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ABSTRACT

Software Defined Networking has been the primary component for Quality of Service

provisioning in the last decade. The key idea in such networks is producing indepen-

dence between the control and the data-plane. The control plane essentially provides

decision making logic to the data-plane, which in-turn is only responsible for moving

the packets from source to destination based on the flow-table entries and actions. In

this thesis an in-depth design and analysis of Software Defined Networking control

plane architecture for Next Generation Networks is provided. Typically, Next Gen-

eration Networks are those that need to satisfy Quality of Service restrictions (like

time bounds, priority, hops, to name a few) before the packets are in transit. For

instance, applications that are dependent on prediction popularly known as ML/AI

applications have heavy resource requirements and require completion of tasks within

the time bounds otherwise the scheduling is rendered useless. The bottleneck could

be essentially on any layer of the network stack, however in this thesis the focus is on

layer-2 and layer-3 scheduling. To that end, the design of an intelligent control plane

is proposed by paying attention to the scheduling, routing and admission strategies

which are necessary to facilitate the aforementioned applications requirement. Simu-

lation evaluation and comparisons with state of the art approaches is provided with

reasons corroborating the design choices. Finally, quantitative metrics are defined

and measured to justify the benefits of the designs.
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Chapter 1

INTRODUCTION

Software defined Networks or SDNs have been regarded as the key component for QoS

provisioning. In this paradigm, the decoupling of the control plane from the data-

plane allows independent decision making at the controller. Various requirements

such as packet delay, time-slot assignments, bandwidth re-allocation, network recon-

figuration is supported by the SDN controller application built (as an orchestration

or management layer) for providing a software service. In this thesis, we dive deeper

into these requirements and provide details about how the provisioning is carried

out from abstract concepts to reality for next generation networks. Typically, next

generation networks comprises of applications such as ML/AI models that perform

bandwidth intensive tasks within a network or within one of the components in a

network (namely a server). These applications could be prediction of caching loca-

tion (such as FedCo), prediction of vehicle locations (such VeNet) or any real time

streaming application (such as EdgeBoost). Therefore, the focus of this thesis would

be all of these three applications. We carry out extensive mathematical analysis fol-

lowed by a software simulation design to show the feasibility of making a product in

the future. In order to make this thesis accessible to a beginner and an expert in

Network Engineering each chapter is organized as follows:

1. Each chapter starts with an introduction where the broader problem and moti-

vation is explained.

2. Each chapter has an extensive literature survey that encompasses the current

state of the art models that would help the reader understand how each of these

1



models work. Some models require re-iteration, ostensibly these frameworks

would be mentioned more than once in different chapters.

3. Each chapter then dives into a system model that we design and provide math-

ematical analysis and subsequent proofs of the same model.

4. Finally, each chapter provides a simulation experiment to coherently present

how theory and practical applications come together. Eventually, a few con-

cluding remarks and future work is provided.

Broadly, for QoS provisioning in next generation networks there are key points

which we must consider. To that end, this thesis begins with Chapter 1 where-in a

hot take on Time sensitive networks (TSN) and SDN control plane design for such

networks is provided. Continuing in the same vein, in Chapter 2, we consider fault

tolerant scenarios for TSN and explore in depth how SDN control plane can make

independent decisions to get a network back online in times of emergencies and fault.

In Chapter 3, we discuss FedCo a learning model for content caching which takes

inspiration from our previous work EdgeBoost Balasubramanian et al. (2019). A key

feature in NGN is the need for seamless handover at the edge. We show the control

plane of this architecture seamlessly controls mobility handling with fundamental

SDN principles. In Chapter 4, we extend the mobility characteristics to Vehicular

Networks and perform deep neural networked learning tasks for vehicular networks.

Aptly called as VeNet, this model proposes a new paradigm of Internet of Vehicles

architecture for producing a seamless automotive system. We use raspberry pi vehicles

to perform some key experiments to show its performance benefits.

In Chapter 5, we provide concluding remarks and a few future directions to take

this research forward.
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Chapter 2

CONTROL PLANE FOR INDUSTRIAL IOT : A TIME SENSITIVE NETWORK

PERSPECTIVE

2.1 Introduction

Emerging technologies, such us industrial Internet of Things (IoT), autonomous

vehicular networks, and smart healthcare systems, are critical time-sensitive appli-

cations Al Ridhawi et al. (2018); Gavriluţ and Pop (2020); Otoum et al. (2018);

Ridhawi et al. (2020). Machines in industrial automation have started to imple-

ment time-sensitive control loops that require a strict delay bound. With the advent

of Industry 4.0 and the Industrial IoT the new challenge of managing the time-

sensitive traffic has arisen Baccarelli et al. (2017); Raptis et al. (2019). In order to

address the real-time communication needs of these applications, as documented in

detail in Belliardi, R., et al. (2018), the IEEE Time Sensitive Network (TSN) Task

Group has developed the IEEE 802.1Qbv standard Bello and Steiner (2019). The

IEEE 802.1Qbv standard includes the Time Aware Shaper (TAS) which relies on

synchronized time cycles and features gate time periods for high-priority scheduled

traffic Nasrallah et al. (2019). TAS strives to provide on-time packet services. To

cope with dynamic network scenarios, various reconfiguration mechanisms need to be

considered that optimally allocate network resources. In particular, there is a need

to maximize the traffic flow admissibility in the network for a given bounded network

capacity. Network Utility Maximization Ferragut and Paganini (2011); Karakoc et al.

(2020); Wang et al. (2020) is a common strategy that has been used over decades for

optimal network resource allocation so as to maximize a utility, whereby the network
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Quality of Service (QoS) requirements are quantified using a concave function.

While establishing QoS metrics in the network, Software Defined Network (SDN)

control has played a key role in recent years. Numerous studies, such as Barakabitze

et al. (2020); Castillo et al. (2020); Gerhard et al. (2019); Kellerer et al. (2019); Leng

et al. (2019); Pinheiro et al. (2017); Yang and Yeung (2020), have shown varying

benefits of remote monitoring of network events. Primarily, the orthogonality of the

control-plane and the data-plane enables a programmatic independence that allows

efficient resource management. Generally, latency issues can be very well managed

via the SDN control strategies Wang et al. (2018).

In this paper, we design a reconfiguration framework based on the IEEE 802.1Qbv

standard in collaboration with the IEEE 802.1Qcc standard. We use an SDN con-

troller to implement a control mechanism that incorporates the 802.1 Qcc vari-

ables (including the flow instantiation parameters and the 802.1Qbv gate control

parameters). The SDN controller cohesively communicates with the data-plane TSN

switches, which are time synchronized, e.g., via the IEEE 1588 Precision Time Proto-

col. We reduce the network reconfiguration problem to a network utility maximization

problem as the rate stability constraints simultaneously affect the network reconfig-

uration and utility. We show via gating constraints that the achieved bound ensures

a rate-stable physical network. Further, we utilize a virtual queue framework that is

software controlled to maximize the network utility in the virtual queues, Finally, we

prove that this virtual queue framework provides stability of the physical network.

The main contributions of this article are:

i We design the novel TSNu policy that uses virtual queues and we formulate the

utility maximization problem by partitioning the objective function. In doing

so, we divide the network functions into three phases, namely admission control,

routing, and scheduling.
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ii We jointly optimize the admission control, routing, and scheduling in a TSN

with gate constraints.

iii We theoretically analyze the proposed TSNu policy to prove the network sta-

bility while maximizing the network utility. We also simulate the proposed

TSNu policy, whereby we use a generic POX controller to build our custom

software-defined TSNu controller. We compare the proposed TSNu with two

state-of-the-art approaches, namely Non-TSNu Nasrallah et al. (2019), virtual

queue baseline Neely (2010), and TSSDN∗ Nayak et al. (2017). The presented

evaluation results illustrate how TSNu can facilitate the Industry 4.0 and in-

dustrial IoT paradigms.

The remainder of this paper is structured as follows. The related work is reviewed

in Section 5.2. Section 3.3 introduces the design and formulation of our TSNu frame-

work. Sections 3.4 through 2.3.5 present the theoretical analysis, while Section 3.6

presents the simulation evaluation and comparison with state-of-the-art approaches.

Finally, Section 3.7, provides concluding remarks and outlines future research direc-

tions in the real-time communication domain, such as Industry 4.0.

2.2 Related Work

This section reviews the TSN studies that are closely related to our study. The

main distinctions of our study from the existing related studies are summarized in

Table 2.1. Farzaneh et al. Farzaneh et al. (2016); Farzaneh and Knoll (2017) have

proposed a prototypical experimental set-up that is derived from their previous work

on logic based modelling. Both studies Farzaneh et al. (2016); Farzaneh and Knoll

(2017) model a simulation set-up for automating TSN schedules. Both studies ignore

the key gate control constraints, i.e., these existing studies do not jointly consider

5



.... .... .... .... .... .... ....

Reconfiguration  
Control

Admission 
Control

Virtual 
Queue

Path 
Comp.

Topology Manager

Gate Control Agent

TSN Switches

Data Plane

Control Plane
Controller Application

G1 G2 G3 Gn

Figure 2.1: Architecture Design of Proposed Sdn-based Tsnu Framework: In The

Control-plane, the Reconfiguration Control Interacts with the Topology Manager as

Well as Admission Control, Virtual Queue Data Base, And Path Computation to

Control the Gate Control Agent (Engine). The Gate Control Engine Creates the

Gate Control Entries That in Turn Control The Tsn Switches in the Data-plane

admission control, routing, and scheduling to determine the gate control function. In

contrast, we jointly consider admission control, routing, and scheduling for the gate

control function which is a key constraint in the TSN utility maximization. Further,

we make use of the SDN controller to distribute the time-triggered schedule among

the TSN network switches. Primarily, the benefit of using SDN controller in this

scenario is for the ease of programmability and dynamic reconfiguration.

Stanton et al. Stanton (2018) have shown the relative benefits of exploiting pre-

cisely calculated time synchronization methods. The study Stanton (2018) elabo-

rates the usage of the IEEE 802.1AS standards that define the deterministic sub-
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microsecond timing with the Precision Time Protocol (PTP). The authors show how

different clock algorithm techniques are ideal to manage the gate control mechanisms

of a TSN switch. Stanton et al. Stanton (2018) mainly describe routines to show how

shared time can be used in Industry 4.0 scenarios.

Zhao et al. Zhao et al. (2018) have proposed a design that inter-twines the priority

based scheduling and time triggered credit based shaper mechanism to widen the

solution space for gate control list preparation. The worst case latency for individual

critical flows or time triggered flows is computed. The study Zhao et al. (2018)

provides an optimized solution for time triggered networks, however, the complexity

of operation and the number of iterations required to produce the gate control list

(GCL) is very high. Additionally, Zhao et al. (2018) does not simultaneous optimize

admission, routing, and scheduling as the main focus was on the schedule preparation

in form of the gate control entries. Similarly, Zhang et al. Zhang et al. (2019) used

network calculus based analysis of TSN for industry 4.0. The analysis in Zhang et al.

(2019) mainly targets the applications specific to Industry 4.0 which is also one of

the integral applications that we consider in this study.

Boehm et al. Boehm et al. (2019) have designed a unified controller for time-

sensitive networks and SDN. Boehm et al. Boehm et al. (2019) built on Nayak et al.

(2017) and showed that the key difference between the two studies is the combined

controller architecture that provides real-time communication support. However,

both of these studies did not provide any time synchronization of the SDN switches,

which translates as not performing any management of the Gate Control (GC) pa-

rameters. Falk et al. Falk et al. (2019) have proposed a network simulation framework

called NeSTiNg in OMNeT++ that analyzes the behavior of TSN. A similar TSN

simulation study has been presented in Nasrallah et al. (2019). Falk et al. Falk et al.

(2019) analyze the different available scheduling mechanisms that produce reliable
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Table 2.1: Summary of Comparison with Related Work.

Related Work Main limitations and differentiation from our study

Farzaneh et

al. Farzaneh

et al. (2016);

Farzaneh and

Knoll (2017)

Ignores the key gate control constraints

Stanton et

al. Stanton

(2018)

Mainly prescribes routines to show how shared time can be used

in Industry 4.0 scenarios, does not provide any on-line solution for

reconfiguration

Zhao et

al. Zhao et al.

(2018)

Complexity of operation and the number of iterations required to

produce the GCL are very high

Boehm et

al. Boehm

et al. (2019)

Does not provide any time synchronization to the SDN switches,

which translates to not performing any management of the Gate

Control (GC) parameters

Said et al. Said

et al. (2019)

Ignores optimizing the three important aspects of admission control,

routing, and scheduling

Nayak et

al. Nayak

et al. (2017)

Exploits the global view of the controller for routing and scheduling,

with a pre-assumption of admission
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transmission selection, e.g., the credit based shaper and priority queueing. However,

both Falk et al. (2019); Nasrallah et al. (2019) do not consider the existence of a

programmable control plane. Also, optimization of routing and scheduling is not

considered in the simulation models in Falk et al. (2019); Nasrallah et al. (2019). In

contrast, in this study we develop an optimization framework for a cost effective TSN

implementation. Silva et al. Silva et al. (2019) have briefly examined the adequacy

of integrating both SDN and TSN for Industry 4.0 settings. Silva et al. Silva et al.

(2019) have outlined the benefits of real time Ethernet protocols in combination with

the network programmability of SDN.

Said et al. Said et al. (2019) implemented the IEEE 802.1Qcc model using the

SDN approach. Said et al. showed how SDN principles can accelerate the time to

integrate new flows or configure a TSN network. Said et al. Said et al. (2019) consider

mostly a model for static scenarios and do not examine in detail how the model

can be extended to incorporate dynamic scenarios with real-time computation and

decisions. The model ignores optimizing the three important aspects of admission

control, routing, and scheduling. On the other hand, our TSNu framework caters to

these key constraints and prioritizes the three aspects of admission control, routing,

and scheduling for dynamic real-time communication scenarios.

Nayak et al. Nayak et al. (2017) have proposed a Time Sensitive Software Defined

Network (TSSDN) architecture that is the closest related study to our work. Nayak

et al. Nayak et al. (2017) exploit the global view of the controller for scheduling

and routing with a pre-assumption of admission. Our evaluations indicate that it

is necessary to have a joint policy for admission control, routing, and scheduling in

order to gain performance benefits. We compare our TSNu approach with the TSSDN

approach to quantify the significant benefits produced by our TSNu approach.

We briefly note for completeness that a specific time-triggered traffic management
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based on conflict graph techniques has been studied in Atallah et al. (2019); Falk

et al. (2020). Multicast traffic in TSN networks has been studied in Schweissguth

et al. (2020); Yu and Gu (2020), while our focus is on unicast traffic. Also, joint

routing and scheduling in deterministic Internet Protocol (IP) networks with network

layer techniques has been studied in Krolikowski et al. (2020); in contrast, our focus

is on the TSN link layer.

2.3 TSNu System Design and Formulation

2.3.1 Design

Figure 2.1 shows our proposed control plane design. The control plane is mainly

responsible for configuring the forwarding plane (data-plane). The key calculations of

the paths taken by the packets and the schedules needed by the switches are prepared

in the control-plane. These control actions are conducted remotely i.e., a logically

centralized SDN controller with a global view executes the controller application.

The OpenFlow protocol McKeown et al. (2008) acts as the south-bound interface for

communicating with the switches in the data-plane. Our design is mainly divided

into six components:

Reconfiguration Control

The reconfiguration control module takes input from the topology manager and the

gate control engine. Primarily, the topology manager gives the total number of hops

which need to be traversed for a particular reconfiguration to take place; while the

gate control engine provides the time-slot within which the reconfiguration should

take place. The module executes the online algorithm necessary for dynamic scenarios

where each path that has failed or is congested needs a re-computation or a fault-
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tolerance based suggestion. The path computation element feeds this information

directly to the reconfiguration control module.

Topology Manager

The topology manager mainly handles the switches and the end-hosts. The topology

manager relies on the resource list in the reconfiguration control module and enforces

the seven hop recommendation of the IEEE 802.1D standards. A typical scenario

to consider is as follows: In a common industrial environment, sensors that periodi-

cally or sporadically send ambient measurements to a local gateway require certain

Quality of Service (QoS) guarantees. In such a volatile and dynamic environment,

new machinery that requires prioritized execution (e.g., emergency cooling proce-

dures or maintenance tasks for network traffic tests) may be brought onto the factory

floor. To deal with such scenarios, the TSN shapers via Gate Control Lists (GCLs)

in coordination with the Network Management Entities (NMEs), e.g., Centralized

Network Configuration (CNC), have to adapt to changing environmental conditions

by judiciously applying reconfigurations such that stream deadlines, QoS, and total

stream utilization times (reported by a stream registration procedure) are satisfied.

To support the TSN shapers, the IEEE 802.1AS precision time protocol (PTP) pro-

vides a synchronized clock on the end-hosts, while the source nodes can use Intel

DPDK modules Redzovic et al. (2020); Xiang et al. (2019); Xiang et al. (2022) and

hardware accelerations Niemiec et al. (2019); Shantharama et al. (2020); Thyagaturu

et al. (2022b) for low-delay processing of the source applications.

Admission Control

The admission control element is called upon a new stream registration. The ad-

mission control supports the topology manager and maintains the information and
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variables necessary to determine whether a flow should be accepted or rejected. More

specifically, the admission control maintains the gating function Fe(t) which limits

the number of packets that are serviced on a link e in a time-slot t.

Mainly, dynamic scenarios pose difficulties and hence require close attention.

When a new flow needs to be scheduled, the source sends a flow request that includes

the destination information and the time-stamp indicating when it is transmitting.

The admission control module executes the online algorithm that checks whether the

flow can be accepted. If accepted, a suitable schedule is prepared with the time-slot

and routing information. The controller updates the flow table in the switches for

routing the packets and hands over control to the path computation element.

Throughout, the admission decision is based on the currently available time-slots

and the available lowest-cost path. Thus, when a given flow requests admission, we

first check the time-slot availability on the available lowest-cost path. If all time-slots

are filled, then we check the next available lowest-cost path. We continue this process

until we have checked all the time-slots on all available paths.

Virtual Queue Database

This module contains the necessary transmission schedule parameters. The virtual

queue database is a repository of all the resources available in the form of queues.

It maintains the mapping policy of the physical queues which are occupied by the

packets that the controller admitted in the time-slots t1 to t2, i.e., Q(t1, t2), to the

packets admitted to the virtual queue Q̂(t1, t2). The arrival function and its imposed

constraints affect the stability of the queues which, which are analyzed in detail in

Section 2.3.3.

The virtual queue database module also plays the important role of deleting flows

from the schedule once flows expire. The resources are freed for new flows. The
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updates are then made via the OpenFlow interface. The prepared global transmission

schedule is important because once the choice of the schedule is made, then the time-

slot is dedicated to that particular flow and the entire path is reserved, as elaborated

in Section 3.4.

Path Computation Element and Gate Control Engine

These two modules are employed together due to the role they play in the architecture.

These modules play a vital role in static and dynamic scenarios. Every time a stream

is admitted, the path computation element finds equal-cost paths when a path failure

or congestion occurs. Further, the routing proceeds differently for both scenarios. In

static scenarios, the routes are prepared offline and flow tables can easily be updated

with new routes. However, for dynamic scenarios, the routing proceeds in multiple

stages. Once the control is handed over from the admission control module, the source

is informed about the schedule and the transmission begins. The update is carried

via the OpenFlow interface. The necessary time-slots are picked by the Gate Control

Agent among the Gate Control Entries defined as G1 . . . Gn. Once the entire path

is reserved for a particular flow, no other time triggered scheduled traffic flow will

interfere with it. Thus, all flows are isolated from one another. Once a flow expires,

a removal request is made and the path computation element relays this information

to the virtual queue module to delete the flow from the schedule.

Although any routing algorithm could be employed for the path computation,

we employ routing based on maximal edge-disjoint spanning trees. This means that

different outgoing edges can distribute packets in the same time-slot. We follow a

similar approach as Edmonds’s algorithm employing breadth first search (BFS) for

selecting the edges. BFS always selects a path with the minimum number of edges.

Therefore, the worst case computational complexity of the routing is O(J2), i.e.,
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quadratic in the number J of vertices (TSN switches) in the graph.

The admission control requires a linear/binary search over all the flows (essentially

an iteration over the mid-points of the time-slots and a matching with the expected

flows that need to use a given time-slot) that is the number of all flows being regis-

tered, so that the binary search effort is less than the routing complexity for practical

scenarios. Additionally, flow updates, e.g., an already ongoing flow requests a higher

bite rate, are similar in that every update requires checking flow time-slots and as-

signing updated flows to time-slots, which takes linear time. Therefore, the routing

complexity dominates the overall framework complexity.

2.3.2 Optimization Problem Formulation

In this section we formulate the TSN reconfiguration problem as a network utility

maximization problem. We describe our goal of designing a stable control policy

for the virtual queue framework. We relate how this framework can be mapped to a

physical network and show rate stability in both physical and virtual queue scenarios.

The key factors which we consider in our design are the joint optimization of admission

control, routing, and scheduling. In pursuit of our routing policy, we consider a

weighted graph, where each edge is weighted by the queue-length; in particular, we

follow a weighted shortest path from source to destination. For our admission control,

we jointly consider the available routes and the links in the topology, whereby packets

are admitted via a minimum-cost function. Finally, the link scheduling policy follows

a simple drift minimization strategy per slot.
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Table 2.2: Summary of Key Notations.

Notations Meaning

J Set of network nodes (TSN switches)

e Network edge, i.e., direct link between two TSN switches

E Set of edges in network

R Set of routes in the network graph G = (J,E)

Timing Structure

t Time-slot corresp. to gate control entry duration, with a link either

ON or OFF during a time-slot.

