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ABSTRACT

Visual navigation is a useful and important task for a variety of applications. As the preva­

lence of robots increase, there is an increasing need for energy­efficient navigation methods as

well. Many aspects of efficient visual navigation algorithms have been implemented in the lit­

erature, but there is a lack of work on evaluation of the efficiency of the image sensors. In this

thesis, two methods are evaluated: adaptive image sensor quantization for traditional camera

pipelines as well as new event­based sensors for low­power computer vision.

The first contribution in this thesis is an evaluation of performing varying levels of sen­

sor linear and logarithmic quantization with the task of visual simultaneous localization and

mapping (SLAM). This unconventional method can provide efficiency benefits with a trade­

off between accuracy of the task and energy­efficiency. A new sensor quantization method,

gradient­based quantization, is introduced to improve the accuracy of the task. This method

only lowers the bit level of parts of the image that are less likely to be important in the SLAM

algorithm since lower bit levels signify better energy­efficiency, but worse task accuracy. The

third contribution is an evaluation of the efficiency and accuracy of event­based camera inten­

sity representations for the task of optical flow. The results of performing a learning based

optical flow are provided for each of five different reconstruction methods along with ablation

studies. Lastly, the challenges of an event feature­based SLAM system are presented with re­

sults demonstrating the necessity for high quality and high­resolution event data. The work in

this thesis provides studies useful for examining trade­offs for an efficient visual navigation

systemwith traditional and event vision sensors. The results of this thesis also provide multiple

directions for future work.
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Chapter 1

INTRODUCTION

Robotics is a growing industry that is useful for a wide variety of applications such as in

manufacturing, assembly, transport, and earth and space exploration. As robots become more

prevalent and advanced, there is an increasing need for them to be more energy­efficient as

well. Traveling robots, or those that use portable batteries, are especially in need of low power

solutions [56, 2]. One of the common applications of these types of robots is visual navigation.

Visual navigation is the problem of a robot traversing an unknown area without any collisions

with use of only a visual sensor. Small robots performing visual navigation are useful for

both life­saving tasks such as search and rescue operations as well as fascinating tasks like

exploration and everyday tasks like carpet cleaning. All of these systems have in common

that they must perform their tasks within deadlines and under power constraints which are not

optimal.

While a considerable amount of work has been done on increasing the efficiency of visual

odometry algorithms themselves, notmuch attention has been placed towards the costs of visual

sensing. In this thesis, we focus on twomethods to aid in this goal: adaptive sensor quantization

and novel event­based vision.

Current imaging pipelines for consumer photography produce high­quality images appeal­

ing for human vision. The image sensor processing pipeline (ISP) was designed for this pur­

pose. The ISP processes the RAW data coming from the camera sensor to produce a finalized

image, usually in PNG or JPEG format. The particular ISP stages vary between manufactur­

ers, however most perform denoising, demosaicing, color transformations and gamut mapping,

tone mapping, and compression.

1



The first chapter of this thesis aims to minimize the ISP pipeline for improved energy ef­

ficiency. A key previous paper showed that all of the ISP stages that are tuned for aesthetics

are not necessary for many computer vision tasks [5]. This work provided inspiration for eval­

uating the particular task of visual simultaneous localization and mapping (SLAM) with data

from a camera with the ISP removed. Varying bit levels of linear and logarithmic quantization

will be evaluated revealing a trade­off between energy­efficiency and task accuracy. These

results lead to our new gradient­based quantization scheme which further improves efficiency

and performance. Image sensor quantization accounts for 50% of image sensing energy in

modern CMOS image sensors [8], so reducing the bit levels yields significant opportunities for

energy­efficiency in the pipeline.

Another method for energy­efficient visual navigation, besides changing a traditional im­

age sensor, is to utilize a completely unique type of image sensor. Event cameras output bright­

ness changes in the form of an asynchronous data stream of events, as compared to the discrete

frames of traditional cameras. Events are composed of a timestamp, brightness change polarity

number, and (x,y) pixel position corresponding to where the event occurred spatially. There are

multiple benefits to this new type of camera including, high temporal resolution, high dynamic

range, no motion blur, and a low bandwidth [17].

For the asynchronous data representation output from event cameras to be utilized, either

new methods for completing vision tasks have to be implemented or the representation must

be converted to a traditional frame­based form. Both of these methods are viable solutions that

are active recent areas of research. The advantage of converting event data into frames is that

the many years of previous work for traditional vision can be utilized. The disadvantage is

that converting the event data into simple intensity frames based on a constant duration split

reduces some of the benefits such as high temporal resolution and no motion blur. The second

2



part of this thesis focuses on the second method of converting event data into a traditional

representation for the tasks of optical flow and SLAM.

1.1 CONTRIBUTIONS

This thesis focuses on the representation of input data for visual navigation pipelines and

the trade­offs between energy­efficiency and task accuracy. The main contributions of this

thesis are:

1. In Chapter 3, a study of linear and logarithmic quantization of RAW images with respect

to localization accuracy and energy savings for visual SLAM

2. In Chapter 3, a new gradient­based quantization algorithm which quantizes the image

spatially at various bit levels for feature­based visual SLAM algorithms

3. In Chapter 4, a study comparing event intensity reconstruction methods with respect to

optical flow accuracy and efficiency

4. In Chapter 5, an analysis of estimating visual features in events for the task of visual

SLAM

3



Chapter 2

BACKGROUND

In this chapter an overview of visual navigation and particular methods used in this thesis

are provided. This chapter will be organized into three parts: visual features, tasks for visual

navigation, and event­based cameras for low­power computer vision.

2.1 VISUAL FEATURES

Visual features are interest points in an image that can be used for a variety of computer

vision tasks. These tasks include image alignment (homography), 3D reconstruction, motion

tracking, object recognition, indexing and database retrieval, and navigation. Features are

typically composed of two parts: a detector and a descriptor. The detector finds the location of

the feature and the descriptor gives the feature a unique signature.

In order for a feature to be most useful, it needs to have some key properties. A feature

needs to be invariant to transformations. This includes both geometric transformations such as

translation, rotation, and scale changes as well as photometric transformations such as bright­

ness and exposure changes. Features also need to be distinctive so that they can be differenti­

ated and matched.

2.1.1 ORB

ORB (Oriented FAST and Rotated BRIEF), an efficient and high performing feature, is

a fusion of the FAST (Features from Accelerated and Segments Test) keypoint detector and

4



BRIEF (Binary Robust Independent Elementary Feature) descriptor with performance enhanc­

ing modifications [45].

The FAST detector works by selecting a pixel p in an array and then comparing the bright­

ness of that pixel p to the surrounding 16 pixels that are in a small circle around p. If there exists

a set of 12 contiguous pixels in the circle which are all brighter or all darker than the intensity

of p by some threshold T, then it is selected as a keypoint. ORB adds an orientation and scale

component to these features. An image pyramid, a multiscale representation of a single image,

is created and FAST keypoints are found at each level of the pyramid. ORB also assigns an

orientation to each keypoint by computing the intensity weighted centroid of the patch around

pixel p. The direction of the vector from this pixel p to centroid gives the orientation [44].

The BRIEF descriptor creates a signature in the form of a 256­bit binary vector from the

keypoint found by the detector [7]. First the image is smoothed with a Gaussian kernel to add

invariance to high­frequency noise. Then a pair of pixels are selected in a defined 31x31 patch

around the keypoint. ORB chooses the pair of pixels using a learned greedy search. If the first

pixel is brighter than the second, a value of one is assigned to the bit, if it is not brighter a value

of zero is assigned:

τ(p;x,y) :=

 1 : p(x) < p(y)

0 : p(x) ≥ p(y)
(2.1)

where p is the intensity. The feature is defined from 256 of these tests:

fn(p) :=
∑

1≤i≤n

2i−1τ (p;xi,yi) (2.2)

ORB also adds a rotation invariant component to this process. The orientation of the key­

point is used to steer the descriptor. For any feature set of n binary tests at location (x,y), they

define the 2 x n matrix:

S =

 x1, . . . , xn

y1, . . . , yn

 (2.3)
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Using the patch orientation and the corresponding rotation matrix, they construct a steered

version of S:

Sθ = RθS (2.4)

So the operator becomes:

gn(p, θ) := fn(p) | (xi,yi) ∈ Sθ (2.5)

The angle is discretized, and a lookup table of precomputed BRIEF patterns is constructed [45].

