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ABSTRACT

Accurate knowledge and understanding of thermal conductivity is very important in a

wide variety of applications both at microscopic and macroscopic scales. Estimation,

however varies widely with respect to scale and application. At a lattice level, calcu-

lation of thermal conductivity of any particular alloy require very heavy computation

even for a relatively small number of atoms. This thesis aims to run conventional

molecular dynamic simulations for a particular supercell and then employ a machine

learning based approach and compare the two in hopes of developing a method to

greatly reduce computational costs as well as increase the scale and time frame of

these systems. Conventional simulations were run using interatomic potentials based

on density function theory-based ab initio calculations. Then deep learning neural

network based interatomic potentials were used run similar simulations to compare

the two approaches.
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Chapter 1

INTRODUCTION

1.1 Thermal Conductivity and Its Importance

A multitude of situations and applications require prior knowledge of the thermal

conductivity of a particular substance either as a bulk material or at an atomic unit

cell level. Choosing the right material for the application at hand quite often will

depend on that material possessing the adequate value of thermal conductivity. For

instance, hot food from a restaurant is often packed in plastic or styrofoam boxes

since these materials prevent the loss of heat to the outside environment, thus keeping

the contents hotter for longer. These materials are thermal insulators, in that they

hinder the transport of heat through them. This is a direct result of low thermal

conductivity. On the other hand, metallic vessels and containers used in kitchens are

thermal conductors. Meaning, they readily allow the transport of heat through them

because metals in general have high thermal conductivity.

1.2 Thermal Conductivity of Bulk Materials

Thermal conductivity of bulk materials refers to the ability of a material to trans-

port heat through its volume at a macroscopic scale. The interactions that take place

between individual atoms at a unit cell level are irrelevant here. The scenario of the

restaurant in the previous paragraph is a perfect example of such a case. Applications

like temperature measurement and active cooling of certain systems also require good

understanding of thermal conductivity. These scenarios use the thermoelectric effect

to measure temperature or even create localized hot and cold zones.
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1.2.1 The Thermoelectric Effect

The term “thermoelectric effect” is used to refer to three different phenomena – the

Seebeck effect, the Peltier effect and the Thomson effect. Of the three, the first to be

discovered was the Seebeck effect by Thomas Seebeck in 1821 [7]. He discovered that

a temperature difference across a junction made from dissimilar metals resulted in an

electric potential difference across that junction. As a result, the term “thermoelectric

effect” commonly refers to the Seebeck effect.

The most common application of the Seebeck effect is to measure temperature.

This is done by the use of a thermocouple. These devices find themselves to be

useful anywhere starting from furnaces to fog machines. Being simple in principle

and compact in design, thermocouples have a wide range of operating temperatures

(-270 – 3000 C)[1]. In addition to this most thermocouples do not require expensive

and/or rare materials as raw materials.

In 1834, the converse of the Seebeck effect was proven by Jean Peltier [7]. Known

as the Peltier effect, here a temperature difference is created by applying an electric

potential difference across a junction. This is the main operating principle behind

devices like peltier coolers. These are devices that consume electric power in order to

generate localized regions of high and low temperatures.

Both the Seebeck and Peltier effects have associated coefficients, which are prop-

erties of the materials that make up the junction. These coefficients dictate the

voltage and temperature difference respectively and are assumed in most cases to be

constants. However, in a significant number of cases, these coefficients are found to

be varying with temperature, thus creating a gradient. This was identified by Lord

Kelvin (William Thomson) in 1851 [1]. The Thomson effect considers the effects like

joule heating into effect.

2



The Seebeck Effect

The Seebeck effect describes a phenomenon where a temperature difference across

a junction results in an electric potential difference (voltage) across that junction.

Devices like the thermocouple make use of this effect to measure temperature. The

voltage developed can be estimated as follows

J = σ(−∇V + Eemf )

where S is the Seebeck coefficient. Then, the current density can be estimated using

the equation below.

Eemf = −S∇T

Where,

J : Current Density

σ : Local thermal conductivity

∇V : Local voltage

S : Seebeck coefficient

∇T : Temperature gradient

Measurement of temperature is not the only mainstream application of the See-

beck effect. Another class of devices that use this phenomenon are thermoelectric

generators (TEGs). These devices use the heat flux from any source as an input and

then output usable electrical energy. TEGs have no moving parts or are solid state,

making them virtually maintenance free. This enables their use in unmanned/high

stress environments where frequent servicing is either not possible or viable. TEGs

have been used in applications where an already established process generates waste
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heat, like in power plants and the automobile sector.

