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ABSTRACT

The rapid growth of Internet-of-things (IoT) and artificial intelligence applica-

tions have called forth a new computing paradigm–edge computing. Edge computing

applications, such as video surveillance, autonomous driving, and augmented reality,

are highly computationally intensive and require real-time processing. Current edge

systems are typically based on commodity general-purpose hardware such as Central

Processing Units (CPUs) and Graphical Processing Units (GPUs) , which are mainly

designed for large, non-time-sensitive jobs in the cloud and do not match the needs of

the edge workloads. Also, these systems are usually power hungry and are not suit-

able for resource-constrained edge deployments. Such application-hardware mismatch

calls forth a new computing backbone to support the high-bandwidth, low-latency,

and energy-efficient requirements. Also, the new system should be able to support a

variety of edge applications with different characteristics.

This thesis addresses the above challenges by studying the use of Field Pro-

grammable Gate Array (FPGA) -based computing systems for accelerating the edge

workloads, from three critical angles. First, it investigates the feasibility of FPGAs for

edge computing, in comparison to conventional CPUs and GPUs. Second, it studies

the acceleration of common algorithmic characteristics, identified as loop patterns,

using FPGAs, and develops a benchmark tool for analyzing the performance of these

patterns on different accelerators. Third, it designs a new edge computing platform

using multiple clustered FPGAs to provide high-bandwidth and low-latency accel-

eration of convolutional neural networks (CNNs) widely used in edge applications.

Finally, it studies the acceleration of the emerging neural networks, randomly-wired

neural networks, on the multi-FPGA platform.

The experimental results from this work show that the new generation of work-

loads requires rethinking the current edge-computing architecture. First, through the
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acceleration of common loops, it demonstrates that FPGAs can outperform GPUs in

specific loops types up to 14 times. Second, it shows the linear scalability of multi-

FPGA platforms in accelerating neural networks. Third, it demonstrates the supe-

riority of the new scheduler to optimally place randomly-wired neural networks on

multi-FPGA platforms with 81.1 times better throughput than the available schedul-

ing mechanisms.
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Chapter 1

INTRODUCTION

The Internet-of-Things (IoT) will connect 50 billion devices and is expected to

generate 400 Zetta Bytes of data per year by 2020. Even considering the fast-growing

size of the cloud infrastructure, the cloud is projected to fall short by two orders

of magnitude to either transfer, store, or process such vast amount of streaming

data Fowers et al. (2012). Consequently, the consensus in the industry is to ex-

pand our computational infrastructure from data centers towards the edge. Existing

edge servers on the market are simply a miniature version of cloud servers (cloudlet)

which are primarily structured based on CPUs with tightly coupled co-processors

(e.g., GPUs) HPE (2019b,a); Cisco (2019). However, CPUs and GPUs are optimized

towards batch processing of in-memory data and can hardly provide consistent nor

predictable performance for processing streaming data coming dynamically from I/O

channels. Therefore, future edge servers call for a new general-purpose computing

system stack tailored for processing streaming data from various I/O channels at low

power consumption and high energy efficiency.

FPGAs are a great candidate to address the edge-computing challenges by har-

nessing the programmability and the ability to handle streaming data. FPGAs can

be deployed alongside the conventional accelerators and enable a new generation of

heterogeneity for accelerating the different type of IoT application. With the emer-

gence of FPGAs, the benefits of heterogeneous systems become more significant as

the FPGAs can handle a specific class of application, in both the cloud and the edge.
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While FPGAs are a great candidate for the next generation of the edge systems,

there are several challenges the need to be addressed to make effective use of FPGA

accelerators in the edge systems:

1.1 FPGA in the Edge

Over the next decade, a vast number of edge servers will be deployed to the

proximity of IoT devices; a paradigm that is now referred to as fog/edge computing.

There are fundamental differences between traditional cloud and the emerging

edge infrastructure. The cloud infrastructure is mainly designed for (1) fulfilling time-

insensitive applications in a centralized environment; (2) serving interactive requests

from end users; and (3) processing batches of static data loaded from memory/storage

systems. Differently, the emerging edge infrastructure has distinct characteristics, as

it keeps the promise for (1) servicing time-sensitive applications in a geographically

distributed fashion; (2) mainly serving requests from IoT devices, and (3) processing

streams of data from various input/output (I/O) channels. Existing IoT workloads

often arrive with considerable variance in data size and require extensive computation,

such as in the applications of artificial intelligence, machine learning, and natural

language processing. Also, the service requests from IoT devices are usually latency-

sensitive. Therefore, having a predictable performance to various workload sizes is

critical for edge servers.

Existing edge servers on the market are simply a miniature version of cloud servers

(cloudlet) which are primarily structured based on CPUs with tightly coupled co-

processors (e.g., GPUs). However, CPUs and GPUs are optimized towards batch

processing of in-memory data and can hardly provide consistent nor predictable per-

formance for processing streaming data coming dynamically from I/O channels. Fur-

thermore, CPUs and GPUs are power hungry and have limited energy efficiency [4],
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creating enormous difficulties for deploying them in energy- or thermal-constrained

application scenarios. Therefore, future edge servers call for a new general-purpose

computing system stack tailored for processing streaming data from various I/O chan-

nels at low power consumption and high energy efficiency.

OpenCL-based field-programmable gate array (FPGA) computing is a promising

technology for addressing the aforementioned challenges. FPGAs are highly energy-

efficient and adaptive to a variety of workloads. Additionally, the prevalence of high-

level synthesis (HLS) has made them more accessible to existing computing infras-

tructures.

1.2 Loop Acceleration in Heterogeneous Systems

Many applications can benefit from computing on hardware accelerators, ranging

from cloud computing to big-data and edge computing. Examples of these applica-

tions include (1) analysis of large quantity of data on big-data platforms, (2) training

and running artificial intelligence (AI) and machine learning models in the cloud,

(3) processing streams of requests and data from IoT devices, and (4) modeling and

simulating the behaviors of scientific applications.
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By using accelerators, applications can achieve higher throughput Owens et al.

(2008), lower response time Biookaghazadeh et al. (2018), and/or lower energy con-

sumption Fowers et al. (2012).

A variety of accelerators are readily available for applications to choose for their

computation needs in the cloud. Graphics Processing Units (GPUs) are the most

widely used and can be easily found in many HPC and cloud systems. Other types

of accelerators are also becoming increasingly available, e.g., Tensor Processing Units

(TPUs) on the Google cloud and Field-Programmable Gate Arrays (FPGAs) on the

Amazon cloud (F1 nodes). These accelerators come with different capabilities and

limitations. For example, FPGAs can be reconfigured to run any applications but

can provide only low clock frequency; GPUs can be programmed using high-level lan-

guages to accelerate highly parallel applications; and TPUs are specifically designed

for deep learning workloads. Although a general understanding of different acceler-

ators is available, choosing the right accelerators for applications in a heterogeneous

computing system is still a difficult problem.

Several related works have studied the performance of common algorithms on

accelerators. For example, Rodinia benchmark and its follow-up work Zohouri et al.

(2016) are designed to benchmark heterogeneous platforms including CPUs, GPU,

and FPGAs. These benchmarks usually provide insights on a macro level, for a

complete algorithm on a hardware platform. However, they lack a thorough analysis of

micro-level execution patterns that exist in different applications and the effectiveness

of different hardware architectures in handling these patterns.

To address the above challenges, we study how the accelerators with different

hardware architectures can accelerate different types of loops, which are the basic

building blocks of almost every computationally intensive application. These appli-

cations typically consist of one or many nested and flattened loops. These loops can
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embody different patterns in terms of types and degrees of dependency and concur-

rency, and they can be found in many applications. For example, dynamic program-

ming algorithms consist of one or more nested loops, where every iteration depends on

another iteration that points diagonally in the iteration space. Therefore, abstracting

the common loop patterns from applications and understanding how they perform

on various hardware accelerators are essential steps towards optimally utilizing the

accelerators for executing different applications. Although there is a great body of

existing works on loop optimizations Wang et al. (2021); Juega et al. (2014); Kon-

stantinidis et al. (2013); Baghdadi et al. (2019); Simbürger et al. (2013); Trifunovic

et al. (2010); Grosser et al. (2012, 2011); Bastoul (2004); Loechner (1999); Ancourt

and Irigoin (1991); Schreiber et al. (1990); Cousot and Halbwachs (1978); Lamport

(1974), they cannot provide cross-accelerator comparisons that can help developers

choose the right platform for their applications in a heterogeneous computing system.

To support the study of loop accelerations across different platforms, we devel-

oped Loopy, a collection of five fine-grained loop patterns that commonly exist in

real-world applications such as linear algebra, optimization, and data analytics algo-

rithms. Loopy parameterizes the key aspects of these loop patterns, including the

type and degree of dependencies, data bit-precision, operational intensity, and size of

the iteration spaces. It allows them to be flexibly tuned to model diverse loop charac-

teristics. Loopy provides optimized OpenCL implementations of these loop patterns

for both GPU and FPGA, the two most versatile and available accelerators. We fo-

cus on OpenCL because it is an important framework for the emerging heterogeneous

computing paradigm.

Based on Loopy, we evaluated the performance of important loop patterns on

several typical accelerators, including Intel A10 FPGAs and Nvidia T4 and RTX2080

GPUs. Our study made several key findings. First, for three out of five loop de-
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pendency patterns (intra-dimension dependency, conditional dependency, and half-

parallelism half-dependency), FPGA has the potential to outperform GPU. For ex-

ample, for the intra-dimension dependency pattern, the evaluated FPGA outperforms

GPU by 17.5x. Second, for various computational intensities, FPGA can maintain

an identical performance, whereas GPU performance is highly variable. For example,

having eight conditional statements can degrade the GPU performance by up to 45%.

Third, increasing the input data size can increase the performance difference between

these two accelerators. For example, for the diagonal dependency loop pattern, the

performance gap increases by 51%, while changing the input data size from 4MB to

256MB.

1.3 Multi-FPGA Acceleration of AI on the Edge

In recent years, FPGAs have received tremendous attention in the world of neural

network acceleration. FPGAs can provide unique benefits to accelerate Convolutional

Neural Networks (CNNs). First, FPGAs can guarantee tight latency bounds for

incoming requests. Conventional CNN accelerators, i.e., GPUs, have shown the ability

for the acceleration of a batch of requests, by leveraging their farm of processing

cores. Unfortunately, they lack the potential to guarantee low-latency services for

individual requests Zhang et al. (2016, 2018). In contrast to GPUs, FPGAs can

leverage their reconfigurable deep pipeline to service the requests in a streaming

fashion and provide a predictable low latency. Second, conventional processors are

usually power-hungry, which makes them challenging to deploy in power- or energy-

constrained environments. Differently, FPGAs are highly power-efficient due to their

low operational clock frequency. In conclusion, FPGAs are considered as an excellent

platform for accelerating CNNs for deployment.
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The ever-increasing complexity of emerging CNNs requires FPGAs with a higher

amount of resources, such as memory bandwidth and logical units, to achieve low-

latency and high-throughput inferences. Even high-end FPGA chip technologies can

host only a small section of a whole CNN model. For example, the Intel Stratix 10

FPGA can perform only 5000 multiply-accumulation (MAC) operations per clock cy-

cle, which is even less than the total number of operations for a single layer of a typical

CNN, such as VGG-16 or ResNet. As a result, they fall short in handling heavier

CNNs for ultra-low latency (less than ten milliseconds), and high-throughput (more

than 60 images/frames per second). Such a problem is even more significant for ac-

celerating more computationally intensive operations, for example, three-dimensional

(3D) convolutions, which show great potentials in video processing applications. This

challenge can be potentially addressed by utilizing a cluster of FPGAs, connected

through a high-bandwidth communication infrastructure.

Achieving linear speedup using a multi-FPGA solution is not straightforward.

First, we need to have an efficient design on a single FPGA and achieve state-of-the-

art performance. Such performance benefits should be reflected in the acceleration of

various CNN operations. Second, the pipeline of multiple FPGAs should be correctly

managed to ensure that all FPGAs are doing useful works to handle incoming requests.

Third, CNN partitioning, which is the process of mapping different parts of the model

onto different FPGAs, should be done intelligently to make sure the workload is

balanced across the FPGAs.

Related works Zhang et al. (2016); Jiang et al. (2019) have studied the multi-

FPGA acceleration of neural networks. These works come with several limitations.

First, they do not provide a general architecture to accelerate various types of CNNs.

For example, they are only able to accelerate either two-dimensional (2D) or 3D

convolutions, but not both. Second, they do not optimally exploit the FPGA acceler-
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ation resources, which leads to sub-optimal performance, compared to the maximum

theoretical performance of an FPGA. Third, they are designed and developed, using

low-level hardware programming languages (Jiang et al. Jiang et al. (2019) used Xilinx

HLS), which makes it difficult to extend and support by the widely-used deep learning

frameworks, such as Tensorflow Abadi et al. (2016) and Caffe Jia et al. (2014).

In this thesis, we present a novel multi-FPGA CNN accelerator that can leverage

a deep pipeline of FPGAs, connected through a high-performance I/O channel. First,

we adopted the Intel Deep Learning Accelerator (DLA) Aydonat et al. (2017) archi-

tecture and applied various optimizations to achieve an efficient design on a single

FPGA. Using a novel systolic array design, our architecture has reduced the total re-

source consumption of the DLA by up to 25% and increased the overall performance

by 24%. We developed this design using OpenCL, which enables convenient integra-

tion with widely-used deep learning frameworks. Also, it enables the integration of

the accelerator in a heterogeneous environment, where the same OpenCL code can

run across different processors. Second, we extended the design to support data com-

munication with other FPGAs in the pipeline, using a 40Gb/s QSFP+ I/O channel.

Using a network of connected FPGAs enables temporal (distributing the layers onto

different FPGAs) and spatial (splitting a single layer and mapping it onto multiple

FPGAs) parallelization of the layers. Using this configuration, a user can allocate a

set of FPGAs in a network, with no prior information about the network architecture.

The user can interact with these FPGAs as a single FPGA with a large number of

resources. Further, she/he can select a neural network model and deploy it on these

FPGAs. The framework can automatically split the model into several sub-models,

and deploy each sub-model onto an FPGA. This cluster of FPGAs can provide the

same or better latency and energy-efficiency, compared to the available CPU or GPU

solutions. Third, we extended the design to support 3D convolutions, on top of 2D
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convolutions, for certain types of emerging CNN applications. Fourth, we developed

a model and strategy for optimizing the partitioning and the placement of the CNN

layers on the set of available FPGAs in the pipeline.

To demonstrate the feasibility of our framework, we performed multiple experi-

ments using different widely-used CNN models. Our CNN models for the experiments

are VGG-16, Alexnet, and ResNet, which are 2D models commonly used for image

classification, and C3D, which is a 3D model commonly used for video processing.

We deployed these models on a single- and multi-FPGA pipelines. Our results show

that using the multi-FPGA configuration can increase the throughput, almost lin-

early, with respect to the total number of FPGAs. Also, our extended systolic array

shows superior performance (up to 1.7 times), compared to other related works, for

accelerating the 3D convolution-based CNN architectures.

1.4 Scheduling Randomly-Wired Neural Networks

Deep neural networks (DNNs) have outperformed many conventional machine

learning approaches in the level of accuracy improvement. Hence, DNNs are mas-

sively used in various scenarios, such as augmented reality, face recognition, and

object classification. State-of-the-art neural networks leverage deeper and wider ar-

chitectures to improve the accuracy on a larger set of data. Still, they suffer from

feasible performance on a wide variety of hardware platforms. A recent body of work,

Neural Architecture Search (NAS) Zoph and Le (2016); Zoph et al. (2018); Liu et al.

(2018a); Cai et al. (2018); Real et al. (2019); Cheng et al. (2019) and Random Network

Generators Xie et al. (2019); Wortsman et al. (2019), propose a distinct architecture

model, which promises smaller model size. In these new architecture models, which

are generally known as Randomly-Wired Neural Networks (RWNNs), layers can read-

/write the input/output from/to any other layer in the RWNN graph. This is in
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Figure 1.1: Randomly-wired Neural Networks (RWNNs).

contrast with traditional models, where layers are structured linearly and read/write

directly from the predecessor/successor layers. Need to mention, few emergent works,

such as ResNet He et al. (2016) and DenseNet Huang et al. (2017), have exercised the

idea of feeding multiple inputs to a layer but are hand-tuned manually. Such random-

ness of connections between the layers unlocks a larger space of layer orientations,

which helps develop networks with significantly fewer parameters and state-of-the-art

accuracy.

Hardware acceleration is another effort to enable large-scale DNN models in pro-
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duction Sze et al. (2017) efficiently. FPGAs have received tremendous attention in

the world of neural network acceleration Biookaghazadeh et al. (2020). The benefits

of the FPGAs is two-fold. First, they can guarantee tight latency bounds for incom-

ing requests. In other words, FPGAs can leverage their re-configurable deep pipeline

to service the requests in a streaming fashion and provide a predictable low latency.

Second, FPGAs are highly power-efficient due to their low operational clock frequency

compared to other power-hungry processors (CPUs and GPUs). As a result, FPGAs

are considered an excellent platform for accelerating DNNs for deployment.

The recent development of multi-FPGA setups enabled higher throughput Fowers

et al. (2018); Biookaghazadeh et al. (2020) or lower latency Jiang et al. (2019) infer-

ences through mapping the layers onto multiple FPGAs, which are oriented linearly.

For example, Microsoft Brainwave Fowers et al. (2018) leverages a network of FPGAs

to parallelize and pipeline the execution of the layers at scale. In this setup, the DNN

model is being distributed onto the FPGAs by splitting the design, linearly, into N

parts, where N is the number of FPGAs. Further, the layer parameters are being

pre-loaded onto their respective FPGAs memory. Finally, the input stream of data

feeds into the pipeline, and each FPGA performs a portion of the calculation. Doing

so enables improving the performance and energy-efficiency of the DNN acceleration

on the cloud.

The scheduling methods Biookaghazadeh et al. (2018); Chiou (2017) for the avail-

able multi-FPGA setups are not designed for RWNNs, due to their complicated con-

nectivity. As a result, RWNNs cannot fully benefit from running on these multi-FPGA

accelerators. Extending schedulers Abadi et al. (2016); Pytorch (????) to support

RWNNs on these setups requires tackling a few rising challenges. First, unlike con-

ventional DNNs, finding an efficient splitting plan of the model is not straightforward.

The random connectivity between the nodes in the DNN graph exponentially increases
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the mapping’s solution space, making our scheduling an NP-Complete problem. Sec-

ond, the operators’ execution order can affect the overall memory footprint for each

FPGA, which can become an issue for FPGA setups with limited available mem-

ory. This is due to having different execution options for the RWNN graph. Third,

even with perfect schedulers, the large difference of computational overhead between

the layers can adversely affect the balance of load (and ultimately the performance)

between the FPGAs.

To support RWNNs on multi-FPGA setups, we propose a novel scheduler that

efficiently splits and maps the layers on the FPGAs and enables throughput maxi-

mization on the pipeline. In summary, our thesis makes the following contributions:

(1) Throughput-aware mapping of layers onto the FPGA pipeline. Map-

ping the layers onto the FPGAs is a complex topological ordering problem, which

is NP-Complete. We provide a heuristic scheduling algorithm which offers a near-

optimal solution efficiently. We further evaluate various optimization strategies in

our algorithm to assess their performance and effectiveness.

(2) Memory-aware scheduling of sub-graph operations on an FPGA. The

execution order of the operations on an FPGA affects the maximum memory con-

sumption (memory footprint) on the device. A proper ordering can relax memory

footprint to a lower value. In this work, we extend the scheduler to optimize the

memory footprint on each FPGA through an appropriate operation execution order.

(3) FPGA design modification to support RWNNs. RWNNs resemble a dif-

ferent regiment of data communication and operation types, which current FPGAs

do not support. As a result, the available designs need to be extended to be aware

of the random data delivery and the new set of operations used in RWNNs (such as

depth-wise separable convolutions).
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(4) Operation division. The heterogeneity in the operations’ computational com-

plexity can prevent the scheduler from getting the perfect balance of the FPGA

pipeline load. This problem can be alleviated by breaking the large operations into

multiple small operations and re-executing the scheduler.

We believe that these are significant problems and that solving them would sup-

port the effective use of heterogeneous architecture to address the above edge-computing

issues and prepare the next generation of the edge devices for the emerging IoT ap-

plications.

1.5 Problem Statement

We propose EdgeFPGA, an FPGA-Based Edge-computing acceleration solution,

that addresses the previous challenges, in the following aspect:

1. Are FPGAs generally suitable for edge computing?

2. How FPGAs are compared to other processors, while accelerating algorithms

with different characteristics?

3. How FPGAs are suitable as an accelerator for the emerging deep learning ap-

plications? Can they scale to increase the throughput of deep neural network

executions?

4. Are the multi-FPGA systems suitable for the emerging generation of neural

network architectures, specifically randomly-wired neural networks?

1.5.1 Contributions

The first contribution is the comprehensive study of the accelerators suitability

for the edge computing. First, it studies the sensitivity of processing throughput on
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both FPGA and GPU, with respect to the workload size of the application. Sec-

ond, it investigates the adaptiveness of both accelerators to algorithm concurrency

and dependency degrees, which are important to edge workloads. Third, it stud-

ies the energy-efficiency of the accelerators while running algorithms with different

characteristics.

The second contribution is the classification of the common loop patterns and the

comparison of their respective performance on different accelerators. First, it applies

the identification and classification of common loop patterns in computationally in-

tensive applications. Second, it performs optimization on these loops patterns on the

OpenCL-enabled FPGAs and GPGPUs. Third, it evaluates the acceleration poten-

tial of these loop patterns on two different accelerators, concerning key configuration

parameters, such as computational intensity, dependency and concurrency degrees,

and input data size.

The third contribution is the development of a new class of distributed heteroge-

neous system (based on the CPU and the FPGA) for the streaming AI applications.

In this new system, an AI model will be distributed among the available CPUs and

FPGAs. Each accelerator handles a specific part of the model. The accelerators are

connected in a pipelined fashion, where the data is received in an input channel, tra-

verses through the system, and the output is being streamed to the user through the

final accelerator. Unlike conventional distributed systems, this new architecture can

provide high-bandwidth and low-latency services, with much higher energy-efficiency.
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The Final contribution is the design and development of a scheduler for mapping

randomly-wired neural networks on multi-FPGA pipelines. The scheduler guarantees

maximum throughput and minimal memory consumption by proposing three main

techniques: (1) throughput-aware mapping of layers onto the FPGA pipeline, which

is a heuristic algorithm to balance the load amongst the FPGAs in the pipeline, (2)

memory-aware scheduling of sub-graph operations on an FPGA, by recognizing a

proper ordering of operations execution, which can relax the memory footprint to a

lower value, and (3) operation division, which breaks large operations into smaller

operations, and enables scheduler to achieve perfect balance on the FPGAs.

1.5.2 Outline

The rest of the dissertation is organized as follow: Chapter 2 describes the back-

ground; Chapter 3 presents the study on heterogeneous processors in the edge; Chap-

ter 4 presents the loop acceleration benchmark in heterogeneous systems; Chapter

5 presents a multi-FPGA acceleration framework for the AI application; Chapter 6

presents our novel scheduler for mapping randomly-wired neural networks on multi-

FPGA platforms.
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Chapter 2

BACKGROUND

2.1 Edge Computing Paradigms

Edge computing is a novel paradigm which brings computation and data storage

closer to the devices where it’s being gathered, rather than sending data to a remote

location (generally cloud) that can be thousands of miles away (Figure 2.1). This

paradigm helps latency-sensitive application to achieve real-time performance. In

addition, it can reduces costs by having the processing done locally (or near-locally),

reducing the amount of data that needs to be processed in a centralized or cloud-based

location Abbas et al. (2017); Premsankar et al. (2018).

