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ABSTRACT

The inherent behavior of many real world applications tends to exhibit complex

or chaotic patterns. A novel technique to reduce and analyze such complex systems

is introduced in this work, and its applications to multiple perturbed systems are

discussed comprehensively.

In this work, a unified approach between the Floquet theory for time periodic

systems and the Poincare theory of Normal Forms is proposed to analyze time vary-

ing systems. The proposed unified approach is initially verified for linear time pe-

riodic systems with the aid of an intuitive state augmentation and the method of

Time Independent Normal Forms (TINF). This approach also resulted in the closed

form expressions for the State Transition Matrix (STM) and Lyapunov-Floquet (L-

F) transformation for linear time periodic systems. The application of theory to-

wards stability analysis is further demonstrated with the system of Suction Stabilized

Floating (SSF) platform. Additionally, multiple control strategies are discussed and

implemented to drive an unstable time periodic system to a desired stable point or

orbit efficiently and optimally. The computed L-F transformation is further utilized

to analyze nonlinear and externally excited systems with deterministic and stochastic

time periodic coefficients.

The central theme of this work is to verify the extension of Floquet theory to-

wards time varying systems with periodic coefficients comprising of incommensurate

frequencies or quasi-periodic systems. As per Floquet theory, a Lyapunov-Perron (L-

P) transformation converts a time-varying quasi-periodic system to a time-invariant

form. A class of commutative quasi-periodic systems is introduced to demonstrate

the proposed theory and its applications analytically. An extension of the proposed

unified approach towards analyzing the linear quasi-periodic system is observed to

provide good results, computationally less complex and widely applicable for strongly
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excited systems. The computed L-P transformation using the unified theory is applied

to analyze both commutative and non-commutative linear quasi-periodic systems with

nonlinear terms and external excitation terms. For highly nonlinear quasi-periodic

systems, the implementation of multiple order reduction techniques and their perfor-

mance comparisons are illustrated in this work. Finally, the robustness and stability

analysis of nonlinearly perturbed and stochastically excited quasi-periodic systems

are performed using Lyapunov’s direct method and Infante’s approach.
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Chapter 1

INTRODUCTION

1.1 Motivation

Differential equations with periodic coefficients and nonlinear terms are widely

observed in the field of science and engineering. They are used in modeling the dy-

namical behavior of ship motions by Biran and Pulido (2013), space systems by Waswa

and Redkar (2020a), heart rhythms by Glass (1991), robotic systems by De La Fuente

et al. (2020), Micro-Electromechanical Systems (MEMS), structural, thermal and

fluid systems by Rega (2019). The dynamical behavior of these systems tends to

exhibit linear, nonlinear, and chaotic patterns. Using dynamical systems theory, they

can be modeled as time varying systems with deterministic or stochastic perturba-

tions. Traditionally, such complex models are reduced/linearized to a time-invariant

system for stability analysis and controller design. Liao et al. (2020); Huang et al.

(2020) have identified the solution to few nonlinear systems as quasi-periodic in na-

ture. Additionally, periodic coefficients could appear in either parametric excitation

term, external excitation term, or both terms. Multiple approximate and numerical

approaches have been developed in the past to analyze such nonlinear and chaotic

systems. Some of them are constrained by computational cost and small parameter

estimation. Hence there is a need to develop techniques that overcome these con-

straints and provide an appropriate solution representing the actual dynamics of the

system.
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1.2 Dissertation Scope and Overview

The system modeling for various applications in the field of science and engineering

emphasizes the need for the study of time varying systems. A deep understanding

of the dynamical behavior and properties of the system is enabled by the analytical

techniques developed in dynamical systems theory.

The main aim of this dissertation is to investigate a novel approach that would aid

in the analysis of time varying systems analytically. Though the time varying systems

can be of multiple forms, this dissertation primarily concentrates on analyzing time

periodic systems and quasi-periodically time varying systems. The remaining part of

this dissertation is organized in the following manner

Chapter 2 provides a brief overview of various mathematical techniques used to

analyze time varying systems. Furthermore, the unified theory for time periodic

system is introduced and validated to identify the closed form expression for STM.

The resulting solutions are compared with those from the traditional approximate

and numerical techniques for validation.

Chapter 3 details the extension of the proposed unified approach towards stabil-

ity analysis of auto parametrically excited systems. Initially, it is applied to identify

transition curves between the stable and unstable bounds for the standard Mathieu

equation. Later, using numerical simulation, the stability plots for the system of

Suction Stabilized Floats are also illustrated. Additionally, the extension of the uni-

fied approach towards designing and implementing efficient and optimal controllers

to guide an unstable time periodic system to a desired stable point or orbit is also

detailed in this chapter.

Chapter 4 details the computation of the closed form expression for the L-F trans-

formation using the proposed unified approach. Its application towards the analysis
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of time periodic systems with multiple perturbations is also included in this chapter.

The Infante’s approach is employed to identify the stability bounds for stochastic

parametrically excited systems. The theoretical framework is supplemented with ex-

amples of the Mathieu equation with perturbations in each category.

Chapter 5 concentrates on the investigation of the Floquet type theory for lin-

ear quasi-periodic systems. A class of commutative quasi-periodic systems is also

introduced in this chapter. The analysis of a quasi-periodically time varying sys-

tem is initially performed using a modified version of prior work as an indirect ap-

proach. An extension of the proposed unified approach towards the analysis of linear

quasi-periodic systems is discussed and compared with the indirect approach for the

temporal variations and expressions for the L-P transformation matrix.

Chapter 6 introduces the application of the computed L-P transformation, using

the unified theory, towards the analysis of both commutative and non-commutative

linear quasi-periodic systems with nonlinear terms and external excitation terms.

For highly nonlinear quasi-periodic systems, the implementation of multiple order

reduction techniques and their performance comparisons explained comprehensively

in this chapter.

Chapter 7 discusses the robustness and stability analysis of nonlinearly perturbed

and stochastically excited quasi-periodic systems. The computed closed form expres-

sion for the L-P transformation matrix is utilized in conjunction with Lyapunov’s di-

rect method and Infante’s approach to analyzing both commutative and non-commutative

quasi-periodic systems.

Chapter 8 explains the limitations of the proposed unified theory. A brief overview

of techniques and strategies to overcome these constraints is also included in this

chapter and clear directions for future work.
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Chapter 2

MATHEMATICAL PRELIMINARIES AND THE UNIFIED THEORY

The earliest analysis of time varying systems was performed on time periodic sys-

tems. Some of the prominent research works for analyzing time periodic systems

were using the Hills method by Iakubovich and Starzhinskĭı (1975), the perturbation

techniques by Nayfeh (2011a), the averaging methods by Sanders et al. (2007) and

the Floquet theory by Floquet (1883). As explained by Sharma and Sinha (2018),

the application of Hill’s infinite determinants method is applicable towards the sta-

bility bounds of the system. The requirement of expressing the periodic coefficients

in terms of small parameters limits the application of perturbation and averaging

techniques for only weakly excited systems. As per Lyapunov (1896) and Sinha et al.

(1996), the application of Floquet theory enabled the conversion of a linear time pe-

riodic system into a time-invariant equivalent system using the Lyapunov-Floquet

(L-F) transformation. However, Sinha et al. (1996) explain the significance of state

evolution’s closed form expression (known as state transition matrix) for broad appli-

cations, from which the fundamental solution matrix is derived. So, an approximate

symbolic form computation of the State Transition Matrix (STM), using Picard it-

eration and shifted Chebyshev polynomials, was performed by Sinha et al. (1993);

Sinha and Juneja (1991). The design of a control system towards chaos control using

this technique was described by Sinha et al. (2005a).

Kovacic et al. (2018) stated that a Mathieu equation is utilized to model many of

the engineering, applied mathematics, and nonlinear vibration theory problems. Pe-

ruzzi et al. (2016) demonstrated the dynamical analysis and optimal controller imple-

mentation of an electronic circuit of mass Micro-electromechanical systems (MEMS)
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by modeling it with uncertain time-periodic coefficients in a Mathieu equation. The

stability analysis of the cracked rotor system subjected to periodic forces in machining

is analyzed by Dai and Chen (2007) using the Mathieu-Hill equation. Ramakrishnan

and Feeny (2012) used the method of multiple scales on a forced Mathieu equation

to analyze the resonances in wind turbine blades. Kacem et al. (2011) studied the

Euler Bernoulli beam model of the microgyroscope’s sensing element described by

the forced Mathieu type equation. McLachlan (1947) provides a comprehensive list

of applications of the Mathieu function. In this work, multiple variants of the Math-

ieu equation are utilized to demonstrate the application of the theoretical framework.

Some of the significant methods to analyze time varying systems are briefly explained

in the following sections.

2.1 Floquet Theory

The application of Floquet theory towards stability analysis for linear time peri-

odic systems has been demonstrated by Butcher and Sinha (1998); Sinha and Butcher

(1997); Bittanti et al. (1984). Multiple approaches have been applied to determine

the stability bounds and transition curves for time periodic systems by Kovacic et al.

(2018). The stability analysis and response of a linear time periodic system are eval-

uated using the Floquet Theory. Consider a dynamical system of the form

ẋ = A(t)x (2.1)

where x ∈ Rn, t ∈ R+,A(t) is an n × n periodic matrix with the principal period,

T . Let Φ(t) be the STM that satisfies equation (2.1) and has the initial condition

Φ(0) = I. The solution of the equation (2.1) can be written as

x(t) = Φ(t)x(0), 0 ≤ t ≤ T (2.2)
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For t ≥ T , the solution can be calculated by

x(t+mT ) = Φ(t)Φm(T )x(0), 0 ≤ t ≤ T, m = 1, 2, 3.... (2.3)

where Φ(T ) is the Floquet transition matrix (FTM) or the Monodromy matrix. The

stability criteria for periodic systems depend upon the eigenvalues of Φ(T ), called

the Floquet multipliers, and the system is stable if all the Floquet multipliers lie on

or inside the unit circle, other wise it is unstable.

According to the Lyapunov-Floquet theorem, the STM can be expressed as

Φ(t) = Q(t)eRt, Q(t) ∈ Rn×n, R ∈ Rn×n, ∀t ≥ 0 (2.4)

where Q(t) is known as the L-F transformation matrix. The linear matrix transforma-

tion to a nonautonomous one is accomplished via L-F transformation, x = Q(t)z. The

L-F transformation matrix Q(t) elements contain truncated Fourier series represen-

tation, as explained by Sinha and Pandiyan (1994). Applying the L-F transformation

to equation (2.1) results in equation (2.5) with a parameter-invariant linear part.

ẏ =Ry (2.5)

where R is a constant n × n matrix that generally tends to be complex. The eigen-

values of the R are known as the Floquet Exponents, which could also be used as an

indicator for the stability of the dynamical system.

2.2 State Augmentation

The application of intuitive state augmentation for reducing nonlinear systems

using the Center Manifold Theory and Normal Forms technique was demonstrated

by Waswa and Redkar (2019); Waswa et al. (2020); Waswa and Redkar (2020b). It

was proved that the state augmentation method preserves the system dynamics. In

6



this work, a state augmentation is employed similarly to perform further analysis with

time varying systems.

The intuitive state augmentation converts the time-periodic term into a state

variable. This approach could be applied to periodic coefficients or periodic external

forcing terms. For ease of understanding, let us consider a time periodic system given

by equation (2.1), which is modified as equation (2.6)

ẋ = (B0 + B(t))x (2.6)

where B0(t) is the constant matrix, x is the vector containing the system states and

B(t)x is the n× 1 vector containing the periodic coefficients as shown below

B(t)x =



B1g1(t)x1

B2g2(t)x2

...

Bigi(t)xi


, i = 1, 2, 3, ...., n (2.7)

where Bi is the amplitude of the forcing/periodic term and gi(t) represents a sine or

cosine trigonometric function of ωi i.e. sin(ωit) or cos(ωit). The system states are

augmented as follows
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p1 = g1(t)

p2 = g2(t)

...

pn = gn(t)

ṗ1 = ∓ω1ġ1(t) = ∓ q1

ṗ2 = ∓ω2ġ2(t) = ∓ q2

...

ṗn = ∓ωnġn(t) = ∓ qn

q̇1 = ±ω2
1g1(t) = ±ω2

1p1

q̇2 = ±ω2
2g2(t) = ±ω2

2p2

...

q̇n = ±ω2
ngn(t) = ±ω2

npn



(2.8)

Hence the augmented l × 1 state vector is given by

x̃ = [x, p1, p2, . . . , pn, q1, q2, . . . , qn]T (2.9)

The linear time periodic system gets converted to a nonlinear state augmented time-

invariant system, as the periodic term expressed as states are updated to a nonlinear
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vector in the form indicated in equation (2.10).

B̃(x̃) =



B1f̆(x, p1, p2, . . . , pn, q1, q2, . . . , qn)

B2f̆(x, p1, p2, . . . , pn, q1, q2, . . . , qn)

...

Bnf̆(x, p1, p2, . . . , pn, q1, q2, . . . , qn)

0

0

0

0

...

0

0



, n = 3, 4, . . . (2.10)

With the state augmentation the equation (2.6) is updated as

˙̃x = B̃0x̃ + B̃(x̃) (2.11)

where B̃0 is a l×l constant matrix and B̃(x̃) is a l×1 vector containing the augmented

nonlinear monomial terms in x̃. The equation (2.11) represents a nonlinear system

and can be further analyzed using the traditional techniques for the analysis of such

systems.

2.3 Normal Forms Technique

The Normal Forms theory originated from the works by Poincaré (1899). The

theory was further developed and applied by subsequent researchers, such as Birkhoff

(1927); Moser and Saari (1975); Arnold (1978); Chua and Kokubu (1988). Nayfeh

(2011b) explains that it is a local transformation (known as near-identity transfor-

mation) technique used for the analysis of the nonlinear system around a fixed point
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or equilibrium solution and its applications are comprehensively detailed by Murdock

(2006). Though the Normal Forms technique has been predominantly used for the

analysis of nonlinear equations, a mathematical framework on the application for

periodic systems was detailed by Smith (1986). In Sinha et al. (1998), to construct

a time invariant form, the L-F transformation is applied for the linear system and

the Normal Forms technique for the nonlinear system. Gabale and Sinha (2009);

Jezequel and Lamarque (1991) further applied this theory to nonlinear systems with

periodic coefficients by incorporating a detuning parameter or a book-keeping param-

eter. The Normal Forms technique was majorly applied to nonlinear systems, and

some researchers extended it towards stability analysis of such systems by Mond et al.

(1993).

As explained by Nayfeh (2011b), the Normal Forms technique aids in eliminating

many nonlinear terms by employing a near-identity transformation. This technique

applies to both time-dependent and time-independent systems. They are detailed in

the following subsections:-

2.3.1 Time Independent Normal Forms (TINF)

Consider a time-independent nonlinear dynamical system of the form.

ẋ = Ax + F(x) (2.12)

where A is a constant n×n matrix and F(x) is a n×1 vector containing the nonlinear

monomials in x. After applying the modal transformation x = Mz to equation (2.12),

the Jordan canonical form is obtained as shown in equation (2.13)

ż = Jz + M−1F(z) (2.13)
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where J is the Jordan form of A and M is the modal transformation matrix. The

diagonal elements of J matrix contain the eigenvalues of the linear matrix A.

J =



λ1

λ2

. . .

λn


(2.14)

The system shown in equation (2.13) is amenable to an application of Time In-

dependent Normal Forms, which is similar in principle to the averaging technique by

Sanders et al. (2007). A near identity transformation (of the form equation (2.15)) is

applied to equation (2.13)

z = v + hr(v) (2.15)

where hr(v) is a homogenous vector of monomials in v of r degree. The general

homological equation obtained by elimination of higher order nonlinearities is shown

as

∂hr(v)

∂v
Jv − Jhr − Fr(v) = 0 (2.16)

where Fr(v) is expressed in terms of solutions of the homological equation of order

r − 1, for r > 3. An approximate solution to equation (2.16) can be expressed as

hr(v) =
n∑
j=1

∑
mr

ν=∞∑
ν=−∞

hjmrν |v|
mrej,

Fr(v) =
n∑
j=1

∑
mr

ν=∞∑
ν=−∞

Fjmrν |v|
mrej

 (2.17)

where mr = (m1,m2, ...,mn),
n∑
i=1

mi = r, (r = 2, 3, ..., k), ej is the jth member of the

natural basis and |v|mr = v1
m1v2

m2 ....vn
mn . After substituting equation (2.17) in
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equation (2.16) and equating the coefficients of similar terms, result in

hjmrν =
Fjmrν

mr.λ− λj
(2.18)

where λ = [λ1, λ2, λ3...λn]T are the eigenvalues of A. The coefficients of rth order

near-identity can only be obtained if the following solvability condition is satisfied.

mr.λ− λj 6= 0 (2.19)

The resonant nonlinear terms would remain in the near identity transformations, and

equation (2.16) gets updated as

v̇ = Jv −
k∑
r=2

F∗r(v) (2.20)

where F∗r(v) comprises of the resonant terms.

2.3.2 Time Dependent Normal Forms (TDNF)

Consider a time-dependent nonlinear dynamical system provided by equation

(2.21).

ẋ = Ax + F(x, t) (2.21)

where A is a constant n×nmatrix and F(x, t) is a n×1 vector containing the nonlinear

time-dependent terms. The application of a modal transformation, x = Mz, converts

equation (2.21) to its Jordan canonical as shown below

ż = Jz + M−1F(z, t) (2.22)

where J is the Jordan form of A and M is the modal transformation matrix. The

eigenvalues of the linear matrix A are populated along the diagonal elements of

12



Jmatrix, as indicated in equation (2.14). Further, a near-identity transformation (of

the form equation (2.23)) is applied to equation (2.22).

z = v + hr(v, t) (2.23)

where hr(v, t) is a formal power series in v of degree r with T periodic coefficients.

v̇ = Jv −
[
∂hr(v, t)(v)

∂(v)
Jv − Jhr(v, t) +

∂hr(v, t)

∂t

]
+ Fr(v, t) (2.24)

The following condition eliminates the higher order nonlinear terms in equation

(2.24)

∂hr(v, t)(v)

∂(v)
Jv − Jhr(v, t) +

∂hr(v, t)

∂t
+ Fr(v, t) = 0 (2.25)

After solving equation (2.25), the solvability condition for a given degree of non-

linearity can be expressed as

hr,j,mr,l =
Fr,j,mr,l

ilΩ + mr.λ− λj
(2.26)

where λ = [λ1, λ2, λ3....λl]
T are the eigenvalues of J or the Floquet exponents, Ω = π

T

and −k ≤ l ≤ k. All the coefficients of the near identity transformation are computed

using the resonant condition indicated below.

ilΩ + mr.λ− λj 6= 0 (2.27)

The resonant nonlinear terms would remain in the near identity transformations

and equation (2.25) gets updated as

v̇ = Jv −
k∑
r=2

F∗r(v, t) (2.28)

A constant linear part of the equation (2.28) is observed in the absence of resonant

terms. The system stability could be derived from this matrix. For better clarity of

the concept, an application of the theory to a linear time-periodic Mathieu equation

is explained in the subsequent subsection.

13



2.4 Unified Theory

Consider a linear time periodic system with both constant and periodic coeffi-

cients. The equation (2.1) can be updated as follows

ẋ(t) = A(t)x(t) (2.29)

where A(t) = B0 +B(t). By applying the L-F transformation directly on this system,

as mentioned in section 2.1 converts it into a time-invariant system, as shown below,

in equation (2.30)

ẏ(t) = Ry(t) (2.30)

The solution to equation (2.30) can be provided as

y(t) = eRty(0) (2.31)

Instead of the L-F transformation, if the periodic terms were to be augmented,

the original system equation (2.29), gets updated as equation (2.11), as mentioned

in 2.2. The updated system has a constant linear part (B̃0) and time independent

nonlinear part (B̃(x̃) ), as shown in equation (2.11). A modal transformation on the

updated system, x̃(t) = M̃z̃(t), would get the system updated as

˙̃z = J̃z̃ + M̃−1B̃(z̃) (2.32)

where M̃ is the modal transformation matrix, and J̃ is the Jordan form of B̃0, which

contains the eigenvalues of both the original states and the augmented states, as

shown below in equation (2.33).
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J̃ =



λ1

λ2

. . .

λn

λn+1

λn+2

. . .

λl



(2.33)

At this point, since equation (2.32) is in the Jordan form with semi-simple eigen-

values, a near-identity transformation (equation (2.15)) and the Time Independent

Normal Forms technique could be applied as indicated in section 2.3.1. It is noted

that in this particular case, one has to find higher order Normal Form than the order

of the nonlinearity (i.e., two) and then replace the fictitious/augmented states with

their closed form expressions. In case of no resonance, the TINF solution would result

in a time-invariant system.

At this point, the near identity transformation would contain the dynamics due to

both the system states and the augmented states. The near identity transformation

of the reduced state can also be expressed as

z̃(t) =
[
I + Q̃(t)

]
ṽ ≈ Q̄(t)ṽ(t) (2.34)

where Q̄ serves as the near-identity transformation matrix and contains all the higher

order nonlinear terms/coefficients associated with the states, and it converts the sys-

tem in equation (2.29) into a linear time-invariant system, as follows

˙̃v = J̄ṽ (2.35)
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It can be summarized that once the known temporal terms replace the augmented

states, the near-identity transformation (in TINF technique), essentially serves as

an L-F transformation and converts the linear time variant system to a linear time-

invariant system (equation (2.35)). It is observed that it is identical to equation

(2.28), considering the resonant terms are absent.

At this point, the augmented states are back substituted into the TINF solution,

and it is observed that the Q̄(t) matrix becomes a function of time. As indicated in

equation (2.4), by applying L-F transformation, the STM of the TINF solution can

be expressed as

Φ̄(t) = Q̄(t)eJ̄t (2.36)

As indicated in section 2.1, at t =T, the FTM of the reduced system is obtained,

and the stability plots are generated based on the conditions on Floquet multipliers

and Floquet exponents. Since the reduced system would preserve the dynamical

characteristics of the original system, the transition curves would resemble that from

the stability analysis of the original system.

It is also noted that using this technique, the closed form expression for STM

is obtained for the reduced system (Φ̄(t)) and thereby that of the original system,

Φ̂(t), using back transformation. This would aid in predicting the state evolution

of the original system over time in a closed form. The Φ̂(t) matrix is utilized to

determine the L-F transformation matrix of the original system, Q̂(t) analytically,

using equation (2.4). Later, it is compared with the L-F transformation matrix,

Q(t), applied directly to the original system as per Floquet theory. For clarity, a

brief overview of the proposed approach is shown in Figure 2.1.

The closed form expression for the STM (Φ̄(t)) of the TINF reduced solution is

obtained from the equation (2.36). This undergoes multiple reverse transformations
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Figure 2.1: Overview of the Unified Theory

to derive the STM (Φ̂(t)) in original coordinates, which is of the form equation (2.4).

The FTM computed at Φ̂(t = T ), is further utilized for the computation of the

Exponent Matrix R̂ using the relationship

R̂ =
1

T
logm(Φ̂(T )) (2.37)

The computed R̂ matrix is utilized to compute the closed form expression for the

L-F transformation using the relationship
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Q̂(t) = Φ̂(t)e−R̂t (2.38)

The derived closed form expression for the L-F transformation can be verified

using the equation

Q̂−1(t)[A(t).Q̂(t)− ˙̂
Q(t)] = R̂ (2.39)

2.4.1 Application of the Unified theory

To verify the unified theory, a system with constant and time-periodic coefficients

is studied. After performing the stability analysis, a case of system parameter is se-

lected to analyze the dynamical characteristics of the system further. The application

of the proposed unified approach for two systems is detailed in this section. Initially,

a time periodic system with no damping is verified, and later a damping coefficient

is added to the system.

System Without Damping

Consider a modified Mathieu equation as shown below.

ẍ+ (a+ b cos(ωt))x = 0 (2.40)

After rearrangement, it could be expressed as

ẍ = −ax− bx cos(ωt) (2.41)

By replacing the periodic coefficients with augmented states, as mentioned in section

2.2, the following is obtained
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p = cos(ωt)

ṗ = −ω sin(ωt) = q

p̈ = −ω2 cos(ωt) = −ω2p = q̇

(2.42)

After substituting equation (2.42) in equation (2.41) and converting it to the state

space form gives us

d

dt



x

ẋ

p

q̇


=



0 1 0 0

−a 0 0 0

0 0 0 1

0 0 −ω2 0





x

ẋ

p

q̇


+



0

−bxp

0

0


(2.43)

By comparing equation (2.43) with equation (2.11), the following is obtained

x

ẋ

p

q̇


=



X1

X2

X3

X4


,



0 1 0 0

−a 0 0 0

0 0 0 1

0 0 −ω2 0


= B̃0,



0

−bxp

0

0


= B̃(x̃) (2.44)

As mentioned in Section 2.3.1, the unified approach is applied and performs the

modal transformation. This converts the equation (2.40) to its Jordan canonical form

with semi-simple eigenvalues, as shown in equation (2.32). For this section, the TINF

solution of the order of three was considered to ensure that enough nonlinear terms

are accounted. For more accurate results, one may have to include higher order, but it

would increase the computational time. The analytical expression of the transformed

system using TINF is shown in equation (2.45)
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d

dt



V1

V2

V3

V4


=



(
−b2V3V4+aω2(4a−ω2)√

−a(4a−ω2)ω2

)
V1(

1√
−a

(
−a+ b2V3V4

(4a−ω2)ω2

))
V2(

−
√
−ω2

)
V3(√

−ω2
)
V4


(2.45)

From equation (2.45), the following expressions for the augmented states could be

obtained and substituted back to the expressions of the first two states

V3 = e(−
√
−ω2)tV30, V4 = e(

√
−ω2)tV40 (2.46)

Hence all the system dynamics are contained in the first two states and could be

expressed as

V1 = e

−b2e(−√−ω2)tV30e(√−ω2)tV40+aω2(4a−ω2)√
−a(4a−ω2)ω2

t
V10

V2 = e

 1√
−a

−a+
b2e

(−
√
−ω2)t

V30e
(
√
−ω2)t

V40
(4a−ω2)ω2

t
V20

(2.47)

By expressing the updated equation (2.45) in the matrix multiplication form,

the expression for J̄ matrix can be obtained. By substituting equation (2.46) in

the Near Identity Transformation matrix and expressing it in the form of matrix

multiplication would resemble the expression indicated in equation (2.34). The higher

the order of the TINF solution, the longer the expression would be, as it accounts

for more nonlinear terms. The state evolution of the system could be computed

in the TINF coordinate (Φ̄(t)) by considering only the first two states. The initial

conditions in the original system coordinates (X10, X20, X30, X40) are substituted and

perform the subsequent transformations to obtain its corresponding values in the

TINF coordinates (V10, V20, V30, V40). By substituting the initial conditions in the

TINF coordinate, the expression for the STM, Φ̂(t), in the original system coordinates

is obtained. The evolution of the state over the period of time is determined using
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Φ̂(t), and the results are compared with that of the numerical integration results of

the system in original coordinates.

System With Damping

Consider a modified damped Mathieu equation as shown below.

ẍ+ (a+ b cos(ωt))x+ dẋ = 0 (2.48)

The state space form of the equation with damping gets updated as follows

d

dt



x

ẋ

p

q̇


=



0 1 0 0

−a −d 0 0

0 0 0 1

0 0 −ω2 0





x

ẋ

p

q̇


+



0

−bxp

0

0


(2.49)

By comparing equation (2.49) to equation (2.11), the following can be deduced

x

ẋ

p

q̇


=



X1

X2

X3

X4


,



0 1 0 0

−a −d 0 0

0 0 0 1

0 0 −ω2 0


= B̃0,



0

−bxp

0

0


= B̃(x̃) (2.50)

Since the damping coefficient (d) is added to the B̃0 matrix, the modal transfor-

mation matrix gets updated accordingly, and so does the Jordan canonical form of the

equation. Similar to the case of ‘System without damping ’, the resulting transformed

TINF system with damping is shown below in equation (2.51)
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d

dt



V1

V2

V3

V4


=



(√
d2−4a(d2−4a+ω2)(−4b2V3V4+(−d2+4a−d

√
d2−4a)(−d2+4a−ω2)ω2)

−2(
√
d2−4a+

√
−ω2)

2
(d2−4a−

√
d2−4a

√
−ω2)

2
ω2

)
V1(√

d2−4a(d2−4a+ω2)(4b2V3V4+(d2−4a+d
√
d2−4a)(−d2+4a−ω2)ω2)

−2(
√
d2−4a+

√
−ω2)

2
(d2−4a−

√
d2−4a

√
−ω2)

2
ω2

)
V2(

−
√
−ω2

)
V3(√

−ω2
)
V4


(2.51)

All the steps followed for the system without damping remain the same, and

proceed with finding the STM, Φ̂(t), in the original system coordinates. This approach

could also be extended for the system with periodic external excitation, where the

excitation term could be expressed as an augmented state. The results of both the

systems with/without damping and their comparison with the numerical integration

methods are detailed in the following subsection.

2.4.2 Simulation Results

The proposed unified theory was tested to study the dynamical behavior of the

selected stable system, for both with and without damping, as per section 2.4. The

Floquet multiplier and exponent results for each case were compared with that from

Chebfun. The Chebfun package in MATLAB employs the shifted Chebyshev Polyno-

mials approach to analyze a time periodic system Driscoll et al. (2014). Additionally,

the solution in the TINF coordinate was back transformed to the original system

coordinates and compared with the corresponding numerically integrated solution

for temporal variations of system states. Finally, the time evolution of individual

elements of the L-F transformation matrix was evaluated and compared with the

truncated Fourier series obtained from Chebfun.
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Stable System Without Damping

For the selected system parameters of a=2 and b=4, the dynamical characteristics

of the stable system are evaluated. From the TINF solution (equation (2.47)), the

analytical expression for STM is derived as indicated in (2.36). This STM is evaluated

at the principal time period to obtain the FTM, Φ̄(t = T ). Using the unified approach

detailed in section 2.4.1, the resulting time-invariant J̄ matrix is determined to be

J̄ =

 0.0− i1.5037 0

0 0.0 + i1.5037

 (2.52)

The subsequent STM computation in the TINF coordinates and back transfor-

mation to the original coordinates results in the R̂ matrix, using equation (2.37),

as

R =

 0.0 1.3125

−1.7223 0

 , R̂ =

 0.0 1.309

−1.7282 0

 (2.53)

The results of the R̂ matrix match the corresponding Chebfun results (R matrix)

and provide us with enough confidence to utilize the same towards the computation

of the closed form expression for the L-F transformation matrix. Using the equation

(2.38), the resulting time varying Q̂(t) matrix is computed and verified to satisfy the

property in equation (2.39). The Floquet multipliers and exponents computed using

Φ̄(t = T ) and its comparison with the Chebfun results are indicated in Table 2.1 and

Figure 2.2.

It is evident from Table 2.1 that the key parameters deciding the dynamic stability

of the system (Floquet multipliers and exponents) obtained using both approaches

agree. Since the absolute value of the Floquet multipliers lies on the unit circle,

the system is simply stable. It is also noted that the Floquet Exponents match the
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Table 2.1: Comparison of Dynamical Characteristics of the System Without Damp-
ing

Parameter From Chebfun From TINF solution

Floquet Multipliers 0.0673± i0.9977 0.0662± i0.9858

Floquet Exponents 0.0000± i1.5035 0.0000± i1.5037

Figure 2.2: Floquet Multipliers Indicated on a Unit Circle for the System Without
Damping

eigenvalues of J̄ matrix. The Floquet exponents from both approaches are observed

to be majorly on the imaginary axis and hence confirming the system is stable.

