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ABSTRACT

Recent years have seen machine learning makes growing presence in several areas in

wireless communications, and specifically in large-scale Multiple-Input Multiple-Output

(MIMO) systems. This comes as a result of its ability to offer innovative solutions to some

of the most daunting problems that haunt current and future large-scale MIMO systems,

such as downlink channel-training and sensitivity to line-of-sight (LOS) blockages to name

two examples. Machine learning, in general, provides wireless systems with data-driven

capabilities, with which they could realize much needed agility for decision-making and

adaptability to their surroundings. Bearing the potential of machine learning in mind, this

dissertation takes a close look at what deep learning can bring to the table of large-scale

MIMO systems. It proposes three novel frameworks based on deep learning that tackle

challenges rooted in the need to acquire channel state information. Framework 1, namely

deterministic channel prediction, recognizes that some channels are easier to acquire than

others (e.g., uplink are easier to acquire than downlink), and, as such, it learns a function

that predicts some channels (target channels) from others (observed channels). Framework

2, namely statistical channel prediction, aims to do the same thing as Framework 1, but it

takes a more statistical approach; it learns a large-scale statistic for target channels (i.e.,

per-user channel covariance) from observed channels. Differently from frameworks 1 and

2, framework 3, namely vision-aided wireless communications, presents an unorthodox

perspective on dealing with large-scale MIMO challenges specific to high-frequency com-

munications. It relies on the fact that high-frequency communications are reliant on LOS

much like computer vision. Therefore, it recognizes that parallel and utilizes multimodal

deep learning to address LOS-related challenges, such as downlink beam training and LOS-

link blockages. All three frameworks are studied and discussed using datasets representing

various large-scale MIMO settings. Overall, they show promising results that cement the

value of machine learning, especially deep learning, to large-scale MIMO systems.
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Chapter 1

INTRODUCTION

The major leaps Machine Learning (ML) has been taking in the past two decades have

transformed the landscape of Artificial Intelligence (AI). Machines are now capable of per-

forming tasks that require a heightened sense of intelligence, and they do so in a way that in

some cases is on par with human ability—[1] and [2] are two examples of that. These leaps

in ML have advanced the state-of-the-art on a variety of tasks across the fields of computer

vision and natural language processing (major and classical fields for AI research). As a re-

sult, one could argue that ML have left a defining mark on both fields, a mark that casts ML

in the role of the enabler to many future technologies that rely on computer vision and/or

natural language processing. Good examples for that could be seen in technologies like au-

tonomous vehicles [3], and conversational artificial intelligence [4]. The former leverages

the breakthroughs ML has made in computer vision (e.g., image classification [5][6][7],

and object detection [8][9]) to achieve scene understanding, which is, in turn, vital for a

self-driving vehicle to understand its surrounding. The latter, on the other hand, taps into

the advances in natural language processing with ML (e.g., speech recognition [10] [11],

machine translation [12, 13]), which enable a machine to listen, comprehend, and respond

to spoken or written language.

The success ML has enjoyed in computer vision and natural language processing has

recently seeped into the field of wireless communications, a field where ML does not tra-

ditionally have obvious presence. A major factor in that is the unprecedented challenges

facing modern and future wireless communication systems and networks [14]. Those chal-

lenges, to a large extent, stem from a growing need for agility, reliability, and scalability

that allow wireless systems and networks to provide communications at high spectral effi-
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ciency, low latency, and high reliability [15, 16]. ML (and AI in general) offers wireless

communications a promising way to address those challenges head-on. This is evident in

recent work that utilizes ML to tackle variety of problems in wireless communications.

Some good examples could found in [17–21]. Collectively, that work has not only con-

solidated the value of ML to wireless communications, but it has also brought to light

an interesting duality; as ML holds tremendous potential in terms of advancing wireless

communications, it, as well, stands to be advanced by the types of wireless challenges it

addresses. Those challenges are not always similar to what ML has long encountered in

traditional fields such as computer vision and natural language processing, and, hence, they

could be the seed for novel ML research directions.

This dissertation is built around that duality between ML and wireless communica-

tions. By focusing on challenges in large-scale Multiple Inputs Multiple Outputs (MIMO)

communications [16, 22], it proposes novel and innovative approaches and frameworks to

wireless communications as well as ML. The following three sections aim to set the stage

for the discussion on those approaches and frameworks. They provide a brief account on

what ML paradigm will be adopted, discuss major large-scale MIMO challenges that will

be addressed, and, finally, present the thesis statement of the dissertation.

1.1 Deep Learning

ML has recently achieved major milestones in terms of enabling machines to perform

certain intelligent tasks on levels close to or surpassing those of humans [1, 2, 23]. This

could be, in large part, attributed to the advances in developing learning algorithms with

deep architectures [24]. Such algorithms have not only helped achieve those milestones,

but they have also ushered in the era of deep learning. Prior to the seminal work in [25–27],

the ML community was focused on developing well-engineered shallow learning architec-

tures [24], e.g., Support Vector Machines (SVM) and Gaussian Mixture Model (GMM) to
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name two. That focus started shifting when several successful approaches had been pro-

posed in [25–27] to train Deep Neural Network (DNN) architectures. They encouraged

the study and investigation of deep architecture in variety of problems. As a consequence,

AlexNet [28]—a deep Convolutional Neural Network (CNN)—managed to score a record

classification error rate on the large-scale image classification challenge ImageNet [29],

and this could be seen as the real inflection point at which the ML research pivoted from

shallow to deep learning.

1.1.1 Deep Versus Shallow Learning

Learning with deep architecture is fundamentally different form that of shallow ones

[30]. Figure 1.1 presents a schematic illustration of that using a classification example from

computer vision. Given a classification task with an input sensory data like as RGB im-

ages and a target abstract concept like the class “car”, deep learning attempts to breakdown
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the relation between the input and the target into multi-level hierarchical representation.

Each layer of the deep architecture attempts to learn a level of representation from its pre-

decessor. As Figure 1.1 shows, the first level may extract close-to-perception features like

edges and corners from the input image. Those features get gradually transformed into new

features with a higher level of abstraction as they go through higher layers. For instance,

the second layer may transform the edges and corners extracted by the first layer into fea-

tures describing certain parts of the object of interest, the car. All those transformations

are learned throughout the training process using large amounts of data points (examples).

In contrast, shallow architectures follow a different approach. They are usually composed

of one (or in some cases two) layer(s) of engineered feature extraction1. An engineered

extraction layer is designed such that it identifies specific patterns in the input using some

well-designed rules (e.g., like Gaussian kernels [31] and Scale-Invariant Feature Transform

(SIFT) [32]). The output here is a set of handcrafted features, which are used in conjunc-

tion with a powerful classifier to predict the abstract concept.

The layered hierarchical learning paradigm deep architectures follow poses some ad-

vantages compared to learning with shallow architectures. This has been argued in many

theoretical and empirical studies in the literature [25, 26, 30, 33, 34]. One of the most ele-

gant and intuitive, albeit informal, of those arguments is that presented in [30]. It is stands

on three main pillars:

• Pillar 1: The smoothness prior [30, 35, 36], common in shallow learning, does not

hold for many learning tasks that have an underlying highly-varying function2.

1It is worth mentioning here that this is note a hard fact but a loose description of shallow architectures.

For instance, a neural network with one hidden layer is a shallow architecture where the hidden layer features

are not quite engineered, but learned via training.
2A simple definition to highly-varying functions such as that presented in [30] is adopted here: “a func-

tion is highly-varying when a piecewise approximation (e.g., piecewise-constant or piecewise-linear) of that

function would require a large number of pieces.”
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• Pillar 2: An effective way to learn highly-varying functions requires the learning of

a feature representation where smoothness is maintained between the features and

the target.

• Pillar 3: Functions that could be represented with depth-k learning algorithm (or a

DNN) require an exponential number of computation units (e.g., neurons in DNNs)

to be represented with depth-(k-1) algorithms [30, 33].

The first pillar simply states that given some definition of proximity (e.g., Euclidean dis-

tance) a function governing a real learning task ftask(.) does not satisfy ftask(x1) ≈ ftask(x2)

when two points x1 and x2 are in the proximity of one another (x1 ≈ x2). This suggests that

in order to learn ftask(.) using a shallow architecture, one might need at least as many train-

ing examples as there are variations (regions where x1 ≈ x2 and ftask(x1) ≈ ftask(x2) holds)

in ftask(.), which could be quite a lot for highly-varying functions. However, an interesting

approach around the smoothness issue is presented in Pillar 2. It suggests transforming

the input into a space where a sense of smoothness could be attained, i.e., identifying φ(.)

such that when φ(x1) ≈ φ(x2), then g(φ(x1)) ≈ g(φ(x2)) where ftask = (g ◦ φ)(.). Such

transformation is not quite straightforward to engineer [30], and, hence, finding the appro-

priate transformation could be part of the learning process. This last statement takes the

discussion into a crossroads; if a transformation needs to be learned, should it be learned

using a shallow or deep architecture? The final and third pillar Pillar 3 provides an inter-

esting answer to that. On the surface, learning φ(.) could be done by both architectures, yet

deep learning presents a significantly better approach to do that in terms of computational

resources. For example, if the question is whether to go with a shallow single-hidden-layer

or deep multi-layer neural network, the answer is a deep network because, as per Pillar 3,

it will require less number of neurons (less computational units).
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1.2 Large-Scale MIMO

An intrinsic and defining feature of modern and future wireless communication net-

works and systems (5G and 6G) is the heterogeneity of their services [14, 15]. This is a

direct consequence of the diversity of the applications those networks and systems support,

ranging from Virtual Reality (VR) and Augmented Reality (AR) to Autonomous vehicles

and the Internet of Things (IoT). The modern view of such diverse pool of services cat-

egorize them into three broad categories: (i) Enhanced Mobile Broadband (eMBB), (ii)

Machine-Type Communications (MTC), and (iii) Ultra-Reliable Low-Latency Communi-

cations (URLLC) [15, 37]. This view is based on three fundamental wireless requirements

that are spectral efficiency, reliability, and latency, the mixing of which with varying de-

grees of impact produces those categories. Meeting the requirements of all three categories

of services is a major task modern and future wireless networks and systems has to perform,

and large-scale MIMO communication is one key player in doing so [16, 22, 38].

The fundamental idea behind large-scale MIMO communications is the scaling-up of

the number of antennas at both transmitters and receivers. This allows wireless networks to

harvest the gains of spatial multiplexing and beamforming [16, 39–41] across a wide range

of frequency bands, from sub-6 GHz to Millimeter Wave (mmWave) and Sub-Terahertz

(sTHz). Both gains have direct impact on all three service categories, albeit with vari-

able degrees. The major beneficiary of large-scale MIMO is eMBB services; applications

in that category are majorly rate-centric (or informally rate hungry) [14], and large-scale

MIMO promises significant boosts to spectral efficiency. Hence, eMBB would get the most

“bang for the buck.” The next beneficiary of large-scale MIMO is the MTC category of ser-

vices. Applications in that category are characterized by the need for massive and reliable

connectivity. Large-scale MIMO helps meet that need by expanding the number of multi-

plexing dimensions to incorporate spatial multiplexing, which means the wireless network
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URLLC Benefits from the Short Wireless Frames Allowed by the Improved Spectral Effi-

ciency.

has more resources to service the large number of machines. The final beneficiary from

large-scale MIMO is URLLC. Applications in that category require, as the name suggests,

ultra reliability and low latency. This could be, to some extent of course, met by large-scale

MIMO through the increased spectral efficiency and additional spatial multiplexing; the

former allow the transmission of shorter wireless frames while the latter offers the wireless

network a wealth of radio resources for rapid allocation. The impact of large-scale MIMO

on all three categories is summarized in Figure 1.2.

1.2.1 Challenges to Large-Scale MIMO

In the shadows of the beautiful facade that is large-scale MIMO, however, lurk a couple

of critical challenges [16, 40] that are, in some sense, at odds with its advantages. Those
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challenges could be broadly clustered into two categories: (i) channel-related challenges,

e.g., downlink channel training in FDD massive MIMO and downlink beam training in

mmWave and sTHz MIMO; and (ii) LOS-related challenges, e.g., mmWave and sTHz

Line-of-Sight (LOS) link blockage and user hand-off.

Big picture

The roots of channel-related challenges, in general, lie in the increasing number of anten-

nas. Despite its benefits, scaling up the number of antennas brings about increasing burden

on the physical layer of the wireless network. More specifically, whether a large-scale

MIMO is operating in sub-6 GHz, mmWave, or sTHz frequency bands, the large num-

ber of antennas mandates expensive channel/beam training [18, 40, 42]—at least from a

traditional signal-processing perspective. This training burden is critical to acquire wire-

less channel information (mostly in sub-6 GHz) or to select the best beamforming vector

(mostly in mmWave and sTHz). Both spectral efficiency and reliability in wireless net-

works are impacted by that burden; the relatively long training could result in channel

aging [43] where the estimated channel is no longer viable. The result of that aging issue

is a degradation in the data-rate and also the reliability of the wireless service, especially

for highly-mobile users. Furthermore, training a massive number of antennas occupies a

relatively big chunk of the wireless time frame, and, as such, it hinders the response to

service requests causing pervasive latency issues.

The second category of challenges revolves around the reliance on LOS communica-

tions. Large-scale MIMO systems in high-frequency bands such as mmWave and sTHz

[42] rely on directive beam patterns to achieve their performance gains. Those frequency

bands are rich in terms of available bandwidth, yet their signal propagation is characterized

by two issues: (i) poor penetration, and (ii) high power-loss due to scattering [44]. Both is-

sues make high-frequency large-scale MIMO systems in desperate need for directive beam-
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forming to boost up the received Signal-to-Noise Ratio (SNR), which, subsequently, leaves

those systems susceptible to LOS blockages. The reliance on LOS and susceptibility to

blockages threaten the ability of large-scale MIMO to meet the stringent reliability and la-

tency requirements of URLLC and MTC services [18, 45]; any object (especially dynamic

ones) could constitute a LOS blockage that, so far, can only be combated by performing

user hand-off between serving basestations (or access points). This hand-off comes with

its own signaling overhead [19, 45] that could degrade both reliability and latency.

Challenges of interest

In massive and high-frequency large-scale MIMO systems, some challenges are more

prominent than others based on the attention they draw from the wireless communication

community. A good example could be found in FDD massive MIMO challenges, which

have seen an uptick in interest recently compared to those of TDD massive MIMO [46–50].

Such unbalanced attention is not only motivated by sheer curiosity but by some practical

consideration. For example, the interest in FDD MIMO over TDD is driven by a suite of

practical reasons such as: spectrum regulations [46], the ecosystem of modern and legacy

cellular-communications [50], and expensive calibration issues in TDD systems [48]. This

dissertation recognizes that unbalanced attention, and it focuses on challenges that reflect

the interest in the wireless communication community. More specifically, it identifies

1. Downlink channel training in FDD massive MIMO systems,

2. Channel feedback in TDD cell-free massive MIMO systems,

3. Downlink beam training in high-frequency large-scale MIMO systems, and

4. LOS-link blockages in high-frequency large-scale MIMO systems,

as the challenges of interest.
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The choice of those four challenges is mainly motivated by practical considerations.

The first two are a good embodiment of challenges rooted in the need to acquire or share

channel information in sub-6 GHz massive MIMO systems [18, 47, 51]. That need scales

up with the number of deployed antennas, and it makes channel training verging on the

impossible [47]. On the other hand, the third and fourth challenges on the list are spe-

cific to high-frequency large-scale MIMO systems [18, 40]. Due to poor signal penetra-

tion and high power loss [16], communication in frequency bands such as mmWave and

sTHz requires directive and LOS beams. Maintaining such beams is a bottleneck for high-

frequency large-scale MIMO systems as wireless environments are inherently dynamic—

moving transmitters, receivers, and scatterers—and beam training is commonly associated

with hefty overhead [18].

1.2.2 Classical Solutions and Approaches

The challenges discussed in Section 1.2.1 are well acknowledge in the wireless com-

munication community, and as such, much research has been devoted to dealing with them.

Based on the paradigm followed to address large-scale MIMO challenges, that research

branches out into one of two directions, ML-oriented and signal-processing-oriented. The

latter represent the classical direction as signal processing has long been a close companion

to wireless communications. On the other hand, the ML-oriented direction is more mod-

ern, for ML has only recently started gaining momentum and making impact on large-scale

MIMO challenge.

Since the discussion throughout this dissertation is focused on ML and its role in large-

scale MIMO, this section will provide a succinct overview of the major classical approaches

proposed to tackle large-scale MIMO challenges. The overview is meant to offer a top-view

of the landscape of the classical directions, highlighting the differences between approaches

and their shortcomings that prompted the interest in ML. The discussion is divided into
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two subsections. The first briefly surveys solutions and approaches addressing challenges

related to channel/beam training while the second takes a closer look at the challenge LOS-

link blcokage.

Downlink channel and beam training

The approaches addressing downlink channel/beam training could be clustered into three

distinct categories: (i) Covariance-based downlink channel training, (ii) Compressed down-

link channel training, and (iii) Downlink channel extrapolation. The premise of each cate-

gory and its shortcomings are discussed in the following three paragraphs.

Covariance-based downlink channel training recognizes that the propagation between

a massive MIMO basestation and a user is characterized by local scattering around the

user (one ring model [52]), which is captured by a low-rank downlink covariance [47].

Therefore, proposed algorithms that fall under this category target estimating the downlink

covariance and utilizing it to reduce downlink training overhead (example [49]). Those al-

gorithms are quite promising as they alleviate some of the channel training overhead. How-

ever, the achieved overhead reduction is not sufficient, and the reasons for that are twofold.

First, the number of downlink training pilots is still large for practical massive MIMO sys-

tem operation. For instance, the algorithm in [49] reduces channel training overhead in

a system with 128 antennas to approximately 40 pilots instead of 128 (using per-antenna

training). Second, the covariance estimation itself adds a new overhead, although not as

large as that of downlink training. Referring back to [49], the proposed algorithm requires

approximately 1000 uplink channels to estimate one downlink covariance.

Compressed downlink channel training relies on a global assumption that the massive

MIMO channel has a sparse structure [53]. Proposed algorithms (e.g., [53–55]) utilize the

sparsity to design compressed downlink pilots and uses compressive sensing to estimate

the downlink channel from the users’ feedbacks. Overall, those algorithms can reduce
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the training overhead, yet the number of pilots falls almost half-way between per-antenna

channel training and covariance-based channel training. This has been demonstrated in the

comparison presented in [49]. It shows that for a system of 128 antennas, approximately

60-80 pilots are required to achieve reasonable performance, and 80-100 pilots to match

the performance of the covariance-based algorithm in [49].

The last category views the problem from a different lens than those of the first and

second categories. It focuses on channel parameters estimation under frequency-invariant

assumption [56]. It basically targets estimating the per-path parameters of the uplink chan-

nels and re-purposing them to estimate the downlink channels. The approach is very in-

teresting, especially given that the reconstruction results are quite good when the uplink

and downlink frequencies are narrowly separated. For instance, [56] shows that for a sys-

tem with 16 antennas operating at 10 dB SNR, the NMSE of the reconstructed downlink

channels is between 0.01 and 0.03 for an uplink-downlink separation of 10 to 20 MHz.

However, this dependency on the uplink-downlink separation is one of the two main short-

comings of this category. With the move to high-frequency communications (mmWave

and/or sTHz), wireless systems will be operating in multiple bands that will definitely have

wide separation. This renders the extrapolation approaches in effective. The second reason

is closely tied with the first. It is rooted in the assumption that channel parameters are

frequency-invariant. This is approximately satisfied when the uplink-downlink separation

is narrow, but it rapidly breaks down as the separation widens.

LOS-link blockage

The problem of LOS link blockage has long been acknowledged as a critical challenge

to high-frequency large-scale MIMO networks [16, 42, 57, 58]. In those networks, the

quality of service highly deteriorates with link blockages. Therefore, solutions centered

around multi-connectivity are a major avenue to handle that problem [57]. For instance,
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[58] proposes a multi-cell measurement reporting system to keep track of the link quality

between a mmWave user and multiple basestations. All basestation in that system feed

their measurements to a central unit that takes care of cell selection and scheduling. This

system is further studied and tested in [57] under realistic dynamic scenarios. A slightly

different look on multi-connectivity is presented in [59, 60]. In [59], the authors propose a

few approaches for multi-connectivity, all of which focus on utilizing low-frequency bands

(sub-6 GHz) to support the mmWave network. [60], on the other hand, develops a multi-

connectivity algorithm that does not only factor in network reliability but also latency.

Collectivity, the work on multi-connectivity has its promise and elegance, yet it is lacking

on two important fronts. First, it is inherently wasteful in terms of resource utilization;

multiple basestations schedule resources for one user as a precaution for probable LOS

blockages. The other is its reactive nature; the majority of the multi-connectivity algorithms

are designed to react to link blockages, not to anticipate them.

1.3 Deep Learning for Large-Scale MIMO

Resorting to deep learning to address many of the challenges facing large-scale MIMO

is not only a trending approach, but it is one that has a lot of potential [18, 37, 46]. Deep

learning offers a form of adaptability to wireless communications that cannot be achieved

by traditional signal processing. Therefore, much research has been poured into identify-

ing what challenges could be addressed with deep learning and what impact deep learning

might have on wireless communications and vice versa. In an effort to further that research,

this dissertation delves deeper into the role of deep learning in large-scale MIMO and pro-

poses four intelligent frameworks that address many challenges at the level of the physical

and network layers of modern and future wireless networks. In order to set the stage for

the discussion on those frameworks and there impact on both wireless communications and

ML, the following two subsections will provide a concise and high-level overview of the
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current literature of deep learning in large-scale MIMO and present the thesis statement of

this dissertation.

1.3.1 Literature Review

Deep learning has been utilized to address variety of challenges in large-scale MIMO

communications. They range from addressing classical problems like channel/beam train-

ing [18, 20, 61] and LOS/Non-LOS (NLOS) identification [62] all the way to present-

ing new capabilities such as large intelligent surfaces [63], proactive blockage prediction

[19, 64], and proactive user hand-off [19, 45]. The result of that is a continuously grow-

ing body of research that does not only advance wireless communications but also ML.

Owing to the volume of that research and its diversity in terms of topics, this subsection

is structured such that it provides a high-level description of what has been done. This is

aimed to lay the groundwork for more pointy literature reviews in each of the chapters of

this dissertation, each of which will summarize the recent work relevant to the problem and

solution presented in the chapter.

The approach of choice for the high-level literature review is based on the data-modalities

used for the learning task. More specifically, the work on deep learning for large-scale

MIMO is divided into two broad and sometime overlapping categories, namely learning

form wireless data alone and learning from extra-sensor data. The former provides an um-

brella for all deep learning solutions and approaches that are developed on data obtained

form the wireless network, i.e., algorithms learning from data such as wireless channels,

beamforming vectors, received power,..etc. The latter, on the other hand, represents what

could be loosely referred to as the forward-thinking category; it groups those deep learning

approaches and solutions that introduce extra sources of sensory data such as, but not lim-

ited to, LiDAR sensors, RGB cameras, Global Positioning System (GPS) to the wireless

network, which could be seen as a form of infrastructural change in wireless networks. An
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overview of both categories is provided below:

• Wireless Data: The deep learning solutions and approaches in this category address

variety of large-scale MIMO challenges relying mainly on the data a wireless net-

work can provide. Good examples could be found in [18, 62, 63, 65]. They address

different problems using deep learning, e.g., coverage and spectral efficiency [63],

link reliability for highly-mobile users [18], LOS/NLOS link identification [62], and

finally adaptive beamforming codebooks [65]. However, they all utilize data obtained

from the wireless system such as sampled wireless channels, received signal strength,

and user-fed SNR. A common denominator to most of the work in this category is

the reliance on unimodal ML algorithms, which is reasonable since many of those

data types exhibit a strong sense of statistical dependence, i.e., for a certain operating

frequency, the received power is strongly dependent on the wireless channel.

• Extra-Sensor Data: In contrast to the previous category, this one has the deep learn-

ing solutions and approaches that require some infrastructural change like installing

cameras at basestations or access points—more on this will be discussed later in this

dissertation. This category is a little slimmer than the previous one in term of amount

of research. The reasons could be two fold. First, studying the value of extra sensory

data requires large-scale MIMO systems equipped with sensors such as RGB cam-

eras, depth images, LiDAR point-cloud data, positioning data, ...etc, which is not

readily available. The other reason is the unknown relation between the multi-sensor

data and large-scale MIMO, which needs some research per se. However, initial

work like, and not limited to, [66, 67] has shown some interesting results and use

cases. Position data in [66] have been used to tackle the beam training in mmWave

networks while depth images in [67] have been shown to be a promising tool to deal

with link blockages. A growing trend in this category is the development of multi-
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modal machine learning algorithms [19]. This could be seen as a natural consequence

to equipping wireless networks with one or more new sensors. This provides extra

information that may not be available using wireless equipment alone.

The above high-level literature overview may not be detailed enough to do the work on

deep learning for large-scale MIMO justice; however, it should be good enough to equip

the reader with enough information to digest the thesis statement of this dissertation. As

mentioned earlier in this subsection, more detailed literature reviews will be presented in

the coming chapters based on the addressed large-scale MIMO challenge and the proposed

deep learning framework.

1.3.2 Thesis Statement

The work in this dissertation is founded on the duality between ML and wireless com-

munications that is pointed out at the beginning of this chapter. More precisely, it aims to

explore the role that ML can play in advancing wireless communications and vice versa.

This is done via addressing various large-scale MIMO challenges with deep learning. The

addressed challenges are closely tied to modern and future trends in the wireless com-

munications industry (such as the 5G and 6G technologies), and they are addressed using

state-of-the-art algorithms in the field of ML, especially deep learning. The main outcomes

of this dissertation are three novel deep learning frameworks that tackle overlapping chal-

lenges in the physical and network layers of a large-scale MIMO wireless network. A

summary visualization of those outcomes is depicted in Figure 1.3, and they are further

detailed in the following few subsections.

Framework 1–Deterministic Channel Prediction:

Acquiring wireless channels (channel training) in large-scale MIMO is a challenging task

that requires a relatively hefty training overhead. This framework provides an innovative
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Figure 1.3: Summary of The Outcomes of This Dissertation. Three Major Frameworks

Providing Novel Approaches to Handling Various Large-Scale MIMO Challenges with

Different Learning Paradigms That Are Centered Around Deep Learning.

way to tackle that challenge. It starts by noting three important facts: (i) some wireless

channels are easier to acquire than others, e.g., uplink channels in Frequency Division Du-

plex (FDD) massive MIMO systems are easier to acquire than downlink channels; (ii) the

channels are a deterministic and complex function in the wireless environment geometry;

and (iii) that function is time-invariant when the environment is stationary. Then, it uti-

lizes those facts to prove the existence of a function that can predict some target channels

(hard to acquire) given some observed channels (easy to acquire). The framework resorts
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to deep learning (DNNs in particular) to try and learn that prediction function. Once it

is trained, the DNN is plugged into the large-scale MIMO system to reduce the channel

training overhead.

Framework 2–Statistical Channel Prediction:

A glaring drawback in the deterministic channel prediction framework is in its target itself;

learning to approximate a very complex vector-valued high-dimensional function is not

an easy task, especially given the fact that it is also time varying. The statistical channel

prediction framework is an attempt to tackle that challenge. It proposes to learn a statistical

quantity that characterizes the behavior of the target channels and provide a robust way to

handle channel prediction. Form a ML perspective, it focuses on learning a function that

predicts a conditional covariance for the target channels given those that could be acquired.

Learning such covariance is not only challenging from a wireless perspective, but it also

poses some challenges to the learning approach and choice of DNN, as will be discussed

in Chapter 4.

Framework 3–Vision-Aided Wireless Communications:

This framework introduces computer vision to wireless communications, and especially

large-scale MIMO. It is founded on an interesting parallel between high-frequency (mmWave

and sTHz) wireless communications and computer vision; both are LOS dependent. This

parallel is very interesting as it allows wireless communications to tap into the wealth of

information residing in visual data (after all, a picture is worth thousand words) as well as

taking advantage of major advances in computer vision. By doing so, a large-scale MIMO

wireless network could develop a sense of awareness about its surrounding that could help

tackle a multitude of challenges across its physical and network layers. The way to devel-

oping that sense lies in developing cross-modality understanding, i.e., how the wireless and
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visual data are related to the task of interest, which, in turn, calls for multimodal learning.

It is important to emphasize here that wireless and visual data are not usual companions,

like audio and visual data, and, therefore, developing cross-modality understanding might

as well pose an interesting challenge from a ML perspective.

The three frameworks are detailed, discussed, and empirically evaluated across the

chapters of this dissertation. They are divided into two major directions based on the num-

ber of data modality they require. The first two frameworks are based on the idea that given

some easily-acquired channels, a DNN architecture is developed to learn a prediction func-

tion that either predicts the target channels or predicts a covariance matrix for the target

channels. Therefore, the two are, by nature, unimodal learning frameworks, i.e., they only

need wireless channels data from which they learn and predict. On the contrary, the third

framework is a multimodal learning framework, bimodal in the least. This is due to the

fact that it leverages visual data as a secondary source of information about the wireless

environment (where the large-scale MIMO network operates). This necessitates a DNN

that learns from multimodal data to perform a wireless-related task. This clear difference

in the learning paradigm (unimodal vs multimodal) shapes the structure of this dissertation,

which will be further explained in the following subsection.

1.4 Dissertation Organization

This dissertation is organized into two major parts named unimodal learning and mul-

timodal learning. These two parts embody the learning nature of the three frameworks.

The first part on unimodal learning is a composite of three publications, each of which

represents a chapter (Chapters 2, 3, and 4). They cover the deterministic channel predic-

tion framework, namely Framework 1, a case study for that framework in a modern 5G

wireless network, and the statistical channel prediction framework, namely Framework

2. The second part of this dissertation covers the Vision-Aided Wireless Communications
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(ViWiComm) framework, namely Framework 3. It does so in two publications spanning

two separate chapters, Chapters 5 and 6. Chapter 5 introduces the ViWiComm framework

and shows its potential for high-frequency large-scale MIMO. This is done by considering

the problems of beam and blockage prediction in simplified mmWave communication set-

tings. Chapter 6, on the other hand, takes the discussion to a more realistic and practical

wireless settings, where there are multiple possible objects responsible for the radio signal.

It proposes the novel and fundamental task of transmitter identification in wireless environ-

ments. Finally, this dissertation is wrapped up in Chapter 7, where a summary of the three

frameworks is presented along with some main takeaways.

As the chapters of this dissertation represent separate publications, they are structured

to be self-contained and share a similar introduction section (similar in style). Before going

further, the following few notes need to be pointed out:

• Scope and contribution: the first section in every chapter is concerned with the

scope of the publication and its main contributions. It replaces the introduction of

the paper and aims to set the stage for the discussion in the chapter; it introduces a

high-level description of the problem, a summary of how it is tackled, and a summary

of the main results. It also attempts to connect some of the aspects or ideas in the

chapter with those presented in other chapters.

• System and channel models: It is a common practice in wireless communications

to define system and channel models for under which a certain problem is addressed.

Since this dissertation deals with multiple challenges in large-scale MIMO, no uni-

fied system or channel models are adopted, but each chapter will have a section where

the two are defined.

• Symbols and mathematical definitions: Referring again to the different challenges

addressed in every chapter, especially across Parts 1 and 2, each chapter defines its
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own mathematical elements, i.e., the used symbols and mathematical definitions are

specific to the chapter itself.
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Part I

UNIMODAL LEARNING
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Chapter 2

MIMO CHANNEL MAPPING WITH DEEP LEARNING: BREAKING SPACE AND

FREQUENCY BARRIERS

2.1 Scope and Contribution

Scope

This paper aims to further the efforts on utilizing machine learning, and specifically deep

learning, to address the challenges of channel acquisition in large-scale MIMO; it starts by

posing the following important question:

Q.1: If the channels between a user and a certain set of antennas at one fre-

quency band is known, is it possible to use machine learning to map the known

channels to those channels at a different set of antennas and at a different fre-

quency band?

Then, it provides an answer to that question in the form of a novel framework, dubbed the

deterministic channel-prediction framework. This framework shows that under certain con-

ditions, a channel-mapping function between two sets of antennas at the same or different

frequency bands exists, and it shows that DNNs could be used to learn it.

Contributions

By focusing on answering Q.1, this paper presents a comprehensive treatment to the large-

scale MIMO challenges stemming from the need for channel acquisition. It does so by

proposing the deterministic channel prediction framework. The framework establishes an

argument through which Q.1 is answered, and it taps into the learning capability of DNNs
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to show how the challenges could be addressed. The main contributions of the paper could

be summarized as follows:

• It lays some theoretical groundwork for answering question Q.1 using the channel bi-

jectiveness argument, which is the foundation of the deterministic prediction frame-

work. The argument revolves around the assumption that every user position in the

wireless environment has unique channels at a set of antennas and a frequency band.