2.2 OPTICAL FLOW

Optical flow is defined as the apparent motion of individual pixels on the image plane

caused by relative motion between an observer and a scene. Computing optical flow involves

the task of estimating per­pixel motion between two consecutive frames. Dense optical flow

finds the displacement of all image pixels, while sparse optical flow finds the displacement of

a sparse set of features. These displacements are used to calculate motion vectors. The key

constraints of traditional optical flow include the need for brightness constancy, small motion

between frames, and spatial coherence. The Kanade­Lucas­Tomasi method (KLT) solves the

optical flow equations for all pixels in a neighborhood by using least squares. This method

assumes that the displacement between two nearby frames is small and approximately con­

stant within a spatial neighborhood [32, 52, 48]. Neural networks have superseded this more

traditional method and are currently the state of the art method to compute optical flow. The

first convolutional neural network (CNN) approach for optical flowwas FlowNet. This method

used a U­Net like architecture with encoder and decoder parts [16]. The current state­of­the­art

optical flow approach is RAFT, which we will be introduce further in Chapter 4 [50].
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2.3 SLAM

Simultaneous Localization and Mapping (SLAM) is a computational problem of construct­

ing and updating a map of an environment, while at the same time keeping track of an agent’s

location within the map. Or in other words, given a series of observations, estimate the agent’s

location and a map of the environment. Acquiring a map while simultaneously localizing the

position of a robot within this map can be a challenge because localization and mapping are

interdependent. A visualization of the problem is shown in Figure 4.

There are many different variations of SLAM algorithms today. The three main paradigms

include: filter­based approaches (Kalman filters, Particle filters, and Graph­based methods),

global optimization approaches (ORB­SLAM), and learning­based approaches (RatSLAM)

[51]. Within these categories, the most common types of sensors used are laser range sensors,

cameras, and GPS.

2.3.1 Visual SLAM

Visual SLAM is a very popular type of SLAM due to its cost efficiency and simple sensor

configuration. It is simple because cameras are the only sensor used. Cameras are one of the

cheapest sensors available that have been used to directly perform SLAM. However, many

different types of cameras can be used in visual SLAM at all price points. Some examples are

simple monocular cameras (wide angle, fish­eye, spherical), compound eye cameras (stereo

and multi), and RGB­D cameras (depth and ToF).

Most visual­based SLAM includes two main components: the front­end and the back­end.

The front­end abstracts the sensor data into a form that can be used for the back­end. The

back­end performs inference on the abstracted data and computes the position and map.
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Figure 1. Schematic diagram of Simultaneous Localization and Mapping. Figure from [27]

Visual SLAM can be split into two trade­off types: sparse or dense and feature­based or

direct. Sparse SLAM systems use only a subset of all sensor information (pixels) available,

while dense SLAM systems use most or all of the sensor information (pixels) from each image

frame. Because of this property, the map generated from a sparse SLAM will be a scarce

map or point cloud, while that from a dense SLAM constructs a full set of points (not sparse),

aiming to complete every pixel or voxel of the target space. Dense SLAM systems require more

powerful computers to run the algorithms because they use more information. Feature­based

SLAM includes a step of extracting features from the input images and then matching those

features to solve the SLAM problem. Conversely, direct SLAMmethods directly use the input

image without any abstraction. Photometric consistency is used as an error metric for direct

methods, while geometric consistency of the feature points is used for feature­based methods.
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Feature-Based Direct

Visual SLAM Methods

Sparse Dense

Figure 2. The main categories of visual SLAM methods: feature­based or direct estimation
and sparse or dense map generation.
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2.3.2 ORB­SLAM2

ORB­SLAM2 is an open­source visual sparse feature­based SLAM system that can be

performed with either a monocular, stereo, or RGB­D camera [38]. In this thesis, we will

concentrate on the monocular ORB­SLAM2 version as that is the most cost­efficient.

ORB­SLAM2 performs four main tasks in parallel: tracking, mapping, re­localization, and

loop closing. ORB­SLAM2 is a feature­based algorithm, which means that it detects features

with ORB (Oriented FAST and rotated BRIEF) and then uses these features to estimate the

location and map. It is highly robust and compact due to a method of picking only certain

features and keyframes for reconstruction. This feature­based algorithm is simple and light

because it does not store all the positional information. ORB­SLAM2 operates in real­time

which is essential for autonomous control of a robot [38].

The main problem of visual SLAM is reconstructing the 3D­environment from the 2D­

images. There are threemain components involved in solving this problemwith a feature­based

SLAM.

Features: The first step is to detect features in images using a feature detector and de­

scriptor. ORB­SLAM2 uses the ORB detector and descriptor. ORB is a modified version of

the BRIEF (Binary Robust Independent Elementary Features) descriptor and FAST (Features

from Accelerated Segment Test) detector. These features were chosen because they are very

fast to compute and match but are still invariant to viewpoint [45].

Keyframes: The second step of visual SLAM is to select certain frames called keyframes.

Monocular SLAM was previously performed by processing every frame collected from the

camera. However, when the camera has not moved there is no new information and so it is not

necessary to perform SLAM on all of these frames.

The algorithm performs a survival­of­the­fittest technique in choosing keyframes which
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provides unprecedented robustness. The algorithm inserts many keyframes quickly, and then

later culls the frames by removing redundant ones. Certain keyframes are selected only when

the scene has changed. The computations are then only performed on these keyframes, instead

of all of the images captured. This reduces the computational effort of processing consecutive

frames with no new information.

Bundle Adjustment/Loop Closure: The last step of the ORB­SLAM algorithm is to per­

form bundle adjustment and loop closure to refine the visual reconstruction of the 3D structure

and viewing parameter estimates. Loop closure occurs when the current path has already been

seen. The map is then updated with the correctly associated data information. A bag of words

technique is used in ORB­SLAM to determine if the current image frame is similar to a frame

already captured.

2.3.3 LSD­SLAM

LSD­SLAM is a semi­dense direct­based SLAM system which utilizes image intensities

to estimate location and a semi­dense depth map. It is composed of three main parts: tracking,

depth map estimation, and map optimization. The depth map is only created for pixels around

large image intensity gradients [14].

2.4 EVENT CAMERAS

In 1991, Misha Mahowald, a graduate student at Caltech, along with Prof. Carver Mead

created a “Silicon Retina” which mimicked the neural architecture of an eye [33]. This sparked

work on neuromorhpic engineering and event­based cameras.
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Figure 3. Overview of the ORB­SLAM2 system. Figure from [38]

Event cameras have some unique properties due to their being modeled directly after the

human eye. These cameras measure only changes in light intensity. Events are composed of

a timestamp, brightness change polarity number, and x, y position corresponding to where the

event occurred spatially. Some of properties of event­cameras include a low­latency on the

order of microseconds, no motion blur, high dynamic range (140 dB), and ultra­low power

(1mW). Event cameras are advantageous for real­time interaction systems like robotics and

wearable electronics where there can be a need of operation in low lighting, power, and latency

[17].
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Figure 4. Overview of LSD­SLAM system. Figure from [14]

2.4.1 Voxel Grids

Zihao Zhu et al. introduced an event representation to maintain more information as an

input for neural networks [59]. The time domain is discretized and events are inserted into the

volume using linearly weighted accumulation similar to bilinear interpolation. Given a set of

Figure 5. Comparison of operation of an event camera vs a standard camera. The event
camera only outputs events when there is a change in brightness. Figure from Davide
Scaramuzza
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N input events and a set B bins to discretize the time dimension, they scale the timestamps to

the range [0, B − 1], and generate the event volume as follows:

t∗i = (B − 1) (ti − t0) / (tN − t1)

V (x, y, t) =
∑
i

pikb (x− xi) kb (y − yi) kb (t− t∗i )

kb(a) = max(0, 1− |a|)

(2.6)

where kb(a) is equivalent to the bilinear sampling kernel defined in Jaderberg et. al. [21].
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Chapter 3

ANALYZING SENSOR QUANTIZATION OF RAW IMAGES FOR VISUAL SLAM

In this chapter, various quantization schemes are evaluated along with resolution and frame­

rate ablation studies to introduce an energy­efficient imaging pipeline for visual navigation 1.

3.1 MOTIVATION

Simultaneous localization and mapping (SLAM) is one of the most critical algorithms for

robotic and embedded platforms performing navigation in the real world. SLAM, using a com­

bination of visual, inertial, and depth sensors, determines a map of the robot’s environment

while localizing or identifying the position/pose of the robot within that map. However, the

energy costs of running SLAM on real­time, mobile platforms can be expensive, limiting bat­

tery life for these devices in the wild. Thus, it is important to find energy­efficient pipelines

for SLAM that can still obtain good accuracy and performance to enable ubiquitous robotic

navigation.

Previous research for energy­efficient SLAM has utilized techniques such as motion plan­

ning and dynamic power management [34]. Real­time SLAM systems leverage efficient fea­

ture detection and description, local tracking and mapping, and parallel thread computing for

fast performance [37]. Most of these approaches have concentrated on increasing computa­

tional efficiency after receiving sensor data.