Waste heat from fossil fuel power plants can be used to generate usable electric-

ity, thus increasing the efficiency of the plants. In the automobile sector, the heat

generated during braking is used to power TEGs. The electricity generated can be

used to power the vehicle’s systems. And since this acts as an energy drain for the

heat generated, braking efficiency is slightly increased as well.

Applications of TEGs need not be limited to recycling waste heat. There are

cases where TEGs are the primary source of power as well. The heat generated by a

radioactive isotope can be the heat source for TEGs that supply power to systems that

cannot have bulky energy solutions. This is the idea behind the electricity generators

on board multiple space probes. In a place where quite literally every gram of weight

counts, TEGs offer a lighter and more reliable alternative to chemical energy storage.

The Peltier Effect

While the Seebeck effect generates a voltage from a temperature difference, a peltier

device seeks to generate a temperature difference by consuming electric energy. Lit-

erally, this is the converse of the Seebeck effect. And like the Seebeck effect, there are

range of devices that use this phenomenon and are applied in a wide variety of cases.

The most common application of the peltier effect is in peltier coolers, also known

as thermoelectric coolers (TECs). These solid state devices can be considered to

be the counterparts for TEGs. And given that the main outcome is the creation of

localized regions of high and low temperature, these devices act as heat pumps. Given

their lack of moving parts and small form factor, TEGs offer a compelling alternative

to conventional cooling / heating systems in certain applications.

TEGs do not create a specific temperature for a given set of conductors and input

current. Rather, they create a specific temperature difference. Using this effect,

4



the cooling of the “hot” side of the cooler can result in much lower than normal

temperatures in the “cold” side. One of the best applications of this idea can be seen

in the cloud chamber particle detector created by electrical engineer and popular

YouTuber, Mehdi Sadagdar on his YouTube channel, ElectroBOOM [9].

In the video, Mr. Sadagdar creates a sealed glass chamber whose base is a very cold

and dry surface. The air in in the chamber is evacuated and filled with alcohol vapors.

Left undisturbed, any particles of radiation passing through the chamber collides with

the alcohol vapour, creating a small but visible condensed cloud of alcohol, similar

to a vapor cone around a fighter plane breaking the sound barrier. Usually, the cold

surface is created using dry ice or even liquid nitrogen. Mr. Sadagdar goes another

way, by using a bank of peltier coolers. He freezes the hot side in salt water, thus

enabling the cold side to achieve temperatures cold enough to sustain alcohol vapors.

Peltier coolers can be theoretically used to cool electronic components as well. As

part of my course work, I was involved in a project which explored the possibility of

a TEC replacing a conventional heat sink and fan cooling solution for a low powered

laptop CPU. The scope of the project was quite limited, and constraints were high. It

was understood during this project that the thermal conductivity of the junction was

important to take into account the joule heating effect. The junctions in the cooler

had to be chosen in such a way that there would be minimal heat flow between the

hot and cold sides of the cooler.

1.3 Lattice Thermal Conductivity

Study of thermal conductivity at a lattice level has its own importance. The study

at a macroscopic level mainly focuses on the applications in real life. While the study

at a microscopic or lattice level explores the physics behind it all. In most metals

and semiconductors like silicon, lattice thermal conductivity is the dominant mode
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of thermal transfer within material [10]. Hence, the study of lattice thermal conduc-

tivity provides insight into the mechanism by which heat is transported through the

medium. In the case of semiconductors, lattice thermal conductivity is particularly

useful in the electronics industry. For instance, doping of semiconductors to make

particular types of diodes, junctions, etc. While the primary reactions for doping

would be to alter properties like electrical resistance and diode characteristics, ther-

mal conductivity becomes a very relevant factor when considering effects like thermal

dissipation and efficiency. The subsequent chapters focus on the mechanisms behind

thermal conduction and estimation of lattice thermal conductivity of a supercell. The

structure is a medium entropy alloy, made out of silicon, germanium and tin. The

concentration of tin will be varied and the value of thermal conductivity estimated.
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Chapter 2

INTERATOMIC INTERACTIONS

In crystal lattice structures, the lattice vibrations themselves are a major con-

tributing factor for the thermal conductivity of the unit cell[3]. These vibrations, or

phonons are responsible for the rate of flow of free electrons within the unit cell, that

in the end determine the the thermal conductivity of that cell. However, estimating

the phonon interactions in a unit cell, even with a simple lattice structure is no easy

task. There exists no unified theory that fits all cases; some provide high accuracy at

the cost of system scaling and others vice-versa.

In the early stages of development of the field, popular theories included that

Boltzmann kinetic approach and molecular dynamic simulations. However, given the

limitations of computational technology of the era, these approaches had their draw-

backs with the computational costs being high and lacking in accuracy in many cases.

