
Physically Realizable Targeted Adversarial Attacks on Autonomous Driving

by

Prasanth Buddareddygari

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Yezhou Yang, Chair
Yi Ren

Georgios Fainekos

ARIZONA STATE UNIVERSITY

May 2021

ABSTRACT

Autonomous Driving (AD) systems are being researched and developed actively in

recent days to solve the task of controlling the vehicles safely without human intervention.

One method to solve such task is through deep Reinforcement Learning (RL) approach.

In deep RL, the main objective is to find an optimal control behavior, often called policy

performed by an agent, which is AD system in this case. This policy is usually learned

through Deep Neural Networks (DNNs) based on the observations that the agent perceives

along with rewards feedback received from environment.

However, recent studies demonstrated the vulnerability of such control policies learned

through deep RL against adversarial attacks. This raises concerns about the application of

such policies to risk-sensitive tasks like AD. Previous adversarial attacks assume that the

threats can be broadly realized in two ways: First one is targeted attacks through manipu-

lation of the agent’s complete observation in real time and the other is untargeted attacks

through manipulation of objects in environment. The former assumes full access to the

agent’s observations at almost all time, while the latter has no control over outcomes of

attack. This research investigates the feasibility of targeted attacks through physical adver-

sarial objects in the environment, a threat that combines the effectiveness and practicality.

Through simulations on one of the popular AD systems, it is demonstrated that a

fixed optimal policy can be malfunctioned over time by an attacker e.g., performing an

unintended self-parking, when an adversarial object is present. The proposed approach is

formulated in such a way that the attacker can learn a dynamics of the environment and

also utilizes common knowledge of agent’s dynamics to realize the attack. Further, several

experiments are conducted to show the effectiveness of the proposed attack on different

driving scenarios empirically. Lastly, this work also studies robustness of object location,

and trade-off between the attack strength and attack length based on proposed evaluation

metrics.

i

DEDICATION

This thesis is dedicated to the memory of my late parents, B Raja Reddy, and B Hemalatha.

And to my elder sisters, B Yamuna and B Pavani who supported me throughout my life.

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. Yezhou Yang for welcoming into

Active Perception Group (APG) and helping me find my own research path. His invaluable

guidance and motivation has made a huge impact on my research journey and encouraged

me at almost each and every step of my Masters degree milestone. His kind advice has

made me realize my priorities and actively engage in the research culture along with other

members. Next, I would like to thank Prof. Yi (Max) Ren for providing me the opportunity

to engage in such an interesting topic which eventually led to this thesis. I am privileged

to have him around every time whenever I got stuck with my research and helped me

understand the bits and pieces of a good research. A special thanks to Travis Zhang for

being my continuous partner in my MS journey, keeping my motivation up and showing

great enthusiasm.

I am grateful to be a part of adversarial group and its members for useful discussions

and suggestions. A big thanks to Changhoon Kim for engaging with me when I was

struggling in the initial days of my research. Also, thanks to Benjamin Danek for helping

me to get onboard on to this project. I thank each and every person of the group, Sheng

Cheng, Joushua Feinglass, Xin Ye, Zhe Wang, Yongbaek Cho and others.

I am privileged to be a part of amazing and bright members of APG. I extendmy thanks

to Tejas Gokhale, Zhiyuan Fang, and Varun Jammula for some of the useful discussions.

I would like to thank Mr. Hong Yuan from GoDaddy for being my manager at internship

and always allowing me to focus on my college and academics first. Finally, I thank my

roommate Vishnu Teja Yalakuntla for being supportive during my MS journey.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Motivation . 4

1.3 Challenges . 5

1.4 Contribution . 6

2 BACKGROUND . 7

2.1 Digital Adversarial Attacks . 7

2.2 Physically Realizable Attacks . 8

2.2.1 Deep Neural Networks . 9

2.2.2 Deep Reinforcement Learning . 9

2.2.3 Autonomous Driving . 10

3 TARGETED PHYSICAL ADVERSARIAL ATTACK . 12

3.1 Physical Object Dynamics . 12

3.2 Environment Dynamics Model . 14

3.2.1 Data Collection . 14

3.2.2 Learning Procedure . 15

3.3 Attack Formulation . 16

3.4 Optimization . 18

4 EXPERIMENTS . 21

4.1 Car Driving Simulator . 21

4.2 Baselines . 22

iv

CHAPTER Page

4.3 Evaluation Metrics . 22

5 RESULTS . 23

5.1 Driving Scenarios . 23

5.2 Baselines Comparison . 23

5.3 Robustness of Object Position . 27

5.4 Trade-off between Attack Strength and Attack Length 28

6 CONCLUSION AND FUTURE WORK . 30

REFERENCES . 32

APPENDIX

A VIDEO RESULTS . 36

v

LIST OF TABLES

Table Page

5.1 Targeted and Random Attacks Visualization in Three Driving Scenarios.

Agent Is Highlighted in Red Boxes. Visit Appendix for Complete Video

Details. 24

5.2 Comparison with Random Noise Baseline in Terms of Evaluation Metrics. . 27

5.3 Attack Strength vs Attack Length . 29

vi

LIST OF FIGURES

Figure Page

1.1 An Example of DNNs Being Used to Control the Vehicle from Input Image. 2

1.2 A Deep RL Framework to Learn Optimal Control Policy for AD System. . . . 2

1.3 An Illustration of Adversarial Attacks on AD System. 3

1.4 An Illustration of Physical Adversarial Attack on AD System by Planting

an Adversarial Physical Object. 4

3.1 VAE and MD-RNN Architecture for Learning Dynamics Model of Envi-

ronment. 16

3.2 Illustration of Targeted Physical Adversarial Attack in OpenAI Gym’s

CarRacing-v0 Environment. The Blue Panel Shows the Adversary Craft-

ing the Modified Observation Through Planting and Updating the Physical

Object Seen by the Agent. Adversary Learns a Dynamics Model and It Is

Assumed That Pre-trained Agent Policy Is Known as Shown in the Green

Panel. The Orange Panel Shows the Optimization Performed by Adversary

to Learn the Perturbation by Minimizing the Loss Between Prediction from

Dynamics Model and a Predefined Target State. 18

5.1 Trajectories of AD Agent with No Attack, Random Attack and Optimized

Attack for Straight Track Scenario. 25

5.2 Trajectories of AD Agent with No Attack, Random Attack and Optimized

Attack for Left Turn Track Scenario. 25

5.3 Trajectories of AD Agent with No Attack, Random Attack and Optimized

Attack for Right Turn Track Scenario. 26

5.4 Attack Robustness on Position of Physical Object During Test Time. 28

vii

Chapter 1

INTRODUCTION

1.1 Overview

Autonomous Driving (AD) is considered a robotic task where a vehicle containing the

AD system can control on its own without human intervention. To achieve this behavior,

the AD system must need to perceive the surroundings and intelligently plan actions just

like a human. Unlike human eyes, AD systems are equipped with different sensors such

as Camera, LiDAR, and Radar that are capable of perceiving wide variety of surrounding

information. In recent years, due to the advancement of computer vision, AD systems are

developed mainly by using images captured from RGB cameras. These advancements are

largely influenced by a fundamental technique called Deep Neural Networks (DNNs).

