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ABSTRACT

Recent advancements in computer vision models have largely been driven by super-

vised training on labeled data. However, the process of labeling datasets remains

both costly and time-intensive. This dissertation delves into enhancing the perfor-

mance of deep neural networks when faced with limited or no labeling information.

I address this challenge through four primary methodologies: domain adaptation,

self-supervision, input regularization, and label regularization.

In situations where labeled data is unavailable but a similar dataset exists, do-

main adaptation emerges as a valuable strategy for transferring knowledge from the

labeled dataset to the target dataset. This dissertation introduces three innovative

domain adaptation methods that operate at pixel, feature, and output levels. Another

approach to tackle the absence of labels involves a novel self-supervision technique

tailored to train Vision Transformers in extracting rich features. The third and fourth

approaches focus on scenarios where only a limited amount of labeled data is avail-

able. In such cases, I present novel regularization techniques designed to mitigate

overfitting by modifying the input data and the target labels, respectively.

i



DEDICATION

To my parents, Dr. Vijay Chhabra & Dr. Nanda Chhabra.

ii



ACKNOWLEDGMENTS

This dissertation stands as a testament to the collective support, encouragement, and

contributions of numerous individuals, each of whom has left a lasting mark on my

academic journey.

First and foremost, I would like to express my deepest gratitude to my advisor,

Dr. Baoxin Li, who has been not only a mentor but also a guiding light throughout

my academic journey. I was a lost Master’s student who was trying to learn about

the field of machine learning and Dr. Li graciously took me under his wing. His

unwavering guidance, invaluable insights, and strong support have been instrumental

in shaping me into the researcher I am today.

I am also grateful to Dr. Hemanth Venkateswara, who treated me as one of his

own students. Our collaborative brainstorming sessions and his insightful guidance

have proven invaluable in overcoming obstacles and deepening my understanding

of machine learning. Dr. Venkateswara’s pivotal role in guiding me out of every

encountered local minima throughout my PhD journey cannot be overstated.

I extend my gratitude to my dissertation committee, Dr. Yezhou Yang, Dr. Teresa

Wu, and Dr. Yingzhen Yang, for their invaluable advice and thorough evaluation of

my work.

Throughout this journey, numerous individuals have left a lasting impact, know-

ingly or unknowingly, contributing to the completion of this dissertation. It all began

with my friend Diptanshu Purwar, who introduced me to the field of machine learn-

ing and encouraged me to pursue it wholeheartedly. Without his constant push, I

might not have chosen this path. Additionally, I extend my gratitude to Mahfuzur

Siddiquee for his invaluable assistance in solidifying this decision and for helping me

strengthen the foundational concepts of deep learning. Their support and mentorship

have been indispensable in shaping my academic trajectory.

iii



I am deeply appreciative of my academic family, including Nupur Thakur, Riti

Paul, Yaoxin Zhuo, Prasanth Sai Gouripeddi, Sahil Vora, Jiuxu Chen, Vijetha Gat-

tupalli, Yuzhen Ding, Kevin Ding, Yikang Li, and Tianshu Yu. Their friendship,

technical expertise and unwavering support have been invaluable throughout my jour-

ney. Working alongside you all has been a pleasure, and your assistance with various

technical and non-technical challenges has been immensely valuable.

I extend my heartfelt gratitude to my friends - Shalini Gangadhara, Usha Ran-

ganathaiah, Roopa Jayashankar, Akhil Sahdev, Varun Singh, Shashank Jindal, Shivam

Bajaj, Kuldeep Singh, Shrey Mehta, Prabal Bijoy Dutta, Mayank Darbari, Vishwesh

Nath, Anya Chaturvedi and Apurva Kharate. Also, a huge shoutout to my gaming

crew - Harsh Kothari, Varun Baluni, Kurmaya Gari Sai Siddharth Reddy, Eshaan

Mathew, Mohamad Mudassar Shekh, Santosh Bidve, Utkarsh Pandey and Abhishek

Throat for the awesome memories and endless fun. Each one of you has provided me

with invaluable moments of joy and relaxation, which have been essential in main-

taining my sanity throughout these years.

Lastly, but above all, I want to express my deepest gratitude to my parents Dr.

Vijay Chhabra, Dr. Nanda Chhabra, and my brother Dr. Nitin Chhabra for their

unwavering support, love, and encouragement through both good and bad times. It

is because of them that I stand here today, having completed my Ph.D. degree.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Self-Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Label Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 DOMAIN ADAPTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Feature-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Glocal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Pixel-Level Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Iterative Image Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Output-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Generative Alignment of Posterior Probabilities . . . . . . . . . . . . 43

2.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.4 Domain Adaptation with Source Data . . . . . . . . . . . . . . . . . . . . . 57

2.3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



CHAPTER Page

3 SELF-SUPERVISED LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 PatchRot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.3 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Pre-training epochs vs. Classification Accuracy . . . . . . . . . . . . 74

3.3.3 Application to Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.4 Application to Semi-supervised learning . . . . . . . . . . . . . . . . . . . 75

3.3.5 Attention Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 INPUT REGULARIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 PatchSwap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Unlabeled PatchSwap for Semi-supervised Learning . . . . . . . . 85

4.1.3 Inverse PatchSwap for Self-supervised Learning . . . . . . . . . . . . 86

4.1.4 PatchSwap++ and Unlabeled PatchSwap++ . . . . . . . . . . . . . . 88

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



CHAPTER Page

4.2.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.4 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.5 Self-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Regularization Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Number of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 Training Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.4 Training Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.5 Attention Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.6 Transfer vs Self-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.7 PatchSwap for ConvNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5 LABEL REGULARIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Learnable Label Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.3 Training Using Learnable Label Smoothing . . . . . . . . . . . . . . . . 112

5.1.4 The Q-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.5 PyTorch-like Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Datasets and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.3 Results with Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.4 Q-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



CHAPTER Page

5.3.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Clusters Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.3 Varying hyperparameter Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.4 Coefficient of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.5 Substitute Teacher for Knowledge Distillation . . . . . . . . . . . . . . 139

5.3.6 Effectiveness on Subsets of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.7 Computation overhead of LLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1.1 Feature-level Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1.2 Pixel-level Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1.3 Output-level Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Self-supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Input Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Label Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

APPENDIX

A PERMISSION STATEMENTS FROM CO-AUTHORS . . . . . . . . . . . . . . . . . 155

viii



LIST OF TABLES

Table Page

2.1 Traditional Domain Alignment loss functions. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Glocal Domain Alignment loss functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Target classification accuracies for Office-31 using ResNet-50. . . . . . . . . . 17

2.4 Target classification accuracies on Digits and Traffic-Signs. . . . . . . . . . . . . 18

2.5 Results of Glocal domain alignment on Office-Home. . . . . . . . . . . . . . . . . . 19

2.6 Results of Iterative Image Translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Ablation study of Iterative Image Translation. . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Results on the Office-Home dataset with ResNet-50. . . . . . . . . . . . . . . . . . . 50

2.9 Results on the VisDA dataset with ResNet-101. . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Results on the Office-31 dataset with ResNet-50. . . . . . . . . . . . . . . . . . . . . . 52

2.11 Results on the digits dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.12 Ablation study of GAP on Office-31 and OfficeHome source-free setting. 54

2.13 Results on the Office-31 dataset with source present with ResNet-50. . . 57

2.14 Results on the Office-Home dataset with source present with ResNet-

50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Ablation study using CIFAR10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Results on CIFAR10 in a semi-supervised setting. . . . . . . . . . . . . . . . . . . . . 77

4.1 Results on Tiny-ImageNet and ImageNet-100 datasets. . . . . . . . . . . . . . . . 91

4.2 Results on CIFAR100 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Results on CIFAR10, FashionMNIST, and SVHN datasets. . . . . . . . . . . . . 93

4.4 Results on CIFAR10 and SVHN datasets in a semi-supervised setting. . 94

4.5 Results with different initialization and training methods for Fashion-

MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet datasets. . . . . . . . . . . 96

ix



Table Page

4.6 Results on CIFAR100 and Tiny-ImageNet using different combinations

of losses for training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Results for model initialized with Transfer learning vs. Self-supervised

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Results of PatchSwap using CIFAR10 and CIFAR100 on ResNet-18. . . . 107

5.1 Results on CUB-200 and Flowers-102 for fine-grain classification. . . . . . . 124

5.2 Results on CIFAR100 and Tiny-ImageNet datasets. . . . . . . . . . . . . . . . . . . 125

5.3 Results on CIFAR10, SVHN, FashionMNIST and ImageNet-100 datasets.126

5.4 Results on Tiny-ImageNet and ImageNet-100 with DEIT-Tiny . . . . . . . . 127

5.5 Abalation Study experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Average Coefficient of Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.7 Knowledge Distillation experiments on CIFAR100, Tiny ImageNet and

ImageNet-100 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.8 Knowledge Distillation experiments on fine-grain classification datasets. 140

5.9 The comparison between applying the learned Q-Matrix from the full

data vs. employing 1-hot encoding, Label Smoothing, and Learnable

Label Smoothing on sample-wise subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.10 The comparison between applying the learned Q-Matrix from the full

data vs. employing 1-hot encoding, Label Smoothing, and Learnable

Label Smoothing on class-wise subsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.11 Comparison of the number of training parameters and training time of

Learnable Label Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

x



LIST OF FIGURES

Figure Page

2.1 Variations types of domain adaptation approaches. . . . . . . . . . . . . . . . . . . . 6

2.2 Model diagram of Glocal alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 A-distances for G-GAN2 on SVHN→ MNIST task. . . . . . . . . . . . . . . . . . . . 20

2.4 Training graphs comparing pseudo-label and target accuracies for G-GAN2

on SVHN→ MNIST task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 TSNE plots for SVHN→MNIST task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 The learning paradigm of Iterative Image Translation. . . . . . . . . . . . . . . . . 24

2.7 Model Diagram of Iterative Image Translation. . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Network Architectures used in IIT experiments. . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Sample generated images of IIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 TSNE plots and generated target-like images before and after conver-

gence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.11 A-distance between deep features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 Impact of linear Interpolation between two random noise vectors on

generated images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.13 TSNE plots for Iterative Image Translation before and after adaptation. 41

2.14 Model diagram for the GAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.15 Impact of different batch sizes on Art→ Clipart task from Office-Home

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.16 TSNE visualization for VisDa in a source-free setting. . . . . . . . . . . . . . . . . 56

2.17 TSNE visualization for Office31 - Amazon → Webcam with source

present setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Model diagram of PatchRot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xi



Figure Page

3.2 Classification accuracies for Supervised, RotNet, Masked AutoEncoder,

and PatchRot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Classification accuracy vs Pretraining epochs for CIFAR100. . . . . . . . . . . 74

3.4 PatchRot performance in a transfer learning setting. . . . . . . . . . . . . . . . . . . 76

3.5 Attention Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 More Attention Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Comparison of images generated by Mixup, Cutmix, and PatchSwap. . . 81

4.2 Overview of PatchSwap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Overview of Unlabeled PatchSwap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Overview of Inverse PatchSwap for Self-supervised learning. . . . . . . . . . . . 87

4.5 Layer-wise results of Inverse PatchSwap and PatchSwap++ for Self-

supervised learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Reconstruction of Inverse PatchSwap on test sets of different datasets. . 98

4.7 Impact of changing α on the CIFAR10 FashionMNIST datasets. . . . . . . . 100

4.8 Comparison of Test accuracy vs Number of Samples used for training

using Cross-Entropy, PatchSwap, and PatchSwap++. . . . . . . . . . . . . . . . . . 101

4.9 Test accuracy graph for training process on CIFAR100 and SVHN. . . . . 102

4.10 Attention Maps of PatchSwap++ on the validation set of Tiny-ImageNet.103

4.11 Class-specific Attention Maps of PatchSwap++ on PatchSwap images

from validation set of Tiny-ImageNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Class-specific Attention Maps for PatchSwap images on PatchSwap

images from validation set of Tiny-ImageNet. . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Illustration of targets generated via Human, Label Smoothing, and

Learnable Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



Figure Page

5.2 An overview of Learnable Label Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Sample learned Q Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Confusion Matrix and Learned Q-Matrix of the FashionMNIST dataset.128

5.5 More Q-Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Learned Q-Matrix on CIFAR10 as per the ablation study experiments. . 131

5.7 TSNE visualizations of three classes from CIFAR10 and CIFAR100

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8 TSNE visualization and L1 normalized cosine distance between cate-

gory centers of CIFAR10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.9 TSNE visualization and L1 normalized cosine distance between cate-

gory centers of FashionMNST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.10 Results on varying α on CIFAR100, Flowers-102, and, CUB200 datasets

with ResNet-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.11 Learned Q-Matrices on CIFAR10 with different starting seeds. . . . . . . . . 137

5.12 Learned Q-Matrices on CIFAR10 with different network architectures. . 137

xiii



Chapter 1

INTRODUCTION

Recent advancements in deep learning techniques have consistently achieved state-of-

the-art performance across various tasks. However, this performance often hinges on

the availability of labeled data, which can be expensive to obtain. While unlabeled

data is abundant, the process of labeling it proves to be prohibitively costly. In this

dissertation, I present innovative approaches aimed at training networks with limited

labels.

The first chapter addresses the challenge of missing labels by domain adaptation,

where the target dataset lacks labels, but a similar labeled dataset, known as the

source, is available. Here, the focus is on transferring knowledge from the labeled

dataset (source) to the unlabeled dataset (target) through domain adaptation. I dis-

cuss three pioneering domain adaptation techniques, each operating at pixel, feature,

and output levels.

The second chapter addresses the challenge of missing labels by introducing a

novel self-supervision technique specifically tailored for training Vision Transformers,

enabling the extraction of intricate features.

Subsequent third and fourth chapters, confront situations where only a restricted

amount of labeled data is available. In such contexts, regularization techniques prove

indispensable in mitigating overfitting induced by small datasets. These chapters

introduce innovative input regularization techniques, modifying both input data and

target labels, respectively.
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1.1 Domain Adaptation

I address the challenge of missing labels by domain adaptation, where the target

dataset lacks labels but a similar labeled dataset, known as the source, is available.

One can train a model on the labeled dataset (source) and use it on the unlabeled

dataset (target). However, such models often underperform on target datasets. This

is due to the underlying domain differences between the two datasets.

While one approach to address this is by training the model afterward on the target

dataset, it demands labeling the target data, which can be costly. Domain adaptation

techniques aim to mitigate this challenge by adapting the classifier to the target

dataset without relying on target labels. Typically, the prevailing method involves

classifying samples based on features that remain consistent or invariant across both

the source and target domains. Here, the focus is on transferring knowledge from the

labeled dataset to the unlabeled dataset through domain adaptation.

To attain this objective, most techniques attempt to reduce the distance between

the generated features of these domains using distance metrics such as maximum

mean discrepancy, Wasserstein distance, or adversarially using a discriminator. My

work focuses on resolving this issue by reducing differences between the domains

either at the pixel level, feature level, or target level.

1.2 Self-Supervised learning

In case a similar dataset is unavailable, self-supervision emerges as a powerful

solution that can be used to train the network to extract generalizable features.

The features learned by such a network are highly transferable and can be used for

multiple tasks. Hence, self-supervised training of networks is increasingly gaining a

lot of traction. These techniques train networks by formulating auxiliary tasks that
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necessitate an understanding of the presented objects. Consequently, the features

extracted from such networks are not only rich but also highly adaptable to diverse

tasks. My objective revolves around enhancing existing self-supervised techniques.

I aim to contribute to the refinement and advancement of these methods, further

optimizing the capability of networks to learn and extract intricate features without

the dependency on annotated data.

1.3 Regularization

When a limited amount of labeled data is available, the neural networks often

struggle with overfitting, leading to diminished generalization abilities. In such cases,

a robust regularization is required to counter overfitting. Regularization techniques

aim to alleviate this by imposing additional constraints on the network. These con-

straints are strategically crafted to aid and improve the generalization capabilities

of the network. Various regularization constraints operate differently: some directly

impact the network itself, such as dropout [Srivastava et al. (2014)] and weight decay

[Hanson and Pratt (1988)], while others influence the input data, employing tech-

niques like cutout [Devries and Taylor (2017)] and mixup [Zhang et al. (2018)]. I

intend to create an innovative regularization method specifically designed for Vision

Transformers that leverages its distinctive strengths to enhance its generalization

capabilities.

1.4 Label Regularization

Another way to regularize a neural network is label regularization and such regu-

larizations are independent of the network and the input modality. The most popular

label regularization technique is Label Smoothing, which adjusts target labels during

training by adding a uniform label distribution over the categories to the one-hot
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target [Szegedy et al. (2016a)]. Training with Label Smoothing has proven effective

in enhancing generalization and has been widely adopted. Despite the advantages of

Label Smoothing, it is known to disrupt the relationships between categories [Müller

et al. (2019)]. I aim to develop a novel label regularization technique that utilizes

the optimal training vectors to enhance inter-class relationships and improve network

regularization.
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Chapter 2

DOMAIN ADAPTATION

Domain adaptation techniques address situations where labels for a dataset are un-

available, but there exists another dataset similar to the target dataset. In such

scenarios, a classifier can be trained using the available labeled dataset (referred to

as the source) and then applied to the target dataset. However, models trained on

the source dataset often perform poorly on the target dataset, despite their similar-

ity. This performance gap is attributed to the covariance shift, which denotes the

underlying distribution difference between the domains of the two datasets.

In response to this challenge, the conventional approach is to train the model

directly on the target dataset. Nevertheless, in cases where labels are absent, un-

supervised domain adaptation (UDA) techniques offer a convenient solution. These

methods utilize knowledge from the source dataset to adapt the classifier to the target

dataset without relying on target labels.

Domain adaptation methods typically involve classifying samples based on a com-

mon ground that is consistent or invariant across both the source and target domains.

This common ground can be achieved by utilizing shared features between the two

domains or by translating images from one domain to another. My research focuses

on addressing this issue by minimizing differences between the domains at the feature

level, pixel level, or output level. The overview of these approaches is in Figure 2.1.

Feature-level domain adaptation is the most popular type of domain adaptation.

These techniques focus on creating features that are common between the source and

target domain. Such invariant features are achieved by aligning features generated

by networks for both the source and target datasets using distance metrics like MMD
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Figure 2.1: Variations types of domain adaptation approaches. A. Pixel-level align-

ment: Adversarial image translation is applied to translate source images into target

images before using a common classifier. B. Feature-level alignment: The source and

target features of a deep neural network are aligned before applying a common classi-

fier. The figure depicts an adversarial feature alignment architecture. C. Generative

Alignment of Posterior probabilities (GAP): I to align the posterior probabilities of

the source and target classifiers using an adversarial framework. Although the image

indicates the presence of a source, the GAP model can be used for both source-free

and unsupervised domain adaptation.

or adversarial strategies. My work focuses on improving existing adversarial domain

alignment techniques by performing domain alignment at the category levels resulting

in a better global alignment.

Pixel-level domain adaptation methods translate images from one domain to do-

main to another. My work translates images from the source domain to the target

domain. These translated images are used to learn a classifier on the target domain

using translated images and source labels. My technique uses the classifier to guide

the image translation process and uses translated images to guide the classifier itera-

tive. I also combine feature-level adaptation with pixel-level adaptation for additional

improvement. Here, domain alignment is performed among the features of three do-

mains - source, source-to-target translated images, and target images. This trained
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classifier can classify both the source and target domain.

I showcase a new branch of domain adaptation called output-level domain adap-

tation which uses output probabilities of the network. Output/posterior probabilities

show the relations of a sample to the other categories. My approach focuses on

modeling this relation at category-level (inter-category relationships) and aligning

them between source and target domain. This method can work with and without

the source data. This can be helpful when dealing with sensitive data where only a

trained model on source data is available and there is no access to the source data

after the model has been trained. In this case, I designed a source replicator that

is trained to mimic probabilities of different categories of the source domain. The

source replicator aligns the posterior probabilities of the target to the source domain

using the source replicator. This alignment results in an improved target-domain

classifier. If source data is available, it omits the need for a source replicator. In

this case, the posterior probabilities are directly aligned between the domains. This

allows for additional components like label smoothing, and temperature scaling for

further improvements.

2.1 Feature-Level

Feature-level domain adaptation aims to extract features that are common be-

tween the source and target domain. To achieve such invariant features these tech-

niques attempt to reduce the distance such as maximum mean discrepancy, Wasser-

stein distance, or adversarially using a discriminator between the generated features

of the domains. However, existing methods make the features domain-invariant but

the alignment is done without considering the category information of the features

and often leads to jumbled category features.

To overcome this limitation and refine adversarial global domain alignment, I
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present a novel technique called “Glocal alignment.” Inspired by the ethos of “Think

Globally, Act Locally,” this method aligns data points locally by leveraging category

information [Chhabra et al. (2021a)]. The process begins by partitioning samples from

both the source and target domains based on their respective categories. However, in

this scenario the target labels are unavailable. Hence, I employ pseudo-labels in place

of the original label. Pseudo-labels is a technique where the network’s predictions

serve as labels if the predicted category probability surpasses a predefined threshold

(as detailed in [Lee (2013)]). Subsequently, data points within each category from

both domains are aligned. This local alignment within categories consequently ensures

a more cohesive global alignment across domains. This straightforward yet impactful

glocal adjustment can be seamlessly integrated into various adversarial domain align-

ment techniques, such as DANN [Ganin et al. (2016a)], MDC [Tzeng et al. (2015)],

and GAN loss functions [Goodfellow et al. (2014)], yielding significantly improved

alignment outcomes.

2.1.1 Background

Let S = {(xs
i , y

s
i )}Ns

i=1 be the source domain consisting of Ns labeled images sam-

pled from distribution Ps. Likewise the target domain is denoted as T = {(xt
i)}Nt

i=1

consisting of Nt unlabeled images sampled from distribution Pt. The goal of unsu-

pervised domain adaptation is to learn the target labels {yti}Nt
i=1 using S and T . It is

assumed that S and T have an identical label space of K categories but since Ps ̸= Pt,

a classifier trained using S will underperform when trying to predict the target data

labels.

I plan to align the source and target domains using adversarial feature alignment

based on the Generative Adversarial Network (GAN) [Goodfellow et al. (2014)]. The

standard GAN model consists of a Generator network G(.), and a Discriminator net-
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workD(.) which are pitted against each other in min-max optimization. Traditionally,

the generator G(.) takes noise as an input and outputs an image but in the case of

unsupervised domain adaptation, the feature extractor E acts as the generator. It

takes an image x as the input and output features E(x) which can be classified by

a classification module C(.) to appropriate classes. E(.) and C(.) are representation

of components of a traditional image classifier F (.). The Discriminator network D(.)

attempts to distinguish between the E(xs) source and E(xt) target features and the

feature extractor E(.) attempts to align the features so that they are indistinguish-

able by the discriminator. Upon convergence, the marginal distributions of the source

and target are said to be aligned. In the following, I outline 4 popular variants of

adversarial alignment.

Vanilla GAN

The first model GAN1 is the vanilla GAN model where the feature extractor E(.)

attempts to align the source and target features and the Discriminator E(.) learns to

distinguish between them. The objective function for this model is,

min
D

−Ex∼S[lnD(E(x))]− Ex∼T [ln(1−D(E(x)))]

min
E,C

−λg1 Ex∼T [lnD(E(x))] + Ls
ce, (2.1)

where Lce = −E(x,y)∼S[y · lnC(E(x))] is the cross entropy loss and λg1 models the

importance of the alignment loss. In Eq. 2.1, the feature extractor attempts to align

target features to a fixed source distribution. Alternatively, better alignment can be

done in feature space by modifying both the source and target features [Shu et al.

(2018)]. While the objective function for training D(.) is the same as in Eq. 2.1, the

objective function to train the feature extractor E(.) and Classifier C(.) is,

min
G,C

−λg2

{
Ex∼S[ln(1−D(E(x)))] + Ex∼T [lnD(E(x))]

}
+ Ls

ce (2.2)
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I refer to Eq. 2.1 as GAN1 and to Eq. 2.2 as GAN2.

DANN

My third model is the popular Domain-Adversarial Training of Neural Networks

(DANN) [Ganin et al. (2016b)]. In DANN the feature extractor E(.) uses a reversed

gradient to update parameters during training in order to confuse the Discriminator

D(.). The objective function for the feature extractor differs from Eq. 2.1 as,

min
G,C

−λd

{
Ex∼S[lnD(E(x))] + Ex∼T [ln(1−D(E(x)))]

}
+ Ls

ce. (2.3)

MDC

The 4th model for comparison is the Maximum Domain Confusion (MDC) [Tzeng

et al. (2015)]. The MDC introduces maximum domain confusion through a cross-

entropy loss between the output of the discriminator and the uniform distribution.

This results in even the best discriminator performing poorly, thereby aligning the

domains. The loss function for the Discriminator is identical to the one in Eq. 2.1.

