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ABSTRACT

Impedance is one of the fundamental properties of electrical components, mate-

rials, and waves. Therefore, impedance measurement and monitoring have a wide

range of applications. The multi-port technique is a natural candidate for impedance

measurement and monitoring due to its low overhead and ease of implementation for

Built-in Self-Test (BIST) applications. The multi-port technique can measure com-

plex reflection coefficients, thus impedance, by using scalar measurements provided

by the power detectors. These power detectors are strategically placed on different

points (ports) of a passive network to produce unique solution.

Impedance measurement and monitoring is readily deployed on mobile phone

radio-frequency (RF) front ends, and are combined with antenna tuners to boost

the signal reception capabilities of phones. These sensors also can be used in self-

healing circuits to improve their yield and performance under process, voltage, and

temperature variations. Even though, this work is preliminary interested in low-

overhead impedance measurement for RF circuit applications, the proposed methods

can be used in a wide variety of metrology applications where impedance measure-

ments are already used. Some examples of these applications include determining

material properties, plasma generation, and moisture detection. Additionally, multi-

port applications extend beyond the impedance measurement. There are applications

where multi-ports are used as receivers for communication systems, RADARs, and

remote sensing applications.

The multi-port technique generally requires a careful design of the testing struc-

ture to produce a unique solution from power detector measurements. It also requires

the use of nonlinear solvers during calibration, and depending on calibration proce-

dure, measurement. The use of nonlinear solvers generates issues for convergence,

computational complexity, and resources needed for carrying out calibrations and
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measurements in a timely manner.

In this work, using periodic structures, a structure where a circuit block repeats

itself, for multi-port measurements is proposed. The periodic structures introduce a

new constraint that simplifies the multi-port theory and leads to an explicit calibra-

tion and measurement procedure. Unlike the existing calibration procedures which

require at least five loads and various constraints on the load for explicit solution, the

proposed method can use three loads for calibration. Multi-ports built with periodic

structures will always produce a unique measurement result. This leads to increased

bandwidth of operation and simplifies design procedure. The efficacy of the method

demonstrated in two embodiments. In the first embodiment, a multi-port is directly

embedded into a matching network to measure impedance of the load. In the second

embodiment, periodic structures are used to compare two loads without requiring any

calibration.
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Chapter 1

INTRODUCTION

Increasing performance demands of the next generation wireless technologies neces-

sitates post-production and in-field tuning of RF components to achieve the design

goals in terms of efficiency, linearity, and noise. The performance metrics are affected

by the process, voltage, and temperature (PVT) variations and environmental con-

ditions. RF systems are also used in applications where functional safety has utmost

importance, such as automotive mmWave RADARs, requiring in-field testing during

the deployment period. Meeting performance demands in these adverse conditions

becomes even more challenging for multiple-input multiple-output (MIMO) devices,

which uses multiple amplifiers to achieve its functionality. In a MIMO application,

each input and output device should be tested to ensure system can achieve its full

capability.

To ensure the RF system meets system requirements, extensive simulations are

used to determine performance bounds and include calibration knobs when necessary

at the design phase [1–3]. To compensate for degraded performance due to these vari-

ations, generally an adaptive element or a network is incorporated between the source

and the load, which enables post-production calibration. This adaptive element can

be realized by many methods but the most common methods are: using switched

capacitor or inductor banks, electronically adjustable capacitors (varactor), adjusting

the biasing current of the amplifiers. The different controls over the system provided

by these adaptive elements are referred as the tuning knobs of the system. Each adap-

tive element provides us a degree-of-freedom to adapt and improve the performance of

the system in different conditions. In post-production testing and calibration, circuit
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parameters are adjusted using these included tuning knobs to minimize the effects of

PVT variations in circuit performance and achieve the desired performance [4–6]. The

dynamic environmental changes, such as temperature, aging, objects in near-field of

the antenna cannot be accounted in post-production testing [7–11]. Therefore, these

changes necessitate in-field testing. Additionally, both in post-production test and

in-field test, measurement with external devices may not be feasible due to physical

limitations, such as measuring power or impedance in an internal node of an inte-

grated circuit. In these cases using an external equipment for the measurement would

generate a difference between the two nodes and the measurement plane. Further-

more, external equipment cannot be used for in-field measurements. To overcome

these challenges, Built-in Self Test (BIST) techniques can be used for measurement.

Different BIST sensors can be deployed in different points of the system, and the

circuit, including the internal nodes that are not available for external measurements.

These measurements then can be used to infer overall performance of the system,

and do the necessary adjustments to the tuning knobs to maximize the performance

of the system while being deployed, enabling in-field testing. BIST techniques also

shift the burden from using external RF equipment to internal monitoring during

post-production testing and calibration reducing the testing cost and time [12–20].

One tuning metric, that effects virtually all performance metrics in RF circuits is

the impedance and relative relations of the impedances in various nodes in the circuit,

such as the matching between the receiver amplifier and the receiver antenna. The

matching between the antenna and the amplifier is critical in order to meet system-

level requirements [21]. On top of the PVT variations, the matching can shift due to

environmental conditions. The input impedance of the antenna changes depending on

objects and materials in the near-field, the antenna array configuration, the mutual

coupling between antennas, and the scan angle of the antennas [21,22]. The variation
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in input impedance of the antenna in turn effects the performance of the transmitters

and receivers. The matching between an amplifier and its load controls the overall

gain of the system, the noise figure, the efficiency and the linearity [23,24]. From these

examples, it can be surmised that one of the critical parameters for proper operation of

these elements is the impedances of the amplifier and antenna, which can be quantified

by the reflection coefficient (S11, Γ) between a source and a load. Therefore, in-field

monitoring of the impedance of different nodes in the circuit, without disrupting the

circuit operation, is necessary.

Impedance measurement and monitoring is readily deployed on mobile phone RF

front ends, and they are combined with antenna tuners to boost the signal recep-

tion capabilities of the phones [25,26]. These sensors also can be used in self-healing

circuits to improve their yield and performance under process, voltage, and temper-

ature variations [27]. The multi-port technique is a natural candidate for impedance

measurement and monitoring due to its low overhead and ease of implementation for

Built-in Self-Test (BIST) applications [28,29]. The multi-port technique can measure

complex reflection coefficients (Γ), thus impedance, by just using scalar measure-

ments provided by the power detectors. It is one of the few ways to measure complex

impedance without using a tuned receiver. This technique generally requires a care-

ful design of the testing structure to produce a unique solution from power detector

measurements. It also requires the use of nonlinear solvers during calibration, and

depending on the calibration procedure, the measurement phase. This also generates

additional issues for convergence, computational complexity, and resources needed for

carrying out calibrations and measurements in a timely manner. Various implemen-

tations of multi-port reflectometer systems shown to be appropriate for the integrated

circuit applications [30–32].
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1.1 Impedance Measurement Techniques in RF Frequencies

There are many different approaches that are developed to measure impedance

in RF frequencies in the current literature, with different trade-offs, requirements

and components. The most direct approach for measuring S11 or RF impedance is

using a directional coupler to separate incident and reflected waves. This approach

is generally used by vector network analyzers (VNAs). A traditional VNA is built

by using directional coupler, and two full path receivers to measure the magnitude

and phase of incident and reflected waves. Then amplitude and phase information is

used to measure S11. Unfortunately, each receiver needs its own mixer, filters, and

amplifiers to accurately measure impedance. Therefore, this approach is prohibitive

for embedded applications and in-field testing due to its high overhead, both in terms

of required area, and power consumption. Instead of full-path receivers, low-overhead

sensors such as power detectors can be used to measure impedance. There are dif-

ferent approaches to utilize power detectors to measure S11 or impedance directly.

In [33–35], directional couplers are used with power detectors to calculate the mag-

nitude of the S11. In addition to directional couplers, a circulator also can be used

to separate incident and reflected waves as demonstrated in [36]. These methods

are similar to VNA, but they only measure the amplitude of the S11. Because by

themselves, power detectors provide only scalar measurements and do not give infor-

mation about the phase. This challenge can be overcome by using multiple power

detectors. The power of different linear combinations of incident and reflected waves

can be measured to extract information about their relative phases. To achieve this,

generally combiners and phase shifters are used in addition to directional couplers,

then the magnitude of the linear combinations are measured by the power detectors

to find the relative phase information. The six-port/multi-port theory generalizes this
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notion and provides a mathematical framework for calculating magnitude and phase

of S11 or impedance using linear networks and power detectors [37]. A multi-port

network analyzer consists of a passive network with at least six ports. Four ports are

used for the power detectors, and the other two ports are used for the signal source

and device under test (DUT) as shown in Fig. 1.1. The multi-port theory describes

the relation between impedance of DUT, the linear network parameters that are de-

termined at the design time and the power detector measurements. In multi-port

network analyzers, couplers, phase shifters, and combiners are carefully designed and

power detectors are strategically placed in various points of the circuit to maximize

measurement sensitivity and accuracy, while minimizing the required dynamic range.

There are a wide range of multi-port network analyzer design options ranging from

integrated [30–32,38], to board level [39, 39–41] implementations.

P3 P4

P5 P6

a b

Γ

Signal Source

Linear Network DUT

Figure 1.1: Basic Multi-Port Network Analyzer for Measuring Γ

1.2 Six-Port Network Analyzers

The most common implementation of such network analyzers is referred to as the

six-port reflectometer (SPR). Reflectometers typically have one test port to measure

the reflection coefficient, (Γ, S11), as shown in Fig. 1.1. Two of the six-ports are used

as RF input and DUT ports and the remaining four ports are terminated with power

detectors and serve as measurement ports. These four power measurements provide

four equations to solve for Γ. In addition to the SPR, reflectometers with five or more
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than six ports have also been proposed [42–44]. By extension, two or more SPRs can

be combined to create a two-port network analyzer [44,45].

In order to minimize the number of components in a reflectometer, the multi-state

reflectometer architecture is proposed in [46]. This type of reflectometer is a trade-

off between number of components and the test time. There are only two power

detectors required for this structure, but measurements must be taken in several

steps. For example, to mimic the SPR, a multi-state reflectometer needs four steps

to complete the measurements. In each step, the network parameters need to be

changed such that, it is equal to its SPR counterpart.