Monocular visual SLAM is an emerging algorithmwhich has reduced the number and types

of sensors necessary to a single visual camera, and has shown good localization results [37,

1This work was originally presented at the 2020 IEEE International Conference on Image Processing [10].
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38]. Advantages include being lightweight in the hardware, applicable for mobile cameras and

embedded platforms with low size, weight and power (SWaP). However, not much research has

looked at the energy costs of image sensing itself for visual SLAM. In particular, image sensor

processing (ISP) pipelines which convert RAW images to JPG/PNG images are normally tuned

for creating highly aesthetic and visually pleasing images. It is unknown if this processing is

needed for machine vision algorithms such as SLAM, and what optimizations can improve

energy­efficiency without sacrificing accuracy. For instance, reduced ISP pipelines have been

shown to save up to 75% of image sensing energy for other vision tasks [5].

In this chapter, we investigate the effectiveness of visual SLAM on RAW images, with­

out ISP processing, at varying types and levels of quantization. Image sensor quantization

accounts for 50% of image sensing energy in modern CMOS image sensors [8], yielding sig­

nificant opportunities for energy­efficiency in the pipeline. Our specific contributions include:

(1) comparing linear and logarithmic quantization of RAW images with respect to localization

accuracy for visual SLAM, and (2) introducing a new gradient­based quantization algorithm

which quantizes the image spatially at various bit levels that outperforms both linear and log­

arithmic quantization for feature­based visual SLAM algorithms. We validate these contribu­

tions by testing two state­of­the­art visual SLAM algorithms on seven video datasets. This, to

the best of our knowledge, is the first study to explore visual SLAM performance on RAW and

varying quantized images.

3.2 BACKGROUND

The image signal processing (ISP) pipeline is a method which converts the RAW data

from a camera into a digital image form. There are multiple steps involved in this process as

shown in Figure 7 including: white balancing, demosaicing, denoising, color transforms, tone
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(a)

(b)

Figure 6. (a) Experimental pipeline for analyzing quantization for Visual SLAM. The original
dataset is run through CRIP to get RAW quantized images that are used for both SLAM
methods. (b) ORB­SLAM2: Left ­ Scene mapping and camera trajectory. Center ­ Feature
detection for a single video frame. Right ­ Output camera trajectory compared to the ground
truth.

reproduction, and compression. A RAW image is usually mosaiced and 12 bit. Mosaicing is

performed with a Bayer filter, a color filter array which arranges RGB colors on the photosen­

sors. Demosaicing combines these separate colors into a traditional three channel RGB image.

White balancing, denoising, and color transforms are all processes to make the images visually

look better. Compression transforms a high bit value image into a lower bit value image. This

reduces the cost of storage and transmission of the data.

3.3 RELATEDWORK

Simultaneous localization and mapping (SLAM) has been an active area of research for

over 30 years [12, 1], with recent advances in monocular visual SLAM algorithms [37, 38, 14,
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Figure 7. Image signal processing (ISP) pipeline. Figure courtesy of Ioannis Gkioulekas

23, 13]. For energy­efficient SLAM, eSLAM achieves real­time performance on low­power

platforms by optimizing feature extraction and matching, yielding 41− 71× energy improve­

ments and 1.7− 3× frame rate speed up [30]. Further, hardware acceleration such as a FPGA­

based ORB feature extractor for SLAM reduced the energy consumption by 83% and reduced

the latency by 41% compared to an Intel i5 CPU [15]. We are primarily concerned with op­

timizing the image sensing energy prior to the visual SLAM algorithm, and our methods are

complementary with these systems.

The image sensor processing (ISP) pipeline utilizes demosaicing, denoising, color trans­

forms, white balancing, and tone mapping to achieve high quality aesthetic images. However,

for energy­efficiency, some smartphone cameras can bypass the ISP to produce RAW images.

Liu et al. proposed an ISP that selectively disables stages depending on application needs [31].

The work most aligned with ours concerns reconfigurable ISP pipelines for energy­efficient

computer vision [5]. This work shows how reduced ISP pipelines lead to vision accuracy­

energy tradeoffs and save 75% of sensing energy with a minimalistic pipeline using logarith­

mic quantization. In our work, we leverage these insights and apply them to the particular case
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of visual SLAM. We introduce a new spatially­varying quantization method to improve the

performance of visual SLAM over logarithmic quantization.

3.4 METHOD

3.4.1 Simulating RAW Data:

The main challenge to evaluating the effectiveness of Visual SLAM on RAW data is the

availability of suitably labeled datasets at varying quantization. We leverage the Configurable

& Reversible Imaging Pipeline (CRIP) from [5] which can reverse JPEG/PNG images back

to RAW format. CRIP was shown to have average pixel error of 1.064% and the PSNR was

28.81 dB as compared to real RAW images [5], lending confidence to the validation of our

algorithms on this data. Using CRIP, we can convert visual SLAM data available online.

For energy­efficiency, we turn off the ISP, including demosaicing, denoising, white balanc­

ing, color transforms, and tone mapping. This allows the sensor hardware to go straight from

image sensor ADC to the SLAM algorithm, eliminating the ISP chip. Since visual SLAM,

especially real­time systems, commonly work in grayscale intensity, most ISP optimizations

are not critical. We chose to not include color stages as the visual SLAM algorithms work

on grayscale intensity for real­time performance benefits. Images were taken in normal light

conditions, and thus denoising was not necessary. For tone mapping, we utilize the fact that

logarithmic quantization approximates the benefits of tone mapping [5] to avoid this stage. We

also tested some data with and without demosaicing to investigate whether visual SLAM’s ef­

fectiveness is affected by the Bayer color filter on the sensor inducing intensity changes on the

original mosaiced images. In addition to this pipeline, resolution and frame rate were explored,

however these could be simulated without the need for CRIP.
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3.4.2 Linear and Logarithmic Quantization.

The image sensor analog­to­digital (ADC) converters operate on each pixel, and the typical

linear ADC’s energy cost is exponential in the number of bits in its output. Thus, image capture

energy can be reduced via lower bit depths in sensor quantization, which can be achieved via

successive­approximation (SAR) ADCs [53]. Quantization can be either linear or nonlinear.

The nonlinear distribution of quantization levels can better represent images as the non­uniform

probability distribution function for intensities in natural images is log­normal [43]. A central

insight of Buckler et al. [5] was that log quantization uniformly mapped this distribution to

equal bit values, thus performing approximate tone mapping of the images without the ISP.

This yields beneficial accuracy/energy trade­offs across several computer vision benchmarks.

In our experiments, we test the effectiveness of uniform linear and logarithmic quantization

from 8 bits down to 2 bits for visual SLAM.

3.4.3 Gradient­based Quantization.

In addition to linear and logarithmic quantization, we introduce a new form of quantization

based on image gradients to help improve the accuracy­energy tradeoff. Our algorithm encodes

regions with high­intensity gradient with higher bit values and lower gradient regions with

lower values. Since most visual features contain gradient energy, this method preserves these

features while downgrading non­salient regions at low bits. This yields significant energy

savings in average bit depth across an image.

Gradient­based quantization relies on sensing the image gradient for pixels locally, and

could theoretically be implemented in image sensor hardware. Focal­plane processing can

compute basic functions such as edge detection and gradients in analog on the sensor [11], as
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well as optical pixels including Angle Sensitive Pixels [9] and event­based sensors [29]. While

there is potential to implement this in hardware, for this study, this method is simulated using

the preprocessed images for each quantization level.

Our algorithm is the following:

IGQ[m,n] = Ib[m,n][m,n], (3.1)

b[m,n] = min(⌈ W [m,n]

max(W [m,n])
∗ 7⌉+ bmin, bmax). (3.2)

where W [m,n] =
∑

(i,j)∈N(m,n) ∇IRAW is the total gradient energy of a neighborhood

N(m,n) around pixel (m,n),∇IRAW is the image gradient magnitude, b[m,n] is the bitmap

which maps a pixel to a quantization bit depth, and Ib[m,n] is the corresponding logarithmic

quantized pixel at that bit depth. We use the gradient of the image using a 5×5 kernel. We

use a 3 × 3 neighborhood, and shift all pixels between 3 and 8 bits precision using bmin =

3, bmax = 8. In Figure 8, we show an example frame which has been quantized using our

method. The red inlet shows an area where high gradient intensity is mapped to higher bit

quantization, the green inlet surrounding the dice shows edge information, which is a mix of

high and low quantization, and the blue inlet surrounding the floor with low gradient intensity

is mapped to lower bit quantization.

