
∗
k = 0, α∗k ≥ 0. (3.59)

It follows that: α∗k = max

{(∑M
m=1 xkm

)(∑M
m=1 bkmhkmxkm

)
M
[
σ2 +

(∑M
m=1 bkmhkmxkm

)2] , 0

}
, (3.60)

which completes the derivation.

3.9.2 An Equal Power Allocation Approach

For comparison, we also consider equal power allocation to each dimension, in

other words, we set bm = bkm. Satisfying the power constraint of the devices, the

equal power solution can be written by bm =
√
E/
∑K

k=1 x
2
km. Therefore, each device

applies bm in each dimension, taking the advantage of the distribution of the data

which is independent and identical.

3.9.3 Decomposable Optimization for Recovering Gradients in Over-the-Air

Communication

The over-the-air approach adopted in this chapter dictates the development of

a more comprehensive estimator design. To this end, a generalized optimization

problem is defined for obtaining the optimal estimator for convergence of SGD al-

gorithm. As a first step towards this optimization problem, we define the mean

squared-error (MSE) cost of the communication cost εt in terms of the received signal
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y = [y1, y2, . . . , yK ] as:

E[(Ĝ−G)2] = E[(α� y −G)2] =
1

K

K∑
k=1

[
αk

(
M∑
m=1

bkmhkmxkm + nk

)
−Gk

]2

=
1

K

K∑
k=1

(
E

[
αk

(
M∑
m=1

bkmhkmxkm + nk

)]
− E

[
1

M

M∑
m=1

xkm

])
︸ ︷︷ ︸

ek

2

+ E

(αk( M∑
m=1

bkmhkmxkm + nk

)
− E

[
αk

(
M∑
m=1

bkmhkmxkm + nk

)])2


︸ ︷︷ ︸
ν2k

, (3.61)

where the estimator is selected as αk

(∑M
m=1 bkmhkmxkm + nk

)
for k = 1, 2, . . . , K,

in which αk, bkm, hkm and nk denote a correction factor at receiver to recover the kth

dimension of true gradient, power allocation factor at transmitter m for dimension k

of local gradient xkm for equalizing channel fading, the fading at the kth sub-channel

between mth transmitter and receiver, and the thermal additive noise at the receiver

for sub-channel k, respectively. In (3.61), ν2
k and ek denote the estimator variance

and estimator bias, respectively. As apparent in (3.61), the minimization of MSE

cost does not ensure Ĝk to be an unbiased estimator of Gk since mitigating variance

may attenuate the cost more. Consequently, we formulate the unbiased optimization

problem as follows:

argmin
{αk},{bkm}

K∑
k=1

ν2
k(αk, {bkm})

s.t. ek(αk, {bkm}) = 0,

K∑
k=1

b2
kmx

2
km ≤ Em, ∀m = 1, . . . ,M,

bkm ≥ 0, αk ≥ 0, ∀k = 1, . . . , K; ∀m = 1, . . . ,M, (3.62)

where Em denotes the power available to transmitter m. We here notice that hkm can

be obtained via CSI and Em, all {x1m, x2m, . . . , xKm} and {b1m, b2m, . . . , bKm} are only
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available to transmitter m and all αk are only available to receiver. On the other hand,

nk is not available to neither parties, and hence the distribution knowledge of nk is

available to both transmitters and receiver. Consequently, the optimization problem

defined in (3.61) should be decomposed into two stages. In the first stage, each

transmitter m utilizes its available power and local gradient information to compute

an optimal power allocation set {b1m, b2m, . . . , bKm}. In the second stage, the receiver

solves a consecutive optimization problem to find optimal αk for all k = 1, . . . , K.

Ideally, the proposed two-stage algorithm must obtain the same solution as to (3.62).

To this end, we formulate the optimization problem at each transmitter as follows:

argmax
{bkm}k=1:K

ζm

s.t. E
[
(ζmxkm − bkmhkmxkm)2] = 0,

K∑
k=1

b2
kmx

2
km ≤ Em, bkm ≥ 0, ∀k = 1, . . . , K. (3.63)

The first constraint in (3.63) ensures that there is no additive bias in the transmitted

signal (i.e., the bias can be removed by a multiplicative factor), while second con-

straint is the power constraint. The first constraint can be restated in a simpler form

as ζm = bkmhkm, and then the solution can simply be obtained using KKT conditions
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as follows:

Lagrangian: L({bkm}, {λk}, ϑ, {βk}) = ζm −
K∑
k=1

λk(bkmhkm − ζm)

− ϑ

(
K∑
k=1

b2
kmx

2
km − Em

)
+

K∑
k=1

βkbkm

Stationarity:
∂L
∂bkm

= 0− λkhkm − 2ϑx2
kmbkm + βk = 0→ bkm =

βk − λkhkm
2ϑx2

km

Primal Feasibility: bkmhkm = ζm,
K∑
k=1

b2
kmx

2
km ≤ Em, bkm ≥ 0, ∀k = 1 . . . , K,

Dual Feasibility: ϑ ≥ 0, βk ≥ 0, ∀k = 1, . . . , K,

Comp. Slackness: ϑ

(
K∑
k=1

b2
kmx

2
km − Em

)
= 0,

K∑
k=1

βkbkm = 0.

Then, the solution becomes:

ζ∗m =

√√√√ Em∑K
k=1

x2km
h2km

, b∗km =
ζm
hkm

, ∀k = 1, . . . , K. (3.64)

The analytical result computed in (3.64) illustrates that each transmitter utilizes all

of their available power to amplify their local gradient transmission. Clearly, each

transmitted signal is biased with a multiplicative factor ζ∗m. Yet, this bias can be

removed by multiplying with α in the receiver. However, the optimal α must be

obtained by solving an optimization problem since all biased transmitted gradient

signals are superimposed via the over-the-air transmission. Consequently, in the

second stage, the receiver solves the following optimization problem:

argmin
{αk},

K∑
k=1

ν2
k(αk, {b∗km})

s.t. ek(αk, {b∗km}) = 0, αk ≥ 0, ∀k = 1, . . . , K. (3.65)
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Subsequently, we derive ek(αk, {b∗km}) and ν2
k(αk, {b∗km}). For ease of exposition, cum-

bersome steps are omitted here:

ek(αk, {b∗km}) =E

[
αkyk −

1

M

M∑
m=1

xkm

]
=E

[
αk

(
M∑
m=1

hkmb
∗
kmxkm + nk

)
− 1

M

M∑
m=1

xkm

]

=αk

(
M∑
m=1

hkmb
∗
kmxkm

)
− 1

M

M∑
m=1

xkm=αk

(
M∑
m=1

ζ∗mxkm

)
− 1

M

M∑
m=1

xkm

ν2
k(αk, {b∗km})=E

(αk( M∑
m=1

hkmb
∗
kmxkm + nk

)
−E

[
αk

(
M∑
m=1

hkmb
∗
kmxkm + nk

)])2


=E

(αk( M∑
m=1

hkmb
∗
kmxkm − hkmb∗kmxkm + nk

))2
 = α2

kσ
2, (3.66)

where the expectation is taken with respect to nk for the given realizations of all xkm

and σ2 = E[n2
k]. By similarly applying KKT conditions and solving them, we obtain

the following solution:

α∗k =
1
M

∑M
m=1 xkm∑M

m=1 hkmb
∗
kmxkm

=
1
M

∑M
m=1 xkm∑M

m=1 ζ
∗
mxkm

. (3.67)

From the implementation pointview, since {xkm} is not available at the receiver, it

is sensible to set α†k ' 1∑M
m=1 ζ

∗
m

. We herein also notice that ζ∗m for all m = 1, . . . ,M

are not available at the receiver as well. Luckily, α†k is a function of
∑M

m=1 ζ
∗
m, and

hence a subchannel could be allocated for over-the-air transmission of
∑M

m=1 ζ
∗
m. Sub-

sequently, it follows that the bias is:

ek(α
∗
k, {b∗km}) = E

[
1∑M

m=1 ζ
∗
m

yk −
1

M

M∑
m=1

xkm

]

= E

[
1∑M

m=1 ζ
∗
m

(
M∑
m=1

hkmb
∗
kmxkm + nk

)
− 1

M

M∑
m=1

xkm

]

= E

[
1∑M

m=1 ζ
∗
m

(
M∑
m=1

ζ∗mxkm + nk

)
− 1

M

M∑
m=1

xkm

]

= E

[∑M
m=1 ζ

∗
mxkm + nk∑M
m=1 ζ

∗
m

− 1

M

M∑
m=1

xkm

]
, (3.68)
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Assuming that the distributions of {xkm} for all k = 1, . . . , K;m = 1, . . . ,M are

identical across subchannels and users, and so are {hkm}, ζ∗m can be simplified. For

ease of exposition, we denote E[x2
km] = ϕ2 + x̄2 and E

[
1

h2km

]
= $2. When the number

of subchannels K is large, we have that:

ζ∗m =

√
Em√∑K
k=1

x2km
h2km

=⇒
when K is large

ζ∗m =

√
Em√

KE[x2
km]E

[
1

h2km

] =

√
Em√

K(ϕ2 + x̄2)$2
(3.69)

ek(α
∗
k, {b∗km}) = E

[∑M
m=1 ζ

∗
mxkm + nk∑M
m=1 ζ

∗
m

− 1

M

M∑
m=1

xkm

]

=
M∑
m=1

[ √
Em∑M

m=1

√
Em
− 1

M

]
xkm. (3.70)

Et[εt]k in Theorem 1 is expressed as ‖Et[εt]‖2
2 =

∑K
k=1 Et[εt]2k =

∑K
k=1 e

2
k. The variance

ν2
k then can be computed as:

ν2
k (α∗k, {b∗km}) = α∗k

2σ2 =

 1∑M
m=1

√
Em

K$(ϕ2+x̄2)

2

σ2 =
K$2(ϕ2 + x̄2)(∑M

m=1

√
Em

)2σ
2. (3.71)

Finally, the MSE cost in Theorem 1 can be written as Et[‖εt‖2
2] =

∑K
k=1(ν2

k + e2
k).

3.9.4 Alternative Formulation to P2 (P3)

WhenK is large, channel coefficients {hkm} and local gradients {xkm} are indepen-

dent and identically distributed (i.i.d.) across users and subchannels, the optimization

problem P2-1 can be further simplified by using law of large numbers:

P2-2: min
b̃

E
[

1

b̃kmh̃km + x̃km

]
s.t. E[b̃km/x̃km] ≤ Ēm,

b̃km ≥ 0. (3.72)

We here notice that general law of large numbers only applies if all b̃km are identically

distributed. By further noting that b̃km will depend on x̃km and h̃km, we can conclude
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that each objective term in (3.72) is identically distributed. Then, (3.72) simplifies

as:

P3: min
b̃km

E
[

1

b̃kmh̃km + x̃km

]
s.t. E

[
b̃km
x̃km

]
≤ Ēm,

b̃km ≥ 0. (3.73)

Subsequently, KKT conditions can be written as:

Lagrangian: L = E
[

1

b̃kmh̃km + x̃km

]
+ λm

(
E

[
b̃km
x̃km

]
− Ēm

)
− βb̃km (3.74)

Stationarity:
∂L
∂b̃km

= E

[
λm
x̃km
− h̃km

(b̃kmh̃km + x̃km)2

]
= 0 (3.75)

⇐ λ∗m
x̃km

=
h̃km

(b̃kmh̃km + x̃km)2
(3.76)

Primal Feasibility: E

[
b̃km
x̃km

]
≤ Ēm, b̃km ≥ 0, (3.77)

Dual Feasibility: λm ≥ 0, β ≥ 0, (3.78)

Comp. Slackness: λm

(
E

[
b̃km
x̃km

]
− Ēm

)
= 0, −βb̃km = 0. (3.79)
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Finally, the solution is obtained as follows:

b̃km =

[√
x̃km

λ∗mh̃km
− x̃km

h̃km

]+

⇒ bkm =

√√√√[ σ

hkm|xkm|
√
λ∗m
− σ2

x2
kmh

2
km

]+

λ∗m <
h̃km
x̃km
⇒ b̃km > 0 and λ∗m <

h2
kmx

2
km

σ2
⇒ bkm > 0 (3.80)

E

[
b̃km
x̃km

]
=

∫ ∞
0

∫ ∞
0

b̃km
x̃km

p(h̃km)p(x̃km)dh̃kmdx̃km

=

∫ ∞
0

∫ λmx̃km

0

(√
1

λ∗mh̃kmx̃km
− 1

h̃km

)
p(h̃km)p(x̃km)dh̃kmdx̃km = Ēm

E
[
b2
kmx

2
km

]
=

∫ ∞
−∞

∫ ∞
0

[
σ

hkm|xkm|
√
λ∗m
− σ2

x2
kmh

2
km

]+

x2
kmp(hkm)p(xkm)dhkmdxkm

=

∫ ∞
−∞

∫ ∞√
σ2λ∗m
x2
km

(
|xkm|σ
hkm

√
λ∗m
− σ2

h2
km

)
p(hkm)p(xkm)dhkmdxkm = Ēm.