The most widely used model for SPR (and its multi-state equivalent) is developed

in [37]. In this model, it is assumed that power detectors are connected to the DUT by

a linear network. Therefore, the power incident upon each detector, (Pn), is related

to Γ with the following equation:

Pn = |Ana+Bnb|2 (1.1)

where An, Bn are network parameters. This equation can be rearranged into the

following form:

Pn = |An|2|b|2|Γ− qn|2 (1.2)

where qn = −Bn/An and Γ = a/b. In this architecture, a reference port, P0, is chosen,

such that P0 is predominantly a function of the incident power to DUT (A0 ≈ 0). By

taking the ratio of power incident upon each port, Pn, to the power incident upon a

reference port, P0, measurements can be decoupled from the incident power. Since

A0 ≈ 0, P0 is expressed as, P0 = |B0|2|b|2|1+A0/B0Γ|2. Thus, the power ratio, Pn/P0

is expressed in the following form:

|Γ− qn|2=
∣∣∣∣B0

An

∣∣∣∣2 · Pn

P0

(1.3)
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In [37], each such ratio is treated as a circle, with the center at qn, and the radius

|B0/An|2 ·Pn/P0. Intersection point of these circles in the complex plane yields the Γ.

Therefore, the performance of the SPR is dependent on the selection of qn parameters.

In [37], the author concludes that a 120◦ separation between these parameters to be

optimal due to the presumed symmetry of the architecture |q4|= |q5|= |q6|. These

proposed parameters are widely used in current literature. However, this process,

based on geometric intuition does not take non-idealities in hardware components

into account and it does not provide an insight for alternative designs where power

ratios may not be interpreted as circles.

1.3 Contributions

The contributions of this work to multi-port design and use can be summarized

as:

• A theoretical framework for minimizing impact of noise to the measurements.

• Overcoming the computational complexity by eliminating the use of nonlinear

solvers in calibration and measurement.

• Simplifying the calibration procedure by reducing the number of required cali-

bration loads.

• In certain applications eliminating the calibration procedure all together.

1.4 Thesis Organization

This thesis organized into five chapters. In this chapter (Chapter 1), motivation

and brief background information on multi-port technique is given. In Chapter 2,

literature review of the multi-port techniques is given. A theoretical framework for

7



minimizing impact of noise to multi-port measurement is given in Chapter 3. The

proposed theory is verified with simulations and the derived design parameters are

used to realize a multi-state reflectometer. In Chapter 4, using periodic structures

as multi-ports is proposed. In this chapter, in depth analysis of periodic structures

as multi-port is given and a calibration technique is proposed. The use of periodic

structures as multi-ports and the analysis is verified with simulations and hardware

experiments. A technique that uses periodic structures for comparing two impedance

values in relation to each other is given in Chapter 5. This technique is verified

with simulation and hardware experiments. All chapters except the Chapter 1 and

2, have the following structure: theory, simulation verification, hardware experiment

verification.
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Chapter 2

LITERATURE REVIEW

Multi-port calibration methods in the current literature make different trade-offs be-

tween calibration complexity, measurement complexity, the number of constraints,

and the number of known loads. Nonlinear solvers can be used for both calibration

and measurement phases to directly solve for network parameters with four known

loads [47]. By using more than four known loads, this direct approach can be used

for calibrating nonidealities in the system, such as power detector nonlinearities [48].

In the cases where these nonidealities are not significant, nonlinear solvers are still

necessary to solve for expressions involving exponentiation and multiplication of un-

derlying network parameters. These expressions can be treated as additional un-

knowns to simplify calibration and measurement procedures at the expense of using

more calibration loads. In [49–51], five known loads are used to produce an explicit

calibration and measurement procedure. The number of known quantities is relaxed

in [52,53] where calibration reflection coefficients do not need to be known but their

magnitudes should be equal. Another calibration approach is proposed in [54], which

requires a known load in addition to several unknown loads which cover the desired

measurement region in the Smith Chart. However, in [52–54] a nonlinear solver (or

an optimizer) is required for calibration. The physical model of the transmission line

and the assumption of high impedance power probes are used to simplify underly-

ing multi-port relations and derive explicit measurement and calibration procedures

in [42]. A comparison of the calibration methods is given in Table-2.1.

In multi-port reflectometers, two ports are used as RF input and DUT ports

and the remaining ports are used as measurement ports, which are generally ter-

9
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minated with power detectors. The number of ports can be adjusted to improve

the accuracy and the bandwidth of multi-ports [42, 50]. However, the most common

implementation of multi-ports is referred to as six-port reflectometers (SPR) where

four power detectors are used [43]. These ports are connected by a linear network

upon which power detectors are strategically placed to produce a unique solution for

the reflection coefficient (Fig. 1.1). The design of the linear network determines the

multi-port parameters, which in return determines the sensitivity, noise immunity,

and the uniqueness of the measurements. A detailed explanation of the parameter

selection is provided in [40]. For a set of ill-conditioned parameters, multi-port mea-

surements can produce multiple possible reflection coefficient values. In the current

literature, SPRs are generally constructed by a combination of phase shifters, various

couplers, and other microwave structures. SPRs can be implemented in both inte-

grated circuit level [30–32,38,43], and board level [27,29,40,41]. In [41], a multi-port

is directly embedded into a distributed matching network constructed with open, and

short stubs.

Additional methods that are not based on multi-ports exist for directly or indi-

rectly measuring reflection coefficients. These methods generally rely on a directional

coupler [33–35] or a circulator [36], which enables the measurement of the incident

and reflected voltages directly. Another common technique is the insertion of a series

element, such as an inductor [26, 55–57] or a transmission line [58] to measure the

loading of the circuit. These methods generally rely on the change of voltage across

the series element terminals since it is related to the loading of the circuit. These

methods rely on a known physical model of the element to measure the voltage. Such

an assumption is not always valid; for example, in RF and mmWave frequencies an

inductor is not a simple series element, but it behaves like a two port network with

series and shunt components [59].
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Table 2.1: Comparison of Calibration Methods

Ref No. Detectors Known/Total

Cal. Loads

Cal.

Procedure

Meas.

Procedure

[47] 4 4/4 Nonl. solv. Nonl. solv.

[48]1 4 ≥ 7 Nonl. solv. Nonl. solv.

[49,51] 4 5/5 Explicit Explicit

[50]2 4 4/4 Explicit Explicit

[52,53]3 4 3/5 Nonl. solv. Explicit

[54] 4 1/7 Nonl. solv. Explicit

[42]4 3 - - Explicit

This work 5 3/3 Explicit Explicit

1 The number of calibration loads depends on the specifics of the application. This

work also calibrates the power detector non-idealities using cal. loads.

2 |Γ|≈ 1 for cal. loads

3 |Γ| should be equal for all cal. loads

4 Requires high impedance detectors equally spaced on a transmission line with

known Z0. The measurement plane is set and cannot be moved. If an arbitrary

measurement plane is used, at least 3 calibration loads are required.
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Chapter 3

MINIMIZING THE IMPACT OF NOISE IN SIX-PORT MEASUREMENTS

In this chapter, we present a design optimization framework for N-port reflectometers

that will be used in the context of built-in self-test for automotive radars. We model

the error in NPR measurements due to noise and coupler gain, insertion loss, and

dynamic range limitations. Based on this mathematical mode, we provide a way to

select the BIST design parameters that minimize the error within the given design

constraints. The proposed design framework applies to both the traditional NPR

architecture that conducts the measurement in parallel and the multi-state NPR

architecture that conducts the measurement in a serial fashion but with lower number

of components. The mathematical model along with a numerical optimizer is verified

using simulations to show that the decisions based on the model provide optimum

design parameters. From this model, we select two configurations to be implemented

in hardware using off-the-shelf components. Hardware experiments are conducted

for the two configurations with a variety of test loads including active and passive

devices. Hardware experiments show that even in the presence of components that

are not characterized and in the presence of high levels of noise due to the need to

use long cables, the NPR provides excellent accuracy in the context of calibration of

automotive radar systems.

3.1 Noise Analysis of Six-Port Network Analyzers

In this chapter, polar coordinates will be used. The network parameters arranged

in the form provided in [47] instead of using the form mentioned before (1.2). The
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power incident upon each port is expressed as:

Pn = |Bn|2|b|2|1 +GnΓ|2 (3.1)

where

Gn =
An

Bn

= gn ̸ θn (3.2)

Γ =
a

b
= γ ̸ ϕ (3.3)

In order to make our model apply to the most general case, we use ratios of measured

power as pairs, (Pn, Pc(n)), where c(n) maps port n to its companion port. We can

then choose c(n) to map every port to a constant port, which would be equivalent to

the measurement process in [47]. The companion port can also be unique for each

port, leading to the exploration of more design alternatives.

Noise generated by each power detector needs to be taken into account to model

the accuracy of the reflectometer configuration. Assuming the noise from the source

is negligible compared to power detector noise, each power measurement can be ex-

pressed as:

Pn = |Bn|2|b|2|1 +GnΓ|2 +Nn (3.4)

the noise coupled power ratio of the port pairs is defined as xn, and can be modelled

as:

xn =
Pn

Pc(n)

=
|Bn|2|b|2|1 +GnΓ|2 +Nn

|Bc(n)|2|b|2
∣∣1 +Gc(n)Γ

∣∣2 +Nc(n)

(3.5)

= Mn
1 +Nn/Pn

1 +Nc(n)/Pc(n)

(3.6)

Since the solution for Γ is dependent on Mn, the multiplicative term on the right

hand side acts as disturbance for the overall measurement. Therefore, we define the

term Dn as:

Dn =
1 +Nn/Pn

1 +Nc(n)/Pc(n)

(3.7)

13



As we increase the incident power, |b|2, the multiplicative term, Dn, nears unity,

which is the ideal case. Therefore, increasing the incident power would improve the

measurement accuracy as expected. The estimated Γ from measurements, Γ̂ = γ̂ ̸ ϕ̂,

is affected by the disturbance.

Mn(Γ̂) ≈ Mn(Γ)Dn (3.8)

We have two options for analyzing the disturbance in (3.8). We can transform the

multiplicative Dn to an additive one by taking the log of both sides, or leave it as is.

Both options would result in two different cost functions. The choice of which cost

function to utilize will depend on the system variables, as we will explain later.

We will first define the optimization process using the logarithm option. We take

the log of both sides of (3.8):

logMn(Γ̂) ≈ logMn(Γ) + logDn (3.9)

In order to numerically solve for Γ̂, we propose the following cost function, which we

will refer to as log cost function:

argmin
Γ̂

N∑
i=1

(
log xn − logMn(Γ̂)

)2
(3.10)

For small perturbations, Mn can be approximated as:

logMn(Γ̂) ≈ logMn(Γ) +∇ logMn(Γ) ·∆Γ (3.11)

∆Γ =

[
δ̂γ δ̂ϕ

]T
signifies the distance between the estimation and the actual value,

which is the measurement error. Combining (3.9) and (3.11):

log(Dn) ≈ ∇ logMn ·∆Γ (3.12)
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The distribution of the error term is dependent on Dn and ∇Mn. Thus, optimizing

the ∇Mn term enables another way of controlling the distribution of the error term.

