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ABSTRACT  

   

Proton radiotherapy has recently become a popular form of cancer treatment. For 

maximum effectiveness, accurate models are needed to calculate proton angular 

scattering and energy loss. Scattering events are statistically independent and may be 

calculated from the effective number of events per reciprocal multiple scattering angle or 

energy loss. It is shown that multiple scattering distributions from Molière’s scattering 

law can be convolved by depth for accurate numerical calculation of angular distributions 

in several example materials. This obviates the need for correction factors to the analytic 

solution and its approximations. It is also shown that numerically solving Molière’s 

scattering law in terms of the complete (non-small angle) differential cross section and 

large angle approximations extends the validity of Molière theory to large angles. To 

calculate probability energy loss distributions, Landau-Vavilov theory is adapted to 

Fourier transforms and extended to very thick targets through convolution over the 

probability energy loss distributions in each depth interval. When the depth is expressed 

in terms of the continuous slowing down approximation (CSDA) the resulting probability 

energy loss distributions rely on the mean excitation energy as the sole material 

dependent parameter. Through numerical calculation of the CSDA over the desired 

energy loss, this allows the energy loss cross section to vary across the distribution and 

accurately accounts for broadening and skewness for thick targets in a compact manner. 

An analytic, Fourier transform solution to Vavilov’s integral is shown. A single scattering 

nuclear model that calculates large angle dose distributions that have a similar functional 

form to FLUKA (FLUktuierende KAskade) Monte Carlo, is also introduced. For 

incorporation into Monte Carlo or a treatment planning system, lookup tables of the 
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number of scattering events or cross sections for different clinical energies may be used 

to determine angular or energy loss distributions. 
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CHAPTER 1 

INTRODUCTION 

Radiation Therapy Modalities 

In radiation therapy, the goal is to deposit energy to a tumor site while avoiding 

healthy tissue. To do this, the dose (energy deposited per unit mass), must conform to the 

shape of the tumor and avoid dose to surrounding areas. This is called “conformal” dose1. 

Various types of radiation have been used for this purpose, among them photons, 

electrons and protons.  

Photons have been used for cancer treatment since shortly after the discovery of 

x-rays by Roentgen in 1895. 2 Just two months after their discovery, x-rays were applied 

to treat several types of disease, most successfully against cutaneous epithelioma. The 

invention of the electron tube in 1914 overcame the early limitations of x-ray tubes, the 

anodes of which were prone to melting under high currents.3 Further advancements came 

in 1928 with the invention of the linear accelerator4. In a “linac”, electrons are 

accelerated down a waveguide by an electric field before optionally striking a tungsten 

target to produce photons. The resulting electrons or photons are then collimated with 

high density materials to a narrow beam for therapeutic purposes. In 1959 the multi-leaf 

collimator was invented, allowing irregular beam shapes to better conform radiation to a 

tumor site.5 

In photon therapy, x-rays interact with the patient’s cells primarily through 

Compton scattering as described by the Klein Nishina cross section6, 7. An incoming 

photon produces secondary electrons in a generally forward direction as can be seen from 

Figure 1.1. A secondary photon with reduced momentum then proceeds through the 
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patient and the secondary electron generates an ionizing path deeper into the patient.8 

This is the source of the skin-sparing build-up peak visible in Figure 1.2. It is a principal 

benefit of photon therapy. The forward peaked scattering results in sharp lateral cutoffs 

(Figure 1.2.) that allow excellent conforming of the beam to tumor sites to avoid critical 

organs. Equation (1.1 to 1.2) is the Klein Nishina cross section where 𝐸𝑦 is the incident 

photon energy, 𝑚𝑒𝑐
2 is the electron rest mass, 𝜃 is the scattering angle and 𝑟𝑒 is the 

classical electron radius. 

𝑑𝜎

𝑑𝛺
=

1

2
𝑟𝑒

2𝑃(𝐸𝛾, 𝜃)
2
(𝑃(𝐸𝛾, 𝜃) +

1

𝑃(𝐸𝛾, 𝜃)
− 1 + cos2 𝜃) 1.1 

𝑃(𝐸𝑦, 𝜃) =
1

(1 + (
𝛦𝛾

𝑚𝑒𝑐
2) (1 − 𝑐𝑜𝑠𝜃))

1.2
 

It can be seen in Figure 1.1 that higher energies deliver a more forward peaked lateral 

dose distribution. Therefore, higher energies are generally used for therapy purposes, 

with the best results around 6 MeV since this energy is below the neutron production 

threshold for beam components.9 Figure 1.2 shows photon depth dose vs depth and lateral 

dose in water. Note the buildup peak and tight lateral distributions, as well as the slow 

exponential decrease in dose after the buildup peak. 10 

Photons do not stop after the tumor site and deliver dose to sites beyond (Figure 1.2). The 

intensity falls off as 

𝐼 = 𝐼0 exp(−𝜇𝑧)  1.3  

where 𝜇 is the linear attenuation coefficient for that material and 𝜆 = 𝜇−1 is the mean 

free path as visible in Figure 1.3.1 In photon therapy, tissues beyond the tumor always 
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receive unwanted dose. Clinically, photon therapy is well established however and is 

inexpensive compared with protons. A linear accelerator is cheaper for a hospital to  

operate than a cyclotron or synchrotron and it remains a popular treatment modality.  

 

Figure 1.1. Klein Nishina scattering cross section in water. 

  

Figure 1.2. Photon depth dose and lateral dose curve. Pristine 6 MeV photon beam at 4cm 

depth calculated with FLUKA. 
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Figure 1.3. The photon mean free path in water. This is the inverse of the attenuation 

coefficient 𝜇 in equation 1.3. 11-13 

 

Figure 1.4. Electron beam central axis depth dose. (Taken from Tapley14). 
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In electron beam therapy, electrons ionize other, atomic electrons in their path and 

emit bremsstrahlung as they pass through atomic electric fields15, 16. There is a buildup 

region due to electron scattering in the absorber, a peak dose, and then gradual fall off 

due to angular scattering, Bremsstrahlung and electron capture by atoms. Near the end of 

the range, a previously mono-energetic electron beam is composed of many energies. 

This leaves electrons without a well-defined Bragg peak. 8, 17  (Figure 1.4). Electrons are 

well suited to shallow tumors since unwanted dose beyond the treatment region is less 

significant than for photon therapy. At higher energies, angular scattering and x-rays 

smear out the dose falloff.1 

Protons were discovered experimentally by Ernest Rutherford in 1919 18 and were 

used in the first linear accelerator, built by Cockcroft and Watson in 1930. In 1932 the 

first cyclotron was invented by Ernest Lawrence. This machine allows the acceleration of 

ions held in a magnetic field using a weak EM field.19. The largest cyclotron could 

accelerate protons to 730 MeV. 20. In 1946, Wilson21 suggested that protons be used to 

treat tumors. The synchrotron was invented in 1947 and allows frequency adjustment of 

the electric field as the particles approach the speed of light.22 In 1954 Lawrence 

Berkeley National Laboratory began the first treatments of humans. The synchrotron 

group in Uppsala, Sweden soon followed that year.23 The Harvard cyclotron began 

treatments in 1961 and Loma Linda University Medical Center began treatments in 

1990.24 Today, synchrotrons-cyclotrons, cyclotrons and linear accelerators are all used 

for treatment in a clinical setting. 25  

Protons have some important advantages for therapy purposes over other forms of 

radiation. Firstly, proton elastic scattering is very forward peaked. This is visible in 
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Figure 1.9. They also have the advantage of a well-defined dose (or “Bragg) peak visible 

in Figures 1.5 and 1.10a. Clinical energy protons are sub-relativistic and so unlike 

electrons, they do not experience Bremsstrahlung. 16 These characteristics allow 

conformity of dose to the tumor site that is superior to either photons or electrons.  

Clinical evidence is mounting that proton therapy delivers improved patient 

outcomes compared with photons and electrons. Emerging studies of pediatric salivary 

gland tumors treated with protons indicate less dysphagia and weight loss, lower dose to 

surrounding tissues and lower total body dose. 26 Other studies report “excellent” median 

survival times.27 Treatment with protons achieved “significant dose reductions” 

compared to photon stereotactic body radiation therapy in non-small lung cancers. 28 

Researchers have found that protons reduce the risk of radiation pneumonitis in lung 

tumor patients compared to photons when combined with a chemotherapy regime,29. 

Thirty-eight percent (38%) lower dose to bone marrow has been reported for cervical 

cancer patients.30 Six pediatric medulloblastoma patients treated with passively scattered 

proton therapy had a lower risk of secondary radiogenic cancers and lower cardiac 

mortality than with field-in-field photon therapy. 31. A broad study of photon vs proton 

therapy found similar patient survival rates outcomes with fewer side effects.32 Clinical 

research comparing proton therapy with other treatment modalities is ongoing. 

In the clinical setting, inverse treatment planning is used to minimize dose to 

organs while maintaining the prescribed dose to the target volume. This requires 

simulating many configurations of fields, energies, angles and intensities.33 It is therefore 

critical to calculate the dose for each configuration quickly and accurately. To do this, 

one needs to model beam scattering and energy loss.  
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Figure 1.5. Proton beam “Bragg Peak.” (Taken from Wang34)  

The human body is 60% water. Therefore, to first order, the human body may be 

treated as a “water phantom” which is a tank of liquid water. Clinically, water tanks are 

used to calibrate accelerators and non-water materials in the human body are scaled to 

water by the ratio of the stopping power in units of 𝑔/𝑐𝑚2 35. For this reason, scattering 

and energy loss calculation will be for protons in water or beamline components such as 

graphite, iron or tungsten. 

The clinically relevant scale for dose calculations is no smaller than a Computed 

Tomography (CT) voxel, or about 1mm.36 Imaging ambiguity at scales below this 

provides a lower limit for calculation precision. This size also sets a lower limit for the 

energies of the beam. A range in water of 1mm corresponds to a residual energy of 350 

keV for electrons and 9.5 MeV for protons10. Energies less than this are deposited within 

a CT voxel. The upper limit is set by maximum patient size. Ranges of 33cm, 
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corresponding to 230 MeV for protons and 20 MeV for electrons include all tumor 

depths.  

The total elastic cross section, and its reciprocal the elastic mean free path, may 

be found by integrating the single elastic scattering differential cross section 𝜎(Ω) over 

the solid angle Ω, composed of the polar angle 𝜒 and azimuthal angle 𝜑. Since 

radiotherapy beams are necessarily unpolarized due to scattering in beamline components 

and scattering centers of the target are randomly oriented, the differential cross section 

has azimuthal symmetry.  

𝜎𝑒𝑙 = ∫𝜎(Ω)𝑑Ω = ∫ ∫ 𝜎(𝜃, 𝜑) sin 𝜒𝑑𝜒𝑑𝜙
𝜋

0

2𝜋

0

= −2𝜋 ∫ 𝜎(𝜒)𝑑𝑐𝑜𝑠 𝜒
−1

1

 1.4 

The elastic mean free path is then  

1

 𝜆𝑒𝑙
= 𝑁𝜎𝑒𝑙 1.5 

Where 𝑁 = 𝜌𝑁𝐴/𝐴 is the number of scattering centers per unit volume, 𝑁𝐴 is Avogadro’s 

number and 𝐴 is the atomic weight. From Figure 1.7 we can see that the longest mean 

free path of elastic scattering for clinical energy protons in water is about 400nm, 

corresponding to approximately 2500 elastic mean free paths in a 1 mm depth slice. At a 

1 mm length scale then, elastic coulomb scattering is a stochastic process involving many 

interactions. Each interaction is mutually independent and described by the single 

scattering cross section 𝜎(Ω). While it is possible to calculate the trajectory of each 

interaction directly from the single scattering cross section, at the 1 mm scale and above 

that is relevant for clinical purposes the many single scattering events can be described by 

a probability distribution function in terms of a multiple scattering angle. The evolution 

of the phase space of the proton beam, including the probability angle distribution is 
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described by the Boltzmann transport equation in terms of the single scattering cross 

section. In the next section, we will review proton kinematics and then transport methods 

for elastic coulomb scattering. In subsequent chapters, we will discuss Molière’s theory 

of coulomb elastic scattering and transport methods for inelastic coulomb scattering. 

Lastly, we will cover nuclear scattering. The transport methods apply most specifically to 

protons of clinical energy though occasionally some physics may apply to electrons or 

protons outside the clinical energy regime. MathWorks MATLAB™ R2021b (Update 3) 

was used to perform numerical calculations and create most plots. These methods may be 

generalized for inclusion in a Monte Carlo code or physics engine in a treatment planning 

system (TPS). Comparisons are made with FLUKA Monte Carlo, which has been shown 

to provide an adequate description of proton physics for therapy purposes.37-40 
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Figure 1.6. The elastic coulomb scattering mean free path of electrons in water. This is 

smaller than a human cell (1 micron) or a 1 mm CT voxel.41 (Taken from P. Rez) 

 

Figure 1.7. Elastic mean free path vs energy of proton coulomb scattering in water. 41 
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Figure 1.8. Differential cross section of electron elastic coulomb scattering in water.

 

Figure 1.9. Differential cross section of proton elastic coulomb scattering in water. 

Proton Kinematics 

The relevant length and energy scales for proton radiotherapy are centimeters 

(cm) and million electron volts (MeV). Cross sections are described in terms of cm2 or 

millibarns. Proton single scattering probabilities depend on the momentum 𝑝 and velocity 

𝑣 because the kinematics of the elastic cross section are determined by momentum 
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transfer of the coulomb interactions with atoms. Electron single scattering probabilities 

depend on the velocity as a fraction of the speed of light, 𝛽. This is due to a cancellation 

of the electron rest mass 𝑚𝑒𝑐
2 with the coulomb potential 𝑟𝑒(𝑚𝑒𝑐

2) in 𝜎(Ω) where 𝑟𝑒 is 

the classical electron radius. 𝑝𝑣 and 𝛽 can be expressed in terms of the kinetic energy 𝐸 

and rest energy of the particle42 As given by Gottschalk: 

𝜏 =
𝐸

𝑚𝑐2
 1.6 

𝑝𝑣 =
𝜏 + 2

𝜏 + 1
𝐸 1.7 

𝛽2 =
𝜏 + 2

(𝜏 + 1)2
𝜏 1.8 

Protons undergoing inelastic scattering in the clinical energy regime have an average 

energy loss given by the Bethe formula 

�̅�

𝑧
= 0.3068

1

𝛽2

𝑍𝜌

𝐴
ln (

2𝑚𝑒𝑐
2𝛽2

(1 − 𝛽2)𝐼
− 𝛽2)𝑀𝑒𝑉  1.9 

Electron mean energy loss is generally not equivalent to proton mean energy loss for 

projectiles of the same velocity due to exchange terms in the stopping power43 and 

bremsstrahlung at higher energies44. Since the proton energy loss per unit length is 

inversely proportional to 𝛽2, the energy losses are parabolic as 𝛽2 → 0, presenting a well 

defined energy peak. The Bragg peak would be even more sharply defined if not for 

energy straggling, which causes a more rounded peak. Note the slightly rounded Bragg 

peak in figure 1.10.a. The energy loss Δ in terms of the average energy loss Δ̅ in a length 

𝑧 is  

(
�̅�

𝑧
(𝐸)) 𝑧 = Δ 1.10 
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With the continuous slowing down approximation, energy loss along the particle path is 

assumed to be equal to the total stopping power10 

𝑅 = ∫ (
�̅�

𝑧
(𝐸))

−1

𝑑𝐸
𝐸0

0

 1.11 

Where 𝐸0 is the initial energy of the proton beam. In practice, finding the energy loss 

using Equation 1.9 requires extremely small depth intervals 𝑑𝑧. 

 

Figure 1.10a. Energy loss of primary protons vs depth for 230 MeV proton beam. 

Simulated with  FLUKA Monte Carlo.37, 39, 45-47 

If we assume the continuous slowing down approximation, the range of a proton 

in a material can be described using the Bragg-Kleeman rule as 

𝑅 = 𝑎𝐸0
𝑏 1.12 

Where 𝑎 and 𝑏 are fitting parameters.48 For water, 𝑎 = 0.002532 and 𝑏 = 1.742 from 

fitting to PSTAR10 range tables.  
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Figure 1.10b. Proton mean energy loss vs energy from the PSTAR database.10  

There is a simple empirical relation between (𝑝𝑣)2, initial (𝑝1𝑣1)
2 and 𝑅 given 

by Øverhås49 equation (89) in terms of 𝑘 from Schneider49, 50  

(𝑝𝑣)2 = (𝑝1𝑣1)
2 (1 −

𝑧

𝑅
)
𝑘+1

 1.13 

𝑘 = 0.12𝑒−0.09𝜌𝑋0 + 0.0753 1.14 

For water, 𝑘 ≈ 0.09 and is set to zero in “weak Øverhås” so that equation 1.13 becomes 

(𝑝𝑣)2 = (𝑝1𝑣1)
2 (1 −

𝑧

𝑅
) 1.15 

𝑋0 is the radiation length as given by Rossi51. 