The bias term, i.e., ek, then can be derived as follows:

ek(α
∗
k, {bkm}) =E [α∗kyk]−

1

M

M∑
m=1

xkm = E

[
M∑
m=1

(
α∗kbkmhkm −

1

M

)
xkm + α∗knk

]

=E

 M∑
m=1

 1

M

√√√√[ σ

|xkm|hkm
√
λ∗m
− σ2

x2
kmh

2
km

]+

hkm −
1

M

xkm +
nk
M


=

1

M

∑
m∈S†

(√
σhkm

|xkm|
√
λ∗m
− σ2

x2
km

− 1

)
xkm, (3.81)

where S† represents the set of transmitters for which (3.80) is satisfied. The MSE

cost can then be computed by first computing the variance ν2(α∗k, {bkm}):

ν2
k(α∗k, {bkm}) = E

( M∑
m=1

α∗kbkmhkmxkm + α∗knk − E

[
M∑
m=1

α∗kbkmhkmxkm

])2


=E


M∑
m=1

1

M


√√√√[ σhkm

|xkm|
√
λ∗m
− σ2

x2
km

]+

xkm−

√√√√[ σhkm

|xkm|
√
λ∗m
− σ2

x2
km

]+

xkm

+
nk
M


2

=
σ2

M2
, (3.82)
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where the expectation is taken with respect to xkm. Subsequently, the MSE cost

Et [‖εt‖2
2] is computed as Et[‖εt‖2

2] =
∑K

k=1(e2
k + ν2

k).
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Chapter 4

OPTIMIZING ELECTRIC VEHICLE CHARGING: FEDERATED LEARNING

BASED DEMAND RESHAPING OF ELECTRIC VEHICLES

4.1 Introduction

The number of electric vehicles (EVs) had grown exponentially in the last decade

[68, 72]. Though EVs are efficient in power consumption, the physical constraints on

the battery and charging technologies have limited EVs to travel shorter distances

in comparison to their fuel-using counterparts. Clearly, a denser construction of EV

charging stations is necessary for hassle-free driving experience of EVs. Further, the

predicted vast number of EVs in near future will also constitute further challenges

for the power grid. To name a few challenges, the waiting time in EV charging and

the overload of power grid during peak hours every day may lead to power shortages

and a significant decrease in the quality of service for EV users.

From the perspective of EV users, EV charging is a time consuming procedure.

A typical level 2 charger can charge for 15-25 miles of range in an hour, while a DC

charger can charge for a range of 70 miles in an hour [76, 26]. Given that direct

current (DC) charging stations are quite limited to metropolitan areas and to specific

EV models, EV users may experience latency for charging their vehicles. To mitigate

the latency, charging stations often deploy multiple charging ports. However, then the

total charging capacity must be split across simultaneously charging EVs, extending

the charging duration [64]. Since time is often the most valuable consideration for

drivers, charging duration emerges to be one most significant obstacle against the

widespread of EVs. Therefore, improvements on charging technology and efficient
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techniques for reshaping EV charging demand are needed.

On contrary to EV users, charging stations are profit-focused entities. The current

pricing policies neither enforce a restricted scheduling of EV charging nor adopt incen-

tive based pricing. Fixed pricing schemes might be attractive for both EV users and

EV charging stations in the absence of charging queues, but in the presence of high

number of charging requests, it leads to congestion. Planning EV charging ahead

of time may increase the quality of service in the presence of congestion [153, 95].

However, forcing EV users to a strict charging schedule is not a plausible solution in

comparison the flexibility of internal combustion engine (ICE) vehicles.

A plausible solution is to incentivize EV users with discounted charging prices

to offload charging congestion during peak hours [144, 105]. In this study, charging

stations announce incentivized charging prices based on the prediction of EV arrivals.

Clearly, charging stations need to take into account the dynamic electricity prices and

the availability of power in the grid as well, while maximizing their rewards. A good

incentive mechanism clearly can even out the EV charging demand and increase the

EV user satisfaction. Consequently, the profitability of the EV charging stations and

the safety of the power grid are improved in the long term.

In light of the negative effects of EV charging congestion on waiting time and the

stability of power grid, we devise an incentive based demand reshaping framework,

consisting of a federation of charging stations and EV users. Each EV user possesses

private information such as the distance to every charging station and the importance

of charging price and charging duration. Each EV user selects a charging station and

a time-frame to charge her/his EV based on her/his private information, the incen-

tivized prices and the average charging duration. The maximized reward constitutes

less charging duration, lower price and closer charging station (Figure 4.1).

EV users’ charging station choices translates to EV arrivals for charging stations.

118



Reshaping Policy

Charging Sta�onsEV Charging Queue Electricity Market

Genera�on

Demand

Figure 4.1: The Illustration of Demand Reshaping of EV Charging: Charging Sta-
tions May Incentivize EV Users to Request Charging at a Different Charging Station
and at a Different Time Instant for Preventing Congestion.

The federation of charging stations target to maximize their reward by reshaping

charging demand. To this end, charging stations must solve an optimization problem

that is a function of charging prices. The optimization problem is affected by the

power grid generation, demand, electricity price and quality of service as well as the

EV users’ private information.

The optimal charging prices are a function of EV users’ charging station choices

that depend on EV users’ private information. Unfortunately, EV users’ private

information are not available to charging stations. On the bright side, the ease of

access to EV charging data in charging stations enables the modelling of charging

demand. This chapter leverages a learning approach to characterize the relationship

between charging prices and EV arrivals. On contrary to the recent reinforcement
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learning based studies, the proposed technique only leverages offline data to train

a deep neural network (DNN) [137, 88, 102]. This framework allows the numerical

computation of optimal charging prices and is computationally much less demanding

than deploying reinforcement learning.

The main contributions of this chapter are summarized as follows.

• Synthetic Data Generation: Despite ever-growing popularity of EVs, datasets

encompassing the relationship between charging prices and EV arrivals are not

easy to obtain because of the current fixed pricing policies for EV charging.

To this end, this chapter designs a synthetic dataset generation platform that

fuses different aspects of distinct real-world datasets. Specifically, Colorado

EV Charging Database [47] and Adaptive Charging Network Database (ACN-

Data) [84] are leveraged to generate distinct EV user types and charging related

parameters.

• Prospect Theory-based EV User Behaviour: Utility maximization is often lever-

aged in literature to model human-based decision-making problems. Yet, the

utility maximization approach relies on the strong assumption of rational users

and assumes that each user targets to maximize her/his expected utility [145,

18]. The seminal work [129] showed that human behaviour rarely follows the

rules as described in utility maximization framework. Prospect theory can re-

alistically model human decision-making under uncertainty conditions. Since

EV user behaviour is crucial in determining charging demand, prospect theory

is utilized in this chapter, inspired by the recent studies [106, 67].

• Learning-aided Optimization of Demand Reshaping Policy: An optimization

problem is constructed for computing the optimal demand reshaping policy

that is a function of the optimal charging prices. Since the relationship between
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charging prices and EV arrivals is not known, a learning model is trained in place

of the analytical model. Subsequently, the optimization problem is numerically

solved via a gradient decent algorithm, which can back-propagate through the

fixed DNN layers.

• Federated Learning for Dispersed EV Data: Instead of collecting all EV charging

data in one edge server, the global learning model is directly trained using the

local gradients from each charging station in federated manner. This approach

mitigates the communication cost and proves to be as accurate as centralized

training approach.

The remainder of the chapter is organized as follows. In Section 4.2, the literature

review is presented. Section 4.3 illustrates the demand reshaping of EV charging

and Section 4.4 presents a federated learning framework for the solution of profit

maximization. Finally, Section 4.5 and 4.6 demonstrate the experimental results and

provide discussions.

4.2 Related Work

Though EVs are more efficient than their internal combustion engine using coun-

terparts, their reputation suffers from long charging duration. Given that EV charg-

ing may take more than an hour, it is natural to consider the congestion scenarios,

where a charging station could be congested by EV charging demands. To mitigate

these catastrophic scenarios, many papers studied the assignment of EVs to charging

stations ahead of time. [144] proposes a scheduling algorithm for maximizing the

charging station profit. The scheduling algorithm optimizes pricing, scheduling and

admission control. To achieve these goals, [144] assumes that the utility functions

of EV users are homogeneous and are known by the charging station. In [165], EV
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charging planning problem is solved for an EV fleet. The objectives included the

placement of charging stations and hourly assignment of EVs. [28] explored and an-

alyzed the applicability of queuing models in EV charging scheduling problems. In a

more practical study, [27] analyzed EV charging congestion in Beijing based on the

real-world data collected through taxis. Even though these studies presented deep

insights and theoretical results, their success in real-world EV charging scenarios is

at best questionable because of the underlying assumptions.

One essential information the analytical studies require is the availability of the

EV users’ private information, which makes it possible to analytically model their

charging station choices given charging prices. To alleviate the problems arising from

the lack of EV user information, some studies proposed the utilization of the data

that are collectable at charging stations [51, 164, 154]. These studies utilized the

underlying statistics to deduce EV user responses to different charging prices. Along

a different line, more accurate techniques are also available to model human decision-

making. Prospect theory is shown to accurately model human decision-making under

uncertainty conditions. [106] leveraged the value and probability weight functions

defined in [129] to model EV users’ charging mode decisions. [67] uses prospect

theory to predict when EV users charge their vehicles. Both studies corroborate

more accurate predictions of their prospect theory based models in comparison to

expected utility based counterparts.

The lack of accurate analytical models and the availability of huge amounts of EV

charging data dictates the use of data-based approaches in computation of demand

reshaping policies. To this end, reinforcement learning based techniques proved to be

successful in solving difficult EV charging problems [114, 143, 137, 88, 102]. In [137]

and [143], the real-time charging prices are modeled with a Markov Decision Process

(MDP) with unknown transition probabilities. A model-free reinforcement learning
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approach is subsequently employed to determine the optimal strategy. [88] took this

approach one-step further by adopting a constrained MDP to model EV arrivals. The

resulting constrained MDP problem was solved using safe deep reinforcement learning.

Along a similar line, [102] proposed the addition of the effect of smart grid to the cost

of charging into the MDP problem. Despite huge success of reinforcement learning

based techniques, a computationally efficient federated learning-based approach is

adopted in this chapter.

4.3 Overview of Demand Reshaping of EV Charging

Charging is one of the biggest obstacles in the proliferation of EVs because of its

long duration in comparison to its gasoline based competitors. Though the lack of EV

charging infrastructure is tolerated by the small number of EVs in the traffic today,

the number of EVs in the traffic grows every day. Smart allocation of EVs to limited

number of charging stations may play a significant role in mitigating infrastructure

costs and EV users’ frustration in long queues at charging stations.