DNNs are heavily used in recent years for image classification (Pham et al., 2021),

language translation (Vaswani et al., 2017), speech recognition (Baevski et al., 2020) and

other tasks. Inspired by this, several researchers applied DNNs for control task in AD

systems. Figure 1.1 shows an example of DNNs that decide vehicle’s action based on the

input image. These DNNs are usually learned from a large set of data consisting of different

driving examples collected by humans. This type of learning procedure to mimic human

behavior is considered as Imitation Learning (IL).

Even though IL methods for building AD systems performed well (Bojarski et al.,

2016), they contain certain limitations such as limited dataset availability, covariate shift

between training data and evaluation, and certain design choices (Osa et al., 2018). To

mitigate these issues, learning a control task is modeled in a different way of using reward

system instead of human data which is called Reinforcement Learning (RL) (Sutton and

1

Figure 1.1: An Example of DNNs Being Used to Control the Vehicle from Input Image.

Barto, 2018). If the control actions are learned from sensor data using DNNs, it is referred

as deep reinforcement learning or simply deep RL.

In a deep RL framework, the objective is to learn a optimal control behavior, often

called policy that maps input images to actions. Then, the actions are performed on a

environment which can be either real world or simulator. The environment then returns

a reward and next image to be perceived by the AD system and thus forming a closed

loop mechanism. In deep RL, the sensory information perceived is generalized as state or

observation, and the system that performs the action is called agent. In our AD scenario,

the state is an image and the agent is AD system. Figure 1.2 shows an AD system set up in

a deep RL framework to learn an optimal control policy. Recently, several methods (Wang

et al., 2018; Liang et al., 2018) are proposed using deep RL to solve the AD task.

Figure 1.2: A Deep RL Framework to Learn Optimal Control Policy for AD System.

2

On the other side, as the progress in usage of DNNs increased, the vulnerabilities

associated with them are also avidly increasing through adversarial attacks. An adversar-

ial attack is a procedure generally initiated by attacker or adversary by perturbing small

percentage of the DNNs input to generate outputs that are different from true output. For

example in AD system, an adversarial attack consists of adding a small noise to input image

which is indistinguishable from original image such that the action generated can be right

turn instead of original left turn as shown in Figure 1.3. These attacks actively expanded to

wide variety of DNN applications such as computer vision (Goodfellow et al., 2015; Akhtar

and Mian, 2018), natural language processing (Jia and Liang, 2017) and speech (Qin et al.,

2019).

Figure 1.3: An Illustration of Adversarial Attacks on AD System.

Since DNNs are explicitly used to learn policies, deep RL agents are also susceptible

to adversarial attacks (Huang et al., 2017; Lin et al., 2017). Further, recent study has shown

that AD systems learned with deep RL can also be exploited by adversarial attacks (Huang

and Wang, 2018; Sun et al., 2020). However, these adversarial attacks on AD systems may

not be practical as one need direct access to the agents’ sensors to modify the states.

To introduce a more feasible attack, one can create and place adversarial objects in the

environment to form a physically realizable attack. These attacks are shown to be effective

3

in general application of DNNs such as image classification (Kurakin et al., 2016; Eykholt

et al., 2018) and face recognition (Sharif et al., 2016). Further, these physical attacks can be

easily extended to fool AD systems by adding an adversarial physical object beside road to

take wrong action as illustrated in Figure 1.4. Lastly, few recent works empirically showed

the existence of physical adversarial examples in AD system by modifying advertising sign

boards (Kong et al., 2020), and patterns painted on road (Yang et al., 2020). The practicality

of such attacks makes it interesting to research further about vulnerabilities of AD systems.

Figure 1.4: An Illustration of Physical Adversarial Attack on AD System by Planting an

Adversarial Physical Object.

1.2 Motivation

In view of physical adversarial attacks on AD systems, this work aims to question the

possibility of launching more controlled yet effective physical attack. To that end, this work

indirectly argues and pushes to introduce a sophisticated threat that can be practical and

effective. By doing this, the AD community could be enlightened with such threats and

posits to make more robust and reliable deep RL algorithms.

Upon reviewing the existing methods on physical attacks (Kong et al., 2020; Yang

et al., 2020), it is found that these attacks on AD systems are untargeted attacks, i.e., the

attacker objective is to maximize the deviation between steering angle taken by agent with

4

and without presence of physical object. In specific, the attacker has no control over the

behavior or positions of vehicle within a time window. This further questions whether we

can propose an attack where the exact position of car in environment can be specified by the

attacker and thereby achieving practicality, outcome control and effectiveness. Motivated

by this, our work proposes to design a static perturbation on the environment such that

the agent is led to a target state specified by the attacker after certain time. Learning an

adversarial plan of actions implicitly by just making the agent observe physical adversarial

example makes this a challenging task.

1.3 Challenges

Even though physical adversarial attack seems practical, there are few challenges that

need to be addressed to achieve this. Existing digital attack threats assume that the adversary

is allowed to manipulate the agent’s observation at all time, such as through hĳacking the

camera module of AD system. However, in physical attack, the perturbation on object is

fixed and it is not allowed to change at all time. Moreover, this fixed perturbation should be

able to mislead the agent continuously. Hence, finding a physical adversarial pattern that

need to produce maximum overall attack effect within a time window is considered to be a

key challenge.

Another key challenge in implementing physical adversarial attack is that the pertur-

bation area is limited compared to the full image seen by the agent. Existing digital attacks

consider this perturbation region to take entire image whereas in physical attack, only the

region corresponding to the physical object can be modified. Further, the adversarial object

will change its relative position with respect to the agent during the attack, while the agent’s

motion is determined by the object itself and thus forming a closed loopmechanism. Hence,

identifying and manipulating the object region at each step by taking agent position into

account is considered to be another challenging task.

5

1.4 Contribution

Since this research aims to discover the vulnerabilities of control policy, the optimal

policy of AD system is considered to be white-box. To solve our proposed targeted physical

adversarial attack, it is assumed that the attacker can learn a differentiable dynamics model

that predict the transition of the environment and has access to dynamics of agent’s own

states with respect to the agent’s actions. This assumption holds reasonably valid since

the environment (road and surroundings) is accessible to everyone including the attacker,

and AD agent’s dynamics is commonly available knowledge, e.g., position of car is known

based on the actions it performed. Overall, the contributions of this research are as follows.

• To the best of our knowledge, this work is among the first to present targeted physical

attacks on deep RL agent for AD systems. The proposed attack algorithm generates

a static perturbation that can be directly realized through an object placed in the

environment to mislead the agent towards a pre-specified state within a time window.

• Ablation studies are performed to show that the choices of attack time window and

the target state specified are correlated. Therefore, fine-tuning the loss function of

the attack with respect to the time window is crucial for finding successful attacks.