Later advancements in computational hardware and software allowed for the use of

density functional theory based potential energy surfaces (PES) and high performance

computing based molecular dynamics simulations. The physics and mathematics be-

hind these approaches is well beyond the scope of this thesis, but the basic ideas

behind them could prove useful.

2.1 Density Functional Theory

Density Functional Theory (DFT) is an approach often used to study molecular

interactions in many-body systems. Being a computation physics based approach,

DFT is a popular way to estimate the interaction of atoms and electrons in a lattice
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as functionals [5], or functions of functions. When applied to cases like calculation

of many body potentials, the DFT approach eliminates the need for higher order

parameters including material properties. This results in what is known as an ab

initio or first principles calculations [14].

Popular DFT techniques provide interatomic potentials as a combination of those

determined by the structure and composition of the unit cell and those potentials that

are a result of interatomic interactions. This results in a supercell being represented

as a set of n one-electron Schrödinger-like equations, n being the number of atoms in

the super cell [14]

2.2 Ab Initio Calculations

DFT techniques estimate the chemical and physical properties of a unit cell or

supercell by trying to create functionals that describe the interaction between atoms

of that cell. The accuracy of this technique suffers due to issues that are difficult and

are often impossible to resolve. These may include difficult-to-estimate functionals

that correspond to self interaction of atoms as well as interaction between atoms that

are not in the same vicinity. Factors like poor estimation of ionization energy and

lack of accurate descriptions of charge transfer within the cell add to the inaccuracy

as well [4].

Ab Intio, or first principles calculations seeks to get around this problem by de-

scribing the system of n atoms in terms of n one-electron Schrödinger-like equations,

or Kohn-Sham equations. Essentially, the properties of the system are estimated by

considering the interactions of any atom with its closest neighbours. This approach

has reasonably high accuracy provided the system scale, i.e the number of atoms is

not too large. The reduction in computational requirements even with today’s tech-

8



nology is an added bonus.

2.3 Supercell Structure Description

For the scope of this thesis, the diamond-like structure from [11] was used. The

lattice parameters were according to the table below.

Figure 2.1: Supercell Structure - Vesta

Parameter Value

a 48.87630

b 48.87630

c 48.87630

α 90.0000

β 90.0000

γ 90.0000

Table 2.1: Cell Parameters
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The cell contains a total of 5832 atoms, with a volume of 116760.242173 �A3
.

For the scope of the thesis, the supercell contains three different atoms - silicon,

germanium and tin. The concentration of tin was varied as a fraction of the total

number of atoms in the supercell. Once the fraction of tin was selected, the remaining

atoms were split equally between silicon and germanium.
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Chapter 3

MACHINE LEARNING BASED MODELS

Accuracy of results from conventional molecular dynamics (MD) and Monte Carlo

(MC) simulations depend on the accuracy of the potential energy surface (PES)

needed. The most common ways of calculating PESs are Ab initio methods based

on density functional theory (DFT). All this accuracy however, comes with a price.

The simulations from these PESs can be carried for a time-frame of a few tens of

picoseconds and for a few thousand atoms at best [2]. These simulations are also

very expensive in terms of computational power needed. The empirical potentials

obtained through these methods are very unreliable when the system is scaled up, in

terms of the time-frame and the number of atoms.

3.1 Potential Solutions

One of the most promising ways to tackle this accuracy versus scale problem is

by the use of supervised machine learning concepts like neural networks. Running

machine learning based algorithms have become more plausible and computationally

viable over the past few years. This can be attributed in no small part to develop-

ment in dedicated hardware and software environments specifically designed for this

purpose. As a result, there has been great progress in the field of using machine

learning algorithms to calculate DFT based PESs [2; 6; 8; 12]

The idea is to build a network that consumes a certain input; in this case the

generalized co-ordinates that determine the energy configuration as the output. The

input and output “layers” are associated with each other by means of hidden layers.
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The number of hidden layers and the number of nodes per layer determine the accu-

racy as well as the computational cost of the model. These associations are calculated

in terms of weighted real value parameters and activation functions, initially chosen

at random. By using a data set comprising of the input and output, the model is

“trained” by iterative adjustment of these parameters. The model is then fed fresh

data, which then outputs a set of energy configurations, thus resulting in a reasonably

accurate PES.

This approach all but removes the need to directly generate a DFT based PES.

The hidden layers, by definition is a black box. There is no need for the workings of

these layers to be explored. Here, the model “predicts” the output of a DFT based

calculation without actually performing them. This has the tremendous advantage

of drastically reducing computational requirements as well as allowing for the scaling

up of the system both in terms of time scale and the number of atoms. The accuracy

of such a system depends on the activation functions used as well as the accuracy of

the data set used to “train” the model to begin with.