1

𝑋0
= 4𝛼

𝑁𝐴

𝐴
𝑟0 ln (183𝑍−

1

3) 1.16

It is defined as the average distance that a relativistic charged particle travels before its 

energy drops to 1/𝑒 of its initial energy.52  

The kinetic energy of a particle can be found from 𝑝𝑣 with the relation 

𝐸 =
1

2
[𝑝𝑣 − 2𝑚𝑝𝑐

2] + √
(𝑝𝑣)2

4
+ 𝑚𝑝𝑐

2 1.17 
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So that to find the energy loss in a depth interval 𝑑𝑧, one may take  

Δ𝐸 = 𝐸(𝑝𝑣)𝑖 − 𝐸(𝑝𝑣)𝑓 1.18 

Where 𝐸(𝑝𝑣)𝑖 and 𝐸(𝑝𝑣)𝑓 are the energies determined by 𝑝𝑣 at an initial and final depth 

𝑧, respectively.  

The Transport Equation 

Imagine a particle in six-dimensional phase space defined by position and 

velocity, such that the number of particles in the distribution 𝑓(𝑟, �⃑�) is the number of 

particles in 𝑑𝑟𝑑�⃑� . The time evolution of distribution function 𝑓(𝑟, �⃑�) is conserved by 

Liouville’s theorem53 such that it obeys the continuity equation 

(
𝜕𝑓

𝜕𝑡
) + �⃑� ∙ ∇𝑓 = 0 1.19 

where the change in the probability distribution of a phase space 𝑓 with time depends on 

the change in position of the particles. For elastic scattering, the probability of particles in 

a phase space with polar angle 𝜃, azimuthal angle 𝜑 and energy 𝐸 scattering into a phase 

space element with position 𝑟, polar angle 𝜃′, azimuthal angle 𝜑′  and energy 𝛦′ is solely 

determined by the cross section 𝜎 of that phase space volume (see Figure 1.11) and is 

conserved such that 

𝑁 ∭𝜎(𝜃, 𝜑, 𝐸, 𝜃′, 𝜑′, 𝛦′)𝑣′𝑓(𝑟, 𝜃′, 𝜑′, 𝛦′)sin  𝜃′𝑑𝜃′𝑑𝜑′𝑑𝐸′

= 𝑁 ∭𝜎(𝜃′, 𝜑′, 𝛦′, 𝜃, 𝜑, 𝐸)𝑣𝑓(𝑟, 𝜃, 𝜑, 𝐸)sin  𝜃′𝑑𝜃′𝑑𝜑′𝑑𝐸′ 1.20
 

Or assuming the continuous slowing down approximation, the path length can be 

expressed as the change in position of the particles with time 𝑧 = 𝑣𝑡. Combining 

equations 1.19 and 1.20 
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(
𝜕𝑓

𝜕𝑧
) + ∇𝑓 = 𝑁 ∭𝜎(𝜃, 𝜑, 𝐸, 𝜃′, 𝜑′, 𝐸′)𝑓(𝜃′, 𝜑′, 𝑧)sin  𝜃′𝑑𝜃′𝑑𝜑′𝑑𝐸′

−𝑁 ∭𝜎(𝜃′, 𝜑′, 𝐸′, 𝜃, 𝜑, 𝐸)𝑓(𝜃, 𝜑, 𝑧)sin  𝜃′𝑑𝜃′𝑑𝜑′𝑑𝐸′ 1.21

 

This is the form of the elastic scattering transport equation as given by Fathers and Rez. 

  

 

 

 

Figure 1.11. Transport equation illustration. Simplified to one dimension 𝜃. 

Bethe, Rose and Smith (BR&S) assign the vector �⃑⃑� and �⃑⃑�′ to the directions of 

scatter in and out of a phase space volume. 𝜎(�⃑� − 𝑢′⃑⃑  ⃑) is the single scattering cross 

section through angle 𝛼 between the unit vectors �⃑⃑� and �⃑⃑�′. BR&S obtain 54 

(
𝜕

𝜕𝑧
+ �⃑⃑� ∙ ∇) 𝑓(�⃑⃑�) = 𝑁 ∬[𝜎(�⃑⃑� − �⃑⃑�′)𝑓(𝑢′⃑⃑⃑⃑ ) − 𝜎(�⃑⃑�′ − �⃑⃑�)𝑓(�⃑⃑�)] 𝑑�⃑⃑�′  1.22 

Where 𝑓(�⃑⃑�) is the probability that a particle scatters along the vector (�⃑⃑�). In terms of 𝛼, 

the angle between the unit vectors �⃑⃑� and �⃑⃑� 

(
𝜕

𝜕𝑧
+ �⃑⃑� ∙ ∇) 𝑓(�⃑⃑�) = 𝑁 ∬𝜎(𝛼)[𝑓(�⃑� ′) − 𝑓(�⃑⃑�)]𝑑�⃑⃑�′  1.23 

Expanding 𝑓(�⃑� ′) as a Taylor series in powers of �⃑⃑⃑� where �⃑⃑⃑� = �⃑⃑� − �⃑⃑�′, |�⃑⃑⃑�| = 2 sin
𝛼

2
 and 

𝑤𝑥 = 𝑤 cos 𝛽 and 𝑤𝑦 = 𝑤 𝑠𝑖𝑛 𝛽 where 𝛽 is the azimuthal angle 

𝑓(�⃑� ′) − 𝑓(�⃑⃑�) = 𝑤𝑥

𝜕𝑓

𝜕𝑢𝑥
+ 𝑤𝑦

𝜕𝑓

𝜕𝑢𝑦
+

1

2
𝑤𝑥

2
𝜕2𝑓

𝜕𝑢𝑥
2
+

1

2
𝑤𝑦

2
𝜕2𝑓

𝜕𝑢𝑦
2

+ 𝑤𝑥𝑤𝑦

𝜕𝑓

𝜕𝑢𝑥

𝜕𝑓

𝜕𝑢𝑦
 1.24 

Setting the transport mean free path 

1

𝜆𝑡𝑟
= 2𝜋 ∫ 𝜎(𝛼)(1 − 𝑐𝑜𝑠𝛼)𝑑𝛼

𝜋

0

 1.25 

𝑓(𝜃) 𝜎(𝜒) 𝑓(𝜃′) 
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and averaging over 𝛽, 𝑤𝑥 and 𝑤𝑦vanish leaving the Fokker plank equation (BR&S) 54 

(
𝜕

𝜕𝑧
+ �⃑⃑� ∙ ∇) 𝑓(�⃑⃑�) =

1

𝜆𝑡𝑟
∇2𝑓(�⃑⃑�) 1.26 

We find the probability distribution determined by the transport mean free path 𝜆𝑡𝑟.55 

Expanding ∇2 in spherical polar coordinates with the small angle approximation and 

azimuthal symmetry 51, 56 

𝜕𝑓

𝜕𝑧
= −𝜃

𝜕𝐹

𝜕𝑦
+

1

𝜆𝑡𝑟

𝜕2𝐹

𝜕𝜃2
 1.27 

Where y is the lateral displacement from the central axis. Equation 1.26 has the solution, 

from Rossi and Greisen51, 

𝐹(𝑧, 𝑦, 𝜃) =
√3

2𝜋

𝜆𝑡𝑟

𝑡2 exp [−𝜆2 (
𝜃2

𝑧
−

3𝑦𝜃

𝑧2 +
3𝑦2

𝑡3 )]  1.28 

Integrating over the spatial coordinate y gives the angle distribution 

∫ 𝐹(𝑧, 𝑦, 𝜃)𝑑𝑦 =
1

2√𝜋
√

𝜆𝑡𝑟

𝑧
exp [−

1

4
(
𝜆𝜃2

𝑧
)] 

∞

−∞

1.29 

And integrating over the scattering angle from the central axis 𝜃 gives the spatial 

distribution 

∫ 𝐹(𝑧, 𝑦, 𝜃)𝑑𝜃 =
√3

2√𝜋
√

𝜆𝑡𝑟

𝑧3
exp [−

3

4
(
𝜆𝑦2

𝑧3
)]

∞

−∞

1.30 

These Gaussian probability functions are the Fermi-Eyges pencil beam algorithms used 

by Hogstrom et al, and Russell. 56 57 58 59 They describe the probability of the lateral beam 

spreading in a slice of depth 𝑧 at positions 𝑦 and angle 𝜃. Rossi and Greisen find the 

RMS scattering angle of equation 1.29 in terms of the transport mean free path 

< θ2 >=
2𝑧

𝜆𝑡𝑟
 1.31 
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Where √< θ2 > = 𝜃0 and  

θ0 =
𝐸𝑠

𝑝𝑣
√

𝑧

𝑋0
1.32 

𝐸𝑠 = √
4𝜋

𝛼
𝑚𝑒𝑐

2 = 21 𝑀𝑒𝑣 1.33 

Where equation 1.32 has an additional factor of 1/√2 when in terms of the projected 

angle. For a cross section with 1/𝜃4 dependence, the transport mean free path 𝜆𝑡𝑟 is 

proportional to51 (see equations 2.25 to 2.27) 

1

2
(log (

𝜃𝑚𝑎𝑥
2

𝜃𝑚𝑖𝑛
2 ) − 1)  1.34  

Williams defines 𝜃𝑚𝑎𝑥 in terms of the ratio of the projectile Debroglie wavelength to the 

nuclear radius,  

𝜃𝑚𝑎𝑥~
 λ

2𝜋𝑟𝑛𝑢𝑐
 1.35 

since for angles smaller than 𝜃𝑚𝑎𝑥, the nucleus is effectively a point charge. 60 For angles 

larger than 𝜃𝑚𝑎𝑥, there is a phase difference between secondary waves scattered from 

individual nucleons and a reduced contribution to the mean square scattering angle <

𝜃2 >. The mean square scattering angle in the Gaussian approximation is therefore 

proportional to the ratio of the atomic radius to the nuclear radius. This can be seen in 

Rossi and Greisen42, 51 who take 

𝑟𝑛𝑢𝑐 = 0.57𝑟𝑒𝑍
1
3 1.36 

Which is a curve fit of the nuclear radii to their atomic number. A more accurate fit is to 

the atomic weight 𝐴 as in ICRU35. 42, 61 
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𝑟𝑛𝑢𝑐 = 0.49𝑟𝑒𝐴
1
3 1.37 

Goudsmidt and Saunderson (G&S) 62 exploit the fact that the elastic coulomb 

scattering is a compound Poisson process, with the probability 𝑊(𝑛) from G&S equation 

(12) that a particle has 𝑛 collisions   

𝑊(𝑛) =
𝑒−𝑣𝑣𝑛

𝑛!
1.38 

Where 𝑣 is the average number of collisions, G&S equation (11) 

𝑣 = 𝑧𝑁𝜎𝑒𝑙 1.39 

In terms of Legendre polynomials, the average scattering angle after 𝑛 collisions is the 

𝑛th power of the average of the polynomials after one collision. The average of the 

Legendre polynomial is G&S equation (4) 

𝐺𝑙 = ∑𝑊(𝑛) < 𝑃𝑙(cos 𝜃1) >𝐴𝑣
𝑛

∞

0

 1.40 

Inserting equation 1.38 into 1.40, or G&S in their equations (4), (13) and (14) 

𝑓(𝜃) =
1

4𝜋
∑(2𝑙 + 1)𝐺𝑙𝑃𝑙(cos 𝜃)  1.41 

𝐺𝑙 = ∑𝑒𝑣𝑣𝑛𝑃𝑙

< cos 𝜃 >𝐴𝑣
𝑛

𝑛!
= 𝑒−𝑣𝑄𝑙  1.42 

Inserting equation 1.39 into 1.42 and taking 𝑄𝑙 = 1−< 𝑃𝑙(cos 𝜃1) >𝐴𝑣 

𝐺𝑙 = exp [−𝑧𝑁 ∫𝜎(𝜒)(1 − 𝑃𝑙(𝑐𝑜𝑠 𝜒)𝑑𝛺]  1.43 

Here 𝜒 is distinguished from 𝜃 because 𝜒 is the single scattering angle associated with 

the single scattering cross section  𝜎(𝜒) whereas 𝜃 is the multiple scattering angle after 

many interactions. By the central limit theorem of statistics, the mean squared scattering 

angle < 𝜃2 > is the variance of a gaussian distribution for a large number of interactions. 
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For a small number of interactions characteristic of very thin targets, it tends toward the 

single scattering distribution of the differential cross section. In proton radiotherapy 

where the minimum relevant length scale is 1 mm, the single scattering limit is never 

reached except at large scattering angles for targets of thin and intermediate thickness. 

In the theory of Goudsmidt and Saunderson for large angles that are much greater 

than < 𝜃2 >, the probability angle distribution tends to the single scattering distribution. 

Molière will make use of this fact to define his cross section in terms of the deviation 

from the single scattering cross section of Rutherford. 

 In the Gaussian limit 1 − 𝑃𝑙(cos 𝜒)) =
1

4
𝑙(𝑙 + 1) < 𝜃2 >  in equation 1.43 so that 

𝐺𝑙 = exp [−2𝜋𝑧𝑁 ∫
1

4
(𝑙(𝑙 + 1))𝜒2𝜎(𝜒)𝑑𝛺]  1.44 

Equivalently, Lewis found that the Goudsmidt and Saunderson distribution can be found 

from the transport equation by assuming the phase space does not change with time (the 

steady state solution) 63  

One needs a very large number of Legendre polynomials for forward peaked 

scattering in the theory of Goudsmidt and Saunderson. This problem can be alleviated by 

expressing the Legendre polynomials as Bessel functions and integrating over the 𝜂 

parameter corresponding to the order of the Legendre polynomials (to infinity). This is 

the approach taken by Molière in the next chapter. 

Snyder and Scott (S&S) 55 solve the transport equation in cartesian coordinates by 

projecting the differential single cross section in the transport equation onto the x-axis 

where 𝜒2 = 𝜃𝑥
2 + 𝜃𝑥

2. S&S equation (4) is 

𝜎𝑝𝑟𝑜𝑗(𝜃𝑥) = ∫ 𝜎(√𝜃𝑥 + 𝜃𝑥)𝑑𝜃𝑦

∞

−∞

1.45 
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The transport equation is then S&S equation (3) 

(
𝜕

𝜕𝑧
+ 𝜃𝑥

𝜕

𝜕𝑥
) 𝑓(𝜃𝑥, 𝑥|𝑧) = 𝑁 ∫ 𝜎𝑝𝑟𝑜𝑗(𝜃𝑥)[𝑓(𝜃𝑥

′ , 𝑥|𝑧) − 𝑓(𝜃𝑥, 𝑥|𝑧)]𝑑𝜃𝑥′
∞

−∞

 1.46 

Where 𝑓(𝜃𝑥, 𝑥|𝑧) is the probability distribution function for projection of scattering onto 

the 𝑥𝑧 plane. In equations (7), (8) and (9) S&S solve the transport equation with Laplace 

and Fourier transforms, so that  

𝑓(𝜃, 𝑧) = 𝑅𝑒𝑎𝑙 {
1

𝜋
∫ 𝑒𝑖𝜂𝜃𝑥𝑔(𝜂, 𝑧)𝑑𝜂

∞

0

} 1.47 

𝑔(𝜂, 𝑧) = exp [−𝑧𝑁 ∫ (1 − 𝑒𝑖𝜂𝜃𝑥)𝜎𝑝𝑟𝑜𝑗(𝜃𝑥)𝑑𝜃𝑥

∞

−∞

]  1.48 

𝑓(𝜃𝑥, 𝑥|𝑧) = 𝑅𝑒𝑎𝑙 {
1

𝜋
∫ exp [𝑒𝑖𝜂𝜃𝑥 − 𝑧𝑁 ∫ (1 − 𝑒𝑖𝜂𝜃𝑥)𝜎𝑝𝑟𝑜𝑗(𝜃𝑥)𝑑𝜃𝑥

∞

−∞

]
∞

0

}  1.49 

Equation 1.48 determines the number of elastic scattering events 𝑔(𝜂, 𝑧) as a function of 

the reciprocal projected scattering angle 𝜂. The inverse Fourier transform of which gives 

the probability angular distribution in terms of the projected multiple scattering angle 𝜃𝑥.  

To describe scattering in terms of a polar angle 𝜃, the 𝑓(𝜃𝑥, 𝑥|𝑧) must be 

projected back onto the polar scattering angle 𝜃.64 Molière theory in the next chapter 

differs from S&S’s treatment in that Molière solves the transport equation in terms of the 

polar angle 𝜃 and the transforms are therefore in the form of Bessel functions.  
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CHAPTER 2 

MOLIÈRE THEORY 

Rutherford scattering from the Born Approximation 

The probability of deflection of an individual proton through a solid angle by the 

coulomb field of an atomic nucleus can be described in terms of the differential cross 

section 𝜎(𝜒), which can be obtained from the scattering amplitude 𝑓(Ω).65 Following 

Zetilli, Sakurai and Martin 

𝜎(𝜒) = |𝑓(Ω)|2 2.1 

To find the scattering amplitude we can take a first order plane wave approximation, or 

the first order Born approximation, valid when the kinetic energy of the incident particle 

is much greater than the average interaction energy.66. The scattering amplitude in the 

Born approximation is 65, 67, 68. 