The objective function for the feature extractor and Classifier is given by,

min
G,C

−λm

{
Ex∼(S∪T )

[1
2
lnD(E(x)) +

1

2
ln(1−D(E(x)))

]}
+ Ls

ce. (2.4)

The summary of these loss functions is presented in Table 2.1.
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Method Discriminator Loss Feature extractor Loss

DANN −Ex∼S[lnD(E(x))]− Ex∼T [ln(1−D(E(x)))] Gradient Reversal

MDC −Ex∼S[lnD(E(x))]− Ex∼T [ln(1−D(E(x)))] −Ex∼(S∪T )[
1
2
lnD(E(x)) + 1

2
ln(1−D(E(x)))]

GAN1 −Ex∼S[lnD(E(x))]− Ex∼T [ln(1−D(E(x)))] −Ex∼T [lnD(E(x))]

GAN2 −Ex∼S[lnD(E(x))]− Ex∼T [ln(1−D(E(x)))] −Ex∼S[ln(1−D(E(x)))]− Ex∼T [lnD(E(x))]

Table 2.1: Traditional Domain Alignment loss functions.
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2.1.2 Glocal Method

Traditional domain alignment aligns the deep features without any regard to their

category. Such alignment generally results in aligning mismatched classes and hurts

target performance. To overcome this issue, I present Glocal alignment which splits

data into classes and performs category-level (local) adversarial alignment. Since in

the case of unsupervised domain adaptation target labels are not available, I rely

on the pseudo label generated by the network. This way Glocal alignment achieves

global alignment by aligning data points from each category for the two domains.

First, The classifier is trained on the source dataset S using standard cross-entropy

loss Ls
ce. Next, I determine the pseudo-labels for the target data by applying a

threshold on the classifier prediction,

ŷti =


argmax

y
p(y|C(xt

i)), if max p(y|C(E(xt
i))) > τ

−1 otherwise.

(2.5)

I define D̄t := {(xt
i, ŷ

t
i)}

n′
t

i=1

∣∣ŷti ̸= −1} as the pseudo-labeled target dataset. To apply

alignment on each class, K discriminators would be needed and the amount of data

available to train each discriminator will also reduce by a factor of K, making this

approach impractical when K is large. To address this concern, I use a multi-task

learning approach and modify the discriminator to multi-headed logit [Ruder (2017)].

Specifically, I change the number of outputs of the discriminator from 1 (Global)

to K and each output head acts as a decision function for one of K categories. Di

represents the sigmoid output of the multi-headed discriminator at the ith head. The

glocal discriminator loss is defined as,

min
D

−Ex∼S[
K∑
i=1

1(i = y) lnDi(E(x))]− Ex∼T [
K∑
i=1

1(i = ŷt) ln(1−Di(E(x)))] (2.6)

Another issue that arises is the class imbalance problem due to the use of a subset
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Figure 2.2: Model diagram of Glocal alignment. The flow of the source is denoted

in Red and target using Green. The dotted lines indicate the flow of the labels.

The feature extractor E generates features that are classified by the classifier C and

Glocally aligned by the discriminator D. The classifier C is trained using the cross-

entropy loss on the source dataset and generates pseudo-labels for target samples.

The discriminator D is a multi-headed binary classifier and is trained using the Glocal

domain-alignment loss function. The discriminator head Di to train is selected using

the input label and trained to classify between source and target’s features belonging

to ith category. The feature extractor E uses both Glocal domain-alignment loss and

cross-entropy loss for training. It is trained to fool the discriminator and minimize

the source cross-entropy loss on the classification task.

of the target samples only. The reduced number of target samples introduces a bias

in the discriminator towards the source domain. To overcome this issue, I do not

use the threshold τ while training the discriminator. The discriminator heads are

trained using all the target samples T based on their pseudo labels, enabling the

discriminator D to learn the actual distributions without any bias. Only confident
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samples T ′ are used for training the feature extractor E which are aligned with the

source. Similar to the discriminator, I modify the feature extractor loss functions by

adding the condition to select the appropriate discriminator head and use T ′ instead

of T . Using these simple adjustments, any global alignment technique can be used at

a local level.

The glocal loss functions are in Table 2.2. The discriminator head is selected

based on the source label and target pseudo label. The feature extractor is trained

with the cross-entropy loss along with the glocal feature extractor loss. The weighing

coefficients for the feature extractor are the same as the traditional alignment losses.

2.1.3 Experiments and Results

Datasets

I test my approach on the following classification tasks:

Digits and Traffic Signs: For digits experiments, I use 5 datasets - SVHN,

MNIST, USPS, MNIST-M, and Synthetic digits (SyDigits). All the digits datasets

have 10 classes and present various visual variations in the images. Synthetic Signs

(SynSigns) and GTSRB are traffic sign datasets containing 43 classes.

I test my approach on the standard tasks: MNIST ↔ USPS, MNIST → MNIST-

M, SVHN → MNIST, SynDigits → SVHN and SynSigns → GTSRB. Digits and

Traffic sign images are scaled to 32×32 using bilinear interpolation and normalized

to be in the range [−1, 1]. The E(Small) network is trained for these tasks.

Office-31 [Saenko et al. (2010)] is a real-world object classification dataset that

contains 31 classes in three different domains – Amazon, DSLR, andWebcam. The ex-

periments are conducted using ResNet-50 pretrained on ImageNet. Standard random-

crop and horizontal flips are applied for training and center-crop for testing.
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Method Discriminator Loss Feature extractor Loss

G-DANN
−Ex∼S[

∑K
i=1 1(i = y) lnDi(E(x))]

−Ex∼T [
∑K

i=1 1(i = ŷt) ln(1−Di(E(x)))]

Gradient Reversal using −Ex∼S[
∑K

i=1 1(i = y) lnDi(E(x))]

−Ex∼T ′ [
∑K

i=1 1(i = ŷt) ln(1−Di(E(x)))]

G-MDC
−Ex∼S[

∑K
i=1 1(i = y) lnDi(E(x))]

−Ex∼T [
∑K

i=1 1(i = ŷt) ln(1−Di(E(x)))]

−Ex∼(S∪T ′)[
1
2

∑K
i=1 1(i = y) lnDi(E(x))

+1
2

∑K
i=1 1(i = y) ln(1−Di(E(x)))]

G-GAN1

−Ex∼S[
∑K

i=1 1(i = y) lnDi(E(x))]

−Ex∼T [
∑K

i=1 1(i = ŷt) ln(1−Di(E(x)))]
−Ex∼T ′ [

∑K
i=1 1(i = ŷt) lnDi(E(x))]

G-GAN2

−Ex∼S[
∑K

i=1 1(i = y) lnDi(E(x))]

−Ex∼T [
∑K

i=1 1(i = ŷt) ln(1−Di(E(x)))]

−Ex∼S[
∑K

i=1 1(i = y) ln(1−Di(E(x)))]

−Ex∼T ′ [
∑K

i=1 1(i = ŷt) lnDi(E(x))]

Table 2.2: Glocal Domain Alignment loss functions.
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Office-Home [Venkateswara et al. (2017)] is another challenging real-world object

classification dataset with 4 domains - Art (Ar), Clipart (Cl), Product (Pr) and

Real-world (Rw) images. It consists of 65 different categories from Office and Home

settings. ResNet-50 pretrained on ImageNet is used for these experiments. Standard

random-crop and horizontal flips are applied for training and center-crop for testing.

E (Small): K(32)→K(32)→P(2,2)→K(64)→ K(64)→K(128)→K(128)

K(128)→K(128)→P(2,2)→FC(128)

E (Office-31): ResNet50→FC(512)

E (Office-Home): ResNet50→FC(512)

D(Global): FC(500)→FC(500)→FC(1)

D(Glocal): FC(500)→FC(500)→FC(K)

C: FC(K)

Training Setup

To ensure a fair comparison, I train all the alignment loss approaches (including the

baselines) using the above architectures. textttK(n) represents n kernels of size 3

with padding 1, P(2,2) is a max pool with kernel size 2 and stride 2. FC(n) is a fully

connected layer with n neurons. Classifier C and Discriminator D use the output of

the feature extractor E as the input. Discriminator uses 1 neuron for global alignment

and K neurons for local alignment. I use ReLU activation in the feature extractor

and Softmax activation for the classifier. The discriminator uses Leaky ReLU with α

= 0.2 in the hidden layers and Sigmoid activation for the output.
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Method A→W D→W W→D A→D D→A W→A Mean

Source 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DANN 82.5 97.6 99.6 81.5 67.9 71.7 83.5

G-DANN 92.6↑ 97.5↓ 99.7↑ 89.8↑ 69.8↑ 72.6↑ 87.0↑

MDC 87.0 97.4 99.8 83.3 70.0 72.7 85.0

G-MDC 90.4↑ 98.5↑ 99.8 88.6↑ 73.7↑ 72.8↑ 87.3↑

GAN1 85.5 97.1 99.8 84.3 68.4 72.4 84.6

G-GAN1 90.1↑ 97.9↑ 99.8 88.6↑ 69.1↑ 72.9↑ 86.4↑

GAN2 85.5 97.2 99.8 83.1 69.7 72.8 84.7

G-GAN2 92.0↑ 98.2↑ 99.8 88.2↑ 72.6↑ 73.2↑ 87.3↑

Table 2.3: Target classification accuracies for Office-31 using ResNet-50. The Glocal

model is denoted as G-(model).

The E(Small) and E(Office-31 & Office-Home) are trained with a batch size of 128

and 36 respectively. I use the Adam optimizer with 10−4 learning rate. The learning

rate for pretrained layers of ResNet-50 is set to 10−5 to ensure smooth fine-tuning. I

set λg1 = λg2 = λm = 0.01, λd = 1 and τ = 0.9 for all my experiments.

Target Classification Accuracy

My experiment results are shown in Table 2.4, 2.3 and 2.5. In all cases, the Glo-

cal alignment outperforms the category-agnostic global alignment. For the small-

resolution image experiments, the performance gain is the highest in the case of

SVHN → MNIST, which is the hardest adaptation task among them. In the case

of Office-31 and Office-Home experiments, Glocal alignment improves over global

alignment with an average increase of 2.5%.
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Method MNIST→USPS USPS→MNIST MNIST→MNISTM SVHN→MNIST SyDigits→SVHN

Source 81.4 54.0 59.3 64.8 86.2

DANN 93.5 96.2 83.2 75.3 91.7

G-DANN 96.7↑ 97.3↑ 85.3↑ 88.2↑ 92.8↑

MDC 96.3 97.9 − 72.8 91.9

G-MDC 97.3↑ 98.4↑ − 89.7↑ 92.8↑

GAN1 96.8 98.1 81.7 65.9 92.3

G-GAN1 97.1↑ 98.1 82.0↑ 88.9↑ 93.2↑

GAN2 97.1 98.3 81.9 73.1 92.5

G-GAN2 97.2↑ 98.7↑ 83.0↑ 89.1↑ 93.4↑

Table 2.4: Target classification accuracies on Digits and Traffic-Signs. The Glocal model is denoted as G-(model). (“−”

did not converge.)
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Source Ar Cl Pr Rw
Mean

Target Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN 48.3 63.5 73.2 56.3 65.4 64.4 53.7 50.0 72.9 68.5 55.6 80.5 62.7

G-DANN 55.6↑ 68.0↑ 75.7↑ 61.6↑ 68.6↑ 72.0↑ 58.8↑ 55.5↑ 78.4↑ 70.8↑ 58.8↑ 82.6↑ 67.2↑

MDC 48.3 67.8 74.7 56.7 65.4 65.6 56.6 51.6 74.0 68.8 58.6 81.1 64.1

G-MDC 55.3↑ 68.5↑ 75.5↑ 57.9↑ 69.0↑ 70.5↑ 56.2↓ 54.0↑ 78.2↑ 69.9↑ 58.8↑ 82.1↑ 66.3↑

GAN1 48.5 67.0 74.8 57.1 65.9 66.7 54.8 53.8 75.4 69.6 57.9 79.8 64.3

G-GAN1 53.5↑ 66.5↓ 75.3↑ 57.4↑ 67.5↑ 68.9↑ 55.0↑ 54.5↑ 75.8↑ 69.8↑ 57.5↓ 80.8↑ 65.2↑

GAN2 48.4 67.4 74.7 56.5 66.0 66.7 55.6 52.9 74.5 68.5 58.1 80.4 64.1

G-GAN2 55.3↑ 68.3↑ 75.9↑ 58.3↑ 68.2↑ 71.4↑ 57.4↑ 54.7↑ 78.6↑ 69.9↑ 58.4↑ 81.7↑ 66.5↑

Table 2.5: Results of Glocal domain alignment on Office-Home. The Glocal model is denoted as G-(model).
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Figure 2.3: A-distances for G-GAN2 on SVHN→ MNIST task.

2.1.4 Analysis

A-distance

A-distance is a metric to measure the domain gap, defined as 2×(1 − ε) where ε

is the generalization error of a classifier trained to distinguish the features of the

domains [Ben-David et al. (2010)]. I perform 5-fold cross-validation using a linear

SVM for GAN2 on SVHN → MNIST transfer task. As depicted in Fig. 2.3, Global

and Glocal alignments achieve similar low A-distance (Fig. 2.3 (left)), which signifies

that domains are well-aligned. However, when compared using the mean A-distance

for each category (Fig. 2.3 (right)), I observe a significant domain gap.

Pseudo Label Accuracy

In almost all cases, the pseudo-label accuracy of the mini-batch was similar to the

mini-batch accuracy. Even with moderate pseudo-label accuracy, the Glocal method
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Figure 2.4: Training graphs comparing pseudo-label and target accuracies for G-GAN2

on SVHN→ MNIST task.

achieves excellent performance. Fig. 2.4 shows training progress comparing pseudo-

label accuracy with target accuracy for G-GAN2 on SVHN→MNIST task.

Domain Alignment Feature Visualization

I use TSNE [Maaten and Hinton (2008)] plots to visualize feature alignment of the

Glocal model for the SVHN→MNIST task in Fig. 2.5. Global alignment mixes the

two domains well but also misaligns the individual categories, whereas my approach

provides better alignment for individual categories along with the global alignment.
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Figure 2.5: TSNE plots for SVHN→MNIST task. Each color represents a class. Source is represented by • and target by

+.
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2.2 Pixel-Level Adaptation

Alternatively, domain adaptation can also be accomplished at the pixel level using

image translation where images in one domain are translated to resemble images from

the other domain. But pixel-level adaptation works well only on simple problems like

digit classification because the images have limited variations which are nearly all

captured in the datasets. Also, digit datasets from different domains vary mostly in

the background with small changes to the foreground. On the other hand, real-world

object classification datasets for domain adaptation have limited variations of the

objects captured in the datasets. The intra-domain variations in terms of background

are diverse and the inter-domain differences between the foregrounds (objects) are

large [Saenko et al. (2010); Venkateswara et al. (2017)]. For effective pixel-based

domain adaptation, large datasets are required that capture all the variations of the

object, or the domains need to be very close. Due to these reasons, pixel-based domain

adaptation approaches are mostly limited to digits, traffic signs, and segmentation

datasets [Bousmalis et al. (2017); Hoffman et al. (2018); Russo et al. (2018)].

Standard approaches in image-translation-based unsupervised domain adaptation

area use coupled generator-discriminator pairs from a GAN framework for image

translation [Zhu et al. (2017)]. While one GAN translates source images to the target,

another GAN translates target images to the source. There is a cyclic loss to ensure

consistency in translation [Hoffman et al. (2018); Russo et al. (2018); Murez et al.

(2018)]. The consistency loss however does not preclude the image from changing its

category upon translation. For example, an image of digit 5 (source domain) can get

converted to digit 7 in the target domain and back to digit 5 in the source domain all

the while satisfying the cyclic consistency loss. The translated images are also of poor

quality because the cyclic loss forces the network to embed non-relevant information
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Figure 2.6: The learning paradigm of Iterative Image Translation (IIT). The image

classifier F extracts content from the input source image. Using the content extracted

from the classifier, the image generator I is trained to generate target-like images. In

the next phase, the target-like generated images are used to train the classifier on the

target domain. The cyclic process continues until convergence.

like background and style into the translated image to be able to reconstruct it later.

I showcase an approach ”Iterative image translation” to overcome these problems

with a single GAN framework that translates source images to the target domain

[Chhabra et al. (2021b)]. The classifier module of my model retains the content

(category) information from the source image into the translated target images using a

content consistency loss. The generator in my GAN framework ensures the translated

image appears to be from the target domain while preserving the content of the source

image. In an iterative process, I train the classifier on the generated target images

along with source labels, making it a better content extractor with each update. This

way the classifier and the generator are used to train each other iteratively. Since

there is no need for cyclic translation, the need to preserve the domain-specific content

is eliminated while the generator can introduce target-specific content resulting in

superior quality in the translated images. The procedure is depicted in Fig. 2.6.

The contributions of my model are as follows: (1) A novel image translation
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framework using a classifier to guide the image generator and vice-versa, (2) a content-

consistency loss to retain source information in the translated image, (3) a three-way

discriminator loss to align the features of the source, target and target-like source im-

ages giving more leeway to the GAN framework in the alignment space, (4) extensive

empirical and subjective analysis to demonstrate the superiority of my translation

framework.

2.2.1 Iterative Image Translation

Problem Statement

Let S = {xs
i , y

s
i }Ns

i=1 denote the source dataset, where Ns is number of samples drawn

from the source distribution ps and let T = {xi
t}Nt

i=1 be the target dataset, where Nt

is number of samples drawn from the target distribution qt. The goal is to learn

the target labels {yit}Nt
i=1 using S and T . It is known that S and T share the same

number of K classes but ps ̸= qt which is why a classifier trained on S is not sufficient

to predict the target labels. To solve this problem, I use an image classifier F , a

feature-level discriminator Df , and a set of Image generator I and discriminator Dp.

I pass the Source dataset S from the image generator I to generate fake target dataset

I(S) = {I(xs
i ), y

s
i }Ns

i=1.

I present an iterative approach involving two phases, A and B, to translate a source

image to a target-like image using a single GAN framework. In Phase A, I train an

image generator to generate a target-like image using a source image as input while

retaining only the content (category) information from the source image. In Phase

B, I train a classifier to extract the content information from the input images to be

used for generation. I further outline the steps of my approach procedure below.
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Figure 2.7: Model Diagram of Iterative Image Translation. Green denotes the network

is trained and Gray denotes the network is not trained during that phase. During

Phase-A, Image Translator I is trained to minimize GAN loss Lg along with Content-

Consistency loss Lcc. During Phase-B, the source and the generated target-like source

image with source labels are used to train the image classifier F using cross-entropy

loss Lce and Virtual Adversarial Training loss Lv. Additionally, the deep features of

the source, target-like source, and target images are aligned using feature alignment

loss Lfd.

Content Consistency Loss

I begin with an image classifier module F trained with standard cross-entropy loss

on the labeled source images S,

Ls
ce = −E{xs,ys}∼S[y · logF (xs)]. (2.7)

I retain content information from the source image using the principle of consis-

tency regularization, which is a regularization technique from semi-supervised learn-

ing [Sajjadi et al. (2016)]. I would like the source image and its corresponding target-

like transformed image to have the same content. Content in this context refers to
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the category of the image. Having extracted the source content from the classifier in

the form of a probability distribution over the categories, F (x), I train the generator

I(.) of my GAN to retain this content information in the generated target-like image

with the content consistency loss,

Lcc = Ex∼S

[
||F (x)− F (I(x))||2

]
. (2.8)

Matching the probability distributions alone will not result in identical content

for the source image and its corresponding target-like image because the generated

images can achieve the same probability distribution adversarially as well. To avoid

this, I train the classifier using Virtual Adversarial Training [Miyato et al. (2018)]

by minimizing the Kullback-Leibler divergence over the classifier predictions using a

tiny perturbation r < ϵ,

Ls
v = Ex∼S[max

||r||<ϵ
DKL(F (x)||F (x+ r))]. (2.9)

Image Generation

For training the generator to produce real-looking target-like images, I use the least

squared loss [Mao et al. (2017)] GAN objective along with the content consistency

loss. The discriminator D is trained to distinguish between fake target I(xs) images

generated by the image generator I and real target images xt. The image generator I

inputs a source image along with a noise vector z ∈ N (0, I) to fool the discriminator

D. The input noise vector is sampled from a random Gaussian distribution and is

up-scaled to the image size using a linear layer. It is then added as a new channel in

the input image. The noise vector z provides the seed for the variations the generator

produces in the target-like images,

27



Lg = Ex∼T [(D(x)− 1)2] + E x∼S,
z∈N (0,I)

[(D(I(x, z)))2]. (2.10)

Learning Target Domain

Although the generated target images are constrained to have the same content as the

source images, all of the images might not have content preserved. Therefore, select

a subset of the most content-preserving generated images using content-consistency

loss as a filter with a threshold τ ,

S ′ :=
{
xs ∋ Lcc(x

s) < τ
}
. (2.11)

Initially, the classifier was trained using only the source images. The classifier

can now be trained to classify target images using the generated target-like images.

Although the generated images are not the actual target images, they are the best

representation of the target domain learned by the generator given the constraints.

These images have the same content as that of the source and are the closest repre-

sentation to a labeled target domain. I exploit this fact and further train the classifier

on the filtered generated images along with source labels so that it learns to classify

target-like images. I train the classifier on these subsets of generated samples along

with source labels using cross-entropy loss. I add VAT loss to it as well for the same

reason as the source dataset,

Lt
v = E x∼S′,

z∈N (0,1)

[max
||r||<ϵ

DKL(F (I(x, z))||F (I(x) + r))], (2.12)

Lt
ce = −E{x,y}∼S′ [y · logF (I(x))]. (2.13)

When the classifier is trained on the generated samples, it helps the generator to

produce images that are even closer to the target domain. This way, I train the

generator and the classifier alternatively and both the networks can learn from each
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other. With each update, the generator produces better target-like images and the

classifier learns more about the target from those images.

Feature Alignment

The iterative pixel-level training does not guarantee that the classifier will have good

accuracy on the actual target images because the generated images may not represent

the entire target distribution [Hoffman et al. (2018)]. The pixel-level alignment alone

can be achieved easily by aligning the generator to only a subset of the target domain

(partial mode collapse). Also, the content variations in the target may not be entirely

represented in the source images. Hence, I integrate a feature-level alignment loss to

align the deep features of the domains. I consider target-like source images as a

separate domain and implement domain alignment for all three domains - source,

target-like source, and target,

Lfd = −Ex∼S logD
1
f (E(x))− E x∼S′

z∈N (0,I)

logD2
f (E(I(x, z)))− Ex∼T logD3

f (E(x)),

(2.14)

where E is the submodule of the image classifier F till the penultimate layer and

extracts the deep features. Di
f is a 3-class classification network and Di

f (x) is the

probability of x belonging to ith class. My ternary feature alignment is similar to

[Taigman et al. (2016)]. While training the discriminator, I use the same loss but while

training the feature extractor, I maximize the loss with respect to all the domains

instead of aligning them all to one domain. Eq. 2.14 helps in the further alignment of

the distributions. The content extractor starts with knowing only about the source

domain and ends up becoming an expert predictor of the target domain. The overall

objective function brings together the cross-entropy loss (Lce), the virtual adversarial

loss (Lv), feature alignment (Lfd), content consistency (Lcc) and GAN loss (Lg)
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for training the network with corresponding λ hyper-parameters controlling relative

importance of the terms,

min
C

max
Df

λsceLs
ce(C) + λtceLt

ce(C) + λvsLs
v(C) + λvtLt

v(C)− λfdLfd(Df , C),

min
G

max
D

λccLcc(G) + λgLg(G,D). (2.15)

Final Training Procedure & Algorithm

I start with training the classifier using Eq.1 and Eq.4. Following that, the generator

is trained with the image generation loss (Eq.3) and content matching loss (Eq.2).

During this time, the generator is warmed up to learn to generate target-like images

and match the content information. Instead of using fixed λct, I increase it gradually

using the e−5(1−p)2 ramp-up function from [Tarvainen and Valpola (2017)], where

p is the ratio of the iterations completed. Lastly, the network is trained using Eq.9

iteratively. Figure 2.7 depicts the overall framework of my approach and the complete

algorithm is in Algorithm 1.

2.2.2 Experiments and Results

Dataset I test my approach on the following tasks: MNIST ↔ USPS, MNIST

→ MNIST-M, SVHN ↔ MNIST, SynDigits → SVHN and SynSigns → GTSRB.

MNIST is a handwritten digits dataset with a black background [LeCun et al. (1998)].