The argument shows how that assumption results in the existence of a mapping from

the observed channels to some unknown channels at another set of antennas and an-

other frequency band.

• Based on the existence of a mapping function, the paper proposes to utilize the ex-

pressive and universal representational power of DNNs [30, 34] to learn that function.

It proposes a DNN architecture that is based on feedforward networks. The architec-

ture takes advantage of residual learning to allow the efficient development of a deep

network [6].

• Using the DeepMIMO data-generation framework [68], the proposed determinis-

tic prediction framework and the DNN architecture are studied on three different

datasets representing three different communication scenarios. These scenarios are

for co-located and distributed MIMO systems, and as such, the evaluation on the

three datasets provides important insights into the advantages and limitations of the

proposed framework and architecture.

2.2 Related Work

Channel acquisition is a fundamental problem in large-scale MIMO, and as such, a lot

of research has gone into investigating solutions and approaches to combat its challenges.

Overall, that research could loosely be grouped into two categories. The first category fo-
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cuses on using signal processing to reduce the channel acquisition overhead [69–72]. In

[69], the parameters of the uplink channels, such as the angles of arrival and path delays

were estimated and used to construct the downlink channels at an adjacent frequency band.

This frequency extrapolation concept was further studied in [70] where lower bounds on the

mean squared error of the extrapolated channels were derived. On a relevant line of work,

[71, 72] proposed to leverage the channel knowledge at one frequency band (sub-6 GHz)

to reduce the training overhead associated with design the mmWave beamforming vectors,

leveraging the spatial correlation between the two frequency bands. A common feature of

all the work in [69–72] is the requirement to first estimate some spatial knowledge (such

as the angles of arrival) about the channels in one frequency band and then leverage this

knowledge in the other frequency band. This channel parameter estimation process, how-

ever, is fundamentally limited by the system and hardware capability in resolving these

channel parameters, which highly affects the quality of the extrapolated channels.

The second category of research is centered around the use of machine learning to over-

come various channel acquisition challenges [18, 20, 21, 63]. In [20], the authors address

the problem of channel feedback in FDD massive MIMO systems using deep learning.

They develop a DNN architecture that learns to encode (compress) and decode (reconstruct)

the estimated downlink channels. Despite its elegance, this work is limited to the feedback

problem and does not address the more prevalent issue of downlink channel training. The

work in [21], [18], and [63] takes a step towards addressing that issue. [21] proposes the

use of generative adversarial networks [73] to learn the mmWave channel covariance at

a basestation and repurpose that covariance for the precoder design. On the other hand,

[18, 63] opts to using feedforward neural networks [73] to learn a mapping from the uplink

channel to the best mmWave beamforming or reflection vector. All those papers provide

interesting treatments of the downlink training issue, but they all fall short in providing a

holistic view on the channel acquisition problem; they utilize specific properties that are
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Figure 2.1: A Massive MIMO System Illustrating The Channel Prediction Idea. For a User

u, The Channels hM1
u (f1) at Antenna SetM1 and Frequency Band f1 Could Be Mapped

to hM1
u (f2) at The Same Set of AntennasM1 but Different Frequency Band f2 or hM2

u (f2)

at Another SetM2 and Frequency Band f2.

inherent to either mmWave systems or large intelligent surfaces, i.e., the sparsity of the

mmWave channel covariance [21], the existence of a predefined beamforming codebook

[18], and the deployment of reflective (passive) elements in the large surface antenna array

[63].

2.3 System and Channel Models

This section presents the system and channel models used throughout this paper. Both

systems are chosen to be as comprehensive as possible to capture the generality of the

proposed framework.

System model: Consider the general system model in Fig. 2.1 where one user at po-

sition xu can communicate with one of two candidate sets of antennas, namely M1 and

M2, over one of two frequency bands f1 and f2. This system does not impose any con-

straints on the relation between the two antenna sets,M1 andM2, nor on the frequencies

f1 and f2; therefore, it captures several special cases such as (i) the case when some anten-
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nas are common between the two antenna sets, or (ii) when the two antenna sets use the

same frequency f1 = f2. This allows a well-rounded study and analysis of the proposed

framework. It also helps draw important insights for both co-located and distributed (cell-

free) massive MIMO systems and for both Time Division Duplex (TDD) and FDD system

operation modes, as will be discuss in Section 2.4.2.

Channel Model: Let hmu (f1) denote the channel from user u to antenna m in the an-

tenna setM1 at the frequency f1. Assume that this propagation channel consists of L paths.

Each path ` has a distance d` from the user to antenna m, a delay τ`, and a complex gain

α` = |α`|ejφ` . The channel hmu (f1) can then be written as

hmu (f1) =
L∑
`=1

|α`|ejφ`e−j2πf1τ` . (2.1)

Note that the magnitude of the path gain |α`| of path ` depends on (i) the distance d`

that this path travels from the user to the scatterer(s) ending at the receiver, (ii) the fre-

quency f1, (iii) the transmitter and receiver antenna gains, and (iv) the cross-section and

dielectric properties of the scatterer(s). The phase φ` also depends on the scatterer(s) mate-

rials and wave incident/impinging angles at the scatterer(s). Finally, the delay τ` = d`
c

,

where c is the speed of light. By reciprocity, we consider hmu (f1) as also the down-

link channel from antenna m to user u. Now, we define the |M1| × 1 channel vector

hM1
u (f1) = [h1

u(f1), ..., h
|M1|
u (f1)]T as the channel vector from user u to the antennas in set

M1. Similarly, we define the channel vector hM2
u (f2) for the channel between user u and

the antennas in setM2.

2.4 Deterministic Channel Prediction

In this paper, the objective is to provide an answer to Q.1 and show how it could be

used to tackle channel-related challenges in large-scale MIMO. This section will first put

Q.1 in formal terms, and, then, it will proceed to provide the main argument that underlies
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the channel prediction framework.

2.4.1 Problem Definition

Q.1 poses an interesting and also fundamental question to large-scale MIMO system;

if a mapping between two sets of antennas (whether operating at the same or different

frequency bands) exists and could be characterized or modeled, this means that a MIMO

system only needs to estimate the channels at one set of antennas and use them to directly

predict the channels at all the other antennas for the same or different frequency band.

This can dramatically reduce the strain channel-acquisition imposes on large-scale MIMO

systems. With this motivation in mind, the problem in Q.1 is formally divided into two main

parts. The first one formulates the mapping function and its existence while the second part

investigates its modeling. Let ΦM1,f1→M2,f2(.) represents the channel mapping function

defined as

ΦM1,f1→M2,f2 : {hu,M1(f1)} → {hu,M2(f2)} , (2.2)

then, the two parts of the channel mapping problem are stated as follows:

Part 1: Does the mapping ΦM1,f1→M2,f2(.) exist?

Part 2: If ΦM1,f1→M2,f2(.) exists, how to model it?

The rest of this section investigates the existence of the channel mapping function and

discusses the benefits and practical implications of the deterministic channel prediction

framework. Finally, Section 2.5 will describes how deep learning can address the question

on how to model the mapping function ΦM1,f1→M2,f2(.).

2.4.2 Existence of Mapping Function

Consider the system and channel models in Section 2.3. Addressing the question in

Part 1 starts by investigating the existence of the position to channel and channel to position

28



mapping functions, and the results derived from examining the two functions will establish

a proposition for the existence of ΦM1,f1→M2,f2(.).

Existence of position to channel mapping: Consider the channel model in (2.1),

where the channel from user u at position xu to antenna m is completely defined by

the parameters |α`|, φ`, τ` of each path and the frequency f1. Note that these parameters,

|α`|, φ`, τ`, are functions of the environment geometry, scatterer materials, the frequency

f1, in addition to the antenna and user positions, as explained in the discussion after (2.1).

Therefore, for a given static communication environment (including the geometry, materi-

als, antenna positions, etc.), there exists a deterministic mapping function from the position

xu to the channel hmu (f1) at every antenna element m [74]. More formally, if {xu} rep-

resents the set of all candidate user positions, with the sets
{
hM1
u (f1)

}
and

{
hM2
u (f2)

}
assembling the corresponding channels at antenna setsM1 andM2, then the position-to-

channel mapping functions gM1,f1(.) and gM2,f2(.) are defined as

gM1,f1 : {xu} →
{
hM1
u (f1)

}
, (2.3)

gM2,f2 : {xu} →
{
hM2
u (f2)

}
. (2.4)

These deterministic mapping functions for a given communication environment can be

numerically computed (or approximated) using ray-tracing simulations. However, it is im-

portant to emphasize here that while the existence of these position-to-channel mapping

functions is assumed, the developed framework and deep learning algorithm will not re-

quire the knowledge of those mapping functions, as will be explained shortly in this section

and in Section 2.5.

Existence of channel to position mapping: The next step is to investigate the existence

of the mapping from the channel vector hM1
u (f1) of the antenna setM1 to the user position.

For that, the following assumption is adopted.

Assumption 1 The position-to-channel mapping function, gM1,f1 : {xu} →
{
hM1
u (f1)

}
,
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is bijective.

This assumption means that every user position in the candidate set {xu} has a unique

channel vector hM1
u (f1). It is important to note here that the bijectiveness of this mapping,

gM1,f1 , depends on several factors including (i) the number and positions of the antennas in

the setM1, (ii) the set of candidate user locations, and (iii) the geometry and materials of

the surrounding environment. While it is hard to guarantee the bijectiveness of gM1,f1(.),

this mapping is actually bijective with high probability in many practical wireless commu-

nication scenarios [74].

Using the above, define the channel-to-position mapping function g−1
M1,f1

(.) as the in-

verse of the mapping gM1,f1(.), i.e.,

g−1
M1,f1

:
{
hM1
u (f1)

}
→ {xu} (2.5)

Under Assumption 1, such inverse mapping, g−1
M1,f1

(.), exists. In fact, it is widely adopted

in the wireless positioning and fingerprinting literature [74, 75].

Existence of channel to channel mapping: Geared with the discussion on the exis-

tence of the position-to-channel and channel-to-position mapping functions, it is now time

to address the main question of Part 1, the existence of the channel-to-channel mapping

function ΦM1,f1→M2,f2(.). This is done through the following proposition.

Proposition 1 For a given communication environment, and if assumption 1 is satisfied,

then there exists a channel-to-channel mapping function, ΦM1,f1→M2,f2(.), that equals

ΦM1,f1→M2,f2 = gM2,f2 ◦ g−1
M1,f1

:
{
hM1
u (f1)

}
→
{
hM2
u (f2)

}
(2.6)

Proof: The proof follows from (i) the existence of the mapping g−1
M1,f1

(.) under assump-

tion 1, (ii) the existence of the mapping gM2,f2(.) for any given environment, and (iii) the

existence of the composite function gM2,f2 ◦ g−1
M1,f1

(.) since the domain of gM2,f2(.) is the

same as the co-domain of g−1
M1,f1

(.), and they both equal to {xu}. 2 The existence of the
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channel-to-channel mapping function in Proposition 2 establishes the main and core argu-

ment of the proposed deterministic channel-prediction framework. It has several important

implications that will be discussed in the next subsection. In addition, it motivates further

research on how to characterize that mapping function, giving rise to the question in Part

2.

2.4.3 Implications of The Proposed Framework and Practical considerations:

Consider a communication setup with a basestation employing multiple antennas (co-

located or distributed), Proposition 2 means that once a subset of these antennas is identified

such that it satisfies the bijectiveness condition in Assumption 1, then there exists a way

(mapping function) that can map the channels at this set of antennas to the channels at

all other antennas, even if they are communicating at a different frequency. This result

yields interesting gains for both co-located and distributed massive MIMO systems, some

of which is discussed in more details below.

• FDD Co-located and Distributed Massive MIMO: The general setup adopted in

this section and illustrated in Fig. 2.1 reduces to the special case of FDD massive

MIMO systems when M1 ⊆ M2 and when f1 and f2 represent the uplink and

downlink frequencies. In this case, Proposition 2 implies that only a subsetM1 of

the basestation antennas need to be trained in the uplink. The uplink channels at

these antennas can be directly mapped to the downlink channels at all the antennas,

which significantly reduces the training and feedback overhead in these systems.

Such gains will be illustrated in Section 2.7. It is worth noting here that this result

maps the channels at both space and frequency. Therefore, it includes the following

two special cases when only mapping in space or frequency is applied.

1. Mapping channels in space is when M1 ⊆ M2 and f1 = f2 (representing
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the downlink frequency). In this case, Proposition 2 means that only a few

antennas need to be trained in the downlink and the rest can be constructed by

channel prediction. For example, consider a basestation with 100 antennas. If

5 antennas are enough to satisfy the bijectiveness condition in Assumption 1,

then only 5 antennas could be downlink trained and fed back instead of the 100

antennas, which is a missive reduction in the training/feedback overhead.

2. Mapping channels in frequency is when M1 = M2 and f1, f2, respectively,

represent the uplink and downlink channels. In this case, Proposition 2 means

that the uplink channels can be directly mapped to the downlink channels which

completely eliminates the downlink training/feedback overhead.

• TDD Distributed (Cell-free) Massive MIMO: In TDD cell-free massive MIMO

systems, the distributed antenna terminals estimate the uplink channels and use it for

the downlink transmission. To avoid the need for forwarding all the uplink channels

from the terminals to the central processing unit, the initial proposals for cell-free

massive MIMO systems adopted conjugate beamforming where every terminal inde-

pendently designs its downlink precoding weight. If feeding forward all the channels

to the central processing is feasible, then several gains can be achieved, such as the

ability to adopt more sophisticated precoding strategies and advanced user schedul-

ing among others. Feeding forward all the channels to the central processing unit,

however, is associated with high overhead that can limit the scalability of cell-free

massive MIMO systems. Interestingly, Proposition 2 suggests that only a subset

M1 ⊆M2 of these antennas need to forward their channels to the central unit which

can map them to the channels at all the other antennas. This has the potential of

significantly reducing the channel feed-forward overhead associated with cell-free

massive MIMO systems, rendering those systems more scalable.
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It is also worth mentioning that the channel mapping result in Proposition 2 can also

have several interesting applications in mmWave systems, such as using the channels col-

lected at a few distributed antennas to predict the best beam at an antenna array [18], or

using sub-6GHz channels to predict the mmWave blockages and beamforming vectors, as

will be shown in Chapter 3.

How accurate the bijectiveness assumption is? Bijectiveness is not a stranger to

some relevant research directions such as fingerprint positioning, where there is a growing

body of work adopting the bijectiveness assumption. The fundamental idea behind fin-

gerprinting is to construct a training set of wireless channels obtained from different user

positions in a wireless environment, and utilize it to identify a new user’s position from

its estimated channels at several antennas [75]. Therefore, fingerprinting in essence aims

to learn a positioning function that maps those estimated channels to a user’s position,

which is fundamentally based on the bijectiveness assumption. Publications like [74] ex-

plicitly argues that the position-to-channel function is bijective, and, hence, the positioning

function exists. Other publications on fingerprinting like [75–77] do not explicitly rely on

the bijectiveness assumption, yet their proposed fingerprinting approaches suggest that the

position-to-channel function is bijective to some extent.

Bijectiveness could also be verified empirically; a soft measure for bijectiveness could

be defined to reflect the similarity between two sets of channels belonging to two users

at different positions (i.e., xu and xu′) and observed at a set of antennas M1. The soft

measure is based on Normalized Mean Squared Error (NMSE) and a user-specific channel

subspace. Appendix A details the proposed approach to measure bijectiveness and presents

two experimental studies for that. In a nutshell, the results of both experiments suggest that

massive MIMO channels of any two well-separated users are very likely to be bijective,

especially when the number of antennas is large. That being said, however, the results do

not guarantee bijectiveness or provide clear conditions under which it is maintained.
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Figure 2.2: A schematic illustrating the architecture of the proposed DNN for channel

prediction. It also provides a zoom-in on the architecture of the residual block and the

arrangement of the input and output vectors.

Probabilistic Errors: Proposition 2 implies that for a given communication environ-

ment and under Assumption 1, there exists a deterministic channel-to-channel mapping

function. In other words, given the channels at one antenna set M1, there is a way to

predict exactly the channels at the other antenna setM2 which could even be a different

frequency. In practice, however, there are a few factors that can add some probabilistic er-

ror to this channel prediction such as the measurement noise, the limited ADC bandwidth,

and the time-varying channel fading. Evaluating the impact of these practical considera-

tions on the channel prediction error is very important, and it is partially touched upon in

this work, as will be discussed in Section 2.8.
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2.5 Proposed Deep Learning Solution

Section 2.4 presents the core argument of the deterministic channel-prediction frame-

work, which addresses the question in Part 1 of the problem definition in Section 2.4.1.

The framework sketches a road-map for how some known channels could be mapped to

another set of unknown channels; it describe the relation between the two sets of channels

using a deterministic yet unknown mapping function ΦM1,f1→M2,f2(.), and it establishes

the necessary condition for that function to exist. Despite the interesting perspective on

the relation, the framework does not provide a description of the vessel by which the road-

map it lays could be traveled. In particular, it does not say how one could characterize or

model the mapping function, which leaves the question in Part 2 of the problem definition

unanswered.

This section is dedicated to address the question of how to characterize or model the

mapping function ΦM1,f1→M2,f2(.). The proposed approach to do that revolves around pos-

ing the problem as a machine learning problem. It utilizes the recent advances in machine

learning [73] to design a learning algorithm capable of capturing the mapping function

using some training dataset. In particular, the learning of the mapping function will be

posed as a regression problem, where a DNN is designed to capture the relation between

the known channels (henceforth referred to as the observed channels) and the unknown

channels (henceforth referred to as the target channels). This choice of approach is mo-

tivated by two main observations: (i) the dependency of the mapping function on many

environmentally-specific factors that call for an adaptive and data-driven approach (see

Sections 2.3 and 2.4.2), and (ii) the proliferating empirical and theoretical evidence in fa-

vor of DNNs as universal function approximators [30, 34, 78]. The rest of this section will

present the proposed DNN architecture to learn the channel-mapping function and discuss

how this architecture is implemented.
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2.5.1 Network Architecture

The proposed architecture is designed to take advantage of two key findings in the field

of deep learning, which are the universal approximation property of feedforward (mul-

tilayer perceptron) networks [34, 78] and the ability of residual learning to facilitate the

training of deep architectures [6]. Since the objective is to learn the unknown channel-

mapping function with high fidelity, feedforward networks present an appealing choice to

take on that task; long ago, they have been shown to have a large capacity to approximate

functions by merely implementing a single hidden layer with adjustable number of neu-

rons (adjustable breadth) [78]. More recently, accumulating evidence has been arguing the

importance of increasing the depth of a network as opposed to its breadth [6, 30, 33], for

it yields multiple benefits in terms of practicality and expressibility. Learning deep archi-

tecture, however, has its own challenges. Right off the bat, the performance of deep feed-

forward architectures degrades as more layers are stacked1, indicating a heightened level

of training difficulty. Residual learning has been proposed [6] to remedy such problem.

It has been shown to enable the learning of very deep architectures that have defined the

state-of-the-art on many machine learning tasks, e.g., image classification [6] and speech

recognition [10, 11].

Guided with the two finding above, the proposed DNN architecture is designed to com-

prise three major stacks, the input, residual, and output stacks. Fig. 2.2 displays a schematic

of the architecture. The first stack is built with two sequences of full-connected and ReLU

activation layers, with the option of implementing dropout in-between when needed. This

layer transforms the input channels into a high dimensional vector that is, then, fed to the

residual stack. The residual stack consists of Q residual blocks, each of which has two

sequences of fully-connected and ReLU layers and a skip-projection layer parallel to the

1This degradation is not a result of the famous “vanishing gradient” problem. See [6] for more details.
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two sequences, see the example in Fig. 2.2. The skip projection is implemented with a

fully-connected layer when the dimensions of the input vector to the residual block and the

output vector of the second ReLU of the block do not match. Otherwise, the skip projects is

merely an identity projection that passes the input vector to the summation operation. The

last stack, i.e., output stack, takes in the output of the last residual block and maps it back

to a high-dimensional vector, matching in size to that output by the input stack. This vector

is finally projected onto the vector space of the target channel, completing the mapping

operation. It is important to note here that the three-stack architecture has been developed

via a sequence of experimentation on different datasets. The details on the architecture

hyper-parameters, training, and performance are discussed in Sections 6.5 and 2.7.

2.5.2 System Operation

The proposed DNN architecture is designed to be transparent to the wireless com-

munication system. This means the architecture (and the channel-mapping capability it

provides) is run in the background of the wireless system and is only brought online once it

achieves a satisfying mapping performance. Such transparency leads to a system operating

in two modes:

• Background training: this mode is where the wireless system operates without the

deep learning algorithm using some classical means. During its operation, the system

serves the users in the environment and collects observed and target channels. The

nature of those channels depends on: (i) type of MIMO system being implemented,

and (ii) the overhead that needs to be handled with the deep learning algorithm.

For instance, an FDD massive MIMO system may estimate uplink and downlink

channels to be used as observed and target channels, respectively. See Section 2.7.

The collected channels are used to train and validate the deep architecture in the

background.
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• Solution deployment: this mode kicks in once the deep architecture has reached

a satisfying performance defined by some system-performance metric (e.g., certain

NMSE level). When the architecture is deemed ready, it is plugged into the part of

the system that needs it. For the same FDD system example above, the trained ar-

chitecture is plugged into the basestation processing unit, so it receives the estimated

uplink channels and directly maps them to the downlink channels, eliminating the

need to do downlink channel training.

Such system operation is critical for compatibility and adaptability reasons; it shields

the wireless system operation from the training of deep learning architecture. This allows

the architecture to be trained whenever needed without major interruptions to the wire-

less system operation. Furthermore, the transparency in the system operation provides an

avenue for data collection. As the wireless system needs to estimate channels during its

operation in the background training mode, those channels could be accumulated to build

a wireless training dataset for the deep learning algorithm. This is expected to provides

better adaptability as the data samples are coming directly form the wireless environment

where the system operates.

2.6 Experimental Setup

For the sake of evaluating and thoroughly studying the proposed deterministic channel-

prediction framework and the deep learning algorithm, three communication scenarios will

be considered in this paper. They provide three different massive MIMO communication

scenarios, form which three different channel datasets are constructed. These dataset will

be used to train and evaluate the proposed solution separately. The following two subsec-

tions will give more details on the scenarios, datasets, and algorithm training. Performance

evaluation of the algorithm, on the other hand, is presented and discussed in the following

sections, Sections 2.7 and 2.8.
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Figure 2.3: An Illustration of The Three Evaluation Environments. (a) and (b) Show Per-

spective Views of Two Stationary Scenarios for Indoor Environments with Different MIMO

System Configuration, and (c) Is a Top-view of The Third Scenario Representing an Out-

door Dynamic Environment.
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Table 2.1: The Adopted DeepMIMO Dataset Parameters

Parameter Distributed Colocated Dynamic

Scenario name I1 I3 O1 dyn

Operating frequency (GHz) 2.4 and 2.5 2.4 and 2.5 3.4 and 3.5

Active BS 1 to 64 1 and 2 1 and 2

Active users 1 to 502 1 to 1159 1 to 5

Number of BS antennas in (x, y, x) (1,1,1) (1,64,1) (64,1,1)

System BW (GHz) 0.02 0.02 0.02

Number of OFDM sub-carriers 64 64 64

OFDM sampling factor 1 1 1

OFDM limit 16 16 16

Number of paths 5 15 15

Number of scenes 1 1 518

2.6.1 Evaluation Scenario and Dataset

Three massive MIMO scenarios are considered in this paper. They are all based on

the publicly available DeepMIMO data-generation framework [68]. The first two scenar-

ios, namely the distributed and colocated scenarios, represent stationary indoor wireless

environments with two different massive MIMO systems and user settings. The distributed

scenario, depicted in Fig. 2.3a, represents a distributed MIMO system serving LOS users

in a conference room while the colocated scenario, depicted in Fig. 2.3b, has a colocated

MIMO system deployed in a similar conference room but serving LOS and NLOS users in

the room and its hallways, respectively. The third scenario, namely the dynamic scenario,

takes a step towards more realistic wireless environments by considering a massive colo-

cated MIMO system in an outdoor dynamic-scatterer settings, see Fig. 2.3c. The scenario
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depicts a typical downtown street with its different elements, e.g., trees, skyscrapers, vehi-

cles,...etc, and it has a stationary grid of users, stationary basestations, and various moving

scatterers in the form of vehicles. More information on the scenarios could be found in the

DeepMIMO website [68].

The DeepMIMO generation script is used to construct three datasets of channel tuples,

namely Sc = {sn}Ncn=1, where c ∈ {1, 2, 3} representing, respectively, the distributed, colo-

cated, and dynamic scenarios; sn is the n-th tuple of channels obtained from the environ-

ment; and finally, Nc is the total number of tuples (samples) in the c-th scenario. All three

scenarios have MIMO systems implementing Orthogonal Frequency-Division Multiplex-

ing (OFDM) with K-subcarriers, but they differ in basestation configuration and scatterer

dynamics. As such, the content of each tuple sn ∈ Sc varies depending on the scenario.

The following list details that:

• Distributed scenario (c = 1): it has a set of 64 distributed antennas (|M| = 64)

scattered in the environment, and, hence, a tuple here has two channel matrices rep-

resenting the channels between all 64 antennas and a user u across all K subcarriers

and at two different frequencies f1 and f2, namely sn = (HM(f1),HM(f2))u where

HM(f1),HM(f2) ∈ C64×K are channel matrices at f1 and f2. The total number of

samples is equal to the total number of users in the environment, i.e., N1 = U1.

• Colocated scenario (c = 2): it has two basestations, each of which is equipped with

a |Ma|-element ULA with a ∈ {1, 2}. A tuple here consists of four different channel

matrices that correspond to the channels between the u-th user and both basestations

at two frequencies f1 and f2. More specifically, sn =
(
HM1(f1),HM1(f2),HM2(f1),

HM2(f2)
)
n
, where HMa(.) ∈ C|Ma|×K . The total number of samples is equal to the

total number of users in the environment, i.e., N2 = U2.

• Dynamic scenario (c = 3): similar to the colocated scenario, this one has two bases-

41



tations equipped with |M1|- and |M2|-element ULAs. However, since this scenario

has dynamic scatterers, a new dimension is introduced in the dataset, which is time

instance t or as it will be henceforth referred to as scene. The scenario is generally

composed of T scenes, each of which sees the scatterers assuming different positions

in the environment. A tuple in this dataset has four channel matrices corresponding

to the channels between the u-th user at the t-th scene and both basestations at two

frequencies f1 and f2, i.e., sn =
(
HM1(f1),HM1(f2),HM2(f1),HM2(f2)

)
n

where

HMa(.) ∈ C|Ma|×K . The total number of samples in this dataset depends on both

number of users and number of scenes, i.e., N3 = U3T .

Table 2.1 summarizes the generation hyper-parameters used for each dataset. For each

scenario, they describe the configuration of the generation process, which includes, but

not limited to, the number of basestations, number of antennas per basestation, operating

frequency, number of subcarriers and so forth. The total number of data samples for the

stationary scenarios (distributed and colocated) is |S1| = U1 ≈ 151 × 103 and |S2| =

U2 ≈ 118 × 103. while the number of samples in the dynamic scenario is |S3| = U3T =

(405)(518) ≈ 210 × 103. The datasets are all split 70 − 30% to form three training and

three validation datasets that will be used in the Sections 2.6.3. 2.7, and 2.8 to train and

evaluate the proposed DNN architecture.

2.6.2 Data Pre-processing

To achieve good training and prediction performances, the inputs and targets of a neu-

ral network (or any machine learning algorithm for that matter) commonly undergo a pre-

processing pipeline [18, 79, 80]. In this paper, the adopted pipeline comprises two main

components: (i) data normalization, and (ii) data reshaping. The former separately esti-

mates the average powers of the inputs and outputs from the training dataset, and it uses

them to normalize the inputs and output to have unity element-wise average power. For-
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mally, if HM1(f1) is the input, then it is normalized as follows

Hob
norm =

1

σ
HM1(f1), (2.7)

where

σ =

√√√√ 1

Nc

Nc∑
n=1

||HM1
n (f1)||2F , (2.8)

Nc is the total number of samples in the training dataset of the c-th scenario, and Hob
norm

is a normalized input channel matrix. The same process could be followed to estimate the

average power and normalize the outputs. Through experimentation, this choice of normal-

ization has been found to be very effective for the training of the proposed architecture. The

second component, i.e., data reshaping, is a consequence of using fully-connected layers

as the building block of the proposed DNN. These layers expect their input to be fed in the

form of a high dimensional vector, which necessitates the structuring of the input and output

channels in the form of vectors. Furthermore, popular deep learning software-development

frameworks, such as PyTorch [81] and TensorFlow [82], only support real-valued compu-

tations. Hence, the inputs and targets needs to be converted to that format. The conversion

of choice in this paper is to decouple and stack the real and imaginary components into one

high dimensional vector, see Fig. 2.2. Formally, this is given by

h̃ob =
[
<
{

vec(Hob
norm)

}
,=
{

vec(Hob
norm)

}]T
(2.9)

h̃trg = [<{vec(Htrg
norm)} ,={vec(Htrg

norm)}]T (2.10)

where Htrg
norm is a normalized output channel matrix.

2.6.3 Network Training

The DNN architecture described in Section 2.5.1 is empirically optimized to learn the

mapping function using the datasets described above. The experiments are conducted us-

ing the deep learning software development framework PyTorch [81] and on a machine
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with an NVIDIA R© RTX 2080 Ti GPU, 128 GB RAM, and 10-core Intel R© Xeon R©. This

optimization process includes: (i) determining the breadth of each full-connected layer,

(ii) determining the number of residual blocks, and (iii) identifying the best set of training

hyper-parameters. The final architecture is determined through experiments on the task of

mapping uplink channels to downlink channels in the distributed and colocated datasets—

details on the task and the performance are given in Section 2.7. The architecture that

achieved reasonably good performance for that task is found to have 1024 and 4096 neu-

rons for the input stack, 3 residual blocks with 512 and 1024 neurons, and 4096 and 2048

neurons for the output stack. This architecture has a total of 8 layers and ≈ 27 million

parameters. The training is carried out using min-batches of input-output pairs. For each

mini-batch B, a Mean Squared Error (MSE) loss is used as a training metric. This loss is

given by

LMSE =
1

B

B∑
b=1

||h̃prd − h̃trg||22 (2.11)

whereM is either the set of 64 antennas in the distributed scenario or the firstM1 or second

M2 basestations in the colocated and dynamic scenarios; and h̃prd is the predicted channel

vector that has the same dimensions as h̃trg. The hyper-parameters used to train and evaluate

the final architecture are summarized in Table 2.2, and [83] has example implementation

scripts for the proposed architecture.

2.7 Performance Evaluation on Stationary Environments

This section will kick off the discussion on the feasibility of the channel-mapping

framework and its advantages and shortcomings by examining the performance of the pro-

posed DNN in stationary environments, i.e., environments with stationary scatterers, sta-

tionary basestations (or antennas), and multiple users. The discussion here is split into two

subsections representing two different case studies. The first one considers the distributed

massive MIMO scenario while the second focuses on the colocated massive MIMO sce-
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Table 2.2: Training Hyper-parameters of The Final Architecture

Hyper-parameter Value

Solver Adam [84]

Learning rate 1× 10−3

Number of epochs 350

Rate schedule 0.1 @ epoch 250

Batch size 5000

Dropout 0.5 @ SNR ≤ 5dB)

Weight decay 1× 10−5

nario. It is important to point out here that all the results discussed in this section and the

next one are obtained on the validation sets. Consult Section 6.5 for more information.

2.7.1 Case study 1: Distributed MIMO

Using the training dataset of the distributed MIMO scenario, the proposed architecture

is trained to learn the following tasks: (i) the mapping from the uplink channels at frequency

f1 to the downlink at frequency f2, and (ii) the mapping from sampled uplink channels at

frequency f1 to all uplink channels at the same frequency. The first task has obvious advan-

tages for FDD massive MIMO systems; the uplink channels are commonly easily obtained

with low channel-training overhead, and mapping those channels to the downlink ones is

a desirable property that could reduce the severe downlink channel-training overhead. On

the other hand, the second task sheds light on how channel prediction could be of value to

TDD massive MIMO. In particular, scaling up the number of antennas (or terminals) in a

distributed MIMO system creates a bottleneck for the fronthaul connecting those antennas

to the central processing unit. Channel prediction could alleviate that fornthaul strain by
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Figure 2.4: The Performance of The Proposed DNN in a Distributed MIMO Setting. (a)

Depicts The NMSE Against SNR for Two Choices of Training Set Size. (b) Shows NMSE

Versus The Size of The Training Set for Two SNR Levels and Two Choices of Number of

Antennas.

mapping a subset of those channels to the rest of them.