𝑓(1)(Ω) = −
𝑚

2𝜋ℏ2
∫𝑑3𝑟′𝑒𝑖𝒒∙𝒓′

𝑉(𝒓′)  2.2 

Where 𝑚 is the reduced mass in the proton-target system 𝑚 =
𝑚

(1+
𝑚

𝑀
)
.69 Although the 

incident proton interacts with the coulomb field of the atomic nucleus, the nucleus is 

“screened” by atomic electrons. The screened coulomb potential of an atomic nucleus can 

be written as68 

𝑉(𝑟) =
𝑔𝑒−𝜇𝑟

𝑟
 2.3 

This is the screened coulomb potential70 with inverse screening length 𝜇 and scaling 

constant 𝑔 = 𝑍𝑟𝑒(𝑚𝑒𝑐
2) in terms of the classical electron radius 𝑟𝑒 = 2.818 × 10−13 𝑐𝑚, 

electron rest energy 𝑚𝑒𝑐
2 = 0.511 𝑀𝑒𝑉 and atomic number 𝑍 of the target material.  
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Since the potential equation 2.3 is spherically symmetric, we can integrate over the 

azimuthal angle, leaving the cross section in terms of the single scattering angle 𝜒. 

𝑓(𝜒) = −
2𝑚

ℏ2

1

𝑞
𝑔 ∫ 𝑟′𝑉(𝑟′) sin 𝑞𝑟′ 𝑑𝑟′

∞

0

 2.4 

𝑓(𝜒) = −
2𝑚

ℏ2
𝑔 (

1

𝑞2 + 𝜇2
)  2.5 

For elastic scattering, the magnitude of the wave vectors before after the collisions are 

equal and the momentum transfer is therefore 𝑞 = |𝒌 − 𝒌′| = 2𝑘 sin
𝜒

2
 .  

𝑓(𝜒) = −
2𝑚

ℏ2𝑘2
𝑔 (

1

4 sin2 𝜒
2

+
𝜇2

𝑘2

)  2.7 

We set  

𝑝𝑣

2
=

ℏ2𝑘2

2𝑚
  2.8 

Where 𝑝𝑣 is the product of the relativistic momentum and velocity, which can be 

calculated using equations 1.6 to 1.8, 1.12 to 1.15 and 1.17.  𝜇2/𝑘2 gives the minimum 

scattering angle 51, 55 as determined by the ratio of the Debroglie wavelength 𝜆 to the size 

of atom.52  

𝜇2

𝑘2
=

𝜆2

4𝜋2𝑎2
= 𝜒𝑚𝑖𝑛

2   2.9 

The atomic radius is 𝑎 = 0.855𝑎0𝑍
−1/3 where 𝑎0 is the Bohr radius and 0.855 is the 

Thomas-Fermi constant71. 

Then the cross section is, in terms of the classical electron radius 𝑟𝑒 

𝜎(𝜒) = |𝑓(𝜒)|2 =
4𝑍2𝑟𝑒

2(𝑚𝑒𝑐
2)2

(𝑝𝑣)2

1

(4 sin2 𝜒
2

+ 𝜒𝑚𝑖𝑛
2 )

2 2.10 
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which is the Yukawa or screened Rutherford cross section.18, 70. The single scattering 

amplitude falls off quickly at large angles and so we can take the small angle 

approximation sin 𝜒 ≈𝜒. 

𝜎(𝜒) =
4𝑍2𝑟𝑒

2(𝑚𝑒𝑐
2)2

(𝑝𝑣)2

1

(𝜒2 + 𝜒𝑚𝑖𝑛
2 )2

2.11 

In the limit 𝜒𝑚𝑖𝑛 → 0 the cross section goes over to the unscreened Rutherford cross 

section. 

𝜎(𝜒) =
4𝑍2𝑟𝑒

2(𝑚𝑒𝑐
2)2

(𝑝𝑣)2

1

𝜒4
2.12 

In principle, the single scattering cross section provides a complete description of elastic 

proton scattering in a material. However, as can be seen in Figure 1.7, the elastic mean 

free path is much shorter than the relevant length scale in proton therapy, such that 

multiple scattering treatment is appropriate. Equation 2.12 is the starting place for 

Molière’s theory of multiple scattering. 

Molière theory 

Molière theory is among the more successful multiple elastic scattering theories 

due to its excellent agreement with experiment. 47 It is based on the parameterization 𝐵 of 

the effective number of elastic scattering events in a given depth based on a screening 

parameter 𝜒𝑎. 72, 73 Molière assumes no explicit scattering cross section but describes the 

scattering probability in terms of its deviation from the unscreened Rutherford cross 

section equation 2.12. 

Differences between Bethe and Molière’s derivations 

 Molière theory is best known through a rigorous review by Bethe which includes 

some changes in the derivation of Molière’s theory. 59 Some of these changes are 
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empirical in that they have been added to allow Molière theory to better fit 

measurements. Bethe (from Kulchitsky and Latyshev) substitutes 𝑍(𝑍 + 1) for 𝑍 in the 

differential cross section which was not present in Molière’s original theory. 74 We have 

left out that change to the differential cross section here. Bethe (from Hanson) also 

incorporates the approximation √𝐵 → √𝐵 − 1.2  so that the zeroth order Gaussian 𝑓(0) is 

not too large when taken together with the first order term 𝑓(1). 75 This change is 

included. We use Bethe’s derivation in terms of Bessel functions, rather than Molière’s in 

terms of Hankel functions. Molière’s 1947 and 1948 papers are referred to as I and II 

respectively when citing equations. 

Bethe equation (1) begins with the elastic scattering transport equation in 

cylindrical coordinates, where the evolution of the multiple scattering probability 

distribution function 𝑓(𝜃, 𝑧) is determined by the single scattering cross section 𝜎(𝜒) 

𝜕𝑓(𝜃, 𝑧)

𝜕𝑧
= −𝑁 ∗ 𝑓(𝜃, 𝑧)∫𝜎(𝜒)𝜒𝑑𝜒 +

𝑁

2𝜋
∫𝑓(𝜽 − 𝚾, t)𝜎(𝜒)𝜒𝑑𝜒𝑑𝜙  2.13 

 𝜽 − 𝚾 is the vector in the plane of the charged particle before the last scattering and 𝜙 is 

the azimuthal angle.  Bethe equations (2) and (3) are the Bessel transforms 

𝑓(𝜃, 𝑧) = ∫ 𝜂𝑑𝜂𝐽0(𝜂𝜃)𝑔(𝜂, 𝑡)
∞

0

2.14 

𝑔(𝜂, 𝑧) = ∫ 𝜃𝑑𝜃𝐽0(𝜂𝜃)𝑓(𝜃, 𝑧)
∞

0

 2.15 

Bethe equation (4) solves equation 2.13 by applying the Bessel transform and the 

convolution theorem to obtain 

𝑔(𝜂, 𝑧) = exp [−𝑧𝑁 ∫ 𝜎(𝜒)𝜒𝑑𝜒(1 − 𝐽0(𝜂𝜒))
∞

0

]  2.16 
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So that the multiple scattering probability density function (PDF) is Bethe equation (7) 

𝑓(𝜃, 𝑧) = ∫ 𝜂𝑑𝜂𝐽0(𝜂𝜃) exp [−𝑧𝑁 ∫ 𝜎(𝜒)𝜒𝑑𝜒(1 − 𝐽0(𝜂𝜒))
∞

0

]
∞

0

 2.17 

The exponent of Equation 2.16 is the number of elastic scattering events as a function of 

the reciprocal multiple scattering angle 𝜂. Molière equations I(E, 2) I(9,3) I(6, 5) and 

II(1,2) and Bethe equations (21) and (10) define the scattering angles, 

𝜒𝑎 =
𝜒𝑚𝑖𝑛 

√1.13 +
3.76𝑍2𝛼2

𝛽2

=
𝜆

2𝜋 (0.855𝑎0𝑍
(−

1
3))√1.13 +

3.76𝑍2𝛼2

𝛽2

 2.18
 

𝜒𝑎
′2 = 1.167𝜒𝑎

2 2.19 

𝜒𝑐
2 =

4𝜋𝑁𝑧𝑟𝑒
2(𝑚𝑒𝑐

2)2𝑍2

(𝑝𝑣)2
 2.20 

Where 𝜒𝑎 is Molière’s screening parameter obtained with the WKB approximation and 𝛼 

is the fine structure constant ~1/137.72, 73.  

Molière equations II(1,1), II(1,2) II(1,1’) and Bethe equations (9) parameterize the 

scattering probability in terms of 𝜒𝑐
2, equivalent to the cross section 𝜎(𝜒) in the following 

relation (which includes a factor of 2𝜋 for azimuthal symmetry)  

𝑁𝑧𝜎(𝜒)𝜒𝑑𝜒 = 𝑁𝑧
8𝜋𝑍2𝑟𝑒

2(𝑚𝑒𝑐
2)2

(𝑝𝑣)2
 
𝑞(𝜒)

𝜒4
𝜒𝑑𝜒 =

2𝜒𝑐
2𝜒𝑑𝜒𝑞(𝜒)

𝜒4
2.21 

𝑞(𝜒) describes the deviation of the scattering probability from the unscreened Rutherford 

cross section at small angles. At large angles, 𝑞(𝜒) = 1. Molière equation I(9,1) is 

𝑞(𝜒) =
𝜒4

(𝜒2 + 𝜒𝑎
2)2

 2.22 

Inserting 𝑁𝑧𝜎(𝜒)𝜒𝑑𝜒 into equation 2.16 or Bethe equation (11) 
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log 𝑔(𝜂, 𝑧) = − 2𝜒𝑐
2 ∫ 𝑞(𝜒)𝜒−3𝑑𝜒[1 − 𝐽0(𝜂𝜒)]𝑞(𝜒)

∞

0

2.23 

Bethe then splits equation 2.23 into two regions. In the small angle region where 𝜒 < 𝜒𝑔 

he approximates the Bessel function in equation 2.23 as Bethe equations (12), (13) and 

Molière equation (2,2) 

1 − 𝐽0(𝜒𝜂) =
1

4
𝜒2𝜂2 2.24 

∫ 𝑞(𝜒)𝜒−3𝑑𝜒[1 − 𝐽0(𝜂𝜒)] =
𝜒𝑔

0

 
1

4
𝜂2 ∫

𝜒3

(𝜒2 + 𝜒𝑎
2)2

𝜒𝑔

0

𝑑𝜒 2.25 

=
1

8
𝜂2 (log

𝜒𝑔
2

𝜒𝑎
2
− 1)  2.26 

From Molière II(2,2), the integral in equation 2.25 is equivalent to 

1

2𝜒𝑐
2
∫ 𝜎(𝜒)𝜒3𝑑𝜒 =

1

2
(log

𝜒𝑔
2

𝜒𝑎
2
− 1)

𝜒𝑔

𝑒𝜒𝑎
2

2.27 

Which is the transport mean free path equation 1.25 in the small angle approximation 

sin 𝜒 ≈ 𝜒. Combining with Molière equation I(2,3) The mean squared scattering angle is 

then 

< 𝜃2 >= 𝜒𝑐
2𝐵 = 𝜒𝑐

2 (log
𝜒𝑔

2

𝜒𝑎
2
− 1)  2.28 

Or in terms of the transport mean free path of BR&S 51  

< 𝜃2 >=
𝑧

2𝜆𝑡𝑟
 2.29 

Equation 2.26 is therefore the Bessel transform of a Gaussian function with a variance of 

< 𝜃2 > in terms of a reciprocal multiple scattering angle 𝜂. For the region where 𝜒 is 

greater than 𝜒𝑔 and 𝑞(𝜒) = 1, Bethe equation (13) 
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∫ 𝑑𝜒𝜒−3[1 − 𝐽0(𝜒𝜂)] = 𝜂2 ∫ 𝑑𝑡 𝑡−3[1 − 𝐽0(𝑡)] =
1

4
𝜂2𝐼1(

∞

𝜒𝑔𝜂

𝜒𝑔𝜂)
∞

𝜒𝑔

2.30 

To solve 𝐼1 Bethe takes by parts twice and uses the identity ∫ 𝑡𝐽0(𝑡)𝑑𝑡 = 𝑡𝐽1(𝑡).  Taking 

𝑥 = 𝑘𝜂 produces Bethe equation (14) 

𝐼1 = 4∫
𝑑𝑡

𝑡−3 
[1 − 𝐽0(𝑡)]

∞

𝑥

=
2

𝑥2
[1 − 𝐽0(𝑥)] +

𝐽1(𝑥)

𝑥

+∫
𝑑𝑡

𝑡
𝐽0(𝑡) = 1 − ln 𝑥 + ln 2 − 𝐶 + 𝑂(𝑥2)

∞

𝑥

 2.31

 

Where 𝐶 = 0.577 is Euler’s constant. 𝐼1 diverges logarithmically at second order. 

Molière, therefore, defines a parameter 𝑏 in terms of 𝐵 by taking Molière equation II(1, 

5) and Bethe equation (16) 

𝑏 = log (
𝜒𝑐

2

𝜒′
𝑎
2) = lim

𝜒𝑔→∞
[log (

𝜒𝑔
2

𝜒𝑎
2
) − 1 + log (

𝛾2𝜒𝑔
2

𝑒2𝜒𝑎
2
)] 2.32 

Where log 𝛾 = 𝐶. Putting equations 2.23, 2.26 and 2.32 together Bethe obtains equation 

(17) 

𝑔(𝜂, 𝑧) = 𝑒𝑥𝑝 (
1

2
(𝜒𝑐𝜂)2[− ln(𝜒𝑎𝜂) +

1

2
+ ln 2 − 𝐶])  2.33

taking 𝑦 = 𝜒𝑐𝜂,  𝜆 = 𝜃/𝜒𝑐 Bethe equation (2) and Molière equation II(5, 5) obtain  

𝑓(𝜃)𝜃𝑑𝜃 = 𝜆𝑑𝜆 ∫ 𝑦𝑑𝑦𝐽0(𝜆𝑦) exp (
1

4
𝑦2 (−𝑏 + 𝑙𝑛 (

1

4
𝑦2)))

∞

0

2.34 

Where the upper limit of 𝑑𝜂 should be evaluated at ~𝜒𝑐 with minimal loss of accuracy to 

avoid the integral diverging.  

Bethe equation (22) or Molière II(1,6) and (1,7) which is 𝑏 = log (
𝜒𝑐

2

𝜒′𝑎
2), is used to find 

Molière equation (7,1) or Bethe equation (23), the transcendental equation  

𝑏 = 𝐵 − log𝐵 2.35  
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Resulting in 𝐵 that varies between 5 and 20. Equation 2.34 can be expanded in terms of 𝐵 

and 𝜗 =
𝜃

𝜒𝑐√𝐵−1.2
 to get Molière (A,1) to (D,13) or Bethe equation (25), (26) and (27)  

𝑓(𝜃)𝜃𝑑𝜃 = 𝜗𝑑𝜗[𝑓(0)(𝜗) + 𝐵−1 𝑓(1)(𝜗) + 𝐵−2𝑓(2)(𝜗) + ⋯ ] 2.36 

𝑓(𝑛)(𝜗) = 𝑛!−1 ∫ 𝑢𝑑𝑢𝐽0(𝜗𝑢) × exp (−
1

4
𝑢2) [

1

4
𝑢2 ln (

1

4
𝑢2)]

𝑛∞

0

2.37 

𝑓(0) = 2𝑒𝜗2
= 2𝑒

𝜃2

𝜒𝑐
2(𝐵−1.2) 2.38

 

Equation 2.38 is the Gaussian approximation in Molière theory, with higher order 𝑓(𝑛) 

becoming important at larger angles. Equation 2.38 has Hanson’s change 𝐵 − 1.2. 

Equation 2.17 can also be obtained from Goudsmidt and Saunderson’s formula 59, 73, 76 

𝑓(𝜃, 𝑧) = ∑(𝑙 +
1

2
)𝑃𝑙(𝜃) × exp {−𝑧 ∫𝜎(𝜒)𝜒 𝑠𝑖𝑛 𝜒𝑑𝜒[1 − 𝑃𝑙(𝜒)] }

∞

𝑖=1

 2.39 

Where the exponential in equation 2.39 is 𝑔𝑙 or Goudsmidt and Saunderson’s equation 

(13). From Bethe’s equation (40) and Goudsmidt and Saunderson’s footnote 4, Bethe 

takes the transformation, valid for small 𝜒  

𝑃𝑙(𝜒) = 𝐽0 ((𝑙 +
1

2
)𝜒)  2.40 

Then replaces (𝑙 +
1

2
) with 𝜂 and replace the sum over 𝜂 with an integral. Since 𝜒 is 

small, sin 𝜒 → 𝜒. 𝑔𝑙 becomes 𝑔(𝜂, 𝑧) (equation 2.16 or Bethe equation (3)). The result is 

equation 2.17. 