As mentioned in section 2.4, the STM of the reduced TINF solution is back trans-

formed to the original coordinates to obtain Φ̂(t) matrix. This matrix is then mul-

tiplied with the initial conditions of the original system variables, as per equation

(2.2), to determine the system state variation. Simultaneously, equation (2.40) was

numerically integrated with the same value of constants and initial conditions. The

comparison of the variation of the system states is plotted in Figure 2.3 and the phase

plot comparisons in Figure 2.4.
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(a)

(b)

Figure 2.3: Comparison of Temporal Variation of System States for the System
Without Damping. The System Parameters Are a = 2, b = 4 and ω = 2π for the
Variation of (a) x1 System State, (b) x2 System State.
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Figure 2.4: Phase Plot Comparison of the Stable System Without Damping

In Figures 2.3 and 2.4, the solid red line indicates the temporal variation based

on the STM, Φ̂(t), determined from the TINF technique, and the black dashed line

represents the numerically integrated solution of equation (2.40). In all these plots,

the system is observed to follow a stable periodic behavior and does not deviate

away from the initial conditions (X10 = 1, X20 = 0). The temporal variations and

the phase plot from the proposed approach follow the numerical integration results

closely. This validates the proposed approach of the TINF technique for the case of

the stable system without damping. The elements of the Q̂(t) matrix are plotted

against time and compared with the truncated Fourier series obtained from Chebfun,

as shown in Figure 2.5, for the duration of the principal time period.

In Figure 2.5, the black dashed line indicates the truncated Fourier series obtained

from Chebfun, and the solid blue line indicates the elements of Q̂(t) matrix, computed

from closed form via the unified approach presented here. It can be observed that all

the elements of Q̂(t) matrix match perfectly with the Chebfun results for a stable sys-
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Figure 2.5: L-F Transformation Matrix Element-wise Comparisons of the Stable
System Without Damping for the Duration of Principal Period. The Dashed Black
Line Indicates the Chebfun Result and the Solid Blue Line Indicates the Unified
Approach Results

tem without damping. Hence the analytical expression for Q̂(t) matrix derived from

the TINF solution is indeed the closed form expression for the L-F transformation

matrix for a linear time periodic system.

Stable System With Damping

In addition to the selected system parameters of a=2 and b=4, a damping coefficient

of d=0.30 is considered to evaluate the dynamical characteristics of the damped stable

system. The system equation used in this case is equation (2.45), and the procedure

mentioned in section 2.4.1 is followed. Though the equations look slightly different,

the principal time period and process remain the same as the case of ’stable system

without damping ’. From the TINF solution (equation (2.48)), the STM and further

FTM, Φ̄(t = T ) are evaluated. In this case, the resulting time-invariant J̄ matrix is

determined to be
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Table 2.2: Comparison of Dynamical Characteristics of the System With Damping

Parameter From Chebfun From TINF solution

Floquet Multipliers 0.0646± i0.8583 0.0638± i0.8512

Floquet Exponents −0.150± i1.4957 −0.158± i1.4959

J̄ =

 −0.158− i1.4959 0

0 −0.158 + i1.4959

 (2.54)

The subsequent STM computation in the TINF coordinates are back transformed

to the original coordinates results in the R̂ matrix, using equation (2.37), as

R =

 0.0467 1.3114

−1.7355 −0.3467

 , R̂ =

 0.0451 1.3007

−1.7506 −0.3451

 (2.55)

In this case too, the R̂ matrix matches the corresponding results from Chebfun

(R matrix) and is utilized towards the computation of the closed form expression

for the L-F transformation matrix. Again, the resulting time varying Q̂(t) matrix is

computed and verified to satisfy the property in equation (2.39). Table 2.2 displays

the Floquet multipliers and exponents computed using Φ̄(t = T ) and that from the

Chebfun results.

It is evident from Table 2.2 and Figure 2.6 that the key parameters deciding the

dynamic stability of the system (Floquet multipliers and exponents) are in agreement

using both approaches. Since the absolute value of the Floquet multipliers lies in-

side the unit circle, the system is deduced to be stable. Furthermore, the Floquet

exponents appear to be on the left side of the imaginary axis because of a promi-

nent negative real part. Hence, it could be inferred that the system is asymptotically

stable.
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Figure 2.6: Floquet Multipliers Indicated on a Unit Circle for the System with
Damping

Similar to the case of ‘Stable System Without Damping ’, the temporal variation

of the system states are computed from the STM (Φ̂(t)) and compared with the

numerically integrated solution for the exact value of constants and initial conditions.

The comparison of the temporal variation of the system is plotted in Figure 2.7, and

the phase plot comparisons are displayed in Figure 2.8.

In Figures 2.7 and 2.8, the solid red line indicates the temporal variation based

on the STM (Φ̂(t)) determined from the TINF technique, and the black dashed line

represents the numerically integrated solution of equation (2.45). From Figure 2.7, it

is noted that the temporal variations of the system states are decaying over time due

to the presence of damping. From the phase plot in Figure 2.8, it is observed that

system is spiraling in from the initial conditions (X10 = 1, X20 = 0). In all three plots,

the TINF solution is following the numerically integrated solution closely. Hence the

TINF technique is capable of preserving the dynamical behavior of the original even

in the presence of a damping element. The proposed unified approach is validated for
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(a)

(b)

Figure 2.7: Comparison of Temporal Variation of System States for the System
with Damping. The System Parameters Are a = 2, b = 4, d = 0.3 and ω = 2π for the
Variation of (a) x1 System State, (b) x2 System State.
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Figure 2.8: Phase Plot Comparison of the Stable System with Damping

a linear time periodic system with damping too.

Similar to the ‘Stable System Without Damping ’, the expression for the L-F trans-

formation matrix of the original system, Q(t), was determined numerically via Cheb-

fun and analytically using the unified approach presented here. The elements of the

Q̂(t)) matrix, are plotted against time and compared with the Chebfun results for

the duration of the principal period, as shown in Figure 2.9.

In Figure 2.9, the black dashed line indicates the truncated Fourier series obtained

from Chebfun, and the solid blue line indicates the elements of Q̂(t) matrix computed

from the TINF solution. It is observed that all the elements of Q̂(t) matrix match

closely with the Chebfun results. Hence, the proposed unified approach is capable of

providing a closed form analytical expression for the L-F transformation matrix for a

linear time periodic system with and without damping.

The reduced form using the proposed unified approach successfully replicated the

dynamical properties of undamped and damped cases of a time periodic dynamical
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Figure 2.9: L-F Transformation Matrix Element-wise Comparisons of the Stable
System with Damping (d = 0.3) for the Duration of Principal Period. The Dashed
Black Line Indicates the Chebfun Result and the Solid Blue Line Indicates the Unified
Approach Results

system. In both the cases of the modified Mathieu equation, it was observed that

both the dynamical stability characteristics (Floquet Multipliers and Exponents) and

the temporal variations match impeccably with the numerical techniques. The near

identity transformation matrix (Q̂(t) ) did not just aid in the normal form solution,

but also served as an effective L-F transformation matrix. The back transformed

STM, using the TINF approach (Φ̂(t)), replicates the time evolution of the original

coordinates. This could possibly replace the STM (Φ(t)) obtained using the Floquet

theory for linear time periodic system cases with and without damping. This validates

the theory that the Poincare theory of TINF could provide the same results as using

the Floquet theory and could be used interchangeably. Moreover, the analytical

solution from TINF theory could be used to determine the closed form solution of the

L-F transformation matrix, Q(t). Since this method is based on the direct application
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of TINF, without additional approximation, it is widely applicable.

2.4.3 Conclusions

In this chapter, multiple techniques for the analysis of time varying systems were

introduced. A brief mathematical background on both Poincare theory of TINF and

Floquet theory was provided. A unified theory relating both the techniques towards

the analysis of time periodic systems was introduced and verified with example of

dynamical study of two cases of Mathieu equation. It was observed that the results

for the temporal variations from the numerical techniques matched perfectly with

that from the TINF technique. This proves that the TINF technique could provide

analytical solutions similar to the numerical/approximate symbolic ones obtained

from Floquet Theory, with the help of state augmentation, modal and near-identity

transformations. Moreover, the proposed approach provides a closed form analytical

expression for the L-F transformation matrix. To the best of the author’s knowledge,

state augmentation in conjunction with TINF is one technique that yields the L-F

transformation in closed-form.

As the STM obtained via the unified approach generates comparable results for

the temporal variations and the dynamical characteristics, it can be further applied

towards generating stability plots. From the stability plots, the transition curves

between the stable and unstable regions can be deduced and utilized for controller

implementation. In the next chapter, the application of the unified approach towards

stability analysis of practical auto-parametrically excited systems and controller im-

plementation on time periodic systems are detailed.
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Chapter 3

STABILITY AND CONTROL OF PERIODIC SYSTEMS

Though many real-world dynamical systems tend to exhibit nonlinear and chaotic

behavior, in many scenarios, the system equations are linearized to evaluate the sta-

bility bounds based on the attributes of the fundamental solution matrix Sinha and

Butcher (1997). The knowledge of the evolution of the system states and their sta-

bility characteristics aid in designing appropriate feedback controllers. Some of the

numerical and analytical techniques developed in the past were constrained by com-

putational cost and limited application. Hence there is a need to identify methods to

determine the stability bounds and design efficient controllers.

The unified theory discussed in chapter 2 has proven to provide comparable results

with other numerical and approximate methods. In this chapter, the same is initially

extended towards the stability analysis of a practical auto-parametrically excited

system of Suction Stabilized Floats. Later, applying the same unified theory towards

controller design for unstable time-periodic systems is analyzed and detailed in this

chapter.

3.1 Application of Stability Analysis: Suction Stabilized Floats

The application of offshore structures in the oil and gas industry, wind turbines,

solar plants is very common. Currently, in most of these applications, the offshore

structures are fixed to the seabed with a solid structure that can resist the hydro-

dynamic forces exerted by the sea waves. However, these fixed bottom structures

are economically not feasible for water depth greater than 20 m Castro-Santos et al.

(2020). However, wind resources for more than 1TW power generation are estimated
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in the far off coast of United States, at water depth greater than 30 m Wayman et al.

(2006). Hence, there is a need to deploy economically feasible floating platforms

that could withstand the hydrodynamic forces due to sea waves and aerodynamic

forces due to wind loads at greater water depth. A Suction Stabilized Floating (SSF)

platform is an option that would meet these requirements.

Many dynamical analysis and control techniques for various offshore structures

have been demonstrated in the past. A hydrodynamic analysis of a vertical slender

pile under the influence of wave action was performed, and the relationship between

the scour process and bed shear stresses were studied analytically and experimentally

by Corvaro et al. (2019). A hydrodynamic analysis and coupled dynamics study of

Catenary Anchor Leg Moorings buoys and attached submarine hoses were performed

by Amaechi et al. (2019). The dynamic response of the platform, bending moment at

the base and mooring line tensions were all simultaneously analyzed by Li et al. (2019)

to validate the significance of mooring configuration on the stability of a submerged

offshore wind turbine. A probabilistic approach, including different loading condi-

tions, damage cases and accounting for their occurrences and its effects on offshore

structures’ stability was implemented by Konovessis et al. (2014). In some applica-

tions, multiple individual units are required to function cohesively to serve as a large

floating offshore structure. The dynamical analysis of such a structure comprising of

multiple semi-submersible modules towards a floating airport was performed using

network theory by Zhang et al. (2017). The stability characteristics of a hybrid spar

design were evaluated analytically and experimentally using a scaled model by Ut-

sunomiya et al. (2013). The nonlinear forcing effects and coupling between modes of

motion are also required to be modeled to simulate the offshore environment Wang

et al. (2020). A comprehensive study of various nonlinear hydrodynamic models ap-

plicable towards designing efficient wave energy converters is detailed by Davidson

35



and Costello (2020). A nonlinear kinematic and hydrodynamic model was utilized

for the dynamical analysis of roll, pitch, and yaw instabilities and the occurrence of

parametric resonance for an axisymmetric spar-buoy structure by Giorgi et al. (2020).

The application of an active control system in a bottle shaped spar to control pitch

disturbances is discussed by Sultania and Manuel (2010).

The heave motion due to sea waves has been considered as a simple harmonic

oscillation in many ship dynamical models and aided in analyzing the phenomenon of

heave-roll-pitch coupling and parametric resonance Paulling (1959); Oh et al. (2000);

Nayfeh et al. (1973); Oh et al. (1994). A Lyapunov direct approach in conjunction

with fuzzy logic was employed to determine the stability criteria for a Tension Leg

Platform (TLP) by Chen et al. (2010). In this section, the prior work by Susheelkumar

et al. (2017) is extended towards evaluating the dynamical characteristics of SSF and

applying the unified theory towards the generation of stability plots.

3.1.1 Suction Stabilized Floating Platform

A SSF platform or Suction-Stabilized Float comprises an internal chamber main-

taining a pressure lower than the atmospheric pressure. This pressure differential

results in a suction effect that increases the restoring torque on the float/platform

and resists perturbations in roll and pitch motions. This behavior qualifies SSF as an

ideal addition for offshore structures.

The stability analysis of offshore structures is majorly derived from ship hydro-

statics and hydrodynamics by Biran and Pulido (2013). The metacentric height and

righting lever are the key parameters that guide the stability of ship models. For

small heel angles, the metacenter being vertically above the center of gravity ensures

stability Biran and Pulido (2013). For large heel angles, the righting moment gener-

ated due to the coupling forces of weight of the ship and buoyant force on the ship is
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Figure 3.1: Righting Arm.

used as the criteria of stability, as explained by Modi and Seth (1980). The righting

moment of a ship can be expressed as,

MR = Wship ×GZ (3.1)

where Wship is the weight of the ship, MR is the righting moment, and GZ is the

horizontal distance between the center of buoyancy and center of gravity of the ship,

as shown in Figure 3.1. As explained by Modi and Seth (1980), the value of righting

moment majorly depends on GZ, and for small heel angles, the righting lever is

calculated using the metacentric height, as shown in equation (3.2).

GZ = GM sinφ (3.2)

Consider a circular shaped SSF platform, as shown in Figure 3.2, with an internal

chamber of radius R. Using a vacuum pump connected to the internal chamber via a

check valve, the vacuum is created in the internal chamber. The pressure inside the

internal chamber is less than the atmospheric pressure (P < Pa). Due to the pressure

differential, the water level inside the internal chamber rises by h = Pa−P
ρg

(where g is

the acceleration due to gravity and ρ is the density of the water). In the equilibrium
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position, the resolution of forces in the vertical direction is given by

(Pa − P )Ab + Vbgρ = Mg (3.3)

where M is the total mass of the float and Vb is the displaced volume. Since the

surface effect of air cushion is present, a direct application of Archimedes law is not

feasible. However, equation (3.3) is similar to the weight balance equation of a surface

effect ship, such as hovercraft, riding on an air cushion, as explained by Faltinsen

(2005). However, the internal chamber of the surface effect ships contain positive

pressure (above atmospheric pressure), and that of SSF platforms have negative pres-

sure (below atmospheric pressure). Moreover, the air cushion in the surface effect ship

decreases the metacentric height and righting lever, thereby resulting in a destabiliz-

ing effect, as explained by Faltinsen (2005). Whereas, the vacuum in SSF platform

increases the metacentric height and righting lever. The equation for righting lever

for the SSF platform is derived using the approach presented in Faltinsen (2005).

Consider the circular SSF platform heeled by an angle ψ, with respect to the

vertical, as shown in Figure 3.3. The atmospheric pressure, outside the platform, is

indicated by Pa and P indicates that inside the internal chamber. As the platform

heels, the area A1 appears outside the water on the right side and an equal area (due

to symmetry) disappears into the water on the left side. A differential pressure of

P0 = Pa−P acts on the area A1, resulting in a force in the negative Y’ direction and

is represented by

FA1 = P0 × A1 (3.4)

The restoring moment due to this force in the clockwise direction is given by
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(a)

(b)

Figure 3.2: Suction Stabilized Floating (SSF) Platform (a) Front View, (b) Top
View.
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Figure 3.3: SSF Platform Heeled by an Angle θ.

MA1 = hFG × P0 × A1 (3.5)

The cylindrical wedge section generated due to the heel angle represents a cylin-

drical hoof, and the lateral surface area is given by A1 = 2Rhwedge Harris and Stöcker

(1998). For the given tilted SSF (where hwedge = R tanψ), the moment equation can

be updated as

MA1 = hFG × P0 × 2×R×R tanψ (3.6)

A similar moment is obtained when the SSF platform heels in the clockwise di-

rection. Due to the symmetrical shape and restoring action, the total moment is

represented by

M = 2×MA1 = 4× hFG × P0 ×R2 tanψ (3.7)
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For small heel angles, tanψ ≈ ψ, thereby reducing the total restoring moment

due to suction stabilization effect as

M = 4hFGP0R
2ψ (3.8)

It is observed from equation (3.8) that the restoring moment is opposite to the

direction of the heel and is proportional to the heel angle, ψ. This effect of suction

stabilization can be represented as a torsional spring of stiffness, kt, attached to the

CG and can be equated to

kt = 4hFGP0R
2 (3.9)

Considering conservatively (4 ≈ π), the torsional stiffness can also be approxi-

mated to

kt ≈ hFGP0πR
2 = hFGP0Ab (3.10)

where Ab is the cross-sectional area of the internal chamber. The effectiveness of

this torsional spring in stabilizing the SSF platforms is evaluated in the subsequent

subsections.

Dynamical Model for SSF

As detailed by Susheelkumar et al. (2017), the dynamical model of SSF was inspired

by the ship dynamical models. Similar to the ship motions in the sea, the SSF also

experiences heave and pitch actions directly. The periodic variation of hull geometry

leading to the periodic variation of water plane area results in the periodic variation

of metacentric height. A transfer of energy is observed from the heave motions into

roll motions. However, due to the energy transfer and the occurrence of parametric
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Figure 3.4: Heave-Roll Model for SSF.

resonance, the roll motions are developed and amplified in a certain range of frequen-

cies of sea wave Nabergoj et al. (1994); Tondl et al. (2000); Cheung et al. (2000);

Vidic-Perunovic (2011).

The dynamical behavior of ship motions is investigated using a heave-roll model

Ibrahim and Grace (2010); Nabergoj et al. (1994); Tondl et al. (2000). In this model,

the ships are subjected to a vertical displacement under the influence of moderate

longitudinal waves, and the stability characteristics under the coupled action of heave

and roll motions are studied. Since the properties of ship and SSF platforms are com-

parable, the heave-roll model for ships or floating platform models with cranes Eller-

mann et al. (2002) are modified to incorporate the restoring torque due to suction

stabilization indicated in Figure 3.4.

As shown in Figure 3.4, the vertical motion of mass m1 (corresponding to vertically

displacing mass of ship/platform) represents the heave motion, and the pendulum ac-
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tion of the rotating mass m2 (corresponding to the rotating mass of the ship/platform)

represents the roll motion. The linear and rotational damping coefficients are denoted

by b and c, respectively. The length of the pendulum is represented by l, which rotates

with an angular displacement φ. A linear spring of stiffness k is connected between

the mass m1 and the base of the system. Additionally, a rotational/torsional spring

of stiffness, kt, representing the suction stabilization effect, is added to the model.

The base of the system experiences a periodic wave motion α cosωt, where ω is the

frequency of the wave motion. The vertical displacement of the SSF platform is iden-

tified by z and roll angle by φ. The equations of motion for the SSF platform are

derived using the Lagrangian method and are outlined in Appendix-A.

(m1 +m2){z̈ − αω2 cos (ωt)}+ bż + kz +m2l{φ̈ sinφ+ φ̇2 cosφ} = 0 (3.11)

m2l
2φ̈+ cφ̇+ ktφ+m2gl sinφ+m2l{z̈ − αω2 cos (ωt)} sinφ = 0 (3.12)

The equations of motion are simplified for the dynamical analysis in the subsequent

subsection.

Analysis of SSF Model Dynamics

The equations of motion of SSF represented in equations (3.11) and (3.12) are de-

pendent on the geometrical properties. The equations are transformed in the dimen-

sionless form to evaluate the effectiveness of the suction stabilization effect. The di-

mensionless form is indicated as follows

ẍ+Bẋ+ q2x+ µ{φ̈ sinφ+ φ̇2 cosφ} = aη2 cos(ητ) (3.13)

φ̈+ Cφ̇+ sinφ+ q2
t φ+ {ẍ− aη2 cos (ητ)} sinφ = 0 (3.14)
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The semi-trivial solution of equations (3.13) and (3.14) are represented as

x0(τ) = a(M cos(ητ) +N sin(ητ)) (3.15)

φ0(τ) = 0 (3.16)

where M = η2(q2−η2)

(q2−η2)2+(Bη)2
and N = Bη3

(q2−η2)2+(Bη)2
. By adding small perturbations to

x and φ as

x = x0 + s (3.17)

φ = φ0 + θ (3.18)

By applying first order approximations to equations (3.13) and (3.14), the follow-

ing is obtained

s̈+Bṡ+ q2s = 0 (3.19)

θ̈ + Cθ̇ + (1 + q2
t )θ − aη2{(1 +M) cos(ητ) +N sin(ητ)}θ = 0 (3.20)

The equation (3.19) will generate stable solutions since it is a homogeneous dif-

ferential equation with constant coefficients. However, equation (3.20) is a damped

Mathieu equation, and its stability bounds are based on the system parameters. It is

noted that equation (3.20) preserves all the system parameters about the SSF model.

The system parameters (B and q2) of the heave motions (from equation (3.19)) are

also observed to appear in equation (3.20). Hence the analysis of reduced order roll

motion consolidates the dynamical behavior of the SSF system model.

For the cases with a really low linear damping term B and rotational damping

term C, the value of N is negligible, thereby eliminating any terms multiplied by

them. Additionally, the (1 + q2
t ) term can be replaced with δ and the aη2(1 + M)

term with 2ε, thereby updating the equation (3.20) as follows
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θ̈ + (δ − 2ε cos(ητ))θ = 0 (3.21)

The equation (3.21) is the standard Mathieu equation when η = 2 and could be

analyzed using the Floquet theory. It is also feasible to use the direct application of

the Normal Forms approach (detailed in Section 2.4), by representing the periodic

term as an augmented state. However, for the cases with significant linear damping

term B, the value of N is significant, and equation (3.20) is updated as follows

θ̈ + Cθ̇ + (δ̂ − ε̂{cos(ητ)

N
+

sin(ητ)

(1 +M)
})θ = 0 (3.22)

where δ̂ = (1 + q2
t ) would still be the linear constant term and ε̂ = aη2(1 +M)N will

be the coefficient of periodic forcing term. As detailed in prior work, the generic so-

lution for the Mathieu equation can be substituted in equation (3.20) to solve for the

non-trivial solutions for the constant coefficients to derive the expression for thresh-

old amplitude. However, in this work, the system equations are analyzed using the

Floquet theory and Normal Forms techniques analytically, and results are discussed

in the subsequent sections.

3.1.2 Simulation Results

The reduced order expressions for the SSF dynamical model have studied an-

alytically and evaluated for stability. The linear damping and linear stiffness are

attributed to the heave motion due to the sea waves. The reduced order SSF model

with negligible linear damping (equation (3.21)) can be evaluated using both the

TINF technique and Floquet theory. The transition curves between the stable and

unstable regions are obtained analytically and plotted. Further, for the SSF system

with significant linear damping, the stability plots are generated using the Floquet

theory on the system equation (3.22). In both cases, the parameter in the horizontal
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coordinate is attributed to the suction stabilization effect. The temporal variations of

the system states are plotted in each case to validate the stability behavior obtained.

SSF with Negligible Linear Damping (B ≈ 0)

As explained earlier, the SSF dynamical model was reduced by the form equa-

tion (3.21), where δ is the linear constant term, and 2ε is the amplitude of the

parametric excitation. When η = 2, the principal period of the system is T = π

secs. The standard Mathieu equation (3.21) was numerically integrated for different

sets of initial conditions (θ0 = 1.0, θ̇0 = 0.0 and θ0 = 0.0, θ̇0 = 1.0) and the system

states were evaluated at the principal period (T ). The values of system states were

concatenated such that the Floquet theory was applied to identify the stability bounds

numerically, as detailed by Kovacic et al. (2018). The condition of both the Floquet

multipliers being on or inside the unit circle was used as the criteria for identifying

the stability bounds. The standard template of the system parameter variation in

the (δ − ε) plane was adapted to generate the plots shown in Figure 3.5a.

Meanwhile, as detailed in Section 2.2, the periodic term in equation (3.21) is

augmented, resulting in the updated equation as

d

dτ



θ

θ̇

p

q̇


=



0 1 0 0

−δ 0 0 0

0 0 0 1

0 0 −η2 0





θ

θ̇

p

q̇


+



0

2εθp

0

0


(3.23)

where p = cos(ητ); q = −η sin(ητ). The equation (3.23) is in the form similar to equa-

tion (2.11) and undergoes modal transformation and near-identity transformation to

apply the TINF technique, as explained in Section 2.3.1. The Floquet multipliers

from the reduced TINF solution were computed as per equation (2.36) and utilized

46



to generate the stability plot indicated in Figure 3.5b.

In Figure 3.5, the shaded area indicates the unstable region, and the white area

indicates the stable region for the standard Mathieu equation. It is observed that

the plot generated using the Normal Forms solution (Figure 3.5b) replicates the one

from the Floquet Theory application on numerically integrated results (Figure 3.5a)

quite well. Both these plots agree with the results obtained in Kovacic et al. (2018).

This validates the application of the unified theory towards stability analysis of time

periodic systems.

From both the sub-figures in Figure 3.5, the system parameters δ = 3.0 and

ε = 1.0 corresponds to a stable point. The STM of the reduced TINF solution

is back transformed to obtain Φ̂(t) matrix. This matrix is then multiplied with the

initial conditions of the system states in equation (3.21) to determine the system state

evolution. Simultaneously, equation (3.21) was numerically integrated with the same

value of system parameters and initial conditions (θ0 = 1, θ̇0 = 0). The comparison

of the variations of the system states is plotted in Figure 3.6.

As mentioned in Figure 3.6, the solid red line indicates the temporal variation

based on the STM, Φ̂(t), determined from the TINF technique, and the black dashed

line represents the numerically integrated solution of equation (3.21). In both plots,

the system follows a stable bounded periodic behavior and does not deviate away

from the initial conditions.

SSF with Significant Linear Damping (B = 1.0)

For the case of the SSF model with significant linear damping, the dynamical behavior

is represented by equation (3.22). Since this system is also considered to be a Mathieu

equation, the stability plots are initially generated in the standard template of (δ̂− ε̂)

plane. Though the linear constant term variation (δ̂) is only attributed to the rolls
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(a)

(b)

Figure 3.5: Comparison of Stability Plots for Standard Mathieu Equation, Where
the Shaded Area Corresponds to Unstable Bounds and White Area Corresponds
to Stable Bounds (a) Generated Using Numerical Integration and Floquet Theory,
(b) Generated from the Normal Forms Solutions.
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(a) (b)

Figure 3.6: Comparison of Temporal Variations of the Reduced SSF System States
(a) Roll Angle Variation with Respect to Time, (b) Roll Angular Rate Variation with
Respect to Time.

stiffness (qt), the coefficient of the periodic forcing term (ε̂) comprises many variables

corresponding to the wave motions. By considering the linear stiffness parameter,

q = 1, and the frequency parameter, η = 1(thereby setting the principal time period

for analysis to be T = 2π seconds), the variation in ε̂ is solely attributed towards

the variation in amplitude of wave term (a). Hence, similar stability plots can be

generated in the (a − qt) plane for the equivalent range of parameters from (δ̂ − ε̂)

plane. For the given set of system parameters, the system equation (equation (3.22))

is numerically integrated, and both the stability plots are generated based on the

Floquet multiplier condition, as displayed in Figure 3.7.

Later, for the same set of system parameters, an external rotational damper of

(C = 0.2) was added and investigated for the stability characteristics. Again the

stability plots were generated based on the Floquet multiplier condition, as indicated

in Figure 3.8.

In both Figures 3.7 and 3.8, the white area indicates the stable region of operation,

and the black/shaded region represents the unstable region of operation for the SSF

platform. Though the frequency of sea waves vary, similar trends are observed for
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(a) (b)

Figure 3.7: Stability Plot for SSF with Significant Linear Damping and Without
Rotational Damping (a) in δ̂ − ε̂ Plane, (b) in a− qt Plane.

(a) (b)

Figure 3.8: Stability Plot for SSF with Significant Linear Damping and with Rota-
tional Damping (a) in δ̂ − ε̂ Plane, (b) in a− qt Plane.
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(a) (b)

Figure 3.9: Comparison of Roll Angle Variations of the SSF System with Significant
Linear Damping and No Rotational Damper (a) when qt = 0.5, a = 1.0, (b) when
qt = 1.5, a = 1.0.

the stability plots at a particular wave frequency. In both Figures 3.7b and 3.8b,

the point corresponding to system parameters (qt = 0.5, a = 1.0), the system is

observed to be unstable. As the torsional/rotational stiffness is updated to qt = 1.50,

keeping the amplitude of wave parameter as a = 1.0, the SSF system is observed to

be in the stable zone. To verify the same, the roll angle variations in equation (3.20)

is numerically integrated with the initial conditions (θ0 = 1.0, θ̇0 = 0.0). Initially,

the roll angle variations for the SSF system with significant linear damping and no

rotational damper are evaluated and plotted in Figure 3.9.

Similarly, the roll angle variations for the SSF system with significant linear damp-

ing and an additional rotational damper (C = 0.20) is evaluated and plotted in Fig-

ure 3.10.

3.1.3 Discussion

The expression for the suction stabilization effect (equation (3.10)), indicates that

torsional spring stiffness is directly proportional to the area of the base of the internal

chamber. This intuitively provides an insight that the higher the base area, the higher

will be the suction stabilization effect. It can also be inferred that for higher restoring

51



(a) (b)

Figure 3.10: Comparison of Roll Angle Variations of the SSF System with Signif-
icant Linear Damping and an Additional Rotational Damper (C = 0.2) (a) when
qt = 0.5, a = 1.0, (b) when qt = 1.5, a = 1.0.

moment, design the SSF with a larger base area at the water level. This can also be

achieved by attaching multiple small units of SSF floats. As mentioned earlier, in the

dynamical modeling, it was observed that the roll motion of the reduced order of the

SSF model characterizes the stability features of the heave-roll coupled model. This

also provides an insight into the energy transfer within the SSF model.

For the heave motions attained with negligible linear damping, the roll motion of

the SSF dynamical model follows a standard Mathieu equation. The stability plot in

Figure 3.5 shows that the stable region (in white) increases considerably as the linear

constant (δ) increases. The δ term replaced the (1+q2
t ) term in equation (3.20), which

in turn was directly proportional to the suction stabilization effect. Hence it could

also be concluded that in the reduced SSF model, the increase in torsional stiffness

term (qt) increases the stable bounds of the system. The temporal variations of sys-

tem states from the back-transformed TINF solution follow the numerical integration

results closely, as shown in Figure 3.6. This validates the direct application of the

unified theory towards stability analysis of time-periodic systems.

For the heave motions attained with significant linear damping, the roll motion

of the SSF dynamical model follows a modified Mathieu equation (equation (3.22)).
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Though the parameters used for the stability plots are similar in this case, the effect

of linear damping is evident in Figures 3.7a and 3.8a. The stability bounds have been

lifted from the x-axis. However, the rotational stiffness parameter (qt) is still observed

to contribute towards improving the stability. As the value of the rotational stiffness

parameter (qt) increases, the stability bounds are observed to be more, even when the

amplitude of wave parameter (a) is high. Moreover, in Figures 3.8a,b, the additional

rotational damper (C) is observed to smoothing the transition curves such that the

stable bounds are further increased. This trend of the stability plots is observed to

remain the same even with higher values of wave frequency. The additional rotational

damper can be attributed to one or a combination of the add-on techniques in the float

design or an active controller. To validate the stability characteristics, an unstable

and stable point is selected from Figures 3.7b, 3.8b and the temporal variations are

plotted with the corresponding system parameters.

Figure 3.9a corresponds to the roll motion of the SSF model with significant lin-

ear damping and no rotational damping when qt = 0.5, a = 1.0. In Figure 3.7b,

this corresponds to the unstable region, and it is observed that roll motion ampli-

fies unbounded and could result in the float getting capsized. Whereas Figure 3.9b

corresponds to the roll motion of the SSF model with significant linear damping and

no rotational damping when qt = 1.5, a = 1.0. In Figure 3.7b, this corresponds to

the stable region and it is observed to exhibit a bounded roll motion over time. This

validates the stability plots in Figure 3.7.