3.2 DeepMD-Kit

One of the most well known and robust software packages that can be used to

train and test a deep learning based NN model is DeepMD-kit [13]. This is a package

written in Python/C++ that provides deep learning based PESs to run MD and MC

simulations. This approach provides PESs for small scale and high scale systems.

And is not limited to pure substances either. This package makes use of TensorFlow,

resulting in a very streamlined, efficient and automated training process. DeepMD-kit

also integrates well with conventional MD simulations systems like LAMMPS. This

results in a system that is a full end-to-end solution for MD simulations, starting from

12



training of data to get PESs and then running simulations based on the resulting

PESs.

The DeepMD method is integrated with LAMMPS using the ”pair-style” com-

mand in the LAMMPS input file. A trained model was created using a json file con-

taining the input parameters for silicon. The training was conducted with 2000000

iterations, in batches of 100000. The cut-off radius was set at 6�A. After 2000000

iterations were complete, the model was frozen and tested. This model was then

passed to LAMMPS as an input using the ”pair-style” command.
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Chapter 4

SIMULATIONS AND RESULTS

4.1 Simulations in LAMMPS

The super cell discussed in [11] was then built in Vesta and a corresponding

POSCAR file was generated. This file contained a description of the cell. More

specifically, the number, types and locations of various atoms inside the unit cell.

A custom MATLAB script was used to then generate different POSCAR files, one

each for different concentrations of tin. The concentration of tin was varied as a

fraction of the total number of atoms in the unit cell, ranging from 1/3 to 1/108.

These POSCAR files were then converted into a format that can be used as inputs

for LAMMPS.

A custom python script was written in order to permute the POSCAR files. The

idea here was to randomly shuffle the positions of the atoms within the unit cell in

order to account for the limitations of current manufacturing methods. Ten such

POSCAR files were created, there by resulting in 10 different configurations or ar-

rangements of atoms in the super cell. These configurations were then used as input

data files for LAMMPS and then simulations were carried out to estimate the thermal

conductivity of the super cell. The average value was considered as the final thermal

conductivity at that particular temperature. These simulations were then repeated

for different temperatures, starting from 300K and going up to 1200K with 50K in-

crements. The process of running ten simulations per value of temperature between

300K and 1200K was then repeated for various concentrations of tin. This allowed

for the following two separate estimations -
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1. Thermal conductivity v/s temperature at constant Sn concentration

2. Thermal conductivity v/s Sn concentration at constant temperature

4.2 Results

For each concentration of tin, a temperature range of 300K – 1200K was selected.

There were 10 configurations / arrangements of atoms in the super cell. This resulted

in 190 simulations run for each concentration of tin. This provided adequate number

of data points to understand the variation of thermal conductivity.

4.2.1 Variation With Atomic Arrangement and Temperature

Tin Concentration - 1/108 Fraction

There was no general trend in the variation of thermal conductivity with respect to

atomic arrangement. The value did vary, but in an unpredictable way. For instance,

at a temperature of 300K, the following variation was observed.

Figure 4.1: Thermal Conductivity v/s Configurations - 300K

The thermal conductivity varied by roughly 15% from the average at this temper-

ature. The unpredictable variation of thermal conductivity was demonstrated by the

15



lack of a general trend in the plots below.

Figure 4.2: Thermal Conductivity v/s Configurations - 600K

Figure 4.3: Thermal Conductivity v/s Configurations - 900K

16



Figure 4.4: Thermal Conductivity v/s Configurations - 1200K

Once all 190 simulations were run, the average thermal conductivity was calculated

at each temperature. A plot was then drawn comparing the average temperature

against temperature and the following was obtained.

Figure 4.5: Average Thermal Conductivity v/s Temperature

It was observed from this plot that the average thermal conductivity had an overall

downward trend with increase in temperature. Thermal conductivity in metals and

alloys is an electronic effect and depends very strongly on the flow of free electrons.

At higher temperatures, the atoms in the super cell vibrate with greater frequency

17



and amplitude. This obstructs the smooth flow of free electrons, thereby decreasing

the overall thermal conductivity. This effect was seen in the super cell used in the

simulation as well in the form of the overall downward trend.

The variation of thermal conductivity from the average can be visualized using

the error bar below.

Figure 4.6: Average Thermal Conductivity - Error Bar

The table below shows the percentage variation of the maximum and minimum

values of thermal conductivity from the average value.