An approximation to Molière’s solution has been offered by Highland.50, 77-79 

Highland equations (4) and (2) define the root mean squared scattering angle 𝜃0 in terms 

of equation 1.32 
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𝜃0 =
𝐸𝑠

𝑝𝑣
√

𝑧

𝑋0
𝑓𝐻𝑖𝑔ℎ 2.41 

Where  

𝐸𝑠 = √
2𝜋

𝛼
𝑚𝑒𝑐

2 = 15 𝑀𝑒𝑣 2.42 

𝑓𝐻𝑖𝑔ℎ = [1 +
1

9
𝑙𝑜𝑔10 (

𝑧

𝑋0
)]  2.43 

Highland found that the values of 𝐸𝑠 such that 𝜃0 fits Molière theory depended on the 

atomic weight of the material as well as the total depth in the target. He, therefore, 

introduced equation 2.43 as a correction factor. Gottschalk (2010) equation (13) extended 

Highland’s fit to thick targets by integrating over 𝑝𝑣(𝑧) as determined by equation 1.15 

𝜃𝐻𝑖𝑔ℎ𝑙𝑎𝑛𝑑 = 𝑓𝐻𝑖𝑔ℎ√∫ (
14.1 𝑀𝑒𝑉

𝑝𝑣(𝑧)
)
2 1

𝑋0
𝑑𝑧

𝑧

0

2.44 

Where the empirical change 𝐸𝑠 = 14.1 𝑀𝑒𝑉 has been made.42, 78. Gottschalk’s 

“Generalized Highland Approximation” is available in the form of a digital lookup table 

called BGWARE.80. Gottschalk equation (40) replaces the radiation length 𝑋0 (equation 

1.16) with the parameter 𝑋𝑠 in equation 2.41 that use improved screening lengths that 

better reflect the nuclear (equation 1.37) and atomic radii. Rather than integrate over 

𝑝𝑣(𝑧) he fits 𝜃0 to Molière’s gaussian solution with Hanson’s corrections using a 

polynomial and obtains 

𝑓𝑑𝑀 = 0.5244 + 0.1975 log (1 − (
𝑝𝑣

𝑝1𝑣1
)
2

)

+0.2320 log(𝑝𝑣) − 0.0098 log(𝑝𝑣) log (1 − (
𝑝𝑣

𝑝1𝑣1
)
2

) 2.45
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So that equation 2.45 replaces equation 2.43.  

As with Highland’s correction factor, Molière’s 𝐵 parameter is a function of the 

total depth of the material as it is calculated from equation (2.35) which is a function of  

log (𝜒𝑐
2). Hanson’s empirical correction to √𝐵 → √𝐵 − 1.2 is fixed for all depths, which 

is an additional non-local factor. The evolution of the phase space of the beam at each 

depth in Molière theory and Highland’s approximation, therefore, depends on their 

interactions throughout the total depth of the material, rather than their single scattering 

interactions at each depth. This makes them non-local in the sense that they do not 

depend solely on the phase space evolution as described by the transport equation. In a 

compound Poisson process, the interaction between events is statistically independent, 

and the phase space evolution occurs independently in each layer as governed by the 

single scattering cross section. Ideally, the phase space evolution of the proton beam 

would occur independently in each depth interval, evolving according to the single 

scattering cross section in that layer and reflected in the multiple scattering distribution.  

Let us find a solution that depends solely on the phase space evolution of the 

beam in the transport equation by solving equation 2.17 numerically using Molière’s 

implicit cross section equation 2.21. In principle, this will describe the evolution of the 

phase space of the beam purely in terms of the number of elastic scattering events at each 

depth interval as determined by the single scattering cross section in that interval.   

Numeric solution to Molière theory in the small angle approximation 

Equation 2.17 may be solved numerically and is valid for a single thin layer 

where the energy loss is not too great. For thicker targets, we take the convolution of 

𝑓(𝜃, 𝑑𝑧) over the depth 𝑧, where 𝑑𝑧 is the thickness of a single depth interval. 𝑖 =
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1,2,3… is the index of the depth interval with 𝑛 intervals and 𝜎𝑖(𝜒) is the cross section 

(along with 𝑝𝑣, 𝛽2 and 𝜒𝑎 ) at depth interval 𝑖. 

𝑓1(𝜃, 𝑑𝑧) ∗ 𝑓2(𝜃, 𝑑𝑧) ∗ 𝑓3(𝜃, 𝑑𝑧) 2.46 

Applying the folding theorem to equation (2.46)  

∏𝑔𝑖(𝜂, 𝑑𝑧) =

𝑖

𝑔1(𝜂, 𝑑𝑧) × 𝑔2(𝜂, 𝑑𝑧) × 𝑔3(𝜂, 𝑑𝑧) 2.47 

Next, we multiply over 𝑔𝑖(𝜂, 𝑧) by summing over the argument of the exponents.  

∏𝑔𝑖(𝜂, 𝑑𝑧) =

𝑖

exp [−∑𝑑𝑧𝑖 ∫ 𝜎𝑖(𝜒)𝜒𝑑𝜒(1 − 𝐽0(𝜂𝜒))
∞

0𝑖=1

] 2.48 

So that the scattering PDF for a homogenous material is  

𝑓(𝜃, 𝑧) = ∫ 𝜂𝑑𝜂𝐽0(𝜂𝜃) exp [−∑𝑑𝑧𝑖 ∫ 𝜎𝑖(𝜒)𝜒𝑑𝜒(1 − 𝐽0(𝜂𝜒))
∞

0

𝑛

𝑖=1

] 
∞

0

 2.49 

In cases where the depth intervals are composed of different materials, we break up the 

sum 

∑ → ∑+ ∑

𝑘

𝑗=𝑛+1

𝑛

𝑖=1

𝑛

𝑖=1

 2.50 

Where 𝑛 and 𝑘 are indexes of depth intervals of the first material and second material, 

respectively. Here, the number of elastic scattering events is determined solely by the 

interactions in each depth interval as described by 𝜎(𝜒). Because the scattering events are 

statistically independent the order of the summation doesn’t matter.  

To account for an initial beam divergence characteristic of a real accelerator, we 

assume a Gaussian distribution of the divergence where 
𝜎

2.355
 is the full width at half 

maximum of the divergence 𝜎. We can write down 
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𝑓(𝜃) =
1

2𝜎2
exp [−

1

2
(
𝜃2

𝜎2
)]  2.51  

Inserting equation (24) into equation (12)  

𝑔𝑑𝑖𝑣(𝜂, 𝑧) = ∫ 𝜃𝑑𝜃𝐽0(𝜂𝜃)
1

2𝜎2
exp [−

1

2
(
𝜃2

𝜎2
)]

∞

0

= exp [−
1

2
(𝜂2𝜎2)] 2.52 

 So that the convolution of the beam divergence with ∏ 𝑔𝑖(𝜂, 𝑧)𝑖  is 

𝑔𝑑𝑖𝑣(𝜂, 𝑧) × ∏𝑔𝑖(𝜂, 𝑧)

𝑖

2.53 

And equation (2.49) becomes 

𝑓(𝜃, 𝑧) = ∫ 𝜂𝑑𝜂𝐽0(𝜂𝜃)
∞

0

exp [−
1

2
(𝜂2𝜎2) − ∑𝑑𝑧𝑖 ∫ 𝜎𝑖(𝜒)𝜒𝑑𝜒(1 − 𝐽0(𝜂𝜒))

∞

0

𝑛

𝑖=1

]  2.54 

Numeric solution to Molière using the full cross section 

For the complete cross section that is not in the small angle approximation, we take 

equation 2.10 for 𝜎(𝜒). Expressed in terms of Molière’s parameter 𝑞(𝜒)  

𝑞(𝜒) =
𝜒4

(4 sin2 𝜒
2

+ 𝜒𝑎
2)

2  2.55 

We replace the transform of equation 2.40 with Bethe equation (56) and Molière equation 

(A,1) for large angles59, 72 

𝑃(𝜒) = √
𝜒

sin 𝜒
 𝐽0 ((𝑙 +

1

2
)𝜒)  2.56 
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As we are no longer in the small angle approximation, we replace 𝜒 with sin 𝜒 in 

equation 2.39 so that 𝑔𝑙 becomes  

𝑔(𝜂, 𝑧) = exp [−∑𝑑𝑧𝑖 ∫ 𝜎𝑖(𝜒)√𝜒 sin 𝜒 𝑑𝜒(1 − 𝐽0(𝜂𝜒))
∞

0

𝑛

𝑖=1

]  2.57 

Equation 2.57 is the exponent of the sum of the effective number of elastic scattering 

events in each depth interval 𝑑𝑧𝑖 according to the complete differential scattering cross 

section. From Bethe equation (58) one can take 𝑓(𝜃, 𝑧) → 𝑓(𝜃, 𝑧) √𝜃/ sin 𝜃 𝑑𝜃 and the 

result is 

𝑓(𝜃, 𝑧) = √
𝜃

sin 𝜃
𝑑𝜃 ∫ 𝜂𝑑𝜂𝐽0(𝜂𝜃)

∞

0

× exp [−∑𝑑𝑧𝑖 ∫ 𝜎𝑖(𝜒)√𝜒 sin 𝜒 𝑑𝜒(1 − 𝐽0(𝜂𝜒))
∞

0

𝑛

𝑖=1

]  2.58

 

Convolution with an initial Gaussian beam divergence (equation 2.51) gives 

𝑓(𝜃, 𝑧) = √
𝜃

sin 𝜃
𝑑𝜃 ∫ 𝜂𝑑𝜂𝐽0(𝜂𝜃)

∞

0

× exp [−
1

2
(𝜂2𝜎2) − ∑𝑑𝑧𝑖 ∫ 𝜎𝑖(𝜒)√𝜒 sin 𝜒 𝑑𝜒(1 − 𝐽0(𝜂𝜒))

∞

0

𝑛

𝑖=1

]  2.59

 

Comparison with FLUKA Monte Carlo 

FLUKA37-39, 45-47 is a particle scattering Monte Carlo code produced as a 

collaboration between The European Council for Nuclear Research (CERN) in 

Switzerland and The National Institute for Nuclear Physics (INFN) in Italy. FLUKA’s 

multiple elastic scattering model uses Molière’s approximation of equation 2.23 in terms 

of 𝑓(0), 𝑓(1), 𝑓(2) (with the substitution 𝜃 ≈ √sin 𝜃 /𝜃). In the single scattering region it 
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uses a correction factor to the small angle approximation so that the large angle 

distribution goes over into the full scattering cross section rather than the small angle.  

In Figures 2.1 to 2.12 FLUKA was run with a pristine beam (with no angular 

divergence) normally incident on different phantoms, each composed of different 

materials. The geometry used in FLUKA for Figures 2.13b and 2.13c is illustrated in 

Figure 2.13a. For all figures, EMFCUT, IONFLUCT, THRESHOL, and STEPSIZE cards 

were used and where physics was disabled, it was disabled by setting the threshold above 

the initial beam energy (to 1 GeV). Using EMFCUT, the transport of secondary electrons 

and gammas was disabled. IONFLUCT was used to disable energy straggling of hadrons 

and electrons/positrons. THRESHOL was used to disable hadronic elastic and inelastic 

scattering of protons. The range of the energy loss STEPSIZE was from [10−6, 10−1] cm. 

Scoring was performed with the USRYIELD setting measuring proton fluence with 

respect to lab angle and lab kinetic energy. A 230 MeV proton energy was chosen 

because it allows the broadest choice of depths. 

Setting depth interval size 

We have taken the depth interval size 𝑑𝑧 in equations 2.49, 2.54 and 2.58 to be 

the same across the total depth 𝑧. This isn’t required but is done for simplicity. One 

expects that a small depth interval leads to a more accurate probability distribution than a 

large one. A small depth interval size leads to minimal additional computational 

overhead, so we have chosen the size such that a smaller interval achieves no benefit, 

depending on the material. An efficient algorithm would vary the depth interval size 

depending on the stopping power at each depth interval. Figures 2.1 and 2.2 show the 

effect of the depth interval size on the probability angle distribution using a range of sizes 
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in water and tungsten. It can be seen that for depth intervals of 5 cm in water, the 

probability distribution deviates somewhat from the distributions with finer depth interval 

sizes. Figure 2.1 shows that equation 2.49 calculated with depth intervals of 0.1 cm 

(green dot-dash line) and 0.01 cm (blue dot-dash line) are indistinguishable. A depth 

interval in water for 𝑑𝑧 of 0.01 cm has thus been used for comparisons against FLUKA. 

Figure 2.2 shows equation 2.49 for tungsten with some small difference in the 

distribution between depth intervals of 0.5 cm and 0.01 cm. For tungsten, a depth interval 

of 0.001 cm (10 microns) has therefore been used. For other materials, the depth interval 

size has been chosen similarly. 

 

Figure 2.1. Depth interval comparison in water. Probability distribution vs angle for 230 

MeV proton beam in water at 20cm depth. The colored lines are equation 2.49 with the 

depth interval 𝑑𝑧 as listed in the legend. The probabilities are normalized such that they 

individually sum to 1 over [0,0.25] rad. Linear scale in y. 
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Figure 2.2. Depth interval comparison in tungsten. Probability distribution vs angle for 

230 MeV proton beam in tungsten at 2cm depth. The colored lines are equation 2.49 with 

the depth interval 𝑑𝑧 as listed in the legend. The probability distributions are normalized 

such that they individually sum to 1 over [0,0.5] rad. Linear scale in y. 

Interpolation for speed 

To generate plots of equations 2.49, 2.58 and 2.59, tables containing 𝑔(𝜂, 𝑧) for 

various materials and energies were prepared so that the code only needed to look up the 

proper 𝑔(𝜂, 𝑧). This was interpolated for different values of 𝜂 using a spline function, and 

𝑔(𝜂, 𝑧) was Bessel transformed into the scattering probability at angle 𝜃. 

Behavior at large angles 

At large angles, Molière theory “naturally” goes over into the single scattering 

cross section. To plot the single scattering probabilities for thick targets where 𝑝𝑣 

changes with depth we take the sum of 𝑁𝜎(𝜒) over 𝑑𝑧 so that 

𝑧𝑁𝜎(𝜒) = 𝑑𝑧 ∑𝑁𝜎𝑖(𝜒)

𝑛

𝑖=1

 2.60 
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Equation 2.60 is used to calculate equation 2.11 and equation 2.10 in Figures 2.3 and 2.4 

with the same depth interval 𝑑𝑧 as described above with equation 2.49. In Figure 2.3 it 

can be seen that as the number of scattering events in the distribution decreases at small 

angles, the multiple scattering distribution, equation 2.49 converges on single scattering 

cross sections equation 2.11. 

In Figures 2.4a, 2.4b and 2.5 it can be seen that irrespective of whether they are in 

the small angle, equations 2.49 and 2.58 follow each other closely until they reach the 

region of single scattering, when they converge on equations 2.11 and 2.10, respectively. 

The single scattering region is approximately 6 orders of magnitude smaller than the peak 

of the multiple scattering region, placing it outside the region of clinical significance for a 

single fractionated beam.81 

Plot normalization  

Figures 2.6 through 2.13 show comparisons with FLUKA Monte Carlo of 

probability distributions vs angle in various depths and materials. Each probability 

distribution is normalized such that its total probability sums to 1.   

Behavior in the small angle region 

It can be seen in Figures 2.6a, 2.7a, 2.8a, 2.9a and 2.10a that equations 2.49 and 

2.58 show slight differences at small angles, with equation 2.58 followed FLUKA more 

closely. This is not surprising since FLUKA also makes the change 𝜃 → √sin 𝜃 /𝜃 from 

Bethe equation (56-57).47 Due to the normalization of the total probability to 1 across 

each probability distribution, the deviation between equations 2.49, 2.58 and FLUKA 

Monte Carlo represents accumulated differences. 
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General agreement with FLUKA in different materials 

Figures 2.6b,c 2.7b,c 2.8b,c 2.9b,c 2.10b,c 2.11, and 2.12 show Equation equation 

2.58 for graphite, water, aluminum, iron, tungsten and lead which are in agreement with 

FLUKA Monte Carlo. At depths near the end of the range, the calculated probability is 

higher than with FLUKA. The very dense materials; tungsten and lead also show some 

deviation.  

Calculation of probability distribution in a beamline 

A simplified beamline for 230 MeV protons is illustrated in Figure 2.13a. It is 

composed of a beam nozzle with a 100 mrad, 50 mrad or 0 gaussian divergence with a 1 

cm scatterer, a 10 cm nitrogen gap, and a 5cm water target. Figures 2.13b and 2.13b show 

probability vs angle distributions that are in agreement with FLUKA Monte Carlo for all 

three divergences.  

 

Figure 2.3. Behavior at large angles 1. Probability vs angle for 230 MeV proton beam at 

2mm depth in water. Log scale in y. 
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Figure 2.4a. Behavior at large angles 2. Probability vs angle for 230 MeV proton beam at 

20cm depth in water. Log scale in y. 

 

Figure 2.4b. Behavior at large angles 3. Probability vs angle for 230 MeV proton beam at 

20cm depth in water. Log scale in y. 
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Figure 2.5. Behavior at large angles 4. Probability vs angle for 230 MeV proton beam at 

32cm depth in water. Log scale in y. 

 

Figure 2.6a. Angle PDF in Graphite 1. 230 MeV proton beam PDF at 10 cm depth in 

graphite. Linear scale in y. 
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Figure 2.6b. Angle PDF in Graphite 2. 230 MeV proton beam PDF at 10 cm depth in 

graphite. Linear scale in y. 

 

Figure 2.6c. Angle PDF in Graphite 3. 230 MeV proton beam PDF at 10 cm depth in 

graphite. Log scale in y. 
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Figure 2.7a. Angle PDF in Graphite 4. 230 MeV proton beam PDF at 20 cm depth in 

graphite. Linear scale in y. 

 

Figure 2.7b. Angle PDF in Graphite 5. 230 MeV proton beam PDF at 20 cm depth in 

graphite. Linear scale in y. 
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Figure 2.7c. Angle PDF in Graphite 6. 230 MeV proton beam PDF at 20 cm depth in 

graphite. Log scale in y. 

 

Figure 2.8a. Angle PDF in Water 1. 230 MeV proton beam PDF at 30 cm depth in water. 

Linear scale in y. 
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Figure 2.8b. Angle PDF in Water 2. 230 MeV proton beam PDF at 30 cm depth in water. 

Linear scale in y. 

 

Figure 2.8c. Angle PDF in Water 3. 230 MeV proton beam PDF at 30 cm depth in water. 