Exponential growth in IoT devices motivated the development of the edge comput-

ing paradigm. These devices are usually connected to the internet for either receiving

information from the cloud or delivering data back to the cloud. Most IoT devices are

Figure 2.1: Edge-computing Architecture. Source: Alibaba Cloud. 2020. What Is

Edge Computing?
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generating massive amount of data. Examples are: devices that monitor manufac-

turing equipment on a factory floor, or a CCTV video camera that sends live footage

from a remote geo-location. These scenarios can easily overwhelm the capacity of the

cloud and internet, which requires computing paradigm rethinking. Edge-computing

architecture can help solve the aforementioned problem by acting as the local pro-

cessing gateway for many use cases. For example, a local edge cloudlet can process

incoming video from street camera to perform traffic detection, and then send only

the relevant data back through the cloud, reducing bandwidth.

Edge-computing introduces several benefits, which cannot be given by the avail-

able cloud-computing paradigm. Here we provide an iteration over these benefits:

Time-Sensitivity. Edge-computing workloads are typically serving a heterogeneous

set of applications that demand a tightly-bounded response time Chiang and Zhang

(2016). One main example of these applications is IoT devices. Typical IoT de-

vices and sensors, such as cameras, robotic arms, temperature sensors, etc. are con-

stantly generating data and sending requests (along with the input data) to the service

providers. These providers are running services that receive these requests, process

them alongside the input data, and send the result back to the device. Most of these

devices are required to react to an environmental or a user input and make fast and

predictable actions, respectively. Table 2.1 represents the average acceptable delay

for different sets of applications. Conclusively, the target services are required to: (1)

provide a real-time (or near real-time) responses, and (2) send the result back in a

timely-predictive manner. Need to mention that typical IoT and user devices lack the

proper resource requirements (such as CPU and I/O) to process the requests locally.

The time-sensitivity characteristic of the emerging IoT devices and sensors sets

them apart from the traditional cloud-computing applications. The traditional cloud

services are mainly designed for: (1) fulfilling time-insensitive applications in a cen-
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Service Type Acceptable Delay

Online Games < 1000 ms

Omnipresent 1000 ms

Third person avatar 500 ms

First person avatar 100 ms

Audio Services < 450 ms

Voice over IP 200 ms

Video Services < 150 ms

Video over IP 70 ms

Data < 400 ms

Medical Data Transfer 100 - 400 ms

Tele-surgery 300 ms

Electrocardiogram 1000 ms

Non Real-time Services Few Seconds

Table 2.1: Acceptable Delays for Different Services. Claypool and Claypool (2006);

Dusi et al. (2012); Skorin-Kapov and Matijasevic (2010)

tralized environment; (2) serving interactive requests from end-users; and (3) pro-

cessing batches of data, coming from a single source. In contrast, edge-computing

services have to service time-sensitive applications from IoT and also end-user de-

vices. We conclude that Time-Sensitivity is one of the essential characteristics of

edge-computing workloads that have limited existence in the previous generation of

workloads.

Location-Awareness: The distribution of the IoT and end-user devices has intro-

duced heterogeneity as one of the main characteristics of the emerging edge-computing
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applications. Typical IoT workloads rely on the end-device requests, alongside the

historical/geographical relative data to prepare the most proper response ?. In other

words, the same IoT workload that follows a deterministic algorithm to serve the

request may rely on dynamic input data to provide the correct answer. For exam-

ple, a traffic monitoring system may follow the same abstraction to detect a general

version of an incident of jay-walking, but it requires the sample data from the local

cross-section to provide the highest possible accurate response. Such characteristic

makes the edge-computing workloads to operate in a federated manner, as opposed

to the traditional centralized computing model.

The sensitivity of the edge-computing workloads to the proximal historical and

geographical data makes them different from the legacy cloud computing workloads.

Traditional cloud workloads have access to all the data, which makes it hard to adapt

to a small group of requests. In contrast, the edge-computing paradigm helps serving

requests, for their specific related spatial and temporal information. One may argue

that the traditional cloud solution can provide various customized services, based on

the sets of specific historical/geographical data and the end-users. Unfortunately, the

growth rate of these services is going beyond the capability of the cloud, which is

hard to maintain. Also, it cannot fulfill the emerging security requirements of the

edge-computing applications. We can conclude that Location-Awareness is one of the

unique characteristics of the emerging edge-computing workloads.

Security: Achieving proper security for the emerging edge-computing workloads is

a challenging and burdensome task. The main differences between the traditional

cloud-user workload security model and the edge-computing security model can be

iterated as below Hsu et al. (2018):
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Protocol Description

Message Queue Telemetry Transport

(MQTT)

Lightweight protocol for sending simple data flows

from sensors to applications and middleware

Data Distribution Service (DDS)

An IoT standard for real-time scalable and high-

performance machine-to-machine communication

Advanced Message Queuing Protocol

(AMQP)

An application layer protocol for message-oriented

middleware environment

Bluetooth

A short range communication technology integrated

into most smartphones and mobile devices

ZigBee

A low-power, low data-rate wireless network used

mostly in industrial settings, (6) WiFi, which is the

technology for radio wireless networks of devices

WiFi The technology for radio wireless networks of devices

Cellular

The basis of mobile phone networks, but is also suit-

able for IoT apps

Long Range Wide Area Network (Lo-

RaWAN)
A protocol for wide area networks

Table 2.2: Most Popular Internet of Things (IoT) Protocols, Standards and Commu-

nication Technologies. Hunkeler et al. (2008); Beckmann and Dedi (2015); Vinoski

(2006); Haartsen (2003); Farahani (2011); Adelantado et al. (2017)
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• Heterogeneous Security Protocols: Different IoT workloads are utilizing

different light-weight communication protocols to transmit/receive data be-

tween the IoT endpoints, the service-provider cloudlets, and the centralized

cloud. Unlike the traditional cloud-user paradigm, where the communication

is usually based on a heavy multi-layer standard protocol, the IoT devices

are relying on light-weight and customized communication stack. Examples

of these protocols are demonstrated in table 2.2. Lack of homogeneity in the

edge-computing workloads’ communications makes it hard to guarantee a cus-

tomized and fine-grained secure access control. This specific challenge requires

rethinking the traditional security management and enforcement for the emerg-

ing edge-computing workloads.

• Limited Computing Resources: Requests for the edge-computing workloads

are mainly generated by the massive number of IoT devices. These devices are

usually sensors and small-sized cameras, with limited computational and stor-

age capabilities. Traditional security protocols require expensive cryptography

processing, which is out of the capabilities of such devices. As a result, edge-

computing workloads are not able to adapt to traditional security mechanisms.

Hsu et al. Hsu et al. (2018) have proposed a unique edge-computing solution

to address the upcoming challenges. In this framework, routers, base stations, and

other near-edge boxes acting in this new security role would handle the computing

that the IoT devices can’t (due to size, power limitations, and so on). Researchers say

this will not only be more secure, but it will also simplify the management of keys.

Cryptographic key disclosure risk increases as more keys, or passwords, need to be

implemented by applications. The solution would also be more scalable. Based on the

above challenges, edge-computing workloads request for new security enforcement.
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2.2 Edge Computing Platforms

Computing the IoT requests is one main aspect of the edge platforms, which should

be provisioned inside the edge cloudlet servers. Existing edge servers on the market

are simply a miniature version of cloud servers which are primarily structured based

on CPUs with tightly coupled co-processors (e.g., GPUs). However, CPUs and GPUs

are optimized towards batch processing types of workloads, and cannot fulfill latency-

sensitive and streaming IoT requests. Therefore, the next generation of the edge

servers should come with a complimentary processing element, which directly aims

toward the edge-computing workloads. These processing elements should embody

three specific features. First, they need to be able to service streaming workloads

in a real-time (or near real-time) fashion. While CPUs and GPUs can generally

provide reasonable performance, they cannot fulfill workloads with a certain type of

latency boundaries. As a result, edge servers should be equipped with processors that

can provide fast responses for individual requests. Second, they need to support a

wide variety of applications with different characteristics. Edge-computing workloads

cover a wide variety of services, with various computing patterns. These patterns are

reflected as the degree and the type of flow and the dependency in the algorithm. The

upcoming edge server processors should be able to provide reasonable coverage for a

wide array of edge applications. Third, they need to be suitable for both single and

batch of input requests. IoT requests can come in different quantity and shapes. An

appropriate edge-computing platform should efficiently support all of these requests.

Energy-efficiency is an important part of the edge-computing platforms. These

platforms are going to be deployed as cloudlets, with variable scales in a geo-distributed

fashion. Unlike centralized cloud data centers, many of the cloudlets may face lim-

ited energy availability in various geographical locations. Besides, cooling can be
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another major problem for servers with a considerable amount of heat generation.

To guarantee maximum availability, edge-servers need to be redesigned to operate

in a low-power mode, while maintaining good computational efficiency. Available

processors in the current edge servers (CPUs and GPUs) are power hungry and have

limited energy-efficiency and are creating enormous difficulties for deploying them in

energy- and thermal-constrained scenarios. As a result, power-consuming components

of these servers need to be replaced with other identical counterparts that consume

much less energy and provide better or equal energy-efficiency.

Edge-computing platforms (more specifically, edge-computing servers) need to

be flexible enough to support various I/O channels. In an edge-computing setup,

the majority of the requests are coming from the IoT devices. Each type of these

IoT sensors is equipped with a different type of I/O transmitter/receiver. Unlike

the centralized cloud model, where the users and cloud servers are all equipped with

standard communication mediums, in edge-computing paradigm every device is using

different communication hardware. Enabling communications between two different

hardware mediums requires the addition of hardware and software translators into the

edge-servers and IoT stacks. Unfortunately, the IoT devices cannot expand beyond

their dedicated hardware resources. As a result, the edge-servers need to compensate

for this problem, by adding support for various I/O communication protocols, either

by using the software or the hardware.

2.3 Hardware Acceleration and FPGAs

Hardware acceleration is a crucial enabler of the High-Performance Computing

(HPC) applications. Due to the computational intensity of HPC workloads, CPUs

cannot deliver a reasonable performance for latency-critical applications. This prob-

lem leads to the utilization of hardware accelerators, such as GPUs, FPGAs, and
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TPUs Jouppi et al. (2017). Unlike CPUs, hardware accelerators can exploit their

massive parallelism to split major functions into thousands of parallel operations,

and ultimately reduce the overall computation time. GPUs have been extensively

studied and utilized for the acceleration of HPC workloads. While GPUs are highly

effective in handling applications with high level of concurrency and regular memory

access patterns, they come short for applications with a high degree of dependency,

and/or a high number of conditional branches. Examples of these applications include

graph processing Cong et al. (2018b), sorting Koch and Torresen (2011), small signal

processing problems Duan et al. (2011), and sparse linear algebra Zhang et al. (2009).

Widely-used deep learning frameworks, such as TensorFlow Abadi et al. (2016) and

Caffe Jia et al. (2014), rely on GPUs to deliver acceptable performance for both the

training and the inference. Recently, FPGAs have captured the right amount of at-

tention due to their flexibility and reconfigurability. FPGAs are proven to be able

to provide much lower latency, compared to CPU and GPU, for applications with

latency-critical conditions Zhang et al. (2016, 2018). Different from widely-adopted

GPUs and CPUs, FPGAs can accelerate almost all types of algorithms (irrespective

to their computational pattern), due to their reconfigurability. Also, they can pro-

vide a much better energy-efficiency, compared to CPUs and GPUs, which is crucial

for energy-restricted environments, such as edge computing Biookaghazadeh et al.

(2018); Zhang et al. (2016).

Recent advancements in high-level languages have made it easy to program and

use accelerators, specially FPGAs, for various applications. For example, developers

can use C or C++ to describe their algorithm and compile and deploy it on a target

accelerator. Hardware accelerator vendors have integrated OpenCL, a heterogeneous

parallel programming language, with their platforms. OpenCL has several benefits

for software developers and systems designers. It provides ease of development by
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keeping a higher abstraction, at the cost of an acceptable performance loss. Also,

it enables software engineers to take advantage of the ultimate performance and the

energy-efficiency of an available platform. Using OpenCL, developers can describe

their algorithm in standard representation, and target all available accelerators, such

as GPUs, CPUs, and DSPs. To port OpenCL across different platforms, a developer

needs only to make minor modifications to utilize the unique features of the target

platform fully.

2.3.1 Parallelism

Algorithms can be parallelized either temporally or spatially.

Spatial Parallelism. In spatial parallelism Freitas and Lavington (2000), processing

elements (PEs) execute the same task (SIMD) or multiple different tasks (MIMD),

simultaneously. Both GPU and FPGA are able to exploit spatial parallelism in al-

gorithms. The amount of data dependency between the iterations of the loops in

the algorithm can decide the level of achievable spatial parallelism on the target ar-

chitecture. In another word, having less data dependency increases the opportunity

of speedup on parallel architectures, such as GPUs and FPGAs. In general, GPUs

are better at exploiting spatial parallelism, because FPGAs cannot adopt as many

compute cores as GPUs, and FPGAs also tend to operate at a lower clock frequency,

up to 2-5 times slower than GPUs.

Temporal Parallelism. In temporal parallelism Freitas and Lavington (2000), pro-

cessing tasks that have a dependency on each other are mapped onto different PEs

and execute in parallel in a pipeline fashion. Data processing has multiple stages,

and each stage is being handled by one PE. In this multi-stage pipeline, as data is

processed by the element PEi, it is sent to the next element PEi+1 and element PEi

moves on to handle new data coming from the previous stage. In the cases where a
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single task cannot fully occupy the available PEs, multiple tasks can be interleaved

and mapped onto the PEs to increase the temporal parallelism.

Among general purpose accelerators, FPGAs are exclusively able to exploit coarse-

grained temporal parallelism in the algorithms, due to their reconfigurability. SIMD

platforms like GPU can perform at most one instruction at a time on each available

core, whereas FPGA can execute hundreds of operations on all available stages in

the pipeline. Need to mention, while GPUs can launch multiple kernel streams in

a pipeline fashion, they cannot achieve the fine-grained pipeline parallelism. One

can mimic pipeline parallelism by launching consecutive kernels (e.g., CUDA stream

kernels). Still, the data between different stages should be stored and delivered to

the main memory, an expensive operation. On the contrary, FPGAs utilize connected

registers between PEs to transfer the data.

Figure 2.2 depicts both parallelism dimensions. Each circle represents an individ-

ual iteration in a set of nested loop blocks. The (i, j) pair in each circle represents the

ith iteration in the first dimension and the jth iteration in the second dimension. The

arrow represents the dependency of one iteration on another, e.g., (1,2) depends on

(1,1). Each iteration usually involves separate calculation for a specific indexed item

or accumulation on a shared value among iterations of a loop block. The dashed box

contains iterations with zero dependency, which can be easily parallelized spatially.

On the other hand, the dotted box contains iterations with data dependency, which

cannot be parallelizaed spatially but may have the potential to be parallelized tem-

porally. We use the above format throughout the paper to represents the dependency

flow.

In summary, GPUs excel at exploiting spatial parallelism but cannot utilize tem-

poral parallelism, whereas FPGAs can take good advantage of both types of paral-

lelism. However, despite this general understanding of GPU’s and FPGA’s different
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Figure 2.2: Spatial and Temporal Parallelism in Multiple Iteration Dimensions.

strengths, it is still difficult to understand which accelerator works the best for which

algorithm. Every single application consists of different types and degrees of condi-

tional and data dependencies. Developers usually need to implement the code for

different accelerators and then apply several different transformations on the algo-

rithm to assess the acceleration potentials on different devices. Understanding the

relationship between common micro-level patterns such as loop patterns and their

potential acceleration can reduce the effort of choosing the right device. These are

the motivations for our study on loop acceleration using GPUs and FPGAs, which,

to the best of our knowledge, is the first.

2.3.2 Automatic Loop Optimization

Algorithms are composed of one or many loops, either nested or flattened. The

acceleration of algorithms is the process of acceleration of the loops, using paralleliza-

tion and pipelining methods.

Automatic loop optimization (generally parallelization) dates back to an article by
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Lamport Lamport (1974) which discusses parallel execution of do loops. Later, several

other researchers continued the effort and developed the groundbreaking approach of

using linear algebraic methods to analyze, transform, and parallelize loops, namely

polyhedral compilation Cousot and Halbwachs (1978); Schreiber et al. (1990); Ancourt

and Irigoin (1991); Loechner (1999); Bastoul (2004).

Polyhedral compilation is used in a wide range of applications, including automatic

parallelization, SIMDization, code generation for hardware accelerators, and memory

and cache consumption optimization. It models nested loops and arrays into an

algebraic format while presenting specific constraints, such as dependencies. Further,

it uses particular types of algebraic transformation that guarantee the loop’s semantic

and correctness and generates a new model, typically optimized toward a specific cost

model. Finally, the model is translated back into an execution code that can run on

hardware.

The polyhedral compilation has limitations. First, it does not provide cross-

accelerator comparisons. Such limitation prevents developers from understanding the

correlation between the loop patterns and the speedup capabilities of accelerators.

Second, polyhedral compilers, such as Polly Grosser et al. (2011, 2012), Graphite Tri-

funovic et al. (2010), and a more recent compiler called Tiramisu Baghdadi et al.

(2019) can only optimize specific routines in domain-specific applications, such as

dense linear algebra, tensor operations, and stencil computations. Also, they are only

able to provide roughly 10% performance improvement Simbürger et al. (2013). Fi-

nally, the polyhedral compilation is not well-studied on GPUs and FPGAs compared

to CPUs Konstantinidis et al. (2013); Juega et al. (2014); Wang et al. (2021), making

it less effective for accelerators.

In summary, polyhedral compilation lacks the ability to demonstrate the effective-

ness of different hardware accelerators while considering an algorithm or an applica-
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Figure 2.3: Intel Arria 10 FPGA Internal Architecture. Source: Intel Inc ©.

tion. Loopy aims to unlock insights into accelerating typical loop patterns that can

be generally found in many applications with important accelerators such as GPUs

and FPGAs.

2.3.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a farm of logic, computation, and

storage resources that can be configured dynamically (Figure 2.3 depicts a sample

Intel Arria 10 FPGA architecture). FPGAs can be reconfigured to execute an algo-

rithm in a dedicated form. They have successfully been used in many application

domains. Despite their impressive acceleration power, programming and optimiza-

tion difficulties have been serious obstacles to the wider adoption of FPGAs. Recent

advancements in supporting high-level synthesis (HLS) have made it possible to pro-

gram FPGAs using high-level languages, especially OpenCL Munshi (2009), which

has made FPGAs much easier to use and much more accessible to applications. Even

though an HLS-based program may not perform as well as a carefully hand-crafted

HDL program, the productivity enabled by HLS is often far more important.
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Application Device Latency (seconds)

Fractal Video Compression Chen

and Singh (2013)
CPU 0.217

GPU 0.018

FPGA 0.013

Real-time Stereo Vision Kalarot

and Morris (2010)
CPU N/A

GPU 0.05

FPGA 0.033

Convolutional Neural Net-

works Zhang et al. (2018)
CPU 0.73

GPU 0.023

FPGA 0.025

Table 2.3: Latency comparison between GPU, CPU and FPGA

The unique features of the FPGAs make them a great candidate for future edge-

computing platforms. Below we iterate on how FPGAs can fulfill edge-computing

workload demands:

• Accelerating time-sensitive applications: FPGAs can easily be reconfig-

ured to accelerate a specific algorithm in a dedicated fashion. This unique

feature can serve a time-sensitive application from two different perspectives.

First, the FPGA can specifically reflect the execution path of the algorithm on

the chip, which helps to avoid all the overheads that exist in the general-purpose

accelerators and provide much lower latency. Second, It can guarantee a tight

latency boundary for the target IoTs or the user devices since the number of
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cycles and the length of each cycle to finish the whole execution on the board is

known beforehand. Table 2.3 represents the capability of various accelerators in

executing sample applications. FPGAs can deliver better latency for handling

a single piece of data, compared to CPUs and GPUs.

• Accelerating streaming input: Unlike GPUs and CPUs that are optimized

for batch processing of the data from the memory, FPGAs are inherently ef-

ficient for accelerating streaming applications. A pipelined streaming archi-

tecture with a data flow control can be easily built on an FPGA to process

streams of data and commands from I/O channels and generate output results

at a constant throughput with reduced latency.

• Adaptiveness to algorithm characteristics: Edge-computing platforms are

required to service a wide variety of applications in the cloudlets. FPGAs can

adapt to any algorithm characteristics due to their hardware flexibility. Differ-

ent from CPUs and GPUs that can mostly exploit spatial parallelism, FPGAs

can exploit both spatial and temporal parallelism at a finer granularity in a

larger scale. FPGAs can construct both types of parallelism using their abun-

dant computing resources and pipeline registers. Biookaghazadeh et al. Biook-

aghazadeh et al. (2018) have demonstrated the feasibility of the FPGAs in

handling loops with variable data dependency. Higher data dependency among

the iterations leads to less opportunity for spatial parallelism and higher op-

portunity for temporal parallelism. In their experiments, FPGA can adapt and

exploit the temporal parallelism.

• Energy-Efficiency: FPGAs consume significantly lower power compared to

CPUs and GPUs for delivering a comparable throughput, allowing for improved

thermal stability and reduced cooling cost. Table 2.4 represents the total power
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Application Device Power (watts)

Sliding-Window Applica-

tion Fowers et al. (2012)
CPU 130

GPU 274.5

FPGA 20

Fractal Video Compression Chen

and Singh (2013)
CPU 130

GPU 215

FPGA 25

Dense Linear Algebra Zohouri

et al. (2016)
CPU 78.64

GPU 184.41

FPGA 29.48

Convolutional Neural Net-

works Zhang et al. (2016)
CPU 87.3

GPU 328.3

FPGA 19.1

Table 2.4: Power consumption comparison between GPU, CPU and FPGA

consumption of common accelerators while executing widely-used algorithms.

Based on these results, FPGAs consume around 16 and 3.59 times less power,

compared to the GPU and the CPU. This merit is critically needed for edge

servers, considering their limited form factors.

Despite all the above benefits, FPGAs lack certain benefits, compared to GPUs

and CPUs. Below we iterate on how FPGAs come short comparing to GPUs and
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CPUs, specially on edge workloads:

• Low clock frequency: The operation clock frequency of the FPGAs is usu-

ally between 200 to 300 MHz. This is much less than the clock frequency of

CPUs and GPUs, which can go beyond 2GHz. This massive difference can cause

FPGAs to under-perform for certain applications with certain input types and

sizes. For example, with the same amount of parallelism on an FPGA and

another accelerator, the higher clock frequency can lead to much higher per-

formance. As a result, the FPGA may perform poorly in specific applications,

compared to the other accelerators.

• Limited hardware resources: FPGAs are equipped with certain types of

resources, such as Digital Signal Processors (DSPs), Lookup Tables (LUTs),

Flip-Flops (FFs), etc. The total number of these resources are limited by the

physical area of the FPGA chip. Compared to the ASIC accelerators (CPU and

GPU), FPGAs can adopt a much smaller number of processing elements. As

a result, they can deliver a limited amount of parallelism in the space domain

(spatial parallelism). This limitation makes FPGAs not suitable for applications

with a high degree of spatial parallelism.