SVHN contains an RGB digits dataset extracted from real-world house number images

[Netzer et al. (2011)]. MNIST-M was created by combining MNIST images with

patches randomly extracted from color photos of BSDS500. USPS is a digits dataset

developed by recognizing the digits on the envelopes. Synthetic Digits (SynDigits) is

a synthetically created digits dataset consisting of various English fonts on random
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Algorithm 1: Iterative Image Translation

Input : Source dataset S = {(xs
i , y

s
i )}Ns

i=1, target dataset T = {(xt
i)}Nt

i=1 and

networks F , I, D, Df

Output: Target labels {yti}Nt
i=1

Train F using Cross Entropy (Eq. 1) + VAT loss (Eq. 4)

Further, train I and D using GAN loss (Eq. 3) + Content-Consistency loss

(Eq. 2) using the ramp-up function.

for M iterations do

ms = miniBatch(S)

mt = miniBatch(T )

mst = I(ms)

Train D using Eq. 9

Train I using Eq. 9

mst = I(ms)

m′
st = Filter mst using Eq. 5

Train Fd using Eq. 9

Train F using Eq. 9

end

Predict target labels yt using F

Return {yit}Nt
i=1

backgrounds. Synthetic Signs (SynSigns) and GTSRB are traffic sign datasets where

SynSigns contain images from Wikipedia whereas GTSRB has real-world traffic sign

images [Houben et al. (2013)]. All the digit datasets have 10 classes and present

different visual variations in the domains. The traffic signs dataset provides a larger

classification task of 43 classes.
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Figure 2.8: Network Architectures used in Iterative Image Translation experiments.

From left to right: Classifier, Feature discriminator, Generator, and Pixel-level dis-

criminator. All input images are resized to 32 × 32. K 3×3 refers to 3 × 3 convolution

with K feature maps and Tr K refers to transposed convolution. I, S, P, BN, and C

stand for Input, Stride, Pad, Batch normalization, and channels respectively. All the

layers use ReLU activation except the Pixel-level discriminator which uses a lReLU

with α=0.2.

Training details

I follow the standard unsupervised domain adaptation protocol i.e. train using the

labeled source and unlabelled target training sets and evaluate on the target test set.

All the input images are resized to 32 × 32. The network architectures are displayed
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in Figure 2.8. In the figure, From left to right: Classifier, Feature discriminator,

Generator, and Pixel-level discriminator. K 3×3 refers to 3 × 3 convolution with K

feature maps and Tr K refers to transposed convolution. I, S, P, BN, and C stand

for Input, Stride, Pad, Batch normalization, and channels respectively. All the layers

use ReLU activation except the Pixel-level discriminator which uses a lReLU with

α=0.2.

The classifier has a generic architecture of six 3 × 3 convolutional layers containing

32, 32, 64, 64, 128, and 128 feature maps followed by one fully-connected layer of 128

hidden units and a classification layer of size K. The Feature discriminator uses the

output of the first fully connected layer of the classifier as the input. The generator

and the pixel-level discriminator architecture are inspired by [Zhu et al. (2017); Isola

et al. (2017); Russo et al. (2018)]. The generator uses a 5-dimensional noise vector

sampled from N (0, 1) which is then scaled up to the size of the image using a linear

layer and concatenated channel-wise with the input image. For MNIST and USPS

image generation, I used a smaller image discriminator by excluding the 256 feature

map layer.

All the networks are trained using a batch size of 128 and Adam optimizer with

β1 = 0.5 and β2 = 0.99. I use a learning rate of 1e−4 to train the classifier, 2e−4 for

training the generator and discriminator (default from CycleGAN [Zhu et al. (2017)]).

For the feature discriminator, I used a lower learning rate of 10−5 to prioritize pixel-

level adaptation over feature-level adaptation.

I set the hyperparameters λsce, λtce, λg to 1. the The hyperparameters λvs, λvt,

λfd, ϵ, λcc are set to 0.1, 0.1, 0.01, 3.5 andK2s respectively based on existing literature

which has used similar loss functions. τ is the only hyperparameter tuned by use and

is empirically set to 10−6.
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Method MNIST→USPS USPS→MNIST MNIST→MNISTM SVHN→MNIST MNIST→SVHN SyDig→SVHN SySigns→GTSRB

Source only 83.1 67.2 63.3 60.9 30.8 88.7 94.2

DANN 85.1 73.0 76.7 73.9 35.7 91.1 88.7

MMD 81.1 - 76.9 71.1 - - 91.1

ADDA 89.4 90.1 - 76.0 - - -

ATT - - 94.2 86.2 52.8 93.1 96.2

DRCN 91.8 73.7 - 82.0 40.0 - -

PixelDA 95.9 - 98.2 - - - -

DSN - - 83.2 82.7 - 91.2 93.1

I2I Adapt 95.1 92.2 - 92.1 - - -

UNIT 96.0 93.6 - 90.5 - - -

PLR 90.7 91.8 94.3 97.3 63.4 - -

CYCADA 95.6 96.5 - 90.4 - - -

DupGAN 96.0 98.8 - 92.5 62.7 - -

SBADA 97.6 95.0 99.4 76.1 61.1 - 96.7

IIT 97.8 99.1 99.4 97.4 66.5 95.4 97.2

Table 2.6: Comparison of classification accuracy of IIT (Iterative Image Translation) with different domain adaptation

methods. Pixel-based approaches are below the dashed line.
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Figure 2.9: Sample generated images. Top to Bottom: USPS ↔ MNIST, MNIST ↔

MNIST-M, SyDigits ↔ SVHN, SVHN ↔ MNIST, SySigns ↔ GTSRB. I show images

for each combination on every row. Upper row: Original source images and Lower

row: Generated target images.

Results

The results of my experiments are in Table 2.6. I compare my approach with Image

translation approaches like CYCADA [Hoffman et al. (2018)], SBADA [Russo et al.

(2018)], as well as feature alignment, approaches like DANN [Ganin et al. (2016b)],

MMD [Long et al. (2015)], ADDA [Tzeng et al. (2017)] and my approach outperforms

all the compared methods on all the combinations. Even for the difficult combination

of MNIST → SVHN, my approach is effective and beats all the compared baselines.
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CC VAT FA TOT M→U U→M M→MM S→M

✗ ✗ ✗ ✗ 83.1 67.2 63.3 60.9

✗ ✓ ✓ ✓ 94.2 97.4 98.3 15.5

✓ ✗ ✓ ✓ 96.5 98.1 97.7 77.4

✓ ✓ ✗ ✓ 96.2 95.1 91.3 77.8

✓ ✓ ✓ ✓ 97.8 99.1 99.4 97.4

Table 2.7: Ablation study of Iterative Image Translation on MNIST(M) →

USPS(U), MNIST(M) → MNIST-M(MM) and SVHN(S) → MNIST(M). CC:

Content-consistency loss; VAT: Virtual adversarial training for source and target; FA:

feature-level alignment; TOT: Train on target. The first row represents source-only.

The generated target-like images can represent the target variations and is an effective

way to learn the target domain. The sample translated images can be found in Fig.

2.9. In the figure, Top to Bottom are USPS ↔ MNIST, MNIST ↔ MNIST-M,

SyDigits ↔ SVHN, SVHN ↔ MNIST, and SySigns ↔ GTSRB. I show images for

each combination on every row. The upper row is the original source images and the

lower row is the generated target images.

2.2.3 Analysis

Ablation Study

To analyze the significance of each of the loss components, I perform an ablation

study by removing them, one loss component at a time, from my approach. I use

MNIST ↔ USPS, SVHN → MNIST, and MNIST → MNIST-M combinations for

this study. The results are presented in Table 2.7. The losses are abbreviated as CC:
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Content-consistency loss; VAT: Virtual adversarial training for source and target; FA:

feature-level alignment; TOT: Train on target. The first row in the table represents

source-only. I perform the following three experiments

1. No content-consistency loss: I replace the content consistency loss with the

cycle consistency loss (used for training CycleGAN) by adding another image

generator [Zhu et al. (2017)]. Though this produces decent results for small

variation combinations - MNIST ↔ USPS, MNIST → MNIST-M, but results

in shuffling of labels for the high variation combinations like SVHN → MNIST.

2. No virtual adversarial training losses: No adversarial training allows the gen-

erator to fool the consistency loss without matching the content and results in

negative transfer, thereby impacting the final accuracy.

3. No feature alignment: It is clear from the results that pixel-level alignment is

not sufficient to train the classifier on the target domain.

Feature Visualization

I use TSNE plots to visualize the deep features generated by the classifier before

and after the adaptation in Figure 2.10 and Figure 2.13. The deep features are

spread across for source, target-like, and target domains before the adaptation. After

the adaptation, all three of them are aligned together to get an indistinguishable

representation across domains.

Generated Images Spectrum

I use the task of MNIST→MNIST-M transfer to understand the variations in gener-

ated images. Fig.2.10 shows the generated images before and after the adaptation.

Before adaptation, the generated images look similar to MNIST-M but they are only
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Figure 2.10: TSNE plots of the deep features of source, target-like generated, and tar-

get images along with generated target-like images for the MNIST → MNIST-M task.

Left: depicts image features and generated target-like images before convergence.

Right: depicts image features and generated target-like images after convergence.

restricted to having a darker background and lighter foreground, resembling MNIST

images. I believe it is because the classifier can only detect dark-to-light edges. Hence,

the generator needs to generate such images to keep the content loss low. The deep

features of these generated images lie between those of the source (MNIST) and the

target (MNIST-M) samples. They act as a bridge between the source and target

domain. After adaptation, the features are aligned and the generated images cover

the full spectrum of the target images.

Domain Gap

[Ben-David et al. (2010)] defined the A-distance metric for evaluating testing the do-

main discrepancy as 2×(1−ε) where ε is the generalization error of a classifier trained
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Figure 2.11: The domain discrepancy A-distance between deep features for the

MNIST(M) ↔ USPS(U), SySigns(SS) → GTSRB(G) and SVHN(S) → MNIST(M).

Smaller is better.

to classify deep features. I use 5-fold cross-validation using a linear SVM to compute

the A-distances. Fig. 2.11 shows the A-distance between three domains on different

tasks using Source only, DANN-alignment [Ganin et al. (2016b)] and my method. My

approach brings the domains closer while achieving superior performance.

Content Extraction

I perform linear interpolation between two input noise vectors for 3 pairs of source-

target combinations and the results are in Figure 2.12. The first column is the source

image and the other columns are generated target images. The images in the middle

are generated by linear interpolating the random noise vector used for the first and

the last columns of the generated images. For each pair, I use the same noise vectors,

and the linear interpolation results in the same changes in style. For MNIST →

MNIST-M combination, the color variations are similar across the two inputs. For
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Figure 2.12: Linear Interpolation between two random noise vectors on MNIST →

MNIST-M (Top two rows), SynDigits → SVHN (Middle two rows), and USPS →

MNIST (Bottom two rows) pairs. Each pair uses the same input noise vector. The

first column is the source image and the other columns are generated target images.

The images in the middle are generated by linear interpolating the random noise

vector used for the first and the last columns of the generated images.

SynDigits → SVHN, ’1’ can be seen appearing on the left and slowly transforming

the background to a box. Similarly, for USPS → MNIST, it can be observed that

equivalent angle rotations for the inputs. This confirms that my model extracts the

content and uses the noise vector as the style component.
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Figure 2.13: TSNE plots for MNIST → USPS, USPS → MNIST, SVHN → MNIST, MNIST → SVHN, SyDigits →

SVHN and SySigns → GTSRB in English reading order. For every combination, left is before adaptation and right is

after adaptation. • denotes source domain, • denotes source to target-like source translated images, and • denotes Target

domain samples.
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2.3 Output-Level

Unsupervised domain adaptation requires both the labeled source dataset and

the unlabeled target dataset when learning a classifier for the target. Access to

a source dataset may not be available owing to security and privacy constraints.

Source-free domain adaptation assumes only the presence of a pre-trained source

classifier and the unlabeled target dataset [Liang et al. (2020)]. Unsupervised domain

adaptation uses source-target alignment approaches like feature alignment [Ganin

et al. (2016b); Pei et al. (2018); Tzeng et al. (2017); Shen et al. (2018)] and pixel

alignment [Hoffman et al. (2018); Bousmalis et al. (2017); Russo et al. (2018)] to

perform domain adaptation. These approaches are generally not possible in a source-

free setting.

In this dissertation, I present a novel approach that models a generative paradigm

governed by a joint probability p(x, y) where x is the visible data and y are latent

(labels) variables. I hypothesize an approximation qθ(y|x) to the unknown posterior

probabilities p(y|x). I demonstrate that a good approximation of the posterior proba-

bility qθ(y|x) ≈ p(y|x) can be learned by aligning the predicted posterior distribution

qθ(y|x) with the class prior p(y). I present arguments to establish that the generative

paradigm is equivalent to the source-free domain alignment setting when I align the

source and target posterior probabilities using adversarial alignment. Specifically, I

circumvent the need for source data by generating the source category distribution

p̂s(y) using a conditional generative adversarial framework. Domain adaptation is

achieved by enforcing the target posterior distribution to align with the source cat-

egory distribution using adversarial alignment. In place of the traditional image or

feature alignment, I proceed with alignment in the label space.

I present a Generative model for the Alignment of Posterior probabilities (GAP) of
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the source and target to perform source-free and unsupervised domain adaptation

[Chhabra et al. (2023)]. Some of the highlights of the GAP model are: (1) GAP

does not introduce any new hyper-parameters and hence, does not require any addi-

tional hyperparameter tuning; (2) GAP is robust to variations in batch size (3) GAP

can effectively exploit source data (when present) to enforce inter-class relationships

through knowledge distillation. [Hinton et al. (2015)].

2.3.1 Generative Alignment of Posterior Probabilities

Problem Statement

Let S = {xs
i , y

s
i }Ns

i=1 be the source dataset where Ns represents the number of labeled

training samples and ys is the one-hot representation of the source label with K

categories. The unlabeled target dataset is T = {xt
i}Nt

i=1 with Nt samples. The

datasets S and T are drawn from distributions ps and pt with ps(x, y) ̸= pt(x, y), but

they share the same label space with identical K categories. The goal is to estimate

the labels {ŷti}Nt
i=1 corresponding to elements in T . Source-free domain adaptation is

a more restricted setup where the source and target data are not accessible at the

same time. In source-free domain adaptation, once the source image classifier Fθ(.)

has been trained using S, I lose access to S. I aim to predict target labels using T

and the source classifier Fθ(.).

Generative Model

I present a generative paradigm to estimate the labels for the target dataset. Let

the images from the target dataset be sampled from x ∈ X, where X is the space of

images. The corresponding labels are one-hot binary vectors of the type y ∈ {0, 1}K ,

where
∑

k yk = 1. K is the number of distinct categories in the target dataset. The

images and labels are sampled from an unknown target distribution pt(x, y). Given
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a target sample x, I intend to estimate the posterior pt(y|x) using which I arrive at

the label y. I hypothesize to approximate pt(.) using a parametric model qθ(.). In

essence, I seek to estimate parameter θ such that pt(y|x) ≈ qθ(y|x).

In order to estimate θ, I begin with estimating the reverse Kullback-Leibler (KL)

divergence KL(qθ(y|x)||pt(y|x)),

KL(qθ(y|x)||pt(y|x)) = Eqθ(y|x)
[
logqθ(y|x)− logpt(y|x)

]
= Eqθ(y|x)

[
logqθ(y|x)− logpt(x|y)− logpt(y) + logpt(x)

]
= KL(qθ(y|x)||pt(y))− Eqθ(y|x)

[
logpt(x|y)

]
+ logpt(x)

KL(qθ(y|x)||pt(y|x)) ≤ KL(qθ(y|x)||pt(y))− Eqθ(y|x)
[
logpt(x|y)

]
. (2.16)

In deriving Eq.2.16 I have used pt(y|x) = pt(x|y)pt(y)
pt(x)

and Eqθ(y|x)[log pt(x)] = log pt(x) ≤

0. The R.H.S in Eq.2.16 is an upper bound for the KL-divergence between the dis-

tributions qθ(y|x) and pt(y|x). The value of θ which will minimize the R.H.S will

align the two distributions. The 1st term on the R.H.S. is the measure of alignment

between the unknown prior distribution pt(y) and the generative model qθ(y|x). The

second term can be viewed as the expected reconstruction error converting from y to

x.

Model Assumptions

A few assumptions are made to further simplify the model. pt(y) is unknown, but

the source and the target have the same label space. I assume ps(y) ≈ pt(y), which

is a reasonable assumption along the lines of assuming covariate-shift (ps(y|x) ≈

pt(y|x)) [Ben-David et al. (2010)] or concept-shift (ps(x) ≈ pt(x)) [Vorburger and

Bernstein (2006); Popovič (2011)]. I model qθ(.) using a neural network which takes
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x as input and yields the posterior qθ(y|x) as output. The presented model has issues

of identifiability. A model is identifiable when p(x) has a unique decomposition in∑
y p(x|y)p(y) [Chapelle et al. (2006)]. If a swapping of labels can yield the same

marginal p(x), the problem setup is not identifiable and the resulting solution is not

consistent (different assignment of labels under different initial conditions). The 2nd

term on the R.H.S of Eq. 2.16 can be viewed as a reconstruction term that can ensure

identifiability. However, pt(x|y) is unknown. I address both problems by dropping

the 2nd term and initializing the parameters in the network qθ(.) with the parameters

of a pretrained source classifier. This is a robust initialization mechanism that will

bias the model qθ(.) to yield a consistent mapping between x and y. Under these

assumptions, I minimize KL(qθ(y|x)||ps(y)) in an attempt to align the distributions

qθ(y|x) and pt(y|x).

Source Replicator

In the absence of the source data, I cannot align the probabilities for the source

and target directly. Therefore, I aim to replicate source prior probability vectors for

target alignment. I perform this additional step of source replication after training a

source network. Specifically, I design a conditional generative adversarial framework

[Mirza and Osindero (2014)] - a generator Gc(.; θc) that takes fake label (yf ∈ Y ,

where Y = {0, 1}K) and noise (z ∈ N (0, I)) as input to generate a probability

vector of K-dimensions (using softmax activation at the last layer). The conditional

discriminator Dc(.;ϕc) is trained to discriminate between generated probabilities and

source probabilities from the pre-trained source classifier F (., θ). The conditional

framework is preferred over a vanilla GAN primarily to avoid partial mode collapse

and also to have control over the prior class distribution. I refer to the conditional

generator as the Source Replicator in this dissertation. On account of its stability, I
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train the conditional GAN using the least squared loss function [Mao et al. (2017)],

min
ϕc

1

2
E(x,y)∼S[(Dc(F (x; θ), y;ϕc)− 1)2]

+
1

2
E yf∼Y

z∈N (0,I)

[(Dc(Gc(z, y
f ; θc), y

f ;ϕc))
2],

min
θc

1

2
E yf∼Y

z∈N (0,I)

[(Dc(Gc(z, y
f ; θc), y

f ;ϕc)− 1)2]. (2.17)

The conditional framework captures the statistical variations of the source predic-

tions and their inter-class relations. I use the trained conditional generator Gc to

replicate (generate) source probabilities ps(y) when minimizing KL(qθ(y|x)||ps(y)).

Figure 2.14A is the pre-trained source classifier. Figure 2.14B depicts the training of

the Source Replicator Gc.

Source-free Domain Alignment

Domain adaptation approaches rely on the source data to perform source-target align-

ment either in the pixel space through image translation [Hoffman et al. (2018); Bous-

malis et al. (2017)] or in the feature space [Tzeng et al. (2014); Ganin et al. (2016b)]

(see Figure 2.1). The presented model can be interpreted as the alignment of poste-

rior probabilities ps(y|x) and pt(y|x), where I align the source and target in the final

stage of the classification process. As the input image x propagates through the clas-

sification framework (neural network), it is transformed from an image to a feature

vector and finally to a probability vector while decreasing its information content and

complexity. I hypothesize that source-target alignment in the high-dimensional pixel

space and feature space is complex and less effective compared to the alignment of

probability vectors. Also, the feature space is constantly changing as the network

trains whereas, the probability space has fewer variations.

I implement a Generative Adversarial Network (GAN) to align the distributions

qθ(y|x) and ps(y) [Goodfellow et al. (2014)]. The image classifier network F (.; θ) mod-
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Figure 2.14: Model diagram for the GAP. (A) The feature extractor E and Classifier

C are trained using the source data. (B) Source replicator (conditional generator)

Gc is trained to replicate source predictions. yf represents the fake label. (C) During

the target adaptation, the C component is frozen to retain the source classification

boundaries. The feature extractor E and classifier C represent the probability gen-

erator F and are initialized using the source network. The Source replication is

performed using Eq.2.17 and the target adaptation uses Eq.2.18.
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els qθ(y|x), where θ are the parameters of F (.; θ), x is the target input image and y is

the predicted label. The source prior ps(y) is modeled by the Source Replicator Gc(.).

I initialize the image classifier F (.; θ) with the parameters of a pre-trained source clas-

sifier. The similarity between the source and target domains is exploited to provide a

near-optimal initialization for θ. The Discriminator network D(.;ϕ), with parameters

ϕ, is trained to distinguish between the image classifier output G(x; θ) → qθ(y|x) and

outputs of the Source Replicator, Gc(z, y
f ; θc). Figure 2.14C depicts target adapta-

tion where only the feature extractor (E) in the pre-trained classifier F (.) is trained.

The parameters of the classifier (C) are frozen to anchor the classifier and ensure

the target alignment does not drift away to yield a trivial solution in the absence of

source data for alignment. The GAN objective is based on the mean-squared loss

function [Mao et al. (2017)],

min
ϕ

1

2
E y∼Y

z∈N (0,I)

[(D(Gc(z, y; θc);ϕ)− 1)2] +
1

2
Ex∼T [(D(F (x; θ);ϕ))2],

min
θ

1

2
Ex∼T [(D(F (x; θ);ϕ)− 1)2]. (2.18)

where the input to the Source Replicator y ∈ Y is a 1-of-K binary vector, where

p(y|π) =
∏K

k=1 π
ȳk
k . Following [Liang et al. (2020)], I assume the mixing components

in π to be a uniform prior with πk = K−1 ∀k. The uniform prior can be replaced with

the source prior distribution. However, I found empirically that the uniform prior

performs better than the latter.

In Figure 2.14C, the feature extractor (E) and classifier (C) together form the

image classifier F . To account for smoother posterior probabilities, I apply label

smoothing with a constant ϵ = 0.1 [Szegedy et al. (2016b)] while training the source

network. Label smoothing results in better generalization accuracy and has been

adopted in many source-free domain adaptation approaches [Liang et al. (2020); Ishii
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and Sugiyama (2021); Ahmed et al. (2021)]. The parameters of the image classifier

F (.; θ) are initialized using a pre-trained source network. Following [Liang et al.

(2020)], I only train the feature extractor (E) and fix the classifier (C) during the

target adaptation phase.

2.3.2 Experiments

Datasets

I perform my experiments on the standard source-free domain adaptation settings.

For digits experiments, I use SVHN → MNIST, MNIST → USPS and USPS →

MNIST combinations [Netzer et al. (2011); LeCun et al. (1998); Hull (1994)]. For

object recognition, I use Office-31 [Saenko et al. (2010)], Office-Home [Venkateswara

et al. (2017)] and VisDa-C [Peng et al. (2017)] datasets.

Training Setup

I follow the training protocol and use the network architectures from [Liang et al.

(2020)]. For the digits dataset, the networks are trained from scratch. I use ResNet-

50 and ResNet-101 as the backbone network for Office datasets and VisDa datasets

respectively. The networks Gc and Dc consist of four fully connected layers of size

500 and discriminator D is a vanilla discriminator composed of two hidden layers of

size 100. All the networks are trained on a batch size of 64 using an SGD optimizer

with a momentum of 0.9. I use 1e−2 learning rate for office and 1e−3 for the VisDa

dataset and decay it as η = η0(1 + 10p)−0.75 where p is the training progress. The

learning rate for pre-trained layers is reduced by a factor of 10.
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Source Ar Cl Pr Rw
Avg

Target Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

Source + LS 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2

Rob. Adapt - - - - - - - - - - - - 65.1

SFDA 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7

SHOT-IM 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5

SHOT-full 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

GAP 55.4 73.4 80.8 67.2 75.5 78.3 65.5 54.0 82.4 74.3 59.4 84.0 70.8

Table 2.8: Comparison of source-free classification accuracies on the Office-Home dataset (ResNet-50). Bold numbers

represent the highest accuracy and the underline denotes the second highest. LS stands for label smoothing.
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Method Plane Bcycl Bus Car Horse Knife Mcycl Person Plant Sktbrd Train Truck Avg

Source 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

Source + LS 60.9 21.6 50.9 67.6 65.8 6.3 82.2 23.2 57.3 30.6 84.6 8.0 46.6

SFIT - - - - - - - - - - - - 63.5

Rob. Adapt - - - - - - - - - - - - 74.9

SFDA 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7

SHOT-IM 93.7 86.4 78.7 50.7 91.0 93.5 79.0 78.3 89.2 85.4 87.9 51.1 80.4

SHOT-Full 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

GAP 94.2 84.8 82.5 57.2 93.8 95.1 86.5 78.2 83.1 87.8 86.3 53.5 81.9

Table 2.9: Comparison of source-free classification accuracies on the VisDA dataset (ResNet-101). Bold numbers represent

the highest accuracy and the underline denotes the second highest. LS stands for label smoothing.
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Method A→D A→W D→A D→W W→A W→D Avg

Source 68.9 68.4 62.5 96.7 60.7 99.4 76.1

Source + LS 80.8 76.9 60.3 95.3 63.6 98.7 79.3

SDDA 85.3 82.5 66.4 99.0 67.7 99.8 83.5

Rob. Adapt - - - - - - 87.0

SFDA 92.2 91.1 71.0 98.2 71.2 99.5 87.2

SHOT-IM 90.6 91.2 72.5 98.3 71.4 99.9 87.3

SHOT-full 94.0 90.1 74.7 98.4 74.3 99.9 88.6

GAP 90.6 90.9 74.5 98.7 73.9 99.8 88.1

Table 2.10: Comparison of source-free classification accuracies on the Office-31 dataset

(ResNet-50). Bold numbers represent the highest accuracy and the underline denotes

the second highest. LS stands for label smoothing.