Log scale in y. 
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Figure 2.9a. Angle PDF in Aluminum 1. 230 MeV proton beam PDF at 13 cm depth in 

aluminum. Linear scale in y. 

 

 

Figure 2.9b. Angle PDF in Aluminum 2. 230 MeV proton beam PDF at 13 cm depth in 

aluminum. Linear scale in y. 
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Figure 2.9c. Angle PDF in Aluminum 3. 230 MeV proton beam PDF at 13 cm depth in 

aluminum. Log scale in y. 

 

Figure 2.10a. Angle PDF in Iron 1. 230 MeV proton beam PDF at 4cm depth in iron. 

Linear scale in y. 
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Figure 2.10b. Angle PDF in Iron 2. 230 MeV proton beam PDF at 4cm depth in iron. 

Linear scale in y. 

 

Figure 2.10c. Angle PDF in Iron 3. 230 MeV proton beam PDF at 4cm depth in iron. Log 

scale in y. 
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Figure 2.11. Angle PDF in Tungsten. 230 MeV proton beam PDF at 3cm depth in 

tungsten. Linear scale in y. 

 

Figure 2.12a. Angle PDF in Lead 1. 230 MeV proton beam PDF at 5cm depth in lead. 

Linear scale in y. 
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Figure 2.12b. Angle PDF in Lead 2. 230 MeV proton beam PDF at 5cm depth in lead. 

Log scale in y. 

                               1 cm tungsten 10 cm air                           5 cm water 

 

                  100 mrad 

Figure 2.13a (above). Diagram of the simulated beamline. 
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Figure 2.13b. Angle PDF after traversing simulated beamline 1. The proton beam has 

either 100, 50 or 0 mrad initial divergences. All pass through 1 cm of tungsten, 10 cm of 

nitrogen and 5 cm of water. Linear scale in y. 

 

 

Figure 2.13c. Angle PDF after traversing simulated beamline 2. Proton beam has either 

100, 50 or 0 mrad initial divergences. All pass through 1 cm of tungsten, 10 cm of 

nitrogen and 5 cm of water. Log scale in y. 
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Conclusion 

The analytic solution to equation 2.17 in terms of the parameter 𝐵, including the 

𝐵 − 1.2 correction, is expressly non-local in that it requires knowledge of the proton 

history in prior pathlengths to determine the evolution of the beam along additional path 

lengths. This requirement also applies to the Highland Approximation and its extension 

to thicker targets.  

However, the interactions of the proton beam in a target are a statistically 

independent Poisson process, as in the solution of Goudsmidt and Saunderson, and the 

transport equation describes the evolution of the phase space that is determined only by 

the single scattering cross section along a depth interval.  

We have shown that a numerical solution to equations 2.49, 2.58 and 2.59 

accurately describes the multiple scattering distribution in a variety of materials by 

relying only on the single scattering cross section in each depth interval. This is in 

accordance with the transport equation and the statistical independence of elastic 

scattering events. The multiple scattering distribution gradually gives over to the single 

scattering distribution as the number of elastic scattering events diminishes for larger 

multiple scattering angles. A convolution over the depth accurately contributes additional 

elastic scattering events as a function of the reciprocal scattering angle which broadens 

the multiple scattering region. Since the dynamics depend only on the interactions in each 

depth interval, the depth intervals may be composed of any material provided the single 

scattering cross sections can be determined. The elastic scattering events in a depth 

interval may be calculated in any order as per the sum in equation 2.50. An initial 
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Gaussian beam divergence may be included, as per equations 2.51 to 2.54, to better 

describe the protons from a realistic accelerator nozzle.  

We have also shown that using the alternative Legendre to Bessel function 

transforms combined with the complete differential cross section the numerical solution 

(equation 2.58) may be extended beyond the small angle approximation. This solution 

accurately converges on the complete differential cross section at large angles as 

expected. It also accurately reproduces the small angle multiple scattering distributions 

produced by FLUKA slightly better than the distributions with equation 2.49. This is 

likely because the same transform used by equation 2.58 is used by the FLUKA code. 

The differences between equations 2.48 and 2.58 at large energy losses and large angles 

as compared to FLUKA may be due to long path lengths tracked by FLUKA at large 

angles in the simulation. The slight disagreement between equation 2.58 and FLUKA for 

tungsten and lead may be explained by deviations from the single scattering cross section 

equation 2.10 for those high-Z materials. 

Although we have made all comparisons for protons, similar calculations for 

electrons should differ only in their energy loss and corresponding single scattering cross 

sections.  

For use in a Monte Carlo code, different tables correspond to 𝑔(𝜂, 𝑧) for different 

thicknesses and materials can be stored, interpolated and transformed into 𝑓(𝜃, 𝑧) as 

needed. 
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CHAPTER 3 

ENERGY LOSS DISTRIBUTIONS 

Landau-Vavilov Theory 

As energetic protons pass through matter, they collide with atomic electrons in the 

form of inelastic scattering. 44, 82, 83 As with elastic collisions, inelastic collisions are 

statistically independent and the number of collisions is Poisson distributed along a path 

length. Some collisions result in a greater energy loss than other collisions. The energy 

loss in a single collision is described by the probability 𝜔(𝜖) per unit length per energy 

loss 𝜖 to the recoil of the atomic electron, as given by the differential cross section.43, 84, 85 

Assuming no minimum or maximum energy loss, the total probability of an inelastic 

collision per unit length, or in the inverse inelastic mean free path is  

𝜔𝑖𝑛𝑒𝑙 =
1

𝜆𝑖𝑛
= ∫ 𝜔(𝜖)𝑑𝜖

∞

0

 3.1 

In the theory of Landau86, the target is considered to not be very thick, such that 

the energy loss is small compared with the initial energy, and that 𝜔(𝜖) does not change 

too much over the depth 𝑧. The energy loss Δ after many collisions in the target is a 

stochastic parameter and the probability energy loss distribution 𝑓(Δ, z) can be 

determined by the kinetic equation for the distribution function or inelastic transport 

equation as given by Landau86, 87 

𝜕𝑓(Δ, z)

𝜕𝑧
= ∫ 𝜔(𝜀)[𝑓(∆ − 𝜀, 𝑧) − 𝑓(∆, 𝑧)]

∞

0

𝑑𝜖 3.2 

Landau takes the Laplace transform of 𝑓(Δ, 𝑧) 

𝜑(𝑝, 𝑧) = ∫ 𝑓(Δ, z)𝑒−𝑝Δ𝑑Δ
∞

0

 3.3 
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Then the inverse Laplace transform 

𝑓(Δ, z) =
1

2𝜋𝑖
∫ 𝑒𝑝Δ𝜑(𝑝, 𝑧)𝑑𝑝

+𝑖∞+𝜎

−𝑖∞+𝜎

 3.4 

Multiplying by 𝑒−𝑝Δ and integrating over 𝑑Δ 

𝜕𝜑(𝑝, 𝑧)

𝜕𝑥
= −𝜑(𝑝, 𝑧)∫ 𝜔(𝜖)(1 − 𝑒−𝑝𝑒)𝑑𝜖

∞

0

3.5 

Applying boundary conditions 𝑓(Δ, 0) = 𝛿(Δ) and 𝜑(𝑝, 0) = 1 Landau gets 

𝜑(𝑝, 𝑧)= exp [−𝑧 ∫ 𝜔(𝜖)(1 − 𝑒−𝑝𝑒)𝑑𝜖
∞

0

] 3.6 

Inserting equation 3.6 into equation 3.4 

𝑓(Δ, z) =
1

2𝜋𝑖
∫ 𝑒𝑝Δ−z∫ 𝜔(𝜖)(1−𝑒−𝑝𝜖)𝑑𝜖

∞
0 𝑑𝑝

+𝑖∞+𝜎

−𝑖∞+𝜎

 3.7 

with 𝜔(𝜖) in terms of the electron density 
𝑍𝜌

𝐴
 84, 86, 87 

ω(ϵ) =
2𝜋𝑁𝐴(𝛼ℏ𝑐)2

𝑚𝑒𝑐
2

1

𝛽2

𝑍𝜌

𝐴

1

𝜖2
(1 −

𝜖𝛽2

𝜖𝑚𝑎𝑥 
) = 0.1534

1

𝛽2

𝑍𝜌

𝐴

1

𝜖2
(1 −

𝜖𝛽2

𝜖𝑚𝑎𝑥 
)  3.8 

Equation 3.8 is from the cross section of Livingston and Bethe.84, 85 Equation 3.7 is 

Landau’s general solution to the transport equation 3.2. After some parametrization, it 

reduces to 

𝑓(𝑧, Δ) =
1

ξ
φ(λ) 3.9 

Where, 

ξ = 0.1534
1

𝛽2

𝑍𝜌

𝐴
𝑧 𝑀𝑒𝑉 3.10 

𝜑(𝜆) is the universal function  
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𝜑(𝜆) =
1

2𝜋𝑖
∫ 𝑒𝑢𝑙𝑛 𝑢+𝜆𝑢

+𝑖∞+𝜎

−𝑖∞+𝜎

𝑑𝑢 3.11 

And, where C is Euler’s constant 0.577…. 

𝜆 =
Δ−𝜉(ln

𝜉

𝜖𝑚𝑖𝑛
+1−𝐶) 

𝜉
 3.12  

Landau’s universal function has been tabulated by Borch-Sapan and is shown in Figure 1. 

88 ξ is a function of particle velocity 𝛽, so that for a charged particle of same absolute 

value of its charge and velocity, ξ will have the same energy.  

 

Figure 1. Landau’s universal function. Equations 3.11 and 3.12. 

Because the maximum energy loss in Landau’s theory is unbounded, the area 

under the curve of the distribution is infinite. Since the proton energy loss is the recoil 

energy of the electron as determined by the momentum transfer,89 the largest recoil 

energy comes from a head-on collision between the proton and the electron. In terms of 

electron rest energy 𝑚𝑒𝑐
2, the incident particle velocity 𝛽 in units of 𝑐, and the Lorentz 

factor 𝛾2 = 1/(1 − 𝛽2), from Jackson equation 13.4 (including the factor in the 
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denominator) the maximum energy imparted by an incident proton to the atomic electron 

is 

𝜖𝑚𝑎𝑥 =
2𝑚𝑒𝑐

2𝛽2𝛾2 

1 +
2𝛾𝑚𝑒

𝑚
+ (

𝑚𝑒

𝑚
)
2 3.13 

Where  (
𝑚𝑒

𝑚
) is the ratio of the electron mass to the mass of the incident particle. The 

minimum energy imparted corresponds to momentum transfer with a zero scattering 

angle, or a glancing collision. Although Equation 3.7 treats the target electron as free, it is 

bound to the nucleus and has a mean excitation energy 𝐼 so that Landau gives 

𝜖𝑚𝑖𝑛 =
𝐼2

𝜖𝑚𝑎𝑥
exp(𝛽2)  3.14 

Landau and Vavilov both have equation 3.14 as the implicit lower limit of the integrals 

over 𝑑𝜖 in equations 3.7 and 3.21. 𝐼 is an empirical parameter that is difficult to 

determine both theoretically and experimentally83. A very crude approximation is 𝐼 = 𝑍 ∗

13𝑒𝑉.90 Figure 1 shows values of 𝐼 reproduced from ICRU37 91 via Rossi.83 

Rossi gives the mean energy loss per unit length, or “stopping power” (
𝛥

𝑧

̅
) in terms of 

𝜔(𝜖) 

(
𝛥

𝑧

̅
) = ∫ 𝜖 𝜔(𝜖) 𝑑𝜖

𝜖max (𝑠)

𝜖𝑚𝑖𝑛

 3.15 

Vavilov takes a simplified 𝜖max (𝑠) such that (
𝑚𝑒

𝑚
) = 0 

𝜖max (𝑠) =
2𝑚𝑒𝑐

2𝛽2

(1 − 𝛽2)
 3.16 

Then Vavilov obtains, for the mean energy loss per unit length 
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(
𝛥

𝑧

̅
) = ∫ 𝜖 𝜔(𝜖)𝑑𝜖

𝜖max(𝑠)

𝜖𝑚𝑖𝑛

= 0.1534 
1

𝛽2

𝑍𝜌

𝐴
[𝑙𝑜𝑔 (

2𝑚𝑒𝑐
2𝛽2𝜖𝑚𝑎𝑥

(1 − 𝛽2)𝐼2
) − 2𝛽2]

𝑀𝑒𝑉

𝑐𝑚
 3.17 

Which is the Bethe stopping power formula 54. Although the Bethe stopping power 

formula can include a density effect correction, it is zero for clinical energy protons in 

water.92 Likewise, detailed cross sections are available that include shell corrections.43, 93, 

94 Bichsel has found that as targets become thicker, the shell structure ceases to influence 

the shape (but may still affect the mean) of the energy loss distribution 𝑓(Δ, 𝑧). 95, 96 

Ultimately, in thick targets, the shape of the straggling distribution is determined only by 

the effective number of inelastic scattering events as a function of 𝑝. 

Vavilov defines the parameter  

𝑘 =
𝜉

𝜖𝑚𝑎𝑥
 3.18 

which describes the number of inelastic collisions in the target. 𝑘 can be expressed in 

terms of the mean free path 𝜆𝑖𝑛 as 𝑘 =
𝑧

𝜆𝑖𝑛

𝜖𝑚𝑖𝑛

𝜖𝑚𝑎𝑥
. If ξ is much larger than 𝜖𝑚𝑎𝑥 then 𝑘 >>

1 and 𝑓(Δ, z) tends toward a Gaussian distribution. Since ξ is a function of target 

thickness 𝑧, 𝑓(Δ, z) goes to a Gaussian distribution for thick targets. As defined by Rossi, 

𝑓(Δ, Δ̅) ≅
1

√2𝜋𝜎2

exp [
−(𝛥 − �̅�)2

2𝜎2
] 3.19 

Where 

𝜎2 = 𝑧 ∫ 𝜖2𝜔(𝜖)𝑑𝜖
𝜖𝑚𝑎𝑥

0

 3.20 

For small 𝑘 < 0.01, 𝑓(Δ, 𝑧) can be described by equations 3.9, 3.11 and 3.12.  

Vavilov takes the upper limit of equation 3.7 to be 𝜖𝑚𝑎𝑥, equation 3.16. Vavilov’s 

solution to equation 3.2 is then 
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𝑓(Δ, z) =
1

2𝜋𝑖
∫ 𝑒𝑝Δ−z∫ 𝜔(𝜖)(1−𝑒−𝑝𝜖)𝑑𝜖

𝜖max (𝑠)
0 𝑑𝑝

+𝑖∞+𝜎

−𝑖∞+𝜎

 3.21 

In equation 3.21, broad distributions are adequately described by small absolute 

values of 𝑝, while narrow distributions require large 𝑝 to be accurate. For the Landau 

distribution equation 3.7 where 𝜖𝑚𝑎𝑥 → ∞ and 𝑘 → 0, the absolute value of the required 

𝑝 is theoretically infinite. 

Vavilov (in equation (4’)) finds that the exponent of equation 3.21, valid for any 

value of 𝑝 can be written as 

𝐽 = 𝑝 (Δ − 𝑧 (
Δ̅

𝑧
)) − 𝑧 ∫ 𝜔(𝜖)(1 − 𝑒−𝜖𝑝 − 𝜖𝑝)𝑑𝜖

𝜖𝑚𝑎𝑥

0

3.21𝑎 

 

Figure 3.1. The mean excitation energy as a function of Z. (Taken from Rossi83) 
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Expanding the integral, Vavilov (equation (5)) obtains 

𝐽 = 𝑝 (Δ − 𝑧 (
Δ̅

𝑧
)) − 𝑝𝜉(1 + 𝛽2) + 𝑘(1 − 𝑒−𝜖𝑚𝑎𝑥𝑝) 3.21𝑏 

+(𝑘𝛽2 + 𝜉𝑝)∫
1 − 𝑒−𝜖𝑝

𝜖
𝑑𝜖

𝜖𝑚𝑎𝑥

0

 

The solution to the integral over 𝑑𝜖 in equation 3.22c is then Vavilov (equation (6)), 

∫
1 − 𝑒−𝜖𝑝

𝜖
𝑑𝜖

𝜖𝑚𝑎𝑥

0

= 𝐶 + log(𝜖𝑚𝑎𝑥𝑝) − 𝐸𝑖(−𝜖𝑚𝑎𝑥𝑝) 3.21𝑐 

Where 𝐸𝑖(𝑥) is the exponential integral function. Vavilov shows that equations 3.21b,  

and 3.21c go to equations 3.11 and 3.12 when 𝜖𝑚𝑎𝑥 → ∞.  

For 𝑘 ⪆ 1 Vavilov approximates the exponent of equation 3.21 as a series in p which 

becomes  

𝑝 (𝛥 − ∫ 𝜔(𝜖)𝜖 𝑑
𝜖max (𝑠)

𝜖𝑚𝑖𝑛

𝜖) +
𝑘𝑝2

2!
∫ 𝜔(𝜖)𝜖2 𝑑

𝜖max (𝑠)

0

𝜖 −
𝑘𝑝3

3!
∫ 𝜔(𝜖)𝜖3 𝑑

𝜖max (𝑠)

0

𝜖 3.22  

This is an expansion in terms of the moments of 𝜔(𝜖). The first term determines the 

mean energy loss, the second term the width of the distribution, and the third term, the 

asymmetry (or “skewness”) of the distribution. Vavilov reduces these integrals to closed-

form solutions in terms of the Airy function. 