T Time horizon available at the controller, which is divided into base

periods (TSN cycle times), which are further divided into time-slots

c Traffic class, where c = 1 means ST, c = 2 means BE

γ Instantiation of traffic class γ = c for a given flow

τ(t) Link state process, τ(t) ∈ {0, 1}, i.e., given link is ON or OFF in

time-slot t,

V̂e(t) Virtual queue length (in number of packets) in link e in time-slot t

Ve(t) Physical queue length, i.e., number of packets waiting to traverse

edge e

F(t) Gating function (packets/time-slot) for a given flow in time-slot t.

Ce(t1, t2) Service allocation (Gbit/s) to link e between time-slots t1, t2

Q̂e(t) Total number of packets the controller allows in the link e in time-

slot t

∇(T ) Rate in packets/time-slot number of packets received by a given

destination up to end time T

τ(t)peae Service rate for virtual queue of link e in time-slot t

Z Utility function for TSN network
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Preliminaries

We first note that our problem constraints form a closed and bounded set and that

our objective function is strictly concave. In particular, the rate stability constraints

form a closed set as the aggregate rate on a link is bounded by the finite link capacity

and every queue length is bounded (packets arriving to a queue filled to capacity

are dropped). Also, the objective function is strictly concave because the second

derivative of the objective function is strictly negative; intuitively, the rate of effect

on the objective function of a link capacity change from, e.g., 1 kbps to 100 kbps is

much higher than the increase from 1 Mbps to 1.1 Mbps. Our maximization problem

thus satisfies the requirements for obtaining a unique maximum.

Consider a network graph G(J,E), with J as the set of nodes and E as the

links, see Table 5.2 for a summary of the main notations. The time scale is slotted

according to the TAS specifications into periodic base periods (TSN cycle times)

which are further partitioned into time-slots. A link is either ON or OFF with binary

states 1, 0, respectively, in a given time-slot. A time-slot can only transmit if the

link is ON. Further, external packets from the Scheduled Traffic (ST) and Best Effort

(BE) Traffic are admitted via the IEEE 802.11Qcc controller Q. Consider the traffic

class to be represented as c, whereby c is either ST or BE. We define a monotonically

increasing utility function Z. Consider the set of all routes that a given packet from

a given traffic class γ as an instantiation of the traffic class c takes in the graph G

represented as R. For our network, we consider an admission controller Q that has

unlimited number of packets from traffic class γ. This controller determines packets

to be allowed into the network from each traffic class in the time-slot it has been

provided to transmit on a per-flow basis. Intuitively, at most Q(t) number of packets

are allowed into the network in each time-slot t.
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Utility Maximization Problem

Let there be Π admissible policies. The utility maximization problem finds the pol-

icy π ∈ Π that maximizes the total of the utilities of all the traffic classes while

maintaining the rates of transmission in the network to be stable. Let the rate of

transmission be ∇(T ), for a given traffic class γ in a policy π transmitting for a time

period T . Further, let the queue length at link e be denoted by Ve(T ). Thus, the

utility maximization problem can be given as

max
π

E

[∑
γ

Zγ(rγ)

]
(2.1)

with the two constraints

lim
T→∞

∇(T )/T = rγ (2.2)

lim
T→∞

∑
e

Ve(T )/T = 0 ∀e ∈ E. (2.3)

Note that Equation (2.2) can be interpreted as how fast the transmission needs to be

conducted and Equation (2.3) can be interpreted as the rate at the which the queue

is being serviced. Correspondingly, the lower the congestion, the lower the delay.

2.3.3 TSN Virtual Queue Framework

We design a TSN virtual queue system that follows an optimal stability policy

and then map the virtual queue system to the physical network system. Suppose the

controller admits Q(t) packets from one of the classes c, that activates the link τ at

one time-slot t. The service rate for the virtual queue, on the link demarcated by a

random stationary ergodic process ae ∈ {0, 1} that is given as V̂e is τ(t)peae packets

per time-slot, where in a time-slot t, on a link e, we can transmit pe packets when

the link is ON. We assume that all the packets enter the virtual queues immediately
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on the selected path. Hence, the growth of the virtual queue can be given as

V̂e(t+ 1) = V̂e(t) + Q̂e(t)− τ(t)peae, (2.4)

whereby Q̂e(t) represents total number of packets the controller has allowed in the

queue in the time-slot t, which in turn is related to the routeR. For designing a stabil-

ity control policy, we utilize the drift-plus-penalty function Neely (2010). According

to the drift-plus-penalty function, we can form a Lyapunov function for virtual queues

by directly mapping the physical queue length Neely (2010):

L(V̂(t)) =
∑
e

V̂2
e (t) (2.5)

with the conditional drift

∆(V̂(t), a(t)) = E
[
L(V̂(t+ 1))− L(V̂(t)) | V̂(t), a(t)

]
. (2.6)

Under the policy conditions,

∆(V̂(t), a(t)) ≤ E
[
Q̂2
e(t) + p2

e + 2V̂e(t)(Q̂e(t)− τ(t)peae(t)) | V̂(t), a(t))
]
. (2.7)

The terms Q̂2
e and p2

e are finite constants, upper bounded by Q2
max + p2

max; we denote

H for this upper bound. Thus, the right-hand side of (2.7) becomes

= H + 2E

[∑
e

V̂e(t)(Q̂e(t)) | V̂(t), a(t)

]
− 2E

[∑
e

V̂e(t)τ(t)peae(t) | V̂(t), a(t)

]
.

(2.8)

Interchanging summation gives then for right-hand side of (2.7):

= H + 2E

[∑
γ

Q̂γ(t)
∑
e

V̂e(t)1{e∈Ψc(t)} | V̂(t), a(t)

]

−2E

[∑
e

V̂e(t)τ(t)peae(t) | V̂(t), a(t)

]
,
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whereby 1{·} denotes the characteristic indicator function which is one if the ar-

gument is true and zero otherwise. As, Q̂e(t) depends on the routes selected for the

traffic classes γ, we re-write the controller term as,

Q̂e(t) =
∑
γ

Q̂γ(t)1{e∈Ψc(t)}. (2.9)

Thus, neglecting the constant H, the objective is to minimize the function

2E

[∑
γ

Q̂γ(t)
∑
e

V̂e(t)1{e∈Ψc(t)} | V̂(t), a(t)

]

− 2E

[∑
e

V̂e(t)τ(t)peae(t) | V̂(t), a(t)

]
− 2J

∑
γ

Zγ(Q̂γ(t)). (2.10)

The above equation is obtained following the drift-plus penalty framework that con-

siders admission control, routing, and scheduling. On minimizing this equation we

obtain our TSNu policy that jointly considers both admission control and routing

jointly while enforcing rate stability.

2.3.4 Partitioning the Objective Function

The first term of Eqn. (2.10) represents the routing policy that considers the traffic

flow originating from a source node s to a sink node t. Consider a graph Ĝ of virtual

queues, each link e with a virtual queue length V̂e(t). Here, all traffic classes γ ∈ c

are assigned to the shortest route τ(t) ∈ R that gives the paths in the graph Ĝ.

The second term of Eqn. (2.10) represents the link scheduling policy. When this

term is minimized, we get the link scheduling policy that activates all links that are

in the ON state. The first two terms of Eqn. (2.10) when considered jointly provide

the admission control policy:

2E

[∑
γ

Q̂γ(t)
∑
e

V̂e(t)(e ∈ cγ(t)) | V̂(t), a(t)

]
−2E

[∑
e

V̂e(t)τ(t)peae(t) | V̂(t), a(t)

]
.

(2.11)
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This leads to the first theorem, which claims that under the TSNu policy, the TSN

virtual queues are rate-stable and the expected utility is close to optimal.

Theorem 1: Let Z∗ be the optimal utility attainable for some policy π ∈ Π, then

the TSNu policy achieves a utility of at least Z∗ −O (J−1) for a positive constant J .

Proof: From Neely (2010), clearly a random stationary policy called RND exists

for a small ε > 0 that takes random actions of (network admissibility and scheduling)

based on the current network link status a(t) and gives results that are close to

optimal given as

E

[∑
γ

Zγ(QRND
γ (t))

]
≥ Z∗ − ε (2.12)

E
[
Q̂RNDe (t)− τ(t)pRNDe (t)ae(t)

]
≤ ε, ∀e ∈ E. (2.13)

These expectations are taken over the network process a(t) and the randomized ac-

tions in RND. Now, applying the same approach in our case gives for the conditional

drift from Eqn. (2.6):

∆(V̂(t), a(t))− J
∑
γ

Zγ(Qγ(t)) ≤

H + 2E

[∑
γ

Q̂TSNu
γ (t)

∑
e

V̂e(t)1{e∈ΨTSNu
c (t)} | V̂(t), a(t)

]

−2E

[∑
e

V̂e(t)τTSNu(t)peae(t) | V̂(t), a(t)

]
(2.14)

and subsequently,

−J
∑
γ

Zγ(QTSNu
γ (t)) ≤ H + 2E

[∑
γ

Q̂RNDγ (t)
∑
e

V̂e(t)1{e∈ΨRND
c (t)} | V̂(t), a(t)

]
(2.15)

−2E

[∑
e

V̂e(t)τRND(t)peae(t) | V̂(t), a(t)

]
− JE

[∑
γ

Zγ(QRND
γ (t)) | V̂(t), a(t)

]
.

(2.16)
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The second inequality follows from the TSNu construction in Section 2.3.3, which is

required mainly to minimize the upper bound on the conditional drift plus penalty.

The policy πRND is independent of the virtual queue length V̂(t). The conditioning

on the queue length can therefore be ignored; thus, for the remaining term:

∆(V̂(t), a(t))−J
∑
γ

Zγ(Qγ(t)) ≤ H+2E

[∑
γ

Q̂RNDγ (t)
∑
e

V̂e(t)1{e∈ΨRND
c (t)} | a(t)

]

− 2E

[∑
e

V̂e(t)τRND(t)peae(t) | a(t)

]
− JE

[∑
γ

Zγ((QRND
γ (t)) | a(t)

]
. (2.17)

Taking expectation of the inequality over the network process a(t),

∆(V̂(t))−JE

[∑
γ

Zγ(Qγ(t)) | V̂(t)

]
≤ H+2E

[∑
γ

Q̂RNDγ (t)
∑
e

V̂e(t)1{e∈ΨRND
c (t)}

]

− 2E

[∑
e

V̂e(t)τRND(t)peae(t)

]
− JE

[∑
γ

Zγ(QRND
γ (t))

]
. (2.18)

Rearranging the right-hand side,

∆(V̂(t))−JE

[∑
γ

Zγ(Qγ(t)|V̂(t)

]
≤ H+2(

∑
e

V̂e(t)E
[
Q̂RNDe (t)− τRND(t)peae(t)

]
−

JE

[∑
γ

Zγ(QRND
γ (t))

]
. (2.19)

Based on the properties of πRND,

∆(V̂(t))− JE

[∑
γ

Zγ(Qγ(t)) | V̂(t)

]
≤ H + 2ε

∑
e

V̂e(t)− JZ∗ + Jε. (2.20)

For ε tending to zero,

∆(V̂(t))− JE

[∑
γ

Zγ(Qγ(t)) | V̂(t)

]
≤ H− JZ∗. (2.21)

Taking expectation over V(t),

E
[
L(V̂(t+ 1))

]
− E

[
L(V̂(t))

]
− JE

[∑
γ

Zγ(Qγ(t))

]
≤ H− JZ∗. (2.22)
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For a performance guarantee over a time horizon T , we divide both sides by T ,

1

T
E
[
L(V̂(t))

]
≤ H +

1

T
E
[
L(V̂(0))

]
+ J

(
1

T

T∑
t=1

E

[∑
γ

Zγ(Qγ(t))

]
−Z∗

)
(2.23)

By the non-negativity of the Lyapunov function,

E

[∑
γ

Zγ

(
1

T

T∑
t=1

Qγ(t)

)]
≥ 1

T

T∑
t=1

E

[∑
γ

Zγ(Qγ(t))

]
. (2.24)

Thus,

1

T

T∑
t=1

E

[∑
γ

Zγ(Qγ(t))

]
≥ Z∗ − H

J
. (2.25)

Given the optimal achievable utility Z∗, and applying Jensen’s inequality to Zγ,

lim
T→∞

T∑
t=1

E

[∑
γ

Zγ(Qγ(t))

]
≤ lim

T→∞
E

[∑
γ

Zγ

(
1

T

T∑
t=1

(Qγ(t)

)]
≤ Z∗. (2.26)

Hence, the optimality of the utility is proven.

Applying the limits to Inequality (2.21),

lim
T→∞

sup
1

T
E
[
L(V̂(T ))

]
≤ H. (2.27)

The drift-plus penalty framework L(·) implies that L(V̂(t)) =
∑

e V̂2
e (t). Thus,

lim
T→∞

1

T
E
[
L(V̂2(T )

]
≤ H which gives E

[
L(V̂2(T ))

]
≤ H. (2.28)

From Jensen’s inequality, further,

E
[
V̂(T )

]
≤
√
B. (2.29)

The upper bound of each virtual queue is given by the maximum amount Qmax of

packets that the controller allows. Suppose for a positive β, we set βQmax. Thus, for

a time horizon T ,

V̂(T ) ≤ βQmaxT. (2.30)

As Equation (2.30) provides a uniform bound, the bounded convergence theorem

applies. Hence,

E

[
lim
T→∞

V̂(T )

T

]
= lim

T→∞

E
[
V̂(T )

]
T

= 0. (2.31)
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2.3.5 Stability of Physical Time Sensitive Networks based on Gate Control List

Constraints

Intuitively, the number of packets admitted in the virtual network is the same as

in the physical network. Further, the rules followed for the scheduling and routing

are the same in both networks. The key difference, however, in the physical network

is the stability. Unlike the virtual queues, the physical queues are subjected to the

constraints of the TSN network. Mainly, the Gate Control List determines the packets

that will traverse a TSN switch. The determined routes allow the total number of

physical packets for a time interval between (t1, t2]) to be Q(t1, t2). This corresponds

to the virtual queue size Q̂(t1, t2). Now, if a service Ĉ(t1, t2) is granted to the virtual

queue, then we apply the Skorokhod mapping policy Ramanan et al. (2008):

V̂(t) = sup
0≤t1≤t

(Q̂(t1, t)− Ĉ(t1, t)). (2.32)

As the arrivals are equivalent,

Q(t1, t2) = Q̂(t1, t2) and C(t1, t2) = Ĉ(t1, t2). (2.33)

For a gating function F(t), the arrival function can be given as,

Ve(t) ≤ Ce(t) + F(t). (2.34)

The packet scheduling rules in TSN networks Nasrallah et al. (2019); Nasrallah et al.

(2019) resolve contention at the time of resource allocation. These are also the rules

that act as the major constraints in the physical network queues. Similar to a first-

in-first-out (FIFO) schedule in traditional networks, the gating mechanisms governs

the packet scheduling in the TSN network.

Definition 1: Given a time-based signal (timer), the gating function F(t) enables

or disables a queue from transmission. The current window slot is calculated based
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on the global time. In accordance to the calculated slot we check if the current time

belongs to the traffic classes (ST or BE).

Definition 2: In the two traffic classes, we produce distance based approximations

for the two classes to create a fine-grained policy for the TSN network. To this end,

we prioritize packets based on decreasing order of their distance from the source.

Based on this definition, if a packet traverses more hops than another packet, then

the scheduling policy prioritizes the packet with fewer hops.

Combining the above two definitions, gives the following Lemma:

Lemma 1: A non-negative function called the gating function F(t) bounds the

total number of packets serviced, which exists for every chosen TSN path Ψ. The def-

inition of F(t) is given by sup0≤t′≤tF(t′), whereby, F(t) is monotonically increasing

in t and acts as a bound.

Proof: As F(t) is non-decreasing, we can define another function G(t) = sup0≤t′≤tF(t′).

Thus, the claim that F(t) is bounded follows.

Theorem 2: The physical queues are stable when the TSNu policy is applied. The

rate-stability is given as:

lim
T→∞

∑
e

Ve(t)
T

. (2.35)

Proof: Suppose Pe(0) is the total number of packets taking link e in the time-slot

t = 0. Suppose that the destination of these Pe(0) packets is h hops away, we consider

the number Ph(t) of packets that are destined h hops away in time-slot t. If there are

multiple such packets sent or if there are duplicates created along the way, we have

to sum as

Ph(t) =
∑

Ψ

Pe,Ψ(t), (2.36)

whereby Pe,Ψ(t) represents the total number of packets traversing link e via the routing

branch Ψ. We now use induction to prove the bounds.
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If h = 0, for a specific link e at time t = 0, then Ve(0). The total number of

packets serviced by the network is given as Ce(t0, t) + F(t). As the gates follow a

non-decreasing service, these are the packets which would need some link capacity

on link e in the future. Based on the distance approximation, we prioritize h = 0

packets. The link e initially had some packets to transmit, which appear as the

serviced packets Ce(t0, t). Thus, the total number of packets in link e is given as∑
T

Pe,T ≤ Pe(0) + Ce(t0, t) + F(t)− Ce(t0, t) ≤ Pe(0) + F(t). (2.37)

For h = h− 1, we have a monotonically non-decreasing function N(t), such that

Ni(t) = F(t), where i increases from 0, . . . , h − 1, we show that Pi(t) ≤ Ni(t).

Consider the similar case of a link e at an arbitrarily fixed time-slot t, such that

to ≤ t, which suggests there are no packets waiting to take the link e. Now, the only

packets waiting to traverse the link e are in the hops 0 ≤ i ≤ h− 1 at time t0. Based

on our assumption, we have the first batch of packets bounded by the monotonically

increasing function:
h−1∑
i=0

Ni(t0) ≤
h−1∑
i=0

Ni(t). (2.38)

Further, we have the next batch of packets given as
∑

ΨQΨ(t0, t). The TSNu policy

considers the following packets, when there are h − 1 packets to move in the link e;

the following h packets were not processed. This means that within the first h − 1

hops, there were
∑

ΨQΨ(t0, t) new packets, plus
∑h−1

i=0 Ni(t) preceding (old) packets.

Essentially, the least number of packets going to h hops away from the source is

max

{
0, Ce(t0, t)−

∑h−1
i=0 Ni(t)−

∑h−1
i=0

∑
T QT (t0, t)

}
. We can therefore write Pe,T

as

Pe,T (t) ≤
h−1∑
i=0

Ni(t) +
∑
T

QT (t0, t) −

[
Ce(t0, t)−

h−1∑
i=0

Ni(t)−
h−1∑
i=0

∑
T

QT (t0, t)

]
.

(2.39)
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By further approximation,

Pe,T (t) ≤ 2
h−1∑
i=0

Ni(t)−
h−1∑
i=0

∑
T

QT (t0, t)− Ce(t0, t). (2.40)

From Equation (2.32), we can summarize,

Pe,T (t) ≤ 2
h−1∑
i=0

Ni(t) + F(t). (2.41)

Accordingly,

Ph(t) ≤ 2
h−1∑
i=0

Ni(t) + F(t) (2.42)

and

Nh(t) = 2
h−1∑
i=0

Ni(t) + F(t). (2.43)

We observe that the size of the physical queue is given as
∑

e Ve(t) =
∑k−1

h=1 Ph(t).

From Equation (2.43), for all hops, Ph(t) ≤ Nh(t). Thus,

lim
t→∞

∑
e Ve(t)
t

= 0. (2.44)

From, Equations (2.43) and (2.44) and comparing with Neely (2010), we conclude

that the physical TSN network is rate stable.

2.4 Performance Evaluation

2.4.1 General Evaluation Set-up

We used Python 3.6 to build our simulator and built a custom controller for

replicating the Qcc standard control environment. There are no well-defined queue

disciplines available for the Qcc standards, thus we model our own queue structure for

the simulation. The physical links have a capacity of 1 Gbps and follow a directional

graph (which is the routing flow), see Figure 2.2 for an illustrative example. We set

the duration of a base period (TSN cycle time) to 1 ms, with 70 time-slots per base

period (unless otherwise noted).
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Algorithm 1: TSNu

1 Input: Initialize all the GCL queues to be zero

2 For every time-slot,

3 1) Topology construction: Establish the links costs for an incoming

request

4 2) Routing: For a unicast traffic source− sink flow, find the minimum

weight spanning tree and the weighted shortest path in the network graph

G. Update the routing logic based on

∑
γ

Q̂γ(t)
∑
e

V̂e(t)(1{e∈Ψc(t)} | V̂(t), a(t)). (2.45)

3) Admission: Update the following for all admissions:

2E

[∑
γ

Q̂γ(t)
∑
e

V̂e(t)1{e∈Ψc(t)} | V̂(t), a(t)

]
−2E

[∑
e

V̂e(t)τ(t)peae(t)|V̂(t), a(t)

]
.

(2.46)

4) Schedule Preparation:

∑
e

(V̂e(t)τ(t)peae(t) | V̂(t), a(t)) (2.47)

5) Update the GCQ and forward the packets based on the prepared

schedule.

5 6) Update the virtual queues based on the rate stability of Equation (2.42).
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We run our TSNu policy with a logarithmic utility function ln(·). We consider

Zγ(rγ) = ln(1 + (rγ)). For illustrating the method of how the max-flow min-cut is

achieved, we consider an example topology with J = 9 TSN switches, see Figure 2.2.

For our utility maximization evaluations, J is a strictly positive constant that is varied

up to J = 40 TSN switches. For a given number J of TSN switches, the evaluation

network graph is randomly generated with the NetworkX tool in Python. From the

illustrative topology in Figure 2.2, we observe the following paths from Source 1 to

Destination 1: 1→ 2→ 3→ 4→ 5, 1→ 8→ 5, and 1→ 9→ 5. Next, from Source 2

to Destination 2, the path is 3 → 6 → 5. Now, we use the 3 cuts from Source 1 to

Destination 1 which makes rγ1 = 3; analogously, from Source 2 to Destination 2,

rγ2 = 1. Accordingly, the theoretical utility values are Z = ln(4) + ln(2) = 2.02 ≈ 2.

