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ABSTRACT  

   

Molecular recognition forms the basis of all protein interactions, and therefore is 

crucial for maintaining biological functions and pathways. It can be governed by many 

factors, but in case of proteins and peptides, the amino acids sequences of the interacting 

entities play a huge role. It is molecular recognition that helps a protein identify the correct 

sequences residues necessary for an interaction, among the vast number of possibilities 

from the combinatorial sequence space. Therefore, it is fundamental to study how the 

interacting amino acid sequences define the molecular interactions of proteins. In this 

work, sparsely sampled peptide sequences from the combinatorial sequence space were 

used to study the molecular recognition observed in proteins, especially monoclonal 

antibodies. A machine learning based approach was used to study the molecular 

recognition characteristics of 11 monoclonal antibodies, where a neural network (NN) was 

trained on data from protein binding experiments performed on high-throughput random-

sequence peptide microarrays. The use of random-sequence microarrays allowed for the 

peptides to be sparsely sampled from sequence space. Post-training, a sequence vs. binding 

relationship was deduced by the NN, for each antibody. This in silico relationship was then 

extended to larger libraries of random peptides, as well as to the biologically relevant 

sequences (target antigens, and proteomes). The NN models performed well in predicting 

the pertinent interactions for 6 out of the 11 monoclonal antibodies, in all aspects. The 

interactions of the other five monoclonal antibodies could not be predicted well by the 

models, due to their poor recognition of the residues that were omitted from the array. 

Furthermore, NN predicted sequence vs. binding relationships for 3 other proteins were 

experimentally probed using surface plasmon resonance (SPR). This was done to explore 
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the relationship between the observed and predicted binding to the arrays and the observed 

binding on different assay platforms. It was noted that there was a general motif dependent 

correlation between predicted and SPR-measured binding. This study also indicated that a 

combined reiterative approach using in silico and in vitro techniques is a powerful tool for 

optimizing the selectivity of the protein-binding peptides. 
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CHAPTER 1 

INTRODUCTION 

Molecular recognition is a major driving force behind all the biological processes 

that are carried out in nature. As stated by Kricka, (1988), over many years nature has 

evolved to express a plethora of biomolecules that display a magnificent variation and 

diversity in recognizing other molecules. Many scientists are looking into uncovering the 

key interactions that drive molecular recognition, to understand biomolecular pathways 

better. For biomolecular polymers like proteins, molecular recognition is a function of their 

sequence information. Evolution has enabled the protein molecules to carry out their 

functions efficiently and specifically, through sparse sampling across the expanse of the 

sequence space and local optimization of sequences. However, there are regions of the 

sequence space that have not been explored through evolution, owing to the vastness of 

this combinatorial space. Though unexplored, these ‘landscapes’ are not devoid of 

information relevant molecular recognition. But given that most proteins have a few 

hundred amino acid residues, the size of this multidimensional landscapes become 

astronomically large. Thus, exploring this space in its entirety is a physically impossible 

task. 

One thing that is known in case of biomolecular recognition, particularly in the case 

of proteins, is that only a few key residues play a crucial role in creating a direct interface 

during molecular recognition events. These residues are often part of one or more short, 

linear sequences on the protein. There are many tools available in modern biochemistry, 

including combinatorial methods like library screening, that allow one to identify these key 

regions in molecular recognition, that are important to the function of the proteins. 
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Combinatorial methods, such as peptide microarrays, and peptide and protein display 

methods, especially allow one to screen through a large library to find relevant interactions. 

However, such methods are generally directed towards searching in a particular region of 

sequence space (Mimmi et al., 2019, Ullman et al., 2011). But what about sampling the 

sequence space randomly, in a much broader sense? In 2020, Taguchi and others 

demonstrated that by training a neural network on binding information obtained from 

random-sequence peptide microarrays (as little as few thousand peptides), it was possible 

to derive a quantitative sequence-to-binding relationship between the array peptides and 

the assayed proteins, which could then be applied to the entire combinatorial sequence 

space for those peptides. In this previous work, the sequence vs. binding relationship was 

obtained for relatively weaker binding interactions between proteins and peptides. But can 

the same approach be used to derive a sequence-to-binding relationship in case of proteins 

with very high degree of specificity towards their target(s), for e.g., monoclonal antibodies. 

How much information about molecular recognition of monoclonal antibodies can be 

obtained by analyzing random peptide sequences? Would it be possible to predict stronger 

binding interactions by analyzing weaker ones? The aim of this study is to find answers to 

the questions posed above and therefore gain a better understanding of molecular 

recognition in proteins, especially antibodies. 

1.1 MOLECULAR RECOGNITION AND SEQUENCE SPACE 

1.1.1 What is Molecular Recognition? 

The term “molecular recognition” can be used to describe a set of specific 

interactions between two or more molecules, primarily through non-covalent interactions. 

The non-covalent interactions may consist of hydrogen bonding, van der Waals forces, 
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coordination with ions, hydrophobic forces, π-π interactions etc. (Nano-Inspired 

Biosensors for Protein Assay with Clinical Applications, 2019). These forces along with 

the three-dimensional structural orientation of the participating molecules aid in forming a 

molecular complex. The assembling of these complexes is highly dependent on the 

complementarity between the interacting molecules. Some examples include host-guest 

interactions, molecular self-assemblies, and supramolecular interactions (Gellman, 1997). 

Molecular recognition plays an important role in chemistry and biology alike. In biology, 

molecular recognition is integral to carrying out almost all essential functions in a living 

organism (Kricka, 1988). In nature, a vast number of biomolecules have evolved to achieve 

molecular recognition with high-specificity. Receptor-ligand, self-assembly of nucleic 

acids, nucleic acid-protein/peptide, enzyme catalysis, protein-protein/peptide, small 

molecule-protein, and antibody-antigen interactions are all examples of biomolecular 

recognition.  

1.1.2 The Concept of Sequence Space 

One of the most striking features of any biomolecular recognition event is its 

dependance on the shape and chemical nature of the surface of the interacting molecules. 

In case of biomolecules like proteins or nucleic acids, the shape and chemical nature are a 

function of the sequence composition (Rebek, 2009). In proteins, the amino acid residues 

that compose the polypeptide chains are mainly responsible for determining the three-

dimensional shape of the molecules. Therefore, the amino acid composition of proteins 

determines the shape, and therefore the function of the protein. This leads to the discussion 

about sequence space. The concept of sequence space was first introduced by John 

Maynard Smith (Smith, 1970) in which he compared the protein sequences to a word game. 
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A sequence of amino acids was considered to be a word made up of letters. The 

arrangement of the letters (amino acids) in that sequence would comprise a protein. 

Exchanging any letter with another would represent a change in the composition of amino 

acids, therefore indicating a mutation at that point. The combinatorial sequence space for 

a peptide or protein of certain length is represented by all possible combination of the 20 

naturally available amino acids in that given length. Thus, for a polypeptide chain with N 

number of amino acids residues, the total number of unique sequences with the 20 

canonical amino acids found in most proteomes is equal to 20N. 

 
Figure 1.1. Schematic diagram showing the concept of combinatorial sequence space. 

Single letter representation of the 20 amino acids that are found in the genetic codes of 

humans have been used here. It also represents the concept of evolution in the context of 

sequence space. The blue underlined letters represent the mutated residues at each step. 

 

Figure 1.1 explains the concept of combinatorial sequence space as well as the 

definition of evolution within a sequence space. It also shows the total number of possible 

peptides. The ‘distance’ between any two sequences in the combinatorial space is often 

measured as a Hamming distance. For example, in Figure 1.1, the sequence ‘WARE’ is 1 
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Hamming distance away from the original sequence, ‘WARD’. Similarly, the Hamming 

distances of the sequence ‘GANE’ is 3 from the sequence ‘WARD’ and 1 from the 

sequence ‘WANE’.  

It can be calculated from this that the actual observable sequence space represented 

by the proteins is much smaller than the number of possible representations in the 

combinatorial sequence space. Not all of the possible sequence combinations are explored 

over the course of evolution. Rather, only changes (mutations) that maintain the functions 

of the protein or produce advantageous effects are retained (Clarke, 1970; Mirny et al., 

1998; Gustafsson, 2001). Sequences which reduce the optimal functioning capacity of the 

proteins are eliminated. However, the combinatorial sequence space of a protein is a multi-

dimensional landscape (the number of dimensions is directly proportional to the length of 

the peptide). Therefore, it can be expected that there are unexplored pockets in this 

combinatorial sequence landscape which will still conform to the structural and functional 

characteristics of the protein, resulting in molecular recognition. A thorough understanding 

of the sequence space landscape with respect to protein activity will lead to deriving 

accurate sequence-to-binding correlations. Understanding molecular recognition of 

proteins in context of sequence space would be essential if one were to study and apply the 

molecular interactions of proteins in various context. Through this work, it was explored if 

one can identify the contributing residues responsible for molecular recognition of 

monoclonal antibodies and other proteins, by studying sparsely sampled random peptide 

sequences (4 - 13 mers) from an extensive combinatorial peptide sequence space (1012 

peptides). 
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1.2 PROTEINS AND ANTIBODIES 

1.2.1 Introduction to Proteins 

Proteins are highly complex polymeric biomolecules that mediate almost all 

essential biological functions in living organisms such as respiration, metabolic processes, 

immune responses, response to stimuli etc. (Lord et al.,1988; Getzoff et al., 1988; 

Terwilliger, 1998; Gosline et al., 2002; Sidhu et al., 2003; Chockalingam et al., 2007; Zhao 

et al., 2010). The term ‘protein’ was first used by a Dutch chemist, Gerard Johann Mulder, 

in 1838, following the suggestions of another chemist, Jöns Jacob Berzilius (Vickery, 

1950). Proteins can be defined as polymers of different amino acids linked via α-peptide 

bonds (Watford and Wu, 2018). Amino acids are the basic building blocks that make up 

and constitute the proteins. They are organic molecules that contain a carboxyl (-COO) 

group and an amino (-NH2) group. In α-amino acids, which are the primary monomeric 

units for most proteins found in nature, the carboxyl group and the amino group are 

attached to the same carbon atom (α-carbon). This carbon is also attached to another 

varying functional group that can be either polar or non-polar. There are 20 amino acids 

commonly used in natural proteins with different functionalities that constitute almost all 

of the proteins. A peptide can be defined as a chain of different amino acids linked together 

via an amide bond (also known as peptide bond, -CONH2). This sequence of amino acids 

in a peptide chain that forms the primary structure of the protein. As the peptide chains get 

longer, they are folded together in three-dimensional space (secondary, and tertiary 

structures). Thus, the functionality and binding preferences of a protein are determined by 

the specific arrangement of different amino acids within a peptide chain. 
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As mentioned previously, the mediation of biological processes by proteins relies 

heavily on molecular recognition events. Thus, a detailed understanding of the molecular 

recognition between different proteins and their targets is essential to understand biological 

processes in-depth. Molecular recognition in proteins is generally dependent on their shape, 

which in turn is dependent on the sequence of amino acids. Depending on the function, 

proteins can bind to a variety of molecules like other proteins, smaller peptides, nucleic 

acids, and small organic molecules. The amino acid sequences determine the binding 

characteristics of a protein. In order to bind to a target, the binding site on the protein must 

spatially complement that of the target’s. Such complementarity ensures that the 

interactions remain largely specific to the target molecule of the protein. However, often 

there are molecules in the combinatorial space that partially or entirely mimic the binder’s 

physicochemical characteristics and therefore are recognized by the proteins. 

Comprehensive knowledge of such interactions would accelerate the development of 

therapeutics, diagnostics, and other protein-based applications. High-throughput 

combinatorial approaches, both in vitro and in silico, are a great way to study such 

molecular interactions thoroughly (Fout et al., 2017; Johansson-Åkhe et al., 2018; Xavier 

et al., 2016; Gabernet et al., 2019; Rose et al., 2003; Mimmi et al., 2019; Tiwari., 2016; 

Ulman et al., 2011). The efficacy of such an approach is always dependent on the extent 

and characteristics of combinatorial space that has been sampled. In 2020, Taguchi et al., 

described a neural-network based approach to predict molecular recognition behavior for 

nine different proteins using information captured from random peptides that were sparsely 

sampled from the combinatorial sequence space (elucidated later). To study how molecular 

recognition can be described by utilizing sparsely sampling from combinatorial sequence 



  8 

space, one needs a model protein system which undergoes specific interactions with their 

targets and that can be well-characterized. Antibodies, which are discussed in the next 

section of this chapter, are an excellent example of such a system. Aside from studying the 

interactions of the antibodies, the binding interactions of three other proteins (diaphorase, 

ferredoxin, and ferredoxin-NADP reductase or FNR) were also probed and compared 

between different assaying platform as well as using predictive approaches. 

1.2.2 Introduction to Antibodies 

Antibodies are a special class of proteins that are part of the humoral immune 

system (Burnet, 1957). They are sometimes referred to as immunoglobulins (Igs) and are 

secreted by the B-cells. Antibodies were one of the first proteins from the immune system 

that were characterized. The target-binding region of the antibodies, also known as the 

variable (V) region, varies extensively. Thus, this enables the B-cells to produce a huge 

repertoire of antibodies that can recognize a broad variety of pathogens. This, alongside 

their specificity towards their targets, makes the antibodies an excellent candidate for 

investigating the principles of molecular recognition. 

All antibodies are made from pairs of heavy (H) and light (L) polypeptide chains. 

These chains combine to form a constant region (C) which is the stem of the Y shaped 

molecule, and the variable (V) region which is the target binding region (Figure 1.2). These 

polypeptide chains are connected with disulfide bridges. Both the heavy chains and the 

light chains have constant (C) and variable (V) domains.  The H chains consist of three C 

domains and one V domain (CH1, CH2, CH3, VH). The L chains consist of one C domain 

and one V domain (CL, VL).  The variable regions from the heavy chains and the light 

chains (VH and VL) form the target-binding site. There are five different classes (or 
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isotypes) of immunoglobulins that are typically found in human blood – IgG, IgM, IgA, 

IgD, and IgE. Of these, the IgG is the most abundant isotype found in the sera samples. 

Therefore, from now on in this thesis, the word antibody refers to this isotype in particular. 

Each of the VH and VL domains contain three particularly variable loop segments known 

as hypervariable regions. When the VH and the VL domain are together, these total of six 

hypervariable regions at the tip of the antibody are commonly known as complementarity-

determining regions (CDRs). CDRs from both light-chain and heavy-chain variable 

regions are responsible for identifying the target (molecular recognition). 

The target of an antibody is also known as an antigen. Antibodies can recognize 

and bind to a variety of molecules including proteins, peptides, carbohydrates, nucleic 

acids, and small molecules. In the context of this thesis, binding interactions refer to either 

antibody-peptide interactions or antibody-protein interactions. The region on the antigen 

protein surface which is recognized by the antibody for binding is known as the epitope. 

  

Figure 1.2. Schematic representation of an IgG. The subscripts H and L refer to the heavy 

and light chains respectively. C and V refer to constant and variable domains respectively. 
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Protein epitopes are sometimes described in terms of their cognate sequences, and 

here in this thesis they will be used interchangeably henceforth. Epitopes can be broadly 

classified into two different classes, linear, and conformational. Linear epitopes are 

composed of a single and continuous segment of a polypeptide chain. Hence, they are also 

known as continuous epitopes. On the other hand, conformational epitopes are small 

fragments on the polypeptide chains that are not continuous due to the three-dimensional 

folding of the chains. Therefore, they are known as discontinuous epitopes as well. 

Interactions between the antibody and the epitope region are governed by the electrostatic 

forces primarily.  Sometimes, hydrogen bonding, Van der Waals forces, hydrophobic 

forces, and pi-interactions also play a role in the molecular recognition. Most antibodies 

recognize conformational epitopes, as they are raised against an intact antigen. However, 

many of them also recognize continuous peptide fragments, that may be the entire epitope 

itself or part of the conformational epitope. 

1.2.3 Monoclonal Antibodies 

Generally, the antibodies produced from B cells (polyclonal antibodies) as a result 

of a natural immune response are polyreactive and have heterogeneous specificities, also 

known as cross-reactivity (Frank, 2002). This heterogeneous binding behavior can be a 

potential limitation for using antibodies for various purposes (diagnostics, therapeutics 

etc.). Monoclonal antibodies are a special class of antibodies that have a very specific and 

known antigen specificity. In 1975, scientists Georges Köhler and César Milstein devised 

a novel method for the production of monoclonal antibodies with predefined specificity 

using hybridoma techniques (Köhler and Milstein, 1975). This was achieved by fusing 

antibody secreting mouse spleen cells (with high specificity towards a single antigen) with 
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mouse myeloma cells that produced no antibody by themselves and had the ability to grow 

indefinitely, to make a set of immortal hybridoma cell lines. Thus, the antibodies obtained 

from the resulting hybridomas were highly specific towards the intended target antigen. 

The high antigen specificity of the monoclonal antibodies has since been exploited by 

various research applications in the fields of immunology, biotechnology, biochemistry, 

therapeutics, and applied biology (Ansar and Ghosh, 2013). As therapeutic agents 

monoclonal antibodies have been used in the treatment of cancers, auto-immune disorders, 

and cardiovascular diseases (Brennan et al., 2010; Beck et al., 2010; Ansar and Ghosh, 

2013; Kaplon et al., 2020). Other applications include biosensors, microarrays, 

purification, and imaging.  

Although monoclonal antibodies have a higher specificity compared to polyclonal 

antibodies, they are not devoid of cross-reactivity (Flores-Moreno et al., 2014; Vojdani et 

al., 2021). Monoclonal antibodies may bind to peptide fragments on the antigen that are 

partially similar to the actual epitope sequence. Sometimes, they might bind to fragments 

that have completely different amino acid sequence than the epitope but mimic its 

physicochemical properties. Such peptide fragments are called mimotopes (Geysen et al., 

1986). Whether to use an antibody for therapeutic purposes or for clinical and diagnostic 

applications, one must understand and characterize both on-target (cognate sequences) and 

off-target (near-cognate sequences, mimotopes) interactions thoroughly (Brennan et al., 

2010; Uhlen et al., 2010; Ansar and Ghosh, 2013; Norman et al., 2020; Kaplon et al., 2020).  

1.3 TOOLS TO STUDY MOLECULAR RECOGNITION 

Using sequence information to determine the binding interactions of proteins is an 

essential part of modern molecular biology. There are many tools are available to 
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characterize different types of protein-protein interactions (PPIs). These tools can be 

broadly classified into experimental and computational techniques. Each technique has its 

own merits and challenges. Before delving into the techniques that were used for this thesis, 

some of the most commonly used techniques are discussed in the following paragraphs.  

1.3.1 Experimental Tools 

There are diverse categories of experimental tools that are available to characterize 

the interactions of the proteins. Methods like Förster resonance energy transfer (FRET), X-

ray crystallography, nuclear magnetic resonance (NMR), and cryo-electron microscopy 

(cryo EM), aim to understand the structural aspects of molecular recognition (Russell et 

al., 2004). Although these methods provide a comprehensive understanding of the protein 

interactions, they are not high-throughput in nature. Often at times, they are also time-

consuming and cost-ineffective. There are other techniques that are not as detailed as the 

above methods, but nevertheless provide valuable information on the molecular 

interactions of the proteins (Nealon et al., 2017). A lot of them are high-throughput and are 

reliant on omics or combinatorial approaches. High-throughput methods have gained 

popularity over the years due to the ability to test large number of samples at once. There 

are several high-throughput techniques such as tandem affinity purification (TAP), surface 

plasmon resonance (SPR), mass spectrometry (MS), immunoassays like enzyme linked 

immunosorbent assays (ELISAs), high-throughput protein/peptide microarrays, and 

display systems like phage and bacterial displays (Sidhu et al., 2003; Schweitzer, 2003; 

Berggard et al., 2007; Nealon et al., 2017; Miura, 2018). These techniques, and many more, 

are widely used for studying the molecular recognition of many proteins, including 

antibodies. 
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1.3.2 Computational Tools 

Although experimental methods are highly effective, sometimes they demand a lot 

of investment in terms of time and resources. Computational methods (also known as in 

silico methods) seek to address some of these challenges. Just like experimental techniques, 

there are several computational approaches as well to study molecular recognition. 

Computational methods are useful in narrowing down possibilities, from the enormous 

number of the entities in the combinatorial space (Colwell, 2018) which makes them a 

great tool to be used in extension with experimental methods. Machine learning algorithms 

have made these approaches even better over time, with the ability to process even larger 

sequence and binding datasets, and better prediction capabilities. According to Lim et al. 

(2022), machine learning is a method of data analysis that allows “machines” (computers) 

to learn and extract patterns from huge amounts of collected data and make predictions, 

accordingly. Therefore, machine learning is being widely used in computational analyses 

that intend to address molecular recognition challenges. With the emergence of deep 

learning algorithms, more people are trying to computationally solve the complex 

relationship between protein sequence and molecular recognition. Some of these 

approaches rely on structural modelling and prediction of structures of protein complexes 

(Russell et al., 2004; Nealon et al., 2017). Molecular docking is an example of such an 

approach where they try to predict and identify the residues present on the surfaces of 

interacting proteins. Docking strategies rely on the assumption that out of a number of 

possible orientations for an interaction between a protein and its target, the native 

orientation will be scored higher than the others. Although not entirely accurate, there are 

many docking algorithms that have achieved better prediction results over the years 
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(Russell et al., 2004; Nealon et al., 2017). Docking algorithms are however sometimes not 

feasible due to intensive use of computational resources. Another type of computational 

approach utilizes sequence alignments and binding motif discovery algorithms to identify 

molecular recognition interactions (Mohamed, 2016). Examples of such algorithms include 

SLiMDisc, STREME, and motif-x (Davey et al., 2006; Chou and Schwartz, 2011; Bailey, 

2021). These motif discovery algorithms rely on a set of sequences that are related 

functionally. Given a set of sequences, these algorithms try to find de novo motifs that 

might not be defined by a formal criterion. Some of these algorithms use an alignment 

based method whereas others search for patterns which appear to be overrepresented in the 

provided set of sequences. Many of the other approaches rely on machine learning based 

algorithms (both supervised and unsupervised) to find answers related to molecular 

recognition of proteins by probing their evolutionary fitness landscapes (Freschlin et al, 

2022). These approaches allow one to systematically search the sequence space represented 

by the fitness landscape, thus allowing them to derive sequence-binding relationships.  

When it comes to predicting interactions of the antibodies specifically, much work 

has been done to use computational algorithms (including neural network) to predict their 

epitopes. Most approaches focus on predicting linear epitopes due to the structural 

complexities involved with conformational epitopes. Early attempts at predicting the linear 

epitopes of antibody relied on propensities and physicochemical properties of the amino 

acids (Hopp and Woods, 1981). Later, many more novel routines, for e.g., PREDITOP and 

BEPITOPE, followed similar approaches, increasing the variety and number of 

propensities used (Kolaskar and Tongaonkar, 1990; Pellequer and Westhof, 1993; 

Pellequer et al., 1993; Odrico and Pellequer, 2003). A study conducted by Blythe and 
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Flower (2005) showed that using propensity scales might not be the best approach in 

determining antigenic regions for antibodies. Instead, more sophisticated approaches are 

required. As machine learning algorithms started gaining popularity, Saha and Raghava 

(2006) developed the first neural network-based linear epitope prediction program, 

ABCPred (Potocnakova et al., 2016). Following suite, many other hidden Markov models 

(HMM), support vector machines (SVM), and neural networks based routines were 

developed that attempted to predict epitopes. Notable examples include BepiPred, BCPred, 

FBCPred, CBTOPE, and many other (Larson et al., 2006; EL-Manzalawy and Hanovar, 

2010; Zhang and Niu, 2010; Ansari and Raghava, 2013). The training datasets of these 

predictors included a few thousand epitopes. Also, most of these models were trained on 

benchmark datasets that were obtained from IEDB (www.iedb.org, Vita et al., 2009) or 

similar databases. In 2017, a linear epitope predictor, DRPEP, which was based on deep 

neural networks was developed by Sher et al. It allowed for the prediction of linear epitopes 

of variable length and applied the predictor to entire protein sequences. There are also 

mimotope-based epitope predictors. These programs utilize mimotope discoveries from 

phage display experiments. In these approaches the mimotopes of the antibodies are 

mapped on to the overlapping patches on the antigen using sequence alignment and other 

statistical methods. Examples include MIMOX, MimoPro, and Pep-3D-Search 

(Potocnakova et al., 2016; Huang et al., 2008; Chen et al., 2012; Huang et al., 2011). 

Some of the notable examples of in silico molecular recognition was covered here 

but this is not an exhaustive list. A plethora of many other such tools exist that seek to 

address the challenge of molecular recognition and provide a better understanding of it. 

However, the predictive capabilities of most of the computational approaches are limited 

http://www.iedb.org/


  16 

due to the unavailability of unbiased benchmark datasets. In the following section, a 

different approach that employs sparse sampling of peptide sequences from combinatorial 

space and uses that library for training a neural network to predict the binding interactions 

will be discussed. This approach was first used by Taguchi et al. (2020) to predict the 

molecular binding interactions of different proteins. 

1.3.3 Molecular Recognition and Random Sequence Peptide Microarrays 

Here in this section a new approach to identify the molecular recognition 

interactions of proteins will be discussed. This approach utilizes binding data acquired from 

random-sequence peptide microarrays to train a neural network that is later used to predict 

binding to peptides with amino acid sequences that are not present on the array. In order to 

comprehend the approach better, one needs to know what random-sequence peptide 

microarrays are. Microarrays are high-throughput tools that have been around since early 

1990s and are frequently used to infer molecular recognition information from studying 

omics related features (Heiss et al., 2020). There are many different types of microarrays, 

for e.g., DNA, RNA, proteins, and peptides. Peptide microarrays consists of hundreds to 

thousands of peptides that are discretely arranged on a solid support (e.g., glass slides) 

(Meng et al., 2018). They are usually more stable chemically and easier to synthesize than 

full protein microarrays. Peptide microarrays have a variety of applications in the field of 

biochemistry and medicine, ranging from basic research o clinical diagnostics (Meng et al., 

2018). 

There are many different types of peptide microarrays available. Although these 

microarrays are useful for a variety of applications, they mostly do have an inherent bias 

towards specific target(s) (Richer et al., 2015), e.g., representing the tiled proteome of a 
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specific pathogen or a number of proteins. Random-sequence peptide microarrays as the 

ones used in this study are fully agnostic in their nature and have no bias towards any 

particular protein as the peptides on the array have been sampled nearly randomly from a 

combinatorial sequence space (~1012 peptides).  These photolithographically synthesized 

arrays contain 126,050 unique peptide sequences that cover about 83% of the possible 

tetramers and more than 27% of all possible pentamers (Legutki et al., 2014; Richer et al., 

2015). These arrays use an alphabet of 16 amino acid residues (A, D, E, F, G, H, K, L, N, 

P, Q, R, S, V, W, Y) to construct peptides whose length varies from 5 to 13 amino acid 

residues. 4 of the amino acids (M, I, T, and C) were excluded from the arrays due to 

limitations in the synthetic process. Thus, these peptide sequences are a very sparse and 

unbiased representation of the entire combinatorial sequence space for peptides with a 

median length of 9 amino acids. These arrays have been used for comprehensive health 

monitoring, diagnosis of different types of cancer and other diseases (immunosignatures), 

as well as for epitope identification of different antibodies (Legutki et al.,2010; Restrepo 

et al., 2011; Halperin et al., 2011; Hughes et al., 2012; Kukreja et al., 2012; Stafford et al., 

2014; Legutki et al., 2014; Richer et al., 2015). However, the current sequence space 

covered by these arrays restricts them to linear sequences only, thus having limited utility 

for structural epitope binding. 

In 2020, Taguchi and others used these random-sequence high-density peptide 

microarrays to predict sequence vs. binding relationship for diaphorase and other proteins 

with the help of a neural network. In the above stated work, nine different proteins 

(Diaphorase, Ferredoxin, FNR, PD1, PDL1, TNFα, TNFR, Transferrin, crystallizable 

fragment of an IgG) were fluorescently labeled and assayed on the random-sequence 
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microarrays. The sequence information along with the binding data from the assays were 

then used as an input to train a shallow feed-forward, backpropagated neural network. The 

sequence information of the peptides was encoded using ‘one-hot encoding’. The neural 

network was then allowed to “learn” and recognize the binding patterns for these proteins. 

The results indicated that by training the model only on a few thousand sequences chosen 

randomly from the combinatorial sequence space one can derive a comprehensive 

predictive relationship between sequence and binding for the proteins that can be applied 

to the combinatorial sequence space in general. Not only was the neural network 

successfully able to identify the binding patterns of the proteins, but the predictions were 

specific to each protein. More importantly, this kind of predictive relationship is not 

dependent on structural knowledge available for the peptides or the proteins. This work 

demonstrated that it is possible to define the sequence vs. binding relationship for different 

proteins across sequence space by exploring only a small subset from it that has been 

sparsely and randomly sampled. 

1.4 PROJECT OVERVIEW 

The work described in this dissertation is an attempt to further explore the sequence 

vs. binding relationship of proteins, primarily monoclonal antibodies, using neural 

networks and high-density random-sequence microarrays. This study hopes to look into 

the utility of the approach in identifying binding targets of well-defined monoclonal 

antibodies and assessing the ability to predict and validate binding partners for yet 

uncharacterized proteins. The motivation for the study presented here is based on the work 

done by Taguchi et al. (2020) (Section 1.3.3). In order to characterize the contributions of 

combinatorial sequence space to protein molecular recognition interactions thoroughly, a 
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model protein system was required whose interactions were highly diverse, but specific, 

and easy to characterize. Monoclonal antibodies are very well suited to these criteria. Their 

interactions are known to be specific towards the target antigen(s) and are well-

characterized by different experimental tools. Having such a model system allows for 

assessing the models performance with respect to the known interactions of the proteins. 

In this work, the sequence vs. binding relationship of eleven monoclonal antibodies 

(DM1A, p53Ab1, p53Ab8, 4C1, LNKB2, 9E10, rho-1D4, 3B5, AU1, Btag, and Htag) with 

known epitopes have been studied using a neural network model structure, similar to that 

of Taguchi et al. (2020). All of the eleven monoclonal antibodies were assayed on random-

sequence microarrays with same sequence space representation (126,050 unique peptides), 

following the protocol laid out by Rowe et al. (2017).  

In the first study using the five antibodies mentioned above, the neural network 

model was optimized to adapt to the binding interactions observed in case of monoclonal 

antibodies, as opposed to that of other proteins, through hyperparameter optimization. The 

predictive performance of the model was then evaluated based on the binding patterns 

recognized by the neural network models, and they were compared to the known cognate 

epitopes. It was also tested if the algorithm could predict strong binding of the epitope 

sequences among a library of a million random peptide sequences, sampled from the 

combinatorial sequence space. The specificity of the predictions with respect to each 

antibody was also probed. An in silico mutagenesis experiment on the epitopes of 

respective antibodies was carried out to show which amino acid residues were deemed 

important by the model in each case. Furthermore, the performance of the model was 

assessed with respect to different physicochemical propensities that were used as encoders 
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for the amino acid, and varying concentrations of the monoclonal antibodies which were 

used for the assays.  

In the next study, the antibody-specific neural network models were projected on 

the antigen sequences of the five monoclonal antibodies that were studied, as well as on to 

the entire human proteome. This was done to observe how well the model performs when 

exposed to evolutionary sequence space as opposed to random sequences from the 

combinatorial sequence space. 

In the following chapter, the molecular recognition of the monoclonal antibodies 

(9E10, rho-1D4, 3B5, AU1, Btag, and Htag) was studied. These six monoclonal antibodies 

were studied separately because their epitopes were not represented on the microarrays. 

The reported epitopes of four (out of six) of these antibodies also contains some of the 

residues that are omitted on the microarrays (M, I, T, C), which also resulted in distinctly 

different binding behavior in the assays, compared to the previous group of antibodies. 

Also, not all of them have human target antigens. The modeling and assessment approaches 

are similar to those carried out in the initial study.  

Additionally, in the last study, the predictive performance of the model described 

by Taguchi et al., was experimentally tested by selecting three proteins from the study 

(diaphorase, ferredoxin, and FNR). Peptides predicted to be high, low, and mid-range 

binders, from a combinatorial library, for each of these three proteins were synthesized. 

The binding abilities of these peptides then to the respective proteins were estimated using 

surface plasmon resonance (SPR). The underlying aim behind this study was to determine 

how are protein-peptide interactions affected by changes in binding environment 

(microarray vs. SPR). As the neural network was trained on data from the microarray 



  21 

experiments, what differences are observed when one attempts to translate the predicted 

interactions using another, orthogonal assaying platform? 