In the limit that 0 < 𝑘 < 1, Vavilov integrates equation 3.21 along the imaginary 

axis to obtain a “full” solution in terms of sine and cosine integrals 𝑆𝑖(𝑧) and 𝐶𝑖(𝑧) given 

by 

𝑓(Δ, 𝑧) =
1

𝜋𝜉
𝑘𝑒𝑘(1+𝛽2𝐶) ∫ 𝑒𝑘𝑓1 cos(𝑦𝜆1 + 𝑘𝑓2) 𝑑𝑦 

∞

0

3.23 

𝑓1 = 𝛽2[log 𝑦 − 𝐶𝑖(𝑦)] − cos 𝑦 − 𝑦 𝑆𝑖(𝑦) 3.24 
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𝑓2 = 𝑦[log 𝑦 − 𝐶𝑖(𝑦)] + sin 𝑦 + 𝛽2𝑆𝑖(𝑦) 3.25 

𝜆1 =
Δ − 𝑧 (

𝛥
𝑧

̅
)

𝜖𝑚𝑎𝑥
− 𝑘(1 + 𝛽2 − 𝐶) 3.26

 

Shulek makes the modification95, 97-99 

𝑓1 → 𝑓1 −
𝐷𝑦2

𝜖𝑚𝑎𝑥
 3.27 

Where 𝐷 accounts for the binding effects of atomic electrons.  

𝐷 =
4

3
∑𝐼𝑖𝑓𝑖 log (

2𝑚𝑒𝑐
2𝛽2

𝐼𝑖
)

𝑖

 3.28 

𝑓𝑖 =
𝑍𝑖

𝑍
 3.29 

In the 𝑖’th shell, 𝐼𝑖 is the effective excitation potential, 𝑓𝑖 is the fraction of the electron 

population, and 𝑍𝑖 is the number of electrons. Sternheimer gives methods for determining 

these factors.100, 101. 

Figure 3.2 shows values of 𝑘 for protons scattering in thin water targets. Figure 

3.3 shows the energy loss distributions from the numerical solution of equation 3.21 for 

various values of 𝑘. In a 1 mm target, the straggling distribution of fast (230 MeV) 

protons with 𝑘 ≈ 0.02 resemble the Landau distribution of Figure 3.1. Slow protons in 

thin targets or fast protons in thicker targets with 𝑘 < 1 have an intermediate-shaped 

distribution than can be described by Vavilov’s full solution equations 3.23 to 3.26. At 

𝑘 ≥ 1, the distribution can be described by the first three moments, as in equations 3.21 

and 3.22. At thicknesses larger than 4mm, 𝑘 > 2 and 𝑓(Δ, z) goes to equations 3.19 and 

3.20 due to the large number of inelastic scattering events.  
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Figure 3.2. k / mm vs 𝛽2 in water.  These velocities correspond to proton clinical energies 

from 70 MeV to 230 MeV. 

 

Figure 3.3. Straggling PDF. This is equation 3.21 for different 𝑘 values at a fixed energy 

loss. The most probable energy loss is shifted to zero.  

Moments methods 

Equation 3.22 is an expansion in terms of 3 moments of 𝜔(𝜖) applicable for 𝑘 ≥

1. Expressing 𝑓(Δ, 𝑧) in terms of additional moments of 𝜔(𝜖) allows the calculation of 

𝑓(Δ, 𝑧) for smaller values of 𝑘 than equation 3.22. The distribution can then be described 



  63 

in terms of its deviation from a Gaussian using the Edgeworth expansion equation 3.37.90, 

102 Rotondi writes the transport equation 3.2 in terms of equation 3.30 or Rotondi (7) 

𝑑

𝑑𝑧
∫ (Δ − Δ̅)𝑛𝑓(Δ, 𝑧)𝑑Δ = ∑(

𝑛
𝑘
)∫ 𝑑𝜖 𝜖𝑘

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

𝜔(𝜖)

𝑘

∞

0

× ∫ 𝑑Δ(Δ − Δ̅ − 𝜖)𝑛−𝑘𝑓(𝑧, Δ − 𝜖)
∞

0

− 𝜇𝑛 ∫ 𝜔(𝜖)𝑑𝜖
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

 3.30

 

𝜇𝑛 = ∫(Δ − Δ̅)𝑛𝑓(Δ, 𝑧) 𝑑Δ 3.31 

Where 𝜇𝑛 is the 𝑛’th moment of the distribution. Rotondi (8a), (8b) and (8c) are 

  𝛾0 = ∫ 𝜔(𝜖)𝑑𝜖  
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

   𝛾1 = ∫ 𝜖 𝜔(𝜖)𝑑𝜖
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

   3.32 

     𝛾𝑛 = ∫ 𝜖𝑛𝜔(𝜖)𝑑𝜖 =
𝜉𝑛

𝑧

1

𝑘𝑛−1
(

1

𝑛 − 1
−

𝛽2

𝑛
)

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

  (for 𝑛 ≥ 2) 3.33 

𝛼𝑛 = 𝛾𝑛𝑧 3.34 

So that he can write the transport equation 3.30 as Rotondi (9) or  

𝑑

𝑑𝑧
𝜇𝑛 = ∑ (

𝑛
𝑘
) 𝛾𝑘𝜇𝑛−𝑘

𝑛

𝑘=2

3.35 

moments 𝜇𝑛 are given by Rotondi (10), the Edgeworth Expansion by Rotondi (12) 

𝜇0 = 1      𝜇1 = 0      𝜇2 = 𝛼2      𝜇3 = 𝛼3      𝜇4 = 3𝛼2
2 + 𝛼4      𝜇5 = 10𝛼2𝛼3 + 𝛼5 3.36 

𝑓(𝑧, Δ) =
1

√2𝜋𝜎
exp(−

𝛥2

2𝜎2
)

[
1 +

1

3!

𝜇3

𝜎3
𝐻3 (

Δ

𝜎
) +

1

4!
(
𝜇4

𝜎4
− 3)𝐻4 (

Δ

𝜎
) +

1

5!
(
𝜇5

𝜎5
− 10

𝜇3

𝜎3
)𝐻5 (

Δ

𝜎
)

+
10

6!
(
𝜇3

𝜎3
)
2

𝐻6 (
Δ

𝜎
) +

35

7!

𝜇3

𝜎3
(
𝜇4

𝜎4
− 3)𝐻7 (

Δ

𝜎
) +

280

9!
 (

𝜇3

𝜎3
)
3

𝐻9 (
Δ

𝜎
)

]  3.37

 

Where 𝜎 = √𝜇2 as given by equation 3.33 for 𝑛 = 2.  𝐻𝑖(𝑡) are the Hermite polynomials 

of 𝑖′𝑡ℎ order. Rotondi finds that equation 3.35 (to the 5th moment) accurately calculates 
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the straggling PDF for 𝑘 ≥ 0.29 in thin to intermediate targets where the energy loss 

distribution is not too broad.90 

In Lewis equation (10) he proposes an alternative transport equation in terms of 

the kinetic energy (𝑇) distribution function 𝑓(𝑇, 𝑧) at some depth 𝑧. The mass of the 

incident particle is 𝑀 and the electron mass is 𝑚𝑒. Lewis defines the parameters 𝑚𝑢, 𝑚𝑑 

and 𝐾 

𝑚𝑢 = 4(
𝑚𝑒

𝑀
)(1 +

𝑚𝑒

𝑀
)
−2

 3.38 

𝑚𝑑 =
𝐼2

𝑚𝑢𝑇2
 3.39 

𝐾 = 2𝜋
𝑁𝐴

𝐴
𝑍𝑒4  

𝑀

𝑚𝑒
 3.40 

So that the transport equation is 

𝜕𝑓(𝑇′, 𝑧)

𝜕𝑧
=

1

2
𝐾 [∫

𝑓(𝑇, 𝑧)𝑑𝑇

𝑇(𝑇 − 𝑇′)2
−

𝑓(𝑇′, 𝑧)

𝑇′
∫

𝑑𝑇

(𝑇′ − 𝑇)2

𝑚𝑢𝑇′

𝑚𝑑𝑇′

𝑇′

1−𝑚𝑢

𝑇′

1−𝑚𝑑

]  3.41 

Tschalar solves equation 3.41 in the manner of equations 3.30 to 3.37, in terms of the 

cumulants of the cross section. In the version of his theory that does not remove particles 

from the distribution as their energy loss exceeds the initial energy, he calculated energy 

loss distributions for thick targets distributions for up to 80% of initial particle energy. 

The solution accurately accounts for the increased broadening and skewness of the 

energy loss distribution for very thick targets, due to the variation in the cross section 

across the energy loss distribution.103, 104 105 Tschalar also cancels the material dependent 

parameter 𝐾, by replacing z with the mean energy per unit length as an approximation to 

the stopping power.  
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In Ferrari equations (1) to (10), FLUKA calculates the straggling distribution in 

terms of the cumulants of the straggling distribution 

𝑘𝑚
Δ = ∑𝑁𝜎𝑧𝐸𝑖 + 𝑁𝑧 [∫ 𝑑𝑇𝑒

𝑑𝜎𝛿

𝑑𝑇𝑒

𝑇𝑚𝑖𝑛

𝜂

] [∫ 𝑑𝑇𝑒 𝑇𝑒
𝑚

𝑑𝜎𝛿

𝑑𝑇𝑒

𝑇𝑚𝑖𝑛

𝜂

] 

𝑁𝑑

𝑖=1

3.42 

Where 
𝑑𝜎𝛿

𝑑𝑇𝑒
 is the secondary electron (delta ray) production cross section, 𝑇𝑚𝑖𝑛 is the 

minimum delta ray energy, 𝜂 is the cutoff energy between “close” and “distant” 

collisions, and 𝐸𝑖 are the energy levels for excitation and ionization.45 FLUKA samples 

among the cumulants (equation 3.42) to 6th order to obtain the energy loss distribution, 

provided it doesn’t deviate too much from a gaussian. If the distribution is very non-

gaussian, delta rays are produced explicitly and their energy is added to the energy loss 

distribution.  

An advantage to the methods of Tschalar, and the FLUKA team is that they can 

be quickly used to calculate distributions where there is variation in the cross section 

across the energy loss distribution 𝑓(Δ, ϵ) in thick targets. Assuming a constant 𝜔(𝜖) 

across the straggling distribution can result in distributions that are far too narrow. The 

assumption of a constant 𝜔(𝜖) over the straggling distribution is a limitation of Landau 

and Vavilov’s formulations. However, the moments (or cumulants) methods are limited 

to distributions where 𝑘 is not too small. As 𝑘 approaches 0, the number of moments 

required to describe the distributions goes to infinity. All of the authors of the moments 

method found diminishing returns when the number of moments exceeds 6 (Rotondi) or 9 

(FLUKA team). Therefore, these methods cannot calculate energy loss distributions for 

very small values of 𝑘 as in very thin targets. 
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Figure 3.4 shows a comparison of the energy loss of 230 MeV protons in 23.4 

microns of water for FLUKA Monte Carlo with the Landau distribution. This 

corresponds to a Vavilov 𝑘 parameter of 0.001. Due to the finite number of moments 

used to calculate straggling distributions in FLUKA, it does not calculate a Landau 

distribution for the energy straggling despite being in that regime of 𝑘. 

 

Figure 3.4. Energy straggling in a very thin target. Energy straggling of 230 MeV protons 

in 23.4 microns of water, corresponding to 𝑘 = 0.001. Equations 3.11 to 3.12 are from a 

lookup table, equation 3.21 was solved numerically. 

Williams and later, Herring, showed that the distribution 𝑓(Δ, 𝑧) from may be 

calculated from the convolution of the single scattering spectra or from the self-

convolution of the distribution for 𝑓(Δ, 𝑧) in an infinitesimal layer.106, 107 Kellerer later 

applied this method to Monte Carlo.82 

Energy loss distributions from Fourier transforms 

Herring finds the corollary to equation 3.7 in terms of the Fourier transforms.106 

Each inelastic collision is statistically independent and the energy loss Δ in a path length 
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𝑧 is the sum of the individual energy losses from 𝑛 total collisions along that path length. 

44, 83, 95, 98, 106, 108 this is Kellerer equation (35) 

Δ(𝑧) = ∑𝜖𝑖

𝑛

𝑖=1

3.43 

The average number of collisions in a path length (Herring equation (4)) is then 

𝜈 = 𝑧𝜔𝑖𝑛𝑒𝑙 3.44 

The events in a given path length are Poisson distributed so that the probability of 

undergoing 𝑛 collisions is Herring equation (1) 

𝑝(𝑛) =
exp(−𝜈) 𝜈𝑛

𝑛!
 3.45 

Since the inelastic scattering events are Poisson distributed, their distribution of energy 

losses in 𝑛 collisions can be described as the 𝑛 convolutions of the spectra from the 

inelastic scattering cross section. Bichsel (1975) equation (19) is  

∫ 𝜔(𝜖)𝜔∗(𝑛−1)(Δ − 𝜖)𝑑𝜖
Δ

0

 3.46 

So that the energy loss distribution 𝑓(Δ, 𝑧) is Herring equation (6) 

𝑓(Δ, 𝑧)

𝑧
=

exp(−𝜈) 𝜈𝑛

𝑛!
∫ 𝜔(𝜖)𝜔∗(𝑛−1)(Δ − 𝜖)𝑑𝜖

Δ

0

3.47 

Herring expresses equation 3.48 in terms of Fourier transforms (Herring equation (7)) 

∫ 𝑒𝑖𝑝Δ [∫ 𝜔(𝜖)𝑒−𝑖𝑝𝜖
∞

0

𝑑𝜖]

𝑛

𝑑Δ
∞

−∞

 3.48 

Summing the series in equation 3.48, Herring obtains 

𝑓(Δ, 𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑝Δ−𝑧 ∫ (1−𝑒−𝑖𝑝𝜖)𝜔(𝜖)𝑑𝜖

∞
0

∞

0

 3.49 
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The integral 𝑑𝜖 determines the effective number of inelastic collisions per unit length as a 

function of the reciprocal energy loss parameter 𝑝.  

For electron energy loss straggling distributions, McLellan44 found the Fourier 

transforms of the energy loss distributions 𝜙 for electron “soft” scattering, “hard” 

scattering and in terms of bremsstrahlung. McLellan considered collisions with energy 

losses below a cutoff energy to be “soft” scattering, with “hard” scattering collisions 

above this energy. For relativistic electrons of 1 MeV, Bremsstrahlung in water accounts 

for about 1% of total stopping power and dominates stopping power at energies above 

100 MeV. 10 44 McLellan finds the complete energy loss distribution by taking the 

convolution of “soft,” “hard” and Bremsstrahlung distributions, which is equivalent to the 

product of Fourier transforms.  

McLellan equation (13) finds the complete energy loss distribution from the 

inverse Fourier transform of the convolution 

𝑓(Δ, 𝑧) = ℱ −1[𝜙(p, z)𝐵𝑟𝑒ℎ𝑚 ∗ 𝜙(p, z)𝑆𝑜𝑓𝑡 ∗ 𝜙(p, z)𝐻𝑎𝑟𝑑] 3.50 

Using convolutions of Fourier transforms and equation 3.49, let us extend Landau’s and 

Vavilov’s treatments to include very thick targets. 

An extension of Landau-Vavilov theory to very thick targets 

For thick targets, the statistical independence of the collisions means that the 

distribution 𝑓(Δ, 𝑧) is a convolution of the straggling distribution functions along the path 

length 𝑧.82 Let us divide the path length into 𝑛 intervals of infinitesimal size 𝑑𝑧. Then we 

take the convolution of the straggling functions at each depth, with each interval of 𝑧 

given by 𝑑𝑧 and indexed 1,2,3… 

𝑓1(Δ, 𝑑𝑧) ∗ 𝑓2(Δ, 𝑑𝑧) ∗ 𝑓3(Δ, 𝑑𝑧)… 3.51 
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This can be expressed in Fourier space as a sum of exponents in equation 3.49. 𝜔𝑖(𝜖, 𝑧) is 

the probability per unit length per energy loss 𝜖 in the 𝑖’th depth interval and 𝜖𝑖𝑚𝑖𝑛
(𝑧) 

and 𝜖𝑖𝑚𝑎𝑥
(𝑧) are the kinematically allowed minimum and maximum values of 𝜖 for 

proton kinetic energy at that depth. 