3.4.4 Visual SLAM benchmarks.

We deploy two benchmarks for Visual SLAM: ORB­SLAM2 [38], and LSD­SLAM [14],

both of which are open­source real­time monocular SLAM systems. ORB­SLAM2 is a feature­

based algorithm which detects features with ORB features, and then estimates the location and

sparse depth map based on these features. ORB­SLAM2 performs four main tasks in parallel:
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Figure 8. Gradient­based quantization frame. The three inlets show differences in bit range
with red (high gradient), green (mix of high and low), and blue (low gradient).

tracking, mapping, re­localization, and loop closing. It is highly robust and compact via care­

ful selection of only certain features and keyframes for reconstruction [38]. LSD­SLAM is a

direct­based algorithm which utilizes the image intensities to estimate the location and semi­

dense depth map. It is composed of three main parts: tracking, depth map estimation, and

map optimization. The depth map is only created for pixels around large image intensity gra­
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dients [14]. We chose these two benchmarks as exemplars for feature­based and direct­based
Visual SLAM algorithms.

3.5 EXPERIMENTAL RESULTS

3.5.1 Dataset and Metrics.

The TUM RGB­D benchmark dataset [49] was used to evaluate the accuracy of camera

localization while running our imaging pipelines. This dataset provides sequences along with

ground truth trajectory obtained with an external motion capture system. We utilize 7 videos

from this dataset for our experiments, which although is smaller in scale, is on roughly the

same order of videos evaluated as compared to the original ORB­SLAM [37].

Our error metric is absolute trajectory error (ATE) defined as the difference between points

of the true and the estimated trajectory [49]. The true and estimated poses are matched via

timestamps and then aligned using a similarity transform [19], as the scale of monocular SLAM

is unknown. Then ATE is calculated as a root mean squared error.

While computational speed is another important metric, we do not report latency as we

found that the per­frame processing time for all pipelines were roughly the same at 21­33ms

on average. To quantify the expected energy savings of our imaging pipeline, we follow the

model of [5] to compute the expected value of the ADC energy readout.

E [ADC−energy] =
∑2n

m=1 pmem where n is the number of bits, 2n is the total number of

levels, m is the level index, pm is the probability of level m occurring, and em is the energy

cost of running the ADC at level m.
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3.5.2 Initialization, Tracking and Features.

Visual SLAM algorithms can suffer from issues with initializing at the beginning of the

video, as well as maintaining tracking over the entire video. We observed that the number of

features extracted while performing ORB­SLAM2 affects the performance of our quantization

pipeline. As the bit level decreased in our quantization pipelines, the features were increased

in order to preserve fast initialization and accurate tracking. We found that 4 bit linear and

logarithmic quantization required an increase of four­hundred features, and logarithmic quan­

tization lower than four bits required an increase of two­hundred features per bit level.

3.5.3 Analysis

Resolution. For ORB­SLAM2, we simulated resolutions (640 × 480, 533 × 400, 427 ×

320, 320 × 240) with ATE errors (0.29 cm, 3.48 cm, 6.46 cm, 10.9 cm) respectively for the

fr2­xyz video. For the same video with the same resolutions, LSD­SLAM reported ATE er­

rors (3.44 cm, 3.89 cm, 3.87 cm, 7.95 cm). We found similar trends for other datasets, but

both SLAM algorithms failed to initialize and track below a resolution of 320 × 240. These

experiments demonstrate that as the resolution decreases, visual SLAM accuracy degrades un­

til it does not track for low resolutions. This means that image sensor subsampling such as

windowing, ROIs, or binning would not be effective for these visual SLAM algorithms.

Frame Rate. We simulated frame rates of 30 FPS, 15 FPS, and 7.5 FPS by subsampling

frames. For ORB­SLAM2 on two example videos, the ATE was constant down to 7.5 FPS.

Below 7.5 FPS, however, it either failed to track or the error increased significantly. LSD­

SLAM was sensitive to lower frame rates, with failure to initialize and track after 15 FPS. We

24



observed similar trends in other videos. We hypothesize that low FPS causes feature matches

to be more distant in time due to the frame subsampling, causing tracking issues.

Quantization. Since quantization is one of our primary mechanisms for saving energy

in an image sensor, we conducted extensive tests on three types of quantization: (1) linear

quantization, (2) logarithmic quantization, and (3) our new gradient­based quantization. For

each of these quantization, we converted images to RAW and then quantized with varying the

number of bits from 8 down to 2 using the CRIP pipeline.

Linear quantization: Linear quantization resulted in an increasing error trend with ORB­

SLAM2, see Figure 9. The results show an average ATE of 7.52 cm at eight bits, 11.2 cm

at seven and six bits, 4.23 cm at four bits, and 23.51 cm at the lowest working bit level of

four bits. The average ATE was taken over four videos as two videos failed to initialize and

track and one video resulted in very high error. None of the LSD­SLAM videos that were

linearly quantized were able to initialize and track. To analyze this, it is helpful to look at the

logarithmic quantization results for LSD­SLAM to draw comparisons.

Logarithmic quantization: In Figure 11, we show the averageATE results over all datasets

for our logarithmic quantization pipelines. ORB­SLAM2 was generally more robust to loga­

rithmic quantization and shows an expected trend of increasing ATE as the bit value decreases,

with a low ATE of 1.70 at 8 bits that increases to 4.23 at 4 bits, then jumps to 14.22 at 3 bits.

Logarithmic quantization outperformed linear quantization because of the approximate tone

mapping effect that occurs due to the statistics of pixel values in natural images (which was

also observed in [5]).

The results for LSD­SLAM, shown in Figure 12, are less consistent and in general, show

poor performance for any RAW image pipeline. The minimum ATE achieved was 47.37 at 4

bits while the maximum ATE of 82.08 occurred at 3 bits. These averages are much higher for
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Figure 9. Relative average ADC energy savings normalized to 8 bits and average ATE for
ORB­SLAM2 over seven datasets with 4­8 bit linear quantization

each pipeline than those measured for ORB­SLAM2. However, we note that log quantization

still outperforms linear quantization, which failed to initialize.

We believe there are two mechanisms at play for the performance of LSD­SLAM. First, the

approximate tone mapping of log quantization affects image intensities and contrast, and thus

enables an intensity­basedmethod like LSD­SLAM [14] to perform better with log quantization

than linear quantization. However, even in the log quantized RAW images, the Bayer pattern

likely causes false textures to appear in flat regions, and causes LSD­SLAM errors. We note

that although we are operating with no ISP in this chapter, we did try demosaicing on log

quantized images and were able to achieve a more consistent performance for LSD­SLAM.

Gradient­based quantization: For ORB­SLAM2, our gradient­based quantization algo­

rithm leads to further gains in energy efficiency. As shown in Table 1, the average bit value of

each video is consistently between 4 and 5 bits with an overall average of 4.41 bits. Even with

this relatively lower bit average of the images, visual SLAM achieves an average ATE of 1.81.
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Figure 10. Relative average ADC energy savings normalized to 8 bits and average ATE for
ORB­SLAM2 over seven datasets with 3­8 bit logarithmic quantization.

This ATE is comparable to 7 and 8 bit logarithmic quantization pipelines with ATEs 1.93 and

1.70 respectively, saving effectively 3­4 bits in energy.

We note that the average bit level is low because a majority of pixels contain flat gradient

information. Edges or high gradient pixels are a much sparser set of the total. Keeping only

these high gradient pixels at higher bit ranges allows for features to still be detected easily

while saving energy. This method shows promise as a balanced pipeline for performance and

energy efficiency.

For LSD­SLAM, we do not see similar benefits for gradient­based quantization, like our

previous quantization experiments. Since LSD­SLAM does not use features but rather inten­

sity differences, including high bit regions in an otherwise low bit quantized image does not

improve the performance as well as it does for feature­based methods.
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Figure 11. Average ATE for logarithmic quantization for ORB­SLAM2.

8 7 6 5 4 3 2
Logarithmic Quantization Bit Level

0

20

40

60

80

100

AT
E

 (c
m

) 58.23

72.05
66.16

48.60 47.37

82.08
77.88

Figure 12. Average ATE for logarithmic quantization for LSD­SLAM.
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fr1 xyz fr2 xyz fr1
floor

fr1
desk

fr2
desk

fr3
long
office

fr2
desk
person

Avg.