As this example topology illustrates, the achieved utility varies with the number of

nodes J . Generally, as the number of max-flow paths increases, there are more options

for routing and scheduling the flows. These max-flow paths are cut as shown in the

example topology, i.e. the cuts are the numbers of paths available from source to

sink. Thus, when the number J of nodes increases, the number of paths increases,

and the number of scheduled flows will commensurately increase.

Throughout, we consider the dynamic scenario of Section 2.3.1. with Poissonian

generation of scheduled traffic flows requests. Flows expire after one base period and

generate frames of size 100 bytes to give a prescribed relative traffic load λ.

We conduct 100 independent replications of the simulation for each evaluation

scenario. The resulting 95% confidence intervals are less than 5% of the corresponding

sample means for all performance metrics and are omitted from the plots to avoid

visual clutter.
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Figure 2.2: Illustrative Network Topology with J = 9 Tsn Switches.
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tion of Number J of Nodes; Traffic Load

λ = .6, Fixed

2.4.2 Comparison of TSNu with Non-TSNu and Virtual Queue Baseline

Our initial comparisons are made towards achieving a better admissibility as that

obtained in Nasrallah et al. (2019), where admission control and routing are not

jointly optimized. We refer to the approach from Nasrallah et al. (2019) as Non-

TSNu. Further, we conduct a baseline comparison against the virtual queue based

approach in Neely (2010) that achieves near-optimal results to provide a justification

for our model.
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Figure 2.5: Average Gcq Length W.R.T
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Nodes J = 9.

Figure 2.3 shows the Gate Control Queue (GCQ) length, represented by F(t) in

the analysis, as a function of the number of nodes J . We observe from Figure 2.3 that

Non-TSNu has lower queue occupancies than the two optimized approaches. This is

because Non-TSNu relies only on the local physical queue length differences for a

given TSN output port and employs a heuristic approach without a notion of service

time per queue; hence, Non-TSNu does not capture network congestion accurately.

In contrast, both the baseline approach and the proposed TSNu approach accurately

capture the physical network congestion by considering a common virtual queue for

all the outgoing ports of a TSN switch.

Fig. 2.4 shows the achieved utility as a function of the number J of nodes in

the topology. We observe the expected behaviour of increasing network utility with

increasing number J of network nodes. Importantly, this evaluation demonstrates the

throughput-optimality of the TSNu policy since TSNu and baseline achieve nearly the

same utility.
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Figure 2.7: Mean Packet Delay as a Func-

tion of Traffic Load.

Figure ?? shows the mean packet delay of the scheduled traffic as a function of

the number J of TSN switches for a fixed traffic load λ. We observed that the higher

latency of Non-TSNu can be attributed to the packet cycling in the network, whereas

in the proposed TSNu model, packets only traverse through acyclic paths.

Figure 2.5 shows the comparisons of the average gate control queue lengths as a

function of the traffic arrival rate. In this comparison, Non-TSNu produces smaller

queue lengths as compared to the other approaches because a single physical queue

per TSN switch output port is considered, whereas the TSNu and baseline approaches

consider a virtual queue per TSN switch. For TSN communication, the use of a virtual

queue can enable a highly decongested queue, i.e., a queue that transmits packets to

all routes acyclically to maintain low delays. Fig. 2.5 therefore, provides a vital insight

as to how a virtual queue can continue to satisfy optimal rates compared to physical

queues. Importantly, by routing over optimal acyclic paths, TSNu achieves shorter

packet delays than Non-TSNu, as examined further below in Fig. 2.7.

Figure 2.6 shows the behavior of sum of queue lengths inclusive of BE and ST as
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Figure 2.8: Non-TSNu vs TSNu under
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a function of the traffic load λ. In Figure 2.7, we compare the mean packet delay

of the three policies as a function of the traffic load λ. Around λ ≈ 1.5, the non-

TSNu policy begins to saturate. The baseline policy saturates next. Further, an

arrival rate of λ ≈ 2 is supported by TSNu which demonstrates the usefulness of joint

optimization of routing and scheduling, which has a direct implication on queueing

delay. As Non-TSNu explores all possible paths to route packets to the destination,

we can observe a higher delay, which is also the reason why a higher total queue

length (as deduced from Little’s Law, a higher sum queue length results in higher

delay). The main reason why Non-TSNu behaves in this manner is because, the route

estimation of Non-TSNu explores all available paths; instead, TSNu only takes the

non-cyclic routes which are optimal, reducing the latency substantially.

Fig. 2.8 shows how the BE and ST traffic separation enables dynamic control

of the GCQ. Essentially for an arrival rate λ above 0.6, we observe that the Non-

TSNu traffic saturates. Non-TSNu is not able to support a higher arrival rate, mainly

because it lacks optimal control. In contrast, the TSNu policy implements optimal
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control which substantially improves the performance.

2.4.3 Comparison of TSNu with TSSDN

Set-Up

As there is no openly available implementation of TSSDN Nayak et al. (2017), we

implemented the TSSDN optimization rules in a customized control algorithm called

TSSDN∗. Primarily, the TSSDN∗ algorithm considers all the ILP rules of TSSDN, but

uses a pruning methodology inspired by the general approach of Nayak et al. (2017).

As the approach in Nayak et al. (2017) mainly uses the results of the previous time-

slots and computes the schedule based on the previous observations, we can reduce

the algorithm to a knapsack dynamic programming problem.

In terms of the computational effort, we note that due to the NP hardness of

the static routing and the associated TSSDN approximations Nayak et al. (2017),

TSSDN∗ requires on the order of 100 seconds of computation time on a contemporary

PC for typical scenarios with on the order of 104 flows. In contrast, in our evaluations,

the proposed TSNu requires on the order of 50 µs per flow for 70 time-slots per base

period. This is mainly because the routing in TSSDN is based on checking the validity

of the time-slots along the entire path every time a flow is registered; whereas TSNu

routing is based on simple max-flow paths, which are not cyclic.

For the comparison, we consider a base period (TSN cycle time) of 1 ms, as

defined in the ILP based solver in Nayak et al. (2017) and the SMT based solver

used in Craciunas and Oliver (2016). In Nayak et al. (2017), up to 50 time-slots are

granted within a base period; TSNu follows a similar timing structure with up to 70

time-slots in a base period.
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Figure 2.10: Number of Admitted Sched-

uled Flows as a Function of the Number J

Of Nodes (Tsn Switches); Fixed Parame-

ters: Traffic Load λ = 0.9, 70 Time-slots

per Base Period.

Comparison Results

Figure 2.9 shows the numbers of admitted scheduled flows as a function of the number

of time-slots per base period for a moderately sized network of J = 9 TSN switches.

We observe that the numbers of admitted scheduled flows saturate with increasing

number of time-slots per base period for both TSSDN∗ and TSNu. The key difference

is that TSNu achieves about 15% more admitted scheduled flows for a high number of

time-slots per base period than TSSDN∗. Furthermore, Figure 2.10 indicates that the

performance gap in terms of the number of admitted scheduled flows between TSNu

and TSSDN∗ increases as the number J of TSN switches in the network increases

to about J = 15 and then saturates. The overall advantage of TSNu results from
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Figure 2.11: Physical Queue Length as a Function of Traffic Load λ; Fixed Parame-

ters:: J = 40 nodes, 70 time-slots per base period.

jointly optimizing the admission control, routing, and scheduling. More specifically,

the TSNu route-selection consists of assigning a dominating set of J to every incoming

flow. This allows multiple routing paths, based on the order of feasibility. On the

other hand, for such dynamic scenarios, TSSN∗ resorts to a time-slot first approach,

wherein time-slot sizes matter much more than the links. This means that depending

on the traffic timings, some flows will have more options to be accommodated, while

other flows may be rejected since the routing options are not fully optimally explored.

In contrast, TSNu optimally explores both the available routes and time-slot options

for accommodating flows.

Fig 2.11 compares the physical queue lengths of TSNu and TSSDN∗ for a large

network of J = 40 TSN switches for increasing traffic load λ. We observe from Fig 2.11

that TSNu achieves substantially shorter queue lengths than TSSDN*, particularly

for heavy traffic loads. The shorter TSNu queue lengths are mainly due to TSNu

exploring all the feasible routing paths; whereas, TSSDN∗ is time-slot dominant i.e.,

if there are available time-slots in one path, TSSDN∗ will continue to schedule on
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that path until the path is completely saturated, while alternate paths may be left

under utilized. The shorter TSNu queue lengths translate into shorter queueing delays

compared to TSSDN.

Overall, the TSNu performance advantages are due to the rate-stability offered

by the TSNu framework and its focus on optimal joint control of admission control,

routing, and scheduling. Generally, TSSDN∗ strives to minimize the number of links

over which the flows are scheduled. However, TSNu minimizes the scheduling re-

attempts of TSSDN∗ by exploring multiple a cyclic paths that are stored in the

Qcc data-base which leads to short queue lengths. Thus, TSNu achieves a higher

network utility owing to the smaller network-wide queue lengths. In summary, the key

design difference why TSNu outperforms the state-of-the-art TSSDN∗ approach Nayak

et al. (2017) is the joint optimization of the admission control, route selection, and

scheduling in TSNu.

2.5 Conclusion and Future Work

We have proposed the TSNu framework for jointly optimizing admission control,

routing, and scheduling in time sensitive networking (TSN). The TSNu framework

can provide optimal control in Industrial Internet of Things (IoT) settings, such as

factory floors. We have shown how TSN gating constraints impact the TSNu policy

and have conducted a detailed analysis of the TSNu policy. Our simulation evaluations

have indicated substantially increased flow admissibility and reduced queue lengths

compared with a state-of-the-art policy.

There are numerous directions for future research that can build on the TSNu time

sensitive industrial IoT framework developed in this article. One direction is to exam-

ine strictly deterministic schedules based on deterministic network calculus Le Boudec

(2018); Zhao et al. (2018) in order to satisfy flows in edge cloud based scenarios that
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are pertinent in the Industry 4.0 realm, such as real time factory automation and

robotics. The present study did not employ any artificial intelligence or machine

learning techniques and rather relied on conventional optimization techniques. An

interesting direction for future research is to examine whether a dual-subgradient ap-

proach can reduce the time complexity of the proposed TSN optimization framework

Another direction is to explore TSN in the wider context of network function virtual-

ization (NFV). Through NFV, TSN services could be provided in a flexible scalable

manner via network slicing.
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Chapter 3

NETWORK FAULTS AND RECOVERY

3.1 Introduction

Emerging technologies, such as the industrial Internet of Things (IoT), autonomous

vehicular networks, and smart healthcare systems, are critical time-sensitive appli-

cations Al Ridhawi et al. (2018); Gavriluţ and Pop (2020). Machines in industrial

automation have started to implement time-sensitive control loops that require a

strict delay bound. However, with the advent of Industry 4.0 and the Industrial IoT

the new challenge of managing the time-sensitive traffic has arisen Baccarelli et al.

(2017); Raptis et al. (2019). In order to address the real-time communication needs

of these applications Belliardi, R., et al. (2018), the IEEE Time Sensitive Networking

(TSN) Task Group has developed the IEEE 802.1Qbv standard Bello and Steiner

(2019). The IEEE 802.1Qbv standard includes the Time Aware Shaper (TAS) which

relies on synchronized time cycles and gate time periods for high-priority scheduled

traffic Nasrallah et al. (2019). TAS strives to provide on-time packet services.

To cope with dynamic network scenarios, various reconfiguration mechanisms need

to be considered that optimally allocate network resources. Some recent studies, such

as Feng et al. (2022); Gutiérrez et al. (2017); Kehrer et al. (2014), have considered

using path protection mechanisms via redundancy of the data transmissions, i.e.,

sending multiple data copies into the network, thus pursuing a data-oriented per-

spective. In contrast, in this study we pursue a network-oriented perspective focused

on the links since link failures will disrupt all transmissions over a failed link, i.e.,

sending multiple data copies over the same path with a failed link will not overcome
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a link failure. Also, a link focus avoids the resource waste from transmitting multiple

data copies and can utilize links more efficiently.

There are two categories of protection while considering the links, namely:

1. Path protection where two paths primary and backup path are assigned to

each connection. When there is a primary path failure traffic is routed through

back-up path;

2. Link protection where an alternate link is computed which takes the re-routed

traffic during a failure.

We focus on path protection. We find ways to protect a network with probabilistic

path failures

In-order for a network to operate in its completeness, it is important to provide

sustainable communication paths. Hence, we target in this paper the protection of

paths in scenarios where links fail with certain probabilities that may not be equal to

one so as to design a sustainable Industry 4.0 communication network solution.

There are several factors that come into play which can cause multiple link failures

Many studies such as Tapolcai et al. (2017) Shen et al. (2005), have proven that the

disjoint path problem in the context of SRLG is NP-complete. The key difference

in our study is that we consider network failures on a factory floor that may not be

deterministic. Therefore, we model the SRLG failure based on a probability index

that may not necessarily be one. To further explain this scenario, consider an example

of a fire emergency on a factory floor; then the wires closer to the fire are destroyed

with a higher probability than the wires that are far away from the fire.

While establishing key management policies in the network, Software Defined Net-

working (SDN) control has played a key role in recent years. Numerous studies, such

as Barakabitze et al. (2020); Castillo et al. (2020); Gerhard et al. (2019); Kellerer
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et al. (2019); Leng et al. (2019); Pinheiro et al. (2017); Yang and Yeung (2020); Guck

et al. (2016), have shown varying benefits of remote monitoring of network events.

Primarily, the orthogonality of the control-plane and the data-plane enables a pro-

grammatic independence that allows efficient resource management. Generally, path

computation issues can be very well managed via the SDN control strategies Wang

et al. (2018) and we accordingly employ SDN.

We use an SDN controller to implement the 802.1Qcc variables (including the

flow instantiation parameters and the 802.1Qbv gate control parameters) Bello and

Steiner (2019). The SDN controller cohesively communicates with the data-plane

TSN switches, which are time synchronized, e.g., via the IEEE 1588 Precision Time

Protocol. For a topology change, we resort to the SDN controllers response to change.

Understandably, the requirement to enforce time-bounded packet latencies may be

abandoned in a disaster situation. Therefore, our aim does not incorporate achieving

bounded packet latencies during path recovery.

The main contributions of this article are:

i) We design a novel solution called TSNu1 to provide path protection in case of

correlated network link failures in Industry 4.0 scenarios. This TSNu1 frame-

work relies on an SDN controller to react to failures.

ii) We formulate the correlated link failure problem as a non-linear programming

objective of finding primary and backup paths. In doing so, our path-protection

approach protects against multiple failures.

iii) We design a set of approximation algorithms to find close-to-optimal solutions

in multi-failure scenarios, such as a factory floor emergency where multiple

links fail and demonstrate via simulations the benefits of our TSNu1 model in

Industry 4.0 scenarios.
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The remainder of this paper is structured as follows. The related work is reviewed

in Section 5.2. Section 3.3 introduces the design and formulation of our framework.

Section 3.4 presents the theoretical analysis, while Section 3.6 presents the simula-

tion evaluation and comparison with state-of-the-art approaches. Section 3.7 provides

concluding remarks and outlines future research directions in the real-time commu-

nication domain, such as Industry 4.0.

3.2 Related Work

Efforts in the past have mainly divided reliability and sustainability based studies

in Time Sensitive Networks into two broad domains. The first domain is time redun-

dancy, the studies Raagaard et al. (2017) Balasubramanian et al. (2020) approach the

problem based on the reconfiguration of gate control list schedules. In Raagaard et al.

(2017), a TSN agent is designed that is aware of the traffic conditions at every node

in the network. While Balasubramanian et al. (2020) relies on an optimized approach

via route maintenance, whereby the objective is similar to that of Raagaard et al.

(2017) where new traffic flows can be accommodated by maintaining the queues in

the ports and checking the feasibility of the schedule. Further, in Steiner (2010) de-

signs an SMT solver based approach for time-triggered traffic that consists of internal

fault recovery methods for adding flexibility at the time of re-executions during fail-

ure. Similar approaches have been considered in Craciunas and Oliver (2016) Nayak

et al. (2017) where a time based redundancy enables a faster run-time reconfiguration

of the network.

The second approach is space redundancy, which selects a simplified error model

where singleton errors can occur with a predefined setting of least known minimum

arrival times, see the 802.1CB TSN standards. In the present study, we modify this

approach via the concept of a Shared Risk Link Group. We note that according to
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the 802.1CB standards, the simplified error calculation may not always produce an

optimal result. For instance, during a failure event, the packets which are in transit

cannot be recovered if the link fails. Further, if we consider a typical factory scenario,

there could always be the case where one link failure may be correlated with another

link failure. Further, there need not be a specific inter-arrival time before another

fault occurs. Accordingly, we consider a probabilistic scenario where a failure can

occur based on a particular event probability that can encompass realistic events,

such as man-made or natural disasters in the factory. Therefore, this study is one of

the first to prove that probabilistic failures in TSN networks can be recovered in a

reliable manner to maintain the sustainability of a TSN network.

We employ the Software Defined Networking (SDN) paradigm McKeown et al.

(2008)Said et al. (2019) and the OpenFlow interface, that is utilized in the IEEE

802.1cc TSN standards. According to IEEE 802.1cc, a time synchronization func-

tion ensures that all other functions are executed within predetermined deadlines.

However, it has been established in all previous studies that in order to maintain

the reliability of the time sensitive systems during faults, recovery takes precedence

over timeliness i.e., the evaluation metric changes from reducing latency to quality

of protection. That is, how well is the network prepared to recover from a particular

fault? In the next section we elaborate our system model and eventually show how

we achieve a better protection quality compared to state-of-the-art models, such as

RFT-TSN Feng et al. (2022), baseline Lagrangian models Álvarez et al. (2019), or

the satisfiability modulo theories (SMT) model Craciunas and Oliver (2016).
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Table 3.1: Summary of Key Notations.

Notat. Meaning

G(V,E) Graph with set V of nodes and set E of links (l,m)

|E| Cardinality of set of links E

pl,m Failure probab. of link (l,m), abbrev. p for set of links E

κl,m Link weight for link (l,m) ∈ E

H1(p, z) Failure probability of path z for link failure probs. p

F(t) Gating function

L(·) Lagrangian function for approximation

ρχ Lagrangian multiplier vectors

z, w Primary and back-up paths

β Binary variable to replace the product zw

3.3 Model Overview

In this section we elaborate the problem and the model that we will use throughout

this paper. We consider a graph G = (V,E), where V is a set of nodes and E is the

set of links. A link (l,m) in set E originates from node l, l ∈ V and ends at node

m, m ∈ V .

We follow a single source src to sink dst node pair as, for instance in Balasubra-

manian et al. (2020), whereby (src, dst) ∈ V . We find two paths, namely the primary

path z and the back-up path w from (src, dst) with minimum JFP. Let the indicator

variable zl,m = 1, if the primary path is via (includes) the link (l,m); otherwise,

zl,m = 0. Analogously, we define a back-up path with the indicator variable wl,m. For

brevity, we will write all these variables by dropping the indices, e.g., instead of zl,m

we will write z.
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Figure 3.1: Illustration of Architecture and Operation of Proposed TSNu1.

3.4 Recovery for Independent (Non-Shared) Link Failures

We first develop a model for independent link failures and how the SDN controller

can create a fall-back mechanism for such independent link failures. More specifically,

for independent link failures, the links of the primary and back-up paths are not

shared, i.e., the two paths are link-disjoint.

3.4.1 Link Failure Model and Recovery Goal

Let pl,m be the probability of a link failure for link (l,m), then the probability

that the link survives is 1− pl,m.

The recovery goal is to minimize the JFP. In particular, for a network with given
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link failure probabilities pl,m, our TSNu1 algorithm finds the primary (z) and back-up

(w) paths that minimize the JFP. During normal operation, the src to dst packet

traffic flows over the primary path z and meets the TSN timliness requirements. If a

link failure occurs that disrupts the primary path z, then the src to dst packet traffic

flows is re-routed via the pre-computed back-up path w. The re-routed traffic may no

longer meet the TSN timeliness requirements as priority is given to maintaining a basic

network connectivity via the back-up path and not to reserve resources that would

ensure that the rerouted traffic still meets its timeliness requirement. A protection

scheme with TSN level resource reservations is left for future research. If both primary

and back-up paths fail due to the link failures then the src to dst packet traffic flow

is disrupted, i.e., the event of a joint failure has occurred. Our optimization goal is

to minimize this joint failure probability (JFP).

3.4.2 Path Failure Probability Model and Minimization

Let zm,l = 1 be an indicator variable that is set to one when the primary path

traverses the link (l,m); and is set to zero otherwise. The product form
∏

l,m(1 −

pl,mzl,m) gives the sustainability of the path that is composed of the considered links

(l,m). Maximizing the path sustainability corresponds to:

min
z

1−
∏
l,m

(1− pl,mzl,m) (3.1)

s.t
∑

l:(l,m)∈E

zl,m −
∑

l:(m,l)∈E

zm,l =


1, l = src

−1, l = dst

0, otherw. ∀l ∈ V.

(3.2)

Following Shen et al. (2005), the constraint (3.2) requires that the set of links selected

for the path z forms a path from src to dst. Since the problem formulation in an

integer non-linear program, we need to reduce it further to a linear program with an
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assumption as shown below. We convert the above non linear program to a solvable

linear problem, by assuming that the link failure probabilities pl,m are not equal to

one, i.e., we assume that the pl,m values may approach one without actually taking

on the value one:

pl,m ∈ [0, 1),∀(l,m). (3.3)

Optimal Path Choice Theorem: Based on the assumption in Eqn. (3.3), the

objective function in Eqn. 3.1 can be reduced to an equivalent ILP with the objective

function:

min
z
−
∑
l,m

zl,m log(1− pl,m). (3.4)

subject to the link constraints in Eqn. (3.2).