𝑧 ∫ (1 − 𝑒−𝑖𝑝𝜖)𝜔(𝜖)𝑑𝜖
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

= ∑𝑑𝑧𝑖 ∫ (1 − 𝑒−𝑖𝑝𝜖)𝜔𝑖(𝜖, 𝑧)𝑑𝜖
𝜖𝑖𝑚𝑎𝑥

(𝑧)

𝜖𝑖𝑚𝑖𝑛
(𝑧)

𝑛

𝑖=1

 3.52 

So that  

𝑓(Δ, 𝑧) =
1

2𝜋
∫ 𝑒

𝑖𝑝Δ−∑ 𝑑𝑧𝑖 ∫ (1−𝑒−𝑖𝑝𝜖)𝜔𝑖(𝜖,𝑧)𝑑𝜖
𝜖𝑚𝑎𝑥(𝑧)
𝜖𝑚𝑖𝑛(𝑧)

𝑛
𝑖=1

∞

−∞

𝑑𝑝 3.53 

Let us express 𝜔(𝜖, 𝑧), 𝜖𝑚𝑖𝑛(𝑧) and 𝜖𝑚𝑎𝑥(𝑧) as a function of the kinetic energy of 

the incident proton so that 𝜔𝑖(𝜖, 𝑧) → 𝜔𝑖(𝜖, 𝐸), 𝜖𝑖𝑚𝑖𝑛
(𝑧) → 𝜖𝑖𝑚𝑖𝑛

(𝐸), 𝜖𝑖𝑚𝑎𝑥
(𝑧) →

𝜖𝑖𝑚𝑎𝑥
(𝐸). Let us also express 𝑧 terms of the continuous slowing down approximation 

equation 1.11 

𝑧 =
𝑑𝐸

Δ̅
𝑧

(𝐸)

3.54
 

Thereby converting the sum over 𝑧 to an integral of the inverse of the stopping power 

Δ̅

𝑧
(𝐸) over 𝑑𝐸. We then obtain  

∑𝑑𝑧𝑖 ∫ (1 − 𝑒−𝑖𝑝𝜖)𝜔𝑖(𝜖, 𝑧)𝑑𝜖
𝜖𝑚𝑎𝑥(𝑧)

𝜖𝑚𝑖𝑛(𝑧)

𝑛

𝑖=1

= ∫
∫ 𝜔(𝜖, 𝐸)(1 − 𝑒−𝑖𝑝𝜖)𝑑𝜖

𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)

Δ̅
𝑧

(𝐸)

𝐸

𝐸0−Δ̅

𝑑𝐸 3.55 

where Δ̅ is the average energy loss. It is illuminating to apply equation 3.1 to the 

integrand of equation 3.55 and take (from Rossi equation III.91) 
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𝑛𝑒 =
𝜔𝑖𝑛𝑒𝑙(𝐸)

Δ̅
𝑧

(𝐸)

  3.56 

where 𝑛𝑒 is the total number of collisions per unit of energy lost.  The integrand of 

equation 3.55 is then 

𝑛𝑒 −
∫ 𝑒−𝑖𝑝𝜖𝜔(𝜖, 𝐸)𝑑𝜖

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

Δ̅
𝑧

(𝐸)

 3.57 

Equation 3.57 is the effective number of collisions per unit of energy lost, as a function of 

the reciprocal energy loss parameter 𝑝. 

Inserting equation 3.17 into equation 3.55, we then can factor and cancel 𝜉/𝑧 in 

𝜔(𝜖, 𝐸) and 
Δ̅

𝑧
(𝐸) in equation 3.55. For 𝜔(𝜖) with a 1/𝜖2 dependence as in equation 3.8 

this leaves 

𝑓(Δ, 𝑧) = ∫ exp

[
 
 
 
 

𝑖𝑝Δ − ∫  
∫

(1 − 𝑒−𝑖𝑝𝜖)𝑑𝜖

𝜖2
𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)

𝑙𝑜𝑔 (
𝜖max (𝑠)(𝐸)

𝜖𝑚𝑖𝑛(𝐸)
)

𝐸

𝐸0−�̅�

𝑑𝐸

]
 
 
 
 

𝑑𝑝
∞

−∞

 3.58 

Equation 3.58 is a function of only the minimum and maximum values of 𝜖 and the 

average energy loss Δ̅. It, therefore, applies to any material, though the mean excitation 

energy must be known to calculate 𝜖𝑚𝑖𝑛(𝐸). The numerator of the integrand of equation 

3.58 can be solved numerically, but for 𝜔(𝜖) in the form of equation 3.8, we can adapt 

equations 3.21a, 3.21b and 3.21c to the Fourier transform by replacing 𝑝𝜖 with 𝑖𝑝𝜖. We 

also apply the lower integration limit 𝜖𝑚𝑖𝑛 explicitly. Having already replaced 𝑧 with 

equation 3.54 in equation 3.58 and canceled the factor 𝜉 we therefore obtain  

−∫
(1 − 𝑒−𝑖𝑝𝜖)𝑑𝜖

𝜖2

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

= −𝑖𝑝 ∫
𝑑𝜖

𝜖
−

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

∫
(1 − 𝑒−𝑖𝑝𝜖 − 𝜖𝑝)

𝜖2
𝑑𝜖

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

 3.59 
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−∫
(1 − 𝑒−𝑖𝑝𝜖 − 𝜖𝑝)

𝜖2
𝑑𝜖

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

= −𝑖𝑝(1 + 𝛽2) +
1

𝜖𝑚𝑎𝑥
(1 − 𝑒−𝑖𝑝𝜖𝑚𝑎𝑥)

+(
𝛽2

𝜖𝑚𝑎𝑥
+ 𝑖𝑝)∫

1 − 𝑒−𝑖𝑝𝜖

𝜖
𝑑𝜖

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

 3.60

 

𝑑𝜖 on the right side of equation 3.60 is 

∫
1 − 𝑒−𝑖𝑝𝜖

𝜖
𝑑𝜖

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

= 𝐸𝑖(𝑖𝑝𝜖𝑚𝑎𝑥) − 𝐸𝑖(𝑖𝑝𝜖𝑚𝑖𝑛) + log
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛
3.61 

So that the numerator of equation 3.58 is 

∫
(1 − 𝑒−𝑖𝑝𝜖)𝑑𝜖

𝜖2

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

= −𝑖𝑝 (log (
𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛
)) − 𝑖𝑝(1 + 𝛽2) +

1

𝜖𝑚𝑎𝑥
(1 − 𝑒−𝑖𝑝𝜖𝑚𝑎𝑥)

+(
𝛽2

𝜖𝑚𝑎𝑥
+ 𝑖𝑝) [𝐸𝑖(𝑖𝑝𝜖𝑚𝑎𝑥) − 𝐸𝑖(𝑖𝑝𝜖𝑚𝑖𝑛) + log

𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛
]  3.62

 

And the straggling distribution is 

𝑓(Δ, 𝑧) =
1

2𝜋
∫ exp [𝑖𝑝𝛥 − ∫

∫ (1 − 𝑒−𝑖𝑝𝜖)/𝜖2 𝑑𝜖
𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)

log(𝜖max (𝑠)(𝐸)/𝜖𝑚𝑖𝑛(𝐸))

𝐸0

𝐸0−�̅�

𝑑𝐸] 𝑑𝑝
∞

−∞

3.63 

Where ∫ (1 − 𝑒−𝑖𝑝𝜖)/𝜖2 𝑑𝜖
𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)
 is given by equation 3.62. The limits of integration for 

𝑑𝐸 in equation 3.63 go from the average residual energy 𝐸0 − Δ̅ to the initial energy 𝐸0 

for all Δ. This assumes that 𝜔(𝜀, 𝐸), 𝜖𝑚𝑖𝑛(𝐸),  𝜖𝑚𝑎𝑥(𝐸) are constant across the straggling 

distribution 𝑓(Δ, 𝑧). If we want to find the correct number of collisions for the energy 

loss Δ rather than Δ̅ then 𝜔(𝜖, 𝐸), 𝜖𝑚𝑖𝑛(𝐸) and 𝜖𝑚𝑎𝑥(𝐸) should depend on Δ rather than 

Δ̅. The particles with energy loss Δ have traversed the same path length 𝑧 as the particles 

having energy loss Δ̅. Since the particles have lost energy Δ, the interval of 𝑑𝐸 in 

equation 3.63 should be  [𝐸0 − Δ, 𝐸0]. Since the path length 𝑧 remains unchanged for all 

Δ, the stopping power 
Δ̅

𝑧
(𝐸) must be such that equation 3.54 is still obeyed. The stopping 
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power 
Δ̅

𝑧
(𝐸) should therefore continue to depend on Δ̅ rather than Δ, with integration 

limits for 
𝑑𝐸

Δ̅

𝑧
(𝐸)

 being 𝐸0 − Δ̅ to 𝐸0. 

To integrate 
Δ̅

𝑧
(𝐸) in the appropriate limits, we want to find a function 𝑔(𝑥) such that 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫
𝑑𝑔(𝑥)

𝑑𝑥
𝑓(𝑔(𝑥))𝑑𝑥

𝑏

𝐴

 3.64 

We find  

𝑔(𝑥) = 𝑎 +
𝑏 − 𝑎

𝑏 − 𝐴
(𝑥 − 𝐴) 3.65 

𝑑𝑔(𝑥)

𝑑𝑥
=

𝑏 − 𝑎

𝑏 − 𝐴
 3.66 

Setting  𝑓(𝑥) =
1

Δ̅

𝑧
(𝑥)

 and 𝑏 = 𝐸0, 𝑎 = 𝐸0 − Δ̅, 𝐴 = 𝐸0 − Δ then 

𝑔(𝑥) = (𝐸0 − Δ̅) − (
Δ̅

Δ
) (𝑥 − 𝐸0 + Δ) 3.67𝑎 

𝑑𝑔(𝑥)

𝑑𝑥
= (

Δ̅

Δ
)  3.67𝑏 

Substituting 𝐸 = 𝑥 and 𝑑𝐸 = 𝑑𝑥 equation 3.64 becomes 

∫
𝑑𝐸

Δ̅
𝑧

(𝐸)

 
𝐸0

𝐸0−Δ̅

= (
Δ̅

Δ
)∫

𝑑𝐸

Δ̅
𝑧

(𝑔(𝐸))

𝐸0

𝐸0−Δ

3.68 

Taking Δ̅ → Δ in equation 3.58 and making the substitution 
𝑑𝐸

Δ̅

𝑧
(𝐸)

→ (
Δ̅

Δ
)

𝑑𝐸

Δ̅

𝑧
(𝑔(𝐸))

 from 

equation 3.68 then equation 3.55 becomes  

(
Δ̅

Δ
)∫

∫ 𝜔(𝜖, 𝐸)(1 − 𝑒−𝑖𝑝𝜖)𝑑𝜖
𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)

Δ̅
𝑧

(𝑔(𝐸))

𝐸

𝐸0−Δ

𝑑𝐸 3.69 
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Canceling the terms of 𝜔(𝜖, 𝐸) and 
Δ

𝑧
(𝑔(𝐸)) which are not functions of 𝜖 or 𝐸, this 

leaves 𝛽2(𝑔(𝐸)) from 
Δ̅

𝑧
(𝑔(𝐸)) in the numerator and 𝛽2(𝐸) from 𝜔(𝜖, 𝐸) in the 

denominator.  

(
Δ̅

Δ
)∫

𝛽2(𝑔(𝐸)) ∫
(1 − 𝑒−𝑖𝑝𝜖)

𝜖2 𝑑𝜖
𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)

𝛽2(𝐸) log (
𝜖max (𝑠)(𝑔(𝐸))

𝜖𝑚𝑖𝑛(𝑔(𝐸))
)

𝐸

𝐸0−Δ

𝑑𝐸 3.70 

𝑓(Δ, 𝑧) is then 

𝑓(Δ, 𝑧) =
1

2𝜋
∫ exp

[
 
 
 
 

𝑖𝑝𝛥 − (
Δ̅

Δ
)∫

𝛽2(𝑔(𝐸)) ∫
(1 − 𝑒−𝑖𝑝𝜖)

𝜖2 𝑑𝜖
𝜖𝑚𝑎𝑥(𝐸)

𝜖𝑚𝑖𝑛(𝐸)

𝛽2(𝐸) log (
𝜖max (𝑠)(𝑔(𝐸))

𝜖𝑚𝑖𝑛(𝑔(𝐸))
)

𝐸

𝐸0−Δ

𝑑𝐸

]
 
 
 
 

𝑑𝑝
∞

−∞

3.71 

Comparison with FLUKA 

For comparisons with FLUKA Monte Carlo, FLUKA was run with a pristine 

beam normally incident on phantoms of different materials. FLUKA was run with 

EMFCUT, IONFLUCT, MCSTHRES, DISCARD, DELTARAY, THRESHOL, and 

STEPSIZE cards and where physics was disabled, it was disabled by setting the threshold 

above the initial beam energy (to 1 GeV). Using EMFCUT, the production of secondary 

electrons and gammas was disabled. DELTARAY was used to disable transport of 

secondary electrons. THRESHOL was used to disable hadronic elastic and inelastic 

scattering of protons. The range of the energy loss STEPSIZE was from [10−3, 10−1] cm. 

IONFLUCT for hadrons was set to 4 for the most detailed straggling calculations. 

Scoring was performed with the USRYIELD setting measuring proton fluence with 

respect to lab kinetic energy and lab angle (from 0 to 𝜋). A 230 MeV proton energy was 

chosen for all simulations because it allows the broadest choice of depths and the smallest 
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value of 𝑘 for a given target thickness (see Figure 3.2). The probability distributions were 

normalized such that they sum to 1 for each 𝑓(Δ, 𝑧). To solve 𝑑𝜖 in equation 3.71, we 

used the relation in equation 3.62. The integrals over 𝑑𝐸 and 𝑑𝑝 were solved 

numerically. 

For comparison with the Gaussian approximation, we found 𝜎2 in equation 3.19 by 

integrating equation 3.20 over the energy loss Δ̅ 

𝜎2 =
1

Δ̅
∫ ∫ 𝜔(𝜖)𝜖2 𝑑𝜖

𝜖𝑚𝑎𝑥(𝐸)

0

=
𝐸0

𝐸0−Δ̅

1

Δ̅
∫ 𝜉(𝐸) 𝜖𝑚𝑎𝑥(𝐸)

𝐸0

𝐸0−Δ̅

𝑑𝐸 3.72 

We determined Δ̅ from the CSDA range in water by finding the zero of the relation 

𝛿𝑅(Δ̅) = 𝑧 − ∫
𝑑𝐸

(
Δ
𝑧

(𝐸))

𝐸0

Δ̅

3.73
 

Where 𝛿𝑅(Δ̅) is the deviation from the CSDA range at 𝛿𝑅(Δ̅) = 0. For materials other 

than water, Δ̅ was determined from FLUKA’s probability distributions. 

Figure 3.4 shows that equation 3.71 accurately reproduces the Vavilov 

distribution in a thin water target. The Landau distribution is shown for comparison. 

Figure 3.6 through 3.9 shows that equation 3.71 agrees with energy loss distributions 

calculated by FLUKA, including the skewness and width of distributions for thick 

targets. The additional widening of the straggling distribution with depth due to the 

variation in 𝜔(𝜖) across the straggling distribution is visible in its deviation from the 

Gaussian approximation equation 3.19. The Gaussian distribution itself is roughly correct 

at shallow depths but overall is too narrow for much of the distribution. 

Figures 3.10 and 3.11 show deviation of equation 3.71 from FLUKA, with figure 

3.11 showing a long tail that is inconsistent with the FLUKA distributions. For water 
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targets thicker than 30cm (as in Figure 3.11), with higher mean energy losses, equation 

3.71 no longer produces reasonable results. The energy loss in Figure 3.11 is 

approximately 80% of the initial beam energy. If we take the energy loss in Figure 3.11 

as the upper limit of validity of equation 3.71, then it has the same range of validity as 

Tschalar’s theory. 

 

 

Figure 3.5. Energy straggling distribution in 0.2 cm of water. 230 MeV proton beam.  

Figure 3.6. Energy straggling distribution in 5 cm of water. 230 MeV proton beam. 
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Figure 3.7. Energy straggling distribution in 10 cm of water. 230 MeV proton beam. 

 

Figure 3.8. Energy straggling distribution in 17 cm of water. 230 MeV proton beam. 
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Figure 3.9. Energy straggling distribution in 25 cm of water. 230 MeV proton beam. 

 

Figure 3.10. Energy straggling distribution in 28 cm of water. 230 MeV proton beam. 
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Figure 3.11. Energy straggling distribution in 30 cm of water. 230 MeV proton beam. 

Figures 3.12, 3.13 and 3.14 compare equation 3.71 with energy loss distributions 

from FLUKA in graphite, iron and lead. Figure 3.12 shows agreement with FLUKA, as 

does Figure 3.13.  In figure 3.14, the energy loss in 3cm of tungsten is at the edge of the 

validity of equation 3.71 (80% of initial beam energy), just as in figure 3.11. 

Figure 3.15 shows the energy loss distributions dependence on the mean 

excitation energy 𝐼, which is the only material specific parameter.  

 

Figure 3.12. Energy straggling distribution in 10 cm of graphite. 230 MeV proton beam. 
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Figure 3.13. Energy straggling distribution in 5 cm of iron. 230 MeV proton beam. 

 

Figure 3.14. Energy straggling distribution in 3 cm of tungsten. 230 MeV proton beam. 
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Figure 3.15. Energy straggling distributions in various materials for the same Δ̅. 230 MeV 

initial energy. 

Conclusion 

We have shown that equation 3.71 agrees with FLUKA Monte Carlo results, 

except for very thin and very thick targets. Equation 3.71 remains valid to approximately 

80% of the energy loss of the initial beam. The cancellation of material dependent factors 

in 𝜔(𝜖) and 𝜔(𝜖, 𝐸), resulting in equations 3.58 and 3.70 means that the energy loss 

spectrum can be calculated from only the characteristics of the incident particle and the 

electron, the initial energy, mean energy loss and mean excitation energy of the target. 

Aside from the mean excitation energy, probability energy loss distributions are 

independent of the target material. In practice, one may know the dimensions of a 

material but not the mean energy loss. In that case, one may calculate the mean energy 

loss from equation 3.73, providing one has the correct stopping power for that material.  
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The integrals over 𝑑𝑝 do not require large absolute values of 𝑝, and one may find 

the probability of a specific energy loss Δ without calculating all of 𝑓(Δ, 𝑧). It may 

therefore be calculated quickly in a treatment planning system or Monte Carlo code. 