In the case of the SSF model with significant linear damping and additional ro-

tational damper (C = 0.2), the point (qt = 0.5, a = 1.0) in Figure 3.8b again cor-

responds to the unstable region. Though it is also evident from Figure 3.10a that

the roll motions grow unbounded, the range of motion has reduced drastically for

the same time period. This indicates that the additional damper has some effect in
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reducing the amplitude of the roll motion, but it is still not capable of stabilizing

the float. However, when the rotational stiffness parameter value (qt) is increased to

qt = 1.5, the system is stable, as shown in Figure 3.8b. Additionally, the roll motions

corresponding to qt = 1.5, a = 1.0, in Figure 3.10b almost dampen out by 50 s. Hence,

the stability plots in Figure 3.8 are validated, and it can also be concluded that the

higher value of the rotational stiffness (qt) aids in stabilizing the SSF platform, which

is associated with the suction stabilization effect. It can be also inferred that the ad-

ditional rotational damper in conjunction with the suction stabilization can make the

float attain a stable fixed point and not just a stable periodic motion. As discussed, a

stable fixed point is more desirable for offshore structures in most of the applications.

3.1.4 Conclusions

In this section, a brief explanation of the SSF platforms the motivation to per-

form a dynamical analysis is detailed. Initially, the effect of suction stabilization

was mathematically derived for the case of a symmetrically shaped float/platform.

Subsequently, the dynamical behavior of SSF was compared to ship motions and de-

rived the equations of motion using a heave-roll model. A model order reduction was

performed on the resulting equations of motion to facilitate the dynamical analysis.

It was demonstrated that all the major dynamical characteristics (including that of

heave motions) could be represented in the reduced order roll motions. The reduced

order roll motions were observed to be comparable to a parametrically excited Math-

ieu equation. The unified theory was employed to analytically assess the stability

bounds of an SSF platform exposed to periodic sea waves. The temporal variations

of the model were verified numerically to validate the dynamical characteristics of an

SSF platform. In this section, the sea waves were considered to be periodic in nature.

However, in reality, they could be expressed as a quasi-periodic system with incom-
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mensurate frequencies. The unified theory could be extended towards a quasi-periodic

system as well and is detailed in the later sections of this work.

This section provides validation of the application of the unified theory towards

stability analysis of a practical auto-parametrically excited time periodic system. In

the subsequent section, using this approach towards designing efficient controllers for

unstable time-periodic systems is detailed.

3.2 Control of Time Periodic System

As indicated in the stability plots in the earlier section, a time-periodic system

can become unstable or systems states growing unbounded in some scenarios. In

such situations, a control system is essential to guide the system’s behavior to the

desired path. For time varying systems, the state feedback controller design using

the pole placement method was introduced by Follinger et al. (1978). With the

knowledge of closed form expression of STM, the optimal control theory is appli-

cable towards control system design, as explained by Kwakernaak and Sivan (1972).

Sinha and Joseph (1994) demonstrated the transformation of linear time periodic sys-

tem to time-invariant form using the Chebyshev polynomials and designed feedback

controllers using the pole-placement method and optimal control method. Desh-

mukh et al. (2000) applied L-F transformation towards order reduction and control

of parametrically excited linear time periodic systems, where the control laws were

determined by minimizing the error between the time-invariant auxiliary system and

the transformed system. Later, by using the back-stepping technique in conjunction

with Floquet theory, Deshmukh and Sinha (2004) designed a combination of linear

and nonlinear controllers that guaranteed the asymptotic stability of nonlinear time

periodic systems. Pandiyan and Sinha (2001) devised a linear controller design using

L-F transformation and a time varying pole placement based approach for stabiliz-
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ing nonlinear systems. Additionally, they also added a nonlinear controller design

using the Lyapunov direct method to improve the controlled response. In the case of

nonlinear dynamic systems with time-periodic coefficients, Gabale and Sinha (2011)

performed an eigenvalue decomposition of the time-invariant linear part after L-F

transformation to differentiate the dominant and nondominant system states. The

nondominant states were expressed in terms of dominant states, and a time varying

feedback controller was designed around the dominant states ensuring the system sta-

bility. Moreno-Ahedo and Diarte-Acosta (2019) recently performed stability analysis

of Reid model of a mass spring system with switchable stiffness using Floquet theory.

For fractional-order systems with periodic coefficients, Dabiri and Butcher (2019)

detailed an optimal observer-based feedback controller design using the fractional

Chebyshev collocation method.

3.2.1 Application Towards Controller Design

The transition curves for a linear time periodic system can be determined from the

STM using the unified theory, as indicated in section 3.1. For the system parameters

corresponding to the unstable regions, multiple control strategies can be implemented

to drive the system states to the desired behavior. Since the closed form expression of

the STM is computable using the unified theory, efficient controllers can be designed

using multiple techniques and are detailed in this section.

Initially, a linear time periodic system (of the form equation (2.40)), without any

controller is considered. The application of the unified theory on such a system to

compute its STM is demonstrated in Section 2.4.1. In this subsection, multiple control

strategies are discussed to control the unstable regions of the same time periodic

system.
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System Controlled to Stable Point

In this subsection, the aforementioned periodic dynamical system is updated to sta-

bilize the system to a fixed point. Initially, the system equation is updated with the

controller input, as indicated below

ẋ = A(t)x + B(t)u(t) (3.24)

The system can be updated as linear feedback controlled system by considering

u = −Kx, where K represents the vector containing controller gains. The system

equation with controller gets updated as

ẋ = (A(t)−B(t)K)x (3.25)

It is observed that the (A(t)−B(t)K) matrix is still time periodic and the stability

bounds can be determined based on the Floquet Multipliers. For this system consider

B = [0 1]T and K = [k1 k2], the Mathieu equation, equation (2.40), gets updated as

ẍ+ (a+ k1 + b cos(ωt))x+ k2ẋ = 0 (3.26)

The state space form of the equation (3.26) with controller terms, after the state

augmentation, can be expressed as

d

dt



x

ẋ

p

q


=



0 1 0 0

−a− k1 −k2 0 0

0 0 0 1

0 0 −ω2 0





x

ẋ

p

q


+



0

−bxp

0

0


(3.27)

The unified theory, detailed in section 2.4, is applied to the above time periodic

equation with controller terms to compute the closed form expression of the STM.
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Since the controller gains are added to the B̃0 matrix, the modal transformation ma-

trix gets updated accordingly, and so does the Jordan canonical form of the equation.

Similar to the case of the system without a controller, the resulting transformed TINF

system with a linear controller is shown below

d

dt



V1

V2

V3

V4


=



(
(4k1+k22+4(a−ω2))(4b2V3V4−(4k1−k22−k2

√
−4k1+k22−4a+4a)ω2(4k1−k22+4a−ω2))

2
√
−4k1+k22−4a(

√
−4k1+k22−4a−2

√
−ω2)(
√
−4k1+k22−4a+2

√
−ω2)ω2(4k1−k22+4a−ω2)

)
V1

−
(

(4k1+k22+4(a−ω2))(4b2V3V4−(4k1−k22+k2
√
−4k1+k22−4a+4a)ω2(4k1−k22+4a−ω2))

2
√
−4k1+k22−4a(

√
−4k1+k22−4a−2

√
−ω2)(
√
−4k1+k22−4a+2

√
−ω2)ω2(4k1−k22+4a−ω2)

)
V2

−V3

√
−ω2

V4

√
−ω2


(3.28)

All the steps followed for the system without a controller in section 2.4.1, remain

the same and computation of the state transition matrix (Φ̄(t)), is further used for

the stability analysis.

System Controlled to Desired Time Periodic Orbit

In this subsection, the control technique is applied such that an unstable system fol-

lowing equation (2.40) is directed towards a desired time periodic orbit. The method-

ology is adopted from the formulation detailed in Sinha et al. (2005a). Consider the

system dynamical equation (equation (2.38)) updated with the controller term as

indicated below

ẍ = −ax− bx cos(ωt) + u (3.29)

with u = uf + ut, where uf is the feedforward control, and ut is the time-varying

feedback control. The feedforward control term can be expressed as

uf = s̈+ (a+ b cos(ωt))s (3.30)
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Consider the unstable system be stabilized to follow the desired periodic orbit,

s = α cos (ζt), and the error vector of system states can be expressed as

e =

e(t)
ė(t)

 =

x(t)− s(t)

ẋ(t)− ṡ(t)

 (3.31)

The feedback control can be expressed as

ut = Ke =

[
k1 k2

]x− s
ẋ− ṡ

 = k1(x− s) + k2(ẋ− ṡ) (3.32)

By adding equation (3.32) to equation (3.30) and substituting back in equation

(3.29), gives us

ẍ = −ax− bx cos(ωt) + s̈+ (a+ b cos(ωt))s+ k1(x− s) + k2(ẋ− ṡ) (3.33)

By rearranging the terms and expressing the resulting equation in the state-space

form in equation (3.34)

d

dt

eė
 =

 0 1

−a− b cos (ωt)− k1 −k2


eė
 (3.34)

It is observed that the resulting system is very similar to equation (3.26), with

the variation in just the system states considered. The method of state augmentation

and TINF is followed the same way, as explained earlier in section 2.4, to compute

the state transition matrix.

A pole placement technique can be adopted to fix the eigenvalues of the FTM to

the desired stability. The corresponding values of the controller gains can be evaluated

for controlling the unstable system towards either a stable point or a stable periodic

orbit.
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System with Linear Optimal Controller

The Floquet Multipliers based approach can be avoided for controlling an unstable

system by incorporating a time varying controller using an optimization technique

detailed by Kwakernaak and Sivan (1972). For a dynamical system with the con-

troller term expressed by the equation (3.24), is updated with a control variable

w(t) = D(t)x(t) and initial condition x(t0) = x0, the cost function for optimization

considered is

CF = xT (t) S̄ x(t) +

∫ tf

t0

[
wT (t)G3(t)w(t) + uT (t)G2(t)u(t)

]
dt (3.35)

where S̄ is a non-negative-definite symmetric matrix, G2(t) and G3(t) are positive-

definite symmetric matrices for t0 ≤ t ≤ tf . The Hamiltonian form of the state

differential equation is expressed as

H =

ẋ(t)

˙̄p(t)

 =

 A(t) −B(t)G−1
2 (t)BT (t)

−G1(t) −AT (t)


x(t)

p̄(t)

 (3.36)

where G1(t) = DT (t)G3(t)D(t) and p̄(t) is the adjoint variable. The adjoint variable

is related to the system state as p̄(t) = S(t) x(t) with the boundary condition p̄(tf ) =

S̄ x(tf ). After incorporating the boundary conditions, the S(t) matrix is derived to

be

S(t) =
[
Φ21(t, tf ) + Φ22(t, tf )S̄

] [
Φ11(t, tf ) + Φ12(t, tf )S̄

]−1
(3.37)

where Φ11(t, t0),Φ12(t, t0),Φ21(t, t0),Φ22(t, t0) are obtained from partitioning the state

transition matrix of Hamiltonian equation expressed in equation (3.36). Using these

properties and the cost function (equation (3.35)), the optimal control input ū(t), for

the time span t0 ≤ t ≤ tf , is found to be

ū(t) = −G−1
2 (t)BT (t)p(t) = −K̄(t)x(t) (3.38)
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where K̄(t) = [k1(t) k2(t)] is the time varying optimal feedback control gain vector

and can be expressed as

K̄(t) = G−1
2 (t)BT (t)S(t) (3.39)

The linear control law generated from this technique provides the optimal control

input for any initial condition automatically, without the use of pole placement or

Floquet multipliers. The numerical simulation results for a linear time periodic Math-

ieu equation are detailed in the subsequent subsections.

3.2.2 Results and Discussion

The unified approach is applied to the time periodic system to evaluate the dy-

namical characteristics and generate stability charts again for the modified Mathieu

equations. The condition of both the Floquet multipliers being on or inside the unit

circle is used as the criterion for identifying the stability bounds. A case of an unsta-

ble system is selected from the stability chart to apply multiple control strategies to

stabilize the system.

System Without Controller

The original linear time periodic system of the Mathieu equation without controller

(equation (2.40)) is analyzed for ω = 2π, for which the principal period is T = 1 sec.

The system parameters (linear constant part, a and the amplitude of excitation, b)

are altered to generate stability plots based on the Floquet multipliers. As explained

in Kovacic et al. (2018), the numerical integration results of the Mathieu equation are

utilized to apply the Floquet theory directly to the original system states and generate

the stability plots displayed in Figure 3.11a. Simultaneously, the same system is sub-

jected to state augmentation, modal transformation, near identity transformations,

and the TINF technique. The resulting STM (as per equation (2.36)) is evaluated at
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(a)

(b)

Figure 3.11: Comparison of Stability Plots for Mathieu Equation, Where the Shaded
Area Corresponds to Unstable Bounds and White Area Corresponds to Stable Bounds
(a) Generated Using Numerical Integration and Floquet Theory, (b) Generated from
the TINF Solutions.

principal period (T = 1 sec) to obtain the FTM. Subsequently, the stability plots are

created based on the Floquet multipliers condition, as indicated in Figure 3.11b.

In both Figures 3.11a and 3.11b, the shaded area represents the unstable region,

and the white area indicates the stable region of the original system. The transition

curves from both the figures are observed to match very well. From Figures 3.11a
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Figure 3.12: Phase Plot Comparison of a Stable System Without a Controller.

and 3.11b, a common stable point (a = 8, b = 2) is selected, and the phase plot

variation of the back transformed TINF solution is compared against the numerically

integrated solution of the Mathieu equation, as shown in Figure 3.12.

In Figure 3.12, the black dashed line represents the numerically integrated solu-

tion in the original coordinates, and the solid red line indicates the back transformed

TINF solution. Both the methods are provided with the same set of initial conditions

(I.C.), marked by a gray dot in the plot corresponding to X10 = 1.0 and X20 = 0.0.

It is observed that the back transformed TINF solution follows the numerically in-

tegrated solution closely. This verifies again that the TINF solution preserves the

original stable system’s dynamical characteristics and maintains the temporal vari-

ations bounded. Similarly, a common unstable point (a = 8, b = 4) is selected and

utilized to demonstrate the implementation of various linear feedback controllers in

the subsequent subsections.
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System Controlled to Stable Point

As explained in section 3.2.1, the Mathieu equation is updated with the linear con-

troller terms (k1, k2), as shown in equation (3.26). The Floquet theory is still appli-

cable to the updated system with the modified A(t) matrix. The updated system

follows state augmentation, modal transformation, near identity transformations and

application of the TINF technique to result in equation (3.28).

The evaluation of the stability bounds based on the controller gains variation for

the given unstable system aids in its selection. Hence, for the given unstable case of

a = 8 and b = 4, the TINF solutions are computed in symbolic form, keeping the

controller gains as symbolic variables. The resulting STM matrix is evaluated at the

principal period, T = 1 sec, and the stability plots are generated based on the Floquet

multipliers for varying controller gains (k1, k2), as shown in Figure 3.13. The method

of pole placement is also applicable towards identifying the ideal controller gains.

In Figure 3.13, the shaded gray area represents the unstable region, and the white

area indicates the stable region for the system with controller. The effectiveness of

the feedback controller is verified by plotting the temporal variations of the system

states. A point from the unstable region (P1 ) corresponding to the controller gain

values (k1 = 2.0, k2 = 0.5) and a point from the stable region (P2 ) corresponding

to the gain values (k1 = 2.0, k2 = 2.0) are considered for the phase plot comparison

with the uncontrolled unstable system, as displayed in Figure 3.14.

As indicated in Figure 3.14, the solid blue line represents the system without a

controller, the dashed magenta line represents the system with a controller gain value

of P1, and the solid red line indicates the system with a controller gain value of P2.

It is observed that all the systems, in Figure 3.14, started off with the same set of

initial conditions (I.C.), marked by a gray dot in the plot corresponding to X10 = 1.0,
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Figure 3.13: Stability Plot Based on Controller Gain Variations, Where the Gray
Shaded Area Represents the Unstable Region and the White Area Corresponds to
the Stable Region.

Figure 3.14: Phase Plot Comparison of System States with Controller Implemen-
tation Towards a Stable Point for an Unstable Mathieu Equation.
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X20 = 0.0 and the simulations ran for 5 seconds. However, as expected from the

stability plot (Figure 3.13), the controller gains corresponding to the stable region

P2, successfully stabilize the uncontrolled system to a stable point, whereas the one

corresponding to the stable region P1 remains unbounded.

System Controlled to a Desired Time Periodic Orbit

As explained in section 3.2.1, the Mathieu equation is updated with the linear con-

troller terms (k1, k2) and error states (e(t), ė(t)), as shown in equation (3.33). The

resulting A(t) matrix is similar to that in equation (3.26), and with the application

of the unified approach, the derived TINF solution resembles equation (3.28) with

the system states modified to error states. This results in the same stability plot, as

indicated in Figure 3.13.

Analogous to the approach for ’System Controlled to Stable Point ’, to verify the

effectiveness of the feedback controller, a point from the unstable region (P1 ) and a

point from the stable region (P2 ) are considered for the phase plot comparison with

the uncontrolled unstable system, as shown in Figure 3.15. The desired time periodic

orbit is given by s = 0.5 cos (4t).

As indicated in Figure 3.15, the solid blue line represents the system without a

controller, the dashed magenta line represents the system with the controller gain

value of P1, the solid red line indicates the system with the controller gain value

of P2, and the solid black line corresponds to the desired time periodic orbit. It

is observed that all the systems, in Figure 3.15, started with the same set of initial

conditions (I.C.), marked by a gray dot in the plot corresponding to X10 = 1.0,

X20 = 0.0 and the simulations ran for 5 seconds. However, as expected from the

stability plot (Figure 3.13), the controller gains corresponding to the stable region

P2, successfully stabilizes the uncontrolled stable system to the desired periodic orbit
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Figure 3.15: Phase Plot Comparison of System States with Controller Implemen-
tation Towards a Desired Time Periodic Orbit for an Unstable Mathieu Equation.

swiftly, whereas the one representing the unstable region P1 remains unbounded and

failed to reach the desired orbit.

System with Optimal Controller Gain

As mentioned in section 3.2.1, the feedback controller gain values can be considered

time varying, without computing the stability characteristics of the dynamical system.

However, a closed form expression for the STM of the Hamilton system is essential

to compute the optimized solution. In this approach, since the selection of controller

gain values is avoided, the requirement to generate a stability plot based on the

controller gain variation is also eliminated.

The demonstration of the effectiveness of this controller approach is performed on

the same unstable Mathieu equation with parameters a = 8, b = 4, and ω = 2π. The

boundary conditions are considered at t0 = 0.0 sec and tf = 20.0 secs. The matrices

D, S̄ are considered to be 2 × 2 identity matrix (I2), G2 = 1.0, G3 = 10 ∗ I2 and
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B = [0 1]T . After substituting these values in the Hamiltonian form of the dynamical

system (equation (3.36)), the closed form expression of the STM is computed using

the unified approach. The application of the state augmentation to the Hamiltonian

form results in 6 state variables (2 original system states, 2 adjoint state variables,

and 2 fictitious augmented states), as shown in the equation below

d

dt



x

ẋ

p̄1

p̄2

p

q



=



0 1 0 0 0 0

−a 0 0 −1 0 0

−10 0 0 a 0 0

0 −10 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2 0





x

ẋ

p̄1

p̄2

p

q



+



0

−bxp

bp̄2p

0

0

0



(3.40)

The updated system in equation (3.40) undergoes modal transformation, near-

identity transformation, and the TINF technique. The closed form expression for the

back transformed STM in the Hamiltonian coordinates is used in equation (3.37) to

compute S(t) matrix. The time evolution of the resulting S(t) matrix elements for

first 10 seconds are displayed in Figure 3.16.

In Figure 3.16, though all the elements are observed to have the same periodic

behavior, the magnitude of each of them are different. After the S(t) matrix is

computed, the optimal feedback controller gain variation over the period of time, is

computed using equation (3.39) and plotted for the first 10 seconds in Figure 3.17.

In Figure 3.17, each element of the optimal controller gain vector is also observed

to follow a time periodic behavior. These gain variation coupled with the system state

variation contributes the feedback control input to the system plant. The resulting

stabilized system state variation is verified by plotting the temporal variations. For

the same unstable Mathieu equation, the temporal variations of the system states
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Figure 3.16: The Element-wise Variation of S(t) Matrix over Time.

Figure 3.17: The Variation of the Optimal Feedback Controller Gain Values over
Time.
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(a)

(b)

Figure 3.18: Comparison of Temporal Variations for All Three Linear Feedback
Controller Strategies (a) x1 State Variation, (b) x2 State Variation.

with all three control strategies discussed in this work, are displayed in Figure 3.18.

In both Figures 3.18a and 3.18b, the solid blue line corresponds to the variation

of system states controlled to stable point using a fixed controller gains (k1 = 2.0,

k2 = 2.0), and it is observed to stabilize in about 6 seconds. In the same plots, the

solid black line represents the variation of system states controlled to stable desired

periodic orbit using the same fixed controller gains (k1 = 2.0, k2 = 2.0), and it is
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observed to stabilize in about 2-3 seconds. In these plots, the solid red line attributes

to the variation of system states optimally controlled to a stable point by 4 seconds.

All these control strategies are provided with the same set of initial conditions (X10 =

1.0, X20 = 0.0). The optimal feedback controller gain behavior can be modified by

changing the weights of terms in the optimization cost function. However, the optimal

feedback controller is observed to be insensitive to the system state initial conditions,

whereas the other two feedback controller strategies are sensitive.

In this section, the closed form expression of STM for a parametrically excited

linear time periodic system was computed using the unified approach, and the sta-

bility was generated based on the Floquet multipliers at the principal period. The

transition curves obtained using this method are found to be comparable to that of

the numerical techniques. For stabilizing an unstable linear time periodic system,

three linear feedback controller strategies have been discussed. For fixed controller

strategies, as an alternative to pole placement, a stability plot is generated to iden-

tify the ideal gain values to make the system bounded. It is verified using numerical

simulations that the controller gain values corresponding to the stable region suc-

cessfully stabilized the system to a stable fixed point and a desired periodic orbit.

However, the fixed controller strategies are susceptible to the initial conditions of the

unstable system. For the case of the optimal controller approach, the controller gain

values are time varying and are insensitive to the initial conditions of the unstable

system. Consequently, the need for stability plots to identify the ideal gain values is

eliminated. A comparison of the temporal variations of the unstable system with all

three linear feedback control strategies are included. All the numerical simulations

are performed on the case of a linear Mathieu equation, and the results are verified.
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3.2.3 Conclusion

In this section, the unified theory was applied towards generating stability plots for

a linear time periodic system of modified Mathieu equation. Applying three linear

feedback controller strategies on linear time periodic systems to drive it towards

a stable point or periodic trajectory was also demonstrated in this section. The

theory was verified by plotting the temporal variations of all the strategies applied

to an unstable case. The controllers were observed to be effective in stabilizing the

unbounded system.

The unified approach is demonstrated towards the stability analysis and control

of linear time periodic systems. The nonlinear systems need to be linearized to

perform such analysis. However, the unified approach can also generate closed form

expressions for L-F transformation, which would aid in the analysis of nonlinear and

externally excited systems.
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Chapter 4

APPLICATIONS OF L-F TRANSFORMATION

As per Floquet theory, a linear time periodic system can be converted to a linear

time-invariant form via L-F Transformation. Initially, the closed form solution for

the L-F transformation matrix was computed, by Wu (1978), only for the class of

commutative periodic systems. The STM needs to be computed as an explicit function

of time to determine the same for a general case. The approximate method explained

by Sinha et al. (1996) has been the conventional approach to compute the symbolic

form of L-F transformation. However, one needs to account for more terms in the

Chebyshev expansion for higher accuracy. Sinha et al. (1996) also demonstrated the

application of L-F transformation towards the identifying resonance conditions for

both free and forced parametrically excited time periodic systems.

The unified theory, detailed in section 2.4, is also capable of computing the state

evolution as an explicit function of time and thereby computing the closed form

expression for the L-F transformation. The computed closed-form expression of L-F

transformation is further applied in the analysis of perturbed time periodic systems.

In this chapter, the cases of periodic systems with external excitation, nonlinear terms,

and stochastic excitations are considered for analysis and compared with numerical

techniques in the subsequent sections.

4.1 Symbolic Computation of L-F Transformation

In this section, the unified theory is applied to a linear time varying system, as

detailed in 2.4.1, resulting in the time-invariant form with the constant matrix in the

Jordan form. In this chapter, the L-F transformation (Q̄(t)) resulting in the Jordan
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Figure 4.1: Comparison of Element-wise Variation of Q̂(t) Matrix (Displayed in
Solid Black Line) with Q(t) Matrix from Chefun (Displayed in Dashed Magenta
Line) for the Principal Time Period (T = 1 Sec).

form is utilized for further analysis.

A time periodic system of the form equation (2.40) is considered. The system

parameters of a = 3, b = 2.5 and ω = 2π are considered for this computation. Using

the unified approach detailed in section 2.4.1, the resulting time-invariant J̄ matrix

is determined to be

J̄ =

 0.0− i1.76 0

0 0.0 + i1.76

 (4.1)

To verify the accuracy of the the L-F transformation (Q̄(t)) for further analysis, it

was back transformed to the original coordinates to obtain its corresponding matrix,

Q̂(t). The element-wise variations of Q̂(t) matrix are compared with the Chebfun

results in Figure 4.1.

In Figure 4.1, the element-wise variation of the computed L-F transformation
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matrix (Q̄(t)), indicated in solid black line, is compared with that obtained from

Chebfun (indicated in dashed magenta line). It is observed that the Q̄(t) matrix is

in excellent agreement with the Chebfun results for the principal time period in all

four elements and is eligible to use for further analysis.

4.2 Computation of Inverse of L-F Transformation

For a parametrically excited linear periodic system of the form in equation (2.40),

the L-F transformation is sufficient for performing the analysis. The inverse of the

L-F transformation is needed for assessing nonlinear systems or systems with deter-

ministic or stochastic excitations. The L-F transformation is a matrix where the

matrix elements contain truncated Fourier series with parametric frequencies. Invert-

ing a time varying matrix is not a trivial problem, and in this section, two possible

approaches are presented to obtain the inverse of the L-F transformation matrix.

4.2.1 Symbolic Computation of Inverse Matrix

In minimal cases, when the L-F transformation matrix is small (2 × 2) and con-

tains only a few terms, symbolic computation software, such as MATHEMATICA or

MAPLE, may be able to find the inverse. However, the inverse computed with this

direct approach should be checked for the following conditions.

Q̄−1(0) = I

Q̄−1(t)× Q̄(t) = I

(4.2)

The expression provided for Q̄−1(t) may need further simplification for ease in

future use.
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4.2.2 Adjoint Method

As detailed in Sinha et al. (1996); Iakubovich and Starzhinskĭı (1975), the inverse

of the L-F transformation matrix can also be determined using the adjoint system,

which is given by

κ̇ = −AT (t)κ (4.3)

The STM of the original system (Φ(t)) is related to that of the adjoint system

(Ψ(t)) as follows

Φ−1(t) = ΨT (t) (4.4)

Using the properties of the adjoint system from equation (4.4) and using equation

(2.36), the inverse of the L-F transformation matrix can be computed as

Q̄−1(t) =
[
Φ̄(t)e−J̄t

]−1

= eJ̄tΦ̄−1(t) = eJ̄tΨT (t) (4.5)

This method of inverse computation is validated in Sinha et al. (1996) using the

exponent matrix (R), and interested readers are redirected to the same further details.

4.2.3 Recurrent Neural Network

One can also use a dynamical method using a recurrent neural network proposed

for inversion of the time-varying matrix. One could use the gradient method Zhang

et al. (2009a), Zhang dynamics Zhang et al. (2009b), or Chen dynamics Xiao et al.

(2018) to find an inverse. This section briefly presents the Zhang dynamics approach

that could be used for inverting the L-F transformation.

Consider a time-varying matrix Y(t) with inverse W(t) = Y−1(t) so that the

equation (4.6) is valid
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Y(t)W(t) = I

Y(t)W(t)− I = 0

(4.6)

Assuming Y(t) is known and dY(t)
dt

exists. The objective is to find W(t) using the

following equation

E(W(t), t) ≡ Y(t)W(t)− I (4.7)

where E(W(t), t) is a matrix-valued error function. The derivative of the error func-

tion Ė(W(t), t) should be selected such that E(W(t), t)→ 0 . Thus, Ė(W(t), t) can

be chosen as

dE(W(t))

dt
= −ΓG(E(W(t), t)) (4.8)

where Γ is a scaling factor for the convergence and G(E(W(t), t)) is called an activa-

tion function or matrix mapping recurrent neural network. Differentiating equation

(4.7) with respect to time and substituting it to equation (4.8) yields

Y(t)Ẇ(t) = −Ẏ(t)W(t)− ΓG(E(W(t), t))

Y(t)Ẇ(t) = −Ẏ(t)W(t)− ΓG(Y(t)W(t)− I)

(4.9)

The equation (4.9) is a matrix differential equation that can be solved numeri-

cally for W(t) using an appropriate initial condition. In this work Y(t) is the L-F

transformation matrix Q̄(t), and W(t) is the inverse of L-F transformation Q̄−1(t).

Thus equation (4.13) can be updated as

Q̄(t) ˙̄Q−1(t) = − ˙̄Q(t)Q̄−1(t)− ΓG(Q̄(t)Q̄−1(t)− I) (4.10)

One has to select an appropriate activation function and scaling constant

ΓG(Q̄(t)Q̄−1(t)− I) to achieve convergence. The equation (4.10) can be numerically
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Figure 4.2: Comparison of Element-wise Variation of Q̄−1(t) Matrix from Symbolic
Computation Method (Displayed in Solid Black Line) with Q̄−1(t) Matrix from ZNN
Method (Displayed in Dashed Blue Line).

integrated with the initial condition Q̄−1(0) = I to determine Q̄−1(t). For more

details on the Zhang Neural Network, its application, and proof of convergence, the

readers are directed to Guo and Zhang (2013); Guo et al. (2017).

The Q̄(t) matrix computed for the Mathieu system (equation (2.40)) is inverted

using two methods (symbolic computation and ZNN) and compared for the principal

time period of T = 1 sec in Figure 4.2.

From Figure 4.2, it is observed that the Q̄−1(t) matrix computed using the ZNN

approach (indicated in dashed blue line) closely follows the Q̄−1(t) matrix computed

using the symbolic computation (indicated in solid blue line) in all four elements.

the Q̄−1(t) matrix from either of the two approaches are eligible for the subsequent

applications.
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4.3 Application: Externally Excited System

Some of the parametrically excited time-periodic system may be excited by an

additional external term in real-world applications. In this section, the time periodic

system (expressed in equation (2.29)) is externally excited by forcing term and ana-

lyzed using the Q̄(t) and Q̄−1(t) matrices computed earlier. Consider the system in

equation (2.29) is subjected to external excitation given by

ẋ(t) = A(t)x(t) + f(t) (4.11)

where f(t) is the n × 1 vector containing external excitation terms. Applying the

L-F transformation x(t) = Q̄(t)y(t), transforms the linear time varying part to a

time-invariant form. The inverse of the L-F Transformation matrix Q̄−1(t) is applied

to equation (4.11) results in the following equation

ẏ = J̄y + Q̄−1(t)f(t) = J̄y + F(t) (4.12)

Equation (4.12) needs to be solved to compute the time evolution of system states

in the reduced system y(t), which can be further back-transformed to its correspond-

ing system states in the original coordinates x(t). The system in equation (4.12) can

be solved using two approaches, as illustrated in the following subsections

4.3.1 Convolution Integral Approach

The method of convolution integral can be used to solve equation (4.12). A direct

application of convolution integral results in

y(t) = eJ̄ty(0) +

∫ t

0

eJ̄(t−s)F(s)ds (4.13)
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The Q̄(t) matrix would contain the terms with parametric excitation frequencies

(ωp) and the f(t) vector with the external excitation frequencies (ωe). As detailed in

Sinha et al. (1996), the external resonance condition can be given by

λk 6= ±inωp ±mωe; n,m = 0, 1, ... k = 1, 2, ... (4.14)

where λk are the eigenvalues of the R matrix (or Floquet Exponents) that appear on

the diagonal elements of the J̄ matrix. In the case of l multifrequency external exci-

tations, ωe =
∑l

r=1 ωr. It is noted that this external resonance is in terms of Floquet

Exponents and not the eigenvalues of the unforced system (when the magnitude of

parametric excitation is assumed zero). The result obtained in the y(t) domain can

be transformed to the original coordinate x(t) via reversing the sequence of transfor-

mations. For clarity, it is stated that the eigenvalues of B̄0 matrix that appear as

the diagonal elements of the J matrix are different from the semi-simple eigenvalues

(Floquet Exponents) that appear on the diagonal elements of J̄.