This chapter proposes a federated learning based framework for intelligent man-

agement of EV charging encompassing a federation of charging stations and selfish

EV users. Charging stations share a common objective and target to maximize their

profit whereas EV users selfishly aims to minimize their costs.

4.3.1 Overview of the Demand Reshaping Framework

We consider a federation of S charging stations S = {1, 2, . . . , S} spread across

an area A. A charging station s encompasses a set of private parameters regarding

the location gs, number of chargers ns, 24-hour ahead pricing xs(t) and hourly typical

waiting duration Ws(t). We further consider a set of E EV users E = {1, 2, . . . , E}

spread across the same area A. An EV user e possesses distinct private information
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Figure 4.2: The Overview of the Proposed Learning Based Framework for Traffic
Reshaping of EV Charging.

including her/his location `e and sensitivity to charging prices αxe , charging duration

αwe and distances to charging stations αde .

Charging stations share a joint cost function CS , which is a function of mone-

tary cost due to dynamic electricity price and electricity demand-generation balance,

revenue from EV charging and the quality of service due to waiting duration. Specif-

ically, the EV charging revenue and waiting cost directly depend on EV charging

demand, yet the prediction of these quantities requires the knowledge of EV users’

private utility functions. On contrast to previous studies assuming the availability of

EV users’ utility functions, a learning-based approach is adopted in this chapter.

Charging stations are allowed to collect charging information containing the charg-

ing duration and charging time, but cannot access the private EV user information.

Hence, charging stations cannot train distinct learning models for individual EV

users, but can learn a single model for the overall EV charging demand given charg-

ing prices. Since different charging stations serve to a mutually exclusive set of EVs at

a given hour, the EV charging data is spread across all charging stations and must be

transferred to a central edge server for training. However, this approach constitutes

high communication cost and further requires a large central data storage unit. To

overcome these challenges, we adopt a federated learning approach, in which local
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gradients are transmitted to a central node. Subsequently, learning model is updated

based on the collected local gradients.

As depicted in Figure 4.2, the objective of charging stations and the optimal

solution rely on the accuracy of the learned model. The impact of the charging prices

on cost function is two-fold: 1) the distribution and the amount of charging demand

depend on charging prices, 2) charging prices directly effect the charging stations’

revenue. Higher charging prices will decrease the charging demand and the revenue,

whereas lower charging prices will increase the demand and waiting duration, and

hence harm the quality of service. At optimal solution, high charging demand would

be allocated to different charging stations to ensure minimum waiting duration and

maximum revenue.

4.3.2 Modelling of EV Users’ Charging Station Choices

An EV user e ∈ E ’s decision to charge at any charging station s ∈ S at any time

instant t is determined by the solution of an expected value minimization problem, in

which the expected values are computed using a distinct and private value function.

The EV user e’s value function Ve is expressed in terms of its distance to any charging

station des, charging prices and waiting duration Ws(t):

Ve(s, t, i)=


−(y0(s, t)−y(s, t, i))θ

−
e, y(s, t, i)<y0(s, t)

λe(y(s, t, i)−y0(s, t))θ
+
e, y(s, t, i)≥y0(s, t)

(4.1)

where y(s, t) and y0(s, t) are given as:

y(s, t, i) =αweWs(t, i) + αxe

∫ t+Ws(t,i)+De

t+Ws(t,i)

xs(τ)dτ + αdedes (4.2)

y0(s, t) =αwe β
w
e + αxeβ

x
eDe + αdeβ

d
e (4.3)

In (4.1), the value function Ve(s, t) is concave when y > y0 and convex otherwise. This

characterizes the risk-averse behaviour in cases of potential gains and risk-seeking
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behaviour in cases of potential losses. Observations in [129] suggest that human-

beings are more risk-taking in cases of potential losses than in cases of potential

gains, i.e., the private risk-taking parameter is selected as λe > 2. θ−e and θ+
e are

user specific constants determining the convexity and concavity of the value function

(See Figure 1 in [129]). In (4.2), the charging duration Ws is a random process and

Ws(t, i) denotes the ith outcome of Ws at time instant t. De represents the charging

duration that EV user planned and des is the distance between EV e and charging

station s. In prospect theory, y0(s, t) is referred to as a reference point. EV users

tend to be risk-seeking above y0(s, t) and risk-averse below y0(s, t). Each EV user is

assigned a different reference point for different parameters. βwe , βxe and βde denote the

private reference points for charging duration, charging price and distance to charging

stations, respectively.

Prospect theory further proposes that probabilities are non-linearly interpreted

by humans, e.g., a probability of 0.01 is perceived as much more than 0.01 whereas

a probability of 0.99 is perceived as much less than 0.99 (See Figure 3 in [129]).

Therefore, each EV user is assigned with a probability weighting function in the

form:

πe(p) =
pδe

(pδe + (1− p)δe)1/δe
(4.4)

where δe is a private parameter. Then, the expected cost induced on e by visiting s

at time instant t is written as:

Ce(s, t)=

∫
πe(p(i))

(
Ve(s, t, i)+

∫ t+Ws(t,i)+De

t

he(τ)dτ

)
di (4.5)

where p denotes the probability density function (pdf) of Ws(t) and he(t) denotes the

cost associated with willingness of EV user e to visit s at time t, e.g., an EV user

might be less willing to charge her/his car at midnight.

126



We here note that the EV user specific incentives can further increase the flexibility

to reshape EV arrivals, but would lead to a computationally exorbitant scheduling

problem on the charging station side due to the curse of dimensionality. Based on

(4.5), the objective of an EV user can be stated as:

{s∗e, t∗e} = argmin
s∈S,t∈T

Ce(s, t) (4.6)

where T denotes the continuous set of a future time-frame, e.g., next 24 hours. The

optimization problem (4.6) is both analytically and computationally difficult because

of the discrete variables s and since t appears in the limits of an integral without a

closed-form solution. We here notice that these integrals could have been solved in

closed form if the expressions Ws(t, i) and xs(t) were analytically known. However,

Ws(t, i) also depends on the intrinsic values associated with all EV users and it is

assumed to be global across EV users. This assumption is fair considering that the

distribution of waiting duration can be announced online by charging stations. For

instance, the popular visit times to many locations can easily be found by a simple

online search. To this end, we assume EV users share the same waiting duration in-

formation of each charging station and maximize their reward accordingly. Secondly,

xs(t) is announced by every charging station, and hence cannot be enforced to be in

a specific function form. Therefore, we focus on the computational solution of (4.6)

in this chapter.

For computationally solving (4.6), we first discretize the optimization problem as:

{s∗e, t∗e} = argmin
s∈S,t∈T

Ce[s, t] = argmin
s∈S,t∈T

∑
i∈I

πe(pi)

Ve[s, t, i]+t+Ws[t,i]+De∑
τ=t

he[τ ]

 (4.7)

where we discretize Ve[s, t, i] as:

Ve[s, t, i]=


−(y0(s, t)−y[s, t, i])θ

−
e, y[s, t, i]<y0(s, t)

λe(y[s, t, i]−y0(s, t))θ
+
e, y[s, t, i]≥y0(s, t)

(4.8)
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y[s, t, i] is computed as:

y[s, t, i] = αweWs[t, i] + αxe

t+Ws[t,i]+De∑
τ=t+Ws[t,i]

xs[τ ] + αdedes (4.9)

We here notice that (4.7) converges to (4.6) when the duration between each discrete

sample and the distance between each outcome of Ws(t) goes to 0. We consider T to

be a discrete set of time instants spanning 24 hours:

T = {0,∆t, 2∆t, . . . , T}, (4.10)

where T denotes the time instant 23 : 59 : 59, which is 24× 60× 60− 1 seconds when

0 second is taken as origin. Similarly, Ws[t] is the set of discrete outcomes of random

variable Ws(t):

Ws[t] = {0,∆ωs[t], 2∆ωs[t], . . . ,Ωs[t]}. (4.11)

xs[t] and Ws[t] can then be defined on T. However, it is more realistic to define xs[t]

and Ws[t] on T24, which is given as T24 = {0, 1, 2, . . . , 23}, since having EV charging

pricing in a finer scale is not user-friendly.

We here recall that Ws[t, i] is not an optimization variable, but rather is a realiza-

tion of a random variable. On contrary, xs[t] is an optimization variable for charging

stations and is announced to EV users ahead of time. Consequently, xs[t] and Ws[t, i]

do not necessarily follow a functional structure, e.g., Ws[t, i] and xs[t] are not mono-

tone increasing or decreasing. Therefore, each EV user performs an exhaustive search

on T for solving (4.7).

4.3.3 Modelling of Charging Station Policies

The objective of charging stations is to maximize their profit by controlling the

charging prices. Since charging prices are announced ahead of time, EV users will
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decide which charging station to choose, and hence may constitute congestion in par-

ticular charging stations. To this end, charging stations must optimize their charging

prices to reshape the demand and to maximize their revenue from charging EVs:

C({xs[t]}) =
T∑
t=0

S∑
s=1

(γs[t]− xs[t]) min{ast({xs[t]}), ns}

+
T∑
t=0

S∑
s=1

(
(ns −modns(rs[t]))(e

k0 − 1)

+

bast+modns (rs[t])/nsc+k0∑
k=k0

min{ast({xs[t]}) + modns(rs[t])− nsk, ns}(ek+1 − 1)

)

+
T∑
t=0

S∑
s=1

exp (xs[t]− ζ). (4.12)

where ast is used in place of as[t] for notation simplicity. In (4.12), γs[t] denotes

the market electricity price and {as[t]} are the estimated arrivals for the announced

charging prices {xs[t]} of all charging stations. ζ and the last term in (4.12) represent

mean market charging price and the loss due to decrease in EV arrivals because of

higher charging prices than the market average. Herein, discrete cost function is

constructed since we had to use discrete utility functions for EV users. Furthermore,

rs[t] represents the remainder of EVs waiting for charging from previous time instants

and k0 = brs[t]/nsc.

Arrivals to all charging stations as[t] can be expressed in terms of EV users’

optimal solutions {s∗e, t∗e} as:

as[t] =
∑
e∈E

1{s∗e=s∧t∗e=t}, ∀s ∈ S,∀t ∈ T. (4.13)

Similarly, rs[t] is computed as:

rs[t] =
t−1∑
τ=1

as[τ ] + rs[τ ]−min{as[τ ] + rs[τ ], ns}. (4.14)

Clearly, (4.14) is a nested function, and hence it is challenging to compute a closed

form solution for the optimal incentivized charging prices {x∗s[t]}. Furthermore, com-
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puting the optimal solution via numerical methods will pose challenges when com-

puting the gradients. Consequently, a less challenging cost function is constructed by

simplifying the second term in (4.12) as:

C({xs[t]}) =
T∑
t=0

S∑
s=1

(γs[t]− xs[t])ast({xs[t]}) +
T∑
t=0

S∑
s=1

exp (ast({xs[t]})− ns)

+
T∑
t=0

S∑
s=1

exp (xs[t]− ζ). (4.15)

Then the objective of charging stations becomes to solve for the optimal charging

prices {x∗s[t]} simultaneously.

{x∗s[t]} = argmin
{xs[t]}

C({xs[t]}) (4.16)

which can be rewritten in vector format as:

x∗ = argmin
x

(
(γ − x)Ta(x)+1T exp (a(x)− n) + 1T exp (x− ζ)

)
, (4.17)

where x, γ, a and n are one-dimensional vector values and are given as:

x =[xT1 ,x
T
2 , . . . ,x

T
S ]T (4.18)

γ =[γT1 ,γ
T
2 , . . . ,γ

T
S ]T (4.19)

a =[aT1 , a
T
2 , . . . , a

T
S ]T (4.20)

n =[n01
T , n11

T , . . . , nS1T ]T (4.21)

ζ =[ζ1T , ζ1T , . . . , ζ1T ]T (4.22)

The first term in both (4.12) and (4.15), quantifies the profit by charging as[t] EVs.