To better apply this theory to a real accelerator, one might take the convolution of 

a function describing the initial beam spectrum at the accelerator nozzle with that due to 

energy loss in the target as described here.  
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CHAPTER 4 

NUCLEAR INELASTIC SCATTERING 

Nuclear basics 

Although elastic and inelastic coulomb scattering are the primary interactions of 

protons in a patient, protons also interact with the atomic nuclei through hadronic 

(nuclear) processes. The probability of a proton nuclear interaction is given by the total 

nuclear cross section 𝜎𝑛𝑢𝑐. The mean free path 𝜆𝑛𝑢𝑐 is  

𝜆𝑛𝑢𝑐 =
1

𝑁𝜎𝑛𝑢𝑐
 4.1 

Where 𝑁 is the number of scattering centers per unit volume, which is 3.34 × 1022 

𝑐𝑚−3 for water. It can be seen in figure 4.1 that the maximum nuclear cross section is at 

approximately 26 MeV. Using equation 4.1, this corresponds to a minimum mean free 

path of 56 cm. The cross section is zero below the threshold energy of about 6 MeV. 

 

Figure 4.1: Total nuclear inelastic scattering cross sections. Protons incident on 16O as a 

function of energy referenced from the TALYS1.8 nuclear data library. 109 
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This is approximately seven orders of magnitude larger than the mean free path for elastic 

coulomb scattering at 26 MeV. Unlike coulomb scattering, hadronic interactions are 

single scattering and likely to occur once at most in a patient. 

Fippel and Soukup110 established that outside the primary beam, dose from 

secondary protons constitutes a low dose nuclear halo. It can be seen in Figure 4.2 that 

dose due to nuclear scattering begins to contribute to lateral dose distributions where it is 

approximately 1% of the dose from primary protons. Nuclear dose builds up with depth 

and is very broad so that for higher energies the nuclear halo accounts for up to 15% of 

total patient dose. 111, 112 Figure 4.3 shows that the majority of dose from secondary 

particles produced in hadronic scattering comes from secondary protons. The energy 

from secondary photons and neutrons is mostly transported out of the patient. While 

secondary alpha particles are common, their short range means that their energy is locally 

deposited. Secondary protons are therefore the largest contributor to the nuclear halo.110  

 

Figure 4.2. Effect of nuclear scattering on dose. 120 MeV proton beam in water. Where 

nuclear interactions were disabled, the THRESHOLd card for nuclear interactions in 

FLUKA was set to exceed the beam energy. 
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Figure 4.3. Dose contributions from different reaction channels. 150 MeV protons in 

water. (Taken from Fippel and Soukup110). 

On the parameterization of the nuclear scattering 

Kalbach113-115 found that nuclear inelastic scattering cross sections are 

proportional to 

∝ exp (𝑎 cos 𝜃)  4.2 

Which becomes a Gaussian in the small angle approximation. Gaussian distributions have 

therefore had good results when used to parameterize the nuclear halo in treatment 

planning systems.  
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In commercially available treatment planning systems (TPS) such as Eclipse 

(Varian Medical Systems, Palo Alto, California)116, the multiple coulomb scattering 

distribution is characterized by kernel parameters117. These are determined during 

commissioning by fitting a Gaussian to lateral dose distributions of the beam calculated 

by Monte Carlo codes such as FLUKA.  

To incorporate the nuclear halo into dose calculation, an additional Gaussian 

function was added to the dose kernel by Soukup111. The double gaussian 

parameterization was further extended to three terms by Li40 by fitting a Cauchy-Lorentz 

function. The current iteration of the Eclipse Treatment Planning System uses the two-

Gaussian method.116 Bellinzona118 compares several parameterizations of Monte Carlo 

results, including a Gaussian-Rutherford function composed of a Gaussian core with a 

Rutherford-like function to characterize large angles. 119 Bellinzona accurately modeled 

the lateral profile down to 10-3 of central axis dose as compared to measurement using a 

Cauchy-Lorentz model that incorporates energy loss. Van den Huevel120 parameterized 

the lateral profile in terms of “stable distributions,” of which Gaussians are a type. All 

three methods approximated the nuclear halo well due to the similarity of their functional 

form to that of equation 4.2. 113-115 

A simple fit of Gaussians to the lateral nuclear halo generated in particle physics 

Monte Carlo codes such as FLUKA provides an adequate description for a single beam 

sub-spot, but without ad-hoc field size factors, the dose for different field sizes does not 

scale correctly.121, 122 46, 123  They also suffer from a lack of robustness. A method is 

needed to accurately model the nuclear halo without resorting to curve fits to Monte 

Carlo. Introduced here is a simple model based on single scattering.  
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Hadronic interactions 

The behavior of proton hadronic scattering with oxygen is characterized by the 

initial energy of the proton, and the timescale of the interaction. When the DeBroglie 

wavelength of the incident proton is comparable to the nucleon spacing the proton 

interactions with the nucleus are treated in terms of collisions with individual nucleons. 

In this case, secondary particles exit the nucleus on a very short time scale and are 

strongly forward peaked. Lower energy models treat the nucleus as a Fermi gas. Figure 

4.4 shows that in the JENDL nuclear cross section tables, most secondary protons leave 

the nucleus with a large residual energy and a scattering angle of less than 60 degrees124-

127. Scattering by this process is the source of the “low-dose halo” measured by Pedroni, 

Soukup and others.111, 128-130  

After that, the nucleus begins to de-excite131. By this time, the proton momentum 

has been absorbed by the nucleus. After equilibrium, the density of states (from Fermi 

breakup) determines the probability of low-energy secondary proton escape. This 

distribution is isotropic and most protons have a short (less than 1mm) residual range. 

Although these protons are as likely to backscatter as to forward scatter, their short range 

means backscattering can be ignored and the residual energy of the particle can be 

considered to be locally deposited.  

Calculating dose due to nuclear inelastic scattering. 

To model proton single scattering, consider a beam normally incident on a water 

phantom.  The phantom is divided into 1 mm depth intervals parallel to the surface as 

shown in Figure 4.5. The protons deposit energy in each 1 mm slice with energy given by 
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equations 1.12 to 1.16. This determines the initial energy of the nuclear processes at that 

depth. 

 

Figure 4.4. Inelastic double differential cross sections. 
𝑑2𝜎

𝑑Ω𝑑𝐸
 for inelastic hadronic 

scattering of 230 MeV protons on oxygen, interpolated from JENDL-/HE-2007. 

To calculate spatial distributions, it is necessary to determine the trajectory of the 

secondary proton. This was determined from the double differential cross section tables 

for inelastic scattering of JENDL-4.0/HE scattering on Oxygen-16 nuclei.132 Elastic 

nuclear scattering was not included. The JENDL is a database of cross section tables 

from the Japan Nuclear Data Center, produced from many different codes. This is 

described in the JENDL-4.0/HE file. 124-127. 111, 128-130. 131 

In equation 4.3, the probability 𝑃(𝜃, 𝜀), of a single scattering event for each angle 

𝜃 and outgoing proton energy 𝜖 is determined from JENDL tables. The factor of 2𝜋 

reflects azimuthal symmetry. 

𝑃(𝜃, 𝜀) = 2𝜋𝑛𝑑𝑧 ∫ ∫
𝑑2𝜎
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Where 𝑑𝑧 is the depth interval and 𝑑𝑐𝑜𝑠𝛩 and 𝑑𝜀 refer to the angle step size and energy 

step size in the lookup table. 𝑑𝜖 is bounded from below at 9 MeV, and secondary protons 

of less than 9 MeV have their energy locally deposited. For each primary proton energy, 

secondary proton cross sections from JENDL-4.0/HE were interpolated using a cubic 

spline into 200 secondary proton energies and angle steps of 1 degree. 

   

Figure 4.5. Secondary protons deposited energy along their trajectories. (dashed lines).  

Each secondary proton trajectory in the lookup table deposits probability-

weighted energy along its trajectory. The trajectory in terms of the angle 𝜃 is expressed in 

terms of the radius 𝑟 and depth 𝑧 with respect to the origin of the secondary proton 

trajectory, to give the path length 𝐿 with element 𝑑𝑧 and 𝑑𝐿. 

𝑑𝐿 = 𝑑𝑧 sec 𝜃 4.4 

Such that the probability-weighted energy deposited along a pathlength 𝐿 is 

𝑑𝐸 = 𝑑𝐿 (
Δ̅

𝑧
)𝑃(𝜃, 𝜀) 
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At the 𝑟 coordinate 

𝑟 = 𝑧 tan 𝜃 

The trajectories are binned by voxel in cylindrical coordinates, their energy is summed 

and then divided by the mass of the voxel to determine the dose. The cylindrical voxel 

mass is  

𝑉 = 𝜋𝑑𝑧(𝑟2
2 − 𝑟1

2)𝜌 

Where 𝜌 = 1 𝑔/𝑐𝑚3 for water. Secondary protons with a residual energy of less than 9 

MeV are not advanced and have their energy deposited in the final voxel.  

Lateral slices of the dose distribution are compared to relative dose profiles from FLUKA 

Monte Carlo in Figures 4.6 to 4.8. All profiles are in a water phantom with zero initial 

beam divergence at the phantom surface. 

FLUKA Settings 

FLUKA uses its own hadronic scattering models, benchmarked against in-house 

measurements and published cross sections.37-39, 46, 47, 133 For figures 4.6 to 4.8, we 

disabled energy loss fluctuations using the IONFLUCT card, as well as transport of 𝛼-

particles, photons, neutrons, deuterons and tritons. The production threshold for electrons 

was set to 10 KeV with the EMFCUT card. Dose (FLUKA code 228) was scored with the 

USRBIN card in cylindrical coordinates along the plotted region at the depth specified. A 

beam without angular or spatial divergence was set to impinge normal to the surface of a 

water phantom. 

Figures 4.6 to 4.8 compare FLUKA lateral dose calculations with calculations 

from single inelastic nuclear scattering.  We can see from figures 4.6 to 4.8 that the single 

scattering model predicts the same functional form as FLUKA, but differs from FLUKA 
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in terms of relative magnitude. It overpredicts the nuclear halo at shallow depths while 

underpredicting it at deeper depths. 

Figure 4.6a. Lateral dose for 228.8 MeV beam at 100mm depth. Normalized to the peak 

central axis dose (triangles).  
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Figure 4.6b. Lateral dose for 228.8 MeV beam at 200mm depth. Normalized to the peak 

central axis dose. 
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Figure 4.7a. Lateral dose for 189.0 MeV beam at 80mm depth. Normalized to the peak 

central axis dose. 
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Figure 4.7b. Lateral dose for 189.0 MeV beam at 180mm depth. Normalized to the peak 

central axis dose. 
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Figure 4.8. Lateral dose for 121.0 MeV beam at 60mm depth. Normalized to the peak 

central axis dose. 

Conclusion 

The functional form of the low-dose halo is described adequately by single 

inelastic nuclear scattering, although the relative magnitude is not consistent with 

FLUKA Monte Carlo. The magnitude of the lateral dose distributions is sensitive to the 

energy budget for secondary particle production and the cross sections must be 

normalized such that the total energy of the beam is conserved. Although energy lost to 

neutrons and gammas must be counted, dose due to neutrons and gammas make only a 

small contribution to the nuclear halo, and the description of the dose halo would likely 

not benefit from their inclusion.110  For improved accuracy, nuclear elastic scattering 
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should be included. An accurate model can replace Monte Carlo fitting with calculations 

of specific trajectories that are relevant to the treatment plan. This would save calculation 

time and improve robustness for scaling to different field sizes.  
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CHAPTER 5 

CONCLUDING REMARKS 

Review 

The elastic and inelastic transport equations describe the evolution of the phase 

space of a proton beam along a path length 𝑧 in terms of the elastic single scattering cross 

section 𝜎(𝜒) and the probability per unit length per unit energy 𝜔(𝜖). The probability 

angle distributions and the probability energy loss distributions in 𝑧 can be determined 

from the “effective” number of scattering events per reciprocal multiple scattering angle 

𝜂 or reciprocal energy loss 𝑝. The probability distributions 𝑓(𝜃, 𝑧) and 𝑓(Δ, 𝑧) are the 

inverse transforms of the distributions in 𝜂 or 𝑝. For large pathlengths with non-

negligible energy loss, 𝜎(𝜒) and 𝜔(𝜖) change with depth so that 𝑓(𝜃, 𝑧) and 𝑓(Δ, 𝑧) may 

be calculated by dividing the pathlength into depth intervals 𝑑𝑧, and calculating 𝑓(𝜃, 𝑧) 

and 𝑓(Δ, 𝑧) as convolutions of the probability distributions at each 𝑑𝑧. 

By considering Molière’s scattering law in terms of the transformation of the 

Legendre polynomials of Goudsmidt and Saunderson into Bessel functions and making 

the large angle substitutions of equations 2.55 to 2.59, the probability angle distribution 

follows the results of FLUKA Monte Carlo and converges on the complete single 

scattering differential cross section equation 2.11 as expected.  

In the case of inelastic scattering, and where 𝜔(𝜖) varies appreciably across 

𝑓(Δ, 𝑧), the probability energy loss distribution 𝑓(Δ, 𝑧) may be calculated from the 

number of inelastic scattering events corresponding to the energy loss Δ for a fixed 𝑧. 

Expressing the pathlength 𝑧 in terms of the continuous slowing down approximation 

means that 𝑓(Δ, 𝑧) is dependent solely on the average energy loss Δ̅ rather than any 
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material specific parameter, with exception of the mean excitation energy 𝐼. The result 

follows FLUKA Monte Carlo to 80% of the total energy loss for an incident proton. 

Cross sections for Molière theory 

Although we have used Molière’s implicit 𝜎(𝜒) in terms of his screening 

parameter 𝜒𝑎 equation 2.18, any appropriate 𝜎(𝜒) may be used. Depending on the 

material, there may be a more accurate potential than equation 2.3 in which the screening 

by atomic electrons is approximated by an exponential term. It is also possible that 

Molière’s 𝜒𝑎 may not be the optimal value for materials with absolutely any atomic 

number. Nigam offers an alternative 𝜒𝑎 in terms of the second Born approximation, 

which we have not covered in this work.69, 134 

An “Edgeworth Expansion” for Molière theory 

The Edgeworth expansion equation 3.37 was used by Rotondi (1990) to describe 

the energy loss distributions in terms of the characteristic functions of the Fourier 

transform, which are the Hermite polynomials. Ferrari et, al (1997) has suggested that 

𝑓(𝜃, 𝑧) may be calculated in terms of the projected angles, as in Snyder and Scott, using a 

method of cumulants, similar to their treatment of 𝑓(Δ, 𝑧) in “Moments Methods” in 

Chapter 3. It should also be possible to describe the Fourier transform of the projected 

angle distribution in terms of the Hermite polynomials in the form of the Edgeworth 

expansion. For the Molière scattering law in cylindrical coordinates, it can be seen from 

equation 2.31 that the moments are in terms of the Bessel functions 

𝐽0(𝜂𝜒),  𝐽1(𝜂𝜒), 𝐽2(𝜂𝜒)…which are the characteristic functions of the Bessel transform. 

These may compromise the moments of an “Edgeworth” expansion that describes the 

deviation of the angle distribution from a gaussian. Such a solution would offer speed 
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improvements over the exact solution to the Fourier or Bessel transform of the angular 

distribution. However, it would be limited to distributions that are not too narrow due to 

the finite number of moments. 

Straggling for other particles 

In principle, the inelastic scattering model equation 3.71 applies to any charged 

particle and a cross section of any 𝜖 dependence. Energy straggling of 𝛼 particles should 

involve only different kinematics limits due to the different mass of the 𝛼 particle from 

the proton. Electrons will have different ionization cross sections as well as a 

Bremsstrahlung cross section which may be convolved using Fourier transforms in the 

same manner as McLellan. The application of Fast Fourier Transform (FFT) algorithms 

to the problem of energy loss distributions is problematic due to the approximately nine 

order of magnitude difference between 𝜖𝑚𝑖𝑛 and 𝜖𝑚𝑎𝑥 that requires an impractically fine 

grid.44 This is may be solved with non-uniform fast Fourier Transforms. 

Nuclear improvements 

Inelastic nuclear scattering should incorporate the Kalbach systematics directly, 

which are parameterized in terms of the coefficients of equation 4.2 in the ENDF135 

tables. Elastic scattering probabilities can be included in terms of Legendre coefficients 

in the same tables.136 For implementation in a treatment planning system or clinical 

Monte Carlo code, only the clinically relevant trajectories should be tracked, with the 

remaining energy attributed to total patient dose. 

Future treatment plans with direct Monte Carlo 

While in the past hospitals have used approximation schemes and fitting of 

functions to Monte Carlo simulations to “commission” a treatment planning system, 
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continuous improvements in processing power allow for direct Monte Carlo calculation 

in the TPS. With the increased use of graphics processing units (GPUs) to do dose 

calculations in parallel, the future of treatment planning will involve custom Monte Carlo 

codes that are conditioned to the clinical energy regime. Within such a scheme, there 

remain possible improvements to Physics models that describe the proton trajectories and 

the associated dose distribution. Outside of clinical physics, such models may be applied 

to aerospace or microscopy. 
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