Results

The results for digits, Office-Home, VisDa and Office-31 are in Table 2.11, 2.8, 2.9

and 2.10 respectively. I compare my approach with source-free domain adaptation

methods like SFDA [Kim et al. (2020)], SDDA [Kurmi et al. (2021)], and SHOT [Liang

et al. (2020)]. My method achieves comparable performance against all the baseline

methods. SHOT-full outperforms my approach but it uses pseudo labeling loss along

with SHOT-IM loss functions- entropy minimization and diversity maximization. My

method is much simpler, does not use any auxiliary loss, or requires hyper-parameter

tuning.
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Method S→M M→U U→M Avg

Source 67.1 82.2 69.6 73.0

Source + LS 70.2 79.7 88.0 79.3

SFIT 90.4 84.7 82.3 85.8

SDDA 76.3 88.5 - -

SHOT-IM 99.0 97.6 97.7 98.2

SHOT-Full 98.9 98.0 97.9 98.3

GAP 99.1 97.6 98.4 98.4

Target-Supervised (Oracle) 99.4 98.0 99.4 98.8

Table 2.11: Comparison of source-free classification accuracies on the digits dataset.

Bold numbers represent the highest accuracy and the underline denotes the second

highest.

2.3.3 Analysis

Ablation Study

I perform an ablation study on my loss function to understand the contribution of

its different components. First, I remove the label smoothing from source model

training. In the second experiment, I replace the mean-squared error (MSE) loss

with the binary cross-entropy (BCE) loss. I perform these experiments on Office-

31, Office-home, and digits datasets and the results are in Table 2.12. In the table,

‘LS’ denotes label smoothing used for source-model training. ‘Alignment’ denotes the

alignment loss used for target adaptation. NA: No alignment was performed/Source-

only performance. Losses functions are abbreviated as BCE: Binary Cross-Entropy;
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LS Alignment Office-31 Office-Home Digits

✗ NA 76.1 46.1 73.0

✗ BCE 84.1 67.0 98.1

✗ MSE 86.3 69.8 98.1

✓ NA 79.3 60.2 79.3

✓ BCE 85.7 68.8 97.2

✓ MSE 88.1 70.8 98.4

Table 2.12: Ablation study of GAP on Office-31 and OfficeHome source-free setting.

‘LS’ denotes label smoothing used for source-model training. ‘Alignment’ denotes the

alignment loss used for target adaptation. NA: No alignment was performed/Source-

only performance. BCE: Binary Cross-Entropy; MSE: Mean-squared-error

MSE: Mean-squared-error. As per the results, label smoothing provides benefits in

generalization during source training and target domain adaptation. The MSE loss

function results in slightly superior performance, mainly due to its stability, and also

observed that BCE loss experiences partial mode collapse frequently.

Impact of batch size

When there are a large number of categories, a mini-batch cannot contain samples

from all the classes. I compare GAP with SHOT-IM (Entropy minimization + diver-

sity maximization loss) for different batch sizes. Figure 2.15 shows the results of this

experiment on Art → Clipart (Office-Home) source-free setting. When the batch size

decreases to 1
4
of its starting value, my approach has a significantly lesser decrease

(approximately 10%) in performance compared to SHOT-IM (25%). GAP does not
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Figure 2.15: Comparison of GAP with SHOT-IM (Entropy minimization + Diversity

maximization loss) for different batch sizes on Art → Clipart (Office-Home) source-

free setting.

show fluctuations until the batch size reaches 20 whereas the performance of SHOT-

IM drops significantly with the reduction of batch size. Due to this, all approaches

using entropy minimization and diversity maximization losses are susceptible to small

batch sizes. I overcome this issue by training the Discriminator multiple times before

updating the Generator. This way the Discriminator is unaffected by the mini-batch

bias.

TSNE Visualization

TSNE plots for visualizing the output probability space and the penultimate layer

features for the VisDa dataset are in Figure 2.16. Different colors represents different

domains: Blue: Source; Orange: Source Replicator; Green: Target. The probability

distributions are showcased in the left section and the penultimate layer features on

the right.
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Figure 2.16: TSNE visualization for VisDa in a source-free setting. Different col-

ors represents different domains: Blue: Source; Orange: Source Replicator; Green:

Target. The probability distributions are showcased in the left section and the penul-

timate layer features on the right. The first row is before adaptation and the second

row is GAP. (A) Source probability distribution on source trained model. (B) Target

probability distribution on the source-trained model. (C) Target features using the

source-trained model. (D) Source and Source Replicator probability distribution. (E)

Source Replicator and Target probability distribution after adaptation. (F) Target

probability distribution after adaptation. (G) Target features after adaptation.

The first row is before adaptation and the second row is my approach. (A) and

(B) denote the output probabilities of the source and target data respectively using a

model trained on the source. (C) shows the target features using the source-trained

model. (D) exhibits GAP can replicate the source probability variations. (E) I train

the model to have the same variations with target data. (F) and (G) are the target
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Method A→D A→WD→A D→WW→AW→D Mean

CDAN+E 92.9 94.1 71.0 98.6 69.3 100.0 87.7

ALDA 94.0 95.6 72.2 97.7 72.5 100.0 88.7

SymNets 93.9 90.8 74.6 98.8 72.5 100.0 88.4

TADA 91.6 94.3 72.9 98.7 73.0 99.8 88.4

MADA 87.8 90.0 70.3 97.4 66.4 99.6 85.2

MDD 93.5 94.5 74.6 98.4 72.2 100.0 88.9

CDAN+TransNorm 94.0 95.7 73.4 98.7 74.2 100.0 89.3

Source 68.9 68.4 62.5 96.7 60.7 99.4 76.1

DANN 79.7 82.0 68.2 96.9 67.4 99.1 82.2

GAP 84.7 89.3 72.9 97.2 72.8 99.2 86.0

GAP + KD 88.8 91.8 75.4 97.6 73.5 99.8 87.8

Source + LS 80.8 76.9 60.3 95.3 63.6 98.7 79.3

DANN + LS 78.7 86.3 69.0 94.7 71.5 99.4 83.3

GAP + LS 92.2 92.6 78.0 98.2 74.0 100.0 89.2

GAP + LS + KD 90.0 93.6 74.5 97.7 74.4 100.0 88.4

Table 2.13: Results on the Office-31 dataset with source present with ResNet-50.

outputs and features after adaptation. Based on these plots, it can be observed that

GAP ends up clustering the penultimate layer features as well.

2.3.4 Domain Adaptation with Source Data

I evaluate GAP for regular unsupervised domain adaptation. In this scenario,

I do not need to train a source replicator. Instead, I can align the target with
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actual source probabilities and train the network on source data as well. I use the

popular Gradient Reversal layer and adapt it to my approach for these experiments.

Specifically, the Discriminator is trained to discriminate between source and target

output probabilities using the mean-squared loss function. The network is trained

using reversed gradients from the Discriminator. In this scenario, I do not freeze the

classification layer. I use Office-31 and Office-Home datasets for these experiments.

The experiment results are in Table 2.13 for Office-31 and Table 2.14 for Office-

Home dataset. I compare GAP with domain adaptation methods like CDANN [Chen

et al. (2019)], SymNets [Zhang et al. (2019)], and TADA [Wang et al. (2019a)] in

the top section. In my approach, I consider both the cases of training the network

- without label smoothing (midsection) and with label smoothing (bottom section).

In the mid and bottom sections, the first row denotes the performance of source-

only models. The second-row results are when I align the deep features using the

vanilla DANN loss function for baseline comparison [Ganin et al. (2016b)]. The

third row shows the performance of GAP. In the last row, I combine my approach

with knowledge distillation [Hinton et al. (2015)]. I soften the probabilities using a

temperature equal to 2 to align the inter-class relationships between the domains. I

do not use temperature for the source-free experiments as the logit space between the

source and target is not the same. Hence, using a temperature hurts the performance.

GAP outperforms all the listed baselines for source-present scenarios. The com-

pared approaches use advanced techniques like attention [Wang et al. (2019a)] or

complex architectures like SymNets [Zhang et al. (2019)], whereas the GAP is a

simple model based on adversarial alignment. Knowledge distillation boosts the per-

formance when no label smoothing is used. Using them together results in a negative

transfer as label smoothing places deep features of the classes at equal distances from

each other and disturbs the inter-class relationships [Müller et al. (2019)].
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Source Ar Cl Pr Rw
Mean

Target Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

CDAN+E 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

ALDA 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

GAP 54.5 71.1 78.5 61.6 73.7 71.7 61.6 54.2 80.4 72.5 57.4 83.8 68.4

GAP + KD 56.5 72.6 79.2 64.5 74.3 74.0 64.8 57.7 82.3 74.2 57.4 84.7 70.2

Source + LS 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2

LS + DANN 50.9 59.3 73.0 54.6 67.2 69.8 55.2 53.7 76.0 68.4 58.7 79.3 63.8

GAP + LS 57.5 74.3 78.7 65.6 74.5 75.2 65.4 57.1 81.6 75.4 59.8 85.6 70.9

GAP + LS + KD 55.6 73.3 78.1 64.9 72.6 74.5 65.0 57.6 81.4 73.7 59.6 84.6 70.1

Table 2.14: Results on the Office-Home dataset with source present with ResNet-50.
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Figure 2.17: TSNE visualization of the penultimate layer features (top row) and the

output probability space (bottom row) for Office31 - Amazon → Webcam with source

present setting. Blue denotes Source domain (Amazon) and Green denotes Target

domain (Webcam).

I also show the TSNE plots of the penultimate features and the probability outputs

for Office-31 Amazon to Webcam in Figure 2.17. GAP aligns the probabilities better

than DANN and results in similar feature alignment [Ganin et al. (2016b)] without

explicitly aligning it.
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2.3.5 Limitations

Although GAP has several advantages and yields good performance, I discuss the

scenarios where it can underperform. GAP is based on ps(y) ≈ pt(y) assumption, and

my experiments on multiple datasets that it is a reasonable assumption and works for

the majority of the cases. However, this can affect the performance negatively when

the target labels follow a long-tail distribution and would affect the baseline methods

as well. On the other hand, if the distribution were known, it could be used as a prior

to enhance the alignment. GAP assumes the source and target have identical label

spaces. In its current form, GAP cannot be extended to OpenSet and Partial domain

adaptation cases where the label spaces of the source and target are not identical.

Exploring these settings for my method can be an interesting future direction.
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Chapter 3

SELF-SUPERVISED LEARNING

Self-supervised learning approaches empower neural networks to extract rich features

from data autonomously without relying on manual annotation or labeling. These

learned features demonstrate remarkable transferability, proving valuable across a

spectrum of downstream tasks, including classification. Consequently, the adoption

of unsupervised training methods for networks is gaining a lot of traction.

Typically, these techniques introduce auxiliary tasks to the network, necessitat-

ing understanding the underlying data structure. For instance, [Noroozi and Favaro

(2016)] partitioned images into patches and trained networks to solve jigsaw puz-

zles composed of these rearranged patches. Another approach involves predicting the

rotation angle for both entire images and individual patches [Gidaris et al. (2018)].

While most existing self-supervised techniques were tailored for Convolutional

Neural Networks (ConvNets), the recent rise of Vision Transformer (ViT) has out-

paced ConvNets in various image processing domains such as object recognition and

segmentation [Dosovitskiy et al. (2020)]. Initially devised for Natural Language Pro-

cessing [Vaswani et al. (2017)], Transformers are now extending their prowess to

domains like speech, image, and video processing [Li et al. (2019); Dosovitskiy et al.

(2020); Arnab et al. (2021)]. However, their advancement primarily hinges on su-

pervised training with extensive labeled data, making them data-hungry models.

They excel over ConvNets only when abundant labeled data is available; otherwise,

their performance diminishes due to lacking ConvNets’ inherent biases like translation

equivariance and locality [Dosovitskiy et al. (2020)]. Consequently, this underscores

the importance of exploring unsupervised training methods for Vision Transformers.
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While existing self-supervised techniques can be applied to Vision Transformers, it

is crucial to note that Vision Transformers process images differently from ConvNets.

ConvNets process images as grids, while Vision Transformers split images into fixed-

size square patches and flatten them into vectors to create series-like input data.

ConvNets rely on the strides of kernels to grasp the positioning of pixels, while Vision

Transformers employ either a learnable or fixed (sinusoidal) positional embedding at

the input level to furnish spatial information. ConvNets use kernels to extract features

from an image, while Vision Transformers project embeddings into queries, keys, and

values and compute self-attention between patches. ConvNets combine image features

and classify images using fully connected layers, whereas Vision Transformers use a

learnable classification token for classification.

Given these differences, I showcase a novel self-supervised technique called PatchRot

for Vision Transformers [Chhabra et al. (2022a)]. PatchRot trains a Vision Trans-

former to predict the rotation of both patches and the image. Given an input image,

PatchRot randomly selects either the image or its patches and applies a rotation op-

eration. This design allows the Vision Transformer’s classification head to capture

global image information while the patch heads focus on local details. Consequently,

the classification head predicts the rotation angle of the entire image, while the patch

heads predict the rotation angles for their respective patches. This methodology en-

ables PatchRot to learn and extract both global and local features simultaneously.

PatchRot stands out as a straightforward yet effective self-supervised technique tai-

lored specifically for Vision Transformers. It comprehensively trains both the image

classification and patch heads, enhancing the Vision Transformer’s ability to learn

meaningful representations from images.
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3.1 PatchRot

3.1.1 Problem Definition

Let x ∈ [0, 1]C×H×W be the input image, where C, H, andW represent the number

of channels, the height, and the width of the image, respectively. The goal here is

to train a Vision Transformer Tϕ with parameters ϕ in an unsupervised manner and

extract high-quality features. Vision Transformer Tϕ preprocess the image x into a

sequence of image patches s(x) = [xs
1, x

s
2, ..., x

s
N ], where N is the number of patches.

The image patch dimensions are determined by patch size P where xs
i ∈ [0, 1]C×P×P

represents the i-th patch of image x and N = H
P
· W

P
. The image height H and width

W need to be a multiple of patch size P to ensure that N is an integer.

3.1.2 Method

PatchRot is a novel technique to train a Vision Transformer where the rotation

angle of an image and the rotation angle of individual patches of an image are pre-

dicted. RotNet [Gidaris et al. (2018)] showcased that a ConvNet trained to predict

the rotation of an image learns features as good as those learned using supervised

training. In this case, I train a Vision Transformer where the classification head (gen-

erally used for predicting the object category) is used to predict the rotation angle of

the image. I use the last encoder output of the other heads to predict the rotation

angles for the individual patches using new multilayer perceptron (MLP) heads. This

way, the Vision Transformer can produce an output for every element in the input

sequence, whereas ConvNets are limited to just one output. Therefore, PatchRot

applies only to Vision Transformers.

I represent the rotation operation as R(; ι), where ι ∈ {0, 1, 2, 3} that rotates the

input by θ = 90°.ι resulting in rotation of 0°, 90°, 180°, or 270°. A rotated image
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Figure 3.1: Model diagram of PatchRot. The input image is split into patches. The

image and the patches are rotated by a random angle of 90°.ι resulting in rotation by

0°, 90°, 180°, or 270°. The vision transformer (ViT) is trained to predict the rotation

angle for the image and each patch using new additional MLP heads. Dotted lines

denote the weights are shared.

xr = R(x; ι0) uses y = ι as the training label. Similar to [Gidaris et al. (2018)], I

found that training using all four angles of rotations in the same minibatch yielded

the best results. I overload the rotation operator to represent the PatchRot version

of the image xpr = R(s(x); ιp), where I rotate all of the N patches of the input image.

ιp = {ι1, ι2, ..., ιN} denotes the sequence of rotation applied to the corresponding

input sequence s(x) and each ιi ∀ i = 1, 2, ..., N is sampled randomly using a discrete

uniform distribution.

I train the Vision Transformer Tϕ using xr and xpr images. The Vision Transformer
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Tϕ = PE⊙EB⊙M consists of a patch encoding block PE followed by encoder blocks

EBi where i ∈ {1, 2, ..., e} and e is the total number of encoder blocks, and an MLP

head M for classification. Let E(s(x)) = {E0(s(x)), E1(s(x)), ..., EN(s(x))} denote

the output at the last encoder block EBe where Ei(s(x)) ∈ Rh is the i-th output

corresponding to the input sequence s(x) and h is the embedding size. E0(s(x))

represents the encoding of the classification head and {E1(s(x)), ..., EN(s(x))} are

the encoding for the patch heads. In the case of image rotation xr, the encoding

from the classification head is passed to the MLP head M0 to predict the rotation

category of the image as M0(E0(s(xr))). The encodings of the patch heads, in this

case, are ignored. In the case of patch rotation, I introduce new MLPs M1,M2, ...,MN

to classify the encodings of the individual patches. The MLPs predict the rotation

angles of the individual patches as Mi(Ei(s(xpr))) ∀ i = 1, 2, ..., N . PatchRot trains

the Vision Transformer using,

3∑
j=0

Lce(M0(E0(s(R(x, j)))), y = j) +
N∑
i=1

Lce(Mi(Ei(R(s(x), ιp))), y = θi), (3.1)

where the first term is the loss function penalizing rotation misclassification for each of

the four angles of image rotation, and the second term is the loss function penalizing

rotation misclassification for the image patches. Lce is the standard cross-entropy

loss function. Note that I do not rotate the image when rotating image patches,

as doing both simultaneously has been demonstrated to hurt the downstream task

performance.

3.1.3 Training Procedure

To avoid the possibility of the network learning to predict the angle of patch

rotations using edge continuity, I use a buffer gap B between the patches, i.e., I
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initially partition the image using a larger patch size P ′ = P + B, where P ′ > P .

Then, I randomly crop a patch of size P from each such patch. This results in a gap

between patches of random size between 0 to 2B pixels. Due to the buffer between

patches, the input size is reduced. Instead of scaling the image/patches to adjust to

the original input size, I found it beneficial to perform the self-supervised training on

reduced image size and use the original size for transferring knowledge to downstream

tasks. To be precise, the PatchRot training image xpr size is C × Hpr × Wpr where

Hpr = P · ⌊ H
P+B

⌋, and Wpr = P · ⌊ W
P+B

⌋ and ⌊.⌋ denotes the floor operation. The

number of patches is given by Npr = ⌊ H
P+B

⌋ · ⌊ W
P+B

⌋. For creating a rotated image

xr, I produce a crop of this size instead of the original size for my algorithm and

then rotate the cropped image. I was guided by the fact that training on smaller

resolution images and then fine-tuning with higher resolution images has shown to

yield performance gains [Touvron et al. (2019)].

Once the network is trained using PatchRot, I remove the newly added MLP

heads - M1,M2, ...,MN and only use the classification head’s encoder output and

its MLP head (just like the original Vision Transformer) for downstream tasks. For

adapting the network to the new classification task, I replace the last classification

layer from MLP head M0 with a new layer having an output size equal to the number

of categories in the new task before retraining the network. PatchRot training is

performed at a smaller input size, but I use the original image size for the downstream

task. The larger image size results in an increase in the number of input patches:

⌊ H
P+B

⌋ · ⌊ W
P+B

⌋ → H
P

· W
P
. Hence, for this case, I apply a linear interpolation of

the positional embedding as designed in the original Vision Transformer [Dosovitskiy

et al. (2020)].
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3.2 Experiments

3.2.1 Datasets

I test my approach on the following object recognition datasets:

1. CIFAR10 [Krizhevsky et al. (2009)] is a popular small-sized object recognition

dataset with 32 × 32 image size and ten classes. I used a Random crop with

zero padding of size four and random horizontal flip augmentations for training.

2. CIFAR100 [Krizhevsky et al. (2009)] is another popular small-sized object

recognition dataset with 32 × 32 image size but contains 100 classes. I used a

Random crop with zero padding of size four and random horizontal flip aug-

mentations for training.

3. FashionMNIST [Xiao et al. (2017a)] is a 32 × 32 grayscale dataset with 10

classes of clothing items. I did not use any augmentations for this dataset.

4. Tiny-ImageNet represents a medium-sized dataset formed using a subset of

ImageNet. It contains images of size 64× 64 and 200 classes. I used a Random

crop with zero padding of size four and random horizontal flip augmentations

for training.

5. Animal-10N [Song et al. (2019)] presents a fine-grain classification of 5 pairs

of animals with noisy training labels, and I used an image size of 64 × 64. I

used a Random crop with zero padding of size four and random horizontal flip

augmentations for training.

6. SVHN [Netzer et al. (2011)] contains images of real digits extracted from House

numbers. I use this dataset to test rotation invariant classes like 0, 1, and 8.

Training a network to predict image rotation angles for rotation invariant classes
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is not helpful [Feng et al. (2019)].

For all of the experiments, I used a scaled-down version of the original Vision Trans-

former (described in section 3.2.2) due to hardware limitations.

3.2.2 Training Details

The experiments are performed using ViT-Lite from [Hassani et al. (2021a)] (a

scaled-down version of the original Vision Transformer architecture [Dosovitskiy et al.

(2020))], which is designed for smaller datasets due to limited hardware. Specifically,

the number of encoder blocks is reduced to 6 with 256 embedding size and 512 ex-

pansion size. The number of attention heads is also reduced to 4, and the dropout is

set to 0.1. The new MLP heads are identical to the original MLP head and consist of

a 256× 256 hidden layer and a classification layer of size 256× 4. I train the network

with the patch size of P = 4 for CIFAR10, CIFAR100, FashionMNIST, and SVHN

and P = 8 for Tiny-ImageNet and Animal-10N. The buffer B is set to 1
4
of the patch

size, which results in PatchRot input size of 24× 24 for 32× 32 images and 48× 48

for 64× 64 images.

I used Adam Optimizer for training the Vision Transformer with a learning rate

and a weight decay of 5×10−4 and 3×10−2, respectively. The learning rate is warmed

up for the first ten epochs and then decayed using a cosine schedule. The batch size is

set to 128. These training hyper-parameters were taken from ViT-Lite [Hassani et al.

(2021a)] and were kept the same across all experiments. However, due to multiple

variations of the same image being presented in a mini-batch, the effective batch size

for PatchRot is 128×5 samples. I follow the procedure of training the layers after

the self-supervision training, as also implemented by [Noroozi and Favaro (2016)] for

the experiments. The self-supervised training is performed for 300 epochs, and the
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supervised training is performed for 200 epochs.

Since the baselines are not available for my setting, I implemented the most suit-

able ones for comparison: RotNet [Gidaris et al. (2018)] and Masked Autoencoder

(MAE)[He et al. (2022)]. RotNet [Gidaris et al. (2018)] was originally proposed

for ConvNets, but I used it here by performing rotation prediction on the image

using the Vision Transformer network. It has outperformed basic methods like Split-

brain[Zhang et al. (2017)], Jigsaw [Noroozi and Favaro (2016)], etc., and also serves

as my direct baseline. The Masked Autoencoder [He et al. (2022)] is a recent self-

supervised approach for vision transformers. I used the code from their official repos

and trained them with the same setting as PatchRot. The approach-specific hyper-

parameters were taken from the baselines: 4 rotation angles for RotNet and 75%

masking ratio for MAE.

3.2.3 Results

The results are in Figure 3.2 where Solid lines denote Top1 accuracy, and dashed

lines denote Top5 accuracy. The X-axis shows the different layers of the transformer

and signifies which layers are trained/frozen. NF represents no layers are frozen. PE

represents only the patch embedding block is frozen. EB-i represents the encoder

blocks. While training, all the layers before those layers are frozen (including the

Patch Embedding block). MLP denotes The whole network is frozen except for the

last classification layer. It can be observed that MAE and RotNet achieve comparable

performance, but the performance of MAE drops significantly when training only

the last few layers. This happens as those layers become generation task-specific.

PatchRot, on the other hand, outperforms baselines for finetuning and linear probing

(freezing the whole network denoted by MLP in my experiments) on all the datasets

by a significant margin. Fine-tuning just the MLP head (one fully connected layer)
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(a) CIFAR10 (b) CIFAR100

(c) FashionMNIST (d) Tiny-ImageNet

(e) Animal-10N (f) SVHN

Figure 3.2: Classification accuracies for Supervised, RotNet, Masked AutoEn-

coder, and PatchRot
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of PatchRot achieves results close to the supervised learning, and fine-tuning one

encoder block and MLP head outperforms the supervised training from scratch.