We here notice that the first term is negative when charging stations profit and is

positive when charging stations are in loss. In (4.12), the number vehicles that can be

charged simultaneously is capped at ns, and hence a charging station cannot profit

from EVs in the queue. On the other hand, (4.15) does not cap the maximum number
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of simultaneously charging EVs for the sake of differentiability. In a similar manner,

(4.12) precisely computes the number of EVs waiting in the queue and can determine

the EV waiting cost with high accuracy whereas (4.15) omits the cap ns, but assigns

a higher cost for exceeding ns. Consequently, both cost functions attain their optimal

solutions when the computed pricing constitutes exactly ns number of EVs charging

simultaneously. This solution does not incur any EV waiting cost, but maximizes the

revenue assuming xs[t] > γs[t].

Clearly γs[t] varies for different charging stations and for different time instants,

which complicates the problem even further. The reason behind this construction is

the varying nature of the demand across different regions in cities. Depending on the

instantaneous power load, service providers may incentivize certain charging stations

in pursuit of more power load.

(4.15) possesses an important differentiability advantage over (4.12). Hence, we

can employ a gradient based numerical solver to solve for x if the relation between

a and x could be established. To this end, the optimal solution x∗ depends on a

and the optimal solutions to (4.7). Unfortunately, charging stations cannot compute

{s∗e, t∗e},∀e ∈ E as charging stations cannot access the private information of EV

users. To overcome this challenge, we propose a learning-based approach, in which

the mapping from charging prices x to EV arrivals a are learned from previous data.

Once this mapping is learned from data, the mapping can be utilized to predict the

EV arrivals for different selections of x. The next section provides the complete details

of the proposed framework and solution.

4.4 A Federated Learning Framework for Profit Maximization

In this section, we devise a learning framework for computing EV charging prices.

Since a subset of EV charging stations are often governed by a single company, we

131



assume the EV charging stations act collaboratively in this chapter. To this end, EV

charging stations can solve the optimization problems (4.7) and (4.16) collectively.

However, the former needs to be solved as a learning problem rather than a numerical

optimization problem. A careful investigation reveals that the input and output of the

learning problem are both of dimensions T × S. Since the dimensions of the learning

problem may increase significantly with the increase in charging station numbers, it

is desirable to split the learning problem into smaller learning problems. To this end,

we employ a federated learning approach.

4.4.1 Learning-based Modelling EV Arrivals

In order to solve (4.13) by using the available information to charging stations,

a deep neural network (DNN) can be trained using a dataset D containing (x, a)

pairs as data samples. Herein, the charging prices x and EV arrivals a serve as the

input and outputs to the learning model, respectively. The learning model can be

represented by ξ(x,µ), where ξ and µ denote the model and the trainable parameters,

respectively. Considering each entry in a single data sample (xl, al) ∈ R and the

objective is inference, mean-squared error (MSE) is selected as the cost function for

training. The model ξ can be trained to minimize the MSE between the mini-batches

of a and ξ(x,µ) as:

MSE(ξ(µ,x), a) =
1

M × L

M∑
m=1

L∑
l=1

(a
(m)
l − ξ(µ,x(m)

l ))2 (4.23)

where (.)
(k)
l denotes the kth sample of a mini-batch, L = ST and M is the batch size.

Clearly, the MSE cost is minimized when ξ(µ,x) = a for any batch of data samples.

To train ξ for obtaining optimal parameters µ, the stochastic gradient descent is

132



performed in recursion using the following set of update rules:

∇(j) =
∂MSE(ξ(µ(j),x), a)

∂µ(j)

(4.24)

µ(j+1) =µ(j) − κ∇(j) (4.25)

where κ and∇(j) denote the learning rate and the gradients at iteration j, respectively.

Clearly, it is necessary to collect all data samples at a central node to perform (4.24)

and (4.25). Unfortunately data samples are spread across different charging stations

and it would impose high communication and time cost on the network.

Alternatively, the model update can be performed in a federated manner. Each

charging station can compute a local gradient and transmit it to a central node, where

all local gradients are used to update the global learning parameters:

∇(j),s =
∂MSE(ξ(µ(j),x(s)), a(s))

∂µ(j)

, ∀s ∈ S (4.26)

µ(j+1) =µ(j) − κ
S∑
s=1

∇(j),s (4.27)

where x(s) and a(s) denote the data samples used in local charging station s. Af-

ter training the model parameters for many iterations, the final model can predict

EV arrivals at each charging station, a, for the given charging prices, x, with high

accuracy.

4.4.2 Data Collection and Synthetic Database Generation

The accuracy of the learning model ξ heavily depends on the quality of the quality

of the dataset used to train it. To this end, a simple data collection framework is

devised in this section.

The objective of the learning model is to learn the relationship between charging

prices and EV arrivals. Since data collecting needs to be cooperative, each charging

station takes turns to randomly set a price for any time instant and for all charging
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stations. Subsequently, the selected charging station broadcasts all the charging prices

for the next 24-hour. The next day, hour-by-hour EV arrivals are recorded at every

charging station and this data is stored at the corresponding charging station. Since

different charging stations take turns to set prices, different data samples are stored

in different charging stations.

Unfortunately, this data collection phase may take too long for the scale of days.

Therefore, we adopt a different strategy to test our framework. Two real datasets; 1)

Electric Vehicle Charging Station Data and 2) ACN-Data are utilized to generate a

synthetic dataset [47, 84].

Electric Vehicle Charging Station Data, contains the EV visit history across 24

different EV charging stations. The dataset includes the charging start, completion

and end times, dates and the price. However, EVs are not assigned IDs, and hence

it is not possible to track the charging record of each individual EV. On the other

hand, it provides the essential information regarding the EV charging demand across

different locations. Since the charging price is fixed across all charging stations and

time, Electric Vehicle Charging Station Data can be used to estimate the locations of

users. The second dataset, ACN-Data, consists of a single charging station in Caltech

University and provides the charging history of EVs in the vicinity of Caltech. ACN-

Data contains information regarding charging start, completion and end times as well

as the user IDs of each EV. Therefore, the user EV charging characteristics can be

extracted from ACN-Data.

The synthetic database is essentially the fusion of both databases. ACN-Data

possesses 410 different, identified EV users and their EV charging history for almost 3

years of duration. These 410 users are used to define 410 different EV user types. Each

owner type can be considered as a random variable with certain attributes, including

EV charging duration and EV charging dates. EV charging duration is represented
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by a random variable ρT and its probability density function is determined according

to the histogram of its history in ACN-Data. Similarly, EV charging dates is modeled

as a Bernoulli random variable, ρV , with the success probability of pv:

pv =
number of EV charging station visits in 3 years

365× 3
, (4.28)

where the information in nominator is obtained from ACN-Data.

Subsequently, charging station based statistics are also extracted from Electric

Vehicle Charging Station Data. In particular, the number of average visits for each

charging station and their locations are extracted as EV charging station attributes.

Along with the random variables generated using ACN-Data, the number of average

visits for each charging station and their locations are used to generate EV user

samples. Algorithm 5 illustrates the method used to generate the synthetic database.

First a Poisson random variable is created for each charging station with mean

value being equal to the number of average visits. Next, a sample ζ is drawn and

ζ many EV users are generated. Each EV user is randomly assigned to an EV user

type according to a discrete uniform distribution. To locate EV users, a Poisson Point

Process (PPP) approach is adopted. Each EV user is randomly placed within a disk

centered around the corresponding charging station. This process is repeated for all

charging stations. Our experiments demonstrated that the average number of EV

users generated using this process is around 5000 users.

To generate a single sample, xs[t],∀s ∈ S are generated randomly. The charging

prices are also randomly generated by sampling from 576 i.i.d. uniform random

variables. As described above, each user type is linked to two random variables, EV

charging duration and EV charging dates. Subsequently, a single sample pair is drawn

from these two random variables and assigned to the EV user. In the final step, the

corresponding arrivals a are computed by solving (4.7) with exhaustive search. The
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whole process is repeated to generate more samples to form the synthetic database.

More implementation details and a samples database are provided in [38].

4.4.3 Optimization of Charging Prices

Once a DNN model is trained, this model can be leveraged to compute optimal

charging prices to constitute optimal EV arrivals. The solution to (4.17) can be

obtained by plugging the DNN model in place of a(x):

x∗ =argmin
x

C(x)=argmin
x

(γ−x)Ta(x)+1Texp (a(x)−n)

=argmin
x

(γ − x)T ξ(µ,x) + 1T exp (ξ(µ,x)− n) (4.29)

which can be numerically computed by recursive application of a gradient descent

method:

∇(i) =
∂C(x(i))

∂x(i)

(4.30)

x(i+1) =x(i) − κ†∇(i) (4.31)

where x(i) and κ† denote the charging prices at gradient descent iteration i and descent

rate, respectively. Expanding (4.30), we obtain:

∇=
∂C(x)

∂x
=
∂
(
(γ−x)T ξ(µ,x)+1Texp (ξ(µ,x)−n)

)
∂x

, (4.32)

which contains the terms ∂ξ(µ,x)/∂x. We here notice that these gradients can be com-

puted via back-propagation on x as we did on µ during training the learning model.

Therefore, gradient descent algorithm can compute the optimal x∗ numerically.

4.5 Numerical Experiments

For illustrating the effectiveness and success of the proposed framework, we per-

form numerical experiments. In all experiments, 24 charging stations are used, and
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Figure 4.3: Schematics of All 3 Neural Network Models Used in Experiments.

hence the size of charging prices and EV arrivals is selected to be 24× 24. Learning

rate for training learning models and the batch size are 5 × 10−5 and 256. We run

experiments for 500 iterations. We used 8 charging stations for federated learning

as default unless stated otherwise. In some experiments we compared different DNN

models. To this end, we used 3 different models: 1) 1st DNN Architecture is a 4-layer

neural network with same parameters in first 3 layers and with ReLu and pooling ac-

tivation; 2) 2nd DNN Architecture is also a 4-layer neural network, but with different

parameters at every layer, and with Leaky ReLu activation; 3) 3rd DNN Architec-

ture is a 6-layer neural network with Leaky ReLu activation. These architectures are

demonstrated in Figure 4.3. Unless stated otherwise, 2nd DNN Architecture is used

in the experiments.

For the synthetic database generation, each EV user is randomly assigned with a

set of parameters to describe their private value function. For a EV user e ∈ E , we
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Figure 4.4: The Evolution of Training and Testing Loss During Model Training.
Overfitting Occurs After 160 Iterations.

used the following random variables to randomly generate corresponding parameters:

θ−e ∼U(0.6, 0.7) θ+
e ∼U(θ−e , 0.8) λe ∼U(2, 2.5)

αwe ∼U(1, 3) αxe ∼U(1, 3) αde ∼U(10, 30)

βwe ∼U(0, 0.5) βxe ∼U(0, 2) βde ∼U(1000, 2000)

δe ∼ U(0.9, 1) he[t] ∼ N (cos(24/90(t− 2)) + 1, 1)

To simulate real-life electricity market conditions, the data from ESIOS is leveraged

[49]. Accordingly, electricity market price is modeled as a random variable:

γs[t] ∼ N (E[γs[t]],Var[γs[t]]), (4.33)

where E[γs[t]] and Var[γs[t]] are computed from a year long data collected from ESIOS.

Eliminating the Effects of Overfitting

In the first experiment setup, the training convergence of the learning model is ex-

plored. Overfitting may occur because of limited number of data samples used in
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experiments and large DNN model. To overcome this problem, we adopt an early

stopping approach. To this end, we perform 10 independent training runs on the 1st

DNN architecture and explore after which iteration overfitting occurs. As illustrated

in Figure 4.4, overfitting is observed after 160 iterations, at which point the testing

loss starts to grow while training loss continues to decrease. To overcome overfitting,

early stopping is deployed and different DNN architectures are explored.