4.3.2 Alternate Approach

Alternatively, the equation (4.12) system can be solved using the state augmenta-

tion and TINF approach. In equation (4.12), it is noted that the elements of Q̄−1(t)

matrix comprises of Fourier series with frequencies of parametric excitation ωp. Simi-

larly, the external excitation term can be approximated to a Fourier series of frequency

ωe. As defined earlier, the time-periodic terms in Q̄−1(t) can be expressed again in

terms of fictitious states (p1, q1) and that in f(t) vector as newly augmented states

(p2, q2). The updated equation (4.12) can be expressed as

˙̃y = J̆ỹ + Q̄−1(p1, q1)f(p2, q2) = J̆ỹ + F(ỹ) (4.15)

where
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ỹ =



y

ẏ

p1

q1

p2

q2



, J̆ =



J̄11 0 0 0 0 0

0 J̄22 0 0 0 0

0 0 −iωp 0 0 0

0 0 0 +iωp 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
e 0


,F(ỹ) =



Q̄−1
11 f11 + Q̄−1

12 f21

Q̄−1
21 f11 + Q̄−1

22 f21

0

0

0

0


(4.16)

At this point, the F(ỹ) needs to be verified to contain only the nonlinear terms,

and the coefficient of all the linear terms needs to be moved to the J̆ matrix. The

subsequent modal transformation and application of TINF yield a time invariant form

similar to equation (2.35) in the absence of resonant terms. The analytical solution of

system states is obtained in the v domain. The back-substitution of augmented states

and a series of back-transformations result in the time evolution of system states in

the original coordinates (x domain).

It is noted that in both these approaches, Q̄(t) and its inverse are utilized to

analyze the system. A comparison of the time evolution of the system states in

the original coordinates obtained using both approaches are demonstrated using the

following examples.

4.3.3 Example-1: Time Periodic System Externally Excited with a Periodic Term

In this example, consider the linear time periodic system in equation (2.40)) ex-

ternally excited by a periodic term is given by

ẍ+ (a+ b cos(ωt))x = c cos(Ωt) (4.17)

By comparing equation (4.17) to equation (4.11) indicates f(t) = [0 c cos(Ωt)]T .
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The system parameters considered in this example for the linear remains the same

as earlier and that for the forcing term are c = 3,Ω = 7 rads/sec. The equation

(4.17) can be numerically integrated for a set of initial conditions (x0 = 1, ẋ0 = 0) to

evaluate the numerical solution for the system states (x(t), ẋ(t)).

As the linear part of the system remains the same as discussed in equation (2.43),

the earlier computed closed form expression for Q̄(t) and Q̄−1(t) matrices are em-

ployed to reduce the system in the form of equation (4.12). Similarly, the initial

conditions (x0 = 1, ẋ0 = 0) are also transformed to its corresponding values y(0) to

solve the reduced system using the convolution integral approach.

As discussed earlier, invoking another round of state augmentation on the re-

duced system (as shown in equation (4.16)) generates a solution using the alternate

approach. The time evolution of the system states in the original coordinates are

obtained by back-substitutions and back-transformations from both the approaches

and compared with the numerical integration solution, as illustrated in the temporal

variations and phase plots in Figures 4.3a, b, and 4.4.

In Figure 4.4, the phase plot from the system states obtained by numerical in-

tegration of equation (4.17) is indicated by the thick blue line (C1), that by the

convolution integral approach is indicated by the dashed orange line (C2) and that

by the alternate approach of double state augmentation is shown by the solid black

line (C3). It is observed that the temporal variations of the system states computed

using all three methods start-off from the same initial condition (indicated by a black

dot) and continue to be in excellent agreement with each other for 35 seconds.
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(a)

(b)

Figure 4.3: Comparison of the Temporal Variations of the System States of Time
Periodic System Externally Excited with a Periodic Term (Example-1), Where the
Thick Dashed Blue Line (C1) Represents the Numerically Integrated Solution, the
Dashed Orange Line (C2) Corresponds to the Solution from Convolution Integral
Approach and the Black Solid Line (C3) Represents the Solution from Alternate
Approach For (a) x1 State Variation, (b) x2 State Variation.
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Figure 4.4: Comparison of the Phase Plot Variations of the System States of Time
Periodic System Externally Excited with a Periodic Term (Example-1), Where the
Thick Dashed Blue Line (C1) Represents the Numerically Integrated Solution, the
Dashed Orange Line (C2) Corresponds to the Solution from Convolution Integral
Approach and the Black Solid Line (C3) Represents the Solution from Alternate
Approach.

4.3.4 Example-2: Time Periodic System Externally Excited with a Square Wave

Term

The above discussed approach is limited to sinusoidal excitation term and appli-

cable to other excitation wave forms such as square or triangular. In this example,

the external excitation considered is a square wave of the form

f(t) = sgn(cos(t)) (4.18)
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Figure 4.5: Comparison of a Square Wave (Blue Line) and Its Fourier Series Ap-
proximation (Orange Line).

The above square wave is approximated as Fourier series of the form

f(t) ≈ 0.01 cos(t) + 1.27 sin(t) + 0.01 cos(3t) + 0.42 sin(3t) (4.19)

The comparison of the approximated square wave to the actual square wave is

indicated in Figure 4.5. By adding more terms to the Fourier series, one could get a

closer approximation of the same. However, the long expression with non-prominent

terms would increase the computational cost for the normal form estimates in the

subsequent steps.

As discussed earlier, the closed-form expression for Q̄(t) matrix is computed using

the symbolic computation method. Subsequently, the time varying matrix is inverted

using the symbolic computation method in MATHEMATICA to obtain Q̄−1(t) ma-

trix. Further, the system in equation (4.11) is reduced to equation (4.12), with the

external excitation term as equation (4.18). The cos(3t) and sin(3t) terms are ex-
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panded in terms of cos(t) and sin(t) using Ptolemy’s trigonometric formulae. This

aids in easing the computations using the alternate approach. The comparisons of

the system states’ temporal variations and phase plot are indicated in Figures 4.6 and

4.7.

Similar to the case of Example-1, in Figure 4.7, the phase plot from the system

states obtained by numerical integration is indicated by the thick blue line (C1), that

by the convolution integral approach is indicated by the dashed orange line (C2) and

that by the alternate approach of double state augmentation is represented by the

solid black line (C3). It is observed even for example-2 that the temporal variations

of the system states computed using all three methods start-off from the same initial

condition (indicated by a black dot) and continue follow each other closely for 35

seconds.

4.4 Application: Nonlinear System

Many real world examples may not follow a truly periodic behavior and will con-

tain inherent nonlinear behavior. In this section, the analysis of the periodic system

with nonlinearity using the computed L-F transformation and other approaches is

briefly explained. Consider the system in equation (2.29) is modified to contain non-

linearity as

ẋ(t) = A(t)x(t) + f(x, t) (4.20)

where f(x, t) is the n × 1 vector containing the nonlinear terms. Since equation

(4.20) is nonlinear in nature, a direct application of the Normal Forms approach is

feasible after the modal transformation. Due to the presence of time varying periodic

terms, a Time Dependent Normal Forms (TDNF) is required to analyze the system.

However, with the use of state augmentation technique, a TINF approach is also
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(a)

(b)

Figure 4.6: Comparison of the Temporal Variations of the System States of Time
Periodic System Externally Excited with a Square Wave Term (Example-2), Where
the Thick Dashed Blue Line (C1) Represents the Numerically Integrated Solution,
the Dashed Orange Line (C2) Corresponds to the Solution from Convolution Integral
Approach and the Black Solid Line (C3) Represents the Solution from Alternate
Approach For (a) x1 State Variation, (b) x2 State Variation.
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Figure 4.7: Comparison of the Phase Plot Variations of the System States of Time
Periodic System Externally Excited with a Square Wave Term (Example-2), Where
the Thick Dashed Blue Line (C1) Represents the Numerically Integrated Solution,
the Dashed Orange Line (C2) Corresponds to the Solution from Convolution Integral
Approach and the Black Solid Line (C3) Represents the Solution from Alternate
Approach.

feasible, thereby reducing the computational cost.

Alternatively, the computed L-F transformation matrix Q̄(t), aids in applying

x(t) = Q̄(t)y(t), that results in

ẏ = J̄y + Q̄−1(t)f(y, t) = J̄y + F(y, t) (4.21)

The reduced system in equation (4.21) can be solved using the direct method of

convolution integral discussed earlier to determine the time evolution of system states

y(t). The following sub-section using an example of a nonlinear Mathieu equation is
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considered and evaluated using these approaches and compared.

4.4.1 Example-3: Time Periodic System with Nonlinear Excitations

In this example, the periodic Mathieu system (equation (2.40)) is updated with a

cubic nonlinearity term as follows

ẍ+ (a+ b cos(ωt))x+ x3 = 0 (4.22)

The comparison of equation (4.22) to equation (4.20) yields f(x, t) = [0 x3]T .

The same system parameters of a = 3, b = 2.5 and ω = 2π are considered with the

initial conditions (x0 = 1, ẋ0 = 0) to compute the numerically integrated solution of

system states (x(t), ẋ(t)) for equation (4.22).

Analytical Solution Using TINF

As mentioned earlier, the application of state augmentation on equation (4.22) results

in

d

dt



x

ẋ

p1

q1


=



0 1 0 0

−3 0 0 0

0 0 0 1

0 0 −4π2 0





x

ẋ

p1

q1


+



0

−2.5xp1 − x3

0

0


(4.23)

The subsequent modal transformation and near-identity transformation aids in

the application of TINF to the resulting equation. For the given system, the TINF

generates the solution of the form

v̇1 = −i1.7648v1 − i0.2887v2
1v2

v̇2 = +i1.7648v1 + i0.2887v1v
2
2

 (4.24)
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With the use of complex change of variables v1 = u1 − iu2, v2 = u1 + iu2 in

equation (4.24) and the subsequent application of the polar coordinate transformation

u1 = R cos θ and u2 = R sin θ, results in the reduced system as

Ṙ = 0

θ̇ = 1.5708− 1.9385R2

 (4.25)

The expressions in equation (4.25) can be solved analytically. The resulting solu-

tions (R(t), θ(t)) follow a series of inverse transformations to generate the analytical

solution for the system states (x(t), ẋ(t)) for equation (4.22).

Convolution Integral Approach Using L-F

With the use of Q̄(t) and Q̄−1(t) matrices computed earlier, the expression in equation

(4.21) can be obtained, where y and J̄ remain the same as the case of a linear system.

The nonlinear vector is given by

F(y, t) =



Q̄−1
12 (Q̄11y + Q̄12ẏ)3

Q̄−1
22 (Q̄11y + Q̄12ẏ)3

0

0


(4.26)

As mentioned earlier, the reduced system in equation (4.21) follows the convolu-

tion integral to obtain the convolution integral approach solution for the time evo-

lution of system states in y domain and back transformed to obtain the same in

the original system coordinates in x domain. The resulting temporal variations are

compared with those from the numerically integrated solution, and analytical solu-

tion using TINF, in the system states temporal variations and phase plots shown in

Figures 4.8 and 4.9.
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(a)

(b)

Figure 4.8: Comparison of the Temporal Variations of the System States of Time
Periodic System with Nonlinear Terms (Example-3), Where the Thick Dashed Blue
Line (C1) Represents the Numerically Integrated Solution, the Dashed Orange Line
(C2) Corresponds to the Analytical Solution Using TINF and the Black Solid Line
(C3) Represents the Solution from Convolution Integral Approach Using L-F For (a)
x1 State Variation, (b) x2 State Variation.
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Figure 4.9: Comparison of the Phase Plot Variations of the System States of Time
Periodic System with Nonlinear Terms (Example-3), Where the Thick Dashed Blue
Line (C1) Represents the Numerically Integrated Solution, the Dashed Orange Line
(C2) Corresponds to the Analytical Solution Using TINF and the Black Solid Line
(C3) Represents the Solution from Convolution Integral Approach Using L-F.
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In Figure 4.9, for example-3, the phase plot from the system states obtained by

numerical integration is indicated by the thick blue line (C1), that by the analytical

solution using TINF is indicated by the dashed orange line (C2) and that by the

convolution integral approach using L-F transformation is represented by the solid

black line (C3). The simulations are run for 35 seconds again. It is observed that

the system states, for example-3 start-off at the same initial condition (indicated by

a black dot) in all three approaches. However, the analytical approach using TINF

is observed to drift away at the peaks of temporal variation of system states. At the

same time, the convolution integral approach using the L-F transformation follows

the numerical integration results closely.

4.5 Application: Stability of Stochastically Excited System

The stability analysis of an uncertain parametrically excited system is enabled us-

ing Lyapunov’s direct method. The construction of an appropriate Lyapunov function

enables this approach and is briefly explained in the following subsection

4.5.1 Construction of Lyapunov Functions

The Lyapunov techniques’ basic idea is to utilize the time rate of energy change

function V (x, t) to understand system stability. As detailed by Brogan (1985), the

general theorem can be stated as.

Theorem-1: Consider a general time-varying system of the form

ẋ = f(x, t) (4.27)

If a sing-valued scalar function V (x, t) exists, which is continuous and has contin-

uous first partial derivatives and for which

1. V (0, t) = 0 for all t;
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2. V (x, t) ≥ γ(||x||) > 0 for all x 6= 0 and for all t, where γ(.) is a continuous,

non-decreasing scalar function with γ(0) = 0;

3. V̇ (x, t) ≥ −α(||x||) < 0 for all x 6= 0 and for all t, where α(.) is a continuous,

non-decreasing scalar function with α(0) = 0;

4. V (x, t) ≥ −ν(||x||) for all x and t, where ν(.) is a continuous, non-decreasing

scalar function with ν(0) = 0;

5. γ(||x||) → ∞ as ||x|| → ∞; then x = 0 is uniformly globally asymptotically

stable.

The function γ, α, and ν are all positive constants for all t. V (x, t) is said to be

positive definite if V (0, t) = 0 and if V (x, t) is always greater than or equal to a time-

invariant positive function γ. Condition (1) and (2) require V (x, t) to be positive

definite. Similarly, condition (3) requires V̇ (x, t) to be negative definite. Condition

(5) requires V (x, t) to be infinite as ||x|| → ∞, and condition (4) prevents V (x, t) to

become infinite when ||x|| is finite.

Unfortunately, the Lyapunov theorems do not indicate how a Lyapunov function

might be found. There is no unique Lyapunov function for a given system. Some

are better than others. A V1(x) might be found, which indicates stability, V2(x)

might predict asymptotic stability for initial states quite close to the origin, and

V3(x) might show asymptotic stability for a broader region or even global asymptotic

stability. If a system is stable in one of the senses mentioned, it is ensured that an

appropriate Lyapunov function does exist. Consider a periodic system with stochastic

perturbation given by

ẋ = [A(t) + F(t)]x (4.28)
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where x and periodic A(t) are as defined before. F(t) is n×n matrix whose non-zero

elements fij(t) are stochastic process, measurable, strictly stationary, and that they

satisfy an ergodic property, as per Kushner (1967).

The linear periodic part of the equation (4.28) is assumed to be asymptotically

stable, and the stability bounds on F(t) need to be determined. Using the L-F

transformation x(t) = Q̄(t)z(t), the equation (4.28) can be reduced as

ż = [J̄ + G(t)]z (4.29)

where G(t) = Q̄−1(t)F(t)Q̄(t) and the properties of G(t) is the same as that of F(t).

It is noted that the J̄ matrix is a diagonal matrix with semi-simple eigenvalues having

negative real parts. The stability bounds on F(t) are identified using the approach

presented in Infante (1968).

Theorem-2: If, for some positive definite matrix (B̄) and some ε > 0

E{λmax
[
J̄T + G(t)T + B̄

[
J̄ + G(t)

]
B̄−1

]
} ≤ ε (4.30)

then equation (4.30) is almost surely asymptotically stable in the large.

Proof: Consider a Lyapunov function V (z) = zT B̄z, that is quadratic in nature.

Along the trajectories of equation (4.29), define

λ(t) =
V̇ (z)

V (z)
=

zT
[
(J̄ + G(t))T B̄ + B̄(J̄ + G(t))

]
z

zT B̄z
(4.31)

Using the properties of pencils of quadratic forms detailed by Gantmakher (1990),

the following inequality can be obtained

λmin
[
(J̄ + G(t))T + B̄(J̄ + G(t))B̄−1

]
≤ λ(t) ≤ λmax

[
(J̄ + G(t))T + B̄(J̄ + G(t))B̄−1

]
(4.32)
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where λmax and λmin, are the maximum and minimum real eigenvalues of a pencil.

It follows from equation (4.31) and equation (4.32) that

V [z(t)] = V [z(t0)]e
(t−t0)

[
1

t−t0

∫ t
t0
λ(τ) dτ

]
(4.33)

For some ε > 0, if E{λ(t)} ≤ −ε, V [z(t)] is observed to be bounded and V [z(t)]→

0 as t→∞. This condition resembles the inequality in equation (4.30), which proves

the results. The stability of equation (4.29) implies the stability of equation (4.28)

due to the transformation x = Q̃(t)z. It is noted that the eigenvalues of matrix J̄ are

required to have negative real parts in order to use to inequality condition, given by

equation (4.30).

Corollary-2: If, for some positive definite matrix (B̄) and some ε > 0

E{λmax
[
G(t)T + B̄G(t)B̄−1

]
} ≤ −λmax

[
J̄T + B̄J̄B̄−1

]
− ε (4.34)

then equation (4.29) is almost surely asymptotically stable in the large.

Proof: Following the theorem, it is noted that

λ(t) ≤ λmax
[
(J̄ + G(t))T + B̄(J̄ + G(t))B̄−1

]
≤λmax

[
J̄T + B̄J̄B̄−1

]
+ λmax

[
G(t)T + B̄G(t)B̄−1

]
(4.35)

By splitting the term on the right hand side as a sum of two separate maximization

and using the E{.} operator

E{λ(t)} = λmax
[
J̄T + B̄J̄B̄−1

]
+ E{λmax

[
G(t)T + B̄G(t)B̄−1

]
} ≤ ε (4.36)

generates the desired output. It is noted that when the second inequality in equation

(4.35) becomes equality, the stability results become comparable to that provided by
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the theorem. In the following subsection, the stability theorem is demonstrated on a

damped periodic Mathieu system with stochastic parametric excitation.

4.5.2 Example-4: Time Periodic System with Uncertain Parametric Excitations

Consider a damped Mathieu equation of the form

ẍ+ 2ζẋ+ [a+ b cos(ωt) + f(t)]x = 0 (4.37)

where f(t) represents the uncertain parametric excitation term. The same equation

can be expressed in the state space form as

d

dt

 x

ẋ

 =

 0 1

−(a+ b cos(ωt)) −2ζ


 x

ẋ

+

 0 0

−f(t) 0


 x

ẋ

 (4.38)

The second part of right hand side of equation (4.38) consists of the stochastic

parametric excitation (F(t)). Considering just the linear time periodic system with

damping, the L-F transformation (Q̄(t)) is computed using the state augmentation

and Normal Forms approach along with the Jordan matrix, J̄.

The system parameters for this example are considered to be the same as a =

3, b = 2.5, ω = 2π, along with the damping coefficient, ζ = 0.15. Considering the

positive definite matrix (B̄) to be identity matrix (I2×2), the expression for the theo-

rem
[
J̄T + G(t)T + B̄

[
J̄ + G(t)

]
B̄−1

]
can be computed. Using Schwarz’s inequality

and considering E{sin(nt)} = 0, E{cos(nt)} = 0, the stability condition for the given

system is derived from the Infante’s theorem as

−102.0145 + 139.33E{f(t)2} − 0.783E{f(t)} ≤ 12.4813 (4.39)

Assuming E{f(t)} = 0, the stability condition is computed to be
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Figure 4.10: Variation of E{f(t)2} with Respect to Change in Damping Coefficient
(ζ) .

E{f(t)2} ≤ 0.6503 (4.40)

The variation of the threshold of the uncertainty the system can withstand with

the increase in damping ζ, is depicted in Figure 4.10.

From Figure 4.10, it is observed that as the damping coefficient of the system is in-

creased, it can keep the system stable with higher amplitudes of stochastic parametric

excitations.

4.6 Conclusion

In this chapter, the application of the unified approach towards the computation of

the closed form expression of the L-F transformation for a linear time periodic system
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is briefly explained. Multiple techniques to invert the time varying L-F transformation

matrix are also included, along with comparisons. Furthermore, the Mathieu equation

with time periodic coefficients is considered with multiple perturbations for illustrative

examples.

The utilization of the computed L-F transformation and its inverse towards the

analysis of a time-periodic system with deterministic external and stochastic para-

metric excitation is demonstrated in this chapter. Both the approaches utilized the

computed L-F transformation and are observed to generate results very close to the

numerical integrated solution for both examples of deterministic external excitation.

In the case of a system with stochastic parametric excitation, the use of computed L-F

transformation, and Infante’s approach to analyzing the condition of robust stability

is demonstrated. In this chapter, the authors also analyzed the time periodic system

with nonlinear perturbations using the computed L-F transformation and its results

are observed to be better than the traditional Normal Forms approach. This provides

confidence in extending the unified theory towards the analysis of quasi-periodic sys-

tems and is discussed comprehensively in the following chapters.
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Chapter 5

ANALYSIS OF QUASI-PERIODIC SYSTEM

The dynamical system with periodic coefficients comprising of multiples of the

same frequency represents a time periodic system. However, in some real-world ap-

plications such as sea waves and heart rhythms, the frequencies of the periodic coef-

ficients could be incommensurate, resulting in quasi-periodic or chaotic systems, as

explained by Sharma and Sinha (2018). The presence of quasi-periodic behaviors in

various dynamical systems and bifurcation theory is detailed by Broer et al. (2009).

Davis and Rosenblat (1980) used the technique of multiple scales to determine the

stability boundaries of a quasi-periodic system. Belhaq et al. (2002); Guennoun et al.

(2002) applied twice to reduce a weakly damped nonlinear quasi-periodic oscillator

to an autonomous system. A nonlinear quasi-periodic Mathieu equation was trans-

formed to an approximate time-invariant form by Belhaq and Houssni (1999). The

application of rotation number towards the identification of stability bounds, for the

spectral theory of an almost periodic Schrödinger operator, was introduced by John-

son and Moser (1982). Zounes and Rand (1998) further analyzed the results based on

rotation number for a Hills quasi-periodic systems numerically and analytically us-

ing Lyapunov exponents. Though the application of rotation number and Lyapunov

exponents successfully generated the stability plots, they were observed to be com-

putationally expensive. Furthermore, the stability plots were generated using Hill’s

method of infinite determinants and perturbation techniques by Zounes and Rand

(1998) and Kovacic et al. (2018). However, Hill’s method of infinite determinants

was observed to fail to converge in all cases (Waters (2010)). A survey of multiple

reducibility techniques for linear quasi-periodic systems was detailed by Puig (2002);
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Puig and Simó (2006). These works also included a mathematical framework for the

extension of Floquet theory towards quasi-periodic systems based on the L-P trans-

formation. Redkar (2012) explained the feasibility of a Lyapunov based approach for

stability analysis of a linear quasi-periodic system, in the case of a bounded nonlinear-

ity. Wooden and Sinha (2007) used the Normal Forms technique to analyze periodic

quasi-periodic systems, with the aid of a detuning parameter or book-keeping param-

eter and local near-identity transformations near the stable points. The method of

Chebyshev polynomials and Picard iteration derived by Sinha et al. (1993); Sinha

and Juneja (1991) was extended to quasi-periodic systems too, where the system

was approximated as a periodic system. Sharma and Sinha (2020) demonstrated the

control of a chaotic behavior to a periodic orbit using the same approach. Though

the researchers successfully analyzed and built controllers for multiple time varying

systems using these techniques, their application was limited by the requirement of

higher order polynomials for better accuracy.

A dynamical equation of a linear quasi-periodic system can also be expressed as

equation (2.1). However, A(t) will be a n× n matrix containing finite number (k) of

incommensurable frequencies (k ≥ 2). The same could be expressed as

A(t) = (ω1t, ...ωkt) ∀k ≥ 2 (5.1)

where (ω1t, ...ωkt) is continuous and 2π periodic in each argument, and the ratio of

any two frequencies is irrational.

As per Floquet type theory, stated in Murdock (1978), the quasiperiodic system

following the linear differential equation (2.1) is reducible, if there is a differentiable

quasi-periodic matrix, P(t) (with the same frequencies), such that a linear transfor-
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mation, x = P(t)y would result in

ẏ = Cy (5.2)

where C is a constant complex matrix. The matrix, P(t), facilitates such a transfor-

mation called a Lyapunov-Perron (L-P) transformation matrix. Similar expressions

are utilized by Puig (2002); Puig and Simó (2006). Since the unified theory for

time-periodic system was capable of transforming it to a time-invariant form. The

prospects of the extension of this theory towards a quasi-periodic system is investi-

gated similarly in this chapter. Before applying the unified theory, a class of quasi-

periodic systems known as the ’Commutative Quasi-Periodic’ system is introduced in

the following section.

5.1 Commutative Quasi-Periodic System

As explained by Lukes (1982), for a general time varying system, expressed in

equation (2.1), the system matrix A(t) is called commutative, if there exists a matrix

D(t) such that

dD(t)

dt
= A(t) (5.3)

satisfying the relation A(t)D(t) − D(t)A(t) = 0. The D(t) matrix satisfying this

condition is called the antiderivative of A(t). The analytical expression for the D(t)

matrix can be computed using the following expression

D(t) = D(0) +

∫ t

0

A(ζ)dζ (5.4)

The equation (2.1) is called a commutative system if the A(t) matrix is commuta-

tive. This condition was slightly modified for deriving the closed form expression for

STM and is detailed in Wu and Sherif (1976) and Rao and Ganapathy (1979). They

claim that for a time varying system, expressed in equation (2.1) if the A(t) matrix
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can be decomposed as the following sum:

A(t) =
k∑
i=1

Cifi(t) (5.5)

where Ci is a commutative constant matrix, such that CiCj = CjCi and fi is a scalar

valued function, then the STM could be expressed as:

Φ(t, τ) =
k∏
i=1

eCi
∫ t
τ fi(θ)dθ (5.6)

However, in this section, a quasi-periodic system is considered, which is initially

verified for its commutative property, and L-P transformation is computed analyti-

cally. The decomposition rule, as per equation (5.5), is verified. Consider a quasi-

periodic system of the form shown below

ẍ− 2(b1 sin(ω1t) + b2 sin(ω2t))ẋ+ (a+ (b1ω1 cos(ω1t) + b2ω2 cos(ω2t))

+ (b1 sin(ω1t) + b2 sin(ω2t))
2)x = 0

(5.7)

where ω1 and ω2 are incommensurate frequencies. The constants a, b1, b2 are real

positive integers considered as the system parameters. Let us consider the system

states as x1 = x and x2 = ẋ1− (b1 sin(ω1t) + b2 sin(ω2t))x1. After converting equation

(5.7) in the state space form, as per the mentioned system states, and comparing it

to equation (2.1), the expression for A(t) is given as

A(t) =

b1 sin(ω1t) + b2 sin(ω2t) 1

−a b1 sin(ω1t) + b2 sin(ω2t)

 (5.8)

Initially, the antiderivative matrix, D(t), is computed using equation (5.4) for the

system matrix expressed in equation (5.8). For the given system, the antiderivative

matrix is computed as

D(t) =

∫ t

0

A(τ)dτ =

 b1(1−cos(ω1t))
ω1

+ b2(1−cos(ω2t))
ω2

t

−at b1(1−cos(ω1t))
ω1

+ b2(1−cos(ω2t))
ω2


(5.9)
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The computed D(t) matrix is verified to satisfy the relation A(t)D(t)−D(t)A(t) =

0. It was found that the computed D(t) matrix is indeed the antiderivative matrix of

the given system matrix A(t). Hence the system expressed in equation (5.7) is proved

to be commutative. Now verification of decomposition of the given A(t) matrix as

per equation (5.5) is initiated. The given A(t) matrix can be rewritten as

A(t) = b1sin(ω1t) + b2sin(ω2t)×

1 0

0 1

+ 1×

 0 1

−a 0

 (5.10)

where the constant matrices and time varying functions could be expressed as

C1 =

1 0

0 1

 = I, C2 =

 0 1

−a 0

 ,
f1(t) = b1sin(ω1t) + b2sin(ω2t), f2(t) = 1

(5.11)

The constant matrices in equation (5.11) follow the commutative rule (C1C2 =

C2C1). By considering τ=0, substituting equation (5.11) into equation (5.6), and

after solving the integrals the following is obtained

Φ(t, 0) = e
C1×(

b1(1−cos(ω1t))
ω1

+
b2(1−cos(ω2t))

ω2
)
.eC2×t

=

e(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)

0

0 e
(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)

 .eC2t
(5.12)

It is noted that the expression indicated in equation (5.12) is similar to that of the

Floquet decomposition for a periodic system, as expressed in equation (2.4). Since

this is the case of a quasi-periodic system, the resulting expression represents the

L-P transformation matrix, P(t). It is shown that this L-P transformation converts

the linear quasi-periodic system into a time invariant system. Hence the STM of the

given commutative quasi-periodic system could be expressed as

Φ(t) = P(t)eCt (5.13)

104



where

P(t) =

e(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)

0

0 e
(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)

 , C = C2 =

 0 1

−a 0


(5.14)

The decomposition is in agreement with the properties of the L-P transformation

mentioned by Murdock (1978). The equation (5.14) observed that the P(t) matrix is

quasi-periodic and C matrix is time-invariant. Similar properties were discussed by

Puig (2002) and Puig and Simó (2006).

From equations (5.13)) and (2.2), the closed form expression for the L-P transfor-

mation can also be computed from the temporal variations of the system states, as

shown below

P(t) = x(t)x−1(0)e−Ct (5.15)

One could numerically integrate the system equations and compute the L-P trans-

formation matrix using equation (5.15). However, the knowledge of the C matrix is

essential to employ this equation. To verify the L-P transformation matrix, the fol-

lowing condition is evaluated

P−1(t)[A(t).P(t)− Ṗ(t)] = C (5.16)

The missing terms in the above expression are computed, as indicated below.

P−1(t) =

e−(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)

0

0 e
−(

b1(1−cos(ω1t))
ω1

+
b2(1−cos(ω2t))

ω2
)


Ṗ(t) = (b1 sin(ω1t) + b2 sin(ω2t))

e(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)

0

0 e
(
b1(1−cos(ω1t))

ω1
+
b2(1−cos(ω2t))

ω2
)


(5.17)
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The expression in equation (5.16) indeed results in the time invariant matrix C,

and hence the theory is valid for the commutative quasi-periodic system. Similar

to the L-F transformation matrix, it is verified that the L-P transformation indeed

converts the quasi- periodic system to a constant coefficient system. Hence the closed

form analytical solution for L-P transformation is derived for a linear parametrically

excited commutative quasi-periodic system. This in agreement with the approach

discussed by Puig and Simó (2006). However, quasi-periodic systems that do not

comply with the non-commutative property need an alternate approach for analysis.

In the following sections, multiple approaches are discussed for the same.