Proof: The objective function in Eqn. 3.1 can be written as max
∏

(l,m)(1 −

pl,mzl,m). Taking the logarithm of the objective function gives

max
∑
l,m

log (1− pl,m, zl,m) . (3.5)

Applying the log identity for the binary variable zl,m gives

log(1− pl,mzl,m) = zl,m log(1− pl,m). (3.6)

Note that max f(x) = min[−f(x)], completing the proof.

This Optimal Path Choice Theorem shows that the path with the least failure

probability is the least-cost path with link costs (weights) set to − log(1 − pl,m). If

the link failure probabilities pl,m are small, then

− log(1− pl,m) ≈ pl,m. (3.7)

Note that the greedy Algorithm 2 needs to go through only two iterations Find

z, find next best path, find w.

46



Algorithm 2: SDN Assisted Path Finder (TSNu1)

Input: Initialize link weights κl,m = − log(1− pl,m) (or κl,m = pl,m for small

pl,m)

Output: Shortest prim. path z and back-up path w;

1 Find shortest primary path z;

2 while finding the next best path disjoint from z do

3 if directed edges found then

4 Check if used by z;

5 If True Remove such edges;

6 Find second shortest back-up path w;

3.4.3 Path Computation with Disjointedness Constraint

Let H1(p, z) [and H1(p, w)] denote the failure probability of a path z [and w],

respectively, for a given set p of link failure probabilities pl,m. For link-disjoint paths

z and w, the failures are mutually independent as there is no common link shared by

z and w. For the independent path failures, the joint failure probability (JFP) can

be represented as H1(p, z) ·H1(p, w). Thus, we can formulate the minimization of the

JFP as:

min
z,w

H1(p, z) ·H1(p, w) (3.8)

s.t. zl,m, zm,l Constraint as per Eqn. (3.2) (3.9)

s.t. wl,m, wm,l Constraint as per Eqn. (3.2) (3.10)

s.t. zl,m + wl,m ≤ 1, ∀(l,m) ∈ E. (3.11)

The first two constraints follow Shen et al. (2005) and enforce that the sets of selected

links for the paths z and w forms path from src to dst, analogous to Eqn. (3.2). The
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constraint Eqn. (3.11) enforces that there is no shared link between z and w. If a pair

of paths z and w satisfies the constraints (3.9)–(3.11), then the paths z and w form a

disjoint path pair. We will transform this non-linear program into a linear program

via the following assumption.

Assumption: The length of the shortest path from src to dst be q and the link

failure probabilities be uniform, i.e.,

pl,m = p ∀(l,m). (3.12)

Length Lemma: The link probability p needs to satisfy link failure probability

p satisfies 1− 1
21/q
≤ p ≤ 1 , where q is the length of the shortest path from source to

destination so as to enable a concave minimization.

With the assumption of uniform link failure probabilities, the problem in Eqn. (3.8)

becomes a concave minimization. We proceed to design a heuristic algorithm to solve

the concave minimization problem.

Proof: Defining the number Z =
∑

l,m∈E zl,m of hops of the primary path z and

the number W =
∑

l,m∈E wl,m of hops of the secondary path w, we note that the entire

path z survives with probability (1−p)Z , while path z fails with probability 1−(1−p)Z .

Multiplying the path z failure probability 1− (1− p)Z with the corresponding failure

probability 1− (1− p)W for path w gives the objective function from Eqn. (3.8) as:

h(Z,W ) = 1− (1− p)Z − (1− p)W + (1− p)(Z+W ). (3.13)

The proof of the concavity of the objective function in Eqn. (3.13) can be shown

as per Peressini et al. (1988) as follows. Consider S to be the Hessian of h(Z,W ).

Then, concavity exists when S11 ≤ 0, S22 ≤ 0, and S11S22−S12S21 ≥ 0. We have the

Hessian given by the factor e(Z+W ) log(1−p) log2(1− p) multiplied by1− e−W log(1−p) 1

1 1− e−Z log(1−p)

 . (3.14)
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By definition, p < 1, Z > 0, and W > 0, thus 1−e−Z log(1−p) < 0 and 1−e−W log(1−p) <

0, satisfying the concavity condition on the diagonals. The determinant condition can

be expressed as eZ log(1−p)eW log(1−p) ≤ 1. We can evaluate this further, to show that:

eZ log(1−p)eW log(1−p) ≤ 2eq log(1−p) ≤ 1. (3.15)

The first inequality in Eqn. (3.15) is due to Z ≥ q,W ≥ q; the assumption 1− 1
21/q
≤

p gives the second inequality. From Peressini et al. (1988), we can ascertain that

h(Z,W ) is concave on Z and W and the original objective function in Eqn. (3.8) can

be re-written as

1− (1− p)
∑
l,m zl,m − (1− p)

∑
l,m wl,m + (1− p)

∑
l,m(zl,m+wl,m), (3.16)

which shows the concavity and convexity is preserved under the linear mapping com-

position as per Boyd et al. (2004). Hence, the problem is a concave minimization.

3.4.4 Path Selection Algorithm

In order to develop the path selection algorithm we rely on the majorization theory.

According to this theory, a vector x is said to be majorized by another vector y if:

k∑
i=1

xi ≤
k∑
i=1

yi, k = 1, 2, . . . , n− 1, (3.17)

and
∑n

i=1 xi =
∑n

i=1 yi which can be represented by y � x. The majorization theory

shows how evenly the vector is distributed, e.g., x = [2, 2, 2] is evenly distributed over

the 3-tuple vector with a sum (2 + 2 + 2) and is majorized by the vector [1, 1, 4] since

majorization does not depend on the order of the elements of the vectors, i.e., the

statement [1, 1, 4] � [2, 2, 2] is equivalent to [4, 1, 1, ] � [2, 2, 2]. With this premise we

define another condition for minimization called the Schur Concavity.

A function h : K ⊆ Rn → R is Schur concave if h(z) ≥ h(w) for any z, w ∈ K

such that w � z. It is Schur convex if h(z) ≤ h(w) for w � z. Our goal now reduces
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to show that our objective function is Schur concave and we develop a heuristic

algorithm to find a path. We continue to assume a uniform link failure probability

i.e., Eqn. (3.12) continues to hold. Defining Z =
∑

l,m zl,m and W =
∑

l,mwl,m as the

number of hops taken in the primary and backup paths, respectively, the objective

function Eqn. (3.13) can be re-written as:

h(Z,W ) =
[
1− (1− p)Z

]
·
[
1− (1− p)W

]
. (3.18)

Although, a failure might not always be within the seven hop delay constraints (as at

the time of crisis, the goal is to re-instate proper connection without worrying about

the delay requirement, it should be noted that the total number of packets serviced

should still continue to follow the Gating function dynamics examined in Balasub-

ramanian et al. (2020). Primarily, the topology manager gives the total number of

hops which need to be traversed for a particular reconfiguration to take place; while

the gate control engine provides the time-slot within which the reconfiguration should

take place. However, the gating function hands over the control to path computa-

tion modules when link failure happens. We recall (Balasubramanian et al., 2020,

Lemma 1):

Lemma 1: A non-negative function called the gating function F(t) bounds the

total number of packets serviced, which exists for every chosen TSN path Ψ. The def-

inition of F(t) is given by sup0≤t′≤tF(t′), whereby, F(t) is monotonically increasing

in t and acts as a bound.

With this premise, the problem can re-written as: minimizing the function h(Z,W ),

subjected to the gating constraints F(t), with additional constraints of Z =
∑

l,m zl,m

and W =
∑

l,mwl,m. Such an objective function will be Schur concave.

Theorem: If we are given that the function h(Z,W ) in Equation (3.18) is contin-

uously differentiable and symmetric, then the function is said to be Schur concave
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when 0 ≤ p < 1.

Proof: The proof of this theorem is based on the Schur criterion. If a function

h : (a1, a2)n → R is symmetric and continuously differentiable, it is said to be Schur

concave on (a1, a2)n iff

(zj − zk)
(
∂h(z)

∂zj
− ∂h(z)

∂zk

)
≤ 0 ∀1 ≤ j ≤ k ≤ n, z ∈ (a1, a2)n. (3.19)

Evidently the function is symmetric and differentiable as the function values are

unchanged when the Z and W terms are exchanged. Applying this to the function

g(Z,W ), we have

(Z −W )

(
∂h(Z,W )

∂Z
− ∂h(Z,W )

∂W

)
= − log(1− p)(Z −W ) ·

[
(1− p)Z − (1− p)W

]
≤ 0. (3.20)

This shows that h(Z,W ) is Schur concave. From the Schur concavity definition we

know that if the function h(Z,W ) is Schur concave, then it can be minimized at the

unevenly distributed points. A pair with unbalanced paths is preferred because its

joint failure probability may be lower than that of a balanced pair. Similarly, a Schur

convex function is minimized at evenly distributed points. For instance, if we have

a Z = 3, W = 3 pair and a Z = 2, W = 4 pair, then by the concavity property, we

have h(3, 3) ≥ h(2, 4)

as (2, 4) � (3, 3). We acknowledge that our optimization approach requires that

the sums of Z and W , i.e., the values for Z + W are the same for the different

considered path options. In practice, different path options could have different sums

Z +W of hops, extending the optimization approach to such scenarios with different

sums Z +W is a direction for future research.
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When applied to the joint probability Eqn. (3.13), we find that the symmet-

ric/balanced pair is more unreliable compared to the unbalanced values. Further,

we base our heuristic algorithm design based on the strategy that a good-bad path

pair (e.g., a pair with one path having 0 failure probability and another one having

0.2 failure probability will still have a 0 joint failure probability) is better than a

”medium-medium” path pair (i.e., a pair with both paths having 0.1 failure proba-

bility will give a joint failure probability of 0.01). This is the key strategy behind

our heuristic algorithm development that there would be at least one best path or

path having the least (minimum) failure probability. Here, we also make a mild as-

sumption that the path chosen does not contain cycles, and if there are cycles then

they would be of zero length (i.e., the cycles can be removed without affecting failure

probabilities). Thus, it suggests that the chosen paths z and w do not contain cycles.

Connectedness Lemma: If we have an n-connected graph, where n ≥ 2, removing a

source-to-destination path in the graph does not disconnect the source and destination

nodes Boyd et al. (2004); Roughgarden (2010); Wolsey and Nemhauser (1999) Further,

our algorithm seeks to find source-destination paths such that after the first path is

found, then there is at least one other src to dst path.

3.4.5 Alternative Solution

We design another heuristic algorithm that leverages an ILP approximation of the

problem. A key point here is that we will observe many higher order terms which

would involve products of more than two failure probabilities. In such scenarios, i.e.,

where the failure probabilities are very low, pl,m � 1, such terms can be neglected,

therefore, the ILP can be approximated by going through the analogous steps that

led from Eqn. (3.8) to Eqn. (3.13), but now without assuming uniform link failure
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probabilities, i.e., by considering heterogeneous link failure probabilities pl,m:

H1(p, z) ·H1(p, w) = 1−
∏
l,m

(1− pl,mzl,m)−
∏
l,m

(1− pl,mwl,m)

+
∏
l,m

(1− pl,mzl,m)
∏
l,m

(1− pl,mwl,m). (3.21)

We define the binary variable βa,bl,m to be set to one when zl,m = 1 and wa,b = 1;

otherwise, βa,bl,m is set to zero. This means that βa,bl,m = 1 indicates that link (l,m)

is part of the primary path and link (a, b) is part of the back-up path. Expanding

Eqn. (3.21) (while neglecting the higher order terms) gives:

H1(p, z) ·H1(p, w) =
∑
l,m

∑
a,b

pl,mpa,bzl,mwa,b. (3.22)

We use the binary variable β to replace the zw product. Thus, minimizing the JFP

H1(p, z) ·H1(p, w) corresponds to

min
∑
l,m

∑
a,b

pl,mpa,bβ
a,b
l,m (3.23)

s.t. βa,bl,m ≥ zl,m + wa,b − 1 ∀(l,m), (a, b) ∈ E. (3.24)

Along with the constraint (3.24), the constraints (3.2)–(3.11) are inherited here

Now, we make use of Lagrangian relaxation on the constraints (3.2)–(3.11) to

simplify the problem further. NOting that Eqn. (3.2) is unimodular, thus linear

program relaxation has an integral optimal solution following the rules in Wolsey

and Nemhauser (1999), whereby we denote ρ and χ for the respective associated

Lagrangian multiplier vectors:

L(z, w, β, ρ, χ) =
∑
l,m

(
ρl,m +

∑
a,b

χa,bl,m

)
zl,m+

∑
l,m

(
ρl,m +

∑
a,b

χl,ma,b

)
wl,m +

∑
(a,b), (l,m)

(
pl,mpa,b − χa,bl,m

)
βa,bl,m. (3.25)
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Algorithm 3: Alternate Solution With Lagrangian Approximation (LA): via

updates of Lagrangian multipliers and keeping the best path pair at every

iteration.

Input: Initialize: i = 0, ρl,m(0) = pl,m, χa,bl,m(0) = pl,mpa,b ∀(l,m)(a, b) ∈ E

Output: Best path pair (z, w)

1 while iteration index i < I do

2 Initialize for min. JFP for (a, b) superscripts

κl,m = ρl,m(i) +
∑

a,b χ
a,b
l,m(i),∀(l,m) ∈ E;

3 Current shortest path found at z(i);

4 Initialize for (l,m) superscripts κl,m = ρl,m(i) +
∑

a,b χ
l,m
a,b (i), ∀(l,m) ∈ E;

5 Current back-up path found at w(i)

6 βa,bl,m(i) =


1, if χa,bl,m(i) > pl,mpa,b

0, otherwise;

7 ρ(i+ 1) = ρ(i) + δi(zl,m(i) + wm,l(i)− 1);

8 χa,bl,m(i+ 1) = χa,bl,m(i) + δi(zm,l(i) + wa,b(i)− βa,bl,m(i)− 1).

9 Initialize (zchosen, wchosen) = (z(i), w(i)), if p(i) < phigh, where p(i) is the

joint failure probability of (z(i), w(i)); i+ +;

The relaxed problem now becomes:

min
z,w,β

L(z, w, β, ρ, χ). (3.26)

This problem is subjected to constraints Eqn (3.2). Additionally, we notice the total

unimodularity property of the constraint matrix. A matrix is said to be totally

unimodular when the determinant of the sub-matrices is 0, 1, or −1. Thus, as the

constraint matrix is totally unimodular, the linear program (LP) relaxation has an

integral solution that is optimal. This is also solvable in polynomial time. We solve

54



this problem with the primal-dual approach, see Algorithm 3 . In this solution,

z and w are the optimal shortest paths and βa,bl,m is optimal when the βa,bl,m = 1 if

χa,bl,m > pl,mpa,b; and 0 otherwise. For a maximum number I of iterations, we let

δi, i = 1, 2, . . . I, denote the positive diminishing step sizes.

In Algorithm 3, we can observe that the updates of the Lagrangian parameters

are carried out in Lines 5 and 6. Further, the chosen path or the best path is always

saved through the iterations. This algorithm considers the disjointedness. Further,

we show that the objective function in Eqn. (3.22) provides an upper bound on the

JFP. The proof of this intuitive and can be stated as follows for a failure event Ωl,m

of link (l,m):

Proof of upper-bound: For independent link failures, i.e., (l,m) 6= (a, b),

Pr(Ωl,m ∩ Ωa,b) = Pr(Ωl,m)Pr(Ωa,b) = pl,mpa,b. (3.27)

Then,

H1(p, z) ·H2(p, w)= Pr
(
∪(l,m)∈zΩl,m

)
(3.28)

·Pr
(
∪(a,b)∈wΩa,b

)
=Pr

(
∪(l,m)∈z,

(a,b)∈w
(Ωl,m ∩ Ωa,b)

)
(3.29)

≤
∑

(l,m)∈z, (a,b)∈w

Pr (Ωl,m ∩ Ωa,b) (3.30)

=
∑

(l,m)∈z,(a,b)∈w

pl,mpa,b. (3.31)

Note that Eqn. (3.29) for the outer union can be interpreted as finding the common

independent failure links for all the links in paths z and w and taking their sum.

The inequality (3.30) follows from the conventional union bound (Boole’s inequality).

Further, the last equality, i.e., Eqn. (3.31), follows from Eqn. (3.27). Overall, this

proof shows that via linear approximation we can find an upper bound on the JFP

of independent (disjoint) paths.
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3.5 Recovery from Shared Link Failures

3.5.1 Link Failure Model and Recovery Goal

In this section we evaluate the probabilistic scenario where there is a possibility

of simultaneous link failure. In other words, this is a situation when there is no

disjointedness constraint, i.e., a link (l,m) may be shared by both the primary path

z and the backup path w. Then, the link (l,m) failure is said to be a simultaneous

link failure of z and w.

3.5.2 Path Failure Model

Let Hs(p, z, w) represent the probability that both paths z and w fail due to the

failure of a shared link and let Hts(p, z, w) represent the probability that both paths

z and w fail due to failures of non-shared links. The probability that both paths z

and w fail can be expressed as:

Hs(p, z, w) + [1−Hs(p, z, w)] ·Hts(p, z, w). (3.32)

Defining Jzw as the set of links that are shared by paths z and w, i.e., Jz,w = {(l,m) ∈

E : zl,m = 1, wl,m = 1}, and recalling that link (l,m) survives with probability 1−pl,m,

i.e., all shared links survive with probability
∏

(l,m)∈Jz,w (1− pl,m), the probability that

both paths z and w fail due to the failure of one (or multiple) shared links is:

Hs(p, z, w) = 1−
∏

(l,m)∈Jz,w

(1− pl,m) (3.33)

= 1−
∏

(l,m)∈Jz,w

(1− pl,mzl,mwl,m) . (3.34)

If we consider a vector w, then the complement with respect to the set E of all

links ŵ represents the links that are not selected for the back-up path w. Effectively,

the intersection of the set z of links in the primary path and the set ŵ of links that are
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not in the backup path is the set of links in the primary path z that are not shared

with the back-up path w. Thus, the probability that path z fails due to the failure of

non-shared links is equivalent to the probability that links in the intersection of z and

ŵ, i.e., that links shared by z and ŵ fail. This failure probability can be expressed as

Hs(p, z, ŵ). Analogously, Hs(p, ẑ, w) represents the failure of the backup path w due

to the failure of non-shared links. In such a scenario, the total failure of non-shared

links can be given as Hts(p, z, w) = Hs(p, ẑ, w) ·Hs(p, z, ŵ).

Thus, the overall minimization of the JFP can be formulated as:

minHs(p, z, w) + [1−Hs(p, z, w)] ·Hts(p, z, w) (3.35)

s.t. Constraint Eqn. (3.2) for z and w. (3.36)

We can approximate Eqn. (3.35) by analogously following the steps Eqn. (3.1) to

Eqn. (3.7) for the first term. The second term is the joint fail. prob due to the fail

of links that are not shared. The formulation is a standard ILP problem and since

its NP complete, we approximate it as shown in equation 37. This is the low failure

probability regime that we consider so, the β̂l,m=1, only if zl,m and wl,m =1 i.e. link

is shared.

min
z,w,β,β̂

∑
l,m

pl,mβ̂l,m +
∑
l,m

∑
a,b

pl,mpa,bβ
a,b
l,m (3.37)

s.t. Constraints Eqns. (3.1) and (3.4) (3.38)

β̂l,m ≥ zl,m + wl,m − 1 ∀(l,m) ∈ J (3.39)

β̂a,bl,m ≥ zl,m − wl,m + za,b − wa,b − 1 ∀(l,m), (a, b) ∈ J. (3.40)

Note that the constraints (3.39) and (3.40) exploit vector arithmetic, i.e., ~̂w = ~1 −

~w; thus, vector ŵ only includes the links that are not chosen for path w. Hence,

the probability that path z fails due to the failure of non-shared links equals the
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probability that both ŵ and z fail due to the failure of both ŵ and z. Thus, the 1’s

in constraint (3.39) [resp. (3.40)] can be interpreted as the probability that path w

(resp. z) fails due to the failure of non-shared links.

In constraint (3.39), β̂l,m = 1 only when zl,m = wl,m = 1, which is the condition

sharing a link. The first term in Equation (3.37) is the JFP due to the shared link

failure. In constraint (3.40), β̂a,bl,m = 1, when zl,m = wa,b = 1 and za,b = wl,m = 0,

which means that the links (a, b) and (l,m) are used by paths z and w, but these

links are not shared. Thus, the second term of Eqn. (3.37) models the JFP due the

failures of non-shared links.

Analogous to the problem complexity in Section 5.2, the problem specified in

Eqns. (3.37)–(3.40) is NP complete. Therefore, we design a greedy solution in Algo-

rithm 4. The key difference in this algorithm is that for a backup path w, the weight

of each link is set to the JFP because of the failure of link (l,m) and the links in z.

Thus, there are two cases considered:

1. If link (l,m) is not selected as the primary path z, then its weight κl,m is set to

the product of the failure probability of link (l,m) and the approximated failure

probability is
∑

(a,b) pa,bza,b of z.

2. If link (l,m) was selected by path z, then for a joint failure to occur, even

path w would have had to select the link (l,m), so the weight of link (l,m) is

κl,m = pl,m. The shortest path will minimize the JFP and will be used as the

backup path w.

Clearly, if the link (l,m) is shared, then its weight should be set pl,m which the first

order value, which is higher than the second order weight in the non-shared scenario.

Through this we observe that links will low failure probability are almost always

shared.
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Algorithm 4: Shared Link Greedy Algorithm (TSNu2 without disjointed-

ness)

Input: Initialize: κl,m = pl,m

Output: Shortest paths z and w with min JFP

1 Calculate the pl,m when zl,m = 0 and 1, for κl,m = pl,m;

2 Find shortest path z;

3 if zl,m = 0 then

4 κl,m = pl,m ·
∑

(a,b) pa,bza,b;

5 if zl,m = 1 then

6 κl,m = pl,m;

7 Search for shortest path w;

3.6 Evaluation

3.6.1 Simulation Setup

Compared Approaches and Benchmarks

We compare the Algorithms 1, 2, and 3 designed in this paper with a brute-force

solution implemented via a Python optimzer called Gurobi Optimization solver, which

we call “Brute Force” and with the state-of-the-art. RFT-TSN approach Feng et al.