Combining the log cost function (3.10) with the (3.12) will reduce it to:

argmin
Γ̂

N∑
i=1

(logDi −∇ logMi ·∆Γ)2 (3.13)

Now, we can characterize the distribution of ∆Γ in full extent by expressing the

least-squares solution for the overall system. The least square solution for ∆Γ is

given by:

N = G∆Γ (3.14)

∆Γ = (GTG)−1GTN (3.15)

N is the noise coupled measurement matrix where each row is given as Nn = logDn,

and G is the gradient matrix where each row is given as Gi =

[
∇γi ∇ϕi

]
. ∇γi

and ∇ϕi represents the radial (γ) and angular (ϕ) components of ∇ logMi in polar

coordinates respectively.

G =



∇ logM1

∇ logM2

...

∇ logMi

...

∇ logMK


(3.16)
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N =



logD1

logD2

...

logDi

...

logDK


(3.17)

δγ =

∑K
i=1

∑K
j=1Ni

(
∇γi∇2

ϕj −∇ϕi∇γj∇ϕj

)
det(GTG)

(3.18)

δϕ =

∑K
i=1

∑K
j=1Ni

(
∇ϕi∇2

γj −∇γi∇γj∇ϕj

)
det(GTG)

(3.19)

det
(
GTG

)
=

K∑
i=1

∇2
γi ×

K∑
i=1

∇2
ϕi −

(
K∑
i=1

∇γi∇ϕi

)2

(3.20)

= 2
N∑
i=1

N∑
j=i+1

∣∣∣∣∣∣∣
∇ logMi

∇ logMj

∣∣∣∣∣∣∣
2

(3.21)

If SNR is sufficiently large (i.e. SNR≥20dB) and detector noise distribution is of

Gaussian form, using log(1 + x) ≈ x, we can approximate the distribution of logDn

as the sum of two normal distributions.

logDn = log(1 +Nn/Pn)− log
(
1 +Nc(n)/Pc(n)

)
(3.22)

≈ Nn/Pn −Nc(n)/Pc(n) (3.23)

Assuming that the detector noise distributions are Gaussian and uncorrelated,

and their energy is equal to σ2
d, we can find the energy of Ni:

σ2
i = σ2

d

(
P−2
i + P−2

c(i)

)
(3.24)

We define SNR as ratio of incident power to noise energy when Γ = 0:

SNR =
σ2
d

|Bi|2|b|2
(3.25)
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In an application SNR would be determined by coupling gain and insertion loss and

incident power.

If noise sources are correlated, or ports share companion ports (e.g. c(n) = 0 as

in existing literature [37]), we need to add terms for accounting for the correlation.

Combining (3.18), (3.19) and (3.24), we can calculate the standard deviation of γ and

ϕ:

σγ =

√∑K
i=1

∑K
j=1 σ

2
i

(
∇γi∇2

ϕj −∇ϕi∇γj∇ϕj

)2
det(GTG)

(3.26)

σϕ =

√∑K
i=1

∑K
j=1 σ

2
i

(
∇ϕi∇2

γj −∇γi∇γj∇ϕj

)2
det(GTG)

(3.27)

We will derive G, N for the linear cost function which is defined in (3.28). It

is used in almost all of the prior work and it improves performance when there is a

separate reference port.

argmin
Γ̂

N∑
i=1

(
xn −Mn(Γ̂)

)2
(3.28)

We can use the following approximation for Mn(Γ̂):

Mn(Γ̂) ≈ Mn(Γ) +∇Mn(Γ) ·∆Γ (3.29)

We combine (3.29) with (3.8):

Mn(Γ)(Dn − 1) ≈ ∇Mn ·∆Γ (3.30)

Thus, we can approximate Nn as:

Nn = Mn(Γ)(Dn − 1) =
Nn −MnNc(n)

Pc(n) +Nc(n)

(3.31)

≈
Nn −MnNc(n)

Pc(n)

(3.32)
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Assuming the noise sources are uncorrelated, the standard deviation of Nn can be

expressed as:

σ2
i = σ2

d

P 2
n + P 2

c(n)

P 4
c(n)

(3.33)

We can then express G, N as the following:

G =



∇M1

∇M2

...

∇Mn

...

∇MK


N =



M1(Γ)(D1 − 1)

M2(Γ)(D2 − 1)

...

Mn(Γ)(Dn − 1)

...

MK(Γ)(DN − 1)


(3.34)

In (3.26), (3.27) by substituting, σi with (3.33), G and N with (3.34), we can express

the distribution of the error for the linear cost function.

3.2 BIST Design Optimization

In order to minimize the error, we aim to make the rectangular distance (∆Γ)

between Γ and Γ̂, as small as possible. Since we have the analytical expressions in

polar coordinates, we need to convert these expressions into rectangular coordinates.

The radial distance between Γ and Γ̂ is δγ and their angular difference is δϕ. Thus,

the cartesian distance between Γ and Γ̂ can be expressed as:

d(γ, δγ, δϕ) =
√

γ2 + (γ + δγ)2 − 2γ(γ + δγ) cos δϕ (3.35)

≈
√

δ2γ + γ2δ2ϕ (3.36)

If p(x, σ), defined as the probability density function (PDF) of a normal distribution

with zero mean and standard deviation of σ, we can express the expected value of
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the cartesian distance of a given point Γ = γ ̸ ϕ as:

davg(γ, ϕ) =

+∞∫
−∞

+∞∫
−∞

d(γ, δγ, δϕ)p(δγ, σγ)p(δϕ, σϕ) dδγ dδϕ (3.37)

Even though δγ and δϕ are correlated, we found the correlation coefficient between

these parameters is too small to make a discernible difference. Therefore, we separate

the distributions as if they were uncorrelated. If we want to account for the correlation

between these terms, we can use bivariate normal distribution instead of multiplying

two normal distributions. We also found that the following approximation for davg

also works quite well (Fig. 3.1), which can be used to speed up the computations.

davg(γ, ϕ) ≈
√
σ2
γ + γ2σ2

ϕ (3.38)

Since σγ and σϕ are dependent on a given point, we integrate (3.37) over the region of

interest (generally the unit circle) to find the mean distance between Γ and Γ̂, which

is the average error of the measurement system, using:

MD =
1

2π

1∫
0

2π∫
0

davg(γ, ϕ) dϕ dγ (3.39)

We want to emphasize that minimizing (3.39) using the given definition of d would

just minimize the average distance between Γ and Γ̂. Depending on the design goal

and application, we also might to minimize the ratio of |Γ− Γ̂|/|Γ|. In that case, we

need to divide (3.37), (3.38) by |Γ| = γ.

In summary, to decrease the error in the measurements, we need to decrease

the detector noise σd, increase the incident power to detectors |Bi|2|b|2, or choose

parameters Gi such that it would minimize (3.39). Since the first two are generally

limited by the application constraints, such as area, coupler insertion loss, or energy

consumption, we will focus on choosing parameters Gi.
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Since the expanded forms of (3.37) and (3.39) are not analytically tractable, we

will provide qualitative arguments for a possible set of constraints on parameters and

employ numerical methods for finding the optimum set of parameters for the given

constraints.
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Figure 3.1: Average Error using Exact (3.37) vs Approximate (3.38) davg for (6, 2)

3.3 Dynamic Range

In a BIST application, the dynamic range of the power detectors is typically

limited. Moreover, the incident power will be limited due to output power constraints

as well as the gain of the coupler that routes the incident signal to the phase shifter.

Thus, power limitations can be due to maximum input power of the DUT, linear

region of the power detector, and noise floor. Given this dynamic range, during BIST

design, we need to limit the range of Pns in an interval. We can find this interval by

using the triangle inequality.

|1− |GnΓ||2 < |1 +GnΓ|2< 1 + |Gn||Γ| (3.40)

1− gnγmax < |1 +GnΓ|2< 1 + gnγmax (3.41)

Since, interval of the values that Pn can take determined by gi and Γ, following

equation can be used for finding g value given the dynamic range (k) and γmax =
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max|Γ|.

k =
Pin(max)

Pin(min)

=
1 + giγmax

1− giγmax

(3.42)

This result can be used for setting boundaries on a numerical solver. Since we are

interested in optimum parameters in the unit circle, γmax = 1, we set the following

constraint on gi:

0 < gi ≤ 1 (3.43)

We need to set one of the ports as phase reference. Without loss of generality, we

choose θ1 = 0. Moreover, since increasing energy coupled to detectors does not

degrade any other performance metric, we can maximize |Bi|2|b|2 as much as the

application permits. In the rest of chapter, we just select |Bi|2|b|2= 1.

In order to simplify the analysis, we will set the magnitude of the parameters

g = |Gn| and the angle separation between consecutive parameters to be equal as

a design goal. While deviations from this design goal due to process variations will

be taken into account during the calibration process, equal magnitude and phase

separation also is the optimum design point for any NPR without any constraints.

θn+1 = θn + θ (3.44)

We need to keep (3.24) as small as possible. Therefore, when Pn reaches its

smallest value, we want to make its companion, Pc(n), as large as possible. Based on

(3.40), placing their angles 180◦ apart would accomplish that.

Thus:

θn − θc(n) = π (3.45)

3.4 Optimum Parameters

To obtain an initial point for the optimum solution, we apply (3.45) as a known.

Furthermore, since the error due to noise increases as the magnitude of γ decreases,
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we set we set γ = 0 as the worst case. This reduces the det
(
GTG

)
to following:

det
(
GTG

)
= 512g4

K∑
m=1

K∑
j=m+1

sin(θn − θm)
2 (3.46)

If we select θ1 = 0, the angles that maximize this function are:

θn = (n− 1)
π

K
(3.47)

where n = 1, 2, ..., N − 2 is the number of the measurement port and K=2, 3, 4. In

a similar manner, if we let c(n) = 0 and G0 = 0, we can calculate det
(
GTG

)
, for

various design points. For instance, for N = 6:

det
(
GTG

)
= 32g4(cos(2θ) + 2)sin(θ)2 (3.48)

and for N = 7:

det
(
GTG

)
= 16g4(−8 sin4(θ) + 11 sin2(θ) + sin2(3θ)) (3.49)

We expect the angle separation for these cases occur at maximums, therefore from

(3.48) we expect separation for N = 4 to be either 60◦, 120◦ and for N = 5 we expect

angle separation to be one of the following angles 45◦, 90◦ or 135◦. These intuitive

values are confirmed by optimizing for minimum error (i.e. minimum distance between

Γ and Γ̂) using a numerical solver. Using Limited-memory BFGS algorithm (L-BFGS-

B) [60], we minimized the mean distance given in (3.39) over the unit circle, and found

the values given in Table 3.1.