The performance of the proposed DNN is illustrated in Fig. 2.4 for both tasks described

above. For the first task (FDD distributed system), the NMSE of the mapped channels is

calculated for a range of SNR values (from -10 to 20 dBs) and two training set sizes (50%

and 100% of |S1|), and the performance is depicted in Fig. 2.4a. On the surface, the figure

shows an expected trend where the NMSE performance improves as both SNR and training

set size increase. A deeper look at the figure, however, reveals a more interesting obser-

vation, the gap in the NMSE performance between the two curves gradually vanishes as

the system moves towards a high-SNR regime. For instance, at -5 dB, going from 50% of

the training set to 100% realizes an NMSE improvement of ≈ 0.1, but at 10 dB, that same

increase of data points barely secures an improvement of ≈ 0.01. This observation is im-

portant from two perspectives. The first is a machine learning perspective, where the obser-

vation suggests that less training data points are required when the system operates at high
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SNR. This amounts to a reduced data collection burden and a speeded-up training process,

both are desired for smooth and robust DNN implementation and communication-system

operation. The other perspective concerns the bijectiveness assumption in the channel-

mapping framework. Achieving an NMSE gap of 0.01 with half the training set constitutes

the first evidence that a certain degree of bijectiveness holds in the environment; increasing

the number of data points has little effect on the performance, hinting at another factor that

causes the performance saturation.

The above bijectiveness evidence is further explored in the second task, in which not

only the feasibility of the assumption is studied but also its implications on the TDD system

operation. Fig. 2.4b plots the NMSE performance versus the training set size (|S1|) for

two randomly-sampled antenna subsets (16 and 32 antennas) and two SNR regimes (-5

dB and 5 dB). The obvious observation from the figure is that the SNR regime plays a

strong role in learning the mapping function. The proposed DNN seems to struggle in

mapping the channels at low SNR across almost all training set sizes. However, what is

more interesting is the performance of the DNN in a high-SNR regime (5 dB) with 16 or

32 antennas. The two curves have a small NMSE gap that gradually vanishes with more

training data points. For instance, the gap at 10% training set is ≈ 0.02, and it drops

to less than 10−3 with the whole training set. This is very important for two reasons.

First, it strengthens the insight drawn from Fig. 2.4a; bijectiveness could be achieved in

a stationary wireless environment, and that does not require the channel knowledge at a

large number of antennas, e.g., 25% of the antennas is enough for the distributed scenario.

The second reason lies in the implication of this shrinking gap on the system operation. It

clearly indicates that leveraging the channel prediction framework could help mitigate the

challenges of scaling up the number of antennas in a distributed MIMO system.
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Figure 2.5: The NMSE Versus The Training Set Size for The Proposed DNN in The Colo-

cated Scenario. (a) Presents The Results for Across-Frequency Mapping, and (b) Presents

The Results for Across-Space-and-Frequency Mapping.

2.7.2 Case study 2: Colocated MIMO

The proposed DNN architecture is now studied in the colocated MIMO scenario. Sim-

ilar to the distributed scenario, mapping from the uplink channels to the downlink ones

has the same desirable impact of reducing the channel-training overhead. Hence, it is the

first learning task considered in this section. However, what could be even more interest-

ing in this communication setting is mapping the uplink channels at one basestation to the

downlink channels at another basestation. Although such mapping is implied in Case study

1 (Section 2.7.1), it has more interesting implications in a colocated MIMO system as it

hints at the ability of the channel prediction framework to introduce a sense of inter-cell

interference mitigation; for a massive MIMO basestation, the knowledge of the downlink

channels at an adjacent basestation could be factored into the precooding process. There-

fore, the second learning task in this section will focus on mapping the channels from one

basestation to another.
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Fig. 2.5 depicts the NMSE of the mapped channels versus the training set size for both

tasks and two SNR levels, -5 and 5 dB. Since the scenario has distinct sets of LOS and

NLOS users, the figure presents the NMSE performance of the DNN when it is trained on

each set separately as well as on the mixed users case. Fig. 2.5a shows the performance

for the mapping across frequency alone. It indicates that having LOS connection with a

basestation results in a simpler learning problem regardless of the operating SNR. Such

trend is expected and not at all surprising, especially given the results in Case study 1.

What should be highlighted here is the value of the number of training data points in this

scenario. Opposite to what has been observed in the distributed scenario, more data points

seems to help improve the performance of the DNN in the LOS case and at high SNR

(5 dB). This could be attributed to the colocated nature of the MIMO system. It induces

higher correlation among the user’s channels compared to the channels in the distributed

case, which makes the learning task more difficult and in need for more data points. This

correlation notion could be affirmed by the results on the second task that are presented in

Fig. 2.5b. The figure also displays NMSE versus training set size and is organized in the

same way Fig. 2.5a is. The mapping across space and frequency is expected to be more

difficult as the two basestations have different views of the environment, and this makes

the number of training data points more important. For example, increasing the data points

from 50% of the training set to 100% secures, respectively,≈ 0.3 and≈ 0.11 improvements

on the NMSE performance of the LOS and mixed-user cases.

To understand the effect of the NMSE results discussed above on the system perfor-

mance, Fig. 2.6 plots the beamforming gain versus the training set size for both tasks under

the same SNR values, assuming conjugate beamforming. The figure also breaks down the

performance into three groups of curves, LOS, NLOS, and mixed users. Each group has

the upper-bound gain (achieved only with full downlink channel knowledge), the gain at

low SNR, and the gain at high SNR. Fig. 2.6a shows the beamforming gain for the first

49



0 0.2 0.4 0.6 0.8 1

Training dataset size (%)

0

20

40

60

80

100

120

B
e

a
m

fo
rm

in
g

 g
a

in

Mixed (-5 dB)

Mixed (5 dB)

LOS (-5 dB)

LOS (5 dB)

NLOS (-5 dB)

NLOS (5 dB)

(a)

0 0.2 0.4 0.6 0.8 1

Training dataset size (%)

0

20

40

60

80

100

120

B
e

a
m

fo
rm

in
g

 g
a

in

Mixed (-5 dB)

Mixed (5 dB)

LOS (-5 dB)

LOS (5 dB)

NLOS (-5 dB)

NLOS (5 dB)

(b)

Figure 2.6: The Beamforming Gain Versus The Training Set Size for The Proposed DNN

in The Colocated Scenario. (a) Presents The Results for Across-Frequency Mapping, and

(b) Presents The Results for Across-Space-and-Frequency Mapping.

task. This performance turns the attention to an important finding; although the NMSE

established the need to more data points to learn the mapping function, the communication

penalty incurred from the relatively inaccurate mapping is somewhat limited especially

at high SNR. For example, at 50% training set size, the achieved beamforming gain for

mixed-users is, respectively, ≈ 7% and ≈ 14% shy off the upper-bound for SNR values of

5 and−5 dB. With more data points, the improvement in the beamforming gain may seem a

little insignificant, but it is important to point out here that such improvement in the NMSE

performance will reflect better on the beamforming gain when multi-user settings (multiple

users are being served). The beamforming gain trend does not quite extend to the across

space-and-frequency mapping task as it is expected to be more complex. Fig. 2.6b shows

the gain dropping across different training sizes and SNR values. For instance, the mixed-

user case sees the achievable gain degrading by≈ 14% and≈ 40% for the 50% training set

size and 5 dB SNR. Again similar to the NMSE case, this degradation if mitigated using

more data points.
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2.8 Performance Evaluation in A Dynamic Environments

The above case studies and discussions are focused on stationary environments, and a

natural question at this stage is whether those results could hold up in more realistic wireless

communication settings or not. For that, the dataset S3 from the dynamic scenario (O1 dyn)

is used to train the propose architecture. The focus in this case study is on the performance

of the deterministic channel prediction framework with respect to environment dynamics.

The dynamics in the wireless environment is quantified by the number of scenes considered

to construct the dataset S3—see Section 2.6.1 for more information on the dataset.

Fig. 2.7 depicts the performance of the proposed architecture as the number of scenes

increases. It is obtained for the task of predicting the downlink channels from observed

uplink channels at the same basestation and at 5 dB SNR. The curves shown reflect the

architecture behavior with respect to dynamics. It shows the progress of the training and

validation losses—computed using (2.11) for two different number of scenes T = 120 and

280. With both choices of number of scenes, the training loss rapidly decreases as the

training progresses, yet the validation loss displays clear signs of overfitting. The number

of scenes effectively increases the number of data samples available for training, which

helps the proposed architecture achieve slightly better loss value (on training and valida-

tion) at the beginning of the training. For example, 15% through the training process, the

validation loss drops from ≈ 0.25 to ≈ 0.16 as the number of scenes increases from 120 to

280. However, this improvement is superficial as the architecture rapidly undergoes overfit-

ting. The behavior the architecture displays suggests that the channel-to-channel mapping

function is quite hard to capture with the dynamics.
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Figure 2.7: Training Progress Versus Training and Validation Losses for Two Different

Number of Scenes T . The Training Progress Is Quantified as The Percentage of Completed

Iteration, i.e., Ratio of Current Iteration to The Total Number of Iterations.
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Chapter 3

DEEP LEARNING FOR MMWAVE BEAM AND BLOCKAGE PREDICTION USING

SUB-6GHZ CHANNELS

3.1 Scope and Contributions

Scope

Chapter 2 lays the groundwork for channel prediction under the channel bijectiveness con-

dition, and shows the feasibility of learning the prediction function using DNNs. The case

studies discussed in that chapter show some interesting results on channel prediction in

stationary environments and between neighboring frequency bands. However, a couple of

questions may arise at this point.

Q.1: Due to the fact that material properties and signal propagation charac-

teristics both change as the spacing between frequency bands increases, e.g.,

the difference between sub-6 GHz and mmWave bands, could similar results be

obtained when the frequency spacing is quite large? and

Q.2: The need to learn a complex-valued and high-dimensional target function

using regression could be seen as a difficult problem. Therefore, could the

prediction task be posed in different learning settings? i.e., does it really need

to be posed as a regression problem?

Both questions are interesting to address for two reasons: (i) the fact that modern and

large-scale MIMO wireless networks inherently operate with multi-bands [85, 86], like

sub-6 GHz and mmWave; and (ii) the vision that AI and specifically ML are going to be

integral components to future large-scale MIMO networks [14, 37].
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In an effort to address the above questions, this paper presents a third case study for the

deterministic channel prediction framework. It considers the task of predicting mmWave

channels from knowledge of sub-6 GHz channels. What is interesting in this task is not only

its relevance to modern and future large-scale MIMO networks, but also the possibility of

posing it as a classification task; mmWave channels in a certain wireless environment could

be characterized by one or both of the following: (i) the choice of beamforming codebook,

and (ii) the communication link status (i.e., whether the link is LOS or NLOS). Such char-

acterization could be, from a ML perspective, viewed as a discretization of the mmWave

channels. Therefore, one might choose to simplify the task of predicting the mmWave

channels from their sub-6 GHz counterparts by posing it as classification problem. The

objective of the problem is either to predict the label of the best beaforming vector in the

codebook or predict if the link is LOS or NLOS. Both objectives have important implication

to the wireless network and will be discussed in this paper.

Contributions

This paper considers dual-band systems where the base station and mobile users employ

both sub-6 GHz and mmWave transceivers. It develops a theoretical argument for the use

of sub-6 GHz channels to directly predict mmWave beamforming vectors and link status

(henceforth referred to as predicting blockages), and it shows that deep learning models can

be efficiently leveraged to achieve these objectives. The main contributions of this paper

can be summarized as follows:

• We prove that for any given environment, there exists a mapping function that can

predict the optimal mmWave beam (out of a codebook) directly from the sub-6 GHz

channel if certain conditions are satisfied. These mapping functions, however, are

hard to characterize analytically which motivated leveraging deep learning.
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• Leveraging the universal approximation theory [78], we prove that large enough neu-

ral networks can learn how to predict the optimal mmWave beams directly from sub-6

GHz channel vectors with a success probability that can be made arbitrarily close to

one.

• We show that a similar result can be established for blockage prediction, and identify

the conditions under which the sub-6 GHz channels can be used to predict whether

or not the mmWave LOS link is obstructed. We also prove that large enough neural

networks can be exploited to learn this blockage prediction with an arbitrarily high

success probability.

• We propose a deep neural network model that efficiently uses the sub-6 GHz channels

to predict the optimal mmWave beams and blockage status. We also show that the

transfer learning could utilized to reduce the learning time overhead.

The proposed deep learning based mmWave beam and blockage prediction solutions were

evaluated using the publicly-available dataset DeepMIMO [68]. This dataset generates

sub-6 GHz and mmWave channels using the accurate 3D ray-tracing simulator Wireless

InSite [87] which incorporates the materials’ dielectric properties at the two bands. The

simulation results confirm the promising capability of deep learning models in learning

how to predict the mmWave beams and blockages using sub-6 GHz channels, as explained

in detail in Section 3.8.

3.2 Related Work

Estimating the channels at one frequency band using the channel knowledge at a dif-

ferent frequency band is attracting increasing interest [69–72]. In [69], the parameters of

the uplink channels, such as the angles of arrival and path delays were estimated and used

to construct the downlink channels at an adjacent frequency band. This frequency extrap-
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olation concept was further studied in [70] where lower bounds on the mean squared error

of the extrapolated channels were derived. On a relevant line of work, [71, 72] proposed to

leverage the channel knowledge at one frequency band (sub-6 GHz) to reduce the training

overhead associated with design the mmWave beamforming vectors, utilizing the spatial

correlation between the two frequency bands. A common feature of all the prior work in

[69–72] is the requirement to first estimate some spatial knowledge (such as the angles of

arrival) about the channels in one frequency band and then leverage this knowledge in the

other frequency band. This channel parameter estimation process, however, is fundamen-

tally limited by the system and hardware capability in resolving these channel parameters,

which highly affects the quality of the extrapolated channels.

The general idea of using some knowledge about the sub-6 GHz channels to aid the

system and network operation at mmWave is motivated by the spatial correlation between

the two bands, which has been verified through experimental measurements [88–90]. On

the network perspective, [88] proposed a network architecture that leveraged the spatial

correlation between sub-6 GHz and mmWave bands for traffic scheduling and training

overhead reduction. In [57], a dual connectivity protocol was developed that relies on

a local coordinator to hand over the users between the two bands to avoid link failures.

Leveraging deep learning, [91, 92] proposed strategies that learn the correlation between

the sub-6 GH and mmWave bands and exploit that for selecting the communication band

or handing over the users from one band to the other. While the work in [57, 88, 91–93]

is relevant, it does not target predicting the mmWave beams or blockages using sub-6 GHz

channels, which is the goal of this paper. Other prior work [62, 94] leveraged machine

learning to identify current link status, in terms of being LOS or None-LOS (NLOS). This

work, however, focuses on sub-6GHz systems and incurs certain limitations on the system

operation.

To reduce the mmWave beam training overhead, [90] designed a novel algorithmic
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framework to leverage the sub-6 GHz spatial information in estimating the candidate mmWave

beam directions. The feasibility of this solution was also studied in [90] using a proof-

of-concept prototype. This solution, however, was mainly limited to detecting the LOS

mmWave direction. In [71], the spatial information from sub-6 GHz was used to guide the

compressive sensing based beam selection at mmWave bands and reduce the beam search

overhead. With the same goal, [95] proposed an approach that constructs the mmWave

channel covariance using the spatial characteristics extracted from the sub-6 GHz band.

This mmWave covariance knowledge can then be exploited to reduce the training overhead

associated with the design of the analog or hybrid analog/digital precoding matrices.

While the interesting solutions in [71, 90, 95] have the potential of reducing the search

space of the mmWave beams, they share the following common limitations. First, the

solutions in [71, 90, 95] generally rely on the approach of estimating some spatial param-

eters, such as the angular characteristics and path gains, at the sub-6 GHz band and then

leverage them at mmWave. This makes their performance very sensitive to the parameters

estimation error at the low-frequency bands. Also, this approach does not incorporate how

the materials’ dielectric coefficients, such as the reflection/scattering coefficients, differ in

the two bands, which could be critical for the accurate modeling of the mmWave signal

propagation. Further, the solutions in [71, 95] still require relatively large beam training

overhead at the mmWave band, which scales with the number of antennas. Finally, and to

the best of our knowledge, no prior work has provided any theoretical guarantees on using

the sub-6 GHz channels to directly find the optimal mmWave beams or detect the mmWave

blockages.

Notation: The following notation is used throughout this chapter: A is a matrix, a is a

vector, a is a scalar,A is a set of scalars, and A is a set of vectors. ‖a‖p is the p-norm of a.

|A| is the determinant of A, whereas AT , A−1 are its transpose and inverse. I is the identity

matrix. N (m,R) is a complex Gaussian random vector with mean m and covariance R.
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Figure 3.1: The Adopted System Model Where a Base Station and a Mobile User Commu-

nicate over Both Sub-6GHz and mmWave Bands. The Basestation and Mobile User Are

Assumed to Employ Co-located Sub-6GHz and mmWave Arrays.

3.3 System and Channel Models

Consider the system model in Fig. 3.1 where a base station (BS) is communicating

with one mobile user. The BS is assumed to employ two transceivers; one is working at

sub-6GHz and employs Msub-6 antennas, and the other is operating at a mmWave frequency

band and adopts an MmmW-element antenna array. For simplicity, we assume that the two

antenna arrays belonging to the mmWave and sub-6GHz transceivers are co-located. As

will be discussed in Section 3.5, however, the proposed concepts in this chapter can be

extended to other setups with separated and distributed arrays. The mobile user is assumed

to employ a single antenna at both mmWave and sub-6GHz bands. Note that the assumption

of employing both sub-6GHz and mmWave transceivers at the base station and mobile user

is based on the features of future wireless networks that will simultansouly operate at both

sub-6GHz and mmWave frequency bands [85][86]. Further, it is important to highlight here

that while we focus on point-to-point channels in this initial work, extending the proposed

approaches to multi-user settings is a very interesting direction for future research. Next,
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we summarize the system operation and the adopted channel model.

System Operation: In this chapter, we consider a system operation where the uplink

signaling happens at the sub-6GHz band while the downlink data transmission occurs at the

mmWave band. If hsub-6[k] ∈ CMsub-6×1 denotes the uplink channel vector from the mobile

user to the sub-6GHz BS array at the kth subcarrier, k = 1, ..., K, then the uplink received

signal at the BS sub-6GHz array can be written as

ysub-6[k] = hsub-6[k]sp[k] + nsub-6[k], (3.1)

where sp[k] represents the uplink pilot signal that satisfies E |sp[k]|2 = Psub-6
K

, with Psub-6 de-

noting the uplink transmit power from the mobile user. The vector nsub-6[k] ∼ NC (0, σ2I)

is the receive noise at the BS sub-6GHz array. The sub-6GHz transceiver is assumed to

employ a fully-digital architecture, which allows for the channel estimation process to be

done in the baseband.

For the downlink transmission, the BS employs the mmWave transceiver. Due to the

large number of antennas and the high cost and power consumption of the RF chains at

the mmWave frequency bands, the mmWave transceivers normally employ analog-only or

hybrid analog digital architectures [40, 96]. Following that, the mmWave transceiver is

assumed to adopt an analog-only architecture with one RF chain and MmmW phase shifters.

Extending the proposed solutions to more advanced architectures, such as hybrid ana-

log/digital architectures, is both important and interesting for future research. This could

potentially leverage the recent neural network architecture developed specifically for hy-

brid analog/digital architectures [96]. If f ∈ CMmmW×1 denotes the downlink beamforming

vector, then the received signal at the mobile user can then be expressed as

ymmW[k̄] = hTmmW[k̄]fsd + nmmW[k̄], (3.2)

where hmmW[k̄] ∈ CMmmW×1 represents the uplink channel from the mobile user to the BS

mmWave array at the k̄th subcarrier, k̄ = 1, 2, ..., K̄. Due to the hardware constraints on the
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mmWave analog beamforming vectors, these vectors are normally selected from quantized

codebooks. Therefore, we assume that the beamforming vector f can take one of candidate

values collected in the codebook F , i.e., f ∈ F , with cardinality |F| = NCB.

Channel Model: This chapter adopts a geometric (physical) channel model for the sub-

6GHz and mmWave channels [40]. With this model, the mmWave channel (and similarly

the sub-6GHz channel) can be written as

hmmW[k] =
Dc−1∑
d=0

L∑
`=1

α`e
−j 2πk

K
dp (dTS − τ`) a (θ`, φ`) , (3.3)

where L is number of channel paths, α`, τ`, θ`, φ` are the path gains (including the path-

loss), the delay, the azimuth angle of arrival (AoA), and elevation AoA, respectively, of

the `th channel path. TS represents the sampling time while Dc denotes the cyclic prefix

length (assuming that the maximum delay is less than DcTS). Note that the advantage of

the physical channel model is its ability to capture the physical characteristics of the signal

propagation including the dependence on the environment geometry, materials, frequency

band, etc., which is crucial for our machine learning based beam and blockage prediction

approaches. The parameters of the geometric channel models, such as the angles of ar-

rival and path gains, will be obtained using accurate 3D ray-tracing simulations, as will be

discussed in detail in Section 3.8.

3.4 Problem Definition

Adopting the dual-band system model described in Section 3.3, the objective of this

chapter is to leverage the uplink channel knowledge at sub-6GHz band to enhance the

achievable rate and reliability of the downlink mmWave link. More specifically, we focus

on two important problems: (i) how can the uplink sub-6GHz channel be exploited to find

the optimal downlink mmWave beamforming vector that maximizes the achievable rate

and (ii) how can the knowledge of the uplink sub-6GHz channel be used to infer whether
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or not the line-of-sight link to the mobile user is blocked. Next, we formulate these two

problems.

Problem 1: Beam Prediction Consider the system and channel models in Section 3.3,

the downlink achievable rate for a mmWave channel hmmW and a beamforming vector f is

written as

R
({

hmmW[k̄]
}
, f
)

=
K̄∑
k̄=1

log2

(
1 + SNR

∣∣hmmW[k̄]T f
∣∣2) , (3.4)

with the per-subcarrier SNR defined as SNR = PmmW
Kσ2

mmW
. The optimal beamforming vector

f? that maximizes R
({

hmmW[k̄]
}
, f
)

is given by the exhaustive search

f? = argmax
f∈F

R
({

hmmW[k̄]
}
, f
)
, (3.5)

yielding the optimal rate R?
({

hmmW[k̄]
})

. For ease of exposition, we drop the sub-carrier

indices in the rest of the chapter; i.e., we will use hmmW and hsub-6 to mean {hmmW[k̄]} and

{hsub-6[k]}. It is important to note here that the beamforming vector f is assumed to be

implemented in the analog/RF domain as discussed in Section 3.3. Therefore, the same

beamforming vector is applied to all the subcarriers. Further, this beamforming vector

can only be selected from the codebook F . These constraints on the beamforming vector

f renders the optimization problem in (3.5) non-convex, with the optimal solution only

found via exhaustive search. Performing this search, however, requires either estimating the

mmWave channel hmmW or an online exhaustive beam training, both of which require large

training overhead. To reduce (or eliminate) this training overhead, the objective of this work

is to exploit the sub-6GHz channels hsub-6 to decide on the optimal beamforming vector. If

f̂ ∈ F denotes the predicted beamforming vector based on the knowledge of hsub-6, then

the first objective of this work is to maximize the success probability in predicting optimal

beamforming vector f?, defined as

κ1 = P
(
f̂ = f? |{hsub-6}

)
. (3.6)
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Problem 2: Blockage Prediction The sensitivity of mmWave signals to blockages

can critically impact the reliability of the high frequency systems. If the status of the

link in terms of line-of-sight (LOS) (unblocked) or non-LOS (blocked) can be predicted,

this can enhance the system reliability via, for example, proactively handing over the user

to another base station/access point [45]. In this work, we explore the possibility of us-

ing sub-6GHz channels to predict whether the link connecting the base station and the

user is blocked (NLOS) or unblocked (LOS). let s ∈ B denote the correct (ground-truth)

blocked/unblocked status of the communication link between the base station and the user,

with s = 1 indicating a blocked link and s = 0 indicating an unblocked link. If ŝ is the

predicted link status using the sub-6GHz channel knowledge, then the objective of the sec-

ond problem in this work is to maximize the success probability of predicting the correct

blockage status defined as

κ2 = P (ŝ = s |{hsub-6}) . (3.7)

In the next two sections, we present our proposed solutions that leverage machine learn-

ing tools to address the formulated mmWave beam and blockage prediction problems.

3.5 Predicting mmWave Beams Using Sub-6GHz Channels

Enabling the high data rate gains at mmWave communication systems requires the de-

ployment of large antenna arrays at the transmitters and/or the receivers. Finding the best

beamforming vectors f? for these arrays is normally done through an exhaustive search

over a large codebook of candidate beams, which is associated with large training overhead

[97][98]. In this section, we investigate the feasibility of exploiting sub-6GHz channels to

predict/infer mmWave beams. If this is possible, we can expect dramatic savings in the

mmWave beam training overhead as sub-6GHz channels can be easily estimated with a

few pilots; ideally one pilot is required to estimate the uplink sub-6GHz channels. Lever-

aging sub-6GHz channels to predict mmWave beams is also motivated by the fact that
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future wireless networks, such as 5G, will likely be dual-band—operating at both sub-

6GHz and mmWave bands. Next, we will first reveal in Section 3.5.1 that for any given

environment, there exist a deterministic mapping from sub-6GHz channels to the optimal

mmWave beams under certain conditions. Then, we will show in Section 3.5.2 how deep

learning models can be exploited to predict the optimal mmWave beams using sub-6GHz

channels with a probability of error that can be made arbitrarily small.

3.5.1 Mapping Sub-6GHz Channels to mmWave Beams

This section establishes the theoretical foundation for our proposed solution that pre-

dicts mmWave beams using sub-6GHz channels. More specifically, we will prove that,

under certain condition, there exists a deterministic mapping from sub-6GHz channels

to mmWave channels and beams. This proof extends the channel mapping concept that

we proposed in Chapter 2. First, consider the dual-band system and channel models de-

scribed in Section 3.3. Let X = {xu}Uu=1 represent the set of candidate user positions, with

xu ∈ R3 denoting the position of user u and U is the total number of users. Further, let

husub-6 ∈ CMsub-6×1,hummW ∈ CMmmW×1 denote the channels from user u to the sub-6GHz and

mmWave antenna arrays, respectively, and Ssub-6 = {husub-6}Uu=1, SmmW = {hummW}Uu=1 are

the sets of all candidate user sub-6GHz and mmWave channels. Now, we can define the

following mapping functions, ψsub-6,ψmmW, from the set of candidate positions X to the

corresponding Ssub-6 and SmmW:

ψsub-6 : x ∈ X → hsub-6 ∈ Ssub-6, (3.8)

ψmmW : x ∈ X → hmmW ∈ SmmW. (3.9)

These two functions represent the same wireless environment, and hence, they encode the

geometry of that environment and its propagation characteristics.

Further, for any given mmWave channel hummW and beamforming vector fn ∈ F , the
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achievable rate R (hummW, fn) ∈ R+ is calculated using (3.4). Based on that, we define the

position to achievable rate mapping functions gn(.), n = 1, 2, ..., |F| as

gn : xu ∈ X → R (hummW, fn) , n = 1, 2, ..., |F| . (3.10)

Note that the existence of these mapping functions gn,∀n follows directly from the exis-

tence of the position to mmWave channel mapping,ψmmW, and the deterministic achievable

rate function in (3.4) that relates the mmWave channels and the achievable rates with the

|F| beamforming vectors. Next, we Chapter 2 and adopt the following bijectiveness as-

sumption of the mapping function ψsub-6 that maps the positions to sub-6GHz channels.

Assumption 2 The position to sub-6GHz channel mapping function, ψsub-6, is bijective1.

Assumption 2 means that any two user positions in X have different sub-6GHz channel

vectors, i.e., two positions can not result in the same sub-6GHz channels. This bijectiveness

assumption depends on the number of antennas, the array geometry, the number of paths,

and the surrounding environment among other factors. It is possible, however, to show

that a few antennas could be sufficient to make this bijectiveness assumption satisfied with

very high probability in practical scenarios [74]. In addition, our work in [17] has shown

that even with aggressive quantization schemes, the assumption could hold up given that

large number of antennas is used. A deeper study on the practical conditions under which

this bijectiveness assumption could be violated is particularly needed. The importance of

this bijectiveness assumption (in Assumption 2) is that it guarantees the existence of the

inverse mapping ψ−1
sub-6(.) that maps the sub-6GHz channels in Ssub-6 to the corresponding

positions in X . Next, we present the main proposition on the existence of the mapping

from the sub-6GHz channels to the optimal mmWave beams.

Proposition 2 For any given communication environment, and under Assumption 2, there

1A function is said to be bijective when it is both surjective (onto) and injective (one-to-one)
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exists a set of sub-6GHz to achievable rate mapping functions G = {Φn
sub-6}|F|n=1 that equal

Φn
sub-6 : hsub-6 ∈ Ssub-6 → R (hmmW, fn) , n = 1, 2, ..., |F| , (3.11)

and the optimal mmWave beamforming vector f? for user u is obtained using

n? = argmax
n∈{1,2,...,|F|}

Φn
sub-6 (husub-6) . (3.12)

such that f? = fn? .

Proof: The proof follows from the existence of the sub-6GHz channel to position mapping

function ψ−1
sub-6(.) and the existence of the position to mmWave achievable rate mapping

functions gn(.). This leads to the existence of the composite mapping functions Φn
sub-6

since the co-domain of ψ−1
sub-6(.) is the same as the domain of gn(.), and both equal to

X . Finally, since the mapping functions Φn
sub-6(.) result in the achievable rates with the

candidate beams, the optimal beamforming vector f? is found via the exhaustive search in

(3.5). 2

Proposition 2 shows that, under certain conditions, there exist mapping functions Φn
sub-6,∀n,

that can be leveraged to predict the optimal mmWave beam using sub-6GHz channels. De-

spite the existence of this mapping, though, it is very hard to identify it using classical

(non machine learning) solutions as this mapping functions are normally very hard to be

characterized analytically. This motivates utilizing deep learning to learn these non-trivial

mapping functions.

3.5.2 Deep Learning Based Beam Prediction

Deep learning models have the interesting capability of learning and approximating

non-trivial functions. Leveraging these models can effectively enable the prediction of the

optimal mmWave beams directly from the knowledge of the sub-6GHz channels with an

arbitrarily small error. Next, we use the universal approximation theory [78], to prove that.
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Proposition 3 Let Πn
N(.) represent the output of a dense neural network that consists of a

single hidden layer of N nodes. Then, for any εn > 0, and a continuous achievable rate

mapping function Φn
sub-6 (.), there exists a positive constant N such as

sup
h∈{hsub-6u}

|ΠN(h,Ω)−Φn
sub-6 (h)| < εn, (3.13)

where Ω denotes the set of neural network parameters.

Proof: Proposition 3 follows directly from the universal approximation theorem [78,

Theorem 2.2] by noticing that the set of sub-6GHz channels Ssub-6 is a compact set since it

is closed and bounded. 2

Since the function Φn
sub-6 (h) maps the sub-6GHz channels to the mmWave achievable

rate using the beamforming vector fn ∈ F , Proposition 3 simply means that using a large

enough neural network, we can predict the mmWave achievable rate R̂(hmmW, fn) associ-

ated with every beam fn ∈ F with arbitrarily small error. Next, we make an assumption on

the codebook F before presenting the main result in Corollary 4.

Assumption 3 The mmWave beamforming codebook F satisfies the following condition

R (hmmW, f
?)−R (hmmW, fn) > 0, ∀hmmW ∈ {hummW}, (3.14)

where fn, f
? ∈ F and fn 6= f?.

Assumption 2 simply means that there is only one optimal beamforming codeword for

any channel hmmW ∈ SmmW. It is important to note here that while we need this assumption

to prove the result in the following Corollary, violating this condition on the codebook F

leads to the trivial case where two beamforming vectors can achieve exactly the optimal

rate. Next, we present Corollary 4 that establishes the feasibility of predicting the optimal

mmWave beams using sub-6GHz channels via deep neural networks.
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Proposition 4 Let Πn
N(.), n = 1, 2, ..., |F| represent the output of a dense neural network

that consists of a single hidden layer of N nodes. Further, define the predicted beamform-

ing vector f̂ = fn̂ ∈ F with n̂ = argmax
n=1,2,...,|F|

Πn
N(.). Then, for any ε > 0, and continuous

achievable rate mapping functions Φn
sub-6 (.) , n = 1, 2, ..., |F|, there exists s positive con-

stant N large enough such as

κ1 = P
(
f̂ = f? |hsub-6

)
> 1− ε.