(2022). We refer to our Algorithm 3 via Lagrangian approximation as “LA”. We call

our two greedy algorithms which approximate the ILP as TSNu1 (Algorithm 2) and

TSNu2 (Algorithm 4). As we will see eventually that both greedy algorithms TSNu1

and TSNu2 perform very similarly, we resort to use of TSNu1 in all the plots unless

specified. We evaluate the protection quality via the path failure probability and

the algorithm run-time. For the LA based iterative algorithm, we chose a maximum
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number of I = 2 · 104 iterations, with a step size of 10−9/
√
i here i, i = 1, 2, . . . , I,

denotes the iteration index.

In order test if we could potentially maintain time-lines even at the time of failure

we prepare a set up as follows. As before, we have time slot chosen for each flow from

the set 10,20,50,100µs, this is also the deadline for completing the flow or the length

of the flow. The size of bytes transported as payload is 1500 bytes and specify zero

propagation delay. The TTE structure has a flag which is set to 0 for time-triggered

flow, 1 for non-time triggered flow. Finally, we randomly chose flows from [1,500] set

of flows.

Network Model

We generated over 100 random graphs with a maximum node degree of five. Fur-

ther, we always check for 3-connectedness. If 3-connectedness does not exist, then we

discard the graph. Set distances between two nodes(its again a construct NetworkX

provides, you can set distances manually. The difference however is brought by con-

nectedness. We choose only 3-connected graphs again to maintain the flow deadlines.

Each flow deadline is chosen from {10, 20, 50, 100}µs at random). Two nodes are

connected if distances between each other is less than 0.5 We choose a maximum

node degree of 5. We consider single source to destination pair, whereby source and

destination are uniformly randomly selected.

Link Failure Simulation

We assign the link failure probabilities

pl,m = ε[ν + (1− ν)U ], (3.41)
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where U is an independently uniformly randomly drawn rational number between

(0,1) for each link (l,m). A small ν value corresponds to a low failure probability

regime, whereas large ν values correspond to a high failure probability regime. We

vary the value of ν between 0 and 0.9; whereby ν = 0 implies a uniform random link

failure probability regime. Furthermore, ε is a fixed factor between [0,1].

For the simultaneous (shared) link failures, 20 correlated link groups are uni-

formly randomly generated for every network topology graph and their failure event

probabilities are set to uniformly distributed random numbers so that their failure

probabilities sum to one.

Simulation Process

Each independent simulation replication proceeds as follows. We first generate the

network.

We conducted 100 independent replications for each parameter setting and condi-

tion or approach and report averages of the values obtained for the 100 independent

replications (which involved 100 random network topologies). The 95% confidence

intervals on the reported averages are less than 5% of the corresponding sample means

and are not plotted to avoid visual clutter.

3.6.2 Results

Independent (Non-shared) Link Failures

Shared Link Failures

In Figure 3.2, We evaluate the variations of the lower probability regime and higher

probability regime by changing ν from 0 to 0.9 and observing the path failure probabil-

ity. We see that the probability based path selection approximates the ILP accurately.
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We compare the two approaches TSNu1 with the brute-force GUROBI solver solution

along with the Lagrangian approximation (LA).

We plot Figure 3.6 with the disjointedness constraint and observe the joint failure

probability achieved by TSNu1 and LA. We see that GUROBI solver always achieves

the best possible path and the TSN algorithm and LA achieves the same protection

levels. However, without the disjointedness constraints, the brute force solution still

performs better than others but LA begins to deteriorate pretty sharply. One im-

portant observation to make here is the performance of our greedy algorithms which

perform as well as the GUROBI brute force solution. This fits our claim made in

section 3 that for path preservation, it is important that the primary and back up

paths pair has the best path. Further, for the solution obtained via Lagrangian ap-

proximation we see that performance deteriorates for larger networks. This is mainly

because, LA requires more iterations to find a solution. This is what we observe in

Figure 3.5.

In terms of run time it is obvious that GUROBI takes an exponential time to

solve, whereas the greedy solutions are relatively faster, as examined in detail in

Figure 3.10. We observe that when we have a probability assigned for the SRLG

i.e., pl,m ∈ (0.5, 1) and pl,m ∈ (0, 10−3) for high probability regime in Figure 3.4 and

low probability regime in Figure 3.3, respectively. In this scenario, the GUROBI

performance is equally well in low and high probability regimes. This is intuitive

because the approximation obtained by the GUROBI solver is the lower bound for

the JFP. The greedy algorithms perform failure probability adjustment before making

the choice for the second path to minimize the JFP. This is the reason why TSNu1

has a bit higher failure probability when disjointedness constraints are taken into

account.

In Figure 3.7 for a test case we generated 20 SRLG for every graph and the
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Figure 3.2: Comparisons of Path Failure Probability for Brute-force Ilp Solution and

TSNu1.

failure event probability are distributed as elaborated before pl,m ∈ (0.5, 1) and pl,m ∈

(0, 10−3) for high probability regime and low probability regime, respectively. It was

observed that the JFP was decreased by removal or relaxation of the disjointedness

constraint. A very well justified claim is successfully shown to be true here as the

greedy algorithm outperforms state of the art joint shortest path approach when

introduced in traditional TSN setting of Balasubramanian et al. (2020). This is

because of the inclusion of the best path as explained before.

We also observe in Figure 3.7 that greedy algorithms perform very similarly and

still provide a better protection than the traditional one shortest path per cycle
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Figure 3.3: Jfp for Independent Link Failures (with Disjoint Primary and Back-up

Paths) in Low Probability Regime (ν = 0, ε = 10−3).

approach known as “one-by-one” shortest path instead of pair-wise allocation. This

is justified because our TSNu1 and TSNu2algorithms adjust the failure probability

before making a choice of the second path w. This also leads to less wait time for re-

connection. Further, the choice of the second path is such that the overall joint failure

probability is reduced, hence out performing the traditional algorithm. Further, in

Figure 3.9 we observe the change in utilization of the link given as the ratio of total

flows to the bandwidth which is set at 100 Mbps. The RFT − TSN represents the

reproduced algorithm mentioned in Feng et al. (2022). The key constraints in the

RFT − TSN include the reservations based on queue IDs. Due to this we have an
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Figure 3.4: Jfp for Independent Link Failures (with Disjoint Primary and Back-up

Paths) in High Probability Regime(ν = 0.5, ε = 1)

entire interval reserved that allows only the queue IDs which are different to pass

through the gates. This involves searching and sorting that adds overheads to the

links which have been utilized. However, with TSNu1 we are always ready with a

backup link which is a singular assignment rather than searching from a pool of links.

In Figure 3.10 we observe that the execution time is much higher for the RFT −

TSN this is justified because of the isolation constraints of the model. This means

in-order to prevent the TT flows from overlapping there is an isolation introduced.

However, in TSNu1 there are no flow based isolation which could cause overheads at

the time of failures because we do not change the allocated slots after the scheduling is
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Figure 3.5: TSNu2-model Without Disjointedness Constraints pl,m = 0.5

done. Our design choice and belief is that once flows have been allocated to respective

time-slots, changing them at run-time can cause issues related to overlapping routes

and hence should be avoided. Additionally, this choice is justifiable owing to the

much less constraints which need to be satisfied unlike the RFT − TSN .

In Figure 3.11 we observe the drawbacks of sending extra bits of CRC that causes

further increase in the amount of resources that is wasted. That is another queue is

allocated for the CRC (ACK or NAK), so the transmission is reserved again for these

messages to be successfully.

Through these experiments there was one factor which was very clear, the space

and time redundancy strategies come with a trade-off. This trade-off affects the
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Figure 3.6: TSNu1 with Disjointedness Constraints pl,m = 0.5 ∀l,m ∈ E

same questions as for Fig. 5.

very core of time sensitive industrial networks. That is, the time sensitivity or the

time boundedness. We notice that although the delay parameters are not completely

compliant with the TSN boundaries, fault tolerant mechanisms might sometimes play

out as expected while considering scheduled traffic. In Figure 5.7, we observe these

characteristics. When the injection rate is low, the overall delay appears to be not

so drastic i.e. remains below 10 cycles. However, we can observe the shortcomings

of schemes like LA as injection rate increases to 0.6 This is mainly because of the

wait times for a link to reconnect when there is no back-up path or when the overall

”pair-wise” path allocation is not found. This causes a higher communication delay.
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vs. one-by-one shortest path injected in Balasubramanian et al. (2020) labeled TSNu

with shortest path.

3.7 Conclusions and Future Work

In this paper, we deeply investigated sustainability in the IoT 4.0 scenario. We

observe various path preservation problems with correlated failures in a factory floor.

To this end, it is important that efficient strategies are developed to take into account

complex behaviors. Primarily, the policies developed should not simply provide pro-

tection via disjoint paths as these may not be always reliable. We show event where

the unreliability of such policies are observed and provide robust solution. In our
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solution we consider minimum joint failure probability. In this model we consider

shared risk link group protection schemes and show how Time sensitive networks gat-

ing parameters affect the overall system. Using linear approximations we developed

heuristics that show reliable performance.

In the future it will interesting to find out how graph convolutional networks

can enable predictive routing under similar constraints of disjointedness. Further, as

graph convolutional networks (GCNs) enable a semi-supervised network, it will be

our endeavour to find out if through that semi-supervised time sensitive networks can

be realized.
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Figure 3.9: Acceptance Ratios as Function of Utilization

∇+(S) = (l,m) ∈ E : l ∈ D,m ∈ S (3.42)

∇−(S) = (l,m) ∈ E : l ∈ S,m ∈ D. (3.43)

Since, the graph is bidirectional, |∇+(S)| = |∇+(S)|, e.g., if we consider a simple

src-dst path Q, then |∇−(S) ∩Q| − |∇+(S) ∩Q| = 1. Suppose that

|∇−(S) ∩Q| = l + 1. (3.44)

This means the path Q touches l + 1 number of links in |∇−(S)|. Since the graph is

bidirectional, we also have |∇+(S) ∩Q| = l, which implies at least l number of links
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Figure 3.10: Comparison of Execution Times

in |∇−(S)| are not touched by the path Q. Further, l ≥ 1 ensures that at least one

link that is going out from the source will remain after all links have in Q have been

removed. If l = 0, then |∇−(S)∩Q| = 1, means that only one link is removed. Since,

we have the connectedness such that |∇−(S) ≥ 2, we have at least one outgoing

link that is always present, i.e., at least one link will survive, thereby enhancing the

sustainability.
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Figure 3.11: Resource Wastage with Failure Probabilities
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Chapter 4

FEDCO: NETWORK CONTROL PLANE FOR THE EDGE

4.1 Introduction

In order to de-congest the backhaul network, the management of content caching

has been closely investigated in the last decade. Further, reducing the delay for

the last-mile users has been a major research focus. To this end, placing popular

contents closer to the user so that frequently requested files can be retrieved faster,

has been a key endeavour for many engineering applications that have been developed

post-2015. There are two prevalent models studied in the edge caching paradigm,

namely the costly edge data center (EDC) model Brik et al. (2020) and the low cost

5g-D2D model Balasubramanian et al. (2019). Both of these models deployments

have their own pros and cons Long et al. (2018); Balasubramanian and Karmouch

(2017); Balasubramanian et al. (2019). In general, there is broad agreement that MEC

deployments are costly, especially when they serve demand of multimedia services in

upcoming 5G networks.

Recent research has begun to involve the mobile equipment (MEs) nodes in

the multimedia delivery loop via Device-to-Device (D2D) communications. In this

paradigm, MEs lend their own storage resources Habak et al. (2017)Li et al. (2017a)

to serve each other via D2D links, thereby flexibly enhancing the edge cloud capabil-

ity and scalability. In such models, all mobile devices already have a 5G subscription

and MAC-IDs which are known centrally by a base station (owned by an MNO).

The client requesting a service forms a D2D resource composition using the idle re-

sources of close-by devices. Note that MEs increasingly feature acceleration modules
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for network-intensive functions Linguaglossa et al. (2019); Shantharama et al. (2020).

Such a resource-rich environment of MEs replacing the expensive MEC is called Mo-

bile Device Cloud (MDC) Ferrer et al. (2019). However, despite the MDC promises,

privacy issues are still prevalent. Further, users uploading contents to a central data-

center inherit the limitations of the existing cloud infrastructure, such as single point

of failure, latency, redundancy, and security risks. Motivated by the need to compre-

hensively address these issues, we propose a model that carries the benefits of edge

entities with an underlying Federated Learning (FL) technique.

Recent efforts such as in Wang et al. (2019), study the case of distributed machine

learning algorithm wherein parameters are distributed across multiple edge nodes. In

this model, raw data transmission to a centralized location is not considered important

rather, the gradient descent results from each local node are updated and averaged at

a central place. The study Wang et al. (2019) shows that using such an environment

results in close to optimal results in terms of training time with a given resource

budget. Extrapolating this distributed FL to an MDC environment, we show in our

model that the users at the lowest layer may request services from a 5G-D2D MDC (i.e

registered with the MNO) or an EDC collocated with the 5G-NR (New Radio) base

station. Having multiple content placement locations, not only forms a convenient

business model, but also empowers the customers to select judiciously the QoS level

that they would like to pay for. As most of the QoS related metrics depend on where

the popular content items are placed, a close examination of the content placement

is needed. Further, as both of these service locations (i.e., the EDC and the MDC)

are registered with the MNO, the question of where the content with a high demand

should be placed influences the MNO’s profit margin.

A controller which is situated at the edge, e.g., within a backhaul architecture King

et al. (2019); Shantharama et al. (2018), makes the key decisions of content placement.
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As shown in Figure 4.1, when each user processes the FL from the controller for

training the model with the local data, the main goal of the end user is to upload

only the necessary model parameters’ updates. After updating the parameters, the

recommendation for the content is registered in the controller. This recommendation

is then used to place the content in an appropriate resource block (i.e. a device

cloud or an EDC). The edge controller is responsible for aggregating the information

from the users and the choice of the most popular content. This translates into

understanding the QoS levels of the user, thereby resulting in the maximization of

the MNO’s revenues. Additionally, by keeping the locally trained data with the end-

user, security risks are minimized. In line with these two objectives, the contributions

of this paper are:

• We design a hierarchical architecture for multimedia content delivery and caching

management where the MNO places the 5G-D2D compositions in different

strategic areas along with other edge computing entities, allowing users to select

their offloading points.

• We formulate a business model for the MNO to maximize its revenues with the

key constraint of satisfying the user’s QoS. The management is supported by a

FL algorithm that predicts the users’ demands for specific content in order to

provide the exact location for its placement.

• Extensive simulations were conducted to show the effectiveness of the proposed

model compared to two state of the art models, namely Random Caching Xu

et al. (2018) and Edge-Boost Balasubramanian et al. (2019).

The rest of the paper is organized as follows. Section 5.2 delineates the novelty

of the proposed solution with a brief discussion of the most recent related work.
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Figure 4.1: When Each User Downloads the Fl Framework from the Controller For

Training the Model with the Local Data Marked as Red Arrow, the Main Goal of the

End User Is to Upload Only the Necessary Parameter Updates.

Section 4.3 presents the system design and the associated problem formulation. Sec-

tion 4.4 presents the performance evaluation and Section 5.6 provides concluding

remarks.

4.2 Related Work

4.2.1 Software Defined Network (SDN) Paradigm

It is challenging to address the difficulties in a network whose mobility characters

are not known. In Wang et al. (2020) Wang et al. capture the ubiquity of operations

at the edge that encompasses state of the art models. Authors discuss the key no-

tions behind the merger of software defined networks, artificial intelligence and Deep

Learning implementation at the edge. An SDN usage in wireless network is proposed
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in Detti et al. (2013). In this architecture, a cluster head is chosen that acts as a

controller. Similar to these models, our control plane logic utilizes the OpenFlow

protocol to feed control information via the south bound interface to the data plane.

Figure 4.2 shows how the collocation of the BS-controller assists in reliably placing

content.

4.2.2 Edge Caching Models and Federated Learning

Extensive studies have recently been conducted for replacing the edge caching

capacity by device storage resources via D2D links Ferrer et al. (2019)Mehrabi et al.

(2019). For instance, the authors in Zhang et al. (2018) have utilized mobile vehicles

as smart caching agents to offload the caching tasks from the BS using a vehicular

edge structure. However, the random vehicular movements had not been considered.

Neglecting the vehicular movements significantly impairs the caching demand esti-

mation, which in turn negatively affects the caching performance. Similarly, studies

Wu et al. (2018) Li et al. (2017b) proposes a distributed caching framework based

on the D2D assisted caching paradigm. The main difference between the two is that

in Li et al. (2017b) a delay-aware caching algorithm over D2D links is proposed that

locates the best carrier. The key idea is to minimize the transmission delay and im-

prove the throughput. These solutions regulate the caching capacity but ignore the

demand variations.

In Park et al. (2017), an overlay structure is employed to effectively search for

content providers in D2D networks without having a reliable content popularity esti-

mate. This would in turn result in a sub-optimal revenue generation for the operator.

In Deng et al. (2020), Deng et al. discuss a roadmap for how edge computing and the

interdisciplinary fields of AI and Machine Learning together brought about change

in various communications and computations aspects at the edge. The main insights
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relate to how devices resource constraints can be overcome training machine learn-

ing models at the edge. However, this work ignores some key aspects of revenue

generation that is directed towards the MNO who is deploying such a service.

4.2.3 Related Federated Learning (FL) Research

FL is a branch of machine learning that enables decentralization of the training

model by letting the end users be part of the training and prediction loop. An

over-the-air computation model that exploit the super-position property of wireless

channels to aggregate data has been proposed in Yang et al. (2020). This is one of

the preliminary models that provides a close observation of applying FL in wireless

networks. The study Sacco et al. (2020) targets a unique FL problem in challenged

networks, where an LSTM model is in place to take the inputs. The output obtained

here is the routes that are feasible in disaster management scenarios or challenged

scenarios as the authors define it. However, this model cannot be reused in cases

where we need to search for computation sites to determine satisfactory QoS levels

for users. The study Yu et al. (2018) proposed a FL based proactive content caching

(FPCC), which is a hierarchical architecture where users upload only the requisite

updates to the edge server and keep all the remaining sensitive data on their devices.

However, due to the complex nature of the model, a scalable deployment might not

be possible. In contrast, our model is purely based on the probability of outcomes

that is judged via a predictive user-behaviour model.

In Chen et al. (2021), Chen et al. study FL training models in wireless networks.

In this work, the authors study the various network parameters that come into play

while the local FL models are transmitted to the Base Station (BS) that aggregates

them and maintains the global FL model. They formulate an optimization problem

capturing wireless network parameters and users choices. We take inspiration from
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this work for the MDC scenario where there are network factors that come into play

while uploading the local FL models to the central controller situated at the base

station. The key difference from that work is that our interest is towards producing

a seamless content placement/retrieval environment for cloud users which not only

benefits the MNO but also provides a better Quality of Experience (QoE) to the user.

To that end, while training, we ensure that our algorithm produces optimal results

while minimizing losses.

Zhao et al. in Zhao et al. (2020), elaborate on the use of Federated Radio Access

Networks where the combination of edge computing and AI is explained. Funda-

mentally, authors study the use of loss functions at the time of training and the

commensurate reduction in prediction accuracy over a period of time with learning

enabled Radio Access Networks. Similar to this Vu et al. Vu et al. (2020) proposes a

FL supported MIMO framework that optimizes the local accuracy, transmit power,

processing frequency and data-rate. The key idea behind this paper is to study the

complex non-convex behavior of the training time, computation and transmission of

the computed values. The two FL models cited above have similarity in training time

and accuracy predictions but differ in the overall complexity. On the other hand,

although we evaluate a similar scenario with a central controller collocated with the

base station, our interest is driven by multiple hierarchical controllers. The training

time reduction caused by the presence of these controllers is much better compared

to the other models.

Park et al. in Park et al. (2019) show theoretically and via simulations the dif-

ferent blocks of an ML based network edge, discussing how training and inference

occurs when devices share their local training models with the base station in wire-

less networks. Similar to the above two models, a distributed, low-latency and reliable

ML model is proposed that incorporates different neural network architectural splits.
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While our work focuses on training and accuracy, at the same time we ensure ac-

ceptable placements of the content for the other devices to retrieve from. This not

only reduces the latency but also reduces cost for the users, due to the decentralized

nature of the system.

In Chang et al. (2019) Chang et al. propose an adaptive content delivery frame-

work that is built on a Q learning technique for video streaming at the edge. The

authors prove how quality of experience and fairness improves with such a design.

Further, this work considers HTTP Adaptive Streaming (HAS) video chunks for its

use cases, which enables the various adaptation schemes (such as Buffer-based adapta-

tion, Rate- Based Adaptation and DASH based adaption) implemented in the paper.

In Li et al. (2020) Li et al. propose a deep neural network framework called Edgent

that adaptively partitions a job among different computation entities. Authors make

use of a predictive strategy that enables low latency communication with the edge

that works seamlessly in static and dynamic scenarios. Specifically, they propose an

online point detection algorithm that accommodates changing bandwidth conditions

in the last mile networks. However, the execution plan proposed for the MNO is

costly as the edge intelligence is distributed across devices that is outside the control

of the operator. Further, job partitioning might not always result in proper resource

retrieval as there are many false positives which occur in the very beginning of the

training period.