In Table 3.1, N corresponds to the number of ports, where the number of power

detectors is N − 2. K corresponds to number of Mi components.

In the (6, 2) configuration, every port has a companion port such that Gn/Gc(n) =

−1, and successive ports are separated by 90◦, i.e., Gn+1/Gn = j. The prior work [37]

corresponds to the (6, 3) configuration. In this configuration, there are 3 measure-

ment axes and each axis shares the same companion (reference) port. The model
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Table 3.1: Optimum Parameters for Average Error

Average Distance Average Distance Ratio

N K g Separation (θ) g Separation (θ)

61 2 0.71 90◦ 0.86 90◦

81 3 0.66 60◦ 0.84 60◦

101 4 0.62 45◦ 0.82 45◦

62 3 1.00 120◦ 1.00 120◦

72 4 1.00 90◦ 1.00 90◦

1c(n) = K + n

2c(n) = 0, G0 = 0 constraint to replicate [37]

for this configuration is thoroughly examined in [37] but the author did not provided

a rigorous proof for the design criteria. By applying the analysis developed in this

work for this configuration, we find that the optimum angle separation between pa-

rameters (θ) to be 120◦, which was the intuitive result in [37]. The optimum angle

separations given in Table 3.1 are also consistent with our initial intuitive estimates

that maximize det
(
GTG

)
. With these results, we surmise that other terms involved

in the expressions (3.26) and (3.27) determine the optimal g values, while det
(
GTG

)
determines the angle separation.

Depending on the application, we may want to minimize the number of power

detectors, due to the area and energy constraints. Moreover, we found that the

effect of increasing the number of power detectors on accuracy is almost negligible.

Therefore, even though there are many possible configurations, we can limit our

discussion on (6, 2), (6, 3) and (7, 4) configurations.

Even though the (7, 4) configuration has more power detectors than the others, its
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Figure 3.2: Comparison of (6, 2) and (6, 3)

parameters are separated by 90◦, which makes it more attractive for some applications,

specifically the applications that require wideband operation [43]. As can be seen

in Fig. 3.3, the average error of the (7, 4) configuration is very close to the (6, 3)

configuration. In these two configurations, the error can be reduced by making g

larger (Fig. 3.3). This trend does not hold for the (6, 2) configuration. The primary

reason of this is for g > 1, there are multiple solutions for Γ in the (6, 2) configuration.

Configurations (6, 2) and (7, 4), have good qualities that make them attractive

for practical applications. These configurations yield integer multiples of 90◦ as sep-

aration between power detectors. Thus, one can achieve wider bandwidth with this

configuration compared to the (6, 3) configuration which needs 120◦ separation. Also,

unlike 120◦ phase shift, a 90◦ phase shift can be obtained by the natural behavior of

the components.

The (6, 2) configuration also becomes handy if an application does not permit

using a directional coupler (e.g. ICs). Since in the (6, 2) configuration, all |Gn| values

are equal and larger than 0, one can just place power detectors along a transmission

line, and measure Γ without employing any directional couplers (similar to [30, 42]),

which is a required for the prior work [37]. Another important result that can be de-

duced from Fig. 3.3 and 3.2, is that if one can choose arbitrary large g values, using
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a directional coupler to define a reference port is the best solution. This would also

require power detectors with a wide dynamic range. However, increasing g beyond 0.6

provides diminishing returns in terms of accuracy. Thus, wide-dynamic range power

detectors generally are not necessary. Moreover, since adding one more power detec-

tors does not increase accuracy substantially, using the (6, 3) configuration instead

of the (7, 4) configuration would be more desirable, assuming that a 90◦ separation

between parameters is not required.
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Figure 3.3: Comparison of (6, 3) and (7, 4)
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Figure 3.4: Simulation Flow

3.5 Simulation Results

To verify our mathematical model for the average error (3.39), we performed

simulations as described in Fig. 3.4. We first set arbitrary Γ values to mimic the

device under test. We then simulate the power at each detector after adding noise

with an SNR of 30dB, for different g values. The measured power values are fed into

the solver for the estimation of Γ̂.

Fig. 3.2 compares the estimation error for the (6, 2) and (6, 3) configurations.

This figure provides an interesting design choice. We found that if the BIST system

is limited by g < 0.8 due to splitter and combiner losses as well as the coupling gain

(which is typically negative), that the (6, 2) configuration provides more accurate

results than the (6, 3) configuration. We also compared different cost functions (3.10)

and we found log-cost function improved the system accuracy for certain scenarios.

As can be seen from Fig. 3.6, for (6, 3) configuration, if g < 0.65 log cost function

provides slightly better accuracy.

There is a small difference between simulations and the model, this can be at-

tributed to (3.8), where the estimated noise incorporated in the multiplication factor,

Dn, leaves a small additive residue. This residue may cause inconsistent solutions for
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Figure 3.5: Comparison of Simulated and Calculated Average Error

Γ̂ and its corresponding Mn(Γ̂). In other words, the solutions that are determined by

the numerical solver may not converge to the precise location of Γ. Since the noise

residue has similar distribution (zero mean, Gaussian), it effectively will lower the

SNR. Therefore, the model will have a lower bound for the average error. However,

the majority of the impact of noise is included in the model and as shown in Fig. 3.5,

the predicted error by the mathematical model closely matches the error from the

simulations. It should be noted that the small difference in estimated error via the

mathematical model and the simulation-based model does not result in any wrong

decisions. The optimum choice of BIST parameters, in terms of available gain and
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dynamic range are identical whether the proposed mathematical analysis is used or

the decision is entirely based on simulations (which is not tractable due to the large

design space).

3.6 Multi-state Reflectometer Implementation

In order to decrease the number of required components, structure shown in Fig.

3.8 can be used. In this structure, instead of multiple fixed phase shifters, a variable

Combiner

Adjustable 
Phase Shifter

Directional 
Coupler

DUT 
(LNA)

Figure 3.7: Experiment Setup
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phase shifter is used. We do not need to know the phase shift amount nor they need

to be spaced equally, since we can find these values with calibration. But the phase

shift provided by the phase shifter should be repeatable and should have enough range

for extracting linearly independent information. In other words, the variable phase

shifter should be designed to cover the range for process and dynamic variations for the

device under test. If in an application phase shifter cannot provide the ideal values,

expected error can be found by using analysis provided in the previous subsection.

The phase shifter is placed on the signal path that is most closely related to the

reflected signal from the DUT. This configuration will take advantage of the inherent

loss of the phase shifter and limit the g value. The phase shifted signal is combined

with the signal that is predominantly function of the incident signal. The measured

power is related to the Γ of the device under test as described in (3.1).

The measurement is conducted in multiple steps. In each step, phase shifter is set

to a different angle and the ratio of the measurements from the power detectors are

recorded. After all measurement results are recorded, Γ can be solved for using the

same process as defined before.

φ

P3

P4

Signal Source

DUT

Figure 3.8: Multi-state Reflectometer Structure

Generally, the phase shifter also introduces attenuation to the signal, which would

make g < 1. This attenuation level is typically sufficient to set g to a reasonable value.
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If the g value needs to be further reduced, additional attenuators can be used.

One potential problem with power detectors is their measurement does not contain

frequency and phase information. Therefore, they are susceptible to interference when

used in-field. To overcome this, test signal can be modulated, even a basic on-off

keying would suffice to separate test signal from the interference as shown in [61].

3.7 Hardware Experiments to Verify Proposed Design

In order to demonstrate the feasibility of using NPR as a BIST solution, we

have built two configurations, the (6, 2) and the (7, 4) configurations, using off-the-

shelf components. While we use discrete components, these components are not

pre-characterized; their imperfections are taken into account during the NPR calibra-

tion process. The experimental configurations are similar to multistate reflectometer

presented in Fig. 3.8 with the number of phase shift and measurement operations be-

ing the difference between the configurations. A picture of the experimental set-up,

which consists of a directional coupler (Mini-Circuits ZABDC20-322H-S+), a digi-

tally adjustable phase shifter (HMC647A), and a power combiner (ZN2PD-63-S+),

is shown in Fig. 3.7. Four passive calibration loads are used to determine BIST

network parameters, as in prior work [47]. For test loads, we have used 8 passive

devices consisting of passively terminated SMA connectors, and an LNA. In practice,

the loads that we intend to measure with the BIST will be more closely clustered,

making the design and calibration process easier.

We performed the measurements as described before. By setting phase shifter to

0◦, 90◦, 180◦, and 270◦, and recording the ratio of incident power to power at the

output port, we were able to measure Γ of the DUT for different loads and frequen-

cies. The results from the NPR built from off-the-shelf components are compared

with measurements using a high-end RF equipment, Agilent E8361A Vector Network
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Figure 3.9: Comparison of VNA (Solid Line) based characterization of the reflection
coefficient to the proposed NPR based characterization (Dashed Line) for the two
implemented configurations. Blue: 50 Ω, Orange: LNA, Green: 100 Ω, Cyan: Shorted
SMA, otherwise: Open TLINs with different lengths

Analyzer. The test load results for the (7, 4) configuration are shown in Fig. 3.10

and the test load results for the (7, 4) configuration are shown in Fig. 3.11.

The comparison of measurements on the Smith Chart in Fig. 3.10 and Fig. 3.11

show that the NPR results are very close to that of the VNA for a variety of loads,

active and passive. Fig. 3.9 shows the same comparison in magnitude-phase plots.

Table 3.2 shows the average error over the six test loads that are used for the two

BIST configurations. As discussed in Section 3.2, the error is defined as the vector

magnitude between the actual and estimated location of the reflection coefficient in

the Cartesian space as compared with the magnitude of the reflection coefficient.

The two configurations provide similar accuracy at (g = 0.6) as predicted by the

mathematical model. Thus, depending on the availability of phase shifters and the
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Table 3.2: Experiment Summary

Measurements

Configuration g Avg. Error

(6, 3) 0.6 0.020

(7, 4) 0.6 0.016
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Figure 3.10: Comparison of the reflection coefficient characterization via the NPR
using the (7, 4) configuration to the VNA characterization

number of measurements that can be conducted, either configuration can be selected.

We have also evaluated the impact of this level of error in the context of calibration

of automotive radar. We have found through system-level simulations [62] that this

measurement error has virtually no impact on the overall accuracy of the radar in

terms of angle, speed, or range. In other words, if the system is calibrated with

respect to this measurement result, it will provide the expected resolution in terms

of these three variables.
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Chapter 4

PERIODIC STRUCTURES AS SIX-PORTS

In this chapter, a new multi-port architecture that uses periodic structures is pro-

posed. This new structure results in a new model for multi-ports, which greatly

simplifies equations. This simplification results in closed-form calibration and mea-

surements for the multi-ports. Also, calibration can be done by just using three loads,

which was not possible in generic SPR architectures. The proposed theory is verified

with Monte-Carlo, circuit, and EM simulations. Experimental results show that the

proposed method gives excellent accuracy for a wide range of frequencies and loads.