Overall, the goal of these studies was to attempt and characterize the neural network 

based approach in terms of its ability to predict well-defined interactions of monoclonal 

antibodies and understand its potential limitations. The role of the neural network here is 

more akin to that of a pattern finding tool, which parses the sequence information available 

to it, to distinguish between specific and non-specific interactions in each case, through 

multiple iterations. What is more impressive is that one is able to predict stronger and 

highly specific binding interactions by analyzing weaker binders. While combinatorial 

studies are not a new field in science, it is interesting to observe how much information 

one can gather about molecular recognition just by looking at interactions with arbitrarily 

and sparsely sampled sequences from the sequence space. Hopefully, in the future, this 

work will serve as a useful stepping-stone for those who wish to combine combinatorial 

approaches with machine learning to investigate the enigmas of molecular recognition.  
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CHAPTER 2 

USING NEURAL NETWORKS TO DERIVE SEQUENCE VS. BINDING 

RELATIONSHIP FOR MONOCLONAL ANTIBODIES WITH KNOWN BINDING TO 

MICROARRAY PEPTIDES  

This work was initiated in collaboration with Akanksha Singh 

2.1 INTRODUCTION 

The term ‘sequence space’ often comes into play when one is describing 

interactions between different types of proteins, peptides and/or nucleic acids. The concept 

of sequence space was first introduced in 1970 (Smith, 1970) who called it ‘protein space’. 

It can be described as the number of possible amino acid sequences, for a protein or peptide 

of a given length. For example, for a peptide with 10 amino acid residues, the sequence 

space consists of 2010 (or 10,240 billion) possible sequences. As the length of the 

peptide/protein gets bigger, the possible combinatorial sequence space becomes immensely 

huge. However, over the years of evolution, proteins have evolved to carry out biological 

functions efficiently while sampling only a small fraction of this space (Clarke, 1970; 

Mirny et al., 1998). It shows that finding the correct set of amino acid sequences from a 

large and vast landscape is of utmost importance. Thus, sequence space plays an integral 

part in any kind of molecular recognition event involving protein molecules. In order to 

study the role of sequence space and its contribution to molecular recognition events, a 

model protein system was required whose molecular interactions are of diverse nature and 

could be easily characterized.  

Antibodies make a good example of such a system as they have high specificity 

towards their targets. Antibodies are a class of proteins that are produced by the B-cells of 
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the immune system. They play a very important role in the humoral immune response 

(Fagraeus, 1948; Burnet, 1957). The molecular and structural diversity of antibodies make 

them very versatile binders for a broad variety of targets (Peng et al., 2014). Because of 

the diversity and specificity of their binding interactions, antibodies have found broad 

applicability in the field of proteomics research, diagnostics, and therapeutics. They have 

consistently remained one of the most rapidly growing class of therapeutics (Uhlen et al., 

2010; Stadler et al., 2013; Norman et al., 2020; Kaplon et al., 2020). Monoclonal antibodies 

are a special class of antibodies that are highly specific as they are raised against a single 

target (Nelson et al., 2000). Their interactions with their cognate sequences are very well 

characterized. This makes them highly desirable in the field of therapeutics and drug 

development, where small molecule-based approaches have not been sufficient (Graves et 

al., 2020). Many of the recent uses of monoclonal antibodies in the field of therapeutics 

have been related to the treatment of cancer and autoimmune disorders (Brennan et al., 

2010; Beck et al., 2010; Kaplon et al., 2020). Due to the ever increasing demand of 

monoclonal antibodies in the field of research and therapeutics, significant effort has also 

been put in to optimizing and characterizing them (Clementi et al., 2013).  

The most important step before utilizing a monoclonal antibody for any application 

is to characterize its interaction with the antigen/pathogen and discover the binding sites 

on them, which are called epitopes. It is essential to have the knowledge of antibody-

antigen interactions, especially the interacting epitopes for the development of 

immunodiagnostic assays and tests, vaccines, and therapeutic antibody treatments (Uhlen 

et al., 2010; Shirai et al., 2014). Epitopes are a set of amino acid residues on the 

antigen/pathogen to which the antibody binds through molecular recognition. Epitopes can 
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be either linear or conformational. A linear epitope is a short and continuous peptide 

sequence on the antigen, whereas a conformational epitope is comprised of two or more 

such linear peptide sequences. The conformational epitopes are a result of the folding of 

the protein in 3-dimensional space (Barlow et al., 1986) and are most common in nature. 

There are several methods to characterize the epitope of an antibody. One of the most 

commonly used techniques is X-ray crystallography (Clementi et al., 2013) which helps 

determine the crystal structure of the antibody-antigen complex. Other than X-ray 

crystallography, one can also use NMR (Zuiderweg, 2002), cryo-EM (Fibriansah et 

al.,2015), mass spectrometry (Huang & Chen, 2014), ELISAs (Brennan et al., 2010), 

mutagenesis (Kowalsky et al., 2015), and display of different peptides on bacteria 

(Rockberg et al., 2008) and phage (Peterson et al., 1995). Although these methods are well 

established, they can be quite expensive and time consuming. Some of these methods are 

also low on accuracy and throughput. Also, these methods do not always provide a 

thorough understanding of the molecular recognition in the context of sequence space. To 

address some of these issues, the use of computational approaches has been on the rise in 

the past few years. High-throughput computational methods that employ machine learning, 

like motif discovery algorithms and epitope mapping suites, offer a fast, highly scalable 

and cost effective solution, due to their ability of handling vast amounts of sequence data. 

Hence much research has taken place in recent years to develop sophisticated 

computational methods that can assist or substitute existing experimental methods in 

understanding of the molecular recognition of monoclonal antibodies and mapping their 

epitopes (El-Manzalawy & Honavar, 2020; Manieri et al., 2020; Norman et al., 2020; 

Graves et al.,2020). 
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Though most of the antibody binding regions or epitopes are estimated to be 

conformational, majority of the computational approaches focus of finding linear 

sequences due to the structural complexities involved with the identification of 

conformational epitopes (Sanchez-Trincado et al.,2017). Most of the early approaches that 

sought to look into the molecular recognition of monoclonal antibodies and attempted to 

predict their epitopes were based on propensity indices that assigned a set of values to each 

amino acid residue on the basis of physicochemical properties like hydrophobicity, steric 

factors, and antigenicity among others (Hopp & Woods, 1981; Kolaskar & Tongaonkar, 

1990; Pellequer & Westhof, 1993; Pellequer et al., 1993). These assigned set of values 

were then used to recognize a set of residues that would potentially be an epitope for an 

antibody. These approaches only looked at a couple of antigens for the identification of 

binding interactions, making the size of their training dataset very small. Therefore, the 

accuracy of their prediction was low (Blythe & Flower, 2009). Over time, the algorithms 

became more and more sophisticated, and many started employing machine learning 

approaches due to their largely automated feature extraction as opposed to manually 

electing each and every feature. Saha and Raghava developed the first machine learning 

model known as ABCpred in 2006 that utilized a combination of propensity indices and 

sequence complexity to recognize patterns in different types of linear epitopes, and 

therefore make predictions. After ABCpred, many other methods were developed in an 

attempt to predict linear epitopes correctly from sequence-based information. Many of 

them used used a support vector machine (SVM) based approach which utilized multiple 

propensities and inputs derived from sequences (Chen et al., 2007; El-Manzalawy et al., 

2008; Wang et al., 2011; Gao et al., 2012). However, most of these methods were using 
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small set of peptides for training the algorithm (approx. 1500 peptides) which limited their 

performance (Sher et al., 2017). Later, another study (Singh et al., 2013) employed a SVM 

model along with K-nearest neighbor, where they were able to utilize a new dataset with 

much higher number of peptides (>30,000) which they obtained from IEDB (Vita et al., 

2018).  

The study that employed the first deep learning approach in this context was by 

Lian et al. (2015) who implemented and trained a deep maxout network (DMN) with 

dropouts. Their approach utilized the same dataset as used by Singh et al. (2013) and a 

slight increase in the performance of the classification was reported. As the predictive 

models are improving over time, the differences in the training datasets used by these 

models makes their general applicability a challenge. Also, these classification approaches 

use a known set of epitopes and non-epitopes for training the models which introduce an 

inherent bias to the algorithms during training. In this study, a different approach is 

presented to address the current limitations of predicting molecular recognition. This 

predictive approach is not dependent on the availability of benchmark dataset or structural 

knowledge of the target sequences. This makes the algorithm largely unbiased and versatile 

in predicting binding patterns for monoclonal antibodies. 

For this work, a combined approach utilizing neural networks and high-throughput 

microarrays that enable sparse sampling from the combinatorial space has been laid out to 

characterize the molecular recognition of monoclonal antibodies. This combined approach 

was first explored in a study by our research group (Taguchi et al., 2020) where a neural 

network was implemented to characterize the binding behavior of different proteins on the 

microarrays. A simple feedforward neural network was developed to derive a quantitative 
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sequence vs. function relationship between the proteins and the array peptides. Once 

trained, this predictive model was then used to predict the relationship of the protein 

molecules over the combinatorial sequence space. It demonstrated that a sparse library of 

peptides (126,050 peptides) generated by randomly sampling over a combinatorial 

sequence space (1012 peptides), could be used to characterize the binding interactions of 

different proteins. As these peptides on the microarray are nearly randomly sampled from 

the available sequence space, there is little inherent bias to the library. Also, one does not 

need to have any structural knowledge about the target molecules beforehand. Although 

the interactions of the proteins were characterized by this method, monoclonal antibodies 

cannot be generalized in the same way due to the highly specific nature of their interactions. 

This study aims to shed light on the molecular recognition behavior of 5 different 

monoclonal antibodies whose epitopes are well-characterized. Given the highly specific 

binding nature of the monoclonal antibodies, will it be possible to characterize the binding 

interactions just from the information obtained from a sparse library of randomly sampled 

peptides? In other words, can the sequence and binding information available from weaker 

binders of the monoclonal antibodies be used to predict more specific interactions like that 

of the cognate sequences.  

The 5 monoclonal antibodies that were chosen for this study are DM1A, p53Ab1, 

p53Ab8, 4C1, and LNKB2. These five monoclonal antibodies were selected because their 

binding to the sequences present on the peptide microarray were known and well-

characterized. Although monoclonal antibodies are highly specific to their epitopes, they 

are prone to showing cross-reactivity with other non-cognate peptide sequences present on 

these high-throughput arrays (Stafford et al., 2012; Notkins, 2014; Horwacik et al., 2015). 
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The aim is to exploit these off-target interactions to derive a model that can correctly 

predict a set of target residues in a vast combinatorial space. Experiments carried out on 

the high-throughput microarrays with random sampling of peptides over the combinatorial 

space (Legutki et al., 2014; Rowe et al., 2017) are the source of data used for training the 

model. The advantage of using such a microarray based peptide library over methods like 

phage display is that they are faster, unbiased, less expensive, and allow direct 

measurement of peptide binding (Halperin et al., 2011). All of the peptides on these 

microarrays are between 4 to 13 residues in length. Experimental data captured from 

assaying fluorescently labeled antibodies on the microarray (Rowe et al., 2017) was used 

as the input for the neural network based on the work by Taguchi et al. (2020). The output 

in terms of predicted binding intensity was used to derive a comprehensive predictive 

relationship between the amount of monoclonal antibodies bound on the array and the 

peptides. It is to be noted that all data regarding the epitopes of the respective antibodies 

were omitted while training the model. The difference in the number of peptides on the 

array (126,050 unique peptides) and the number of total possible sequences (1012) is huge, 

which is roughly about one peptide out of every 10 million. The predictive relationship 

obtained only from sampling such a small fraction of the combinatorial space can then be 

projected on larger libraries to check the accuracies of the prediction. 

2.2 METHODS 

2.2.1 Synthesis of High-throughput Peptide Microarrays 

Peptide microarrays with 126,050 unique peptide sequences were synthesized using 

a photolithography-based approach (Legutki et al., 2014; Rowe et al., 2017) at HealthTell 

(http://www.healthtell.com/). A 200 mm silicon wafer coated with thermal-oxide was first 

http://www.healthtell.com/
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functionalized with aminosilane monolayer to create attachment sites for the peptides. This 

surface was then coated with tert-butylcarbonyl-glycine (BOC-glycine). A photoresist 

containing a photoacid generator was applied next to the wafer through spin coating. 

Further, exposing the wafer to a UV light source at 365 nm after applying a defined 

photomask, resulted in the deprotection of the BOC-protected amines at specified features 

on the array. A coupling solution consisting of BOC-protected amino acids was then spin-

coated on the wafer. This process ensured that the coupling took place only at the 

deprotected features on the array and marked the completion of one cycle. The cyclic 

process was repeated several times to add amino acids at the N-terminus of the peptides. It 

created a combinatorial sequence space of peptides ranging in length from 3-13 amino acid 

residues (median length is 9). After completion of all the cycles, the wafer was cut into 13 

rectangular pieces, each with the dimension of a microscope slide (25 mm X 75 mm). Each 

slide contained 24 identical arrays (8 rows and 3 columns) with 126,050 unique peptides 

on each array. The quality of the array manufacturing process was ensured by the 

characterization of arrays through MALDI-MS. The slides were stored in a dry nitrogen 

environment, post-manufacturing. Since these arrays were produced in a highly-automated 

fashion, the reproducibility is very high (Taguchi et al., 2020). 

The peptide sequences synthesized on the arrays were pseudo-randomly generated 

using an algorithm designed to reduce the number of synthetic steps while covering a 

predetermined percentage of the desired sequence space. They use only 16 of the 20 

naturally available amino acids (A, D, E, F, G, H, K, L, N, P, Q, R, S, V, W, Y). Cysteine, 

methionine, isoleucine, and threonine were excluded from array manufacturing process in 

order to simplify the synthetic procedures. Nevertheless, the sequence space represented 
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by the 16 amino acids used on the arrays were sufficient to cover the interactions of the 

monoclonal antibodies that were selected. 

2.2.2 Labeling of the Monoclonal Antibodies and Assays 

For this study, five different mAbs were used (DM1A, p53Ab1, p53Ab8, 4C1, and 

LNKB2). These antibodies were sourced from a mouse host. Table 2.1 contains detailed 

information about the sources and the targets of the mAbs. Binding assays on the array 

were performed following an ELISA-based format ((Rowe et al., 2017). The arrays were 

first soaked in distilled water for 1 hour to rehydrate them. They were then treated with 

PBS for 30 minutes, followed by 1 hour in primary incubation buffer (1% mannitol, PBST). 

They were again rinsed with distilled water to remove excess salt build-up. The rehydrated 

arrays were then loaded into custom cassettes to adapt them into a 96-well plate format. 

All the mAbs were serially diluted in the primary incubation buffer according to Table 2.2 

and added to the arrays. After adding the mAbs, the arrays were incubated at 37°C for 1 

hour with mixing, to facilitate antibody-peptide interactions. Array-bound mAbs were 

labeled using goat anti-mouse IgGs with Alexa Fluor 555 (Invitrogen, catalog #A21424) 

in a secondary incubation buffer consisting of 0.5% casein in PBST. The mixture was 

incubated for 1 hour at 37°C. Post-incubation, the arrays were washed 3 times in PBST, 

followed by distilled water using a BioTek microplate washer (BioTek Instruments, Inc., 

Winooski, VT). After removing them from the cassette, isopropanol was sprayed on them. 

Then they were centrifuged for drying. The arrays were then imaged using an ImageXpress 

Micro XLS (Molecular Devices, San Jose, CA) fluorescence imager for 375ms of 

exposure. The images were then processed to align the fluorescence measurements with 

corresponding peptides using Mapix software (Innopsys, Carbonne, France). Each assay 
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had two technical replicates. The correlations between two replicates are also mentioned 

in Table 2.2. 

Table 2.1. Sources and Target Sequences for the Monoclonal Antibodies 

Monoclonal 

Antibody 

Isotype Supplier Catalog 

Number 

Target Protein 

(UniProt ID) 

Epitope 

Sequence 

DM1A IgG1 
Millipore 

Sigma 
05-829 

Human α-

tubulin 

(Q71U36) 

ALEKDYE 

p53Ab1 (clone 

PAb240) 
IgG1 

Millipore 

Sigma 
CBL404 

Human cellular 

tumor antigen 

p53 

(P04637) 

RHSVV 

p53Ab8 (clone 

BP53-12) 
IgG1 Invitrogen 

MA1-

19055 

Human cellular 

tumor antigen 

p53 

(P04637) 

SDLWKL 

4C1 IgG2a GeneTex GTX47974 

Human 

thyrotropin 

receptor 

(P16473) 

LQAFDSH 

LNKB2 IgG1 
Absolute 

Antibody 

Ab00232-

1.1 

Human 

interleukin-2 

(P60568) 

PLEEVLN 

 

Table 2.2. Serial Dilution of the Monoclonal Antibodies and Correlation of Replicates 

 

 Correlation between technical replicates 

Concentration 

(pM) 
DM1A p53Ab1 p53Ab8 4C1 LNKB2 

16000 N/A* N/A* 0.991 N/A* N/A* 

8000 0.99 0.968 0.991 0.99 0.987 

4000 0.987 0.983 0.842 0.987 0.997 

2000 0.992 0.983 0.996 0.992 0.999 

1000 0.994 0.959 0.997 0.994 0.004** 
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500 0.998 0.985 0.996 0.998 0.999 

250 0.997 0.996 0.998 0.997 0.999 

125 0.997 0.997 0.996 0.997 0.976 

62.5 0.996 0.994 0.951 0.996 0.977 

31.25 0.989 0.981 0.96 0.989 0.999 

15.625 0.987 0.966 N/A* 0.987 0.998 

7.81 0.974 0.862 N/A* 0.974 0.898 

* N/A – Not applicable, concentration outside the range of dilution. **Technical replicates 

not considered during training the model due to poor correlation 

2.2.3 Neural Network Model Architecture for Prediction 

To explore the molecular recognition of monoclonal antibodies, a simple feed-

forward neural network (NN) was used based on a previous work by Taguchi et al (2020). 

This NN model was used to quantitatively predict the sequence vs. activity relationship for 

a given set of peptides binding to a particular monoclonal antibody. The relative fluorescent 

intensities (0 to 65536 relative fluorescence units) associated with each peptide on the 

microarray were processed beforehand and transformed into a log10 scale for enabling them 

as inputs to the NN model. A value of 10 was added to intensities before log transformation 

to offset the fluctuations of lower binding intensities near the zero end in the log scale. The 

peptide sequences were (in silico) stripped of the GSG linkers at the C-terminal, before 

being used as inputs for training the model. Sequences shorter than five amino acid residues 

were also removed from the dataset. The remaining sequences were then represented using 

“one-hot encoding”. Each peptide sequence was represented as a sparse binary matrix of 

dimension 13 × 16 (length of the longest peptide on the array × number of amino acid 

residues used on the array).  
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Figure 2.1. Representation of sparse binary matrix for one-hot encoding. The peptide 

represented here as an example is “RHSVV”. The amino acid residue present in the 

corresponding position of the peptide is shown here in bold red. The rows represent the 

maximum peptide length on the microarray (13). 

 

An example of the representation can be seen in Figure 2.1 where the peptide 

RHSVV is represented in its binary form. The activation function used for each layer 

except for the output layer was rectified linear unit (ReLU; Nair et al., 2010). The weights 

of the neural network were optimized using an Adam optimizer (Kingma et al., 2014). To 

account for the skewed distribution of the binding intensities, all the values and 

corresponding peptides have been divided into 100 equidistant bins and a peptide from 

each bin is randomly selected into batches of 100 peptides during training. 
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Figure 2.2. Schematics of the neural network architecture used for predicting epitopes of 

monoclonal antibodies. (A) Conversion of the sparse binary matrix into a dense real-valued 

vector for representing a peptide. (B) The real-vectors are then fed into the neural network 

as the input layer. All the hidden layers have rectified linear unit as activation. 

 

An encoder matrix of 16 × N (where N is the number of descriptors for each amino 

acid; N<= 16), which is learned through training, was then multiplied with the sparse 13 × 

16 matrix to linearly transform it into a 13 × N dense matrix with real-valued 

representation. This dimensionality reduction is driven by the first layer of the neural 

network, which also the encoder layer. It is during this process that the algorithm learns 

from the training process and generates optimized weights for the learned encoder matrix. 

Therefore, the value of the encoder matrix varies during each fitting by the model. By 

learning the weights through training, the encoder matrix is optimized to preserve the 

information about the sequences as closely to the observed binding as possible. Once 

transformed, each peptide’s 13 × N matrix was flattened into a single vector representation. 

These flattened vectors were then used as input features to train the model (Figure 2.2).  
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Figure 2.3. Neural network model performance optimization. Variation of the Pearson 

correlation coefficient (PCC) with respect to various hyperparameters for optimization of 

the model for DM1A monoclonal antibody binding data. Hyperparameters that were tested 

include the number of hidden layers and the number of nodes in each hidden layer (a), 

number of descriptors for each amino acid residue in a peptide (b), learning rate and number 

of training steps (c), and fraction of peptides from the dataset used for training the model 

(d). Points plotted are the mean of 5 independently trained models with randomly chosen 

peptides for training and testing of the model and the error bars represent the standard error 

of the mean (SEM). The correlations are based on the test set sequences only. 

 

Next, the hyperparameters of the model were optimized. The hyperparameters that 

were optimized are the number of hidden layers, number of nodes in each hidden layer, 

number of descriptors for each amino acid, number of training steps, the learning rate, and 

the fraction of peptides from the dataset used for training. The parameters were optimized 

in a grid-like manner and Pearson correlation coefficient (PCC), calculated between the 
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predicted and the measured binding values, was used as the determining factor to evaluate 

the performance of the model. All the hyperparameter optimization was done using the 

dataset of the monoclonal DM1A, which is raised against α-tubulin. Note that the cognate 

sequences of each mAbs were removed from the training set while training the model and 

were placed in the test set to avoid biasing the model. Results from the hyperparameter 

optimization are shown in Figure 2.3. Table 2.3 summarizes the selected hyperparameters.  

Table 2.3. List of Hyperparameters chosen from Optimization of the Model 

Hyperparameters Optimized Value 

Number of Hidden Layers 5 

Number of Hidden Nodes per Layer 200 

Number of Amino Acid Descriptors 9 

Learning Rate 0.001 

Training Steps 50,000 

Fraction of Peptides used for Training 0.95 

 

After optimizing the hyperparameters, the model was trained and validated 100 

times, randomizing the selection of training peptides each time, for each mAb. All the 

neural network models were developed using PyTorch 1.4.0 using Python 3.7 as an 

interpreter. Note that most of this computational analysis was done on a single workstation 

with 20 cores which took about an hour for 10 individual fits when a parallel batch 

approach was implemented. 

2.2.4 Testing Model using Randomly Generated In silico Peptide Arrays 

For validating the predictions further, the performance of the model was projected 

onto in silico libraries of 106 randomly generated unique peptides. All the peptides were 

nonamers (9 residues) and were composed of the 16 amino acids present on the microarray. 

The epitope of the mAb being analyzed was also included in these in silico libraries. It 
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must be noted here that the models were trained without the epitope sequences being 

present in the training set. The weights from all the trained models for a monoclonal 

antibody were projected on these libraries using a MATLAB code and corresponding 

binding values were obtained. The predicted binding values were then sorted in descending 

order of Z-score and the peptides were ranked accordingly. The ranking of the epitope in 

this sorted list was used as a measure for the model performance. Also, the top non-epitope 

sequences with Z-score value above 3 were selected from this list and were analyzed using 

STREME motif analysis tool (Bailey, 2021), and the most significant saliency logos with 

the lowest p-values were represented. Same thing was done with the top binders among the 

array peptides as well. The Z-score was calculated according to the equation below. 

𝑍𝑖 =  
𝑋𝑖 −  µ

𝜎
 

Here Zi is the score of the i-th peptide, Xi is the measured binding intensity of the i-th 

peptide, µ is the mean binding intensity of the entire dataset, and σ is the standard deviation 

in binding data. 

 To test the specificity of the predictions, the difference between the binding values 

with respect to measured data as well as predicted data were calculated, for all of the 

common peptides for a pair of monoclonal antibodies. The difference was plotted as a 

scatter plot with the difference in measured values on the x-axis, and the difference in 

predicted values on the y-axis. All the differences shown here are in the log10 scale. 

An in silico mutation experiment was also devised to study the variation in 

predicted binding due to mutation of the epitope sequences. Each residue of a cognate 

sequence was replaced with a different amino acid residue from the 16 residues used on 
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the array, one at a time and serially. The resulting in silico library of substituted peptides 

is always one Hamming distance away from the cognate epitope. The weights of the trained 

models were projected onto this library and predicted binding intensities were obtained. 

The binding intensity (in log10 scale) of the cognate sequence was subtracted from the 

binding intensities (in log10 scale) of the substituted peptides and the results were plotted 

as a heatmap. 

2.2.5 Using Physicochemical Propensities as Amino Acid Encoders 

In the next few steps of the study, the effects of using different propensity indices 

of amino acids as encoders were studied. A total of 17 different type of indices were used 

for the study. These propensities acted as the descriptors for each of the amino acids instead 

of self-learned parameters. A fixed matrix of 20x9 with values between 0 and 1 was used 

as a control among the supplied encoders. 10 independent training runs were carried out 

for each selected propensity. All the other hyperparameters used remained same as shown 

in Table 2.3. The trained models were projected on to in silico libraries similar to the 

method laid out in section 2.2.4 of this chapter. 

2.2.6 Effects of Antibody Concentration on the Model Performance 

Next, the change in the predictive model with respect to concentration of the 

monoclonal antibody was considered. All the available concentrations for each antibody 

were used to individually train the neural network (Table 2.2). 5 independent training runs 

were carried out for each available concentration. Post-training, these models were 

projected onto in silico libraries of randomly generated peptides (106) for evaluation of 

performance (similar to section 2.2.4). For fitting multiple concentrations simultaneously, 

the binding data from the concentrations were compiled together, so that there would be 
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multiple columns instead of one. The model treated these columns as different samples and 

fitted accordingly. The model was trained 5 times independently using each dataset with 

multiple columns corresponding to different concentrations.   

2.3 RESULTS 

2.3.1 Sequence vs. Binding Relationship for the Monoclonal Antibodies   

In this study, the binding behavior of five monoclonal antibodies was probed 

utilizing a feedforward, back-propagated neural network, based on the work done by 

Taguchi et al (2020), to map their sequence-to-binding relationship. The immunoassays 

with the fluorescently-labeled monoclonal antibodies were carried out at HealthTell and 

fluorescence readings from the imager were processed using an array alignment software 

(see Methods; section 2.2.2). The processed dataset was then used for training the neural 

network.  

Table 2.4. List of known cognate sequences present on the array for the antibodies 

Monoclonal Antibody Cognate Sequences on the array (total copies) 

DM1A AALEKDY, ALEKDYE, LEKDYEE (482) 

p53Ab1 RHSVV, RHSVVV (311) 

p53Ab8 SDLWKL, SDLWKLL (345) 

4C1 LQAFDS, QAFDSH (200) 

LNKB2 PLEEVLN (100) 

 

The first step was optimizing the hyperparameters of the NN (Methods; Figure 2.3 

and Table 2.3). The hyperparameters were optimized using the dataset of DM1A because 

the binding profile of this antibody indicates a broader coverage of the entire dynamic 

range of peptides as compared to other mAbs used in the study. Once the hyperparameters 

were finalized, the model was independently trained 100 times for each monoclonal 

antibody using randomly chosen training and test sets from the available dataset during 
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each training. 95% of the available peptides (~119750 peptides) were randomly chosen for 

training the NN model. The remaining 5% (~6300 peptides) were included as the test set 

for cross-validating the model. The known cognate sequences of the monoclonal antibodies 

present on the array (Table 2.4) were deliberately removed from the training set and 

included in the test set to avoid biasing the model’s prediction. The training was carried 

out 100 times to maximize the probability of the occurrence of each array peptide in the 

test set. The results and the sequences from every iteration were accumulated. 

Approximately 700 peptides did not end up appearing in the combined test set from the 

100 runs, for each monoclonal antibody. From the combined test set, all the unique peptides 

were identified and their predicted and measured binding data (log10 scale) were averaged. 

The mean predicted values were then plotted against the mean measured values as a scatter 

plot for each antibody, as shown in Figure 2.4. The cognate sequences are also plotted on 

the graph for each antibody. All the monoclonal antibodies shown here (Table 2.4) have 

very well characterized epitope sequences (Breitling & Little,1986; Stephen et al, 1995; 

Shepherd et al, 1999; Afonin et al, 2001).  
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Figure 2.4. Scatter plots showing the correlation between log10 values of predicted binding 

measurements (y-axes) vs. actual binding measurements (x-axes) of peptides from the test 

datasets of monoclonal antibodies DM1A, p53Ab1, p53Ab8, 4C1, and LNKB2. The 

epitopes of each monoclonal antibody are also represented in the respective plot. The 

density of datapoints (peptides) is color-coded as the number of peptides per datapoint. 
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Figure 2.5. Heatmaps demonstrating the similarities between each pair of amino acid 

vectors, for each individual monoclonal antibody. These vectors were learned by the neural 

network model during training. The heatmaps were generated by calculating cosine of the 

angle between the vectors. The data shown here represents the average of 100 independent 

trainings. The number of descriptors used per amino acid were 9. 
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As can be seen in Figure 2.4, most of the peptides (>80%) are weak binders (<=3 

on the x-axes) to the monoclonals and interact non-specifically with them. Thus, it is only 

a very small fraction of the peptides that interact with the antibodies above the noise cut-

off that is responsible for defining the predicted sequence space. However, this small subset 

of peptides (<1000 peptides) must contain a diverse set of information in terms of peptide 

sequences and distribution of measured binding intensity, in order for the algorithm to 

predict the sequence space with a higher degree of accuracy.  

However, the performance of the predictions also depends on the interacting nature 

of the monoclonal antibodies themselves. From the scatter plots it is seen that the epitopes 

of the antibodies which showed broader distribution range of binding intensities on the 

array (DM1A, 4C1) were predicted better. Antibodies that are highly specific and bind 

mostly to their cognate sequences only (p53Ab1, p53Ab8, and LNKB2) do not show such 

diversity in interacting with the peptides, with most datapoints in the noise range (<103) 

and hence the predicted binding values for the cognates of these antibodies were much 

lower than the observed values.  

As the encoder values for all the 16 amino acids were learned during the training 

of the model, it varied from run to run, for any given antibody. The average values of these 

encoders were used to generate heatmaps that show the similarities between the amino 

acids, for every monoclonal antibody. The similarities were calculated as the cosine of the 

angle between the amino acid vectors (the dot product divided by the vector magnitude). 

In these heatmaps, the yellows represent the highest similarity between each amino acid 

pair, whereas blue represents the lowest similarity between the pair. These similarity 



  44 

matrices show how similar or opposite the residues are to each other with respect to the 

interactions of the antibody. 

Table 2.5. The mean rank of epitopes within libraries of 106 random 9-mer peptides 

Monoclonal 

Antibodies 

Epitopes 

Included 

Average Rank 

(20 iterations) * 

Percentage 

rank in 1 

million 

Percentage rank of 

the epitope on the 

array ǂ 

DM1A ALEKDYE 23 ± 0.21 0.0023% 0.0156% 

p53Ab1 RHSVV 1,727 ± 142 0.1727% 0.0467% 

p53Ab8 SDLWKL 481,348 ± 9,382 48.1348% 0.0914% 

4C1 LQAFDSH 359 ± 1 0.0036% 0.0078% 

LNKB2 PLEEVLN 3 ± 1 0.0003% 0.3197% 

* Error shown here is the standard error of the mean of the ranks 
ǂ Ranks calculated on the basis of the number of unique binding values as measured by the 

instrument, for each monoclonal antibody.  

 

However, the predicted binding intensity is not the only factor to determine the 

accuracy of these predictions. Therefore, to further analyze the performance of the models, 

another method was employed that involved projecting the optimized weights onto in silico 

peptide libraries. Using MATLAB, a library of 106 random nonamer peptides was 

generated in each iteration and the epitope sequence of the monoclonal antibody being 

analyzed was included in it. Nonamers were used because the median length of peptides 

on the microarray is 9. It is to be noted that the sequence space for a nonamer peptide 

consists of nearly 68.7 billion peptides if one only uses the 16 amino acids used on the 

array. Therefore, the probability that any 2 randomly generated libraries with 1million 

peptides would be the same is extremely low (<10-5). The optimized weights from all the 

100 runs for the antibody were projected onto it. After the projection was complete, this 
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random peptide library was sorted in descending order of predicted binding values. The 

rank of the cognate sequence(s) was determined from the sorted peptide list. 20 iterations 

of this process were carried out and the mean rank of the cognate sequence from 20 

different peptide lists was calculated. The results were tabulated and shown in Table 2.5. 

The mean values and the errors have been rounded off to the nearest integer wherever 

possible. As can be seen from Table 2.5, except for p53Ab8, the epitopes of all the other 

antibodies are predicted within top 0.2% of the in silico libraries.  