My results on the Animal-10N dataset showcase that the features extracted by

PatchRot contain detailed information. These features can perform fine-grain classi-

fication and handle noise robustness better than the compared baselines. Similarly,

in the case of the rotation invariant task (SVHN), it can be observed that the perfor-

mance of RotNet and MAE drops quickly (f), but PatchRot is unaffected. Similar to

objects, patches can be rotation-invariant too. However, such patches are generally

part of the background and do not contain any object information. Training the

network on them did not affect its final performance. The combination of global and

local information captured by PatchRot helps overcome all such problems.

3.3 Analysis

3.3.1 Ablation Study

In this section, I test the importance of different components of PatchRot using

CIFAR10 and present the results in Table 3.1. First, I train the Vision Transformer

on the patch rotation image xpr only and exclude the image rotation xr versions (No

ImageRot). As I do not train the classification head, the network learns only the local

characteristics. As I freeze more layers, it can be noticed the drop in performance

signifies the importance of global context. Similarly, I exclude the xpr (No PatchRot)

in the second experiment. This is similar to RotNet, with the only difference being

that the self-supervised training is performed at a reduced image size. I also test

removing the buffer between the patches (No Buffer). Without a buffer, networks tend

to learn trivial shortcuts like edge continuity, and it can be observed that training the

last few layers results in significantly lower performance. Next, I test the significance
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Initialization NF PE EB1 EB2 EB3 EB4 EB5 EB6 EB7 MLP

No ImageRot 91.8 91.9 91.9 91.4 91.0 90.0 88.8 82.2 69.4 54.9

No PatchRot 91.0 91.2 90.7 90.2 89.4 88.6 87.8 85.3 80.1 70.8

No Buffer 91.8 91.9 91.6 91.0 89.4 87.6 84.7 80.3 75.9 65.8

Original Size 92.1 92.2 91.6 91.1 90.7 89.9 89.0 86.2 81.6 73.9

Rotate Img & Patch 90.7 90.7 90.8 90.6 90.6 90.2 88.3 82.5 72.8 58.4

Reuse MLP head 91.1 91.0 90.9 90.4 89.9 89.6 87.7 84.0 76.6 65.7

PatchRot-full 92.6 92.5 92.3 92.4 91.8 91.1 90.0 87.0 83.2 75.8

Table 3.1: Top-1 classification accuracies on Ablation study of my method using

CIFAR-10. Columns denote the parts of the Vision Transformer being fine-tuned.

While finetuning on the downstream task, all the layers before that layer are frozen.

NF: No layers are frozen; PE: Patch Embedding block; EB-1 to EB-7 are the encoder

blocks; MLP: The whole network is frozen except for the new output classification

layer.

of reduced-size training by comparing it with self-supervised training on the original

image scale (Original Size). To test this, I divide the image using the original patch

size P , and I randomly crop P − B sized patches from it. These cropped patches

are then resized to patch size P to maintain the original image size and still have a

buffer.

I also test my hypothesis of rotating images and patches together (Section 3.1.2) in

my next experiment (Rotate Img & Patch). Last, I experiment with the newly added

MLP heads (Reuse MLP Head). Since adding new MLP heads temporarily increases

the model size. Instead of adding new MLP heads, I use the same original MLP head

to predict the image’s rotation angle and all the patches. The results showcase that

each component plays a vital role in the PatchRot training of the Vision transformer.
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Figure 3.3: Top-5 classification accuracy vs. Pretraining epochs for CIFAR-100. Su-

pervised denotes the supervised accuracy; PatchRot denotes the accuracy of PatchRot

self-supervised task on test set; NF, EB5 and MLP denotes the accuracy on finetuning

all the layers, freezing layers till EB5 and no fine-tuning of the network respectively.

3.3.2 Pre-training epochs vs. Classification Accuracy

Here, I study the impact of PatchRot’s pretraining on the final classification per-

formance. I train the Vision Transformer using my approach with a different number

of epochs {10, 25, 50, 75, 100, 150, 200, 250, 300, 350, and 400} for the CIFAR100

dataset.

The results for this experiment are in Figure 3.3. The dotted lines capture the

final object classification accuracy. I can observe that pretraining with just a few

epochs can significantly improve final performance compared to training from random

(Supervised). The blue curve is different from the other curves, and it represents the

image and patch-level rotation accuracy of CIFAR100’s test set. It shows that my

self-supervised task doesn’t overfit, and training it longer (350, 400, and 500) improves

the accuracy of the self-supervised task test and the final classification.
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3.3.3 Application to Transfer Learning

PatchRot aims to learn rich features in an unsupervised manner, and this section

shows its advantage for the transfer learning settings on CIFAR100 → CIFAR10 and

CIFAR10 → CIFAR100 tasks. I first train two networks: one on source data using

PatchRot and the other on its supervised object classification task. These networks

are then used to initialize training on the target dataset.

The results for these experiments are in Figure 3.4. Solid lines denote Top1 accu-

racy, and dashed lines denote Top5 accuracy. The X-axis shows the different layers

of the transformer and signifies which layers are trained/frozen. NF represents no

layers are frozen. PE represents only the patch embedding block is frozen. EB-i rep-

resents the encoder blocks. While training, all the layers before those layers are frozen

(including the Patch Embedding block). MLP denotes The whole network is frozen

except for the last classification layer. It can be observed that PatchRot extracts

better features than the supervised training, which can be used across datasets. Also,

PatchRot has a significant margin advantage over supervised training, which drops

only during the last few layers (where layers become domain/task-specific). Hence,

pre-training the network with PatchRot has a significant advantage over supervised

training.

3.3.4 Application to Semi-supervised learning

Self-supervised learning techniques are being popularly utilized for semi-supervised

learning by training the network with labeled data and simultaneously training an-

other output head of the network with the unlabeled data using the self-supervised

loss [Gidaris et al. (2018); Zhai et al. (2019)]. In my experiments, instead of train-

ing the Vision Transformer on both the supervised and PatchRot loss together, I

75



(a) CIFAR100→CIFAR10 (b) CIFAR10→CIFAR100

Figure 3.4: PatchRot performance in a transfer learning setting. PatchRot denotes

the ViT was trained on the source dataset self-supervised using PatchRot. Supervised

denotes the ViT was trained on source using the supervised object classification task.

Solid lines and the dashed lines show the Top-1 and Top-5 accuracy on the Y-axis,

respectively. The X-axis contains different layers of the transformer, and while fine-

tuning on the target dataset, all the layers before that layer are frozen. NF: No layers

are frozen; PE: Patch Embedding block; EB-1 to EB-7 are the encoder blocks of the

Vision Transformer. MLP: The whole network is frozen except for the new output

linear layer.

first train the network with PatchRot (self-supervised loss) on all the data and then

fine-tune the network using the labeled data only. It is similar to self-supervised ex-

periments, with the only difference being in data used for pertaining and fine-tuning

tasks.

I use CIFAR10 for these experiments with {40, 250, 1000, 4000, 10000, 20000,

30000, and 40000} labeled samples, and the results are in Table 3.2. The second

column (Sup) denotes the test accuracy on training the network with labeled samples
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Labels Sup NF PE EB1 EB2 EB3 EB4 EB5 EB6 EB7 MLP

40 20.8 38.8 40.1 42.1 44.5 46.9 49.7 50.6 51.3 55.2 27.5

250 26.6 57.5 60.2 61.4 63.4 64.9 65.3 65.8 65.1 65.2 35.5

1000 38.6 70.1 71.4 71.9 72.6 72.8 73.8 73.5 72.0 72.2 58.4

4000 53.7 79.2 79.6 80.7 80.9 81.1 80.9 80.2 78.4 77.2 69.7

10000 67.1 84.7 85.2 85.5 85.6 85.5 84.8 84.3 82.2 79.6 73.0

20000 75.2 88.3 88.7 88.9 88.9 88.5 88.0 86.7 84.7 81.1 74.5

30000 79.8 90.0 90.5 90.6 90.3 89.9 89.2 88.1 85.9 82.0 75.0

40000 82.0 91.7 92.0 91.7 91.6 91.1 90.3 89.2 86.4 82.8 75.6

50000 83.9 92.6 92.5 92.3 92.4 91.8 91.1 90.0 87.0 83.2 75.8

Table 3.2: Results on CIFAR10 in a semi-supervised setting. PatchRot training is

performed on all the samples, and then the network is fine-tuned with labeled samples

only. The first column denotes the number of labeled samples, and the second column

shows the supervised performance of labeled samples only. Other columns denote the

parts of the Vision Transformer being fine-tuned, and all the layers before that layer

are frozen. NF: No layers are frozen; PE: Patch Embedding block; EB-1 to EB-7 are

the encoder blocks of the Vision Transformer. MLP: The whole network is frozen

except for the new output linear layer.

only from scratch. The other columns show the different layers of the transformer

and signify which layers are trained/frozen. NF represents no layers are frozen. PE

represents only the patch embedding block is frozen. EB-i represents the encoder

blocks. While training, all the layers before those layers are frozen (including the

Patch Embedding block). MLP denotes The whole network is frozen except for

the last classification layer. As expected, training more layers is beneficial with the
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(a) Attention Maps (b) Failure cases

Figure 3.5: Sample Attention Maps of ViT trained using PatchRot on the validation

set of Tiny-ImageNet. Upper row: Input and Lower row: Attention Map.

increase in the number of labeled samples. PatchRot pre-training results in superior

performance compared to supervised training, which showcases its application in semi-

supervised learning.

3.3.5 Attention Maps

I show the attention maps of my Vision Transformer network trained using PatchRot

on the validation set of Tiny-ImageNet in Figure 3.5. With just the unsupervised

training, it can be observed that the model learns to attend to the main object in the

image regardless of its position. I also show failure cases in Figure 3.5b, where the

model learns to solve the problem by attending to a part of the object, like the top

green part of the tomato, or using a background feature like sky positioning. Figure

3.6 shows more such attention maps.
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Figure 3.6: More Attention Maps of Vision Transformer trained using PatchRot on

the validation set of Tiny-ImageNet.
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Chapter 4

INPUT REGULARIZATION

The challenge of limited data presents a significant hurdle for neural networks, partic-

ularly impacting Vision Transformers due to their susceptibility to overfitting [Doso-

vitskiy et al. (2020)]. This concern is especially pronounced when training Vision

Transformers on small-to-medium datasets, necessitating robust regularization tech-

niques [Dosovitskiy et al. (2020)].

Standard regularization techniques like dropout [Srivastava et al. (2014)], weight

decay[Hanson and Pratt (1988)], label smoothing [Szegedy et al. (2016a)], batch nor-

malization [Ioffe and Szegedy (2015)], and data augmentations are widely employed

for both Convolutional Neural Networks (ConvNets) and Vision Transformers. How-

ever, advanced methods such as Mixup [Zhang et al. (2018)] and Cutmix [Yun et al.

(2019)], while effective, were primarily developed for ConvNets, prompting the need

for novel augmentations tailored specifically for Vision Transformers.

While ConvNets and Vision Transformers may appear similar as they both process

images to output class probabilities, their internal mechanisms differ significantly.

ConvNets operate on the grid structure of an image using filters, whereas Vision

Transformers transform images into patches and utilize self-attention among patches

for feature extraction. This distinction allows Vision Transformers to maintain a

global receptive field at any layer, whereas ConvNets increase their receptive field

with depth [Dosovitskiy et al. (2020)].

In response to these notable disparities, I introduce a straightforward yet power-

ful data augmentation method called ‘PatchSwap’ tailored specifically for regularizing

Vision Transformers [Chhabra et al. (2022b)]. Vision Transformers, as part of their
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Figure 4.1: Comparison of images generated by Mixup, Cutmix, and PatchSwap.

processing, break down images into a sequence of patches. PatchSwap operates by ex-

changing some patches between two randomly chosen images, resulting in the creation

of a new image (refer to Figure 4.2).

This approach shares certain similarities with Mixup and Cutmix: firstly, it com-

bines two images and their respective labels to generate a fresh image with a new

label; secondly, it trains the network to consistently infer this new label based on the

combination of the two images. However, a notable divergence lies in PatchSwap’s

exploitation of Vision Transformers’ global receptive field. This feature empowers

Vision Transformers to establish connections between any pair of pixels across all

network layers. Consequently, even if significant patches are dispersed throughout

an image, a Vision Transformer can learn to extract their collective information at

each network layer. PatchSwap fully leverages this attribute, distributing the object

throughout the image, unlike Mixup and Cutmix. I show sample images generated

by Mixup, Cutmix, and PatchSwap in Fig. 4.1.

While this approach benefits Vision Transformers, it does have limitations. Pri-

marily, the number of patches that can be swapped between two images is limited to

integer values between 0 and the total number of patches, restricting the mixing ratio

compared to Mixup and Cutmix, which use continuous values. Additionally, patches

in a PatchSwap image contain only one class, unlike Mixup and Cutmix, which can

contain a mix of classes. These constraints limit the number of variations possible
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between two images. However, given the large number of patches in an image and the

potential PatchSwap images, I did not find this to be a significant issue. Note: The

total number of possible PatchSwap images between two images is 2N , where N is

the number of patches in an image. Despite these limitations, I found them to be ad-

vantageous, as they lead to extensions like Unlabeled-PatchSwap for semi-supervised

settings and Inverse-PatchSwap for self-supervised settings.

Unlabeled-PatchSwap is based on the principle of consistency regularization, which

has been fundamental to many semi-supervised techniques [Laine and Aila (2016);

Tarvainen and Valpola (2017)]. It states that two different versions of an input should

yield the same output from a network. Unlabeled PatchSwap operates on the same

principle. A PatchSwap image is a combination of two images, and its label is de-

termined by the labels of the individual images, based on the number of patches

swapped. Multiple PatchSwap images can be formed by combining a fixed number of

patches from the first image with a fixed number of patches from the second image.

Consistency regularization ensures that these PatchSwap images have the same target

label, even in the absence of label data, allowing the network to output consistent

labels for PatchSwap images, regardless of the labels of the original images.

Inverse PatchSwap extends PatchSwap for self-supervised learning. It is based

on the concept that when a Vision Transformer is trained to reconstruct an image

from its partial view, as in a Masked Autoencoder, the network learns to extract

generalizable features [He et al. (2022)]. The PatchSwap image is an image formed

from partial views of two images. I train a decoder-encoder network to reconstruct

the missing patches of both inputs. Since the reconstruction loss is only applied to

the missing patches, I term my approach as Inverse PatchSwap. Inverse PatchSwap

is a self-supervised extension that improves the quality of extracted features in a

self-supervised manner by using a regularized input. The features extracted by such
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an encoder are of higher quality and contain information from both images at their

respective patch locations.

Finally, I combine PatchSwap variants to further improve regularization. Patch-

Swap++ utilizes Inverse PatchSwap for pre-training before employing PatchSwap

during supervised task training. Similarly, Unlabeled PatchSwap++ applies Inverse

PatchSwap for pre-training, followed by using PatchSwap on labeled samples and Un-

labeled PatchSwap on unlabeled data. Through extensive experiments across various

datasets, I demonstrate that PatchSwap and its variants exhibit superior or compa-

rable performance to state-of-the-art methods in diverse settings.

4.1 PatchSwap

4.1.1 Regularization

PatchSwap (abbreviated as PS) represents an innovative data augmentation method

specifically designed to enhance the performance of Vision Transformers. In essence,

PatchSwap involves the swapping of patches between two input images to produce a

new composite image, referred to as the PatchSwap image. The Vision Transformer

is trained to predict the category distribution of the PatchSwap image.

Let’s consider x1 and x2 as two random images in RC×H×W , accompanied by

labels y1 and y2 respectively. Here, C represents the number of channels, while

H and W denote the height and width of the images. The labels, y1 and y2 are

represented as one-hot encoded vectors. A Vision Transformer Tθ with a parameters

θ and patch size P , partitions an image x into P × P equally-sized patches denoted

as xp = [x1, x2, ..., xN ]. Here, each xi signifies the ith patch of the image x, with N

representing the total number of patches. It’s important to note that P must be a

factor of H and W to ensure that the total number of patches created, N = H
P
× W

P
,
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Figure 4.2: Overview of PatchSwap. Images are split into patches, and some of the

patches are randomly swapped between two images to create a PatchSwap image.

Vision Transformer is trained to predict mixed targets.

is an integer.

The creation of a PatchSwap image xps involves the exclusive selection of patches

from either xp
1 = [x1

1, x
2
1, ..., x

N
1 ] or xp

2 = [x1
2, x

2
2, ..., x

N
2 ], facilitated by a binary mask

M = [M1,M2, . . . ,MN ] ∈ 0, 1N . This PatchSwap image xps is formulated as:

xps(x1;x2;λ) = (1−M) · xp
1 +M · xp

2, (4.1)

Here, ‘·’ denotes element-wise multiplication between a patch xi and its corresponding

mask element M i, while ‘+’ indicates the element-wise addition of patches. This

means that the PatchSwap image xps includes the ith patch from x1 if M i = 0,

or from x2 if M i = 1. The binary mask M is generated based on the swapping

ratio λ ∈ [0, 1] which is sampled from a Beta distribution λ ∼ Beta(α, α). α is

a hyperparameter that controls the shape of this distribution. To ensure a discrete

number of patches to be swapped (an integer between 0 andN), I estimate the number

of swapped patches to be n = round(λ.N) where ‘.’ is a multiplication operation

and update the swapping coefficient to λ′ = n
N
. A random binary mask M is then

generated, such that n = sum(M), enabling the combination of x1 and x2 to create
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Figure 4.3: Overview of Unlabeled PatchSwap. Two distinct PatchSwap images are

created such that they have the same swapping ratio λ′ and the Vision Transformer

is trained to produce consistent output for them.

the PatchSwap image xps. The process of creating a PatchSwap image with ith λ′ = 5
9

and N = 9 is demonstrated in Figure 4.2. The Vision Transformer Tθ is trained using

the PatchSwap image xps, employing the following loss function:

Lps(x1; y1;x2; y2;λ) =− (1− λ′) · y1 log Tθ(xps)− λ′ · y2 log Tθ(xps) (4.2)

4.1.2 Unlabeled PatchSwap for Semi-supervised Learning

PatchSwap, an image transformation method, operates exclusively when image

labels are accessible. However, to address scenarios where some labels are absent,

I introduce Unlabeled PatchSwap (abbreviated as UPS) as a technique applied to-

wards semi-supervised learning. Unlabeled PatchSwap is founded on the principle

of consistency regularization, asserting that two altered versions of the same input

should produce identical outputs when traversing through a neural network [Laine

and Aila (2016); Tarvainen and Valpola (2017)]. The training mechanism incentivizes

the network to generate similar outputs for these two perturbed inputs, often achieved

through loss functions like Kullback-Leibler divergence or mean-squared error [Laine
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and Aila (2016); Tarvainen and Valpola (2017)].

In the context of Unlabeled PatchSwap, let xps1 and xps2 represent two PatchSwap

images derived from x1 and x2, sharing a common swapping ratio λ′ but constructed

using distinct masks, M1 and M2, where M1 ̸= M2. These masks select diverse sets of

patches from x1 and x2 to form xps1 and xps2 , ensuring xps1 ̸= xps2 . Nonetheless, the

identical swapping ratio λ′ implies that both images contain the same proportion of

patches from x1 and x2. As the number of swapped patches defines the target label,

I constraint xps1 and xps2 to exhibit an identical output label.

This concept is illustrated in Figure 4.3, demonstrating the creation of two distinct

PatchSwap images characterized by λ′ = 5
9
. Adhering to the consistency principle,

the Vision Transformer Tθ is trained to generate the same outputs for xps1 and xps2 ,

governed by the equation:

Lups(x1;x2;λ) = ||Tθ(xps1)− Tθ(xps2)||2 (4.3)

In the case of semi-supervised learning scenarios, where a subset of data Dl is labeled,

and another subset Du is unlabeled, I apply PatchSwap regularization loss on the

labeled subset Dl and use unlabeled PatchSwap on the unlabeled data Du. Hence,

the comprehensive loss function for semi-supervised training is defined as:

E
(x1,y1)
(x2,y2)

∼Dl

Lps(x1; y1;x2; y2, λ) + γ E
x1,x2∼Du

Lups(x1;x2;λ) (4.4)

Here, γ serves as a hyper-parameter regulating the significance of the unlabeled Patch-

Swap loss within the overall objective.

4.1.3 Inverse PatchSwap for Self-supervised Learning

If the training labels happen to be completely absent, training the network solely

on Unlabeled PatchSwap and no supervised loss component tends to converge to-

ward a suboptimal solution that does not learn anything. For such cases, I introduce

86



Figure 4.4: Overview of Inverse PatchSwap for Self-supervised learning. The Vision

Transformer is trained to encode a PatchSwap Image. The patches originating from

the other image are replaced by the Mask token (Gray) and the decoder is trained to

reconstruct the original images.

Inverse PatchSwap (abbreviated as IPS), a self-supervised technique designed to ex-

tract generalizable features through an unsupervised process. It is based on the idea

that reconstructing an image from its partial view trains the network to extract good

features [He et al. (2022)]. In my methodology, PatchSwap images serve as input to

the encoder, with the decoder tasked to reconstruct the original images. PatchSwap

images act as regularization for training the encoder as it needs to learn to distinguish

patches of different images and learn a joint representation. The features extracted by

such an encoder contain information on both the images from the PatchSwap image

and provide better generalization.

My approach involves utilizing a PatchSwap image, denoted as xps, derived from

images x1 and x2, to be fed into a Vision Transformer Tθ that outputs features/en-

codings for all the patches. Next, I replace patch features belonging to one of the

images (say x2) with a learnable Mask token. These learnable Mask tokens are used

in place of missing patches of x1 and when passed through a decoder, I use them

to reconstruct the missing patches in x1. I generate two versions of each PatchSwap
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input: one replaces patches of x2 with learnable Mask tokens, while the other replaces

patches of x1 with its learnable Mask tokens. The decoder is similar to the encoder

but employs a projection layer to convert patch features or encodings into pixel values

at the end. I used the mean-squared loss to train the pipeline but the reconstruction

loss is applied only to the Mask tokens [He et al. (2022)].

In the construction of PatchSwap images, I employ the Beta distribution Beta(α, α)

for sampling λ as a regularization strategy. Extreme values of λ (i.e., 0 or 1) result in

all input patches belonging to one image, forcing the decoder to generate the second

image without any features or encodings. To prevent this scenario, I shift λ away

from these extremes via the equation λ := τ + λ ∗ (1 − 2 ∗ τ), setting a buffer τ to

0.2 based on prior experiments [He et al. (2022)]. Notably, [He et al. (2022)] used a

fixed masking ratio of 0.75 but I found that using a random value for λ enhances the

efficacy of Inverse PatchSwap. Upon training the encoder, I discard the decoder and

attach a classifier to the encoder, leveraging the pre-trained features for classification

tasks. Figure 4.4 depicts the schematic representation of Inverse PatchSwap.

4.1.4 PatchSwap++ and Unlabeled PatchSwap++

I have introduced three distinct variations of PatchSwap tailored for specific pur-

poses: PatchSwap for regularizing supervised learning, Unlabeled PatchSwap for

semi-supervised learning, and Inverse PatchSwap for self-supervised learning. To

enhance supervised training, I combine Inverse PatchSwap with PatchSwap regular-

ization. First, I employ Inverse PatchSwap for pre-training the Vision Transformer.

Subsequently, I proceed to train the network in a supervised way, integrating Patch-

Swap regularization. In a similar way, for semi-supervised learning, I utilize the entire

dataset to pre-train the Vision Transformer with Inverse PatchSwap. Then, leveraging

this pre-trained model as a foundation, I apply Unlabeled PatchSwap. These innova-
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tive methodologies are denoted as PatchSwap++ and Unlabeled PatchSwap++ for

supervised and semi-supervised tasks, respectively.

4.2 Experiments

4.2.1 Datasets

I use six datasets for my experiments: CIFAR10 [Krizhevsky et al. (2009)], CI-

FAR100 [Krizhevsky et al. (2009)], SVHN [Netzer et al. (2011)], FashionMNIST [Xiao

et al. (2017b)], Tiny-ImageNet and ImageNet-100. These small and medium-sized

datasets have a wide range of image types. For CIFAR datasets (CIFAR10 and CI-

FAR100), I randomly cropped images after zero-padding with p = 4 and also flipped

horizontally with 0.5 probability. Tiny-ImageNet, a subset of ImageNet has images

sized 64 × 64 pixels belonging to 200 classes. The augmentations applied to these

images are the same as CIFAR datasets. In addition, I test RandAugment [Cubuk

et al. (2020)] augmentation as the base augmentation on these images. For Fashion-

MNIST, a dataset of grayscale images, I resize the images to 32 × 32 pixels. I use

the same augmentation as CIFAR datasets but use zero-padding with p = 2. For the

SVHN dataset, the images are resized to 32×32 followed by the same augmentations

as FashionMNIST except for the horizontal flip. ImageNet-100 is another subset of

the ImageNet dataset [Deng et al. (2009)] with samples from 100 classes. I used

random horizontal flip and random crops of 128 × 128 image size from 136 × 136 as

augmentations for this dataset.