Temperature Variation of max. K (%) Variation of min. K (%)

300K 14.949119947731823 14.149236310133576

350K 12.7214350908812 16.51837827154006

400K 9.544779573975525 10.138664747497927

450K 8.628067878692104 8.573220246066182

500K 4.726078451850939 5.163781056781602

550K 7.82324763624621 6.2086976650497325

600K 5.0874089208085715 6.676440621681132

650K 6.433412664163807 13.450336440918974

700K 12.169224657549503 10.031526136749063
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750K 15.42051472254751 6.7305970330663865

800K 14.662706297342986 15.680670566455554

850K 5.743987799151685 9.983079764446083

900K 8.339562683542974 15.313812712768806

950K 10.244581471337241 7.945156773677783

1000K 8.976832154987289 9.281153405119532

1050K 15.563767334433413 8.195659603475299

1100K 15.056197084917205 9.834027072332102

1150K 14.46986554505234 14.779647811091593

1200K 10.141777483415229 9.800756466442328

Table 4.1: Variation of K From Average Value (Sn -

1/108)

From the table, it was observed that the highest variation occurred at 800K while

the lowest variation occurred at 500K.

Tin Concentration - 1/12 Fraction

The POSCAR file were rebuilt by increasing the concentration of tin to 1/12 fraction.

This file was then put through 10 different rearrangements to create 10 configurations

and the simulations were re-run. Here again, no general trend in the variation of

thermal conductivity was observed at any particular temperature. The following

plots show this lack of trend at 300K, 600K, 900K and 1200K.
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Figure 4.7: Thermal Conductivity v/s Configurations - 300K

Figure 4.8: Thermal Conductivity v/s Configurations - 600K
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Figure 4.9: Thermal Conductivity v/s Configurations - 900K

Figure 4.10: Thermal Conductivity v/s Configurations - 1200K

There was a difference in the trend of the average thermal conductivity against

temperature compared to the 1/108 fraction. While in the case of the latter there

was a clear downward trend, in this case there was no trend at all. This can be seen

in the plot below.
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Figure 4.11: Average Thermal Conductivity v/s Temperature

The following error bar was plotted, showing from the variation of the average

thermal conductivity at each particular temperature.

Figure 4.12: Average Thermal Conductivity - Error Bar

The table below shows the maximum and minimum variations of thermal conduc-

tivity from the average at each particular temperature.

Temperature Variation of max. K (%) Variation of min. K (%)

300K 11.4274134612636 9.55889495891503

350K 12.337150116168978 16.62134551525248
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400K 9.499692398778114 8.408502248956541

450K 11.4274134612636 9.55889495891503

500K 13.355471887180483 11.623731904065792

550K 10.777028441441377 11.275333418496803

600K 5.752647104200773 9.788890690298286

650K 10.693704566486732 5.525875934271937

700K 10.693704566486732 5.525875934271937

750K 11.4274134612636 9.55889495891503

800K 5.634530644956691 12.45707591165573

850K 13.482039254282341 6.593814005433288

900K 7.759071955954075 8.483419001574678

950K 15.086183426397549 13.45393964642916

1000K 11.42456236066247 9.566524843597072

1050K 15.178030072110577 10.543298767345743

1100K 7.671657975845833 6.229199147354027

1150K 5.283294044696646 9.623410450628976

1200K 5.414211346209397 13.793854251095174

Table 4.2: Variation of K From Average Value (Sn - 1/12)

From the table, it was determined that the highest variation occurred at 350K

while the lowest occurred at 1100K.

Tin Concentration - 1/3 Fraction

Similar to other tin concentrations, there was no general trend in the variation of

thermal conductivity with respect to the atomic configuration at any particular tem-
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perature. The corresponding trends at 300K, 600K, 900K and 1200K were seen.

Figure 4.13: Thermal Conductivity v/s Configurations - 300K

Figure 4.14: Thermal Conductivity v/s Configurations - 600K
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Figure 4.15: Thermal Conductivity v/s Configurations - 900K

Figure 4.16: Thermal Conductivity v/s Configurations - 1200K

However, there was a marked difference observed in the trend in the variation

of the average thermal conductivity with temperature. While at 1/108 fraction the

thermal conductivity decreased overall with temperature, in this case, the thermal

conductivity first decreased, then increased again after reaching a minimum value at

700K. This trend can be observed from the following plot.
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Figure 4.17: Average Thermal Conductivity v/s Temperature

The following error bar shows the variation from the average value. Table 4.2

shows the percentage deviation of K from the average value at each temperature.