Additionally, the sequences with Z-score above or equal to 3, for each monoclonal 

antibody were selected from representative libraries. These peptides were then analyzed 

using STREME motif analysis tool from the MEME suites (Bailey, 2021). The resulting 

motifs which were most significant in terms of p-value are shown in Figure 2.6. These 

logos are a good representation of the most prominent amino acid residues that are 

recognized and deemed important by the neural network model with respect to the binding 

behavior of a particular monoclonal antibody. Figure 2.6 also shows the most significant 

sequence logos that represents the binding motifs as observed on the arrays. These 

sequence logos were also created using the STREME motif analysis tool, from the array 

peptides with Z-score above or equal to 3.  
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Figure 2.6. Sequence logos showing the residue patterns recognized by the monoclonal 

antibodies on the array, and as observed through the predictions. Array motifs represent 

the common motifs observed in the top array peptides (Z-score >=3). Predicted motifs 

represent the preference of amino acid residues at each position as predicted by the neural 

network model. The top predicted peptides (Z-score >=3) from random in silico peptide 

libraries were used to generate these motifs. Part of the proteome from the target proteins 

is shown on the top of each sequence logo, where the epitope is shown in red. All the 

sequence logos were generated using STREME (Bailey, 2021). 

 

These sequence logos help recognize the important residues for binding interactions 

on the microarray. The actual cognate sequences along with the flanking residues from 
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their target proteins are also shown in the figure for reference. The positions at the bottom 

of each sequence logo are a frame of reference and do not represent the actual positions of 

these residues in the target protein. The height of each amino acid residue within the stack 

represents the relative frequency with which that particular residue appears at that 

particular position after the alignment of the sequences.  

It must be noted here that the sequence logos from the predicted peptides have a 

similar motif as that of the sequence logos of the top peptides from the array. This was 

especially observed in case of DM1A, 4C1, and LNKB2, where the more important 

residues highlighted in both the cases are the same. In case of p53Ab1 and p53Ab8 as well, 

the residues that were found to be of common occurrence on the array were also favored 

by the neural network predictions.  

The sequence motif observed in case of p53Ab8 (Figure 2.6) indicated that the 

algorithm was able to identify the relevant residues correctly. However, the results of 

projection from Table 2.5 indicated otherwise. It was observed in the motifs that the 

cognate residues (SDLWKL) were preceded by two other residues (L and K). Taking this 

into account, the p53Ab8 model was projected again on the in silico peptide libraries, but 

this time the sequence LKSDLWKL was used instead of SDLWKL. The results 

significantly improved this time with the sequence LKSDLWKL being ranked at the top 

of the list (Table 2.6). Following this observation, the cognate motif from the target protein 

p53 (TFSDLWKL) was introduced among the randomly generated peptides and the model 

was projected again on this library. This time, the cognate interactions ranked around 43 

(Table 2.6), which was a significant improvement of performance from the one observed 

in Table 2.5. Thus, it was found that the model was actually taking positional information 
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into account in case of p53Ab8. Therefore, the model was able to successfully predict the 

relevant residues in case of all the five monoclonal antibodies within top 0.2% of the 

randomly in silico peptide libraries with 106 sequences. In accordance with this 

observation, the epitope of p53Ab8 will be represented as TFSDLWKL henceforth. 

Table 2.6. The mean rank of p53Ab8 sequences among 106 random 9-mer peptides 

 

p53Ab8 sequences  Average Rank (20 

iterations) * 

Percentage rank in 1 

million 

LKSDLWKL 1 ± 0 0.0001% 

TFSDLWKL 43 ± 6 0.0043% 

* Error shown here is the standard error of the mean of the ranks 

 

2.3.2 Specificity of the Binding Predictions 

In order to get a better understanding of the sequence-to-function relationships of 

these antibodies and how the binding information obtained from the sequence space 

represented by the arrays dictates the binding behavior, it was important to study the 

specificity of these predictions. The binding experiments were all done using identical 

peptide arrays. Therefore, the sequences represented on the array are common to all the 

monoclonal antibodies. So, the binding interactions between the sequences and the 

antibodies become a very important deciding factor in distinguishing the binding patterns 

from one another, both in vitro and in silico. Not all sequences present on the array 

contribute equally to this distinction of binding behavior. To determine, how specific the 

predictions are and if the sequences that interact highly with one monoclonal antibody were 

also interacting (or predicted to interact) with another antibody, specificity plots (Figure 

2.7) were drawn. Previous works have established the peptide microarrays as an effective 

tool for mapping linear epitopes. Each monoclonal antibody also binds to a unique set of 

peptides from the peptide library that are weakly bound by other monoclonal antibodies.  
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Figure 2.7. Scatter plots showing the specificity of the predictions. The specificity was 

calculated as the differences in the measured and predicted binding intensities between a 

pair of monoclonal. Along the x-axis, the difference between the measured binding values 

is plotted. The y-axis represents the difference in the predicted binding values. In each case, 

the positions of the cognate sequences for the corresponding monoclonal antibodies are 

indicated. The colorbar indicates the density of distribution for the datapoints. All 

calculations are in the log10 scale. 
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It would be important for the algorithm to recognize and predict the specificity as 

observed on the microarrays. Figure 2.7. represents the specificity between all the pairs of 

monoclonal antibodies used for the study. The x-axes show the difference in log10 

measured binding values and the y-axes show the difference in log10 predicted binding 

values. All the cognate sequences for each pair of antibodies are represented on the graph 

as well. 

The cognate sequences of each pair of antibodies are observed to have very high 

specificity with a high degree of separation with respect to measured data (x-axes) on the 

array, as expected. As can be seen from the figure, the majority of the array peptides 

(>80%) have the same binding affinity towards either of the monoclonals, both in terms of 

measured and predicted data. Therefore, they are centered around the zero-value in both 

axes. These peptides are mostly weak binders to the monoclonals and interact non-

specifically with them. Thus, it is only a very small fraction of the peptides that interact 

with the antibodies above the noise cut-off that is responsible for defining the predicted 

sequence space. The predicted specificity for DM1A and 4C1 epitopes is on par with 

respect to the measured specificity. The lowest predicted specificity is observed in the case 

of p53Ab8 and p53Ab1. This can be attributed to the broad absence of peptide binding in 

the mid-range values (typically on the order of ~103 intensity units) in the actual array 

experiments of these antibodies (see Figure 2.4). These monoclonals show high binding 

specificity to their specific epitope sequences and do not exhibit marked binding to the 

majority of other peptide sequences on the array. This however was found not to affect the 

predictive performance of the model, which still identified the cognate interactions well in 

both the cases.  
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2.3.3. In silico Substitution of the Cognate Sequences 

 

Figure 2.8. Heatmaps representing the results of in silico single-point substitution of the 

epitopes for each monoclonal antibody used in this project. Each residue in an epitope 

sequence (x-axes), was replaced with the 16 amino acid residues used on the microarray 

(y-axes), one at a time to create an in silico library. The NN model was used to predict 

binding values for the substituted peptide in the library. The predicted value of the actual 

cognate sequence was then subtracted from those of the other peptides. The colorbar 

represents the difference of log10 binding intensities between the substituted and the 

cognate peptide. 

 

The next prerogative was to investigate whether the NN model was capable of 

distinguishing between key residues of the cognate sequences. In order to do so, each 

cognate sequence was taken, and using a MATLAB script, an in silico library of substituted 

peptides was created from the cognate. The mutations were carried out using only the 16 

amino acids used in the array and in a position-specific manner such that the substituted 

peptide sequences are always one Hamming distance away from the actual cognate 

sequence. The antibody-specific NN model was then used to predict the binding intensities 

of the substituted peptides. The relative change in log10 binding of the substituted peptide 

was then calculated according to the following formula: 

𝐶𝑖𝑗−𝐸 =  𝑃𝐵𝑖𝑗 −  𝑃𝐵𝐸   
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where 𝑃𝐵𝐸 is the predicted log10 binding value of the actual cognate sequence, 𝑃𝐵𝑖𝑗 is the 

predicted binding of the substituted sequence with i-th residue from the 16 amino acids at 

the j-th position of the cognate sequence. 𝐶𝑖𝑗−𝐸 is the relative predicted binding. The 

predicted binding intensity of the actual cognate epitope was then subtracted from these 

predicted intensities to calculate differential binding. The results are represented as 

heatmaps as shown in Figure 2.7. In the figure, the shades of blue indicate a predicted lower 

binding preference for that residue compared with the original residue whereas shades of 

red indicate the opposite.  

The heatmaps can also be considered as an indicator of the conserved regions of 

the cognate sequence as recognized by the predictive model. The residues with more blue 

shading are the ones that are more sensitive to replacement with other residues. It was 

observed that in the case of DM1A, the predictive NN model predicts high sensitivity for 

substitutions of the residues L(2), E(3), D(5), and Y(6) at positions 2,3,5, and 6, 

respectively. Correspondingly, in the case of p53Ab1, the residues R(1) and V(4,5) were 

shown to be moderately conserved sequences. In the case of p53Ab8, no such preference 

was observed. This may be attributed to the lack of mid-range values while training the 

model. For 4C1, residues F(4), D(5), and S(6) were determined to be the most conserved 

regions by the predictive model. All the other residues can be considered to be moderately 

conserved. For LNKB2, the highly conserved residues were P(1), L(2), E(3), and L(6).  

2.3.4 Using Propensity Scales as Encoders for the Amino Acids 

In the next step of the study, the effects of using propensities of the amino acids as 

an encoder for the neural network were studied. The propensities of an amino acid represent 
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the physicochemical characteristics of that residue like isoelectric point, molecular weight 

etc. So far in the study, the algorithm has been using an encoder (first layer) that was 

learned during the training of the model. Here, various physicochemical propensities of the 

amino acids will be supplied to the algorithm to encode the different residues, instead of 

using a learned encoder. Again, the dataset for the DM1A monoclonal antibody was chosen 

for this as the distribution of the data covered a much broader range of values compared to 

the other antibodies. Different sets of propensities were taken into consideration for this. 

Propensities like different hydropathy indices (Kyte & Doolittle, 1982; Eisenberg, 1984; 

Engelman et al., 1986; Cornette et al., 1987; Rose et al, 2003), molecular weight, and 

isoelectric point of the amino acids (Gasteiger et al., 2003) were used. Also, other 

propensities that highlighted the structure activity relationship of the amino acids were used 

as well. Kidera factors (Kidera et al., 1985) are a scale of 10 components that were derived 

from multivariate analysis of 188 physicochemical properties of amino acids. The Z scale 

(Sandberg et al., 1998) consists of 5 components and was derived from analyzing 26 

different physicochemical properties including lipophilicity, bulk, and charge. MSWHIM 

is a set of 3 descriptors derived from considering 36 different electrostatic potential 

properties (Zaliani & Gancia, 1999). Cruciani properties are a set of 3 principal properties 

(PP 1-3) that characterize the amino acids based on polarity, hydrophobicity, and H-

bonding capabilities (Cruciani et al., 2004). T-scales are a set of 5 topological descriptors 

for the amino acids (Tian et al., 2007). Factor analysis scales of generalized amino acids 

information (FASGAI) are a set of 6 components that were derived from 335 

physicochemical properties of the 20 naturally available amino acid residues (Liang et al., 

2007). BLOSUM is a matrix derived amino acid descriptor set that employed 
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physicochemical properties that have been subjected to varimax analyses and BLOSUM62 

alignment of the 20 amino acids (Georgiev, 2009). ST scales are again topological 

descriptors (8) which also includes 3D structural information (Yang et al., 2010). The 8 

vectors of hydrophobic, steric, and electronic (VHSE) properties were derived from the 

respective properties by Mei et al., 2005. Lastly, protein fingerprint or ProtFP descriptors 

are a set of 8 descriptors compiled by selecting different amino acid indices and eliminating 

the most co-varying indices (van Westen et al., 2013). 

* Mean correlation coefficients have been calculated over 10 independent trainings of the 

model for each antibody. #Mean ranks are out of 1 million and have been calculated from 

projecting the respective models on to 10 individual libraries of random 9-mer peptide 

sequences. None of the libraries had any common peptides except for the epitope sequence 

of the respective antibody. All the errors represent the standard errors of the means. All the 

experiments were done using the binding data available for DM1A. 

 

Table 2.7. Performance of the model with respect to different propensities used (mean 

correlation coefficient and mean ranking of epitope) 

 

Propensities Used  

Number of 

Amino Acid 

Descriptors 

Mean 

Correlation 

Coefficient * 

Mean Rank 

of Epitope# 

None (Learned encoder) 9 0.8243 ± 0.0071 35 ± 2 

Random, normally distributed 

number between [0,1] 
9 0.7635 ± 0.0095 51,127 ± 54 

Hydropathy Indices, Molecular 

Weight, Isoelectric Point 
7 0.7890 ± 0.0050 818,680 ± 75 

Representative properties from 

each different propensity scale 

(PP, KF, Z, F, T, VHSE, 

ProtFP, ST, BLOSUM, 

MSWHIM)  

10 0.8294 ± 0.0060 290,176 ± 200 

VHSE 8 0.8396 ± 0.0055 63,292 ± 54 

ST Scales 8 0.7968 ± 0.0066 
508,516 ± 

3,112 

ProtFP 8 0.8239 ± 0.0064 86,694 ± 84 

Kidera Factors 10 0.8537 ± 0.0104 726,006 ± 106 

BLOSUM 10 0.8511 ± 0.0042 586,987 ± 133 
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Before using propensity scales as encoders, a 20 x 9 matrix containing a set of fixed 

random values between the range of 0 and 1 was tested as an encoder matrix to evaluate 

the performance of the model on the basis of random numbers. This matrix represented the 

20 naturally available amino acids with 9 descriptors for each. These random numbers were 

normally distributed. The average correlation coefficient for the trained model was 0.7635 

(10 independent runs, Table 2.7). The mean rank of the epitope sequence in random in 

silico peptide libraries was ~50,000. Therefore, the model definitely did perform worse 

than when using a learned encoder for the training. For training the model next, only 

physicochemical properties such as, molecular weight and isoelectric point of the amino 

acids were used along with different 5 different hydropathy indices. The total number of 

descriptors for each amino acid was equal to 7. All the values were normalized beforehand 

between 0 and 1. The average correlation coefficient of 5 independent training runs was 

0.789, which was lower compared to the average correlation of 0.8156 from the runs where 

no external encoder was supplied to the algorithm. The average ranking of the epitope in 

libraries of random million peptides was found out to be ~800,000 which meant that the 

model did not perform well. Due to the poor performance of the model, another set of 

propensity parameters were chosen as encoders. This time, a representative scale from each 

different type of propensity was selected. However, physicochemical properties were not 

included in this case, as the other propensities already account for them. The total number 

of descriptors for each amino acid was equal to 10. It was observed that the average 

correlation between the predicted and the measured values in this case was 0.8294 which 

was slightly higher than the average correlation of the trainings where no external encoders 

were used. However, when the predicted ranking of the epitopes among random peptides 
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were checked again, the average rank was ~290,000 out of 1 million. Finally, individual 

scales were considered for training the model. As according to the data shown in this study, 

the model performs best if the number of descriptors per amino acid is around 9, therefore 

scales with 8 or higher components/factors were chosen only (VHSE, ST scales, ProtFP, 

Kidera factors, BLOSUM descriptors). The different encoders chosen and the variation in 

performance of the model has been summarized in Table 2.7. Although, VHSE and ProtFP 

scales did produce better results than rest of the encoders, comparable to that of the random 

numbers, it is interesting to note that using propensity scales in general produced worse 

results than using a learned encoder, in terms of predicting the epitope sequences. The 

general speculation from this observation is that using a pre-assigned encoder for training 

the model might be biasing the algorithm towards a favored set of residues as determined 

by the propensities used. This in turn might be prohibiting the neural network from 

correctly evaluating and interpreting the actual amino acid residues responsible for binding 

to the monoclonal antibody.  

2.3.5 Evaluation of Model Performance with respect to Concentration 

All of the above studies were performed on data available at the highest 

concentration for each monoclonal antibody (Table 2.2). However, if one were to make 

changes in the concentration of the monoclonal antibody during the measurement of the 

binding on the arrays, what changes would be observed in the performance of the model? 

To answer this question, a series of different binding experiments were performed where 

the concentrations of the monoclonal antibodies were serially diluted (Table 2.2). These 

different datasets were then used to train the neural network model, using the same 

hyperparameters that were optimized beforehand. Figure 2.9 shows the Pearson correlation 
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coefficients between the predicted and measured binding intensities at each different 

concentration for all the antibodies. As seen in the figure, at very low concentrations 

(<125pM), the predicted binding values did not correlate very well with the experimental 

data. As the concentration kept on increasing, the correlation between the predicted and the 

measured values went up, as there was more information available to the neural network. 

Figure 2.9. Variation of Pearson correlation coefficient (y-axis) with gradually increasing 

concentration (x-axis) for each monoclonal antibody. Points plotted are means of 5 

independently trained replicates of the model and the error bars represent the standard error 

of the mean. 

 

It might be due to the fact that at lower concentrations the measured binding values were 

in the order of 102.5 fluorescence units (Figure 2.10)  in all the cases. As these values were 

not above the noise cut-off of the intensity signals, the neural network was not able to 

distinguish between the interactions observed. As the concentrations of the monoclonal 

antibodies were increased the signal intensities of different interactions became 

considerably higher than the observed noise, therefore allowing the model to learn the  
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Figure 2.10. Distribution of fluorescence intensities (in log10 scale) across five different 

concentrations for each of the 5 monoclonal antibodies. The x-axis represents the range of 

measurement in terms of fluorescence intensities. The y-axis is the count of data points 

available against the relative fluorescence intensity. 
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observed binding patterns on the array better. Significantly better results were obtained 

when the intensities were greater than 103.5 (Figure 2.10). This was because at higher 

concentrations, fewer of the interactions are needed to establish binding above the noise. It 

was observed that if the distribution of the intensities covered a broader section of the 

dynamic range of the instrument, the predictive models were correlated better, and the 

predictions improved accordingly. Figure 2.10 shows the distribution of datapoints across 

various concentrations.  

Table 2.8. The mean rank of epitopes with respect to different concentrations of the 

monoclonal antibodies 

 

Conc 

(pM) 

DM1A 

(ALEKD

YE) 

p53Ab1 

(RHSV

V) 

4C1 

(LQAFD

SH) 

LNKB2 

(PLEEVLN

) 

 
Conc 

(pM) 

p53Ab8 

(TFSDLWK

L) 

7.81 
664,944 ± 

207,562 

409,086 

± 

188,045 

115,689 ± 

20,455 

516,512 ± 

120,709 

 

31.25 716,285 ± 219 

62.5 
1,844 ± 

215 

219,671 

± 

140,501 

31,470 ± 

4,242 

151,857 ± 

20,873 

 

250 870,210 ± 357 

500 75 ± 2 
10,808 ± 

23,925 

5,918 ± 

570 
121 ± 24 

 
2000 21,183 ± 33 

2000 31 ± 2 
4,012 ± 

2,749 

1,405 ± 

135 
9 ± 5 

 
8000 3,122 ± 20 

8000 35 ± 2 
2,686 ± 

1,035 
722 ± 8 5 ± 1 

 
16000 51 ± 3 

The ranks of epitopes were determined using random libraries of 1 million peptides (5 

independent runs). Error shown is the standard error of mean in ranks. Both mean and error 

were rounded off to the nearest integer. 

 

Table 2.8 shows the mean ranks of the epitopes as predicted in random libraries of 1 million 

peptides across the concentrations mentioned in Figure 2.10. Considering these results, the 

best set of concentrations were chosen for each antibody. These binding data from different 

concentrations were then compiled and were simultaneously fitted using the algorithm. 
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None of the hyperparameters were changed for this experiment. The results are as tabulated 

below (Table 2.9). 

As can be seen in Table 2.9, when the data from these concentrations were compiled 

and fitted simultaneously, the observed correlation coefficients were slightly lower than 

when data from a singular higher concentration was used for training. However, the 

predictive performance of the models was nearly identical if one compares the results in 

terms of epitope ranking. This goes on to show data available from multiple experiments 

with varying concentrations of the antibodies can also be used to train the algorithm instead 

of using a singular binding data. 

Table 2.9. The correlations and mean rank of epitopes of the monoclonal antibodies when 

multiple concentrations are fitted simultaneously 

 

Monoclonal 

Antibodies 

Concentrations used 

(pM) 

Mean Pearson 

Correlation Coefficient* 

Mean Rank in 1 

million# 

DM1A 
500; 1000; 2000; 

4000; 8000 
0.7513 ± 0.0062 222 ± 6 

Ab1 2000; 4000; 8000 0.5224 ± 0.0084 1,051 ± 3,752 

Ab8 8000; 16000 0.1745 ± 0.0060 13 ± 1 

4C1 2000; 4000; 8000 0.8081 ± 0.0036 191 ± 4 

LNKB2 
500; 1000; 2000; 

4000; 8000 
0.1352 ± 0.0178 2 ± 1 

* Mean correlation coefficients have been calculated over 5 independent trainings of the 

model for each antibody. #Mean ranks have been calculated from projecting the respective 

models on to 10 individual libraries of random 9-mer peptide sequences (106 peptides). 

None of the libraries had any common peptides except for the epitope sequence of the 

respective antibody. All the errors represent the standard errors of the means. 

 

2.4 DISCUSSION 

Many attempts have been made before to characterize the binding behavior of 

monoclonal antibodies using various types of computational approaches. These 

computational approaches aim to provide helpful aid to the already existing experimental 
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methods that can be time-consuming and expensive often (Norman et al., 2020; Manieri et 

al., 2020; Graves et al., 2020). Many of these approaches, however, have often been 

restricted due to limited availabilities of related structural data in existing databases. Often, 

characterizing the interactions of antibodies prove to be a challenging task because of the 

lack of specific structural information. Through this work, an alternative approach has been 

adapted that considers the sequence vs. function relationship between the microarray 

peptides that covers a certain combinatorial space and the monoclonal antibodies. In this 

approach one does not need to have any information about the structure of the antibody 

beforehand. Rather, information obtained from interactions of the antibodies with a given 

set of peptides that sparsely sample the combinatorial chemical space, is used to predict its 

molecular interactions, with the help of a neural network. A similar approach has already 

been established to quantify protein-peptide relationships through a previous work by our 

group (Taguchi et al., 2020), where one does not need to obtain a resolved structure of the 

protein beforehand.  

The work described here utilizes the methodology laid out by Taguchi et al, to 

characterize and quantify the binding interactions of different monoclonal antibodies, 

whose epitopes are represented among the combinatorial space covered by the microarray 

peptides. This combinatorial space consists of 126,050 unique peptides whose length varies 

from 4 to 13 amino acid residues. The distribution of peptides of various length across the 

array is as shown below in Figure 2.11. The median length of the peptides is 9. 

These peptides were randomly sampled from a combinatorial space of nearly 1012 

molecules considering that only 16 out of the 20 amino acids were used. All of the peptides 

are linear, therefore only allowing the characterization of linear target epitopes of the 
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antibodies. However, this removes the structural complexities associated with 

conformational epitopes and simplifies the model. All the interactions of the monoclonals 

with the peptides on the array are considered for training the models and deriving predictive 

models, whether on-target or off-target. These provided a more in-depth insight, especially 

about interactions that were seemingly random.  

 

Figure 2.11. Length distribution of HT-V13 arrays obtained from HealthTell. The mean 

length of peptides on the array is 9 with a standard deviation of 1.37. 

 

Choosing the right hyperparameters before training any neural network is of utmost 

importance. In this work, the hyperparameters were tested in a grid-like fashion, using 

DM1A as a model system. A set of different hyperparameters were tried out and the ones 

that resulted in the best performance of the model were chosen for further training with the 

rest of the monoclonal antibodies. The performance of the model was estimated on the 

basis of Pearson's correlation coefficient and the rank of the epitope within in silico 

libraries of 106 randomly generated peptides. However, correlation coefficients alone 
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would not prove to a be a sufficient measure for the performance of the model as it varies 

greatly depending on the interacting antibodies. In Figure 2.4, the average correlation 

coefficients of the models are shown alongside the distribution of the predicted and the 

measured values.  In that figure, it can be seen that the correlation coefficients of DM1A 

and 4C1 are significantly higher than the rest of the antibodies. This is largely dependent 

on the information available to the neural network in terms of the distribution of the 

measured data. For the antibodies where the binding intensities are fairly well-distributed 

across the dynamic range of measurement, the correlations obtained were significantly 

higher (DM1A, and 4C1). In contrast, antibodies like p53Ab1, p53Ab8, and LNKB2 have 

a highly skewed distribution of binding intensities where most of the datapoints (>99%) 

are very close to the noise. The rest of the available peptides above the noise range are the 

ones which are very strong binders to the antibody, thus giving a very high signal. 

However, there is not much signal available in the middle of the dynamic measurement 

range, resulting in poor correlation. Hence another method was employed to test out the 

performance of the model. It must be noted, however, that even when the correlation is 

lower, the model still manages to successfully identify the epitopes of the antibodies in 4 

out of 5 cases. As all the epitope sequences were excluded during training, this points 

towards the fact that a small minority of non-cognate peptide sequences (<500) that interact 

with the antibodies hold enough information in terms of sequence space to let the models 

differentiate between specific and non-specific interactions (Figure 2.7). 

Correlation is a direct comparison between the measured and predicted values of 

the peptides. However, the performance of the model also depends on the weightage given 

by the model to each amino acid residue. When the models were tested against random 
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peptide libraries of 106 peptides, all of the five antibodies (DM1A, p53Ab1, p53Ab8, 4C1, 

and LNKB2) had their epitopes correctly predicted within the top 0.2% of the libraries 

(Table 2.5 and 2.6) which is statistically very high. This indicates that although the 

correlation between the predicted and measured values for a given antibody might be 

lower, it does not prevent the model from distinguishing between specific and non-specific 

interactions. In Figure 2.6, the sequence logo patterns demonstrate the amino acid residues 

that were deemed important and necessary by the neural network to interact with the 

respective antibodies (B). These sequence logos were generated by using ranked (based on 

predicted binding) peptides from randomly generated libraries and do not contain any 

cognate sequences. The residues highlighted were favored by the neural network simply 

on the basis of the weights learned during training. If these predicted motifs (Figure 2.6) 

were compared to the actual observed motifs from the array, one would observe striking 

similarities between the two. In case of DM1A, residues L, F, E, D, and Y appear to be 

more prominent, and the motif pattern observed from the non-cognate sequences is in fact 

very similar to the actual cognate sequence of the antibody. Similar results are observed in 

the rest of the cases as well. In case of p53Ab1, the residue V is identified correctly along 

with F and L, which also appear in the array motif. In fact, F being a flanking residue to 

the cognate also assists in the interaction. However, it appears from the array and the 

predicted motifs that the p53Ab1 antibody interacts with a lot of hydrophobic sequences 

apart from its cognate, which is why the residues R, H, and S were not given more 

importance by the algorithm. In the motif for p53Ab8, the residues S, D, L, and K have 

been identified in correct order of occurrence. Interestingly enough, the sequence motif of 

p53Ab8 indicates a position bias of the particular residues which was not observed in case 
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of other antibodies. This position bias was learned by the algorithm from the interactions 

observed on the arrays. This was an interesting observation that needs more thorough 

exploration. However, due to time constraints, a more in-depth explanation could not be 

provided in this thesis, with regards to the same. In case of 4C1, the residues F, D, and S 

have been highlighted correctly and comparable to the pattern observed on the array. In 

fact, it was shown experimentally (Shepherd et al., 1999) that the motif FDSH is the most 

important contributor in binding to the antibody 4C1. Residues Y, and W also show up in 

both the motifs, largely due to their structural similarities with F (aromatic), which is an 

important contributor to the interaction. For LNKB2, the residues P, L, E, and V again 

appear in both the motifs, very similar to what is observed in the cognate sequence. Residue 

N does not appear very likely because of the fact that there is lesser representation of N on 

the array compared to the other residues.  

Next the specificities of these predictions were considered. It has been already 

mentioned previously that the algorithm is capable of distinguishing between specific and 

non-specific interactions, for each antibody. However, one also needs to consider how 

specific these predictions are when compared with one another. Figure 2.7 shows the 

specificities between the pairs of antibodies as differences between predicted and measured 

binding values. From these plots, one can see that a large majority of the peptides interact 

with either of the antibodies in a non-specific manner and therefore they are found towards 

the center of the plots. This is especially prominent in the cases of antibodies which are 

known to show highly specific behavior on the array and bind only to the motif represented 

by the cognate sequences (p53Ab1, p53Ab8, and LNKB2). However, in all of the cases, a 

small fraction of the peptides can be identified which are highly specific to a particular 
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antibody (top right quadrant or bottom left quadrant). The specificities of these peptides 

have been predicted mostly accurately in all of the cases.  

The amino acid residues present in the cognate sequences play the most important 

role in facilitating molecular recognition between the antigens and the antibodies. Figure 

2.8 demonstrates the performance of the predictive models, with respect to recognition of 

the amino acid residues present in the epitope, with the help of an in silico mutation 

experiment. As can be seen in Figure 2.6, not all the residues of the epitopes are given 

equal weighting by the models as the epitopes themselves were excluded from training 

examples. As the learning of the neural network is dependent on the distribution of the 

sequence space of the arrays, some amino acid residues are preferred over the others. This 

in silico mutation experiment was designed to observe the changes that occurred in 

predicted binding when known residues of the epitopes were replaced with any of the 16 

amino acids used on the array. In Figure 2.8, one can see which mutations are unfavored 

by the model, leading to a negative change in binding, in the case of each antibody. In case 

of DM1A, Residues L, D, and Y are favored over all other residues in their respective 

positions, whereas residues A, K are shown to be more favorable towards substitution. 

Residue E is shown to be mostly conserved at the 2nd position but much more favorable to 

substitution at the 7th position. In case of p53Ab1, none of the residues show a high degree 

of conservation. However, the residues present in the actual cognate sequence are more 

preferred over other substitutions. Residues F, D and S appear to be most conserved in 

4C1, while L, Q, A, and H are moderately preferred over other substituting residues. For 

LNKB2, residues P, L, E, and V are favored over other mutations in the respective 

positions, whereas residue N is not particularly resistant to mutational changes. In case of 



  67 

p53Ab8, none of the residues are shown to be strongly preferred, however the predictive 

performance of the model was not affected by it. This analysis demonstrates how strongly 

the residues present in the epitopes are favored over other residues in their respective 

positions, as learned by the predictive models. It also gives an idea as to which residues are 

considered as favorable mutations at a particular position as determined by the algorithm.  

So far, the algorithm has only been using learned encoders during training, and all 

the characterization of the performance was solely based on that. No physicochemical or 

structural information was taken into account for those analyses. However, amino acids are 

chemical entities and have many physicochemical properties that play a dominant role in 

determining the structure and therefore functions of the peptides and proteins. Considering 

this factor, a set of different propensity indices were tested as encoders for the algorithm 

and eventually the performances of the models were characterized. These propensity scales 

encoded various physicochemical, structural, and topological aspects of the 20 naturally 

available amino acids. Table 2.7 summarizes the characterization results. One can see that 

the general predictive capabilities of the models were reduced in all of the cases where 

propensity indices were used as encoders (in terms of epitope ranking), when compared to 

the results from the learned encoders. Although, propensity scales like the VHSE, and the 

ProtFP fare better than the rest, they are still nowhere close to the predictive performance 

observed from the learned encoders. Rather their performances are somewhat similar to the 

performance observed in case of randomly generated numbers which were used as 

encoders. The likelihood is that while using a preassigned encoder, one is unwittingly 

introducing a bias to the algorithm that prevents the model from accurately determining the 

orthogonality between each amino acid residue as observed through the interactions on the 
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arrays. Even with a combination of different properties, it was not possible to remove this 

inherent bias. These biases which are learnt from the propensity indices, or a pre-supplied 

encoder in general, tend to favor a particular set of residues, that might not be relevant to 

the interactions observed on the arrays. Hence, the predictive performance of the algorithm 

was not accurate. On the other hand, a learned encoder obtains the values during the 

training of the model where only the interactions observed on the arrays are considered. 

Therefore, the predictive capabilities are higher in such case. 

The results presented so far were all on the basis of a singular concentration of the 

monoclonal antibody. Changes in concentration of the monoclonal antibody during assays 

would definitely change the recorded binding intensities, therefore also altering the output 

of the neural network. In section 2.3.5, it was shown that with increase in concentration of 

the antibodies, the correlation between the predicted and measured values also got better 

(Figure 2.9). The reason for this observation was explained with the help of Figure 2.10 

which shows the distribution of measured binding intensities across various concentrations. 

As one can see in this figure, as the concentrations of the monoclonal antibodies are 

increased, the relative range of recorded binding intensities also broadens. As more and 

more measurements are recorded above the noise cutoff (>103), more information is 

available to the algorithm during training. This results in more accurate learning of the 

parameters, hence the predictive capabilities of the models also become better with 

increasing concentration (Table 2.8) in all the 5 cases.  