• Difficult programmability: Originally, FPGAs can be programmed using

hardware description languages (HDLs), such as VHDL and Verilog. Recent

advancements have improved the programmability of these devices, by enabling

developers to use higher-level programming languages, such as C/C++, to de-

scribe and compile their algorithms on the target FPGAs. Unfortunately, even

with the availability of these languages, hardware developers need to spend a

considerable amount of time to fully customize the design for the FPGA, to get

the highest possible performance. Hence, FPGAs is only accessible by a limited
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group of hardware developers, but not the general software community. On the

other hand, GPUs and CPUs are supported by highly efficient compilers and

a large number of libraries, which makes them accessible to a diverse group of

users.

Recent observations of the workload in various domains, such as IoT and cloud,

have detected a common set of operations and utilities (we call them idioms) that

are frequently used in various applications. As an example, Deep Neural Networks

(DNNs) are one of the emerging applications on the edge. DNNs are vastly being

used in image and video processing for object and motion detection, and many other

useful applications. The main building block of these DNNs are convolutions and

matrix multiplications, where the convolutions can also be represented as matrix

multiplications. As a result, matrix multiplication can be counted as one of the widely-

used idioms. Another example is the serialization and the deserialization of the data

over the networks, between the applications and the services. A recent profiling ?

by Google shows a considerable share of the above functionalities in the Google data

center. Acceleration of these idioms can improve the performance of a diverse set

of applications. Need to mention that the same trend has been observed in mobile

computing applications, which has led to the development of the SoC architectures.

With the ever-growing adoption of the FPGAs, software, and hardware developers

are required to repetitively develop and map the above idioms, which can reduce the

overall productivity and will consume a large number of valuable resources on the

chip. The new FPGA chip technologies are moving toward the adaptation of coarse-

grained resources, such as ARM cores, vector processors, etc. For example, the new

FPGA family from Xilinx, which is called ACAP, is geared with various computing

components. Based upon the ACAP’s description Vissers (2019), it is equipped with

three main components, which are the scalar engine, the adaptable engine, and the
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Figure 2.4: ACAP hardware architecture. Source: Xilinx Inc ©.

intelligent engine. The scalar engine is built from two dual-core ARM Cortex proces-

sors. The adaptable engine is made up of programmable logic and memory cells (an

FPGA). Finally, the intelligent engine is an array of innovative VLIW and multiple

SIMD processing engines. Figure 2.4 represents the overall architecture of the ACAP

chipsets. These resources can be used by the compiler tool-chains and libraries to

accelerate the common idioms, and avoid wasting the resources on the chip. Need to

mention that the above arguments are also applicable to the available SoC+FPGA

accelerators, such as Intel Arria 10 SX family.

The upcoming FPGAs with coarse-grained resources can benefit edge-computing

workloads in various ways. First, having resources to accelerate common idioms in

the edge application can help to reduce the processing time and better serve the

time-sensitive IoTs. It is quite common to have edge cloudlets that are designed
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to serve a family of applications in a small area. For example, a cloudlet in a city

may provide visual AI services, such as video and image processing. In these cases,

having common components, such as encoder/decoder, vector processors, etc. can

significantly help the acceleration of these workloads. Second, these resources can

lead to better energy-efficiency. The ASIC version of these idioms consumes much

smaller hardware area, compared to the FPGA equivalent, which can lead to lower

energy consumption and better thermal stability. Third, it makes edge application

development easier for developers. Using these components, developers can avoid

re-implementing repetitive common idioms, which helps with productivity and time-

to-market.

Preliminary results Vissers (2019) from emerging architectures, such as the ACAP,

and the other available SoC+FPGA systems reveal promising performance and energy

benefits. The ACAP hardware delivers up to 90, 8, and 5 times better performance

in various data center and edge applications, such as image recognition, risk analysis,

and genomics, compared to the CPU, the GPU, and the FPGA. It is also able to

provide up to 5, 100, and 15 times faster run-time performance, compared to the

CPU, the GPU, and the FPGA. With respect to the widely-available SoC+FPGA

architecture, applications can utilize the available heterogeneity to accelerate different

parts of the applications with different computational patterns.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the main building blocks in many AI

applications, such as image classification Litjens et al. (2017), reinforcement learn-

ing Arulkumaran et al. (2017), and natural language processing. CNNs are also show-

ing promising results in more complex domains such as video understanding Maturana

and Scherer (2015); Hegde et al. (2018); Tran et al. (2015); Sun et al. (2015); Ji et al.
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(2012). Almost all CNNs are considered as a chain of various operations, such as

convolution (2D or 3D), matrix multiplication, pooling, and ReLU. In CNN, the data

is processed by one operation, and the result is handed over to the next operation

in the chain. In a 2D convolution operation, the input data is just composed of

multiple input channels, where each input channel is a two-dimensional structure of

numerical values. In a 3D convolution operation, the input data is not only composed

of multiple input channels, but each input channel contains data from different in-

stances in a time frame, where the instances should be sequential in that specific time

frame. Equation 2.1 and Equation 2.2 describe the 2D and 3D convolutions, where m

represents a specific output channel, f represents a specific frame number, w and h

represent width and height location respectively, in the output, CHin represents the

total number of input channels, n, k, i, and j represent the iterator indexes on the

input channels, frames, and width and height locations of the convolution kernel.

OUT [m][w][h] =

CHin∑
n=0

Kw∑
i=0

Kh∑
j=0

WEIGHT [m][n][i][j]×IN [n][stride×w+i][stride×h+j]

(2.1)

OUT [m][f ][w][h] =

CHin∑
n=0

Kf∑
k=0

Kw∑
i=0

Kh∑
j=0

WEIGHT [m][n][f ][i][j]×

IN [n][stride× f + k][stride× w + i][stride× h+ j]

(2.2)

CNNs are highly computationally intensive, due to a large number of mathemat-

ical operations (hundreds of thousands and even up to millions) that each layer of

the network involves. Amongst all the widely-used operations in the neural networks,

convolutions and matrix multiplications (also known as fully-connected or FC) are
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Operataion (2D) Ops Data

Convolution 99.19% 8.61%

Matrix Multiplication 00.79% 91.38%

Pooling 00.00% 00.00%

Table 2.5: Total Contribution of Major Operations in VGG-16 CNN Model, in

Terms of Total Number of Arithmetic Operations and Input/Weight Parameters.

the most significant contributors to the total execution time for one round of infer-

ence on a simple neural network. Table 2.5 reports the contribution of three primary

operations in the VGG-16 model, in terms of the total number of arithmetic opera-

tions (such as multiply-and-accumulation (MAC), min, and max) and the parameter

size. Ops and Data columns represent the total number of arithmetic operations

and parameters (weights and inputs) involved in that operation, respectively. The

convolution operations (2D) contribute more than 99% of the total arithmetics. The

matrix multiplication operations contribute more than 91% of input and weight data

access from global memory, which can consume a considerable portion of the total

runtime.

Operataion Ops Data

Convolution (3D) 99.9% 26.72%

Matrix Multiplication 00.1% 73.28%

Pooling 00.00% 00.00%

ReLU 00.00% 00.00%

Table 2.6: Total contribution of major operations in C3D CNN model, in terms of

total number of arithmetic operations and input/weight parameters.
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Compared to 2D convolutions, 3D convolutions have higher computational com-

plexity, due to the existence of an extra dimension (usually frame), which enables

spatio-temporal feature recognition in continuous video frames. Table 2.6 lists the

total contribution of 3D convolutions and other operations in the C3D model. The

convolution operations (3D) contribute more than 99% of the total operations. The

matrix multiplication contributes to more than 73% of data access.

2.4.1 Winograd Algorithm

Winograd transformation Lavin and Gray (2016) is a proven method to reduce

the complexity of multiply-accumulate operation in hardware design. Using this

technique for convolutions can ultimately reduce the arithmetic complexity. Shen

et al. Shen et al. (2018) showed that using the Winograd algorithm can reduce the

total number of multiplications by 58%. Also, Winograd becomes more practical for

smaller filter sizes, such as 3x3, which is quite common in many neural networks. In

our design, we utilize the 2D Winograd algorithm to accelerate both 2-D and 3-D

convolutions on the FPGAs. To demonstrate the Winograd algorithm, we will start

with an example of a one-dimensional (1D) convolution. In the Winograd algorithm,

we denote a 1D convolution as F (M,R), where M and R represent the size of the

input and the filter. The typical convolution computation is given by:

Oi =
R−1∑
r=0

WrIi+r (2.3)

where I, O, and W denote the input, output, and filter data. By using Winograd

algorithm, the output can alternatively be derived as follows Winograd (1980) (we

consider Winograd algorithm for F (2, 3)):

O = M [(Sx) · (Ww)] (2.4)
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where M , S, and W are transformation matrices with values of:

S =



1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1


, W =



1 0 0

1
2

1
2

1
2

1
2
−1
2

1
2

1
2
−1
2

1
2

0 0 1


, M =

1 1 1 0

0 1 −1 −1

 (2.5)

The above method can be extended for 2D convolutions, as well. Considering

2D Winograd algorithm F (m × m, r × r), it can be calculated using the following

equation:

O = M [(SxST ) · (WwW T )]MT (2.6)

2.4.2 CNN Acceleration on FPGAs

Several related works have studied the acceleration of the 2D Aydonat et al. (2017);

Zhang et al. (2018); Wang et al. (2017); Zhang et al. (2015); Suda et al. (2016); Ma

et al. (2018) and 3D CNNs Liu et al. (2019); Ji et al. (2012); Tran et al. (2015); Hegde

et al. (2018) on FPGAs. Other related works Jiang et al. (2019); Zhang et al. (2016)

have studied the feasibility of using multiple FPGAs for increasing the throughput

or decreasing the latency of the CNN accelerators. However, these works cannot

deliver state-of-the-art performance and are not designed to support different types

of convolutions in a single architecture. Also, they are all implemented with low-level

hardware languages, which makes them hard for further extensions and improvements.

Our design is built on top of the DLA Aydonat et al. (2017) architecture. Boutros et

al. Boutros et al. (2018) made a comparison between widely-known CNN accelerators

on FPGA and showed that DLA is the fastest available solution. However, DLA lacks
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several important optimizations and critical features. For example, the systolic array

needs enhancements for lower resource consumption and higher throughput. Also,

weight and input organization can be changed for better memory utilization. From

the usability perspective, it works for only the default 2D convolution but cannot

support the more complex 3D convolution. Finally, it does not support the multi-

FPGA acceleration, which is important for complex CNNs. Our design is built on

top of DLA while addressing all the above limitations.

Some other related works Zhang et al. (2016); Jiang et al. (2019) have studied

the multi-FPGA acceleration of neural networks. These works come with several

limitations. First, they do not provide a general architecture to accelerate various

types of CNNs. For example, they are only able to accelerate either two-dimensional

(2D) or 3D convolutions, but not both. Second, they do not optimally exploit the

FPGA acceleration resources, which leads to sub-optimal performance, compared to

the maximum theoretical performance of an FPGA. Third, they are designed and

developed, using low-level hardware programming languages (Jiang et al. Jiang et al.

(2019) used Xilinx HLS), which makes it difficult to extend and support by the widely-

used deep learning frameworks, such as Tensorflow Abadi et al. (2016) and Caffe Jia

et al. (2014).

2.5 Randomly-Wired Neural Networks

Automatic machine learning model discovery and development (AutoML) Feurer

et al. (2015); Dean (2017); He et al. (2018); Yazdanbakhsh et al. (2018); Wang et al.

(2019a); Laredo et al. (2019) helped engineers and scientists to explore and build

models with much higher accuracies, compared to the conventional hand-tuned mod-

els. Examples are Neural Architecture Search (NAS) Zoph and Le (2016); Zoph et al.

(2018); Liu et al. (2018a); Cai et al. (2018); Real et al. (2019); Cheng et al. (2019)
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and Random Network Generators Xie et al. (2019); Wortsman et al. (2019), which

resemble random connections between the operations and are known as Randomly-

Wired Neural Networks (RWNNs). Both these techniques are focused on automatic

generation of neural network architectures. Figure 1.1 depicts examples of RWNNs

(SwiftNet and RandWire).

RWNNs have been able to outperform conventional neural networks, which are

manually designed and tuned. These networks can provide an equal or better perfor-

mance while using less number of operations and parameters. Figure 2.5 presents an

overall comparison between networks generated by automatic methods, such as NAS

and Random Network Generators, and other widely-used neural networks (such as

ResNet, Inception, MobileNet Sandler et al. (2018), etc.). Comparisons are based on

the ability of the network to classify the Imagenet data successfully.

Most RWNNs make extensive use of depth-wise separable convolutions Sandler

et al. (2018) which are computationally cheaper and consume less storage than con-

ventional convolutions. Figure 2.6 presents both (a) conventional and (b) depth-wise

convolutions. In normal convolution, both the filter and the input has the same num-

ber of channels. The filter moves through the input’s width and height dimensions

and generates a 2-D feature map for a specific output channel. Differently, in depth-

wise convolution, filters have a depth of one, and they only convolve with one channel

of the input. As a result, the total number of weight features and the input channels

are equal.
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Figure 2.5: The Figure Shows the Performance Comparison Between Conventional
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with ImageNet Data. The X-Axis Presents the Total Number of Multiply-accumulate

(MAC) Operations of the Model, and the Y-Axis Shows the Classification Accuracy.
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Figure 2.6: Depiction of the (a) Conventional Convolution, and the (b) Depth-wise

Convolution.

A simple depth-wise convolution produces the same number of channels as the

input data, while the number of channels can be a different number. To enable

this feature, a second point-wise convolution is applied. This operation uses a 1× 1

kernel, with a depth equal to the number of input channels. The convolution of the

intermediate features with this kernel introduces one output channel. The number of

kernels is equal to the number of output channels. In summary, the combination of

the two operations mentioned above builds the depth-wise separable convolution.

2.5.1 Deep Learning Compilers

The rapid growth of neural network usage in various domains motivated the de-

velopment of specific compiler frameworks Abadi et al. (2016); Paszke et al. (2019);

Chen et al. (2018) for deep learning applications. These frameworks mainly focus
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on fine-grained scheduling of (sub)operations on a single general-purpose accelera-

tor (e.g., CPU and GPU) and do not support pipeline accelerators, such as FPGAs.

Other available compilers for FPGAs Sharma et al. (2016); Biookaghazadeh et al.

(2020); Abdelfattah et al. (2018) either do not support multi-FPGA configuration

or are not friendly with RWNNs, due to the complexity of the network architecture.

In summary, these frameworks are designed with the assumption of the conventional

linearly-oriented neural network models and do not guarantee efficient execution of

the emerging RWNNs Zoph and Le (2016); Cheng et al. (2019); Wortsman et al.

(2019); Xie et al. (2019).

2.5.2 Scheduling RWNNs

Scheduling RWNNs is not supported by the available deep learning frameworks.

More specifically, scheduling RWNNs onto multi-FPGA platforms boils down into

a graph partitioning (GP) problem, which can be widely found in various domains,

such as parallel processing Boman et al. (2013); Buluc and Madduri (2013); Sali-

hoglu and Widom (2013), road networks Kieritz et al. (2010); Maue et al. (2010);

Luxen and Schieferdecker (2012), image processing Peng et al. (2013); Camilus and

Govindan (2012); Grady and Schwartz (2006), and VLSI physical design Kahng et al.

(2011); Cong and Shinnerl (2013). In this specific graph partitioning problem, we

deal with an acyclic graph with weighted nodes but not necessarily weighted edges

(due to negligible data transfer overhead). Several related works have studied the

graph partitioning problem with various constraints. In general, the partitioning

problem is NP-complete Hyafil and Rivest (1973); Garey et al. (1974), which has

urged researchers to explore effective heuristics.

There are different categories of related works studying the graph partitioning

problem. Exact algorithms Hager et al. (2013); Sensen (2001) can derive a solution
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for the whole graph, usually relying on branch-and-bound framework Land and Doig

(2010). These algorithms are suitable for small problem sizes due to their large

running times. Graph growing Karypis and Kumar (1998a); Duff (1984) can obtain

a bisection of the graph, using a breadth-first search (BFS) from a random node

v. Flow algorithms Bui et al. (1987); Lang and Rao (2004) utilize max-flow min-cut

theorem Ford and Fulkerson (1956) to separate two node sets in a graph by computing

a maximum flow and later the minimum cut between the sets. Streaming graph

partitioning (SGP) Stanton and Kliot (2012); Tsourakakis et al. (2014) is another

technique, which targets more recent computing workloads, mainly big-data. These

algorithms are faster than the older counterparts but with much less partitioning

resolution. Iterative local search Fiduccia and Mattheyses (1982); Kernighan and Lin

(1970); Simon and Teng (1997); Karypis and Kumar (1998b) includes a vast volume

of techniques by starting from a random solution and refining it through an iterative

exchange of nodes between different groups. The exchange policy affects the quality

of the final partitioning and the overall convergence time. Since RWNNs resemble

a DAG graph, the partitioning of the RWNN graph onto a multi-FPGA pipeline

boils down into a directed graph partitioning problem. We can leverage heursitics

from previous techniques to address the pipeline throughput and memory efficiency

optimizations for mapping RWNNs onto multi-FPGA platforms.
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Chapter 3

HETEROGENEOUS PROCESSORS ON THE EDGE

As discussed in Chapter 1.1, OpenCL-based field-programmable gate array (FPGA)

computing is a promising technology for addressing the edge-computing challenges.

To demonstrate the feasibility of the FPGAs, we study the suitability of deploying

FPGAs for edge computing through experiments focusing on the following three per-

spectives: (1) sensitivity of processing throughput to the workload size of applications,

(2) energy-efficiency, and (3) adaptiveness to algorithm concurrency and dependency

degrees, which are important to edge workloads as discussed above.

The experiments are conducted on a server node equipped with an Nvidia Tesla

K40m GPU and an Intel Fog Reference Design Unit Intel (2017) equipped with two

Intel Arria 10 GX1150 FPGAs. Experiment results show that (1) FPGAs can deliver

a predictable performance invariant to the application workload size, whereas GPUs

are sensitive to workload size; (2) FPGAs can provide 2.5–30 times better energy

efficiency compared to GPUs; and (3) FPGAs can adapt their hardware architecture

to provide consistent throughput across a wide range of conditional or inter/intra-

loop dependencies, while the GPU performance can drop by up to 14 times from the

low- to high-dependency scenarios.
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Figure 3.1: An Intel Fog Reference Design Unit Hosting Two Nallatech 385A FPGA

Acceleration Cards.

3.1 Methodology

To confirm and quantify the aforementioned benefits of FPGA-based edge com-

puting in chapter 1.1, we designed and conducted three sets of experiments to evaluate

FPGAs vs. GPUs from the perspectives of (1) performance sensitivity to workload

size, (2) adaptiveness to algorithm concurrency and dependency degrees, and (3) en-

ergy efficiency.

All the GPU-related experiments were conducted on a server node equipped with

an Nvidia Tesla K40m GPU, dual Intel Xeon E5-2637 v4 CPUs, and 64GB of main

memory. All the FPGA-related experiments were conducted on an Intel Fog Reference

Design unit Intel (2017) (see Figure 3.1) equipped with two Nallatech 385A FPGA

Acceleration Cards (Intel Arria 10 GX1150 FPGA), an Intel Xeon E5-1275 v5 CPU,

and 32GB of main memory. The OpenCL kernels for FPGAs were compiled using
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Figure 3.2: Multi-stage Matrix Multiplication on (a) a GPU and (b) an FPGA.

Intel FPGA SDK for OpenCL (version 16.0) with Nallatech p385a sch ax115 board

support packages (BSP). The GPU OpenCL kernels were compiled at runtime using

available OpenCL library in CUDA Toolkit 8.0. Results discussed in the next chapter

will show that the FPGA substantially outperforms the GPU in several important

aspects, despite that the GPU has a much higher theoretical throughput (4.29TFlops)

than the FPGA (1.5TFlops).

3.2 Experiment Results

3.2.1 Sensitivity to Workload Size

The purpose of this experiment is to demonstrate the sensitivity of FPGA and

GPU to workload size. IoT devices are usually latency sensitive and expect pre-

dictable latency and throughput from edge servers. We used a two-stage matrix

multiplication (A×B×C) as the benchmark, to model edge workloads. This opera-
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tion is widely used in linear algebraic algorithms and is generic enough for the purpose

of this experiment. We believe most IoT workloads, such as voice and image recog-

nition, are heavily dependent on the linear algebraic operations. All three matrices

are of dimension 32x32 and contain single-precision floating-point random numbers.

Input matrices are provided as a batch, and the batch size represents the workload

size. We varied the batch size between 2 to 2048 in the experiment. The processing

throughput (number of matrices/ms) is defined as the ratio of the workload size over

the total runtime.

Figures 3.2a and 3.2b illustrate the difference of execution flow between the GPU

and the FPGA. To exploit spatial parallelism, the GPU must first read the data from

DRAM, perform A × B for the entire batch, and stores the intermediate results (I )

in the GPU global memory. Once the writing of I is done, the subsequent I×C can

be performed by reading I back from the global memory. Differently, the FPGA can

also exploit temporal parallelism and utilize dedicated pipes (channels) to transfer

the intermediate results from one stage to another without blocking the execution.
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Unlike the GPU, the FPGA reads the input from the Ethernet I/O channel. The

execution of A×B×C is fully pipelined by the streaming architecture implemented

in the FPGA, such that the matrix samples can flow in and out of the FPGA through

I/O channels one after another without waiting regardless of the batch size.

Figure 3.3 shows the throughput comparison between the GPU and the FPGA

across different batch sizes. It is shown that the FPGA can deliver a consistently high

throughput by jointly exploiting spatial and temporal parallelism. Specifically, the

FPGA outperforms the GPU for small batch sizes (up to 128) in spite of its much lower

operating frequency. In contrast, the GPU performance varies largely according to the

batch size. GPUs rely on interleaving a large batch of input data to hide the device

initialization and data communication overheads. When dealing with small batch

size, such overheads will dominate total execution time and degrade the throughput

especially when the operations involved have some levels of dependency. Overall, the

experiment results imply that FPGAs not only are efficient in handling aggregated

service requests coming from individual devices in small batch sizes but also can

guarantee a consistently high throughput with a well-bounded latency. Therefore,

FPGAs are highly suitable for edge computing given the considerable variance in

workload size of various IoT applications.

3.2.2 Adaptiveness

To evaluate how well FPGAs and GPUs adapt to algorithm characteristics, we

designed benchmarks to capture two types of dependencies: data dependency, which

represents the dependency across different iterations of a loop, and conditional depen-

dency, which represents the dependency on conditional statements with each iteration

of the loop.
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Our benchmark resembles an algorithm made of a simple iterative block (for-loop)

where each iteration performs a certain number of operations. The loop length and

ops variables define the total number of iterations and the total number of operations

per iteration (set to 262144 and 512 in the experiment), respectively. All variables are

single-precision in the experiments. Note that the objective of our experiments is to

reveal the impact of architecture adaptiveness to algorithm characteristics rather than

evaluating the performance for a specific algorithm. In addition, our synthetic algo-

rithm with a single for loop is generic enough to model a large set of computationally

intensive applications.

The benchmark captures data dependency by introducing dependency among dif-

ferent iterations of the loop. When there is no data dependency, every single iteration

is considered as independent, and all the iterations can execute in parallel. With data

dependency, the iterations that are dependent on one another need to be executed

sequentially as a group. Therefore, by varying the data dependency degree, i.e., the

average size of the groups, we can control the data parallelism available in the algo-

rithm using this benchmark. GPU’s performance is closely tied to the available data

parallelism. In comparison, FPGA can exploit PEs in series and receive iterations

regardless of the dependency. Different iterations can co-exist and be executed in the

pipeline while traversing down the connected PEs concurrently.