• Robustness of the attack is studied with respect to relative positions of physical

adversarial object with respect to the agent, and showed that moving the object

partially out of the agent’s sight can reduce the attack effectiveness.

6

Chapter 2

BACKGROUND

Adversarial attacks on deep RL agents or DNNs in general can be broadly classified

into two types based on the attacker access limits. If the attacker gains access to manipulate

the image seen by DNNs, then it is considered to be a digital adversarial attack. Whereas,

if the attacker can mainpulate a physical object in the environment, then it is considered to

be a physically realizable attack.

2.1 Digital Adversarial Attacks

Digital adversarial attacks are first introduced by Szegedy et al. (2014) for AlexNet

(Krizhevsky et al., 2012) on Imagenet data (Deng et al., 2009). Later, Goodfellow et al.

(2015) showed that adversarial examples can be generalized further across different DNNs

architectures. Moreover, Nguyen et al. (2015) showed that certain images unrecognizable to

humans can be recognized and classified by DNNs with high confidence. Further, Papernot

et al. (2017) showed that adversarial attacks can be achieved even without access to model

weights or training data and considered them as black-box attacks. Carlini and Wagner

(2017) proposed highly confident adversarial examples which can even fool defensively

distilled DNNs. Even though such attacks are highly focused on computer vision tasks such

as classification (Goodfellow et al., 2015; Carlini and Wagner, 2017), semantic segmenta-

tion (Hendrik Metzen et al., 2017), and face recognition (Dong et al., 2019), they seem to

be existing in other domains such as natural language processing (Zhang et al., 2019) and

speech (Carlini and Wagner, 2018).

Since DNNs are heavily used in deep RL, researchers have identified that deep RL

7

agents are also vulnerable to such attacks. Huang et al. (2017) observed the adversarial

phenomenon in policies learned throughDNNs using FGSMattack proposed byGoodfellow

et al. (2015). In the Atari games environment, Lin et al. (2017) proposed strategically timed

attack which focuses on finding the right time when an adversarial attack needs to be

performed, and enchanting attack, a targeted attack that generates adversarial examples in

order to find actions that lead to a target state. Kos and Song (2017) proposed methods

for generating value function based adversarial examples and Behzadan and Munir (2017)

studied adversarial attacks on deep Q networks (DQN) along with transferability to different

DQN models. Further, Pattanaik et al. (2017) proposed a gradient-based attack on double

deep Q networks (DDQN) and deep deterministic policy gradient (DDPG), and developed

a robust control framework through adversarial training. Recently, Weng et al. (2020)

proposed model-based adversarial attacks on MuJoCo domains using a target state as the

attack goal similar to Lin et al. (2017)’s enchanting attack. More recently, Zhang et al.

(2020) proposed state-adversarial Markov decision process and studied adversarial attacks

on model-free deep RL algorithms.

In the context of AD, Huang and Wang (2018) performed digital adversarial attacks

with similar idea of Huang et al. (2017) using FGSM. Further, Sun et al. (2020) improved

these attacks on AD using critical point attack which relies on environment prediction

model and Damage Awareness Metric. However, these attacks on AD require a strong

assumption that the attacker can access the camera or state observations seen by AD agent.

This assumption cannot be practical and realistic in general. Hence, digital adversarial

attacks have only limited effect on AD systems.

2.2 Physically Realizable Attacks

Likementioned previously, physically realizable attacks are targeted through a physical

object present on part of the input image seen by DNN. These attacks are mainly studied

8

on DNNs and further extended to deep RL agents. More importantly, these attacks have

become interestingly dangerous to AD systems raising a serious concern.

2.2.1 Deep Neural Networks

In the context of fooling DNNs with physical adversarial attacks, Kurakin et al. (2016)

manipulated images captured from cell-phone to fool Inception network (Szegedy et al.,

2016) trained on Imagenet data (Deng et al., 2009). For the same Inception network, Athalye

et al. (2018) extended these attacks to 3D case by generating 3D adversarial objects using

Expectation Over Transformation framework. Sharif et al. (2016) proposed an approach to

fool state-of-the-art face recognition system by generating an adversarial eye-glass frame

that can cause misclassification.

Brown et al. (2017) proposed an universal, location and size independent physical

adversarial patch which when placed on image cause models to misclassify. Thys et al.

(2019) showed that person detection model can be fooled by generating an adversarial

patch and holding in front of body. Moreover, Liu et al. (2018) proposed DPatch that can

perform attacks on object detection algorithms such as Faster R-CNN (Ren et al., 2015) and

YOLO (Redmon and Farhadi, 2017). All the above discussed methods are either classifiers

or detectors and are not suitable for complete sequential decision making tasks.

2.2.2 Deep Reinforcement Learning

Unlike DNNs, physical adversarial attacks specific to deep RL agents is a relatively

new topic and only a few works exist. Since most of the physical adversarial attacks on deep

RL agents are suitable on AD systems, they are mentioned in detail in section 2.2.3. Apart

from attacks on deep RL AD agents, Gleave et al. (2020) proposed adversarial policies in

a multi-agent environment where policy of attack agent (which is a physical object that can

perform actions) is crafted in a way that victim policy can be damaged. These adversarial

9

policies are shown to be effective in zero sum games such as kick and defend, sumo fight and

others. Similar to this, Lin et al. (2020) proposed adversarial examples for attack agent that

can generate certain target actions induced by adversarial policies. Themethod is performed

on popular Starcraft multi-agent game and it is shown to be effective in decreasing total

team reward. However, these methods being in a multi-agent environment are different

from the threat proposed in this work.

2.2.3 Autonomous Driving

Early work of Lu et al. (2017) showed that physical attacks on AD systems have lim-

ited to no impact because of continuous changes in viewing angle, distance from a moving

vehicle. However, Eykholt et al. (2018) proposed Robust Physical Perturbations (RP2)

algorithm for generating physical adversarial examples on traffic signs considering different

view points. The attack is shown to be effective in a real world physical drive-by test by

mounting camera on top of car. Sitawarin et al. (2018) proposed out of distribution attack

to generate any sign to targeted adversarial example, and lenticular printing attack which

generates disguised adversarial images when viewed from varying heights of camera. Fur-

ther, Liu et al. (2019) proposed a Generative Adversarial Networks (GAN) based approach

for creating physical adversarial patches that provides high visual blending with original

traffic image signs and provides same attack effectiveness.

Apart from 2D images, such attacks are found to be present in 3D scans from LiDAR

as well. Cao et al. (2019) proposed LiDAR-Adv that generates a 3D adversarial object

when placed on the side of road can successfully cause a LiDAR detector to be unnoticed.

Recently, Tu et al. (2020) generated universal 3D adversarial objects and placed them on

top of other vehicle to fool LiDAR detectors.

All the above discussed methods in this section showed that physical threats on AD

systems are intriguingly possible. These methods performed physical world experiments by

10

collecting videos in the presence of benign objects and adversarial objects separately and

then evaluated them. Such evaluation is considered as offline analysis. However, in realistic

scenarios of online driving, an AD system may undergo a different behavior in presence of

adversarial object and cannot choose same path when benign object is present. For example,

a perturbed stop sign misclassified as right turn can make AD system take actions leading to

right turn forming new view points. There might be many such view points and identifying

every one of them is not scalable. In this work, online driving scenario is considered, i.e.

action changes in AD system are taken into account in presence of adversarial object. To

solve this, different paths or trajectories are collected and then a dynamics model is learned

to simulate the behavior of AD system under attack.