In Table 2.8, it can be seen that one does not need to have a very high concentration 

to get a good predictive model. Even at lower concentrations, the algorithm achieves a 

decent prediction, provided that the recorded binding intensities capture enough 
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information in terms of interacting peptides. However, it does depend on the nature of the 

molecular interactions of the monoclonal antibody that is being assayed. As has been 

previously discussed, these peptides are not large in number, but they contain enough 

information in terms of represented sequence space for the model to accurately distinguish 

between specific and non-specific interactions. Using the observations from Table 2.8, it 

was considered to train the algorithm on data from multiple concentrations simultaneously. 

The concentrations which were used were selected on the basis of their predictive 

performance in terms of ranking of the epitopes. The results are as shown in Table 2.9. 

Here it can be seen that although the overall correlation coefficients of the models are lower 

than their single-concentration counterparts, but the ranked prediction of epitopes are 

comparable. This goes on to show that multiple concentrations can also be used 

simultaneously in training the neural network. Also, assaying at multiple concentrations 

captures an even broader range of interactions which might be absent in case of a singular 

concentration. Therefore, it might aid the model in training more accurately.    

It is impressive that by training a simple neural network on a set of random 

sequences that were sparsely sampled from a huge combinatorial space (~105 out of a 

combinatorial space of ~1012), one can predict the binding behavior of monoclonal 

antibodies in all the 5 cases presented in this study. These results were obtained solely from 

analyzing binding motifs in the represented sequence space, without any structural data. In 

the next step, learning how this predictive model holds against peptides from the actual 

proteomes would be interesting. Combining the versatility of the machine learning 

algorithms with the advantage of large combinatorial libraries, one can create powerful 
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tools that have ample opportunities for the discovery, development, and optimization of 

various other biomolecular interactions.  



  71 

CHAPTER 3 

USING NEURAL NETWORKS TO MAP PREDICTED BINDING MOTIFS OF 

MONOCLONAL ANTIBODIES ON THE TARGET PROTEINS AND THE HUMAN 

PROTEOME 

This work was initiated in collaboration with Akanksha Singh 

3.1 INTRODUCTION 

 Over the recent years, monoclonal antibodies have gained prominence in the field 

of therapeutics and diagnostics (Uhlen et al., 2010; Stadler et al., 2013; Norman et al., 

2020; Kaplon et al., 2020). They have been used in the treatment of cancer, infectious 

diseases, and autoimmune disorders (Beck et al., 2010; Brennan et al., 2010; Kaplon et al., 

2020; Nelson et al., 2010). Aside from being used in therapeutics, they are also used in 

several immunodiagnostic assays as reagents (Shi et al., 1995; Jansen et al., 2015). 

Although monoclonal antibodies are raised against a specific antigen, they do have some 

cross-reactivity (Haspel et al., 1983; Dighiero et al., 1983; Ghosh et al.,1986; Notkins, 

2014; Bradbury et al., 2018). Identifying these on-target and off-target interactions of a 

monoclonal antibody is necessary and crucial for its utilization in any kind of application, 

be it therapeutics or diagnostics. Identifying and characterizing these interactions between 

the antibody and their target(s) will help the development of antibody-based therapeutics 

and vaccines immensely (Sette & Fikes, 2003; Roggen, 2008).  

There are many tools available for such identification and characterization of 

cognate binding region on antibody targets, both experimental and computational (Manieri 

et al., 2020; Hua et al., 2017; Fibriansah et al., 2015; Clementi et al., 2013; Singh et al., 

2013; Krawczyk et al., 2017; Sher et al, 2017; Vita et al, 2018). A more detailed 
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introduction to some of these approaches have been provided in the introduction to Chapter 

2 (Section 2.1).  

High-throughput peptide microarrays consisting of randomly sampled peptides 

from a combinatorial space have served as one such effective tool to characterize the 

different interactions of monoclonal antibodies (Stafford et al., 2012; Sykes et al., 2013; 

Legutki et al., 2014). These microarrays feature 126,050 unique peptide sequences that are 

4-13 residues long in length (median length 9) and have been randomly chosen from a 

possible sequence space of ~1012 peptides. In 2020, Taguchi and others showed that one 

can exploit the binding information obtained from the sparse sequence space represented 

by these peptides, to derive a quantitative relationship about molecular recognition, using 

a neural network. They used nine different proteins for their study. Following Taguchi’s 

work, in chapter 2, it was demonstrated that by training a simple feed-forward, back-

propagated neural network with the sequence and binding information obtained from these 

high-throughput peptide microarrays, one could predict the binding behavior of five 

different monoclonal antibodies (DM1A, p53Ab1, p53Ab8, 4C1, and LNKB2), across the 

combinatorial space. It must be mentioned that the epitopes of these five monoclonal 

antibodies were present on the array, although they were deliberately excluded from the 

training dataset of the neural network to avoid potential bias to the algorithm. This work 

showed that the sequence space represented by a sparse library of nearly 126,000 randomly 

sampled peptides provided sufficient information to the neural network to differentiate 

between specific and non-specific binders across combinatorial chemical space, for the five 

monoclonal antibodies that were studied. More importantly, the cognate binding 

information for these five monoclonal antibodies were predicted accurately, by analyzing 
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non-cognate binding sequences (Figure 2.4). The cognate sequences were also correctly 

and consistently identified among the highest binders when tested against randomly 

generated in silico libraries of peptides (Table 2.5). These in silico libraries were generated 

by randomly sampling a million peptides at a time from the combinatorial sequence space 

available for all 9-mer peptides (169 peptides), and therefore had no biological significance.  

However, the amino acid sequences that represent proteins are not in random order 

as they define the structure and function of these molecular entities. The model-predicted 

motifs and performances observed so far (Figure 2.6, B) were from random sequences that 

had no biological frame of reference. All the five monoclonal antibodies that were studied 

in chapter 2 are known to bind to targets from the human proteome. Therefore, to 

completely assess the predictive capabilities of the algorithm, in context of biology and 

proteomics, the relationship was projected on to the target proteins of the five monoclonal 

antibodies, as well as the human proteome, in this study. Projecting the neural network on 

the target protein sequences of the monoclonal antibodies allowed one to discern between 

the predicted and the known interactions. Visualizing the results of the projection on the 

structures of the target proteins also helped to estimate neighboring regions on the protein, 

besides the cognate sequence, that might play a role in the protein-antibody interaction. To 

further evaluate the predictive ability of the models, they were projected on the human 

proteome, which consisted of 20,361 unique peptide sequences. The idea behind this 

experiment was to see how well the model can distinguish between the target protein and 

other proteins from the proteome.  
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3.2 METHODS 

3.2.1 Binding Experiments of Monoclonal Antibodies on the Microarray 

Binding experiments with the monoclonal antibodies were carried out on high-

throughput peptide microarrays. These microarrays were synthesized using a 

photolithographic approach that was previously described (Legutki et al., 2014; Rowe et 

al., 2017). A more detailed overview on the manufacturing process is provided in section 

2.2.1 (Synthesis of High-throughput Peptide Microarrays) of Chapter 2. The binding assay 

experiments were carried out using five different monoclonal antibodies (DM1A, p53Ab1, 

p53Ab8, 4C1, and LNKB2). Section 2.2.2 (Labeling of the Monoclonal Antibodies and 

Assays) of the previous chapter provides a detailed procedure on labelling the antibodies 

and performing assays with them. The supplier information and sources of these antibodies 

are included in Table 2.1, along with their known epitopes. 

3.2.2. Training the Neural Network Model 

The binding data obtained from the assays were used to train a simple feedforward, 

backpropagated neural network, similar to that of Taguchi et al (2020). The architecture of 

the neural network has been laid out in detail in section 2.2.3 (Neural Network Model 

Architecture for Prediction) of the previous chapter. Table 2.3 shows the hyperparameters 

that were selected for training the neural network. The neural network was trained 100 

independent times for each monoclonal antibody. Each time a random set of peptides was 

selected from the peptides present on the arrays, for training the algorithm. Cognate 

sequences related to each antibody were removed from all training sets and included in the 

test set. Once these models were tested on random in-silico peptide libraries (see section 
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2.3.1; Table 2.5 and Figure 2.6), their performance on their target proteins and the human 

proteome was tested.  

3.2.3 Projection of the Models on Target Proteins and Human Proteome 

Table 3.1. Target proteins of the monoclonal antibodies and the linear cognate sequences 

of the respective monoclonal antibodies on these proteins 

 

mAbs≠ 
Target 

Protein 

UniProt 

ID of 

protein 

sequence 

Known 

Length of 

the 

Protein 

Sequence 

Cognate 

Sequence 

Location 

of the 

Cognate 

Region 

on the 

Antigen 

PDB ID of 

Available 

Protein 

Structuresǂ 

DM1A 
Human α-

tubulin 
P68363 451 ALEKDYE 427-433 5IJ0 

p53Ab1 

Human 

cellular 

tumor 

antigen 

p53 

P04637 390 RHSVV 212-216 4MZI 

p53Ab8 

Human 

cellular 

tumor 

antigen 

p53 

P04637 390 SDLWKL 18-23 N/A* 

4C1 

Human 

thyrotropi

n receptor 

P16473 764 LQAFDSH 378-384 N/A* 

LNKB2 

Human 

interleukin

-2 

P60568 150 PLEEVLN 85-91 1M47 

≠mAbs = monoclonal antibodies. ǂ www.rcsb.org * Crystal structure of the protein available 

on PDB does not cover the cognate region that the monoclonal antibody binds to. 

 

Once trained, the models for the monoclonal antibodies were then projected on to 

their respective target antigen. The UniProtKB database (The UniProt Consortium, 2021) 

was used to retrieve the sequence information for these target antigen proteins (Table 3.1). 

As these models were trained to accommodate peptides only, the protein sequences had to 

be broken down into peptides to be able to project the model on to them. Thus, the sequence 
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of each individual protein was broken into peptide sequences of 9 amino acid residue each, 

starting from the first residue of the protein and gradually shifting up by one residue at a 

time. This generated an in silico array of overlapping peptides, that represented the entire 

protein. Figure 3.1 shows the manner in which the protein sequence was broken down into 

individual peptides in silico. The amino acids C, I, M, and T are not present on the array 

and therefore are beyond the scope of recognition by the trained models. Hence, these 

residues were substituted with A, V, L, and S respectively in their positions because of 

their physicochemical similarities with the respective omitted amino acids. However, the 

binding interactions of the monoclonal antibodies studied here could be represented with 

the 16 amino acids present on the arrays. The model of the respective monoclonal antibody 

was then projected on to this peptide library that represented the entire target protein. 

After the projection was complete, these peptides were sorted out in descending 

order of predicted binding values.  Before sorting out the peptides, the predicted binding 

values were normalized between [0,1] and these normalized predicted values were plotted 

against each peptide obtained from the target protein. After sorting the peptides, the top 10 

sequences were considered, and the results were tabulated. The positions of the first 

residues of these sequences within the target protein was also indicated, to highlight the 

region of most importance according to the neural network. The top 5 peptides according 

to the predicted results were then visually represented on the crystal structure of the target 

protein. Out of a total of 5 different target proteins (one for each monoclonal antibody), 

only 3 have resolved crystal structures in the RCSB-PDB (www.rcsb.org; Berman et al., 

2000) database (human α-tubulin, human cellular tumor antigen p53, human interleukin-

2) that also covers the cognate region that binds to the respective monoclonal antibodies 

http://www.rcsb.org/
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(Table 3.1). For the other two, AlphaFold web version (Jumper et al., 2021; Varadi et al., 

2021) was used to obtain predicted crystal structure and the relevant peptides were 

represented on those.  

 

Figure 3.1. Schematic diagram showing the in silico breakdown of target protein sequence 

with N residues into a tiled peptide library of overlapping 9-mer peptides. After the 

generation of the in silico library, the amino acids residues that are not present on the array 

(C, I, M, and T) are swapped out with residues that have similar physicochemical properties 

to that of the omitted ones (A, V, L, and S respectively).  

 

Next these models were projected on to human proteome (UniProt KB Proteome 

ID: UP000005640). The human proteome sequence dataset consists of 20,361 reviewed 

proteins along with their sequence information. These retrieved protein sequences were 

then broken down into an in silico library of 9-mer peptides, as shown in the Figure 3.1. 

However, before replacing the residues C, I, M, and T, all the sequences with more than 3 

repeating residues were removed. This was done because the sequence space represented 

on the arrays does not have any peptides that have more than 3 of the same amino acids in 
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a single sequence. After removal of those peptide sequences, the total number of peptides 

came to 10,386,533. The models were then projected on to this library and the peptides 

were sorted in descending order of predicted binding values. The proteins associated with 

all the peptides were also located and sorted accordingly. The rank of the target protein and 

sequence was determined from this sorted list and was highlighted alongside the top 10 

non-cognate peptides and proteins that were predicted to be the highest binders. The 

sequence motif from the predictive models were also shown to estimate the binding pattern 

recognized by the neural network among these sequences. The sequence logos were created 

using Weblogo (https://weblogo.berkeley.edu/) from the top 10 sequences predicted to 

bind the highest after aligning them using Clustal Omega 

(www.ebi.ac.uk/Tools/msa/clustalo/). 

3.3 RESULTS 

3.3.1 Projection Results on Target Antigens of Monoclonal Antibodies 

In chapter 2, the binding behavior of five different monoclonal antibodies were 

probed with the help of neural network models. These models were trained to recognize 

and predict binding sequence motifs for the antibodies through analyzing 126,050 peptides 

that were randomly sampled from a combinatorial chemical sequence space. The cognate 

sequences of the monoclonal antibodies were not included during training of these models. 

One must keep in mind that the biological sequence space is represented by all the 20 

canonical amino acids, which is not the case for the array peptides. Therefore, substitutions 

had to be made to accommodate those omitted residues from the array in order to project 

the neural network on the biological sequence space, as the model otherwise would not 

recognize these residues. The omitted residues were substituted with other residues from 

http://www.ebi.ac.uk/Tools/msa/clustalo/
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the array based on the closest physicochemical similarities between the residues. However, 

these substitutions are not accurate representations of the actual residues themselves. In 

future, using peptide arrays with all 20 amino acids would help represent the combinatorial 

space better, without the need for substitution.  

The performance of the models solely relies on information from off-target 

interactions (mimotopes and near-cognates mostly). Figures 2.4 and 2.6, along with Table 

2.5 gives a summary of the predictive performance of the model. Table 2.5 and 2.6 

summarizes the results from projecting the antibody-specific models on to in silico libraries 

of 106 random peptides, which were also sparsely sampled from the combinatorial 

sequence space, sparing the inclusion of the cognate sequences. From this table, it can be 

seen that the models work quite well for the five monoclonal antibodies, correctly 

identifying the epitopes among a large number of randomly sampled peptides. Figure 2.6 

also depicts the motifs identified by the antibody-specific models from the non-cognate 

peptides predicted to be the top binders from the random peptides’ library. However, these 

random peptides are not representative of the available biological sequence space 

(proteomes and individual target proteins). Therefore, it was a prerogative to probe how do 

the models’ predictive capabilities fare against actual biologically available sequence space 

in the form of target proteins. In order to investigate this, the target protein sequence of 

each antibody was deconstructed into a tiled library of overlapping 9-mer peptides. For a 

protein with N number of amino acid residues, the total number of tiled peptides obtained 

would be N-8, which covers the entirety of the protein sequence. The model for each 

respective antibody, consisting of 100 independently trained runs, with randomly selected 
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training set for each run, were then projected onto projected onto this in silico library of 9-

mer peptides that represent the entire antigenic protein sequence.  

Figures 3.2, 3.3, 3.4, 3.5 and 3.6 represents the performance of the antibody-

specific models on their respective target antigens. The plots shown in these figures 

represent normalized predicted binding intensities for all the peptides that constitute the 

respective target proteins. The tables show the highest binding peptides within the target 

proteins as predicted by the neural network models. In all the cases, the cognate motifs of 

the respective monoclonal antibodies were predicted to be the highest binders by the 

models, corresponding to the highest peaks in the binding intensities vs. peptide position 

plots. For three out of five antibodies (DM1A, 4C1, and LNKB2), five or more peptides 

out of the predicted top 10 peptides represent the cognate interactions either entirely or 

partially (Figures 3.2, 3.5, and 3.6).  

 
Figure 3.2. Projection of the neural network model for DM1A on to the peptide sequences 

obtained from its target antigen, human α-tubulin (451 residues). The plot on the left shows 

the variation in predicted binding intensities for each peptide normalized between [0,1]. 

The table on the right represents the top 10 peptide sequences from the target protein, as 

predicted by the model, in descending order of binding intensity. The residues highlighted 

in red represents the cognate region and parts of it.  
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Figure 3.3. Projection of the neural network model for p53Ab1 on to the peptide sequences 

obtained from its target antigen, human p53 (390 residues). The plot on the left shows the 

variation in predicted binding intensities for each peptide normalized between [0,1]. The 

table on the right represents the top 10 peptide sequences from the target protein, as 

predicted by the model, in descending order of binding intensity. The rightmost column 

indicates the location of the peptides within the protein. The residues highlighted in red 

represents the cognate region and parts of it. 

 

 

 
Figure 3.4. Projection of the neural network model for p53Ab8 on to the peptide sequences 

obtained from its target antigen, human p53 (390 residues). The plot on the left shows the 

variation in predicted binding intensities for each peptide normalized between [0,1]. The 

table on the right represents the top 10 peptide sequences from the target protein, as 

predicted by the model, in descending order of binding intensity. The residues highlighted 

in red represents the cognate region and parts of it. 
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Figure 3.5. Projection of the neural network model for 4C1 antibody on to the peptide 

sequences obtained from its target antigen, human thyrotropin receptor (764 residues). The 

plot on the left shows the variation in predicted binding intensities for each peptide 

normalized between [0,1]. The table on the right represents the top 10 peptide sequences 

from the target protein, as predicted by the model, in descending order of binding intensity. 

The residues highlighted in red represents the cognate region and parts of it. 

 
Figure 3.6. Projection of the neural network model for LNKB2 antibody on to the peptide 

sequences obtained from its target antigen, human interleukin-2 (150 residues). The plot 

on the left shows the variation in predicted binding intensities for each peptide normalized 

between [0,1]. The table on the right represents the top 10 peptide sequences from the target 

protein, as predicted by the model, in descending order of binding intensity. The residues 

highlighted in red represents the cognate region and parts of it. 
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For antibodies p53Ab1 and p53Ab8 (Figures 3.3 and 3.4), the cognate rose to the 

top ten in the context of two sequences and the other nearby sequences in the structure 

made up a number of the other sequences. Some of the non-cognate sequences that were 

predicted as top binders were found to be in close proximity of the cognate binding region. 

 
Figure 3.7. Top five peptides predicted as the strongest binders by the neural network 

model for DM1A represented on the crystal structure of its target protein, human α-tubulin, 

B chain (PDB ID: 5IJ0, residues 1-437). The peptides are part of the actual protein 

sequence and ranked in descending order of predicted binding value. The position of each 

peptide on the crystal structure have been color-coded as shown in the table included in the 

figure. *Residue positions correspond to the actual residues on the protein. Regions of 

cognate residues in the peptides are highlighted through underlining. 

 

To visualize this better in a structural context, the top peptides were represented on 

the 3-dimensional (3D) structure of the target proteins. For monoclonal antibodies DM1A, 

p53Ab1, and LNKB2, the resolved 3D crystal structures of their respective target proteins 

that also covered their cognate regions were available on the RCSB-PDB (www.rcsb.org; 

Berman et al., 2000) database (Table 3.1). For 4C1 and p53Ab8, the resolved crystal 

structures of the target proteins did not contain the relevant cognate binding regions. 

http://www.rcsb.org/
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Therefore, AlphaFold web program was to obtain the predicted 3D structure of their target 

proteins, and the top binding peptides were represented on them. Figures 3.7, 3.8, 3.9, 3.10, 

and 3.11 show the locations of the top 5 predicted peptides on the crystal structures of the 

target proteins. 

In Figure 3.7, the target protein of DM1A, α-tubulin is represented (PDB ID: 5IJ0; 

Ti et al., 2016). The strongest binding regions predicted according to the trained neural 

network model are shown on the crystal structure, in a color coded manner. As one can see 

in the figure, all of the top 5 predicted peptides (residues 424 – 436) form the part of a 

continuous α-helix and they contain some or all residues of the cognate sequence for 

DM1A (ALEKDYE). Especially, the motif LEKDY is common to all of the five top 

predicted regions, indicating that the model was able to correctly identify the residues that 

play the most crucial role in the interaction of α-tubulin with DM1A. All of the top peptides 

that were predicted to be the strongest binders, overlap with the cognate sequence to an 

extent, primarily the motif LEKDY. It also hints towards the observation that the 

neighboring non-cognate residues that are not part of the reported epitope might also 

contribute to the binding interactions of the protein with the monoclonal antibody.  

In case of human cellular tumor antigen p53 (Figures 3.8 and 3.9) which is the 

target protein for both p53Ab1 and p53Ab8, the resolved crystal structure for the entire 

protein is not available on RCSB-PDB database due to the flexible nature of the molecule 

which makes its structure difficult to determine. Therefore, only domains that are stable 

enough have been resolved structurally. The domain of p53 with a β-barrel (residues 96-

288; PDB ID: 4MZI; Emamzadah et al., 2014), is the region where the monoclonal 

antibody p53Ab1 binds. In Figure 3.8, the crystal structure of this domain is shown along 
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with the peptides that are predicted to be the highest binders of p53Ab1 by the neural 

network algorithm (residues 209-220 and 248-258). The predicted binding region for the 

antibody, along with the known cognate sequence (RHSVV, residues 213-217) are part of 

the strands of β-barrel. One might observe that the 3 peptides that represent the non-cognate 

residues on the protein (residues 248-258) are in close proximity to the cognate sequence. 

These sequences bind outside the cognate region and therefore suggest these noncognate 

sequences may be important.  

 

Figure 3.8. Top five peptides predicted as the strongest binders by the neural network 

model for p53Ab1 represented on the crystal structure of its target protein, human cellular 

tumor antigen p53 (PDB ID: 4MZI, residues 96-288). The peptides are part of the actual 

protein sequence and ranked in descending order of predicted binding value. The position 

of each peptide on the crystal structure have been color-coded as shown in the table 

included in the figure. *Residue positions correspond to the actual residues on the protein. 

Regions of cognate residues in the peptides are highlighted through underlining. 

 

The crystal structure for the domain of p53 where p53Ab8 binds was not found in 

literature. Hence AlphaFold was used to predict an estimate structure of the protein p53. 
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The top 5 predicted binders of p53Ab8, were represented on this predicted structure of the 

protein (Figure 3.9). As can be seen from the figure, the cognate sequence SDLWKL (also 

predicted to be the highest binder), is a small helical region that looks like a part of a very 

flexible domain of the protein, according to the predicted structure. The positions of the 

other predicted regions, which are non-cognate residues, cannot be determined with respect 

to the location of the cognate region from the predicted structure alone because of the 

flexibility of the p53 protein molecule. Therefore, it is difficult to estimate if any of the 

non-cognate regions listed here also bind to p53Ab8 or not. 

 
Figure 3.9. Top five peptides predicted as the strongest binders by the neural network 

model for p53Ab8 represented on the predicted crystal structure of its target protein, human 

cellular tumor antigen p53 (https://alphafold.ebi.ac.uk/). The peptides are part of the actual 

protein sequence and ranked in descending order of predicted binding value. The position 

of each peptide on the crystal structure have been color-coded as shown in the table 

included in the figure. *Residue positions correspond to the actual residues on the protein. 

Regions of cognate residues in the peptides are highlighted through underlining. 

 

For 4C1, the target protein is human thyrotropin receptor. The entire crystal 

structure of this protein is also not available in literature. Therefore, the structure predicted 

by AlphaFold was used to demonstrate the results of the projection.  As can be seen from 
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Figure 3.10, the highest binding peptides predicted by the model cover the group of 

residues between 377 – 389, which also covers the cognate binding region for 4C1. All of 

the five predicted high binders include parts of the cognate sequence, particularly the motif 

FDSH (381-384), which is considered to be an essential set of residues that bind to 4C1 

(Shepherd et al., 1998). The other residues that are not part of the known linear epitope for 

4C1 still might play an important role in the binding interactions because of their close 

proximity to the epitope (flanking residues). However, according to the predicted structure, 

the cognate region and its flanking residues fall in a non-rigid region. Therefore, it is 

difficult to estimate the type of interactions that they undergo. 

 
Figure 3.10. Top five peptides predicted as the strongest binders by the neural network 

model for 4C1 represented on the predicted crystal structure of its target protein, human 

thyrotropin receptor (https://alphafold.ebi.ac.uk/). The peptides are part of the actual 

protein sequence and ranked in descending order of predicted binding value. The position 

of each peptide on the crystal structure have been color-coded as shown in the table 

included in the figure. *Residue positions correspond to the actual residues on the protein. 

Regions of cognate residues in the peptides are highlighted through underlining. 
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Figure 3.11. Top five peptides predicted as the strongest binders by the neural network 

model for LNKB2 represented on the crystal structure of its target protein, interleukin 2 

(PDB ID: 1M47, residues 6-133). The peptides are part of the actual protein sequence and 

ranked in descending order of predicted binding value. The position of each peptide on the 

crystal structure have been color-coded as shown in the table included in the figure. 

*Residue positions correspond to the actual residues on the protein. Regions of cognate 

residues in the peptides are highlighted through underlining. 

 

In case of LNKB2, the crystal structure of its target protein, interleukin-2 was 

documented in the RCSB-PDB database (PDB ID: 1M47; Arkin et al., 2003). Figure 3.11 

shows the protein along with the top peptide binders that were predicted by the model. The 

known linear epitope for 4C1 lies between residues 65 – 71 (PLEEVLN). Four out of the 

top five predicted binders lie between residues 55 – 73, that form a helical arm in the 

protein. Similar to the previous cases (DM1A, p53Ab1, and 4C1), the non-cognate residues 

flanking the known epitope residues might play a role in the interaction between the 

antibody and the protein, given that the residues are in such close proximity. These results 

show that the algorithm is able to identify the relevant binding motifs on the target protein 
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precisely. It is able to identify non-cognate residues that might play a part in the binding 

interactions of the antibody.  

 

3.3.2 Projection Results on the Human Proteome 

In the previous section, the performance of the algorithm was tested on target 

proteins of the respective monoclonal antibodies. The predictions were very specific in all 

the cases with the model correctly identifying the cognate binding motifs. It also 

successfully predicted regions on the antigen that might be contributory to the binding 

phenomena. But what happens when one wants to test the predictive capabilities of the 

neural network to see if it can identify the target protein/motif correctly from an entire 

proteome consisting of thousands of proteins? Will the algorithm also be able to identify 

similar binding motifs present in other proteins of the proteome? 

In order to investigate these questions, the antibody-specific trained neural network 

models were projected on to the entire human proteome. The human proteome database 

from UniProtKB (Proteome ID: UP000005640) consists of 20,361 unique protein 

sequences. These protein sequences were parsed into an in silico library of 9-mer peptides. 

After parsing, sequences with more than 3 repeats of the same amino acid residue were 

removed. The total number of peptides in the resulting library was equal to 10,386,533. 

The size of this library was an order higher than the largest libraries (106 peptides) on which 

the models had been projected so far. Thus, it provided a larger sequence space to test the 

performance of the models. The models that were used for projecting on the human 

proteome were the same as the ones used for projection on to the target proteins (section 

3.2.2). After the projection was complete, the peptides were ranked in descending order of 
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binding intensities (log10 scale). The ranks of the proteins were determined from their 

highest predicted peptide, which represents a binding motif on that protein itself. The 

results were tabulated as shown below (Table 3.2, 3.3, 3.4, 3.5, and 3.6). 

Table 3.2. Top predicted peptides from the human proteome for DM1A and their 

corresponding proteins. Rank shown here is the rank of the protein target. Rank 1 

corresponds to highest predicted binding interaction. The rank and protein ID of the actual 

target protein is represented in bold letters. The residues from the epitope of DM1A in the 

target protein are highlighted in red. Regions of the non-cognate peptides that are similar 

to the cognate residues are highlighted in bold letters. 

 

Rank Protein ID Top Predicted Peptide  

1 sp|Q6AI14|SL9A4_HUMAN Sodium/hydrogen 

exchanger  

VFELDYDYV 

2 sp|Q9NQY0|BIN3_HUMAN Bridging integrator 3 VERDFEREY 

3 sp|Q9HC78|ZBT20_HUMAN Zinc finger and BTB 

domain-containing protein 20  

EMEDDYDYY 

4 sp|Q15393|SF3B3_HUMAN Splicing factor 3B 

subunit 3 

LEMDYEEAD 

5 sp|Q5TBA9|FRY_HUMAN Protein furry homolog  MESDFEFEY 

6 sp|Q6EMK4|VASN_HUMAN Vasorin LLELDYADF 

7 sp|Q9P281|BAHC1_HUMAN BAH and coiled-coil 

domain-containing protein 1 

VEEDFEFDD 

8 sp|O94915|FRYL_HUMAN Protein furry homolog-

like 

LESDYEYEY 

9 sp|Q8NFA0|UBP32_HUMAN Ubiquitin carboxyl-

terminal hydrolase 32 

MDEDFESD 

10 sp|Q9HB65|ELL3_HUMAN RNA polymerase II 

elongation factor ELL3 

YEQDFETDY 

… … … 

39 sp|P68363|TBA1B_HUMAN Tubulin alpha-1B 

chain 

LEKDYEEVG 

 

In Table 3.2, the performance of the DM1A-specific model on the human proteome 

is shown. It is worth noting here and in the following cases that the 4 amino acids that were 
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not present on the array are being substituted with other amino acids. This was done to 

incorporate the information of those amino acids in a way that is recognizable to the model. 

However, these substitutions do not necessarily accurately represent the amino acids that 

were omitted during the array manufacturing process. From the table, it can be seen that 

the target protein is ranked 39th among the list of top predicted targets for DM1A, according 

to the model. In percentage, the algorithm places the target protein, α-tubulin, within the 

top 0.2% out of the 20,361 proteins. The top predicted regions in the other proteins (top 

10) have a similar motif (LEXDY, where X can be any residue) to that of the cognate 

sequence of DM1A (ALEKDYE, Figure 3.12). As all occurrences of M were substituted 

with L during the projection, methionine here was treated similar to leucine. 

Table 3.3. Top predicted peptides from the human proteome for p53Ab1 and their 

corresponding proteins. Rank shown here is the rank of the protein target. Rank 1 

corresponds to highest predicted binding interaction. The rank and protein ID of the actual 

target protein is represented in bold letters. The residues from the epitope of p53Ab1 in the 

target protein are highlighted in red. Regions of the non-cognate peptides that are similar 

to the cognate residues are highlighted in bold letters. 

 

Rank Protein ID Top Predicted Peptide  

1 sp|P55286|CADH8_HUMAN Cadherin-8 IILLLVIVV 

2 'sp|Q96DX8|RTP4_HUMAN Receptor-transporting 

protein 4 

FILLLVFIV 

3 sp|Q14627|I13R2_HUMAN Interleukin-13 receptor 

subunit alpha-2 

FILILVIFV 

4 sp|P43355|MAGA1_HUMAN Melanoma-associated 

antigen 1 

FLIIVLVMI 

5 sp|Q7Z333|SETX_HUMAN Probable helicase 

senataxin 

FLLILVSVI 

6 sp|O60637|TSN3_HUMAN Tetraspanin-3 VIILLLVFV 

7 sp|Q14643|ITPR1_HUMAN Inositol 1,4,5-

trisphosphate receptor type 1 

FFFMVIIIV 

8 sp|Q8WXG9|AGRV1_HUMAN Adhesion G-protein 

coupled receptor V1 

FVVILLIVI 
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9 sp|Q96R09|OR5B2_HUMAN Olfactory receptor 

5B2 

FFVLLVIFI 

10 sp|Q86UG4|SO6A1_HUMAN Solute carrier organic 

anion transporter family member 6A1 

ILLVFIIFV 

… … … 

1918 'sp|P04637|P53_HUMAN Cellular tumor antigen 

p53 

FRHSVVVPY 

 

Table 3.4. Top predicted peptides from the human proteome for p53Ab8 and their 

corresponding proteins. Rank shown here is the rank of the protein target. Rank 1 

corresponds to highest predicted binding interaction. The rank and protein ID of the actual 

target protein is represented in bold letters. The residues from the epitope of p53Ab8 in the 

target protein are highlighted in red. Regions of the non-cognate peptides that are similar 

to the cognate residues are highlighted in bold letters. 