4.1 Periodic Structures

Linear
Network

[T]

IN+1

VN+1

−

+ +

−

VN

IN

Figure 4.1: Unit cell of a Periodic Structure

Multi-ports are generally analyzed and modeled with scattering parameters. How-

ever, due to the repeating nature of the proposed structure, using ABCD/transmission

parameters and measuring loads in the admittance domain (at least initially) simpli-

fies the analysis.

Voltages and the currents at the ports of the unit cell (Fig. 4.1) are related through

the unit cell’s transmission matrix. This relation can be described as:VN+1

IN+1

 =

A B

C D


VN

IN

 . (4.1)
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Let T denote the transmission matrix of the unit cell:

T =

A B

C D

 . (4.2)

The voltage and current at any port in the periodic structure (Fig. 4.2) can be found

by using the cascading property of the transmission matrices, as the following:VN

IN

 = TN

V0

I0

 . (4.3)

The relation between I0 and V0 in terms of the measured admittance Y = Z−1 can

be expressed as:

I0 = V0Y. (4.4)

IN can be expressed in terms of VN and Y by multiplying both sides of (4.3) by 1/V0

and using (4.4) as: VN/V0

IN/V0

 = TN

 1
Y

 . (4.5)

Observe that N can be a positive or negative integer. This observation will be used to

simplify the formulation and derive explicit calibration and measurement procedures.
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Figure 4.2: Proposed Measurement System

4.2 Reciprocal Cells with Diagonalizable Matrices

The transmission matrix can be used for modeling all two-port linear circuits. This

work will concentrate on linear circuits that are reciprocal and have a diagonalizable
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transmission matrix (T). In RF frequencies, most components, such as inductors,

belong to this category. If an element has a series and a shunt component, it likely

has a diagonalizable transmission matrix (see next section for more details).

If matrix T is diagonalizable, it can be written as:

TN = QΛNQ−1. (4.6)

For any 2x2 matrix, Q can be written as:

Q =

v1 v2

1 1

 (4.7)

where v1,2 =

[
v1,2 1

]T
are eigenvectors of T. Similarly, Λ can be written as:

Λ =

λ1 0

0 λ2

 (4.8)

where λ1,2 are eigenvalues of T. For reciprocal circuits detT = λ1λ2 = 1. Let λ = λ1,

then the matrix can be expressed as:

TN =
1

v1 − v2

v1 v2

1 1


λN 0

0 λ−N


 1 −v2

−1 v1

 . (4.9)

Putting (4.9) in (4.5); normalized voltages are expressed in terms of the eigenvalues,

eigenvectors, and load admittance as:

VN

V0

=
λN (−Y v1v2 + v1) + (Y v1v2 − v2)λ

−N

v1 − v2
. (4.10)
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Let v2 = kv1 = kv, then the normalized voltage becomes:

VN

V0

=
λN (Y vk − 1) + k (1− Y v)λ−N

k − 1
. (4.11)

Let w = (Y vk − 1)/(k − 1)− 1/2, then the normalized voltage can be expressed as:

VN

V0

= λN

(
1

2
+ w

)
+ λ−N

(
1

2
− w

)
. (4.12)

From (4.12), one can observe that, each introduced measurement port is linearly

independent and does not increase the number of unknowns. This central finding is

key to reducing the number of the calibration loads and computational complexity.

Note that the load of interest Y is a bilinear transform (Möbius transform) of the w,

therefore after w is measured, Y can be solved in terms of w. This will be investigated

in the calibration section.

4.3 Unit Cells with Diagonalizable Transmission Matrix

Y1 Y2

Z

Figure 4.4: π-network representation of a reciprocal two-port linear network

Any reciprocal linear network can be modeled as the circuit given in Fig. 4.4.

Z, Y1 and Y2 values can be calculated using Y-parameters. Given Z, Y1 and Y2, the

transmission matrix of this unit cell is:

T =

 Y2Z + 1 Z

Y1 + Y1Y2Z + Y2 Y1Z + 1

 . (4.13)

The eigenvalues of this matrix are:

λ1,2 = 1 +
Z(Y1 + Y2)±

√
Z (Y1 + Y2) (Z(Y1 + Y2) + 4)

2
. (4.14)

Therefore, if the following conditions are met:
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• There is a series element in the equivalent circuit (Z ̸= 0)

• There is at least one shunt element in the equivalent circuit, and the sum of the

admittance of the shunt elements is not zero (Y1 + Y2 ̸= 0)

• Multiplication of the series element impedance and the sum of the admittance

of the shunt elements satisfies the following Z(Y1 + Y2) + 4 ̸= 0

The transmission matrix of the unit cell will be diagonalizable.

4.4 Power Detector Measurements

To solve for w, power detector/voltage measurements can be used. It is assumed

that λ is known and found by calibration. After w is found, an error-box correction

approach can be used to find the load value explicitly. Error-box parameters also will

be found during the calibration phase.

The output of each power detector can be formulated as:

PN = g|VN |2 (4.15)

where g is the gain of the power detector. Power measurements will be normalized

by a predetermined ”reference” power measurement to cancel out the detector gains

and the scaling effects of the test signal amplitude. Therefore, the measurement ratio

(MN) is defined as:

MN =
PN

P0

=

∣∣∣∣VN

V0

∣∣∣∣2 (4.16)

where V0 is the reference voltage measurement. To find an explicit formulation, (4.12)

needs to be rearranged as the following:

MN =

∣∣∣∣VN

V0

∣∣∣∣2 = ∣∣∣∣(λN − λ−N)w +
1

2
(λN + λ−N)

∣∣∣∣2. (4.17)
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Let JN = λN − λ−N and LN = λN + λ−N , then MN can be expressed as:

MN = |JN |2|w|2+
1

4
|LN |2+Re {JNL∗

Nw} (4.18)

and M−N can be expressed as:

M−N = |JN |2|w|2+
1

4
|LN |2−Re {JNL∗

Nw}. (4.19)

This symmetry can be used to separate the terms as follows:

AN = MN +M−N = 2|JN |2|w|2+
1

2
|LN |2 (4.20)

BN = MN −M−N = 2Re {JNL∗
Nw}. (4.21)

These concepts and definitions will be used later in the calibration section as well. If

λ (therefore JN and LN is known), |w| can be expressed as:

|w|2 = AN − 0.5|LN |2

2|JN |2
. (4.22)

Similarly, Re {JNL∗
Nw} can be expressed as:

Re {JNL∗
Nw} =

BN

2
. (4.23)

Using λ, |w| and Re {JNL∗
Nw}, the imaginary part can be expressed as:

Im {JNL∗
Nw} = ±

√
|JNLN |2|w|2−Re2 {JNL∗

Nw}. (4.24)

Finally, from the measurements, two possible solutions for w are found:

w1,2 =
Re {JNL∗

Nw} ± j Im {JNL∗
Nw}

JNL∗
N

. (4.25)

So far, only two measurements are used. At least one more measurement (i.e., N +1)

is necessary to find the correct root. Therefore, at least three measurements (four

power detectors) are needed to find w unambiguously. The correct solution can be
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selected by plugging values back in (4.17) and choosing the solution that has the

smallest difference between the predicted and actual power measurement. This final

measurement step can be expressed as:

argmin
w∈{w1,w2}

∣∣∣∣∣MN+1 −
∣∣∣∣λ2

(
1

2
+ w

)
− λ−2

(
1

2
− w

)∣∣∣∣2
∣∣∣∣∣. (4.26)

After w is solved, the calibration and system information can be used to extract Y , Z

or Γ. The given formulations are correct for any N . Due to its convenience and ease

of calculation N = 1 is selected. Therefore; M−1, M1, M2 will be used for calculating

w.

4.5 Calibration

The calibration procedure will be performed in two steps. In the first step, λ

will be found. After λ is known, three distinct loads can be used to find the bilinear

relationship between w and the load ZL (Fig. 4.3).

The notation introduced before is expanded to accommodate for the different

calibration loads. For load i, the measurement expression is given as:

MNi = |JN |2|wi|2+
1

4
|LN |2+Re {JNL∗

Nwi}. (4.27)

Similarly, ANi, BNi can be expressed as:

ANi = MNi +M−Ni = 2|JN |2|wi|2+
1

2
|LN |2 (4.28)

BNi = MNi −M−Ni = 2Re {JNL∗
Nwi}. (4.29)

For simplicity, assume that there are five power detectors, and they are arranged as

shown in Fig. 4.3. Then, for load i, there will be four measurements (M−2i, M−1i,

M1i, M2i).

Initially, measurements for two different loads i = 1, 2 are used for finding λ,

which is expressed in polar coordinates λ = rejθ. The quantities that can be calcu-
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lated/inferred from the measurements are denoted as Wm, to differentiate between

known quantities from unknown quantities up to that point.

First, observe that J2 = J1L1. Based on this |L1|2 can be found by:

W1 =
A2,1 − A2,2

A1,1 − A1,2

(4.30)

= |L1|2. (4.31)

which in turn can be expressed in polar coordinates:

W1 = r2 + r−2 + 2 cos 2θ. (4.32)

Using W1 = |L1|2, the following can be found:

W1A1,1 − A2,1 =
|λ− λ−1|4 − |λ2 − λ−2|2

2
(4.33)

= 2 cos 2θ(r2 + r−2) + 2. (4.34)

Let W2 be:

W2 =
W1A1,1 − A2,1 − 2

2
(4.35)

= cos 2θ(r2 + r−2) (4.36)

by using W1 and W2, cos 2θ can be found by solving:

0 = 2 cos2 2θ −W1 cos 2θ +W2. (4.37)

There are two roots in this equation. One of the roots corresponds to cos 2θ, and the

other root corresponds to (r2 + r−2)/2. This fact also can be verified by observing

that the product of the roots of this equation is equal to W2/2 = cos 2θ(r2 + r−2)/2.

Luckily, the roots can be assigned to the corresponding expressions unambiguously

by observing that (r2 + r−2)/2 ≥ 1 and cos 2θ ≤ 1, as the following:
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cos 2θ =
W1 −

√
W 2

1 − 8W2

4
(4.38)

W3 = r2 + r−2 =
W1 +

√
W 2

1 − 8W2

2
. (4.39)

Using W3, (4.39) can be succinctly expressed as:

0 = r4 −W3r
2 + 1. (4.40)

By solving this equation, all possible solutions for the r are found:

r = ±

√
W3 ±

√
W 2

3 − 4

2
. (4.41)

As expected, there are four roots for this equation and they correspond to ±r,±1/r.