Proof: The success probability in predicting the optimal mmWave beam f? using the

sub-6GHz channels can be written as

κ1 = P
(
f̂ = f? |hsub-6

)
(3.15)

= 1− P
(
f̂ 6= f? |hsub-6

)
. (3.16)

Since the predicted beam f̂ is obtained from the outputs of the |F| neural networks by

applying n̂ = argmax
n=1,2,...,|F|

Πn
N(.) and setting f̂ as the n̂th beam in the codebook F , then κ1

can be expressed in terms of Πn
N(.) as

κ1 = 1− P
(
Πn̂
N(hsub-6) > Πn?

N (hsub-6)
)

(3.17)

Now, given Proposition 3, we reach

κ1 ≥ 1− P
(
Φn̂ + εn̂ > Φn? − εn?

)
(3.18)

= 1− P
(
Φn? −Φn̂ < εn? + εn̂

)
(3.19)

(a)

≥ 1− P
(
Φn? −Φn̂ < 2ε̄

)
(3.20)

where (a) follows by defining ε̄ = maxn=1,2,...,|F| εn. Now, given Proposition 3 and As-

sumption 3, for any ε > 0, there exists ε̄, such that P
(
Φn? −Φn̂ < 2ε̄n?

)
< ε, which

concludes the proof.

2
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Corollary 4 is very interesting as it proves that it is possible to use neural networks to

predict the optimal mmWave beamforming vector directly from the knowledge of the sub-

6GHz channels once the achievable rate mapping functions, Φn
sub-6 (.) , n = 1, 2, ..., |F|,

exist. Further, we know from Proposition 2 that the existence of these mapping functions

for any given environment requires only that the mapping from the candidate set of po-

sitions to the sub-6GHz channels is bijective – a condition that is achievable with high

probability as we discussed earlier in Section 3.5.1.

Proposed Deep Learning Based System Operation: Consider the dual-band system

model in Section 3.3. The proposed system operation that exploits deep learning to predict

the optimal mmWave beam directly from the sub-6GHz channels operates in the following

two phases:

• Deep Learning Training Phase: In this phase, the dual-band communication system

operates as if there is no machine learning: For every coherence time, the uplink sub-

6GHz channel is estimated requiring only one uplink pilot, and a search over the

beams of the codebook F is done for the mmWave downlink to identify the best

beamforming vector—the reason for this will be explained in Section 3.7. Let n?u

denote the index of the best beamforming vector fn? ∈ F for user u. Then, at every

coherence time, one new data point (husub-6, n
?
u) is added to the deep learning dataset.

After collecting large number of data points, we use this dataset to train the deep

learning model, which will be described in detail in Section 3.7.

• Deep Learning Deployment Phase: Once the deep learning model is trained, the

base station uses it to directly predict the optimal mmWave beam using the sub-

6GHz channels. More specifically, this phase requires the user to send only one

uplink pilot to estimate the sub-6GHz channels and this channel is passed to the deep

learning model which predicts which mmWave beam should be used for the downlink
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mmWave data transmission. This saves all the training overhead associated with the

mmWave exhaustive beam training process.

It is important to note here that the proposed deep learning based system operation

has almost no learning overhead in terms of the system time-frequency resources. That

is because the mmWave beam training will typically be performed anyway in the classical

system operation (that do not use machine learning) to figure out the best beamforming

direction. This means that the dataset collection process and the deep learning training

are done without affecting the classical mmWave system operation. Hence, even if a large

dataset needs to be collected to capture the dynamics in the environment, that is feasible

because it does not interfere with the classical system operation. It should be noted here,

however, that for applications where the collection of large datasets is not feasible, synthetic

(simulated) data could be used to pre-train the model; and a small sample of real data–

collected in the fashion discussed above–could be, then, used to fine-tune the pre-trained

model.

Practical Challenges: As shown in this section, for any given static environment, once

the mapping from the candidate positions to the sub-6GHz channels is bijective (one-to-

one), the sub-6GHz channels can be exploited to directly predict the optimal mmWave

beams with a very high success probability. In practice, however, there are a few factors

that can add some probabilistic error to this beam prediction such as the measurement

noise, the phase noise, and the dynamic scatterers in the environment. These factors can

make the position-to-channel mapping not perfectly bijective or create sub-6GHz channels

that are different than those experienced before by the neural networks. In Section 3.8, we

will evaluate the impact of some of these practical considerations on the beam prediction

performance.
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3.6 Predicting mmWave Blockages Using Sub-6GHz Channels

The reliability of the communication links is one of the main challenges for mmWave

systems. This is mainly because of the sensitivity of mmWave signals to blockages, which

can result in a sudden drop in the SNR if the line-of-sight (LOS) path is obstructed. With

this motivation, [45] proposed to leverage machine learning to learn the mobility patterns

of the transmitters, receiver, or scatterers, and hence predict blockages before they actually

block the LOS path. This can enable the network to act proactively, for example by handing

over the communication session to another base station, before the session is disconnected.

In this chapter, we focus on a different but equally important problem which is the ability

of the dual-band base stations to use the sub-6GHz channels to decide whether or not the

mmWave LOS link is blocked. This knowledge can potentially help the BS in adapting

its transmission strategy accordingly by, for example, changing the transmit power and

modulation/coding scheme or handing off the communication session to the sub-6GHz

band. In Section 3.6.1, we will investigate the conditions under which the sub-6GHz can

indicate the LOS blockage/no-blockage status. Then, we show in Section 3.6.2 that this

capability can be implemented using deep neural networks.

3.6.1 Mapping Sub-6GHz Channels to Link Blockages

Consider the system model in Section 3.3 with co-located sub-6GHz and mmWave

arrays at the base station. Let X = {xu} represent the set of candidate user locations. To

simplify the analysis in this section, we make the following assumption

Assumption 4 For all the users in X , if a blockage obstructs the LOS path to the mmWave

array, it also obstructs the LOS path to the sub-6GHz array.

Note that this assumption is typically satisfied in practice since the sub-6GHz and mmWave

arrays are co-located. It is also worth mentioning here that while obstructing the mmWave
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LOS link may completely block the link (due to the high penetration loss at mmWave), the

obstruction of the sub-6GHz LOS ray will likely only reduce its power without a complete

blockage. Our analysis, however, is general and independent of whether the LOS rays are

completely of partially blocked. Now, define su ∈ S = {0, 1} as the blockage status of

user u, with su = 0 and su = 1 indicating that the LOS path between user u and the

BS is, respectively, unblocked or blocked. For a given environment, let husub-6, B denote

the sub-6GHz channel of user u when the LOS path is obstructed/blocked and husub-6, UB

denote the channel when the LOS path is not blocked. Further, let HB = {husub-6, B} and

HUB = {husub-6, UB} represent the blocked and unblocked channel sets. Next, we define

the mapping function Ψ that maps the user position and blockage status to a sub-6GHz

channel.

Ψ : X × S → H, (3.21)

where X × S is the Cartesian product of the user position and blockage status sets, and

H represent the set of all blocked and unblocked channels, i.e., H = HB ∪ HUB. In

the following proposition, we state the condition under which the LOS blockage can be

identified using the sub-6GHz channels.

Proposition 5 For any given environment, if the mapping function Ψ is bijective, then

there exists a continuous discriminant function f : H → 0, 1 such that

∀h ∈ HB, f(h) = 1, ∀h ∈ HUB, f(h) = 0. (3.22)

Proof: When the mapping Ψ is bijective, each (xu, su) tuple has a unique channel, which

yields disjoint blocked and unblocked channel sets, i.e., HB ∩ HUB = φ. This leads to the

existence of the continuous discriminant function f(.) using the Urysohn Lemma [99]. 2

Note that the bijectiveness condition of the mapping function Ψ means that (i) every

user position in X will yield two different channels for the LOS-obstructed or unobstructed

cases and that (ii) these LOS-obstructed/unobstructed channels are different for all the users
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in X . Similar to Assumption 2, the bijectiveness condition of Ψ is expected to be satisfied

with high probability in multi-antenna systems, as will be shown in Section 3.8.6.

3.6.2 Deep Learning Based Blockage Prediction

Using sub-6GHz channel knowledge, Proposition 5 proves that it is possible to decide

whether the LOS link between the base station and user is blocked or not under some

conditions. The discriminating function that does this, however, is hard to be characterized

analytically and may be highly non-linear given the nature of the complex channel vectors.

Intuitively, deciding whether the LOS link is blocked or not requires some spatial and power

analysis of the rays that construct the channels which is a non-trivial task. Motivated by

these challenges, we propose to leverage the powerful learning capabilities of deep neural

networks to learn this LOS blockage discriminating function. This is addressed by the

following proposition.

Proposition 6 Let Πn
N(.), n = 1, 2 represent the output of a dense neural network that

consists of a single hidden layer of N nodes. Further, define the predicted blockage status

of using this network as ŝN . If the conditions in Proposition 5 are satisfied, then for any

ε > 0, there exists s positive constant N large enough such as

κ2 = P (ŝN = s |hsub-6 ) > 1− ε. (3.23)

Proof: The proof is similar to that in Corollary 4 and is omitted due to space limitation.

2

Practical Challenges: Proposition 6 highlights the interesting ability of neural net-

works in classifying the sub-6GHz channel to LOS blocked or unblocked classes. One im-

portant challenge in this application, however, is obtaining the ground-truth blocked/unblocked

labels. Therefore, it is important to develop practical labeling techniques that construct the

required labels for training the neural networks. In Section 3.8.6, we propose a labeling
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strategy based on analyzing the mmWave beam training results and evaluate its perfor-

mance compared to the case when the ground-truth labels are available.

3.7 Deep Learning Model

In Sections 3.5.2 and 3.6.2, we proved theoretically how neural networks can enable

the prediction of the mmWave beams and blockages using sub-6GHz channels. In this

section, we will describe our specific design of the neural network architecture and the

adopted learning model. Before we delve into the description of the proposed model, it

is important to note that the two tasks we consider in this chapter, namely predicting the

optimal mmWave beam and predicting the link blockage status, involve a selection from a

pre-defined set of options–a beam codebook or a binary set of blocked/unblocked status.

These problems have then a striking similarity with the well-known classification problem

in machine learning [31]. Specifically, in the beam prediction problem, each sub-6GHz

channel is mapped to one ofD = |F| indices, whereD is the size of discrete set of options.

This could be viewed as a classification problem where each beam index represents a class,

and the job of the learning model is to learn how to classify channels into beam indices.

In the recent years, deep-architecture neural networks have performed exceedingly well in

handling classification problems [5][6], among other things. Motivated by these results and

by the conclusions of Sections 3.5.2 and 3.6.2, we design a deep neural network model to

address the mmWave beam and blockage prediction problems.

3.7.1 Deep Neural Network Design

The first step in designing a neural network is the choice of the network type, which

should be based on the nature of the problem and the desired role of the model. For our

beam/blockage prediction problems, the objective is to learn how to map the sub-6GHz

channel vectors to a real-valued D-dimensional vector p, where D is either the codebook
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size, |F|, or 2 for the blockage status. For this objective, and motivated by the univer-

sal approximation results in Sections 3.5.2 and 3.6.2, we adopt a Multi-Layer Perceptron

(MLP) network, which comprises a sequence of non-linear vector transformations [100].

The proposed network architecture has two main sections, namely the base network and

the task-specific layer.

Base Network: The beam and blockage predictions are both posed as classification

problems and both share the same input data (sub-6GHz channels). Therefore, to reduce

the computational burden of the training process, we propose to have a common neural

network architecture for the two problems, which, as will be shown shortly, enables lever-

aging transfer learning to reduce the training overhead. Based on that, a single base deep

neural network is designed for the two prediction problems. This network comprises LNN

stacks of layers, each of which has a sequence of fully-connected with ReLU non-linearity

and dropout layers, as illustrated in Figure 3.2. All fully-connected layers have the same

breadth, MNN neurons per layer.

Task-Specific Output Layer: The number of outputs in each prediction task (beam

or blockage) differs as the number of classes changes; predicting a beam index means that

there areD = |F| beam choices, while predicting blockage is a binary problem withD = 2

choices, blocked or unblocked. Hence, the base network is customized with an additional

stack of layers that depends on the target task. For beam prediction, the final layer is

designed to have a fully-connected layer with D = |F| neurons. It acts as a linear classifier

that projects its MNN-dimensional input feature vector onto a D-dimensional classification

space. The projection is fed to a Softmax layer, which induces a probability distribution

over all the available classes. Formally, it does so by computing the following formula for

every element d in its input vector:

pd =
ezd∑D
i=1 e

zi
, (3.24)
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Figure 3.2: The Overall DNN Architecture. The First LNN Stacks Comprising Multiple

Fully-Connected, ReLU, and Dropout Layers form The Base Network. The Final Stack

Represents The Customizable Output Layers. For Both Problems, It Comprises a Fully-

Connected Layer Followed by a Soft-max. Their Size Depends of The Number of Classes

in Each Task.

where zi, i = 1, ..., D is the ith element of the D-dimensional projection vector (input

to the softmax), and pd is the probability that the dth beamforming vector is the correct

prediction–more on Softmax could be found in [73]. Finally, the index of the element with

the highest probability is the index of the predicted beam-forming vector. For the blockage

prediction task, a similar last stack is designed but with different dimensions. The classifier

has D = 2 neurons, and the Softmax here produces two probabilities, namely blocked (p1)

and unblocked (p2).

Transfer Learning: An interesting and advantageous characteristic of deep neural net-

works is their ability to exploit a learned function on a certain input data to perform another

function on the same input data, which is referred to as transfer learning. In [101], it has

been empirically shown that layers closer to the input learn generic features, i.e., those lay-

ers tend to learn the same mapping regardless of the task and final outputs of the neural

network. However, as layers get farther away from the input and deeper into the network,
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features become more specific, i.e., they are more groomed to the task in question. Such

empirical evidence suggests that reusing a trained network for a different task could pro-

vide an interesting boost in the network performance and help reduce the computational

complexity associated with its training [101].

Now, given that both beam/blockage prediction problems could be faced by the same

mmWave system, a resourceful way for good prediction performance in both cases is to

apply transfer learning. As it will be discussed in Section 3.8, beam prediction is a more

challenging problem than blockage prediction. This is mainly, but not exclusively, due to

the large number of classes beam prediction has. Hence, the proposed training strategy in

this work focuses on first training and testing the deep neural network for beam prediction.

Once that cycle is done, the last stack of the trained network is replaced with that suit-

able to blockage prediction. Then, it undergoes another training and testing cycle (called

fine-tuning) for the blockage prediction task. This offers faster convergence and improved

performance compared to training from scratch for the blockage prediction task.

3.7.2 Learning Model

Our objective is to leverage the neural network architecture described in Section 3.7.1

to learn how to predict mmWave beams and blockages directly from the sub-6GHz chan-

nels. To achieve that, we adopt a supervised learning model that operates in two modes, a

background training mode and a deployment mode. Next, we explain the two modes.

1. Background Training Mode: As described earlier in Section 3.5.2, the dual-band

system operates as if there is no deep learning. It collects data points for the beam predic-

tion dataset, (husub-6, n
?
u), and, if the blockage status knowledge is available, it collects data

points for the blockage prediction dataset, (husub-6, su). We will discuss how to obtain the

blockage labels shortly. Both datasets needs to undergo pre-processing before being used

for model training:
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• input normalization: The sub-6GHz channels, which are the inputs to the neural

network, are normalized using a global normalization factor. Let

∆ =

√
1

Ntrain

∑
∀u,∀i,∀k

∣∣[husub-6,k

]
i

∣∣2, (3.25)

denote the global normalization factor where Ntrain is the total training samples, and[
husub-6,k

]
i

is the ith element in the sub-6GHz channel vector of the kth subcarrier of

user u. Then the sub-6GHz channels in the dataset Ssub-6 are all normalized by ∆ to

have an average power of 1. Every normalized channel is decomposed into real and

imaginary vectors that are stacked together to form a real-valued vector. Finally, all

real-valued vectors of the K sub-6GHz subcarriers of a user u are stacked together to

form a (2×K×Msub-6)-dimensional vector, the input to the neural network. Writing

the complex channel vector as a real-valued vector of the stacked real, imaginary,

and subcarriers is to enable the implementation of real-valued computations of neural

networks.

• Labels construction: The labels are modeled as D-dimensional one-hot vectors2 in-

dicating the class labels. For the beam prediction dataset, the one-hot vector for every

sub-6GHz channel has 1 at the element that corresponds to the index of the optimal

beamforming vector (which is calculated from (3.5)). For the blockage prediction

task, the one-hot vectors are 2-dimensional with [1, 0] for blocked and [0, 1] for un-

blocked. In Section 3.8.6, we study the learning performance in two situations: (i)

when the ground-truth blockage status is available and (ii) when the blockage status

is estimated based on the angular distribution of receive power.

After preparing the dataset, the neural network model is trained to minimize the cross-

2One-hot vector refers to a binary vector where all elements are zero except for a single element with the

value of one.
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entropy loss function, Lcross defined as

Lcross = −
D∑
d=1

td log2(pd), (3.26)

where t = [t1, ..., tD] is the target one-hot vector and p = [p1, ..., pD] is the network

prediction. It is important to mention here that pd represents the neural network predicted

probability that the input sub-6GHz channel belongs to the dth class.

2. Deployment Mode: Once the neural network model is trained, it is then used to

predict the mmWave beams and blockage status directly from the knowledge of the sub-

6GHz channels. Please refer to Section 3.5.2 for more details.

3.8 Experimental Results

In this section, we evaluate the performance of the proposed mmWave beam and block-

age prediction solutions using numerical simulations. First, we describe the adopted eval-

uation scenarios in Section 3.8.1. Then, we explain the construction of the deep learning

dataset and neural network training process in Sections 3.8.2 and 3.8.4. Finally, we show

and discuss the performance results of the sub-6GHz based mmWave beam and blockage

prediction solutions in Sections 3.8.5 and 3.8.6.

3.8.1 Evaluation Scenarios

Two publicly available evaluation scenarios from the DeepMIMO dataset [68] are con-

sidered in the simulations. These scenarios are constructed using the 3D ray-tracing soft-

ware Wireless InSite [87], which captures the channel dependence on the frequency. The

first scenario is the LOS scenario ’O1’ that is available at two frequencies: ‘O1 28’ at

28GHz and ‘O1 3p5’ at 3.5GHz. It has a city street with multiple base station positioned at

the sidewalks and users scattered along the street itself. The second scenario is the indoor

mixed-user scenario ‘I2’ that is available also at two frequencies: ‘I2 2p4’ at 2.4 GHz and

78



(a) Top-view (b) Perspective-view

Figure 3.3: Top and Perspective Views of The Second Scenario, I2 2p4 and I2 60. Both

Show The Basestation Location Inside a Conference Room, Depicted As a Green Box.

They Also Show The LOS and NLOS User Grids, and The Possible Scatterers and Block-

ages.

‘I2 60’ at 60 GHz. It has two base stations and two user grids, see Fig.3.3. For the LOS

scenario, we adopt a single base station (BS 3) and equip it with two co-located uniform

linear arrays (ULAs) at 28GHz and 3.5GHz. Similarly for the mixed-user scenario, we

adopt a single base station (BS 2), and we equip with two co-located ULAs operating at

2.4 GHz and 60 GHz.

3.8.2 Dataset Generation

Given the two ray-tracing scenarios described in Section 3.8.1, we construct the follow-

ing two datasets for the beam and blockage prediction problems.

• Beam prediction datasets: Here, we generate two datasets. The first adopts the LOS

scenario (‘O1 28’ and ‘O1 3p5’) and use the DeepMIMO generator script [68] with

the parameters described in Table 3.1. This DeepMIMO script generates the sub-
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6GHz and mmWave channel sets Ssub-6,SmmW, between the base station and every

user u in the scenario. Given these channels we construct the beam prediction dataset

explained in Section 3.7.2. Essentially, every data point in this dataset has the sub-

6GHz channel and the corresponding one-hot vector that indicates the index of the

optimal mmWave beam in the codebook F . It is important to mention here that we

adopt a simple quantized beam steering codebook. The cardinality of this codebook

is set to be equal to the number of mmWave array elements (|F| = MmmW) where

the nth beam, n = 1, 2, ..., |F| is defined as fn = a(2πn
|F| ), with a(.) representing the

mmWave array response vector. Adopting the same settings of the first dataset, a

second dataset is generated using the mixed-user scenarios (I2 2p4 and I2 60). It is

similar to that generated using the LOS scenario above with the difference that all of

its users are NLOS (see Table 3.1).

• Blockage prediction dataset: This dataset considers the mixed-user scenario (‘I2 2p4’

and ‘I2 60’) and use the DeepMIMO generator script with the parameters in Table

3.2. The DeepMIMO script generates the blocked and unblocked sub-6GHz and

mmWave channel sets with which the blockage dataset is constructed as described in

Section 3.7.2. Each data point in that dataset consists of the sub-6GHz channel and

the corresponding one-hot vector that indicates whether the LOS ray is obstructed

(blocked) or not.

3.8.3 Performance Evaluation Metrics

Given that the addressed beam/blockage prediction problems in this chapter are formu-

lated as classification problems, we adopt the Top-1 and Top-n classification accuracies as

the main performance metrics. The Top-1 accuracy, denoted ATop-1, is defined as the fre-

quency at which the deep neural network correctly predicts the class of the input. Formally,
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Table 3.1: DeepMIMO Dataset Parameters for The First Dataset

Parameters LOS (mmWave) LOS (sub-6 GHz)

Scenario name O1 28 O1 3p5

Active BS 3 3

Active users 700-1300 700-1300

Number of BS Antennas 64 4

Antenna spacing (wave-length) 0.5 0.5

Bandwidth (GHz) 0.5 0.02

Number of OFDM subcarriers 512 32

OFDM sampling factor 1 1

OFDM limit 32 32

Number of paths 5 15

it is written as

ATop-1 =
1

Ntest

Ntest∑
n=1

1d̂n=d?n
, (3.27)

where 1(.) is the indicator function, and d̂n, d?n are the predicted and target classes of the

nth test point. Further, owing to the fact that a classifying deep neural network produces a

probability distribution over all possible classes, it is interesting to study whether one of the

top n predictions is the correct class instead of only focusing on the Top-1 prediction. This

is customarily quantified using the Top-n accuracy. It is defined as the frequency at which

the neural network correctly predicts the class of the input within its top-n predictions.

In terms of beam prediction, it means that we test whether the optimal mmWave beam is

within the best n predicted beam using the sub-6GHz channel. In addition to the Top-1 and

Top-n accuracies, we also evaluate the performance of the proposed deep learning based

model in terms of the achievable rates using the predicted mmWave beams.
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Table 3.2: DeepMIMO Dataset Parameters for The Second Dataset

Parameters Mixed (mmWave) Mixed (sub-6 GHz)

Scenario name I2 60 I2 2p4

Active BS 2 2

Active users
552-1159 (NLOS)

1-551 (LOS)

552-1159 (NLOS)

1-551 (LOS)

Number of BS Antennas 64 4

Antenna spacing (wave-length) 0.5 0.5

Bandwidth (GHz) 0.5 0.02

Number of OFDM subcarriers 512 32

OFDM sampling factor 1 1

OFDM limit 32 32

Number of paths 5 15

3.8.4 Neural Network Architecture and Training

In order to determine the number of stacks and the size of each one, we follow an em-

pirical approach; we conduct a few experiments in which we vary the depths and breadths

until we find the best performing network. Since beam prediction is expected to pose more

challenge than blockage prediction does, we use the beam prediction dataset to identify the

optimal3 network architecture. Table 3.3 shows the results of those experiments in terms of

Top-1 accuracy. It is clear that depth is of significant importance for this problem, which is

in line with many recent findings in deep learning [5][6][102]. However, breadth has dif-

ferent impact depending on the depth; for the 6-stack network, it improves the performance

while it has the opposite effect on the 2-stack network. As such, we choose to set LNN = 5

3optimal for the task and dataset in hand.
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stacks each of which has MNN = 2048 neurons.

Table 3.3: Network Architecture Experiments

512 neurons 1024 neurons 2048 neurons

2 Stacks 64.80% 64.03% 63.99%

4 Stacks 68.93% 69.51% 69.81%

6 Stacks 67.93% 69.87% 70.57%

In all of our evaluation experiments, the neural network is trained using the datasets,

explained in Section 3.8.2, for the beam and blockage prediction tasks. The training, as

well as testing, samples are first contaminated with noise depending on the target SNR.

Then, the network is trained in one of two ways, from scratch or transfer learning. The

training approach is different in the beam and blockage predictions tasks: (i) For the beam

prediction problem, the neural network training follows the training from scratch approach,

where the weights are initialized randomly. The hyper-parameters are summarized in Ta-

ble.3.4. (ii) For the blockage prediction problem, the neural network is trained with transfer

learning. The weights of the best-performing network trained for beam prediction are used

to initialize those of the base model used for blockage prediction. The only part that is

trained from scratch is the end-stack. All experiments are done in MATLAB using its Deep

Learning toolbox running on a machine with an RTX 2080 Ti GPU. Code files are available

online at [103].

3.8.5 Beam Prediction Performance

In this subsection, we investigate the performance of the proposed sub-6GHz based

mmWave beam prediction approach using the two beam-prediction datasets introduced

in Section 3.8.2. First, we will start by a discussion that motivates the need for neural
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Table 3.4: DNN Training Hyper-parameters

Parameter Beam Prediction Blockage Prediction

Solver SGDM SGDM

Learning rate 1× 10−1 1× 10−1

Learning rate schedule 0.1 @ 90th epoch 0.1 @ 40th epoch

Momentum 0.9 0.9

Dropout percentage 40% 40%

l2 Regularization 1× 10−4 1× 10−3

Max. number of epochs 100 50

Dataset size |Sband| (LOS) ≈ 108× 103 ≈ 66× 103

Dataset size |Sband| (NLOS) None ≈ 53× 103

Dataset split 70%-30% 70%-30%

networks. Then, we will verify the basic claim that sub-6GHz channel can be directly used

to predict the optimal mmWave beams using deep neural networks. We will also evaluate

how this prediction performance is affected by noisy sub-6GHz channel measurements and

the mmWave array size. Finally, we will conclude the discussion by benchmarking our

proposed solution to another classical well-performing approach and showing the benefits

of using deep learning.

Do we really need neural networks? This is a fundamental and important question

to ask; neural networks are known for their relatively high computational requirements,

and, thus, we start by exploring whether linear classifiers like Support Vector Machine

(SVM) and Multinomial Logistic Regression can efficiently learn the beam prediction task

in LOS settings, which is expected to be easier than mixed-user settings. We train both

classifiers on the training set of the beam prediction dataset, and they both perform very
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poorly on the validation set. The support vector machine and logistic regression classifiers

score, respectively, 3.8% and 2.9% Top-1 accuracies. These results indicate that the data

samples are not linearly separable in their original space. This is usually combated using a

form of feature extraction (or learning), where the input samples are transformed to another

space. The goal is to obtain linear separation in the new space. Recent advances in machine

learning suggest that ANN excel in such tasks [30][5][6], and, therefore, we have chosen

them to tackle both prediction problems.

Neural networks learn how to predict mmWave beams from sub-6GHz channels:

To validate Corollary 4 and the capability of deep neural networks in predicting the opti-

mal mmWave beams directly from sub-6GHz channels, we plot the top-1 and top-3 beam

prediction accuracies in Fig. 3.4a versus the training set size. In this figure, we adopt the

LOS scenario and dataset, described in Sections 3.8.1 and 3.8.2 where the noisy channels

measured at a 3.5 GHz 4-element ULA is used to predict the optimal beam for a 28 GHz

64-element array. The system operates under a high SNR regime of 20 dB. The x-axis val-

ues indicate the ratio of the training dataset samples that are actually used in training to the

total number of training samples. First, Fig. 3.4a confirms the ability of neural networks

in predicting the optimal mmWave beams directly from the sub-6GHz channels with high

success probability that, for the adopted setup, approaches 85% and 99% for top-1 and top-

3 accuracies, respectively. Further, the figure shows that 40% of the total training subset

size is enough to get a beam prediction success probability κ1 that is approximately 20%

off of the upper bound. These results validate the capability of deep neural networks in

effectively predicting the mmWave beams using sub-6GHz channels.

Impact of noisy channel measurements at sub-6GHz: In Fig. 3.4a, we considered

a high SNR regime. Now, we want to evaluate the degradation in the mmWave beam

prediction performance for different SNR regimes. Note that this SNR refers to the sub-

6GHz and mmWave receive SNR, i.e., how noisy the sub-6GHz and mmWave channel
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Figure 3.4: The Effect of Increasing The Training Set Size on The Beam-prediction Per-

formance Is Shown in (a), Quantified by The Top-1 and Top-3 Prediction Accuracies. The

Values on The x-axis Are Relative to The Total Training Set Size, ≈ 76, 000 Data Pairs.

In (b), The Performance of The Deep Learning Solution Is Plotted When The Sub-6GHz

Channels Are Contaminated With Noise. The SNR Represents The Sub-6GHz Receiver

SNR.

Table 3.5: Top-1 and 3 Accuracies for Sub-6GHz Based mmWave Beam Prediction

SNR (dB) -10 -5 0 5 10 15 20

Top-1 13.3% 26% 41.1% 57.6% 70% 78.5% 83.1%

Top-3 35.9% 60% 80.4% 92.8% 96.8% 98.3% 98.8%

measurements are. While practically the SNR range for sub-6 GHz systems is higher than

that of a mmWave system, we assume that the two have the same range, for simplicity. To

do that, we considered the same setup of Fig. 3.4a while adding noise with different noise

power values to the sub-6GHz and mmWave channels. Essentially, we study the beam

prediction performance for the range of -10dB to 20dB sub-6GHz and mmWave SNR. For

each SNR, the network is trained with the noisy subset of samples, and the Top-1 and Top-3
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accuracies are measured on the noisy test subset. The prediction performance at this range

is summarized in Table 3.5. As shown in this Table, the proposed deep learning model

can clearly combat harsh noise situations. For example, the model can predict the optimal

beam within its top-3 predictions with an accuracy close to 80% at 0 dB SNR, and it is

the top-1 prediction around 40% of the time at the same SNR. This indicates that even in

harsh conditions like that, using the top 3 predicted beams, a very little mmWave beam

training could refine the network output and improve the performance, i.e., instead of

sweeping across the whole codebook (64 beams in this case), the top-3 predictions are 80%

likely to have the best one among them.

To translate this into wireless communication terms, Fig. 3.4b plots the mmWave achiev-

able rates using the predicted beams for different values of SNR. At 0 dB SNR, the top-3

achievable rate is about 10% shy of the upper bound, which is only achieved with full

knowledge of the mmWave channels. The top-1 rate, on the other hand, is not quite as

close as the top-3 to the upper bound. It is about 40% off of that bound, yet it is acceptable

considering the low SNR. Around 15 dB is where that gap starts closing up, dropping a

little less than 5% for top-1. An important observation needs to be highlighted here. With

the Top-1 accuracy at 0 dB a little above 41% in Table 3.5, it may seem a bit surprising

that the rate only drops 40% from the upper bound. This implies that even when the DNN

mis-classifies, it seems to select a beam that is not very far away from the correct one. Such

claim is corroborated with the relatively high Top-3 accuracy. This could also be observed

at 5 and 10 dB SNRs.

Performance with different mmWave array sizes: With that interesting performance

above, one question could come to mind: Is such performance attainable with any number

of mmWave antennas? A smaller number of mmWave antennas means there are less classes

to learn. On the surface, this looks like an easier prediction task for the deep neural network,

which is true. Fig. 3.5a shows the top-1 performance of the neural network with different
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Figure 3.5: (a) Shows The Prediction Accuracy of The DNN As The Number of mmWave

Antenna Elements Increases. Larger mmWave Antenna Amounts to Larger Beam-forming

Codebook and, Therefore, Larger Number of Classes. For Some Choices of mmWave

Antennas, The DNN Model Top-1 Achievable Rate Is Plotted with Its Upper Bound in (b).

All Curves Are Obtained with AWGN Only.

numbers of mmWave antennas. It is very clear that the proposed deep learning model has

better classification performance with a small number of antennas, no matter what the SNR

level is. This trend translates to the top-1 achievable rate performance. Fig. 3.5b shows the

average achievable rate against SNR for three different mmWave antenna arrays. Although

the antenna gain is low with small number of mmWave elements, the deep neural network

achieves a much smaller gap with the upper bound for small number of elements compared

to that achieved for a large number of elements. This is an immediate reflection of the

complexity of the classification task.

Performance compared to prior work: In order to further highlight the importance

and novelty of our proposed solution, we perform a comparative study with some pop-

ular classical mmWave beam selection approaches, namely orthogonal matching pursuit
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Figure 3.6: Two Comparative Performance Figures. In (a), The Performance of The Neu-

ral Network Is Benchmarked to That of Orthogonal Matching Pursuit and Logit-weighted

Orthogonal Matching Pursuit Under LOS Setting and Two Different SNR Levels. Figure

(b) Depicts The Same Performance Benchmarking But Under NLOS Setting.