 

Rank Protein ID Top Predicted Peptide  

1 sp|Q6UVJ0|SAS6_HUMAN Spindle assembly 

abnormal protein 6 homolog 

LKTLMGKLK 

2 sp|O95498|VNN2_HUMAN Vascular non-

inflammatory molecule 2 

MKTELGKLL 

3 sp|P53778|MK12_HUMAN Mitogen-activated 

protein kinase 12 

MGTDLGKLM 

4 sp|Q9BXL8|CDCA4_HUMAN Cell division cycle-

associated protein 4 

CKSDLGELD 

5 sp|Q4AE62|GTDC1_HUMAN Glycosyltransferase-

like domain-containing protein 1 

LRPDLGKLK 

6 sp|Q7Z7B0|FLIP1_HUMAN Filamin-A-interacting 

protein 1 

LKDDLTKLK 

7 sp|Q4L180|FIL1L_HUMAN Filamin A-interacting 

protein 1-like 

LKEDLTKLK 

8 sp|P0C645|OR4E1_HUMAN Olfactory receptor 4E1 MKSALNKLV 

9 sp|Q8NGL6|O4A15_HUMAN Olfactory receptor 

4A15 

MKSAMRKLW 

10 sp|P51170|SCNNG_HUMAN Amiloride-sensitive 

sodium channel subunit gamma 

NKTDLAKLL 

… … … 

452 'sp|P04637|P53_HUMAN Cellular tumor antigen 

p53 

TFSDLWKLL 
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In case of p53Ab1 (Table 3.3), the predicted rank of the target protein, p53, is at 

the 1918th position in the sorted list, which is around top 10% of the total number of 

proteins. That is because the arginine (R), histidine (H), and serine (S) residues that are 

present in the cognate sequence are not very well recognized by the model (Figure 2.6). 

Instead, aliphatic residues like valine (V), leucine (L), isoleucine (I), and phenylalanine (F) 

are preferred more. While V and F are essential residues in interacting with the antibody, 

L and I are not part of the cognate region. However, it has been indicated in experimental 

literature that the V(4) and V(5) of the known cognate sequence can be replaced with I 

and/or L and the mutation is favorable in binding towards p53Ab1 (Stephen et al., 1995). 

Also, all occurrences of I in the proteome were replaced with V, as I was not represented 

on the microarrays. 

Table 3.5. Top predicted peptides from the human proteome for 4C1 and their 

corresponding proteins. Rank shown here is the rank of the protein target. Rank 1 

corresponds to highest predicted binding interaction. The rank and protein ID of the actual 

target protein is represented in bold letters. The residues from the epitope of 4C1 in the 

target protein are highlighted in red. Regions of the non-cognate peptides that are similar 

to the cognate residues are highlighted in bold letters. 

 

Rank Protein ID Top Predicted Peptide  

1 sp|Q8N4C6|NIN_HUMAN Ninein FDSFDTTGT 

2 sp|Q8WU20|FRS2_HUMAN Fibroblast growth 

factor receptor substrate 2 

WDTGYDSDE 

3 sp|O43548|TGM5_HUMAN Protein-glutamine 

gamma-glutamyltransferase 5 

FDSGHDTDG 

4 sp|Q9UPX8|SHAN2_HUMAN SH3 and multiple 

ankyrin repeat domains protein 2 

YDSFDTSSD 

5 sp|Q9ULX6|AKP8L_HUMAN A-kinase anchor 

protein 8-like 

YDSYESCDS 

6 sp|Q14517|FAT1_HUMAN Protocadherin Fat 1 YDSHFDVDK 
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7 sp|O60264|SMCA5_HUMAN SWI/SNF-related 

matrix-associated actin-dependent regulator of 

chromatin subfamily A member 5 

FDSWFDTNN 

8 sp|Q9BVM4|GGACT_HUMAN Gamma-

glutamylaminecyclotransferase 

HHDSYDSEG 

9 sp|Q9H0J4|QRIC2_HUMAN Glutamine-rich protein 

2 

FDSHDSMYP 

10 sp|Q6P2Q9|PRP8_HUMAN Pre-mRNA-processing-

splicing factor 8 

YDSHDIERY 

… … … 

18 sp|P16473|TSHR_HUMAN Thyrotropin receptor QAFDSHYDY 

 

Cellular tumor antigen p53 is also the target protein for p53Ab8. The cognate 

binding sequence (SDLWKL) is different from that of p53Ab1. In this case the target 

protein was ranked at 452nd position with respect to the correct cognate region on the 

protein, therefore coming up in the top 2.2%. It was observed before that model actually 

prefers the motif LKSDLXKL (X can be any amino acid) instead of SDLXKL, where the 

serine (S) residue of the cognate peptide sequence comes at the third position instead of 

the first position. However, mutations at the first (L) and second (K) positions are well 

tolerated by the algorithm, as long as the S residue is at the third position. In case of the 

top peptides observed here however, threonine (T) is more prominent at the third position, 

because all the occurrences of T were replaced with S prior to projecting the model on the 

proteome, as T was one of the omitted residues that were not represented on the microarray.  

For 4C1, the target protein, thyrotropin receptor, appears at the 18th rank in the list 

(top 0.09%). The motif that appears to be more common in the other peptides that XDS 

where X could be either F or Y. The residues L, Q, and A from the cognate sequence are 

not represented well by the top predicted binders, indicating that they are not considered to 

essential by the algorithm to represent binding motif pattern of 4C1 (Figure 3.12). 
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The target protein of LNKB2, interleukin-2 was predicted to be at the 105th position 

which was within the top 0.52% of all the proteins present in the human proteome. 

According to the model, XPLE (X = R, P) appears to be the most prominent motif in the 

top predicted peptides from the proteome, that are not part of the target protein itself (Figure 

3.12).  

Table 3.6. Top predicted peptides from the human proteome for LNKB2 and their 

corresponding proteins. Rank shown here is the rank of the protein target. Rank 1 

corresponds to highest predicted binding interaction. The rank and protein ID of the actual 

target protein is represented in bold letters. The residues from the epitope of LNKB2 in the 

target protein are highlighted in red. Regions of the non-cognate peptides that are similar 

to the cognate residues are highlighted in bold letters. 

 

Rank Protein ID 
Top Predicted 

Peptide  

1 sp|A6NGG8|PCARE_HUMAN Photoreceptor cilium 

actin regulator 

PPMEVLMDK 

2 sp|Q9NX74|DUS2L_HUMAN tRNA-dihydrouridine 

(20) synthase [NAD(P)+]-like 

RPLEEVMQK 

3 sp|O95072|REC8_HUMAN Meiotic recombination 

protein REC8 homolog 

PMEMPLVLP 

4 sp|P52895|AK1C2_HUMAN Aldo-keto reductase 

family 1 member C2 

RLLEMILNK 

5 sp|A8K0R7|ZN839_HUMAN Zinc finger protein 

839 

PPLEKILSV 

6 sp|Q9BZC7|ABCA2_HUMAN ATP-binding cassette 

sub-family A member 2 

RMEELLLAP 

7 sp|P42285|MTREX_HUMAN Exosome RNA 

helicase MTR4 

RLEELLRQM 

8 sp|O43566|RGS14_HUMAN Regulator of G-protein 

signaling 14 

PLEVVLHRP 

9 sp|P51530|DNA2_HUMAN DNA replication ATP-

dependent helicase/nuclease DNA2 

PPLEKLLNH 

10 sp|Q9HCU4|CELR2_HUMAN Cadherin EGF LAG 

seven-pass G-type receptor 2 

RPLEAIMSV 

… … … 

105 sp|P60568|IL2_HUMAN Interleukin-2 KPLEEVLNL 
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Figure 3.12. Sequence logos showing the residue motifs recognized by the neural network 

algorithm for each monoclonal antibody from the top 10 peptides predicted to be their best 

binders from the human proteome (Tables 3.2 – 3.6).  Part of the target protein sequence 

for the respective antibody is shown on the top right corner of each sequence logo, where 

the epitope region is shown in red. All the sequence logos are created with the help of 

WebLogo (https://weblogo.berkeley.edu/). Negatively charged residues (D, E) are colored 

in red, positively charged residues (H, K, R) are blue and residues with a hydroxyl group 

(S, Y) are in green. All other residues are represented in black. 

 

These results show that the antibody-specific models are able to recognize the 

correct target motifs even among a large library of non-random peptides (~107) that 

represent the biological sequence space as covered by the human proteome. All the target 

proteins for the respective monoclonal antibodies were identified among the top 10% out 

of the total number of available proteins. In four out of five cases studied here (DM1A, 

p53Ab8, 4C1 and LNKB2), the target protein was predicted well within top 2.2%. Thus, 

by using a neural network to analyze the interactions of these five monoclonal antibodies 

with combinatorial peptides that were randomly and sparsely sampled from sequence 

space, it was possible to greatly narrow the range of potential protein targets and that in the 

off target proteins, sequences similar to the cognate were recognized. 

3.4. DISCUSSION 

In this chapter the results of projecting the neural network models on the target 

protein of each antibody and the human proteome was shown. Compared to the previous 
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chapter, where the performance of the algorithm was tested on randomly generated 

combinatorial peptide sequences, actual biological sequences were used here. This was 

done because, random peptides that were generated in silico are not comparable to the 

actual biological sequence space represented by various proteins. Out of a total 

combinatorial possibility of 169 unique sequences (because only 16 amino acids were used 

on the array) for a 9-mer peptide, comparatively a much smaller fraction (107 9-mer 

peptides) is representative of the actual biological sequence space covered by the human 

proteome. But the proteins that constitute the human proteome have evolved over many 

years to carry out specific biological functions. The aim was to be able to use a neural 

network trained on random sequences for predicting interactions between the target and 

the monoclonal antibody from among such specific sequence space.  

At first, the algorithm was tested only on the target proteins of the monoclonal 

antibodies that were studied. The antibody-specific models were projected onto the target 

proteins, which were parsed into tiled arrays of 9-mer peptides that represented the entire 

protein sequences. The reason for such parsing was that the model had been trained on 

array peptides only that ranged from 4 to 13-mers in length. Since the median length of 

those peptides were 9, therefore the protein sequence was broken down to 9-mers. The 

models were trained using ‘one-hot encoding’ only (see section 2.2.3, Figure 2.1). Each 

antibody-specific model consisted of 100 independently trained runs that did not include 

the cognate sequence(s) of that antibody in the training set. No physicochemical 

propensities of the amino acids were used as external encoders for training the models in 

this case. The results from these projections are shown in Figures 3.2 to 3.6.  
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In the case of all the five monoclonal antibodies studied here, projecting the models 

on their target proteins resulted in the cognate region being predicted as the highest binder, 

corresponding to the highest peaks in Figures 3.2 to 3.6. The tables included in the figures 

also list the other peptides that were predicted to be the highest binders (top 10) of their 

respective monoclonal antibody. For DM1A, each of the top 5 predicted peptides in its 

target protein, α-tubulin, constitute of the known cognate binding region (ALEKDYE, 

residues 427 - 433) either entirely or partially. This has been depicted when these peptides 

were mapped on to the crystal structure of the protein (Figure 3.7). From the overlapping 

regions of the top predicted peptides, it can be estimated that residues that flank the main 

cognate motif (LEKDY) and are not part of the reported cognate region might also have a 

role to play in the interaction with DM1A. Indeed, an experimental study (Breitling and 

Little, 1986) did report residues 426 to 451 of α-tubulin as the region responsible for 

binding to DM1A, but only residues 427 to 431 (ALEKD) were considered essential for 

binding according to the article. Therefore, the other residues might play an assistive role 

in the binding interaction. The model was able to correctly identify those interactions in 

this case. 

p53Ab1 and p53Ab8 interact with the same target protein, cellular tumor antigen 

p53, but at different regions. p53Ab1’s known epitope (Stephen et al., 1995) consists of 

residues 213-217 (RHSVV) whereas p53Ab8’s epitope is from residue 20 to 25 

(SDLWKL). While the crystal structure of the domain of p53 where p53Ab1 interacts have 

been resolved (Emamzadah et al., 2014), the structure of the region where p53Ab8 binds 

to have not been experimentally resolved yet. In case of p53Ab1, the top two peptides 

predicted to be the highest binders (Figure 3.3, residues 212 - 220, and 209 – 217) contained 
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the actual cognate residues. When the predicted top binders were mapped on to the crystal 

structure of p53 (peptides which are not covered by the available crystal structure were 

avoided for mapping), it was observed that the cognate region as well as the other peptides 

were a part of the β-barrel in that domain (Figure 3.8). The other predicted high binders 

which are not a part of the cognate region, lie very close to it (one adjacent strand away). 

Although the reported epitope of p53Ab1 is linear, usually epitope regions have been found 

out to be conformational in nature consisting of multiple linear regions. Therefore, it is a 

possibility that these sequences might also contribute to the interaction with p53Ab1. 

However, this remains a theoretical speculation given the lack of experimental evidence 

consisting of resolved structure of the antibody-protein complex.  

For p53Ab8, when the model was projected on to p53, only two of the top 10 

highest predicted binders contained parts of its cognate region (Figure 3.4). While the 

actual cognate region was at the very top, the only other sequence that represented the 

cognate partially was at the bottom of the list. Due to the unavailability of an 

experimentally resolved crystal structure of p53 that housed its cognate region, a predicted 

structure obtained from AlphaFold was used to map the top five peptides (Figure 3.9). 

Although the other sequences bore semblances to the cognate sequence, they were not 

located adjacent to the cognate binding region. Also, most of the regions where the peptides 

are mapped are largely unstructured, save for the cognate itself which is predicted to be a 

part of a small helix. Therefore, it is difficult to gauge the orientation of the predicted 

sequences with respect to the cognate, just from the predicted structural information. 

Whether or not, these other peptides contribute to binding to p53Ab8 can only be concluded 

if an experimentally resolved crystal structure can be made available in the future.  
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In case of 4C1, majority of the top 10 predicted highest binders (7 peptides) on its 

target protein (thyrotropin receptor) contained the entire known cognate region or parts of 

it (Figure 3.5). Among the top five sequences, the common residues observed were FDSH 

(residues 381 – 384) indicating that the those are essential for binding to 4C1. An 

experimentally resolved crystal structure was not available for thyrotropin receptor that 

covered the cognate region for 4C1. Therefore, AlphaFold was used here as well to predict 

the structure (Figure 3.10). The peptides mapped on to the predicted structure are 

overlapping each other, indicating that the cognate binding region might extend beyond the 

reported residues (LQAFDSH, 378 - 384). As this is a predicted structure, the orientation 

of the cognate region in space remains unclear, but as the non-cognate residues are flanking 

the cognate sequence, it is highly likely that they might be playing an assisting role in the 

binding interactions between the cognate region of the protein and the antibody.  

In case of LNKB2, the highest predicted peptides from its target protein, 

interleukin-2 mostly comprise of the cognate residues or parts of them (Figure 3.6). 

According to the model, the predicted cognate binding region extends from residue 77 to 

93. When the top five peptides were mapped on to the crystal structure of interleukin-2, it 

was found that four out of the five peptides were overlapping and constituted the same 

helical arm (Figure 3.11). As these overlapping peptides are adjacent to each other, it is 

highly likely that the non-cognate residues that constitute these peptides also interact with 

LNKB2, similar to observations made in case of DM1A, p53Ab1, and 4C1. This goes on 

to show that the neural network models for these antibodies are not only be able to correctly 

identify the cognate motifs, but they are also able to predict some of the non-cognate 



  101 

residues that are also highly likely to take part in the binding activity between the 

monoclonal antibodies and their targets. 

After demonstrating that the neural network was able to identify antibody-specific 

binding motifs on the target antigens, the performance of the models on the entire human 

proteome was tested. This was done to assess the performance of the neural network in 

recognizing the relevant cognate information present on the target protein when thousands 

of other protein sequences are also presented to it. The total number of proteins present in 

the human proteome dataset is equal to 20,361. When parsed into a library of 9-mer 

peptides, the total size of this peptide library was equal to 10,386,533 peptides. The neural 

network model for each antibody was projected on this library. All the proteins were ranked 

based on their highest binding peptide regions. The rank of the target protein was also 

determined from the predicted binding intensity of the cognate motif. It must be kept in 

mind that the residues C, I, M, and T were replaced with A, V, L, and S respectively as the 

former residues were not present in the arrays. Due to such substitution, the neural network 

treats the omitted residues the same as the residues they are replaced with. As some of the 

latter residues are also part of the cognate motifs for the mAbs, therefore peptides where a 

substitution had taken place have made it to the highest binders list. The 3rd peptide 

(EMEDDYDYY) in Table 3.2 can be used as an example. In this case, there is a methionine 

residue at the 2nd position of the peptide, that is replaced with leucine before the projection. 

Therefore, the model essentially treats the methionine as same as a leucine residue. The 

same holds true for the other omitted residues as well.  Tables 3.2 to 3.6 depict the results 

from these projections. Except for p53Ab1, the target proteins for all of the other four 

antibodies were found within the top 2.2% from the list of available proteins. The target 
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protein of DM1A (α-tubulin) was in top 0.2% (Table 3.2), whereas the target proteins of 

4C1 (thyrotropin receptor) and LNKB2 (interleukin-2) were found to be within top 0.09% 

and 0.52% respectively (Tables 3.5 and 3.6). For p53Ab8, the target protein cellular tumor 

antigen p53, was ranked within top 2.2% (Table 3.4). In case of p53Ab1, the target protein 

(p53) was ranked at 1918th position (Table 3.3), which was a much lower rank compared 

to that of the other cases. That is likely because the dipeptide VV (VI or IV in some cases) 

is considered more important by the model than the residues R, H, and S when defining the 

interactions of p53Ab1. As the dipeptide is a common motif that occurs across biological 

sequences, it made it harder for the model to discern the target sequences. The motif 

observed in the top 10 non-cognate sequences from the proteome for each antibody is 

shown in the Figure 3.12.  

Despite the varying performances in case of every antibody, the neural network was 

successfully able to significantly narrow down the possibilities for finding the target motifs 

from a pool of biological sequence space. All of the known cognate interactions were 

predicted within top 10% of the list of proteins. This was a fascinating study because the 

algorithm which was trained on randomly sampled peptides that were only represented by 

16 out of the 20 canonical amino acids, and devoid of any biological context, was able to 

distinguish clearly between cognate and non-cognate interactions from a set of biological 

sequences. Therefore, for the five monoclonal antibodies shown here, this study, in 

conjunction with the study elucidated in chapter 2, successfully demonstrates that by 

analyzing a sparsely sampled combinatorial sequence space, one can obtain very specific 

information about binding characteristics. In future, such machine learning algorithms 

could be used as tools to identify immunogenic regions on proteins as well as identify 
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residues that play an important role in the binding interaction between an antibody and a 

protein. Using such models alongside currently available tools could make the process of 

understanding the interactions of monoclonal antibodies much easier. 
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CHAPTER 4 

USING NEURAL NETWORKS TO DERIVE SEQUENCE VS. BINDING 

RELATIONSHIPS FOR MONOCLONAL ANTIBODIES WITH UNKNOWN 

BINDING TO MICROARRAY PEPTIDES 

4.1 INTRODUCTION 

In the previous chapters (chapters 2 and 3), a neural network based approach was 

laid out to predict the sequence vs. binding relationships of five monoclonal antibodies 

(DM1A, p53Ab1, p53Ab8, 4C1, and LNKB2) whose binding behavior on the high-density 

random sequence peptide microarrays were well characterized (Legutki et al., 2014, Richer 

et al., 2015). Data from the binding experiments of these monoclonal antibodies on the 

random-sequence microarrays were used to train a feed-forward, backpropagated deep 

neural network to derive a comprehensive and quantitative sequence vs. binding 

relationship for the monoclonal antibodies. The performance of these derived relationships 

was evaluated on the basis of various criteria like cognate recognition, motif analysis etc. 

The results from the study presented in chapter 2 show that the trained neural network 

models were able to accurately identify the necessary motifs relevant to the binding 

interactions of the five monoclonal antibodies. Not only that, but the models were also able 

to predict highly specific cognate interactions by analyzing weaker binding interactions. 

Aside from identifying the relevant binding motif from the combinatorial sequence space 

(chapter 2), the trained models were also able correctly identify the cognate interactions 

from the biological sequence space as well (chapter 3).  

As previously mentioned, these predictive models were trained on binding data of 

monoclonal antibodies whose binding characteristics on the random-sequence microarrays 
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is thoroughly understood. These antibodies are known to bind to the sequences present on 

the microarray including their cognates, though the cognate sequences are deliberately 

removed from training dataset during of the neural network to avoid potential bias. But 

how would the neural network perform if it were trained on data from binding interactions 

of monoclonal antibodies whose binding interactions on the microarrays were not as well 

described as the five antibodies previously mentioned. Also, the cognate sequences of these 

antibodies use some amino acids that are not present on the array and must be approximated 

by the most similar amino acids. How would the neural network fare with monoclonal 

antibodies whose binding patterns with the sequence space represented on the random-

sequence microarrays are not characterized well? Also, how does the absence of the amino 

acid residues found in some of their molecular interactions affect the performance of the 

model? 

In order to evaluate the performance of the neural network under such conditions, 

six monoclonal antibodies (3B5, 1D4, 9E10, AU1, Btag, and Htag) were chosen to be 

assayed on the microarrays. The binding data from the assays were then used to train the 

neural network to obtain a sequence vs. binding relationship for each of the antibodies. The 

hyperparameters of the neural network were the same as was used in the case of the 

previous five monoclonal antibodies. The derived relationship was then characterized 

using in silico projections on random combinatorial peptide libraries and motif analyses. 

In silico substitutions on the cognate sequences of these antibodies were also carried out to 

identify which residues from the cognate sequences were favored by the algorithm. 

Additionally, different propensity indices (physicochemical properties of the amino acids) 

were used as encoders for the amino acids to compare the performance of learned vs. 
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supplied encoders in case of these monoclonal antibodies. Lastly, the models of these 

antibodies were projected on to their respective target antigens and proteomes to evaluate 

their prediction ability in the biological sequence space.  

4.2 METHODS 

4.2.1 Array Synthesis and Binding Assays with Monoclonal Antibodies 

Six monoclonal antibodies were used in this study (3B5, 1D4, 9E10, AU1, Btag, 

and Htag). All the binding assays with the monoclonal antibodies were carried out at 

HealthTell (http://www.healthtell.com/). The V13 high-throughput peptide microarrays 

were synthesized at HealthTell as laid out in section 2.2.1 in chapter 2 of this dissertation. 

Labeling and binding assays were carried out according to the protocol laid out in section 

2.2.2 of the same chapter. The monoclonal antibodies that were used and their target 

proteins are listed in Table 4.1. This table also shows the correlation between the technical 

assay replicates. There were 3 technical replicates for each monoclonal antibody that were 

assayed. 

4.2.2 Predicting Sequence vs. Binding Relationship 

The sequence and binding data from the array experiments were used to train a 

feed-forward, backpropagated neural network, using the hyperparameters laid out in Table 

2.3 in chapter 2. The encoding principle is the same as shown in Figure 2.1 (one-hot 

encoding). For each antibody, the neural network was trained 10 times independently, each 

time using a randomly selected training set from among the array peptides. The evaluation 

of the models was carried out using the methodologies laid out in section 2.2.4. The 

antibody-specific models were projected on to in silico libraries of 106 9-mer peptides that 

were randomly generated. These in silico libraries also included the target epitopes of the 

http://www.healthtell.com/
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respective monoclonal antibodies. There are four antibodies (1D4, 9E10, Au1, and Btag) 

used in this study whose interactions were not represented by the 16 amino acids used on 

the array. The model was unable to recognize those omitted residues. Therefore, in order 

to make accommodations for those sequences during projection of the models, the cognate 

sequences of those antibodies were replaced with other residues in silico. The substitutions 

were made with new residues that were among the array amino acids, and closely 

resembled the physicochemical properties of the original residues which were not present 

on the arrays. These substitutions enabled those sequences to be incorporated into the in 

silico libraries, for assessment of the performance of the model. The  performance was 

evaluated by determining the rank of the epitope among randomly generated 106  peptides 

in an in silico library, which was sorted in descending order of Z-score values, after 

projecting the model on to it. Comparisons of sequence motifs were also performed, for 

both array peptides and predicted peptides, with the help of STREME motif analysis 

platform from the MEME suite (Bailey, 2021). Peptides with Z-score values greater than 

or equal to 5 were chosen for motif analysis, in case of both array and predictions. The 

most significant motifs with the lowest p-values, in both the cases, were chosen for 

comparison. Effects of using physicochemical propensities of amino acids as encoders for 

the model were also tested on 3B5 dataset using the same 17 propensities as mentioned in 

section 2.2.5. 
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Table 4.1. Information about the monoclonal antibodies used in this study. The omitted 

residues from the array are highlighted in red. 

 

Monoclonal 

Antibodies 

Isotype Target Protein 

(UniProt ID) 

Epitope Assay 

concentration 

(pM) 

Corr≠ 

± 

s.e.m 

3B5 IgG1 Human Receptor 

tyrosine-protein 

kinase erbB-2 

(P04626) 

EYLGLD 1000 0.8397 

± 

0.0050 

1D4 IgG1 Human rhodopsin 

(P08100) 

TETSQVAPA 8000 0.7196 

± 

0.0199 

9E10 IgG1 Human myc-proto-

oncogene protein 

(P01106) 

QKLISEEDL 1000 0.8179 

± 

0.0356 

AU1 IgG2a Bovine 

papillomavirus 

major capsid 

protein L1 

(P03103) 

DTYRYI 8000 0.7550 

± 

0.1093 

Btag N/A* Blue Tongue Virus 

Core Protein VP7 

(Q5U8S6) 

QYPALT 8000 0.8995 

± 

0.0227 

Htag IgG1 N/Aǂ HNHNHN 8000 0.7532 

± 

0.0308 

* N/A = not applicable; Btag is a mixture of two different isotypes. ǂ N/A = not applicable; 

the epitope of Htag is a synthetic peptide. ≠Corr = correlation between the technical 

replicates of the assays. The errors shown are standard errors of  the means (s.e.m). 

 

4.2.3 Projection on Antigen Proteins and Proteomes 

The trained antibody-specific models for 3B5, 1D4, and 9E10. were projected in 

silico on to the crystal structures of their respective target proteins, using the same approach 

as mentioned in section 3.2.3 of chapter 3. The crystal structures of the target proteins were 

obtained from AlphaFold web version (Jumper et al., 2021; Varadi et al., 2021). The top 

five predicted peptides on the antigen were highlighted on the crystal structure of the 

antigen along the relevant cognate sequences. The trained algorithms were also projected 
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on the respective target proteomes (except for Htag which is raised against a synthetic 

peptide), once again following the approach mentioned in section 3.2.3.  

4.3 RESULTS 

4.3.1 Predicting the Sequence vs. Binding Relationship of the Antibodies 

 In this study, the molecular recognition of six monoclonal antibodies was probed 

using neural network algorithms. All the six monoclonal antibodies have very well 

characterized epitopes. For antibodies 3B5, 1D4, and 9E10, their respective target proteins 

are part of the human proteome (Vijver et al., 1988; Hodges et al., 1988; Schüchner et al., 

2020). The target protein of AU1 is from bovine papillomavirus  (Jenson et al., 1997) and 

the target protein of Btag is from bluetongue virus (Wang et al., 1996). Htag does not have 

a target protein in particular but is raised against a synthetic peptide instead (Hochuli et al., 

1988). What separates these six monoclonal antibodies from the ones that were studied in 

chapter 2, is that their epitopes are not present among the sequences represented on the 

peptide arrays. Additionally, for four of these antibodies (1D4, 9E10, AU1, and Btag) the 

epitope sequences contain residues that were not represented on the microarrays (C, I, M, 

and T). Table 4.1 shows the target antigen and epitope sequence for each  antibody used in 

this study.  
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Figure 4.1. Scatter plots showing the correlation between log10 values of predicted binding 

measurements (y-axes) vs. actual binding measurements (x-axes) of peptides from the test 

datasets of monoclonal antibodies 3B5, 1D4, 9E10, AU1, Btag, and Htag. The density of 

datapoints (peptides) is color-coded as the number of peptides per datapoint. The Pearson 

correlation coefficient (PCC) between predicted and actual binding data is mentioned in 

each plot. 
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Similar to the approach taken in chapter 2, the antibodies were first assayed on 

peptide microarrays and then the processed data from the binding experiments were used 

to train the neural network. The hyperparameters used in this case were the same as shown 

in Table 2.3, Of the total number of peptides present on the array, 95% of the peptides were 

randomly chosen at a time for training the algorithm during each independent run. The rest 

of the 5% peptides were used as test set for cross-validating the performance of the model. 

10 independent runs were carried out for each monoclonal antibody, each time with a 

random selection of peptides for training the model. It must be pointed out here, that unlike 

the study performed in chapter 2, no peptide sequences were deliberately excluded from 

the training set, as no known target of these monoclonal antibodies were present on the 

arrays. The results from each training were accumulated and the data from the test peptides 

of each run was used to compare the predicted and the measured binding values. Figure 4.1 

show the scatter plots for each monoclonal antibody with comparison between predicted 

(x-axes) and measured (y-axes) data, as compiled from all the 10 independent trainings. 

The Pearson correlation coefficient (PCC) between the predicted and the measured data is 

also mentioned in each case.  

The trained models were also projected on in silico libraries of peptides randomly 

sampled from combinatorial sequence space, to evaluate their performance. The 

methodology is similar to chapter 1 (section 2.2.4). However, in case of four out of the six 

antibodies (1D4, 9E10, AU1, and Btag), the epitope sequences contain amino acid residues 

that are not represented on the arrays (threonine and isoleucine). As the neural network 

algorithm does not identify the omitted residues, the ones present in the epitopes of the 

previously mentioned antibodies were substituted in silico with other appropriate residues 
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before being evaluated by the model. Table 4.2 show the original cognate sequences for 

antibodies 1D4, 9E10, AU1, and Btag, and the in silico modified sequences with 

substitutions. These substituted sequences will be used henceforth in this chapter to 

represent the respective cognate epitopes, beside the original sequences. Post-substitution, 

the epitope sequences were included in the randomly-generated peptide libraries, and the 

model was projected on to them. The results of the projections are shown in Table 4.3. 

Table 4.2. Original and modified epitope sequences for 1D4, 9E10, AU1, and Btag 

Monoclonal 

Antibody 

Original epitope sequences* Substituted epitope 

sequences≠ 

1D4 TETSQVAPA SESSQVAPA 

9E10 QKLISEEDL QKLVSEEDL 

AU1 DTYRYI DSYRYV 

Btag QYPALT QYPALS 

*The residues that are not present on the arrays but in the epitopes are represented in red. 
≠The residues in red were substituted with residues represented in bold underlined letters. 

 

Table 4.3. Rank of the epitopes within library of 106 random 9-mer peptides 

Monoclonal 

Antibodies 

Epitope Sequences Mean rank among 1 million 

peptides ≠ 

3B5 EYLGLD 208 ± 2 

1D4 SESSQVAPA* 801,584 ± 22 

9E10 QKLVSEEDL* 679,996 ± 18 

AU1 DSYRYV* 543,869 ± 1,818 

Btag QYPALS* 214,298 ± 2,835 

Htag HNHNHN 744,616 ± 3,335 

* The substituted variants of the actual epitopes that were used for the projections. ≠ Rank 

values are averaged over 20 iterations of projections for each monoclonal antibody. Error 

shown here is the standard error of the mean of the ranks. 
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Figure 4.2. Sequence logos showing the motif analysis results for antibodies 3B5, 1D4, 

and 9E10. All analyses were carried out using STREME. Peptides from both arrays as well 

as in silico libraries (z-score >= 5) were selected. The p-value represents the statistical 

significance of the motif represented. 

 

It can be seen from Table 4.3, that with the exception of 3B5, the model did not do 

a good job to identify the cognate sequences. Furthermore, the Z-scores of the peptides 

were calculated, both from the arrays as well as from the in silico libraries. Peptides with 

Z-score values higher than 5 were selected from both the datasets. The selected peptides 
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were then analyzed with the help of STREME motif analysis tool (Bailey, 2021) to find 

commonly occurring residues among the peptides with the highest Z-scores. Figures 4.2 

and 4.3 demonstrate the results of the STREME analysis of the array and in silico peptides. 