Avg.
bit

4.55 4.42 4.31 4.55 4.38 4.23 4.42 4.41

ATE
(ORB)

1.04 0.28 2.9 1.8 0.82 4.9 0.94 1.81

ATE
(LSD)

4.06 3.72 71.1 69.9 88.7 159.4 45.1 63.1

Table 1. Gradient­based Quantization Results

3.6 DISCUSSION

Visual SLAMwas investigated on RAW images without ISP processing and varying sensor

quantization. The results indicate that for feature­based visual SLAMalgorithms, namelyORB­

SLAM2, using RAW images with logarithmic quantization at low bit levels can be energy­

efficient and high performing. In particular, the novel gradient­based quantization algorithm

achieved effectively 3­4 bits in energy savings without sacrificing performance. However, we

note that our results on LSD­SLAM are not as conclusive since the intensity­based SLAM

method does not rely on feature mapping. It remains as future work to try and adapt sensor

quantization schemes that can benefit these direct­mapping methods. It would also be of inter­

est to test our methods on a deep learning SLAM algorithm like DeepSLAM [28]. Also, there

is an opportunity to optimize the SLAM algorithm itself for RAW data to extract the maximum

performance while maximizing energy­efficiency.
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Chapter 4

INTERMEDIATE EVENT REPRESENTATIONS FOR COMPUTING OPTICAL FLOW

In this chapter, we will analyze using an event­based camera for energy­efficient visual

navigation. The event­based camera is a highly efficient sensor with power consumption on

the order of 1 mW. This property of event cameras increases the efficiency of any algorithm in

the input phase as compared to using a traditional sensor. The particular task we will evaluate

is optical flow, which can be used for visual navigation algorithms. Because of the unique

format of event data, events need to be reconstructed into an intensity representation in order to

exploit traditional vision­based optical flow. There are many methods for event­based intensity

estimation in the literature, however it is unknown which method is best for particular tasks

in­terms of both accuracy and efficiency. We evaluate five event reconstruction methods in­

relation to the task of optical flow. The results show that the performance of the task is directly

related and the efficiency is inversely related to the complexity and photometric consistency

of the reconstruction method.

4.1 MOTIVATION

The goal of this chapter is to evaluate a traditional computer vision task, optical flow, with

event­based vision. Due to the novel representation of event data, in order to have compatibil­

ity with traditional algorithms, the events will first be reconstructed into intensity frames. This

intermediate event representation is useful in bridging the knowledge gap between traditional

and event camera knowledge and research. Using the end­task of optical flow, five event
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reconstruction methods are evaluated. Both computational complexity and task accuracy is

considered in the comparison.

One application of optical flow is motion estimation in visual odometry [36]. Camera

motion and depth maps are estimated from the resulting flow field vectors of optical flow.

Other applications include improving video quality (motion stabilization and super resolution),

segmentation, and tracking.

4.2 RELATEDWORK

Event­based optical flow estimation methods range from iterative asynchronous methods

[3] inspired by the Lucas­Kanade algorithm [48], plane fitting methods that use the plane­like

shape of spatio­temporal event streams [4], and variational optimization based approaches that

use image data as well as events [39]. There are also learning­based approaches that use a

U­Net architecture to directly estimate sparse optical flow [58, 26, 57]. In our work we will

concentrate on a traditional vision learning­based optical flow method, RAFT, that computes

dense optical flow [50].

An approach related to this chapter, E­RAFT was published after my work on this area, it

extends RAFT for event­based vision [18]. This work builds on the RAFT architecture with

changes made for working with events. To utilize events without reconstruction with a CNN,

the events are split into short sequences and represented as volumetric voxel grids. A voxel

grid discretizes the time dimension, but retains most of the temporal data through bilinear

interpolation. E­RAFT introduces a differentiable warm­starting method which initializes the

flow estimate from the last prediction instead of initializing it with zero as in the original RAFT.

They report a 23% increase of performance compared to previous event­based optical flow

methods.
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Although this is a compelling approach to perform optical flow with direct events, in this

chapter we evaluate event reconstruction methods and their ability to extract optical flow. This

is an important approach because intermediate event representations are useful for many down­

stream applications, not just optimized for one task. Intermediate event representations also

enable the use of events with traditional vision tasks without any modifications.

4.3 APPROACH

4.3.1 Reconstruction

Because events are a fairly new representation, in order to utilize traditional optical flow,

we first reconstruct the events into an intensity frame. Two simple integration based and three

learning based reconstruction methods are used.

High­pass Filter: One of the reconstruction techniques used, the high­pass filter, is repre­

sented by:

Lk+1(x, y) = exp(−α∆t)Lk(x, y) + p (4.1)

Where alpha is the cutoff frequency of the high­pass filter and delta t is the time since the

last event at the same pixel. This is the event only method purposed by Scheerlinck [46]. An

example of an image created with this method is shown in Figure 15 on the top left.

Leaky Integrator: The second method used is the leaky integrator:

Lk+1(x, y) = βLk(x, y) + p, β ∈ [0, 1], p ∈ {−1, 1} (4.2)

Where L is the log image intensity and p is the event polarity. With beta equal to one

correlates to direct integration of the events.An example of an image created with this method

is shown in Figure 15 on the top right.
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E2VID: E2VID is a learning based reconstruction technique that uses no hand­crafted pri­

ors to reconstruct intensity images directly from an event stream. The network architecture

as shown in Figure 13 has a recurrent UNet­like form. The method incorporates a perceptual

loss to encourage the reconstructions to match natural image statistics. It is trained on a large

simulated dataset [41]. An example of an image created with this method is shown in Figure 15

on the middle left.

Figure 13. E2VID architecture composed of (a) recurrent encoder layers and followed by (b)
residual blocks and decoder layers. Figure from [41]

FireNet: FireNet is a faster version of E2VID which uses 10x less FLOPs and is 99.6 per­

cent smaller. The network architecture as shown in Figure 14 is a fully convolutional recurrent

neural network with gated recurrent units and residual blocks [47]. An example of an image

created with this method is shown in Figure 15 on the middle right.

Figure 14. FireNet architecture composed of convolutional layers, convolutional gated
recurrent units, and residual blocks. Figure from [47]
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VNet: VNet is a minimal CNN we developed composed of five convolution layers with

a ReLU activation and a final sigmoid layer Table 2. Normalized voxel grids are used as the

event input. This representation is used to evaluate the necessity of using relatively large and

complicated networks like E2VID and FireNet for reconstruction, particularly for the task of

optical flow. An example of an image created with this method is shown in Figure 15 on the

bottom.

Table 2. VNet architecture

Num. Layers Conv. Filters Conv. Activation Last Layer Activation
5 3 x 3 ReLU Sigmoid

4.3.2 RAFT

Deep learning methods for optical flow have resulted in more robust results and faster

inference time as compared to traditional optimization methods. RAFT (Recurrent All­Pairs

Field Transforms for Optical Flow) is the current state­of­the­art method for estimating dense

optical flow. It uses both convolutional neural network (CNN) and recurrent neural network

(RNN) architectures and is split into three stages: feature extraction, visual similarity, and

iterative updates. See Figure 16 for an overview of the system. Two consecutive frames are

used as input to the network. The feature extraction step is composed of two convolutional

neural networks with shared weights. A context network of the same style is also used to

extract features, but from only the first image. The visual similarity step calculates the inner

product of all pairs of feature maps. This results in 4D correlation volumes that specify small

and large pixel displacements. A correlation pyramid which is used to create multi­scale image

similarity features is created from these correlation volumes. In the iterative update a sequence
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FireNetE2VID

HPF Leaky

VNet

Figure 15. Visualization of event reconstruction techniques on the simulated event Sintel
dataset.

of Gated Recurrent Unit (GRU) cells mimic an iterative optimization algorithm producing an

optical flow prediction. The input to the GRU cells are the previous hidden state and the flow,

correlation, and context features. Finally a convex upsampling module is used as the optical

flow is output at 1/8 the resolution of the initial image. The L1 distance between ground truth

and predicted flow is used as the loss function [50].
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Figure 16. RAFT architecture composed of feature encoder, correlation layer, and update
operator. Figure from [50]

4.3.3 RAFT on Event Reconstructions

My approach extends the RAFT framework for event­based vision. The event images are

first reconstructed with the techniques described, then the optical flow is computed with RAFT.

The pipeline for this approach is shown in Figure 17. The accuracy and efficiency of these event

reconstruction techniques are evaluated. The results in Section 4.6 show an increased accuracy

by training the neural network based event reconstructions with the vision task.

World to Events

Events

Reconstruction 
Method

Reconstructed 
Image

Video to Events

Task

Output 
MetricReal Event Data

Fully Simulated 
Events

Simple

CNN

Optical Flow
(RAFT)

Figure 17. Experimental pipeline for analyzing event reconstruction techniques on the task of
optical flow.
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4.4 DATASET AND METRICS

TheMPI­Sintel dataset was used for evaluation in this chapter [[6]]. Sintel is an open source

animated CGI short film. Because the dataset is simulated, optical flow groundtruth is also

available corresponding to the image timestamps. The dataset includes a variety of sequences

with realistic atmospheric effects [55]. A sample of this dataset is shown in Figure 18

Figure 18. Sample of the MPI­Sintel dataset ground truth images and corresponding flow
fields. Figure from [55]

The event data was generated through simulation utilizing V2E [20]. V2E converts video

frames to realistic synthetic DVS events. The Super SloMo framework is used to interpolate

the video frames since real events have a much lower latency than the original Sintel dataset

videos. One requirement of using the Super SloMo framework is that the motion between

37



original frames not be too great otherwise bad artifacts will be introduced. Because of this the

Sintel sequences with small motion between frames were selected to be used in this chapter

and all others were discarded.