(does not use sub-6GHz channels) and logit-weighted orthogonal matching pursuit (uses

sub-6GHz channels) in [71]. We use the first and second beam-prediction datasets intro-

duced in Section 3.8.2. Fig. 3.6a depicts the spectral efficiency versus number of mmWave

meansurements in LOS setting and at two different SNR levels while Fig. 3.6b depicts the

same thing but in NLOS setting. From the two figures, we can see that in both settings

and at any SNR level, the proposed deep learning model exhibit clear advantage over the

two classical approaches. For instance, in Fig. 3.6a and at 0 dB SNR, the logit-weighted

orthogonal matching pursuit needs about 4 measurements to match the performance of our

model, which requires 0 measurements. The value of our approach becomes even clearer

when we turn to NLOS setting, as in Fig. 3.6b; both classical approaches require more that

15 measurements to get close to the spectral efficiency of the neural network. This gain is

expected to further increase when the mobile user also employs an antenna array.
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3.8.6 Blockage Prediction

The second set of experiments aims at evaluating the ability of the deep neural networks

to differentiate blocked and LOS users from the same spatial region. For this end, we adopt

the mixed-user dataset described in Section 3.8.2, that mixes the LOS and blocked users.

Given this dataset, we investigate the blockage prediction performance for the following

two labeling approaches

• Ground-truth labeling: This approach assumes the availability of accurate user

labels by some means such as, for example, simultaneous localization and mapping

techniques. While this may not be a very practical approach, it provides an upper

bound for the performance of the other labeling techniques.

• Power-based labeling: The LOS paths are normally much stronger (have higher

power) compared to the NLOS ones. Therefore, one possible way to differentiate

the blocked and unblocked users is by computing the ratio between the power of the

strongest beam in the codebook to that of the second strongest beam for each user, re-

ferred to as the power-rule labelling. This ratio is expected to be large for unblocked

users and small (close to one) for blocked users. Fig. 3.7 and Fig. 3.7b corroborate

such intuition; they show two power-ratio histograms, one for the blocked users and

the other for LOS users. It is clear that majority of blocked users have power-ratios

close to one. With that, a threshold for labeling could be set and used to create the

labels during the background training.

For the mixed-user setup, and as discussed earlier in Section 3.8.4, transfer learning

is used to train the deep neural network. In Fig. 5.5.2, we plot the success probability

(accuracy percentage) of blockage prediction. First, Fig. 5.5.2 illustrates that the deep

learning model has excellent classification ability for the ground-truth labeling approach

under a wide range of SNRs. This performance is then compared to the case when the
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power-rule labeling technique is used. Despite the label contamination, i.e., some miss-

labeled users are present during training, the DNN model still performs relatively well;

its accuracy exceeds 70% at high SNRs. This highlights the potential of using sub-6GHz

channels to effectively predict mmWave link blockages.

These results are not surprising considering what have been reported in the literature,

such as that in [62] and [94] for example. They propose different approaches, one relies on

recurrent neural networks while the other resort to classical machine and statistical leaning.

Our experiments, in comparison to those in the literature, confirm the ability of neural

networks to perform exceedingly well in blockage prediction. They also highlight two

interesting points. The first is that multi-layer perceptron networks are effective enough

for current blockage prediction given a properly labeled dataset. This is important as those

networks do not require sequences of channel observations as recurrent networks do. In

addition, multi-layer perceptron networks have the interesting flexibility to adapt to changes

in the environment, which is the second point. Our transfer learning experiments shows

that a network trained on a different task can easily be fine-tuned for another task and

environment. This is a great advantage for neural networks in general compared to classical

machine and statistical learning approaches, in which the model needs to be re-engineered

to adapte to new environments.
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Figure 3.7: Power-ratio Histograms and The Prediction Accuracy. (a) and (b) Show The

Histograms of Blocked and Unblocked Users, Respectively. (c), on The Other Hand, De-

picts The Prediction Accuracy of Both Labeling Techniques.
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Chapter 4

ENABLING DYNAMIC MASSIVE MIMO WITH DEEP LEARNING: FROM

DETERMINISTIC TO STATISTICAL CHANNEL PREDICTION

4.1 Scope and Contributions

Scope

In the previous two chapters, namely Chapters 2 and 3, the channel/beam-training overhead

in large-scale MIMO is tackled with the novel deterministic channel-prediction framework.

The theoretical grounds of the framework and the role of ML have been established. They

both have been empirically verified over four case studies spanning various large-scale

MIMO implementations and using two different deep learning approaches. Like any engi-

neering frameworks, however, deterministic channel prediction has its own shortcomings

to which the first word in the name “deterministic” hints. The framework struggles with

the dynamic and random nature of the wireless environment, as suggested by the results in

Section 2.8. To further delve into the details of its shortcomings and address them, this pa-

per presents a new framework that could be seen as a natural evolution of the deterministic

channel prediction framework, namely the statistical channel-prediction framework.

The new framework represents an evolution from the perspectives of both large-scale

MIMO and deep learning. It re-envisions the role of deep learning, and ML in general,

in addressing the channel/beam-training overhead. The new framework does not target

developing deep learning algorithms (e.g., DNNs) that completely eliminate the need for

channel/beam training. It, instead, attempts to develop deep learning algorithms that sig-

nificantly reduce the training overhead. This is done by learning a prediction function for

some user-specific summary statistics in the form of a conditional channel covariance. This
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covariance helps the MIMO system perform good-quality yet light-weight channel train-

ing to estimate the target channels. From the ML perspective, on the other hand, this task

of learning user-specific statistics brings about some interesting advantages: (i) it allevi-

ates the impact of prediction error on the system performance; and (ii) it brings to light

the value of designing robust deep learning algorithms. It does so by placing emphasis on

unsupervised learning.

Contributions

Tapping into the recent advances in deep learning and specifically DNNs [24, 30, 73],

this paper addresses the challenges of channel training and feedback in massive MIMO by

proposing the novel statistical channel-prediction framework. It is based on the idea of

learning the prediction of a conditional channel covariance that is conditioned on some ob-

served channels, e.g., predicting a conditional downlink covariance given the uplink chan-

nels. In particular, the main contributions envelop a framework with two machine learning

approaches, two proposed solutions, and a set of evaluation experiments. The following

details those contributions:

• The statistical channel prediction framework is formally defined with an emphasis

on the challenges it addresses. Two approaches are proposed to perform the statis-

tical prediction task. Although addressing the same problem, the two approaches

are fundamentally different from a machine learning perspective. The first relies on

regression, which is a supervised learning approach, while the other relies on clus-

tering, which is an unsupervised learning approach.

• Two DNN architectures are designed as possible solutions to the covariance predic-

tion problem. Each one is an implementation of a proposed approach. They both

take advantage of some of the most recent advances in the field of deep learning,
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specifically residual learning [6] and deep denoising autoencoders [104].

• The ability of each architecture to reduce the channel/beam-training overhead is eval-

uated and studied using two dataset of uplink-downlink channel pairs, one per bases-

tation. The datasets are generated from a dynamic communication scenario with two

basestations, provided by the publicly available DeepMIMO dataset [68]. Both solu-

tions report interesting performances, whether under single or multi-user settings.

4.2 Related Work

Overcoming the channel-training and channel feedback challenges in massive MIMO

is a popular and active research direction [17, 20, 56, 71, 72, 80, 105, 106]. The work on

those challenges could be loosely divided into two categories, signal-processing-based and

machine-leaning-based. The former could be thought of as the classical view on how to

handle the channel-related problems in communications. For instance, [105] uses signal

processing to estimate the parameters of the uplink channels and use them to construct

the downlink channel at another frequency. The work in [56] extends that in [105] and

derive some lower bounds on the channel reconstruction (or extrapolation as the authors

refer to it). On the same direction, [71, 72] attempts to utilize spatial channel correlation

between sub-6 GHz uplink channels and mmWave downlink channel to reduce the design

of beamforming vectors. All the previous work overlaps in the need to estimate some hand-

picked latent parameters. This makes it subject to the limitations of the wireless systems in

resolving those parameters.

More adaptive and data-driven approaches have surfaced recently as a way to address

those limitations. They make up the second category relying on machine learning. [20], for

instance, develops a channel compression scheme based on deep learning. It attempts to

reduce the feedback overhead, but it does not address the training overhead. A more generic
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approach to dealing with both channel training and feedback has been proposed in [106],

in which a deep learning framework is proposed to learn channel mapping across space

and frequency. Such framework has given raise to spin-offs like [17, 80]. [80] utilizes

the mapping concept to predict mmWave beamforming vectors given sub-6 GHz uplink

channels. It shows clear improvement over classical approaches tackling the same problem.

[17], on the other hand, extends the mapping concept to channel-estimation in one-bit

ADC settings. It results in some interesting findings such as more antennas yield better

performance. Aside from all the promising results, those machine learning approach are

still in their infant years. They are lacking in terms of evaluation and optimality. Questions

related to their suitability to real-world wireless environments and their ability to generalize

to different settings remain open for further studying.

4.3 System and Channel Models

The system and channel models used throughout this paper are presented in the follow-

ing two sections.

4.3.1 System Model

The system model in this work assumes two massive MIMO basestations deployed in a

dynamic wireless environment, each of which has a set of antennasMm where m ∈ {1, 2}

is a basestation index. Fig. 4.1 depicts an illustration of the system. Each uth user at

location xu ∈ R3 is equipped with a single-element antenna and is able to communicate

with both basestations. The system adopts K-subcarrier Orthogonal Frequency-Division

Multiplexing (OFDM). The received uplink signal of the uth user at the mth basestation

could be expressed as

yUL
k,u,m = hUL

k,u,msu + nk,u, (4.1)
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Figure 4.1: An Illustration of a User Equipment Connected to Two Different Massive

MIMO Basestations,M1 andM2. The User xu Experiences Different Uplink and Down-

link Channels with Both Basestations.

where su ∈ C is a complex symbol transmitted by the uth user; hUL
k,u,m ∈ C|Mm| is the

uplink channels between the uth user and the mth basestation at the kth subcarrier; |Mm|

is the number of antenna elements deployed at the mth basestation; and nk,u ∈ C|Mm| is a

complex Gaussian noise vector sampled from CN (0, σ2I). The downlink signal transmitted

by the mth basestation and received by the uth user in the environment could be expressed

as:

yDL
k,u,m = (hDL

k,u,m)Hfsm + nk,u, (4.2)

where sm ∈ C is a complex symbol transmitted by the mth basestation; f ∈ C|Mm| is

the beamforming vector applied by the mth basestation; hDL
k,u,m ∈ CMm are the downlink

channels between the mth basestation and the uth user at the kth subcarrier; and nk,u ∈ C

is a complex Gaussian noise sample drawn from CN (0, σ2).
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4.3.2 Channel Model

This paper adopts a geometric (physical) channel model [40]. With this model, the

uplink and downlink channels can be written as

hband
k,u,m =

Dc−1∑
d=0

L∑
`=1

α`e
−j 2πk

K
dp (dTS − τ`) a (θ`, φ`) , (4.3)

where “band” is either “UL” or “DL”, L is number of channel paths, α`, τ`, θ`, φ` are the

path gains (including the path-loss), the delay, the azimuth angle of arrival (AoA), and ele-

vation AoA, respectively, of the `th channel path. TS represents the sampling time whileDc

denotes the cyclic prefix length (assuming that the maximum delay is less than DcTS). The

advantage of the physical channel model is its ability to capture the physical characteristics

of the signal propagation including the dependence on the environment geometry, materi-

als, frequency band, etc., which is crucial for the machine-learning-based framework pro-

posed in this paper. Not that moving forward, the subcarrier subscript, i.e., k ∈ {1, . . . , K},

will be eliminated for simplicity.

4.4 Challenges to Deterministic Channel Prediction

The deterministic channel prediction framework is conceptualized as a solution to the

channel-training problem in large-scale MIMO communications. However, like any frame-

work, it has its shortcomings that motivates further development. The main issues that

cause it to struggle in achieving its goal could be loosely grouped into three categories:

(i) environmental challenges, (ii) hardware-based challenges, and (iii) machine learning

challenges.

From a wireless communication perspective, the deterministic mapping framework

does not capture the random nature of the wireless channel. That nature is shaped by

the dynamics in the environment and the randomness caused by the communication hard-

ware. Large- and small-scale fading both add up to a time-varying channel at the receiver
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[107], which means that the channels-to-channels mapping function defined in [106] is

time-varying. Such characteristic is not captured by the deterministic channel-prediction

framework. In addition to the fading effect, hardware-based randomness such as noisy

channel measurements and limited bandwidth ADCs contributes to the overall behavior

of the wireless channel. These effects can be, to some extent, handled by the determinis-

tic prediction framework, but the framework does not offer clear signs of robustness; the

neural network could learn to combat those effects when they are exhibited in the training

set [80, 106]. However, since the framework is targeting the channel-training challenge in

large-scale MIMO, any small channel prediction error could have pervasive effects on the

system performance. The prediction is performed for relatively high-dimensional vectors,

and they are more prone to perturbation error than their low dimensional counterparts. This

casts some doubts on how robust the framework is in practice.

The reliance of the deterministic channel=prediction framework on neural networks,

despite being an asset to the framework, contributes to its challenges. Neural networks in

general and DNNs in particular represent the state-of-the-art algorithms in machine learn-

ing [73], and as such, they are the driving power of the deterministic channel-prediction

framework. They, however, have a relatively hefty training data requirement, especially

when the network has a large number of parameters. Earlier work, like that in [80, 106],

has shown that a number in the neighborhood of 15 thousand data samples is needed to

learn the mapping function. That number of samples may not seem large at first, yet when

the need to collect that amount of samples from a stationary environment is factored in,

the challenge becomes clear; it should not be feasible to expect a communication system to

collect thousands of data samples from a stationary environment. The collection process is

more likely to happen over a relatively lengthy periods of time, within which the environ-

ment is not stationary at all. Such challenge is not clearly addressed in the framework and

is expected to be a major aspect of any further development.
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4.5 Statistical Channel Prediction: Problem Statement and Framework Outline

Aside from the elegance of the deterministic mapping framework, it is expected to

fall short in practice due to the aforementioned challenges. Therefore, there is a need

for a more practical framework that can jointly address those challenges and the question

on mapping channels between different antenna sets and frequencies. In particular, the

framework needs to account for the dynamics of the environment, show clear signs of

robustness, and have practical machine learning requireements. One promising way to

meet those requirements is the learning of a function predicting the conditional channel

covariance. In an abstract sense, this means given the channels of a user observed at a set

of antennas and a certain frequency (henceforth referred to as the observed channels), the

function objective is to predict the conditional covariance of the user’s channels at another

set of antennas and/or another frequency (henceforth referred to as the target covariance

and target channels, respectively). This predicted covariance is, then, used to estimate the

channels using some minimal-overhead channel training.

The prediction of the target covariance is a claver approach to combat the challenges

associated with deterministic channel prediction. The variability of the mapping function

in [106] renders it too complex to be learned. A closer look at the cause of that complexity,

as discussed in Section 4.4, reveals that it is the collective result of multiple sources of

randomness, e.g., channel fading, noisy measurements, and phase noise among others.

Such sources have a probabilistic nature and, hence, their effect on the observed and target

channels can be characterized by some form of summary statistics like the conditional

covariance; given some observed channels, the covariance of the target channels captures

the underlaying vector subspace wherein the target channels vary. That is why instead of

attempting to learn the mapping function itself, learning an alternative function predicting

the conditional covariance is expected to be more robust and practical for real wireless
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Figure 4.2: An Illustration of Statistical Channel Prediction. It Shows a User Communicat-

ing with Two BSs. The Uplink Channels at One BS (Antenna setM1) Is Used to Predict

The Conditional Covariance at The Same BS and Different Frequency CM1(f2) and/or The

Conditional Covariance at Another BS and Frequency CM2(f2)

communications.

4.5.1 Problem Definition

Consider the communication setup in Fig. 4.2, the uth user at location xu is communi-

cating with two basestations,M1 andM2, at the same uplink and downlink frequencies,

respectively f1 and f2. The objective is to predict the covariance of the downlink channels

at one basestation given the uplink channels at the same basestation or the other. Without

loss of generality, say that the uplink channels between the uth user and the first basesta-

tion at the kth subcarrier are the observed channels and the conditional downlink-channel

covariance at the second basestation is the target covariance. Such conditional covariance

is formally defined as

CDL
u,k,2 = E

[
(hDL

u,k,2 − µhDL|hUL
)(hDL

u,k,2 − µhDL|hUL
)H |hUL

u,k,1

]
, (4.4)
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where µhDL|hUL
= E

[
hDL
u,k,2|hUL

u,k,1

]
is the mean of the downlink channels given certain up-

link channels. Note that: (i) the observed channels and target covariance both represent one

user at a position x in the wireless environment; and (ii) they could be for a user commu-

nicating with one basestation or for a user communicating with two different basestations.

Therefore, for simplicity of exposition, the user, subcarrier, and basestation indices will be

dropped henceforth, i.e., CDL
u,k,2, hUL

u,k,1, and hDL
u,k,2 will be denoted by C, hUL, and hDL.

The task of predicting C could be abstractly viewed as a function-learning problem

from a given dataset. Putting this in mathematical terms, let P(hUL,hDL) be a data-

generating distribution that produces pairs of unplink and downlink channels, and let a

prediction function fΘ(hUL) be defined as f : Θ,hUL ∈ CW × CM1 → Ĉ ∈ CM2×M2

where Θ is a W -dimensional vector parameterizing that function. Given a dataset of pairs

S = {(hUL,hDL)u}Uu=1 sampled from the distribution (henceforth referred to as the mother

dataset), that function needs to be learned such that it maximizes the joint probability of

correct prediction:

max
fΘ(hUL)

P
(
Ĉ1 = C1, . . . , ĈU = CU |hUL1 , . . . ,hULU

)
(4.5)

where Ĉu,Cu, ∀u ∈ {1, . . . , U} are respectively the downlink covariance predicted by

fΘ(hUL) using the uth uplink channel and the target covariance of the uth downlink chan-

nels in the dataset S. A couple of important points about (4.5) need to be raised here:

• Owing to the fact that a dataset is collected from a massive MIMO wireless environ-

ment, estimating a conditional covariance could prove very challenging; it requires

the collection of many downlink channels from a fixed user location over an extended

period of time. The more acceptable form of data to be collected is pairs of uplink

and downlink channels as in S.

• The joint probability of correct prediction implies that the prediction function fΘ(hUL)

should ultimately exhibit the same prediction performance over all data samples in
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S.

The question now is how to learn the prediction function and satisfy (4.5). Two machine

learning approaches are utilized in this work to address that question. The following sub-

section draws the general outline of the proposed solutions while the details are left to

Sections 4.6 and 4.7.

4.5.2 Framework Outline

In an attempt to find the prediction function that satisfies (4.5), two approaches are

developed. One relies on viewing the problem from a regression perspective while the other

views it from a clustering perspective. The two views are very different. With regression,

the relation between the target covariance and observed channels, which is probabilistic

in nature, is assumed to be modeled by some function fΘ(hUL) corrupted by some noise

source. This function is assumed to belong to some family of functions H– examples are

linear, polynomial, and exponential families [31, 73]. To learn the relation and, hence, the

function fΘ(hUL), a training dataset St1 is generated using the samples in S such that for

every hUL, there is a sample covariance hDLhHDL. A neural network with a parameter set

Θ is, then, fit to the data in St1 such that the predictions of fΘ(hUL) has minimum Mean

Squared Error (MSE) with the target covariances in St. Under certain conditions, as will

be shown in Section 4.6, the result of such fitting process (training) is a prediction function

that asymptotically produces the target covariances.

The other view on the problem follows a clustering approach. It relies on an interpre-

tation of the geometric channel model in Section 4.3 that is inspired by the work in [47].

This interpretation sees the wireless environment partitioned into channel rings from the

perspective of each BS, see Fig.4.3. The users within each ring share the same channel

eigenspace (whether uplink or downlink), and, hence, their covariances given the uplink

channels are approximately the same. The proposed approach utilizes the channel-ring no-
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Figure 4.3: An Illustration of The Channel Cone Interpretation. The Wireless Environment

Could Partitioned into Multiple Clusters of Major Reflectors. From The Perspective of

Each BS, These Clusters Look Like Cones of Possible Channel Directions.

tion and translates the covariance prediction into a clustering problem. In this new light,

given a training set St2 , the function fΘ(hUL) is expected to produce a clustering of the

uplink channels, and by knowing the clusters, the covariance of each clusters is estimated

using the downlink channels of that cluster in St.

4.6 Statistical Channel Prediction: A Regression Approach

With both the problem formulation (Section 4.5.1) and the general outline of the regres-

sion approach (Section 4.5.2) in mind, the following subsections give a formal treatment

to how the conditional covariance is learned, a description of the proposed neural network

architecture, and a discussion on the possible challenges to the regression approach.

4.6.1 Learning Target Covariance with Regression

It is common in supervised machine learning to look at the relation between the target

and observed variables as probabilistic and governed by an unknown data-generating dis-

tribution [73]. In the realm of regression, this relation between the target variable and the

observed variable is modeled by a parametrized function fΘ(.) that belongs to some family
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of functions H. The choice of the family is made based on some a priori domain knowl-

edge. To capture the possible error in that choice and in the learning process, the relation

between the target variable and the prediction fΘ(.) makes is assumed to be corrupted by

some noise source [31, 73]. The gaol of the machine learning algorithm, then, is to tune

the parameters of the function until it finds the best representation that minimizes some

error metric between the prediction and the target variable. This is done using a training

set sampled from the data distribution.

To translate the above into a formal treatment for the covariance prediction problem

defined in Section 4.5.1, the variables and prediction function need to be re-defined in

the corresponding real-valued spaces. This choice is motivated by modern machine learn-

ing applications and frameworks, e.g., image classification [5–7], machine translation [1,

13] for applications and PyTorch [81] and TensorFlow [82] for frameworks. Let St1 =

{(h̃UL,Cs)u}Uu=1 be a set of training samples where Cs = h̃DLh̃TDL is referred to as the

sample covariance and:

h̃UL = [hrUL1
, . . . , hrULM1

, himUL1
, . . . , himULM1

]T ∈ R2M1 , (4.6)

h̃DL = [hrDL1
, . . . , hrDLM2

, himDL1
, . . . , himDLM2

]T ∈ R2M2 , (4.7)

are the result of stacking the real and imaginary parts of hUL and hDL. St1 is obtained from

the mother dataset S = {(hUL,hDL)u}Uu=1. The prediction function is re-defined as:

f : Θ, h̃UL ∈ RW × R2M1 → Cs ∈ R2M2×2M2 , (4.8)

where the parameter vector Θ is now restricted to the real-valued vector space RW . Using

the above definitions, the relation between the observed channels and the sample covari-

ances is modeled by the function fΘ(h̃UL) and a unimodal noise source1 N ∈ R2M2×2M2 as

1Although a unimodal distribution might not seem like an appropriate assumption for some applications,

it provides a fundamental building block to handle cases with multi-modal noise distributions, see [31].
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follows:

Cs = fΘ(h̃UL) + N. (4.9)

Under certain conditions, a machine learning algorithm learning the function fΘ(h̃UL) on

St1 with an MSE training loss (metric) could asymptotically learn the sought-after condi-

tional covariance and maximize the objective of (4.5). The following proposition presents

the formal statement of the regression approach.

Proposition 7 Under the following conditions:

1. The samples of St1 are independent and identically distributed (iid),

2. The noise term in (4.9) follows a matrix normal distributionMN (M, I, I) where M

is an all zero 2M2 × 2M2 matrix and I is the 2M2 × 2M2 identity matrix [108],

3. The number of samples U →∞,

4. The downlink channels hDL and their stacked version h̃DL have zero conditional

mean, i.e., µhDL|hUL
= µh̃DL|h̃UL

= 0,

and using the regression model in (4.9), the function fΘ(h̃UL) that is trained to minimize

the MSE loss

L =
1

U

U∑
u=1

||Csu − fΘ(h̃ULu)||2F ,

over St1 is a maximizer to (4.5).

Proof: Given the regression model in (4.9), the function fΘ(h̃UL) that best models the

relation between Cs and h̃UL could be found by maximizing the following joint probability

over St1 [31]

max
fΘ(h̃UL)

P(Cs1 = Ĉs1 , . . . ,CsU = ĈsU |h̃UL1 , . . . , h̃ULU ), (4.10)
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where Ĉsu = fΘ(h̃ULu) for u ∈ {1, . . . , U}. From condition 1, (4.10) can be expressed as

max
fΘ(h̃UL)

U∏
u=1

P
(
Ĉsu = Csu |h̃ULu

)
. (4.11)

From (4.9) and condition 2, the objective of (4.11) follows a Gaussian distribution
U∏
u=1

P
(
Ĉsu = Csu|h̃ULu

)
=

U∏
u=1

1

α
exp

[
−1

2
Tr
(

(Csu − fΘ(h̃ULu))T (Csu − fΘ(h̃ULu)
)]

,

(4.12)

where α =
√

(2π)2M2 . As such, the optimization in (4.11) could be expressed as

min
fΘ(h̃UL)

U∏
u=1

1

α
exp

[
−1

2
Tr
(

(Csu − fΘ(h̃ULu))T (Csu − fΘ(h̃ULu)
)]

. (4.13)

Maximizing (4.13) is equivalent to minimizing the negative log-likelihood of the objective

as follows

min
fΘ(h̃UL)

U∑
u=1

1

2
Tr
[
(Csu − fΘ(h̃ULu))T (Csu − fΘ(h̃ULu)

]
. (4.14)

Noting that (Csu − fΘ(h̃ULu)) is a 2M2× 2M2 symmetric matrix, the trace operator could

be replaced with a Frobenius norm squared || . . . ||2F as follows

Tr
[
(Csu − fΘ(h̃ULu))T (Csu − fΘ(h̃ULu)

]
= ||Csu − fΘ(h̃ULu)||2F (4.15)

Substituting (4.15) into (4.14) yields

min
fΘ(h̃UL)

U∑
u=1

1

2
||Csu − fΘ(h̃ULu)||2F , (4.16)

Noting that scaling the objective (4.16) by 1/U does not change the minimizer, the opti-

mization in (4.16) becomes

min
fΘ(h̃UL)

1

2U

U∑
u=1

||Csu − fΘ(h̃ULu)||2F , (4.17)

This yields the the MSE loss metric, which when minimized by fΘ(h̃UL) results in the

sought-after prediction function minimizing (4.4). To show that, using condition 3 and the

law of large numbers [109], the objective in (4.17) could be expressed as

min
fΘ(h̃UL)

1

2

(
E
[
||Cs − fΘ(h̃UL)||2F

])
(4.18)
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Recall that h̃UL ∈ R2M1 , (4.6), and h̃DL ∈ R2M2 , (4.7), as well as the definition of expecta-

tion, the objective in (4.18) could be re-written as

min
fΘ(h̃UL)

1

2

∫ ∫
||Cs − fΘ(h̃UL)||2FP(h̃UL, h̃DL) dh̃DLdh̃UL. (4.19)

To find the optimal prediction function, the objective in (4.19) is differentiated with respect

to fΘ(h̃UL) and set to zero

δE
δfΘ(h̃UL)

=
1

2

∫
δ

δfΘ(h̃UL)

{
||Cs − fΘ(h̃UL)||2F

}
P(h̃UL, h̃DL) dh̃DLdh̃UL (4.20)

=

∫ [
Cs − fΘ(h̃UL)

]
P(h̃UL, h̃DL) dh̃DL (4.21)

=

∫
CsP(h̃UL, h̃DL) dh̃DL −

∫
fΘ(h̃UL)P(h̃UL, h̃DL) dh̃DL (4.22)

=

∫
CsP(h̃UL, h̃DL) dh̃DL − fΘ(h̃UL)P(h̃UL) = 0. (4.23)

Using the definition Cs = h̃DLh̃TDL and solving for fΘ(h̃UL) yields

fΘ(h̃UL) =

∫
CsP(h̃DL|h̃UL)dh̃DL = E[h̃DLh̃TDL|h̃UL]. (4.24)

Given condition 4 and similar to the definition in (4.4), the expectation in (4.24) is the

definition of the conditional covariance E[Cs|h̃UL] of h̃DL|h̃UL, which will be referred to as

the conditional sample covariance to differentiate it from C.

The function fΘ(h̃UL) in (4.24) is also a maximizer for (4.5). This is a direct conse-

quence of the relation between C and E[E[Cs|h̃UL]] = E[h̃DLh̃TDL|h̃UL]; every element in

C could be found in the 2M × 2M conditional sample covariance, see Appendix C, and,

hence, if fΘ(h̃UL) predicts E[Cs|h̃UL], then it also predicts C. 2

The statement of Proposition 7 provides an analytical view on how one might asymp-

totically learn the target covariance using a machine learning model in a regression setting.

In reality, a machine learning model cannot fully capture the target covariance, yet it could

produce a good approximation of that covariance given the right settings. Section 4.9 will

empirically verify that statement.
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4.6.2 Proposed Solution

The choice of the function family H is critical to any machine learning problem as it

defines, in part, the representational capacity of the machine learning algorithm and model

[73]. As the nature of the relation between the target and observation is not known a priori

as well as their data-generating distribution, a good choice in this case is to consider a

broad family of functions and utilize artificial neural networks as the algorithm of choice

to traverse that family space. As discussed in [106], neural networks, whether shallow or

deep, are considered universal approximators [78][34]. They are expected to capture the

relation between the target covariance and the observed channels, and, hence, they are the

core of the proposed regression solution.

Network Architecture

The network architecture adopted in this work is a standard fully-connected (dense) ar-

chitecture, shown in Fig. 4.4. It consists of Z stacks of layers that represent the building

blocks of the architecture. The first Z− 1 stacks comprise a sequence of dense, ReLU, and

dropout layers. These stacks differ in the number of neurons Q they implement. They all

learn to perform non-linear transformations to their corresponding inputs, taking them from

one vector space into another. The last stack of the architecture, the Zth stack, comprises

only a single dense layer. It learns to perform a linear transformation that produces the

prediction of the neural network. This layer is followed by neither a ReLU nor a dropout;

this is necessitated by the nature of the prediction vector, a real-valued output vector.

Pre-processing and Loss Function

The proposed neural network is designed to take in a channel vector and spit out a target

covariance. However, for the network to perform its task, predicting target covariances,
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Figure 4.4: A depiction of the Z layer neural network used to learn conditional covariance

prediction. The first Z − 1 stacks comprise a sequence of dense, ReLU, and dropout layers

with different number of neurons.

the channels and sample covariances need to undergo a pre-processing pipeline. The goals

of this pipeline is two fold: (i) ensure that the input-output pairs are processed properly

for efficient learning, and (ii) make sure those pairs are in suitable forms to be fed to the

network. The following describes how the adopted pipeline prepares the final data samples:

• Inputs: Using the mother set S, the first pre-processing component in the pipeline

normalizes the uplink hUL channels [79][80]. The channels are normalized to have a

unity average element-wise power. In other words, the channel vectors are scaled by:

∆ =

√√√√ 1

UKM1

U∑
u=1

K∑
k=1

M1∑
m=1

|hm,k,u|2, (4.25)

where hm,k,u is the mth element of the uth channel vector at the kth subcarrier. Since

the dense network is the architecture of choice in this work, the inputs need to be

in vector forms. Furthermore, as Proposition 7 shows, channels need to be in real-

valued forms, which is interesting as modern day deep learning frameworks only

support real-valued computations. The real and imaginary parts of the uplink chan-
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nel vectors are stacked up to form h̃UL as defined earlier in (4.6). As the considered

system in Section 4.3 is OFDM, each user has multiple channel vectors across mul-

tiple subcarriers h̃
(k)
UL , ∀k ∈ {1, . . . , K}. These vectors are all concatenated in one

high-dimensional vector h̃in ∈ R2M1K , which is finally the input to the network.

• Outputs: Similar to the inputs, the pipeline prepares the sample covariances start-

ing from the downlink channels hDL ∈ S. The channels are normalized first, and,

then, the real and imaginary parts are stacked as defined in (4.7). The sample co-

variances Cs are computed from those normalized and stacked channels h̃DL. In an

OFDM system, each subcarrier produce a sample covariance C
(k)
s computed from

h̃
(k)
DL . The sample covariances of one user are averaged across subcarriers to produce

Cs. To attain stable and efficient training, the sample covariances are centralized by

subtracting the element-wise average and, then, scaled by the element-wise standard

deviation. Mathematically, this is expressed by:

C̃sab =
Csab − µ̄

σs
, (4.26)

where C̃sab is the (a, b)th element of the standardized sample covariance matrix, µ̄

is the element-wise average of the target covariances µ̄ =
∑U

u=1

∑2M2

a=1

∑2M2

b=1 Csab ,

and σs is the element-wise standard deviation
∑U

u=1

∑2M2

a=1

∑2M2

b=1 (Csab − µ̄)2. The

resulting standardized matrices are flattened into 4M2
2 -dimensional vectors denoted

c̃s. Noting that the target covariance C has half the number of entries of Cs (and

C̃s), the final step combines those relevant entries from Cs to form an output vector

cs with a dimensionality equal to the number of entries in C, i.e., some entries in c̃s

are combined such that the output vector has a dimensionality of 2M2
2 .