 

 

Figure 4.3. Sequence logos showing the motif analysis results for antibodies AU1, Btag, 

and Htag. All analyses were carried out using STREME. Peptides from both arrays as well 

as in silico libraries (z-score >= 5) were selected. The p-value represents the statistical 

significance of the motif represented. 
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It can be seen from Figures 4.2 and 4.3, that none of the peptide motifs observed 

on the arrays are representative of the actual epitopes of the monoclonal antibodies. This 

indicates that the monoclonal antibodies are reacting with peptide sequences on the 

microarray that contain residues that are inherently different from the residues present in 

the cognate sequences. In case of 1D4 (Figure 4.2), Btag, and Htag (Figure 4.3), the 

sequence motifs from the arrays show a lot of hydrophobic residues like valine , leucine, 

and phenylalanine. Correspondingly, the predictions also show an abundance of these 

residues in the highest-predicted binders. For 3B5 (Figure 4.2), the most statistically 

significant (p-value = 2.6 x 10-20) motif from the array primarily contains lysine, 

phenylalanine, and glutamic acid residues. The motif from the top predicted peptides, 

however, more closely resembles the epitope of 3B5, with tyrosine, glycine, leucine, and 

aspartic acid being the more prominent residues. It should be noted that the phenylalanine 

and glutamic acid observed in the 3B5 array motifs bear physicochemical similarities with 

tyrosine and aspartic acid  residues respectively. For 9E10 (Figure 4.2), the most abundant 

residue in the both the array and the predicted motif is shown to be proline, which is not a 

part of the actual cognate sequence. Other residues that are evident from the motif, but not 

part of the actual cognate sequence are phenylalanine, histidine, and glycine. Overall, the 

motif observed from the array and the in silico sequences bear no semblance to the epitope 

sequence. In case of AU1 (Figure 4.3), aspartic acid, which also present in the cognate 

sequence, is one of the most prominent residues in the array motif as well as the predicted 

motifs. Aside from aspartic acid, tyrosine is also present in the motif, but not as major 

residue. Other residues that are not part of the AU1 cognate sequence include glutamic acid 

(array motif), tryptophan, and proline (predicted motifs). It can be seen from the motif 
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analysis that the neural network has not been successful in identifying the correct residues 

in most cases, except for 3B5 and to some extent AU1. 

 4.3.2 In silico Substitutions of Cognate Sequence Residues 

 Following the evaluation of the model, an experiment was carried out where the 

cognate sequence of each antibody was substituted in silico with other amino acid residues 

from the array, generating new peptides. The antibody-specific models were then projected 

on to these libraries of substituted peptides, to obtain predicted binding values for each 

peptide. The predicted binding intensities of the parent peptide (cognate sequence) was 

then subtracted from that of the substituted peptides. The resultant values were represented 

as heatmaps as shown in Figures 4.4 and 4.5. 

 In Figure 4.4, the results of amino acid substation in the epitopes of 3B5, 1D4, and 

9E10 are shown. In case of 3B5, it can be seen that for most of the residues of the cognate 

sequence (EYLGLD), substitutions are not favored well. Y(2), G(4), L(5), and D(6) are the 

residues most resistant towards substitution, not favoring any other amino acid in their 

respective position. L(3) is the least resistant to substitution, according to this in silico 

study. This shows that the model strongly recognizes and favors the cognate residues over 

the other amino acids. In case of 1D4, the in silico study shows that the model does not 

strongly favor the cognate sequence residues over the substitutions. It can be seen that the 

residue phenylalanine is favored strongly at all positions despite it not being present in the 

epitope sequence. Other favored residues include valine, tryptophan, and tyrosine. In 9E10, 

residues L(3), V(4), S(5), E(6), E(7), and L(9) are fairly conserved. Interestingly, the serine 

in the 5th position highly favors a substitution with a proline residue. Residues Q(1), K(2), 

and D(3) are shown to favor substitution with other amino acid residues.   
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Figure 4.4. Heatmaps representing the results of in silico single-point substitution of the 

epitopes for 3B5, 1D4, and 9E10. Each residue in an epitope sequence (x-axes), was 

replaced with the 16 amino acid residues used on the microarray (y-axes), one at a time to 

create an in silico library. The colorbar represents the deviation of the peptides from the 

predicted binding of the actual epitope and is scaled the same for all the monoclonal 

antibodies. 
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Figure 4.5. Heatmaps representing the results of in silico single-point substitution of the 

epitopes for AU1, Btag, and Htag. Each residue in an epitope sequence (x-axes), was 

replaced with the 16 amino acid residues used on the microarray (y-axes), one at a time to 

create an in silico library. The colorbar represents the deviation of the peptides from the 

predicted binding of the actual epitope and is scaled the same for all the monoclonal 

antibodies. 
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In Figure 4.5, it can be seen that only the aspartic acid in the 1st position of the 

cognate sequence of AU1 (DSYRYV) does not favor substitution. The rest of the residues 

show favorable predicted binding when substituted. High preference is given to aspartic 

acid and glutamic acid residues at all positions. In case of Btag, some residues are strongly 

favored while other are strongly disfavored at different positions. For example. tryptophan 

and tyrosine residues are strongly disfavored at all positions except the tyrosine at the 2nd 

position. No residue appears to be extensively conserved across all substitutions except for 

the leucine at the 5th position. For Htag, none of the cognate residues (histidine and 

asparagine) are favored, according to the model. Rather, substitutions with hydrophobic 

residues like phenylalanine, valine, and proline are preferred. It can be concluded from 

here that the cognate residues were not well-recognized by the model in this case. 

4.3.3 Using Amino Acid Propensities as Encoders for the Model 

So far, the model had been using a learned encoder for encoding the amino acids 

during training the neural network. It would also be interesting to see how the neural 

network models performs when physicochemical propensities of amino acids are used as 

encoders in this case. To study the effects of using physicochemical propensities as 

encoders, 3B5 was chosen as a model system among the antibodies studied here, because 

of the better performance of its model compared to the others. The 17 propensity scales 

that were used as encoders are listed in section 2.3.4 of chapter 2. The results of using 

different  propensities as encoders are listed in Table 4.4, as shown below. The results are 

shown in comparison to using a learned encoder. Also, an encoder with random numbers 

between 0 and 1 was used as a negative control. 
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* Mean correlation coefficients have been calculated over 5 independent trainings of the 

model for each antibody. #Mean ranks are out of 1 million and have been calculated from 

projecting the respective models on to 10 individual libraries of random 9-mer peptide 

sequences. None of the libraries had any common peptides except for the epitope sequence 

of the respective antibody. All the errors represent the standard errors of the means. All the 

experiments were done using the binding data available for 3B5. 

 

It can be seen from Table 4.4 that although the correlation coefficients are higher 

in most cases compared to the learned encoder, the model fails to identify the cognate 

sequence correctly. The learned encoder based model performs extensively better than the 

other encoders in terms of predicting the cognate epitope. Among the propensity encoders, 

the BLOSUM descriptors perform better than the rest, in terms of correlation between 

predicted and measures values as well as in identifying the epitope. Interestingly, compared 

Table 4.4. Performance of the model with respect to different propensities used (mean 

correlation coefficient and mean ranking of epitope) 

 

Propensities Used  

Number of 

Amino Acid 

Descriptors 

Mean 

Correlation 

Coefficient * 

Mean Rank 

of Epitope# 

None (Learned encoder) 9 0.6701 ± 0.0036 208 ± 2 

Random, normally distributed 

number between [0,1] 
9 0.6313 ± 0.0140 876,184 ± 56 

Hydropathy Indices, Molecular 

Weight, Isoelectric Point 
7 0.6507 ± 0.0076 

821,712 ± 

28,794 

Representative properties from 

each different propensity scale 

(PP, KF, Z, F, T, VHSE, ProtFP, 

ST, BLOSUM, MSWHIM)  

10 0.7017 ± 0.0110 
413,717 ± 

167 

VHSE 8 0.7071 ± 0.0101 
878,120 ± 

27,876 

ST Scales 8 0.6881 ± 0.0174 
770,043 ± 

20,154 

ProtFP 8 0.7217 ± 0.0145 
563,368 ± 

166 

Kidera Factors 10 0.7146 ± 0.0067 
731,013 ± 

26,045 

BLOSUM 10 0.7545 ± 0.0076 
226,585 ± 

12,922 
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to the correlation observed in case of BLOSUM descriptors, the learned encoder had a 

lower correlation value but performed better in terms of predicting the cognate residues.  

4.3.4 Projection on the Target Antigens and Proteomes 

 

Figure 4.6. Top five peptides predicted as the strongest binders by the neural network 

model for 3B5 represented on the predicted crystal structure of its target protein, human 

receptor tyrosine-protein kinase erbB-2 (https://alphafold.ebi.ac.uk/). The peptides are part 

of the actual protein sequence and ranked in descending order of predicted binding value. 

The position of each peptide on the crystal structure have been color-coded as shown in 

the table included in the figure. Regions of cognate residues in the peptides are highlighted 

through underlining. 

 

Next, the trained models for 3B5, 1D4, and 9E10 were projected on to their target 

proteins from the human proteome. Predicted structures were obtained from the web 

version of AlphaFold (www.alphafold.ebi.ac.uk) to visualize the highest predicted binders 

on the proteins. The target proteins of AU1 and Btag were from viruses and their predicted 

structures were not available from AlphaFold. The ones available from RCSB-PDB 

(www.rcsb.org) did not represent the whole proteins and were therefore not used here. Htag 

http://www.alphafold.ebi.ac.uk/
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is raised against a synthetic peptide and therefore any target protein was not available in its 

case. 

 

Figure 4.7. Top five peptides predicted as the strongest binders by the neural network 

model for 1D4 represented on the predicted crystal structure of its target protein, human 

rhodopsin (https://alphafold.ebi.ac.uk/). The peptides are part of the actual protein 

sequence and ranked in descending order of predicted binding value. The position of each 

peptide on the crystal structure have been color-coded as shown in the table included in the 

figure. The epitope has been shown in white. 

 

In case of 3B5, the cognate region (residues 1245 – 1255) on its target protein, 

human receptor tyrosine-protein kinase erbB-2 (Her-2), was correctly identified as shown 

in Figure 4.6. The other peptides that were predicted among the top five highest binders 

were not found to be structurally close to the cognate region. For 1D4 (Figure 4.7) and 

9E10 (Figure 4.8), there were no parts of the cognate region among the top five predicted 

peptides. In case of 1D4 (Figure 4.7), the epitope along with the top five predicted binders 

are highlighted as shown. The cognate sequence in the target protein, rhodopsin, did not 

show up among the top 20 binders. All the five highest predicted binders from rhodopsin 
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have large number of hydrophobic residues like valine and phenylalanine and are likely 

not involved in interacting with the monoclonal antibody.  

 

Figure 4.8. Top five peptides predicted as the strongest binders by the neural network 

model for 9E10 represented on the predicted crystal structure of its target protein, human 

myc proto-oncogene protein (https://alphafold.ebi.ac.uk/). The peptides are part of the 

actual protein sequence and ranked in descending order of predicted binding value. The 

position of each peptide on the crystal structure have been color-coded as shown in the 

table included in the figure. The epitope has been shown in white. 

 

In case of 9E10 (Figure 4.8), the top five predicted binders are on non-rigid regions 

in the structure of  myc proto-oncogene protein (c-Myc), as predicted by AlphaFold. The 

cognate region also lies on one of the non-rigid arms. The five highest predicted binders 

are not close to the cognate region (410 – 419). The peptide KLISEEDLL, which contains 

part of the cognate region was predicted at the 11th position, but most of the highest binders 

predicted on the target protein were part of regions with lot of proline residues, as can be 

seen from Figure 4.8.  
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Table 4.5. Top predicted peptides from the human proteome (UP000005640) for 3B5 and 

their corresponding proteins. Epitope is highlighted in red. 

 

Rank Protein ID Top Predicted Peptide 

1 sp|P09958|FURIN_HUMAN Furin SYGYGLLDA 

2 sp|P32243|OTX2_HUMAN Homeobox protein 

OTX2 SYFGGMDCG 

3 sp|Q8IVF4|DYH10_HUMAN Dynein axonemal 

heavy chain 10 GYEYMGLNG 

4 sp|Q5T5U3|RHG21_HUMAN Rho GTPase-

activating protein 21 SYDEGLDDY 

5 sp|Q00444|HXC5_HUMAN Homeobox protein 

Hox-C5 RYCYGGLDL 

6 sp|P40818|UBP8_HUMAN Ubiquitin carboxyl-

terminal hydrolase 8 SNHYGGLDG 

7 sp|Q8WYR1|PI3R5_HUMAN Phosphoinositide 

3-kinase regulatory subunit 5 SHYLGMLDP 

8 sp|P20719|HXA5_HUMAN Homeobox protein 

Hox-A5 GYGYNGMDL 

9 sp|Q09013|DMPK_HUMAN Myotonin-protein 

kinase EYYVGGDLL 

10 sp|O75427|LRCH4_HUMAN Leucine-rich 

repeat and calponin homology domain-containing 

protein 4 RYDGGLDSG 

… … … 

294 sp|P04626|ERBB2_HUMAN Receptor 

tyrosine-protein kinase erbB-2 

NPEYLGLDV 

 

Next, the models were projected on the target proteomes of the antibodies. For the 

human proteome (UP000005640) a total of 20,361 proteins were present, which were 

parsed into 10,386,533 9-mer peptides. 3B5, 1D4, and 9E10- specific models were then 

projected on these peptides. After projection, the peptides were ranked in descending order 

of binding values. The results are shown in Tables 4.5, 4.6, and 4.7. The target protein of 

3B5, Her-2 was ranked at the 294th position (Table 4.5) out of the ~10 million peptides (top 

0.0028%) indicating that the model was able to correctly identify the cognate residues in 

this case. The residues G, L, and D are frequently seen among the top 10 predicted 
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sequences from the proteome, with GLD being a common motif among the peptides. For 

1D4, the cognate sequence from target protein rhodopsin was ranked over 8 million (Table 

4.6), The model was clearly not able to identify the cognate region or the target protein in 

this case. Also, the highest predicted peptides contain a lot of hydrophobic residues and 

bear no resemblance to the cognate motif. 

Table 4.6. Top predicted peptides from the human proteome (UP000005640) for 1D4 and 

their corresponding proteins. Epitope is highlighted in red. 

 

Rank Protein ID Top Predicted Peptide 

1 sp|Q8NCS7|CTL5_HUMAN Choline 

transporter-like protein 5 EVIVILMLI 

2 sp|Q9UI40|NCKX2_HUMAN 

Sodium/potassium/calcium exchanger 2 DLIMLIIFF 

3 sp|Q8IZ96|CKLF1_HUMAN CKLF-like 

MARVEL transmembrane domain-containing 

protein 1 EICIVVFFI 

4 sp|O15360|FANCA_HUMAN Fanconi anemia 

group A protein EELLVFLFF 

5 sp|O60721|NCKX1_HUMAN 

Sodium/potassium/calcium exchanger 1 DLIMLILFF 

6 sp|A6NJZ3|O6C65_HUMAN Olfactory 

receptor 6C65 ELQVVIFFF 

7 sp|O60741|HCN1_HUMAN 

Potassium/sodium hyperpolarization-activated 

cyclic nucleotide-gated channel 1 DLIMLIMMV 

8 sp|P54840|GYS2_HUMAN Glycogen [starch] 

synthase, liver DITVMVFFI 

9 sp|P29275|AA2BR_HUMAN Adenosine 

receptor A2b PPLLIMLVI 

10 sp|Q9UBR5|CKLF_HUMAN Chemokine-like 

factor EVTVILFFI 

… … … 

8,783,703 sp|P08100|OPSD_HUMAN Rhodopsin TETSQVAPA 

 

In case of 9E10 (Table 4.7), the cognate sequence was ranked as the 426,947th 

peptide out of 10 million which would be around top 4.11%. Among the top predicted non-
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cognate peptides, the motif LXPE appears frequently, where X is either I or V. It has been 

mentioned previously in this chapter that the serine residue present in the cognate prefers 

a substitution with proline and that can be seen here as well. 

Table 4.7. Top predicted peptides from the human proteome (UP000005640) for 9E10 and 

their corresponding proteins. Epitope is highlighted in red. 

 

Rank Protein ID Top Predicted Peptide 

1 sp|Q9NRS6|SNX15_HUMAN Sorting nexin-

15 LHILPPPLI 

2 sp|Q9P2J8|ZN624_HUMAN Zinc finger 

protein 624 ILIPEPGIA 

3 sp|Q9Y5F0|PCDBD_HUMAN Protocadherin 

beta-13 CLVPEGPLP 

4 sp|P52569|CTR2_HUMAN Cationic amino 

acid transporter PFLPFLPAF 

5 sp|O75445|USH2A_HUMAN Usherin ILIPEIPVE 

6 sp|Q6RI45|BRWD3_HUMAN Bromodomain 

and WD repeat-containing protein 3 HLMPPPFLV 

7 sp|Q8TCX1|DC2L1_HUMAN Cytoplasmic 

dynein 2 light intermediate chain 1 PFPVPLVII 

8 sp|Q9UK22|FBX2_HUMAN F-box only 

protein 2 GLVPEGGVE 

9 sp|P10912|GHR_HUMAN Growth hormone 

receptor MLILPPVPV 

10 sp|O94911|ABCA8_HUMAN ABC-type 

organic anion transporter ABCA8 PFLVFLIPF 

… … … 

426,947 sp|P01106|MYC_HUMAN Myc proto-

oncogene protein  

QKLISEEDL 

 

The bovine papillomavirus has 9 proteins in its proteome which were parsed into 

2395 individual 9-mer peptides. The target protein for AU1 is the major capsid protein L1. 

The cognate region on the target protein was predicted at the 97th position (Table 4.8) out 

of the total number of peptides (top 4.05%). The most common motif observed among the 

top 10 non-cognate sequences in this case is DRP. These residues are part of the cognate 

sequence also, though they are spaced apart from each other with other residues. 
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Table 4.8. Top predicted peptides from the bovine papillomavirus proteome 

(UP000006567) for AU1 and their corresponding proteins. Epitope is highlighted in red. 

 

Rank Protein ID Top Predicted Peptide 

1 sp|P03122|VE2_BPV1 Regulatory protein E2 SDFRDRPDG 

2 sp|P03122|VE2_BPV1 Regulatory protein E2 DFRDRPDGV 

3 sp|P03109|VL2_BPV1 Minor capsid protein 

L2 LDDFSETHR 

4 sp|P03122|VE2_BPV1 Regulatory protein E2 SSDFRDRPD 

5 sp|P03122|VE2_BPV1 Regulatory protein E2 SRFGDEAAR 

6 sp|P0DOD6|VE8E2_BPV1 Protein E8^E2C RPSRDRPDG 

7 sp|P03122|VE2_BPV1 Regulatory protein E2 YSRFGDEAA 

8 sp|P0DOD6|VE8E2_BPV1 Protein E8^E2C LRPSRDRPD 

9 sp|P03109|VL2_BPV1 Minor capsid protein ELQPLDRPT 

10 sp|P03109|VL2_BPV1 Minor capsid protein 

L2 DDFSETHRL 

… … … 

97 sp|P03103|VL1_BPV1 Major capsid protein 

L1 

DTYRYIESP 

 

In case of the antibody Btag, the target protein, core protein VP7, is part of the 

bluetongue virus proteome. This proteome also has 9 proteins which were parsed into 5857 

peptides. The cognate ranked at the 118th position which was among the top 2% of the 

peptides from the proteome. The more common residues in the non-cognate sequences are 

mostly hydrophobic like valine or leucine, glutamine which is a part of the cognate residues 

was also found on some of the non-cognate sequences. Overall, it can be seen that the 

cognate sequences which had residues that were not present on the array were not predicted 

very well by the model.  
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Table 4.9. Top predicted peptides from the bluetongue virus proteome (UP000112999) for 

Btag and their corresponding proteins. Epitope is highlighted in red. 

 

Rank Protein ID Top Predicted Peptide 

1 tr|C5IWV8|C5IWV8_9REOV Outer capsid 

protein VP2 SQVIVLVFD 

2 tr|C5IWV8|C5IWV8_9REOV Outer capsid 

protein VP2 ISQVIVLVF 

3 tr|C5IWV7|C5IWV7_9REOV RNA-directed 

RNA polymerase  PQLIVTLPL 

4 tr|C5IWV8|C5IWV8_9REOV Outer capsid 

protein VP2 QVIVLVFDL 

5 tr|C5IWW4|C5IWW4_9REOV Non-structural 

protein NS2 DMSLIILPV 

6 tr|C5IWV8|C5IWV8_9REOV Outer capsid 

protein VP2 VIVLVFDLI 

7 tr|C5IWV7|C5IWV7_9REOV RNA-directed 

RNA polymerase QLIVTLPLN 

8 tr|C5IWV8|C5IWV8_9REOV Outer capsid 

protein VP2 VLVFDLIFE 

9 tr|C5IWV7|C5IWV7_9REOV RNA-directed 

RNA polymerase DLVTVFTLM 

10 tr|C5IWV8|C5IWV8_9REOV Outer capsid 

protein VP2 DISQVIVLV 

… … … 

118 tr|Q71TX7|Q71TX7_9REOV Core protein 

VP7 

TLNQYPALT 

 

4.4 DISCUSSION 

In this study, the sequence vs. binding relationship of six antibodies were probed 

whose binding interactions with the peptides on the microarray were not well-known. This 

was an extension of the approach showed in chapter 2 to investigate the predicted binding 

of antibodies whose interactions with the sequences present on the array were not well-

characterized. The neural network architecture that was used is the same as the one 

described in chapters 2 and 3. The algorithm was trained on data from the binding 

experiments carried out on the microarrays. Of the six monoclonal antibodies that were 
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studied, four of the antibodies have cognate sequences that contain at least one of the amino 

acid residues that were omitted from the array due to manufacturing constraints (Table 

4.2).  It can be seen from Figure 4.1, that some of these antibodies, like 1D4 and 9E10, did 

not bind to the array peptides very well, whereas antibodies like AU1 and Btag bound 

strongly to a lot of sequences.  

When the trained neural networks were projected on to the in silico libraries (Table 

4.3), the models were not able to identify the respective cognate sequences among the top 

1% binders in five out of the six cases. This was in stark contrast to the performance of the 

models observed in chapter 2 (Tables 2.5 and 2.6), where antibodies whose interactions 

were well-characterized on the arrays were used. The model, however, successfully 

predicted the cognate interaction of the antibody 3B5 among the top 0.02%. It should be 

kept in mind that the cognate residues of 3B5 do not contain any of the amino acids omitted 

from the microarrays. Further analyses of the motifs (Figures 4.2 and 4.3) from the highest 

binders, both in case of the array peptides as well as the in silico libraries, show that except 

for 3B5, the cognate residues of the other antibodies were not very well recognized by the 

models. In most of the cases (1D4, 9E10, Btag, and Htag), a lot of hydrophobic residues 

like leucine, valine, and proline were identified as most commonly occurring residues 

among the highest peptide binders from the array, as well as the predicted peptides. For the 

antibodies whose epitopes contain one of the omitted residues, one can speculate that in 

absence of the necessary residues, these antibodies bound to a lot of hydrophobic sequences 

present on the array, that were not representative of the cognate interactions or residues. 

Previous studies (James et al., 2003, James and Tawfik, 2003, Sykes et al., 2013) with other 

monoclonals have suggested that this kind of observation is not necessarily a phenomenon 
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of cross-reactivity related to ‘hydrophobic stickiness’, but that of ‘multispecificity’ which 

involves identification of different residues than that of the cognate sequence. Though such 

interactions have not been reported for the antibodies presented in this study, observation 

of such interactions on the microarray can be considered as a proof of such multispecificity. 

This in turn led the algorithm to prioritize those interactions, therefore leading to a 

prediction of these residues. These binding interactions were not necessarily strong as seen 

in the case of 1D4 and 9E10. In case of AU1, the reported target residues are considered 

crucial for interacting are T(2), Y(3), R(4), and Y(5) according to a study done by Jenson 

et al. (1997). The adjacent aspartic acid residue, D(1), which flanks the tetramer was not 

considered as necessary. However, from the interactions observed on the array, it can be 

seen that the antibody reacted with sequences that had the aspartic acid residue in them, 

alongside the tyrosine residues, which was also ultimately reflected in the predictions 

(Figure 4.3). For Htag, although the target sequence does not contain any omitted residues, 

the antibody was seen to prefer hydrophobic interactions more on these arrays, possibly 

due to the same phenomenon as explained above. But due to the absence of conclusive 

literature exploring such interactions, this can be only restricted to speculations. Hence, 

resulting predictions were also biased towards those residues. 

In silico substitutions were carried out on the cognate sequences to further analyze 

what residues are favored towards substitution as deemed by the model (Figures 4.4 and 

4.5). From Figure 4.4, it can be seen that the model was able to identify the residues that 

are considered crucial for the interactions of the antibody 3B5, and it also shows that no 

substitutions are tolerated at most positions. In case of 1D4, no such preference is observed 

towards any residue from the cognate sequence. The cognate sequence of 1D4 
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(TETSQVAPA) has two threonine residues that were not represented on the arrays. In 

absence of these residues, the model was provided with a substituted peptide as an 

alternative and as can be seen from the figure, it identifies the substituted cognate sequence 

very poorly. Similar observations were made in case of AU1 and Btag (Figure 4.5). In the 

case of 9E10 though, some preference was given to the residues from the substituted 

cognate sequence as can be seen from Figure 4.4. The motif LVSE appears to be 

particularly favored over other residues, with the exception of proline substitution in place 

of serine. Therefore, some of the cognate interactions were identified in this case, though 

the flanking residues were again not identified well by the model. In case of Htag, the 

substitution results again show no preference towards the cognate residues (Figure 4.5). 

The residues at all positions favor substitutions with other residues, which indicates that 

the model was not able to identify the key residues in this case as well. This is because 

Htag interacted with mostly hydrophobic residues on the array, which made the model 

biased towards those residues during training. In future, a detailed experimental exploration 

of the molecular interactions of these antibodies would hopefully shed some light on these 

observations. 

Different physicochemical parameters were also used to encode the amino acids, to 

determine the changes in the model’s performance compared to the learned encoders. The 

3B5 antibody was used as a model system for this study owing to its relatively better 

performance compared to the others. The results are as shown in Table 4.4. It can be seen 

that the predictive performance of the model did not get better when different types of 

propensity indices were used as encoders, although an increase in correlation values were 

observed in some cases. It has been observed previously in this chapter that higher 



  132 

correlations do not necessary relate better predictions, which actually depends on the 

eigenvalues assigned to the amino acids to identify the relevant residues. A learned encoder 

ensures that appropriate orthogonality is maintained between the amino acid residues, 

whereas a preassigned encoder is more likely to introduce a bias in the algorithm. This 

might be the reason why a learned encoder performs better than the supplied propensity 

indices in this case. 

Now all the previous studies were carried out on in silico libraries of peptides that 

were sampled from the combinatorial sequence space. To test the performance of the 

models on biological sequence space,  the models of 3B5, 1D4, and 9E10 were projected 

on their respective target proteins and the results were visualized in Figure 4.6, 4.7, and 4.8 

respectively. Only in case of 3B5, the cognate region appeared among the top five predicted 

binders from its target protein, Her-2 (Figure 4.6). In case of antibodies 1D4 (Figure 4.7) 

and 9E10 (Figure 4.8), the cognate region was not predicted among the top five binders 

from their respective antigens. None of the top five predicted interactions are close to the 

cognate regions on the target proteins, in both the cases, as can be seen from these figures. 

Rather they represent hydrophobic regions on the surface of the target antigens. So, the 

model failed to identify the cognate residues in both these cases, even among a small 

number of peptides. 

Additionally, each of the antibody-specific models were projected on their target 

proteomes. Among the antibodies whose target proteins lie within the human proteome, 

the model performed quite well in predicting the cognate sequence for 3B5, predicting the 

epitope among top 0.002% of the total number of peptides (Table 4.5). GLD was found to 

be a common motif among the top binders in this case. For 9E10 (Table 4.7), the cognate 
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sequence was predicted among the top 4.11% with the LXPE motif being dominant among 

the top predicted binders. In both these cases, the models were able to recognize the 

relevant binding interactions to varying extent. However, the algorithm absolutely did not 

perform well in case of 1D4 (Table 4.6), where the cognate sequence was predicted around 

8.7 million out of the 10 million peptides. In case of AU1 (Table 4.8), the cognate sequence 

from the target protein was ranked 97th out of a total 2395 (top 4.05%) that represented the 

entire proteome of the virus. The residues D, R, and P was found to be commonly occurring 

across the highest predicted binders. The cognate sequence of Btag was ranked 118th out 

of the 5857 peptides from the proteome of the bluetongue virus (top 2%). Qualitatively 

speaking, in both these cases the models performed slightly better with respect to biological 

sequences, as opposed to what was observed in case of combinatorial sequences. Such an 

observation can be most likely be attributed to the type of residues and sequences that were 

represented by these proteomes, as these biological sequences are not fully representative 

of the combinatorial sequence space, but a small specific fraction of it.  

In conclusion, it was found that the binding interactions of only one of the 

monoclonal antibodies (3B5) could be successfully predicted, out of the six that were 

studied. For the rest of these antibodies, the predictive sequence vs. relationships which 

were derived were not found to identify the cognate interactions in most of the cases. The 

success of prediction in case of 3B5 indicates that it is possible to identify the relevant 

binding interactions even in case of antibodies which do not have known binding to the 

sequences on the array. However, there are some limitations to the current approach as was 

observed from the predictions in case of the rest of the antibodies. One of the major reasons 

would be their less-defined binding to the peptides on the array. Also, four of these 
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antibodies bound to cognate sequences that had isoleucine and threonine residues, which 

are residues omitted from the array. Therefore, the neural network does not recognize these 

residues well. Thus, in order to accommodate those cognate sequences for the algorithm, 

those residues (I and T) were replaced with other amino acids that were physicochemically 

similar to them (V and S respectively). This was of course not an accurate representation 

of the actual cognate interaction as these residues were also present in other peptides with 

whom the antibodies may or may not have interacted. Therefore, such substitution did not 

work well to help the model define the sequence vs. binding relationship. This could be 

avoided in future by carrying out binding experiments on arrays with all the 20 amino acid 

residues that constitutes most of the proteomes. Then no substitution would be required 

when representing these residues in the algorithm. Previous literature (Sykes et al., 2013) 

has stated that enabling more randomly sampled peptides on the microarray could allow 

better capture of information with respect to the assays. That would help one look into a 

higher diversity of interactions. Therefore, designing bigger arrays with an even higher 

number of peptides might also be worth looking into. 
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CHAPTER 5 

PROBING PROTEIN-PEPTIDE BINDING INTERACTIONS USING IN SILICO AND 

IN VITRO APRROACHES  

This study was conducted jointly with Kirstie Swingle 

5.1 INTRODUCTION 

 In the previous chapters (chapters 2, 3, and 4), the ability of the neural network to 

predict the sequence vs. binding relationship in case of eleven monoclonal antibodies 

(DM1A, p53Ab1, p53Ab8, 4C1, LNKB2, 9E10, AU1, 3B5, 1D4, Btag, and Htag) was 

studied. The algorithm used for these predictive studies are based on the work done by 

Taguchi et al. (2020). In that particular study, the authors investigated the sequence vs. 

binding relationships for nine different proteins using a similar neural network based 

approach as shown here. It was shown that using sparsely sampled sequences from a 

combinatorial library of peptides as the input to a neural network algorithm, one could 

derive a predictive relationship that can be used to predict the binding between the 

protein(s) and any peptide from the combinatorial sequence space. The nearly random 

sparsely sampled peptides were represented on a high-density microarray (~125,000 

unique peptides), that uses only 16 α-amino acids. Because the sampling procedure was 

nearly random, the algorithm was exposed to a number of sequences that might not have 

any biological relevance but represented a wide range of sequence patterns from the 

possible combinatorial space. Thus, by optimizing and training the algorithm on these 

sequences, it was possible to derive a comprehensive sequence vs. binding relationship 

between the proteins and the represented peptides. This relationship was later projected on 

random sequences from the combinatorial space, that were not represented on the 
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microarrays. As many of these non-array random peptide sequences, predicted to bind to 

the protein(s), represented different pockets or ‘regions’ from the combinatorial 

‘landscape’, it was interesting to probe how much of the predicted binding relationship was 

actually corroborating with experimental evidence. The molecular interactions between the 

proteins and the peptide sequences are often context dependent, be it the experimental 

assays or predictive models. Therefore, exploring these molecular interactions with respect 

to changes in the environment would shed more light on how different conditions can cause 

changes in observed binding. The binding trends observed from the microarrays and the 

predictions were compared to the observations from surface plasmon resonance (or SPR) 

assays in this study. The microarray-based assays on which the neural network models 

were trained, represented a different interaction environment than that of an SPR assay, 

owing to the high density of peptides. As the predictive relationship between the protein(s) 

and the peptides were derived from the microarray experiments, it was intriguing to probe 

how the binding relationship changed when tested on a different platform like SPR. A 

thorough understanding of this predictive binding vs. experimental binding will help 

improve the applicability of the algorithm, thus opening up new avenues to help understand 

molecular recognition better. 

 Characterizing protein interactions using peptides have several experimental 

advantages over using full proteins (Benyamini and Friedler, 2010). First off, the synthesis 

of peptides is largely automated compared to expression and purification of proteins. 