The metric used for optical flow evaluation is endpoint­error. This is calculated by com­

puting the euclidean distance between the estimated optical flow vector and the groundtruth

optical flow vector. The average of these comparisons throughout these frames is taken to rep­

resent the total error over the video. We also report the 1px, 3px, and 5px error. The 1px, 3px,

and 5px value represents the mean number of endpoint error values less than 1px, 3px, and 5px

respectively in magnitude. A larger value for the smaller pixel represents a better accuracy of

the flow. The latency and computational complexity required to create the event frames is also

taken into account and reported in the results section.

4.5 RESULTS

4.5.1 Latency and complexity

The latency of reconstructing a 240 x 180 image with 10000 events for each reconstruction

method is given in Table 19. E2VID has the longest latency as it is the deepest network. Ta­

ble 3 compares networkmemory and parameters among the three learning based reconstruction

methods.

The latency of each method directly corresponds to the complexity of that method. The

higher the complexity of the algorithm, the greater the latency. For our purposes, the simple

reconstruction methods are the best options when only evaluating efficiency and not accuracy

of the task.
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Figure 19. Representation vs inference time on a 240 x 180 resolution image. Results for
E2VID and FireNet from [47].

Table 3. Representation vs network overview

E2VID FireNet VNet
No. parameters 10700k 38k 577
Memory 43Mb 0.16Mb 2.31Kb
Downsampling yes no no
Recurrent units LSTM GRU no
Max. kernel size 5 x 5 3 x 3 3 x 3

4.5.2 Representation performance

The optical flow accuracy for the various event reconstruction methods is evaluated using

the error metrics of RAFT. The RAFTmodel was trained on the FlyingThings and FlyingChairs

datasets which are not event­based. The final results after evaluating RAFT with the recon­
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structed image sequences is given in Table 4. E2VID performs the best besides the original

non­event grayscale images, and on the other end leaky surface performs the worst. Figure 20

shows an example of each reconstruction and the corresponding visual of the ground­truth and

learned optical flow result for that image.

From these results, we can see that the event reconstructions that have the most photo­

metric consistency perform the best with RAFT. This was a non­obvious result because as

demonstrated in Chapter 3, the most aesthetically pleasing image is not always the best per­

forming in­terms of computer vision algorithms. With this observation in mind, among the

learning based methods it makes sense that E2VID reconstructions result in the best RAFT

error as E2VID also creates the most realistic (closest to grayscale) reconstruction. In the same

way, FireNet has slightly worse quality reconstructions as compared to E2VID and results in

a worse RAFT error.

Analyzing Figure 20 to compare the simple reconstruction methods, the resulting optical

flow from the high­pass filter reconstruction has more detail than that of the leaky integrator

as seen in the top left object and the girl’s face. This correlates with the fact that the leaky

reconstruction is more noisy as compared to the high­pass filter reconstruction. Although this

is only a visual observation in relation to one image, it aligns with the analytic results where

the high­pass filter method has a lower error than the leaky method.

The simple reconstruction methods, leaky integrator and high­pass filter, have a lower num­

ber of pixels with less than 1, 3, and 5 pixel error than the other methods. This shows that the

simple methods are overall worse and there is not one part of the optical flow field that is much

better than another part.

The VNet method results in an error similar to the simple reconstruction methods even

though it is a learning based reconstruction. This seems to be a result of the very simple CNN

architecture.
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Figure 21 shows the tradeoff between latency and RAFT end­point error for the learning­

based reconstruction methods. E2VID is the most accurate method, but also the slowest and

most complicated neural network. FireNet provides a middle option with slightly worse error,

but much faster inference and less parameters. Lastly VNet is the worst performing in terms of

accuracy, but also the fastest and smallest network of the three. The choice of reconstruction

method depends on the application of the optical flow results and whether the size/speed of the

algorithm or accuracy of the results is most important.

Table 4. Event representation vs RAFT accuracy. RAFT trained with FlyingChairs and
FlyingThings and evaluated on Sintel. Reporting end­point­error

Representation EPE 1px 3px 5px
Grayscale 0.206 0.974 0.994 0.997
HPF 0.829 0.855 0.952 0.972
Leaky 1.265 0.742 0.903 0.937
E2VID 0.478 0.915 0.981 0.991
FireNet 0.591 0.892 0.976 0.988
VNet 0.947 0.782 0.951 0.977

4.5.3 Effects of event threshold

In order to study the robustness of these reconstruction techniques to real­world event cam­

era parameters, an ablation study is performed of the event thresholds. Event cameras have

a parameter which controls the sensitivity of generating events. There is a positive threshold

which is the necessary change in log intensity to trigger a positive event as well as a negative

threshold to trigger a negative event. Both the positive and negative event thresholds were

varied while simulating the Sintel event data with V2E. Then the RAFT error was recorded
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E2VID FireNet VNet

HPF Leaky

Figure 20. Event reconstruction optical flow results. Top: reconstructed event images,
Middle: estimated optical flow, Bottom: ground­truth optical flow.

using this new dataset. The default V2E event threshold of 0.2 for both positive and negative

events was used for the previous results in Table 4.

Table 5 reports the results of both increasing and decreasing the threshold from the default

value. The visual results of the event reconstructions are shown in Figure 22. These results are

harder to interpret the correlation between event threshold and optical flow error.
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Figure 21. Event reconstruction methods latency vs optical flow error.

Table 5. Ablation study of event­camera positive and negative threshold. Reporting
end­point­error of RAFT

Representation 0.1 thresh. 0.2 thresh. 0.4 thresh. 0.6 thresh. 0.8 thresh.
HPF 1.243 0.829 1.022 1.356 1.647
Leaky 0.847 1.265 1.764 2.290 2.707
E2VID 0.876 0.478 0.594 0.848 1.170
FireNet 0.975 0.591 0.707 0.957 1.321
VNet 0.634 0.947 0.993 1.095 1.229

4.5.4 Effects of noise

The effect of noise from the event camera on the performance of RAFT was also evaluated.

There are multiple sources of noise from an event camera, including leak events, shot noise, and

limited bandwidth. In this section the V2E parameter “noisy” was used to add a combination
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Figure 22. Event reconstructions with varying event thresholds.

of these sources of noise to the simulated events. Table 6 provides the quantitative results of

evaluating RAFT with this new dataset and Figure 23 shows the event reconstructions.

All reconstruction methods worsened in performance relative to RAFT error as noise was

increased as compared to the results in Table 20. From the observations made in the initial

Representation Performance section, that the event cleanest reconstructions most similar to

traditional images performed best, this result further confirms that view.

Table 6. Ablation study of event­camera noise

Representation EPE 1px 3px 5px
HPF 0.829 0.855 0.952 0.972
HPF noisy 1.28 0.757 0.912 0.944
Leaky 1.265 0.742 0.903 0.937
Leaky noisy 1.458 0.709 0.890 0.931
E2VID 0.478 0.915 0.981 0.991
E2VID noisy 1.310 0.700 0.901 0.945
FireNet 0.591 0.892 0.976 0.988
FireNet noisy 1.679 0.650 0.869 0.913
VNet 0.947 0.782 0.951 0.977
VNet noisy 1.07 0.706 0.927 0.975
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4.6 OPTIMIZING REPRESENTATION FOR VISION TASK

In order to try to further improve the results from event reconstructions, the learning­based

methods of event reconstruction were optimized for the task. Each method was fine­tune

trained with the RAFT loss. The RAFT model trained on the FlyingChairs and FlyingThings

datasets was used and the Sintel dataset was used for fine­tune training of the reconstruction

methods. The results are shown in Table 7 and Figure 24.

The results show that training the reconstruction network for the specific task we are per­

forming improves the end­point error as compared to Table 20. This provides motivation for

a future work of creating an event­based vision pipeline that learns the reconstruction method

based on the vision task.