4.2.2 Training Details

The experiments are performed using ViT-Lite [Hassani et al. (2021b)] architec-

ture is a scaled-down version of the original Vision Transformer [Dosovitskiy et al.
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(2020)]. The architectural details are as follows - 6 encoder blocks, dropout with 0.1

probability, hidden dimension of size 256, 4 attention heads, and the size of forward

expansion layer is 512. The total number of parameters is 3.7 million as compared to

86 million of the original base version of the Vision Transformer, making ViT-Lite a

light version of the original network. The networks are trained from scratch for 300

epochs (100 for ImageNet-100) with batch-size 128, weight decay 0.03, and Adam

optimizer with learning rate 5× 10−4. The learning rate is warmed up for the first 10

epochs and then decayed per epoch with a cosine schedule for all the experiments.

4.2.3 Regularization

Setup

The state-of-the-art regularization techniques, namely Label Smoothing [Szegedy

et al. (2016a)], Cutout [Devries and Taylor (2017)], Mixup [Zhang et al. (2018)],

and Cutmix [Yun et al. (2019)], are used for comparison with PatchSwap and Patch-

Swap++. As the experiments for my settings are not available for the baselines, I

use the official code released by the respective authors to report the results for com-

parison. For Cutout, I use the cutout size as follows: 8×8 cutout size for CIFAR100,

16×16 for CIFAR10 and FashionMNIST, 20×20 for SVHN, 32×32 for Tiny-ImageNet

and 64 × 64 for Imagenet-100. I apply CutMix augmentation with a probability of

0.5. I always keep ϵ = 0.1 for label smoothing, unless specified otherwise and α = 1.0

for all the experiments. All the experiments for PatchSwap, PatchSwap++, and the

baselines follow the same training protocol mentioned in 4.2.2.

Compared to the base version of the Vision Transformer [Dosovitskiy et al. (2020)],

ViT-Lite uses a smaller patch size. I report results with varying patch sizes, specif-

ically 4, 8, and 16 for all the datasets except Tiny-ImageNet and ImageNet-100.
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Dataset Tiny-ImageNet ImageNet-100

Augmentation Standard RandAugment Standard

Patch Size 8 16 8 16 16

Method Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Cross Entropy 41.9 65.2 34.4 57.7 46.2 70.4 39.1 63.4 54.6 79.9

Label Smoothing 42.8 63.0 34.6 56.5 47.0 69.7 39.3 62.7 54.7 80.3

Cutout 42.8 66.6 33.8 58.1 47.5 71.5 40.2 65.1 54.8 81.0

Mixup 46.6 69.0 38.5 62.4 49.9 73.5 43.2 67.5 60.2 83.4

Cutmix 48.4 71.6 39.5 63.5 48.4 74.9 44.0 68.0 60.3 84.3

PatchSwap 49.9 73.4 41.8 66.3 52.8 77.0 45.6 70.8 61.5 85.3

PatchSwap++ 53.6 76.6 46.9 72.0 58.5 80.9 51.6 76.3 67.0 88.3

Table 4.1: Top1 and Top5 classification accuracies on TinyImagenet dataset with

standard (Random crop with padding and horizontal flip) and RandAugment aug-

mentations with different patch sizes and ImageNet-100 with Standard Augmentation

(RandomResizedCrops and horizontal flip) and Patch size 16.

Tiny-ImageNet is tested with patch sizes 8 and 16 and ImageNet-100 is tested with

16 only to avoid the excessive computation overheads. Among the different patch

sizes, the best results were obtained with the smallest patch size. As the patches

decrease in size, the number of patches increases, which leads to a larger amount

of virtual training data. However, it also leads to computational overhead which

increases quadratically.
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Patch Size 4 8 16

Method Top1 Top5 Top1 Top5 Top1 Top5

Cross Entropy 57.9 81.5 50.6 76.2 39.3 65.0

Label Smoothing 58.3 77.0 51.5 71.7 39.8 62.3

Cutout 57.0 81.1 50.2 76.1 39.1 64.7

Mixup 63.5 85.0 56.8 80.0 45.3 70.6

Cutmix 63.7 85.2 57.0 80.4 44.2 69.5

PatchSwap 64.9 86.4 58.5 82.5 45.7 71.6

PatchSwap++ 69.6 89.8 64.6 87.4 49.9 76.6

Table 4.2: Top1 and Top5 classification accuracies on CIFAR-100 dataset with dif-

ferent patch sizes.

Results

I list my experiment results on Tiny-ImageNet and ImageNet-100 in Table 4.1. The

results for CIFAR100 are in Table 4.2 and Table 4.3 contains results for CIFAR10,

SVHN, and FashionMNIST. I reported Top1 classification accuracy for CIFAR10,

SVHN, and FashionMNIST, and Top1 and Top5 classification accuracies for CI-

FAR100, Tiny-ImageNet, and ImageNet-100 datasets. As per the results, Patch-

Swap and PatchSwap++ outperform all of the compared regularization techniques,

irrespective of the patch size. When PatchSwap is used, there is a boost of ap-

proximately 1.5% and 2.5% in performance over Cutmix and Mixup, respectively,

and about 9% over the network trained with standard Cross-Entropy loss. Patch-

Swap++ provides an additional boost of about 4% over PatchSwap making it the

best regularization among the compared approaches. Except in the case of SVHN,

where the performance decreased a bit/stayed the same, I found Inverse PatchSwap
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Dataset CIFAR10 FashionMNIST SVHN

Patch Size 4 8 16 4 8 16 4 8 16

Cross Entropy 83.3 78.3 69.8 92.1 92.8 91.2 96.4 94.7 92.7

Label Smoothing 83.0 79.0 69.6 92.0 92.9 91.5 96.5 94.8 92.8

Cutout 84.0 79.2 70.1 94.2 93.5 91.4 96.8 96.2 94.5

Mixup 87.4 82.3 74.3 93.0 93.4 92.2 97.0 95.7 94.2

Cutmix 88.0 82.7 73.8 94.0 93.8 92.5 96.9 96.2 94.8

PatchSwap 88.3 84.7 74.9 94.4 93.9 92.6 97.2 96.8 94.8

PatchSwap++ 90.2 87.7 76.9 95.0 94.5 93.3 97.1 97.0 94.6

Table 4.3: Top1 classification accuracies on CIFAR-10, FashionMNIST, and SVHN

datasets with different patch sizes.

pre-training to be responsible. For the digits, I conclude that occlusions can have a

significant impact and can result in reconstructing a different digit which might lead

to the mixing of inter-class features. I display two such examples in Figure 4.6 (d)

last two rows where digit 9 becomes a 5 and a 0 becomes a 6. For Tiny-ImageNet,

PatchSwap and PatchSwap++ augmentation outperform RandAugment augmenta-

tion (with standard Cross-entropy). The results also show that RandAugment and

PatchSwap are compatible, and using them together further boosts the performance.

4.2.4 Semi-supervised Learning

Setup

For the semi-supervised learning experiments, I use CIFAR10 [Krizhevsky et al.

(2009)] and SVHN [Netzer et al. (2011)] datasets. For training, I use 4000 labeled

samples, and the rest of the dataset is treated as unlabeled data. For pseudo-label
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Dataset CIFAR10 SVHN

Patch Size 4 8 16 4 8 16

Cross Entropy 56.0 53.5 45.4 87.9 86.7 76.0

Pseudo Label 58.1 54.0 46.3 91.2 88.9 78.0

MeanTeacher 62.6 56.5 48.2 96.2 95.1 90.1

PatchSwap (Labeled) 63.2 60.6 51.3 89.7 87.2 81.0

PatchSwap++ (Labeled) 69.3 64.1 53.5 90.2 86.8 78.3

Unlabeled PatchSwap++ 73.5 68.3 56.9 96.3 95.9 90.7

Unlabeled PatchSwap++ (F4*) 75.4 69.6 57.8 94.1 91.4 85.6

Table 4.4: Classification accuracies on CIFAR-10 and SVHN datasets in a semi-

supervised setting. F4 denotes first four layers (Embedding layer and 3 encoder

blocks) of the Vision Transformer are frozen.

training, a threshold of 0.9 probability is used [Lee (2013)]. For MeanTeacher, the

Teacher network with an exponential moving average of the Student network is used

for producing output labels for the unlabeled data [Tarvainen and Valpola (2017)].

Similar to [Tarvainen and Valpola (2017)], I use the exponential moving average for

my experiments as well. My approach eliminates the need for numerous augmented

versions of the image and instead, consistency regularization is applied to two Patch-

Swap versions of the images. For the first PatchSwap image, the Teacher network

generates the targets and the Student network is then trained to match these gener-

ated outputs using the second PatchSwap image as input. For all my experiments, I

used γ = 100. For the first 10 epochs I linearly increase the unlabeled loss. All the

other experimental settings remain the same as the regularization experiments.
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Results

The results for the semi-supervised experiments are displayed in Table 4.4. I include

the results when only labeled data is used for training with PatchSwap regulariza-

tion - PatchSwap (Labeled only) and PatchSwap++ (Labeled only). PatchSwap++

(Labeled only) performs Inverse PatchSwap pretraining on labeled samples only. Un-

labeled PatchSwap is when PatchSwap and Unlabeled PatchSwap are used together.

Unlabeled PatchSwap++ uses Inverse PatchSwap to pre-train the network with all

the data and then uses Unlabeled PatchSwap. It is worth noting that my approach

outperforms all the compared approaches. MeanTeacher is outperformed by Patch-

Swap with a labeled loss on CIFAR10 only. The Unlabeled PatchSwap provides an

additional performance boost. Similar to regularization experiments (and the expla-

nation), I found Inverse PatchSwap to be helpful for CIFAR10 but not for SVHN. I

verify this by freezing the first four layers of the encoder (i.e. embedding layer and

3 encoder blocks) and only training the rest of the network. The results are indi-

cated as Unlabeled PatchSwap++ (F4). As expected, freezing the layers provides an

additional boost of 1% to CIFAR10 and reduces SVHN performance.

4.2.5 Self-supervised Learning

Setup

I test pretraining of Inverse PatchSwap on CIFAR10, CIFAR100, FashionMNIST,

and Tiny-ImageNet, ImageNet-100 with patch sizes 8, 4, 16, 16 and 16, respectively.

The decoder network for this task has 4 decoder blocks that resemble encoder blocks

in architecture, followed by a projection layer that projects the features into the

dimension of a patch. The patch is then reshaped and combined with the other

patches to form the image. The loss is applied only to the missing patches. The
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Dataset FMNIST CIFAR10 CIFAR100 TI-RA IM100

PatchSize 16 8 4 16 16

Init Method Top1 Top1 Top1 Top5 Top1 Top5 Top1 Top5

Random CE 91.2 78.3 57.9 81.5 39.1 63.4 54.6 79.9

MAE CE 92.2 83.2 61.0 84.7 43.1 67.7 59.1 83.6

IPS CE 92.5 84.7 63.5 85.9 43.9 68.9 59.4 84.1

Random PS 92.6 84.7 64.9 86.4 45.6 70.8 61.5 85.3

MAE PS 93.1 86.6 68.4 89.6 50.8 75.9 66.0 88.0

IPS PS 93.3 87.7 69.6 89.8 51.6 76.3 67.0 88.3

Table 4.5: Comparison of different initialization (Init) and training methods (method)

for FashionMNIST (FMNIST), CIFAR10, CIFAR100, TinyImageNet with RandAug-

ment (TI-RA), and ImageNet-100 (IM100) datasets.

buffer τ is set to 0.2 for all the Inverse PatchSwap experiments. I used Masked

AutoEncoder (MAE) [He et al. (2022)] as the baseline for my approach. The same

setup is used for the Masked AutoEncoder baseline except the masking ratio is set to

0.75 as detailed in [He et al. (2022)]. I experimented with using Random, MAE, and

Inverse PatchSwap as the initialization and considered Cross-entropy and PatchSwap

for training the network on supervised tasks. I also test the quality of features learned

by the layers by freezing different parts of the network and training the rest.

Results

The results for self-supervised experiments for different initialization and training

methods are in Table 4.5. ‘RA’ denotes RandAugment was part of the base augmen-

tation while training. It can be observed that Inverse PatchSwap provides the best
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(a) CIFAR10 (P:8) (b) CIFAR100 (P:4)

(c) Tiny-ImageNet (P:16) (d) ImageNet-100 (P:16)

Figure 4.5: Test Classification accuracies for Supervised, MAE → CE , Inverse

PatchSwap → CE and Inverse PatchSwap → PatchSwap. ‘P:x’ denotes the

‘x’ patch size that was used. Top1 and Top5 accuracies are displayed by solid and

dashed lines. The X-axis shows different layers of the transformer. While training, all

the layers before those layers are frozen. NF: Layers are not frozen; PE: Embedding

block; EB-i are the encoder blocks. MLP: The whole network is frozen except for the

last classification layer.

initialization regardless of the training method, and PatchSwap provides the best

test performance for any initialization. The best performance is achieved when using
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(a) CIFAR10 (P:4) (b) FMNIST (P:16)

(c) SVHN (P:16) (d) ImageNet-100 (P:16)

Figure 4.6: Reconstruction of Inverse PatchSwap on test sets of different datasets.

The First and Second columns are the input images. The third column is the gener-

ated PatchSwap image and the fourth is the binary mask used for creating PatchSwap

Image. The fifth and the sixth columns are the images produced by the decoder corre-

sponding to the first and the second images. I overlay the output with the PatchSwap

patches to improve the visual quality.

Inverse PatchSwap in conjunction with PatchSwap a.k.a. PatchSwap++.

I also test the quality of features for each layer by freezing the network before

that layer and the results are displayed in Figure 4.5. In Figure 4.5, P:x signifies the

‘x’ patch size that was used for training the Vision Transformer. Solid lines denote
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Top1 accuracy and dashed lines denote Top5 accuracy. The X-axis shows the different

layers of the transformer and signifies which layers are trained/frozen. NF represents

no layers are frozen. PE represents only the Patch Embedding block is frozen. EB-i

represents the encoder blocks. While training, all the layers before those layers are

frozen (including the Patch Embedding block). MLP denotes The whole network is

frozen except for the last classification layer.

Inverse PatchSwap outperforms MAE when zero to five layers are frozen. However,

as the number increases, MAE starts to outperform Inverse PatchSwap (IPS). MAE

mentions that the last few layers of the encoder start to become generation task-

specific. Hence, using a fully frozen network is not recommended. I observe an

amplification of the same effect here and hence, IPS requires a minimum of 3 layers

to be fine-tuned. I also observe that PatchSwap begins to underperform Cross-entropy

loss in these cases. In Figure 4.6, I show the reconstruction of a few test samples from

different datasets using Inverse PatchSwap. P:x denotes the ‘x’ patch size that was

used for training the Vision Transformer in figure 4.6.

4.3 Analysis

4.3.1 Regularization Intensity

The regularization intensity in PatchSwap is controlled by the hyperparameter α,

with λ = β(α, α). When α takes small values (α << 1), it leads to λ values close

to 0 or 1 in Beta distribution. As a result of rounding, the swapping coefficient λ′

then will end up being 0 or 1. In this setting, there is no PatchSwap regularization,

and it is equivalent to using standard cross-entropy loss for training. Similarly, a

swapping coefficient of λ′ = 0.5 will occur as a result of large values of α >> 1. This

is the setting with the highest PatchSwap or maximum swapping. In this manner, α
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Figure 4.7: Impact of changing α on the CIFAR-10 (left) and FashionMNIST (right)

datasets. Different colors denote different patch sizes used for training the Vision

Transformer.

controls the balance between cross-entropy and regularization.

Figure 4.7 displays the accuracy-vs-α plots for CIFAR10 and FashionMNIST

datasets. A small value of α yields significantly poor performance (similar to us-

ing only cross-entropy loss) due to reasons outlined earlier. Similarly, a large value

of α also decreases the performance. When α = 1 (as used in all my experiments),

it results in a uniform distribution for the swapping coefficient with λ′ ∈ [0, 1]. This

setting results in the best performance.

4.3.2 Number of Samples

In this section, I evaluate PatchSwap with a reduced number of training samples

to test its regularization capabilities. I use CIFAR10 and the FashionMNIST dataset

for these experiments. Figure 4.8 displays my results. I report the test accuracies

for a range of available training samples - 1000, 4000, 10, 000, 25, 000, 40, 000, and
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(a) CIFAR10 (b) FashionMNIST

Figure 4.8: Comparison of Test accuracy vs Number of Samples used for training

using Cross-Entropy, PatchSwap, and PatchSwap++ on CIFAR-10(a) and Fashion-

MNIST(b) datasets.

the full set. I compare my results (for various patch sizes as well) with a network

trained with standard Cross-Entropy loss (shown using dashed lines), PatchSwap,

and PatchSwap++. From the plot, I observe that the performance of PatchSwap

with 10, 000 CIFAR10 labeled training samples is the same as that when 25, 000 sam-

ples are used for supervised training and PatchSwap++ with 10, 000 outperforms

Cross-entropy with 25, 000 samples. Similar trends can be observed for FashionM-

NIST where PatchSwap and PatchSwap++ require significantly less labeled data for

training.

4.3.3 Training Progress

I showcase the training progression of PatchSwap vs Cross-Entropy for the CI-

FAR100 and SVHN datasets. The results are displayed in Figure 4.9. Cross-entropy

achieves better test accuracy at the start of the training but PatchSwap results in
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Figure 4.9: Test accuracy graph for training process on CIFAR-100 (left) and SVHN

(right). Different patch sizes used for training the transformers are denoted by differ-

ent colors. Solid lines represent PatchSwap and dashed lines represent Cross-entropy

loss.

the best final accuracy for all the scenarios. The training accuracy was around 100

% for all the cases at the end of the training. However, PatchSwap results in much

less overfitting.

4.3.4 Training Losses

Cross-entropy loss is often augmented with Mixup and Cutmix to help train net-

works that generalize better. Vision Transformers are trained using the same pro-

cedure too [He et al. (2022)]. In this section, I present results to show the impact

of using PatchSwap in addition to Mixup-Cutmix. During every training step, one

of the three techniques is chosen randomly. I use CIFAR100 and Tiny-ImageNet for

these experiments and the results are summarized in Table 4.6. I also test the case of

initializing the network with Inverse PatchSwap (last row) and training with all the

losses. From the results in the Table, it is clear that standard cross-entropy suffers

from high overfitting which is alleviated to an extent by PatchSwap. Even though
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Dataset CIFAR100 Tiny-ImageNet

Patch Size 4 8 16 8 16

Cross Entropy 57.9 50.6 39.3 41.9 34.4

PatchSwap 64.9 58.5 45.7 49.9 41.8

MX+CX 66.4 60.3 47.7 51.2 43.8

MX+CX+PS 67.2 60.9 48.3 52.3 44.6

IPS→MX+CX+PS 71.6 65.4 51.1 57.2 49.1

Table 4.6: Top1 classification accuracies on CIFAR-100 and Tiny-ImageNet using dif-

ferent combinations of losses for training. MX: Mixup, CX: CutMix, PS: PatchSwap

Figure 4.10: Attention Maps of PatchSwap++ on the validation set of Tiny-ImageNet.

Mixup+Cutmix performs better than PatchSwap alone, using all three of them to-

gether provides the best regularization. However, the best performance is achieved

by using Inverse PatchSwap as initialization and all three losses for training.

4.3.5 Attention Maps

In Figure 4.10, I visualize the attention maps of PatchSwap++ on original (non-

PatchSwap images) using Grad-CAM [Selvaraju et al. (2017)] on the validation set

of Tiny-ImageNet with a patch size of 8. Additionally, I also show the class-specific

attention maps of the model on PatchSwap images in Figure 4.11. It can observed that

the network learns to pay attention to the appropriate patches for the classification
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Figure 4.11: Class-specific Attention Maps of PatchSwap++ on PatchSwap images.

The first and the second columns are the input images. The third column is the

generated PatchSwap image. The fourth and fifth columns are class-specific attention

maps for the first and the second objects. Example: In the first row, the objects are

beetle and pig, and the third column shows the PatchSwap Image. I generate class-

specific attention maps for Bettle on the PatchSwap image in Column 4 and it can

be observed that the network focuses only on the patches from the Bettle image and

ignores patches from the Pig image. Similarly, in the 5th column, the attention for

Pig focuses on Pig patches and ignores others.

of the images. For example in the first row, the model is attending to the patch

belonging to the 2nd row-3rd column patch for the ladybug class. Similarly, for the

pig class, the model attends to the 3rd row-4th column and 4th row-3rd column patches

which contain pig specific-patches. Similarly, I show a similar visualization for a model
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Figure 4.12: Class-specific Attention Maps for PatchSwap images. The first column

shows the input images. I generate PatchSwap images for two different patch sizes - 8

(2nd and 3rd column) and 16 (4th and 5th column). The 2nd row displays the attention

map for Orange and the last row shows for Teddy Bear.

trained using vanilla PatchSwap with different patch sizes in Figure 4.12.

4.3.6 Transfer vs Self-supervised Learning

This experiment compares the impact of Self-supervised learning vs. Transfer

learning. I use CIFAR10→CIFAR100 and CIFAR100→CIFAR10 with patch size 4

for this experiment. I consider different initializations for the model: (i) Random,

(ii) Model trained on source with Cross-entropy, (iii) Model trained on source with

PatchSwap, (iv) Model trained on source with Inverse PatchSwap, and (v) Model

trained on target (self) with Inverse PatchSwap. The model is then trained on the

target task with cross-entropy loss. The results are displayed in Table 4.7. I found

both transfer and self-supervised learning to be helpful. Also, an initialization from
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Init CIFAR10 → CIFAR100 CIFAR100 → CIFAR10

Random 57.9 83.3

CE (Source) 61.0 85.1

PS (Source) 64.0 88.0

IPS (Source) 64.2 88.2

IPS (Target) 63.5 88.1

Table 4.7: Comparison of test accuracy for model initialized with Transfer learning

vs. Self-supervised learning. I test this on CIFAR10 and CIFAR100 with patch size

4. CE: Cross-Entropy; PS: PatchSwap; IPS: Inverse PatchSwap

a regularized model (regardless of source/target) leads to better target test accuracy.

The best performance was achieved by transfer learning for the model trained on

source with self-supervision.

4.3.7 PatchSwap for ConvNets

Although I have designed PatchSwap for Vision Transformers, this regularization

is compatible with ConvNets as well. One difference is that the patch size becomes a

hyperparameter when PatchSwap is applied to ConvNets. I experiment with different

patch sizes on the input - {1, 2, 4, 8, 16}. I show how different loss functions affect the

training process using the ResNet-18 network trained on CIFAR10 and CIFAR100

datasets. I follow the same settings for running the baselines. The images are resized

to be of size 32 × 32. A batch size of 128 is used to train the network for 300

epochs using an SGD optimizer with a learning rate and momentum of 0.1 and 0.9,

respectively. The learning rate is warmed up for the first 10 epochs after which it is

decayed by a factor of 0.1 at 150th and 225th epoch.

106



Method CIFAR10 CIFAR100

Cross Entropy 95.1 76.0

Label smoothing 95.1 76.4

Cutout 95.9 76.8

Mixup 96.0 77.1

Cutmix 96.2 78.2

PatchSwap-1 94.1 73.4

PatchSwap-2 95.3 75.8

PatchSwap-4 95.9 77.6

PatchSwap-8 96.2 78.0

PatchSwap-16 96.0 77.8

Table 4.8: Top1 classification accuracies on CIFAR-10 and CIFAR-100 for ResNet-18

(ConvNet). PatchSwap-k denotes PatchSwap was performed using k patch size.

I summarize the results for these experiments in Table 4.8, where PatchSwap-k

denotes the PatchSwap using patch size k. ResNet-18 outperforms my Vision Trans-

formers due to its translation equivariance and locality inductive biases [Dosovitskiy

et al. (2020)]. Vision Transformers demand abundant data to acquire these proper-

ties [Dosovitskiy et al. (2020)]. While ResNet-18 has 11 million in parameters, the

number of parameters for my Vision Transformer is almost a third of it. From the

results, I observe that PatchSwap produces good performance when applied to Con-

vNets too. However, the patch size hyperparameter, k needs to be tuned in this case.

For CIFAR10 and CIFAR100 datasets, PatchSwap yields the best performance when

k = 8.
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Chapter 5

LABEL REGULARIZATION

The traditional method of training neural networks involves the utilization of one-hot

targets and cross-entropy loss, a long-standing practice in the field. However, the use

of one-hot targets has been recognized for its tendency to instigate overconfidence

within the network, potentially hampering its generalization capabilities [Szegedy

et al. (2016a)]. Over the years, various regularization techniques, such as Cutout

[Devries and Taylor (2017)], Mixup [Zhang et al. (2018)], CutMix [Yun et al. (2019)],

and others [Hendrycks et al. (2020); Gong et al. (2021)], have been introduced to

address this issue, often involving modifications to the input data. However, these

augmentations need to be done cautiously as they should not impact the main object

in the input. An alternative strategy is Label Smoothing, which adjusts target labels

during training by adding a uniform label distribution over the categories to the

one-hot target [Szegedy et al. (2016a)]. Training with Label Smoothing has proven

effective in enhancing generalization and has been widely adopted.