5.2 Indirect Approach to Compute L-P Transformation

The application of the method of Normal Forms, in conjunction with the Floquet

theory was introduced by Waswa and Redkar (2020b). With the aid of an intuitive

state augmentation technique, the direct application of the Normal Forms technique

was feasible and capable of providing comparable results. The linear quasi-periodic

system was split such that the periodic term with a higher coefficient value was consid-

ered under the linear periodic system, and the corresponding L-F transformation was

applied to the system equation. The remaining quasi-periodic term was augmented

after the L-F transformation, and the subsequent TDNF technique was applied to

the system to eliminate the nonlinear terms.

In this section, a linear quasi-periodic system is analyzed using a similar approach

but with a change in the sequence of operations. The quasi-periodic system is split

such that one of the periodic coefficients is considered a part of a linear periodic system

and the other coefficient as the quasi-periodic term. The split system is subjected

to state augmentation and further L-F transformation to convert the linear periodic

part to a time-invariant form. Subsequently, the TDNF technique is applied to reduce
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the system further and complete the analysis. A detailed explanation of the modified

approach is provided in the subsequent subsection.

5.2.1 Intuitive State Augmentation

With the aid of an intuitive state augmentation, the periodic terms are trans-

formed into a state variable. This approach applies to both parametrically excited

periodic terms and externally excited periodic forcing terms. In this section, let us

consider a linear quasi-periodic system with only two incommensurate frequencies.

The quasi-periodic system is split such that one of the periodic terms is considered

in the linear periodic system and the periodic term of incommensurate frequency is

considered a separate term. Hence the equation (2.1) is modified as

ẋ = Â1(t)x + Â2(t)x (5.18)

where Â1(t) is an n × n periodic matrix with frequency ω1 and T -periodicity. The

Â2(t) is an n × n periodic matrix with frequency ω2. The quasi-periodic term with

just a sine or cosine trigonometric function in Â2(t), is considered as a separate state,

as indicated below

p = cos(ω2t)

ṗ = −ω2 sin(ω2t) = −q

q̇ = ω2
2 cos(ω2t) = ω2

2p = −p̈

 (5.19)

The updated system states vector with the augmented states is indicated using

the following vector

x̃ = [x, p, q]T (5.20)

This converts the Â2(t)x term to a l × 1 nonlinear vector with both the original

and augmented states. Similarly, the matrix Â1(t) is appended with the coefficients

of the augmented states. With the updated system states, the system equation (5.18)
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is updated as follows

˙̃x = Ã1(t)x̃ + f(x̃) (5.21)

where f(x̃) is the l× 1 vector containing all the nonlinear monomial terms in x̃. The

term Ã1(t) is now a l × l square matrix and is still T - periodic. Since the system

is now updated as a linear periodic system, an L-F transformation, x̃ = Q(t)ỹ, is

viable. The updated system after undergoing a L-F transformation is expressed as

˙̃y = R̃ỹ + Q−1(t)f(Q(t)ỹ) (5.22)

where R̃ is the l × l linear time invariant matrix. It is observed that the linear time

periodic matrix (Ã1(t)) of equation (5.21) is transformed as the time-invariant ma-

trix (R̃) in equation (5.22). In addition to the linear matrix, the nonlinear vector is

appended with augmented states and time varying coefficients. This updated system

equation (5.22) is comparable to equation (2.21) and is amenable to the TDNF tech-

nique, as discussed in section 2.3.2. This would aid in eliminating the non-prominent

nonlinear terms and further reducing the system to a form similar to equation (2.28).

The indirect approach discussed so far is applied on a non-commutative linear quasi-

periodic system in the subsequent subsection.

5.2.2 Application of the Indirect Approach to a Non-commutative Linear

Quasi-periodic System

Consider a linear quasi-periodic Hill equation as shown below

ẍ+ dẋ+ (a+ b1 cosω1t+ b2 cosω2t)x = 0 (5.23)

where a, b1, b2, and d are the system parameters, ω1 and ω2 are the incommensurate

frequencies. Since equation (5.23) is not commutative, proceed with the technique to

split the system equation and express it in the state space form
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d

dt

 x1

x2

 =

 0 1

−(a+ b1 cosω1t) −d


 x1

x2

−
 0

b2x1 cosω2t

 (5.24)

where x = x1 and ẋ = x2. The periodic term with the frequency ω1 and principal

period, T , is considered in the linear part, and the one with frequency ω2, is considered

as the quasi-periodic term. The periodic term, with frequency ω2, is augmented as a

state as per equation (5.19). the system equation gets updated as

d
dt



x1

x2

p

q


=



0 1 0 0

−(a+ b1 cosω1t) −d 0 0

0 0 0 −1

0 0 ω2
2 0





x1

x2

p

q


+



0

−b2x1p

0

0


(5.25)

Now an L-F transformation, x̃ = Q(t)ỹ, is applied to equation (5.25), that results

in time-invariant coefficients in the linear term as shown below

d
dt



y1

y2

y3

y4


=



R11 R12 0 0

R21 R22 0 0

0 0 R33 R34

0 0 R43 R44





y1

y2

y3

y4



+



Q−1
11 Q−1

12 0 0

Q−1
21 Q−1

22 0 0

0 0 Q−1
33 Q−1

34

0 0 Q−1
43 Q−1

44





0

−b2(Q11y1 +Q12y2)(Q33y3 +Q34y4)

0

0



(5.26)
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After performing the matrix multiplication, the equation (5.26) gets updated as

d
dt



y1

y2

y3

y4


=



R11 R12 0 0

R21 R22 0 0

0 0 R33 R34

0 0 R43 R44





y1

y2

y3

y4



+



−b2Q
−1
12 (Q11y1 +Q12y2)(Q33y3 +Q34y4)

−b2Q
−1
22 (Q11y1 +Q12y2)(Q33y3 +Q34y4)

0

0



(5.27)

The equation (5.27) now has a time invariant linear part and a modal transfor-

mation of the form ỹ = Mz applied to it would update the equation as follows

ż = Jz−M−1



−b2Q
−1
12 (Q11y1 +Q12y2)(Q33y3 +Q34y4)

−b2Q
−1
22 (Q11y1 +Q12y2)(Q33y3 +Q34y4)

0

0


(5.28)

where J is the Jordan canonical form of R̃. The equation (5.28) is analogous to equa-

tion (2.22) and is susceptible to the application of the TDNF technique to eliminate

the non-prominent nonlinear terms. The back-substitution of the solutions for the

augmented/fictitious states in the near-identity transformation results in closed form

expression for the Lyapunov Perron Transformation. It is observed that the near

identity transformation needs to be expanded to an order higher than the order of

nonlinearity of the original system, which in this case is two.

The successive transformations of the original system states, using various tech-

niques, resulted in a time invariant form. This resonates with the theory of L-P

transformation, as mentioned in the subsection of ’Commutative linear quasiperiodic
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system’. The initial L-F transformation, subsequent modal transformation and later

near-identity transformation for TDNF collectively contribute to reducing the system

into a time-invariant form. Hence, all these transformations jointly are considered to

contribute to an equivalent L-P transformation of the original linear quasi-periodic

system. After substituting the augmented states with their periodic equivalent, the

near-identity transformation contains both the frequency terms, the system charac-

teristics and also transforms the system coefficient to its time invariant form, it can

be considered as the closest form of the L-P transformation matrix. This approach is

also applicable towards the commutative linear qausi-periodic system, and the results

of such application are detailed in the subsequent section.

5.2.3 Results and Discussion

In this section, the theory of L-P transformation for a linear quasi-periodic sys-

tem is validated using numerical simulation results. Initially, a linear quasi-periodic

Hill equation is considered to demonstrate the application of the indirect approach.

The reduced system from the indirect approach is back transformed to the original

coordinates for comparisons of temporal variations. The temporal comparisons and

other results are indicated for the case of a system without damping and that with

damping.

Even though a mathematical expression was derived for the case of commutative

linear quasi-periodic system the indirect approach using the TDNF technique was

also applied on this system. The results from the TDNF technique are verified with

both numerical integration and analytical techniques.
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Linear Quasi-Periodic System Without Damping

The linear quasi-periodic Hills equation (5.23) was initially considered without damp-

ing (d=0) to test the indirect approach. The system parameters used were a =

1.5, b1 = 1.0, b2 = 0.5. The incommensurate frequencies considered were ω1 = π rads

and ω2 = 7 rads.

Initially, the given Hills quasi-periodic system was split as indicated in equation

(5.24) and an intuitive state augmentation was applied, as indicated in equation

(5.19). This added two fictitious states considering ω2 = 7 rads and the system

equation was updated to the form of equation (5.25). Since ω1 was considered in

the linear periodic part, the principal time period for the periodic subsystem was

T = 2secs. The FTM and the constant Floquet matrix of the periodic part evaluated

at the principal period was found to be as equation (5.29)

Φ(T ) =



−0.8372 0.7830 0 0

−0.3821 −0.8372 0 0

0 0 0.1367 −0.1415

0 0 6.9343 0.1367


,

R̃ =



0.0 1.8344 0 0

−0.8952 0.0 0 0

0 0 0 −0.1024

0 0 5.0177 0



(5.29)

The eigenvalues of these matrices indicate the stability characteristics of the linear

periodic part as per Floquet theory. The Floquet Multipliers were computed to be

−0.8372± i0.5470; 0.1367± i0.9906 for the undamped linear periodic system and are

plotted on a unit circle, as shown in Figure 5.1.

From Figure 5.1, it is observed that all the multipliers lie on the unit circle.
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Figure 5.1: Floquet Multipliers of the Linear Part of the Undamped Quasi-periodic
System

Hence, the linear part of the system can be deduced to be marginally stable. Further,

the element-wise variation over time of the L-F transformation matrix, Q(t), was

computed using Chebfun. As mentioned earlier, each element of the Q(t) matrix is a

truncated Fourier series. The inverse of this matrix (Q−1(t)) was evaluated and used

in equation (5.27), to update the system equation. The element-wise variation of

both Q(t) and Q−1(t) matrices for the principal time period (T=2 secs) are indicated

in Figure 5.2.

Later, proceed with a modal transformation to the equation (5.27), and the near

identity transformation was successively applied to facilitate the application of the

TDNF technique. The time dependent terms are averaged, and the insignificant terms

were discarded to reduce the system in the form of equation (5.30)
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(a)

(b)

Figure 5.2: Element-wise Variation During the Principal Time Period for (a) Qij(t)
and (b) Qij

−1(t) Matrices of the Periodic Subsystem Without Damping

114





v̇1

v̇2

v̇3

v̇4


=



(0.0 + i1.28147)v1

(0.0 − i1.28147)v2

(0.0 + i0.71675)v3

(0.0 − i0.71675)v4


(5.30)

From equation (5.30), it can be observed that the system is reduced to a time-

invariant form, similar to the Floquet theory for the periodic system. However, the

stability characteristics of the system are preserved in the reduced form after TDNF

application. The given set of differential equations are solved to obtain the TDNF

solution. This solution is back transformed to the original system coordinates to

compare the results with the numerical method for the same set of initial conditions.

The comparisons of the temporal variations of this system are indicated in Figures

5.3a,b and the phase plot comparisons are shown in Figure 5.4.

As indicated in these Figures 5.3a,b and 5.4, the solid red line indicates the solution

obtained from the Normal Forms technique, and the black dashed line corresponds

to the numerical integration method. The system was run for 50 seconds, and it is

observed that the temporal variations of the back transformed Normal Forms solution

follow the trend of the numerical solution. For clarity, the phase plot comparisons

were run for 30 seconds, and they indicate very minimal deviation from the numerical

results. It is also observed that the system is gradually growing/spiraling out from

the initial condition of x1(0) = 0 and x2(0) = 0.1, but the phase plot is bounded. This

validates that the indirect technique is applicable to a linear quasi-periodic system

without damping.
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(a)

(b)

Figure 5.3: Comparison of System State Variation for the Quasi-periodic System
Without Damping using Indirect Approach, Where (a) Shows x1 State and (b) Shows
x2 State Variations
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Figure 5.4: Comparison of phase plot variation for the quasi-periodic system without
damping using Indirect Approach

Quasi-Periodic System With Damping

The Hills quasi-periodic system was later analyzed for the case with damping (d=0.3).

The system parameters and the incommensurate frequencies remain the same as

a = 1.5, b1 = 1.0, b2 = 0.5, ω1 = π rads and ω2 = 7 rads. The process of splitting

the quasi-periodic system remained the same as the case without damping. Similar

to the case of ’System Without Damping’, the periodic part with ω2 = 7 rads was

considered as the quasi-periodic term and the state augmentation was applied to it.

Besides, the damping coefficient was added to the linear periodic part and underwent

L-F transformation with the periodic term containing ω1 = π rads. The FTM and

the constant Floquet matrix for the periodic part with damping was evaluated to be
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Figure 5.5: Floquet Multipliers of the Linear Part of the Damped Quasi-periodic
System

Φ(T ) =



−0.5228 0.5928 0 0

−0.3080 −0.7006 0 0

0 0 0.1367 −0.1415

0 0 6.9343 0.1367


,

R̃ =



0.1205 1.8030 0 0

−0.9367 −0.4205 0 0

0 0 0 −0.1024

0 0 5.0177 0



(5.31)

The Floquet Multipliers were −0.6117± i0.4179; 0.1367± i0.9906 for the damped

linear periodic system, and they are plotted with a unit circle in Figure 5.5.

As per Figure 5.5, since all the multipliers lie within or on the unit circle, the linear

part of the system was concluded to be stable. Similar to the case without damping,

both Q(t) and Q−1(t) matrices were evaluated for the system with damping. The sys-

tem was transformed to a form with a linear time-invariant coefficient. Subsequently,
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a modal transformation and near identity transformations were applied to enable the

application of the TDNF technique. The reduced Normal Forms expression for the

case of a linear quasi-periodic system with damping was computed to be



v̇1

v̇2

v̇3

v̇4


=



(−0.15 + i1.2711)v1

(−0.15− i1.2711)v2

(0.0 + i0.71675)v3

(0.0 − i0.71675)v4


(5.32)

The TDNF solution was computed from equation (5.32) and back transformed to

the original system coordinates. The back transformed solutions were compared with

the numerical integration technique for the same set of initial conditions of x1(0) = 0

and x2(0) = 0.1. The comparisons of the temporal variations of the system with

damping are displayed in Figures 5.6a,b and the phase plot comparisons are shown

in Figure 5.7.

Similar to the case without damping, the solid red line indicates the solutions

obtained from the Normal Forms technique back transformed to the original coor-

dinates, and the black dashed line corresponds to the numerical integration method

in these plots. The temporal variations are simulated for 50 seconds, and the phase

plot comparisons are run for 30 seconds for clarity. It is observed that the temporal

variations of the reduced order Normal Forms solution follow the numerical solu-

tion closely. The phase plot comparisons indicate intermittent deviation from the

numerical results and gradually decaying/spiraling in from the initial conditions.

Commutative Quasi-Periodic System

For the given commutative quasi-periodic system indicated in equation (5.7), the nu-

merical simulation results were performed and compared with the analytical technique
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(a)

(b)

Figure 5.6: Comparison of System State Variation for the Hills Quasi-periodic Sys-
tem with Damping Using Indirect Approach, Where (a) Shows x1 State and (b)
Shows x2 State Variations
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Figure 5.7: Comparison of Phase Plot Variation for the Hills Quasi-periodic System
with Damping Using Indirect Approach

in this subsection. The system parameters considered were a = 2.0, b1 = 1, b2 = 0.1

and the incommensurate frequencies as ω1 = 2π rads and ω2 = 7 rads. The system

parameters were applied to the equation (5.14) to compute the L-P transformation

(P(t)) and C matrices analytically. The eigenvalues of the constant C matrix were

observed to be 0.0 ± i1.4142. Similarly, the system parameters were substituted in

equation (5.7) and numerically integrated to obtain the numerical solutions. In order

to apply the indirect approach, the system parameters were substituted in the state

space form, equation (5.8), and it was split into a form similar to equation (5.24), as

indicated below

d

dt

 x1

x2

 =

 1 sin(2πt) 1

−2 1 sin(2πt)


 x1

x2

+

 0.1 sin(7t)x1

0.1 sin(7t)x2

 (5.33)
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The term, sin(7t), was considered as the augmented state, and the system equation

was updated to a form similar to equation (5.25). Further, an L-F transformation cor-

responding to the linear periodic part (of the principal period, T=1 sec) was applied.

The FTM and the constant Floquet matrix of the linear periodic part computed at

the principal period is shown below

Φ(T ) =



0.1559 0.6985 0 0

−1.3969 0.1559 0 0

0 0 0.7539 0.0939

0 0 −4.5989 0.7539


,

R̃ =



0.0 1.00 0 0

−2.0 0.0 0 0

0 0 0 0.1024

0 0 −5.0177 0



(5.34)

The Floquet Multipliers were computed to be 0.1559 ± i0.9878; 0.7539 ± i0.6570

and are indicated in Figure 5.8.

As per Figure 5.8, all the multipliers lie on the unit circle, and hence the linear

part of the system can be concluded to be marginally stable. Further, the element-

wise variation of both Q(t) and Q−1(t) matrices for the principal time period (T=1

sec) are indicated in Figure 5.9.

After substituting the expressions of Q(t) and Q−1(t) matrices, the updated com-

mutative system underwent a modal transformation and subsequently a series of

near-identity transformations to apply the TDNF technique. The reduced system

after the application of the TDNF technique is indicated below
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Figure 5.8: Floquet Multipliers of the Linear Part of the Commutative Quasi-
periodic System



v̇1

v̇2

v̇3

v̇4


=



(0.0 + i1.41421)v1

(0.0 − i1.41421)v2

(0.0 + i0.71680)v3

(0.0 − i0.71680)v4


(5.35)

It is observed from equation (5.35) that the coefficients of the first two states

(which are the original system states) correspond to the eigenvalues of the constant

C matrix, computed analytically. When equation (5.35) is expressed in the matrix

multiplication form, the left-top 2 × 2 square matrix will represent the Jordan form

of the C matrix. Hence, the reduced form after TDNF application was observed to

be time-variant and comparable to the C matrix. This resonates with the Floquet

type theory. The computed set of differential equations, in equation (5.35), were

solved to obtain the Normal Forms solution. This solution was back transformed

to the original system coordinates to compare the results with the numerical and

analytical method for the same set of initial conditions, x1(0) = 1.0 and x2(0) = 0.
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(a)

(b)

Figure 5.9: Element-wise Variation During the Principal Time Period for (a) Qij(T )
and (b) Qij

−1(T ) Matrices of the Periodic Subsystem of the Linear Commutative
Quasi-periodic System
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Meanwhile, the L-P transformation matrix (P(t)) transforms the given system to a

time-invariant form. The STM (Φ(t)), using the analytical L-P transformation matrix

(P(t)), was computed as per equation (5.13). This STM (Φ(t)) was multiplied with

the same set of initial conditions to generate the system state evolution over time.

The comparisons of the temporal variations of this system are displayed in Figures

5.10a,b.

As indicated in Figures 5.10a,b, the black dashed line indicates the numerically

integrated solution of the original system equation (5.7), the blue dashed line in-

dicates the state evolution variation of the analytically derived STM and the solid

red line indicates the back-transformed Normal Forms solution as per the indirect

approach for non-commutative systems. The simulations were run for 30 seconds,

and the comparisons were observed to agree. Therefore, a given commutative quasi-

periodic system can be reduced to a time invariant form analytically using an L-P

transformation matrix, and the Floquet type theory can be extended towards such a

system. Additionally, the indirect approach for the non-commutative system is also

applicable towards the commutative system and would generate comparable results

with both numerical integration and analytical approaches.

Since the temporal variations match closely and the C matrix was known for the

given commutative system, the L-P transformation matrix was evaluated from the

temporal variations of the back-transformed Normal Forms solutions. The temporal

variations were evaluated for the initial conditions of x1(0) = 1.0;x2(0) = 0.0 and

x1(0) = 0.0;x2(0) = 1.0. The resulting temporal variations were concatenated such

that the term x(0), in equation (5.15), becomes an identity matrix. The fully popu-

lated x(t) matrix and the analytically derived C matrix were substituted in equation

(5.15) to evaluate the L-P transformation matrix from the indirect approach. The

comparisons of the element-wise variations for the L-P transformation matrix, with
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(a)

(b)

Figure 5.10: Comparison of System State Variation for the Commutative Quasi-
periodic System Using Indirect Approach, Where (a) Shows x1 State and (b) Shows
x2 State Variations
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Figure 5.11: Comparison of Element-wise Variation of the L-p Transformation Ma-
trix for the Commutative Quasi-periodic System

the analytical expression for the time period of 1 sec, are displayed in Figure 5.11.

In Figure 5.11, the black line corresponds to the analytical expression, and the

solid red line corresponds to the Normal Forms derived expression. It is observed that

the trend of the analytical solution is being followed by the Normal Forms derived

solution for the L-P transformation matrix. This validates the indirect approach

applying to both commutative and non-commutative linear quasi-periodic systems.

The extension of Floquet theory towards quasi-periodic systems was validated

using the techniques discussed in this section. However, the temporal variations for

the system states matched very well only when the quasi-periodic coefficients were low

or insignificant. Additionally, in these cases, the L-P transformation matrix computed

was not in agreement with numerical results for the commutative system. In order

to facilitate the analysis of a strongly quasi-periodic and nonlinear systems, a direct

approach was formulated, as discussed in the following section.
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5.3 Direct Approach to Compute L-P Transformation

In this section, the unified theory (discussed in section 2.4) for the time-periodic

system is extended towards quasi-periodic systems and serves as a direct approach.

The direct approach overcomes the deficiencies of the indirect approach and aids

in the direct computation of the closed form expression for the L-P transformation

matrix.

Consider a linear parametrically excited quasi-periodic system with both con-

stant and periodic coefficients with incommensurate frequencies expressed as equation

(2.29), where A(t) = B0+B(t) is similar to equation (2.6) of the time-periodic system.

The system initially is subjected to an intuitive state augmentation, as detailed in

2.2. The periodic and quasi-periodic terms in the B(t) matrix are considered separate

augmented states. Similar to the case of the periodic system, the state augmentation

would append the linear constant matrix (B̃0) with the constant coefficients of the

augmented states. Additionally, the vector B(t)x(t) is transformed to a nonlinear

vector (B̃(x̃)), as shown in equation (2.9). This results in the system equation be-

ing transformed to an updated system of the form indicated in equation (2.11). A

modal transformation on the updated system, x̃(t) = M̃z̃(t), would transform the

system to its Jordan form (similar to equation (2.12)) and is amenable to a near-

identity transformation and application of Normal Forms technique. Since there is

no time-dependent terms, the application of TINF is feasible, as indicated in section

2.3. Similar to the case of periodic system, the Normal Forms of order higher than

the order of the nonlinearity of the equation (i.e. two for the cases indicated in this

section) are required to be computed. This would result in the reduced system equa-

tion, as indicated in equation (2.20). Subsequently, the fictitious/augmented states

are replaced by their closed form expressions. A time-invariant system is obtained
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from the TINF solution for a linear quasi-periodic system in the absence of resonant

terms.

The near-identity transformation encompasses the dynamical characteristics of

both system states and augmented states. The reduced system near identity trans-

formation can also be expressed as

z̃(t) =
[
I + P̄(t)

]
ṽ ≈ P̄(t)ṽ(t) (5.36)

where P̄(t) serves as the near-identity transformation matrix and contains all the

higher order nonlinear terms/coefficients associated with the states. This transfor-

mation converts the system equation into a linear time-invariant system, as follows

˙̃v = J̄ṽ (5.37)

The original quasi periodic system, using the near-identity transformation, re-

sulted in a time invariant form. It is important to note that the states in the near-

identity transformation are augmented states. These augmented states are known

periodic functions of incommensurate frequencies. Thus after these augmented states

are replaced by the known periodic functions with incommensurate frequencies, the

near-identity transformation yields a quasi-periodic transformation that converts the

original quasi-periodic system into a time invariant one.

As indicated in equation (5.13), by applying L-P transformation, the STM in the

Normal Forms coordinate can be decomposed as

Φ̄(t) = P̄(t)eJ̄t (5.38)

From the Φ̄(t) in equation (5.38), the STM of the original system, Φ̂(t), could be

computed using back transformation. This would aid in generating the state evolution

of the original system over time. Though similarities between the averaging technique
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Figure 5.12: Comparison of Multiple Techniques to Analyze Linear Quasi-periodic
Systems

and the Normal forms technique in the computation of monodromy matrix were also

discussed by Sanders et al. (2007); Verhulst (1990), a practical yet straightforward

technique to compute the elusive L-P transformation was not discussed explicitly.

The unified theory serves as a direct approach by augmenting all the time vary-

ing coefficients as additional fictitious states. The direct approach circumvents the

requirement to split the system and perform an L-F transformation before applying

the Normal Forms technique. This reduces the computational complexity. Moreover,

the direct approach provides a clean expression for the L-P transformation matrix

and STM. A flowchart indicating the steps involved in the direct approach, indirect

approach, and prior work is indicated in Figure 5.12. The application of the direct

approach towards a linear quasi-periodic system is detailed in the subsequent section.
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5.3.1 Application for Non-Commutative Quasi-periodic System

Initially, the direct approach is applied on a linear quasi-periodic system without

damping. Later, the original quasi-periodic system is updated with a damping term

to analyze the direct approach’s temporal variation.

Linear Quasi-periodic System Without Damping

Consider a Hills quasi-periodic system indicated below in equation (5.39)

ẍ+ (a+ b(cos(ω1t) + cos(ω2t)))x = 0 (5.39)

The above equation is quasi-periodic if ratio of both the frequencies, ω1

ω2
, is incom-

mensurate. After rearrangement, it could be expressed as

ẍ = −ax− bx(cos(ω1t) + cos(ω2t)) (5.40)

As mentioned in section 2.2, the periodic coefficients are converted to fictitious/augmented

states as shown below in equation (5.41)

p1 = cos(ω1t); p2 = cos(ω2t)

ṗ1 = −ω1 sin(ω1t) = q1; ṗ2 = −ω2 sin(ω2t) = q2

p̈1 = −ω1
2 cos(ω1t) = −ω1

2p1 = q̇1;

p̈2 = −ω2
2 cos(ω2t) = −ω2

2p2 = q̇2

(5.41)

By substituting equation (5.41) into equation (5.40) and converting it into the
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state space form results in

d

dt



x

ẋ

p1

q1

p2

q2



=



0 1 0 0 0 0

−a 0 0 0 0 0

0 0 0 1 0 0

0 0 −ω2
1 0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
2 0





x

ẋ

p1

q1

p2

q2



+



0

−bx(p1 + p2)

0

0

0

0



(5.42)

By comparing equation (5.42) to equation (2.11), the following can be deduced



x

ẋ

p1

q1

p2

q2



=



x1

x2

x3

x4

x5

x6



,



0 1 0 0 0 0

−a 0 0 0 0 0

0 0 0 1 0 0

0 0 −ω2
1 0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
2 0


= B̃0,



0

−bx(p1 + p2)

0

0

0

0



= B̃(x̃)

(5.43)

The equation (5.42) is similar to equation (2.11), with a constant linear matrix and

a nonlinear vector. As mentioned in section 5.3, a modal transformation (correspond-

ing to the constant linear matrix) is applied. This results in the Jordan canonical

form of the equation, similar to the form indicated in equation (2.32). The updated

system is amenable to undergo near-identity transformation and application of the

TINF technique. In this section, the Normal Forms solution of an order of three was

considered to ensure that one account for enough nonlinear terms. For more accurate

results, one may include higher order, but it would increase the computational time.

The resulting reduced system after the application of the Normal Forms technique is

indicated in equation (5.44).
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

v̇1

v̇2

v̇3

v̇4

v̇5

v̇6


=



v1√
−a

(
a+

b2(v5v6ω2
1(−4a+ω2

1)+v3v4ω2
2(−4a+ω2

2))

(4a−ω2
1)ω2

1(4a−ω2
2)ω2

2

)
v2√
−a

(
−a+ b2

(
v3v4

4aω2
1−ω4

1
+ v5v6

4aω2
2−ω4

2

))
−v3

√
−ω2

1

v4

√
−ω2

1

−v5

√
−ω2

2

v6

√
−ω2

2


(5.44)

From equation (5.44), the closed form expressions for the augmented states could

be identified as indicated below

v3 = e(−
√
−ω2

1)tv30, v4 = e(
√
−ω2

1)tv40, v5 = e(−
√
−ω2

2)tv50, v6 = e(
√
−ω2

2)tv60 (5.45)

The closed form expressions for the augmented states could be back substituted

in the expression for the first two states. This would aid in computing the closed

form expressions for the original system states. It is observed that the exponential

terms for the expressions of v3 and v4 are complex conjugates. Hence the terms with

both these states getting multiplied would result in the multiplication of their initial

conditions. A similar trend is observed for v5 and v6 states too. With these factors

accounted, the closed form expression for the first two states could be expressed as

v1 = e

(
1√
−a

(
a+

b2(v50v60ω
2
1(−4a+ω21)+v30v40ω

2
2(−4a+ω22))

(4a−ω21)ω
2
1(4a−ω

2
2)ω

2
2

))
t
v10

v2 = e

(
1√
−a

(
−a+b2

(
v30v40

4aω21−ω
4
1

+
v50v60

4aω22−ω
4
2

)))
t
v20

(5.46)

By expressing the updated equation (5.46) in the matrix multiplication form, the

expression for J̄ matrix is deduced. By substituting equation (5.45) in the near-

identity transformation matrix and expressing it in the matrix multiplication form

would resemble the expression indicated in equation (5.36). The higher the order

of the TINF solution, the longer the expression would be, as it accounts for more

nonlinear terms.
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Since all the dynamics are observed to be expressed in the first two states, the

system state evolution is evaluated in the TINF coordinate (Φ̄(t)), using equa-

tion (5.38), for the first two states. The initial conditions in the original system

coordinates(x10, x20, x30, x40, x50, x60) are successively transformed to determine its

corresponding values in the TINF coordinate (v10, v20, v30, v40, v50, v60). The STM in

the TINF coordinate (Φ̄(t)) is evaluated and back-transformed to its original coordi-

nates (Φ̂(t)). The evolution of the state over the period of time is determined using

Φ̂(t) and the results are compared with that of the numerical integration results of

the system in original coordinates.

Linear Quasi-periodic System With Damping

The Hills quasi-periodic system, equation (5.39), is updated with a damping term, as

shown below

ẍ+ (a+ b(cos(ω1t) + cos(ω2t)))x+ dẋ = 0 (5.47)

Similar to the case without damping, the periodic coefficients are expressed as

fictitious/augmented states, and the system matrix is updated, as indicated below in

equation (5.48)

d

dt



x

ẋ

p1

q1

p2

q2



=



0 1 0 0 0 0

−a −d 0 0 0 0

0 0 0 1 0 0

0 0 −ω2
1 0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
2 0





x

ẋ

p1

q1

p2

q2



+



0

−bx(p1 + p2)

0

0

0

0



(5.48)

The subsequent procedure to reduce the quasi-periodic system remains akin to

the case without damping. A modal transformation on the updated linear constant
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matrix (containing damping term) is performed to convert the updated system equa-

tion to its Jordan canonical form with semi-simple eigenvalues. Furthermore, near-

identity transformations and the TINF technique reduce the system by eliminating

non-prominent nonlinear terms. The STM (Φ̄(t)) is computed from the TINF solution

and back-transformed to determine Φ̂(t) matrix. The time evolution of the system

states is determined using Φ̂(t) matrix and compared with numerical techniques.

The results of the temporal variation of the system states for the Hills quasi-

periodic system (both with and without damping), suing the direct approach, are

discussed in the subsequent section. This direct approach is also applicable towards

the commutative linear quasi-periodic system, and the results of such application are

detailed in the following section.

5.3.2 Results and Discussions

The direct approach is applied on a parametrically excited linear quasi-periodic

system, with semi-simple eigenvalues, and compared with numerical simulations. A

Hills quasi-periodic system without damping (indicated in equation (5.39)) is initially

considered. The sequential application of state augmentation, modal transformation,

and TINF technique reduces the system to a time-invariant form, as detailed in

subsection 5.3.1. The reduced system is back-transformed to the original coordinates,

and the temporal variations are compared with the numerical integration method.