4.3 FedCo Model

4.3.1 Design

The proposed model is depicted in Figure 4.2. At the control plane, we have

four important modules namely, the Mobility Manager, the Placement Identifier, the
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Cache Decision making module, and the Federated Averaging module. The mobility

manager plays the role of maintaining seamless sessions between the devices forming

the MDCs. The state of a device is stored in the Mdc statedb. Every time a device

moves out of a location, a state variable associated with the device is updated. The

placement identifier keeps a log of where a particular content is placed, i.e., MDC

or the EDC. It makes use of the on-going procedural calls to the MDCdb and the

DCdb to understand the popularity of a content and manages the placement. The

Cache decision is made based on the inputs received from the Federated Averaging

module, that holds and computes the two important quantities namely the L(·) and

ms in our FL framework. In the data-plane, the users compute the results via a

Recurrent/Deep Neural Network (DNN) (popularly called RNN) algorithm that will

be uploaded to the control plane once computation is complete. We do not discuss

the DNN algorithm (i.e. LSTM) implementation in depth due to space limitations.

4.3.2 System Model

We consider a typical 5G scenario where the end-users specify their demands to

the controller. The content is stored in a set of virtual resources in the EDC or it

can be split among the 5G-D2D MDC composition Balasubramanian et al. (2019).

The concern is that the users request content delivery and the MNO is responsible for

placing the content and providing the requisite service to the user. More specifically,

the user u requests a content file j which could be placed either in an edge server

or across an MDC composition. The MNO, which is housed along side the central

controller, is responsible for placing the content across these resource points. The

request from the end user u is for one such content file. We define three popularity

classes c ∈ C for these content files:
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Table 4.1: Summary of Key Notations.

Notat. Meaning

R Set of resource points (locations)

j Content item (e.g., a video segm.) to be placed

oj Amount of space in storage units consumed by a content item j

V Vector of content popularities

u User

du Deadline specified by a user u

Tu,r,j Total time spent for serving a request

P(eu) Price fct., i.e., price paid by the user depending on the QoS

L(·) Weighting function

m(·) Probability of attaining the highest QoS that is

achievable for r resource units

χ(·) Prospect pairs

1. High demand, High popularity, (c = 3)

2. Average demand, Average popularity, (c = 2)

3. Low demand, Low Popularity, (c = 1).

We assume that the MNO has some (external to our model) prediction that gives

the popularity level cj for each content file j, represented by a vector of content

popularities V.

We form a resource pool with the set of available resource points. We refer to the

set of resource points (locations) as R and each resource point r ∈ R corresponds to

a virtual resource which has some content items (files) in storage (see Table 5.2 for a

summary of notations). Resource point r ∈ R has a storage capacity sr, sr ≤ smax
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Figure 4.2: FedCo Federated Learning Controller Framework:The Edge Computing

Units (Including the Idle Device Resources (R1, R2, R3) and Data-center Servers)

Are the Service Locations for Content Placement Which the Users Request

in terms of number of storage units. Placing a content item (object) j in any of these

resource points requires (consumes) oj storage units.

4.3.3 MNO Revenue Optimization Model

Now, we are considering this problem from an MNO’s perspective: content place-

ment and the resource allocation has associated costs, such as speed of computation

and storage on a specific resource unit. To satisfy a customer’s request, the MNO

has to satisfy the end users QoS requirements. As each of these requests has a strict

deadline to be met, the MNO has to complete the computation prior to a deadline.
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Specifically, each user u is mapped to a deadline du. Once a content file j is retrieved,

the user u may use it for a time τu,r during which oj units are dedicated for this

transaction on the resource pool. Denoting by qu,r,j the queuing time of the user u

at the resource location r, the total time spent serving user u is Tu,r,j = τu,r + qu,r,j

In scenarios where requests for two contents of the same class occur, then the choice

is dependent on the resource point r which can retrieve the content with the lowest

queuing time. A key element here is that once the content delivery is complete, we

map the task completion time to the request’s deadline. The QoS satisfaction makes

the customer pay more to the MNO for a future service.

In order to map this price division we define four main QoS classes for the user with

κ1 being the best QoS to κ4 being the worst QoS. For each user u, the experienced

QoS level eu is defined based on the difference between the given deadline requirement

du and the total service time Tu,r,j.

If du − T ≥ 2du then eu ∈ κ1. If 2du
3
≤ du − T ≤ 2du, then eu ∈ κ2. If

du
2
≤ du − T < 2du

3
, then eu ∈ κ3. Finally, if du − T ≤ du/2, then eu ∈ κ4.

These different QoS levels are mapped to different price levels v1 to v4 as per the

service satisfaction. More specifically, the price function P (eu) represents the price

paid by the user based on the service satisfaction level. We define this price function

as

P (eu) =


v1, if eu ∈ κ1

...

v4, if eu ∈ κ4.

(4.1)

As the value of eu shows the exact user demands that need to be satisfied and its

price, the FL prediction of eu is our goal.

The model represents the multi-factorial dependence on the type of content placed,

the deadlines met, and the QoS that the end user perceives. Let, nu,r,c =
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
1, if u retrieves content of pop. class c from res. r

0, otherwise.

. A reasonable operator rev-

enue model is:

H =
∑
u∈U

∑
r∈R

∑
c∈C

nu,r,c
(
d′uP(eu)− χr,c

)
(4.2)

where the binary variable d′u ∈ {0, 1} is set to 1 when the deadline time associated

with a user u is met, i.e., d′u is set to 1 when the deadline du associated with user u is

satisfied. The cost χr,j represents the MNO cost price in deploying and provisioning

a content caching resource unit at resource point r for popularity class c.

The accurate prediction of the user demand plays an important role in the MNO

revenue maximization. It is important to note that the mobile end users who register

for these services have a highly variable behaviour. It is therefore hard to predict a

user’s level of desired QoS.

In order to maximize the profit earned by the MNO, the goal is to place the content

appropriately for maximizing the user’s QoS which is dependent on producing the

profit. Since higher levels of QoS can be achieved if the content placed is retrieved and

processed faster within the completion times, to achieve the goal we need to accurately

predict the demands of the users for the content. To realize this prediction, we make

use of the FL framework. Therefore, the revenue maximization can be expressed as:

max
nu,r,c ∀ u,r,c

H (4.3)

s.t.
∑

j∈Ar oj ≤ sr, ∀ r ∈ R (4.4)

Tu ≤ dcu ∀u ∈ U ; cu ∈ C. (4.5)

The set Ar represents the contents j that are already allocated in resource location

r. The first constraint ensures that all content items j that are on location r fit with

their sizes oj into the available space sr. Thus, the first constraint enforces compliance

85



with the resource capacities of the various nodes of the different resource pool types

(EDC and 5G-D2D MDC), i.e., the content is placed based on the knowledge of

the resource point capacities. The second constraint ensures that for a user u who

requests a content file j belonging to popularity class cu, the time Tu,r,j spent to serve

a request from user u should be less than or equal to the deadline dcu specified by the

user for the class c.

4.3.4 FL Model

As the problem is hard, mainly due to the presence of the last constraint, we

use the FL framework to provide a heuristic solution. The FL technique performs

machine learning based training on the end users and the output is then aggregated

in a central location. The local controller is the first aggregation location. Each user

u that requests a content file j belonging to popularity class c maintains historical

data in the vector Bu,c. This vector stores the information of the content that was

recently requested. Each user is passed this vector in order to predict the next content

it will request. The end user is now responsible for solving the ML model having a

loss function that needs to be minimized. As noted in Yang et al. (2020), if we have

a function fl(x), where l is a data sample, the output of fl(x) represents the error in

data while training the model. If the users in Uc have requested a content belonging

to class c, the loss function can be re-written from Wang et al. (2018) as

Fu,c(z) =
1

|Bu,c|
∑

u∈BU,c

fu(z). (4.6)

The objective reduces to finding z∗. It is given as the arg minF (z) which we solve

with gradient descent. The presence of a hierarchical FL model enables training at

the users locally with the aim of aggregation at the edge controller. The key here

is the communication between the user’s training model and the aggregation at the
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controller within a specific number of iterations. We design the following Algorithm 5

using the steps in gradient decent to update the quantity zi,c(α), where α is the

number of iterations. We have,

zu,c(α) = ẑu,c(α− 1)− β∇Fu,c(ẑu,c(α− 1)), (4.7)

where β is the learning rate and ẑu,c(α−1) represent the global aggregation. Once this

information is passed to the edge controller we have the weighted average calculated

as

z(α) =

∑
u∈U |Bu,c|zu,c∑
u∈U |Bu,c|

. (4.8)

Algorithm 5: FedCo

Input: Users Uc requesting a service of class c

Output: Weighted Average z(α)

1 Calculate the zu,c(α); zu,c(α) = ẑu,c(α− 1)− β∇Fu,c(ẑu,c(α− 1))

2 Calculate the weighted average z(α); z(α) =
∑
u∈U |Bu,c|zu,c∑
u∈U |Bu,c|

3 Placement Strategy:

Input: Content Popularity Vector V, QoS levels eu

Output: Content Placement Location

4 Calculate : L(vκ1,c,j,r)

5 Update: m(xu,c,r,j)

6 Repeat Calculation of L(·) until all content items have been placed.

The main benefit of FL is inheriting the advantages in securing the privacy of

the end user. To that end, we have the user updating the quantity zu. Further,

using gradient enables optimal resource consumption, hence would mitigate negative

impacts on the battery usage
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4.3.5 Decision Making

An important step above is the decision making process. To this end, a real-life

decision making process via the theoretical design called Prospect Theory has been

defined in Sanjab et al. (2017). In strongly uncertain scenarios, where the customer

demands for a particular content may fluctuate, prospect theory helps to model the

customer behavior in a reasonable manner. According to this theory, we have a set

of possible prospects which are the outcomes and the probabilities related to these

outcomes. In association with our model, these outcomes are the request completion

times Tu,r,j and each resource point r implies the presence of a prospect. If a user u

requests a content item j of popularity class c in resource point r ∈ R, the number

of prospects is computed as the total available resource points. Hence, the prospects

can be written as a combination of the following pairs:

Xu,c,1 = (m(xu,c,1,j), L(vκ1,c,j,1)) (4.9)

Xu,c,2 = (m(xu,c,2,j), L(vκ1,c,j,2)) (4.10)

...

Xu,c,R = (m(xu,c,|R|,j), L(vκ1,c,j,|R|)). (4.11)

Note that we use κ1 to establish the probability of having the highest QoS for a

specific area for a set of requests; specifically, κ1 stands for the highest QoS level,

while κ4 stands for the worst QoS.

The quantity m(xu,c,r,j) = 1
δu,c,r,jvκ1,c,j,r

is the probability of attaining the highest

QoS on resource computation point r for a content request c. It is easy to observe the

intuition behind the ratio of the number of users allocated to a resource requesting

a content c experiencing the highest QoS and the total users in accessing the same

resource queued for the content c. The L(·) function is the weighting function defined
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as in Sanjab et al. (2017):

L (vκ1,c,j,r) =
vγκ1,c,j,r

vγκ1,c,j,r + (1− vγκ1,c,j,r)1/γ
. (4.12)

Note that prospect theory is based on evaluating a prospect. For our problem setting,

the outcomes of evaluation are represented by the completion times of a request, and

the service areas (MDC, EDC) are the prospects.

The definition of the value function can be written as m(xu,c,r,j) =
xωu,c,r,j, if xu,c,r,j ≥ 0

−ζ(−xθu,c,r,j), if xu,c,r,j < 0,

with 0 ≤ ω, θ ≤ 1 and ζ ≥ 1. Thus, the final

objective can be written as arg maxr(m(xu,c,r,j), L(vκ1,c,j,r)) ∀u ∈ U . The next step

after the FL framework is executed to define the content popularity V vector. Each

content c that belongs to the vector V requiring oj amount of resources where it is

executed. Each of the requests arriving at this resource point accepts the content

such that it minimizes the cost of the operator. Further, the perceived QoS levels

play a key role in mapping the user to the content.

As observed before, each user u that requests a content is allocated to a resource

point r. If there are multiple requests arriving at the resource point, we evaluate the

time-lines/deadlines of completion. Only the highest QoS levels that are guaranteed

for a particular u are accepted and others are rejected. If there are more resources

available on the resource r, then we allocate the content on that resource. The choice

of the placement that guarantees the highest QoS level is chosen. However, if the

QoS levels are the same, we iterate over the value functions L(·) for breaking the ties.

After each allocation, the queues are updated for each resource point whether the

choice is an EDC or 5G-D2D MDC. The user does not know the exact location of the

content as only a set of resource points R is visible to the user.
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4.4 Performance Evaluation

This section first presents the performance evaluation set-up of our experiments

and the data-sets generated for carrying out the simulations. We then compare our

model with two state-of-the-art models, namely Random Caching by Xu et al. Xu

et al. (2018) and Edge Boost by Balasubramanian et al. Balasubramanian et al.

(2019).

4.4.1 Set-up

We use the Python simulator Mininet-Wifi for our simulations. A custom POX

controller is used for control plane decision making of the OpenFlow switches (learning

and forwarding). We use a pre-processed LSTM model with 4 layers and 128 neurons.

We will provide the accuracy analysis for this choice Section 4.4.4. As multimedia

caching is an important use-case of 5G, we generate video samples of varying sizes

following the DASH standards Y. Li, et al. (2008). We set the base-station user

communication range to 500 m. We simulate a total of 250 users, each user has a 5G-

D2D communication module for MDC communication with the physical parameters

communication range of 150 m and bandwidth of 30 Mbps. Each video segment is

divided such that the chunks are 2 s long with a bit-rate of 4000 kbps, resulting

in a chunk size of 1 MB. The arrival rate of each video request follows a Poisson

distribution over [2, 20]. When the requested content is determined, the corresponding

segments will be consequently accessed by the ME. The simulation time is set to 1000 s

and 95% confidence intervals are evaluated.
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4.4.2 Evaluation

In this section, we compare the proposed FedCo model with Random Caching Xu

et al. (2018) and Edge-Boost Balasubramanian et al. (2019). Initially, we consider

a static (non-mobile) scenario in this subsection to get a basic understanding of the

performance, and then bring in mobility in Subsection 4.4.3. In the random caching

model, the placement strategy is based on random content selection. In the Edge-

Boost model, content placements are deployed with MDCs as the primary resource.

In the FedCo model, however, the choice of placement is based on a pool of resources

with high computation resource points of the EDC as well as the MDC. In Figure

4.3, the overall revenue is higher while using the FedCo module mainly because of the

prediction technique applied on the content. More specifically, Figure 4.4 shows the

accrued revenue by FedCo with varying communication rounds. Due to the learning

model of FedCo, the requests that are learnt over a period of time enable the MNO

to properly place the contents in appropriate locations, thereby producing adequate

QoS for the end users. It is very clear that accurate predictions have led to accruing

more profit for the MNO, and when the FedCo learning is removed, intuitively profits

go down. In Figure 4.5 we can observe the Cache Hit Ratio (CHR), which is defined

as the total number of requests generated to the total number of requests satisfied

from caches. The caching space of each resource unit ranges from 1%–5%, arbitrarily

containing MDC compositions and EDC resource points. We can observe that the

CHR is higher for FedCo than for the benchmarks. Further, a larger caching size

increases the CHR. However, Edge-Boost and Random Caching lack the prediction

of the cached content; therefore, their accuracy is lower by a margin of over 10%

compared to FedCo.

The Average Access Latency (AAL) performance is also better for FedCo as shown

91



in Figure 4.6. AAL is defined as the time interval between the request generated by

the user to the first packet received for the requested content. AAL is relatively low

for FedCo due to the exact content retrieval which means the extra time required

to search the content is saved. Further, the FedCo module empowers the user by

allowing exact mapping via the prospect theory value function. The outcome of this

AAL evaluation also suggests a better QoS for the users as low access latency means

better QoS.

In Figure 4.7, content placement failure is observed. This is the dropping proba-

bility of the requests which cannot be completed within the deadline due to placement

errors. FedCo has the least percentage error in placement; although, Edge-Boost was

expected to perform better in this case because of the stricter assignments with the

MDC. The users who are already using the MDC for content retrieval can do so

without any service disruption. This outage probability is minimal for the FL con-

troller due to the current knowledge of the state of the devices. Thus, the controller

consistently places content between the two main resource blocks from the resource

pool R. Figures 4.4 and 4.8 show the need for a large number of communication

rounds for having a close to optimal CHR. The CHR becomes around 0.5 after 30

rounds for 100% of users participating while its over 0.3 and 0.4 for 60% and 20%

participating users. In Figure 4.4, the revenue relationship with the communication

rounds is clear. This variability indicates that higher information exchanged during

the learning process shows that the model has a higher effectiveness. The appropriate

information learnt is actually establishing the fact that the content has been placed

suitably which directly translates into MNO profit. Thus, we see over 40% gain in all

cases within the prescribed resource limits of R.

In Figure 4.9, we calculate the time required to train our RNN/D-RNN model.

We use an LSTM and consider a case where we have just one FedCo controller that
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takes over 70% more time compared to using 30 controllers. The main reason for

this reduction with multiple FedCo controllers is that the traffic load is spread across

more FedCo agents which perform training on smaller parts of the data.

4.4.3 MDC Management with Mobility

We consider a case of mobility in Figure 4.10 for moving speeds between [1, 5] m/s.

We observe from Figure 4.10 that using multiple controllers results in a constant

exchange of messages between the controllers. We observe that for lower mobil-

ity scenarios there are fewer messages exchanged, mainly because the devices which

are registered with one controller have already been passed to the nearby controller

even before the movement occurs. Further, we see that the FedCo convergence time

changes with the increase in the number of MEs. In Figure 4.11, we observe that

as the number of MEs increases, more data is used to train the LSTM model. This

means that more training data samples are available and the time taken by FedCo to

converge decreases. On the contrary, in state-of-the-art models, such as EdgeBoost

and Random Caching, we do not observe this reduction, mainly because the control

is distributed among the data-plane devices, which in turn results in a longer time to

convergence.

4.4.4 Loss Function Evaluation

Figures 4.12 and 4.13 show how the loss function values, specifically, the values of

the general linear regression loss function used for prediction of FL algorithms Chen

et al. (2021) values vary with the number of MEs and progressing iterations. We note

that unlike FedCo, the EdgeBoost and Random Caching benchmarks, do not have

prediction capability. In order to enable the loss function comparison, we generalized

the loss function for EdgeBoost and Random Caching as follows. The loss func-
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tion normally determines the classification errors. However, EdgeBoost and Random

Caching models do not conduct classifications, they only select devices based purely

on a search mechanism and provide a decision based on this search. This search for

devices and placing the content implicitly follows the result of the search, which is

essentially a “general” way to place content. Thus, there is going to be a loss as-

sociated with the search (depending on the input data and output data); similar to

FedCo, where the loss function assesses the correctness of the prediction.

Firstly, in Figure 4.12 we see that as the number of users registering with the FedCo

controller increases, the loss function values show a commensurate reduction, with

FedCo achieving lower loss function values than the EdgeBoost and Random Caching

models. This is mainly attributed to the fact that as the number of generated data

samples increases, LSTM can use more data for training itself. This leads to lower

training loss. As the number of MEs reaches 15, the training loss reduces faster, which

shows that the initial increase in the MEs registering causes most of the reduction in

the training loss, with FedCo achieving lower loss function values than the state-of-

the-art EdgeBoost and Random Caching models. Similarly, in Figure 4.13, we see that

as the iterations continue increasing, the loss function reduces by a substantial margin.

This is because, as time progresses, there are enough data samples to approximate

the loss function gradient. Another reason for this reduction is that there are more

MEs contributing to the global FedCo controller. This enables a more extensive

training, resulting in lower training loss. Overall, FedCo performs better, i.e., achieves

lower loss function values, mainly because Edgeboost and Random Caching primarily

search for devices to optimize the QoS, irrespective of the cost/revenue maximization

objective. This comparison shows the balance between meeting user QoS and MNO

revenue maximization that FedCo strives to achieve.

Finally, Figure 4.14 shows the prediction accuracy of all three considered con-
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trollers. The prediction accuracy is defined as the ratio of the number of correct

predictions to the total number of predictions made. We observe that FedCo achieves

a better prediction compared to the state-of-the-art models. This shows how a future

device is chosen for placing a content in the MDC scenario. We observe a noticeable

increase in prediction for FedCo mainly because of its federated averaging algorithm

that creates an aggregation of the local MEs’ models which is later useful for predic-

tion.

4.5 Conclusion

A Federated Learning (FL) framework named FedCo to predict the user demands

of a particular edge content has been proposed. FedCo provides suitable content

management across different placement sites. In doing so, we show how revenue max-

imization can be achieved for a Mobile Network Operator (MNO) that enables 5G

services, such as 5G-D2D Mobile Device Cloud (MDC) and 5G-Edge Data Center

(EDC) access for content caching. The paper also provides theoretical evaluation of

user demand behavior modelling via prospect theory to justify how revenue maxi-

mization can be achieved by closely investigating user behavior. Finally, we show via

performance comparisons how FedCo outperforms two state-of-the-art designs while

considering multimedia content delivery use-case. Over 40% profit margin is accrued

while the FedCo framework is deployed for 5G mobile edge content caching scenarios.
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Chapter 5

CONTROL PLANE FOR VEHICULAR NETWORKS

5.1 Introduction

With the advent of 5G wireless systems, vehicular networks with interactions

between the vehicles and the road-side infrastructure at different levels of automa-

tion and connectivity have become feasible, enabling the Internet of Vehicles (IoV)

paradigm Bréhon-Grataloup et al. (2022) Balasubramanian et al. (2022); ?. The data

that each vehicle in an IoV produces, i.e., the data that is exchanged over the wireless

network between the vehicle and the base stations, or the so-called Road Side Units

(RSUs), can be exploited for predicting the vehicular movements on the road network

as well as the data traffic on the wireless network. Two key elements of the 5G IoV

are vehicle mobility and RSUs connected to a Mobile Network Operator (MNO) X.

Kong, et al. (2022). Mobility refers to the movements of a vehicle among the sub-areas

of a given wireless cell (zone) or from one zone or RSU to another. MNOs are the

infrastructure providers that have the authority over the network resources (such as

computation, storage and bandwidth) which are connected to the backbone network.