Figure 4.18: Average Thermal Conductivity - Error Bar

Temperature Variation of max. K (%) Variation of min. K (%)

300K 12.958013488319297 21.83436039486742

350K 9.001024907207986 12.872964319651881

400K 18.239729085816073 10.714939408329462

450K 6.014510451968916 5.754531464472458
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500K 12.689905252466255 7.103916420967426

550K 9.302644919922038 8.836434616728816

600K 9.736595613902518 11.020126538493201

650K 6.803550977199705 6.859851413046127

700K 18.36498281695152 8.027514905231497

750K 8.052622715203176 14.410490904833548

800K 6.285332825926446 3.065405248764371

850K 7.000122887413854 10.689567308840457

900K 12.774838499859667 14.238824034108067

950K 10.868949283971356 14.582026001512657

1000K 11.190456126456686 8.773132565615798

1050K 9.478799200566733 8.437931427054918

1100K 9.092398202564251 9.443881600873315

1150K 9.563884047164375 13.145725960008765

Table 4.3: Variation of K From Average Value (Sn - 1/3)

The highest deviation was found to occur at 300K, while the lowest was observed

at 800K.
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Chapter 5

FUTURE WORK

Given the variations of thermal conductivity, a crucial next step appears to be

to run conventional simulations in LAMMPS for a wider dataset, including different

concentrations of tin. It is proposed that these simulations are repeated for tin con-

centrations of 1/4, 1/6, 1/9, 1/18, 1/27, 1/36 and 1/54.

It is also proposed that LAMMPS simulations are run for pure silicon and germanium

using the trained model for DeepMD-Kit. The final step would be to recreate models

for the diamond structure with varying tin concentrations, train individual models

for these structures in DeepMD-kit and then run MD simulations in LAMMPS to see

how closely the results match.
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APPENDIX A

RAW DATA

DATA COLLECTED FROM LAMMPS SIMULATIONS, BETWEEN
DECEMBER 2020 - APRIL 2021
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Results_1_3
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Temperature (K)
300 350 400 450 500

Configuration
Thermal Conductivity (W/m-K)

1 0.5546159901 0.443036870255 0.472651788441 0.473144715634 0.460636824298
2 0.619678527526 0.520629977163 0.531557926777 0.482584541803 0.50947710773
3 0.558872255922 0.533671369434 0.4970183085 0.480600007001 0.495607172728
4 0.474261298334 0.503234101982 0.496006784481 0.50632843385 0.493877528611
5 0.557828695785 0.505768512752 0.478808627235 0.464930028736 0.493014313381
6 0.610450339628 0.554265074582 0.468338903833 0.459550959559 0.466155103817
7 0.439383157562 0.48722957906 0.437477636885 0.490699550051 0.491295611131
8 0.576568616063 0.480372127508 0.479412578709 0.512982930451 0.558693090582
9 0.594564105196 0.54747089723 0.579349299016 0.488347458606 0.460559443381
10 0.634957366039 0.509274361384 0.459163552393 0.516938063574 0.528475625448

Temperature (K)
550 600 650 700 750

Configuration
Thermal Conductivity (W/m-K)

1 0.460275988823 0.464507545204 0.474710957923 0.477944995963 0.478376370623
2 0.475577834151 0.438818482529 0.449492895462 0.441024714785 0.480046263946
3 0.426264440187 0.465729686897 0.46479187851 0.467868979686 0.479390045855
4 0.511079514627 0.49852777965 0.505477982691 0.427413004444 0.461502560279
5 0.459288268589 0.516630687325 0.451905190033 0.428811080222 0.502680808455
6 0.457416892876 0.459202650293 0.490363842309 0.542563100893 0.502158904331
7 0.458612049763 0.48924742378 0.441844475772 0.467682848478 0.485746093043
8 0.489806538425 0.418909780528 0.473251968997 0.421584792413 0.420196475922
9 0.475748439121 0.493006735953 0.506661839261 0.428335546842 0.398178244508
10 0.461750229751 0.463335346751 0.485365953101 0.48058523659 0.443909398223

Temperature (K)
800 850 900 950 1000

Configuration
Thermal Conductivity (W/m-K)

1 0.460617178568 0.426898944515 0.425688724356 0.401872384298 0.495560514463
2 0.457015068755 0.47968563774 0.528100072981 0.396528935676 0.5056642027
3 0.449917340118 0.49125948896 0.401600958946 0.464957823427 0.511894878433
4 0.455648370709 0.495884844815 0.481832231413 0.514677934879 0.505190478301
5 0.458003337815 0.477529610482 0.468372066159 0.474432776623 0.550074988868
6 0.467120547157 0.413903170018 0.491929646924 0.478956955424 0.461967200215
7 0.474159555942 0.463511417424 0.418614454731 0.460643328216 0.468441688994
8 0.491133153184 0.485796300894 0.480071709009 0.486575229228 0.50866753211
9 0.44792439283 0.455981930612 0.496093223702 0.460656785483 0.488368357742
10 0.45935408057 0.443981133994 0.490479702744 0.502916774615 0.451312278379