Secondly, using peptides allows one to focus on identifying exact residues contributing to 

the interactions. Some of the assay tools to characterize protein-peptide interactions are 

listed in chapter 1 (section 1.3.1). For initial measurement of the binding interactions of 
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the protein, random-sequence peptide microarrays were used. Peptide microarrays provide 

an efficient tool for the simultaneous detection of interactions between a protein and several 

peptides. Such a platform is convenient not only for the detection of known binders, but 

also for identifying new sequences that are not known for interacting with the proteins 

(Benyamini and Friedler, 2010). In the machine learning approach laid out by Taguchi et 

al. (2020), the algorithm exploits the distinctive binding profile observed on the microarray 

in case of each protein to derive an individual sequence vs. binding relationship for them. 

But when a large number of different peptides are put so close to each other, the binding 

interactions observed can vary greatly with respect to other assays (Benyamini and 

Friedler, 2010). Therefore, in order to derive a thorough binding relationship between the 

protein and peptides, often another assay is recommended. Needless to say, peptides that 

were predicted to be highest binders from the combinatorial chemical space should also be 

experimentally probed to develop a more thorough and quantitative sequence vs. binding 

relationship.  

Understanding how protein-peptide interactions vary across different assaying 

platforms is necessary and crucial for properly characterizing these interactions, as each 

different assay comes with its own specific set of characteristics. In microarrays the peptide 

features are immobilized on the glass surface. Compared to that, in SPR, the peptides are 

a part of the analyte solution, floating freely. Also in the microarrays, the protein analytes 

are fluorescently labeled whereas SPR is label-free method. SPR also allows for the 

measurement of binding kinetics between the proteins and peptides in real time. A study 

done by Greving et al. (2010), which aimed at finding peptide targets for the protein TNFα, 

showed a comparison between binding kinetics measured on the arrays vs. SPR. They 
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observed that the peptides determined to have a measurable off-rate on the microarrays, 

generally also had measurable off-rates in SPR. The peptides corresponding to the slowest 

off-rates on the array were also the slowest to come off when measured using SPR. 

However, the opposite was not necessarily true. Differences in binding kinetics also arises 

due to the fact that in SPR, the peptides are in solution, as opposed to the microarray where 

they are immobilized on the surface. Other studies also validated peptide array results using 

SPR among other methods (Katz et al., 2008, Rotem et al., 2008). In these studies, as well, 

the researchers found that all the peptides that demonstrated binding on the array, also had 

measurable dissociation constants when validated using SPR. One key point to be noted 

however in this case is that the peptide library they used had sequences from the target 

proteins that were of interest.  

If one takes these studies into consideration, it is shown that there are similarities 

observed between interactions observed on the peptides microarrays and SPR. Whether or 

not these similarities also apply to the sequence vs. binding relationship determined by 

Taguchi et al. (2020) will be probed further in this chapter. If the relationship predicted by 

the neural network based on array experiments, is also validated for protein-peptide 

interactions in solution phase, it will expand the applicability of the predictive algorithm.  

For this study, three of the proteins studied by Taguchi et al (2020) were considered 

- Diaphorase, Ferredoxin, and FNR. In that study, after carrying out binding experiments 

with these proteins on high-density, random-sequence peptide microarrays, the binding 

data was collected with respect to each sequence and a neural network was trained to 

predict specific sequence-to-binding relationship for each protein. In this work, that trained 

algorithm was taken and projected onto in silico libraries of random peptides that were 
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sampled from the combinatorial sequence space. The peptides were then sorted in 

descending order of predicted binding intensity. From the list, a set of peptides with varying 

ranges of propensity for binding to diaphorase were chosen and synthesized. Alongside 

these peptides, a set of sequences from the measured array that bound these proteins were 

also chosen. The binding of these peptides was then compared to the binding observed 

using SPR. The observed results from SPR were then compared to the predictive analyses 

and assay results from the arrays. The overall study showed that the results from the 

predictive analyses and the SPR experiments were related but the proportionality was 

found to be dependent on the assay conditions. This indicated that the assay environment 

played a big role in the interaction of proteins and peptides and that the predictive sequence 

vs. binding relationship is definitely influenced by these changes. 

5.2 METHODS 

5.2.1 Protein Binding Experiments on Peptide Microarrays 

 The data for this section was taken from the work done by Taguchi et al. (2020). 

Protein binding experiments were carried out on high-density peptide microarrays using 

fluorescently labeled proteins. The experiments were carried out on V13 microarrays from 

HealthTell (http://www.healthtell.com/). The array synthesis procedure is laid out in detail 

in chapter 2 (section 2.2.1). The V13 arrays have 126,050 peptides that are composed of 

16 amino acids. For the assays, the proteins (diaphorase, ferredoxin, and FNR) were labeled 

using AlexaFluor 555 NHS ester (ThermoFisher cat. # A37571) (Taguchi et al., 2020). The 

list of the proteins is provided in Table 5.1 along with their source and molecular weight. 

The final concentration of the labeled proteins used for binding measurements on the arrays 

was 10 nM.  

http://www.healthtell.com/
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For the assays, the slides containing the microarrays were removed from vacuum 

sealed storage and loaded into custom microarray cassettes, that arranged them in 96 well 

plate format. The arrays were then hydrated with PBST (81 µL/well) for 30 minutes at 37 

°C. Following that, each array was incubated with 9 µL of the labeled protein (in PBST) at 

37 °C for 1 hour, using a shaker for mixing. After the completion of incubation time, the 

arrays were washed three times with PBST, followed by washing with distilled water. The 

slides were then removed from the custom cassettes and sprayed with isopropyl alcohol. 

They were then centrifuged to ensure dryness. After drying, the arrays were imaged using 

a fluorescence imager at 532 nm excitation wavelength and 750 ms exposure time. The 

images were quantified to align the fluorescence measurements with the peptides using 

Mapix software (Innopsys, Carbonne, France). There were three technical replicates in 

terms of assays, for each protein. The correlation between all three replicates in each case 

was 0.99. It must be noted here, that for these experiments the diaphorase was obtained 

from Sigma, but later experiments in this study the diaphorase was sourced in-house. 

Table 5.1. Proteins used and their sources and molecular weight 

Protein Source Catalog Number Molecular Weight 

(kDa) 

Diaphorase Sigma D1315 30.1 

Ferredoxin Sigma F3013 11.1 

FNR Prof. Kevin Redding 

(ASU) 

N/A 35.3 

 

5.2.2 Training the Neural Networks 

The sequence and binding data from the array experiments was then used to train a 

feed-forward, backpropagating neural network. It must be noted here that the highest 

binding ~2% of the measured data was excluded from the training set to avoid fitting the 
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model with saturated data. The excluded sequences were included in the validation set 

(~12,350 peptides) for the model. The encoding principle of the neural network is the same 

as shown in chapter 2 (Section 2.2.3). However, different hyperparameters were used. 

Table 5.2 lists the hyperparameters that were used for training the model. A total of 100 

independent training runs were carried out for each antibody. The average correlation 

between predicted and measured data was greater than >0.98 in all the three cases. More 

information on this could be found out in the supplementary information of the work 

published by Taguchi et al. (2020). 

Table 5.2. Hyperparameters used for the neural network 

Hyperparameters Values 

Number of Hidden layers 2 

Number of Hidden Nodes per Layer 100 

Fraction of Peptides used for Training 0.9 

Number of Amino Acid Descriptors 10 

Training Steps  50,000 

Learning Rate 0.001 

 

After completion of training, the diaphorase-specific model was projected on 1 

million randomly generated 9-mer peptide sequences, that were broken down in silico into 

sub-groups of 100,000 sequences. These subgroups were sorted in alphabetical order with 

respect to the first 4 residues from the N-terminus of the peptide. This was done to ensure 

that there was an even distribution and representation of different peptides in all the 

subgroups. After projecting the model on to each subgroup, the sequences were sorted in 

descending order of predicted binding value. Nearly the top two-thirds (~65,500) of the 

sequences from the sorted list were then chosen to be added to the final compiled list of 

sequences. As there were 10 subgroups, this was repeated 10 times and the number of 
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peptides in the final resulting dataset was 655,361. The ferredoxin and FNR-specific 

models were also projected on these sequences.  

5.2.3 Selection and Synthesis of Peptides 

 After the projection was completed, a number of peptides were chosen to be 

synthesized from the compiled final list of peptides (655,361 sequences). It must be noted 

here that these sequences were randomly generated so there was no experimental record of 

any interaction of these peptides with the proteins, beforehand. The peptides were chosen 

according to their predicted binding specificity towards diaphorase and isoelectric point. 

The predicted binding specificity was calculated by taking the ratio between the predicted 

binding intensity of the peptide for diaphorase and predicted binding intensity for 

ferredoxin or FNR. Using this information, 43 peptides were chosen from the list to 

represent as much sequence variability and an even distribution of isoelectric point as 

possible. Of these chosen peptides, 5 sequences had a predicted binding intensity of 50,000 

– 80,000 with respect to diaphorase, 10 between 20,000 – 30,000, 24 between 5,000 – 

15,000, and 5 between 2000 – 3000. Sequences grouped by binding values had a somewhat 

similar sequence space representation. Aside from this, 10 peptides from the arrays were 

also chosen to be synthesized. All the peptides were synthesized by Sigma-Aldrich and the 

complete list can be found in Appendix C. The peptides were received in 2 – 10 mg powder 

form and came with mass spectrometric reports (MALDI-TOF) for quality control (QC). 

The mass of the peptides was also ensured in-lab using MALDI-TOF to verify the QC 

reports. A representative QC MALDI-TOF report is shown in Figure 5.1. Before any 

experiments were conducted, all the peptides were solubilized in 20% DMSO/distilled 

water mixture and stored at 4 °C. 
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Figure 5.1. Representative MALDI-TOF quality control report for the peptide 

GERWVYYEY as provided by Sigma-Aldrich. The theoretical molecular weight of the 

peptide is 1263.397. 

 

5.2.4 Binding Experiments using Surface Plasmon Resonance 

The solubilized peptides were then used to test their binding against three proteins 

- diaphorase, ferredoxin, and FNR using SPR. All of the SPR assays were carried out using 

a Biacore T200 system from Cytiva (www.cytivalifesciences.com/en/us). In these assay 

experiment, the proteins were immobilized over a carboxymethyl dextran matrix 
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covalently attached to the CM5 gold chip, also from Cytiva (Catalog # BR100530). the 

dextran matrix coating of the chip was important for ligand binding to unmodified surfaces. 

The peptides remained in solution and were flowed over the chip. The buffer used for the 

assays was HBS-N buffer (1X, pH = 7.4) with P20 (0.1%), and carboxymethyl dextran 

(1mg/ml), unless noted otherwise. All the assay protocols were maintained using the T200 

software. 

  Before immobilizing the proteins, a pH scouting study was conducted on the chip 

to gauge the pH at which the immobilization will be carried out. This was done to ensure 

the pH conditions under which the dextran surface was coated with the maximum amount 

of protein ligand, resulting in the highest signal intensity. Usually, a pH values which is 

slightly under the isoelectric point of the protein is an optimum condition. Nevertheless, 

scouting different pH values is helpful in finding the ideal condition. In case of all the 3 

proteins, he solubilized protein was introduced to the chip using 10 mM sodium acetate 

buffers at 4 different pH levels (4.0, 4.5, 5.0, and 5.5). After each scouting, the surface was 

washed with 50 mM NaOH. The conditions of pH scouting for the protein, diaphorase, is 

given below in Table 5.3. After scouting for pH, the optimum pH condition that was found 

for diaphorase was pH 5.0. The protein was then immobilized on the 1 flow cell of the CN5 

chip using 10mM sodium acetate buffer at pH 5.0. The condition for immobilization of 

diaphorase is given below in Table 5.4. Similar conditions were used for other proteins. 

Table 5.3. pH Scouting Conditions for Diaphorase 

Protein Concentration Flow rate Contact 

time 

Isoelectric 

Point 

Selected 

Buffer pH 

Diaphorase 50 µg/ml 5 µl/minute 180 s 4.2 4.0,4.5, 5.0, 

5.5 
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Table 5.4. Immobilization of Diaphorase on CM5 Chip 

Protein Concentration Flow 

rate 

Contact 

time 

Buffer pH Immobilization 

response unit 

(RU) 

Diaphorase 50 µg/ml 10 

µl/minute 

360 s Sodium 

Acetate 

5.0 8191 

 

The immobilization of diaphorase on the dextran matrix was carried out covalently 

using N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (or 

NHS/EDC) coupling. The dextran matrix of the chip was activated using 400 mM EDC 

and 100 mM NHS which changes the carboxymethyl groups present on the surface to NHS 

esters.  The NHS esters then reacted with the amine group present in the proteins to 

immobilize it on the surface. Lastly, the immobilized surface was deactivated using 1 M 

ethanolamine that also washed away unreacted protein. After this, the quality of the 

immobilization was verified by testing the binding results of 14 nM anti-diaphorase 

antibody solution. After each binding event, regeneration of the surface was done using 10 

mM glycine solution at pH 3.0.  

Following the completion of the immobilization procedure, the chips were stored 

in 1X HBS-EP buffer (Cytiva) at 4 °C, until utilization (max. 1 week). For the next steps, 

the solubilized peptides were screened for binding to the protein. The screening assays 

were carried out at 25 °C. The peptides were made into stock solutions of 5 µM using 1X 

HBS-N buffer. Before screening, the surface-modified CM5 chip was equilibrated to the 

assay temperature by running 2 cycles of assay buffer. 150 µl of each peptide was pipetted 

into the wells of standard 96-well titer plate, that was inserted into the Biacore T200 

system. Each peptide had 60 seconds of contact time at a flow rate of 30 µl/s. The 
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dissociation time allotted for each peptide was 60 seconds. After each association and 

dissociation event, the response unit was recorded, and the protein surface was regenerated 

using 10 mM glycine (pH 3.0). All response unit values were subtracted from a reference 

cell (no protein) to remove background noise. To ensure that the protein activity was not 

lost over multiple cycles of regeneration, anti-diaphorase antibodies were tested on the chip 

surface periodically during peptide screening. Similar steps were repeated for ferredoxin 

and FNR as well. The excess stocks of peptide solutions were stored in -20 °C for future 

use. 

Post-screening, the peptides that gave rise to a response greater than or equal to 4 

units were chosen to evaluate their dissociation constants for binding to the three proteins. 

For evaluating dissociation constant, each peptide stock solution was serially diluted to 

obtain 7-10 different concentrations. 150 µl of each peptide solution at different 

concentration was then added to a standard 96-well titer plate. During the assay, each 

sample was allotted 90 seconds of association and 120 seconds dissociation time, followed 

by regeneration. The response units were adjusted with respect to the reference cell. For 

each peptide, the set of final response units obtained from the assay was used to calculate 

the dissociation constant, using a graphing software. The equation used for calculating 

dissociation constant is as follows: 

𝑅𝑈 =  
𝑅𝑈𝑚𝑎𝑥 ∗ 𝑐𝑜𝑛𝑐

𝐾𝐷 + 𝑐𝑜𝑛𝑐
 

In this equation, RU is response unit, RUmax is the maximum recorded response unit, conc 

stands for the concentration of the peptide, and KD is the dissociation constant. 
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5.3 RESULTS 

5.3.1 Prediction of Protein Interactions using Machine Learning 

  The binding behavior of three protein were probed in this study (diaphorase, 

ferredoxin, and FNR). All of these three proteins are a part of the light-dependent electron 

transport pathway related to Photosystem I, that is responsible for the reduction of 

nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH. In the in silico study, 

a neural network was first trained on sequence and binding data available from assaying 

these proteins on high-density random sequence peptide microarrays (126,050 unique 

peptides). The random sequence peptide microarrays allowed sparsely sampling sequences 

from the combinatorial space. The predicted binding interactions of the protein were based 

on this sparse sampling of sequence space. Pearson correlation coefficient was used as a 

measure to assess the performance of the models. The correlations between the predicted 

and the measured binding intensities in all the three cases were observed to be greater than 

0.983 (average of 10 runs). The results of the training are shown in Figure 5.2. Upon 

training the neural networks, a comprehensive and quantitative sequence vs. binding 

relationship was obtained for each protein. This quantitative relationship could be used to 

predict the binding relationship between the protein and any peptide from the combinatorial 

sequence space (~1012 peptides). The trained models, specific to each individual protein, 

were then projected on an in silico library of randomly generated peptide sequences (106 

peptides) from the combinatorial sequence space (section 5.2.2).  
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Figure 5.2. Scatter plots showing Pearson correlation coefficients between predicted and 

measured binding of the array peptides (testing set peptides only) for diaphorase, FNR, and 

ferredoxin. Colorbar indicates density of plot points. 

 

5.3.2 Selection and Synthesis of Predicted and Array Peptides 

After projecting the diaphorase-specific models on the in silico peptide library (106 

sequences), 655,361 peptides were chosen that represent various ranges of predicted 

binding to diaphorase (section 5.2.2). Following the selection, the ferredoxin and FNR-

specific models were also projected on to this library to calculate the predicted binding 

intensities of the sequences with respect to these two proteins. The isoelectric points of 

these sequences were also calculated. Aside from these sequences, the isoelectric points of 

the peptides represented on the array were calculated as well. Figure 5.3 shows the 

variation in number of sequences and isoelectric point against a range of binding values, 

both for predicted peptides that were selected among a million, as well as array sequences. 

The binding intensities shown in this figure are for diaphorase related measurements only. 

The selection of the predicted peptides was done on the basis of distribution of binding 

intensities and isoelectric points. 
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Figure 5.3. Distribution of number of sequences vs. binding values (A), and distribution 

isoelectric points against binding values (B), for predicted peptides and array peptides. 

These values are for diaphorase specific models only. All binding values are in relative 

fluorescence units (RFUs). The error bars shown here are standard deviations from the 

mean values. 

 

In Figure 5.3, it can be seen that in case of both predicted and array peptides, 

increase in binding value corresponds with increase in isoelectric point to a certain extent. 

In both the cases, binding intensities greater than 40,000 correspond with mean pI values 

between 10 – 11. However, if lower binding intensities (<30,000) are considered where 

majority of the sequences lie in both the cases, then the observed trends are slightly 

different in the two cases. In case of predicted sequences, the mean pI value dips (pI ~5) 

until it starts going up again, whereas in the case of array sequences the mean pI value 

starts around 5 even in the case of lowest binders and increases gradually. Overall, it can 

be concluded that the highest binding sequences (both measured and predicted) have a 

higher pI than the rest of the sequences. 
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Figure 5.4. Sequence logos of random in silico peptides from predicted binding intensity 

ranges (2000 – 3000, 5000 – 15,000, 20,000 – 30,000, and 50,000 – 80,000 RFUs) for 

diaphorase. The N-terminus is on the left-hand side. Red indicates acidic residues, blue 

indicates basic residues, green and grey indicate non-polar residues, and navy blue 

indicates aromatic residues. 

 

Out of the total number of random peptides that were chosen in silico, 43 peptides 

were chosen to be synthesized, and validate their binding to the three proteins 

experimentally. In order to choose such a small number of peptides from a relatively huge 

list, the whole range of predicted binding intensities were broken down into smaller 

subranges (2000 – 3000, 5000 – 10,000, 20,000 – 30,000, and 50,000 – 80,000). The 

peptides in each of these subranges were aligned using Clustal Omega multiple sequence 

alignment and the sequence logos of the aligned peptides were plotted using MATLAB. 

Figure 5.4 show the sequence logos for each of these binding value subranges.  
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Table 5.5. Number of peptides selected from each source and binding range 

Peptide Source Number of sequences 

High-density peptide microarray  10 

Predicted from projection (2000 – 3000) 5 

Predicted from projection (5000 – 15,000) 24 

Predicted from projection (20,000 – 30,000) 10 

Predicted from projection (50,000 – 80,000) 5 

 

This is done to analyze if there were any common motifs observed among the 

sequences that have similar binding intensities. From Figure 5.4, it can be seen that at lower 

predicted binding range (2000 – 3000) a combination of basic (K, R, H) and acidic (D, E) 

are prevalent. However, acidic residues are slightly favored over the basic residues in this 

case. As the predicted binding intensities go higher up (5000 – 15,000 and 20,000 – 

30,000), charged residues become less prevalent and hydrophobic residues are more 

preferred, especially near the C-terminus (right side). These binding ranges also had the 

greatest number of sequences (Figure 5.3 (A)). It must be noted that the first four positions 

from the N-terminus (left) show almost no preference towards any amino acid residue. This 

is because the randomly generated library of 1 million peptides was divided into smaller 

subsets, which were arranged alphabetically such that the N-terminus and the next few 

consecutive positions (positions 1-4) had more or less equally distributed propensity for all 

the amino acids. Such was done to emulate the representation of the array peptides which 

have a similar property, with more variable representation of residues near N-terminus, due 

to the nature of the array manufacturing process. In case of the highest predicted binding 

ranges (50,000 – 80,000), an overwhelming majority of basic residues, like arginine, can 

be observed near the C-terminus. This is very likely because the basic residues, like 

arginine and lysine, are highly charged causing them to be ‘sticky’ in nature. Owing to 
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their extremely charged nature, they can interact not just with diaphorase, but with a variety 

of other proteins as well.  

 

 

Figure 5.5. Predicted binding distribution of the synthesized peptides for diaphorase, FNR, 

and ferredoxin. The black circles are array peptides and blue circles are predicted peptides. 

The red dashed line represents median of array binding experiments for each protein. 

 

Based on the above observations, a set of 43 representative peptides were chosen 

from each predicted binding intensity range. 10 peptides were chosen from the array 

sequences as well, bringing the total number of peptides up to 54.  The number of peptides 

selected from each category of binding range is given below in Table 5.5. The full list of 

selected peptides can be found in Appendix C. The predicted binding intensities of these 

synthesized peptides for diaphorase, ferredoxin, FNR is shown in Figure 5.5.  
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  It must be noted that in case of diaphorase, the predicted intensities for almost all 

the peptides are above the median measured binding value from the array, but not for FNR 

and ferredoxin. In case of FNR, most of the peptides are below the array mean cut-off, and 

in case of ferredoxin they are more or less evenly distributed across the mean cut-off. Based 

on these observations, and calculations from in silico projections, it was expected that these 

peptides will have higher specificity towards diaphorase than towards the other two 

proteins. Thus, by considering the variation of charge, binding intensities, and observed 

motifs across the peptides, a set of sequences were selected that were likely representative 

of a wide variety of binding interactions with the proteins. 

5.3.3 Initial Screening of Peptides using Surface Plasmon Resonance 

 For experimentally verifying the binding interactions of the selected peptides to the 

three proteins, SPR assay was used. SPR assay is a highly-sensitive label free detection 

method to characterize the protein interactions. The phenomenon of surface plasmon 

resonance occurs when photon from the incident light hits the surface of the thin gold chip 

at a particular angle (Nguyen et al., 2015). The incident light stimulates the surface 

electrons and a portion of the photons couples with the electrons. These electrons then start 

moving parallel to the surface (plasmons). The oscillations from the plasmons generate an 

electric field with a range of ~300nm from the boundary between the gold surface and the 

analyte solution. In the SPR instrument, there’s a light source that constantly interacts with 

the gold surface and incident light is passed through a glass prism with high-refractive 

index. In the absence of any surface interactions, when plasmon oscillations are taking 

place due to SPR, the photons from the incident light are reflected at a certain constant 

angle due to total internal reflection through the prism. When molecular interactions are 
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taking place on the surface of the gold chip, it causes perturbances to the surface plasmon 

movement. These perturbances consequently change the refractive index, therefore 

changing the angle of the reflected light which is then measured by the detector. For 

example, immobilization of a protein on the surface, or ligands binding to the immobilized 

protein will cause a change in mass of the gold surface, causing the refractive index to 

change. The difference in the angle of the reflected light before and after an interaction is 

what is recorded by the instrument. A schematic diagram of SPR is shown in Figure 5.6. 

Aside from the high-sensitivity and label-free detection of this technique, it has also been 

noted that there is a good correlation between the results obtained from SPR and from 

microarray-based assays (Katz et al., 2008, Rotem et al., 2008, Greving et al., 2010). 

Therefore, SPR was chosen as a suitable method to verify the protein-peptide interactions 

in this case as well. 

  
Figure 5.6. Schematic representation of a surface plasmon resonance assay to record 

protein interactions. 

 

  In order to characterize the protein-peptide interactions, the protein has to be first 

immobilized on the surface of the gold chip. To ensure that the proteins can be bound well 
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to the surface, the gold chip was coated with carboxymethyl dextran, which facilitates 

covalent bonding with the protein. Before immobilizing the protein on the chip surface, 

one needs to determine the pH at which maximum immobilization takes place. Usually, 

the immobilization is carried out at a pH which is lower than the over pI of the protein. To 

find the optimal pH for immobilization, the protein binding on the surface is tested at 

different pH conditions. This is known as pH scouting. The pH of the solution was 

maintained using 10 mM sodium acetate of the required pH value. Figure 5.8 shows the 

result of diaphorase immobilization at 4 different pH values (4.0, 4.5, 5.0, and 5.5). It can 

be seen from the figure that at pH 4.0 and 4.5, the protein associated itself to the surface 

and achieved saturation but almost came of completely during the dissociation phase. 

Therefore, they were not suitable for immobilization. At pH 5.5, the protein kept gradually 

attaching to the surface (steeper curve) without reaching saturation. The sudden drop on 

response in the dissociation phase could be attributed to washing away of aggregated 

protein by the buffer solution. At pH 5.0, a gradual increase in protein binding was 

observed which slowed down towards the end of the association phase, indicating that it 

was near saturation. Therefore, pH 5.0 was determined to be the best for carrying out 

diaphorase immobilization. For immobilization, the dextran surface on the chip was 

activated using NHS/EDC coupling, which rendered the surface with NHS-ester 

functionalization. This functional group then covalently reacted with the free amines on 

the protein molecules to immobilize them completely on the surface.  

After immobilization, whether the protein bound correctly or not was checked by 

using anti-diaphorase antibodies. Figure 5.7 also shows the responses recorded from the 

diaphorase immobilized chip in the absence and presence of the antibody. It can be seen 
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that there was an increase in the response signal (maximum response 8493) when 14nM 

antibody was introduced to the protein coated surface, but no significant response (response 

value 8438) was recorded in the absence of the antibody, when compared with the base 

response value of 8435. This indicated that the immobilization of diaphorase on the surface 

of the gold chip was successful. Similar procedures were followed for FNR and ferredoxin 

as well to immobilize them on the surface of the gold chip.  

 
Figure 5.7. SPR Sensorgrams showing results of pH scouting for diaphorase 

immobilization (left) and post-immobilization quality control using anti-diaphorase 

antibodies (right). 

 

When the protein was captured via NHS/EDC coupling of the surface, the 

orientation of the protein on the surface could not be controlled precisely, as any reactive 

amine group on the protein would form a bond with NHS ester. This might lead to the 

blockage of some potentially reactive sites on the protein. Therefore, another method of 

protein immobilization was also explored in this study, which involved capturing the 

proteins on the gold surface with the help of streptavidin-biotin interactions. This method 

helped in immobilizing the proteins with a controlled orientation on the surface. 

Additionally, the use of the streptavidin coated chip was expected to reduce the interactions 
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of the peptides with the surface of the reference cell (no protein). A streptavidin coated 

gold chip was used for this purpose, instead of a carboxymethyl dextran coated one. The 

protein of interest (diaphorase, FNR, or ferredoxin) was conjugated with biotin, and the 

capture on the chip surface took place through streptavidin-biotin interactions.  Although 

it is a non-covalent interaction, it is still a strong interaction because of the high binding 

affinity between streptavidin and biotin. 

 

Figure 5.8. Results of peptide screening (54 peptides) for diaphorase binding using 

NHS/EDC coupling (left) and streptavidin-biotin capture (right). Blue markers are array 

peptides and grey markers are predicted peptides. red line indicates the best fit in both the 

cases. Screening was performed using SPR. 

 

Following the immobilization procedures, screening of the synthesized peptides 

was carried out using SPR, to select the binders for diaphorase among the 54 peptides. 

During the screening process, all the peptides first tested for binding to diaphorase at 1 µM 

concentration each (section 5.2.4). But it was observed that 1 µM was not a sufficiently 

high concentration as SPR response of all the peptides to the protein were low at this 

concentration. The peptide concentration was then increased to 5 µM and better binding 

responses were observed in this case. The comparison of peptide screening for diaphorase 

binding on both the surfaces are shown in Figure 5.8. 
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From Figure 5.8, it can be seen how the binding results vary when two different 

immobilization methods are used. The response values shown here are the relative 

responses, where the reference baseline have already been subtracted from the final 

recorded response. It was observed that the overall SPR responses of the peptides were 

higher in case of streptavidin-biotin capture compared to that of the NHS-EDC capture. It 

is also shown here that the SPR responses of the peptides belonging to different binding 

ranges have a much more pronounced correlation with the observed trend in predicted 

binding. In indicated that the protein orientation on the surface of the gold chip mattered 

when considering interactions with these peptides. Orienting the protein in a consistently 

across the chip surface minimized the non-specific interactions of the analyte, therefore 

resulting in higher recorded response. These results show the importance of 

physicochemical context when considering the molecular interactions of proteins and 

peptides. However, further studies with the streptavidin-biotin capture method could not 

be conducted due to instrument malfunction and constraints with funding. It must be noted 

though that the peptides were in solution in both these cases, as opposed to being 

immobilized on the surface like the microarrays.  

Hence all of the following studies were conducted on SPR chips which had the 

proteins immobilized with the help of NHS-EDC coupling. Figure 5.9 A show the peptide 

screening results carried out for all three proteins, using the same capture method. From 

the results, it was found that peptides PWELYFWRD (peptide 2), QERWFYYEF (peptide 

11), and ARYRRYRRK (peptide 54) showed high binding activity towards all three 

proteins. Peptide 54 showed very high binding compared to the other peptides, for all the 

three proteins, due to its highly positively charged nature, owing to the five arginine and 
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one lysine residue. The peptides that were more selective towards diaphorase compared to 

the other proteins were FAWPAWVAWFE (peptide 5), GEKWFFYEF (peptide 29), and 

AWVDYRRRF (peptide 52). In general, it can be seen from the screening process for 

diaphorase (Figure 5.9 A) that the recorded response units (RUs) from SPR matches the 

trend of the predicted binding value ranges. The peptides from the lower predicted binding 

ranges have lower RUs, whereas peptides from the higher predicted binding ranges have 

higher RU values. 

 

Figure 5.9. (A) Results of peptide binding screening for diaphorase, FNR, and ferredoxin 

using SPR. Array peptides are denoted in blue and predicted peptides are denoted in grey. 

(B) Examples of sensorgrams showing association and dissociation curves from peptides 

with response values greater than 4 (left) and less than 4 (right). 

 

After the screening process was complete, peptides that recorded RU greater than 

or equal to 4 for binding to diaphorase, were short-listed for further assessment and 

evaluation of dissociation constant. The RU threshold for the peptide selection was 

determined based on the shape of the sensorgram observed in each case. Peptides with RU 
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values above 4 were found to have clearly defined association and dissociation curves in 

their sensorgrams, whereas peptides with RUs below 4 had signal-to-noise ratios that were 

insufficient for an accurate determination. An example of each case is shown in Figure 5.9 

B. Based on the RU threshold, 4 out of 10 array peptides, and 18 out of 44 predicted 

peptides made the cut-off. Therefore, the total percentage of successful candidates were 

found to 40% in both the cases.  

It is worth noting that the experimentally recorded response in all the cases were 

much lower than the theoretical maximum response. The theoretical maximum response 

(Response max) is calculated using the formula given below: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑚𝑎𝑥  =  
𝐵𝑜𝑢𝑛𝑑 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑅𝑒𝑝𝑜𝑛𝑠𝑒 ×  𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝑛𝑎𝑙𝑦𝑡𝑒

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐵𝑜𝑢𝑛𝑑 𝑃𝑟𝑜𝑡𝑒𝑖𝑛
 

where bound protein response is equivalent is equivalent to the response recorded during 

protein immobilization. In this case the analytes are the peptides. It was found using this 

equation that the approximate maximum response is around 160. However, most of the 

responses recorded experimentally were under 20% of the theoretical maximum. This 

observation suggested that the assay conditions were probably not optimal at the time 

which will be discussed later in the chapter. 

5.3.4 Measuring Dissociation Constants of the Selected Peptides 

 The next step was to measure the dissociation constant (KD) of the short-

listed peptides by studying their binding affinities at different concentrations. 4 out of the 

10 array peptides and 18 out of the 44 predicted peptides were chosen for this purpose. In 

order to conduct these studies, the peptides were prepared at different concentrations 

(minimum 4 concentrations) with the help of serial dilution. The binding response of the 
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individual peptides to the protein, at different concentrations, was measured using SPR. 

Dissociation constant was then calculated from the response signals recorded at various 

concentrations using the equation given in section 5.2.4. The sensorgram responses from 

the SPR and plots showing the fitting curves for calculation of dissociation constant for 

two of the selected peptides are presented in Figure 5.10.  