The MNO manages the resource allocation and QoS requirements of the vehicular

requests. Each vehicle comprises of a combinations of sensing and communication

technologies, which generate datasets that characterize the vehicle behaviors. These

raw datasets can be shared with the RSUs once a vehicle establishes a connection

with an RSU. In turn, these datasets can be monitored by the MNO. The MNO can

then exploit these datasets for spatio-temporal prediction modeling, i.e., for predict-

ing and managing the movements of the vehicles on the roads as well as the data
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packet traffic on the wireless network.

A characteristic of common real-life vehicular networks is that there are periodic

vehicle movement patterns, e.g., daily (diurnal) commutes to school, university, or

work, that can be remembered, i.e., the routes taken to specific locations can be

learnt and stored. Adaptive machine learning algorithms can model and represent

these patterns to improve vehicular traffic flows and the data packet transport in

wireless networks. These learned representations can then enable a wide range of

management mechanisms for the vehicular traffic and the wireless network traffic.

The focus of the research on edge intelligence in the IoV is currently to advance these

representations and the VeNet design seeks to advance this representation research.

Prior studies, such as Posner et al. (2021); Otoum et al. (2020), have addressed

prediction problems in vehicular networks, whereas the machine learning frameworks

explored in Liang et al. (2019, 2020) follow a time-consuming reinforcement learning

approach. However, none of these prior studies considered the spatial characteristics

of the vehicular data across the sub-areas within a given cell of a cellular wireless

network or across the neighboring cells. Our key innovation is to consider the spatial

data characteristics across sub-areas and cells to improve the accuracy of the vehicular

data representation, and consequently the predictions based on the vehicular data.

Time series data produced by wireless systems and its usage in state-of-the-art

models, such as Support Vector Regression (SVR) and Auto Regressive Integrated

Moving Average (ARIMA), are very common. These models have shortcomings which

limit their use in the IoV. ARIMA drifts naturally to the mean of the past series

data which hinders capturing and understanding temporal changes. SVR takes user-

defined inputs which need to be pre-calculated. Both of these models use historical

data without considering the constantly changing spatial data values that are typical

in the IoV.
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Another issue with autonomous vehicles in the IoV is the performance degradation

due to obstructions in the environment. Vehicles are equipped with sensors, such as

Light Detection and Ranging (LIDAR) and visual cameras, but these rely on line-of-

sight detection. Therefore, a vehicle does not know what is happening several cars

ahead of it for proper planning. Past research has suggested to cooperatively use the

vehicles to increase situational awareness Kim et al. (2015). However, currently very

little is known about the behaviors of such cooperative sensing scenarios in terms of

performance scaling. Problems arise from the geometry of the obstructed environ-

ments that dictate the coverage area of a sensor. We conduct stochastic geometric

modeling for our learning model to account for the line-of-sight obstacle detection.

In this paper, we propose the VeNet framework as groundwork for addressing two

key IoV challenges, namely managing the (on-road) vehicle traffic and the wireless

(data packet) network traffic. To aid the solution of these management problems, our

model predicts the vehicle traffic and the network traffic using the data collected at

the MNO. The predicted traffic patterns are useful for managing both the on-road

vehicle traffic as well as in-network data packet traffic.

Our VeNet framework utilizes an SDN-based VeNet controller in the base-station

for vehicle monitoring and data processing. The VeNet controller is deep learning-

based and follows a Multi-Layer Perceptron (MLP) based learning that improves

prediction when large datasets are fed as inputs. More specifically, the SDN-VeNet

controller includes a hybrid stacked autoencoder (AE) consisting of multiple local

AEs for fine-grained spatial data modeling and a central AE, as well as a Long-Short

Term Model (LSTM) for temporal prediction. We develop a novel training algorithm

for the stacked AE. We conduct measurements with a set of Raspberry Pi vehicles

with embedded sensors (including speed, motion, and location sensors) on a tracked

studio consisting of six zones (cells) and two RSUs to obtain experimental data.
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Our data analysis indicates significant spatio-temporal correlations in the data. The

evaluation of the proposed VeNet controller indicates significant improvements in the

prediction accuracy of the proposed stacked multiple local AEs–central AE learning

model compared with state-of-the-art baseline models.

In summary, the main contributions of this paper are:

1. We design the VeNet learning model consisting of a hybrid stacked AE (multiple

local AEs and one central AE) along with a novel training algorithm. To the best

of our knowledge, the VeNet learning model, which supports seamless handovers

of mobile vehicles between the learning models at the various RSUs, is the first

hybrid learning model for vehicular networks.

2. We develop a stochastic geometry model for the detection of obstacles based on

the analysis of the vehicle camera-to-obstacle geometry.

3. We extensively evaluate VeNet with a hybrid approach consisting of experimen-

tal measurements with Raspberry Pi vehicles on a tracked studio area as well

as simulations. The evaluations demonstrate that compared to the ARIMA

and SVR models, VeNet improves the prediction of the learning model (errors

reduced to approx. three quarters of the ARIMA and SVR errors) for reduced

control signalling bitrate as well as reduced energy consumption on the vehicles.

The remainder of this article is structured as follows. Section 5.2 reviews the

related state-of-the-art models. Sections 5.3 and 5.4 introduce the VeNet system

model and the deep learning based prediction in VeNET. Section 5.5 presents the

simulation framework and results. Section 5.6 draws the conclusion and outlines

future research directions.
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5.2 Related Work

This section reviews the existing state-of-the-art in the two main related areas,

namely software-defined IoV and deep learning techniques in the IoV, which have

typically been studied separately. To the best of our knowledge, the proposed VeNet

approach along with the FedCo approach Balasubramanian et al. (2021a) are the

first to conduct and implement deep learning (DL) in the context of an IoV based on

software-defined networking (SDN).

5.2.1 Software-Controlled Vehicular Networks

Rasouli and Tsotsos Rasouli and Tsotsos (2020) survey the autonomous vehicle-

pedestrian interactions to enable the autonomous vehicles to create a prediction-based

environment. Communication based on visual perception and communication based

on pedestrian (obstacle) behaviors are demonstrated to play major roles in the design

of autonomous vehicles. VeNet uses the combination of both these communication

modes since obstructions in the vehicle environment require successfully combining

the two modes for creating a good prediction model.

Aljeri et al. Aljeri and Boukerche (2021) propose a distributed software-defined

vehicular network based on switch-enabled RSUs. Similar to Ethernet back-bone

vehicular networks, the discovered nodes and topology information are stored at the

RSUs. VeNet does not store topology information to avoid the cost of the topology

databases.

Samarakoon et al. Samarakoon et al. (2020) study resource allocation in vehicu-

lar networks where extreme events affecting queue lengths are observed for ultra low

latency communication. Federated learning is employed to estimate the tail distribu-

tion of queue lengths, while a Lyapunov optimization model manages the federated
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learning delays over wireless links. However, Samarakoon et al. Samarakoon et al.

(2020) do not consider the spatial or temporal correlations, which enable the low-loss

prediction in VeNet. Additionally, VeNet, unlike other approaches, e.g., Du et al.

(2020); Liu et al. (2021), trains with raw data available without any excessive time

spent on data labelling.

Wisitpongphan et al. Wisitpongphan et al. (2007) examine vehicular adhoc net-

work (VANET) routing. Although, the Samarakoon et al. Samarakoon et al. (2020)

study is analytically focused, the routing in Samarakoon et al. (2020) is similar to

the VeNet routing. Specifically, Samarakoon et al. (2020) predicts the location where

data is sent based on the previous history. Similarly, VeNet maintains a database

that collects the data (location, traffic sensed, and images of the traffic) and refreshes

itself every few minutes while consistently keeping the vehicle IDs and the zone from

which the data was received. However, Samarakoon et al. (2020) does not explore fast

prediction mechanisms. In contrast, VeNet employs a novel data modelling approach

that caters to fast and accurate IoV data representation.

Tong et al. Liu et al. (2018) address the problem of optimal social welfare for a

vehicular network, which is based on the amount of sensing data received by a central

RSU or base station. Network control stability is examined via a backpressure control

policy that is distributed among the participating vehicles. A theoretical analysis

shows how optimality is reached without providing details about the inter-vehicle

locations or mobility based information. However, the creation and maintenance of

the inter-base station communication pipes which are integral to the control are not

explicitly considered. For VeNet, we find that using and understanding the data

that is exchanged between vehicles enables an efficient communication control among

the participating vehicles while improving the spatio-temporal data modelling and

prediction.
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Ning et al. Ning et al. (2021) design an online offloading framework that leverages

Lyapunov optimization for near-optimal offloading. The offloading is divided into

RSU-peer offloading and vehicle-to-RSU offloading and evaluations focus on global

optimums. However, in VeNet, we also focus on finding the local optimal values for

information exchanges. To that end, VeNet performs additional computations for

gathering the neighbourhood information. While Ning et al. (2021) does not consider

a spatially diverse environment, VeNet extends the framework in Ning et al. (2021)

by considering spatial diversity.

5.2.2 Deep Learning in Vehicular Networks

The distributed learning framework by Xiao et al. Xiao et al. (2022) considers the

vehicle velocities and positions that fluctuate with learning time. The study Xiao

et al. (2022) formulates a min-max optimization problem which optimizes the on-

board computation, transmission power, and overall model accuracy. Although, this

formulation follows a non-linear programming approach, the sub-problems target the

same resource allocation problems as VeNet. While Xiao et al. (2022) lacks multi-

layered neighbourhood support with additional zonal information exchanges, VeNet

exploits these features to achieve improved accuracy and a model representation with-

out the need for heuristic searching.

Generally, timely traffic information is vital for successful prediction frameworks.

The prediction of obstructions, e.g., from pedestrians, requires exact local regional

topology information. Lv et al. Lv et al. (2015) study traffic flow prediction that con-

siders spatio-temporal correlations via a greedy layer-wise AE. Similarly, a stacked

AE is a building block of the VeNet traffic representation. However, VeNet uses a

hybrid AE consisting of a centralized AE and multiple local AEs. The local AEs ob-

tain information from neighbouring zones and append that location-specific regional
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information to the representation of the central AE.

Similar to Lv et al. (2015), spatio-temporal dependencies have been modelled

by Zhao et al. Zhao et al. (2020) with a temporal Graph Convolutional Network

(GCN) that combines a gated recurrent unit with GCNs. The GCNs learn the entire

topology of a region (urban road network) so as to capture the spatial and temporal

dependencies. However, the GCN-based approach Zhao et al. (2020) inherits the

complexity of graph modelling in convolutional neural networks. In contrast, the

layered stacked AE in VeNet reduces the complexity and increases the data-modelling

efficiency.

Pokhrel and Choi Pokhrel and Choi (2020) propose a training model that is based

on a block chain consensus mechanism. The focus of Pokhrel and Choi (2020) is

on a renewal reward, whereby the machine learning model updates each node in a

distributed fashion. The considered parameters include the re-transmission limit,

block size, and arrival rate. The approach in Pokhrel and Choi (2020) predominantly

depends on different block chain mechanisms that impose key bottlenecks. In con-

trast, VeNet considers these parameters in a block chain agnostic manner that avoids

the block chain overheads The seamless communication set-up in VeNet ensures that

re-transmissions are rare.

Dongdong et al. Ye et al. (2020) present a selection based Deep Neural Network

(DNN) model wherein models are selected from a pool of locally trained models in

vehicles. A central server collects these results from the vehicles and applies a two-

dimensional contract theory for communicating between the vehicular clients and

the central server. Similar, to Balasubramanian et al. (2021a,b), the central server

improves the accuracy with federated averaging. However, in contrast to Ye et al.

(2020); Balasubramanian et al. (2021a,b), VeNet holistically considers inter-zone and

intra-zone characteristic features. This holistic approach improves the prediction, see
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Sec. 5.5.

Du et al. Du et al. (2020) and Li et al. Li et al. (2021) discuss a wide range

of vehicular IoT (VIoT) designs with deep learning methods. Similarly, Li et al.

(2021) explores the challenges of vehicular data computation in VIoT scenarios and

proposes a novel data-sharing scheme using a deep Q-network with federated learning

for trustworthy and efficient data sharing. However, neither of these studies Du et al.

(2020); Li et al. (2021) consider the impact of the training time and performance

improvements due to hybrid modelling which are key aspects of VeNet.

Hong et al. Liu et al. (2021) propose a security framework that offloads a training

model to the edge devices, namely the RSUs and the vehicles. The key idea in Liu

et al. (2021) revolves around distributed federated learning for preserving privacy in

the IoV. However, Liu et al. (2021) ignores the need to consider changes in neighboring

zones. This could potentially result in privacy and security breaches since different

zones in the IoV usually depend on one another when a vehicle moves from one zone

to another. The vehicle needs to be aware of changes in the context and environment

for a good representation.

Liu et al. Liu et al. (2022) employ federated learning to reduce the uplink and

downlink communication overheads via three operating modes, namely customized,

partial, and flexible. The partial participation mode Liu et al. (2022) mitigates the

uplink congestion via selective vehicle participation. In contrast, VeNet does not

include partial participation in order to comprehensively collect the neighbourhood

information. However, VeNet employs simple learning methods in the SDN controller

to create isolated uplink and downlink control communication links that do not in-

terfere with the uplink and downlink data transmission channels thus obviating the

need for a complex congestion control algorithm.

Chen et al. Chen et al. (2021b) use pre-defined road information and pre-processing
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Figure 5.1: Venet Architecture: The Sdn Based Venet Controller in a Road Side

Unit (Rsu) Predicts the Vehicle Locations and Network Traffic with A Hybrid Stack

(Multiple Local Aes, Central Ae). The Mqtt Messaging Agent Tracks the Vehicle

Mobility

that forms data clusters in a learning system employing a single AE. The represen-

tations are post-processed to detect and remove anomalies, which is computationally

expensive. In contrast, we design a novel hybrid stacked AE consisting of multiple

local AEs and a single central AE operating in conjunction with an LSTM.

FedCo Balasubramanian et al. (2021a) utilizes distributed federated learning to

preserve the privacy of the local information. However, the coordination of the feder-

ated learning by a central controller delays the learning process. In contrast, in VeNet

local AEs append their learned representation to the central AE representation, to

improve the representation accuracy while mitigating delays.
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5.3 VeNet System Model

5.3.1 Architecture

The VeNet architecture consists of a VeNet Controller implemented with an SDN

contoller, e.g., the Python-based SDN controller (POX), that operates at the RSU, as

illustrated in Figure 5.1. The controller maintains the network status status and uses

the SDN control channel to communicate with the moving vehicles. The Message

Queuing Telemetry Transport (MQTT) Messaging Agent sends pings to the vehicles

to maintain the network connectivity and to update the location and sensor databases

(DBs). The MQTT Messaging Agent continuously updates the controller about the

current vehicle positions. The controller maintains separate uplink and downlink

traffic channels to the vehicles for the control signaling and for the payload data

to mitigate congestion. The Prediction Engine relies on a stacked AE consisting of

several local AEs and a central AE which pass the output to the LSTM model. The

LSTM model makes the final prediction and feeds into the controller. The multiple

local AEs are running at the RSU. The ”responsibility” for a given zone (e.g., cell of

cellular communication system) or sub-area within a given zone is split among the

different local AEs based on historical spatio-temporal information.

5.3.2 SDN-VeNet Controller Interaction

This sub-section explains how the components in the proposed VeNet framework

interact with each other, as further illustrated in Figure 5.1:

1. The data from a given (target) zone or sub-area (depending on the spatial

granularity supported by the local AEs) and its neighbours form a grouped -data.

This includes uplink and downlink network traffic loads and vehicle locations.

The AE is stacked hierarchically as a hybrid stack consisting of a central AE
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and multiple local AEs.

2. The central AE takes the grouped -data as input and produces an encoding. This

encoding is passed to the local AEs. Each local AE generates another (local)

encoding, which is appended to the global representation.

3. The appended encoding is passed to the LSTM for the final prediction. To-

gether, these modules form the prediction engine. The SDN controller receives

the output and uses the MQTT messaging agent to broadcast messages and to

receive the status from the vehicles.

4. The vehicle IDs, which are received, are updated. If new samples are received,

then the process is repeated. If not, the controller handles all the previously

predicted information from the Prediction Engine autonomously.

5.4 VeNet Prediction

There are many models that use historical data from only the target zone for

centralized temporal modelling. However, these ”target-limited” models do not take

the spatial correlations (related to base stations or RSUs near the target) into account

which makes them inaccurate for vehicular networks. Thus, we need to design a model

that takes the historical data along with the spatially separated cells (or sub-areas)

into consideration for making accurate predictions. To that end, our model mainly

consists of an LSTM and AEs, which conduct unsupervised learning. We divide the

AEs into a central AE and multiple local AEs so as to improve the generalization

while gathering data from multiple cells (zones) or multiple sub-areas within a given

cell (or zone). The following steps are carried out:

• The uplink/downlink data include multiple features, such as sensor load from

the target cell and its neighbours. The central AE is fed with these features and
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these features are encoded. After encoding by the central AE, this outcome of

encoding is partitioned and fed to the respective local AEs, and appended to

the central AE’s encoding.

• The information from the central AE and the local AEs is fed to the LSTM for

the final prediction. The LSTM updates hidden states based on recurrent gates

to control past information which assists in modelling long historical dependen-

cies.

Next, we propose a training algorithm for such a hybrid stacked AE model. To the

best of our knowledge, none of the state-of-the-art models makes use of such a hybrid

AE model for IoV training; our study is the first to train a hybrid AE model in a

vehicular network.

5.4.1 Hybrid Model Training

In order to capture the local spatial correlations, i.e., the localized data char-

acteristics, it is important to use multiple local AEs, each dedicated to a zone (or

sub-area of a zone). The central AE keeps the encoding obtained from the overall

dataset and trains itself. Further, having multiple local AEs reduces reconstruction

loss. Therefore, a trained central AE with multiple local AEs can improve the data

representation. Additionally, almost all AEs are operationally placed in stacks, i.e.,

multiple hidden units. Therefore, having a single stacked AE would lead to a very

large dataset size that is hard to train (due to excessive computation requirements).

Instead, a decentralized model allows moderate training sizes. Also, the central AE

and the local AEs can be trained in parallel, independent of each other. A well-known

model, such as Vincent et al. (2008), could generally be used for training a centralized

model. However, in scenarios where some features are not inherited in the central
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model, Vincent et al. (2008) performs poorly; therefore, we do not use Vincent et al.

(2008).

We proceed to define novel encoding functions E(Z`) and decoding functions

D(R`) in the local AEs. The encoding function E(·) processes the input layer Z`,

i.e., the layer ` out of a total of L layers. Specifically, with the sigmoid activation

function σ(·), with W `
l denoting the weight matrix of layer ` of the local AE, and

with b`l representing the bias for layer ` of the local AE, the encoding result R` is

R` = E(Z`) = σ(W `
l · Z` + b`l ). (5.1)

The encoding result R` is passed to the decoding function D(·). Specifically, for layer

` = 1,

D(R1) = σ
(

ˆ̄W 1
c · (Ŵ 1

c · Z1 + b̂1
c) + ˆ̄b1

c + W̄ 1
l ·R1 + b̄1

l

)
, (5.2)

while for layers ` = 2, . . . , L,

D(R`) = σ
(
W̄ `
l + b̄`l

)
. (5.3)

Note that the decoding function D(·) establishes the connection between the local

AEs and the central AE, whereby ˆ̄W 1
c and ˆ̄b1

c in Eqn. (5.2) represent the trained

weights and biases for decoding at the central AE.

The central AE weight matrices for decoding and encoding are transpose to an-

other, i.e., the weight matrix in D(·) is the transpose of the matrix in E(·). We call the

data with local information of target cell and their neighbouring (surrounding) cells

as G(mu,v,t), i.e., while mu,v,t gives the input data corresponding to the target zone

u, v, the G(mu,v,t) gives the aggregated information from zone u, v and its surrounding

zones in time slot t.

Algorithm 6 summarizes the main training steps in VeNet, which are presented

in an concise form due to space constraints. We refer to the publicly available VeNet
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Algorithm 6: VeNet Training Algorithm

Input: Trained central model Ŵ `
c , b̂`c

ˆ̄b`c; Dataset M

Output: Trained loc. mod. weights, biases Ŵ `
l , b̂

`
l ,

ˆ̄b`l

1 Init Z1
l = NULL;

2 for t ∈ range(0, time) : Z1
l = Z1

l

⋃
G(mu,v,t)

3 b̄1
l = 0; W 1

l = 0;

4 W 1
l , b

1
l , b̄

1
l = arg minW 1

l ,b
1
l ,b̄

1
l
ρ
(
Z1
l , D

1
l (E

1
l (Z

′1
l ))
)
;

5 Z2
l = E1

l (Z
′l
1 ); ` = 2;

6 for layer ` ≤ L: W 1
l , b

1
l , b̄

1
l = arg minW `

l ,b
`
l ,b̄
`
l
ρ(Z1

l , D
1
l (E

1
l (Z

1
l )));

Zl+1 = El(Zl); ` = `+ 1;

7 Ŵ `
l , b̂

`
l ,

ˆ̄b`l = arg minW `
l ,b

`
l ,b̄
`
l
ρ(Z

′1
l , Z̄) ∀` ∈ 1, 2, . . . , L

8 end for

9 return Ŵ `
l , b̂

`
l ,

ˆ̄b`l ∀` ∈ 1, 2, . . . , L

source code for the full algorithmic and implementation details Venkatraman (2021).

Typical of an AE, the Z ′ value is the distorted version of Z. The input data and

initialization are specified in Lines 1–3. In particular, we generate the input data for

the first layer ` = 1 in the local AE, i.e., we initialize the b̄1
l = 0 and W 1

l = 0.