Effects of Number of Stations Participating in Federated Learning

The second experiment explores the convergence of federated learning under different

number of participating charging stations. We test the convergence for 4, 8 and 24

participating charging stations. Again, 10 numerical experiments are performed for

every setup and the results are illustrated in Figure 4.5. Results suggest that the per-

formance of the learning model does not vary too much with respect to the number

of charging stations participating in federated learning as expected. However, using 8

charging stations seems to provide slight benefit in terms of loss minimization. Con-

sequently, the experiments used 8 charging stations herein for optimal performance

unless stated otherwise.

Convergence Comparison for Different DNN Architectures

Different architectures can constitute superior performance in comparison to their

counterparts and the relative performance may rely on the dataset itself. In this

experiment setup, 3 different DNN architectures are trained to learn the relation-

ship between x and a for exploring which DNN architecture best fits to the synthetic

dataset. We have implemented the architectures shown at Figure 4.3 and the training

convergence of these architectures are illustrated in Figure 4.6. The results indicate

that deploying a larger DNN helps to improve both convergence rate and minimum
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Figure 4.5: The Evolution of Testing Loss over Training Iterations for Different
Numbers of Charging Station Participation.

loss at the cost of additional memory utilization and computational power. On the

other hand, the convergence rate for the first DNN architecture is significantly slow in

comparison to other 2 architectures even though the first and second DNN architec-

tures have the same number of layers. However, the first neural network leverages the

same parameters across its first three layers, and hence utilizes the minimum memory

among all architectures.

Convergence of Numerical Optimization

This experiment setup targets to demonstrate the convergence of numerical optimiza-

tion of charging prices. We expect to observe profit to stabilize as the optimization

proceeds. Clearly, charging stations desire to increase charging prices to maximize

their revenues while trying to minimize their electricity costs, waiting duration and

long term customer loss due to overpricing.

We leverage the fully trained learning model based on 2nd DNN architecture and

plug it in place of ξ(µ,x) to numerically compute optimal charging prices. Descent
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Figure 4.7: The Evolution of Charging Stations’ Profit over Optimization Iterations.

rate κ† is selected as 10−3. The convergence of the numerical optimization is illus-

trated in Figure 4.7. As expected, total cost converges to a local optimal solution.

After the local optimal point is reached, increasing charging prices incurs higher EV

charging queues, and hence mitigates user experience.
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of EV Charging Ports at a Single Charging Station.

The Impact of EV Charging Market Prices on Optimal Solution

A federation of charging stations will want to collectively increase prices if there is not

competition knowing that EVs must be charged at some point. However, in a real-

world market, many federations of charging stations will compete. To incorporate
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this effect in this chapter, overpricing cost is added to the cost of charging stations.

To this end, increasing charging prices will decrease charging demand in long term.

To prevent the loss in charging demand, charging stations should offer competitive

prices with the market.

To illustrate the effect of overpricing, we run experiments with different average

market prices. The demonstrated results in Figure 4.8, 4.10 and 4.11 indicate that

the profit of the federation of charging stations significantly increase along with the

average charging market price. In particular, charging stations try to minimize EV

arrivals if the average charging market price is 0, indicating that charging stations

are in loss and they try to minimize their losses rather than trying to maximize their

profits.
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The Impact of the Number of Charging Ports at Each Charging Station

on Optimal Solution

Lastly, we illustrate the impact of the number of charging ports at each charging

station on the optimal charging prices. To this end, we try 3 different scenarios with

2, 4 and 8 charging ports at every charging station. Clearly, the queue of EVs waiting

for charging will significantly increase if there are more charging ports. Therefore,

EV waiting cost will decrease significantly, which can be monetized by increasing

charging prices, i.e., charging stations may profit from higher quality of service.

Results demonstrated in Figure 4.9, 4.12 and 4.13 show that charging stations

profit significantly if they deploy more charging ports at every charging station. We

observe that charging stations increases charging prices, but still attract more EVs

because of the increased quality of service.
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4.6 Conclusion

The problem of computing optimal demand reshaping policy under lack of EV user

information is studied in this chapter. In the lack of private EV user information, a

data based approach is adopted, in which a deep learning model is trained by using

the collective information from charging station. Since data is spread across many

charging stations, a federated learning framework is deployed in the wake of expensive

computation and communication costs. In order to model EV user behaviour, the

seminal Prospect Theory is leveraged alongside the real-life databases. Subsequently,

a synthetic database generation algorithm is designed and implemented. The trained

learning model on the synthetic database is used in optimizing the charging prices.

The optimal prices ideally minimize the queue size and maximize the revenue of charg-

ing stations, constituting benefits for both EV users and charging stations. Numerical

experiments corroborate the effectiveness of the proposed techniques.
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Algorithm 5 Synthetic Data Generation

1: Inputs: Electric Vehicle Charging Station Data, ACN-Data;

2: Outputs: Synthetic database;

3: EV user types: J = []

4: for each EV user in ACN-Data, e do

5: Compute the pmf of charging duration random variable ρTe

6: Model charging probability as Bernoulli and compute pv,e, and add to J

7: end for

8: EV user list: K = [], EV user locations: L = []

9: for each EV charging station in Colorado EV database, s do

10: ρλs = number of average visits

11: Sample the number of EV users ζs ∼ ρλs

12: Uniformly sample a EV user type from J and add it to K

13: Randomly draw (PPP) EV location around the charging station and add to L

14: end for

15: Create the database D = []

16: while Maximum number of samples is not reached do

17: Sample 24× 24 elements of x from 24× 24 i.i.d. uniform random variables.

18: Arrival vector a = 0

19: for every k in K do

20: Draw a sample j from J [k]

21: Solve (4.7) using exhaustive search to obtain s∗k, t
∗
k

22: as∗k,t∗k ← as∗k,t∗k + 1

23: end for

24: Add {x, a} to D

25: end while
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Chapter 5

THE IMPACT OF TRAFFIC INFORMATION AGE ON CONGESTION

MITIGATION

5.1 Introduction

Traffic engineering techniques have been developed for efficient use of network re-

sources in conventional OSPF-based networks operating under tight quality of service

(QoS) constraints [53, 19, 152, 160, 146, 60, 53, 52]. Traffic engineering policies can

be determined based on the traffic measurements collected throughout the network

by a centralized controller. Unfortunately, out-of-date traffic measurements and rapid

fluctuations in traffic demand constitute an inaccurate global view of the network at

the controller, diminishing the effectiveness of traffic engineering techniques. Further,

finding optimal OSPF link weights is an NP-hard problem [36], and local search al-

gorithms [53], which are slow and unresponsive to a changing network environment,

often have to be implemented. For better utilization of network resources, contem-

porary networks need to quickly adapt to changing network environment and satisfy

tight timing constraints while considering the ages of traffic measurements.

In the existing literature, it is often assumed that traffic demand is quasi-stationary

and traffic measurements are consistent (see [53] and the references therein). Nev-

ertheless, the explosive growth of mobile devices and bandwidth-hungry applications

in the last decade have led networks to experience rapidly changing traffic demands.

As a consequence, contemporary networks must be reconfigured frequently since oth-

erwise the routing settings in use would be obsolete in a short span of time. On the

other hand, reconfigurations incur routing instability in the network, and hence must
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be avoided if possible. Besides, the consistency assumption implies that the measure-

ments are fresh and synchronously gathered, and hence the measurements accurately

reflect the current traffic state of the network. Unfortunately, the measurements do

not always have the same time-stamp since router clock synchronization cannot be

achieved at all times [50]. In addition, the inter-arrival times of the traffic measure-

ments may randomly range from several hundreds of milliseconds up to a hundred

seconds [50]. In light of these practical challenges, traffic engineering techniques must

take the ages of traffic measurements into account when computing new network

settings.

Traffic engineering techniques often aim at network congestion minimization so

as to improve network utilization through direct control of link flows [19, 60, 48].

Even though the corresponding traffic engineering problem is solvable in polynomial

time, link flows cannot be implemented under conventional OSPF-based networking

architecture [134, 135, 30]. On the other hand, the traffic engineering formulation for

congestion minimization, in terms of OSPF link weights, is proven to be NP-hard [36].

Consequently, the applicability of traffic engineering in OSPF-based networks is either

computationally too intensive and time consuming [53, 158] or require manipulations

of OSPF routing to overcome the NP-hard nature of the traffic engineering problem

[134, 48]. Along a different line, software defined networking (SDN) allows direct

implementation of link flows in the network, and hence the congestion minimization

problem can be solved under tight timing constraints [100, 6, 5]. However, centralized

routing suffers from slow link fail-over, which degrades network robustness compared

to distributed routing techniques [130, 6, 5].

In consideration of timing constraints and robustness, this chapter adopts cen-

tralized load-sensitive routing, and employs a flexible controller to assist distributed

routing for improving network utilization. The employed controller iteratively up-
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dates OSPF weights and deploys these weights on legacy routers. The legacy routers

then determine their own forwarding tables using the OSPF weight set announced

by the controller and forward traffic accordingly. In consideration of tight timing

constraints, the controller employs a lightweight, load-sensitive OSPF weight update

algorithm, which cannot minimize, but only mitigates network congestion. Conse-

quently, network benefits from robustness and flexibility at the cost of optimality,

while satisfying tight timing constraints.

The main contributions of this chapter can be summarized as follows.

• Traffic-adaptive network reconfiguration: Under aforementioned observations,

this chapter addresses the above problem in dynamic congestion mitigation

for better network utilization. In particular, we formulate the iterative online

decision-making problem for link weight reconfiguration, taking into account the

impacts of network congestion, reconfiguration instability and measurement age.

Subsequently, we execute a myopic policy to solve this problem and mitigate

congestion over iterations.

• Comprehensive measurement collection model: We relax the widely adopted

quasi-stationary traffic assumption on link state routing protocols to account

for non-stationary traffic demands. In spite of this, we establish a tractable

autoregressive model and further incorporate the notion of age of information

to construct a comprehensive, yet flexible, traffic measurement collection model

for a centralized controller that is capable of computing traffic engineering rules.

• Measurement age-aware metrics: In order to better quantify the impact of con-

gestion and measurement age, we employ the following two distinct metrics,

and derive their corresponding measurement and age-aware single stage predic-

tors: First metric utilizes only first order statistics (mean of each component),
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whereas the second incorporates second order statistics (variances of compo-

nents) to further encapsulate the impact of uncertainty due to measurement

age. To the best of our knowledge, this is the first study that mathematically

evaluates the impact of measurement ages on network utilization.

The rest of the chapter is organized as follows. We introduce the system overview

and operation in Section 5.2, and explain the measurement age-aware traffic monitor-

ing in Section 5.3. The employed load sensitive OSPF link weight update algorithm

is presented in Section 5.4, and the decision-making problem for the adaptive link

weight reconfigurations is formulated in Section 5.5. The overall system is imple-

mented and tested for various experiment settings through simulations in Section 5.6.

The chapter is concluded in Section 5.7.

5.2 System Model

We consider a dynamic routing system consisting of N routers and a logically

centralized controller with traffic engineering capabilities. We model the network

infrastructure as a directed graph G = (N ,L), where N and L represent the set of

routers and the set of directed links, respectively. Routers employ OSPF routing with

equal cost multi-path (ECMP) to forward the traffic through them. Each link eij,

from router i to j, has a limited capacity ce and is assigned a link weight αe.

A unicast traffic demand wsd ∈ W , where W represents the set of active traffic

demands, originates from a source s and has to reach a destination d by flowing

through a routing path in the network. Under OSPF routing, all routers maintain

the same global view of the link weights, and hence can compute the same routing path

for any traffic demand wsd. For cost-efficient routing without cycles, it is sufficient

for a router n to compute and employ a router-specific forwarding table, which only

enlists the next router on the shortest path of a traffic demand wsd to any destination
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Figure 5.1: Illustration of the Controller-aided Link Weight Update.

d ∈ N . Forwarding tables have to be recomputed whenever a link weight changes its

value.