Despite the advantages of Label Smoothing, it is known to disrupt the relation-

ships between categories [Müller et al. (2019)]. This problem arises from the use of

a uniform probability vector in generating smoothed targets, assigning equal impor-

tance to all negative categories. Consequently, the network is instructed to treat all

categories as equally distinct from each other, leading to compact and equidistant cat-

egory clusters in the feature space [Müller et al. (2019)]. This outcome is undesirable;

e.g., targets for the Dog class should have a relatively higher similarity with the Cat

class, as compared to the Truck class. Enforcing uniform inter-category relationships

limits the model’s performance [Zhang et al. (2021). The inter-category relationship
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Figure 5.1: Illustration of targets generated via Human, Label Smoothing, and Learn-

able Smoothing.

is crucial for applications such as Knowledge Distillation, dealing with missing data,

and learning from noisy labels [Hinton et al. (2015); Müller et al. (2019); Zhang et al.

(2021)]. This prompts two fundamental questions: (1) Is it possible to regulate con-

fidence while preserving the inter-category relationship? and, (2) What alternative

should be employed in place of the uniform probability vector?

This dissertation introduces my novel solution, termed Learnable Label Smoothing

(LLS), to address these questions. My approach aims to train the network to learn the

optimal target vector, as illustrated in Figure 5.1. I present a category-wise learnable

probability vector. By merging this probability vector with the one-hot label, similar

to Label Smoothing, I create targets unique to each category. For a dataset with K

categories, these category-wise learnable probability vectors together form the K×K

Q-matrix, whose rows Qk encode the inter-category similarities.

I demonstrate empirically that Learnable Label Smoothing outperforms Label

Smoothing. Furthermore, networks trained with Learnable Label Smoothing prove to

be more effective Teacher models in Knowledge Distillation scenarios. The learned Q-

Matrices exhibit little variation notwithstanding randomized initialization and vary-

ing network architecture, enabling seamless knowledge transfer and distillation even

in the absence of a Teacher network. While the Q-Matrix primarily depends on the
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training data, it is still useful for regularizing subsets (category-wise and sample-wise)

of the data which reduces the necessity for frequent relearning. These characteristics

enhance the matrix’s versatility and widen the scope of its potential applications.

5.1 Learnable Label Smoothing

5.1.1 Preliminaries

Let D be a dataset with image label pairs {x, y} where x represents an image, and

y ∈ {1, . . . , K} is the ground truth label. The ground truth labels are also represented

as 1-hot vectors p = [p1, . . . , pK ]
⊤, where pi ∈ {0, 1}. Correspondingly, pi = 1 when

index i = y, else it is 0. The neural network with parameters θ is represented as fθ(.).

For a sample x, the output probability vector is denoted by p̂ = fθ(x). The standard

cross-entropy objective H(p, p̂) is minimized for network training, and is computed

as,

H(p, p̂) = −p log p̂ = −
K∑
i=1

pi log p̂i = − log p̂y. (5.1)

However, the conventional training approach utilizing a 1-hot vector is known to

induce overconfidence [Szegedy et al. (2016a)] and lead to poor calibration and over-

fitting [Mukhoti et al. (2020); Lin et al. (2017)]. To address this issue, Label Smooth-

ing introduces a regularization technique by creating a modified target pls [Szegedy

et al. (2016a)]. This is achieved by combing the 1-hot probability p with a uniform

probability vector u = [ 1
K
, . . . , 1

K
]⊤, resulting in,

pls = (1− α)p+ αu. (5.2)

Here, α is the smoothing hyper-parameter, typically set to 0.1. The network trained

using the cross-entropy with the modified targets (pls), mitigates the problem of
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overconfidence as,

H(pls, p̂) = −pls log p̂ (5.3)

= (1− α)H(p, p̂) + αH(u, p̂)

= (1− α)H(p, p̂) + αKL(u||p̂) + αH(u).

Here, the first term is the cross-entropy between H(p, p̂) scaled by (1−α). The second

term is the Kullback-Leibler Divergence between u and p̂ driving the predictions to

become more uniform and reducing the confidence of predictions. The last term is

the entropy over u, where H(u) = −
∑

i ui log ui, which is a constant.

5.1.2 Method

My approach replaces the uniform vector u in Label Smoothing with a learnable

probability vector, granting the network the ability to select optimal targets. My

learned target vector is of the form, plls = (1 − α) ∗ p + α ∗ q where, q is learned

through network training. I argue that a 1-hot target vector is an overconfident

and hard assignment of the image category. Label Smoothing ameliorates the effect

of overconfidence by assuming a uniform prior label distribution. However, Label

Smoothing could introduce unwanted biases when uniformly smoothing the probabil-

ities [Lienen and Hüllermeier (2021)]. I aim to learn the distribution q and estimate

the ‘moving’ target label plls even as the network trains to align the prediction p̂ with

plls. I share a probability vector q between all samples within a category, due to their

shared relationships with other categories, and employ distinct q for each category.

Hence, I learn a matrix Q of dimensions K × K, where row i signifies a learnable

probability vector Qi = [qi1, qi2, . . . , qiK ] for category i. For a training sample (x, y),

the modified label is given as plls where,

plls = (1− α) ∗ p+ α ∗Qy, (5.4)
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Figure 5.2: An overview of Learnable Label Smoothing. My approach utilizes a matrix

Q with dimensions K × K that serves as the repository for learnable probability

vectors for each category. A given 1-hot vector p of a category is mixed with its

associated probability vector Qy from matrix Q, governed by the hyperparameter α.

This operation results in the target plls which is used for training with Llls loss.

with p as the 1-hot vector corresponding to ground truth label y, and Qy the y-th

row of the learned Q matrix. α is the hyper-parameter similar to Label Smoothing.

The purpose of the Q-Matrix is to facilitate the acquisition of the optimal mixing

probability vectors during Label Smoothing. I refer to my framework as Learnable

Label Smoothing (LLS).

5.1.3 Training Using Learnable Label Smoothing

Given the Learnable Label Smoothing (LLS) target probability vector plls and

the network prediction p̂, the standard training objective is the minimization of the

cross-entropy loss H(plls, p̂) = −
∑

i p
lls
i log p̂i. The cross-entropy is an upper-bound

on the KL-divergence between plls and p̂, where H(plls, p̂) = KL(plls||p̂) + H(plls).

112



The second term H(plls) is the entropy of plls which is 0 when plls is 1-hot. When plls

is not 1-hot, minimizing cross-entropy H(plls, p̂) also minimizes the entropy of H(plls),

making plls more 1-hot. This does not serve my purpose where I aim to retain the

inter-category relationships in the target label. I aim to instead directly minimize the

KL-divergence objective KL(plls||p̂).

I term KL(plls||p̂) as the Forward-KL. In standard Forward-KL divergence objec-

tives, e.g., KL(r||s), the distribution r is fixed and s is optimized to align with r.

With KL(plls||p̂) there is the challenge of a moving target where plls is being learned

as p̂ aligns with it. The forward KL(plls||p̂) has smaller magnitude gradients w.r.t

plls compared to the gradients w.r.t p̂. This makes p̂ align quickly with plls before the

inter-category relationships are learned in plls. In other words, the network overfits

before Learnable Label Smoothing can take effect. This is mitigated when I also have

a Reverse-KL term KL(p̂||plls) which ensures the target plls is updated quickly. Below

I show the gradients of the two loss functions to showcase this property.

To facilitate the derivations, I employ specific notations: let q = Qy = [q1, q2, . . . , qK ],

where qi represents the probability of the i-th category for the y-th row of the Q-

Matrix. The entries in the Q-Matrix are generated from logits. For e.g., [t1, t2, . . . , tK ]

are the logits that generate the y-th row in Q. Here, q = softmax([t1, t2, . . . , tK ]),

indicating that q is obtained by applying the Softmax activation function to the logits

values. Likewise, I use z = [z1, z2, . . . , zK ] to represent the logits from the network fθ

which are then converted to predicted probabilities p̂. Here, p̂ = softmax([z1, z2, . . . , zK ]).
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Firstly, I derive the gradient of the softmax probability qi =
eti∑
k etk

with respect

to logits tj, as this derivation will be utilized in subsequent derivative calculations,

qi =
eti∑
k e

tk

∂qi
∂tj

=
eti · I{i = j}∑

k e
tk

·
∑

k e
tk∑

k e
tk

− eti∑
k e

tk
· etj∑

k e
tk

= qjI{i = j} − qiqj

= qj(I{i = j} − qi) (5.5)

Similarly, I have the derivative,

∂p̂i
∂zj

= p̂j(I{i = j} − p̂i) (5.6)

I show the derivative of the forward KL loss Lfkl w.r.t. network logits zj:

Lfkl = KL(plls||p̂) = H(plls, p̂)−H(plls)

= −
∑
i

pllsi log p̂i +
∑
i

pllsi log pllsi (5.7)

∂Lfkl

∂zj
= −

∑
i

pllsi
∂ log p̂i
∂zj

+ 0

= −
∑
i

pllsi
p̂i

∂p̂i
∂zj

using eq 5.6,

= −
∑
i

pllsi
p̂i

p̂j(I{i = j} − p̂i)

= −
pllsj
p̂j

p̂j +
∑
i

pllsi
p̂i

p̂j · p̂i

= −pllsj + p̂j
∑
i

pllsi ·

= p̂j − pllsj (5.8)
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Next, I derive the gradient of forward KL loss Lfkl w.r.t. Q-Matrix logits tj:

Lfkl = KL(plls||p̂) = H(plls, p̂)−H(plls)

= −
∑
i

pllsi log p̂i +
∑
i

pllsi log pllsi

let Lfce = −
∑
i

pllsi log p̂i and

Lemt =
∑
i

pllsi log pllsi (5.9)

Next, I will solve derivatives of Lfce and Lemt separately and then combine them

later to get the derivative of Lfkl.

Derivative of Forward Cross-Entropy loss Lfce w.r.t. Q-Matrix logits tj:

Lfce = −
∑
i

[(1− α)pi + αqi] log p̂i (5.10)

∂Lfce

∂tj
= −

∑
i

α
∂qi
∂tj

log p̂i

= −α
∑
i

∂qi
∂tj

log p̂i using eq 5.5,

= −α
∑
i

[qj(I{i = j} − qi)] · log p̂i

= −αqj
∑
i

[(I{i = j} − qi)] · log p̂i

= −αqj(log p̂j −
∑
i

qi · log p̂i)

= αqj

(∑
i

qi · log p̂i − log p̂j

)
(5.11)
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Derivative of Entropy Maximization loss on targets Lemt w.r.t. Q-Matrix logits tj:

Lemt =
∑
i

pllsi log pllsi

=
∑
i

[(1− α)pi + αqi] log[(1− α)pi + αqi] (5.12)

∂Lemt

∂tj
=

∑
i

α
∂qi
∂tj

log[(1− α)pi + αqi]

+
∑
i

[(1− α)pi + αqi] ·
1

[(1− α)pi + αqi]
· α ∂qi

∂tj

=
∑
i

α
∂qi
∂tj

log[(1− α)pi + αqi] + ·α
∑
i

∂qi
∂tj

= α
∑
i

∂qi
∂tj

{1 + log[(1− α)pi + αqi]}

= α
∑
i

(1 + log pllsi )
∂qi
∂tj

using eq 5.5,

= α
∑
i

(1 + log pllsi ) · qj(I{i = j} − qi)

= αqj
∑
i

(1 + log pllsi )(I{i = j} − qi)

= αqj
[
(1 + log pllsj )−

∑
i

qi(1 + log pllsi )
]

= αqj
[
(1 + log pllsj )−

∑
i

qi −
∑
i

qi log p
lls
i

]
= αqj

[
1 + log pllsj − 1−

∑
i

qi log p
lls
i

]
= αqj

[
log pllsj −

∑
i

qi log p
lls
i

]
= αqj

(
log pllsj −

∑
i

qi log p
lls
i

)
(5.13)
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The Final derivative of Forward KL Lfkl w.r.t. tj can be obtained as:

∂Lfkl

∂tj
=

∂Lfce

∂tj
+

∂Lemt

∂tj
using eq 5.11,& eq 5.13,

= αqj
(∑

i

qi · log p̂i − log p̂j
)

+ αqj
(
log pllsj −

∑
i

qi log p
lls
i

)
= αqj

(∑
i

qi · log
p̂i
pllsi

− log
p̂j
pllsj

)
(5.14)

It can be observed that there is a notable disparity in the gradient of forward

KL with respect to tj as seen in eq 5.14, which is consistently one to two orders

of magnitude smaller compared to its counterpart concerning zj in eq 5.8. This

discrepancy arises due to the logarithmic scaling effect on the gradients, resulting

in a reduction in magnitude. To enhance the flow of gradients into the Q-Matrix

without resorting to increasing the learning rate, I incorporate reverse KL Lrkl in the

training loss function. Next, I show the gradient of the reverse KL Lrkl w.r.t. logits

tj of Q-Matrix to understand its impact.
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The gradient of reverse KL Lrkl w.r.t. logits tj of Q-Matrix can be derived as:

Lrkl = KL(p̂||plls) = H(p̂, plls)−H(p̂)

= −
∑
i

p̂i log p
lls
i +

∑
i

p̂i log p̂i

= −
∑
i

p̂i log[(1− α)pi + αqi] +
∑
i

p̂i log p̂i (5.15)

∂Lrkl

∂tj
= −

∑
i

p̂i
(1− α)pi + αqi

· α ∂qi
∂tj

+ 0

= −α
∑
i

p̂i
(1− α)pi + αqi

· ∂qi
∂tj

using eq 5.5,

= −α
∑
i

p̂i
(1− α)pi + αqi

· qj(I{i = j} − qi)

= −αqj
∑
i

p̂i
(1− α)pi + αqi

· (I{i = j} − qi)

= −αqj

[
p̂j

(1− α)pj + αqj
−
∑
i

p̂i · qi
(1− α)pi + αqi

]
= −αqj

[
p̂j
pllsj

−
∑
i

p̂i · qi
pllsi

]
= αqj

(∑
i

qi ·
p̂i
pllsi

− p̂j
pllsj

)
(5.16)

By examining eq 5.14 and 5.16, it becomes apparent that the gradients of forward

and reverse KL exhibit strong similarities, differing primarily due to the presence

of the log function in the p̂i
pllsi

terms. log function diminished the gradient values in

the forward KL scenario, whereas, in reverse KL, the unscaled values are employed.

Interestingly, the gradients derived from reverse KL align in magnitude order with

those of forward KL concerning z in eq 5.8. This leads to a better convergence of the

Q-Matrix.
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Hence, I use objective for training using the LLS as the sum of Forward-KL and

Reverse-KL, which is also termed the Jensen-Shannon Divergence, given by,

Llls = JSD(plls, p̂) = KL(plls, p̂) +KL(p̂, plls) (5.17)

= plls log plls − plls log p̂+ p̂ log p̂− p̂ log plls

= −H(plls) +H(plls, p̂)−H(p̂) +H(p̂, plls).

The first term −H(plls), is the negative entropy of the target, which when minimized

drives the target plls towards a uniform distribution. The target is plls = (1− α)p +

αQy, where only Qy varies. Minimizing −H(plls) effectively drives Qy to estimate

inter-category relationships as Qy becomes more uniform. Similarly, the third term

−H(p̂), is the negative entropy of the predictions, which when minimized drives the

predictions p̂ towards a uniform distribution. This plays the role of Label Smoothing

which penalizes overconfidence in the predictions and delays overfitting. I name the

second term −H(plls, p̂), Forward Cross-Entropy, which aligns distributions plls and

p̂. Similarly, I name the 4th term −H(p̂, plls) Reverse Cross-Entropy. Minimizing

these terms aligns the target plls with the predictions p̂.

5.1.4 The Q-Matrix

Minimizing −H(plls) maximizes the entropy of the target plls = (1 − α)p + αQy,

where only Qy varies. The entropy of plls can be increased only by reducing Qyy and

increasing the other components of Qy because the y-th component pllsy is greater than

the other components by a fixed constant term (1− α). This propels the network to

set Qyy → 0 and assign that probability to the other categories, thereby identifying

inter-category relationships. Consequently, the Q matrix exhibits the lowest values

at the diagonals and higher values for semantically closer categories.
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1 # Define LLS

2 class LLS(nn.Module):

3 def __init__(self , K, alpha =0.1):

4 super().__init__ ()

5 self.K = K

6 self.alpha = alpha

7 self.qmatrix = nn.Parameter(torch.zeros(K, K),

8 requires_grad=True)

9

10 def forward(self , logits , y):

11 pred = F.softmax(logits , 1)

12

13 y_tgt = (1- α) * F.one_hot(y, num_classes=self.K)

14 + α * F.softmax(self.qmatrix[y], 1)

15

16 forward_kl = KL(y_tgt , pred)

17 backward_kl = KL(pred , y_tgt)

18 loss = (forward_kl + backward_kl)/2

19

20 return loss

21

22 # Define loss function

23 loss_fn = LLS(K, α)

24

25 # Define optimizer

26 # Set weight decay to 0 for Q-Matrix

27 params = [{’params ’: net.parameters (), ’weight_decay ’: wd},

28 {’params ’: loss_fn.parameters (), ’weight_decay ’: 0}]

29 optimizer = SGD(params , lr, mom)
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I learn a Qy vector for every category. This results in a K ×K Q-matrix where

every rowQy models the similarities of category y with the other categories. I observed

a low variance in the Q-Matrix across randomized Q-Matrix initializations, network

initializations, and network architectures. This allows for knowledge transfer between

different networks. The Q-Matrix is primarily dependent on the training data but

proves useful for transferring knowledge to category-wise and sample-wise subsets,

as explored in Section 5.3.6. The LLS method is depicted in the model diagram in

Figure 5.2.

5.1.5 PyTorch-like Pseudo Code

On the previous page, I showed the PyTorch-like Pseudo Code that can easily be

implemented for training a neural network with Learnable Label Smoothing.

5.2 Experiments

5.2.1 Datasets and Setup

I scrutinized my methodology across diverse settings, encompassing small-scale

objects, large-scale objects, and scenarios demanding fine-grained classification. In

the realm of small-scale classification, I used FashionMNIST [Xiao et al. (2017a)],

CIFAR10 [Krizhevsky et al. (2009)], and SVHN [Netzer et al. (2011)] datasets. These

datasets, with images sized at 32 × 32, offer both diversity and challenges with 10-

way classifications. SVHN presents an intriguing challenge as digits lack prominent

inter-category relationships. For large-scale classification, my evaluation extended

to CIFAR100 [Krizhevsky et al. (2009)], Tiny-ImageNet, and ImageNet-100. Due

to hardware constraints, I leveraged Tiny-ImageNet and ImageNet-100 [URL], both

subsets of the original ImageNet dataset [Deng et al. (2009)]. Tiny-ImageNet pos-
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sesses 200 categories with 64× 64 images, while ImageNet-100, featuring the original

224 × 224 image size, encompasses 100 categories. In the fine-grained classification

domain, my experiments focused on distinguishing between various bird species us-

ing the CUB-200 dataset [Wah et al. (2011)] and different types of flowers using the

Flowers-102 dataset [Nilsback and Zisserman (2008)]. Below is the training configu-

ration used for these datasets.

CIFAR10 and CIFAR100

• Augmentations: Utilized padding of size 4, Random Crops, and random hori-

zontal flips during training.

• Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of

5e-4.

• Training specifics: Networks were trained with a batch size of 128 for 300 epochs.

The learning rate initiated at 0.1 and warmed up linearly for the first 10 epochs.

Then, it decayed by a factor of 0.1 at the 150th and 225th epochs.

FashionMNIST

• Augmentation: Applied padding of size 2 with random crops as the sole aug-

mentation.

• Network Configuration: Set the input channels to 1 for grayscale images.

• Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of

1e-4.

• Training specifics: Networks were trained with a batch size of 128 for 200 epochs.

The learning rate began at 0.1, underwent a linear warm-up for the initial 5

epochs, and decayed by a factor of 0.1 at the 100th and 150th epochs.
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SVHN

• No augmentation was used for this dataset.

• Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of 1e-4.

• Training specifics: Networks were trained with a batch size of 128 for 200 epochs.

The learning rate started at 0.1, had a linear warm-up for the first 5 epochs,

and decayed by a factor of 0.1 at the 100th and 150th epochs.

Tiny-ImageNet

• Image size: Images in Tiny-ImageNet data were of size 64× 64.

• Augmentations: Implemented padding of size 4, Random Crops, and random

Horizontal flips.

• Optimizer: Used SGD optimizer with 0.9 momentum and weight decay of 1e-4.

• Training specifics: Networks were trained with a batch size of 64 for 100 epochs.

The learning rate began at 0.1, underwent a linear warm-up for the first 5

epochs, and decayed by a factor of 0.1 at the 40th and 60th epochs.

ImageNet-100

• Image size: Training images were of the original ImageNet dataset size 224×224.

• Augmentations: Employed (1) Standard augmentation of random resized crops

of 224 along with random Horizontal flips. (2) Standard augmentation with

RandAugmentation.

• Optimizer: Utilized SGD optimizer with 0.9 momentum and weight decay of

1e-4.

123



Dataset CUB-200 Flowers-102

Network MV2 R18 R50 R101 MV2 R18 R50 R101

1-Hot 77.76 78.08 80.81 81.71 91.03 90.37 90.69 91.74

LS 78.67 78.56 81.89 82.62 91.94 90.50 92.42 92.73

TF-KDreg 77.64 - 80.96 - 91.95 - 91.30 -

OLS 79.95 - 82.47 - 92.73 - 92.86 -

LLS 79.84 78.86 82.91 83.48 93.02 91.02 93.64 92.89

Table 5.1: Comparison of classification accuracies on CUB-200 and Flowers-102 for

fine-grain classification. MV2: MobileNetV2 and RX denote the ResNet network with

X number of layers.

• Training specifics: Networks were trained with a batch size of 64 for 90 epochs.

The learning rate began at 0.1, underwent a linear warm-up for the first 5

epochs, and decayed by a factor of 0.1 at the 30th, 60th, and 80th epochs.

CUB200 and Flowers102

• Approach: Utilized pretrained networks for these datasets, adapting the last

classification layer based on the dataset’s class count.

• Augmentation: Images were scaled to 256 and then randomly cropped to 224

for augmentation, along with random horizontal flips.

• Optimizer: Employed SGD optimizer with 0.9 momentum and weight decay of

1e-4.

• Training specifics: Networks were trained with a batch size of 64 for 100 epochs.
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CIFAR100 Tiny-ImageNet

Method R18 R34 R50 R101 R18 R50 R101

1-Hot 75.87 79.38 78.79 79.66 63.20 67.47 67.93

LS 77.26 79.06 78.80 79.88 63.13 67.63 68.31

FL-3 - - 77.25 - - 50.31 62.97

FLSD-53 - - 76.78 - - 50.94 62.96

TF-KDself 77.10 - - - - 68.18 -

TF-KDreg 77.36 - - - - 67.92 -

Zipf 77.38 77.38 - - 59.25 - -

OLS - 79.96 79.35 80.34 - - -

LLS 78.96 79.78 80.40 80.46 64.58 68.23 69.07

Table 5.2: Comparison of classification accuracies on CIFAR100 and Tiny-ImageNet

datasets. RX denotes the ResNet network with X number of layers.

The learning rate initiated at 0.01, underwent a linear warm-up for the first 5

epochs and decayed by a factor of 0.1 at the 45th and 80th epochs.

I evaluated my approach on these datasets using different networks that are men-

tioned in their respective tables. For ImageNet-100, I conducted tests with both

standard augmentation and RandAug [Cubuk et al. (2020)]. I stored Q-matrix as

logits which are then converted to probabilities using Softmax. The Q-matrix is

initialized with zeros, leading to a uniform distribution as the starting point. The

hyper-parameter α is set to 0.1 for all experiments.
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Dataset CIFAR10 SVHN FMNIST ImageNet-100

Network R18 R50 R18 R18 R18 R50 R18 R50

1-Hot 95.60 95.92 95.57 86.66 81.26 83.96 82.88 84.82

LS 95.49 95.31 95.86 88.19 82.42 84.58 83.36 85.70

LLS 95.49 95.62 95.92 88.31 82.72 84.60 83.50 86.02

Table 5.3: Comparison of classification accuracies on CIFAR10, SVHN, FashionM-

NIST and ImageNet-100 datasets. denotes the network was trained with RandAug

augmentation. RX denotes the ResNet network with X number of layers.

5.2.2 Results

I conduct a comprehensive comparison of my approach against prominent label

regularization techniques, including Label Smoothing [Szegedy et al. (2016a)], Fo-

cal Loss [Mukhoti et al. (2020)], Teacher-Free Knowledge Distillation [Yuan et al.