Then, we pre-train the first layer ` = 1 with the partial input in Line 4. We use the

Stochastic Gradient Descent (SGD) to minimize the reconstruction loss; however, any

optimization mechanism, such as RMSProp could be used. The AE reconstruction

loss is represented as ρ(·), based on this loss the training is carried out in the first

layer. The reconstruction loss is given by Bengio et al. (2006) as:

ρ(Z,U) =
∑

Z · log(U) + (1− Z) · log(1− U). (5.4)

We use the gradient descent approach for optimizing the loss available on tensor flow.

Line 5 generates the input Z2
l for the next layer ` = 2.
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From layer ` = 2 to layer L, the pre-training process is carried out in Line 6.

Once this is over, i.e., all layers have been pre-trained. Then the local and central AE

values are fine-tuned in Line 7. All weight matrices and bias variables are updated

Line 7 and we obtain the reconstructed input. The searches in Lines 4, 6, and 7 are

conducted by partitioning the dataset into two subsets and then iterating the search

over the subsets (with linear complexity in the cardinality of the dataset M).

Note that the local AEs cannot be trained without the central AE because the

decoding values rely on the trained central AE values. As the first layer ` = 1 takes

input from the central AE, we will be able to see a difference from the first layer and

remaining layers in the local AEs. Layers ` = 2 to L are trained differently based

on the output from the first layer. For a given centrally trained AE, all local AEs

can be trained in parallel. Importantly, the local and central AEs can have different

numbers of layers.

Studies on distributed AEs and stacked AEs typically focus on the mean values

of the past time series data, which is not fitting for a highly varying scenario, such

as vehicular traffic. Our framework discovers an appropriate representation for the

given raw data and stores the representation.

Next, similar to Balasubramanian et al. (2021a), we train the LSTM model to

represent the time series information. The LSTM model accommodates long-term

time dependencies by incorporating recurrent gates that allow current states to update

historical values Yu et al. (2019).

For prediction of the future location values mu,v,t+1 for a given zone (u, v), the

past time-slot values are taken as input. For a particular time slot t, the values of

mu,v,t, central AE representation of G(mu,v,t), and local AE representation of G(mu,v,t)

are appended together in a vector. The LSTM unit will predict the value of mu,v,t+1,

thus forming the complete time sequence of vectors. Given the linear computational
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complexity of the underlying AEs and LSTM, the VeNet learning and prediction is

overall linear in the cardinality of the dataset M

5.4.2 VeNet Stochastic Geometry Analysis

This section analyzes how collaborative sensing overcomes obstructions in the en-

vironment in VeNet. Typically, cameras have a major limitation in terms of visibility

in platooning scenarios where one vehicle follows after another. A vehicle typically

does not know what is happening two or three cars ahead; this lack of information can

be addressed with collaborative sensing. We define obstructing objects on a 2-D plane

following a Poisson point process for the object location Loci: δ = {Loci|Loci ∈ R2}.

With Ji denoting the shape of an obstructing object i, the region Ci that a sensed

obstacle occupies is given with the Minkowski sum ⊕ as Ci = {Loci}⊕Ji. The region

C =
⋃∞
i=1Ci is filled with obstructing objects in the environment. We call C ′ as

the open region that is not obstructed by objects. The point Poisson process has an

intensity (rate) of λ and each sensor senses an object with probability sp; thus, the

Poisson process for sensed objects grows has the rate λs = spλ.

A sensor on a vehicle at location Loci with a radial (disk shaped) sensing support

region Si can view any unobstructed location in Loci ⊕ Si. We define the sensing

field as independently marked point Poisson process represented by δ̄. We model

the sensing field this way mainly because we capture the environment that could

potentially comprise of obstructing objects, such as bikes, buildings, and pedestrians.

Specifically, we associate each obstructing object with shape Ji to its field as Qi =

(Ji, Si), resulting in the marked point Poisson process δ̄ = {(Loci, Qi), i ∈ N+}. Thus,

the environment and the sensing fields are modelled by the δ̄ process which associates

Qi, i.e., the J and S values, to each obstruction i. This way we aim to model all the

objects in the environment.
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In a given environment and sensing field δ̄ and a subset of collaborating sensors, we

need to determine the sensing redundancy, which can be accomplished by knowing

the sensing field. Thus, based on the sensing field, we define a coverage area set

Ωi(δ̄) as follows. A sensor can view any location ζ in Loci ⊕ S0
i , if the location is

not obstructed. We consider a sensing disc centered at 0 with a fixed radius, i.e.,

S0
i = f(0,Radius). We denote l0,ζ for the closed line segment between the center 0

and the location ζ ∈ R2 if there are other objects present that block the line of sight.

Formally, lLoci,ζ
⋂
E−i ⊆ {ζ}. Thus,

Ωi(δ̄) = {lLoci,ζ
⋂

E−i ⊆ {ζ}}, (5.5)

where E−i =
⋃
k:k 6=iEk denotes the environment excluding Ei. Throughout, we as-

sume that there is no self-blocking, i.e., that the line of sight channels are not blocked

by the sensor at location ζ. Equation (5.5) means that the coverage area set Ω rep-

resents the surrounding environment without any obstructions, i.e., the area of the

surrounding environment over which the sensor has an unobstructed (direct line of

sight) view.

With the superscript 0 denoting the area that we are targeting, the expectation

of the non-overlapping region can be evaluated as

E[|Ω|] = E[|S0
⋂

J0|] + E

[∫
S0\J0

e
−λE[

∣∣∣l0,ζ⊕J ′ ∣∣∣]
dζ

]
, (5.6)

where J
′

= {ζ| − ζ ∈ J}. The value of E[|Ω|] can be evaluated following standard

procedures Chiu et al. (2013). This formulation also shows how the coverage area of

a given sensor decreases with the increase in the density of obstructing objects, i.e.,

the quantity inside the integral decreases exponentially with increasing λ.
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Figure 5.2: Raspberry Pi Vehicle and Asu Drone Studio.

5.5 Evaluation

We consider six 37 x 37 ft (11.2 x 11.2 m) zones in the Arizona State University

Drone Studio which includes tracked space and a control center, see Fig. 5.2. Each

zone has a 5×5 grid of segmented lanes. We utilized two RSUs to cover all six zones.

We use the sigmoid as activation function for each layer in the central AE and the

local AEs. We use denoising AEs and follow the corruption process in Vincent et al.

(2008) with the noise value of 0.1. The central AE has two layers and each local AEs

has a single layer.

5.5.1 Data Model

The dataset consists of the data from five Raspberry Pi vehicles, see Fig. 5.2,

specifically from the on-board speed-sensors (LM393 ), IMU sensors, passive-GPS

markers (based on Opti-Track recommendation), and camera (Raspberry Pi V2),

see Venkatraman (2021). The data was transmitted by externally mounted 801.11p

modules on the vehicles to two respective software-defined base stations collocated

with SDN controllers. Essentially, the base stations can be extrapolated as two RSUs
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covering the six cells. We observe the downlink traffic (DT) and the uplink traffic

(UT) based on the location coordinates of the mobile vehicles covering the area of

six 37 × 37 ft (11.2 × 11.2 m) zones. The datasetM = {m(u,v,t)} records the average

traffic load in each base station for every one-second time slot for a total of T =

2 hours, whereby, mu,v,t includes the set of uplink/downlink traffic samples for the

time slots t ∈ T for zone (u, v). We normalize the data within the interval [0,1] with

the tanh estimator method Scheirer et al. (2010).

Each vehicle moves for T = 2 hours following the lanes in the rectangular lane grid

with uniformly random turn choices at the intersections. Unless noted otherwise, the

rate λ at which obstacles appear in the environment is set to 0.05 times the number

of vehicles. Randomly picked real-life objects, such as a chair or parked vehicles,

were uniformly randomly placed as obstacles to replicate a real-world scenario that

includes pedestrians and rogue obstacle movements and placements. The evaluation

employed a hybrid strategy consisting mainly of measurements with the vehicles in

the Drone Studio while the sensor coverage calculations and the sensor redundancy

(see Fig. 5.5) were obtained from accompanying discrete event simulations. The 95%

confidence intervals of all performance metrics were less than 4% of the corresponding

sample means. The confidence intervals are omitted from the the plots to avoid visual

clutter.

We first explore how this data is relevant and is representative for typical to

real-world datasets. As observed in several studies, e.g., Chinchali et al. (2018), the

cellular data, i.e., viewing m(u,v,t) as a collection of random process samples, has

significant correlations in both the spatial and temporal dimensions. Due to space

constraints, we only present a characterization of the spatial correlations in Table 5.3.

Table 5.3 clearly indicates non-zero spatial correlations in the dataset M that are

highly dependent on the vehicle location.
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5.5.2 Results and Discussion

We compare the prediction errors of two common state-of-the-art training models,

namely the Autoregressive Integrated Moving Average (ARIMA) and Support Vector

Regression (SVR) models, against the proposed VeNet training model in Table 5.4.

The neural network comparison in Table 5.1 indicates that the majority of the related

approaches utilize versions of averaging, such as federated averaging, which average

weights in gradient descent, and thus follow the same underlying averaging principle

as ARIMA. All compared models operate in the SDN based VeNet architecture.

Table 5.4 indicates that VeNet achieves substantially smaller prediction errors than

the ARIMA and SVR training models; typically, VeNet reduces the MSE and LL

down to three quarters or less of the ARIMA and SVR models. Our VeNet model

achieves these relatively small prediction errors by considering the spatio-temporal

dependencies (correlations) of the sample data.

Now, we elaborate further on the architectural benefits of the multiple local AEs

for capturing local information for better representation. As we observe from Fig-

ure 5.3, as the number of local AEs (for the 6-zone network) increases, the performance

measured in terms of relative (percentage improvement of the prediction accuracy, i.e.,

reduced prediction error) improves up to 3 local AEs and then flattens out for four

and more local AEs. The results clearly indicate that finer-grained learning of the

local (spatial) data characteristics enables better prediction. We show the signalling

bitrate defined as the average (over time slots) of the bitrate of the signalling (con-

trol) traffic per vehicle in Figure 5.4. Importantly, we observe from Fig. 5.4 that the

improved VeNet prediction performance from Fig. 5.3 is achieved with a substantially

reduced signalling traffic bitrate compared to ARIMA and SVR. The reduced VeNet

signalling bitrate is mainly due to the learning support of the local AEs.
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We consider sensing redundancy to be the number in percent of vehicles which

can view (sense) a given zone location as a function of the number of vehicles in a

platoon. Generally, the higher the redundancy, the higher the reliability, i.e., the

lower the probability of a collision. We observe from Fig. 5.5 that the sensing redun-

dancy increases with the number of vehicles in a platoon. We clarify that this sensing

redundancy is not achieved through direct vehicle-to-vehicle sharing of sensing infor-

mation. Instead, VeNet achieves the collaborative sensing through the aggregation

of the sensing data at the RSU and the processing of the sensed data by the hybrid

stacked AE. The lower redundancy of FedCo compared to VeNet in Fig. 5.5 is due to

the poor adaptation of FedCo to local changes. FedCo is suitable for small regions

with low velocities as the learning considers multiple cost metrics that are averaged

in every iteration. However, IoV environments typically extend over several cells

and have high mobility. To address these challenges, VeNet performs ”mini-batch”

learning for every local data set in the local AE model, whereby the central server

exchanges the local model if a vehicle moves to another zone.

Figure 5.6 shows the energy consumed by a Raspberry Pi vehicle. We use a USB

voltmeter and ampere meter to measure the voltage and current with respect to the

amount of data transmitted up to the maximum speed of the Raspberry Pi vehicle

of 15 m/s; faster speeds were evaluated with simulations that were configured and

validated with the measurements conducted for lower speeds. Figure 5.6(a) considers

different values of the transmission parameter αn Xiao et al. (2022), which is inversely

proportional to the round-trip communication time between the vehicle and RSU.

Fig. 5.6(a) indicates that as the transmission parameter value αn increases (i.e., the

communication round-trip time decreases), the energy consumption is reduced. Also,

we observe from Fig. 5.6(a) that with an increase in training data size, the energy

consumption increases. Importantly, Figs. 5.6(b) and (c) indicate that VeNet consis-
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tently lowers the energy consumption compared to ARIMA and SVR; whereby the

energy consumption reduction of VeNet compared to SVR is particularly pronounced.

The high SVR energy consumption is due to some computationally demanding learn-

ing steps, such as hyper-plane optimization, margin optimum valuations, and kernel

function transformations.

Figure 5.7 shows the delay, which is defined as the time taken to execute the

learning algorithms, including Alg. 1, with the training data, and to complete the

learning process. We observe from Fig. 5.7 that the delay generally increases with

the number of vehicles. This is mainly because more vehicles lead to more local

characteristics that have to be learnt. We also observe from Fig. 5.7 that VeNet

achieves much shorter delays than ARIMA and SVR. This is mainly because ARIMA

and SVR do not consider the localized spatial characteristics of the data form the

zones. In contrast, VeNet benefits both from considering the localized spatial data

characteristics and the central controller that acts as a mediator when a vehicle moves

from one zone to another. This ensures that the resources (computation of data) and

local model accuracy are not deteriorated as vehicles transition among RSUs. The

current local AE learning progress related to a vehicle is passed to the new RSU and

added to the corresponding local AE model at the new RSU. This reduces the delay

for VeNet compared to the common state-of-the-art ARIMA and SVR models. We

note that all of the learning occurs remotely on the SDN-VeNet controller that is

collocated with the RSU, and is fed back into the vehicle. FedCo incurs longer delays

than VeNet in Figure 5.7 mainly because the federated averaging in FedCo is only

performed with a global purview limiting the adaptability to local changes.
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5.6 Conclusions and Future Work

We designed the novel VeNet training algorithm that improves the data represen-

tation by considering the local (spatial) data characteristics with a stacked hybrid

AE consisting of multiple local AEs and one central AE. We evaluated VeNet with

experiments with Raspberry Pi based vehicles. We found that VeNet substantially

improves the prediction, i.e., reduces the mean square error and log loss compared

with the state-of-the-art ARIMA and SVR models (reduction down to three quar-

ters of the ARIMA and SVR errors and losses), while requiring less signalling traffic

bitrate. We demonstrated that VeNet achieves effective collaborative sensing and

increased the sensing coverage in a platooning scenario. Also, VeNet substantially

reduces the energy consumption in the vehicles and reduces the learning delay.

A future research direction is to combine VeNet with 5G based traffic control,

e.g., traffic light control Busch et al. (2020); Yang et al. (2022); Zhang et al. (2021),

for overall improved Smart City and Industry 4.0 concepts Chen et al. (2021a). It

would also be interesting to investigate such traffic control approaches in conjunction

with the supporting mobile edge computing (MEC) techniques that can facilitate the

rapid transfer Doan et al. (2021); Liu et al. (2016); Doan et al. (2022); Thyagaturu

et al. (2022a) of the control and learning states to MEC nodes close to the vehicle

location as vehicles move. A related important future research direction is to examine

fault tolerance of the VeNet system and any extensions, whereby fault tolerance to

disconnections of the wireless communication links as well as outages of the MEC

computing and prediction failures need to be considered in a rigorous manner so as

to safeguard the vehicles and their passengers and cargo. We also note that this study

excluded privacy concerns about the shared datasets; ensuring adequate data privacy

and learning performance of the IoV data representations is an important direction

121



for future research.
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Table 5.1: Summary of Comparison of Venet with State-of-the-art Approaches. X

Means Principle Is Employed, X Means Principle Is Not Employed.

Study SDN DL Neural Netw. struct. Pros Cons

Rasouli and Tsotsos (2020) X X X Software assistance for prediction Overheads due to excessive signalling

Aljeri and Boukerche (2021) X X X Distr. controllers for managing on-

road vehicles

Sub-optimal bandwidth allocation

Samarakoon et al. (2020) X X X Network queue optimization No on-road support for urban traffic plan-

ning

Wisitpongphan et al. (2007) X X X Message passing between vehicles is

optimized

No on-road support for pattern predict. of

vehicles

Liu et al. (2018) X X X Theoretical optimality is observed No practical application for implementa-

tion

Ning et al. (2021) X X X Offloading assistance of computa-

tion

No netw. resource optim. for signal. over-

heads

Xiao et al. (2022) X X Centr. fed. averaging Max-Min optim. of computation

and storage units in vehicles; no

SDN support

Excessive energy consumption of on-board

units

Lv et al. (2015) X X One stacked AE Traf. flow predict. with spatio-

temporal correl.

Complicated to implement.

Zhao et al. (2020) X X Centr. GRU/LSTM mod. Similar to Lv et al. (2015) Inherits the limitations of Lv et al. (2015)

Pokhrel and Choi (2020) X X Centr. fed. block-chain mod.

(runs averaging)

Training model is based on a block

chain consensus mechanism

Searching all the block-chain components

adds complexity and signalling

Ye et al. (2020) X X Centr. server + approach similar

to fed. averaging

Applies 2-D contract theory for

commun. between vehicular clients

and the central server

Long training time and requires optimiza-

tion models for improving accuracy

Du et al. (2020) X X Centr. server + fed. averaging Self-driven vehicles use distributed

machine learning communication

Long training time and requires optimiza-

tion models for improving accuracy.

Liu et al. (2021) X X Centr server + local running any

CNN

Security framework offloads train-

ing model to the edge devices, i.e.,

RSUs and vehicles

Expensive to implement

Liu et al. (2022) X X Centr. server (fed. avg.) + local

customized training

Handles uplink congestion via selec-

tive vehicle participation

Requires high signalling to coordinate par-

ticipation

Chen et al. (2021b) X X Clust. + LSTM + one stacked

AE

Uses single AE; post-processing im-

proves accuracy

Heavy pre-processing to cluster data and

post-processing

Balasubramanian et al. (2021a) X X Mult. servers (fed. avg.) +

LSTM

Multiple distr. servers to preserve

data privacy, with one central coor-

dinating controller at BS for mobil-

ity management

Expensive due to distr. controllers, each

training own local data and sending up-

dates to centr. controller for global coord.,

adding to latency

VeNet X X Mult. loc. AEs + centr. AE;

LSTM

Uplink + downl. ctl. and data

transm. channels are isolated and

learn the data transm. param.

Long train. time if data size increases in

some scenarios, e.g., heavy traffic urban

planning
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Table 5.2: Summary of Key Notations.

Notat. Meaning

u, v Two-dimensional coordinates of a zone

m̂u,v Vector of tanh estimator normalized (to range [0, 1]) time series traf-

fic and location data of zone u, v

M Set of down/uplink traf. loads and sensing data for zones u, v, time

slots t, t ≥ 0

Z` Input of layer ` derived from mu,v data

R` = E(Z`) Encoding for layer `

D(R`) Decoding function

W `
l , W `

c Weight matrix of local, central encoder, layer `

b`l , b
`
c Bias for local, central layer `

x̄ Decoder weights and biases have bar; Encoder weights and biases

have no bar

x̂ Trained encoder weights and biases

ˆ̄x Trained decoder weights and biases

ρ(·) Reconstruction loss

Ωi Coverage area of sensor i
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Table 5.3: Spatial Autocorrelations in the Dataset M in Between the Six Zones.

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

Zone 1 1 0.162 0.432 0.130 0.040 0.321

Zone 2 0.392 1 0.338 0.129 0.084 0.310

Zone 3 0.340 0.541 1 0.159 0.162 0.690

Zone 4 0.432 0.439 0.458 1 0.104 0.130

Zone 5 0.320 0.471 0.492 0.508 1 0.163

Zone 6 0.282 0.491 0.550 0.431 0.535 1

Table 5.4: Mean Squared Errors (Mse) and Log Loss (Ll) in Zone 2 for Downlink

Traffic (Dt) and Uplink Traffic (Ut).

Training Model MSE DT MSE UT LL DT LL UT

ARIMA 0.045 0.049 0.80 0.86

SVR 0.060 0.065 0.70 0.74

VeNet (4 local AEs) 0.030 0.036 0.52 0.55
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Figure 5.3: Improvement in Venet Uplink and Downlink Prediction Performance

As a Fct. Of Number of Local Aes, a Higher Positive ”change in Per- Formance”

Corresponds to a Smaller Error or Loss; Fixed Number of 5 Vehicles
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Figure 5.4: Signalling Traffic Bitrate as a Fct. Of Number of Vehicles; fixed trans-

mission param. αn = 4, 4 local AEs in VeNet.

Figure 5.5: Venet Sensing Redundancy (Number of Vehicles in Percent That Can

Sense a Location as a Fct. Of the Number of Vehicles in a Platoon; fixed obstacle

rate λ = 0.05, sensing prob. sp = 1, 4 local AEs in VeNet.
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Chapter 6

CONCLUSION

In this thesis we make a step towards building intelligent network control plane for

next generation applications. We observed various network metrics such as latency,

bandwidth etc. necessary to ensure a good QoS provisioning in next generation

networks. In Chapter 1 we presented a hot take on Time sensitive networks (TSN)

and SDN control plane design for such networks. In Chapter 2, we addressed the

recovery mechanisms in TSN when failure events arise and explore in depth how

SDN control plane can make independent decisions to have back-up paths ready for

re-routing traffic.

We discussed FedCo in Chapter 3 that captures a key ingredient of the control

plane namely mobility handover. We observe that NGN applications rely heavily

on seamless handover at the edge. We show the control plane of this architecture

seamlessly offloads data by moving the end-point of the tunnel to the visiting location

S-GW with fundamental SDN principles. In Chapter 4, we extend the mobility

characteristics to Vehicular Networks and perform deep neural networked learning

tasks for vehicular networks. Aptly called as VeNet, this model proposes a new

paradigm of Internet of Vehicles architecture for producing a seamless automotive

system. We use raspberry pi vehicles to perform some key experiments to show its

performance benefits.

In doing so, we have shown performance benefits in each Chapter engendered

by the development of intelligent network control plane. The prediction abilities

given to network control plane allows network processes such as network resource

reconfiguration and fault recovery to handled with very high precision. This makes

130



it very essential for the next generation network applications.
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