Clearly, one particular link can be traversed by multiple routing paths. Conse-

quently, a link load xe is evaluated as a weighted sum of all traffic demands, whose

routing paths pass through the link e, normalized by link capacities:

xe =
N∑
s=1

N∑
d=1,d 6=s

ge,sdwsd
ce

, (5.1)

where ge,sd is the routing coefficient that quantifies what ratio of traffic demand wsd

traverse through link e. Obviously, the link e is said to be congested if xe > 1. In

a congested link, some packets have to be dropped or put into queue, and hence

congested links degrade network QoS. Routing coefficients are determined by the

shortest path nature of OSPF routing, in a similar fashion forwarding tables are

computed. Routing coefficients for every link and traffic demand pair can be stored

in matrix form as a routing table. To this end, routing and forwarding tables at each

router embodies the same routing paths in the network, and hence can interchangeably

be used.

In interest of sustaining adequate levels of network utilization for longer periods

of time, the centralized controller must employ fast and responsive traffic engineering
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techniques for adapting to dynamic traffic (Figure 5.1). For this purpose, adaptive

traffic engineering operates in an iterative manner with each iteration lasting for ∆t

seconds. Every router measures the traffic demand originating from itself and sends

these measurements to the controller at unique time instants. Subsequently, the

most recent link load values can be computed using equation (5.1), traffic demand

measurements and a routing table. To this end, the controller retains the deployed

routing table corresponding to the currently deployed link weights in the network. A

fast load-sensitive weight search algorithm can swiftly compute a new set of OSPF

weights using the link load values. Clearly, inconsistent and obsolete measurements

may mislead the controller when computing new candidate link weights, and hence

newly computed candidate link weights, not necessarily, mitigate network congestion,

while deploying them causes temporary routing instability.

In light of these observations, at the start of each iteration, the controller first

predicts the link loads for the next iteration. Secondly, candidate link weights are

computed by using the predicted link loads for better network utilization. At the

final stage, the controller executes a myopic policy, in which it compares the costs

implied by the candidate and the currently deployed OSPF weights to decide whether

to reconfigure the network or not. To this end, network utilization cost accounts for

network congestion, link load uncertainty due to age of traffic measurements and

dynamic traffic, and routing instability during reconfiguration. The controller then

broadcasts the candidate link weights to the network if they mitigate the network

utilization cost. Routers then compute their unique forwarding tables using new link

weights and route the traffic accordingly in the next iteration.

153



5.3 Traffic Model and Measurement Age

In the previous section, we demonstrated how dynamic routing operates in a

network and how traffic engineering tasks could be handled at a centralized controller.

Next, traffic demand monitoring is investigated in detail considering the implications

of the age of measurements.

5.3.1 Traffic Demand Model

Conventional traffic engineering techniques are based on the strict assumption of

quasi-stationary traffic. To this end, traffic demands are often modeled as a ran-

dom process, whose distributional properties, e.g., mean and variance, vary on a

longer time-scale. Nevertheless, the quasi-stationary assumption fails to reflect the

rapidly changing contemporary traffic environment constituted by mobile devices and

bandwidth-hungry applications. In this chapter, we do not restrict traffic to be quasi-

stationary and we adopt a comprehensive yet simple stochastic model.

Let wsd(t) and wksd = wsd(k∆t) represent the traffic demand from s to d as a

function of time and the kth sample of traffic demand at time instant t = k∆t,

respectively. Markovian approaches are broadly adopted in the literature to model

recursive time-varying quantities [100, 43]. In particular, autoregressive models can

mathematically represent random fluctuations on a parameter during each recursion

as a stochastic additive term on the previous value of the parameter. In considera-

tion of analytical simplicity, we cast traffic evolution over iterations as a first order

autoregressive model:

wksd =wk−1
sd + εksd, ∀s, d ∈ N , (5.2)

where εksd is the random fluctuation on the traffic demand from s to d due to new and

terminated sessions during the kth iteration. Note that the kth iteration here refers
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to the time interval ((k − 1)∆t, k∆t). We do not assume any particular distribution

for εksd and further allow its mean and standard deviation, µksd and σksd respectively,

to change over recursions.

5.3.2 Age of Traffic Measurements

In consideration of synchronization overhead, routers asynchronously send their

measurements, and hence the measurements arrive at the controller at separate time

instants. Let τ `s and t`s represent the measurement instant (or equivalently transmis-

sion instant) of the `th traffic measurements of a router s and the arrival time of

the corresponding measurements at controller, respectively. τ `s and t`s are separated

by a random delivery duration, denoted by γ`s. Further, considering communication

overhead, routers may choose to wait some time before sending new measurements to

the controller. On the other hand, rare measurement updates constitute inaccurate

global view of the network at controller, and hence damage network utilization. For

this cause, each router s employs a waiting time policy β`s to adjust the trade-off

between accuracy and communication overhead. Computing optimal waiting time

policy is a stochastic control problem and has been studied in depth in [126, 74].

This problem is out of this chapter’s scope, and hence we employ an adaptive waiting

time policy, β`s = γ`s, i.e., s takes and sends a new measurement as soon as the latest

measurement arrives at the controller:

τ `s =τ `−1
s + γ`−1

s = t`−1
s , ∀s ∈ N . (5.3)

We here observe that some routers may deliver multiple traffic measurements dur-

ing one iteration. Since controller operates at discrete time instants, it only utilizes

the most recent measurements from each router. Traffic measurement age is then

expressed as given in Definition 6. We here remind that the concept of Age of Infor-
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Figure 5.2: Time-line for Sampling Traffic Demand and Collecting Measurements.

mation is widely adopted in control theory literature [126, 74, 162].

Definition 6. Age of the most recently received traffic measurements from a router

s before the end of iteration k is defined as follows.

∆k
s =k∆t−max

`
(τ `s : t`s ≤ k∆t), ∀s ∈ N . (5.4)

Clearly, the measurements do not perfectly reflect the current traffic conditions

in the network and possess higher uncertainty regarding the traffic conditions as

measurement ages surge. To this end, the controller has to exploit statistical mean

and variance, µksd and (σksd)
2 respectively, and measurement age, ∆k

s , to accurately

estimate contemporary traffic conditions in the network. Recalling that the controller

determines new traffic engineering rules for the k + 1st iteration at the time instant

t = k∆t, the next section describes how to predict traffic demands for the time instant

t = (k + 1)∆t using the autoregressive model and the age of traffic measurements.

5.3.3 Traffic Demand Prediction at the Controller

Each delivered measurement message contains information regarding traffic de-

mand and a time stamp pointing the time instant that the measurement was taken

(Figure 5.2). Controller can compute the age of measurements by substituting the

time stamp in (5.3) and (5.4). Let zksd represent the measurement of traffic demand

wsd(t) sampled at time instant t = k∆t − ∆k
s . If the measurements were fresh, i.e.,
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∆k
s = 0, the measurements then would exactly indicate the current traffic demand,

i.e., wksd = zksd. On the other hand, non-zero age values impose uncertainty on traffic

measurements since actual traffic demands have changed during this time period. In

particular, this uncertainty increases along with the age of measurements and the

rates of traffic demand fluctuations. Here, a specific traffic demand fluctuation from

s to d is a continuous white random process, denoted by εsd(t), and its relation to εksd

is defined next.

Definition 7. Over a single iteration, for any source destination pair, the change in

discrete traffic demand is equivalent to overall change in continuous traffic demand.

εksd =

∫ k∆t

(k−1)∆t

εsd(t)dt, ∀s, d ∈ N . (5.5)

In light of above definition, the uncertainty due to age of measurements can be

quantified in terms of εsd(t) by changing the lower limit of the integral.

wksd − zksd =

∫ k∆t

k∆t−∆k
s

εsd(t)dt, ∀s, d ∈ N . (5.6)

A careful investigation reveals that (5.6) and the autoregressive model defined in (5.2)

are equivalent:

wksd =zksd +

∫ (k−1)∆t

k∆t−∆k
s

εsd(t)dt+

∫ k∆t

(k−1)∆t

εsd(t)dt = wk−1
sd + εksd. (5.7)

In general, distributional parameters of εsd(t) evolve real time since εsd(t) is non-

stationary. However, estimation of distributional parameters of a continuous random

process εsd(t) requires extraordinary computational resources and traffic history even

if modern learning techniques are employed. A simpler, but more effective approach is

to assume εsd(t) to be stationary for periods of time, e.g., during each iteration. Un-

der this approach, distribution of εsd(t) can only change its distributional properties
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at transition instants from one iteration to another, but can still satisfy the non-

stationary traffic conditions captured in the autoregressive model (5.2). Partially

stationary assumption along with (5.5) constitute a simpler expression for (5.6):

wksd − zksd =

(
∆k
s

∆t
− δks

)
ε
k−δks
sd +

δks−1∑
i=0

εk−isd , ∀s, d ∈ N , (5.8)

where δks = b∆k
s/∆tc that is the largest integer value smaller than ∆k

s/∆t. We here

observe that the most recent measurements are not necessarily sampled in the current

iteration. Further we note that the second summation term in (5.8) vanishes if the

most recent measurements are sampled during the current iteration, i.e., δks = 0.

As described in above sections, controller first aims at predicting the traffic de-

mand that will occur at the start of next iteration, i.e., t = (k + 1)∆t. To this end,

we employ a single stage predictor and a mean-squared estimator that utilize the

autoregressive model (5.2), traffic measurements and their corresponding ages. We

know from control theory that the estimator, which minimizes mean-squared error, is

the conditional expectation of the variable of interest with respect to measurements.

Proposition 5. Let ŵksd denote the mean-squared estimator of traffic demand wksd.

Then, ŵksd can be determined using (5.2), traffic measurements and corresponding

ages:

ŵksd = E[wksd|zksd,∆k
s ] =


ŵk−1
sd + µksd, if ∆k

s ≥ ∆t, (5.9a)

zksd +
∆k
sd

∆t
µksd, if ∆k

s < ∆t. (5.9b)

Proof. We utilize (5.7), the equivalent form of (5.2), and (5.8) to prove Proposition

5, and compute conditional expectations of wksd for given zksd and ∆k
s .

ŵksd =E

zksd +

(
∆k
s

∆t
− δks

)
ε
k−δks
sd +

δks−1∑
i=0

εk−isd

∣∣∣∣zksd,∆k
s


=zksd +

(
∆k
s

∆t
− δks

)
µ
k−δks
sd +

δks−1∑
i=0

µk−isd . (5.10)
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Next, we evaluate two cases; 1) ∆k
s ≥ ∆t and 2) ∆k

s < ∆t. In the former case,

δks =
⌊

∆k−1
s /∆t + ∆t/∆t

⌋
=
⌊

∆k−1
s /∆t

⌋
+1 = δk−1

s +1, and hence (5.10) is further computed

as:

ŵksd =zksd +

(
∆k−1
s

∆t
− δk−1

s

)
µk−1−δk−1

s
sd +

δk−1
s −1∑

j=i−1=0

µk−1−j
sd + µksd = ŵk−1

sd + µksd. (5.11)

For the latter case, we have δksd = 0, and hence (5.9b) is directly obtained by substi-

tuting δksd = 0 in (5.10).

In a similar way, single stage predictor predicts the traffic demand that will occur

at the start of next iteration:

ŵk+1
sd = E[wk+1

sd |z
k
sd,∆

k
s ] = ŵksd + µk+1

sd . (5.12)

Derivation of (5.12) follows the same steps we used in the proof of (5.9a).