The sign of the r does not matter, because only r2 term is used in the measurements.

1/r is also a valid solution since there are two eigenvalues and they are inverse of each

other. Both eigenvalues will produce valid and correct measurements.

The only term that cannot be solved unambiguously is the imaginary part of λ.

To solve it unambiguously, the sign of sin 2θ = ±
√
1− cos2 2θ needs to be determined,

which is not possible with the given calibration procedure. In practice, this is not a

big concern since the sign of this expression is related to the intrinsic properties of

the unit cell. Therefore, the sign can be determined a priori. In the cases where this

is not feasible, a fourth load can be used as a test load to determine the sign. If the

fourth load measurement does not correspond to the known value, the imaginary sign

is changed, and measurement is performed again. This completes the first step of the

two-step calibration.

In the second step, error-box parameters that relate w to ZL will be solved (Fig.

4.5). Now, that λ is solved, wi for each load can be measured as described in the

previous section. Each wi is a bilinear transform of Yi, which in return is a bilinear
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Figure 4.5: Transformation Steps Demonstrating Y 7→ w 7→ ZL

transform of the load of interest ZLi. The composition of bilinear transforms is a

bilinear transform. Therefore, there exists a bilinear relationship between wi and

ZLi, which can be expressed as:

ZLi =
awi + b

cwi + 1
. (4.42)

Using three distinct known loads, a, b and c are determined, which are the terms

for the error box. Since the impedance, admittance, and reflection coefficient are

bilinear transforms of each other, error-box parameters can be solved for any of these

measurement targets.

To use the outlined calibration method, two pairs of measurement ratios (M±N)

are needed, which translate to five power detectors. This calibration procedure does

not require any nonlinear solvers. However, obtaining an initial solution with this

method and using a nonlinear solver to solve for eigenvalues can provide accuracy

benefits. In the experiments and sensitivity simulations, closed form solution is deter-
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mined to be sufficiently accurate. To maximize the information each load contributes,

calibration loads should be selected as far apart on the Smith chart and complex loads

should be preferred when possible.

4.6 Measurement Port Considerations
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Figure 4.6: Measurements with Arbitrary Transfer Matrix

So far it has been assumed that voltages can be directly measured on the edges

of unit-cells. This may not be practical in some applications. In this section, it is

demonstrated that power detectors can be placed anywhere in the unit cell, and the

outlined method would still work without any modifications.

First, consider the case shown in Fig. 4.6. One node in the circuit is exposed as a

measurement port and the linear network that is connected to the measurement port

can be arbitrarily complex. The following relation can still be expressed between the

measured voltage (VM0), the input voltage (V0) and the current (I0) to unit cell:

VM0 = AV0 +BI0 (4.43)

where A, and B are arbitrary network parameters. Since V0 is the reference port,

where the admittance measurement plane is, the current can be expressed as I0 =
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Y V0. Then, VM0 becomes:

VM0 = V0(A+BY ). (4.44)

This relation can be expressed in matrix form as the following:VM0

V0Y

 =

A B

0 1


 V0

V0Y

 . (4.45)

Let F′ denote this transformation matrix

F′ =

A B

0 1

 . (4.46)

This matrix is invertible, given A ̸= 0. Using F′−1 and T, the voltage and the current

at the next port is found, then F′ is applied again to find measured voltage at the

next port as VM1

I1

 = F′TF′−1

VM0

V0Y

 (4.47)

both sides are divided by the reference voltage, VM0,VM1/VM0

I1/VM0

 = F′TF′−1

 1

V0/VM0Y

 (4.48)

and by using (4.44), V0 is written in terms of VM0:VM1/VM0

I1/VM0

 = F′TF′−1

 1

Y/(A+BY )

 . (4.49)

Let YM = Y/(A + BY ), then for any arbitrary measurement port the following can

be written: VMN/VM0

IN/VM0

 = F′TNF′−1

VM0

YM

 . (4.50)
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Figure 4.7: Measurements with Detectors Placed on Unit-Cell Edge

Observe that F′TNF′−1 = (F′TF′−1)N , thus T′ = F′TF′−1 can be used as the unit

cell transmission matrix and all previously developed methods can be applied without

any modification. Also observe that eigenvalues of T′ and T are equal. The measured

quantity w, will be a bilinear transformation of YM , which can solved by using error-

box calibration as described previously.

A special case of measurement port placement occurs when measurement ports

are placed on the edges of the repeating unit cells (Fig. 4.7). In this configuration,

YM would be the scaled version of Y . Also, if measurement ports are placed on the

edge, one less repeating cell can be used than the arbitrary configuration. Due to

these advantages, measurements ports are placed on the edge in the design example.

4.7 Dynamic Range

One of the main design goals is to select the dynamic range of the multi-port so

that power at each port can be accurately measured and quantified. If the dynamic

range requirement is too high, detectors may not be able to measure power accu-

rately. Similarly, if the dynamic range is too low, quantifying measurements becomes
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a challenge.

The dynamic range requirement for the power detectors is determined by multi-

port parameters and the maximum VSWR or |Γ|max that should be measured. There-

fore, to determine the dynamic range requirements, MN is expressed in terms of Γ

and multi-port parameters as the following:

MN =

∣∣∣∣JN aΓ + b

cΓ + 1
+

1

2
LN

∣∣∣∣2 (4.51)

where a, b, c are error-box terms that relate Γ to w. These parameters are functions

of the eigenvectors, measurement port parameters and the measurement plane. MN

can be rearranged as the following to obtain the canonical six-port formula:

MN = KN

∣∣∣∣Γ + qN
cΓ + 1

∣∣∣∣2 (4.52)

where KN and qN are defined as the following:

KN = |(JNa+ 0.5LNc)|2 (4.53)

qN = (JNb+ 0.5LN)/(JNa+ 0.5LNc). (4.54)

Each port has an unique qN . Let |q|max, |q|min be the maximum and the minimum

magnitude of qN respectively. Also note that if |c|≈ 0, then qN would correspond to

the circle centers of the six-ports [37].

It is assumed that the test signal power can be adjusted to accommodate the

operating region (linear region) of the power detectors. Therefore, the dynamic range

(DR) of the power detectors needs to be greater or equal to the ratio of the largest

(Pmax) and the smallest value (Pmin) that power detectors can obtain in a single

measurement, which can be expressed as:

DR =
Pmax

Pmin

=
Mmax

Mmin

(4.55)
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where Mmax, Mmin are the maximum and minimum values that MN can have for

any N (including zero) in a single measurement. Mmax and Mmin can be found by

maximizing and minimizing the nominator and denominator of (4.52) appropriately

by using the triangle inequality. This approach gives the upper bound for dynamic

range as the following:

DR =

(
|q|max + |Γ|max

|q|min − |Γ|max

· 1 + |c||Γ|max

1− |c||Γ|max

)2

. (4.56)

To have a bounded dynamic range, |q|min and 1/|c| should be bigger than |Γ|max. The

dynamic range of a particular port can be decreased by increasing |q|min or decreasing

|c|, |q|max. Therefore, the dynamic range can be adjusted by strategically selecting

eigenvalues, eigenvectors, power detector placement and the measurement plane. In

a more traditional multi-port/six-port |c|≈ 0 achieved generally by using directional

couplers, a similar result can be obtained by placing the power detector inside the

unit cell. Unfortunately, placing power detectors on the edge of the unit-cell would

result in |c|> 0, increasing the required dynamic range. Another way to decrease

the required dynamic range is achieved by increasing the number of detectors. It is

unlikely each detector would reach its extreme values at the same time and only one

pair of M±N needs to be measured accurately to find Γ.

4.8 Monte-Carlo Simulation and Sensitivity Analysis

The main consideration of the practicality of the proposed approach are mis-

matches between different unit cells and power detectors. Due to process variations,

each unit cell will have slightly different T, F′, and power detector gain. Therefore,

the proposed method needs to be evaluated against such non-idealities to determine

its robustness and to determine how tight tolerances should be in an application. To

achieve this goal, Monte-Carlo simulations are conducted with different T, F′, and
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Figure 4.9: Matching Network with Power Detectors

power detector gain are used. In the simulations, power detector voltages, VN , will

be measured as: VN

IN

 = F′TN−1

 1
Y

 (4.57)

for N = 1 . . . 5, and Y will be selected as uniformly distributed loads across the Smith

Chart as shown in Fig. 4.8. The VSWR for the test loads is under 3:1 (S11 < −3

dB), to simulate a realistic application. For each load, 1000 random mismatches are

generated. MN defined as:

MN =

∣∣∣∣VN

V3

∣∣∣∣. (4.58)

First, two matrices T for the unit cell, and F′ for the measurement port are
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Figure 4.10: Monte-Carlo Simulation, ( ) Calculated, ( ) Polynomial Trend

constructed. The real and imaginary part of the entries of T (tij) and F′ (fij) will be

randomly sampled from the uniform distribution U [−1, 1].

After verifying that the randomly constructed matrices have an inverse, T will be

normalized such that detT = 1. This ensures that T represents a physical reciprocal

circuit, which is an underlying assumption for the proposed theory. Now that the ma-

trix for the unit cell and the measurement port are constructed, random mismatches

can be added for each unit cell to introduce non-idealities. For each unit cell, two

mismatch matrices will be constructed, one for the T and another one for the F′.
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These mismatch matrices will be term-wise multiplied with the unit cell matrices. T,

F′ with mismatches added is denoted as TN , F
′
N and their entries are denoted as

tNij, fNij respectively. These entries can be expressed as

tNij = tij ·mt
Nij (4.59)

fNij = fij ·mf
Nij (4.60)

where, mt
Nij, m

f
Nij are added mismatches to respective entries. These mismatches

will be sampled from the normal distribution with a mean (µ) one.

mt
Nij ∼ N (1, σ2

t ) (4.61)

mf
Nij ∼ N (1, σ2

f ). (4.62)

The last non-ideality that will be simulated is gain mismatch between power detectors.

To model this, measured voltage is multiplied with a randomly sampled gain gN ∼

N (1, σ2
g). The mean of the gain is selected as one since voltages are normalized.

Therefore, the measured voltage at each port can be expressed as:

VN =

[
gN 0

]
F′

N

N−1∏
i=1

Ti. (4.63)

In order to determine the tolerance, the 3σ of all mismatch distributions is swept from

0 to 0.1. This would mean that 99.9% of units have less than the specified mismatch.