The final training set obtained at the end of the pre-processing pipeline is Sf1 = {(h̃in, cs)u}Uu=1.

Based on the statement of Proposition 7, the prediction function should be learned to

minimize the MSE with the sample covariances. Hence, the training is carried with an
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average MSE loss:

L =
1

U

U∑
u=1

||Cs − fΘ(h)UL||2F (4.27)

Section 4.8 will present more technical details on the training process.

4.7 Statistical Channel Prediction: A Clustering Approach

The second approach views the problem through a clustering lens. Such view is in-

spired by the work on joint spatial division and multiplexing in [47]. More specifically, the

channel model in Section 4.3 is re-interpreted as a partitioning of the wireless environment

into rings of scatterers. As shown in Fig. 4.3, each ring generates a spatial channel cone

from the BS perspective, henceforth referred to as the channel cone. The key advantage

of the channel-cone interpretation lies in the shared channel eigenspace across all users

within a cone [47]– whether downlink or uplink channels. Mathematically, let the wireless

environment be divided into a total of B channel cones, and let the channel covariance of

the users within the bth channel cone be Cb where b ∈ {1, . . . , B}. The channels, whether

downlink or uplink, of a user within the bth cone could be expressed using Karhunen-Loeve

(KL) expansion [109]

hbz = Vb
z

(
Λb
z

)1/2
wb
z, (4.28)

where Λb
z ∈ Rrb×rb is a diagonal matrix with the rb positive eigenvalues of the channel

covariance Cb, Vzb ∈ CMz×rb is a matrix that has the eigenvectors associated with the

eigenvalues in Λzb , wzb ∈ Crb×1 is a random combining vector following some distribution

p(wzb), and z is either DL for downlink or UL for uplink

Given the channel-cone interpretation, the task of predicting the conditional downlink

covariance could be cast as a cluster-then-estimate problem; the prediction function at-

tempts to learn the partitioning of the uplink channels into clusters representing each cone

in the environment. Then, it learns an estimate to each conditional covariance. This ap-
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proach is detailed in the following two sections.

4.7.1 Learning Target Covariance with Clustering

For the same problem defined in Section 4.5.1, the goal is to find a function fΘ(hUL) that

maximizes the objective probability under the channel-cone model. This function should be

able to discover the clustering of the uplink channels and predict the downlink covariance

of each cluster. Such prediction process could be decomposed into two stages. The first one

aims at identifying a surface that could separate the different clusters while the second must

discover the downlink covariance of each cluster. This suggests that the function fΘ(hUL)

is a composite of two functions, i.e., fΘ(hUL) = (f
(2)
Θ2
◦f (1)

Θ1
)(hUL) = f

(2)
Θ2

(f
(1)
Θ1

(hUL)) where

Θ = {Θ1,Θ2} is a set of two high-dimensional parameter vectors. f (1)
Θ1

is a discriminant

function separating the channel clusters, and f (2)
Θ2

is an estimator function predicting the

target covariance.

The bottleneck for the approach above is the clustering function f (1)
Θ1

. This is attributed

to two main factors: (i) the users’ membership (and hence the membership of the users’

channels) to the channel cones composing the wireless environment is unknown; and (ii)

the number of channel cones in a wireless environment is also unknown. Therefore, the

main task of the function f (1)
Θ1

(and the learning algorithm) is to uncover the cluster structure

of the wireless channels, which could be seen as a latent variable. In other words, given

only the mother dataset S, the learning algorithm needs to discover the channel cones and

the users’ memberships to those cones. Such task lends itself to unsupervised (or self-

supervised) learning by nature, which makes it challenging.

Once the clusters are uncovered and the users’ channels are assigned to those cluster, the

other task of learning the estimator function f (2)
Θ2

could boil down to a simple per-cluster

averaging of hbDL

(
hbDL

)H . More formally, let St2 = {(hUL,hDLhHDL)u}Uu=1 be a dataset

obtained from the mother set S, and. let the mean of the downlink channels in the bth
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channel cone be zero, i.e., µhDL|b = 0. Using the learned f (1)
Θ1

, the set St2 could be broken

down into

St2 = S(1)
t2 ∪ S

(2)
t2 ∪ · · · ∪ S

(B)
t2 (4.29)

where each subset S(b)
t2 , b ∈ {1, . . . , B} has the pairs {(hUL,hDLhHDL)u}Ubu=1 that belong to

the bth channel cone, and Ub is the total number of pairs in the bth channel cone. Then, the

prediction function f (2)
Θ2

can simply be given by

f (2)(b) =
1

Ub

Ub∑
u=1

hDLuh
H
DLu . (4.30)

The quality of the estimated covariance of (4.30) depends on the cardinality of S(b)
t2 , i.e.,

|S(b)
t2 | = Ub.

4.7.2 Proposed Solution

The proposed unsupervised solution rests on two components, an encoder built with

a DNN and a k-means algorithm. In their original space, the observed channels are not

expected to be linearly separable, and as such, identifying the clusters to which they belong

becomes very difficult. The encoder is designed to learn a transformation into a high-

dimensional space (embedding space) in which the channels could exhibit linear separa-

bility. The final clusters are, then, produced using a k-means algorithm applied to the

transformed (or embedded) channels. These embedded channels are henceforth referred to

as the features. The following three subsections will detail the components of the proposed

solution and the pre-processing pipeline.

Encoder architecture

The encoder is designed to be one of two main networks of a stacked denoising autoen-

coder [73, 104], see Fig. 4.5a. This autoencoder has symmetric networks; the encoder and
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decoder have the same number of layers, and for each layer in the encoder, there is a layer

in the decoder that inverts its operation. Each network is structured in three stacks. At the

encoder side, there is an input stack build with Z1-sequence of alternating dense and ReLU

layers. A sequence of Z2 residual blocks follows the input stack and constructs the residual

stack. They feed into the output stack that consists of a single dense layer and outputs the

feature vector. At the decoder side, the same three stacks are implemented but in reverse

order, see Fig. 4.5a. The decoder differs from the encoder in the placement of some of its

ReLU layers. In particular, the first layer of the decoder is followed with a ReLU while the

last layer is not.

The middle stack (residual stack) is built from a two-layer residual module [6], see

Fig. 4.5b. As depth is of importance to learning powerful representations [33][30], the

residual blocks help increase the depth of the network without incurring training degra-

dation [6]. A block has two dense layers each of which is proceeded with a ReLU, and

the output of these layers is added to the input to produce the output of the block. In

cases where the input and output are of different dimensionality, the path from the input to

the sum operation (referred to as skip connection) implements a dense layer that learns to

transform the input to the output space.

Producing clusters and covariances

The encoder in a trained autoencoder learns a non-linear transformation of the input chan-

nel hin to some feature vector e. In many many applications, the input vectors (channel in

this paper) are not linearly separable in their original space. This makes the discovery of

patterns (or clusters in this work) a difficult task. Hence, the ultimate goal of the encoder

is to learn a transformation that result in linearly separable features, which could, subse-

quently, be separated rather easily. The algorithm of choice to learn those clusters in this

work is k-means [31]. It is applied on top of linearly separable features.
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(a) Auto-encoder

(b) Residual block

Figure 4.5: A Schematic Showing The Overall Autoencodeer Architecture in (a), and De-

scribing The Inner Workings of The Residual Block in (b). The Encoder Network Is Finally

Used to Extract a Feature Vector e for Every Input Channel hin.

The objective of this clustering approach is to predict a target downlink covariance

given the observed uplink channels. Therefore, using the clusters uncovered by the encoder

and k-means, a finite set of covariances is generated by averaging the sample covariances

hULhHUL of each cluster. These covariances are stored such that for any newly-observed

channel vector, the learned encoder and k-means need only produce the cluster assignment

of that vector.
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Data Pre-processing

A similar pre-processing pipeline to that in Section 4.6.2 is adopted here. The details are

described below:

• Inputs: The uplink channels from S are first normalized. Since the clusters are not

commonly known, uplink channels alone may not be enough to learn the clusters.

However, if every user position in the environment contributes PUL uplink channels

by sending PUL pilots acrossK subcarriers, a rough estimate of the uplink covariance

could be computed for each user. This estimate encodes some spatial information

and, hence, is expected to help the unsupervised encoder and k-means discover the

clusters. A sample uplink covariance is computed as follows:

Hu′ =
1

KPUL

u′PUP∑
u=(u′−1)PUL+1

K∑
k=1

h
(k)
ULu

(h
(k)
ULu

)H , (4.31)

where Hu′ ∈ CM1×M1 is the u′th sample uplink covariance, u′ ∈ {1, . . . , Ũ}, and

Ũ = U/PUL. Those sample covariances are complex-valued, so the next step in

the pipeline is to convert them to real valued arrays, {H̃1, . . . , H̃Ũ} where H̃u′ ∈

RM1×M1×2. Since the encoder architecture is based on dense layers, the final step in

the pipeline is to flatten those real valued arrays into single high-dimensional vectors.

The resulting vector is hin ∈ R2M2
1 and is used as the input to the encoder.

• Outputs: The downlink channels are also normalized first, but since the proposed

solution is unsupervised, the downlink channels are not used to create target co-

variances. Instead, they are grouped into Ũ subsets such that each subset has the

PUL downlink channels corresponding to the PUL uplink channels used to form

H̃u′ , ∀u′ ∈ {1, . . . , Ũ}.

The inputs and output are grouped into two sets Sf2 = {hinu′}Ũu′=1 and Sf3 = {Ssubu′}Ũu′=1

where Ssubu′ = {hDLu}u
′PUL
u=(u′−1)PUL+1.
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Encoder training

There is no specific training approach that guarantees producing linearly separable features;

however, based on the work in [104], stacked denoising autoencoders are shown to produce

good representations. As a result, this paper considers a denoising autoencoder followed by

a k-means clustering algorithm to discover the channel clusters. The training is conducted

using Sf2 , and it goes through the following three stages:

• Layer-wise greedy training: The encoder has a symmetric architecture, and, hence,

each matching pair of encoder-decoder layers are combined with a dropout layer in-

between them to form a mini denoising autoencoder. Each mini autoencoder is then

trained to reconstructs its input.

• End-to-end autoencoder finetuning: Using the trained mini autoencoders, the orig-

inal autoencoder in Fig. 4.5a is re-assembled without the dropout layers. A second

round of training is, then, conducted. It fine-tunes the parameters of the autoencoder.

• K-means clustering: When the end-to-end training is done, the encoder is used to

extract feature vectors for all the data samples in Sf2 . Those features are fed to the

k-means algorithm along with an estimate of the number of clusters B. K-means is

trained to cluster those samples and return B cluster centroids.

More details on the first two stages and their expected performance could be found in

[73, 104]. Once the three stages are complete, the covariance of each clusters is calculated

using the downlink channels in Sf3 . The downlink channels in Sf3 are used to do that. The

result is a finite set of covariances {C1, . . . ,CB}.
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4.8 Experimental Setup

Evaluating the proposed solutions requires datasets for training and validation. For that

end, the first section describes the communication scenario considered for the evaluation

experiments. The second section, then, introduces how the data is generated and how each

solution is trained.

4.8.1 Communication Scenarios and Datasets

The communication scenario chosen in this paper is for a busy metropolitan street. It is

a dynamic scenario provided by the DeepMIMO dataset [68], namely scenario “O1 dyn”.

The scenario is available at two sub-6 GHz frequencies, 3.4 GHz (O1 dyn 3p4) and 3.5

GHz (O1 dyn 3p5), and they are both used in this work. The scenario has a street populated

with both stationary and dynamic objects. Fig. 4.6 shows a top-view of the street and its

objects. The scenario has variety of buildings, high, medium, and low-rise, along both

sides of the street and has variety of vehicles moving in both directions along the street at

different speeds. The scenario has two massive MIMO basestations installed at opposite

ends of the street. Each of the basestations implement a 64 ULA antenna, i.e., M1 = M2 =

64. They are serving a stationary user grid with 405 potential users. The users are spaced 1

meter away from each other, each one implements an omni-directional antenna.

Using scenarios “O1 dyn 3p4” and “O1 dyn 3p5” as well as the DeepMIMO gener-

ation script, the mother dataset S of uplink and downlink channels is generated, where

channels at 3.4 GHz are considered uplink and 3.5 GHz are considered downlink. The

generation hyper-parameters are listed in Table.4.1. Each user position in the scenario is

considered a cluster. Therefore, the positions are also generated and used as “groundtruth”

cluster indices. As described earlier in Section 4.6.2 and 4.7.2, the sets Sf1 , Sf2 , and Sf3

are generated from the mother set.
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Figure 4.6: A Top-view of The Considered Scenario. It Shows a Snapshot of a Dynamic

Environment with Moving Vehicles. It Shows The Positions of The Two Massive MIMO

Basestations and The Uniformly-Spaced User Grid.

4.8.2 Architecture Details and Training

The two solutions rely on DNNs. Despite their matching objective, they have different

architectures. The regression DNN has 5-stack architecture. The breadth of the dense layers

are, respectively, 1024, 4096, 4096, 4096, and 8192. Three dropuot layers are inserted

between the wide stacks, in particular between stacks: (i) 2 and 3, (ii) 3 and 4, and finally

(iii) 4 and 5. On the other hand, the autoencoder used for the unsupervised solution has

a deeper architecture than that of the regression network. Each of its networks has a total

of 9 layers. At the encoder side, the input stack has 2 dense layers each followed by a

ReLU non-linearity. The breadth of those layers are 4096 and 1024. The second stack

(residual stack) is composed of 3 residual blocks, each of which has two dense layers (as

in Fig. 4.5b) with the breadths of 512 and 1024 and implementing ReLU non-linearities.

The final output stack has a single dense layer with 2048 neurons. The decoder network

has almost the same layers but in reverse order, as explained in Section 4.7.2.
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Table 4.1: DeepMIMO Hyper-parameters

Hyper-parameter Value

Scenario name “O1 dyn 3p4” and “O1 dyn 3p5”

Active BS 1 and 2

Active users 1 - 5

Number of BS antennas (64,1,1)

Antenna spacing (wave-length) 0.5

Bandwidth (GHz) 0.02

Number of OFDM subcarriers 32

OFDM sampling factor 1

OFDM limit 16

Number of paths 15

Both solutions are trained on the generated datasets. All datasets are divided into train-

ing and validation sets with a split percentage of 70% to 30%. The regression network is

trained to reduce the MSE loss on the training set and it is finally tested on the validation

set. The training hyper-parameters are listed in Table.4.2 under the column “Regression.”

The autoencoder undergoes the two-stage training strategy described in Section 4.7.2 on the

70% samples obtained from Sf2 . Then, its output features are passed to the k-means algo-

rithm to produce the clusters. Based on the clustering the covariances are estimated using

Sf3 . The second column of Table.4.2 lists the hyper-parameters for the autoencoder. Both

DNNs are implemented using PyTorch [81] while k-means is implemented using Scikit-

learn [110]. The training and testing for the two solutions took place on an RTX 2080 Ti

running on a Linux system. Sample codes could be found at [111].
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Table 4.2: Training Hyper-parameters

Training hyper-parameter Regression Clustering

Solver Adam [84] SGDM2

Learning rate 10−3 10−1 (stage 1), 10−2 (stage 2)

Weight decay 0 0

Batch size 5000 5000

Number of Epochs 250 120, 200

Momentum 0 0.9

Learning rate factor 0.1 0.1

Learning rate schedule (@epoch) 20 100 (stage 1), 100 and 150 (stage 2)

Number of cluster None 405

4.9 Experimental Results

The proposed statistical prediction framework is evaluated in this section. Both ap-

proaches, regression and clustering, are tested and compared to each other and to deter-

ministic mapping. Using the generated dataset and the training settings in Section 4.8,

a sequence of evaluation experiments are presented. They overall study the NMSE and

beamforming gain performances of the proposed solutions in single user settings, and the

per-user rate and sum rate performances in the cases of multi-users.

4.9.1 Moving to Statistical Prediction

The evaluation begins by empirically establishing the need for the statistical predic-

tion framework. This is done by benchmarking both statistical solutions to a deterministic

mapping solution—similar to that in [106]— in two communication settings, single and

multi-user. The regression network proposed in Section 4.6.2 and detailed in Section 4.8.2
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Figure 4.7: Predicting Downlink Channels form Uplink Ones at The Same Basestation.

(a) Shows The NMSE Performance in Single-user Setting While (b) Shows The Per-user

Spectral Efficiency with Different Number of Downlink (DL) Pilots

is modified to have 2048 neurons in the output stack. This modified network is, then, used

as the deterministic mapping solution. The training hyper-parameters for that network are

the same as those in Table.4.2. For the statistical approaches, a single UL pilot is assumed

for the clustering solution, i.e., PUL = 1. This is to have all three solutions on equal footing

for comparison.

Using noiseless uplink channels at the first basestation, the three solutions are used to

predict the downlink channels at the same basestation in a single-user setting, hereafter

referred to as the in-place task. Fig. 4.7a shows the NMSE performance of all three versus

the number of downlink pilots. Deterministic mapping requires zero pilots, and as such, it

has a constant performance. Its NMSE does not match that of both statistical approaches,

which is a clear drawback. The clustering and regression approaches show almost linear

improvement as the number of pilots increases. With around 9 pilots, the NMSE of both

statistical approaches drop down to the neighborhood of 10−2. This is approximately 14%

of the total number of pilots required by a classical channel-estimation approach given the
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number of antennas. As the number of pilots reduces, the performance of both approaches

degrades, yet clustering takes a stronger hit than that taken by regression. A very likely

reason for that is the learning approach each one follows. Regression is a supervised ap-

proach where the algorithm experiences desirable responses throughout training, which is

not the case in unsupervised apprroaches.

The aforementioned discussion establishes the value of the statistical prediction frame-

work; however to extend it further, the performance of all three solutions is studied in a

multi-user setting with the in-place task. Such setting is expected to bring up the true color

of statistical prediction, for channel estimation accuracy is critical in mitigating user inter-

ference. Fig. 4.7b plots the per-user spectral efficiency of each solution versus the number

of users served simultaneously. Statistical solutions with different number of downlink

pilots exhibit a quite interesting performance; with up to 5 users, statistical prediction

achieves about 58% to 95% of the upper bound3 using between 5 to 9 downlink pilots,

respectively. In comparison, the deterministic solution performs very well with a single

user yet degrades almost exponentially in the number of users. This is expected as the

estimation quality does not have room for improvement in terms of number of pilots.

4.9.2 Effect of Downlink Pilots

With the need for the statistical prediction framework established, this section takes a

deeper dive into the specifics of the framework. In particular, the effect of downlink pilots

is studied in single-user setting and under noisy channel conditions. Similar to the previous

section, a single uplink pilot is assumed for fairness of comparison, and the same in-place

prediction task is considered. The only difference is having Additive White Gaussian Noise

(AWGN) added to both uplink and downlink channels. Fig. 4.8a depicts the beamforming

gain versus SNR for both solutions as well as the trivial choice of using uplink channels

3Achieved using full downlink channel knowledge and a zero-forcing precoder.
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Figure 4.8: Performance of The Statistical Channel Prediction Solutions for an In-place

Uplink-to-downlink Task and Under Noisy Conditions. (a) Depicts The Beamforming Gain

Versus SNR While (b) Shows The NMSE Versus SNR. Both Are Plotted for Multiple

Choices of Downlink (DL) Pilots.

as downlink approximates. It shows the robustness of both approaches in noisy settings.

With 3 downlink pilots, both approaches set 2% shy of the upper bound at an operating

SNR of -10 dB. This gap with the upper bound further shrinks at the same SNR when 9

pilots are used. When the SNR increases, both solutions gradually improve, closing the gap

even further. Such behavior reflects very well on the spectral efficiency of both solution,

especially under a low-SNR regime. A worthy note to raise here is the subtle improvement

the regression solution exhibit over the clustering solution in a high SNR regime. This is a

reflection of the supervision advantage the regression solution enjoys.

The performance of both solutions is next studied from the perspective of channel esti-

mation quality. As beamforming gain is not a clear indicator of that quality, Fig. 4.8b plots

the NMSE of both solutions versus SNR for different choices of downlink pilots. The figure

reveals a new side of the statistical framework performance; the number of downlink pilots

is very critical in combating harsh SNR conditions. With a very small number of pilots,
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like 3 pilots, the NMSE at -10 dB for both solutions is in the neighborhood of 0.2. This

might not be a problem for a single user setting, as Fig. 4.8a has shown, but it is expected

to reflect rather poorly on the performance in a multi-user setting. However, the problem

could readily be remedied by a slight increase in the number of pilots. For instance, using 9

pilots at -10 dB drives down the NMSE to the vicinities of 0.06 and 0.04 for the clustering

and regression solutions, respectively. This is almost a fall of 75% from the NMSE with

3 pilots. As the SNR level increases, the improvement gained from the slight increase of

number of pilots becomes further clearer. For example, the NMSE with 9 pilots and at 0

dB drops around 90% from that with 3 pilots and at the same SNR.

4.9.3 Effect of Uplink Pilots

Since it follows an unsupervised learning approach, the clustering solution is equipped

with an extra design parameter, which is the number of uplink pilots used to form its inputs.

The effectiveness of this parameter is studied under the same experimental settings used in

Section 4.9.2, i.e., an in-place prediction task with noisy channel conditions. Fig. 4.9a plots

the beamforming gain of the clustering solution versus the number of downlink pilots for 2

choices of uplink pilots and 2 choices of SNR levels. The beamforming gain suggests that

number of uplink pilots is of small importance; only when the number of downlink pilots is

small does the increase of uplink pilots have some minor impact on the beamforming gain.

For instance, at 0 dB SNR, requiring 4 uplink pilots results in a subtle improvement in the

beamforming gain with one downlink pilot. The same could be observed at -10 dB SNR.

This observation is backed up by the NMSE performance in Fig. 4.9b.

4.9.4 Channel Prediction Across Space and Frequency

Predicting downlink channels of one basestation using the uplink channels of another

(or cross-space in-place) could be viewed as the most distinguishable and intriguing prop-
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Figure 4.9: Performance of The Clustering Solution for an In-place Uplink-to-downlink

Task and Under Noisy Conditions. (a) Depicts The Beamforming Gain Versus Downlink

(DL) Pilots While (b) Shows The NMSE Versus Downlink Pilots. Both Are Plotted for 2

Choices of Uplink (UL) Pilots and SNRs.

erty of both deterministic and statistical frameworks. [106] has explored this property for

the deterministic framework, and as such, the last set of experiments in this work is dedi-

cated to studying it for the statistical framework. The beginning is with a single-user setting

and noisy channel conditions. Fig. 4.10a shows the beamforming gain versus the number

of downlink pilots for two different SNRs values—the clustering solution assumes a sin-

gle uplink pilot. What immediately catches the eye in the figure is the good beamforming

gain the two solutions achieve at two different SNR regimes with little training overhead;

with only 5 pilots and an SNR level ranging between -10 and 5 dB, both solutions predicts

downlink covariances at another basestation that achieve between 83% to 89% of the

upper bound. This is quite interesting, for the fluctuation in the performance is very nar-

row (∼7%) for a 15 dB change in SNR. This reflects a good level of robustness for both

solutions. The figure also confirms the advantage supervised learning have over unsuper-

vised learning at high SNR. For instance, at 5 dB and with 3 downlink pilots, the regression
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Figure 4.10: Performance of The Statistical Channel Prediction Solutions for a Cross-space

Uplink-to-downlink Prediction Task and Under Noisy Conditions. (a) Depicts Beamform-

ing Gain Versus Downlink Pilots for 2 SNR Values, and (b) Shows NMSE Versus Number

of Downlink Pilots for The Same 2 SNR Values As in (a).

solution slightly outperforms clustering by approximately 8%.

The good performance both solutions display extends to the channel-estimation quality.

Fig. 4.10b shows the NMSE of the predicted channels versus the number of downlink

pilots for the same two SNR values used in Fig. 4.10a. At high SNR, both solutions show

consistent NMSE improvement as the number of pilots increases, and subtle lead regression

has over clustering with small number of pilots persists. The consistent NMSE drop could

also be observed at low SNR, but with a slightly worse overall performance compared to

high SNR. The value of that NMSE performance is better reflected in a multi-user setting.

To show that, Fig. 4.11 depicts the sum-rate spectral efficiency versus number of users for

both solutions and under different number of downlink pilots and at 5 dB SNR. With small

increments in the number of pilots, a massive MIMO system is capable of multiplexing

more users at one basestation given only the uplink channels from another basestation. For

instance, a central unit managing two massive MIMO basestations can multiplex 4, 5, and
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Figure 4.11: Sum-rate Performance for Cross-space Task Under Different Number of

Downlink (DL) Pilots and at 5 dB SNR. It Extends The Advantage of Cross-space Pre-

diction to The Multi-user Setting.

6 users at basestation 2 given their uplink channels observed at basestation 1 with 3, 7, and

9 pilots, respectively. Note that not only the number of multiplexed users increases with

more downlink pilots but also their the sum-rate. With 3 pilots, 4 users are multiplexed with

a sum-rate performance that is 32% away from the upper bound. However, 9 pilots allows

more users and smaller sum-rate gap with the upper bound, approximately 16% away from

that bound.
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Part II

MULTIMODAL LEARNING
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Part I of this dissertation has established the value of ML, and especially deep learning, to

large-scale MIMO communications. Easy-to-acquire (or simply accessible) wireless data,

like uplink channels, could be a great source of information about the wireless environment.

Chapters 2, 3, and 4 have collectively demonstrated how deep learning could be used to

extract and utilize such information to tackle challenges like downlink channel and beam

training.

A common characteristic across all the work in those three chapters is the unimodal-

ity of its data, i.e., the developed algorithms learn from wireless data alone. This raises

an interesting question on whether large-scale MIMO could benefit from other sources of

information (multimodal data) or not. Such question could be seen as a natural extension

to the work in Part I as it might hold some answers to many large-scale MIMO challenges;

data sources like LiDAR sensors or RGB cameras provide contextual information about a

wireless environment that, with the right ML algorithm, could help overcome some perva-

sive challenges. For instance, in high-frequency wireless networks, information about the

motion of some objects in the environment can prove valuable to anticipate and prevent

incoming LOS link blockage.

The second part of this dissertation recognizes the potential of multimodal data, and

it attempts to investigate the role multimodal ML can play in large-scale MIMO. More

specifically, it presents the Vision-Aided Wireless Communications (ViWiComm) frame-

work which is a melting pot of deep learning, computer vision, and high-frequency com-

munications.
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Chapter 5

MILLIMETER WAVE BASESTATIONS WITH CAMERAS: VISION-AIDED BEAM

AND BLOCKAGE PREDICTION

5.1 Scope and Contributions

Scope

An interesting and unconventional approach to handle challenges in high-frequency large-

scale MIMO networks could be found in embracing a striking resemblance between high-

frequency communication and computer vision systems, which is their reliance on LOS.

High-frequency signals struggle in penetrating objects in the wireless environment and

loose significant amount of power due to scattering [44]. Thus, there is a quite large SNR

margin between LOS and NLOS communication links that skews in favor of LOS. This

makes LOS a preferable setting in high-frequency communications, and it draws a con-

nection with computer vision, which is inherently LOS. The data usually captured and

analyzed in a computer vision system depict what is visible in the scene, starting with sim-

ple patterns (e.g., edges, colors,... etc) to abstract concepts (e.g., human, dog, tree,...etc).

That information could be as valuable to a high-frequency system as it is to a computer

vision system, begging the question:

Q.1: Could computer vision be used to mitigate some of the challenges in

high-frequency large-scale MIMO?

Contributions

The main objective of this chapter is to present the promise and potential ViWiComm has

by addressing the beam and blockage prediction tasks using RGB, sub-6 GHz channels,
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and deep learning. When a pre-defined beam-forming codebook is available, learning beam

prediction from images degenerates to an image classification task; depending on the user

location in the scene, each image could be mapped to a class represented by a unique beam

index from the codebook. On the other hand, detecting blockage in still images could be

slightly trickier than beams as the instances of no user and blocked user are visually the

same. Hence, images are paired with sub-6 GHz channels to identify blocked users. Each

problem is studied in a single-user wireless communication setting.

5.2 Prior Work

The majority of the work adopting deep learning focuses on wireless sensory data to

drive the learning and deployment of intelligent solutions, which begs the question of

whether other forms of sensory data could be utilized to deal with the control overhead

problem or not. Solutions like those in [64, 112–115] provide a partially positive answer

to that question, where depth sensors are exploited to help wireless communication objec-

tives. In this work, Vision-Aided Wireless Communications (ViWiComm) is presented as

a new wholistic paradigm to tackle the overhead problem. It ultimately utilizes not only

depth and wireless data, but also RGB images to enable mobility and reliability in mmWave

wireless communications.

5.3 System and Channel Models

The following two subsections will present the system and channel models adopted

throughout this chapter.

5.3.1 System model

Consider a system where a Base Station (BS), operating at both sub-6GHz and mmWave

bands, is communicating with a single-antenna user, as depicted in Fig. 5.1. The BS
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Dual-band BS

Possible blockage

Figure 5.1: This Figure Shows a Downlink Communication Scenario Where The Base

Station (BS) is Serving One User (The Car) Over The mmWave Band. The BS and User

Are Equipped with Dual-band Sub-6GHz and mmWave Transceivers.

is assumed to be equipped with an MmmW-element mmWave antenna array, an Msub-6-

element sub-6 GHz antenna array, and an RGB camera. The system adopts Orthogo-

nal Frequency-Division Multiplexing (OFDM) with KmmW subcarriers at the mmWave

band and a Ksub-6 subcarriers at sub-6 GHz. Further, the mmWave BS systems is as-

sumed to employ analog-only beamforming architecture while the sub-6 GHz transceiver

is assumed to be fully-digital [40]. For mmWave beamforming, a beamforming vector

is assumed to be selected from a pre-defined beam codebook F = {f1, . . . , fB} where

fb ∈ CMmmW×1, ∀b ∈ {1, . . . , B} and B = |F|. To find the optimal beam, the user is as-

sumed to send an uplink pilot that will be used to train the B beams and select the one that

maximizes the user’s average achievable rate, averaged across all subcarriers. This beam is

then used for downlink data transmission. If beam fb is used in the downlink to serve the

uth user, then the received signal at the user’s side can be expressed as

ymmW
u [k] = hmmW

u [k]T fbs
mmW
u [k] + nmmW[k], (5.1)

where hmmW
u [k] ∈ CMmmW×1 is the mmWave channel of the uth user at the kth subcarrier, fb

is the bth beamforming vector in the codebook F , smmW
u [k] is the symbol transmitted on the

kth mmWave subcarrier, and nmmW[k] ∼ NC(0, σ2) is a complex Gaussian noise sample of
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the kth subcarrier frequency.

For blockage prediction, we assume that the BS will use the uplink signals on the sub-6

GHz band. If the mobile user sends an uplink pilot signal ssub-6
u [k] ∈ C on the kth subcarrier,

then the received signal at the BS can be written as

ysub-6
u [k] = hsub-6

u [k]ssub-6
u [k] + nsub-6[k], (5.2)

where hsub-6
u [k] ∈ CMsub-6×1 is the sub-6 GHz channel of the uth user at the kth subcarrier,

and nsub-6[k] ∼ NC(0, σ2
sub-6I) is the complex Gaussian noise vector of the kth subcarrier.

5.3.2 Channel model

This work adopts a geometric (physical) channel model for the sub-6 GHz and mmWave

channels [40]. With this model, the mmWave channel (and similarly the sub-6 GHz chan-

nel) can be written as:

hmmW
u [k] =

D−1∑
d=0

L∑
`=1

α`e
− 2πk

K
dp (dTS − τ`) a (θ`, φ`) , (5.3)

where L is number of channel paths, α`, τ`, θ`, φ` are the path gains (including the path-

loss), the delay, the azimuth angle of arrival, and elevation, respectively, of the `th channel

path. TS represents the sampling time while D denotes the cyclic prefix length (assuming

that the maximum delay is less than DTS). Note that the advantage of the physical channel

model is its ability to capture the physical characteristics of the signal propagation including

the dependence on the environment geometry, materials, frequency band, etc., which is

crucial for considered beam and blockage prediction problems.