 
Figure 5.10. Sensorgrams and plots showing recorded SPR response at different 

concentrations and curve fitting for calculation of dissociation constant respectively, for 

peptides DEKWFVVFV (A) and QERWFYYEFF (B). Each experiment was repeated five 

times and the average response was recorded.  

  

The relationship between measured KD and predicted binding values for the 

predicted peptides have been shown in Figure 5.11. All the measurements presented here 

are with respect to diaphorase binding. No peptides that were predicted to have a binding 

value lower than mean predicted binding intensity (9271.19) were found to have KD values 

less than 10 µM. Interactions with KD value higher than 10 µM are not considered 

physically significant. Among the peptides whose predicted binding value were higher than 
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mean predicted binding, a few peptides were found to have dissociation constants lower 

than 10 µM. In total, six peptides out of the 18 were found to have a KD value that were 

below the acceptable cut-off of 10 µM. Out of the six peptides, 1 was from predicted 

binding range of 5000 -15,000, 3 were from range 20,000 – 30,000, and 2 were from range 

50,000 – 80,000. The two peptides that belonged to the last binding range group were 

highly positively charged, which caused issues with peptide aggregation and unwanted 

binding to reference cell. Although dissociation constants might not be the best measure 

for such reasons to determine binding interactions effectively in this case, it was interesting 

to note that there was some correlation between the predicted binding values and the 

calculated KD values. The list of the peptides whose KD values were less than 10 µM are 

shown in Table 5.6. 

Table 5.6. List of peptides with dissociation constants less than 10 µM as measured by 

SPR during diaphorase binding experiments. 

 

Peptide number Sequence (N-terminus to 

C-terminus) 

Calculated KD value (µM) 

23 QERWFYYEFF 3.60 

35 DEKWFVVVFV 6.58 

38 EERWYVVLV 5.10 

39 PENWVLVVV 4.70 

53 ADGFRRRKR 6.08 

54 ARYRRYRRK 1.99 

 

Following the analyses of the shortlisted predicted peptides, the four array peptides 

were also tested for binding to diaphorase and evaluation of dissociation constant. The 

binding affinities observed on the array differ from the binding affinities observed in SPR 

even for the same protein-peptide pair, due to the changes in the physical and chemical 

environment. The four peptides previously selected were shortlisted from the 10 peptides 
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that were selected for binding to diaphorase on the array. It shows that not all of the binding 

interactions observed on the array are translated to SPR, due to change of assay 

environments. Of the four peptides that were chosen for evaluation of KD, only one peptide 

consistently succeeded in giving reproducible dissociation constant values that were in the 

sub-10 µM range. This further goes on to show that the variability of environments in 

different assays impact the interactions between the proteins and the peptides greatly. The 

responses from the SPR analyses of the four peptides at different concentrations are shown 

in Figure 5.12, as well as the fitting curve of the peptide with reproducible values of 

dissociation constants.  

 
Figure 5.11. Distribution of dissociation constant against predicted binding intensities for 

the predicted peptides. The blue line represents 10 µM cut-off for dissociation constant. 

The red line represents the mean binding intensity of the array peptides. 

 



  164 

 

Figure 5.12. (A) Sensorgrams showing responses measured at different concentrations for 

the shortlisted array peptides binding to diaphorase. (B) Fitting curve for the calculation of 

dissociation constant for peptide KEYQWFYWFD, from the SPR responses at different 

concentrations. Experiment carried out in triplicate. RU is relative response unit. 

 

It should be kept in mind here, that not only are the assay conditions different but 

also the immobilized entities are switched in case of array and SPR. In the arrays, the 
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peptides were the one that were immobilized whereas in case of SPR, the protein is 

immobilized on the surface. If the immobilized entities were kept the same in both cases, 

one might have observed more similar results between SPR and assay experiments. 

Unfortunately, due to limited supply of the proteins and SPR chips, this option was not 

experimentally feasible to further exploration. 

5.3.5 Effects of Substitutions on Peptide Binding 

 One of the most compelling benefits of combining computational and experimental 

approaches, is that they can be used together in an iterative manner to further enhance 

optimization of binding interactions. This beneficial feature was explored in this study as 

well, where substituted sequences of two peptides with known binding to diaphorase (seen 

during screening), were studied computationally as well as experimentally to determine the 

effects of position specific mutations. The two parent peptide sequences which were 

studied for this purpose were AYELVLD (peptide 1, also referred to as B6) and 

QERWFYYEF (peptide 11, also referred to as F12). Firstly, in silico studies were carried 

out to see how well mutations were tolerated at each position, and what effect they would 

have on the binding and specificity. The in silico predicted binding for peptide F-12 and 

its mutagen is shown in Figure 5.13.  

Following the results of the in silico studies, arrays were synthesized at HealthTell 

and assayed for binding to diaphorase. Considering the results from these assays, a handful 

of peptides were synthesized to be studied using SPR. Not only substituted sequences with 

enhanced binding activities were selected but sequences with decreased binding activities 

were selected as well. The list of the synthesized peptides is given Table 5.7. One major 

experimental change that was attempted while assaying the substituted sequences using 
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SPR, was immobilizing the peptides on the chip surface, similar to the array experiments. 

The parent peptides and the substituted sequences were synthesized with polyethylene 

glycol (PEG) – Lysine – biotin linker and streptavidin capture chips were used from Cytiva 

(Catalog # BR100531), which contained a dextran matrix pre-functionalized with 

streptavidin. However, it was realized that diaphorase was interacting too strongly with the 

surface thus resulting in lower relative responses. Attempts were made to thwart these 

interactions by adding surfactants (1% bovine serum albumin), but they were of little avail. 

Therefore, the traditional method where the protein was immobilized on the chip surface 

was used for further assays. 

 

Figure 5.13. Heatmap showing the predicted binding values for the in silico substituted 

sequences of F12_3 (QERWFYYEF) with position specific mutations. The X-axis is the 

representation of the original residues. The Y-axis represents the residue introduced 

through in silico mutation. The predicted binding intensities of the parent peptide are 

underlined.   

 

  Similar to the screening approach described in previous sections, the substituted 

sequences from Table 5.7 were also screened for binding to diaphorase, however the 
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peptide concentration was increased to 10 µM. The results of the initial binding screen are 

shown in Figure 5.14 (A). It can be seen from this figure that the mutagen B6_5 showed a 

higher binding affinity to diaphorase than the parent peptide AYELVLD (B6_1). B6_2 

showed a decreased affinity towards diaphorase. In the case of F12, the substituted 

sequences showed better binding interactions in the screening than the parent peptide 

(F12_3). The negative control, F12_4, showed the least affinity for binding as expected. 

Table 5.7. Synthesized substituted sequences of peptides B6 and F12 

Name Peptide Sequence Observed Feature* 

B6_1 AYELVLD-PEG4-Lys(Biotin) Parent peptide 

B6_2 AYEHVLD-PEG4-Lys(Biotin) L4H -decreased diaphorase binding 

B6_3 QAYELVLDRS-PEG4-Lys(Biotin) Extended sequence – increased 

diaphorase binding 

B6_4 ASYKFLLDY-PEG4-Lys(Biotin) Extended sequence – increased 

diaphorase binding 

B6_5 YKFLPLRY-PEG4-Lys(Biotin) Specific high-affinity binder 

B6_6 SYFPLEY-PEG4-Lys(Biotin) Non-specific binder 

F12_1 QERWFYYEFF-PEG4-Lys(Biotin) Extra F at 10 – improves selectivity 

F12_2 QERWFHYEFF-PEG4-Lys(Biotin) Y6H – improves selectivity towards 

diaphorase 

F12_3 QRWFYYEF-PEG4-Lys(Biotin) Parent peptide 

F12_4 QERWDHYEFF-PEG4-Lys(Biotin) Putative negative control 

F12_5 FEYFRFQEWY-PEG4-Lys(Biotin) Scrambled sequence of F12_1 

* Binding features of each sequence observed during array experiments 

  After the initial screening, some of the substituted sequences were chosen for 

evaluation of dissociation constant to determine the strength of their binding to diaphorase. 

The results shown here are for substituted sequences of F12 (Figure 5.14 B). Substituted 

variants of the B6 peptides were also tested using SPR for determining their KD values but 

reliable KD measurements were not achieved in their case, very likely due to the higher 

concentrations that were required for them to attain saturation (~200 µM). At 
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concentrations this high, peptides are prone to aggregation and are therefore the 

concentration of the free peptide is difficult to control.  

 

Figure 5.14. (A) SPR Screening results of substituted sequences binding to diaphorase. 

(B) Calculated KD values of F12 mutagen peptides for Diaphorase (black) and FNR (red). 

F12_1 and F12_5 represent more selectivity towards diaphorase (yellow boxes). (C) Plots 

showing curve fitting for the calculation of dissociation constant for F12 peptides. Plots in 

the left box represents KD calculated for binding to diaphorase. Plots on the right represents 

binding to FNR. 

 

Different concentrations of the peptides (F12_1, F12_2, F12_3, and F12_5) were 

prepared using serial dilution. KD was evaluated in a similar manner as laid out before in 
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section 5.3.4. KD values were evaluated not only for diaphorase, but for FNR as well to 

determine the specificity of binding. It was observed that the KD values, for binding to 

diaphorase, were lower than 15 µM in case of peptide F12_1, F12_3, and F12_5, while KD 

could not be calculated for peptide F12_2 due to poor signal-to-noise ratio (Figure 5.14 B 

and C). The peptides F12_1 and F12_5 had more binding affinity towards diaphorase than 

FNR, compared to the other two peptides. F12_2 had higher binding affinity towards FNR 

and F12_3 had comparable binding affinity towards both the proteins (Figure 5.14 C). 

These results show that 2 of the substituted sequences of F12 demonstrate an overall 

enhancement in selectivity towards diaphorase. To summarize the findings of these 

experiments, it can be concluded that that the results of the initial binding screening do 

concur with the trends observed from prediction. However, the observed dissociation 

constants of the peptides were not following the trends observed in the predictions. This 

shows that the molecular interactions between proteins and peptides is largely dependent 

on the context of the experiment and findings from any one experiment cannot be used to 

generalize these interactions. 

5.4 DISCUSSION 

In this the chapter how the binding affinities of the same protein-peptide 

interactions differed, based on the context of the interactions and their physical and 

chemical environment, was probed. To evaluate these interactions the measured (arrays) 

and predicted sequence vs. binding relationship for diaphorase, FNR, and ferredoxin, as 

explored by Taguchi et al. (2020), was experimentally probed SPR based binding assays. 

This was done to explore if there was any plausible relationship between predicted binding 

trends and observed binding data for protein-peptide interactions. For the evaluation, a set 
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of 54 peptides were studied. Out of the 54 peptides, 10 sequences were selected from the 

peptides present on the array, with experimentally recognized binding interactions to 

diaphorase and the other two proteins. The rest of the sequences (9-mer) were selected 

from an in silico peptide library which was sampled randomly from the combinatorial 

sequence space. The predictive sequence vs. binding relationships obtained for the three 

proteins was projected on to this library and predicted peptide binders with a wide range 

of binding values (655,361 peptides) were selected by analyzing the projected outcomes. 

The selected group of peptides were further analyzed for isoelectric point distribution and 

observed sequence motifs across different binding ranges (Figures 5.3 and 5.4). Upon 

studying the trends observed in peptides belonging to different binding ranges, 44 peptides 

were chosen out of the 655,361 sequences to be synthesized for experimental verification.  

The results from the following SPR experiments suggests that there is some 

correlation between observed binding and predicted trends. Sequences with more or less 

equal number of negatively charged  and positively charged residues were predicted to 

lower binders for diaphorase (Figure 5.4). Consequently ,in the SPR assays also they were 

found out to be very weak binders to diaphorase (Figure 5.8 and 5.11). Sequences that had 

a smaller number of polar residues and higher number of hydrophobic or non-polar residues 

were found to have higher predicted binding intensities. The peptides were screened using 

SPR with two different protein immobilization method (streptavidin capture and NHS-

EDC coupling). It was found that the results of SPR screening were largely dependent on 

the assay environment and methods of protein immobilization (Figure 5.8). In the SPR 

experiments, some of the sequences were relatively stronger binders to diaphorase with 

consistent KD values below 10 µM. It was found that sequences which had multiple 
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positively charged residues like R and/or K, were predicted as very high binders. In the 

SPR experiments as well, their response signals were relatively higher than the rest of the 

peptides (Figures 5.8 and 5.11). However, not all peptides conform equally to this observed 

relationship. There were several outliers from all the different binding ranges that showed 

little correlation between predicted and measured values. This suggests that while the 

predicted sequence vs. binding relationships broadly matches the observed binding trends 

for different binding ranges, an absolute linear correlation might be hard to define for 

individual peptides. Nevertheless, a generalized relationship such as the one observed here, 

is helpful for picking out suitable binding candidates from a desired range of binding. The 

binding interactions of the selected candidates can then be optimized using a reiterative 

approach, employing both computational and experimental tools. The combined reiterative 

approach mentioned previously, was used in this study, to optimize a peptide with higher 

diaphorase selectivity than the parent peptide (Figures 5.13 and 5.14).  

It also should be pointed out here that the peptides studied here were synthesized 

from the combinatorial space, based on the results of neural network predictions, with no 

known biological significance in literature. If the predicted relationships were to be 

projected on known biologically relevant sequences instead, the observed correlation could 

be expected to have a more clearly defined relationship.  

The binders that were picked from the arrays also behaved differently on the SPR 

platform. There were four peptides that made through the cut-off of the initial binding 

(Figure 5.10) screening, reproducible KD values were obtained only for one of the peptides 

(KEYQWFYWFD). It is essential to note that in case of SPR, the protein was the entity 

immobilized on the surface, but on the arrays the peptides were the ones that were fixed. 
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This causes a reversal of the analytes which are in solution phase. This may have had a role 

to play for the binding differences observed between array and SPR. The issue could be 

that in case of high-density peptide microarrays, the peptides are present very close to each 

other. Thus, these interactions are of different nature than the ones observed SPR. 

Interestingly, according to previously reported literatures (Katz et al.,  2008; Katz et al., 

2010, Greving et al., 2008), good correlation was found between array results and SPR 

studies. As mentioned in the results section (section 5.3.4), attempts were made to 

immobilize the peptides on the SPR chip, to somewhat emulate the binding environment 

of the arrays. But this approach could not be pursued further due to constraints in the supply 

of the proteins. 

It was observed that the peptides that interacted well with diaphorase mostly had a 

lot of aromatic residues (W,F, and Y) in their sequences, indicating that pi-pi interactions 

might play a crucial role in the binding of these peptides to the surface of diaphorase. The 

predicted candidate peptide was thoroughly probed in this study (QERWFYYEF) has five 

aromatic residues (Figure 5.14). Even among the 4 peptides from the array whose KD 

values were evaluated, the one that produced the best reproducible results was 

KEYQWFYWFD which has six aromatic residues (Figure 4.12).  

There were some technical issues that were observed while conducting the assays 

using SPR, such as reference cell binding of the peptides and uneven orientation of the 

protein on the chip surface, that have contributed to measurement errors. Another challenge 

that was a potential cause of error in measurement was the solubility of highly hydrophobic 

peptides. Many of the peptides synthesized for this study had very hydrophobic nature, 

causing them to aggregate in assay buffer solutions. Such aggregations resulted in 
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reproducibility errors during the assay. Although this issue was partially resolved by 

altering the polarity of the buffer solution, it was not completely eliminated.  

In conclusion, this chapter looked into the experimental verification of predicted 

sequence-to-binding relationships and also explored the variations in measurements 

observed between two different assaying platforms. The results suggest that although there 

are some parallels between measured and predicted binding, it varies greatly depending on 

the context. It also explores the possibility of using a combined reiterative methodology to 

optimize the binding and selectivity of computationally predicted peptide. Additionally, it 

sheds light on the quantitative differences in measurements between a microarray and an 

SPR set-up, and challenges that arises with respect to them. For future studies, a larger 

library, comprising of hundreds of peptides, could be used to derive a more comprehensive 

predicted vs. measured relationship, when comparing in silico results using SPR. Care 

should also be taken to develop an effective immobilization strategy with minimal 

reference binding. 



  174 

CHAPTER 6 

DISCUSSION 

Molecular recognition is the main driving force behind all the biomolecular 

functions in living organisms. In case of biopolymers like proteins, the key to molecular 

recognition lies in their sequence information. Even though there are many different 

possible permutation and combinations of sequences for a protein or peptide of a given 

length, molecular recognition helps a protein to identify the correct set of amino acid 

residues that are necessary for a biomolecular interaction. Thus, understanding molecular 

recognition and how it can be defined in terms of sequence space is of fundamental 

significance in biological sciences. The objective of this dissertation has been to understand 

the molecular recognition of proteins, especially monoclonal antibodies, in the context of 

sequence space. This goal was pursued with the help of high-density random sequence 

peptide microarrays and neural network algorithms. 

In order to elucidate a comprehensive relationship between sequence and molecular 

recognition (binding), monoclonal antibodies were chosen as model systems whose 

interactions were studied. The high specificity and the well-characterized binding 

interactions of a monoclonal antibody towards a particular target sequence makes it an 

ideal candidate for studying molecular recognition. Despite their high specificity,  the 

monoclonal antibodies do show some cross-reactivity with other sequences that are not 

cognates. The goal of the project was to exploit these different types of binding interactions 

of the antibodies towards various peptide sequences on a microarray to derive quantitative 

sequence vs. binding relationships. These relationships could then be extended to any 
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sequence from the combinatorial space, to predict their binding interaction with the 

antibodies.  

The use of neural networks to predict sequence vs. binding relationship using data 

from high-throughput random-sequence peptide microarrays was demonstrated by Taguchi 

et al., (2020). In this work, they illustrate the use of a simple feedforward, backpropagated 

neural network to describe the sequence vs. binding relationship of nine proteins. However, 

the molecular interactions of antibodies, especially monoclonal antibodies, differ from 

other proteins, owing to their affinity and specificity towards their target antigens. Thus, 

delineating the sequence vs. binding relationships of highly specific interactions such as 

these is a necessary step towards understanding molecular recognition in terms of sequence 

space.  

In chapter 1, the sequence vs. binding relationships of five monoclonal antibodies 

(DM1A, p53Ab1, p53Ab8, 4C1, and LNKB2) were explored which have known and well-

characterized binding to the sequences present on the peptide microarrays (Legutki et al., 

2014; Richer et al., 2015). These antibodies had their cognate sequences represented among 

the sequence space represented on the microarrays. The five monoclonal antibodies were 

first assayed on the random-sequence high density peptide microarrays that represented 

sparsely sampled sequences from the combinatorial sequence space (126,050 unique 

sequences). Data from these binding assays were then used to train a feedforward, 

backpropagated neural network model, which was based on the model demonstrated by 

Taguchi et al., (2020). The cognate sequences of the monoclonal antibodies were 

deliberately removed from the training set to avoid biasing the algorithm. The 

hyperparameters of the neural network were optimized to accommodate the binding 
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interactions observed in case of monoclonal antibodies (Figure 2.3, Table 2.3). After 

hyperparameter optimization, the neural network was trained 100 times independently for 

each monoclonal antibody. The comparison between the predicted and measured binding 

intensities are shown in Figure 2.4. The performances of the models were also validated by 

projecting the derived sequence vs, binding relationship for each antibody on in silico 

libraries of randomly sampled peptide sequences from the combinatorial space and 

analyzing the motif of the highest predicted binders (Tables 2.5 and 2.6, Figure 2.6). From 

these results it can be seen that the models were accurately able to identify the amino acid 

residues pertinent to the binding interactions of each monoclonal antibody. The algorithm 

was successfully able to predict the cognate sequences of all the monoclonal antibodies 

within the top 0.2% of sequences out of a million peptides. Specificity studies showed that 

the out of the 126,050 peptide sequences on the arrays, only a few hundred sequences were 

actually responsible for defining the molecular interactions of these monoclonal antibodies 

(Figure 2.7). Further analyses (Figure 2.8) indicated that there was a high preference 

towards some of the cognate residues that were favored by the model in case of each 

antibody. The residues which were highly favored were resistant towards in silico 

substitution with other amino acids. It was also found that using a learned encoder for the 

amino acids resulted in better performance of the algorithm, as opposed to a supplied 

encoder (Table 2.7). It was observed that using a supplied encoder, such as 

physicochemical propensities of amino acids, tended to introduce a bias in the algorithm 

towards favoring residues which were sometimes not relevant to the molecular interactions 

of the monoclonal antibodies. Contrary to these observations, an encoder which was 

learned during the training of the algorithm contained no such predisposed bias towards 
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any particular amino acid, and only favored the residues as learned from the binding 

interactions observed on the arrays. Additionally, the efficiency of the algorithm when 

trained on binding data at various concentrations of the monoclonal antibodies was also 

put to test (Figures 2.9 and 2.10, Tables 2.8 and 2.9). It was shown that the model was able 

to capture the relevant binding information even at lower concentration of the monoclonal 

antibodies, provided the binding intensity signals of the peptides were well above the noise 

from the data. Consecutively, some of the binding data at different concentrations were 

fitted together to capture an even broader range of interactions for the monoclonal 

antibodies on the microarray. This approach showed promising results which were 

comparable to the performance of the model when single antibody concentration was used. 

Thus, it was established in this chapter that the neural network could successfully predict 

the molecular interactions of these five monoclonal antibodies, whose binding behavior on 

the arrays were well-characterized.  

The characterizations that were carried out in chapter 2 were evaluated the 

predictive abilities of the model with respect to the combinatorial chemical space. In 

chapter 3 the abilities of the algorithm were assessed with regard to the biological sequence 

space. At first the trained antibody specific models were projected on the sequences of their 

respective target proteins. It was found that in all of the five cases, the algorithm was able 

to recognize the cognate regions on the antigen proteins with very high specificity (Figures 

3.2, 3.3, 3.4, 3.5, and 3.6). It was also able to identify possible regions on the target proteins 

that are not exclusive to the cognate region but might be relevant in the interacting with 

antibodies (Figures 3.7, 3.8, 3.9, 3.10, and 3.11). This was interesting because although 

these monoclonal antibodies have linear epitopes, their interactions on the protein surface 
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were indicated to be conformational in nature. However, to make a conclusive claim more 

structural evidence is needed which can be acquired through experimental methods.  

Further, the trained models were projected on the protein sequences from the human 

proteome (20,361 unique proteins). This was done to see if the models could identify the 

respective target proteins among the large number of biological sequences represented by 

the human proteome (Tables 3.2, 3.3, 3.4, 3.5, and 3.6). It was found that the algorithm 

was able to correctly identify the target proteins of each antibody within the top 10% of the 

predicted high binders. The model had some challenge in predicting the cognate 

interactions of the antibody p53Ab1 when projected on the human proteome, because of 

the valine residues present in its epitope (RHSVV). The valine residues are a commonly 

occurring hydrophobic motif throughout the proteome and therefore a lot of such similar 

sequences were presented to the model, therefore, confounding its predictions to a certain 

extent. However, the model was still able to recognize all the respective target proteins 

among the top binders among these large pool biological sequences. 

The predictive performance of the model so far had been estimated with respect to 

the antibodies which have known and well-characterized binding to the sequences present 

on the microarrays. But in order to develop a comprehensive understanding of how sparsely 

sampled combinatorial peptides can be used to define sequence vs. binding relationship of 

monoclonal antibodies, one would also need to study the antibodies which do not have 

well-defined binding to the sequences present on the microarray. This was demonstrated 

in the chapter 3 of this thesis. Six monoclonal antibodies (3B5, 1D4, 9E10, AU1, Btag, and 

Htag) whose binding interactions on the microarray were not well-characterized were 

chosen for this study. Four of these monoclonal antibodies (1D4, 9E10, AU1, and Btag) 
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have cognate sequences with amino acids that were not represented among the array 

peptides. It was found that the model was able to predict the sequence vs. binding 

relationship of one monoclonal antibody (3B5) from the analyzing the binding interactions 

observed with the array peptides. In this case, the model was accurately able to predict the 

relevant interacting residues both in the chemical space as well as in the biological space 

(Figures 4.2, 4.4, and 4.6, Table 4.5). It must be noted that 3B5 did not have any residue in 

its cognate sequence that were not represented among the array’s sequence space. The 

model failed to predict the interactions of the monoclonal antibodies whose epitopes 

contained residues that were omitted from the array. A lot of hydrophobic residues were 

predicted in these cases. It must be mentioned here that the sequence vs. binding 

relationships that were derived by the algorithm in these cases were representative of the 

interactions that were observed on the array. So, it can be assumed that, in absence of the 

residues that were relevant to them, these antibodies bound non-specifically to a lot of other 

hydrophobic peptide sequences present on the array. Consequently, this also affected the 

learning of the model and an accurate sequence vs. binding relationship was not obtained 

in this case. Thus, this study pointed out the limitations of this approach in attempting to 

define the sequence vs. binding relationship using sparsely sampled combinatorial 

sequences from the peptide microarray. In future using larger random-sequence peptide 

arrays with representation of all 20 canonical amino acids would help the neural network 

achieve better performance with respect to these antibodies. 

Following the predictive performance of the neural network with respect to 

monoclonal antibodies, the changes in sequence vs. binding relationship as observed across 

different platforms, both predictive and experimental, was also probed. The predicted 



  180 

protein-peptide binding relationship was compared to the observed binding relationship 

that was acquired using assay experiments on the arrays and the SPR. The three proteins 

whose molecular interactions were investigated in this study are diaphorase, FNR, and 

ferredoxin. The predictive relationship between these proteins and a number of peptides 

that were randomly sampled in silico was experimentally assessed. It was shown how the 

molecular interactions were affected by the surface of the assaying platform as well as the 

chemical state of the analyte (Figure 5.8). This highlighted that fact that context is 

important in the definition of any molecular interactions Furthermore, the predictions as 

well as the assay results indicated a hydrophobic sequence motif among the peptides 

(KEYQWFYWFD, QERWFYYEF) that was favored for binding to diaphorase. Sequence 

motifs that were predicted for the higher or lower binders, given the amino acid residues, 

were generally found to match the experimental outcomes, both during rapid binding 

screens as well as during the measurement of dissociation constant (Figures 5.4, 5.8, 5.9, 

and 5.10). However, there were technical limitations during this study that did not allow 

the scope to probe these relationships even further. Further a combination of predictive and 

experimental approaches was chosen to demonstrate how the binding interactions differ 

across local sequence space (substitutions of a peptide, Table 5.7) and how it can be used 

to optimize peptide selectivity (Figures 5.13 and 5.14). 

In conclusion, this thesis highlights that it possible to derive comprehensive 

sequence vs. binding relationship between proteins and peptides by analyzing the 

interactions of sparsely sampled peptides from the combinatorial chemical space using a 

neural network. This relationship can then be extended to predict the interactions between 

the protein and any sequence from the combinatorial space. As of now, the major limitation 
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of this approach lies in the fact that the arrays only use 16 of the 20 canonical amino acids. 

Also, the sequence space represented among the arrays (126,050 peptides) is relatively 

smaller compared to the combinatorial space (1012 sequences). If one were to use larger 

arrays, then possibly more binding information could be gathered from the sparsely 

sampled random peptides. Furthermore, one needs to consider how molecular interactions 

vary depending on the physicochemical context of binding and take that into account while 

developing predictive in silico models. Incorporation of information about conformational 

sequences will also help strengthen the predictive capabilities of such an algorithm. In 

future, using such a predictive tool in conjunction with existing experimental 

methodologies will help identify and discover molecular interactions of proteins and 

antibodies with greater speed and accuracy. Such a combined approach would prove 

beneficial in the field of diagnostics and therapeutics research.  
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SUPPLEMENTARY FIGURE FOR CHAPTER 2 
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Supplementary 2.1. Mean squared loss of the training set against the number of training 

steps (50,000) for five monoclonal antibodies used in the study. Points are plotted over 

every 500 steps. 
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Supplementary 5.1. List of Peptides Used in the Study 

# 

Sequence  

[N]-[NH2] 

Mol. 

Weight pI 

Diaphorase 

Predicted 

Binding 

Ferredoxin 

Predicted 

Binding 

FNR 

Predicted 

Binding 

1 AYELVLD 820.95 3.55 6830.5 572.5 3918.2 

2 PWELYFWRD  1310.51 4.184 7078 919.67 3235.7 

3 GGQLVLFDG 904.04 3.75 5578.5 572.67 2752 

4 KEYQWFYWFD 1510.7 4.184 7026 576.33 2237.7 

5 FAWPAWVAWFE 1408.65 3.85 6770.8 748.33 2691.5 

6 FSWFFPWFSE 1378.58 3.85 6599.5 769.33 2432 

7 KSQLFEYVYNE 1418.58 4.258 6530.7 624 2823 

8 WEFKLYAQHVL 1432.71 7.542 5237.5 880 3279.5 

9 PAFRARKLFE 1233.5 10.46 15146 3001.66 50659.3 

10 AWYSYPYFG 1152.3 6.084 6313.3 1232.8 3083.5 

11 QERWFYYEF 1366.52 6.405 12186.6 2063.85 3945.78 

12 PEEYYLYKY 1266.44 3.614 12165.56 919.25 4642.66 

13 RYEEYFFPW 1335.51 4.258 6996.18 1397.23 2771.09 

14 FWGEYFYPP 1204.37 3.85 5858.36 806.54 1976.26 

15 FQYFKVVEE 1187.37 9.298 12034.12 1270.02 4739.42 

16 FLGEVYYDK 1132.29 3.85 5937.88 984.65 2367.49 

17  GERWVYYEY 1263.4 6.405 10919.78 2058.85 4197.21 

18 FEWYELKLV 1225.47 3.614 10162.74 583.38 3981.82 

19 FYVQFEFDR 1249.4 3.85 9510.71 1268.05 3532.01 

20 PEQYYVYPL 1170.35 3.85 8786.78 985.83 2796.76 

21 SFWEVVYDK 1171.33 3.85 5519.06 859.84 2184.04 

22 GRYEVYYDY 1226.33 6.398 8306.9 2122.88 3287.88 

23 QERWFYYEFF 1513.7 4.44 N/A N/A N/A 

24 AYELVLDD 96.04 3.13 N/A N/A N/A 

25 QERWLYYEF 1332.5 6.405 10406.36 2048.23 4029.3 

26 FNYFKVVEE 1173.34 9.298 10787.73 1142.68 3768.94 

27 GELYFYKEF 1194.37 3.85 10835.63 920.65 4000.47 

28 SEQWYYYEF 1313.41 3.85 9424.15 1214.91 3293.48 

29 GEKWFFYEF 1251.43 6.412 11458.65 1654.71 4390.72 

30 KENYYYYEF 1317.44 6.392 7954.68 1272.94 2887.92 

31 GWFEYVYDK 1205.35 3.85 5469.9 843.36 2174.29 

32 FFQEYFYPP 1236.41 3.85 6459.2 767.93 2536.78 

33 FFFQYEFDK 1269.44 3.85 8329.88 760.7 3021.55 

34 NEFYFLKDL 1187.38 3.85 7844.86 879.24 2971.88 

35 DEKWFVVFV 1167.38 4.184 26714.14 2002.33 20962.4 

36 EERYVVVLV 1104.32 4.258 26376.93 2960.48 34218.4 

37 NEPWYVVLV 1117.32 3.85 25086.31 1562.12 12015.6 
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38 EERWYVVLV 1191.41 4.44 24740.01 2896.66 35892.1 

39 PENWVLVVV 1053.27 3.85 26598.99 1807.12 18142.1 

40 SEPWVLVVV 1026.25 3.85 25217.19 1771.28 18348.2 

41 PEPWVLVLV 1050.32 3.64 26949.62 1885.11 16995.9 

42 GDHWVLVLV 1036.25 4.78 29636.08 1980.99 23756 

43 EWEKVVVLV 1099.34 4.258 25435.02 1519.9 15889 

44 GEPWVLVLV 1010.25 3.85 25478.75 1840.27 16350.1 

45 GYHQVEYDR 1165.24 5.364 2145.17 683.2 2126.58 

46 ERFEVQYDY 1247.34 4.258 2999.93 672.12 1920.32 

47 LRHEVQYDY 1221.35 7.551 2772.74 951.29 2346.36 

48 GVEEVLYDR 1078.2 3.614 2912.78 649.64 2304.53 

49 LRHEYNYDY 1271.38 7.543 2643.44 776.07 2292.08 

50 ANGPRRRYR 1144.33 12.5 67855.91 1085.73 68009.9 

51 ANDFRRRKR 1217.42 10.4 63157.07 787.46 46748.4 

52 AWVDYRRRF 1267.48 6.33 62395.15 3216.92 53459.4 

53 ADGFRRRKR 1160.37 10.4 60656.84 933.89 55421.9 

54 ARYRRYRRK 1323.6 11.21 74116.07 727.15 109123 

# = serial number of peptides. Peptide 1 to 10 were selected from the peptides present on 

V13 microarray. 