To introduce conditional dependency, we add if-else statements into the iterations

of the loop in the benchmark. Half of the iterations are in the if block and the other

half are in the else block. Only the iterations that follow the same branch path can be

executed in a data parallel fashion. To reveal the performance impact of conditional

dependency, we vary the number of operations in each if and else block, which affects

the initialization overhead and consequently the overall performance. GPU is highly

sensitive to conditional dependency because it can parallelize only the iterations that
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take the same path at one time. In comparison, FPGA can configure the hardware

to include all different execution paths, and use a simple lookup table to direct every

thread into the right pipeline and execute all threads at the same time.

In order to get the best performance out of the FPGA and the GPU, the above

algorithms were deployed using two different methods. For the GPU, we designed

an equivalent OpenCL kernel and deployed it in the NDRange mode to accelerate

concurrent operations by exploiting spatial parallelism. For the FPGA, we compiled

the FPGA kernel in the single-threaded mode to accelerate dependent operations by

exploiting temporal parallelism, in which case loop execution is initiated sequentially

in a pipelined fashion.

Data Depndency. Figures 3.4a and 3.4b show the raw and the normalized through-

put (to system frequency fclk) for both a low (16) and a high (256) data dependency,

respectively. In general, computation throughput is linearly proportional to both fclk

and architectural parallelism. The normalized throughput decouples fclk from the

evaluation and measures the pure impact of architecture parallelism on throughput.

For the GPU, the base frequency of the board is used as fclk. For the FPGA, fclk is

extracted from the full compilation report. It is shown that the GPU performance

drops by 14 times from the low to the high data concurrency. As data concurrency

increases from 16 and 256, the available data parallelism (the number of loop itera-

tions that can be executed in parallel) for the GPU drops from 16384 to 1024. It is

the lack of temporal parallelism that makes GPUs hardly adaptive to such changes

in concurrency and dependency degrees. On the contrary, the FPGA delivers a sta-

ble throughput regardless of such changes. This is because the hardware resources

on an FPGA can be reconfigured dynamically to compose either spatial or temporal

parallelism (interchangeable) at a fine granularity. As a result, FPGA outperforms

GPU by 3.32 folds with the high data concurrency, and this gap is expected to grow
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Figure 3.4: Comparison of (a) Raw and (b) Normalized Throughput at Low and High

Data Dependency Degrees.

as the dependency degree further increases.

Conditional Dependency Figure 3.5 shows the performance drop with respect

to the conditional dependency introduced by if-else statements, as the number of

operations if and else block from 8 to 1024. It shows that the FPGA performance

is relatively stable as the conditional dependency increases. For some specific cases,

the performance is even increased due to a higher clock frequency compared to the

baseline kernel. In contrast, the GPU experiences up to 37.12 times performance

drop, compared to the baseline kernel with no conditional statements. Branches from

the conditional statements cause different threads in a warp to follow different paths,

creating instruction replay and resulting in reduced throughput. Figure 3.5 also shows

that having fewer operations in the kernel causes more degradation for the GPU since

a smaller kernel requires less computation and incurs relatively higher initialization

and data transfer overhead.
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Figure 3.5: Performance Drop Comparison for Kernel with Conditional Statements.

3.2.3 Energy Efficiency

To evaluate energy efficiency, we measured the workload throughput divided by

its average power usage. To project energy efficiency, the power consumptions of both

devices are recorded for all of the experiments. We used the nvidia-smi command-

line utility and the Nallatech memory-mapped device layer API to query the instant

board-level power consumption every 500 milliseconds for the GPU and FPGA, re-

spectively. We then calculated the average power usage by averaging all the power

numbers recorded across five trials of each experiment. Need to mention that our

heterogeneous testing platform does not affect the energy calculation since we only

measure the board power consumption.

Figure 3.6a and 3.6b show the power consumption and energy efficiency com-

parison for performing the matrix multiplication tasks mentioned in chapter 3.2.1,

for different batch sizes. Running at a much lower frequency, the FPGA consistently

consumes 2.79–3.92 times lower power than the GPU. Taking into account the perfor-

mance, it shows that the FPGA can provide 2.6–30.7 times higher energy efficiency

than the GPU for executing matrix multiplication. The improvement is prominent,
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especially for small batch sizes. The low power consumption and the high energy effi-

ciency of the FPGA imply that deploying FPGAs for edge computing can potentially

gain better thermal stability at lower cooling cost and reduced energy bill.

Figure 3.6c depicts the energy efficiency comparison for running the workloads

with different dependency degrees (mentioned in chapter 3.2.2). The results show

that the FPGA achieves a similar throughput to the GPU for executing the kernels

with a high data concurrency degree (low data dependency degree of 16). For the

high-data-dependency (degree of 256) workload, the FPGA achieves up to 11.8 times

higher energy efficiency than the GPU. Such energy efficiency improvement is ex-

pected to further increase as the dependency degree grows. The experiment results

indicate that the FPGA is almost on par with the GPU regarding energy efficiency

for executing high-concurrency algorithms, while it can significantly outperform the

GPU for executing high-dependency algorithms.

3.3 Conclusions

In this chapter, we studied three general requirements of IoT workloads on edge

computing architectures and demonstrated the suitability of FPGA accelerators for

edge servers. Our results confirm the superiority of FPGAs over GPUs with respect to

(1) providing workload-insensitive throughput; (2) adaptiveness to both spatial and

temporal parallelism at fine granularity; and (3) better energy efficiency and thermal

stability. Based on our observations, we argue that FPGAs should be considered a

replacement or complementary solution for current processors on edge servers.
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Chapter 4

LOOP ACCELERATION IN HETEROGENEOUS SYSTEMS

As discussed in Chapter 1.2, although a general understanding of different accel-

erators is available, choosing the right accelerators for applications in a heterogeneous

computing system is still a difficult problem. To address this challenge, we study how

the accelerators with different hardware architectures can accelerate different types

of loops by developing Loopy, a collection of five fine-grained loop patterns that com-

monly exist in real-world applications such as linear algebra, optimization, and data

analytics algorithms.

In this chapter we evaluate the performance of important loop patterns on several

typical accelerators, through parameterizing the key aspects of the loop patterns, in-

cluding the type and degree of dependencies, data bit-precision, operational intensity,

and size of the iteration spaces.

Loop Pattern Sample Algorithm/Application

Intra-Dimension Dependency Linear Algebraic Routines

Diagonal Dependency Needleman-Wunsch

Conditional Dependency Kmeans, Single-Source Shortest Path

Anti-Dependency Floyd-Warshall Algorithm

Half-Parallelism Half-Dependency K-Nearest Neighbor

Table 4.1: List of Loop Blocks

58



4.1 Methodology

Our approach to understanding how to choose the optimal accelerator for a given

algorithm is by studying the performance characteristics of common loop patterns on

GPUs and FPGAs. Following this approach, we designed Loopy, a set of abstract

and configurable loop blocks, which captures the key loop patterns extracted from

real-world algorithms (Table 4.1), and allows flexible testing of each type of loops by

varying the following key parameters:

1. Computational intensity, which is the total number of computational operations

that each iteration of the algorithm performs. In our study, it is defined as the

number of multiply-accumulation operations. The computational intensity can

affect the size of the pipeline and the number of instructions on both FPGA

and GPU. Changing this parameter can show how both platforms performances

are susceptible to the amount of computation;

2. Dependency and concurrency degrees, which defines how many iterations de-

pends on each other and how many other iterations can be executed separately.

3. Input data size, which specifies the total number of floating-point variables

that the algorithm processes. The size of the input data can affect the load of

computation on a target platform, which can decide the suitability of one device

over another.

4. Variable precision, which is the bit-width size of the variables in the algorithm.

FPGAs and most-recent GPUs have the capability to deliver higher performance

for lower bit-precision operations.

Loopy includes optimized implementations of each loop type for GPU and FPGA.

The rest of this chapter details each loop type and its GPU and FPGA implementa-
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tions, and presents experiments from running them on real devices. While optimizing

GPU programming has been well studied, OpenCL-based FPGA optimization is not

well explored and not trivial. In our discussions, we will also detail how we performed

the optimizations for each key loop type.

All GPU-related experiments were conducted on two server nodes with two type of

GPUs. One server is equipped with an Nvidia Geforce RTX2080 GPU, dual Intel Xeon

E5-2637 v4 CPU, and 64GB of DDR4 main memory (2133MHz). The RTX2080 is a

large form-factor GPU, suitable for heavy AI and deep learning workloads. Another

server is equipped with an Nvidia Tesla T4, Intel Xeon E5-2650 v3 CPU, and 198GB

of main memory. The T4 is a small GPU, suitable for edge servers. All the FPGA-

related experiments were conducted on an Intel Fog Reference Design unit, equipped

with two Nallatech 385A FPGA Acceleration Cards (Intel Arria 10 GX1150 FPGA),

and Intel Xeon E5-1275 v5 CPU, and 32GB of DDR4 main memory (2133 MHz).

The OpenCL kernels for FPGAs were compiled using Intel FPGA SDK for OpenCL

(version 19.1) with Nallatech p385a sch ax115 board support packages (BSP). The

GPU OpenCL kernels were compiled just-in-time at runtime using available OpenCL

library in CUDA Toolkit 11.0. For the FPGA, we implemented all the kernels in the

single-thread mode and NDRange (multi-threaded) mode. Single-thread kernels on

the FPGA typically have much less overhead and can achieve much higher clock fre-

quency rate, compared to multi-threaded kernels. Thus we focus on the results from

the single-thread mode execution on the FPGA. For the GPUs, we implemented the

kernels in the NDRange mode in OpenCL, which will deploy concurrent threads on

the available compute units.

The insights from our study can be generalized, irrespective of our FPGA or GPU

choices. Our experiments target the general capability of accelerators in handling

common loop patterns, rather than handling specific computational blocks (e.g., ten-
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sor processing for deep learning applications). Various generations of FPGAs and

GPUs usually differ in their total available resources, such as programmable blocks

on FPGAs and processing units in GPUs, which do not affect their general behaviors.

When comparing the acceleration achieved by GPU vs. FPGA, we also focus on the

general trend, i.e., how the performance changes w.r.t. the key parameters identified

above, rather than the absolute performance for a specific configuration. Therefore,

our characterization of loop acceleration is generally applicable to GPUs and FPGAs

regardless of hardware’s specific choices.

4.2 Intra-Dimension Dependency

Definition. This type of loops is usually composed of two or more nested iterative

blocks, where each level of iterative blocks is considered a dimension. In this pattern

there exist a loop-carried data dependency, which is a dependency of one iteration on

the output of the previous iterations (read-after-write), in one or more dimensions,

while at the same time one or more dimensions have no dependency between their

iterations. In another word, we can observe both dependency and concurrency in the

overall iteration space.

For example, in Algorithm 1, the dependency exists between iterations with the

index of i. In this algorithm, updating every element of the array A with the index

of i on the first dimension depends on the value of the element with the index of

i− 1. Elements in the second dimension with the index of j do not carry any depen-

dency. In this case, the dependency exists on the dimension with the index of i and

the concurrency exists on the dimension with the index of j. Figure 4.1 illustrates

the iteration space and the dependency graph of intra-dimension dependent loops.

Although in this example, the nested loops have only two dimensions, indexed by i

and j.
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Simple linear algebraic algorithms Guennebaud et al. (2010), such as matrix-

matrix (see Listing 4.1) or matrix-vector multiplications are following this type of loop

pattern. For example, in matrix-matrix multiplication, each cell of the output matrix

can be computed separately (concurrency), while the dot multiplication of one row

and one column can only be performed sequentially in a single thread (dependency).

Algorithm 1: Intra-dimension dependency algorithm
i← 1

j ← 1

for i ≤ n do

for j ≤ m do

// In our case, func is an FMA operation

A[i][j] = func(A[i− 1][j], B[i][j], ...)

end for

end for

1 type Row = List[Double]

2 type Matrix = List[Row]

3

4 def dotProd(v1:Row ,v2:Row) =

5 v1.zip( v2 ).

6 map{ t:(Double ,Double) => t._1 * t._2 }.

7 // Dependent accumulation (Spatial Parallelism)

8 reduceLeft(_ + _)

9

10 def mXm( m1:Matrix , m2:Matrix ) =

11 // Parallel Row -by -Row multiplication (Temporal Parallelism)

12 for( m1row <- m1 ) yield

13 for( m2col <- transpose(m2) ) yield

14 dotProd( m1row , m2col )

Listing 4.1: Matrix-Matrix Multiplication Algorithm
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Figure 4.1: Intra-dimension Dependent Loop Pattern.

The degree of spatial and temporal parallelism, combined with the arithmetic

intensity, can determine the choice of deployment on either FPGA or GPU. Algo-

rithms with a high degree of dependency can usually finish faster on FPGAs, while

algorithms with a high degree of concurrency can utilize the available farm of SIMD

compute units on the GPUs and accelerate their execution.

Implementation. Our benchmark contains the GPU and FPGA versions of the

intra-dimension dependent loop. For the GPU version, the loop is unrolled spatially

over the non-dependent dimension. Each independent iteration is deployed as a work-

item (unit of a task in the OpenCL), and the total number of work-items are grouped

into several work-groups (unit of execution on a single compute unit). Also, we

specifically order the memory access indexes to enable memory access coalescing

among work-items in a work-group for better performance. For the FPGA version,

we first apply statement re-ordering to place the dependent loop as the inner-most

loop, which enables interleaving of the outer-loop iterations (non-dependent) inside

the inner-loop cycle. It also helps achieve the initiation interval of one in the inner-

most loop. In loop pipelining, the initiation interval is the number of clock cycles
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Figure 4.2: Intra-dimension Dependency Performance on the GPU and the FPGA

between the start times of consecutive loop iterations. Having an initiation interval

of one enables the FPGA to push one iteration into the pipeline at every clock cycle

and achieve the highest performance, which is the ultimate goal for every design.

Further, we apply loop blocking (also known as loop tiling) on the outer for loop.

Doing so enables utilization of the on-chip registers on the FPGA (with the same size

of the block), by copying the required data for the execution of the block, as a whole,

onto the allocated on-chip registers, thereby reducing the DRAM access overhead.

Experiment. We deployed FPGA and GPU kernels, resembling Algorithm 1. Input

data is an array of floating-point variables of a specific size (4, 32, 256 MB). Every

single iteration in the algorithm is responsible for a single element in the array. As a

result, the total number of iterations is equal to the number of input values. As shown

in the algorithm, the dependency and concurrency degrees are configured by changing

the number of iterations, n and m, respectively. Figure 4.2 shows the runtime of this

intra-dimension dependent loop on both FPGA and GPU.

We can make several key observations from the results. First, GPU does excel at

accelerating the loop with a high degree of concurrency. More concurrency can lead to

better spatial parallelization, which makes the GPU a great candidate for deployment.
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In contrast, with the increase in the dependency degree, the FPGA can take advantage

of the configured long pipeline and parallelize the dependent iterations. In this case,

with a high degree of dependency, the FPGA can outperform both RTX2080 and T4

up to 21.5x and 13.6x. With a high degree of concurrency, both RTX2080 and T4

perform better than the FPGA, by up to 184x and 93x, respectively.

The second observation is about the effect of computational intensity (the to-

tal number of computational operations in each iteration) on the final performance.

Higher intensity means more computations, which leads to more pipeline stages. With

more pipeline stages, FPGA can handle more dependent iterations and achieve higher

performance. Need to mention, the available hardware resources on the FPGA are

limited and may block developers from configuring a large number of pipeline stages.

As a result, developers may need to adopt a smaller loop block size, which leads to

the reduction of the performance. Compared to FPGA, the GPU has to spend more

time executing each loop iteration, with no opportunity for pipelining the iteration.

For example, Figure 4.2 shows that going from the intensity of 1 to 5, the performance

drops by up to 2.1x and 3x, on RTX2080 and T4, respectively.

The third observation is the performance reduction of FPGA for kernels with

low dependency, because there are not enough dependent iterations to fully saturate

the configured pipeline. In this situation, developers may want to switch into the

NDRange mode kernels, which can interleave the parallel iterations into the pipeline

and keep it saturated. In comparison, GPU can utilize the massive farm of cores to

exploit a high degree of parallelism when the dependency is low. Therefore, as shown

in Figure 4.2, FPGA’s performance is worse with lower dependency degree whereas

GPU’s performance is not affected.
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4.3 Diagonal Dependency

Definition. Diagonal dependent loops are following almost the same pattern as

intra-dimensions dependent loops, except that the dependency is diagonal instead of

horizontal or vertical in the iteration space. As illustrated in Figure 4.3, horizontal

(vertical) dependency refers to the dependency of an iteration on the left (top) neigh-

bor iterations with the same i (j), respectively. For example, in the aforementioned

intra-dimension dependency, there is horizontal dependency among the iterations as

shown in Figure 4.1. Diagonal dependency means that an iteration depends on its

relative top-left iteration which has both different i and j indexes. For example, in

Figure 4.3, iteration (2, 2) depends on its diagonal neighbor iteration (1, 1). Algo-

rithm 2 shows an example of this kind of loops, where the computation requires data

from its diagonal neighbor in the iteration space. In specific cases, the dependency

can be extended and include either horizontal or vertical, as well.

Parallelization of these types of loops on SIMD architectures, such as GPU, is

not straightforward. Depending on the type of diagonal dependency, developers can

either parallelize the diagonals or use the wavefront technique Belviranli et al. (2015)

for parallelization. In the wavefront parallelism mode, kernels are enqueued back to

back to the GPU, each computing one set of independent iterations. The number of

the kernels is equal to the length of the diagonal.

Dynamic programming algorithms are usually composed of diagonal dependent

iterations. A specific example of such algorithm is Needleman-Wunsch Needleman

and Wunsch (1970) (see Listing 4.2), which performs matching between two input

strings while minimizing the penalty.
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1 val alignMat = new Array[Array[ResultEntry ]]( length)

2 val contant = ...

3 val gapPenalty = ...

4 def getScore(i: Int , j: Int): Score = {

5 if (alignMat(i)(j) != null) {

6 alignMat(i)(j)

7 } else {

8 // 3-Way Diagonal Dependency

9 val tryMatch = getScore(i - 1, j - 1) +

10 constant

11 val horizontalGap = getScore(i, j - 1) +

12 gapPenalty

13 val verticalGap = getScore(i - 1, j) +

14 gapPenalty

15 if (m == tryMatch) {

16 alignMat(i)(j) = (m)

17 } else if (m == horizontalGap) {

18 alignMat(i)(j) = (m)

19 } else {

20 alignMat(i)(j) = (m)

21 }

22 m

23 }

24 }

Listing 4.2: Needleman-wunsch Algorithm Score Calculation

Implementation. For the GPU implementation, the parallelization method depends

on the existence of vertical or horizontal dependency. In the absence of both of these

dependencies, each thread can take care of one diagonal, in parallel. The existence

of any of the mentioned dependencies (in addition to diagonal dependency) would
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Algorithm 2: Diagonal depedency algorithm
i← 1

j ← 1

for i ≤ n do

for j ≤ m do

A[i][j] = func(A[i− 1][j − 1], B[i][j], ...)

end for

end for

Figure 4.3: Diagonal Dependency Loop Pattern

force the GPU to perform anti-diagonal parallelization. As shown in Figure 4.3, the

independent iterations that can be parallelized form a line that is perpendicular to

the diagonal dependent iterations.

For the FPGA implementation, we first perform loop blocking on the first di-

mension, which enables caching of the input data for each iteration of the second

dimension’s iterations. Later, we copy the required data for the second dimension’s

computation into the allocated on-chip registers of the size block. Every iteration of

the second dimension first reads the data from the registers, performs the calculation,

and writes back the data to the registers and the DRAM. To handle all elements in

the block, each iteration of the second dimension contains a nested loop of size block,
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Figure 4.4: Diagonal Dependency Runtime on Both FPGA and GPU. The

Dependency is Only Diagonal.

which is fully unrolled. In this implementation, the iterations of the second dimen-

sion have a loop-carried data dependency. Unfortunately, the compiler cannot infer

an initiation interval of one for this loop body, due to the existence of large latency

between consecutive iterations of the loop. To overcome this issue, we interleave the

execution of the block iterations inside the second dimension loop, which enables full

exploitation of the available pipeline stages. Doing so reduces memory accesses and

leads to higher operating frequency and fewer stalls in the pipeline.

Experiment. Figure 4.4 shows the performance of the diagonal dependent loops

on the FPGA and the GPUs, where the dependency only exists diagonally. We did

measurements for three different computational intensities (1, 3, and 5) and three dif-

ferent input sizes (4, 64, and 512 MBs). The results show that the GPU outperforms

the FPGA in almost all cases, except for the experiment with high computational

intensity and small data size. In this type of dependency, GPU can assign one diag-

onal set of iterations to one work-item and exploit high degree of parallelism on all

the available cores. In this case, RTX2080 and T4 outperform the FPGA by up to
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Figure 4.5: Diagonal Dependency Runtime on both FPGA and GPU. The

Dependency Also Includes Horizontal and Vertical.

6x and 4.3x, respectively.

Figure 4.5 shows the performance of the same loop pattern but with additional

horizontal and vertical dependencies between the iterations. We modified the function

f in Algorithm 2 to include both A[i−1][j] and A[i][j−1], in addition to A[i−1][j−1],

as its parameters to introduce these dependencies between A[i][j] and its horizontal,

vertical, and diagonal neighbor iterations. In this case, the FPGA can utilize the

same pipelining method to accelerate the execution, while both GPUs need to use

wavefront parallelism and parallelize computation for each anti-diagonal. Unlike the

case with diagonal dependency, the wavefront parallelism model cannot exploit a large

number of parallel threads. In addition, it needs to repetitively deploy the same kernel

to calculate a new set of anti-diagonal iterations. As a result, the FPGA outperforms

both RTX2080 and T4 by up to 165x and 322x, respectively.
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4.4 Conditional Dependency

Definition. The existence of conditional statements in loop bodies can alter the

extent of parallelization on certain accelerators. In loops with a conditional statement,

every iteration diverges in the execution path, depending on the specific conditions.

Algorithm 3 represents an example, where every iteration performs either the first or

the second statement based on the content of an array in that specific iteration index.

Algorithms such as K-means and single-source shortest path (SSSP) consist of

many conditional decisions. In the K-means (see Listing 4.3), the clustering of the

observations requires many comparisons, based on the distance; SSSP relies on the

sparse matrix multiplication, where the number of iterations for each output calcula-

tion is non-deterministic.