Table 7. Optimized event reconstructions for the task of RAFT. Representation vs RAFT
accuracy. RAFT trained with FlyingChairs and FlyingThings and evaluated on Sintel (train).
VNet trained with RAFT loss on Sintel

Representation EPE 1px 3px 5px
VNet 0.664 0.857 0.967 0.985
E2VID 0.201 0.743 0.994 0.997
FireNet 0.565 0.882 0.977 0.990
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Figure 23. Event reconstructions and resulting optical flow with event camera noise
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Figure 24. Results of training event reconstruction method for optical flow task.
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Chapter 5

A CASE STUDY OF THE CHALLENGES IN ADAPTING ORB­SLAM2 FOR AN EVENT

FEATURE­BASED SLAM

Continuing with the theme of energy­efficient visual navigation, in this chapter we evalu­

ate performing a feature­based simultaneous localization and mapping (SLAM) system, ORB­

SLAM2, with event­based cameras. Initial experiments of using event reconstructions for this

task proves to be insufficient to acquire reliable results. Due to this observation, we perform

a study of the initialization stage of the algorithm. In addition, we developed a convolutional

neural network (CNN) for learning ORB feature descriptors for events. The results from this

network demonstrate additional challenges to the problem of an event feature­based SLAM,

which are further discussed in this chapter.

5.1 MOTIVATION

The main event­based visual odometry (VO) and simultaneous localization and mapping

(SLAM) techniques use geometrical and intensity based approaches. Two methods stand out

for monocular pure event­based VO for 6­DoF motions in natural 3D scenes. The method in

[22] uses three interleaved Baysian filters which estimate image intensity, depth and camera

pose. A geometric approach is used in [40] based on a technique of semi­dense mapping and an

image alignment tracker. This method does not recover the absolute intensity image of events.

These current approaches focus on geometrical solutions for monocular event only vision and

there is a lack of work on feature­based methods.

There are also multiple methods that utilize event cameras alongside other sensor types.

48



In this area there is more work on feature­based methods. For example, the method in [54]

combines events, images, and IMU to perform SLAM in high­speed and HDR scenarios. This

method tracks corner features with the Lucas­Kanade tracker through both frames and event

frames [48] and then uses these for triangulation of landmarks.

In this chapter we aim to bridge the gap with a feature­based SLAM approach that only uses

event cameras and no other sensors. While current approaches focus on creating new SLAM

systems for event vision, we believe it is useful to adapt traditional methods that have proven

to be reliable and accurate for event vision. ORB­SLAM2, which is a feature­based algorithm,

is one of the most reliable, complete, and accurate methods for monocular SLAM available

[38]. In order to take advantage of this system, in this chapter we investigate incorporating

event­based vision with feature­based monocular ORB­SLAM2.

We work towards a modular approach of changing the input representation, but using an

established back­end SLAM system, ORB­SLAM2. Adaption of a traditional feature­based

SLAM improves the ability to incorporate event­based vision in legacy systems as well.

5.2 DATASET AND METRICS

The TUM RGB­D benchmark dataset [49] was used in the studies of this chapter. This

dataset provides sequences of RGB images along with ground truth trajectory obtained with

an external motion capture system. The images have a resolution of 640x480. The correspond­

ing event data was generated through simulation utilizing V2E [[20]]. V2E converts video

frames to realistic synthetic DVS events. The Super SloMo framework was used to interpolate

the video frames since real events have a lower latency than the RGB videos. We utilize 7

sequences from this dataset for our experiments.

We also utilize the Event­Camera Dataset in the feature­matching evaluation portion of
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this chapter [35]. This dataset consists of real event data from a DAVIS240C including the

events, images, and IMU measurements. Both the images and events have a 240 x 180 spatial

resolution.

Our evaluation error metric for ORB­SLAM2 is absolute trajectory error (ATE) defined

as the difference between points of the true and the estimated trajectory [49]. The true and

estimated poses are matched via timestamps and then aligned using a similarity transform [19],

as the scale of monocular SLAM is unknown. Then ATE is calculated as a root mean squared

error.

5.3 CHALLENGES

5.3.1 Event Reconstructions with ORB­SLAM2

We first evaluated using event intensity reconstructions for event ORB­SLAM2 similar to

the work done in Chapter 4 of this thesis. The event reconstruction techniques evaluated are

the learning­based network E2VID and the simple reconstruction methods high­pass filter and

leaky integrator [42, 46]. The results of these tests on the TUM RGB­D dataset are given in

Table 8.

Almost all of the sequences failed to initialize with ORB­SLAM2. E2VID was the only

reconstruction type that began tracking and mapping for three out of the seven sequences eval­

uated. For those three sequences however, the initialization of ORB­SLAM2 was repeated

multiple times due to a bad initialization and the tracking was often lost. The ATE values

indicate that there was poor accuracy for the portion of the tracking that was completed.

This result demonstrates that unlike the results from Chapter 4 with optical flow, simply
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Table 8. ORB­SLAM2 event reconstruction results (Absolute Trajectory error RMSE in cm).
The sequences marked with X did not initialize. Sequences with * only track approximately
half of the video.

Sequence grayscale E2VID hpf leaky
fr1_xyz 0.90 X X X
fr2_xyz 0.29 X X X
fr1_desk 1.74 X X X
fr2_desk 0.84 3.65* X X
fr3_long_office 1.9 17.7* X X
fr3_sit_halfsph 1.34 X X X
fr3_walk_halfsph 1.74 21.7* X X

reconstructing the event images into intensity form does not work well for this feature­based

SLAM task.

5.3.2 ORB­SLAM2 Initialization

Due to the difficulty ORB­SLAM2 showed in initializing with event reconstructions, we

further evaluated the initialization process of the system. We discovered that the feature match­

ing step of the ORB­SLAM2 system prevented initialization of the mapping and tracking

threads. ORB­SLAM2 first extracts features from the keyframe and the current frame. If a

minimum number of features are not found, then features are extracted from new frames until

the threshold is met. After the minimum number of features have been found in these frames

(1000 features is the default), matching between the features is completed with a Brute­Force

matcher. A maximum threshold of 50 for the distance between features is set to designate the

features as a match. The last parameter that must be met for initialization is at least 100matches

must be found between frames.

The performance of ORB­SLAM2 with E2VID event reconstructions was evaluated while

varying the ORB­SLAM2 initialization parameters. Only E2VID results are provided here

because the other reconstruction methods were still unable to initialize with these changes.
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Table 9 reports the results of increasing the number of features that are extracted from

each frame. Increasing the number of features by 500 resulted in ORB­SLAM2 initializing for

all sequences. However, after initialization the system has frequent re­initialization and lost

tracks. For the few results that the ATE is low, only a very small portion of the trajectory was

completed.

Table 9. ORB­SLAM2 event reconstruction results (Absolute Trajectory error RMSE in cm)
with varying number of features extracted from each frame. The sequences marked with X
did not initialize. Sequences with * only track approximately half of the video or less.

Sequence 1000 features 1500 features 2000 features 3000 features
fr1_xyz X 19.4* 18.5* 3.74*
fr2_xyz X 2.23* 1.45* 24.4*
fr1_desk X 7.98* 6.56* 19.9*
fr2_desk 3.65* 3.36* 3.58* 3.29*
fr3_long_office 17.7* 165* 39.9* 148*
fr3_sit_halfsph X 36.8* 4.35* 4.5*
fr3_walk_halfsph 21.7* 38.9* 38.8* 38.1*

We also tested varying the maximum feature matching distance and minimum number of

feature matches thresholds. These changes resulted in the same outcome as changing the num­

ber of initial features found in each frame. Specifically, the systemwas more likely to initialize,

but had bad tracking accuracy and consistency. These results demonstrate that simply lowering

the requirements of ORB­SLAM2 initialization does not make the system succeed with event

reconstructions.

5.3.3 ORB Feature Matching

In this section, we further evaluate ORB feature matching to aid in determining why event

representations do not perform well with ORB­SLAM2. This is done with Python OpenCV

packages with no connection to ORB­SLAM2. The only difference between the OpenCV and
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ORB­SLAM2 implementation of ORB is ORB­SLAM2 enforces a grid to have the keypoints

evenly distributed over the whole image. Since this restriction decreases the number of features

found, in this section this modification is unimportant.

TUM RGB­D Sequence: Figure 26 shows the result of performing brute­force feature

matching between extracted ORB features. Only a subset of all feature matches found are

visualized. More matches are found in the traditional images than the event representations.

Straight lines between features usually mean the matches are good. Examining these figures,

we observe that both event representations perform poorly and generate mostly incorrect fea­

turematches. This seems to be caused by an inconsistency of edges and corners between frames.

Because of this inconsistency, the descriptors for a feature at the same location are different

which causes high matching distances.