5.4 Problem Formulation

Beam and blockage predictions are interleaved problems for any mmWave system.

However, for the purpose of highlighting the potential of ViWiComm, they will be for-

mulated and addressed separately in this work.
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Figure 5.2: A Block Diagram of a Vision-Aided Dual-Band BS. Two ResNet18 Models

Are Deployed to Learn Beam Prediction and User Detection, Respectively. Each Network

Has a Customized Fully-Connected Layer That Suits The Task It Handles. A Network

Is Trained to Directly Predict The Beam Index While The Other Predicts The User Exis-

tence (Detection) Which Is, Then, Converted to Blockage Prediction Using The Sub-6 GHz

Channels.

5.4.1 Beam prediction

The main target of beam prediction is to determine the best beamforming vector f? in

the codebook F to serve a user u. This is done such that the average achievable rate of

that user, Ru(f
?,hmmW

u [k]) ∈ R+, is maximized. Formally, this beam is the solution of the

following optimization problem:

f? = argmax
f∈F

1

KmmW

KmmW∑
k=1

log2

(
1 + ρ

∣∣fThmmW
u [k]

∣∣2) , (5.4)

where ρ is the signal to noise ratio.

In this work, the problem is viewed from a different perspective than that in the lit-

erature; the selection process depends on the camera feed instead of the explicit channel

knowledge (i.e., hmmW[k]) or beam training– both requiring large overhead. The optimal

f?, in this work, is found using an input image X ∈ RH×W×C , where H , W , and C are,

respectively, the hight, width, and number of color channels of the image. This is done
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using a prediction function fΘ(X) parameterized by a set of parameters Θ and outputs a

probability distribution P = {p1, . . . , pB} over the vectors of F . The index of the element

with maximum probability in P determines the index of the predicted beam vector in F .

Formally, this expressed by:

n = argmax
n∈{1,...,B}

{p1, . . . , pn, . . . , pB} , (5.5)

such that the predicted beam f̂ = fn ∈ F . The prediction function fΘ(X) should be chosen

to maximize the probability of correct prediction given an image X for any user in the

communication environment. Formally, this is given by:

max
fΘ(X)

U∏
u=1

Pu
(
f̂ = f?|X

)
, (5.6)

where U is the total number of users in the environment. Note that the product in (5.6)

is a result of a conditional independency assumption, i.e., the probability of correct beam

prediction for the uth user is conditionally independent from other users’ prediction prob-

abilities given its image.

5.4.2 Blockage prediction

Determining whether a user’s LOS link is blocked or not is a key task to boost reliability

in mmWave systems. LOS status could be assessed based on some sensory data obtained

from the communication environment. Examples of that are RGB images and sub-6 GHz

channels, which are the sensory data of choice in this paper. Hence, let (X,hsub-6
u [k])

be the pair of an RGB image of the scene and the user’s sub-6 GHz channels, and let

bu ∈ {−1, 0, 1} be the actual LOS status, where 1, 0, and −1 refer to the statuses: blocked

link, unblocked link, and absent user. In similar spirit to beam prediction, the target of the

system is to predict with high probability the status of the user b̂u given (X,hsub-6
u ) using a

prediction function GΘ(X,hsub-6), which can be expressed with the following optimization
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problem:

max
GΘ(X,hsub-6)

U∏
u=1

P
(
b̂u = bu|(X,hsub-6

u )
)
, (5.7)

where U is the total number of user positions. Note here that the product of P
(
b̂u =

bu|(X,hsub-6
u )

)
is a result of the assumption that the LOS status of a user position is condi-

tionally independent from that of other positions. Despite that this assumption may not be

accurate, it is a helpful simplification of the problem.

5.5 Proposed Camera-Based Solutions

Two deep learning based solutions are proposed for the two problems. They both rely

on deep convolutional networks and the concept of transfer learning. The cornerstone

in each is the 18-layer Residual Network (ResNet-18) [6] that is trained on the popular

ImageNet2012 [29] and fine-tuned for the problem of interest. Figure 5.2 depicts a block

diagram of the two solutions, and the following two subsections present their details.

5.5.1 mmWave beam prediction

The idea of predicting the best beamforming vector from a codebook using an image

has a strong analogy with image classification; the beam vectors divide the scene (spatial

dimensions) into multiple sectors, and the goal of the system is to identify to which sector

a user belongs. Clearly, assigning images to classes labeled by beam indices is possible in

LOS situations as it relies on the knowledge of the user’s location in the scene. Hence, the

objective is to learn the class-prediction function fΘ(X), see Section 5.4.1, using images

from the environment.

The proposed approach to learn the prediction function is based on deep convolutional

neural networks and transfer learning. A pre-trained ResNet-18 model is adopted and cus-

tomized to fit the beam prediction problem; its final fully-connected layer is removed and
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Figure 5.3: The Performances of The Proposed Solutions Are Shown in (a) and (b). The

Former Shows The Results for Beam-prediction While The Latter Shows The Results for

User Detection. Both Figures Present Their Respective Accuracies Versus Relative Train-

ing Set Size.

replaced with another fully-connected layer with a number of neurons equal to the code-

book size, B neurons. This model is then fine-tuned, in a supervised fashion, using images

from the environment that are labeled with their corresponding beam indices. It basically

learns the new classification function (i.e., fΘ(X)), that maps an image to a beam index.

The training is conducted with a cross-entropy loss given by:

l =
B∑
i=1

ti log pi, (5.8)

where ti is 1 if i is the beam index and 0 otherwise. pi is the probability distribution induced

by the soft-max layer.

5.5.2 Link-blockage prediction

The blockage prediction problem is not very different from beam prediction in terms

of the learning approach; it relies on detecting the user in the scene, and, thus, it could
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be viewed as a binary classification problem where a user is either detected or not. This,

from a wireless communication perspective, is problematic as the absence of the user from

the visual scene does not necessarily mean it is blocked; it could simply mean that it does

not exist. As a result, this paper proposes integrating images with sub-6 GHz channels to

distinguish between absent and blocked users.

A valid question might arise at this point: why would the system not predict the link

status from sub-6 GHz channels directly? This is certainly an interesting question, and

the work in [80] has shown that neural networks can effectively learn blockage prediction

from sub-6 GHz channels. However, a major issue with that approach is its need for labeled

channels; there is no clear signal processing method for labelling sub-6 channels as blocked

or not, and, on the other hand, labelling images is relatively easier. Therefore, a network

trained to detect users could help predict blockages from still images when it is combined

with sub-6 GHz channels. This approach could be used to label sub-6 GHz channels and

use them later for training model like those in [80].

Blockage prediction here is performed in two stages: i) user detection using deep neural

network, and ii) link status assessment using sub-6 GHz channels and the user-detection

result. The neural network of choice for this task is also a ResNet-18 but with a 2-neuron

fully-connected layer. Similar to Section 5.5.1, it is pre-trained on ImageNet data and fine-

tuned on some images from the environment. It is first used to predict whether a user exists

in the scene or not. If a user is detected, the link status is directly declared as unblocked.

On the other hand, when the user is not detected, sub-6 GHz channels come into play to

identify whether this is because it is blocked or it does not exist. When those channels

are not zero, this means a user exists in the scene and it is blocked. Otherwise, a user is

declared absent.
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Table 5.1: Hyper-parameters for Channel Generation

Parameter Value

Name of scenario dist cam colo cam blk

Active BSs 3 1

Active users 1 to 5000 1 to 5000

Number of antennas (x, y, x) (64,1,1) (128,1,1)

System BW 0.5 GHz 0.5 GHz

Antenna spacing 0.5 0.5

Number of OFDM sub-carriers 512 512

OFDM sampling factor 1 1

OFDM limit 64 64

Number of paths 5 5

5.6 Simulation Results

For the sake of emphasizing their potential, the two solutions are independently tested.

Two datasets of synthetic data samples are used in these tests as, currently, there is no

publicly-available dataset that combines real-world images and wireless channels. The

following few subsections discuss the datasets, training of the neural networks, and their

performance evaluation.

5.6.1 Scenario and datasets

The publicly available ViWi framework [? ] is used to generate the datasets for testing

the beam and blockage prediction solutions. ViWi provides four single-user communica-

tion scenarios and a data generator script. Two of those four are chosen for evaluation,

namely the direct distributed-camera and blockage co-located-camera scenarios.
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Table 5.2: Hyper-parameters for Network Fine-tuning

Parameter Value

Batch size 150 150

Learning rate 1× 10−4 1× 10−4

Weight decay 1× 10−3 1× 10−3

Learning rate schedule epochs 4 and 8 epochs 4 and 8

Learning-rate reduction factor 0.1 0.1

Data split (training-testing) 70%-30% 70%-30%

The direct distributed-camera scenario is used to generated data samples for the beam

prediction experiments. The generated dataset has 5000 images and their corresponding

mmWave channels; for each image depicting a user at some location, the corresponding

mmWave channels of that user are generated using the generator package of ViWi. Table

5.1 gives a summery of the channels generation hyper-parameters. An important point

needs to be mentioned here. When generating the image-beam dataset, every image is

paired with a beam from the codebook of the serving BS, which is the one that sees the

user.

For blockage prediction experiments, the blockage co-located-camera scenario is used.

A dataset of 5000 images is generated but without any mmWave or sub-6 GHz channels.

The reason behind that lies in the role the neural network is playing in the blockage predic-

tion solution. Its main job is to learn to recognize the user’s existence, which only requires

training with the RGB images of the scenario.

142



Figure 5.4: A Visualization of The Neural Network Inputs and Outputs When It Is De-

ployed for Beam Prediction. For Each Column, The RGB Image Showing The Location

of The User (Car in The Image) Is Fed to The Trained Network, and The Result Is a Beam

Index with The Pattern Shown Below The Image.

5.6.2 Network training

For both experiments, ResNet-18 is customized by removing the last fully-connected

layer and replacing it with either a 64-neuron (for beam prediction) or 2-neuron (for user

detection) fully-connected layers. Each of the two new layers is initialized from a normal

distribution with zero-mean and unit variance. The network, then, is fine-tuned on the

training subset of one of the two datasets describe above. The training hyper-parameters,

including the dataset split, are listed in Table 5.2. Codes for the beam prediction experiment

are made available at [83].
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5.6.3 Prediction performance

The ability of the neural network to predict beams from images is examined by studying

the top-1, 2, and 3 accuracies1 versus the number of training samples. Figure 5.3-a shows

the results of such test. The network shows good prediction performance with very little

training samples, i.e., the accurate label is its first prediction around 90% of the time after

training with only 0.3 samples of the total training set size (1500 out of 3500). This gets

improved further when the top-2 and 3 best predictions are considered; the accuracy jumps

to almost 100% with the same number of training samples. Top-1 accuracy continues to

improve with more training data, and it hits 94% when the whole training set is used.

For blockage prediction, the critical point is identifying the user’s existence in the scene.

As such, Figure 5.3-b depicts the user detection accuracy of a fine-tuned ResNet-18 versus

training dataset size. It is evident that the network is capable of learning such task very well

with little training; it requires a little less than 0.05 of the training samples (175 samples

out of 3500) to produce an accuracy of around 96%. Again, with more training samples,

this accuracy approaches 100%, e.g., in Figure 5.3-b, accuracy is around 99% with half the

training samples.

From a practical point of view, these numbers may not be very reflective if scenarios

with dynamic environment are considered. However, they hint at the great boost a mmWave

system could get in supporting mobility and maintaining reliability shall visual-perception

be incorporated, which is the objective of this paper.

1They are the complements of top-1, 2, and 3 errors commonly used as metrics for quantifying classifica-

tion accuracy. See [? ] and [29]
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Chapter 6

TRANSMITTER IDENTIFICATION VIA DEEP LEARNING: ENABLING

MULTIUSER VISION-AIDED 6G COMMUNICATIONS

6.1 Scope and contribution

Scope

The framework of Vision-Aided Wireless Communications (ViWiComm) [116, 117] stands

out among the proliferating machine learning approaches and frameworks for wireless

communications; the research into machine learning for the wireless communications is

dominated by unimodal learning that is tailored to utilize wireless data alone. As such,

ViWiComm deviates from that by introducing the concept of multimodal learning to wire-

less communications. This is done by pairing visual and wireless data. More specifically,

ViWiComm brings to the table a new range of capabilities that may not be available with

wireless data alone. A good and very important example is proaction; a machine learning

algorithm within the ViWiComm framework could anticipate adversarial events and take

proactive mitigation measures. For instance, consider a typical mmWave communication

system with a basestation and at least a single mobile device. The LOS link between that

basestation and the device is of great importance to the quality of service, and, hence, any

possible blockage of that link by any object could throw off the system performance. With

ViWiComm, however, LOS blockages could be anticipated through a form of scene under-

standing and proactive mitigation measures like user hand off could be initiated [64, 116].

Aside from its originality and potential, the ViWiComm framework faces a critical chal-

lenge to its practicality in real wireless communication settings. The roots of that challenge

are found in the ability of ViWiComm to handle situations with multiple candidate radio
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transmitters. To illustrate that, consider again the example of mmWave LOS blockage. In

reality and from the basestation perspective, the surrounding could be full of objects that

could constitute either possible mmWave transmitters or LOS blockages. Therefore, a ma-

chine learning algorithm needs to demonstrate a heightened level of understanding to the

scene in order to be able to anticipate LOS blockages effectively. In particular, it needs to

discern which object is the source of the signal and which one is the possible LOS blockage.

This need gives rise to the following important question:

Q.1: How could a machine learning algorithm identify the transmitter respon-

sible for the wireless signal in the visual data (images, video frames,...etc)?

Answering such question is in the core of the this paper; it attempts to address that ques-

tion by first defining the novel task of transmitter identification and, then, developing a

ViWiComm solution for that task using Deep Neural Networks (DNNs)

Contribution:

The following points provide a rundown of the contributions:

• A new ViWiComm wireless communication task: we define the task of transmitter

identification as a new fundamental task for ViWiComm. The task revolves around

capitalizing on visual and wireless data to answer the following two questions: (i)

Does a radio transmitter exist in the visual data? and (ii) if it does, which object is it?

• A deep learning solution: we propose a two-stage DNN architecture for the iden-

tification problem. The solution taps into the success of deep learning in computer

vision and multimodal learning. The architecture is developed on a vision-wireless

dataset collected from real wireless communication environments.

• A vision-wireless development dataset: Due to the novelty of the task and in recog-

nition to the value of publicly available datasets, we construct a bimodal vision-
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wireless dataset collected form real wireless communication environments and make

it publicly available1. This is done by first building a complete vision-aided wireless

mmWave communication testbed operating in the 60 GHz frequency band. We de-

ploy that testbed in various locations with different types of candidate transmitters,

and from each location, we collect tuples of RGB frames, mmWave beamforming

vectors2, and received power as data samples.

6.2 Literature Review

Recent years have seen an increasing interest in machine learning (or artificial intelli-

gence) as a driving power for many future wireless communication technologies. This is

evident in the multitude of wireless problems that are addressed using a form of machine

learning, i.e., supervised, unsupervised, or reinforcement learning. This interest, in a broad

sense, could be traced back to two key factors that machine learning enables, which are

data-driven adaptability and multimodal learning. The work on machine learning for wire-

less communications could be divided into two categorizes based on the type and number of

modalities of the learning data. The following two subsections provide a concise overview

of that literature.

Unimodal learning from wireless data: Many wireless communication challenges

addressed using machine learning utilize unimodal learning based solely on wireless data.

For instance, [118] tackles the problem of channel-training overhead in mmWave MIMO

communications. It trains a DNN to learn the best beamforming vector for downlink com-

munication using observed uplink channels. That paper lays the groundwork for the holis-

tic framework of channel mapping proposed in [106]. On the blockage prediction front,

1The publishing time hinges on the decision about this paper.
2A beamforming vector is a complex-valued vector representing the phases and amplitudes of the different

elements of a mmWave antenna array, see [52] for more information.
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the work in [80] proposes to utilize sub-6 GHz (low frequency) channels for identifying

LOS and NLOS mmWave links. Similarly, [62] develops an LSTM-based architecture to

perform the same task but for sub-6 GHz radio transmitters. [45] takes a more proactive

approach to blockage prediction; it uses sequences of mmWave beamforming vectors to

predict whether a moving transmitter is heading towards a stationary blockage or not. A

major concern with this line of research is its inability to exploit rich sources of informa-

tion, which majorly results in reactive decision making.

Bimodal learning from vision and wireless data: A more recent direction of research

on machine learning for wireless communications is centered around the concept of bi-

modal learning, in particular, learning from vision and wireless data. It aims to enable

proaction by adding a rich source of information such as visual data to the learning pro-

cess. The work in [116, 117] first proposed the ViWiComm framework, in which RGB

images and video frames are used to aid the communication system. For example, [116]

utilizes RGB images and sub-6 GHz channels to address the problems of mmWave beam

and blockage prediction. However, RGB frames are not the only rich source used in this

direction of research; the work in [64] introduces link blockage prediction based on depth

maps and received signal strength. All that work focuses on communication problems with

single-candidate transmitter. This invokes a critical question on the performance of Vi-

WiComm in real communication environments. Those environments usually have multiple

candidate transmitters, and the ability to distinguish those transmitters is surely needed.

The work in [119] takes the first step towards addressing that question; it presents an ap-

proach for identifying the transmitting radio equipment using vision and wireless data.

Despite the novelty, the proposed approach is lacking in terms of practicality because it

relies on visually detecting the transmitter equipment itself. This compromises its ability

in real environments, for such equipment is usually invisible or hard to detect visually (in

a person’s hand or pocket or inside a vehicle).

148



A similar line of work to ViWiComm is the research direction on vision-wireless sens-

ing. It attempts to utilize bimodal learning to address machine learning tasks in computer

vision. For instance, human activity recognition (basic activities like sitting, walking, and

standing) is addressed in [120] using RGB cameras and a commercial WiFi device. Vision

and wireless data in [121, 122] have been shown to complement one another in learning

interwind tasks such as through the wall pose estimation and action recognition. [121] uti-

lizes RGB frames in a teacher architecture to train a wireless-based pose estimator to be a

stand-alone estimator for invisible objects. [122], on the other hand, builds on top of that

pose estimation to perform action recognition for invisible or partially occluded objects.

Another interesting use of vision-wireless data could be seen in [123]. In that work, a sin-

gle camera and multiple wireless receivers are utilized to collect bimodal data and do object

localization. Despite the various tasks studied by vision-wireless sensing, its outcomes do

not directly service the objectives of a wireless communication system. Hence, it could be

considered an adjacent research direction to ViWiComm

6.3 Transmitter Identification

A machine learning algorithm in the ViWiComm framework is expected to learn from

the observed visual and wireless data how to perform a wireless communication task. The

performance of such algorithm is contingent on its ability to recognize objects transmit-

ting a radio signals (henceforth referred to as transmitters) and those that do not transmit

(henceforth referred to as distractors). This ability could be learned implicitly through the

training on a wireless task or learned explicitly by posing it as a task in itself. The latter is

the approach of choice in this work, and it is termed the transmitter identification task.
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Figure 6.1: Two Views for The mmWave Wireless System. The Bottom Image Shows The

Basestation and The Patterns of Its Codebook. The Top Image Shows The Environment

from The Camera Perspective and Shows The Beam-induced Sectoring.

6.3.1 Communication System Model

The transmitter identification task in this paper is posed and studied in a mmWave

communication system; this choice is majorly motivated by two facts. The first is the

role mmWave plays in shaping the future of large-scale MIMO communications. It is

considered a key component to modern (5G) and future wireless communication systems,
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see for instance [16, 22]. The second fact is the nice parallel mmWave communication has

with vision systems. Due to its relatively high frequency (30-300 GHz), mmWave systems

are heavily dependent on LOS, which an intrinsic property of any vision system.

The communications system model considered in this paper comprises: (i) A bases-

tation equipped with an RGB camera and an M -element Uniform Linear Array (ULA)

operating at a mmWave frequency band, and (ii) a mobile mmWave transmitter equipped

with a single-element antenna. Fig.6.1 shows an illustration of this system. The basesta-

tion adopts a beam-steering codebook F = {fq}Qq=1 where f ∈ CM×1, see [124] for more

information. Using this codebook, the signal radiated by the transmitter and received at the

basestation could be expressed as

r = fHopths+ fHoptn (6.1)

where s ∈ C is the transmitted symbol satisfying E [|s|2] ≤ P , P ∈ R is the power budget

per symbol, h ∈ CM×1 is the mmWave uplink channel, fopt is the best beamforming vector

in F maximizing

fopt = argmax
f∈F

|fHq h|2, (6.2)

and n ∈ CM×1 is an i.i.d. complex Gaussian noise vector with each element drawn from

NC(0, σ2).

The mmWave channel, or h, characterizes the propagation paths from a mobile trans-

mitter to each ULA element of the basestation at any time instance t. Such channel could

be described using a geometric model [52], which is expressed as

h =
L∑
`=1

α`a(φ`) (6.3)

where L is the number of propagation paths, α` is the complex gain of the `th path, and

a(φ`) is the array response vector, see [124].
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6.3.2 Problem Definition

With the system model above in mind, the transmitter identification task is defined in

this subsection. A general definition of the task is first presented. It provides a description

of the premise of the task and its key components. Then, this definition is translated into

formal terms for the specific communication model adopted in this work.

What is transmitter identification? The task is defined as follows:

Transmitter identification is a bimodal machine learning task in which a learn-

ing algorithm is presented with visual and wireless data obtained from a wire-

less communication environment and is expected to identify the object in the

image responsible for the wireless data. This identification includes: (i) de-

termining if the object is present in the image or not, and (ii) if it is present,

determining which one it is.

The above definition states that the task, in essence, is a visual detection task, in which the

presence of the object of interest cannot be determined using visual data alone. It requires

knowledge of a form of wireless data like wireless channel information, beamforming vec-

tors, received power,...etc. This requirement specifies the first component of the task that is

the bimodality of its data. The second component of the task is specified by the entity that

utilizes that bimodal data, which is a machine learning algorithm. The algorithm should be

able to learn from the data how to answer the following two questions: is the transmitter

present in the visual data? If yes, which object is it? The answers of these two questions

serve the wireless system adopting the ViWiComm framework, and this is the third com-

ponent of the task. It is critical at the point to emphasize that, unlike the work in [119],

the identification task requires the detection of the object responsible for the radio

signal and not the equipment transmitting that signal. The main reason behind this

requirement is the fact that transmitting equipment is usually invisible or hard to detect,
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yet their carriers are commonly visible objects. Examples could be seen in people holding

their phones or placing them in their pockets during a call.

MmWave Transmitter identification: In this paper, the problem of transmitter identi-

fication is addressed in mmWave communication settings. The input bimodal data for this

problem is composed of an RGB frame and a pair of best beamforming-vector index and

the received power at the basestation. It is important to note here that a better choice for

wireless data is the wireless channel vector (i.e., h) as it encodes all the information about

the propagation paths between the transmitter and receiver. Nevertheless, in mmWave com-

munications, such information is rarely available; obtaining it commonly entails a process

riddled with communication overhead.

The problem could be formally described as follows. Let X ∈ RW×H×C be an RGB

image with width W , height H , and color channels C, and let q? represents the index

of fopt in the codebook F . Given X, q?, and the received power |r|2, the identification

task boils down to detecting a bounding box vector bTx ∈ R4 that marks the transmitter

in the image X. From a machine learning perspective, learning to predict that box could

be posed as a function learning problem. More to the point, a function fΘ(X, q?, |r|2)

parameterized by a set of parameters Θ needs to be learned from a labeled dataset D =

{(X, q?, |r|2,bTx)u}Uu=1 such that it predicts bounding boxes {b̂Tx,u}Uu=1 with high fidelity

to the groundtruth bounding boxes in D. Formally, assuming the samples in D are i.i.d.,

the objective of the learning process is expressed as

max
fΘ

U∏
u=1

P(g(b̂Tx,u,bTx,u) ≥ γ|Xu, q
?
u, |ru|2), (6.4)

where g(b̂Tx,bTx) is a function assessing the level of fidelity, and γ is a fidelity threshold.

A popular choice for g(b̂Tx,bTx) is the Intersection over Union (IoU) measure [? ].
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Figure 6.2: A Schematic Depicting The Proposed DNN Architecture. It Highlights The

Different Components of The Architecture and Shows How It Is Implemented During Both

Training and Deployment.

6.4 Proposed Solution

In designing a multimodal machine learning algorithm, a critical first step is the explo-

ration of the observed modalities and their relation to each other. It is the knowledge of

what each of them provides and lacks that could effectively guide the design process. For

that end, the discussion on the proposed solution starts by exploring the relation between

the input modalities and developing some intuition about the solution. Then, it proceeds to

detail the proposed solution.

6.4.1 The Key Idea

Communications in the mmWave frequency range has two main characteristics: (i) the

dependency on LOS links. This is due to the high signal penetration loss that makes it hard

for mmWave signals to go through many materials. (ii) the use of large antenna arrays with

directive radiation patterns to overcome the severe path-loss of the these high-frequency

signals. Directivity in antenna arrays could be intuitively seen as a way to focus the atten-
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: The Six Wireless Environments Where The Vision-aided mmWave Testbed

Was Deployed. (a), (b), and (c) Show Locations Where The Candidate Transmitters Were

Vehicles While The Rest Show Locations Where The Candidates Were People.

tion of the array on a certain direction in space. For ULAs, directivity is achieved using the

beamforming vectors in the codebook F . In idea cases, the use of such codebook could

results in a non-overlapping sectoring of the azimuth angle, in which every beamforming

vector focuses the attention of the ULA on a unique direction in space. See the bottom

image of Fig. 6.1 for an illustration.

The sectoring a beamforming codebook in mmWave communication induces could be

translated into a visual effect. Recall that an RGB image is merely a projection of the 3D

space onto the image 2D plan. Therefore, the sectoring defied by the beamforming vectors

in F could also be projected onto the 2D plan of the image. The top image in Fig.6.1

illustrates that. Such effect means that, ideally, knowledge of the optimal beamforming

vector fopt could be interpreted as a form of attention in the image; it places emphasis on

the direction in the image from which the current received signal arrived.

It is very important to point out here that such interpretation, i.e., the existence of non-
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overlapping sectors, is only valid under some ideal conditions. The first one is the need

for a clear and dominate LOS connection between the transmitter and receiver. The dy-

namics and multi-path propagation in the mmWave environment make that condition hard

to maintain [40, 42]. Another important condition is related to the beamforming codebook

design. In reality, producing sharp and very directive patterns with no side-lobes, like those

in Fig.6.1 is quite challenging considering the hardware limitations and impairments in

the array architecture, see [125] for more information. Strict conditions such as those two

could render ideal sectoring impossible; however, the beamforming vectors still induce a

form of rough sectors, which could be learned by a machine learning algorithm.

The proposed solution in this paper attempts to capitalize on that notion of non-ideal

sectoring and its visual effect. Given the recent advances in object detection [126, 127],

objects that resemble candidate transmitters could be discovered in the image. Then, the

direction information encoded into the beamforming vector could be used to identify the

transmitter object from the distractors. The final result is expected to look like that in the

top image of Fig.6.1.

6.4.2 Two-Stage Neural Network

Using the developed intuition in Section 6.4.1, a two-stage DNN architecture is pro-

posed to learn the transmitter identification task. The architecture is composed of two

sequential stages, see Fig.6.2, the details of which are given below.

Bounding box detection: the role of this stage is to identify the candidate objects, i.e.,

objects that could be transmitters. It does so by tapping into the success of Convolutional

Neural Networks (CNNs) in performing object detection tasks [126, 127]. This stage adopt

a pre-trained object detector, and adjusts and finetunes its classifier layer to fit the number

of candidate transmitter classes in the dataset. Since object detectors commonly produce

predictions with different confidence, the output of the detector is filtered using a Non-
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Maximum Suppression (NMS) algorithm to keep high confidence bounding boxes. These

boxes are organized in a matrix B ∈ RN×4, where the number of rows N represents the

maximum number of boxes an image is expected to have. For the cases where the total

number of extracted boxes from an image is less that N , the matrix B is padded with

zero vectors. Following NMS, B is flattened into a high dimensional vector dv ∈ R4N×1

representing the visual feature vector.

Bounding box selection: this stage is where both visual features and wireless features

are merged and processed to extract the final transmitter bounding box. At the beginning

of this stage, the mmWave beam index q? is embedded into a one-hot vector that is scaled

by the received power |r|2. This produces the wireless feature vector dw ∈ RQ×1, which is

stacked with the visual feature dv, as shown in Fig.6.2. The selection process in this stage

is posed as a classification problem, in which the output produces a probability distribution

p ∈ R(N+1)×1 overN+1 classes, representing the extracted boxes and the case of no trans-

mitter. The selection network in this stage is designed as a Multi-Layer Perceptron (MLP)

network with four stacks. The first three are composed of sequences of fully-connected,

batch normalization, and ReLU layers [73] while the last classifier stack is made of fully-

connected and softmax layers. The breadths of these four stacks are, respectively, 256,

1024, 1024, and 11.

6.5 Experimental Setup

In order to develop or benchmark solutions to the transmitter identification task, there

is a need for a bimodal dataset that have vision-wireless data collected from real wireless

environments. Such dataset, to the best of our knowledge, is only available in the form of

synthetic data-generation frameworks, e.g., ViWi [117]. Hence, this section presents the

details of how a transmitter identification development dataset has been constructed from

real wireless communication environments.
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6.5.1 Testbed Description and Development Dataset

A ViWiComm system (or testbed) is built for the sake of data collection. The testbed

comprises two stand-alone unites, a basestation and a mobile transmitter. Both unites op-

erate in the 60 GHz frequency band. The basestation consists of two main terminals and

a controller. The first terminal is a 16-element (M = 16) mmWave phased array adopting

a beamforming codebook with 16 beams (Q = 16) while the second is an RGB camera.

The two terminals are installed on top of one another, so their fields of view are aligned.

They are also connected to a laptop to operate them and read out the collected data. On

the other side, the mobile unit has a single-element antenna and is connected to its own

local controller and power supply. The mobile unit is only initialized by the laptop of the

basestation at the beginning of it operation, and throughout the data collection session it

operates in a stand-alone fashion.

The development dataset of transmitter identification is constructed by deploying the

testbed at 6 different locations, see Fig.6.3. These location depict various outdoor wireless

environments. In three of these locations, Fig.6.3a, 6.3b, and 6.3c, the mobile unit is carried

by a moving vehicle. These three locations broadly represent environments dominated

by vehicle transmitters (transmitters inside a vehicles). The three locations are visited at

different times of the day to obtain visual data with variable lighting conditions. In the other

three locations, Fig.6.3d, 6.3e, and 6.3f, the mobile unit is carried by a walking person.

These three locations broadly represent environments dominated with human transmitters.

Similar to the first three locations, the testbed is also deploy at different times of the day to

get diverse images.

Using the data collected from the six locations (henceforth referred to as the raw data),

the development dataset for transmitter identification is constructed. It has a little over 3000

data samples which are divided into training and validation sets with a split of 70 − 30%.
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Table 6.1: Object Instances

Class type Object instances Tx instances

Car 1840 1528

Person 5052 1359

Cyclist 17 0

No Objects 155 None

To get that dataset, the raw data undergoes a processing pipeline. The first step in the

pipeline is to extract samples with meaningful information; data samples where the mobile

unite is out of range with the basestation are filtered out since they neither have visual

nor wireless information. The next step in the pipeline is annotation. All visual samples

are manually annotated to have groundtruth bounding boxes for all instances of candidate

objects and for the transmitter object. The list of classes used in the annotation process

is: transmitter, vehicle, person, and cyclist. Table 6.1 lists the number of object-class and

transmitter instances (Tx instances), i.e., how many times an object appeared in the dataset

and in how many of those instances the object is the transmitter. It is important to note here

that since this dataset is constructed from real measurements, there are data samples where

candidate objects appear in the RGB image while the actual transmitter does not, see the

last row of Table.6.1. This is due to the slightly wider field of view of the phased array.

6.5.2 Network Training

The proposed DNN is trained in two stages on a Linux system with an NVIDIATMQuadro

RTX 6000 GPU. First, the object detector is finetuned on the training dataset to detect can-

didate transmitters. Then, the selection network is trained on the same dataset using the

outputs of the detector and the wireless data.
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Table 6.2: Training Hyper-parameters

Solver Adam [84]

Learning rate 1e-2

Learning rate schedule 0.1 @ epoch 30

Number of epochs 40

Dropout 50%

Batch size 200

IoU threshold (γ) 0.5

Maximum number of boxes (N ) 10

The details of the training process are as follows. A Yolo object detector [126] trained

on the COCO dataset [128] is adopted in the proposed architecture. The detector is fine-

tuned, so its classifier layer detects the candidate objects: vehicle, person, and cyclist. It

is trained with a stochastic gradient descent with momentum (SGDM) solver, a learning

rate of 1× 10−5, a weight decay of 5× 10−4, a momentum of 0.9, and 50 training epochs.