Algorithm 3: Conditional dependency algorithm
i← 1

for i ≤ n do

if B[i] > 0.0f then

A[i] = f(B[i], D[i], ...)

else

A[i] = f(C[i], D[i], ...)

end if

end for
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1 def run(xs: List[Point]) = {

2 var centroids = xs take n

3

4 for (i <- 1 to iters) {

5 centroids = clusters(xs, centroids) map average

6 }

7 clusters(xs, centroids)

8 }

9

10 def clusters(xs: List[Point], centroids: List[Point]) =

11 (xs groupBy { x => closest(x, centroids) }).values.toList

12

13 def closest(x: Point , choices: List[Point]) =

14 // Calculating mininum , which requires several comparisons (if -

else)

15 choices minBy { y => dist(x, y) }

16

17 def dist(x: Point , y: Point) = (x - y).modulus

18 def average(xs: List[Point]) = xs.reduce(_ + _) / xs.size

Listing 4.3: Kmeans Algorithm

Implementation. The conditional dependency is introduced by an if-else statement

in the kernel. On the GPU, the loop is simply parallelized on different cores, and

each thread performs the if-else comparisons. But the SIMD architecture in the GPU

cannot efficiently handle the conditional statements in the work-items, due to thread

divergence issue. In the FPGA implementation, the kernel is developed in a single-

thread mode and the loop is unrolled to the limit of the FPGA area and available

DRAM bandwidth. In contrast to the GPU implementation, FPGAs can handle nu-

merical conditional statements, using look-up tables and a simple multiplexer. More

72



 0.1

 1

 10

 100

4 64 512

R
u
n
ti
m

e
 (

m
s
)

Data Size (MB)
Intensity 1

TitanX-D2
TitanX-D8

K40-D2
K40-D8

FPGA-D2
FPGA-D8

 0.1

 1

 10

 100

4 64 512
Data Size (MB)

Intensity 3

 0.1

 1

 10

 100

4 64 512
Data Size (MB)

Intensity 5

Figure 4.6: Conditional Dependency Runtime on Both FPGA and GPU, for

Different Intensities.

specifically, the FPGA can map all different paths of the execution in the design and

enable different threads running simultaneously in different conditional blocks.

Experiment. Figure 4.6 shows the runtime of the conditional dependent loop on the

GPU and FPGA, with various computational intensities (one, three, and five) num-

ber of conditional branches (two and eight) within each iteration as well as various

total input data sizes (4, 64, and 512 MB). The number of conditional statements is

represented as D2 and D8, for two and eight conditional decisions, respectively. The

results show that the FPGA can sustain the same performance among kernels with

different conditional branches, whereas the GPU suffers more performance degrada-

tion for kernels with more conditional branches (up to 45% slowdown). As a result,

the FPGA outperforms the GPU with a higher number of conditional dependencies;

e.g., 40% better for a dependency level of eight. This observation suggests the suit-

ability of FPGAs for algorithms with a high degree of decision making during the

execution. These types of applications usually cannot exploit the massive parallelism
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in SIMD architectures and can be better handled by reconfigurable processors such

as FPGAs.

4.5 Anti-dependency

Definition. In this loop pattern, every iteration consists of more than one statement.

Unlike the intra-dimension dependent loops, where the dependency is read-after-write,

this pattern carries write-after-read dependency. In this pattern, one statement of

an iteration reads a data item that is going to be updated by the other statement in

the next iteration. It is named anti-dependency because the statements in different

iterations are following the write-after-read pattern, as opposed to read-after-write

in the typical dependency patterns. Algorithm 4 demonstrates a general example of

such loops. The existence of read-after-write dependency creates an anti-dependent

loop pattern.

Anti-dependent loops have a unique characteristic. It is possible to face race

condition in case of parallelization of all the iterations. More specifically, the first

iteration reads the old value of an array element (e.g., A[i] depends on B[i + 1] in

Algorithm 4), while the second iteration updates the same value, and so on and so

forth. When these iterations are executed on different threads to achieve parallelism,

the dependent read and write might be executed out of order, which damages the

correctness.

Algorithm 4: Anti dependency algorithm
i← 1

for i ≤ n do

A[i] = B[i + 1] + C[i] ∗D[i]

B[i] = B[i + 1]− E[i] ∗D[i]

end for
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Figure 4.7: Anti

Dependency Loop

Pattern.
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Figure 4.8: Anti Dependency Results

for Two and Four Stages.

Figure 4.9:

Half-parallellism

Half-dependency

Loop Pattern.

Implementation. These types of loops can be parallelized on vector processors with

a global barrier mechanism among all SIMD threads. Unfortunately, both the FPGA

and the GPU lack such a global barrier mechanism between all threads. An approach

to parallelizing inter-iteration dependent loops is loop-splitting. In this approach,

the loop can be divided into multiple separate loops, where none of them carries any

dependency. In this situation, loops should run sequentially on the target processor

(to guarantee the correctness of the execution), but each loop can fully exploit the

available spatial core units. Figure 4.7 represents the execution and the dependency

of the original loop, along with the transformed version of it. The dotted blue box

and the solid red box represent different statements in the loop body. The arrow

shows the anti-dependency between different statements of consecutive iterations.

To accelerate anti-dependency loops on GPU and FPGA, we apply statement

re-ordering and loop splitting. The transformation creates multiple flattened loops,

where each of them represents a stage of the execution. The lack of global barriers

prevents both platforms from co-locating the execution of the generated sub-loops

after the main loop distribution, except for using channels in FPGA, which is a

mechanism for passing data between kernels and synchronizing kernels with high
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efficiency and low latency. Usually, kernels need to communicate through DRAM,

which increases the application runtime. By using channels, loops can start pipelining

their partial results to the next loop, which enables co-location of the computation

and communication and reduces the application runtime. Unlike the FPGA, GPU

should execute the flattened loop sequentially, but each stage can be fully parallelized

spatially.

Experiment. Figure 4.8 shows the runtime of the FPGA and GPU in accelerating

these loops. We varied the degree of anti-dependency which is the number of state-

ments involved in the anti-dependency. For example, in Algorithm 4 the dependency

exists between two statements, which yields into the anti-dependency degree of two.

As a result, the main loop in the benchmark can be split into several separate and

parallelizable loops, depending on the number of anti-dependent statements in the

loop body. We also varied the intensity level and input data size.

Comparing the runtimes for the case of four stages of anti-dependencies, the

FPGA can outperform the Tesla K40 GPU for kernels with low intensity (up to

20% speedup), whereas it performs close to the GPU for higher intensities (up to

15% speed degradation). Comparing to Titan X, the FPGA performs 1.6x slower.

Kernels with higher intensities lead into larger area consumption and limit the par-

allelism level in each stage, which further results in the reduction of the channels

widths. Overall, increasing the number of statements with anti-dependencies will

result in more separate loops. As shown in Figure 4.8, increasing the degree of anti-

dependency reduces the gap between the FPGA and GPU. We can expect that by

following this trend, the FPGA will eventually outperform the GPU.
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4.6 Half-Parallelism Half-Dependency

Definition. Half-parallel half-dependent loops usually include the dependent and

the parallel statements, simultaneously, and consist of only one loop, with no nested

loop. Algorithm 5 lists an example of this type of loops. The existence of loop-

carried dependent statements (read-after-write) prevents the spatial parallelization

of the algorithm, as a whole. Transforming the loop into multiple flattened loops

enables the execution of the loop in two different stages. Unlike the anti-dependent

loops, the loop-splitting process does not enable spatial parallelization opportunity

for all the loops, since part of the algorithm carries read-after-write dependency. After

the splitting, the parallel portion of the loop can be deployed on processors with a

high number of parallel compute units, e.g., GPUs, while the dependent portion can

be handled by processors that are suitable for sequential execution, e.g., on CPUs

and FPGAs.

Figure 4.9 represents the half-parallelism half-dependent loop pattern. For this

pattern, each red box in an iteration depends on another red box from the previous

iteration. Furthermore, each red box depends on the value of the blue box in the

same iteration.
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Half-parallel half-dependent applications such as K-nearest neighbor (KNN) in-

clude of both parallel parts (distance computation) and dependent parts (sorting).

These applications can utilize one or more hardware accelerators for an efficient ac-

celeration.

1 val sortedDistances = data.map{case (a, b)

2 => (b, Util.euclideanDistance(p, a))}

3 .sortBy(_._2 , ascending = true)

4 // take the top k results

5 val topk = sortedDistances.zipWithIndex ()

6 .filter(_._2 < k)

7 // take the most predominant class within the top k

8 val result = topk.map(_._1)

9 // Parallel section of the KNN

10 .map(entry => (entry._1, 1))

11 .reduceByKey(_+_)

12 // Semi -Dependent section of the KNN

13 .sortBy(_._2 , ascending = false).first ()

Listing 4.4: KNN Algorithm

Implementation. We apply loop splitting to separate the parallel section from the

dependent section. For the GPU, we first compute the parallel part on the GPU

and then transfer the data back to the main memory of the host and execute the

dependent part on the CPU. Running the dependent block of code on the GPU is not

efficient and will lead to poor performance. For the FPGA we have multiple options,

(1) running the parallel and dependent blocks of the loop serially on the FPGA, (2)

running the parallel block on the FPGA and the dependent block on the CPU, and

(3) using channel to pipeline the intermediate result from the parallel part to the

dependent part and decrease the running time overhead. Using the channels is the
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best available option to co-locate computation and communication and achieve the

highest possible performance.

Algorithm 5: Half-parallelim Half-dependency Algorithm
i← 1

for i ≤ n do

A[i]+ = C[i] ∗D[i]

sum+ = B[i] + A[i] + D[i]

end for

Experiment. Figure 4.10 shows the runtime of the FPGA and the GPUs in accel-

eration these loops. For this experiment, we provided input data with a size of 1

to 1024 MB. The FPGA can outperform both Titan X and Tesla K40 GPUs, by up

to 118x and 110x, respectively. The overhead of the data transfer from the GPU to

CPU reduces both GPUs’ performance significantly. As a conclusion, co-locating the

parallel and the dependent sections of the code on the FPGA can yield much higher

performance, compared to utilizing GPU+CPU combination with a much slower com-

munication channel.

4.7 Conclusions

In this chapter, we designed Loopy for studying common loop patterns on im-

portant GPU and FPGA accelerators. We identified and analyzed five common loop

patterns, along with the key configuration parameters in these patterns. We then

studied the acceleration opportunities for these loop patterns and how the loop con-

figurations and accelerator platforms affect the effectiveness of acceleration. Using

Loopy, developers can gain a good understanding of the acceleration potential of their

algorithms on different platforms, without having to implement them for any specific

platform, based on the loop patterns that these algorithms embody. LoopBench is
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for Different Intensities.

open source and publicly available.

Loopy provides an important first step towards the optimized use of accelerators

for diverse applications in heterogeneous computing systems. Based on Loopy, we

will be able to study the combination of the loop patterns and their accelerations

ability in heterogeneous computing systems in our future works.
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Chapter 5

MULTI-FPGA ACCELERATION FRAMEWORK

As discussed in Chapter 1.3, commodity hardware accelerators lack the potential

to guarantee low-latency services for individual requests. In contrast to widely-used

accelerators, FPGAs can leverage their reconfigurable deep pipeline to service the

requests in a streaming fashion and provide a predictable low latency. But even

with the power of the FPGAs, the ever-increasing complexity of emerging CNNs

requires FPGAs with a higher amount of resources, such as memory bandwidth and

logical units, to achieve low-latency and high-throughput inferences. This challenge

can be potentially addressed by utilizing a cluster of FPGAs, connected through a

high-bandwidth communication infrastructure.

In this chapter, we present a novel multi-FPGA CNN accelerator that can leverage

a deep pipeline of FPGAs, connected through a high-performance I/O channel. To

demonstrate the feasibility of our accelerator, we performed multiple experiments

using different widely-used CNN models.

Through this chapter, we discuss our design and we evaluate its effectiveness,

compared to other available solutions.

Figure 5.1: CNN accelerator architecture.

81



5.1 Methodology

In this chapter, we discuss the overall architecture of our CNN accelerator and

the host side manager for distributing and accelerating of a target neural network

model. More specifically, first, we discuss the anatomy of the basic building blocks

of our CNN architecture. Second, we describe how this CNN architecture is further

extended to support 3D convolutions for use cases such as video processing. We also

explain our method for choosing the best strategy for mapping 3D convolution onto

our native 2D convolution accelerator. Third, we describe the multi-FPGA support

for our design architecture. Lastly, we discuss our algorithm for the efficient mapping

of various layers of a CNN onto the available chain of the FPGAs.

5.1.1 CNN Accelerator Architecture

Our CNN accelerator skeleton has adopted the 1D systolic array architecture from

DLA Aydonat et al. (2017). We applied various optimizations on the DLA to achieve

higher performance and lower resource utilization. We also extended it to support

3D convolutions and data transmission with other FPGAs. Figure 6.5 depicts the

overall architecture of our CNN accelerator design. Our design consists of several

key components. First, the Controller acts as the coordinator between all the other

components. The Controller sends the respective configuration parameters to the

Feature Provider, Processing Elements (PEs), etc. These parameters are usually the

type of the layer, size of the input data for processing, and all other related necessary

parameters for executing a layer. Second, the Feature Provider is responsible for

reading the data in a fixed size and feeding it into the first PE. This component reads

the data from the global memory, caches it in the respective local memory, and sends

it over a channel to the first PE in the systolic array, which is a grid of connected
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PEs. The channel is a communication medium between two components in the same

kernel or different kernels on separate FPGAs. Third, the Weight Provider takes

care of updating the weight buffers in all the PEs. Since the number of the PEs is

usually less than the number of output channels, the PE needs to update the weight

buffers multiple times, while handling a single layer. Fourth, the Cross Bar (xBar)

and all the attached activation layers apply the required transformation (pooling,

ReLU, etc.), after each convolution or matrix multiplication for each layer. Fifth,

the Feature Writer receives the output from the Cross Bar and writes it back to the

global memory. Latter layers further use this data. Sixth, the Serializer and the

Deserializer are responsible for receiving/sending the intermediate results from/to

the previous/next FPGA in the chain of the FPGA cluster, respectively. Seventh,

the Winograd and inverse (inv) Winograd convert the data into Winograd format and

revert the data into the normal representation, respectively. Finally, the controller

activates the Bypass Channel if the FPGA handles a sub-section of a layer (sub-layer),

instead of a whole layer or a group of layers. This channel is responsible for bypassing

the partial results from processing a sub-layer to the next FPGA and potentially to

the FPGA that handles the last sub-layer of a specific layer. The FPGA that handles

the final sub-layer concatenates all the partial results and generates the complete

output for that layer. Need to mention that the Bypass Channel is de-activated if

the FPGA is handling the first of the last sub-section of a layer.

Feature Provider The feature provider is responsible for reading the input data

from the global memory and feeding it into the first PE. Further, each PE forwards

the received data to the next available PE in the chain. Reading data from the

global memory is critical in the accelerator design. Non-optimized data read from

the global memory can lead to major stalls (low throughput) in the pipeline. To

maximize the throughput, our design leverages two main optimizations: (1) memory
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(a) Logical View of the Traditional

Data Layout.

(b) Logical View of the New Data

Layout.

(c) Traditional Data Layout Arrangement on the DRAM.

(d) New Data Layout Arrangement on the DRAM.

Figure 5.2: Traditional Feature Data Arrangement vs. New Data Arrangement. In

Traditional Arrangement, the Data is First Stored by Rows and Then the Input

Channels. In the New Arrangement, for Each Row We Store a Aet of Input

Channels, Sequentially.

data access coalescing, and (2) caching data in the local memory. First, every access

to the global memory requires hundreds or thousands of clock cycles. At the same

time, the global memory can provide only a chunk of data in every memory access.

As a result, to reduce the overall memory waiting time, it is critical to reducing

the memory access frequency by coalescing multiple load/store requests. By doing

so, the Feature Provider can almost saturate the external memory bandwidth, and

consequently, minimize the total number of memory transactions. Second, the local

memory can be up to a hundred times faster than global memory. Hence, caching
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and re-using data on the local memory can provide significant performance benefits.

For efficient global memory data access, we applied data rearrangement on the

input data. Previous works Aydonat et al. (2017); Zhang et al. (2018) demonstrated

the importance of memory interface bit-width, which is the total number of bits

that can be accessed in one memory transaction, and burst length, which is the total

amount of data that is going to be fetched from memory in multiple sequential memory

accesses, to performance. For example, for the Intel Arria 10 FPGAs, a minimum bit-

width of 512 and a burst length of above 128KB are required to saturate the 16GB/s

per bank memory bandwidth. The traditional row-major data representation (used

in DLA Aydonat et al. (2017)) has limitations to achieve efficient burst-length due to

discontinuous DRAM access. To alleviate this problem, we propose a partial input-

channel-major data arrangement. Figure 5.2 represents both the traditional and the

new data arrangement. In this new method, the host divides the input channel

section into multiple chunks of size VEC SIZE. Further, it iterates over the data in

a row-major manner, but instead of storing a single data item, it stores the whole

VEC SIZE. This data rearrangement is applied to the input data before it is streamed

into the FPGA.

The Feature Provider needs to send the data in the right format and size to the

PEs, so that they can perform the convolution correctly. Starting from a convolution,

each PE has to convolve a collection of weight parameters for a single output channel,

with a section of the input data, which has the same width, height, and input channel

size. We call this piece of data a brick, with a size of Width×Height×IN CH SIZE.

Due to the utilization of Winograd, the Width is always equal to W VEC (in our

case, it equals eight). The Feature Provider does not send the whole brick at once, but

instead sends it in the granularity of Width× 1×V EC SIZE, which we call a plate.

Each plate has a width of eight, a height of one, and a depth of V EC SIZE. The total
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number of plates in each brick is equal to Height×(IN CH SIZEV EC SIZE). Due

to the arrangement of the data in the global memory, reading each plate or multiple

sequential plates leads to fully sequential data access in the memory. Sequential data

access helps reading more data in fewer transactions and leads to better utilization

of the memory bandwidth. The new data arrangement places the required data

sequentially in the memory and enables the Feature Provider to load the required

data with the minimum number of memory accesses.

Weight Provider The Weight Provider updates the weight buffers on all PEs while

servicing a layer. In our design, each PE generates all the particular features for a

single output channel. Since the total number of PEs (it is 32 in our design, based

on the available DSPs) is usually less than the actual number of output channels

(up to 8096 in different models), they can only generate the features for a certain

number of output channels (32). For the rest of the outputs, the controller needs to

refresh the PEs with the new set of weight parameters and initiate the same process

as the previous round. Finally, similar to the Feature Provider, the Weight Provider

should maximize the DDR bandwidth (the available data transfer rate between the

global memory and the weight and input providers) to minimize the overall stall,

while reloading the weight buffers on the PEs. As a result, the weights are reordered,

similar to the input data (Figure 5.2), to enable efficient burst-length and bit-width.

Processing Element (PE) PEs are the main building blocks of the design, for the

computation of the convolutions and the matrix multiplications. In our design, PEs

are all arranged in a semi-1D systolic array fashion. We call it semi-1D, since it

adopts the original 1D systolic array, while the outputs from the PEs are forwarded

in a 2D fashion for area optimization purposes. Figure 5.3.a represents the general

architecture of the array of PEs. Each PE has a dedicated channel to the next PE in

the same column, which forwards the arrived input data (a plate) to the next PE. In
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contrast, the first PE of each column also forwards the data to the next first PE of

their neighbor column, so that each column can have access to the input data. Doing

so helps PEs to avoid reading the same piece of data directly from memory, which

leads to significant performance and area overhead. The Feature Provider streams

the data only to the first PE of the first column, and the PEs transmit the same

piece of data to the other PEs. Doing so reduces the effort for the wiring between

the Feature Provider and the PEs, and makes the process of fitting the model on the

FPGA more manageable during the compilation.

Our novel semi-1D systolic array architecture is mainly designed to reduce the

resource consumption of the connections between every two consecutive PEs. In a

traditional systolic array architecture, the total number of wires between PEs i and

i+ 1 is equal to (i+ 1)×W VEC. As we go through the PEs in the systolic arrays

(increasing the i) we observe a higher number of wires consumption. The total number

of wires for an architecture with P PEs will be equal to P ∗ (P + 1))/2 ∗W VEC.

In the semi 1D architecture, we arrange the PEs in a grid fashion, with n rows

and m columns (n × m = P), as shows in Figure 5.3. In this architecture, the

number of wires between each two PEs in a row is following the same pattern as the

traditional design, while going from one row to another resets the value of i to 1,

which significantly reduces the number of wires. We have some extra wiring between

PEs in a column for bypassing the computed data. In each column, the total number

of wires between the PEs with indexes (i, j) and (i, j + 1) ((i, j) is the index of the

PE in the grid) is equal to (j + 1)×W VEC. As a result, the total number of wires

in the design is C × m + D, where C is total number of wires in a column and is

given by (n × (n + 1))/2 ×W VEC, and D is the total number of output wires in

the last row and is given by (m × (m + 1))/2 × n ×W VEC. The total number of

wires in the semi-1D design is less than the traditional design number. Using the
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semi-1D arrangement for our design (32 PEs), compared to the traditional design in

DLA Aydonat et al. (2017), we can reduce the total number of output ports by 65%.

Respectively, it reduces the total Flip-Flops (FFs) consumption by up to 25%.

The number of PEs (P ) can affect the area efficiency of the semi-1D architecture.

For example, for a design with 29 PEs, we cannot have a perfect grid with exactly

29 PEs. The best grid will be an 8× 4 grid, with 3 PEs that only work as bypassing

data. This configuration would consume more resources than necessary, and can lead

into inefficiect utilization of the available resources on the chip. We need to mention

that this problem can be alleviated by configuring the extra PEs to take care of the

next input data set. This approach requires additional scheduling and management

from the controller.

In another design architecture, we eliminated the output channels and instead

used data channels to transfer the outputs. This design is not fully pipelined since

data and output are sharing the same channel, and the data feeding process stalls

while PEs are generating the output. This optimization increases the execution time

by 4% for C3D and VGG-16 while reduces total FF consumption by 32%. Since our

framework is ultimately focused on the overall performance, we prefer the previous

design architecture.

Figure 5.3.b depicts the overall architecture of the PEs. Each PE has W VEC

number of multiply-accumulators (MACs). Each MAC receives an array of data with

the length of VEC SIZE. Further, it fetches the respective array of weights of the

same size from the buffer and performs an element-wise MAC between these two

arrays. The output of all MACs (an array of size W VEC ) is added and stored

into a local buffer of the same size, which acts as a temporary buffer for the partial

accumulation. To fully process a convolution, each PEs iterates the above process for

Height × (IN CH SIZE ÷ V EC SIZE) number of times. After fully iterating a
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single convolution, the PE streams the content of the intermediate results buffer to

the output channel.

(a) (b)

Figure 5.3: (a) Processing Element Semi-1D Structure, (b) Processing Element Ar-

chitecture

Fully-Connected (FC) PE CNNs usually consist of convolutional FC layers and

simple FC layers. Convolutional FCs are the layers that connect the earlier convolu-

tion layers to the very first FC layers and have higher memory intensity. For example,

the single convolutional FC layer in VGG-16 (Layer #13) has at least 4.3 times higher

number of parameters, compared to all other layers. Simple FC layers receive the in-

put from a previous FC layer and perform matrix multiplication. Simple FCs have

higher data to computation ratio, compared to the convolutions. Such a difference

requires designers to optimize the FC operations on a target hardware architecture.

Prior CPU and GPU implementations use the regular FC representation to utilize

available libraries, such as MKL on Intel CPUs and cuBLAS on Nvidia GPUs. Un-

fortunately, using regular FC representation for convolutional FC layers can impact

the performance and introduce significant data duplication overhead, which can over-

whelm the FPGA bandwidth-limited DDR. Zhang et al. Zhang et al. (2018) showed

around 25 times overhead for using the above approach.

89



 0

 2

 4

 6

 8

 10

 12

 14

Layer 14 Layer 15 Layer 16

L
a
te

n
c
y
 (

m
s
)

input-major
weight-major

independent PE

Figure 5.4: Performance for Different Mappings of the VGG-16 MM Pperations.

The optimal acceleration of FC layers requires efficient mapping of these layers

onto the FPGA hardware. A common approach is to map the FC matrix multiplica-

tion onto the available systolic array. To map the FC layer onto the systolic array,

the user has two options: (1) input-major, and (2) weight-major mappings. Zhang et

al. Zhang et al. (2018) studied the efficiency of these mappings onto their 2D systolic

array architecture for a batch of input data. Since our design performs inferences on

a single input at a time, the previous observations may not be applicable anymore.