Recently, few works have considered performing an online driving testing in physical-

world scenarios. Kong et al. (2020) proposed PhysGAN, a generative model that takes 3D

video slice as input and generates a single physical adversarial example. The adversarial

example is then placed on environment as advertising sign board and tested for the attack

effectiveness. Further, Yang et al. (2020) proposed an optimization method for finding

physical adversarial examples using a differential approach to map physical patterns from

3D space to 2D image space. However, these methods are untargeted attacks since their

objective is to maximize the steering angle error between with and without presence of

physical adversarial example. There is no guaranteed outcome of where the vehicle will

reach after few timesteps. In contrast to this, our proposed work make AD agent reach a

target state or goal, specifically an image set by the attacker. Hence, the targeted physical

adversarial attack is a novel approach that is practical, effective and more controlled.

11

Chapter 3

TARGETED PHYSICAL ADVERSARIAL ATTACK

In this chapter, targeted physical adversarial attack is proposed, i.e. the aim of attacker

is to make AD agent reach a specific target state in the presence of an adversarial physical

object. To achieve this, the attacker makes use of agent’s dynamics, learn a dynamics model

of environment, then formulate the attack for optimization in a differentiable fashion. The

following sections describe in detail each of these methods.

3.1 Physical Object Dynamics

One of key challenges in any physical adversarial attack is to obtain the position of

object in the frame seen by the agent at every time step as vehicle moves. This is referred as

obtaining physical object dynamics. We consider an AD system as a deep RL agent that has

its own state in the environment. The agent’s state is usually defined by position of vehicle,

angle and velocity information. Remember that the position of object in the frame changes

relative to the agent state. For example, the agent moving forward will have object appear

bigger compared to previous agent state. In this work, it is assumed that attacker have access

to agent state transition dynamics. That is, given an agent state and action performed by it,

attacker can know the next agent state. This assumption is reasonable since environment is

accessible to all including the attacker, e.g a particular road of highway. In realistic physical

world scenario, attacker will be able to use a proxy vehicle and drive around environment

to infer the agent dynamics.

Before looking into obtaining physical object dynamics from agent dynamics, let’s first

mathematically formalize the whole system to make things clear. Let BC ∈ [0, 1]F×ℎ×2 be a

12

normalized imagewith widthF, height ℎ, and channel size 2 respectively, that represents the

state (images) seen by agent at time C of the underlying Markov Decision Process (MDP).

Let 0C ∈ [0, 1]= be the action vector taken by the agent at time C, and = is the number

of continuous actions to be determined. In this work, the actions of AD agent consist of

normalized change of steering angle, acceleration and breaking rates in that order. Let

A (BC , 0C) ∈ R be the rewards received to agent when action 0C is performed on state BC . Let

c\ : [0, 1]F×ℎ×2 → [0, 1]= be an optimal policy learned on the MDP with objective shown

in Equation (3.1). In deep RL, \ is referred as weights or parameters of policy learned using

DNNs.
max
\
Eg∼?\ (g)

[∑
C

A (BC , 0C)
]

?\ (g) = ?\ (B1, 01,, B) , 0)) = ?(B1)
)∏
C=1

c\ (0C |BC)?(BC+1 |BC , 0C)
(3.1)

Let XC ∈ [0, 1]: be the agent state at time C, where : is the number of properties

required to make up agent state. In this experiment, XC is represented by position, velocity

and angle of vehicle. Let 6 : [0, 1]: × [0, 1]= → [0, 1]: be the dynamics of the agent.

Let ?C be the representation of adversarial object relative position in the image. If the

object is a rectangle, then ?C represents coordinates of bounding box. Our goal is to find

?C so that only the area within it should be modified to form the physical attack. To get ?C ,

first the attacker place a physical object on the side of road at location, Φ fixed with respect

to environment. Then, ?C is calculated using XC , 6 and Φ using Equation (3.2), where k is

a transformation function that maps absolute position of object onto relative position in the

image.

?C = k(XC ,Φ)

XC = 6(XC−1, 0C−1)
(3.2)

By inferring ?C at each timestep, the attacker can easily identify the relative position

of object in the image seen by AD agent based on actions taken to craft the physical attack.

13

3.2 Environment Dynamics Model

Next step in our proposed attack is to learn a dynamics model of environment. By

learning such model, attacker can successfully predict the future state of agent based on the

actions taken by agent and current state. This is an essential step since our attack is gradient

based and hence the environment dynamics model should be differentiable. The model is

learned by first collecting the data and then choosing a necessary DNN architecture.

3.2.1 Data Collection

The dataset, � for learning dynamics model is collected in the format of (state, action,

next state), i.e. (BC , 0C , BC+1) through multiple rollouts of agent in the environment, 4=E.

When performing an attack, remember that a successfully attacked rollout will encounter

states different from those experienced through the benign policy, e.g., AD agent moving

out of the road in presence of attack is different from AD agent staying on the road without

attack. To collect a representative dataset, rollouts are performed using the pretrained policy

with added noise of variable strength, d added to the actions i.e, 0C = 0C + N(0, 1) ∗ d.

The noisy actions help explore the environment, allowing the adversary to predict the

environment dynamics correctly when approaching the target state. The full data collection

procedure is shown in Algorithm 1.

The resultant dataset is denoted by � = {(B8, 08, B8+1)}#8=1 with # = A= ∗ A; , where

A= is number of rollouts and A; is length of each rollout. Note that such data collection

is achievable when launching a real-world attack, as long as the attacker can sample the

state transitions towards the specified target by using a vehicle with dynamics similar to

the attacked agent. Hence, the proposed attack corresponds to online driving case unlike

most of the existing methods since the dynamics model is used to account for the changes

in trajectory of AD agent under attack.

14

Algorithm 1: Collect � from 4=E by rolling the AD agent
Input: environment 4=E, number of rollouts A=, length of each rollout A;

Output: a collection of state, action and next state dataset, �

A ← 0, ; ← A;

� ← q

seed← random seed

while A < A= do
C ← 0

4=E.seed(seed)

BC = 4=E.reset()

while C < ; do
0C = c(BC)

0C = 0C + N(0, 1) ∗ d

BC+1 ← 4=E.step(0C)

� ∪ {(BC , 0C , BC+1)}

C ← C + 1
A ← A + 1

Return �

3.2.2 Learning Procedure

After collecting the dataset, the next step is to learn a well behaved dynamics model

to facilitate attack optimization. Since the environment states contains rich information

like time-variant track and surroundings, traditional feed forward neural networks fail to

perform well on the collected AD system dataset. Hence in this work, we follow Ha

and Schmidhuber (2018) to construct a dynamics model using a Variational AutoEncoder

(VAE) and a Mixture-Density Recurrent Neural Network (MD-RNN), combinely denoted

by 5 (BC , 0C ;F), where F are trainable parameters. The dynamics model takes in the current

environment state, BC and action performed, 0C as input, and predicts the next environment

15

state, BC+1 as output. Since the state image in our work is of shape 96× 96, the architectures

of VAE and MD-RNN are tweaked a bit according to our convenience. Figure 3.1 shows

the architecture of dynamics model used to realize our proposed attack.