5.4 Load Sensitive Link Weight Updates

In this chapter, we more focus on mitigating network congestion over time in

quick iterations, and hence improving time-averaged network utilization in a dynam-

ically changing traffic environment, rather than consuming huge amounts of time to

minimize congestion in just one iteration. In spite of this, we employ a fast and

responsive load-sensitive link weight update algorithm. In contrast to local search

algorithms, which recursively search for the best link weight settings, load-sensitive

routing can compute new link weights in a single iteration, and hence can adapt to

rapidly changing traffic conditions. However, computed link weights are often far

from being optimal solutions to well-known multi-commodity flow problem, which is

shown to be NP-hard in terms of link weights. Despite this, load-sensitive link weight

updates can outperform local search algorithms in improving time-averaged network

utilization due to their adaptability to ever-changing traffic conditions.
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5.4.1 Link Load Prediction

Load-sensitive weight update techniques rely on link load measurements to com-

pute new link weights. For this cause, success of new link weights hinges on the

accuracy of traffic demand measurements. Gathering precise traffic measurements is

often a challenge for controllers, because the measurements of distinct routers often

arrive at controllers with distinct ages. To overcome this problem, as described in

above sections, we first collect traffic measurements and subsequently predict one-step

ahead traffic conditions exploiting an auto-regressive traffic model. Predicted traffic

demands can then be utilized to predict link loads by exploiting the routing matrix

constituted by OSPF link weights.

x̂k+1
e,κ =

N∑
s=1

N∑
d=1,d 6=s

gκe,sdŵ
k+1
sd

ce
, ∀e ∈ L, (5.13)

where gκe,sd, for all e ∈ L and for all s, d ∈ N , denote the routing coefficients con-

stituted by the link weight set with index κ and x̂k+1
e,κ , for all e ∈ L, represent the

corresponding predicted link loads. We here observe that separate routing tables lead

to distinct set of link loads, and hence a good choice of link weights can mitigate

congestion.

5.4.2 Load-Sensitive Update of Link Weights

Let g0
e,sd, for all e ∈ L and for all s, d ∈ N , represent the routing coefficients

established by the currently deployed OSPF link weights, α0
e for all e ∈ L, in the

network. A load-sensitive link weight update algorithm aims for obtaining new link

weights, ακe for all e ∈ L, that potentially mitigate maximum link load under tight

timing constraints. In this regard, controller must increase the costs of traversing

congested links via increasing their link weights since traffic demands are routed

through their min-cost, i.e., shortest, paths in the network. With this approach, total
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number of shortest paths passing through congested links can be reduced to mitigate

corresponding link loads.

Load-sensitive routing algorithms often exploit a mapping from link loads to link

weights that penalizes high link loads by increasing their link weights to control

network congestion. In this chapter, we employ a simple, yet fast load-sensitive

routing algorithm, LSAR [138]. LSAR adopts a piecewise linear mapping that is

demonstrated to constitute routing stability under stationary traffic conditions [138].

f(y(x̂k+1
e,κ )) =

 1, if y(x̂k+1
e,κ ) ≤ 0.5,

4y(x̂k+1
e,κ )− 1, if y(x̂k+1

e,κ ) > 0.5,
∀e ∈ L, (5.14)

where y(x̂k+1
e,κ ) is a generic function of predicted link loads. At the moment, we

employ a linear function y(x̂k+1
e,κ ) = x̂k+1

e,κ as a straightforward choice. Yet, a novel

uncertainty-aware function is presented in the subsequent sections. In an effort to

improve routing stability further, the average of new link weight and previous η link

weights is computed. In the final stage, this average value is assigned as a candidate

link weight if the difference between this value and the most recent link weight is

larger than a threshold ξ.

ακ+1
e =

 θ =
f(x̂k+1

e,κ )

η+1
+
∑η−1

i=0
ακ−ie

η+1
, if |ακe − θ| > ξ,

ακe , if |ακe − θ| ≤ ξ.
(5.15)

ακ+1
e , ∀e ∈ L, can then be used to compute candidate routing coefficients gκ+1

e,sd via

executing a shortest path algorithm, e.g., Dijkstra’s algorithm.

5.5 Adaptive Link Weight Reconfiguration

5.5.1 Uncertainty-Aware Weight Reconfigurations

The ultimate goal in this chapter is improving time-averaged network utilization

and routing robustness under dynamic traffic conditions. Maximum link load, i.e.,
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network congestion, is widely accepted as a proper measure of network utilization in

the literature [52, 146, 75, 96]. Under dynamic traffic conditions, network congestion

can be expressed in terms of predicted link loads, for which a single stage predictor

is formulated in above sections. Despite being widely adopted, network congestion

does not value the impact of uncertainty due to the age of measurements, and hence

degrades the efficiency of traffic engineering techniques when traffic measurements

possess non-zero age values.

In light of above concern, we further incorporate uncertainty on top of link loads by

employing squared link loads as a measure for link weight updates and reconfiguration

decisions. Besides, quadratic cost functions are often employed in control of recursive

decision-making processes, i.e., linear quadratic regulators [21]. Next, a single stage

predictor for squared link loads is formulated.

Proposition 6. Let P k+1
ee,κ represent the variance of eth conditional link load computed

for iteration k+1 under κth link weight set for given zksd and ∆k
s . Single stage predictor

of (xk+1
e,κ )2 then can be calculated in terms of single stage predictor of xk+1

e,κ and P k+1
ee,κ :

̂(xk+1
e,κ )2 = E[(xk+1

e,κ )2|zk,∆k] = (x̂k+1
e,κ )2 + P k+1

ee,κ , (5.16)

where zk and ∆k denote the vectors of traffic measurements and corresponding ages,

respectively.

Proof. Proof is straightforward and follows:

̂(xk+1
e,κ )2 = E[(xk+1

e,κ − E[xk+1
e,κ |zk,∆k])2|zk,∆k]

+E2[xk+1
e,κ |zk,∆k] = P k+1

ee,κ + (x̂k+1
e,κ )2, (5.17)

where the expression of P k+1
ee,κ is given in Lemma 4.
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Lemma 4. Let Qk+1
sd represent the conditional variance of traffic demand from s to

d computed for iteration k + 1 for given zksd and ∆k
s . P k+1

ee,κ is given in terms of κth

routing coefficients and Qk+1
sd :

P k+1
ee,κ =

N∑
s=1

N∑
d=1,d6=s

(
gκe,sd
ce

)2

Qk+1
sd . (5.18)

Proof. Proof follows from the independence of distinct traffic demands:

P k+1
ee,κ = Var[xk+1

e,κ |zk,∆k] = Var

 N∑
s=1

N∑
d=1
d 6=s

gκe,sd
ce

wk+1
sd

∣∣∣∣zk,∆k


=

N∑
s=1

N∑
d=1
d 6=s

(
gκe,sd
ce

)2

Var
[
wk+1
sd |z

k
sd,∆

k
s

]
=

N∑
n=1

N∑
d=1
d6=n

(
gκe,sd
ce

)2

Qk+1
sd . (5.19)

where Qk
sd is computed in Lemma 5.

Lemma 5. Qk
sd can be computed in terms of discrete traffic demand variances and

measurement ages using (5.2).

Qk
sd = Var[wksd|zksd,∆k

s ] =


Qk−1
sd + (σksd)

2, if ∆k
s ≥ ∆t, (5.20a)

∆k
s

∆t
(σksd)

2, if ∆k
s < ∆t. (5.20b)

Proof. The proof follows computing conditional variance by utilizing (5.6) and inde-

pendence of distinct traffic demands:

Qk
sd =E

[(
zksd +

∫ k∆t

k∆t−∆k
s

εsd(t)dt− E
[
zksd +

∫ k∆t

k∆t−∆k
s

εsd(t)dt

])2
]

=E

[(∫ k∆t

k∆t−∆k
s

(εsd(t)− µsd(t))dt
)2
]

=E
[∫ k∆t

k∆t−∆k
s

∫ k∆t

k∆t−∆k
s

(εsd(t1)− µsd(t1))(εsd(t2)− µsd(t2))dt1dt2

]
=E

[∫ k∆t

k∆t−∆k
s

∫ k∆t

k∆t−∆k
s

Kεsdεsd(t1, t2)dt1dt2

]
(5.21)
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Following the steps in (5.21), Qk
sd is represented as a double integral of auto-covariance

matrix of εsd(t). Since distinct traffic demands are independent of each other, auto-

covariance matrix is diagonal, and hence above expression is simplifies to (5.20a)

as:

Qk
sd =

∫ k∆t

k∆t−∆k
s

Var[εsd(t)]dt =

∫ (k−1)∆t

(k−1)∆t−∆k−1
s

Var[εsd(t)]dt+

∫ k∆t

(k−1)∆t

Var[εsd(t)]dt

=Qk−1
sd + (σksd)

2, (5.22)

when ∆k
s ≥ ∆t. If ∆k

s < ∆t, (5.21) simplifies to (5.20b) as follows:

Qk
sd =

∫ k∆t

k∆t−∆k
s

Var[εsd(t)]dt =
∆k
s

∆t
(σksd)

2, (5.23)

which completes the proof.

In a similar way to (5.20a), Qk+1
sd is computed from Qk

sd:

Qk+1
sd = Qk

sd + (σk+1
sd )2. (5.24)

The above proposed measure can leverage the uncertainty information pertaining to

the age of measurements. In this regard, a function of the second conditional moment

of link loads can be fed into LSAR to compute new set of link weights with intent to

mitigate link load uncertainty alongside link load values. Since LSAR is designed for

the linear functions of link loads, we select this function as the square-root function

for better adaptation to LSAR.

y(x̂k+1
e,κ ) =

√
̂(xk+1
e,κ )2 =

√
P k+1
ee,κ + (x̂k+1

e,κ )2. (5.25)

We here observe that y(x̂k+1
e,κ ) reduces to x̂k+1

e,κ if measurements are instantly and syn-

chronously collected. In the subsequent section, we finally present the measurement

age-aware reconfiguration decision-making problem.
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5.5.2 Adaptive Link Weight Reconfiguration Policy

Frequent reconfigurations cause instability in routing and impair QoS. On con-

trary, occasional reconfigurations conflicts with the interest of mitigating network

congestion. Accordingly, the network reconfiguration problem, with each reconfigura-

tion admitting addition routing cost, can be cast as a stochastic optimization problem

with link load costs and reconfiguration constraints. In [100, 43], a dynamic program-

ming solution to this problem is illustrated for the SDN architecture, in which the

traffic engineering rules that are computed at each iteration strictly improves network

utilization. Unfortunately, this approach can not be adopted under OSPF routing,

in particular, due to two implications of the shortest path nature of link state rout-

ing: 1) in contrast to SDN, the weight update algorithms operating on OSPF routing

can not always find better traffic engineering rules, and 2) future link weights and

the corresponding future link loads can not be associated through a closed form cost

function, and hence it is not possible to formulate a dynamic programming problem

[21].

In light of complexity, we restrict our attention to myopic policies, in which a

controller has to make a reconfiguration decision only considering one-step ahead

predicted network utilizations costs. To this end, the controller decides to reconfig-

ure the network with new candidate link weights if they not only mitigate network

congestion and uncertainty but also recover the reconfiguration cost over iterations.

The controller recursively solves the following myopic problem:

J∗(xk+1
κ , uk) = min

uk∈{0,1}
(ερuk + max

e∈L
y2(x̂k+1

e,κ·uk)), (5.26)

where xk+1
κ is the vector of all predicted link loads under the κth link weight set.

In (5.26), uk is the control variable that takes value 1 if controller reconfigures the

network with the most recent candidate weights, ακe , ∀e ∈ L, or takes value 0 oth-
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Figure 5.3: A Sketch of Link Weight Updates and Routing Reconfiguration While
Considering Traffic Measurement Ages.

erwise. ερ represents the reconfiguration cost and it is monotonically decreasing in

ρ, the number of iterations since the last reconfiguration. Hence, the reconfiguration

cost reduces at each recursion until another reconfiguration occurs. Bearing in mind

that the reconfiguration cost differs at distinct networks, we model ερ as a proportion

of network congestion cost that is constituted by the deployed set of link weights.