Also, the architectural differences between the two designs can affect the choice of

mapping. As a result, we experimented with both input-major and weight-major

mappings for a set of FC layer configurations. For the input-major mapping, the in-

put channel dimension is divided by W VEC, where W VEC number of arrays of the

size VEC SIZE are mapped onto each plate of the Feature Provider. Doing so enables

efficient utilization of the computation capacity that exists in similar convolution lay-

ers and reduces the total number of iterations required for the output calculation.

For the weight-major mapping, each PE fully loads the input data (instead of the

weights), and the Feature Provider feeds the weight parameters into the PE array,

in the same fashion. Doing so enables higher data-reuse rate for the input data, and

reduces the load from the external memory.
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Both the input-major and weight-major mappings’ performance are bounded by

the global memory bandwidth. In contrast to convolutions, in Matrix Multiplication

(MM) operations, the Weight Provider needs to update the PEs in both input-major

and weight-major mappings frequently. As a result, for single input inference, the

total latency of the MM is bounded by the memory bandwidth. Figure 5.4 represents

the latency of matrix multiplications for the last three layers of the VGG-16 model.

Based on these results, both weight-major and input-major mappings provide the

same latency.

Unlike all previous related works, we propose the independent MM acceleration

approach. This independent PE is responsible to accelerate the matrix-multiplication

operations, without blocking the rest of the systolic array. As we mentioned above,

the computation of the fully-connected layers is bounded by the total global memory

bandwidth. As a result, the common strategy (used by all previous related works)

of accelerating matrix multiplications on the available systolic array cannot fully ex-

ploit the parallelism of the PE systolic array. Table 5.1 represents the experimental

performance evaluation of various FC layers and the theoretical maximum perfor-

mance, considering the number of parameters and the effective bandwidth of the

global memory (12 GBps). The input and output sizes are based on the typical FC

layer dimensions in practical neural networks. The results confirm that using all the

available PEs cannot guarantee performance improvements, compared to the theoret-

ical performance cap. We need to mention that, on average, all our results are 0.25ms

slower than the theoretical maximum performance. This difference is due to the over-

head of the whole design, which includes the startup time of the OpenCL stack, on

both the host and the device. We expanded our experiments to find the essential

number of PEs to efficiently accelerate the fully-connected layers and avoid wasting

extra computing resources. We modified the total number of PEs and evaluated the
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input/output 256 512 1024 2048 4096

32-PE — 1-PE — Theor.

2048 0.27ms — 0.34ms — 0.04ms 0.26—0.39—0.08 0.42—0.46—0.17 0.58—0.65—0.33 0.94—1.06—0.67

4096 0.3—0.4—0.08 0.36—0.47—0.17 0.58—0.69—0.33 0.93—0.95—0.67 1.51—1.63—1.33

8192 0.43—0.54—0.17 0.51—0.65—0.33 0.94—0.96—0.67 1.56—1.63—1.33 2.89—2.94—2.67

16384 0.53—0.64—0.33 0.86—0.94—0.67 1.52—1.6—1.33 2.94—2.91—2.67 5.57—5.65—5.33

25088 0.77—0.78—0.51 1.24—1.42—1.02 2.27—2.29—2.04 4.36—4.3—4.08 8.46—8.3—8.12

32768 0.9—0.94—0.67 1.56—1.64—1.33 2.86—2.98—2.66 5.57—5.49—5.28 10.91—10.75—10.62

Table 5.1: Performance Comparison between 32-PE, 1-PE, and Theoretical for

Acceleration of the Fully-connected Layers.

performance of the design. Our results confirm (shown in Table 5.1) that a single PE

is sufficient to saturate the memory bandwidth thoroughly, and can provide the same

performance as 32 PEs.

Using a separate PE for fully-connected layers also enables our accelerator to

co-locate the processing of the last fully-connected layers of one input and the first

convolutions of the next input in time-shared scenarios. As a result, the FPGA

pipeline will not be blocked by the matrix multiplication, which increases the delay

for receiving new inputs for processing. For example, the new design reduces the

interval of receiving new input requests for VGG-16, from 30.02ms to 26.52ms.

Winograd Transformers Winograd transformation technique is used to increase

the number of operations per clock cycle. Our design utilizes this technique by trans-

forming the input feature data into the Winograd representation. In this design, we

set the length of the Winograd data in the x-axis to eight. This stage is handled by

the Winograd Transformer. The generated data is fed to the array of PEs for pro-

cessing. The output from the final PE should be inversely transformed to represent

the real final value. This stage is handled by the Winograd Inverse Transformer.

For example, in our design, the output always has a constant length of eight, in the

x-axis dimension. For the convolutions of sizes three and seven, which are the typ-

ical convolution dimension, the size of the output after the inverse transformation
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is six and two. We need to mention that we do not apply any transformations on

the weights since they are already preprocessed and transformed into the Winograd

representation on the host for any number of inferences.

(De)Serializer Our design utilizes a specific Deserializer and Serializer to receive/send

data from the previous or to the next FPGA. For deserialization, the Deserializer re-

ceives the size of the incoming data from the controller, and then starts receiving

data in long4 format, which is an array of four long values. Further, it stores the

received data in a specific global memory buffer. Similarly, for serialization, the Se-

rializer receives the size of the data to be sent and the location of the data from the

controller. Afterwards, it starts sending the data in that buffer to the next FPGA,

again in long4 data format.

xBar Interconnect Our design adopts the traditional xBar in DLA Aydonat et al.

(2017). xBar is a custom interconnect to customize, connect, and configure the layers

to the design. This component allows for adding more layers and achieves higher

acceleration. Examples of these layers are ReLU, Pool, Norm, and Sigmoid.

5.1.2 3D CNN Accelerator Architecture

3D CNNs are composed of 3D convolution layers, which have higher computa-

tional intensity compared to the 2D convolutions. This higher intensity is due to

the existence of an extra dimension (usually frames) in the input feature map, the

intermediate feature map between the layers, and the weight filters. 3D CNNs rely

on this extra dimension to learn the motion information across multiple frames of a

video. Toward this goal, 3D convolution weights slide over the frame dimension on

the input feature map, similar to the weights sliding over the width and height to

generate the convolved output. The semi-1D CNN accelerator can be extended to

support 3D convolutions. Unfortunately, mapping the 3D convolutions onto the semi-

93



1D systolic array is not trivial and can lead to poor performance or low utilization of

the FPGA resources. There are two main challenges in mapping the 3D convolutions

onto the systolic array. First, The choice of order between processing the frames or

the output channels can lead to different data and weight re-use, which can directly

affect the performance. Second, the large weight size of the 3D convolutions may not

fit inside the limited local buffer of the PEs. In the following, we discuss our solutions

to address these two problems.

Proper order between dimensions: Choosing the right processing order between

the frame dimension and the output channel dimension can affect the frequency of

global memory accesses and the data re-use rate, and is thus critical for achieving

the fastest implementation. There are two approaches for mapping the computation

of the 3D convolution onto the systolic array. In the first approach, the weight

provider uploads the weights into the PEs for a certain number of output channels

(32). Further, the feature provider can slide over the frames of the input data and

stream the data to the PE array. At the end of this round, we have all the output

frames for that specific number of output channels (32). The accelerator performs

this process for “OUT CH SIZE / NUM PE” rounds, where NUM PE equals to

32, to get all the relevant data for a set of output channels. In this approach, each

round, the accelerator generates all the output frames for a set of output channels,

which we call Output-Major approach. In the second approach, the feature provider

caches a frame of data in the local buffer and streams it into the PE array. The weight

provider iteratively loads the weights into the PEs. Further, PEs convolve the input

data with the weights and generate the outputs. For the next round, the feature

provider slides one frame over the input data and starts over the same process. In

this approach, each round the accelerator generates all the output features for one

output frame, which we call the Frame-Major approach.
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Figure 5.5: (a) Latency of the Layers of C3D Model, with Frame-Major and

Output-Major Approaches, (b) Performance of C3D and VGG-16, with Different

Number of PEs. It’s Already Included in the Graph.

Figure 5.5a represents the latency of the layers of a sample 3D CNN model (C3D)

while experimenting with the above two approaches. In comparison, the frame-major

approach outperforms the output-major, up to 1.3 times faster for specific layers. As

a result, our design adopts the frame-major approach for 3D convolutions.

Large number of weight parameters: Unlike 2D convolutions, 3D convolutions

have a large number of weight parameters, due to the existence of the extra frame

dimension. As a result, the weight size might exceed the available local buffer in the

PEs. There are three approaches for addressing this problem. First, we can split

the weight features into NUM CHILDLAYER child layers, where each child layer

handles a portion of the weights, which can entirely fit in the PE’s local buffer. The

same approach is also adopted by Liu et al. Liu et al. (2019). The weights can be

split from either the input-channel or the frame dimension, where both lead to the

same performance. The outputs of all the child layers have to be accumulated to get

the final output of the convolution for the whole weight features. This accumulation

is performed inside the Feature Writer, which writes back the data to the global

memory (Figure 6.5). Second, we can trade the number of PEs with the total amount

95



of memory available in each PE. By reducing the number of PEs, we can allocate a

larger buffer for each PE, which can store the whole weight parameters. Third, we can

use a combination of the above two approaches. Considering the “weight splitting”

and “fewer PEs” as the two ends of the spectrum, it is possible to have an architecture

where sits somewhere in between. For example, we can attempt for reducing the total

number of splits, while maintaining a minimum number of PEs.

We evaluated the above approaches by experimenting with various designs with

different numbers of PEs and buffer size. We synthetically reduced the total size of the

local memory on the FPGA to make the PE buffer small for the weight parameters.

Figure 5.5b represents the performance of the VGG-16 and C3D models while running

on the FPGA with different configurations (number of PEs). On the two ends of the

spectrum, we have the 32 PE configuration (maximum number of PEs) and the 4 PE

configuration (enough buffer to hold all the weight parameters). We also explored

architectures with 8 and 16 PEs, which represent the trade-off between the number

of PEs and the available buffer on each PE. Need to mention, reducing the number

of PEs to increase the buffer size does not mean the allocation of less DSPs. In

this configuration, we can assign more DSPs to each PE by increasing the value of

VEC SIZE in our design (each PE contains V EC SIZE×W VEC number of DSPs).

As a result, we can maintain the same level of parallelization.

Experimental results show almost no difference between various configurations.

As a result, we decided to stick with the default configuration (32 PEs, with smaller

V EC SIZE value), which requires weight splitting for layers with a large number

of weight parameters. Increasing the value of V EC SIZE can have adverse effects

for layers with a small number of channels. In these cases, V EC SIZE goes beyond

the size of the channel, which leads to having some of the DSPs going idle, or doing

dummy computations. As a result, choosing a relatively small V EC SIZE value can
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make the design generic enough for all types of layers with different configurations,

irrespective of their size.

5.1.3 Multi-FPGA Support

Figure 5.6: Mapping a Neural Network Onto a Cluster of FPGAs.

Our framework can split a single CNN design onto multiple FPGAs, connected

through Intel-supported serial channels. Each serial channel utilizes a 40Gbps In-

finiband link. The FPGAs are connected in a daisy-chained fashion. The first port

of each FPGA is connected to the second port of the previous FPGA in the chain,

receiving the data. The second port of each FPGA is connected to the first port of the

next FPGA in the chain, sending the data. The first port of the first FPGA and the

second port of the last FPGA do not have any cables connected. Need to mention,

the first FPGA can be connected to a streaming device (camera, cloud, etc.), and

directly receives the data for processing.

The assumption for achieving linear speedup is the perfect load-balance of the

FPGAs, while running the layers. In another words, each FPGA should handle an

equal computation load of the whole execution. An imperfect load-balance leads to

one or more FPGAs handling a larger share of computation, compared to the other
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FPGAs. Those FPGAs will become the bottleneck in the pipeline, and stops the

design to achieve perfect linear speedup. As a result, proper load-balance is critical

to enable optimal throughput improvement.

Figure 5.6 depicts a sample CNN deployed on a series of FPGAs in a row. In

this example, we broke large layers into multiple smaller sub-layers. We also grouped

multiple small layers, where the granularity of the group is equal to the other layers

or sub-layers. This approach enables our design to balance the computation overhead

among all FPGAs. During the execution, each FPGA receives the input or the

intermediate data from the source or the previous FPGA, pushes the data through

the assigned (sub)layers, and sends the output to the next FPGA or the sink. On

each FPGA, the sub-layers or the layers are processed sequentially. After processing

one input and forwarding the output, each FPGA grabs the next input. In this setup,

all FPGAs operate in-parallel to co-locate the execution of different layers of different

inputs and increase the overall throughput. In other words, let’s consider a network

with an execution time of t on a single FPGA. With a configuration of two FPGAs,

each FPGA can handle half of the network. In this configuration, the second FPGA

can execute the second half of the network for an input, while the first FPGA can

start processing the first half of the network for the next input. As a result, we can

obtain twice the throughput, compared to a single FPGA configuration.

As mentioned above, our framework breaks large layers into multiple sub-layers.

Mapping original layers onto the FPGAs can lead to unbalanced computational over-

head throughout the pipeline, and further prevents the framework from achieving

linear speedup, while increasing the number of FPGAs. Our framework tackles this

problem by splitting a layer from output channel into multiple sub-layers with 32 out-

put channels. Any number below 32 is not going to have any benefit since we have

32 PEs that need to finish execution. Also, it breaks a layer over the frame channel,
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where the number of the frames of the input is higher than the number of frames

of the weight. Further splitting forces the design to pad the frame dimension, which

introduces unnecessary extra overhead. After the splitting process, each sub-layer

can run individually, with no dependency on any other sub-layer.

We need a proper model of our system to find the best mapping of sub-layers

onto the FPGAs. We consider our multi-FPGA system is a pipeline of M stages,

where M is the number of FPGAs. The framework splits the CNN network into

M partitions (each partition is composed of layers and sub-layers) and distributes

them sequentially on the chain of FPGAs. We define the Latency (L) of the multi-

FPGA system, LMulti−FPGA, as the time interval, after which the multi-FPGA system

can accept the next input. The throughput of our multi-FPGA system is equal to

1/LMulti−FPGA, which is the total number of inputs it can process per unit of time. As

mentioned before, our multi-FPGA system is a pipeline, where each FPGA is called

a stage. Each stage handles part of the neural network. In a pipeline, the speed

of the whole system is bounded by the speed of the slowest stage (highest latency).

Thus, the partition with the highest latency stalls the whole pipeline and is called

the bottleneck stage. The latency of the whole pipeline is equal to the latency of the

bottleneck stage.

The latency (L) of each layer i can be calculated as follows:

Li = (WEIGHT SIZEi / DDR bandwidth)+

(Total multiplicationsi / (Frequency×

V EC SIZE ×W VEC ×Num PEs))

(5.1)

In Eq 5.1, the latency of each (sub)layer is specified as the time it takes to read the

weights into the PEs, plus the total time it takes to finish the overall calculations. We

need to mention that we omit the overhead of the network communication since FP-
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GAs are directly connected to each other through 40Gbps QSFP+ Infiniband cables,

which makes the communication latency (OUTPUT SIZE/Network bandwidth)

negligible. For example, for the C3D model, the maximum communication latency

between two FPGAs is less that 0.1ms.

Next, we need to find the appropriate mapping of the (sub)layers onto the FPGAs

in our multi-FPGA setting. Assuming we have M FPGAs, connected in a daisy-chain

fashion, we aim to map a CNN composed of N (sub)layers onto these FPGAs, in a

linear fashion. The most appropriate mapping should lead to the highest possible

throughput. The overall throughput in this architecture is typically bounded by the

FPGA with the highest latency for handling the assigned layers. We can formulate

this problem as balancing the load across the FPGAs in the chain.

To find the most appropriate mapping, we first calculate the processing time (la-

tency) and latency of each (sub)layer, using Eq 5.1. Using these latencies, we can

design an algorithm to perform a brute-force enumeration to find the best mapping.

For the brute-force enumeration, the algorithm requires to evaluate
(

N
M−1

)
configura-

tions. The time complexity of this method is O(Nmin(M,N−M)), which is exponential

to the number of (sub)layers N . We also developed this algorithm in C++ to calcu-

late the best mapping using a different number of layers and FPGAs. For example,

a configuration of 100 layers and 10 FPGA takes around 960 hours to finish, which

is quite expensive.

To address the above problem, we developed a polynomial-time load-balancing

algorithm using dynamic programming. Eq 5.2 presents the overall solution for the

optimal mapping of the layers:

Lj,k =


∑j

l=1 Ll if k = 1

minj−1
r=1(max(Lr,k−1,

∑j
l=r+1 Ll)) if k > 1 and k ≤ M

(5.2)
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In Eq 5.2 Lj,k represents the latency of the first k FPGAs, while handling the

(sub)layers from 1 to j. For the case with only one FPGA, the latency for accepting

new inputs is equal to the latency of handling all (sub)layers, from 1 to j, on a

single FPGA. For the cases with multiple FPGAs, the latency is calculated based one

assigning the last few (sub)layers (from r + 1 to j) in the set to the last FPGA. The

latency of the final FPGA equals to the total latency of the layers. Further, the rest

of the first (sub)layers (from 1 to r) is mapped to the other FPGAs, which is the sub-

problem in our dynamic-programming algorithm. Finally, the latency of the whole

pipeline is the latency of the bottleneck stage. The time complexity of this method is

O(M2 ×N), which is linear to the number of (sub)layers. Finally, we can obtain the

overall throughput of the system by calculating the latency of the bottleneck stage.

5.2 Experimental Results

To confirm and quantify the benefits of our new framework, we implemented

and evaluated VGG-16, AlexNet, ResNet, C3D, and I3D. VGG-16 is widely-used for

image classification. ResNet is a well-known CNN model for object recognition. C3D

and I3D are both video analytics 3D CNNs. We evaluate the performance of our

framework in comparison to the available single-FPGA and multi-FPGA solutions.

All the experiments were conducted on a set of Intel Fog Reference Design units Intel

(2017), each equipped with two Nallatech p385a FPGA acceleration cards. Each host

has one Intel Xeon CPU E5-1275, with 32GB of main memory. Each FPGA card has

an Intel Arria 10 FPGA, with 8GB of DDR3 SDRAM. FPGAs are serially connected

through QSFP+ 40Gb/s InfiniBand cables. The OpenCL kernels were compiled using

Intel FPGA SDK for OpenCL (version 19.1) with Nallatech p385a sch ax115 board

support packages (BSP). We performed GPU experiments on two Nvidia GPUs: 1)

Nvidia RTX 2080Ti, which is a server class GPU, and 2) Nvidia Tesla T4, which is a
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small-scale GPU for edge systems. In addition, we performed our CPU experiments

on a host, equipped with two Intel Xeon Silver 4210 octa-core CPUs, and 64GB of

main memory. We report the latency of our design, which is the time it takes for

the design to accept a new input request, following the previous request. Also, we

report the throughput as the number of images per second (img/s) that the system

can accept. The results include the energy-efficiency of our experiments. We used

nvidia-smi command line utility and the nallatech mempory-mapped device layer API

to query instant board-level power consumption. For the CPU, we used the power-

stat toolkit to measure the power consumption. Finally, we performed post-training

quantization with Pytorch on the VGG-16 model to enable it running with a lower

bit-precision (8-bit) on the CPU.

In the single-FPGA experiments, we evaluated the performance of our design,

for accelerating different CNN models. It achieves state-of-the-art performance on

a single FPGA, which is crucial for any further extensions. In the multi-FPGA

experiments, we accelerated the same CNN models, but with more than one FPGA.

We designed the experiment to show the correlation between the number of FPGAs

and throughput.

5.2.1 Single-FPGA Performance Evaluation

In this chapter, we present the effectiveness and performance of our design on a

single FPGA. Having a state-of-the-art single-FPGA solution is the basis for extend-

ing that solution to multiple FPGAs. Tables 5.2 and 5.3 present the performance,

energy-efficiency, and resource utilization of our design and the related works 1 . Our

solution can provide 27ms of latency for single input inference on VGG-16, which is

1Because the design details and source code are often not available, comparing to the performance
numbers reported in the related papers is the standard practice in the FPGA community.
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faster than all other related works Ma et al. (2018); Suda et al. (2016); Zhang et al.

(2018); Wang et al. (2017). For ResNet-50, which is a widely-used object detection

model, our solution can achieve 21ms of latency per single input, which is 6ms faster

than Ma et al.’s solution Ma et al. (2017b).

DLA Aydonat et al. (2017) can achieve an average of 1ms latency for each image,

while processing a batch of images. This low latency is achieved by reading the weight

and input data from the local memory, which eliminates the overhead of accessing

global memory. We replicated the DLA experiment with VGG-16 and achieved 37ms

of latency per single image. By offloading the FC layers onto a dedicated PE, we can

achieve 27ms of latency, which is 10ms faster than our clone of DLA.

Our approach achieves similar or better energy-efficiency than the related works,

except the AlexNet on the Intel DLA. In this specific example, the design avoids

reading/writing from/to the external memory (AlexNet model can fit inside the on-

chip memory) and applies inference on a batch of data. External memory exclusion

significantly reduces the power consumption, and the utilization of a batch instead of

a single input increases the matrix multiplication operation’s performance. On the

other hand, our design targets streaming applications, requiring real-time service of

each input.

We also demonstrate the performance of our framework for accelerating CNN

models with 3D convolutions. Table 5.4 presents the performance of some standard

video processing CNNs, from our FPGA solution and the performance reported by

the related works. Using our design for 3D convolutions, we can achieve almost 1.7

times better latency compared to these related works. This lower latency enables

processing of a higher number of frames per second, for latency-critical applications.

Finally, Table 5.5 presents the performance and energy-efficiecy of our design,

compared to the state-of-the-art CPU and GPU implementations. The CPU shows a
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high latency, while handling a single input for inference, which makes it inferior to the

accelerators. It also results in the lowest energy-efficiecy. The GPU can outperform

the FPGA, but the energy-efficiency of the FPGA is much better. Need to mention,

the FPGA can operate individually, while the GPU requires a host, which adds to

the overall power consumption. In addition, FPGAs can ingest data directly into

the pipeline, which is useful to many stream data processing scenarios such as edge

computing Biookaghazadeh et al. (2018), whereas GPUs require the data to be first

stored in the host memory and then copied to the GPU memory.

5.2.2 Multi-FPGA Performance Evaluation

In this chapter, we evaluate the performance of our framework, while scaling-out

the CNN deployment on multiple FPGAs. We performed all experiments on a pipeline

of FPGAs (from one to eight) connected through I/O channels. We evaluated the

performance of both 2D and 3D CNNs on our multi-FPGA platform, using VGG-16,

C3D, and I3D. Figure 5.7 presents the performance improvements while accelerating

the three CNN models mentioned above, using multiple FPGAs. For all three models,

the throughput increases linearly by increasing the number of FPGAs, from one to

eight. We can observe that using the load-balancer in Chapter 5.1.3 can lead to a

near-perfect partitioning scheme with a fully balanced workload across the FPGA.

We also made a comparison between our solution and the other available multi-

FPGA related works Jiang et al. (2019); Zhang et al. (2016). In comparison, our

solution provides up to 5.8 times better throughput. Jiang et al. Jiang et al. (2019)

experimented using 16-bit variables, which has higher precision than our configuration

(8-bit). They can achieve similar performance to ours by utilizing a lower-precision

configuration, but that they are using a better FPGA (much more resources, com-

pared to Arria 10). Their solution cannot scale linearly beyond 4 FPGAs for the
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Figure 5.7: Acceleration of 2D and 3D CNN Models Using Multiple FPGAs.