Figure 3.1: VAEandMD-RNNArchitecture for LearningDynamicsModel of Environment.

As in the original paper Ha and Schmidhuber (2018), we use the same combination of

Mean Square Error and Kullback–Leibler divergence as the loss for training the VAE, and

the Gaussian Mixture Loss for training the MD-RNN.

3.3 Attack Formulation

Once the agent dynamics is known and dynamics model of environment is learned, our

proposed attack can be realized in end-to-end differentiable fashion. To achieve this let’s

consider a be the matrix of 1’s. Recall that, we have ?C available as explained in section

3.1. A mask <FC ∈ {0, 1}F×ℎ is created based on ?C and a by estimating homography

and warping using F0A ? function. <FC only has 1s within the region occupied by the

physical object. To optimize adversarial perturbations, the F0A ? function need to be

differentiable and hence traditional OpenCV functions cannot be applied. In our work, we

used a differentiable warping function available in Kornia library (Riba et al., 2020).

LetΔB ∈ [0, 1]0×1 be the adversarial perturbation corresponding to the physical object.

Then, a transformed adversarial image<?C ∈ [0, 1]F×ℎ is created based on ?C and ΔB, using

16

similar method of estimating homography and warping. Lastly, the adversarial image is

integration into the state image view seen by the agent using Equation (3.3) to formmodified

state image, B<C .

B<C = BC � (1 − <FC) + <FC � <?C (3.3)

where � is the element-wise product.

Given the initial state of environment B0, the initial agent state X0, the pre-trained

policy c, the dynamics model 5 (BC , 0C ;F), agent dynamics 6(XC , 0C), and the transformation

function, k(XC ,Φ), we search for an image ΔB, with | |ΔB | |∞ ≤ n , that leads the agent to

a specific target state, B′C0A64C within the time window [0,)]. Mathematically, the attack

objective is defined in Equation (3.4).

min
| |ΔB | |∞≤n

)∑
C=1

| |BC − BC0A64C | |22

B.C. 0C = c(B<C),

B<C = BC � (1 − <FC) + <FC � <?C ,

<FC = F0A ?(a, ?C),

<?C = F0A ?(ΔB, ?C),

?C = k(XC ,Φ),

BC+1 = 5 (BC , 0C),

XC+1 = 6(XC , 0C).

(3.4)

The dependency of variables involved in this problem is clearly visualized in Figure 3.2.

The loss function of Equation (3.4) accepts early convergence of AD agent reaching the

target state. Notice that, we use states without the adversarial perturbation in evaluating the

loss, since the target state is specified before the attack problem is solved. The use of the

learned dynamics model, agent’s dynamics and a differentiable implementation of F0A ?

together make this formulation differentiable with respect to the perturbation ΔB, allowing

17

Figure 3.2: Illustration of Targeted Physical Adversarial Attack in OpenAI Gym’s

CarRacing-v0 Environment. The Blue Panel Shows the Adversary Crafting the Modi-

fied Observation Through Planting and Updating the Physical Object Seen by the Agent.

Adversary Learns a Dynamics Model and It Is Assumed That Pre-trained Agent Policy Is

Known as Shown in the Green Panel. The Orange Panel Shows the Optimization Performed

by Adversary to Learn the Perturbation by Minimizing the Loss Between Prediction from

Dynamics Model and a Predefined Target State.

the problem to be solved using any gradient-based methods.

3.4 Optimization

The complete optimization procedure of our targeted physical adversarial attack for-

mulated in Equation (3.4) is outlined in Algorithm 2. During each iteration, the modified

state containing the adversarial image B<C is calculated as described in Equation (3.3) by

computing <?C and <FC . To respect the observation limits seen by agent, we clip B<C

between 0 and 1 so that valid image is yielded. The agent then performs an action on B<C

to get 0C . Using the dynamics model, 5 , future prediction B†
C+1 is obtained to compute the

loss. Finally, we backpropogate the sum of losses within the time window [0,)] in order

to update perturbation ΔB.

18

Algorithm 2: Optimization for Targeted Physical Adversarial attack
Input: Number of Iterations, �, environment 4=E, Attack length,) , pretrained

policy c, dynamics model, 5 , target state BC0A64C

Output: learned physical perturbation example, ΔB

8 ← 0, seed← random seed

ΔB← N(0, 1)

while 8 < � do
total_loss← 0, C ← 0

4=E.seed(seed)

BC = 4=E.reset()

XC ← initial agent state

while C <) do
?C = k(XC ,Φ)

<FC , <?C = F0A ?(a, ?C), F0A ?(ΔB, ?C)

B<C = BC � (1 − <FC) + <FC � <?C

clip B<C between [0, 1]

0C = c(B<C)

B
†
C+1 = 5 (BC , 0C)

XC+1 = 6(XC , 0C)

total_loss += 3 (B†
C+1, BC0A64C)

BC+1 ← 4=E.step(0C)

C ← C + 1
backpropogate total_loss to update ΔB

clip ΔB between [−n, n]

8 ← 8 + 1
Return ΔB

19

During evaluation time, the obtain ΔB is pasted on to the object to form a adversarial

physical object. Then AD agent is then run in the presence of this adversarial object to

evaluate the behavior. In next chapter, experimental results are provided to empirically

show that our proposed approach is successfully able to make AD agent reach pre-specified

target state set by the attacker.

20

Chapter 4

EXPERIMENTS

In this chapter, our planned experiments are discussed to evaluate and show the effec-

tiveness of our proposed attack approach. First we show the experimental setting on one of

the popular AD systems in deep RL and then consider baselines to compare our work with.

Finally, we propose few evaluation metrics to quantify the effectiveness of our attack.

4.1 Car Driving Simulator

We use the CarRacing-v0 environment introduced by Klimov (2016) from OpenAI

Gym to demonstrate the existence of adversarial objects that misguide deep RL agent of

AD systems. We used a model-free Actor-Critic algorithm (Mnih et al., 2016) to obtain

the optimal policy c. The policy is trained with a batch size of 128 and 105 episodes. The

policy takes a stack of 4 consecutive states (grayscale images of size 96 × 96) as the input

and produces continuous actions 0 ∈ R3 as the output. Each of these action dimensions

represent steering angle, acceleration and brake respectively. Steering action takes values

between [−1, 1] with −1 being maximum left turn, 1 being maximum right turn and 0 being

no turn. Acceleration and brake actions both takes values between 0 and 1. After training,

the policy achieves an average reward of 860 when evaluated on 100 test episodes.