ερ = (Φ/ρ)max
e∈L

y2(x̂k+1
e,0 ), (5.27)

where Φ is a constant that depends on network structure. Next section demonstrates

the simulation results illustrating the impact of measurement ages and dynamic traffic

conditions. Further, the performances of the two single stage predictors proposed

above sections are compared.
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5.6 Simulation Results and Discussion

5.6.1 Simulation Setting

Since we are interested in mitigating time average network congestion under dy-

namic traffic conditions, the controller operates as follows. It first computes link

load predictions and variances for collected measurements, while taking the ages of

measurements into account. Subsequently, it computes candidate link weights using

LSAR and link load predictions. In the final stage, the controller computes the link

load, uncertainty and reconfiguration costs for deployed and candidate link weights,

and reconfigures the network if profitable. The operation of the controller is demon-

strated in Figure 5.3.

In our experiments, we use ARPANET, which consists of 48 nodes and 140 links,

and randomly generated graphs as underlying network structure. Random graphs

are generated using Waxman’s method with Poisson process intensity, maximal link

probability, and edge length parameters are chosen as 0.12, 0.7, and 0.7, respectively.

For traffic generation, we adopt the technique used in [100] that implements the

most resembling traffic conditions to our assumptions. Accordingly, we generate

random traffic demands according to a Poisson process with distinct inter-arrival

times at different iterations. Each unicast traffic request lasts for a fixed duration, ψ.

Since we allow traffic demands to be non-stationary, we take samples from a uniform

distribution to specify the inter-arrival times of Poisson process for each iteration.

We model the random measurement delivery duration with a stationary exponential

distribution and further assume that the delivery durations for distinct nodes are

identically distributed and independent. Table 5.1 shows all the parameters used in

all the experiments.
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Table 5.1: The Summary of All Parameters Used in All Experiments.

Exp. Traffic Type Inter-arrival Time Simulation Duration ψ E[γ`s]

B Constant N/A 1 hour N/A Vary

C Stationary 10ms 30 mins 1s Vary

D Non-stationary Unif(1s, 3s) 1 hour 10s 1ms

E Non-stationary Unif(2s, 4s) 1 hour 17.5s 1ms

F Non-stationary Unif(3s, 5s) 1 hour 25s 1ms

Exp. ce Init. Link Weights ∆t Unicast Traffic Amt. ξ η Φ

All 1 GB/s 1 30s 1 Mb/s 0.1 3 0.2

5.6.2 Congestion Mitigation with Oblivious Traffic Information

In this experiment, the 48 nodes in ARPANET are split into two groups, G1 and

G2. For the time intervals t1 = [0s, 900s] and t3 = [1800s, 2700s], only the nodes in

G1, and for the time intervals t2 = [900s, 1800s] and t4 = [2700s, 3600s], only the

nodes in G2 transmit a constant traffic of 5 Mb/s. Because of limited space, we only

present the results obtained using the linear link load metric.

Figure 5.4 demonstrates maximum link load evolution over iterations for 2 dif-

ferent scenarios. As illustrated, the proposed system mitigates maximum link load

in quick iterations when the measurements are fresh. On contrary, the out-of-date

measurements either slow down the controller’s traffic engineering operation or even

mislead the controller to implement worse routing rules at certain iterations. Yet,

the congestion is better mitigated in the latter scenario at some iterations due to the

nonlinear nature of OSPF routing.
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Figure 5.4: The Evolution of Maximum Link Load with Oblivious Traffic Informa-
tion. ∗ and + Represent the Time Instances for Reconfiguration. Under Unit OSPF
Settings, All Link Weights Are Assigned to Unit Value of 1 at All Iterations. (B)

Figure 5.5: The Average Maximum Link Load (Left Axis) and Average Maximum
Link Load Uncertainty (Right Axis) Comparisons of Linear and Squared Link Load
Metrics over Various Delivery Duration Scenarios. Note that the Increments on the
Right Vertical Axis are Logarithmic. (C)

5.6.3 Impact of Measurement Age

In this experiment, we compare the average performances of the predictors derived

in above sections under different delivery duration scenarios. For this cause, we
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randomly generate 10, at least 2-connected, networks consisting of 10 nodes using

Waxman’s technique. For each network, we sample 50 traffic realizations and run 50

simulations. At each simulation, we only use the measurements from the final iteration

for evaluation purposes. In consideration of the nonlinearity of OSPF routing, we here

solve the linear program (LP) formulation of routing problem in terms of link flows,

and hence obtain the optimal routing for both predictors to ensure a fair comparison.

To this end, we use the formulation presented in [146], which is generalized as:

min
gκe,sd,∀e,s,d

Γ,

s.t.
∑
e∈O(i)

gκe,sd −
∑
e∈I(i)

gκe,sd = 1, ∀s, d,∀i = s,

∑
e∈O(i)

gκe,sd −
∑
e∈I(i)

gκe,sd = 0, ∀s, d,∀i 6= s, d,

∑
s

∑
d

y
(
x̂k+1
e,κ

)
≤ Γ, ∀e ∈ L,

0 ≤ gκe,sd ≤ 1, Γ ≥ 0, ∀e ∈ L, ∀s, d, (5.28)

where O(i) and I(i) represent the sets of egress and ingress edges of a node i, respec-

tively. We solve (5.28) using the solver SDPT3 of the convex optimization package

CVX [57, 56].

Average congestion and average congestion uncertainties are shown in Figure 5.5.

We point out 2 important observations here: 1) as expected, the squared link load

metric better mitigates uncertainty for all average ages of measurements in com-

parison to the linear link load metric, and hence improves the worst case network

utilization; and 2) the squared link load metric constitutes lower average congestion

until the mean delivery duration reaches 100 seconds. Intuitively, when measurement

ages are too large, predicted congestion costs becomes negligible in comparison to

uncertainty costs, and hence measurement value information can not be utilized in
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Figure 5.6: The Maximum Link Load Performance of the Proposed System Under
Different Traffic Inter-arrival Times. Observe that the Generated Traffic Amounts
Are Not Equal for Distinct Scenarios, and Hence Maximum Link Load Does Not
Constitute a Fair Performance Comparison. (D,E,F)

computing routing rules. Consequently, the linear metric yields lower average con-

gestion for higher ages of measurements.

5.6.4 Impact of Traffic Non-Stationarity

We compare the reconfiguration frequencies under low, intermediate and high

variance, non-stationary traffic conditions. Because of limited space, we only present

the simulations obtained using linear link load metric. As illustrated in Figure 5.6,

the employed system successfully mitigates network congestion and sustain network

utilization against non-stationary traffic fluctuations in all 3 experiments. We further

observe that the reconfiguration frequency increases along with the increase in traffic

inter-arrival time (See Table 5.1). Clearly, a rapidly changing traffic environment

enforces the controller to reconfigure the network more often, since the gains achieved

by deploying the candidate link weights will surpass the monotonically decreasing

reconfiguration cost more often.
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5.7 Conclusions

The traffic engineering problem had been extensively studied in the literature as

a robust and effective way of routing traffic in conventional networks. Yet, the im-

pact of measurement age on the performance of traffic engineering techniques under

rapidly changing traffic environments has not been investigated. To this end, this

chapter presents a first step to mathematically define the impact of measurement age

on distributed routing by introducing a model, which incorporates dynamic traffic

demands and measurement ages. We formulate 2 single stage predictors for 2 dis-

tinct link load metrics, which takes into account the ages of measurements. Finally,

we formulate a decision-making problem for reconfiguring the network with new link

weights and employ a myopic policy to iteratively solve this problem. We demon-

strate, through simulations, the performance of our system and the trade-offs between

link load metrics under different measurement age scenarios.
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Chapter 6

CONCLUSION

In this dissertation, edge networks with focus on distributed learning and adaptive

algorithms are studied. Chapter 2 demonstrated a technique for the coalescence of

multiple generative models, which finds applications in the accumulation of data

on an edge network. Chapter 3 proposed a federated learning framework with power

allocation constraints in wireless setting. The problem at hand is effectively solved by

decomposition of the optimization problem. Chapter 4 presented a federated learning

based technique for profit maximization of charging stations in the absence of private

EV owner information. In the following, the main contributions and possible future

directions are discussed. Chapter 5 studied a time varying traffic engineering problem

with considerations of age of measurements. Designed NP-hard optimization problem

is solved using an adaptive load-sensitive technique.

Generative models often find applications in computer vision and image genera-

tion. However, a key advantage of generative models is that they can compress the

distributional information of a dataset into a deterministic model. This property

can be advantageous in edge learning problems, since an important challenge in edge

learning is the transfer of empirical information across edge devices. In addition to

compression, generative models further constitute the privacy of personal data, since

the original dataset could almost never be reproduced by the generative model. In-

stead, a generative model generates unique data samples with the same set of features

of the original data samples. The key question addressed in Chapter 2 is whether a

more compact expression of multiple datasets or generative models be obtained by a

single generative model. Such a compact expression is possible via the use of analyt-

173



ical tools from Optimal Transport theory. In particular, the Wasserstein barycenter

problem is formulated in terms of generative models and a Wasserstein-1 cost can be

minimized. The minimizer is a barycenter model of multiple generative models and

comprises the empirical distribution information residing in initial generative models.

Experimental studies confirms analytical findings. The use of barycenter model in

edge networks for faster training of new generative models is envisaged. More use

cases of the developed fast adaptation technique is yet to be explored.

Federated learning has gained popularity over the last decade. However, the ap-

plication of federated learning on wireless medium with power allocation constraints

is still an open research field. In an attempt to narrow this gap, the impacts of wire-

less environment and power constraints on federated learning are investigated in this

dissertation. A joint optimization problem in terms of these constraints is formulated.

Due to the entanglement of gradient information and power constraints at each edge

user, the optimization problem is shown to be NP-hard. However, a novel decompo-

sition of the optimization problem, which can be efficiently solved, is formulated at

the cost of additional bandwidth. Experimental results confirm our analytical results

and show that the decomposed optimization problem and the accompanying algo-

rithm minimizes the bias and variance of the received gradient signal. Therefore, the

proposed algorithm facilitates a decent convergence to minimum cost.

The biggest obstacle for widespread of electric vehicles is the long charging du-

ration in comparison to gasoline fueled vehicles. EV charging duration may further

increase if the charging demand concentrates at certain charging stations at certain

times of the day. To this end, efficient demand reshaping policies tailored for EV

charging has to be developed and deployed to mitigate catastrophic effects of charg-

ing congestion. However, the lack of private EV owner information poses a significant

challenge to predict EV charging demand. In this dissertation, a federated learning
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based technique is developed to predict EV charging demand across charging stations

by leveraging the data collected at charging stations. Trained model is subsequently

employed to compute optimal pricing policy, which will ensure maximum profit for

charging stations as well as shorter queues for EV charging, improving the EV charg-

ing experience for users.

The traffic engineering problem had been extensively studied in the literature as

a robust and effective way of routing traffic in conventional networks. Yet, the im-

pact of measurement age on the performance of traffic engineering techniques under

rapidly changing traffic environments has not been investigated. To this end, Chapter

5 mathematically defines the impact of measurement age on distributed routing by

introducing a model, which incorporates dynamic traffic demands and measurement

ages. The proposed link weight update algorithm takes into account the dynamic

traffic demands as well as age of traffic measurements to ensure robustness. Exper-

imental studies illustrate that the proposed algorithm provides more robust traffic

engineering in comparison to the state-of-the-art techniques with high efficiency. The

expansion of this technique to software defined networks (SDN) is possible and, in-

deed, SDN constitutes a less demanding linear optimization problem. However, the

solution of this linear program still needs convex numerical solvers and requires the

development of age-aware control of link weights, which needs further exploration.
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