Later, the initial Hills quasi-periodic system is updated with a damping coefficient,

and the procedure is repeated for temporal variation comparisons. Furthermore, the

same direct approach is applied to the commutative quasi-periodic system. In this

section, for all the quasi-periodic systems the frequencies with incommensurate ratios

are ω1 = 2π rads and ω2 = 7 rads.
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Quasi-periodic System Without Damping

Initially, the Hills quasi-periodic system without damping is evaluated as described in

subsection 5.3.1. The linear constant term is considered as a = 3.0, and the common

coefficient of the time varying part is considered to be b = 2.5 for equation (5.39).

The original system is subjected to state augmentation, modal transformation, and

near-identity transformation to facilitate the application of the TINF technique. As

indicated in equation (5.44), the reduced system after TINF application is computed

as



v̇1

v̇2

v̇3

v̇4

v̇5

v̇6


=



(0.0 − i1.7892)v1

(0.0 + i1.7892)v2

(0.0 − i6.2832)v3

(0.0 + i6.2832)v4

(0.0 − i7.0000)v5

(0.0 + i7.0000)v6


(5.49)

As mentioned earlier, expressing equation (5.49) in the matrix multiplication form

provides an expression for J̄ matrix, and it is observed to be time-invariant. Hence,

the original linear parametrically excited quasi-periodic system is reduced to a time-

invariant form, similar to equation (5.37).

The near-identity transformations are also expressed in the matrix multiplication

form, similar to equation (5.36). The closed form expressions for the augmented states

(from equation (5.49)) are substituted in the near-identity transformation matrix ex-

pression to obtain P̄(t). The individual elements of the updated near-identity trans-

formation matrix (P̄(t)) is indicated in the Appendix-B. The updated P̄(t) matrix is

observed to be time varying and containing both the incommensurate frequencies of

the original quasi-periodic system.
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As discussed in section 5.3, the STM in the TINF coordinate is computed using

equation (5.38). The STM from the reduced system using the TINF technique is then

back transformed to the original coordinates. The state evolution of the system using

the back-transformed STM (Φ̂(t)) for the initial conditions of x1(0) = 1, x2(0) = 0 are

plotted and compared with the numerically integrated results of the original system.

The comparisons of the temporal variations are indicated in Figure 5.13. The phase

plot variations and their comparison with the numerical technique are indicated in

Figure 5.14.

In all three plots, the numerically integrated solution is represented by the black

dashed line, and the solution from the Normal Forms technique is represented by the

solid red line. It is observed that the given linear quasi-periodic system is bounded and

the Normal Forms solution coincides with the numerical techniques in all three plots.

More cases of comparisons of temporal variations for different values of coefficients

are indicated in Chapter 8.

Quasi-periodic System With Damping

The Hills quasi-periodic system updated with damping term (d = 0.3), as indicated

in equation (5.47), is evaluated in this subsection. All the other system parameters

remain the same as the case without damping (a = 3.0, b = 2.5, ω1 = 2π and ω2 = 7).

Similar to the system without damping, the system with damping also undergoes state

augmentation, modal transformation, and application of Normal Forms technique to

reduce the system as follows:-
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(a)

(b)

Figure 5.13: The System State Variation Comparisons Using Direct Approach on
the Hills Quasi-periodic System Without Damping of (a) x1 State, (b) x2 State
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Figure 5.14: Phase Plot Comparisons of System States Using Direct Approach on
the Hills Quasi-periodic System Without Damping



v̇1

v̇2

v̇3

v̇4

v̇5

v̇6


=



((−0.125− i1.7275)− (0.+ i0.0033)v3v4 − (0.+ i0.0019)v5v6)v1

((−0.125 + i1.7275) + (0.+ i0.0033)v3v4 + (0.+ i0.0019)v5v6)v2

(0.0 − i6.2832)v3

(0.0 + i6.2832)v4

(0.0 − i7.0000)v5

(0.0 + i7.0000)v6


(5.50)

It is observed that v3, v4, v5, v6 are fictitious states, and the system dynamics are

captured in the time evolution of v1 and v2 states. Additionally, it is observed from

equation (5.50), similar to the case of a system without damping, coefficients of the

augmented states (v3, v4) are complex conjugates, and augmented states (v5, v6) also

follow a similar trend. The closed form expression for these augmented states are

computed with the knowledge of the initial conditions. It is also noted from equation

(5.50) that in the expression for the first two states(v1, v2), the augmented states
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appear together in each term, and their multiplication results in just the product of

their initial conditions at any instant. Hence, the coefficient matrix (J̄) of the reduced

systems for the quasi-periodic system with damping is also found to be time-invariant.

Analogous to the system without damping, the closed-form expression for the

fictitious states is substituted in the near-identity expression. Furthermore, the

STM(Φ̄(t)) for the quasi-periodic system with damping is computed in the TINF

coordinate, using the expression equation (5.38), and back-transformed to its original

coordinates. The temporal variations of the system states are computed from the

back-transformed Φ̄(t) and compared with the numerical integration method for the

same initial conditions(x10 = 1.0 and x20 = 0). The comparisons of the temporal

variations are indicated in Figures 5.15a,b and the phase plot variation comparison

is shown in Figure 5.16.

As indicated in Figures 5.15a,b, and 5.16, the solid red line corresponds to the

back-transformed TINF solution, and the dashed black line indicates the numerical

integration results. In the temporal variations, both approaches are noted to dampen

dynamics over the period of time. In the phase plot, the system behavior is observed

to spiral in from the initial condition. It is also observed that state evolution from

the direct approach follows the numerical integration results closely in all three plots.

Thus the direct expression for Φ̄(t) from the TINF solution, captures the state evo-

lution characteristics, and the direct approach is validated for a linear quasi-periodic

system with damping. The L-P transformation is expressed as a finite quasi-periodic

Fourier series that introduces some approximation and numerical integration floating-

point approximations causing a slight mismatch in Figures 5.15 and 5.16.

140



(a)

(b)

Figure 5.15: The System State Variation Comparisons for Direct Approach on the
Hills Quasi-periodic System with Damping of (a) x1 State, (b) x2 State (equation
5.47)
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Figure 5.16: Phase Plot Comparisons of System States for Direct Approach on the
Hills Quasi-periodic System with Damping (equation 5.47)

Commutative Quasi-periodic System

In this section, the analysis of was performed on a different commutative quasi-

periodic system, where the trigonometric sine functions are replaced with cosine

functions as indicated below

ẍ− 2(b1 cos(ω1t) + b2 cos(ω2t))ẋ+ (a+ (b1ω1 sin(ω1t) + b2ω2 sin(ω2t))

+ (b1 cos(ω1t) + b2 cos(ω2t))
2)x = 0

(5.51)

Considering x1 = x and x2 = ẋ1−(b1 cos(ω1t)+b2 cos(ω2t))x1 as the system states

and converting equation (5.51) to its state space form results in

A(t) =

b1 cos(ω1t) + b2 cos(ω2t) 1

−a b1 cos(ω1t) + b2 cos(ω2t)

 (5.52)

Following the steps detailed in section 5.1, the system in equation (5.51) is verified
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to follow the commutative property. Also, the analytical expression for the STM of

the commutative quasi-periodic system in equation (5.51) was derived to be in the

same form as equation (5.13), where

P(t) =

e(
b1(sin(ω1t))

ω1
+
b2(sin(ω2t))

ω2
)

0

0 e
(
b1(sin(ω1t))

ω1
+
b2(sin(ω2t))

ω2
)

 , C = C2 =

 0 1

−a 0


(5.53)

The expression for the L-P transformation matrix was also verified using the con-

dition in equation (5.16). In this section, the direct approach was applied to the

commutative quasi-periodic system indicated in equation (5.51). The results from

the direct approach are compared with the analytical and numerical integration tech-

niques for the temporal variations and L-P transformation matrix of the commutative

quasi-periodic system.

The given commutative quasi-periodic system indicated in equation (5.51) is an-

alyzed using the direct approach using the TINF technique and compared with the

analytical and numerical techniques in this subsection. The system parameters used

are a = 1.5, b1 = 1, b2 = 1 and the incommensurate frequencies as ω1 = 2π rads and

ω2 = 7 rads. The analytical expression for the L-P transformation (P(t)) and C ma-

trices are computed using equation (5.53). The eigenvalues of the constant C matrix

are observed to be 0.0 ± i1.2247. Similarly, the numerical integration of equation

(5.51) provides the numerical solution to the evolution of system states. The system

parameters are substituted in the state space form (equation (5.13)) to proceed with

the direct approach detailed in section 5.3.

The steps followed are in the same order as that of the Hills linear quasi-periodic

system without damping. Likewise, the commutative system undergoes similar state

augmentation, further a modal transformation, and subsequent near-identity trans-
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formations to apply the TINF technique. The reduced system after the application

of the TINF technique is indicated below in equation (5.54).



v̇1

v̇2

v̇3

v̇4

v̇5

v̇6


=



(0.0 − i1.2247)v1

(0.0 + i1.2247)v2

(0.0 − i6.2832)v3

(0.0 + i6.2832)v4

(0.0 − i7.0000)v5

(0.0 + i7.0000)v6


(5.54)

It is noted that the coefficients of the first two states (which are the original

system states) in equation (5.54) resemble the eigenvalues of the analytically evaluated

constant C matrix. The J̄ matrix is recognized by expressing equation (5.54) in the

matrix multiplication, and its top-left 2× 2 square matrix is the Jordan form of the

C matrix. Hence, the reduced form after TINF application is also observed to be

time-variant and comparable to the C matrix. This concurs with the Floquet type

theory, explained in section 2.1.

Similar to the non-commutative system, the STM(Φ̄(t)) in the TINF coordinate

is derived from the set of differential equations in equation (5.54). Consequently,

Φ̄(t) is back-transformed to the original coordinates and multiplied with the initial

conditions x1(0) = 1.0 and x2(0) = 0 to determine the evolution of system states over

time. Meanwhile, the STM (Φ(t)), using the analytical L-P transformation matrix

(P(t)), is computed using equation (5.13). The STM (Φ(t)) is also multiplied with the

same set of initial conditions to generate the variation of the system states over time

analytically. The temporal variations of the system states computed using the direct

approach are compared with the analytical and numerically integrated solutions in

Figures 5.17a,b, and 5.18.
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(a)

(b)

Figure 5.17: Comparison of System State Variation for the Commutative Quasi-
periodic System Using the Direct Approach, Where (a) Shows x1 State and (b)
Shows x2 State Variations
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Figure 5.18: Phase Plot Comparisons of System States Using Direct Approach on
the the Commutative Quasi-periodic System

As indicated in Figures 5.17a,b, the black dashed line indicates the numerically

integrated solution of the original system equation (5.51), the blue dashed line indi-

cates the state evolution variation from the analytically derived STM(Φ(t)) and the

solid red line indicates the back-transformed Normal Forms solution as per the direct

approach for non-commutative systems. The simulations are run for 30 seconds, and

the results are all in unison. Therefore, a given commutative quasi-periodic system

can be reduced to a time invariant form analytically using an L-P transformation ma-

trix. This validates the extension of Floquet type theory towards the commutative

quasi-periodic system. Moreover, the direct approach is also applicable towards the

commutative quasi-periodic system and would generate comparable results with both

numerical integration and analytical approaches.
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Figure 5.19: Comparison of Element-wise Variation of the L-P Transformation Ma-
trix (Pij(t)) for the Commutative Quasi-periodic System

Since the temporal variations match closely and the C matrix is known for the

given commutative quasi-periodic system, the L-P transformation matrix could be

computed from the temporal variations of the back-transformed Normal Forms so-

lutions. The temporal variations of the system states are evaluated for the initial

conditions of x1(0) = 1.0;x2(0) = 0.0 and x1(0) = 0.0;x2(0) = 1.0. Furthermore,

the resulting temporal variations are concatenated such that the term x(0), in equa-

tion (5.15), becomes an identity matrix. The fully populated x(t) matrix and the

analytically derived C matrix are substituted in equation (5.15) to compute the L-P

transformation matrix from the direct approach. Likewise, the numerically integrated

solutions of the system states are also utilized to compute the L-P transformation

matrix. The comparison of the element-wise variations for the L-P transformation

matrix (Pij(t)), with the analytical expression and the numerically derived solutions,

are evaluated for the period of 10 secs and are displayed in Figure 5.19.
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In Figure 5.19, the blue dashed line represents the variations computed from

analytical expression, the black dashed line represents the variations derived from

the numerically integrated solutions, and the solid red line represents the variations

computed from the direct approach. It is observed that all the approaches are in

agreement in all four elements. It is also noted that the variation of the diagonal

elements indicates the presence of two frequencies, and this in unison with the theories

formulated by Murdock (1978); Puig (2002); Puig and Simó (2006). Hence the closed

form expression for the L-P transformation matrix for a commutative quasi-periodic

system is verified.

The J̄ matrix for both the Hills quasi-periodic systems (with and without damp-

ing) and the commutative system was proven to be time-invariant. Hence, it could

be inferred that the direct approach of the Normal Forms technique was successful in

reducing both the commutative and non-commutative quasi-periodic systems (with

semi-simple eigenvalues) to a time-invariant form. The expression in equation (5.13)

captures the dynamical characteristics from the TINF solution. The back-transformed

STM (Φ̂(t)) successfully generated the temporal variations for the system states com-

parable to the numerical techniques for all the cases of the quasi-periodic system dis-

cussed. Furthermore, the closed-form expression for the L-P transformation matrix

was computed from these temporal variations and validated with the analytical and

numerical techniques for the commutative system. Since this method is based on the

direct application of Normal Forms, it is widely applicable.

The technique used in this section is based on state augmentation and the applica-

tion of Normal Forms to compute the L-P transformation. The overall approach could

be viewed as a variation of averaging technique by Sanders et al. (2007). However, this

approach works quite well even though the coefficient multiplying the quasi-periodic

term is not small and results comparable to both numerical and analytical techniques
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are obtained. Furthermore, the frequencies close to zero and very large would also

affect the approximation process. However, this approach may not yield satisfactory

results for systems with very strong periodic and quasi-periodic excitation. In such

cases, one has to employ the method of successive L-F transformation in conjunction

with state augmentation and the Normal Forms technique. This method is briefly

explained in Chapter 8.

5.4 Conclusion

In this chapter, a brief overview of quasi-periodic systems and their applications

are provided. Furthermore, a new class of quasi-periodic systems, satisfying the

commutative property was introduced. The extension of Floquet theory towards the

analysis of commutative quasi-periodic systems was demonstrated analytically. The

transformation of a linear quasi-periodic commutative system to a time-invariant form

was verified and validated analytically using a toy problem.

Later, a modified version of prior work introduced an indirect approach to ana-

lyze the non-commutative linear quasi-periodic systems. The indirect approach was

too successful in transforming a non-commutative linear quasi-periodic system to a

time-invariant form. It was also capable of reproducing the temporal variations of the

system states comparable to that of numerical methods for linear systems with weak

quasi-periodic excitations. Moreover, splitting the system to perform L-F transfor-

mation becomes challenging when both periodic and quasi-periodic terms are equally

excited.

A direct approach, analogous to the unified theory for a periodic system, was in-

troduced to aid in the analysis of an equally excited non-commutative quasi-periodic

systems. It was observed that the direct approach avoids the intermediate step of

splitting the system and performing L-F transformation. The direct state augmen-
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tation reduces the computational complexity and aids in providing a closed form

expression for the L-P transformation and STM for the linear quasi-periodic systems.

Both indirect and direct approaches were tested with the case of Hills quasi-periodic

system with and without damping. It was observed that the results for the temporal

variations from the numerical techniques matched very well with both approaches

in both cases. A successive L-F transformation technique is proposed for a strong

quasi-periodic system, where direct application of Normal Forms or averaging type

techniques are not expected to provide good results. A generic framework to this

approach is introduced in Chapter 8.

Furthermore, both indirect and direct approaches were tested on the commuta-

tive quasi-periodic system and reproduced results comparable to the analytical and

numerical techniques. The results were validated using comparisons on temporal vari-

ations and element-wise variation of the L-P transformation matrix. However, the

element-wise variation of the L-P transformation matrix was observed to be better

using the direct approach. This validates the extension of the unified theory applica-

ble to both commutative and non-commutative linear quasi-periodic systems. Since

the L-P transformation matrix from the direct approach performs better, it is applied

to analyze nonlinear systems and model order reduction in the subsequent chapter.
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Chapter 6

APPLICATIONS OF L-P TRANSFORMATION

The earliest analysis on quasi-periodic systems, using the Floquet type theory, was

performed by Murdock (1978). As per this theory a transformation (known as

Lyapunov-Perron Transformation) converts the linear time varying coefficient of the

system to a linear time invariant term. Even though the applications and proper-

ties of the Lyapunov-Perron (L-P) transformation matrix were discussed, a practical

method to compute it (analytically/numerically) was not discussed.

Similar to the L-F transformation for the time-periodic system, the L-P transfor-

mation aids in the analyzing perturbed linear quasi-periodic systems. As explained

in chapter 5, the unified approach can generate STM as explicit function of time, for

linear quasi-periodic systems. Similarly, the closed-form expression for L-P transfor-

mation can be computed from the STM and further applied to analyze perturbed

systems. The inverse of the time-varying L-P transformation matrix also can be

computed using the methods detailed in section 4.2.

6.1 Application: Externally Excited Quasi-periodic System

Consider a linear quasi-periodic system subjected to external excitation given by

ẋ(t) = A(t)x(t) + f(t) (6.1)

where f(t) is the external excitation term. Applying the L-P transformation x(t) =

P̄(t)v(t) and the inverse of the L-P Transformation P̄−1(t) results in the following

equation
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v̇ = J̄v + P̄−1(t)f(t) = J̄v + F(t) (6.2)

Similar to the case of the periodic system, discussed in section 4.3, one can use

convolution integral to find the system’s response given by equation (6.2) or use

numerical integration. The convolution integral shown in the equation (4.13) yields

the resonance condition (in semi-simple case) given by equation (4.14). The result

obtained in the v domain can be transformed to the original coordinate x(t) via

reversing the L-P and modal transformations sequence.

6.1.1 Example-5: A Commutative Quasi-periodic System Subjected to External

Excitation

In this example, the commutative quasi-periodic system, discussed in section 5.3.2,

is updated with an external excitation term as shown below

ẍ− 2(b1 cos(ω1t) + b2 cos(ω2t))ẋ+ (a+ (b1ω1 sin(ω1t) + b2ω2 sin(ω2t))

+ (b1 cos(ω1t) + b2 cos(ω2t))
2)x = f(t)

(6.3)

where ω1 and ω2 are incommensurate frequencies and f(t) = c cos(Ωt) is a determin-

istic external excitation. The constants a, b1, b2 are real positive integers. It can be

converted to the state space form, as indicated in equation (6.1), by considering the

system states x = [x1, x2]T as detailed in section 5.3.2. The linear part remains the

same as that of equation (5.52), and hence the closed form expressions for the STM,

L-P transformation matrix, and exponent matrix remains the same as indicated in

section 5.3.2, which results in
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P(t) =

eg(t) 0

0 eg(t)

 ,C = C2 =

 0 1

−a 0

 , g(t) =
b1(sin(ω1t))

ω1

+
b2(sin(ω2t))

ω2

(6.4)

Since the analytical expression of P(t) matrix aids in reducing the linear part of

the quasi-periodic system (equation (6.3)) to a time-invariant form (equation (5.2)),

the application of transformation, x(t) = P(t)z(t), to equation (6.1) yields

ż = Cz + P−1(t)f(t) = Cz + F(t) (6.5)

The equation (6.5) can be solved analytically using convolution integral as

z(t) = eCtz(0) +

∫ t

0

eC(t−s)F(s)ds (6.6)

Once the solution of z(t) is obtained, the solution in x(t) can be obtained using

the L-P transformation, x(t) = P(t)z(t). This solution is an analytical solution, as

the analytical expressions in equation (6.4) are utilized to compute the solutions.

Meanwhile, the L-P transformation can also be computed using the direct Normal

Forms approach and back-transformed to the original coordinates. This solution is

called the Normal Forms based solution. For comparison, the equation (6.3) can be

numerically integrated, and the response in x(t) can be obtained directly, resulting

in a numerically integrated solution. In Figure 6.1, the temporal variations obtained

via all three methods are compared for the case of given commutative quasi-periodic

system with system parameters a = 1.5, b1 = b2 = 1, ω1 = 2π rads, ω2 = 7 rads and

external excitation c = 1, Ω = 6 rads.

In Figure 6.1, the black dashed line corresponds to the numerically integrated

solution, the solid red line represents the Normal Forms based solution, and the blue

153



(a)

(b)

Figure 6.1: Comparison of System State Variation for the Commutative Quasi-
periodic System with External Forcing, Where (a) Shows x1 State and (b) Shows x2

State Variations
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long dashed line indicating the analytical solution. It can be seen that all the solutions

match very well for both the system states.

6.1.2 Example-6: A Non-commutative Mathieu-hill Type Quasi-periodic System

Subjected to External Excitation

Consider the Mathieu-Hill quasi-periodic system (from equation (5.39)) subjected

to external excitation

ẍ+ (a+ b cos(ω1t) + b cos(ω2t))x = c cos(Ωt) (6.7)

where a and b are the system parameters, ω1 and ω2 are the incommensurate frequen-

cies. By transforming the equation (6.7) into the state space form and comparing it

to equation (6.1), gives us

A(t) =

 0 1

−(a+ b cos(ω1t) + b cos(ω2t)) 0

 , f(t) =

 0

c cos(Ωt)

 (6.8)

The system parameters considered are a = 3, b = 2.5, the incommensurate fre-

quencies as ω1 = 2π rads, ω2 = 7 rads and external excitation c = 1, Ω = 6 rads. One

can find the L-P transformation P̄(t) and the inverse L-P transformation P̄−1(t) for

the linear system, using the direct approach using the TINF technique discussed in

section 5.3. The equation (6.8) is transformed to the equation in the form of equation

(6.2), where

J̄ =

0− i1.7893 0

0 0 + i1.7893

 (6.9)

As before, the equation (6.2) can be solved using convolution integral to obtain

solutions in the v(t) domain. The solution in x(t) can be obtained using the L-P

transformation x = P̄(t)v. This solution is called the Normal Forms based solution.

155



For comparison, the equation (6.7) can be numerically integrated, and the response

in x(t) can be obtained directly. In Figure 6.2, the temporal variations of the Normal

Forms based solution and numerically integrated solutions are compared for the case

of a given non-commutative quasi-periodic system.

In Figure 6.2, the black dashed line corresponds to the numerically integrated

solution, and the solid red line represents the Normal Forms based solution. It can

be seen that both the solutions match very well.

6.2 Application: Analysis Of Non-Linear Quasi-Periodic Systems

The L-P Transformation is computed via state augmentation, and the method

of Normal Forms can be applied to quasi-periodic nonlinear systems. In the pro-

cess, one obtains additional resonance conditions representing interactions between

the nonlinearity and quasi-periodic excitation. Consider a quasi-periodic nonlinear

system given by equation (6.10).

ẋ(t) = A(t)x(t) + f(x, t) (6.10)

After applying the L-P transformation x = P̄(t)y and inverse L-P transforma-

tion P̄−1(t) computed via the methods described in section 4.2, the system can be

expressed in the form

ẏ = J̄y + P̄−1(t)f(y, t) (6.11)

The equation (6.11) can be solved using TDNF (detailed in section 2.3.2) where

the near identity transformation of the form, similar to equation (2.23), given by

y = v + hr(v, t) (6.12)
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(a)

(b)

Figure 6.2: Comparison of System State Variation for the Non-commutative Hill’s
Quasi-periodic System with External Excitation, Where (a) Shows x1 State and (b)
Shows x2 State Variations
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where

hr(v, t) =
∑
m̄

h̄i(t)v
m1
1 ...vmrr ,

m̄ = (m1, ...,mr)
T ,m1 + ...+mr = i, i = 2, 3, ..., k

and h̄i(t) are the unknown quasi-periodic vector coefficients. This approach yields

quasi-periodic solvability conditions. For more details on this approach, interested

readers are referred to Wooden and Sinha (2007). As explained in section 2.3.2, if

there are no resonances, the system in equation (6.11) can be reduced to the form

v̇ = J̄v (6.13)

After solving equation (6.13) and back-transforming it to the original coordinates,

the solution in the x domain is obtained.

6.2.1 Example-7: A Non-commutative Mathieu-hill Type Quasi-periodic System

Subjected to Nonlinear Perturbations

As an example, consider the Mathieu-Hill type quasi-periodic system (from equa-

tion (5.39)) subjected to nonlinear perturbation.

ẍ+ (a+ b cos(ω1t) + b cos(ω2t))x+ εx3 = 0 (6.14)

where a, b and ε are the system parameters, ω1 and ω2 are the incommensurate fre-

quencies. By transforming the equation (6.14) into the state space form

d

dt

x1

x2


︸ ︷︷ ︸

ẋ

=

 0 1

−(a+ b cos(ω1t) + b cos(ω2t)) 0


︸ ︷︷ ︸

A(t)

x1

x2


︸ ︷︷ ︸

x

−

 0

εx3
1


︸ ︷︷ ︸

f(x)

(6.15)
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In this section, the system parameters considered are a = 3.0, b = 2.5, ω1 = 2π

rads, ω2 = 7 rads and ε = 0.3. Similar to the case with external excitation (section 6.1)

the L-P transformation P̄(t) is computed for the linear part using the direct approach

of the TINF technique. As mentioned earlier, by applying the L-P transformation

x = P̄(t)y and using the inverse L-P transformation P̄−1(t), the system in equation

(6.15) can be expressed in a form similar to equation (6.11). It is noted that f(y, t)

has third-order monomials in y. The equation (6.11) could be numerically integrated,

and the solutions can be back transformed to obtain the temporal variations in the

original coordinates, using L-P transformed solution.

However, since the Normal Forms technique is directly applicable to the nonlinear

system. The TDNF of the form indicated in section 2.3.2 is applied. The TDNF

solution of the equation (6.15) is given by

v̇1 = −i 1.78926v1 − i 0.0866v2
1v2

v̇2 = +i 1.78926v2 + i 0.0866v1v
2
2

 (6.16)

The given form can be solved analytically,using the complex change of variables

v1(t) = u1 − iu2, v2(t) = u1 + iu2 and subsequently applying the polar coordinate

transformation u1 = R cos θ and u2 = R sin θ one obtains

Ṙ = 0

θ̇ = −1.78926− 0.08660R2

 (6.17)

It can be observed that the equation (6.17) can be solved in the closed-form, and

inverting the sequence of transformations state evolution in x(t) and ẋ(t) can be

obtained. This solution is called the ”Analytical Normal Forms Solution”. The tem-

poral variations of both the solutions are compared with the numerically integrated

solution of equation (6.14) in Figures 6.3a,b.
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(a)

(b)

Figure 6.3: Comparison of System State Variation for the Non-commutative Hill’s
Quasi-periodic System with Nonlinear Terms, Where (a) Shows x1 State and (b)
Shows x2 State Variations
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In Figure 6.3, the black dashed line indicates the numerically integrated solution,

the solid red line corresponds to the L-P transformed solution, and the blue long

dashed line represents the analytical Normal Forms solution. It can be seen that

all the solutions match very well for both the system states. The L-P transformed

system response is in close agreement with the numerically integrated solution.

6.2.2 Conclusions

In this chapter, the applications of L-P transformation, computed using the direct

approach, towards the analysis of linear quasi-periodic systems subjected to external

excitations and nonlinear quasi-periodic systems are explained comprehensively. One

also obtains the solvability conditions that indicate potential resonances between

the quasi-periodicity and frequency of external excitation or quasi-periodicity and

nonlinearity.

One could use this technique for symbolic order reduction and controller design

for linear and nonlinear quasi-periodic systems. One could also use this approach

to study stochastic parametric excitation on the stability of a quasi-periodic system.

This approach is based on applying Normal Forms theory (that can be viewed as

an extension of the higher-order averaging technique); it has the same limitations.

For the nonlinear systems with higher dimensions, a model order reduction approach

(similar to Sinha et al. (2005b)) is proposed using the L-P transformation matrix of

the linear part and is presented in the next section.

6.3 Application: Model Order Reduction Techniques for Higher Order Nonlinearity

Some of the well-known model order reduction techniques include the method

of Proper Orthogonal Decomposition (POD) by Kerschen et al. (2005), Nonlinear

Normal Modes (NNM) by Apiwattanalunggarn et al. (2005), Slow-Fast Decomposi-
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tion (SFD) by Haller and Ponsioen (2017), method of multiple scales by Luongo and

Di Egidio (2005) and projection method by Sinha et al. (2005b); Broomhead and

Kirby (2005). The application of the reduced order dynamical model towards MEMS

devices is detailed by Nayfeh et al. (2005). The nonlinear behavior of the continuous

rotor system is reduced using the standard and nonlinear Galerkin methods by Ding

and Zhang (2012). Nayfeh (2008) compared the method of multiple scales with a

combination of Normal Forms and center manifold reduction method for identify-

ing Hopf bifurcations by order reduction in retarded nonlinear dynamical systems.

Harrington and Van Gorder (2017) demonstrate the dimension reduction of high di-

mensional chaotic systems using the method of differential elimination. For the cases

in which reduction is not possible in terms of differential operators, Harrington and

Van Gorder (2017) also showcase a method to find the Lyapunov functions and con-

traction maps. Further detailed explanations on various MOR techniques and their

application towards dynamical systems are provided by Rega and Troger (2005).

Generally, the order reduction procedure comprises of the following steps:-

1. Study the large-scale system and identify the dominant states contributing to

the dominant dynamics.

2. Neglect or replace the non-dominant states by appropriate functions of domi-

nant states

3. Formulate an equivalent reduced order system comprising of only the dominant

states.

In this section, the ‘automatic’ order reduction of nonlinear ordinary differential

equations with quasi-periodic coefficients is emphasized and expressed in state-space

form as
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ẋ = A(t)x + f(x, t) (6.18)

where A(t) is an n×n matrix with quasi-periodic coefficients and f(x, t) is a nonlinear

function with monomials of x and x is an n vector of appropriate dimensions. The

objective of order reduction is to construct a reduced rth order system

ẋr = Ar(t)xr + fr(xr, t) (6.19)

that captures the intrinsic behavior of the large-scale system. The A(t) matrix is

considered to be quasi-periodic and contains terms with incommensurate frequencies.

To the best of the author’s knowledge no techniques are available that would allow

direct reduced order from equation (6.18) to equation (6.19). In this section, three

order reduction techniques are presented that would facilitate such a transformation.

6.3.1 Order Reduction Using Linear Projection

Let us consider a nonlinear quasi-periodic system of the form

ẋ(t) = A(t)x(t) + f(x, t) (6.20)

where x is a (n × 1) vector of system states, A(t) is an (n × n) matrix with quasi-

periodic frequencies (ω1, ω2) and f(x, t) contain monomials of vector, x. Applying the

L-P transformation x(t) = P̄(t)z(t) results in

ż(t) = J̄z(t) + P̄−1(t)f(z, t) ≡ J̄z(t) + u(z, t) (6.21)

where J̄ corresponds to the constant matrix and u(z, t) represents the nonlinear vector

comprising of monomials of z and terms with quasi-periodic frequencies. The key

objective of order reduction is to identify a reduced system (equation (6.22) that is

equivalent to the nonlinear quasi-periodic system, given by equation (6.21).
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żr(t) = J̄rzr(t) + ur(zr, t) (6.22)

So the equation (6.21) is partitioned in the following manner


żr

żs

 =

J̄r

0

0

J̄s




zr

zs

+

ur(zr, zs, t)

us(zr, zs, t)

 (6.23)

where zs is a (n − r) vector of non-dominant states, J̄s is the (n − r) × (n − r) ma-

trix corresponding to the non-dominant states and ur(zr, zs, t), us(zr, zs, t) are the

monomials of z with quasi-periodic terms. In the well-known Guyan linear projec-

tion method, the contribution of the non-dominant states is neglected since they are

considered to be minimal. The resulting reduced order model can be expressed as

żr(t) = J̄rzr(t) + ur(zr, 0, t) (6.24)

Equation (6.24) represents the reduced order model of the actual large-scale sys-

tem (equation (6.20), as per the linear projection method. The system states in x can

be recovered by numerically integrating equation (6.24) and employing the transfor-

mation x(t) = P̄(t)Tz(t), where T = [Ir×r 0r×(n−r)]
T . Though the linear projection

method is simple and straightforward, the selection of dominant states rests on the

judgment and experience of the analyst. Moreover, for a complex system that involves

internal and/or parametric resonance, this method lacks a thorough understanding

of the system dynamics.