We collected a dataset consisting of 103 rollouts with length of each rollout being 80 by

running agent with pretrained plus noise actions on environment. For the dynamics model

5 of the environment, the VAE is trained for 103 epochs using the Adam optimizer (Kingma

and Ba, 2014). We set the batch size to 32 and learning rate to 0.001 with decreasing

learning rate based on plateau and early stopping. For the MD-RNN, we train for 103

21

epochs using the same optimizer. We set the batch size to 16, the number of Gaussian

models to 5, and the learning rate to the same value as the training of VAE.

For the attack optimization, we set the time span) to 25 and the adversarial bound to

n = 0.9. An ablation study is shown in depth on these hyperparameters in section 5.4. We

use the same optimizer as before, and set the learning rate to 0.005 for � = 103 iterations.

We set the adversarial object area to be 25 pixels wide and 30 pixels tall.

4.2 Baselines

To our best knowledge, there has been only a few results on targeted physical attacks on

deep RL agents of AD systems. Therefore, we use a baseline where ΔB is drawn uniformly

in [0, 1]25×30. For quantitative evaluations, we performed random baseline experiment for

10 times and averaged the result to compare. By comparing agent state trajectories, final

state visualizations after) timesteps in the presence of random and optimized ΔB, we will

show that the proposed attack is more effective than random perturbations.

4.3 Evaluation Metrics

We introduce two metrics namely actions error and change of value to quantitatively

evaluate the effectiveness of our attack. The actions error is defined as the average of

squared ;2 distance between the attacked and unattacked actions taken by the agent when

performed rollouts with and without the adversarial object, respectively.

Change of value is defined as the percentage change of sum of rewards received to the

AD agent between rollouts performed with and without adversarial object. Both metrics

are calculates over time period, [0,)]. Remember that even though we haven’t considered

rewards into account for formulating our attack, a successful attack may be indirectly

construed as an abnormal behavior of AD agent and hence reduction of reward is inevitable.

This shows the strength of our attack without optimizing for reward reduction.

22

Chapter 5

RESULTS

To show that our approach works across different set of circumstances, we evaluate our

proposed attack approach on three driving scenarios, and compare the visual states after)

timesteps, trajectories of agent with and without the attack. We also compare our attack

with baselines to show that our method outperforms in terms of quantitative and qualitative

results. Further, we conduct experiments to evaluate the robustness of our attack with

respect to different locations of adversarial object placement in the environment. Finally,

we compare the effectiveness of the attack by showing the trade-off between varying attack

strength, i.e., different adversarial bounds n , and varying timespan of attack,) based on the

evaluation metrics.

5.1 Driving Scenarios

We consider three driving scenarios where the agent with the unattacked policy will

go straight, left, and right, respectively. In each of the scenarios, the object is placed at

a fixed location in the environment so that it is observable by the agent throughout the

attack. We specify the target states in such a way that AD agent goes out of the track. The

corresponding images for these target states are shown in the last row of Table 5.1.

5.2 Baselines Comparison

We compare the effectiveness of our attack by comparing final states reached by the

agent under original policy, the proposed attack, and the random baseline attack. The

visualization of final states are shown in Table 5.1. Also, trajectory visualizations are

23

Straight Left turn Right turn

(C = 0) No attack

Optimal attack

(C =)) No attack

Optimal attack

Random attack

Target state

Table 5.1: Targeted and Random Attacks Visualization in Three Driving Scenarios. Agent

Is Highlighted in Red Boxes. Visit Appendix for Complete Video Details.

24

Figure 5.1: Trajectories of ADAgent with NoAttack, RandomAttack andOptimizedAttack

for Straight Track Scenario.

Figure 5.2: Trajectories of ADAgent with NoAttack, RandomAttack andOptimizedAttack

for Left Turn Track Scenario.

plotted and shown in Figure 5.1 for straight track scenario, Figure 5.2 for left track, and

Figure 5.3 for right track scenario respectively. For the random attack, we conducted 10

independent simulations for each scenario to derive the mean trajectories. The standard

25

deviations in all three scenarios are negligible. - and . axes in trajectory figures represent

the global coordinates.

Figure 5.3: Trajectories of ADAgent with NoAttack, RandomAttack andOptimizedAttack

for Right Turn Track Scenario.

From the results it is evident that while our approach successfully misguides the AD

agent in all scenarios, the agent is not affected as much by the random attacks. Specifically,

in scenario 1, the agent goes straight with and without the presence of a random attack. In

the presence of the proposed attack, however, the agent deviates from it’s intended trajectory

to reach the target state. Similar behavior is observed for scenarios 2 and 3. It is worth

noting that by comparing Table 5.1 and Figure 5.1, the agent reaches the target location but

does not perfect match the target orientation. Further exploration of the attack objective

may potentially improve the matching of the orientation.

Lastly, Table 5.2 quantifies the comparison of our attack through the evaluationmetrics.

The proposed attack outperforms the random baseline on both the metrics.

26

Scenarios Actions Error Change of value (%)

Straight + Random 0.064 0

Left turn + Random 0.069 0

Right turn + Random 0.046 -10.72

Straight + Proposed 0.126 -17.70

Left turn + Proposed 0.138 -32.26

Right turn + Proposed 0.062 -32.15

Table 5.2: Comparison with Random Noise Baseline in Terms of Evaluation Metrics.

5.3 Robustness of Object Position

In this section, we study the robustness of our attack with respect to different global

coordinates of the physical object (Φ) placed in the environment. The experiment is

performed on the straight track scenario, with fixed dynamics model. In Figure 5.4, the

(G, H) coordinates represent the relative position of the physical adversarial object with

respect to the original attack (i.e., the one used in the experiments shown in Table 5.1), and

the heat map represents the attack loss of Equation (3.4) relative to the original final loss

during attack optimization, when the object is moved accordingly.

Therefore areas with blue region represent more successful attacks whereas with green

region represent relatively unsuccessful attacks. Note that the ranges of the figure is bounded

by the constraints that the object cannot be on the track and cannot be out of the scene.

From this test, if the object is moved towards the track (−- direction in the figure), the

attack will still be effective. On the other hand, if the object is moved away from the track

and partially out of the scene in subsequent time frames, the attack becomes less effective,

which is reasonable since the agent will have only partial observation of the attack. Further

investigating formulations of robust attacks will be valuable.

27

Figure 5.4: Attack Robustness on Position of Physical Object During Test Time.

5.4 Trade-off between Attack Strength and Attack Length

In this section, we perform an ablation study on the attack strength which is the

adversarial bound, n and attack time span,) , by enumerating n ∈ {0.1, 0.3, 0.5, 0.9} and

) ∈ {15, 25, 30}. The results in terms of the optimal loss of Equation (3.4), and the actions

error metric are summarized in Table 5.3.

The experiments are performed on the straight track scenario, with fixed dynamics

model. From the results, it is evident that larger n improves the effectiveness of the attacks,

i.e, increasing the n value makes AD agent reach closer to the target state. Additionally, as

we enlarge the time window, the actions error decreases in nearly all cases. Based on our

experiments, we believe that if) is smaller, then the attack has a smaller action space to

plan on, causing it to alter the actions more aggressively than a bigger) .