For example, if 3σ = 0.1 this would mean 99.9% of mismatches are below 10%. All

mismatches (T, F′, gain) will be simulated together to determine maximum tolerable

mismatch.

The randomly created systems will measure S11 of the predetermined set of loads

that are shown in Fig. 4.8. The system is calibrated using the three known S11 values

by using the method described in the previous section.

Simulation results showed that (Fig. 4.10) to keep measurement error under 1 dB,

all combined mismatches should be below 2%. This is easily achievable by discrete
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parts, and it is expected to be easily achievable in an integrated application since

most RF components are much bigger than the smallest node feature size.

It is also determined that the proposed technique has highest sensitivity to mea-

surement port errors (F′), followed by gain mismatches. The proposed technique is

least sensitive to the mismatches between unit cells (T).

4.9 Design Example

For hardware demonstration, one embodiment of the proposed technique is de-

signed. In this design, a periodic-structure multi-port is embedded into a two-section

LC matching network that transforms 5Ω to 50Ω. The 5Ω represents the impedance

seen by a hypothetical PA, and 50Ω represents the impedance of a hypothetical an-

tenna. In the simulation and in the experiment, developed method is used to detect

changes in the 50Ω port.

50Ω

5Ω

Figure 4.11: Two Section LC Matching Network

The two-section LC matching network without any modifications is shown in Fig.

4.11. A multi-port based on the proposed measurement method is embedded into this

network by dividing the inductor on the left into four smaller inductors (Fig. 4.9).

Simple peak detectors are connected to the edges of the divided inductors to measure

the voltage incident upon the nodes. The peak detector diodes (BAT15-02LRH) are

biased such that they are barely open during operation. To achieve this, high value

resistors (100 kΩ) are connected in series to diodes, so when a diode turns on, the
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(a) Matching Network with Power Detectors

(b) Matching Network without Power Detectors

Figure 4.12: Fabricated Boards

current through them will be minimal. Finally, a shunt capacitance is connected to

the ground, so high frequency signals have a low resistance return path. This design

enables the peak detectors to measure low voltages without impacting the matching

network performance significantly.

The matching network needs to be co-designed with the power detectors due to

the small added capacitance. The proposed circuit schematic (with DC blocks) is

shown in Fig. 4.9, and the fabricated board is shown in Fig. 4.12(a). As can be seen

in Fig. 4.12(a) in the physical design of the matching network, both LC sections have

a microstrip inductor and a lumped capacitor. Microstrip inductors are used due to
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their high-Q and the ease of matching between different unit cells.

Normally, an ideal series component would not have a diagonalizable transmission

matrix. However, due to the parasitic capacitance of the inductors each unit cell

consists of a mix of shunt and series components. This is also verified with the

co-simulation of the design.

The co-simulation consists of two parts: EM simulation of the PCB layout, and

the lumped models of the discrete devices provided by the manufacturers. The main

assumption in the proposed theory is that there are repeating structures in the cir-

cuit that can be leveraged to extract more information. In the EM simulation, this

assumption can be violated by how meshes are constructed. This can affect the mea-

surement procedure negatively, but it can be resolved by simulating a single unit cell

and measurement port. Then, unit cells, measurement ports, discrete components

and the rest of the layout are connected in the circuit simulation. This guarantees

that each unit cell and measurement port have the same response.

The design is simulated with 193 loads regularly distributed across the Smith
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Figure 4.13: Design Simulation Results - Test Loads (◦), Measured Values (×)
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Chart used as test loads. Test loads have VSWR under 10:1 (S11 < −2 dB). Fig.

4.13 shows the test load locations and the measurement results for each load. It is

clear from Fig. 4.13 that the proposed method measures S11 with high accuracy.

Simulations show that 10:1 VSWR requires 19 dB and 3:1 VSWR requires 12 dB of

dynamic range from the power detectors. This dynamic range requirement is expected

to be lower in the real hardware experiment due to additional losses resulting from

the experiment.

4.10 Hardware Experiment

To show the feasibility of the proposed method, two hardware experiments are

conducted. In the first experiment, it is verified that the proposed method does not

degrade matching network performance. In the second experiment, it is verified that

the proposed method can measure loads with high accuracy.

4.10.1 Impact on Hardware Performance

One board with (Fig. 4.12(a)) and another board without power detectors (Fig.

4.12(b)) are fabricated. Then, two boards are compared to see whether the proposed

technique degrades the performance of the matching network. TRL calibration is

used to deembed the SMA connectors from the VNA measurements. In TRL calibra-

tion, impedances are normalized to the characteristic impedance of the transmission

line (Z0). Therefore, to measure the real values of the loads, Z0 of the transmission

line needs to be known. A high precision 50Ω load is included with the TRL calibra-

tion kit. Using this included known impedance, Z0 is found to be 46Ω, which also

agrees with the EM simulation. When the matching network is co-designed with

the proposed method, adding the power detectors does not degrade insertion loss

(Fig. 4.15(a)) and impedance matching performance (Fig. 4.15(b)) of the matching
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network. These results also agree with the EM simulation. Overall, both boards

transform 50Ω to 5Ω with central frequency of 2.5GHz. The reflection coefficients

characteristic agrees with the EM simulation and the two minimums observed verifies

that the two section matching works as expected.

4.10.2 Measurement Accuracy

An adjustable load across a wide range of frequencies is measured with a VNA

(Agilent E8361A). As shown in Fig. 4.16, the adjustable load is constructed with

a diode (BAT15-02LRH) and a fixed resistor. When the diode is completely off

(Vctrl = 0), it will act as a high impedance load looking into the RF input (VRF ). As

the control voltage is increased (Vctrl), the diode will become a short circuit and the

fixed resistance (50Ω) will dominate the input impedance. There will be a rotation

around the Smith Chart due to the transmission line between the adjustable load and

the rest of the system. This rotation will also change with frequency. When these

two effects are combined, a wide range of loads will be created and sweep across the

Smith Chart. Vctrl, will control how far away the load is from the center of the Smith

Chart, and frequency will control the angle of the load.

A signal generator is connected to the board. The frequency sweep and sweep

run outputs of the signal generator are connected to a microcontroller (Arduino)

board. These outputs will facilitate the frequency synchronization between the signal

generator and measurements. The control voltage for the adjustable load is generated

by a DAC (MCP4725). The outputs of the peak detectors are connected to ADC

(ADS1115). The entire process is coordinated by the microcontroller connected to a

computer over USB. The experiment diagram and a picture of the setup are shown

in Fig. 4.14.

Power detectors are characterized with a power sweep from −30 dBm to 17 dBm
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with 1 dB steps. Power sweep values and corresponding DC output from a power

detector are plotted against each other in Fig. 4.18. A line is fitted in this graph to

determine the DC offset and the dynamic range of the power detectors. The lower and

upper limits of the detector outputs are determined using this model. The output

voltage is within 2% of the linear trend from 0.28V to 1.58V, corresponding to a

15 dB dynamic range.

By using adjustable load and frequency sweep, 1407 test data points (exclud-

ing calibration data points) are obtained. The performance of the proposed method

is evaluated across frequency, different reflection coefficients and phases. The de-

sign center frequency is 2.5GHz, and the method can reliably work from 1.5GHz to

3.5GHz (Fig. 4.17), which corresponds to 80% fractional bandwidth. This means,

the proposed method can easily work with high bandwidth antennas. The test loads

require at most 13.5 dB of dynamic range in a single measurement, which is consistent

with the simulation results.

Fig. 4.17 shows the system performance across frequency. Fig. 4.20 shows the

comparison between test loads and measured values in the Smith Chart. Not all

data points are included in these two figures to enable readability. The included data

points are selected at random and to cover of a wide range of the Smith Chart. Fig.

4.19 shows the magnitude and phase of the measured S11 with respect to the baseline

(measured by the VNA) for all loads. Fig. 4.17-4.19, do not include any calibration

loads since they have zero measurement errors by definition.

These results show that, proposed design and method can measure a wide variety

of reflection coefficients with high accuracy. Another observation is the max. dB

error increases when low magnitudes are measured. This is expected because, as the

magnitude drops, even very small measurement errors in magnitude would result in

significant errors in dB domain. The highest dB error is 1.6 dB for loads that have
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S11 > −10 dB. Overall, the system can measure S11 phase very reliably. The error

summary is given in Table-4.1.

The biggest constraint that limits the accuracy of the system is the linearity of

the power detectors. It has been observed that, accuracy can be changed significantly

if input power is above or below certain values. Therefore, input power should be

carefully selected so that power detectors are working in the linear region.

Table 4.1: Error Summary Table

All Loads

S11 Mag. Error (dB) S11 Phase Error (◦)

Max 2.5 dB 7.9◦

Avg∗ 0.23 dB 0.53◦

Loads S11 > −10 dB

S11 Mag. Error (dB) S11 Phase Error (◦)

Max 1.57 dB 4.3◦

Avg∗ 0.26 dB 0.5◦

∗ Calibration loads are not included.
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Chapter 5

IMPEDANCE COMPARISON AND CONJUGATE MATCHING

MEASUREMENT USING PERIODIC STRUCTURES AS SIX-PORTS

In this chapter, we proposed a method for quantifying conjugate matching between

two loads by using periodic structures and injecting a test signal in different points of

the periodic structure. The proposed method does not disrupt the operation of the

system while taking measurements, and the proposed signal injecting scheme does

not require a series connected switch in the signal path. Additionally, the proposed

method does not require any external calibration, and can measure the ratio of two

loads or the mismatch between two loads. The proposed method is verified in both

simulation and hardware experiments. The hardware experiment results show that

the proposed method provides good accuracy and high bandwidth for measuring

mismatch between two loads. The proposed method can be used in scenarios where

conjugate matching between two loads is important for the operation of the system.

5.1 Comparing Loads with Symmetric Unit-Cells

Symmetric unit cell is defined as a cell with a transmission matrix that has the

same diagonal entries, which can be expressed as:

T =

A B

C A

 . (5.1)

If an unit cell is symmetric, then its eigenvalues (v1, v2) are opposite signs of each

other (v1 = −v2), therefore k = −1. This simplifies w:

w =
Y v

2
(5.2)
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This means, w is simply a scaled version of the admittance. If admittance, or

impedance wants to be measured directly, this scaling factor is extracted, but if we

would like to just measure the ratio (r) of two loads, this extraction is not necessary

as demonstrated in Fig. 5.1. The ratio between two loads in Fig. 5.1 is given as:

Linear

Network

[T]

Z2

Linear

Network

[T]

Y2

Linear

Network

[T]

Z1

Linear

Network

[T]

Y1

Figure 5.1: Comparing Admittances Using Matched Measurement Systems

r =
w1

w2

=
Y1

Y2

=
Z2

Z1

(5.3)

In some applications, quantifying conjugate matching between two loads using the

reflection coefficient as a mismatch metric is desired. In this cases reflection coefficient

(Γ) is given by:

Γ =
ZL − Z∗

S

ZL + Z∗
S

(5.4)

where ZL is load impedance and ZS is source impedance. If these terms are replaced

with corresponding ZS = v/wS, ZL = v/wL:

Γ =
1/wL − 1/w∗

S

1/wL + 1/w∗
S

=
ZL/v − Z∗

S/v
∗

ZL/v + Z∗
S/v

∗ (5.5)

v and v∗ should be equal to cancel each other to make (5.5) same as (5.4). Meaning

v = v∗, therefore v should be a real number.