VGG-16 model. Also, our design supports a diverse set of convolutional operations,

and it is based on the high-level OpenCL language. Finally, our solution achieves

much higher energy-efficiency. Need to mention, the power consumption of the re-

lated work Jiang et al. (2019) for four and eight FPGAs was estimated since the work

provided experiments for only two FPGAs and simulated the results of more than

two FPGAs.

5.3 Conclusions

In this work, we demonstrated a high-throughput multi-FPGA acceleration solu-

tion for a wide variety of CNNs. We first extended the DLA Aydonat et al. (2017)

architecture to achieve lower latency and better resource utilization, for single FPGA

configuration. Second, we extended the architecture to support 3D convolutions for

the video understanding applications. It includes studying the optimal deployment

of the 3D convolutions on the semi-1D systolic array. Third, we enabled communi-

cation between the FPGAs to support multi-FPGA setups. Finally, we developed an

algorithm for automatic deployment of the CNN layers onto the FPGAs in the multi-

FPGA setup. Our results show that utilizing multiple FPGAs can linearly increase

the overall throughput of the CNN inference. Also, optimizing the PE systolic array

and FC operations can lead to better area utilization (up to 25%) and higher overall

throughput (up to 24%), compared to the state-of-the-art CNN accelerator. Finally,
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we studied the efficient mapping of 3D convolutions on our novel semi-1D systolic

array to achieve the highest overall throughput.
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Design Zhang Ma Ma Suda Zhang Wang Aydonat Ours

CNN

Model

Alex

Net

VGG

-16

Res

Net

-5

VGG

-16

VGG -16 VGG

-16

Alex

Net

VGG

-16

Alex

Net

Res

Net

-50

VGG-16

FPGA Virtex

480t

Arria

10

Arria

10

Stratix

V

KU060 Arria

10

Arria

10

Arria

10

Arria 10

Clock

Frq

(MHz)

100 200 150 120 200 190 303 215 212

Precision

(bits)

32 16 16 16 16 8 8 8 8 8 8 16

Latency/

Image

(ms)

43.23 43.2 27.2 117.8 101.15 25.3 225 1 37 8.8 20.9 26.52 30.3

Through

put

(GOPS)

61.62 715.9 285.07 262.9 266 1.17K N/A 1300 N/A 990 990 866.25

Through

put

(Img/s)

23.13 23.14 36.7 8.48 9.88 39.52 13.45 1000 27 113.6 47.8 37.7 32.9

Power

(watt)

18.61 N/A N/A N/A 25 27.3 45 23

Table 5.2: Performance Comparison of State-of-the-art Single-FPGA

Implementations. Each Column Represents One of the Related Works, Including

Ours. Each Row Represents Some of the Configurations of the Experiments, and

the Performance and Resource Utilization of the Related Works. Baselines

are Zhang et al. (2015), Ma et al. (2018), Ma et al. (2017b), Suda et al.

(2016), Zhang et al. (2018), Wang et al. (2017), Aydonat et al. (2017)
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Design Zhang Ma Ma Suda Zhang Wang Aydonat Ours

CNN

Model

Alex

Net

VGG

-16

Res

Net

-5

VGG

-16

VGG -16 VGG

-16

Alex

Net

VGG

-16

Alex

Net

Res

Net

-50

VGG-16

FPGA Virtex

480t

Arria

10

Arria

10

Stratix

V

KU060 Arria

10

Arria

10

Arria

10

Arria 10

Clock

Frq

(MHz)

100 200 150 120 200 190 303 215 212

Precision

(bits)

32 16 16 16 16 8 8 8 8 8 8 16

DSP

(Used /

Total)

2.2K

/

2.8K

1.5K

/

1.5K

1K /

1.5K

0.8K

/

1.9K

1K /

2.7K

0.1K

/

2.7K

0.5K

/

1.5K

1.5K

/

1.5K

1.5K

/

1.5K

1.4K / 1.5K 1.4K

/

1.5K

1.2K

/

1.5K

BRAM

(Used /

Total)

1K /

2K

1.5K

/

2.7K

2.1K

/

2.7K

1.6K

/

2.5K

0.7K

/

2.1K

0.7K

/

2.1K

N/A 2.4K

/

2.7K

1K /

2.7K

1.3K / 2.7K 1.3K

/

2.7K

1.7K

/

2.7K

LUT

(Used /

Total)

186K

/

303K

N/A N/A N/A 100K

/

320K

200K

/

320K

N/A N/A 278K

/

854K

290K / 854K 290K

/

854K

420K

/

854K

FF

(Used /

Total)

205K

/

607K

N/A N/A N/A 80K

/

727K

140K

/

700K

N/A N/A 725K

/

1708K

762K / 1708K 762K

/

1708K

933K

/

1708K

Table 5.3: Resource Utilization Comparison of State-of-the-art Single-FPGA

Implementations. Each Column Represents One of the Related Works, Including

Ours. Each Row Represents Some of the Configurations of the Experiments, and

the Performance and Resource Utilization of the Related Works. Baselines

are Zhang et al. (2015), Ma et al. (2018), Ma et al. (2017b), Suda et al.

(2016), Zhang et al. (2018), Wang et al. (2017), Aydonat et al. (2017)
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Design Shen Shen

et al.

(2018)

Liu Liu

et al.

(2019)

Ours

CNN Model C3D C3D C3D

FPGA VC709 VC709 Arria 10

Clock Frq (MHz) N/A 120 210

Precision N/A N/A 8-bit

Latency (ms) 89.4 115.5 66.08

Throughput (GOPS) 427.5 667.7 990

Throughput (Input/s) 11.18 8.65 15.13

Power (watt) 25 25 23

Energy Efficiency (GOPS/watt) 17.1 26.7 43.04

Energy Efficiency (Input/J) 0.44 0.34 0.65

DSP Util. 1.5K /

3.6K

3.5K /

3.6K

1.5K /

1.5K

BRAM Util 1.5K /

2.9K

0.3K /

1.4K

1.3K /

2.7K

LUT Util. 242K /

432K

272K /

432K

290K /

854K

FF Util. 286K /

866K

434K /

866K

762K /

1708K

Table 5.4: Performance Comparison of Single-FPGA Video Processing CNN

Acceleration. Columns and Rows are the Same as Table 5.2.
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Accelerator RTX

2080Ti

Tesla

T4

Xeon CPU Ours

Clock Frq

(MHz)

1545 1087 2200 212

Precision (bits) 32 32 32 8 8 16

Latency/Image

(ms)

8.43 13.14 128.39 58.35 26.52 30.3

Throughput

(Img/s)

118.6 76.10 7.78 17.13 37.7 32.98

Power (watt) 250 70 86 23

Energy

Efficiency

(Image/J)

0.47 1.08 0.09 0.19 1.6 1.4

Table 5.5: Performance Comparison Between CPU, GPU, and Our FPGA

Implementation, Running the VGG-16 Model.
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Design Zhang Jiang Ours

CNN Model VGG-16 VGG-16 VGG-16

FPGA VC709 ZCU102 Arria 10

Clock Frq

(MHz)

150 200 210

Precision 16-bit 16-bit 8-bit

Num.

FPGAs

1 2 1 2 4 8 1 2 4 8

Throughput

(Input/s)

6.5 13 14 35.28 74.2 84 37.7 67.8 150.8 232

Throughput

(GOPS)

203.9 407.8 N/A N/A N/A N/A 990 1980 3960 7920

Power (watt) 25 50 27.2 54.4 108.8 217.6 23 46 92 184

Energy

Efficiency

(GOP-

S/watt)

8.16 N/A 43

Energy

Efficiency

(Input/J)

0.26 N/A 1.63

Table 5.6: Performance Comparison of Multi-FPGA Acceleration Solutions.

Baselines are Zhang et al. (2016), and Jiang et al. (2019)
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Chapter 6

THROUGHPUT-AWARE SCHEDULING OF RANDOMLY-WIRED NEURAL

NETWORKS ON MULTI-FPGA PLATFORMS

Per our introduction in chapter 1.4, the current scheduling methods for the avail-

able multi-FPGA setups are not designed for RWNNs, due to their complicated con-

nectivity. As a result, RWNNs cannot fully benefit from running on these multi-FPGA

accelerators. In this chapter we propose a novel scheduler that efficiently splits and

maps the layers of an RWNN on the FPGAs and enables throughput maximization

on the pipeline. We also discuss our solutions for the rising challenges, scheduling

RWNNs on the multi-FPGA setups.

6.1 Challenges

The scheduling methods in current compilers Chen et al. (2018); Vasilache et al.

(2018), frameworks Abadi et al. (2016); Paszke et al. (2019); Jia et al. (2019), and

related works are designed for conventional neural networks, where the network em-

bodies a topological order amongst the operations. Such limitation makes it quite

challenging for these schedulers to optimally schedule RWNNs on the streaming pro-

cessing architectures, such as multi-FPGA systems. Currently, these schedulers tackle

this problem by considering a random topological order of the operators, which may

lead to non-optimal scheduling. In this chapter, we discuss these challenges in-depth:

Task Placement. Proper neural network operator placement is critical to achieve

maximum available throughout, or the minimum possible latency. An optimal task

placement usually minimizes the difference of loads (typically execution load) amongst

the available processors. A large load difference between two processors makes the
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Figure 6.1: The Figure on the Left is a Simple Graph of Four Operations. A De-

pendency of Task B on Task A is Represented as A → B. Each Task is Assigned

with a Load Value. On the Right, We Have Two Possible Topological Sorts of the

Same Graph. Option (a) Leads Into a Non-balanced Task Distribution, Regardless of

the Distribution. Option (b) Can Lead to Perfect Balance by Placing (A,C) on One

FPGA and (B,D) on Another FPGA.

processor with smaller load experience a long idle time. Figure 6.1 presents a set

of tasks, where each task carries a certain computation load, and tasks may have

data dependency amongst themselves. In addition, it depicts two different topolog-

ical orderings, where each leads a different distribution. All distributions from the

ordering in Figure 6.1.(a) lead non-optimal task distribution, where in the best case

(A,B) with a total weight of 4 are located on the first FPGA, and (C,D) on the

second FPGA with a total weight of 12. On the other hand, Figure 6.1.(b) contains

a completely balanced distribution, where placing A,C and B,D on the first and

second FPGAs makes both of them carrying a weight of 8. As a conclusion, available

techniques may lead into non-optimal task placement.

Memory Management. The outcome of scheduling places part of the neural net-

work on each FPGA. Each part is a graph of operations, which may embody the same

randomness through the connectivity between the operations. The execution order of

these operations on a single processor can lead different memory consumption. This
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Figure 6.2: On the Left is a Sample Graph with Eight Operations. The Numbers

on Each Operation Represent the Unit of Memory Footprint for the Output of that

Operation. On the Right is Two Different Scheduling Order of the Operations.

can be a problem for devices with limited memory, where the execution order creates

an out-of-memory situation.

Figure 6.2 presents a sample RWNN, with each operation having a different mem-

ory footprint. Scheduling of the operations may result in various memory footprints.

For example, the scheduling in Figure 6.2.a requires 30 units of memory (to keep the

intermediate results for the next operations), while the scheduling in Figure 6.2.b

only requires 26 units. As a conclusion, memory is critical for processors with limited

storage resources.

In summary, all above challenges are unique to RWNNs, due to random connectiv-

ity that can exist between the operations in the graph. Unfortunately, our proposed

technique in the previous chapter cannot address the above challenges, since it is

mainly designed to address neural networks with linear connectivity.

6.2 Design Objectives

Scheduling Algorithm. We propose a method to find the optimal scheduling Sopt

from all possible schedules (S) that maximizes the throughput (λ) of the multi-FPGA

pipeline, through balanced task scheduling. Each schedule in S is an enumeration of

114



mapping the operations onto the FPGAs, and the order of execution of each operator

v ∈ V on an FPGA, where V is the set of all nodes in the neural network graph G.

Sopt = argmaxsλ(s,G), fors ∈ S (6.1)

The optimal scheduling problem can be modeled as a graph partitioning problem,

where partitions should contain no more or less than a specific number of vertices,

which are operators in the neural network. Through balanced graph partitioning

we can ensure balanced distribution of operators onto the FPGAs, and reduce the

latency of the FPGA with the largest load, hence the idle time of the whole pipeline.

One straightforward way to find the the best mapping is the brute-force approach.

Unfortunately, the complexity of this approach is O(|V ! |×|V ! |), which makes it non-

practical and too costly to find the optimal solution. In addition, a number of re-

lated works have shown that optimal graph partitioning is an NP-Complete prob-

lem, and proposed various heuristics to solve the problem, such as Kernighan-Lin

(KL) Kernighan and Lin (1970), Fiduccia-Mattheyses (FM) Fiduccia and Matthey-

ses (1982), and multi-level partitioning Hendrickson and Leland (1995); Karypis and

Kumar (1995). These heuristics can only address non-directed graphs and hyper-

graphs, while we are focused on Directed Acyclic Graphs (DAG). More recent works

have addressed DAG graphs Moreira et al. (2017, 2020), but they are reducing the

the total edge weights between the partitions, while we need better balancing of the

partition weights and not the weights between the edges.

To this end, we explore a modified version of the partitioning algorithms, where

it can derive the optimal scheduling SOpt and maintain the acyclicity of the task

assignment on the FPGAs.

Memory Optimization The choice of execution order of the operations on a single

FPGA can affect the maximum memory consumption (M) on the device. Throughout
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Figure 6.3: Ring- or Chain-style Multi-FPGA Configuration.

the execution, the intermediate outputs need to be held in the memory for further

consumption. Different orders of executions affect the lifetime of these intermediate

results, which can be accumulated with other intermediate results and increase the

memory footprint.

The goal of scheduling on each FPGA is to determine the best execution order

(S local
opt ) of the tasks memory consumption:

S local
opt = argminsM(s,Glocal), fors ∈ Slocal (6.2)

Our scheduler needs to effectively find the optimal schedule s, from all possible

schedules Slocal of the assigned operators Glocal on a single FPGA, and pick the

schedule with minimum memory footprint (Mmin).

Operation Division The absence of balance in computational intensity amongst the

operations of a neural network makes the optimal schedule ineffective to achieve near-

perfect load distribution. For example, in case of I3D Wang et al. (2019b), which is

a 3D convolutional neural network for human hands gesture detection, the first layer

alone consumes more than half of the total inference execution time. In this case,

the model cannot scale beyond two FPGAs, irrespective of the scheduling. Similarly,

The gap of computational intensity in RWNNs can stop the design to scale beyond a

certain number of FPGAs, and introduce unnecessary idle times.

To address this issue, we propose the Operation Division, which is rooted from
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graph transformation techniques Rozenberg (1997). Our methods take advantage of

distributive, associative and commutative properties of the neural network operations,

which maintains the semantics of the operations, while enables improvements in the

quality of balancing the load amongst the FPGAs. For example, a matrix-vector

multiplication of A × B = C, where A is a matrix and B is a vectors, can be re-

written as 6.3, where A1 and A2 present the first and second halves of the A matrix.

As a result, the computation can be divided into two parallel computations, each

carrying around half of the execution time.

[A1 ×B,A2 ×B] = C (6.3)

The operation division approach is applicable on almost all neural network oper-

ations, such as matrix multiplications, and convolutions. Doing so enables splitting

large operations into finer-grain elements, and consequently a more effective schedule.

Scheduling-Aware Inter-FPGA Communication. In an RWNN, each node can

send or receive data from other nodes with any arbitrary distance in the graph. This

is in contrast with traditional networks with chain-wise connection and determinis-

tic communication pattern. Also, most multi-FPGA platforms a ring- or chain-style

configuration, where each FPGA is directly connected to the previous/next FPGA

in the pipeline (Figure 6.3). Mapping RWNNs onto this multi-FPGA configuration

requires the platform to have knowledge of the network architecture and proper rout-

ing mechanisms for consumption or redirection of incoming data in the pipeline, since

not all incoming inputs to an FPGA should be consumed, but rather be transferred

down the pipeline.
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6.3 Piper: Throughput-And-Memory-Aware Scheduling of RWNNs

Our scheduler (Piper) aims to maximize the throughput of RWNNs on multi-

FPGA configurations and reduce the memory footprint on every FPGA. Piper lever-

ages a heuristic graph partitioning algorithm to find an optimal partitioning scheme

for the DAG of a neural network. Also, it relies on a dynamic programming approach

to find the best local schedule of the operation on each FPGA, reducing the memory

footprint. Finally, Piper performs operation division, which results in a finer-grained

schedule of the operations. In this chapter , we dive deeper into the details of the

Piper design.

6.3.1 Scheduling Algorithm

The first goal of Piper is to distribute the RWNN operations onto the FPGAs in

a balanced fashion, and each FPGA receives a fairly equal amount of load. To do

so, Piper reduces the question into a graph partitioning problem and uses a heuristic

to split the graph into K partitions. Here we discuss two heuristics from related

work Moreira et al. (2017), and later evaluate them in chapter 6.4.2.

Problem Definition: Let G = (V,E,N,W ) be a directed graph. The edge weights

are defined as W : E → R+, and node weights are N : V → R+. The algorithms aims

to derive K partitions, i.e. V = ∪Ki=1Vi and ∀i,j:i 6=jVi ∩ Vj = ∅. We define a threshold

value as T , which caps the load amount on each partition (∀1≤i≤K : N(Vi) ≤ T ).

The value of T is defined as T = (1 + ε)dN(V )
K
e. Previous works have shown that

the partitioning problem becomes NP-Complete, for ε < 1. The smaller ε value

leads to tighter boundary and better partitioning scheme. Finally, the weight of each

partition is defined as the total weight of its vertices and the weight between each

two partition is defined as the weight of all directed edges from the source to the
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destination partition.

We start with an initial partitioning that confirms the partition size threshold.

It also makes sure the partitioning scheme upholds the acyclicity, such that there is

no directed edge from Vj to Vi, where j > i. The scheduler employs a topological

ordering of the graph to do so. In other words, it topologically sorts the graph using

the Kahn algorithm Arsham and Kahn (1989). Further, it starts from the tail of

the ordered graph and picks the vertices until the total weight of the vertices reaches

the value of T . The set of selected vertices forms a single partition. After that, it

moves forward to create the next partition in the row. At the end of this algorithm,

we will have a set of K partitions, where their weights are below the threshold (T ),

and the graph of the partitions is also acyclical. After the initial partitioning, we

move forward with fine-tuning steps, which are heuristics to improve the partitions’

balance.

Differently from previous works Moreira et al. (2017, 2020), we consider the

gain (∆) as the distance of the partition weights from the optimal weight, which

is (
∑

v∈V v)/|V |. To this end we mathematically defined the gain function as below:

AV G = (
∑
v∈V

v)/|K|

∆ =
K∑
i=1

(N(Vi)− AV G)2
(6.4)

The goal of the heuristic is to reduce ∆ through the fine-tuning process.

In the following sub-sections, we present two effective partitioning schemes to

tackle the problem. The tuning techniques are similar to the Fiduccia-Mattheyses Fiduc-

cia and Mattheyses (1982) vertex moves but extended to support a broader move

exploration and preserving the acyclicity of the target partitioning.

Simple Moves Heuristic: In this heuristic, the algorithm weighs the possibility
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Algorithm 6: Simple and Advanced Moves Heuristics Algorithm. In Case of

Simple-heuristics, Predecessors(v) and Successors(v) Will Only Look Into

Neighbor Partitions. In Case of Extended-heuristics, They Will Look Into

Partitions Beyond the Neighbors.

Input : DAG G = (V,E, P )

Output: DAG G = (V,E, P )

AV G = (
∑

v∈V v)/|K|

∆ =
∑K

i=1(N(Vi)− AV G)2

while True do

found ← 0

for v in V do

pIndex ← v.p

preds = Predecessors(v)

succs = Successors(v)

if offset = Gain(v, preds) then

Move(v, pIndex− offset)

end

else if offset = Gain(v, succs) then

Move(v, pIndex+ offset)

end

end

if found = 0 then

break

end

end

return G = (V,E, P )

120



Algorithm 7: Helper Gain Function for Algorithm 6

def Gain(node,options):

GainV alues ← []

for p in options do

val = 2v2 + 2v × avg × (N(Vi+p)−N(Vi))

if val < 0 then

GainV alues.insert((p.index,val))

end

end

return Max(GainV alues).index

of a vertex, moving from a partition to a neighbour partition, while maintaining the

acyclicity of the mapping, and reduces/keeps the value of ∆. To this end, we define

the gain of a move as below:

Gain(v) =2v2 + 2v × avg × (N(Vi+1)−N(Vi))

Vi
v−→ Vi+1 and i ≤ K − 1

Gain(v) =2v2 + 2v × avg × (N(Vi−1)−N(Vi))

Vi−1
v←− Vi and i ≥ 1

(6.5)

In Equation 6.5, Gain(v) represents the change in value of ∆ by moving the

operation v, from its current partition to the previous/next partition. We obtained

the Gain(v) value in closed-form, from the formula of ∆.

A vertex is eligible for a move if it produces a negative Gain(v) (i.e., reduces the

value of ∆) by moving to the previous or the following partition. The algorithm repet-

itively finds and selects an eligible vertex from the graph (by calling Predecessors(v)

and Successors(v), which will return eligible nodes from the nearby partitions), and
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performs the move. In the case of multiple available vertices, we randomly choose

one. The algorithm finds a local minimum based on the value of ∆. To better assist

the algorithm, we can perform multiple (`) topological sorting on the graph and then

apply the simple move heuristic on all of them. Algorithm 6 presents a general form

of this heuristic, where the set of preds and succs sets are the exact previous and

next partitions (Each only includes one partition).

Extended Moves Heuristic: This heuristic extends the search for moving vertices

between partitions beyond their neighbor partitions (Predecessors(v) and Successors(v)

will return nodes beyond the exact neighbor partitions). The algorithm checks the

farthest neighbor of a vertex on both directions (we call them VA for the preceding

node and VB for the succeeding node) and exercises the possibility of moving the

vertex to any of the partitions in-between while preserving the acyclicity constraints.

Moving a vertex beyond its farthest neighbors creates a cycle. We define the gain of

a move as below:

Gain(v) =2v2 + 2v × avg × (N(Vi+k)−N(Vi))

Vi
v−→ Vi+k and i+ k ≤ K

Gain(v) =2v2 + 2v × avg × (N(Vi−k)−N(Vi))

Vi−k
v←− Vi and i− k ≥ 1

(6.6)

The gain in Equation 6.6 is following the same logic as the simple move heuristic,

except it considers farther vertices for a possible move. Algorithm 6 presents this

heuristic. The sets preds and succs present the set of predecessor and successor

neighbors for the vertex to move. Further, the algorithm calculates the gain of moving

a vertex to one of the predecessor or successor sets and moves to the partition that

122



gives the maximum potential gain.

6.3.2 Memory Scheduling

The execution order of the operations in a single partition can affect the total

memory footprint of the design on the FPGA. Choosing a default sequence that

only preserves DAG constraints can cause execution failure on devices with limited

available memory. Also, it can increase overall energy consumption. As a result,

a memory-aware scheduler can enable the RWNN execution on a broader range of

FPGA(s).

Similar to the partitioning, the optimal execution ordering of the local DAG on

an FPGA is an NP-Complete problem Bruno and Sethi (1976); Bernstein et al.