Temperature (K)
1050 1100 1150 1200

Configuration
Thermal Conductivity (W/m-K)

1 0.459081040764 0.476016018613 0.601070413293 0.511182110925
2 0.543499637665 0.568518125475 0.602596426539 0.533531562439
3 0.454553314949 0.530852130855 0.514418668594 0.563583690382
4 0.482057745002 0.543523995939 0.534197003854 0.510238651527

Tin Concentration = 1/3
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5 0.53343361399 0.51839918398 0.571806610988 0.536250451886
6 0.465857165681 0.494354451741 0.545094696214 0.569555276337
7 0.495637357911 0.471919176137 0.528913119 0.524483038404
8 0.494386743562 0.558830448444 0.570685691162 0.530462781117
9 0.518197776875 0.493477316674 0.553477727026 0.56074186432
10 0.517723800053 0.555454166479 0.47769459454 0.607114398947
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Temperature (K)
300 350 400 450 500

Configuration
Thermal Conductivity (W/m-K)

1 0.912635472122 0.904645993306 0.810829362235 0.912635472122 0.777363577158
2 0.814232196924 0.799333472089 0.876822333082 0.814232196924 0.848482185019
3 0.891011700978 0.808016275374 0.799373737794 0.891011700978 0.779882302021
4 0.836624699262 0.883627521392 0.824231522978 0.836624699262 0.692872118218
5 0.772369230352 0.765172517004 0.782383322862 0.772369230352 0.709780038167
6 0.749974261887 0.671444536637 0.753969698646 0.749974261887 0.684725922069
7 0.782105331881 0.721603796657 0.836080848025 0.782105331881 0.767493257015
8 0.924001228497 0.825388598001 0.761675430746 0.924001228497 0.822214740904
9 0.827780305201 0.896221458903 0.828744244625 0.827780305201 0.673428269907
10 0.781670464967 0.77750064007 0.733421884475 0.781670464967 0.86377011569

Temperature (K)
550 600 650 700 750

Configuration
Thermal Conductivity (W/m-K)

1 0.777731372027 0.772552862942 0.775241654738 0.775241654738 0.912635472122
2 0.860589767432 0.684825956129 0.761943185555 0.761943185555 0.814232196924
3 0.70881306617 0.762307277485 0.794199491693 0.794199491693 0.891011700978
4 0.863651992036 0.741190290514 0.765232315059 0.765232315059 0.836624699262
5 0.821920500301 0.790606704204 0.778360916083 0.778360916083 0.772369230352
6 0.6917249552 0.802807528036 0.851298833143 0.851298833143 0.749974261887
7 0.724352633901 0.721907078961 0.778066791717 0.778066791717 0.782105331881
8 0.782489853968 0.748457648871 0.732316300604 0.732316300604 0.924001228497
9 0.774377315309 0.791660875537 0.726560845482 0.726560845482 0.827780305201
10 0.790657978807 0.775054301077 0.727360051477 0.727360051477 0.781670464967

Temperature (K)
800 850 900 950 1000

Configuration
Thermal Conductivity (W/m-K)

1 0.655704288581 0.713513970856 0.730076170367 0.776511422884 0.709498352648
2 0.614443621188 0.729013357429 0.642627139719 0.717582871342 0.853232746248
3 0.713853537937 0.76709184866 0.621136116693 0.795817658178 0.692493654233
4 0.679887989613 0.701066253289 0.731376224537 0.615164463481 0.79970636341
5 0.696968028637 0.631387348709 0.659741445736 0.647094145001 0.84105023855
6 0.717714636545 0.639924837 0.72535887424 0.710672889147 0.748204094806
7 0.741424440729 0.648938436111 0.686378468519 0.660451664536 0.797257967865
8 0.740814343305 0.649669691571 0.649860388144 0.598463525547 0.722667709305
9 0.721370423071 0.636704853334 0.678355615479 0.702719764443 0.758901355412
10 0.736588369231 0.642277560786 0.662232497403 0.690492919405 0.734479978532

Temperature (K)
1050 1100 1150 1200

Configuration
Thermal Conductivity (W/m-K)

1 1.03781290148 0.711639245896 0.728762159958 0.802864550406
2 0.923737783129 0.664698001043 0.710333485704 0.776036612237
3 0.823153936809 0.671252089551 0.756789098656 0.806914105844
4 0.948707173477 0.735019007836 0.764975747476 0.662005944788