However, the attack loss increases from) = 25 to) = 30. By examining the results,

we found that this is primarily because the attack object moves out of the scene between

) = 25 and) = 30. As a result of the limited observation of the attack object to the agent,

the optimizer struggles to find a way to keep the agent close to the target state, and thus the

28

Adversarial

Bound n

Attack Length)

) = 15) = 25) = 30

Attack

Loss

Actions

Error

Attack

Loss

Actions

Error

Attack

Loss

Actions

Error

0.1 0.091 0.064 0.090 0.064 0.088 0.063

0.3 0.088 0.078 0.087 0.069 0.085 0.066

0.5 0.086 0.113 0.077 0.107 0.083 0.070

0.9 0.081 0.125 0.076 0.126 0.078 0.093

Table 5.3: Attack Strength vs Attack Length

increased loss. This implies that the time window,) is coupled with the choice of the target

state, and its careful selection is important for succeeding the attack.

29

Chapter 6

CONCLUSION AND FUTURE WORK

Even though AD agents have been on rise using deep RL techniques, it is possible

that they can be fooled by simply placing an adversarial object in the environment. While

previous studies in this domain focused on untargeted attacks without long-term effects, this

paper studies the existence of static adversarial objects that can continuously misguide a

deep RL agent towards a target state within a time window. Also, unlike most of the existing

methods which consider offline evaluation for physical attacks, our method considers the

behavior of AD agent under presence of adversarial object during attack optimization and

performs a realistic online driving scenario.

Using a standard simulator and a pretrained policy, we developed an algorithm for

searching such targeted physical attacks and showed their existence empirically. For effective

search of the attacks, we utilize differentiable dynamics model of the environment, which

can be learned through experience collected by the attacker. Further, we also empirically

verified and tested for the optimal parameters such as attack length and attack strength to

produce a maximum success of attack. By demonstrating the existence of such new type

of attack more practical than digital perturbations, we hope this study can motivate more

rigorous research towards robust and safe AI methods for AD systems.

There are mainly two opposite and equally important future directions that can be

evolved from this work. They are stronger attacks and robust defenses. In terms of stronger

attacks, the improvements could be studying the existence of our targeted physical attack in

more complex environments like richer visuals and 3D observations. Another interesting

direction is to utilize reward function and incorporating them into attack formulation.

Further, these attacks can be extended to multi-agent setting where one is a victim agent

30

and other can be attack agent. Studying these different attacks can provide useful insights

into behavior of AD systems.

In terms of defending against such adversarial attacks, adversarial training can be

introduced which has shown decent results for obtaining robust deep RL agents. Further,

it is equally important for the creators of AD systems to protect their agents and software

information confidential and not let it exploited by the attackers.

31

REFERENCES

Akhtar, N. and A. Mian, “Threat of adversarial attacks on deep learning in computer vision:
A survey”, IEEE Access 6, 14410–14430 (2018).

Athalye, A., L. Engstrom, A. Ilyas and K. Kwok, “Synthesizing robust adversarial exam-
ples”, in “Proceedings of the 35th International Conference on Machine Learning”, pp.
284–293 (PMLR, 2018).

Baevski, A., Y. Zhou, A. Mohamed and M. Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations”, in “Advances in Neural Information
Processing Systems”, vol. 33, pp. 12449–12460 (2020).

Behzadan, V. and A. Munir, “Vulnerability of deep reinforcement learning to policy in-
duction attacks”, in “International Conference on Machine Learning and Data Mining in
Pattern Recognition”, pp. 262–275 (Springer, 2017).

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving cars”, arXiv
preprint arXiv:1604.07316 (2016).

Brown, T. B., D. Mané, A. Roy, M. Abadi and J. Gilmer, “Adversarial patch”, arXiv preprint
arXiv:1712.09665 (2017).

Cao, Y., C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu and B. Li, “Adversarial objects against
lidar-based autonomous driving systems”, arXiv preprint arXiv:1907.05418 (2019).

Carlini, N. and D. Wagner, “Towards evaluating the robustness of neural networks”, in
“2017 ieee symposium on security and privacy (sp)”, pp. 39–57 (IEEE, 2017).

Carlini, N. and D. Wagner, “Audio adversarial examples: Targeted attacks on speech-to-
text”, in “2018 IEEE Security and Privacy Workshops (SPW)”, pp. 1–7 (IEEE, 2018).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database”, in “2009 IEEEConference on Computer Vision and Pattern
Recognition”, pp. 248–255 (IEEE, 2009).

Dong, Y., H. Su, B. Wu, Z. Li, W. Liu, T. Zhang and J. Zhu, “Efficient decision-based
black-box adversarial attacks on face recognition”, in “Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition”, pp. 7714–7722 (2019).

Eykholt, K., I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno
and D. Song, “Robust physical-world attacks on deep learning visual classification”, in
“Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition”, pp.
1625–1634 (2018).

Gleave, A., M. Dennis, C. Wild, N. Kant, S. Levine and S. Russell, “Adversarial poli-
cies: Attacking deep reinforcement learning”, in “International Conference on Learning
Representations”, (2020), URL https://openreview.net/forum?id=HJgEMpVFwB.

32

https://openreview.net/forum?id=HJgEMpVFwB

Goodfellow, I., J. Shlens andC. Szegedy, “Explaining and harnessing adversarial examples”,
in “International Conference on Learning Representations”, (2015).

Ha, D. and J. Schmidhuber, “Recurrent world models facilitate policy evolution”, in “Ad-
vances in Neural Information Processing Systems”, vol. 31 (2018).

Hendrik Metzen, J., M. Chaithanya Kumar, T. Brox and V. Fischer, “Universal adversar-
ial perturbations against semantic image segmentation”, in “Proceedings of the IEEE
International Conference on Computer Vision”, pp. 2755–2764 (2017).

Huang, S., N. Papernot, I. Goodfellow, Y. Duan and P. Abbeel, “Adversarial attacks on
neural network policies”, arXiv preprint arXiv:1702.02284 (2017).

Huang, Y. and S.-h. Wang, “Adversarial manipulation of reinforcement learning policies
in autonomous agents”, in “2018 International Joint Conference on Neural Networks
(ĲCNN)”, pp. 1–8 (IEEE, 2018).

Jia, R. and P. Liang, “Adversarial examples for evaluating reading comprehension systems”,
in “Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing”, pp. 2021–2031 (2017).

Kingma, D. P. and J. Ba, “Adam: A method for stochastic optimization”, arXiv preprint
arXiv:1412.6980 (2014).

Klimov, O., “Carracing-v0”, in “http://gym.openai.com/”, (2016).

Kong, Z., J. Guo, A. Li and C. Liu, “Physgan: Generating physical-world-resilient adver-
sarial examples for autonomous driving”, in “Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition”, pp. 14254–14263 (2020).

Kos, J. and D. Song, “Delving into adversarial attacks on deep policies”, arXiv preprint
arXiv:1705.06452 (2017).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks”, in “Advances in Neural Information Processing Systems”,
vol. 25 (2012).