(1989). The brute-force approach for computing all possible combinations has a

computational complexity of O(|V |! ), which is exponential and expensive. Related

works Bathie et al. (2020); Eyraud-Dubois et al. (2015); Agullo et al. (2016); Marchal

et al. (2019) have studied memory-constrained DAG scheduling problems. All these

works only aim to reduce the memory usage, below a specific threshold potentially.

On the other hand, our design aims to find the best schedule possible (the least mem-

ory consumption) to enable the optimum power consumption and enable the RWNN

to run on a broader range of FPGAs. To this end, we propose a dynamic-programming

(DP) heuristic that achieves the optimal solution with the minimum computational

complexity.

First, we define the structure of an optimal ordering as O. Also, we define On

as the optimal ordering for n number of nodes in the graph. The optimality of an

ordering is realized through the minimum memory consumption during the execution.

We also define On as an arbitrary execution order of n vertices. The solution amongst

all On, is On. As a principal of a DP algorithm, we need to define the relationship
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Figure 6.4: The Representation of How dynamic Programming Algorithm Covers

Different Possibilities of Execution Orders, and Ultimately Figures Out the Optimal

Order. Unlike the Brute-force Alternative, It Can Utilize the Memorization of the

Duplicate Sub-problems, and Avoid Excessive Computation.

between On+1 and On. To build On+1, the algorithm should select the next operation

to schedule, the operations where all their predecessors are already picked for the

execution. The algorithm calculates O for all the possible moves and considers the

operation that leads to the least memory consumption.

Considering the semantics of the above DP algorithm, and through our experi-

ments, we observed long execution times while building the optimal ordering solutions.

This is partly due to the redundant computations while building the On solutions.

Figure 6.4 depicts an example where the algorithm faces an identical sub-problem

while traversing the search space. Using the standard Memoization technique, the

DP algorithm can improve the execution time.

As we mentioned above, the optimal ordering solution (O) is constructed based on

the maximum memory footprint of the execution order. We extend the above generic

DP algorithm to include the memory footprint constraint and define On, respectively.

124



In effect, we consider Memi and Memtop
i as the memory footprint at step i, and

maximum memory footprint up to step i. Our algorithm leverage memoization of the

execution order EOi (which is a order set of i nodes), and the respective Memtop
i .

Algorithm 8 details our DP algorithm. We store the current and maximum mem-

ory footprint at each step, as Memi and Memtop
i . We also memorize the execution

order for the i vertices as Oi. Also, we need to calculate the available zero indegree

nodes and store it in Z i to avoid repetitive calculations. We use Z i as an index in our

history, which enables the DP memoization. At each step (i), the algorithm fetches

all possible sets of zero-indegree nodes (Z i, through different execution orders, up to

step i). It iterates over all nodes in each Z i, and creates the new execution order

Oi+1 and the zero-indegree node-set Z i+1. It also calculates the memory footprint

(UpdateMemFP ) after adding the new node and removing the nodes with no out-

going vertices (which means their data can be evicted from the memory since no

operation uses that data anymore). The memory footprint of each operation is calcu-

lated (TotalWeight) as the total number of parameters of that operation, considering

the bit-precision of the model. Finally, we store (or update) the new zero-indegree in

the history, which will be used in the next steps. After n steps, where n is the total

number of vertices, the optimal execution order (O) can be derived by considering all

available Ons in the history, and choosing the order with the minimum Memtop
n .

6.3.3 Scheduling-Aware Inter-FPGA Communication

The operations in RWNN can consume/feed data from/to any other operation

with an arbitrary distance in the graph. This specific feature can affect the design

of the accelerator on the FPGA. In all previous pipelined FPGA accelerators, the

intermediate result by each FPGA is fed into the next FPGA. In contrast, in RWNNS,

the neighbor (s) of a vertex may be assigned onto FPGA(s), multiple hops away from
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Algorithm 8: Dynamic Programming Algorithm to Find The Optimal Ex-

ecution Order.
Input : graph G = (V,E)

Output: Optimal execution order O

// Initization, H stands for History

O0 = [ ], Mem0 ← 0, Memtop
0 ← 0

Z0 ← ZeroIndegree(O0, G)

H[Z0] ← (O0,Mem0,Memtop
0 )

// Performing the DP steps

for i in (0, n) do

// possible orders for i nodes

for (Z i,(Oi,Memi,Memtop
i )) in H do

for node in Z i do

Oi+1 ← Oi+1 + node

Z i+1 ← ZeroIndegree(Oi+1, G)

// Current memory footprint

Memi+1 ← TotalWeight(node) + Memi

Memtop
temp ← Memi+1

Memtop
i+1 ← UpdateMemFP (node, Oi+1)

// Footprint memorization

StoreOrder(Memtop
i+1,Memi+1, Z i+1,Oi+1,H)

end

end

end

return O ← On
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Algorithm 9: Helper TotalWeight Function for Algorithm 8

// total number of params in a node

def TotalWeight(node):

return Πnode.dims
i=1 (node[i].length)

Algorithm 10: Helper UpdateMemFP Function for Algorithm 8

// Updating the memory footprint

def UpdateMemFP(node,O,Memi+1):

for p in node.parents do

if p is in zeroOutdegree(O,G) then

Memi+1 ← Memi+1 - TotalWeight(node)

end

end

Algorithm 11: Helper StoreOrder Function for Algorithm 8

// Store the order in the history

def StoreOrder(Mem,Memtop,Z,O,H):

if Memtop
i+1 ≤ H[Z i+1][Memtop

i+1] then

H[Z i+1] ← (Oi+1,Memi+1,Memtop
i+1)

end
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the source FPGA. As a result, the current design cannot deliver the intermediate

data to the designated FPGA for RWNNs.

Figure 6.5: CNN Accelerator Architecture.

To address the above issue, the accelerator design should be extended to support

arbitrary data delivery. In other words, each FPGA should decide whether to consume

the incoming data or bypass it to a succeeding FPGA. Support for this feature requires

two important extensions to the previous multi-FPGA accelerator design: (1) each

FPGA should support a direct pipe from the input to the output physical channel,

and (2) FPGAs should contain an extra logic that determines the correct destination

of an incoming set of data. The first extension can be added to the design, using a

De-Multiplexer. The incoming data first hits the de-multiplexer and then follows the

designated path. The logic utilizes some predetermined information for the second

extension, which is decided during the scheduling phase. Based upon the topology

of the graph, partition of each vertex, and the execution order of the vertices in

each partition, the scheduler determines the destination of each input data on each

FPGA. This logic enables the correct path of the de-multiplexer, which directs the

input straight to the output, or the computational pipeline. This information is being

sent to each FPGA while bootstrapping the FPGAs with the operation parameters.

Further, the FPGAs follow this instruction for proper consumption/bypass of the

incoming data. Figure 6.5 represents the extended FPGA accelerator design, with

support for RWNNs. The bypass channel, combined with the de-multiplexer logic,
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is added to the design from related work Biookaghazadeh et al. (2020) to support

RWNNs.

The extensive usage of depth-wise separable convolutions in RWNNs requires sup-

port from the accelerator. Unfortunately, previous FPGA accelerator designs only fo-

cus on traditional convolutions, especially the systolic array designs, which are proven

to be the most efficient. One might simulate depth-wise convolutions with traditional

convolutions, but it contradicts the primary purpose of reducing the total MAC op-

erations. We extended the previous FPGA design Biookaghazadeh et al. (2020) to

support depth-wise convolutions. Our extended design requires to make minimum

modification to the original design to avoid resource over-consumption. Also, it needs

to guarantee maximum performance for both conventional and depth-wise convolu-

tions.

The extended design specifically made two modifications in the data provider and

the processing elements (PE) systolic array to enable depth-wise convolution. Here

we discuss the specific changes in more depth:

Data Provider: The current design reads a block of sizeWidth×Height×IN CH SIZE,

where Width is a constant value (in our case, it is eight), to increase data reuse along

the spatial dimension. The data provider reads all blocks along the channel dimension

first and then proceeds through the width and height dimensions. Unfortunately, it

will lead to frequent weight loading on each PE (since each filter is applied on a single

input channel, but not all). To avoid this issue, the provider needs to scan the data

through the spatial dimension (width/height) rather than the temporal dimension

used in the previous design.

Weight Provider and PEs: In the original design, the weight provider loads each

PE (32 PEs in total) with features of a single output channel. Each weight feature

is of size Inputch × width × height. The whole feature is convolved with the input
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to generate the output data for one channel. In comparison, depth-wise convolutions

come with Inputch size of one for each weight feature, and they only get convolved

with one input channel of data. One can simply reduce the IN CH SIZE from the

data provided to one to enable 2-D convolutions seamlessly but at the cost of less

parallelization and lower performance. To avoid this issue, we load multiple output

features into each PE and perform the same multiplication-accumulation on the input

plate of data. The only difference is the accumulation phase, where instead of adding

all multiplied data from all weight channels, we separately accumulate the data for

each channel.

6.3.4 Operation Division

Operations in an RWNN (or a DNN) graph can embody different computational

intensities. In some cases, the large gap of intensity can stop the scheduler from

finding a good balance of load between the partitions, regardless of the partition-

ing scheme. To alleviate this problem, we propose Operation Division technique.

This technique is rooted in graph transformation techniques, which take advantage

of the distributive, associative, and commutative properties of the neural network

operations, as explained in chapter 6.2. Doing so breaks down large operations into

a set of small parallel operations and ultimately reduces the standard deviation of

the overall computational intensity between all operations. Figure 6.6 represents a

sample of breaking down large operations into multiple small operations, following a

concatenation.

Efficient operation division is necessary to obtain the optimal partitioning scheme.

Toward this goal, we proposed Algorithm 12. Our algorithm’s main idea is to converge

the node weights into a global average weight through node division. We first calculate

the global average weight by dividing the total graph weight by the number of nodes.
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Figure 6.6: Splitting a Large Operation Into Multiple Smaller Operations, Following

a Concatenation of the Results.

Second, we iterate over the nodes and decide whether divisions reduce the distance

of the new node weights and the global average weight. Further, we replace the node

with the new nodes and rewire the disconnected edges. The new nodes’ output needs

to be added by a new addition operation before being forwarded to the successor

node.

6.4 Evaluation

To confirm and quantify our novel scheduler’s benefits, we designed and conducted

experiments on our multi-FPGA platform.

All experiments were conducted on a network of Intel Fog Reference Design units

each equipped two Nallatech 385A FPGA acceleration cards (Intel A10 GX1150

FPGA), an Intel Xeon E5-1275 v5 CPU, and 32GB of main memory. The OpenCL

kernels for FPGAs were compiled using Intel FPGA SDK for OpenCL (version 19.1)

with Nallatech p385a sch ax115 board support packages (BSP).

We selected four RWNN architectures for evaluation throughout the rest of the

paper. Table 6.1 summarizes the specifications of these networks. These networks

include 11 or 22 nodes, and two classical graph generators, Erdos-Renyi (ER) Erdős
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Algorithm 12: Operation Division Algorithm.

Input : graph G = (V,E)

Output: graph G = (V ,E)

// Initialization

Wtotal = 0, Wavg = 0

for node in V do

Wtotal ← Wtotal + node.fmas

end

Wavg ← Wtotal / len(V )

// Divide operations, if necessary

for node in V do

NumDivs = CalcNumDivs(node.fmas, node.ich,Wavg)

if NumDivs 6= 1 then

Divide(G, node, numDivs)

end

end

return G ← G

and Rényi (1960) and Watts-Strogatz (WS) Watts and Strogatz (1998). The num-

ber of nodes does not represent the total number of operations but rather a graph

generator parameter.

Finally, all RWNN architectures are performing inference on images of size 3C

×224W ×224H.

6.4.1 FPGA Design Extension

As we discussed in Chapter 6.3.3, the available FPGA implementation lacks sup-

port for RWNNs. More precisely, the new FPGA design should be knowledgeable
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Algorithm 13: Helper CalcNumDivs Algorithm for the Operation Division

Algorithm 12.

// Return optimal number of divisions

def CalcNumDivs(fmas, ICH, Wavg):

OptNumDivs = 1

offset = abs(fmas - Wavg)

while true do

newICH = ceil(ICH / (OptNumDivs+ 1))

Wnew = (newICH / ICH) × fmas

if offset ≤ abs(fmas - Wnew) then

offset = abs(fmas - Wnew)

OptNumDivs ← OptNumDivs+ 1

else

break

end

end

return OptNumDivs

about (1) proper execution order of the operations, (2) allocation/eviction of the

memory regions for the input/output of each operation, and (3) consumption/redi-

rection of the incoming data from the input I/O channel.

This section presents the extra logic overhead to support the three new features of

the accelerator design. Table 6.2 shows the resource consumption of the new design

compared to the baseline. We can observe a slight increase in BRAM, LUT, and FF

usage, around 7%, 15%, and 17%. Also, we can observe an almost the same clock

frequency, which can help preserve a similar performance. As a result, the extended

design can easily fit the same FPGA while providing similar performance.
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Algorithm 14: Helper Divide Algorithm for the Operation Division Algo-

rithm 12.

def Divide(G, node, numDivs):

node.removeConnections(node.incomings())

node.removeConnections(node.outgoings())

G.remove(node)

for i in range(numDivs) do

start = i × (node.ich/numDivs)

end = (i+ 1) × (node.ich/numDivs)

newNode = node[start : end][:][:]

newNode.incomings() = node.incomings()

newNode.outgoings() = node.outgoings()

G.add(newNode)

end

6.4.2 Partitioning

This chapter evaluates our partitioning algorithm’s effectiveness in balancing the

load among the FPGAs in the pipeline. As mentioned before, an improper balance

can affect the overall throughput. To measure the effectiveness, we first need to

choose a metric to evaluate the partitioning. We consider the partition’s deviation

with the most prominent weight from the optimal average weight (which can provide

the optimal throughput) calculated as Wtotal/num partitions. The deviation is cal-

culated as Equation 6.7, where Wavg is an optimal average weight for each FPGA and

Wmax is the FPGA with maximum assigned weight after the partitioning. Since the

throughput is bounded by the FPGA with the largest weight, the smaller deviation

means less overhead on the pipeline.
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Name Generator Number of Nodes

RWNN-1 ER 11

RWNN-2 ER 22

RWNN-3 WS 11

RWNN-4 WS 22

ER-Specific Configuration Parameters

Edge Creation Prob. (p) 0.4

WS-Specific Configuration Parameters

Edge Creation Prob. (p) 0.4

Number of Nearest Neighbors (k) 4

Table 6.1: RWNN architecture configurations.

Design Clock

Freq

(MHz)

DSP Util.

(Used /

Total)

BRAM

Util. (Used

/ Total)

LUT Util

(Used /

Total)

FF Util.

(Used /

Total)

Baseline 212 1.4K / 1.5K 1.3K / 2.7K 290K / 854K 762K / 1.7M

Xtended 210 1.4K / 1.5K 1.4K / 2.7K 335K / 854K 894K / 1.7M

Table 6.2: Resource utilization of the baseline FPGA design vs. the extended FPGA

design.
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Figure 6.7: Deviation from the perfect average weight for: (a) RWNN-1, (b) RWNN-

2, (c) RWNN-3, and (d) RWNN-4, for 4 different partitioning algorithms. Div and

Mov stand for Division and Moving.

Deviation(%) = (abs(Wavg −Wmax))/Wavg × 100 (6.7)

We first compared the effectiveness of our move heuristics, simple move heuristic

and extended move heuristic. Figure 6.8 depicts the comparison between these two
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Figure 6.8: Deviation from the perfect average weight for: (a) RWNN-1, (b) RWNN-2,

(c) RWNN-3, and (d) RWNN-4, for single-move and extended-move heuristics.
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heuristics for different number of FPGAs. Based on the results, the extended-move

heuristics is outperforming the single-move up to 20%, while balancing the load along

the FPGAs. As a result, we stick to extended-move heuristic, throughout the rest of

this paper.

Figure 6.7 compares the deviation in four different partitioning algorithms: (1)

default, (2) only division of operators (Div), (3) moving operators between partitions

(mov), and (4) the combination of division and moving. Need to mention, we used

extended moves heuristic. The X-Axis is the number of FPGAs, and the Y-Axis is

the deviation percentage from the optimal average weight. Our experiments include

four different graph configurations. The results are showing that our partitioning

algorithm can reduce the deviation between 2.4x to 8.1x. Such reduction helps the

deployment to achieve a much higher throughput on the pipeline.

Another observation is the effectiveness of different partitioning techniques. Based

on our observations, while moving operations between different partitions and dividing

operations both reduce the deviation (up to x3.9 for moving and up to 2.3x for

division), the former technique is much more effective. This is because the accelerator

supports a specific granularity of operation configuration, making any operation with

a smaller configuration have the same overhead. Finally, we realized that combining

both techniques can provide the maximum possible benefit by reducing the deviation

up to 8.1x.

Figure 6.9 presents the throughput of the FPGA pipeline (with different numbers

of FPGAs) under different partitioning strategies. The X-Axis is the number of FP-

GAs, and the Y-Axis is the throughput of the pipeline (Img/second). The figure also

presents the throughput that can be achieved in a perfect condition. Our partitioning

strategy to divide the operations and move them between the partitions can obtain

around 81.1% better throughput than the default strategy.
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Figure 6.9: Throughput of the FPGA pipeline with different partitioning strategies,

including the perfect partitioning for configurations: (a) RWNN-1, (b) RWNN-2, (c)

RWNN-3, and (d) RWNN-4.
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Figure 6.10: Execution time overhead of our partitioning algorithm, for different

architectures: (A) RWNN-1, (B) RWNN-2, (C) RWNN-3, and (D) RWNN-4.

There are two main reasons that prevent any strategy from obtaining linear

speedup with increasingly number of FPGAs. First, the finest granular load of work is

processing one channel of data, which stops the partitioning strategy to achieve per-

fect load balance. Second, and most importantly, while dividing the input channels

of convolutions, we may need to add some extra empty channels (like padding in the

normal convolution) to match them with the hard-coded number of input channels

in the FPGA design (IN CH SIZE). The above limitations prevent any strategy

from achieving the perfect load balance or the ideal throughput.

Finally, Figure 6.10 shows the overhead of our partitioning algorithm for all

RWNNs and different numbers of FPGAs. In all our cases, the overhead is below

20ms. This is negligible compared to the overall network execution overhead. Also,

partitioning is a one-time process and will not affect the pipeline performance.

6.4.3 Memory Scheduling

In this chapter, we evaluate the potential of our memory scheduler in optimizing

the maximum memory consumption. As mentioned in Chapter 6.3.2, different exe-
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Figure 6.11: Memory consumption of the RWNN on two and four FPGAs. There four

different bars, representing the combination of with or without scheduling (WSched

and WOSched) and with or without operation division (Div and NoDiv).

cution orders of the operations on an FPGA can have different maximum memory

footprints. On FPGAs with limited off-chip memory, some execution orders may fail

due to out-of-memory issues. As a result, an optimal memory-aware scheduler is

necessary to enable RWNN execution on a broader range of devices.

Figure 6.11 depicts the maximum memory utilization, with and without our

memory-aware scheduler. Experiments were performed on two and four FPGA con-

figurations. On X-Axis, we have four different RWNNs, as described in Table 6.1.

Y-Axis represents the memory consumption for each RWNN and a specific schedul-

ing setting. Three observations are available from Figure 6.11. First, our memory

scheduler can reduce the memory footprint by up to 34%. In our case, the scheduler

has better opportunities with bigger neural networks (B and D, against A and C).

Second, our operation division approach can slightly improve the memory footprint

(up to 5%), even without the scheduler. With the operation division, the scheduler

can break up part of the large operations from the FPGA, which can lead to a lower
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operation), with two configurations: (1) without operation division and scheduling,

(2) with operation division and scheduling.

memory footprint. Third, increasing the number of FPGAs reduces the effectiveness

of the memory scheduler. It stems from having fewer scheduling options on each

FPGA (with a smaller number of operations per FPGA) and less opportunity for

memory reduction. For example, for a single experiment, the memory footprint on a

four-FPGA configuration is roughly 2% higher than a two FPGA configuration.

Figure 6.12 presents a detailed memory consumption footprint while running

RWNN-1 with operation division on a single FPGA, with and without memory

scheduling. Each step in the X-Axis is an operation execution (including new mem-

ory (de)allocations). We can observe that our memory scheduler reduces the memory

consumption throughput the execution.

6.5 Conclusions and Future Works

In this chapter we designed Piper to efficiently schedule RWNNs on multi-FPGA

platforms. Piper comes with three main contributions. First, it determines the

optimal partitioning of an RWNN on a multi-FPGA platform. Second, it reduces
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the memory footprint on each FPGA, by discovering the optimal execution plan.

Third, it extends the available neural network accelerator design on FPGAs to support

arbitrary data consumption/routing, which is a unique feature of RWNN graphs.

Finally, we evaluated our design and shown the effectiveness of Piper.
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Chapter 7

CONCLUSIONS

In this thesis we studied the suitability of FPGAs for accelerating edge workloads,

specially the emerging neural networks. Here we summarize our findings in each

chapter:

• First, we studied the general suitability of FPGAs for IoT workloads on edge

servers. Our results confirm the superiority of FPGAs over GPUs with re-

spect to: (1) providing workload- insensitive throughput; (2) adaptiveness to

both spatial and temporal parallelism at fine granularity; and (3) better energy

efficiency and thermal stability. Based on our observations, we argue that FP-

GAs should be considered a replacement or complementary solution for current

processors on edge servers.

• Second, we studied the feasibility of different accelerators for handling different

loop patterns, through design of Loopy. We identified and analyzed five com-

mon loop patterns, along with the key configuration parameters in these pat-

terns. We then studied the acceleration opportunities for these loop patterns

and how the loop configurations and accelerator platforms affect the effective-

ness of acceleration. Using Loopy, developers can gain a good understanding

of the acceleration potential of their algorithms on different platforms, without

having to implement them for any specific platform, based on the loop patterns

that these algorithms embody.

Loopy provides an important first step towards the optimized use of acceler-

ators for diverse applications in heterogeneous computing systems. Based on
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Loopy, we will be able to study the combination of the loop patterns and their

accelerations ability in heterogeneous computing systems in our future works.

• Third, we demonstrated a high-throughput multi-FPGA acceleration solution

for a wide variety of CNNs. We first extended the DLA Aydonat et al. (2017)

architecture to achieve lower latency and better resource utilization, for sin-

gle FPGA configuration. further, we extended the architecture to support 3D

convolutions for the video understanding applications. It includes studying the

optimal deployment of the 3D convolutions on the semi-1D systolic array. fur-

ther, we enabled communication between the FPGAs to support multi-FPGA

setups. Finally, we developed an algorithm for automatic deployment of the

CNN layers onto the FPGAs in the multi-FPGA setup. Our results show that

utilizing multiple FPGAs can linearly increase the overall throughput of the

CNN inference. Also, optimizing the PE systolic array and FC operations can

lead to better area utilization (up to 25%) and higher overall throughput (up

to 24%), compared to the state-of-the-art CNN accelerator. Finally, we studied

the efficient mapping of 3D convolutions on our novel semi-1D systolic array to

achieve the highest overall throughput.

• Fourth and final, we designed Piper to efficiently schedule RWNNs on multi-

FPGA platforms. Piper comes with three main contributions: (1) It determines

the optimal partitioning of an RWNN on a multi-FPGA platform, (2) It reduces

the memory footprint on each FPGA, by discovering the optimal execution plan,

and (3) It extends the available neural network accelerator design on FPGAs

to support arbitrary data consumption/routing, which is a unique feature of

RWNN graphs. Finally, we evaluated our design and shown the effectiveness of

Piper.
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