A quantitative evaluation of this qualitative observation was also performed. The number

of feature matches and feature matching distance between ten pairs of sample images from the

freiburg1_desk sequence are given. For the E2VID event images, ORB resulted in an average

of 162 matches with a mean matching distance of 45. For the one bin event voxel images, ORB

resulted in an average of 90 matches with a mean matching distance of 43. For the traditional

images, ORB resulted in an average of 425 matches and a mean matching hamming distance

of 36. The average number of matches with a matching distance below the ORB­SLAM2

threshold of 50 was 109 for E2VID and 345 for the traditional images. Figure 25 shows the

distribution of matching distances under 50 for two example frames.

Due to the poor reconstruction quality of this dataset with the E2VID method, we further

evaluated the event simulation process. We discovered that the V2E method, which converts

the traditional video sequence to events, produced bad artifacts in the conversion process. The

Super SloMo framework that interpolates between the frames, introduced warping artifacts due

to large pixel displacements between the original sequential frames [20].
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E2VIDGrayscale

Voxel Grid

Figure 25. ORB feature matching with the simulated event sequence. Top: ORB feature
matching distance for traditional images. Bottom: ORB feature matching distance for E2VID
event images

DAVIS240C Sequence: This was a surprising result that E2VID reconstructions, which

are reported to be of a high image quality, do not perform well with feature matching. To test

if the problem is due to the poor quality of the simulated event data, we also evaluate with the

real event dataset used in the E2VID paper for visual­inertial odometry [42].

The qualitative results are shown in Figure 29. More correct matches are found with the

E2VID reconstructions as compared to the previous sequence. The one bin voxel grid, however,

resulted in a very minimal number of matches where most are obviously incorrect. The number

of events generated with this sequence as compared to the frieburg sequence is much fewer.
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Figure 26. Brute­force matching of ORB features on the simulated sequence: Top is
traditional grayscale images, Middle is E2VID reconstructed event images, Bottom is one bin
voxel grid event representation

This is a difference between the event trigger thresholds of the DAVIS camera and the simulated

data.
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For a quantitative evaluation, ten frames from the dynamic_translation sequence are used.

The event data reconstructed with E2VID resulted in an average of 210 matches with a mean

matching distance of 37. The corresponding traditional grayscale images resulted in an average

of 231 matches with a mean matching distance of 28. We do not report the averages from

the voxel grid images as the features are visually incorrectly matched. Figure 27 shows the

distribution of matching distances under 50 for two example frames. Although this dataset

performs better featurematchingwith the event E2VID reconstructions, the grayscale and event

data it does not work with ORB­SLAM2. This seems to be due to the low spatial resolution of

the frames.

Grayscale E2VID

Figure 27. ORB feature matching with the real event sequence. Top: ORB feature matching
distance for traditional images. Bottom: ORB feature matching distance for E2VID event
images

5.3.4 Learning Descriptors for Event ORB­SLAM2

We demonstrated in the previous section the difficulty of performing feature matching with

event data in the form of traditional grayscale images as one bin voxel grids. In this section we

present the challenge of performing ORB­SLAM2 with non­reconstructed events.
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Approach: The feature descriptors for the event data are output from a neural network

which are then used as the input to ORB­SLAM2. Our approach for learning event features is

shown in Figure 28. Ground­truth feature keypoints and descriptors were obtained by running

ORB­SLAM2 on the traditional grayscale images from the TUM RGB­D freiburg1_desk se­

quence. The input to the neural network is a 31 x 31 event voxel grid patch centered around a

keypoint from the groundtruth data.

The convolutional neural network we use is a variation of the AlexNet with a decreased

number of layers and varying number of input channels for the voxel grid [24]. The architecture

is given in Table 10.

CNN descriptor

GT descriptor
Traditional 

Image ORB-SLAM2

MSE loss

Figure 28. Event ORB feature descriptor learning pipeline

Results: Many variations of the AlexNet­like architecture were evaluated. The initial

training resulted in averaged outputs (same output descriptor for different voxel grid input

patches). Including dropout layers improved these results, however the test loss never de­

creased enough. We also tested with adding batch normalization layers as well as varying the

learning rates, batch sizes, number of voxel grid bins, and number of minimum nonzero pixels

for each voxel grid input.

However, this method resulted in an inability to learn descriptors well enough for consistent
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Table 10. Event feature descriptor learning architecture.

Layer Num. Filters Filter Size Activation Function Output Size
Input ­ ­ ­ num. bins x 31 x 31
Convolution 16 11 ReLU 16 x 7 x 7
Convolution 48 3 ReLU 48 x 7 x 7
Convolution 96 3 ReLU 96 x 7 x 7
Convolution 64 3 ReLU 64 x 7 x 7
Convolution 16 3 ReLU 16 x 7 x 7
AdaptiveAvgPool ­ ­ ­ 16 x 6 x 6
Linear ­ ­ ReLU 256 x 1 x 1
Linear ­ ­ ReLU 128 x 1 x 1
Linear ­ ­ ReLU 32 x 1 x 1

matching in the ORB­SLAM2 system. Our finding from testing noise in the feature descriptors

demonstrated that the error must be very small for the descriptors to match well. This method

of learning descriptors was not able to reach that small error suitable to work well. A MSE

error from the network of 0.03 corresponds to a descriptor matching distance of 50 which is the

maximum threshold of ORB­SLAM2. The lowest the test loss decreased to with our network

was 0.09.

Noise in descriptorsWhile performing the learning of event descriptors, we evaluated the

resilience of feature matching in the ORB­SLAM2 system to noise. Random noise was added

to each of the 32 8 byte values of the descriptors. It was discovered that adding noise of even +­

1 resulted in the system not finding enough matches and not initializing. Decreasing the match

distance threshold increased the probability that enough matches would be found, but tracking

was more likely to be lost in the middle of the sequence.
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5.4 DISCUSSION

The initial results in this chapter demonstrate the fact that ORB­SLAM2 with event voxel

grids, E2VID, HPF, or Leaky Integrator event reconstruction methods does not consistently

generate accurate trajectories and maps. Through the challenges evaluated in this chapter, we

have provided many insights into why these event representations did not work in hopes of

aiding future work on this topic. The main factor influencing poor results is the quality of

the event data, like spatial resolution, and the consistency of events through time. The ORB

feature matching evaluations show that the real event data, which seems to be less prone to blur

and ghosting, performs better than the simulated data that does have these effects. One path

to attempt performing ORB­SLAM2 with event reconstructions might be to generate a high

resolution, high quality event dataset with trajectory ground truth.

The other pathway of performing ORB­SLAM2with non­reconstructed event data through

voxel grids also provides useful insights for future work. The failure of our CNN to learn event

feature descriptors demonstrates that the problem needs amore advanced solution. It is planned

as future work to evaluate a different input event representation that preserves features through

time, such as an event time surface [25].
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Figure 29. Brute­force matching of ORB features on the real sequence: Top is traditional
grayscale images, Middle is E2VID reconstructed event images, Bottom is one bin voxel grid
event representation

60



Chapter 6

CONCLUSION

In this thesis we presented methods and tradeoffs for energy­efficient visual navigation. In­

particular we concentrated on accuracy/efficiency tradeoffs of using varying bit level sensor

quantization and event camera sensors for the tasks of simultaneous localization and mapping

(SLAM) and optical flow. We first presented results from performing varying levels of linear

and logarithmic quantization of RAW images with the ORB­SLAM2 system. It was shown that

logarithmic quantization outperforms linear quantization with both direct and indirect SLAM

systems. The gradient­based quantization schemewe introduced also showed improved energy­

efficiency while maintaining performance.

Additionally, we presented a study of event­based vision reconstruction techniques with a

learning­based optical flow, RAFT. The quality of the intensity reconstructions directly cor­

related with the resulting error of the optical flow results. We also showed that learning or

fine­tuning the event reconstruction with RAFT loss improves the results.

Lastly, we provide a case study of performing feature­based visual SLAM (ORB­SLAM)

with event­based vision. The difficulty of matching traditional features, which is necessary for

ORB­SLAM with events is demonstrated. Due to the inconsistency between frames of event

representations, the descriptors are unable to be matched correctly.

6.1 LIMITATIONS AND FUTURE DIRECTIONS

A limitation of Chapter 3 is that the results of linear, logarithmic and gradient quantization

only worked well for ORB­SLAM and not LSD­SLAM. This is due to the differences between
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feature­based and direct­based SLAM algorithms. In future work, changes could be evaluated

for adapting these methods for direct­based SLAM. For example, initial tests showed that per­

forming the process of demosaicing, which is part of the image sensor pipeline (ISP), further

improved results.

The event­based vision results provided in this thesis are limited to reconstructing the con­

tinuous event data representation into discrete frames. We specifically evaluated this format

of event data to provide a modular approach separating the front­end representation from the

back­end vision task. The studies performed in Chapters 4 and 5 provide background for a

possible future work of implementing a front­end event reconstruction method adaptable to

various vision tasks.
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