Kurakin, A., I. Goodfellow and S. Bengio, “Adversarial examples in the physical world”,
arXiv preprint arXiv:1607.02533 (2016).

Liang, X., T. Wang, L. Yang and E. Xing, “Cirl: Controllable imitative reinforcement
learning for vision-based self-driving”, in “Proceedings of the European Conference on
Computer Vision (ECCV)”, pp. 584–599 (2018).

Lin, J., K. Dzeparoska, S. Q. Zhang, A. Leon-Garcia and N. Papernot, “On the robustness
of cooperative multi-agent reinforcement learning”, in “2020 IEEE Security and Privacy
Workshops (SPW)”, pp. 62–68 (IEEE, 2020).

Lin, Y.-C., Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu and M. Sun, “Tactics of adver-
sarial attack on deep reinforcement learning agents”, arXiv preprint arXiv:1703.06748
(2017).

33

Liu, A., X. Liu, J. Fan, Y. Ma, A. Zhang, H. Xie and D. Tao, “Perceptual-sensitive gan
for generating adversarial patches”, in “Proceedings of the AAAI conference on artificial
intelligence”, vol. 33, pp. 1028–1035 (2019).

Liu, X., H. Yang, Z. Liu, L. Song, H. Li and Y. Chen, “Dpatch: An adversarial patch attack
on object detectors”, arXiv preprint arXiv:1806.02299 (2018).

Lu, J., H. Sibai, E. Fabry and D. Forsyth, “No need to worry about adversarial examples in
object detection in autonomous vehicles”, arXiv preprint arXiv:1707.03501 (2017).

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning”, in “Pro-
ceedings of The 33rd International Conference on Machine Learning”, (2016).

Nguyen, A., J. Yosinski and J. Clune, “Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images”, in “Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition”, pp. 427–436 (2015).

Osa, T., J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel and J. Peters, “An algorithmic
perspective on imitation learning”, arXiv preprint arXiv:1811.06711 (2018).

Papernot, N., P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik and A. Swami, “Practical
black-box attacks against machine learning”, in “Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security”, pp. 506–519 (2017).

Pattanaik, A., Z. Tang, S. Liu, G. Bommannan and G. Chowdhary, “Robust deep reinforce-
ment learning with adversarial attacks”, arXiv preprint arXiv:1712.03632 (2017).

Pham, H., Z. Dai, Q. Xie, M.-T. Luong and Q. V. Le, “Meta pseudo labels”, in “IEEE
Conference on Computer Vision and Pattern Recognition”, (2021).

Qin, Y., N. Carlini, G. Cottrell, I. Goodfellow and C. Raffel, “Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition”, in “Proceedings of the
36th International Conference on Machine Learning”, pp. 5231–5240 (PMLR, 2019).

Redmon, J. and A. Farhadi, “Yolo9000: better, faster, stronger”, in “Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition”, pp. 7263–7271 (2017).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks”, in “Advances inNeural Information Processing Systems”,
vol. 28 (2015).

Riba, E., D. Mishkin, D. Ponsa, E. Rublee and G. Bradski, “Kornia: an open source
differentiable computer vision library for pytorch”, in “Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision”, pp. 3674–3683 (2020).

Sharif, M., S. Bhagavatula, L. Bauer and M. K. Reiter, “Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition”, in “Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security”, pp. 1528–1540
(2016).

34

Sitawarin, C., A. N. Bhagoji, A. Mosenia, M. Chiang and P. Mittal, “Darts: Deceiving
autonomous cars with toxic signs”, arXiv preprint arXiv:1802.06430 (2018).

Sun, J., T. Zhang, X. Xie, L. Ma, Y. Zheng, K. Chen and Y. Liu, “Stealthy and efficient
adversarial attacks against deep reinforcement learning”, in “Proceedings of the AAAI
Conference on Artificial Intelligence”, vol. 34, pp. 5883–5891 (2020).

Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction (The MIT Press,
2018), second edn., URL http://incompleteideas.net/book/the-book-2nd.
html.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the inception
architecture for computer vision”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition”, pp. 2818–2826 (2016).

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow and R. Fergus,
“Intriguing properties of neural networks”, in “International Conference on Learning
Representations”, (2014).

Thys, S., W. Van Ranst and T. Goedemé, “Fooling automated surveillance cameras: adver-
sarial patches to attack person detection”, in “Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops”, (2019).

Tu, J., M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng and R. Urtasun,
“Physically realizable adversarial examples for lidar object detection”, in “Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition”, pp. 13716–
13725 (2020).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser and
I. Polosukhin, “Attention is all you need”, in “Advances in Neural Information Processing
Systems”, vol. 30 (2017).

Wang, S., D. Jia and X. Weng, “Deep reinforcement learning for autonomous driving”,
arXiv preprint arXiv:1811.11329 (2018).

Weng, T.-W., K. D. Dvĳotham, J. Uesato, K. Xiao, S. Gowal, R. Stanforth and P. Kohli,
“Toward evaluating robustness of deep reinforcement learning with continuous control”,
in “International Conference on Learning Representations”, (2020).

Yang, J., A. Boloor, A. Chakrabarti, X. Zhang and Y. Vorobeychik, “Finding physical adver-
sarial examples for autonomous driving with fast and differentiable image compositing”,
arXiv preprint arXiv:2010.08844 (2020).

Zhang, H., H. Chen, C. Xiao, B. Li, M. Liu, D. Boning and C.-J. Hsieh, “Robust deep rein-
forcement learning against adversarial perturbations on state observations”, in “Advances
in Neural Information Processing Systems”, vol. 33, pp. 21024–21037 (2020).

Zhang, H., H. Zhou, N. Miao and L. Li, “Generating fluent adversarial examples for
natural languages”, in “Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics”, pp. 5564–5569 (2019).

35

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

APPENDIX A

VIDEO RESULTS

36

Since this work is applied on Spatio-temporal AD systems, it is easier to infer the
results in the form of short videos which can be accessed from here. Following are the
preferred and not necessarily only software and operating system requirements to view the
video results.

Operating System: macOS

Software: QuickTime Player

37

https://drive.google.com/drive/folders/1P2xLXaZnefG4m27Q0WRIMCR6jIM61khb?usp=sharing

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Overview
	Motivation
	Challenges
	Contribution

	BACKGROUND
	Digital Adversarial Attacks
	Physically Realizable Attacks
	Deep Neural Networks
	Deep Reinforcement Learning
	Autonomous Driving

	TARGETED PHYSICAL ADVERSARIAL ATTACK
	Physical Object Dynamics
	Environment Dynamics Model
	Data Collection
	Learning Procedure

	Attack Formulation
	Optimization

	EXPERIMENTS
	Car Driving Simulator
	Baselines
	Evaluation Metrics

	RESULTS
	Driving Scenarios
	Baselines Comparison
	Robustness of Object Position
	Trade-off between Attack Strength and Attack Length

	CONCLUSION AND FUTURE WORK
	REFERENCES
	VIDEO RESULTS