So far, we assumed that power measurements are taken at the edge of the periodic

structures but this is not necessary. Power detectors can be placed anywhere inside
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the unit-cell and all the developed theory will work without any modifications [39].

Placing power detectors on the edge of the unit-cells is advantageous. This placement

reduces the required unit-cells and the measured Y is the scaled version of the actual

load admittance, unlike the arbitrary power detector placement, which only guaran-

tees measured Y to be the bilinear transform of the actual load [39]. Therefore, in

the proposed method, power detectors are placed on the edges of the unit cells as

shown in Fig. 5.2.
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Figure 5.2: Edge Connected Power Detectors

5.2 Method for Measuring Conjugate Matching

The proposed method uses test signal injection on both sides of the periodic

structure to measure two loads without disrupting the system operation. The exact

placement of the test signal injection point is not important, and it can be different

in different nodes. Only critical part is signals should be injected different sides, and

should not be injected on any part of the periodic structure. Fig.5.3(a) shows the the

proposed measurement system. The proposed measurement system consists of two

test signal paths which can have different output impedances and power detectors

connected to the unit cells. The number of power detectors can be selected based

on the application requirements such as dynamic range, sensitivity, bandwidth and
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Figure 5.3: BIST Structure and Configurations for Measuring ZR and ZL Relative
to Each Other

accuracy.

The test signal sources can be disconnected from the system in the mission mode or

when monitoring is deemed unnecessary. The mission mode operation is demonstrated

in Fig.5.3(a). The test signal sources are connected sequentially in two steps in the

monitoring/test mode. In each step, a test signal is injected from one side of the

periodic structure and power measurements are recorded. The test mode operation

is demonstrated in Fig.5.3(c)-(b).

One point that needs attention is when the test signal injection changes direc-

tions, so does the numbering of the power detectors. The power detector number N

decreases from source to load. Therefore, the sign of N changes when the direction of
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the test signal changes. This is equivalent to taking the conjugate of the measured w.

This should be taken into account when wL and wR are calculated. If the numbering

scheme of the power detectors are not changed between the measurement steps, the

conjugate of one of the parameters is readily calculated. After the power measure-

ments are recorded using two distinct loads, the difference between the normalized

measurements should be calculated. If the total difference between normalized mea-

surements are lower than a certain threshold, two loads are almost conjugates of each

other. If the sum of the difference is larger than the threshold, then we need to

calculate λ to calculate wL and wR.

An initial solution for λ should be selected based on simulation or other prior

knowledge. wL and wR should be calculated using corresponding power measurement

values P−1, P0 and P1. Then, the corresponding fourth power measurement P2 for wL

and wR should be calculated using λ, wL, wR and by plugging these values in 4.16.

The difference between the calculated value for P2 is based on the mathematical model

and the measured value of P2 should be minimized using the gradient based nonlinear

solvers. We found that the trust region reflective method algorithm is suitable for

this problem. These recorded measurements are then used for calculating wL and wR

as described in the previous section. If v is a real number, wL and wR values can be

plugged back into (5.4) to quantify the conjugate mismatch between two loads. A

flowchart for measuring conjugate matching using the proposed method is given in

Fig. 5.4.

5.3 Design Example

To accurately measure the conjugate matching, we need a symmetric unit cell

with a transmission matrix that has real eigenvectors. The transmission matrix of a

transmission line with length l, propagation constant γ and characteristic impedance
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Figure 5.4: Conjugate Matching Measurement Flowchart

Z0 is given as:

T =

 cosh (γl) Z0 sinh (γl)

sinh (γl) /Z0 cosh (γl)

 (5.6)

The eigenvalues of this matrix is v = ±Z0 and the eigenvectors are λ = e±γl. For

low-loss lines Z0 is can be approximated as a real number, and propagation constant

can be approximated as γ ≈ j2π/λ, where λ is the wavelength of the RF signal.
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Therefore, a low-loss transmission line meets all the requirements for the proposed

method. A power detector (LTC5532) is connected to each node through a capacitor,

to measure the power at each node.

We need to maximize our measurement sensitivity respect to directly measured

parameters. If we plug in the values for the transmission line into (4.21):

B1 = Re {J1L∗
1w} = Re {(eγl − e−γl)(eγl + e−γl)w} (5.7)

= Re {4j sin(γl) cos(γl)w} (5.8)

= −2sin(2γl) Im {w} (5.9)

To find the sensitivity our measurement to load changes, we can take derivative

respect to Im {w}:

∂B1

∂ Imw
= 2 sin(2γl) = 2 sin

(
4π

λ
l

)
(5.10)

which is maximized when l = λ/8. After B1 is measured, it is used with |J1L1w|2

measurement to find the imaginary part of the w. If we follow the same steps as

described before, we will find that l = λ/8 also maximizes the sensitivity of this

magnitude measurement. Therefore, the unit-cell of the proposed periodic structure

will consist of a λ/8 transmission line and a power detector as shown in Fig. 5.6

to maximize the measurement sensitivity. This sensitivity calculations also shows,

the system will work best when we operate near the design frequency. As we away

from the design frequency, sensitivity of the system will reduce and inevitably give

inaccurate measurement results.
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The loading of the power detector would slightly change the eigenvector of the unit-

cell, but in simulation we found the impact of this is insignificant to the measurement

performance. The overall measurement system design is given in Fig. 5.5.

Z0, γ

l = λ/8

Figure 5.6: Proposed Unit Cell

5.4 Simulation Results

The proposed design is first verified with simulation. In the simulation, indi-

vidual transmission line segments and coupling capacitors are simulated in the EM

simulation. Then, extracted EM models and impedance information of the power

detectors are used in the circuit simulation to create design given in Fig. 5.5. In

the circuit simulation, one load is held constant while the other load is swept across

the Smith Chart. The voltage readings from the power detector ports are recorded,

and processed as described in the previous section. The mismatch between the swept

load and the fix load is extracted and compared with the measured mismatch by the

proposed method. As shown in Fig. 5.7, the measured mismatch and the simulated

mismatch are in agreement, confirming the validity of the proposed method and the

design.

5.5 Hardware Experiment

To verify the practicality of the method, hardware experiments are done with the

fabricated board (Fig. 5.8) based on the design example shown in Fig. 5.5. Two
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Figure 5.7: Mismatch Meas. Simulation - Measured ( ) vs Simulated ( )

switch boards are connected in two ends of the test board to facilitate the signal

switching. To show the capabilities of the proposed method under a wide range of

load conditions, an adjustable load is constructed with a phase shifter (HMC647A)

and an open ended lossy transmission line. The phase shifter presents slightly different

losses for each phase shift, and the phase shift effect also rotates the load around the

Smith Chart. These two effects create a wide range of loads around the Smith Chart.

The created loads are measured by a VNA (Agilent E8361A) to provide baseline

measurements. The adjustable load is connected to the one end of the test board and
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Figure 5.9: Experiment Diagram

the other end of the test board is terminated with a 50Ω load. Before connecting the

adjustable load, another set of measurements are taken looking into the board by the

VNA, establishing a conjugate matching measurement plane demonstrated in Fig.

5.8. Using these load measurements, conjugate matching is calculated with respect

to the VNA measurement plane.

The experiment diagram is shown in Fig. 5.9 and the hardware experiment setup

is shown in Fig. 5.10. The experiment is conducted by following the flowchart shown
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Figure 5.10: Experiment Setup

in Fig. 5.4. The test signals are generated by two signal generators and power detector

outputs are measured by an ADC (ADS1115). The entire process is coordinated by

a microcontroller connected to a PC.

Due to the difference between the VNA and BIST measurement planes shown

in Fig. 5.8, there is an almost constant difference in the magnitude and phase of

the VNA and BIST measurements. These disagreements disappear when the BIST

measurement plane is moved to same VNA measurement plane by using the three

term error model. The three term error model is a bilinear transform that models the

effect of the network between the VNA and BIST planes. This model is extracted

by mapping three BIST measurements to three corresponding VNA measurements.

After the deembedding, BIST and VNA measurements are in agreement, verifying

the difference was due to measurement plane locations. As shown in Fig.5.11-5.12,

the proposed method can measure the mismatch reliably and the proposed design

example based on this method has a wide bandwidth. The design example can reli-

ably quantify the conjugate matching from 2.2GHz to 3GHz corresponding to 30%
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fractional bandwidth.
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Chapter 6

CONCLUSION

In this thesis, we explored different design approaches and techniques for multi-

port network analyzers. First, we gave a detailed analysis for minimizing the impact

of the noise on the measurement. We verified analysis using simulation. This anal-

ysis resulted in unique multi-port parameters and different cost functions that have

different advantages. These new parameters are verified using hardware experiments.

Another limiting factor in applications is required computing resources for cali-

bration and measurement. To overcome these challenges, we proposed using periodic

structures as multi-ports. When we apply periodic-structure constraint on multi-

ports, the theory simplifies significantly and enables us to come up with closed form

calibration and measurement procedures for multi-ports. Additionally, periodic struc-

tures guarantee that if power measurements are correctly done, there would be always

a unique solution for power detector measurements. This finding simplifies design pro-

cedure significantly, and open doors for richer family of multi-port designs. Periodic

structures as multi-port is verified with simulations and hardware experiments. In

the hardware experiment, we embedded periodic multi-port directly into a matching

network. The embodiment of the method gave good accuracy across different VSWR

measurements.

Each application has different needs, and not every application requires absolute

measurement of the impedance value. For such applications, we proposed using peri-

odic multi-ports to compare two loads. Periodic multi-port theory enabled us to come

up with a technique that enables us to compare two loads without requiring calibra-

tion or known design parameters. The proposed technique verified with simulation
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and hardware experiments. In the hardware experiment, we placed power detectors

in regular intervals on a transmission line and measured conjugate mismatch between

two loads using novel signal injection technique. We verified the proposed technique

can quantify conjugate matching between two loads with high accuracy.
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