(2020)], and Online Label Smoothing (OLS) [Zhang et al. (2021)]. The results are

detailed in Table 5.1, 5.2, and 5.3. When results were not available in the original

paper I indicated them with ‘-’. My approach consistently outperforms the alterna-

tives across the majority of the cases. Notably, OLS yields results comparable to my

method; however, my approach entails significantly lower computational overhead. It

is noteworthy that Label Smoothing tends to exhibit degenerative effects on the CI-

FAR10 dataset [Müller et al. (2019); Wang et al. (2019b)]. Nevertheless, my approach

achieves comparatively higher performance even in those cases. I found Learnable la-

bel smoothing to be most helpful for tasks with ≥ 100 classes. My approach imposes

minimal overhead while achieving superior performance.
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Dataset Tiny-ImageNet ImageNet-100

Augmentation Standard RandAugment Standard RandAugment

1-hot 39.48 44.45 62.16 70.36

LS 39.98 44.86 62.20 70.56

LLS 40.36 45.46 63.86 70.72

Table 5.4: Results on Tiny-ImageNet and ImageNet-100 with DEIT-Tiny using Stan-

dard and RandAugment as base augmentations.

5.2.3 Results with Vision Transformer

I show results on Tiny-ImageNet and ImageNet-100 with DEIT-Tiny [Touvron

et al. (2021)] in Table 5.4. I used the 64×64 image size for Tiny-ImageNet and 224×

224 for ImageNet-100 with patch sizes of 8 and 16 respectively. Vision Transformers

are data-hungry and demand heavy regularization [Dosovitskiy et al. (2020)]. Hence,

I also performed experiments with RandAugment [Cubuk et al. (2020)] as the base

input augmentation.

5.2.4 Q-Matrix

I present Q-Matrices for CIFAR10, FashionMNIST, and SVHN in Figure 5.3,

showcasing their learned relationships. The Q-Matrix notably reveals distinct con-

nections among the categories. For SVHN, where inter-category relationships are less

pronounced, a majority of the values approach 1
K

(0.1). Furthermore, the confusion

matrix depicted in Figure 5.4a for the FashionMNIST reveals a pattern consistent

with the Q-Matrix showcased in Figure 5.4b. For instance, Shirts frequently get mis-

classified as T-shirts, followed by pullovers and coats, owing to their close semantic
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(a) CIFAR10 (b) FashionMNIST (c) SVHN

Figure 5.3: Sample learned Q Matrices. It can be observed that the Q-Matrix favors

semantically closer categories. The final training label is obtained by mixing the Q-

Matrix with the 1-hot vector of ground truth based on the α hyperparameter.

(a) Confusion Matrix on the test set. (b) Learned Q-Matrix from train set.

Figure 5.4: Confusion Matrix and Learned Q-Matrix of the FashionMNIST dataset.

It can be observed that misclassifications in Figure 5.4a follow the same trend as the

relationship learned by the Q-Matrix in Figure 5.4b.

ties in that order. This correlation serves as a useful tool for estimating prediction

uncertainty. For example, when an image is misclassified as a T-shirt, there is a

higher likelihood of it being a Shirt and a significantly lower chance of being a Bag.

I show extra learned Q-Matrix on Animals-10N and FER2013 dataset in Figure

5.5. Animals-10N has a fine-grain classification task among 5 confusion pairs of

animals. It can be observed that the network favors the other animal of the pairs
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(a) Animals-10N (b) FER2013

Figure 5.5: More Q-Matrices. Animals-10N has a fine-grain classification task among

5 confusion pairs of animals. It can be observed that the network favors the other

animal of the pairs while assigning confidence. FER2013 has 7 basic facial expressions

and the network favors the expressions that use similar facial movements

while assigning confidence. FER2013 has 7 basic facial expressions and the network

favors the expressions that use similar facial movements.

5.3 Analysis

5.3.1 Ablation Study

I conduct an ablation study on diverse loss components, as presented in Table 5.5,

utilizing the Tiny-ImageNet and CUB-200 datasets. The initial four rows of the table

demonstrate the outcomes obtained by excluding each individual component. The

fifth and sixth rows correspond to the cross-entropy and symmetric cross-entropy

loss, respectively. Subsequently, the sixth and seventh rows represent the forward

and Reverse KL divergence losses. Based on the first and the last row, It can be ob-

served that the cross-entropy loss is crucial and this component’s absence results in
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Description
Loss Terms Tiny-ImageNet CUB-200

H(plls, p̂) H(p̂, plls) −H(p̂) −H(plls) R18 R50 R18 R50

No FCE ✗ ✓ ✓ ✓ 26.44 11.91 46.84 51.26

No RCE ✓ ✗ ✓ ✓ 64.14 68.04 78.84 82.88

No Pred EM ✓ ✓ ✗ ✓ 63.26 67.48 78.34 82.57

No Targets EM ✓ ✓ ✓ ✗ 63.80 67.51 78.10 82.78

FCE only ✓ 63.40 66.83 78.46 82.66

Symmetric CE ✓ ✓ ✗ ✗ 62.91 66.80 78.13 82.07

Forward KL ✓ ✗ ✗ ✓ 63.03 67.87 78.22 82.52

Reverse KL ✗ ✓ ✓ ✗ 26.58 14.40 46.62 53.56

LLS ✓ ✓ ✓ ✓ 64.58 68.23 78.86 82.91

Table 5.5: Abalation Study experiments on Tiny-ImageNet and CUB-200 with

ResNet-18 and ResNet-50. No FCE: No cross-entropy loss; No RCE: No reverse

cross-entropy loss; No Pred EM: No entropy maximization loss on predictions; No

Targets EM: No entropy maximization loss on targets; FCE only: Forward cross-

entropy; Symmetric CE: Forward cross-entropy + Reverse cross-entropy.

a failure of network convergence. Nevertheless, achieving the network’s optimal per-

formance necessitates the inclusion of all loss components. I also present the learned

Q-Matrices on CIFAR10 for the same experiments. The outcomes are illustrated in

Figure 5.6. Notably, it’s apparent that the Q-Matrix achieves its optimal state exclu-

sively with backward KL and JSD loss functions. Conversely, employing the Forward

KL approach results in slower convergence, ultimately leading to suboptimal values.
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(a) No Cross-Entropy (b) No Reverse cross-entropy (c) No entropy max on ŷ

(d) No entropy max on ȳ (e) Cross-entropy (f) Symmetric cross-entropy

(g) Forward KL (h) Backward KL (i) JSD

Figure 5.6: Learned Q-Matrix on CIFAR10 as per the ablation study experiments.

5.3.2 Clusters Visualization

I present a visual analysis of clusters formed by 1-hot, Label Smoothing, and

Learnable Label Smoothing targets using TSNE [Van der Maaten and Hinton (2008)].

Following the experimental framework detailed in [Müller et al. (2019)], I conducted

my evaluations on both CIFAR10 and CIFAR100 datasets. Specifically, I trained

AlexNet on CIFAR10 and ResNet-56 on CIFAR100, utilizing the penultimate features

of the training set for visualization purposes. For these experiments, I concentrated

on the Dog, Cat, and Truck classes from CIFAR10, and the Beaver, Dolphin, and

Otter classes from CIFAR100.
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(a) 1-Hot Target (b) Label Smoothing (c) LLS

(d) 1-Hot target (e) Label Smoothing (f) LLS

Figure 5.7: The TSNE visualizations illustrate three classes from CIFAR-10 (Cat,

Dog, Truck) in the top row and CIFAR-100 (Beaver, Dolphin, Otter) in the bottom

row. Notably, clusters formed by employing one-hot targets appear widely scattered,

contrasting with the more tightly knit clusters generated by label smoothing and

learnable label smoothing techniques. A noteworthy observation is the proximity of

semantically related classes, such as Dat and Dog in CIFAR-10, or Beaver and Otter

in CIFAR-100, when trained using 1-hot target and learnable label smoothing—these

classes exhibit closer clusters in comparison to a third unrelated class. However, the

use of label smoothing disrupts this inherent relationship by placing them at equal

distances, effectively erasing the semantic closeness among them.

The results are showcased in Figure 5.7, significantly reinforcing my findings. No-

tably, clusters formed by employing one-hot targets appear widely scattered, contrast-
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(a) 1-hot Target (b) Label Smoothing (c) LLS

Figure 5.8: Upper Row: TSNE visualization depicting penultimate features of

CIFAR-10. Lower Row: L1 normalized cosine distance between category centers

to depict inter-category relationships. In the upper row, it is evident that the cat-

egory clusters associated with 1-hot targets exhibit dispersion, while those of Label

Smoothing and Learnable Label Smoothing appear more concentrated. In the lower

row, it becomes apparent that Label Smoothing disrupts the inter-category relation-

ships, resulting in equal distances between features of all categories. Conversely, 1-hot

targets and Learnable Label Smoothing maintain and have similar inter-category re-

lationships. Learnable Label Smoothing provides the advantages of both techniques.

ing with the more tightly knit clusters generated by label smoothing and learnable

label smoothing techniques. A noteworthy observation is the proximity of seman-

tically related classes, such as Cat and Dog in CIFAR10, or Beaver and Otter in

CIFAR100, when trained using 1-hot target and learnable label smoothing—these

classes exhibit closer clusters in comparison to a third unrelated class. However, the
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(a) One-Hot Target (b) Label Smoothing (c) LLS

Figure 5.9: Upper Row: TSNE visualization depicting penultimate features of Fash-

ionMNIST. Lower Row: L1 normalized cosine distance between class cluster centers.

In the upper row, it is evident that the class clusters associated with one-hot targets

exhibit dispersion, while those of Label Smoothing and Learnable Label Smoothing

appear more concentrated. Moving to the lower row, it becomes apparent that label

smoothing disrupts the inter-class relationships, resulting in equal distances between

all classes. Conversely, one-hot targets and Learnable Label Smoothing maintain and

preserve these inter-class relationships. Notably, Learnable Label Smoothing com-

bines the advantages of both techniques.

use of label smoothing disrupts this inherent relationship by placing them at equal

distances, effectively erasing the semantic closeness among them.

I also display the penultimate layer features for all the categories of CIFAR10

in Figure 5.8 and of Fashion MNIST in Figure 5.9. In the upper row, it is evident

that clusters formed by 1-hot targets are dispersed, while those generated by Label
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Smoothing and Learnable Label Smoothing result in more cohesive and compact clus-

ters. Moving to the second row, I delve into illustrating inter-category relationships

by examining distances among cluster centers of the training data. I employed L1-

normalized cosine distances, defined as cd(i,j)∑
j cd(i,j)

, where cd(i, j) = 1− ci·cj
||ci||·||cj || , and ci

and cj represent the cluster centers of categories i and j, respectively. Notably, Label

Smoothing disrupts the inter-category relationship, rendering all categories equidis-

tant from each other in feature space. In contrast, both 1-hot and Learnable Label

Smoothing maintain the inter-category relationship.

These comparisons highlight that clusters formed by 1-Hot targets demonstrate

dispersion, while those formed by label smoothing and learnable label smoothing

exhibit a more cohesive and compact nature. Notably, label smoothing consistently

disrupts inter-class relationships, equidistantly positioning classes within the feature

space—a salient observation underscored in my findings. In contrast, both One-hot

encoding and learnable label smoothing methods consistently uphold and sustain

inter-class relationships effectively. Significantly, learnable label smoothing emerges

clearly superior by showcasing the strengths of both methods.

5.3.3 Varying hyperparameter Alpha

I show outcomes obtained by varying the values of hyperparameter α (0.05, 0.1,

0.2, 0.3, 0.4, and 0.5) using a ResNet18 on CIFAR100, Flowers-102, and CUB-200

datasets in Figure 5.10. My results indicate that the range α ∈ (0.1, 0.4) consistently

delivers the optimal performance across these datasets.

5.3.4 Coefficient of Variation

I calculated the average coefficient of variation for the Q-Matrix across various

networks and initializations as 1
K2

∑
i,j

stdij
meanij

∗ 100. Here, meanij and stdij represent
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Figure 5.10: Results on varying α on CIFAR100, Flowers-102, and, CUB200 dataset

with ResNet-18. It can be observed that α ∈ (0.1, 0.4) provides the best overall

performance.

Dataset CIFAR100 CIFAR10 SVHN Flowers-102 CUB200

Initialization 0.18% 0.44% 1.24% 0.02% 0.04%

Network 0.79% 2.69% 6.39% 0.06% 0.08%

Table 5.6: Average Coefficient of Variation ( Std
Mean

∗ 100) across 6 initialization and

more than 4 different networks.

the mean and the standard deviation of the i, j-th position across the Q-matrices

respectively. This measure is independent of magnitude and illustrates the percentage

change of a value relative to its mean.

For my seed variation experiments, ResNet18 was employed across all datasets,

utilizing initial seed values set to 0, 1, 2, 3, 4, and 5. In my network experiments,

distinct architectures were utilized for various datasets that can be found below. ()

denotes the count of the networks used.
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(a) Seed: 0 (b) Seed: 1 (c) Seed: 2

(d) Seed: 3 (e) Seed: 4 (f) Seed: 5

Figure 5.11: Learned Q-Matrices on CIFAR10 with different starting seeds.

(a) ResNet18 (b) ResNet34 (c) ResNet50

(d) ResNet101 (e) DenseNet121 (f) GoogLeNet

Figure 5.12: Learned Q-Matrices on CIFAR10 with different network architectures.
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• CIFAR10 (6): ResNet18, ResNet34, ResNet50, ResNet101, DenseNet121, GoogleNet

• SVHN (4): ResNet18, ResNet50, DenseNet121, GoogleNet

• CIFAR100 (7): ResNet18, ResNet34, ResNet50, ResNet56, ResNet101, DenseNet121,

GoogleNet

• Flowers-102 (4): ResNet18, ResNet50, ResNet101, MobileNetV2

• CUB200 (4): ResNet18, ResNet50, ResNet101, MobileNetV2

Furthermore, in Figure 5.11 and 5.12, I present the learned Q-Matrices on CIFAR10

from different seeds and networks experiments respectively.

The findings are presented in Table 5.6, obtained by employing six different ini-

tializations and examining a minimum of four networks for each result. The results

illustrate that the converged Q-Matrix demonstrates minimal variation across vari-

ous initializations, displaying slight discrepancies among networks. This characteristic

leads me to anticipate that the converged Q-Matrices of a new network will closely

resemble the learned Q-matrix. Consequently, there arises an opportunity to employ

the learned Q-Matrix in place of undertaking the process of learning a new one or

transferring to a different network. Note that in the case of SVHN, there is a com-

paratively higher degree of changes in the Q-Matrix. I attribute this phenomenon to

the absence of notable inter-category relationships in the dataset, resulting in some

level of randomness.
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Dataset CIFAR100 Tiny-ImageNet ImageNet-100

Teacher R34→R18 R34→R34 R34→R50 R50 →R18 R101→R18 R50→R18

1-Hot 78.67 79.09 80.83 63.76 63.93 83.44

LS 79.40 80.15 81.15 64.31 64.02 83.32

LLS 79.66 80.19 81.26 65.69 66.11 83.62

LLS-ST 79.57 79.66 81.24 63.79 64.09 82.50

Table 5.7: Knowledge Distillation experiments on CIFAR100, Tiny ImageNet and

ImageNet-100 datasets.. RX: ResNet-X. Y → Z denotes distillation from Y (Teacher)

to Z (Student). The rows labeled 1-Hot, LS, and LLS correspond to scenarios

where the Teacher network was trained using 1-hot encoding, Label Smoothing, and

Learnable Label Smoothing, respectively. For LLS-ST (Learnable Label Smoothing-

Substitute Teacher), only the learned Q-Matrix from the LLS Teacher network is used

for distillation.

5.3.5 Substitute Teacher for Knowledge Distillation

Knowledge distillation employs a pre-trained teacher model ft on the dataset to

instruct the student model fs. The teacher model generates targets for each sample,

which the student model then uses to learn. The training loss for the student network

is defined as:

LKD = βH(fs(x), y) + (1− β)H(fs(x)/T, ft(x)/T ) (5.18)

Here, H represents the cross-entropy loss, β is a parameter balancing the use of one-

hot labels and teacher targets, and T is the temperature-regulating knowledge transfer

from teacher to student. Across all datasets, I adopted their original training setup,
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Dataset CUB200 Flowers-102

Teacher R101→MV2 R101→R50 R101→MV2 R101→R50

1-Hot 78.82 81.57 91.64 92.00

LS 79.70 82.91 92.44 92.86

LLS 80.15 83.38 92.63 93.40

LLS-ST 79.62 83.02 92.49 93.14

Table 5.8: Knowledge Distillation experiments on fine-grain classification datasets:

CUB200 and Flowers-102. RX: ResNet-X and M2: MobileNetV2. Y → Z denotes

distillation from Y (Teacher) to Z (Student). The rows labeled 1-Hot, LS, and LLS

correspond to scenarios where the Teacher network was trained using 1-hot encoding,

Label Smoothing, and Learnable Label Smoothing, respectively. For LLS-ST (Learn-

able Label Smoothing-Substitute Teacher), only the learned Q-Matrix from the LLS

Teacher network is used for distillation.

as described in Section 5.2.1, for knowledge distillation but altered the training loss

function. Following the recent setup of knowledge distillation experiments, I set β = 0,

implying that student networks are exclusively trained using teacher predictions, and

used a temperature of 1 for all experiments.

However, the availability of a Teacher network can be constrained by compu-

tational or privacy considerations. In such scenarios, the Q-matrix of the Teacher

network can serve as a substitute Teacher for Knowledge Distillation, denoted as

LLS-ST. While a Teacher model furnishes targets on a per-sample basis, LLS-ST

exclusively offers category-wise targets only.

The results for these experiments are presented in Table 5.7 and 5.8. The outcomes

indicate that networks trained with LLS exhibit superior teaching capabilities during
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ImageNet-100 Tiny-ImageNet Fashion MNIST CIFAR100

1-Hot 77.22 54.26 86.49 73.70

LS 78.62 54.70 87.01 74.56

LLS 78.66 54.85 87.13 74.75

LLS-ST 79.02 55.21 87.56 74.92

Table 5.9: The comparison between applying the learned Q-Matrix from the full data

vs. employing 1-hot encoding, Label Smoothing, and Learnable Label Smoothing on

sample-wise subsets. The results demonstrate a significant boost in generalization

when the learned Q-Matrix is applied to the sample-wise subsets.

the distillation process. Remarkably, LLS-ST, despite imparting limited knowledge,

imparts a performance boost comparable to employing a fully trained Teacher net-

work.

5.3.6 Effectiveness on Subsets of Data

It’s expected that the Q-Matrix is predominantly shaped by the characteristics of

the training data, and any alterations to the training dataset consequently influence

the learned Q-Matrix. However, once the Q-Matrix has been acquired, it remains

applicable to both its category-wise and sample-wise subsets.

In this experiment, I meticulously examine these two types of subsets: (1) selecting

the first 50% of categories and (2) randomly choosing 50% of samples from ImageNet-

100, Tiny-ImageNet, FashionMNIST, and CIFAR100 datasets. Employing these data

subsets, I train a ResNet-18 with 1-hot targets, Label Smoothing, and Learnable Label

Smoothing as baselines. Subsequently, I delve into the impact of applying the learned

Q-Matrix from the entire dataset, similar to the substitute Teacher experiments (LLS-
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ImageNet-100 Tiny-ImageNet Fashion MNIST CIFAR100

1-Hot 76.68 66.90 89.86 83.24

LS 77.88 66.98 90.56 83.56

LLS 78.56 67.48 91.12 83.66

LLS-ST 78.20 67.08 90.96 83.64

Table 5.10: The comparison between applying the learned Q-Matrix from the full data

vs. employing 1-hot encoding, Label Smoothing, and Learnable Label Smoothing on

class-wise subsets. When working with a restricted set of categories, acquiring a new

Q-Matrix results in superior performance. However, the learned matrix demonstrates

a close alignment with the performance of a freshly trained Q-matrix.

ST). For category subsets, I extract the logits corresponding to the selected categories

from the Q-Matrix and exclusively apply Softmax to these chosen values.

The results of these experiments are detailed in Table 5.9 and 5.10. Notably, the

learned Q-Matrix exhibits superior performance when applied to a subset of samples.

When dealing with a subset of categories, learning a new Q-Matrix enhances gen-

eralization, with the learned matrix closely approaching the performance of a newly

trained matrix, outperforming 1-hot targets and Label Smoothing.

5.3.7 Computation overhead of LLS

I examine the computation overhead of learnable label smoothing. LLS adds

K2 extra parameters which scales quadrically with the number of classes. Hence,

I use the Tiny-ImageNet dataset as it has the highest number of classes (200) in

my experiments. The total number of trainable parameters and training time with

ResNet-18 and ResNet-101 are in table 5.11. As per the results, Learnable Label
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ResNet-18 ResNet-101

Parameters Time (mins) Parameters Time (mins)

1-hot 11,578,632 142 44,131,080 674

LS 11,578,632 142 44,131,080 674

LLS 11,618,632 (0.3%↑) 146 (1.4%↑) 44,171,080 (0.1%↑) 680 (0.89%↑)

Table 5.11: Comparison of the number of training parameters and training time on

Tiny-ImageNet with ResNet-18 and ResNet-101. Learnable Label Smoothing adds

less than 0.3% parameters and increases training time by about 1%.

Smoothing adds less than 0.3% parameters in both cases and increases training time

by about 1%.
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Chapter 6

CONCLUSION

Labels are important for training a neural network. However, due to the cost of label-

ing the data, approaches that can use train a neural network with limited available

labels are preferred. In this dissertation, I presented the 4 ways to reduce the cost of

labeling: (1). Domain Adaptation which transfers knowledge from a similar dataset.

(2). Self-supervised learning learns a rich set of features with an auxiliary task. (3).

Regularizing neural network using input regularization (4). Regularizing neural net-

work by label regularization. These methods can be employed across various label

availability scenarios for Making the Best of What We Have.

6.1 Domain Adaptation

I presented three types of novel domain adaptation methods that align the domains

at pixel, feature, or output levels.

6.1.1 Feature-level Adaptation

I discussed the Glocal domain alignment technique that does a salient modifica-

tion to global alignment loss functions. Glocal alignment uses the most confident

target pseudo labels and aligns individual categories which in turn improves global

alignment. Through extensive experiments on various small and large datasets, I

showcased the strength of the Glocal alignment. In all the comparisons, Glocal align-

ment results in superior performance compared to Global adversarial alignment.
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6.1.2 Pixel-level Adaptation

Pixel-based unsupervised domain adaptation approaches are fascinating as their

domain adaptation process can be visualized. Most of these approaches require two

sets of generators, classifiers, and discriminators. In this dissertation, I present an it-

erative approach that trains a classifier and image generator in tandem and keeps the

size of the model to a minimum. My approach can accurately translate a source image

to a target domain while keeping the content preserved and classifies the source and

target domain using a single classifier. Its three-way feature alignment ensures that

the deep features are domain-invariant. The combined pixel and feature-level align-

ment establish a successful adaptation to the target domain. The translated images

are of superior quality and my approach outperforms existing pixel and feature-level

adaptation approaches for digits and traffic signs datasets.

6.1.3 Output-level Adaptation

I present a model for the Generative Alignment of Posterior probabilities (GAP)

for source-free domain adaptation. GAP uses a Source Replicator (probability gen-

erator) that mimics the variations in the posterior probabilities of the source classes

and then aligns target posterior probabilities to it through adversarial alignment.

Through extensive experiments, I showcased that the approach is robust to smaller

batch sizes, does not introduce any new hyper-parameters, and yields comparable

performance to the compared baselines for source-free and source-present domain

adaptation scenarios.
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6.2 Self-supervised learning

I discussed PatchRot which is an easy-to-understand and implement self-supervised

technique. It trains a Vision transformer to predict rotation angles ∈ {0 °, 90°, 180°,

270°} of image and image patches. With extensive experiments on multiple datasets,

I showcased that a Vision transformer pretrained with PatchRot achieves superior

results on downstream supervised learning. My approach is robust to overfitting and

benefits from longer pretraining. It also works on rotation-invariant objects, can han-

dle noise in the labels of the supervised task, and performs fine-grained classification.

The features learned by PatchRot are generalizable and effective for various settings

like supervised learning, transfer learning, and semi-supervised learning.

6.3 Input Regularization

I presented the PatchSwap technique for regularizing Vision Transformers. My

approach swaps image patches between two images to create a regularized input for

training. Also, it can be further extended to Unsupervised PatchSwap for semi-

supervised applications by applying consistency regularization on two PatchSwap

images. I also presented Inverse PatchSwap which can be used for complete self-

supervised training. Different versions of PatchSwap can be used for different scenar-

ios. Through extensive experiments, I showcase the strength of PatchSwap and its

variants over existing techniques on various datasets.

6.4 Label Regularization

I introduce an innovative label regularization technique named Learnable Label

Smoothing (LLS). This approach focuses on empowering networks to learn optimal

target labels for regularization. Consequently, my method effectively produces com-
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pact feature clusters while preserving the inter-category relationships. Furthermore,

the acquired understanding of these inter-category relationships is transferable, aiding

in Knowledge Distillation even in scenarios where a Teacher network is unavailable.

I believe Learnable Label Smoothing will play a transformative role in knowledge

transfer paradigms for neural networks.
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