6.3.2 Order Reduction Using Nonlinear Projection

Once again, the nonlinear quasi-periodic system expressed in equation (6.20) is

considered and transformed to the system in equation (6.21) using L-P transforma-
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tion. It is aimed to reduce the order of the given system to an equivalent system,

expressed as

żr(t) = J̄rzr(t) + ur(zr, ψ(zr, t), t) (6.25)

where zr(t), J̄r,ur(zr, t) are as defined before in Section 6.3.1 and ψ(zr, t) defines the

nonlinear relationship between non-dominant states and dominant states as

zs(t) = ψ(zr, t) (6.26)

The system in equation (6.21) is transformed to the reduced system (equation

(6.25) via a nonlinear projection, expressed by equation (6.26). The system equation

(6.25) can be integrated numerically and compared with the numerical integration

results of equation (6.21) to verify the effectiveness of the order reduction using this

approach.

The method to derive nonlinear projection ψ(zr, t) is selected based on the system

complexity, computational power availability, and the required accuracy of reduced

system Redkar et al. (2003). A ’non-flat’ sub-manifold is identified using the nonlinear

projection method, and it is expected to perform better than the linear projection

method. The computation of the nonlinear projection using the Singular Perturbation

method is detailed in the section of applications.

6.3.3 Order Reduction Using Invariant Manifold

This order reduction approach is based on the ’Invariant Manifold Theory’, which

postulates a relationship between the dominant “master” and the non-dominant

“slave” system states. Under certain conditions, the non-dominant states can be

replaced by the expression in terms of the dominant states, thereby reducing the

system order, as per Waswa et al. (2020); Sinha et al. (2003).
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Again, consider the nonlinear quasi-periodic system given in equation (6.20),

which after successive L-P and modal transformation results in equation (6.21) and

can be partitioned as equation (6.23). The nonlinear relationship between the domi-

nant (zr) and the non-dominant (zs) system states is assumed to be of the form

zs(t) =
∑
i

hi(zr, t) ≡ H(zr, t) (6.27)

where

hi =
∑
m̄

h̄i(t)z
m1
1 ...zmrr ;

m̄ = (m1, ...,mr)
T ;m1 + ...+mr = i; i = 2, 3, ...k

where hi(t) represents the unknown vector coefficients that are quasi-periodic. By

substituting equation (6.27) into equation (6.23) results in

∂H

∂t
+
∂H

∂zr
(J̄rzr + ur) = J̄sH + us (6.28)

Neglecting the higher order terms the equation can be written as

∂H

∂t
+
∂H

∂zr
J̄rzr − J̄sH = usi (6.29)

The approximate solution of the partial differential equation (6.29) can be com-

puted by expanding the coefficient functions (h̄i(t)) as double Fourier series, given

by

hi(zr, t) =
s∑
j=1

∑
m̄

+∞∑
p1=−∞

+∞∑
p2=−∞

hjm̄ν e
ī(p̄•ω)t|zr|

m
∼ ej (6.30)

and

usi(zr, t) =
s∑
j=1

∑
m̄

+∞∑
p1=−∞

∞∑
p2=−∞

ajm̄ν e
ī(p̄•ω)t|zr|

m
∼ ej (6.31)
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where |zr|
m
∼ = zm1

1 zm2
2 ...zmrr , ī =

√
−1,m1+...+mr = i, i = 2, 3, ...k,ω = {ω1 ω2} , p̄ =

{p1 p2}, hjm̄ν represents the unknown Fourier coefficients of the invariant manifold

relation, ajm̄ν corresponds to the known Fourier coefficients of quasi-periodic func-

tions, and ej is jth member of the natural basis. By comparing the Fourier coefficients

results in

hjm̄ν =
ajm̄ν

ī(p̄ • ω)t+
r∑
l=1

(mlλl)− λ̄p
(6.32)

where λ1, λ2, ..., λr are the eigenvalues of the Jordan matrix, J̄r, and λ̄p = λ̄1, λ̄2, ..., λ̄s

are the eigenvalues of J̄s. Hence, the ‘quasi-periodic reducibility condition’ is given as

ī(p̄ • ω)t+
r∑
l=1

(mlλl)− λ̄p 6= 0, ∀ν = 0,±1,±2, ...; p = 1, 2, ..., s (6.33)

The expression for vector H(zr, t) can be derived if the ‘reducibility condition’

(given by equation (6.33) is satisfied. With H(zr, t) expression, the ‘slave’ states can

be expressed as functions of ‘master’ states of the system. However, if the ‘reducibility

condition’ is not satisfied, ‘slave’ states cannot be expressed in terms of ‘master’ states,

and the order reduction is not achievable.

6.3.4 Example-8: Commutative Quasi-Periodic System with Coupled Nonlinearity

Consider the following commutative system that is linearly uncoupled but nonlin-

early coupled. The L-P transformation for the linear part of this “prototype” problem

is known in closed form, as detailed in chapter 5.
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ẍ− 2b1(cos(ω1t) + cos(ω2t))ẋ+ [a1 + b1ω1 sin(ω1t) + b1ω2 sin(ω2t)

+ b1
2(cos(ω1t) + cos(ω2t))

2]x− µ(x+ y)3 = 0

ÿ − 2b2(cos(ω1t) + cos(ω2t))ẏ − dẏ + [3a2 + b2ω1 sin(ω1t) + b2ω2 sin(ω2t)

+ (b2 cos(ω1t) + b2 cos(ω2t)− d)2]y − µ(x+ y)3 = 0

(6.34)

Considering the system states as x1 = x, x2 = (ẋ−b1x cos(ω1t)−b1x cos(ω2t)), x3 =

y, x4 = 1/3(ẏ − b2y cos(ω1t) − b2y cos(ω2t)) and µ to be positive and significant,

equation (6.34) can be written in state space form as

d

dt



x1

x2

x3

x4


=

Ā1(t) 0

0 Ā2(t)




x1

x2

x3

x4


+



0

µ(x+ y)3

0

µ(x+ y)3


(6.35)

where

Ā1(t) =

g1(t) 1

−a1 g1(t)

 , Ā2(t) =

g2(t) 3

−a2 g2(t)

 ,0 =

0 0

0 0

 ,
g1(t) = b1(cos(ω1t) + cos(ω2t)), g2(t) = b2(cos(ω1t) + cos(ω2t))− d

For this linearly uncoupled part of the commutative quasi-periodic system the L-P

transformation is known analytically (discussed in chapter 5)and is given as

P(t) =

P1(t) 0

0 P2(t)

 (6.36)
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where

P1(t) =

eb1 cos(ω1t)+b1 cos(ω2t) 0

0 eb1 cos(ω1t)+b1 cos(ω2t)

 ,
P2(t) =

eb2 cos(ω1t)+b2 cos(ω2t) 0

0 eb2 cos(ω1t)+b2 cos(ω2t)


By comparing equation (6.35) to equation (6.20), x(t) = {x1, x2, x3, x4}T , A(t) =Ā1(t) 0

0 Ā2(t)

 and f(x, t) = {0, µ(x+ y)3, 0, µ(x+ y)3}T . The application of L-P

transformation, x(t) = P(t)y(t), to equation (6.35) yields

ẏ(t) = Cy(t) + P−1(t)f(y, t) (6.37)

where C =



0 1 0 0

−a1 0 0 0

0 0 −d 3

0 0 −a2 −d


After applying modal transformation, y(t) = Mz(t),

an equation in a form similar to equation (6.21) is obtained.

ż(t) = J̄z(t) + M−1P−1(t)f(z, t) ≡ J̄z(t) + u(z, t) (6.38)

The initial conditions of x10 = 0.3, x20 = 0.3, x30 = 0, x40 = 0 was transformed to

the z domain. The system in equation (6.38) is numerically integrated with typical

initial conditions and considered as the reference. The system parameters considered

for the given commutative system are a1 = b1 = 1, ω1 = 2π, a2 = 3, b2 = 2, d =

1, ω2 = 7, and µ = 1, for which the J̄ matrix is
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J̄ =



−i1 0 0 0

0 +i1 0 0

0 0 −1− i3 0

0 0 0 −1 + i3


(6.39)

The numerically integrated solution for the dominant states is shown in Figures

6.4a,b. Equation (6.38) can be partitioned to a form similar to equation (6.23) for

applying the order reduction techniques discussed in the subsequent subsections.

Method-1: Order Reduction Using the Linear Method

The system in equation (6.38) is expressed in four coordinates, {z1, z2, z3, z4}T . The

system states with a smaller magnitude of the system exponents are assumed to be

the dominant states zr = {z1, z2}T . As discussed in section 6.3.1, the input from the

non-dominant states zs = {z3, z4}T are neglected, and the equivalent system dynamics

is given by


ż1

ż2

 =

−i1 0

0 +i1



z1

z2

+

u1(z1, z2, 0, 0, t)

u2(z1, z2, 0, 0, t)

 (6.40)

Equation (6.40) displays the reduced order model of the system, described by

equation (6.38). This reduced order system is integrated numerically, with the same

set of initial conditions and compared with the temporal variations of the reference

system states (equation (6.38)) and corresponds to method-1 in Figures 6.4a,b. Sim-

ilar comparisons can be obtained in the original system coordinates by using the L-P

and modal transformations on the resulting system states.
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Method-2: Order Reduction Using the Nonlinear Projection Based on

Singular Perturbation Method

In this approach too, the system states zr = {z1, z2}T are considered as the domi-

nant ones based on the exponents and follow the procedure outlined in section 6.3.2.

Considering the Singular Perturbation technique, the derivatives of the non-dominant

states are presumed to be small compared to that of the dominant states. With this

consideration, the equation (6.38) can be rewritten as



ż1

ż2

εż3

εż4


=



−i1 0 0 0

0 +i1 0 0

0 0 −1− i3 0

0 0 0 −1 + i3





z1

z2

z3

z4


+



u1(z, t)

u2(z, t)

u3(z, t)

u4(z, t)


(6.41)

Assuming ε = 0, and resorting to one fixed point iteration, z3 and z4 can be

approximated as

−1− i3 0

0 −1 + i3



z3

z4

 = −

u3(z1, z2, 0, 0, t)

u4(z1, z2, 0, 0, t)

 (6.42)

The single fixed-point iteration solution of {z3, z4} given by equations (6.42) is

substituted into the top half of equation (6.41) to obtain the reduced order model as


ż1

ż2

 =

−i1 0

0 +i1



z1

z2

+

ū1(z1, z2, t)

ū2(z1, z2, t)

 (6.43)

Equation (6.43) is integrated numerically, with the same set of initial conditions

to obtain the behavior of the dominant states corresponding to method-2. Again the

time trace of zr computed using the nonlinear projection technique is compared with

the time trace of zr obtained by integrating equation (6.38), as shown in Figure 6.4.
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Method-3: Order Reduction Using the Invariant Manifold Method

As discussed in section 6.3.3, identify a relationship between the non-dominant and

dominant states using a quasi-periodic nonlinear transformation. The ’reducibility

condition’ is satisfied, and the system order can be reduced, if there are no resonances

(like the case under consideration). Start with equation (6.38) and select the same

states zr = {z1, z2}T as the dominant states and try to find a nonlinear relationship

of the form given in equation (6.26). In this case, the relationship between zs and zr

is expressed as

zs =
∑
i

hi(z1, z2, t) ≡ H(z1, z2, t) (6.44)

where

hi =
∑
m̄

h̄i(t)z
m1
1 ...zm2

2 ; m̄ = (m1,m2)T ; m1 +m2 = 3; s = 3, 4

where h̄i(t) is the unknown quasi-periodic vector coefficients. Substitute equation

(6.44) into equation (6.38). After expanding the Fourier series for h̄i(t), us(zr, zs, t)

and neglecting the higher order terms, the relationship between the dominant and

the non-dominant states is given as

z3 = H1(z1, z2, t), z4 = H2(z1, z2, t) (6.45)

Equation (6.45) is substituted into the top half of equation (6.38) to obtain the

reduced order model as


ż1

ż2

 =

−i1 0

0 +i1



z1

z2

+

û1(z1, z2, t)

û2(z1, z2, t)

 (6.46)

The equation (6.46) is numerically integrated to obtain the time traces of the
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dominant states of the reduced system, corresponding to method-3. The temporal

variations are depicted in Figure 6.4.

In Figures 6.4 ab, the time traces of the reduced dominant states are indicated by

the black dashed line corresponding to the numerically integrated solution, the solid

magenta line corresponding to the linear method, the solid blue line corresponding to

the nonlinear projection method, and the solid gray line corresponding to the invariant

manifold method. Since all the methods follow the numerical solution closely, error

plots are generated for each dominant system state to compare their performance. In

Figures 6.5a,b, the time traces of the error in the reduced dominant states (for the

numerical solution) are indicated by solid magenta line corresponding to the error

plot for the linear method, the solid blue line corresponding to the error plot for

nonlinear projection method and the solid gray line corresponding to the error plot

for invariant manifold method.

6.3.5 Example-9: Non-Commutative Quasi-Periodic System with Coupled

Nonlinearity

Consider a coupled Hills-Mathieu type nonlinear quasi-periodic system given by

ẍ+ (α1 + β1 cos(ω1t) + γ1 cos(ω2t))x− µ(x+ y)3 = 0

ÿ + δẏ + (α2 + β2 cos(ω1t) + γ2 cos(ω2t))y − µ(x+ y)3 = 0

(6.47)

Considering the system states as x1 = x, x2 = ẋ, x3 = y, x4 = ẏ and µ to be

positive and significant, equation (6.47) can be written in state space form as

d

dt



x1

x2

x3

x4


=

Ã1(t) 0

0 Ã2(t)




x1

x2

x3

x4


+



0

µ(x+ y)3

0

µ(x+ y)3


(6.48)
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(a)

(b)

Figure 6.4: Comparison of System State Variation Commutative Quasi-periodic
System with Coupled Nonlinear Terms, Where (a) Shows z1 State and (b) Shows z2

State Variations
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(a) (b)

Figure 6.5: Error in the System State Variation Comparison of Commutative Quasi-
periodic System with Coupled Nonlinear Terms, Where (a) Ez1 Is That of z1 State,
(b) Ez2 Is That of z2 State

where

Ã1(t) =

 0 1

−(α1 + β1 cos(ω1t) + γ1 cos(ω2t)) 0

 ,
Ã2(t) =

 0 1

−(α2 + β2 cos(ω1t) + γ2 cos(ω2t)) −δ


As detailed in section 5.3, the linear part of the equation (6.48) undergoes the state

augmentation and Normal Forms technique to form the time invariant form (equation

(5.37)). As explained in chapter 5, this approach yields the closed-form expression

for the L-P transformation, and it contains terms with both the incommensurate

frequencies. For this work, the inverse of the time varying L-P transformation matrix

is computed symbolically using MATHEMATICA software. The L-P transformation

and its inverse computed aids in transforming the coupled nonlinear non-commutative

quasi-periodic system (equation (6.48)) to the form indicated in equation (6.38). The

initial conditions of x10 = 0.2, x20 = 0.2, x30 = 0, x40 = 0 is also transformed to the z-

domain. The system parameters considered for the given non-commutative nonlinear

quasi-periodic system are α1 = 9, β1 = γ1 = 1, ω1 = 2π, α2 = 20, β2 = γ2 = 2, δ =

4, ω2 = 7, and µ = 1, for which the equation (6.38) is obtained as
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

ż1

ż2

ż3

ż4


=



−i3 0 0 0

0 +i3 0 0

0 0 −2− i4 0

0 0 0 −2 + i4





z1

z2

z3

z4


+



u1(z, t)

u2(z, t)

u3(z, t)

u4(z, t)


(6.49)

Method-1: Order Reduction Using the Linear Method

The transformed non-commutative system also comprises of four states {z1, z2, z3, z4}T .

Again, the system states corresponding to the smaller system exponent are assumed

to be the dominant states, zr = {z1, z2}T . Similar to the case of the commutative

system, the contribution from the non-dominant states zs = {z3, z4}T are neglected,

resulting in the system dynamics as


ż1

ż2

 =

−i3.0 0

0 +i3.0



z1

z2

+

u1(z1, z2, 0, 0, t)

u2(z1, z2, 0, 0, t)

 (6.50)

For the non-commutative system, the equation (6.50) represents the reduced or-

der model using the linear method (method-1). Again, the reduced order system is

integrated numerically, with the same set of initial conditions and compared with

the temporal variations of the reference system states (equation (6.49)), as shown in

Figure 6.6.

Method-2: Order Reduction Using the Nonlinear Projection Based on

Singular Perturbation Method

Based on the exponents, consider zr = {z1, z2}T as the dominant states to be retained.

As the case of commutative system, based on the perturbation technique, consider

the non-dominant states’ derivatives to be small compared to the derivatives of the
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dominant states. This updates the equation (6.48) as



ż1

ż2

εż3

εż4


=



−i3 0 0 0

0 +i3 0 0

0 0 −2− i4 0

0 0 0 −2 + i4





z1

z2

z3

z4


+



u1(z, t)

u2(z, t)

u3(z, t)

u4(z, t)


(6.51)

Consider ε = 0, and resorting to one fixed point iteration, z3 and z4 are approxi-

mated as

−2− i4 0

0 −2 + i4



z3

z4

 = −

u3(z1, z2, 0, 0, t)

u4(z1, z2, 0, 0, t)

 (6.52)

The single fixed-point iteration solution of {z3, z4} given by equations (6.52) is sub-

stituted into the top half of equation (6.51) to obtain the reduced order model as


ż1

ż2

 =

−i3 0

0 +i3



z1

z2

+

ū1(z1, z2, t)

ū2(z1, z2, t)

 (6.53)

Similar to the case of commutative systems, the numerical integration of equation

(6.53), with the same set of initial conditions, yields the time traces of the dominant

states corresponding to method-2. The system state behavior of zr obtained using

the nonlinear projection technique is compared with the time trace of zr obtained by

numerically integrating equation (6.49), as shown in Figure 6.6.

Method-3: Order Reduction Using the Invariant Manifold Method

Similar to the case of the commutative system, find a nonlinear relationship between

the dominant (zr = {z1, z2}T ) and non-dominant zs = {z3, z4}T states of the form
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given in equation (6.27). As detailed in section 6.3.3, after expanding the Fourier se-

ries and neglecting the higher order terms the relationship between the dominant and

non-dominant states, as indicated in equation (6.46). This relationship is substituted

in the top half of equation (6.49) to obtain the reduced order model as


ż1

ż2

 =

−i3.0 0

0 +i3.0



z1

z2

+

û1(z1, z2, t)

û2(z1, z2, t)

 (6.54)

The behavior of the dominant system states of the reduced system, corresponding

to method-3, are obtained by numerically integrating equation (6.54), as shown in

Figure 6.6.

In Figures 6.6a,b, the time traces of the reduced dominant states are indicated by

the black dashed line corresponding to the numerically integrated solution, the solid

magenta line corresponding to the linear method, the solid blue line corresponding to

the nonlinear projection method, and the solid gray line corresponding to the invari-

ant manifold method. Again, all the methods are observed to follow the numerical

solution closely. In Figures 6.7a,b, the time traces of the error in the reduced dom-

inant states (for the numerical solution) are indicated by solid magenta line for the

linear method, solid blue line for the nonlinear projection method and solid gray line

for invariant manifold method.

6.3.6 Discussion

The L-P transformation matrices and their inverse were observed to contain time

varying terms with incommensurate frequencies. The reduced order system was ob-

served to follow the numerical solution of the original system quite well for all the

cases in both the dominant system states. Hence, all the order reduction methods

follow the trend of the dominant system states and preserve the dynamics of the
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(a)

(b)

Figure 6.6: Comparison of System State Variation Non-commutative Hills Quasi-
periodic System with Coupled Nonlinear Terms, Where (a) Shows z1 State and (b)
Shows z2 State Variations

179



(a) (b)

Figure 6.7: Error in the System State Variation Comparison of Non-commutative
Hills Quasi-periodic System with Coupled Nonlinear Terms, Where (a) Ez1 Is That
of z1 State, (b) Ez2 Is That of z2 State

original nonlinear system.

The error plots with respect to the numerical solution aided in understanding the

performance of each method. In the case of commutative quasi-periodic system, from

Figures 6.5 a,b, it is observed that the nonlinear method’s error plot is better than

that of the linear method and later (approximately after 20 seconds) error in nonlinear

projection method goes higher than other two methods. However, in both figures, the

error plot of the invariant manifold method consistently remained the lowest. Also,

for the case of Hills (non-commutative) quasi-periodic system, from Figures 6.7 a,b,

the invariant manifold method performs much better than the other two reduction

methods for both the system states. From Figures 6.7 a,b, it is also observed that

the nonlinear projection method started to sway away from the numerical solution

towards the end of the simulation. Though the nonlinear projection method was

expected to behave better than the linear method, the long term dynamics of the

system indicate that it may not be the case throughout. As long as a nonlinear

relationship is identified between the dominant states and the non-dominant states,

using the center manifold theory, this method preserves the significant dynamics of

the original nonlinear quasi-periodic system.
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6.3.7 Conclusion

In this section, the application of the L-P transformation and its inverse towards

the analysis of a highly nonlinear quasi-periodic system is demonstrated for both com-

mutative and non-commutative systems. Furthermore, the dominant system states

were identified for both classes of nonlinear quasi-periodic systems, and multiple order

reduction techniques were applied.

Initially, the contribution of the non-dominant states was neglected in the behavior

of dominant states. Later, a nonlinear projection of the non-dominant states was

considered in the behavior of dominant states, using a singular perturbation method.

Finally, the relationship between the non-dominant states and dominant states was

identified using the invariant manifold theory. Among the three methods, the order

reduction using the invariant manifold theory was observed to imitate the numerical

solution of the system behavior closely for both commutative and non-commutative

nonlinear quasi-periodic systems. The extension of this approach towards the stability

analysis is detailed in the next chapter.
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Chapter 7

STABILITY ROBUSTNESS ANALYSIS OF QUASI-PERIODIC SYSTEM

The earliest studies of the stability of linear systems with random excitations,

by Rosenbloom (1954); Bertram and Sarachik (1959); Kats and Krasovskii (1960);

Samuels (1959), were concentrated on the solution and not on the system. From the

works of Infante (1968) emerged stability theorems for linear time invariant systems.

Using a Lyapunov function and the theory of pencils of quadratic forms, subsequent

researchers (Wiens and Sinha (1984); Ariaratnam and Ly (1989)) extended the the-

orem and related corollaries towards time varying systems. Using the approach of

Integral Quadratic Constraint (IQC), a time periodic system with parametric uncer-

tainties was analyzed for stability characteristics Megretski and Rantzer (1997); Pfifer

and Seiler (2015). Recently, multiple Lyapunov function based techniques have been

developed towards stability analysis of matrix second-order systems by Bernstein and

Bhat (1995), axially moving material systems by Zhao and Rahn (2006), control of

vibrating non-classical microscale beam by Vatankhah et al. (2015), and multidegrees

of freedom fractional oscillators by Zhang et al. (2016).

In the frequency domain, the Circle or Luré criterion and the Popov criterion guar-

anteed the stability of a system with nonlinearity that met a sector type bounding

condition. The Popov criteria for Luré system were recently analyzed using complex

scaling stability analysis by Zhou (2018). The sufficient conditions were identified for

asymptotic stability of systems with deterministic and structured perturbations by

Patel and Toda (1980); Yedavalli (1985); Zhou and Khargonekar (1987); Keel et al.

(1988). A comprehensive review of these techniques and their applications is detailed

by Kozin (1969); Bhattacharyya et al. (1995). Vrabel (2020) used the logarithmic
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norm and constant variation formula based approach to evaluate the local and global

asymptotic stability property at the origin of a nonlinearly perturbed system. Addi-

tionally applying the proposed approach without computing the fundamental solution

matrix for a linear system is also demonstrated. A stochastic Lyapunov function based

approach was employed by Quevedo and Nešić (2012) to derive the stability conditions

for the control of nonlinear systems with Markovian packet losses. Recently, the ro-

bustness and boundedness of nonlinearities were analyzed using Markovian switching

in hybrid stochastic differential delay equations Hu et al. (2013).

In this chapter, the stability and robustness of linear quasi-periodic systems under

multiple perturbations are analyzed and asymptotic stability conditions are derived.

The Infante’s approach and Lyapunov direct method aids in performing this analysis.

The construction of Lyapunov functions is detailed in section 4.5.1.

7.1 Stability and Robustness of Quasi-periodic System Subjected to Random

Excitations

Similar to the case of periodic system, consider a quasi-periodic linear differential

equation with parametric stochastic perturbation given by

ẋ = [A(t) + F(t)]x (7.1)

where x and quasi-periodic A(t) are as defined before in Chapter 5. F(t) is n ×

n matrix whose nonzero elements fij(t) are stochastic process, measurable, strictly

stationary, and that they satisfy an ergodic property by Kushner (1967). The quasi-

periodic part of the equation (7.1) is assumed to be asymptotically stable, and the

stability bounds on F(t) need to be determined. As discussed in section 5.3, using

the L-P transformation x = P̄(t)z, the equation (7.1) can be reduced as
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ż = [J̄ + G(t)]z (7.2)

where G(t) = P̄−1(t)F(t)P̄(t) and the properties of G(t) is the same as that of F(t).

In the case of the non-commutative system, the J̄ matrix is a diagonal matrix with

semi-simple eigenvalues having negative real parts. For brevity, the rest of the theory

is explained considering the case of a non-commutative linear quasi-periodic system.

The stability bounds on F(t) are identified using the approach presented by Infante

(1968) and detailed in section 4.5. The theorem-2 and corollary are extended towards

the linear quasi-periodic system except for using an L-P transformation instead of

L-F transformation to reduce the system equations corresponding to equation (4.30)

and (4.34). Also, in the case of the commutative system, the J̄ matrix is replaced

with a constant real matrix C (analytically derived), and the L-P transformation

matrix (P̄(t)) is replaced with the analytically derived P(t) matrix expressions. The

theorem and corollary, explained in section 4.5, on the stability and robustness of the

randomly excited systems are applied on multiple examples of quasi-periodic systems

in the following subsections.

7.1.1 Example-10: Non-commutative Quasi-periodic System with Stochastic

Excitations

Initially, a damped linear Hills quasi-periodic system is considered of the form

ẍ+ ζẋ+ [a+ b(cos(ω1t) + cos(ω2t)) + f(t)]x = 0 (7.3)

where ω1 and ω2 are incommensurate frequencies, a and b are constants representing

the system parameters, ζ is the damping coefficient, and the f(t) is a stochastic

process, measurable, strictly stationary, and it satisfies an ergodic property Kushner
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(1967). It is assumed that E{f(t)} = 0. Considering x = [x1, x2]T = [x, ẋ]T equation

(7.3) can be expressed in the matrix form as

 ẋ1

ẋ2

 =

 0 1

−(a+ b(cosω1t+ cosω2t)) −ζ


 x1

x2

+

 0 0

−f(t) 0


 x1

x2


(7.4)

For this example, the system parameters considered are a=3, b=2.5, ω1 =2π,

and ω2 =7. The stability conditions are derived in terms of f(t) as a function of the

damping parameter ζ. For multiple values of ζ, the corresponding L-P transformation

matrix (P̄(t)) is computed, and the system in equation (7.4) is transformed (using

x = P̄(t)z) to the form similar to equation (7.2). For ζ=0.4, as mentioned earlier,

the J̄ matrix has a negative real part, and it is computed to be J̄ =

−0.2 0

0 −0.2


A symmetric, positive definite matrix (B̄) is required to apply the theorem and

corollary. Considering a quadratic Lyapunov function V (z) = zT B̄z, then

V̇ = żT B̄z + zT B̄ż = zT
[
J̄T B̄ + B̄J̄

]
z ≡ −zT D̄z (7.5)

By considering

B̄ =

B11 B12

B12 B22

 , D̄ = I2 =

1 0

0 1

 (7.6)

and substituting equation (7.6) into equation (7.5) and using symbolic software like

MATHEMATICA, the expression for B̄ matrix is computed to be B̄ =

2.5 0

0 2.5


By applying theorem-2 and corollary-2 the expressions for

λmax
[
J̄T + G(t)T + B̄

[
J̄ + G(t)

]
B̄−1

]
, λmax

[
G(t)T + B̄G(t)B̄−1

]
and

λmax
[
J̄T + B̄J̄B̄−1

]
are computed. The expression obtained, using MATHEMAT-

ICA, for these terms are long and are omitted for brevity.
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Using theorem-2 and Schwarz’s Inequality along with considering E{sin(nt)} = 0,

E{cos(nt)} = 0 and E{f(t)} = 0 yields the stability condition as

(−3.39× 10−6 − i2.78× 10−6)[(70403.9− i57728.9)−
{

(1.62× 109 − i8.13× 109)+

(352019− i288645)((−14080.8 + i11545.8) + (90651.2− i74331.1)E{f 2(t)})
}1/2

] ≤ 0

(7.7)

Solving the equation (7.7) for the E{f 2(t)} results in

E{f 2(t)} ≤ 0.155329 (7.8)

Following similar procedure with the expressions of corollary-2, using Schwarz’s

Inequality and considering E{sin(nt)} = 0, E{cos(nt)} = 0 and E{f(t)} = 0 , results

in the stability condition for the case of ζ = 0.4

E{f 2(t)} ≤ 0.155330 (7.9)

The almost sure asymptotic stability conditions obtained by theorem and the

corollary for varying damping coefficient values (ζ), are shown in Figure 7.1. The

trend indicated in the dashed blue line corresponds to the condition derived from

theorem-2, and the one indicated in solid black lines represents the condition derived

from corollary-2 for the given non-commutative quasi-periodic system. The stability

conditions obtained via the corollary-2 are observed to be comparable to the results

generated from theorem-2 for the case of a non-commutative quasi-periodic system.

7.1.2 Example-11: Commutative Quasi-periodic System with Stochastic

Parametric Excitations

In this example, a commutative quasi-periodic with a parametric excitation term

is considered, given by
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Figure 7.1: Results for the Non-commutative Quasi-periodic System with Stochastic
Parametric Excitations.