Tin Concentration = 1/12
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5 0.942703643455 0.746498326188 0.741886186345 0.775174185212
6 0.905875431558 0.693983860634 0.764393995179 0.809511131371
7 0.882446242692 0.666031574195 0.703735943507 0.780087343393
8 0.823570332679 0.709753187591 0.736169509265 0.788835891434
9 0.91645292121 0.726429170974 0.656665426098 0.727793204312
10 0.806050586253 0.763234772176 0.702168133826 0.750112872281
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Temperature (K)
300 350 400 450 500

Configuration
Thermal Conductivity (W/m-K)

1 1.34517084376 1.4103377345 1.23443419514 1.41769534179 1.23532714256
2 1.23982147639 1.30407079358 1.21921215499 1.28841191386 1.32724217883
3 1.28720470195 1.36372925169 1.30540573602 1.35935416038 1.31983197279
4 1.49286668402 1.3629718792 1.42012136637 1.37688055703 1.35469616618
5 1.31774915481 1.43408628582 1.37129490381 1.31131966214 1.24747625863
6 1.12857039636 1.30527473182 1.29543840807 1.30925505175 1.27008737661
7 1.28810580534 1.31407277825 1.40228535715 1.40079681584 1.25702188345
8 1.51108934021 1.51159149178 1.25493853658 1.22813476715 1.35332889603
9 1.37232490997 1.28435249737 1.29576445302 1.28193953322 1.36415146752
10 1.16282012463 1.11948636054 1.16494827685 1.45919945129 1.29673706049

Temperature (K)
550 600 650 700 750

Configuration
Thermal Conductivity (W/m-K)

1 1.30458699684 1.24355674305 1.17373995568 1.2605595424 1.18372005446
2 1.23857147372 1.23286888219 1.18509232036 1.25654821832 1.3794053649
3 1.30717618447 1.3464468588 1.26380909948 1.40249609784 1.22850536322
4 1.37838995082 1.32056696838 1.22591729335 1.12491134629 1.19399949564
5 1.35120268989 1.32488343166 1.05107990428 1.31992288288 1.26562203991
6 1.1990084833 1.38827748568 1.26553944778 1.14066622254 1.13316126496
7 1.23393723864 1.38736244585 1.29255292967 1.15007946606 1.1146745892
8 1.22498983091 1.35486880396 1.26882767167 1.23234557608 1.16929352043
9 1.2614222495 1.26711561287 1.2600777942 1.22394264978 1.11842151135
10 1.28450671896 1.34474565586 1.15760379265 1.39192277585 1.16432496596

Temperature (K)
800 850 900 950 1000

Configuration
Thermal Conductivity (W/m-K)

1 1.26846035624 1.10311929433 1.17555037466 1.10635745338 1.12456258368
2 1.35575808448 1.11566165814 0.918896815975 1.05177170093 1.16169191844
3 1.19913401535 1.10451504042 1.00001491705 1.01109288775 1.07307472387
4 1.01906156721 1.02885842525 1.11075640794 1.21088156073 1.22035833653
5 1.07321731877 1.16239516425 1.02989222593 1.1196635922 1.01589942131
6 1.19298308477 0.993769453322 1.14516504646 1.19903686416 1.11520827305
7 1.24301852115 1.16739324865 1.14895554389 1.07911142115 1.04728428045
8 0.996981636392 1.15634722137 1.0595122645 1.15620638065 1.18465363696
9 1.19009692961 1.0848713258 1.12975467691 1.0125022156 1.06956707817
10 1.28516852741 1.12287647049 1.13211202584 1.03696844627 1.18602798298

Temperature (K)
1050 1100 1150 1200

Configuration
Thermal Conductivity (W/m-K)

1 1.03559132166 1.10794204061 1.08499757442 0.943250264884
2 1.06783791317 1.03984398226 1.061303138 0.968377577417
3 1.10814162162 1.23989467562 0.911198427682 1.11533844156
4 0.976299146104 0.97166699915 1.00340852186 0.978094358399

Tin Concentration = 1/108

36



Results_1_108

Page 2

5 1.07133424317 1.02946028427 1.03246365145 0.987876066453
6 1.10117405207 1.09163466436 1.22394192024 1.07042301187
7 1.04816612643 1.21102487869 1.09882498661 1.07035088388
8 1.22897029576 1.09440523595 1.0186465693 0.913392592813
9 1.01825012006 0.977027741515 1.07764640179 1.05894327214
10 0.978799298069 1.01352620934 1.17983191573 1.02034214573
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