ẍ− 2b(cos(ω1t) + cos(ω2t))ẋ− dẋ+ [a+ bω1 sin(ω1t)

+ bω2 sin(ω2t) + (b cos(ω1t) + b cos(ω2t)− d)2 + f(t)]x = 0

(7.10)

where ω1, ω2, a, b and f(t) same as defined for the case of non-commutative system in

section 7.1.1. The constants d corresponds to the damping coefficient. By considering

x1 = x and x2 = ẋ1 − (b cos(ω1t) + b cos(ω2t))x1 as the systems states, the equation

(7.10) can be expressed in the state space form as equation (7.11) where

A(t) =

b(cos(ω1t) + cos(ω2t))− d 1

−a b(cos(ω1t) + cos(ω2t))− d

 , F(t) =

 0 0

−f(t) 0


(7.11)

As detailed in section 5.1, the commutative property of the system can be verified,

and the STM for the linear part of the given system can be given by equation (5.13),

where
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P(t) =

e(
b(sin(ω1t))

ω1
+
b(sin(ω2t))

ω2
)

0

0 e
(
b(sin(ω1t))

ω1
+
b(sin(ω2t))

ω2
)

 ,C =

−d 1

−a −d

 (7.12)

Thus applying the L-P transformation, x(t) = P(t)z(t), to equation (7.10) yields

ż = Cz (7.13)

The expression for the L-P transformation matrix is also verified using the con-

dition indicated in equation (5.16). For the given system in equation (7.3), the

system parameters considered are b = 1, d = 0.25, ω1 = 2π and ω2 = 7. Similar

to the case of non-commutative system, the condition from the Lyapunov function

(CT B̄ + B̄C + I2 = 0) is used to compute a symmetric, positive definite matrix (B̄)

in terms of the linear constant a

B̄ =

0.125+a+a2

0.0625+a
1−a

4(0.0625+a)

1−a
4(0.0625+a)

0.125+a
0.0625+a

 (7.14)

For values of a > 1, the B̄ matrix is observed to be a positive definite symmetric

matrix, and the conditions of Lyapunov stability are fulfilled. After the computation

of the B̄ matrix, the stability conditions for the commutative system are derived using

theorem-2 and its corollary. As mentioned earlier, the J̄ matrix is replaced with the

C matrix for the case of a commutative quasi-periodic system. Consider

K = CT + G(t)T + B̄ [C + G(t)] B̄−1 (7.15)

The eigenvalues (λ1,2) of K matrix are utilized towards the application of theorem-

2 (E{λmax [K]} ≤ ε). Again, using the Schwarz’s Inequality ((E{f(t)})2 ≤ E{f 2(t)})

and setting E{f(t)} = 0 results in
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E{f 2(t)} ≤ (0.0625 + a)3(1.25 + 2a+ a2)

0.098877 + 1.91602a+ 5.78223a2 + 7.28125a3 + 4.3125a4 + a5
(7.16)

The results obtained from equation (7.16) for values of parameter a varying from

0 to 1 are shown in Figure 7.2, using solid blue dots. In order to obtain the conditions

for robust stability from corollary-2, the following matrices are evaluated to be

G(t)T + B̄G(t)B̄−1 =

 0.25(−1+a)(1.125+a)f(t)
(0.0625+a)(1.25+2a+a2)

− (0.015625+1.5a+2a2+a3)f(t)
(0.0625+a)(1.25+2a+a2)

− (1.125+a)2f(t)
(0.0625+a)(1.25+2a+a2)

−0.25(−1+a)(1.125+a)f(t))
(0.0625+a)(1.25+2a+a2)

 ,
CT + B̄CB̄−1 =

− (1.125+a)
1.25+2a+a2

− 0.25(−1+a)
1.25+2a+a2

− 0.25(−1+a)
1.25+2a+a2

− (0.125+a+a2)
1.25+2a+a2


(7.17)

The maximum eigenvalues of the above matrices are evaluated to be

λmax
[
G(t)T + B̄G(t)B̄−1

]
= −(1.125 + a)f(t)

√
0.078125 + 1.375a+ 2.0625a2 + a3

(0.0625 + a)(1.25 + 2a+ a2)
,

λmax
[
CT + B̄CB̄−1

]
=

0.5(−1.25− 2a− a2 − (−1 + a)
√

1.25 + 2a+ a2)

1.25 + 2a+ a2

(7.18)

By applying the corollary-2 as per equation (4.34) and then using Schwarz’s In-

equality results in the condition for the expectation function as

E{f 2(t)} ≤ 0.25(0.0625 + a)2(1.25 + 2a+ a2 + (−1 + a)
√

1.25 + 2a+ a2)2

(1.125 + a)2(0.078125 + 1.375a+ 2.0625a2 + a3)
(7.19)

Figure 7.2 displays the result obtained from equation (7.19) for a in the range of

0 to 1, using solid black dots. A comparison of the trend of the stability conditions

yielding from the theorem-2 (in dashed blue line) and corollary-2 (in solid black line)

for the case of a commutative quasi-periodic system is also shown in Figure 7.2.

189



Figure 7.2: Results for the Commutative Quasi-periodic System with Stochastic
Parametric Excitations.

7.2 Stability and Robustness of Quasi-periodic System Subjected to Nonlinear

Perturbation

Here, the robustness of linear time periodic systems subjected to nonlinear per-

turbations is investigated. Consider a linear quasi-periodic differential equation with

nonlinear perturbation, f(x, t), given by

ẋ = A(t)x + f(x, t) (7.20)

Using the L-P transformation x = P̄(t)z on equation (7.20) results in

ż = J̄z + P̄−1(t)f(P̄(t)z, t) (7.21)

It is to be noted that the original unperturbed system in equation (7.20) is stable,

and the eigenvalues of matrix J̄ have negative real parts. The following is a theorem

guaranteeing the stability of the system described by equation (7.20).

Theorem-3: The system described in equation (7.20) is asymptotically stable if

the following bounding condition is met.
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||P̄−1(t)f(x, t)|| ≤ µ||x|| µ ≥ 0, ∀t ≥ 0 (7.22)

where

µ =
λ2
max[(J̄

T B̄ + B̄J̄)B̄−1]

4||P̄−1(t)||
(7.23)

λmax[.] is defined as the largest eigenvalue of the argument, and B̄ is a positive definite,

symmetric matrix that satisfies the condition J̄T B̄ + B̄J̄ = −D̄

Proof: Consider the transformed nonlinear system described by equation (7.22).

Define a Lyapunov function and ||z|| by

V (z) = zT B̄z ≡ ||z||, B̄ = B̄T (7.24)

Similar to equation (7.5), the Lyapunov function in equation (7.24) is differenti-

ated, equation (7.21) is substituted and rearranged to obtain

V̇ (z) = zT [J̄T B̄ + B̄J̄]z + 2zT B̄P̄−1(t)f(P̄(t)z, t) (7.25)

By using the Schwarz’s inequality, the second term in equation (7.25) satisfies

zT B̄P̄−1(t)f(P̄(t)z, t) ≤ [zT B̄z]1/2[{P̄−1(t)f(P̄(t)z, t)}T B̄{P̄−1(t)f(P̄(t)z, t)}]1/2

(7.26)

At this point the nonlinearity needs to satisfy a bounding condition

||P̄−1(t)f(P̄(t)z, t)|| ≤ µ′||z||, µ′ ≥ 0, ∀t ≥ 0 (7.27)

The quantity µ′ is to be determined by substituting the bounding condition into

equation (7.26) and determining what values of µ′ that make V̇ negative definite. Ob-
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serving that P̄−1(t)f(P̄(t)z, t)}T B̄{P̄−1(t)f(P̄(t)z, t)} is equal to ||P̄−1(t)f(P̄(t)z, t)||

, equation (7.27) can be substituted into equation (7.26) to obtain

zT B̄P̄−1(t)f(P̄(t)z, t) ≤ [zT B̄z]1/2µ′[zT B̄z]1/2 (7.28)

Now substituting equation (7.28) into equation (7.25) and dividing both sides by

V (z) yields

V̇ (z)

V (z)
≤ zT [J̄T B̄ + B̄J̄]z + 2

√
µ′V (z)

V (z)
(7.29)

By applying the eigenvalues of pencils of quadratic form

V̇ (z) ≤ [λmax + 2
√
µ′]V (z) (7.30)

where λmax is the largest eigenvalue of [(J̄T B̄ + B̄J̄)B̄−1]. From equation (7.29)

V (z) ≤ V (0)e(λmax+2
√
µ′)t (7.31)

or

||z(t)|| ≤ ||z(0)||e(λmax+2
√
µ′)t (7.32)

with (λmax + 2
√
µ′) < 0, the norm of ||z|| → 0 as t→∞. Since the stability of z and

x are linked if it is guaranteed that z is stable, the same can be said for x. Noting

that λmax is real and less than zero, µ′ must be less than λ2max
4

. Thus making our

smallest bound µ′ = λ2max
4

.

With the bounding condition described in equation (7.27) in the transformed

domain ||z||, it is limited in its usefulness. In order to arrange it in terms of ||x||, a

more useful form, equation (7.27) is multiplied by P̄(t)

||P̄(t)|| ||P̄−1(t)f(P̄(t)z, t)|| ≤ µ′||P̄(t)|| ||z|| (7.33)
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Now, consider the norms of the L-P transformation

||x|| ≤ ||P̄(t)|| ||z|| (7.34)

The norm ||P̄(t)|| ||z|| in equation (7.32) can be replaced with ||x|| without increas-

ing the allowable bound on the nonlinearity ||P̄−1(t)f(P̄(t)z, t)||. This substitution

decreases the bound on the nonlinearity making it more conservative. Performing

this operation and dividing through by ||P̄(t)|| yields

||P̄−1(t)f(x, t)|| ≤ µ||x||, µ =
µ′

||P̄(t)||
(7.35)

The above discussed theorem on the stability of a nonlinearly perturbed quasi-

periodic system is also verified with multiple examples of linear quasi-periodic systems

and is detailed in the following sections.

7.2.1 Example-12: Non-commutative Quasi-periodic System with Nonlinear

Perturbations

Consider a damped Hills quasi-periodic equation with cubic nonlinearity and a

quasi-periodic coefficient.

ẍ+ ζẋ+ [a+ b(cos(ω1t) + cos(ω2t))]x− ε(cos(πt) + cos(t))x3 = 0 (7.36)

where a, b are constants, ω1, ω2 are the incommensurate frequencies, and ζ is the

damping coefficient. Considering x1 = x and x2 = ẋ as the system states, equation

(7.36) can be expressed in the state space form as equation (7.20) where

A(t) =

 0 1

−(a+ b(cos(ω1t) + cos(ω2t))) −ζ

 , f(x, t) =

 0

ε(cos(πt) + cos(t))x3
1


(7.37)
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For this example, the bounds for the nonlinearity are found as a function of ζ with

the values of system parameters a, b, ω1 and ω2 fixed at 5, 4, 2π and 7 respectively. As

discussed in section 7.2, the L-P transformation x = P̄(t)z reduces the system to a

form similar to equation (7.21). When ζ = 0.2, the J̄ matrix is computed to be

J̄ =

−0.1− i2.387 0

0 −0.1 + i2.387

 (7.38)

Considering only the real part of the J̄ matrix, the Lyapunov equation J̄T B̄ +

B̄J̄ + I = 0 is used to compute the symmetric positive definite matrix B̄ as

B̄ =

5 0

0 5

 (7.39)

For the case when ζ = 0.2, the maximum eigenvalue and norm for P̄(t) are

computed to be

λ2
max[(J̄

T B̄ + B̄J̄)B̄−1] = 0.04, ||P̄(t)|| = 1.14013 (7.40)

With these values known, the value of µ for the case of ζ = 0.2 is computed to

be µ = 0.00877. For varying values of ζ, the values for µ is computed and indicated

in Figure 7.3 in solid blue dots. The trend for bounding constant is indicated in the

dashed blue line and is observed to increase with more significant amounts of damping

in the system. However, this is the boundary for the norm of the product between

the nonlinearity and P̄(t).

For this particular problem, a greater simplification is possible on the bound-

ing condition as there is only one entry in the perturbation matrix. The bounding

condition, equation (7.22), takes the form
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Figure 7.3: Results for the Commutative Quasi-periodic System with Nonlinear
Perturbations.

∥∥∥∥∥∥∥P̄−1(t)

 0

ε(cos(πt) + cos(t))x3
1


∥∥∥∥∥∥∥ ≤ µ||x|| (7.41)

After expanding the left hand term, recognizing ε(cos(πt) + cos(t))x3
1 to be scalar,

the following is obtained

|ε(cos(πt) + cos(t))x3
1|2 ≤

µ||x||∥∥∥∥∥∥∥
P̄−1

12 (t)

P̄−1
22 (t)


∥∥∥∥∥∥∥

(7.42)

Defining µs = µ∥∥∥∥∥∥∥∥∥∥

P̄−1
12 (t)

P̄−1
22 (t)


∥∥∥∥∥∥∥∥∥∥

, the expression µs||x|| yields the upper bound for the

nonlinearity. A plot of this ratio (µs) versus ζ is also given in Figure 7.3 in a solid

red line. As in the plot of µ, the boundary increases with more significant amounts

of damping in the system.

Figure 7.4 shows the response of the system states versus time for the system
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Figure 7.4: Temporal Variations of the System States of the Non-commutative
Quasi-periodic System with ζ = 0.2 and Nonlinear Perturbations

equation (7.36), with ζ = 0.2, ε = 0.8 and an initial condition of x10 = 0.2, x20 = 0.5.

A graphical illustration of the bounding condition is shown in Figure 7.5. Here, the

dynamical system was numerically integrated using MATHEMATICA to generate a

plot of µs||x|| and |f(x, t)|2 = |ε(cos(πt) + cos(t))x3
1|2 versus ||x|| for the same set of

initial conditions and system parameters. It is shown that for this initial condition,

the system is stable, and thus the nonlinearity never exceeds the bounding condition.

However, the theorem only provides sufficient conditions for stability. Therefore,

another initial condition could have been chosen to cause the nonlinearity to exceed

the bounding condition, yet the system would remain stable.

Example-13: Commutative Quasi-periodic System with Nonlinear Pertur-

bations

Similar to the example in section 7.1.2, initially consider a commutative quasi-periodic

with a nonlinear perturbation of the form indicated as
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Figure 7.5: Results for the Non-commutative Quasi-periodic System with Nonlinear
Perturbations Indicating the Bounding Condition and Nonlinear Behavior.

ẍ− 2b(cos(ω1t) + cos(ω2t))ẋ− dẋ+ [a+ bω1 sin(ω1t) + bω2 sin(ω2t)

+ (b cos(ω1t) + b cos(ω2t)− d)2]x+ εx3 = 0

(7.43)

where ω1 and ω2 are incommensurate frequencies, constants a, b are real positive

integers. Again, by considering x1 = x and x2 = ẋ1 − (b cos(ω1t) + b cos(ω2t))x1 as

the system states, the equation (7.43) can be expressed in the state space form as

equation (7.20) where

A(t) =

b(cos(ω1t) + cos(ω2t))− d 1

−a b(cos(ω1t) + cos(ω2t))− d

 , f(x, t) =

 0

−εx3
1


(7.44)

As detailed in section 7.1.2, the closed form expressions for the L-P transformation

matrix (P(t)) and exponent matrix (C) are computed for the linear part. For this

example, the system parameters considered are a = 3, b = 1, ω1 = 2π and ω2 = 7,

resulting in
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C =

−d 1

−3 −d

 (7.45)

Similar to the case of non-commutative system, equation (7.45) is used for solving

the Lyapunov equation CT B̄+B̄C+I = 0, considering the B̄ matrix to be symmetric,

the following is obtained

B̄ =

 6+d2

6d+2d3
− 0.5

3+d2

− 0.5
3+d2

2+d2

6d+2d3

 (7.46)

Following the procedure described before in the case of non-commutative system,

the maximum eigenvalue and norm for P(t) can be computed as

λmax[(C
T B̄+B̄C)B̄−1] = −2d(4 + d2 + 0.5

√
16 + 4d2)

4 + d2
, ||P(t)|| = 1.3395 (7.47)

A plot of µ versus d is given in Figure 7.6, indicated in the dashed blue line.

As expected, the bounding constant boundary increases with an increase in system

damping. In this example too, since the perturbation matrix consists of only one

element, the bounding condition in equation (7.22) takes the form

∥∥∥∥∥∥∥P−1(t)

 0

εx3
1


∥∥∥∥∥∥∥ ≤ µ||x|| (7.48)

After expanding the left hand term, recognizing P−1
12 (t) = 0 and εx3

1 to be scalar,

the following is obtained

|εx3
1|2 ≤

µ||x||
||P−1

22 (t)||
(7.49)

By defining µs = µ

||P−1
22 (t)|| , the expression µs||x|| yields the upper bound for the

nonlinearity. A plot of this ratio (µs) versus d is also given in Figure 7.6 in the solid
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Figure 7.6: Results for the Commutative Quasi-periodic System with Nonlinear
Perturbations.

red line. As in the plot of µ, the boundary increases with the increase in system

damping.

Figure 7.7 shows the response of the system states versus time for the system

equation (7.43), with d = 0.2, ε = 0.2 and an initial condition of x10 = 1, x20 = 0. It is

observed that both the system states dampen out in less than 30 seconds. A graphical

illustration of the bounding condition is shown in Figure 7.8. Again, the dynamical

system is numerically integrated to generate a plot of µs||x|| and |f(x, t)|2 = |εx3
1|2

versus ||x||.

However, the theorem only provides sufficient conditions for stability. Therefore,

another initial condition could have been chosen to cause the nonlinearity to exceed

the bounding condition, yet the system would remain stable.

7.3 Discussion and Conclusion

In this work, the sufficient conditions for robust stability of the linear quasi-

periodic system with stochastic excitation and nonlinear perturbations are showcased.
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Figure 7.7: Temporal Variations of the System States of the Commutative Quasi-
periodic System with d = 0.2 and Nonlinear Perturbations

Figure 7.8: Results for the Commutative Quasi-periodic System with Nonlinear
Perturbations Indicating the Bounding Condition and Nonlinear Behavior.
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Initially, the system with stochastic parametric excitation is considered, and an L-P

transformation converts the time-varying linear matrix to its time-invariant form. In

the case of a non-commutative system, the Jordan form of the time-invariant matrix

is obtained, and for the commutative system, the closed form expression of the same is

computed analytically. Using the Infante approach and Lyapunov function, a theorem

and related corollary proposed for time periodic system are also extended towards the

linear quasi-periodic system with stochastic parametric excitation. The linear matrix

(J̄) requirements needing to have negative real parts and B̄ matrix to be positive

definite may limit the application of this technique. However, this approach is feasible

to extend towards systems with deterministic variation in parameters too.

Later, the quasi-periodic system with external nonlinear perturbations is consid-

ered for the asymptotic stability analysis. In this system too, an L-P transformation

is performed to the linear time varying part. Subsequently, a Lyapunov function

is constructed, and using Schwarz’s inequality, and pencils of quadratic form, the

bounding condition on the nonlinear perturbations are derived. Finally, a theorem

with the bounding condition of nonlinearities guaranteeing the stability of a nonlin-

early perturbed quasi-periodic system is suggested with proof.

Additionally, in this chapter, the application of both theorems of robust stability is

demonstrated with the examples of commutative and non-commutative quasi-periodic

systems subjected to uncertain parametric excitations and nonlinear perturbations.

In all cases, the bounds of stability were observed to increase as the damping in the

corresponding system increased. However, these bounds only define the sufficient

condition for asymptotic stability, and the system may continue to remain stable

beyond these bounds. The implementation of these bounding conditions in controller

design will be presented in future work.
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Chapter 8

LIMITATIONS AND FUTURE WORK

The novel unified approach discussed in this work aided in analyzing both peri-

odically and quasi-periodically time varying systems. It was also applicable towards

the analysis of these systems with multiple perturbations. However, this approach

also has some limitations and is discussed in the following sections.

8.1 Convergence

In this work, the unified theory is based on the method of Normal Forms and

intuitive state augmentation. The method of Normal Forms could be viewed as a

higher-order averaging technique Kahn and Zarmi (2014). Unfortunately, in general

cases, the near identity transformation may not be convergent. If the eigenvalues

are in the Poincare Domain, a finite number of resonances are possible, and the near

identity transformation generally convergences. However, when the eigenvalues are

on the Seigel domain, the convergence is not guaranteed even if they do not resonate

(as the case discussed in this work) Kahn and Zarmi (2014). However, Seigel’s the-

orem Siegel (1961) provides the condition when the near identity transformation is

convergent. The near identity transformation is convergent for sufficiently small |ε|

and for some initial conditions if eigenvalues obey the condition |λi − (λ,m)| ≥ C
|m|ν

where C and ν are positive real numbers. Intuitively, it means that for all possible

(λ,m) products are separated from all λi by a strip, then the near identity transfor-

mation converges Kahn and Zarmi (2014); Siegel (1961). In this work, the examples

discussed are verified to satisfy these conditions. If the values are selected such that

the system is on the stability boundary or very close to it, then the near identity
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transformation in the quasi-periodic system does not converge.

8.2 Reducibility

The reducibility of quasi-periodic systems via the L-P transformation presented

in this work can be viewed as “almost reducibility” where the reduced system is close

to a constant system. In general, complete reducibility for a quasi-periodic system

cannot be achieved because Floquet type theory does not exist for general quasi-

periodic system by Arnold (2012). In very special cases, if a quasi-periodic system

satisfies special conditions expressed in terms of the solution operator of the associated

partial differential equation, then perfect reducibility may be achieved, as discussed

by Murdock (1978). However, for practical purposes, “almost reducibility” may be

sufficient. In this section, the approach presented by Jorba and Simó (1992) and the

similarities between their approach and the approach presented here are drawn.

Jorba and Simó (1992) discussed the reducibility of a quasi-periodic system of the

form

ẋ = (A + εK(t))x (8.1)

where x is a d dimensional vector. The eigenvalues of A matrix are denoted by λi and

λT = [λ1, λ2, ..., λd] , the frequencies in K(t) are denoted by ω = [ω1, ω2, ..., ωr]
T . They

presented a theorem when a non-resonant condition for the vector, vT =
[
λT , ωT

]
, is

satisfied by a set of big relative measures in the space of parameter v, under some

non-degeneracy condition. If ε0 is small enough, there exists a Cantorian subset ε

of [0, ε0] of a positive measure such that, if ε ∈ ε then system given by the equation

8.1 is almost reducible. It is noted that the result is valid when the eigenvalues of

A are purely imaginary. They show the convergence using the ideas similar to those

presented by Bogoljubov et al. (1976) and KAM theory by Arnol’d (1963). They
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perform averaging at each step and use the change of variables x = (I+ εP)y to solve

matrix differential equations at each order of ε. Thus, they perform averaging at each

order of ε and finally obtain

ẋn = (An + ε2nK̃n(t))xn (8.2)

It can be noted that the process discussed in this work to compute the L-P trans-

formation is similar to the successive averaging approach presented by Jorba and

Simo.

8.3 Higher Excitation

In this work, the Normal Forms technique is applied when the eigenvalues of the

Jordan form are semi-simple, but the technique can be extended to non semi-simple

eigenvalues, as discussed by Bi and Yu (1998). Though the Normal Forms technique

is considered local in nature, the techniques are tested for high or strongly excited

systems in this section.

The comparisons of the temporal variations of the linear quasi-periodic system

with a higher coefficient of the quasi-periodic system are indicated in the following

figures. The equation (5.23) is modified slightly as indicated below to remove the

damping terms and to vary each periodic term individually.

ẍ+ (a+ b1 cos(ω1t) + b2 cos(ω2t))x = 0 (8.3)

The incommensurate frequencies considered in all the cases remain the same as

ω1 = 2π rads and ω2 = 7 rads. The temporal variation comparisons of system states

of Hills quasi-periodic systems with significant parametric excitation are indicated in

Figures 8.1a,b, and 8.2a,b.
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(a) (b)

Figure 8.1: The System State Variation Comparisons for the Quasi-periodic System
with System Parameters (a = 1, b1 = b2 = 2.5 in Equation (8.3)), Where (a) Is That
of x1 State, (b) Is That of x2 State

(a) (b)

Figure 8.2: The System State Variation Comparisons for the Quasi-periodic System
with System Parameters (a = 1.0, b1 = 2.5, b2 = 5.0 in Equation (8.3)), Where (a) Is
That of x1 State, (b) Is That of x2 State

It is observed that as the quasi-periodic system tends to have stronger excitations

or higher coefficients, the proposed unified approach fails to converge with the numer-

ical simulations. In such a case an alternate approach to apply L-F transformation

successively twice is suggested. A brief overview of the formulation is provided in the

subsequent section.

8.4 Double L-F Method

Consider a linear quasi-periodic system expressed as
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ẍ+ (a1 + b1 cos(ω1t) + c1 cos(ω2t))x+ (a2 + b2 cos(ω1t) + c2 cos(ω2t))ẋ = 0 (8.4)

where the frequencies ω1 and ω2 are incommensurate. The system in equation (8.4),

can be expressed in its generic form as indicated below

ẋ = A0x + A1(ω1t)x + A2(ω2t)x (8.5)

where A0 is the constant matrix, A1(ω1t) is the matrix containing all the terms of

or multiples of frequency ω1. Similarly, A2(ω1t) matrix contains all the terms of

or multiples of frequency ω2. By grouping the first two terms and applying an L-F

transformation of the form x = Q(t)z, updates the system equation as follows

ż = Rz + Q−1(t)A2(ω2t)Q(t)z (8.6)

where Q−1(t) and Q(t) matrix elements contain truncated Fourier series of the form

indicated below

∞∑
n=1

k0 + kn cos(nω1t) + kn sin(nω1t) (8.7)

The state augmentation of the form indicated below is applied

p = cos(ω1t)

ṗ = −ω1 sin(ω1t) = q

p̈ = −ω1
2 cos(ω1t) = −ω1

2p = q̇

(8.8)

Since the augmented states are with frequency ω1, the terms with multiples of this

frequency (in both Q−1(t) and Q(t) matrices) are expanded/redefined using Ptolemy’s

and double-angle formulae trigonometric identities and replaced using ’p’s and ’q’s.
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The system states are updated as follows

z̃ = [z, p, q] (8.9)

The updated system equation after the state augmentation is represented as

˙̃z = R̃z̃ + (B1(z̃)A2(ω2t)B2(z̃))z̃ (8.10)

where B1(z̃) and B2(z̃) represent the state augmented Q−1(t) and Q(t) matrices

respectively. The updated system equation is further rearranged as shown below

˙̃z = R̃z̃ + A3(ω2t)z̃ + B̆(z̃, ω2t) (8.11)

where A3(ω2t) matrix contains only the linear terms of frequency ω2, and the B̆(z̃, ω2t)

vector contains the nonlinear monomials in z̃ and nonlinear time varying terms. By

rearranging the terms and dropping ω2 for brevity, the system equation can be up-

dated as follows

˙̃z = (R̃ + A3(t))z̃ + B̆(z̃, t) (8.12)

Since the linear part is periodic with frequency ω2, the updated equation is now

amenable to a second L-F transformation of the form z̃ = P(t)y, resulting in the

following expression

ẏ = Cy + P−1(t)B̆(P(t)y, t) (8.13)

The application of a modal transformation of the form y = Mv, updates the

system equation as follows

v̇ = Jv + M−1P−1(t)B̆(P(t)Mv, t) (8.14)
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The updated system in equation (8.14) is in its Jordan canonical form and is

eligible to apply near identity transformation and Time Dependent Normal Forms

technique as detailed in section 2.3.2. In this formulation, the amplitude of periodicity

and quasi-periodicity is not assumed to be small, extending its application to resonant

conditions.
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The equations of motion for the heave-roll model for SSF platform is derived using
the Lagrangian approach detailed in Tondl et al. (2000). The position vector, velocity
vector and acceleration vector of mass m1, in the vertical direction is given by

rm1 =

[
z̆
0

]
=

[
z + α cos(ωt)

0

]
; ṙm1 =

[
˙̆z
0

]
=

[
ż − αω sin(ωt)

0

]
;

r̈m1 =

[
¨̆z
0

]
=

[
z̈ − αω2 cos(ωt)

0

] (A.1)

The position vector and velocity vector of mass m2 is expressed as

rm2 =

[
z̆ − l cosφ
l sinφ

]
; ṙm2 =

[
˙̆z + lφ̇ sinφ

lφ̇ cosφ

]
(A.2)

The total kinetic energy of the system can be expressed as

T =
1

2
m1

˙̆z2 +
1

2
m2{ ˙̆z + lφ̇ sinφ}2 +

1

2
m2{lφ̇ cosφ}2 (A.3)

The total potential energy of the system can be expressed as

V = m2gl(1− cosφ) +
1

2
kz̆2 +

1

2
ktφ

2 (A.4)

For the given system of SSF, the Lagrangian equation of motion is expressed as

(m1 +m2){z̈ − αω2 cos(ωt)}+ bż + kz +m2l{φ̈ sinφ+ φ̇2 cosφ} = 0 (A.5)

m2l
2φ̈+ cφ̇+ ktφ+m2gl sinφ+m2l{z̈ − αω2 cos(ωt)} sinφ = 0 (A.6)

The Equations (A.5) and (A.6) can be converted to a dimensionless form, by
introducing a new variable, called time constant given as τ = (

√
g
l
)t. The equations

are updated as follows

ẍ+Bẋ+ q2x+ µ{φ̈ sinφ+ φ̇2 cosφ} = aη2 cos(ητ) (A.7)

φ̈+ Cφ̇+ sinφ+ q2
t φ+ {ẍ− aη2 cos (ητ)} sinφ = 0 (A.8)

where x = z
l
, ω0 =

√
g
l
, B = b

ω0(m1+m2)
, q2 = k

ω2
0(m1+m2)

, µ = m2

(m1+m2)
, C = c

ω0m2l2
, η =

ω
ω0
, q2
t = kt

ω2
0m2l2

and a = α
l
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The following are the elements of the near-identity transformation matrix, ob-
tained for the quasi-periodic system without damping.

P (1, 1) =1.00 + (0.0441156 + 0.i)2.71828(0.−0.716815i)t−
(0.0356973 + 0.i)2.71828(0.+0.716815i)t+

(0.0574301 + 0.i)2.71828(0.−6.28319i)t − (0.0574301 + 0.i)2.71828(0.+6.28319i)t+

(0.0515491 + 0.i)2.71828(0.−7.i)t − (0.0515491 + 0.i)2.71828(0.+7.i)t+

(0.000586079 + 0.i)2.71828(0.−12.5664i)t−
(0.00202643 + 0.i)2.71828(0.+12.5664i)t+

(0.00101803 + 0.i)2.71828(0.−13.2832i)t − (0.003289 + 0.i)2.71828(0.+13.2832i)t+

(0.000439847 + 0.i)2.71828(0.−14.i)t − (0.00130168 + 0.i)2.71828(0.+14.i)t,

P (1, 2) =(0.0165154 + 0.i) + (0.00931405 + 0.i)2.71828(0.−0.716815i)t+

(0.00756359 + 0.i)2.71828(0.+0.716815i)t − (0.128 + 0.i)2.71828(0.−6.28319i)t+

(0.0370199 + 0.i)2.71828(0.+6.28319i)t − (0.102052 + 0.i)2.71828(0.−7.i)t+

(0.034484 + 0.i)2.71828(0.+7.i)t − (0.00279764 + 0.i)2.71828(0.−12.5664i)t+

(0.00045943 + 0.i)2.71828(0.+12.5664i)t−
(0.00444933 + 0.i)2.71828(0.−13.2832i)t+

(0.000807458 + 0.i)2.71828(0.+13.2832i)t − (0.00172966 + 0.i)2.71828(0.−14.i)t+

(0.000352601 + 0.i)2.71828(0.+14.i)t,

P (2, 1) =(0.0165154 + 0.i) + (0.00756359 + 0.i)2.71828(0.−0.716815i)t+

(0.00931405 + 0.i)2.71828(0.+0.716815i)t + (0.0370199 + 0.i)2.71828(0.−6.28319i)t−
(0.128 + 0.i)2.71828(0.+6.28319i)t + (0.034484 + 0.i)2.71828(0.−7.i)t−
(0.102052 + 0.i)2.71828(0.+7.i)t + (0.00045943 + 0.i)2.71828(0.−12.5664i)t−
(0.00279764 + 0.i)2.71828(0.+12.5664i)t + (0.000807458 + 0.i)2.71828(0.−13.2832i)t−
(0.00444933 + 0.i)2.71828(0.+13.2832i)t + (0.000352601 + 0.i)2.71828(0.−14.i)t−
(0.00172966 + 0.i)2.71828(0.+14.i)t,

P (2, 2) =1.00− (0.0356973 + 0.i)2.71828(0.−0.716815i)t+

(0.0441156 + 0.i)2.71828(0.+0.716815i)t − (0.0574301 + 0.i)2.71828(0.−6.28319i)t+

(0.0574301 + 0.i)2.71828(0.+6.28319i)t − (0.0515491 + 0.i)2.71828(0.−7.i)t+

(0.0515491 + 0.i)2.71828(0.+7.i)t − (0.00202643 + 0.i)2.71828(0.−12.5664i)t+

(0.000586079 + 0.i)2.71828(0.+12.5664i)t − (0.003289 + 0.i)2.71828(0.−13.2832i)t+

(0.00101803 + 0.i)2.71828(0.+13.2832i)t − (0.00130168 + 0.i)2.71828(0.−14.i)t+

(0.000439847 + 0.i)2.71828(0.+14.i)t

(B.1)
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