The selection network, on the other hand, is trained on the bounding boxes extracted by

the trained detector and the wireless data in the training set. A cross entropy loss [73] is

used in the training, and the training hyper-parameters are shown in Table.6.2. The training

progress is illustrated in Fig. 6.4a More on the implementation could be found in [83].

6.6 Experimental Results

A sequence of experiments are conducted to study the performance of the proposed

architecture and gain some insights into the task itself. The sequence starts with putting the

notion of beam-induced sectoring to test, and form its findings, the rest of the experiments

will explain the choices behind the proposed DNN, highlight its advantages, and discuss its
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shortcomings.

6.6.1 Image Sectoring

The first experiment aims to study the sectoring effect induced by the mmWave beams.

Fig.6.4b depicts a scatter plot for 1000 randomly picked transmitter bounding boxes from

the training set plotted on the 2D plane of the image. These boxes are represented by the

coordinates of their centers, and they are grouped according to the beamforming vector

they are associated with (i.e., clustered according to their groundtruth beam indices). The

immediate observation from the figure is that, on the image plane, the clusters do not de-

fine the ideal sectoring effect discussed in Section 6.4.1. They actually define overlapping

sectors, which suggest that identifying transmitter boxes by finding their sectors may not

be as simple as one might think.

Recognizing that bounding boxes are 4D vectors and what Fig.6.4b shows is merely

the first two dimensions, the figure may not paint a complete picture on beam-induced

sectoring. Hence, a more grounded approach to study how ideal the sectoring is could be

to train a linear classifier to cluster the transmitter boxes based on their groundtruth beam
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Figure 6.5: A Schematic for The Linear Classifier Test.

indices. To that end, a simple classifier is built using 16-neuron fully-connect and softmax

layers. It is trained to see a transmitter bounding box from the training dataset and predict

its beam index, as shown in Fig.6.5. Once it is trained, its ability to identify the transmitter

bounding box is put to test. This is done as follows: (i) feed the detected bounding boxes

by the object detector to the classifier to predict the beam index of each box (i.e., sectors),

(ii) match the observed beam index to those indices predicted by the classifier to pick the

transmitter bounding box, and, finally, (iii) measure IoU between the predicted bounding

box and the target box to assess the prediction accuracy. Following this approach, we

get an identification accuracy of ∼ 17% on the validation set of transmitter identification.

Such low accuracy empirically suggests that ideal sectoring does not hold in the dataset,

ergo real wireless environments. This motivates the design of more sophisticated learning

algorithms.

6.6.2 Proposed DNN Performance

A different approach to transmitter identification is to train a classifier to pick from

the bounding boxes extracted by the object detector. This approach relies on the contextual
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Figure 6.6: The Confusion Matrices of The Bounding Box Selection Network. (a) Linear

Classifier, and (b) Multi-layer Classifier.

information the detected boxes provide during training, as opposed to only seeing the trans-

mitter boxes. To that end, we train two bounding-box selection networks, a simple linear

classifier, similar to that in the previous section, and a multi-layer classifier, like that pro-

posed in Section 6.4.2. Both are fed the stacked visual and wireless feature vectors. Fig.6.6

depicts the confusion matrices of the two classifiers on the validation set. Given that the

number of positive cases (transmitter exists) in the validation set is 769 while the number of

negative cases is 144, the accuracies of both networks are 63% for the linear classifier and

86% for the multi-layer classifier. This shows a clear advantage to the multi-layer classifier,

which is the reason behind choosing that architecture in the proposed solution.

By taking a closer look at Fig.6.6, one could see that the multi-layer classifier outper-

forms the linear one in detecting positive cases by a landslide. This is clear in the precision-

recall performance; the linear classifier achieves ∼ 94% precision at only 60% recall while

for the other classifier, precision hits ∼ 96% at much higher recall, 87%. These numbers

re-affirm the notion that beam-induced sectors are not ideal and, hence, they are not easily

discerned. Of course, the linear classifier performs better when it sees all the boxes along
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Figure 6.7: Two Example Sequences of Transmitter Identification in Action. Upper Row

Shows The Detected Human Transmitter in an Environment with Multiple Human Candi-

dates While The Bottom Row Presents Another Example for Transmitter Detection in an

Environment with Multiple Vehicle Candidates.

with the wireless feature than in the case discussed in Section 6.6.1. However, it could be

conjectured that the relation between the visual and wireless features is better captured by

a multilayer classifier.

The last experiment in this section studies the role of received power information |r|2.

To do that, we train the proposed solution with the multi-layer classifier but without the

received power, i.e., the beam embedding is not scale by the power. The result is a slight

dip in the total accuracy of the DNN by around 1% compared to the accurcay with received

power. Such result may, on the surface, indicate that received power is not of great im-

portance to the architecture, which is not quite correct. Power, in general, reflects a sense

of distance between the transmitter and receiver, but this sense is commonly characterized

with a range of error. In other words, when two transmitters are in close proximity to one

another, received power may not be a clear indicator of the distance between the receiver

and each one of them. This is mainly due to the fading effect in wireless channels, see

[107]. Before wrapping up this section, it would be interesting to put all the above analysis

in some visually pleasing context, and this is what Fig. 6.7 simply does. It depicts two
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short frame sequences from two different locations with the bounding box predictions and

their labels. In both sequences, the architecture is able to track the transmitter successfully

in spite of the different candidate objects.
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Chapter 7

CONCLUSION

Both parts of this dissertation have shown that ML (and more specifically deep learning) is

instrumental to modern and future large-scale MIMO wireless networks. A simple reason

behind that could be the fact that ML enables those networks to utilize their own experi-

ences to improve their performance. Frameworks 1, 2, and 3 are good examples of that, for

all utilize the experiences that come in the form of estimated channels of various users and

visual data of the wireless environment to deal with some of the most pervasive challenges

to large-scale MIMO communications. The following three subsections present summaries

and concluding remarks for the topics covered in this dissertation.

7.1 Framework 1: Deterministic channel prediction

The deterministic channel-prediction framework provides a simple yet interesting ar-

gument for how full channel/beam-training might not be needed in large-scale MIMO net-

works. It argues that within the same wireless environment, a mapping function relating

some wireless channels at some frequency band and other wireless channels at another

band exists, and, therefore, it proposes to use ML and more specifically DNNs to learn

that function and eliminate the need for expensive channel/beam-training. The framework

is studied in two different large-scale MIMO settings. The results and findings of those

studies are discussed in the following three subsections. The first two summarize the main

experimental results and their direct implications on each setting while the third subsection

presents the main takeaways pertaining to Framework 1.
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TDD and FDD massive MIMO

Two major challenges in massive MIMO systems have been addressed with the determin-

istic channel-prediction framework. The fist is the challenge of eliminating the need for

downlink-channel training in FDD massive MIMO. It is addressed by posing it as an uplink-

to-downlink regression task, in which the uplink channels (which are easy to obtain) are

the observed variables and the downlink channels are the targets. A DNN is designed to

learn the relation between the observed and target variables and preform downlink channel

prediction. The performance of the proposed DNN for that task is quite interesting; in a

distributed massive MIMO deployment and at a high SNR regime (≥ 5 dB), the network

achieves ≈ 0.01 NMSE. Similar results are obtained in co-located massive MIMO deploy-

ment. The DNN is able to achieve ≈ 0.01 NMSE at a high SNR regime (> 5dB). The

other challenge considered is the elimination of full franthaul-channel feedback, which is

important for TDD distributed massive MIMO. The developed DNN is able to reconstruct

full channels using a small sample of them selected at random. More specifically, at a high

SNR regime (≥ 5 dB), the NMSE of reconstructed channels is ≈ 0.01. A final important

takeaway from this task is that the bijectiveness assumption seems to be satisfied with rel-

atively small number of antennas. The experiments show that approximately 16 channel

samples are enough to learn the prediction function.

The experiments conducted in Chapter 2 do not only point to the potential of the frame-

work, but also its shortcomings. Right off the bat, the experiments show that good perfor-

mance is only achieved when the DNN is presented with large enough dataset. This could

be seen as an obvious and expected observation, yet when combined by the numbers and

the fact that the environments are all stationary, it points to a clear drawback. In particular,

for both tasks mentioned about, a training dataset with more than ≈ 100 × 103 samples

is needed to get a reasonable performance. The other shortcoming is rooted in the NMSE
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performance the DNN achieves. Again on both tasks, it is clear that in the best possible

conditions, the NMSE rarely falls below 0.01. This might not be a problem when user

interference is not factored in the performance evaluation. All experiments in the Chapter

focuses on the performance in single-user settings, and the reported beamforming gains

corroborate the conclusion that the DNN performs well in those settings. However, when

multi-user settings are considered, the network performance is expected to drop signifi-

cantly. This is demonstrated in the reported results in Chapter 4.

Dual-Band Sub-6 GHz and mmWave MIMO

Chapter 3 establishes the conditions under which the mapping functions from a sub-6GHz

channel to the optimal mmWave beam and blockage status exist. Leveraging the universal

approximation theory, a large enough neural network is proven to be able to learn those

mapping functions such that the success probabilities of predicting the optimal mmWave

beam and blockage status be arbitrarily close to one. Therefore, a neural network is de-

signed such that it performs both prediction tasks using sub-6GHz channels. With the help

of accurate 3D ray-tracing software, development datasets are construct to evaluate and

test the designed network. The results show promising and impressive performance; the

network, when trained with enough data, does both tasks with relatively high fidelity, even

in the presence of noisy sub-6GHz channels. Beam-prediction experiments reveal an in-

teresting tendency of the network to learn correct beam direction. Although it sometime

mis-predicts the mmWave beam, it often selects a beam in the vicinity of the optimal one.

This is attainable with small or large mmWave antenna arrays and at reasonable SNRs.

Such performance extends to the blockage prediction task; the network, under high SNRs,

is capable of predicting the LOS link status with more than 90% success probability. This

could yield interesting gains for the reliability of mmWave systems. For future work, it

would interesting to develop learning models that can handle the dynamics of the envi-
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ronment, investigate the practical conditions under which the bijectiveness conditions are

violated, and design more efficient and practical labeling approaches to label blockage data.

Main Takeaways

What could be learned from the various discussions and experimental results in Chapters 2

and 3 is summarized in the following points:

1. Framework 1 emphasizes the value of ML, and especially deep learning, to large-

scale MIMO systems; it presents a good example on how ML can help a large-scale

MIMO system utilize its experiences, e.g., previously estimated uplink and downlink

channels, and overcome its channel-related challenges (see Chapter 1.2.1).

2. Although the discussion on deterministic channel prediction in Chapters 2.4 consid-

ers a “static communication environment,” the developed theoretical argument does

not explicitly depend on that assumption; the main condition for a channel-to-channel

prediction function to exist is the bijectiveness of one position-to-channel function

(Assumptions 1 and 2). If such condition is maintained in dynamic communication

environments (i.e., realistic wireless communication environments), the channel-to-

channel prediction function is expected to exist, and, hence, the task of predicting

channels from others degenerates to a problem of designing the right DNN to learn

that prediction function.

3. The experimental results in Chapter 2.7 points to an interesting conclusion regarding

the design of a DNN. One deep-enough fully-connected neural network architecture

could be designed to learn the channel-to-channel function in different communi-

cation environments with different large-scale MIMO system deployments, e.g., a

cell-free massive MIMO or co-located massive MIMO. The results suggest that the

architecture needs to be trained on a dataset from each environment.
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4. Transfer learning could be an effective approach to deal with the need to train one

DNN architecture to perform well in different communication environments. Al-

though it has not been investigated in Chapter 2.7, its benefits to adapting a DNN

to two different tasks in a communication environment have been studied in Chapter

3.8.6. The results encourage further investigation of transfer learning across different

environments.

5. Learning the channel-to-channel prediction function is very likely to be challenging

in dynamic communication environments (realistic communication settings). This

is suggested by the training results of Chapter 2.8; the proposed DNN can learn the

prediction function but with low fidelity. In fact, the fidelity issue gets exacerbated

with increased training, revealing an overfitting trend. This could be attributed to the

complexity of the time-varying prediction function, for the results of the bijectiveness

study in Appendix A indicate that for a dynamic communication environment similar

to that used in Chapter 2.8, channels of different users are likely to be bijective.

7.2 Framework 2: Statistical channel prediction:

In an effort to overcome the challenges associated with Framework 1 and highlighted

in Chapters 2.4.3 and 4.4, the statistical channel-prediction framework has been proposed

in Chapter 4. It aims to predict s summary statistic about the target downlink channels

using deep learning and the easy-to-acquire uplink channels. The summary statistic is

quantifies in thee form of a conditional downlink-channel covariance, conditioned on some

observed uplink channels. This covariance summarizes the large-scale fading behavior

of the wireless channel, which makes it sufficient to reduce the downlink channel- and

beam-training overheads. Such covariance represents an interesting and robust alternative

to predicting the downlink channels directly.

170



The covariance prediction task is addressed from two different perspectives in Chapter

4, supervised and unsupervised. The following two subsections provide a more pointy

discussion on the two.

Regression Approach

The supervised learning perspective presents a regression approach to tackle the covariance

prediction task. A theoretical argument for this approach is presented to formally establish

its premise. It states the conditions and the type of training loss under which regression

can asymptotically produce the sought-after conditional covariance. A solution based on

neural networks is, then, proposed to validate the argument empirically and study its con-

ditions. Using a communication scenario from the publicly available DeepMIMO dataset,

the regression solution is trained and tested under various settings. The experiments show

promising results that agree with the theoretical argument and emphasize the value of the

framework; for an uplink-to-downlink prediction task at the same basestation, the results

show a reduction of more than 85% of the channel-training overhead for a basestation with

64-antenna ULA. This is achieved while attaining more than 78% of the optimal perfor-

mance and with up to 4 multiplexed users. This good performance extends to noisy channel

conditions, where 85% overhead reduction could maintain∼90% of the perfect single-user

beamforming gain at a -10 dB SNR.

Clustering approach

The unsupervised learning perspective takes a clustering approach to the covariance pre-

diction task. The motivation behind it is rooted into the multi-ring channel model (referred

to as multi-channel cone model), which sees the wireless environment broken down into

multiple rings of scatters. Under that model, the clustering approach is formally shown

to be capable of predicting downlink covariances given that an ideal clustering function
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could be learned. Owing to the fact that the channel cones and their number are difficult

to characterize in a wireless environment, such function is difficult to learn in practice. An

alternative is to learn a sub-optimal (surrogate) clustering function, which could be empir-

ically shown to produce good performance. This is exactly what the experimental results

reported. Using the same DeepMIMO scenario used for the regression solution, the clus-

tering solution displays competitive performance. It achieves similar beamforming gain

and channel-estimation quality to those achieved by the regression solution. For instance,

it achieves more than 85% training-overhead reduction while attaining more than 78% of

the optimal performance and with up to 4 user. Lack of supervision in this approach, how-

ever, reflects on the performance. This could be seen in the case where the system operates

under a high-SNR regime; clustering is 8% behind the regression performance.

Overall, both approaches feature intriguing properties that could be the key to enabling

massive MIMO in real wireless environments. Using machine learning to enhance, not

replace, the classical system operation is an essential advantage to the statistical prediction

framework. It brings the best of the two worlds, signal processing and machine learning.

This leads to more robust operation and backward-compatible evolution. Another advan-

tage arises with the framework is the extra degree of freedom that manifests in the role of

downlink pilots. Varying the number of pilots provides some form of adaptability in the

system, which is helpful when dealing with the dynamics of the wireless environment.

Main Takeaways

The main outcomes of Chapter 4, especially when contrasted to the results in Chapters 2

and 3, are as follows:

1. Statistical channel prediction is an effective approach to alleviate the learning chal-

lenge associated with the time-vary nature of the channel-to-channel prediction func-

tion introduced in Chapter 2 and emphasized in the “Main Takeaway” list of Chapter

172



7.1. It overcomes that challenge by learning to predict a covariance of the target

channels conditioned on some observed channels. The advantage of such covariance

is that it is, to a large extent, time-invariant, and learning its prediction function could

be less challenging in practical communication environments.

2. Framework 2 trades off the learning complexity of a time-varying function for a

relatively small increase in channel-training overhead. This trade-off is illustrated

in the experimental results of Chapter 4.9; Framework 1 struggles to maintain sat-

isfactory channel estimation NMSE whereas Framework 2 could achieve an order

of magnitude smaller NMSE than that of Framework 1 using a fraction of the total

downlink training pilots needed for per-antenna training. The edge of Framework

2 over Framework 1 is further extended when user multiplexing is considered. The

average per-user spectral efficiency drops at somewhat exponential rate with respect

to number of users for Framework 1, but it maintains a close to optimal performance

with Framework 2 operating with light-weight downlink channel training.

3. From a ML perspective, learning the covariance prediction function with regression

is expected to be more challenging compared to clustering. This is a consequence of

two observations:

(a) Learning to uncover the channel clusters (channel cones) requires only the up-

link channels. Those channels are significantly easier to acquire compared to

downlink channels, making the development dataset of clustering easier to con-

struct as opposed to that of regression.

(b) Clustering produces a downlink channel covariance per cluster not per user po-

sition. This is advantageous for multiple users falling within the same channel

cone; they share the same scatterers, and, as such, their channel large-scale

statistics is expected to be the same, i.e., they have the same covariance.
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Note here that the clustering approach still requires the estimation of downlink chan-

nels to estimate the per-cluster covariances; however, different to the regression ap-

proach, those downlink channels need not be estimated for every uplink channel. The

wireless system have some room to pick when the downlink channels could be esti-

mated. For instance, a highly mobile user cannot contributed to a regression dataset

as the overhead of its downlink channel is prohibitive, yet it could easily contributed

to a clustering dataset.

4. Results in Chapter 4.9 may give the impression that regression is slightly better than

clustering, which could be deceiving. The apparent subtle edge regression gains over

clustering could be explained by the fact that regression follows a supervised learn-

ing paradigm, which is a well studied and understood paradigm in the ML commu-

nity. On the other hand, clustering follows a self-supervised or unsupervised learning

paradigms, which are far behind on the evolutionary scale of understanding in the ML

community compared to supervised learning—they have been gain more traction re-

cently, though.

5. Framework 2 is prone to catastrophic channel-subspace expansion which is not an

issue with Framework 1. When the channel cone widens (i.e, scatterer are widely

spread around a user), the downlink channel covariance is expected to have a high

rank (i.e., indicating large angle spread), and this defines an event referred to in

this dissertation as catastrophic channel-subspace expansion since the covariance is

unable to reduce the channel-training overhead significantly. Statistical channel pre-

diction aims to predict the downlink channel covariance, but it does not have a say in

its rank. Thus, in such event, the prediction of the downlink channel covariance may

not result in a meaningful reduction of the training overhead. This is not the case

for Framework 1 as it learns to predict the wireless channels directly and with zero
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training overhead.

7.3 Framework 3: Vision-aided wireless communications

ViWiComm presents a novel and unorthodox framework to deal with high-frequency

large-scale MIMO challenges. It recognizes and utilizes an interesting parallel between

computer vision and high-frequency communications, which is the reliance on LOS. This

parallel allows ViWiComm to tap into advances in deep learning and computer vision to

address challenges like beam prediction, beam tracking, and LOS-blockage prediction. The

parallel introduces new ML tasks, as well, that are not commonly known in classical fields

such as computer vision and NLP. The transmitter identification task in Chapter 6 is a

good example of that. The following two subsections summarize the discussions and main

takeaways of Chapters 5 and 6.

Vision-aided beam and blockage prediction

Using computer vision and deep learning to tackle beam and blockage prediction problems

is one promising approach to realize the potential of mmWave systems. The proposed solu-

tions has clearly shown that promise for the case of single-user communications. Utilizing

the strong correspondence between image classification and the tasks of beam prediction

and user detection, a state-of-the-art deep learning model, like ResNet-18, trained for image

classification could be fine-tuned to perform both tasks effectively. Both solutions need to

be further developed and studied for dynamic environments with multiple users; they pose

more difficult and realistic challenges to mmWave systems compared to those posed in the

single-user scenarios considered in Chapter 5. Overall, if the results of that chapter are any

indicator, vision-based approaches are definitely a strong contender for tackling problems

related to link-blockage and beam selection.
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Transmitter identification

Chapter 6 takes an important step towards addressing a critical concern about the practical-

ity of the ViWiComm framework in real multiuser communication settings. It does so by:

(i) defining the novel transmitter identification task, (ii) proposing a deep learning solution

to the task, and (iii) building a development and benchmarking dataset of data samples ob-

tained from real wireless environments. The development of the proposed DNN shows that

images and mmWave beams could complement each other in terms of the information they

convey about a wireless environment. The DNN utilizes those bimodal data to identify the

wireless transmitter, and in doing so, it achieves an error margin of 14%. Such result is a

clear indicator of the complemental nature of vision-wireless data, and it provides a vote of

confidence in ViWiComm as a novel framework to address real high-frequency large-scale

MIMO challenges.

The encouraging results reported in Chapter 6, however, should not deflect attention

from how difficult transmitter identification is. Considering the relatively small size of

the validation set compared to modern-day deep learning datasets, the 14% error margin

is not expected to hold up as more data samples are added—especially if those samples

are obtained using the same vision-wireless hardware but are coming for different wireless

environments; the small dataset may not include cases that test beam-resolution limitation

of the proposed identification approach. Beamforming codebooks, in general, have finite

number of beams, indicating that their beams have finite spatial resolution. The limited

resolution is a serious problem when two candidate transmitters fall within the same beam

sector. The proposed DNN, or any ML algorithm for that matter, may not be able to differ-

entiate those candidates using images and mmWave beams alone. Such limitation motivates

further research on how to improve the identification performance, in particular, on what

wireless data could be a better companion to the RGB images than mmWave beams. An
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answer could be found in sub-6 GHz channels, for they have two important features: (i)

they are common companions to mmWave channels or beams (see Chapters 3 and 5); and

(ii) sub-6 GHz channels are easier to obtain compared to mmWave channels or beams.

Main Takeaways

The main outcomes of Framework 3 can be summarized in the following points:

1. Framework 3 presents a new paradigm to wireless communications that could over-

come the challenges with LOS-related challenges in high-frequency large-scale MIMO.

It recognizes the fact that high-frequency communications are reliant on LOS much

as computer vision. Therefore, it proposes to leverage the advances in deep learning

and computer vision to equip high-frequency communication systems with a sense

of their surrounding.

2. The framework presents a new challenge from a ML perspective; in order to provide

a sense of surrounding to a wireless system, a ML algorithm needs to understand the

content of visual data from the perspective of a wireless system, i.e., wireless-based

scene understanding. This means the algorithm must be able to identify important

objects in the environment; understand their role in the environment (e.g., transmit-

ters, receivers, LOS blockages, signal scatterers, ...etc); and factor in the object type

and role in the decision making process.

3. The transmitter identification task, introduced in Chapter 6, is a good example of

a new ML challenge presented by Framework 3, and it is an approach to achieve

wireless-base scene understanding. The task cannot be performed using visual or

wireless data alone, and, as such, it mandates novel bimodal deep learning algorithms

that can learn cross-modality patterns.
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4. Transmitter identification in high-frequency large-scale MIMO system is not an easy

task given the spatial information beamforming provides. This is corroborated by the

experimental results of Chapter 6.6; they show that simple linear classifiers do not

provide satisfactory performance on identifying transmitters out of a set of detected

objects. This indicates that deep learning based algorithm are needed to effectively

learn the identification task.

5. Robust transmitter identification likely requires the pairing of MIMO wireless chan-

nels, not beamforming vectors, with visual data. It is true that beamforming vectors

encode explicit spatial information, yet they are limited by the size of the codebook

and the resolution of the realized beams. On the other hand, wireless channels, espe-

cially sub-6 GHz channels, are more descriptive than beamforming vectors, i.e., have

more information about signal propagation. Therefore, robust transmitter identifica-

tion is expected to require deep learning algorithms that learn jointly from visual and

sub-6 GHz MIMO channels.
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[114] A. Klautau, N. González-Prelcic, and R. W. Heath, “LIDAR Data for Deep
Learning-Based mmWave Beam-Selection,” IEEE Wireless Communications
Letters, vol. 8, no. 3, pp. 909–912, June 2019. [Online]. Available: https:
//www.lasse.ufpa.br/raymobtime/

[115] A. Ali, N. G. Prelcic, R. W. Heath, and A. Ghosh, “Leveraging Sensing at the In-
frastructure for mmWave Communication,” ArXiv, vol. abs/1911.09796, 2019.

187

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess1565.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess1565.pub2
https://github.com/malrabeiah/stat_ch_pred
https://github.com/malrabeiah/stat_ch_pred
https://www.lasse.ufpa.br/raymobtime/
https://www.lasse.ufpa.br/raymobtime/


[116] M. Alrabeiah, A. Hredzak, and A. Alkhateeb, “Millimeter wave base stations with
cameras: Vision-aided beam and blockage prediction,” in 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring). IEEE, 2020, pp. 1–5.

[117] [Online]. Available: http://www.viwi-dataset.net

[118] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep learning co-
ordinated beamforming for highly-mobile millimeter wave systems,” IEEE Access,
vol. 6, pp. 37 328–37 348, 2018.

[119] V. M. De Pinho, M. L. R. De Campos, L. U. Garcia, and D. Popescu, “Vision-Aided
Radio: User Identity Match in Radio and Video Domains Using Machine Learning,”
IEEE Access, vol. 8, pp. 209 619–209 629, 2020.

[120] H. Zou, J. Yang, H. Prasanna Das, H. Liu, Y. Zhou, and C. J. Spanos, “WiFi and vi-
sion multimodal learning for accurate and robust device-free human activity recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 0–0.

[121] M. Zhao, T. Li, M. Abu Alsheikh, Y. Tian, H. Zhao, A. Torralba, and D. Katabi,
“Through-wall human pose estimation using radio signals,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7356–
7365.

[122] T. Li, L. Fan, M. Zhao, Y. Liu, and D. Katabi, “Making the invisible visible: Action
recognition through walls and occlusions,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 872–881.

[123] A. Alahi, A. Haque, and L. Fei-Fei, “RGB-W: When Vision Meets Wireless,” in
2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 3289–
3297.

[124] A. Alkhateeb, G. Leus, and R. W. Heath, “Limited Feedback Hybrid Precoding for
Multi-User Millimeter Wave Systems,” IEEE Transactions on Wireless Communica-
tions, vol. 14, no. 11, pp. 6481–6494, 2015.

[125] T. Moon, J. Gaun, and H. Hassanieh, “Online Millimeter Wave Phased Array Cal-
ibration Based on Channel Estimation,” in 2019 IEEE 37th VLSI Test Symposium
(VTS), 2019, pp. 1–6.

[126] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–
7271.

[127] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1440–1448.

[128] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” in European confer-
ence on computer vision. Springer, 2014, pp. 740–755.

188

http://www.viwi-dataset.net


APPENDIX A

BIJECTIVENESS OF CHANNEL-TO-POSITION FUNCTION

189



Basestation

All vehicles are 
moving scatterers

User 1

Basestation

All vehicles are 
moving scatterers

User 1 User 2 User 3 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.008 0.030 0.842

0.026 0.007 0.843

0.156 0.021 0.009

0.2

0.4

0.6

0.80.010 0.924 0.743

0.044 0.006 0.006

0.851 0.883 0.012

Channels

Su
bs

pa
ce

User 1

User 2

User 3

User 1 User 2 User 3

Channels

User 1 User 2 User 3

Su
bs

pa
ce

User 1

User 2

User 3

User 2 User 3

(a) (b)

Figure A.1: (a) Top-views of from the “O2 dyn 3p4” scenario showing the positions of
selected users and basestation. (b) two heat-maps for the NMSE of the three users and their
subspaces.

Despite the fact that I do not have a mathematical proof for its existence, I think bijec-
tiveness is a reasonable assumption for two reasons, which I explore below.

A.1 Empirical Study:

I have developed an empirical study to measure bijectiveness in realistic wireless en-
vironments (whether with stationary or dynamic scatterers). That study is inspired by the
work on joint spatial division and multiplexing in [47] The authors there posit that the
massive MIMO M -dimensional channel vector of a user is very likely to have a low di-
mensional structure, i.e., lives in a low-dimensional subspace in the M -dimensional vector
space. They verify that proposition in their experimental results by showing that a 128
dimensional channel vector could be estimated using the channel covariance and 30 to 40
pilots—as briefly discussed in Comment 2.

Proposed measure of bijectiveness:

Given their findings, I think a good measure of bijectiveness (a soft measure) could be
obtained by identifying channel subspaces for different users and measuring how much
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Figure A.2: (a) A schematic of the lab where the real channel measurements are collected
showing the positions of the users and the basestation. (b) a heatmap for the NMSE of the
three users and their subspaces.

overlap there is between those subspaces. This overlap is measured using the following
four steps:

1. For the u-th user at position xu ∈ R3, estimate its channel covariance using N chan-
nel samples

Cu =
1

N − 1

N∑
n=1

(
h(u)
n − µ

) (
h(u)
n − µ

)H
, (A.1)

where h
(u)
u ∈ CM×1 is the n-th channel vector of the u-th user at all M basestation

antennas, and µ = (1/N)
∑N

n=1 h
(u)
n is the estimated channel mean.

2. Apply eigen-decomposition on the covariance Cu, and identify the 99%-energy sub-
space. This is done by sorting the eigne values in a descending order and finding the
r(< M) eigen-values that satisfy∑r

m=1 λm∑M
m=1 λm

≥ 0.99, (A.2)

where λm is the m-th eigen-value. The eigen-vectors associated with the r eigne-
values define the basis matrix Ṽu ∈ CM×r of the 99%-subspace of user u.

3. For another u′-th user at a different position xu′ ∈ R3 in the same wireless environ-
ment, project its N channels—assuming the same number of channel samples to that
of the u-th user—onto the subspace defined by Ṽu. Formally, this is given by

h̃(u′)
n = ṼuṼ

H
u h(u′)

n . (A.3)

4. Compute the average Normalized Mean Squared Error (NMSE) between projected
channels and original ones as follows

NMSE =
1

N

N∑
n=1

||h̃(u′)
n − h

(u′)
n ||22

||h̃(u′)
n ||22

. (A.4)
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where ||.||2 is the Euclidean norm.

The NMSE in Equation A.4 could serve as a measure of how similar the channels of user
u′ at position xu′ to those of user u at position xu, i.e., measuring how much overlap there
is between the channel subspaces of the two users. When the NMSE is quite large, it, then,
points to the likelihood that the channels of user u are quite different from those of user u′.
It is important to note here that this measure of bijectivenes is not claimed to be definitive.
It rather provides a sense of how different the channels of two users are.

Experimental settings and findings:

To perform my study, I collect two different sets of channels, namely D1 and D2. The
first has synthetic channels obtained from a DeepMIMO scenario while the other has real
channel measurements obtained in the lab. The DeepMIMO “O2 dyn 3p4” scenario is
used, which represents a wireless environment with dynamic scatterers and stationary users
and basestation. The scenario deploys a basestation with 64-element Uniform Linear Array
(ULA) operating at 3.4 GHz and has a grid of 760 users that are uniformly spaced (2
meters between any two users). Two top-views from that scenario are shown in Figure
A.1-(a). The other set of channels (D2) is constructed of channels obtained in an indoor
environment. The basestation in this case deploys 4-element ULA and 64 subcarriers, and
the user assumes one of three position that are 2 meters apart, see Figure A.2-(a).

Using the two sets, I apply the proposed measure in Section A.1 and plot the results
in the form of error heatmaps as shown in Figures A.1-(b) and A.2-(b). The heatmaps, in
general, show some interesting results. Using the synthetic data, the top heatmap in Figure
A.1-(b) shows that channels of the three users should be very different. For example,
User 1 subspace, which has a rank of r = 9, achieves 0.01 NMSE with its own channels
(projecting its own channels onto its 99%-subspace) while it achieves NMSE of 0.74 with
User 3. This suggests that User 1’s channels live in a different subspace to that of User 2
and 3. However, the subspace of User 2, which has a rank of r = 29, records the same
NMSE with User 3 to that of its own channels, i.e., NMSE = 0.006. For this specific case,
the two users’ channels should not be expected to be quite. different. Similar results are
expected to be obtained with real channel measurements, and this is due to the heatmap
shown in Figure A.2-(b). Overall, it indicates that users’ channels have some differences,
yet they are not quite as distinct as the differences observed in Figure A.1. This could be
attributed to several factors, three of the most important ones are:

1. The nature of the wireless environment. One is an indoor environments while the
other is outdoor.

2. The nature of the two datasets D1 and D2. The former has synthetic data samples
while the other has real measurements.

3. The spacing between the users in the two figures. The indoor environment does not
allow for wide spacing such as that in the outdoor environment. Maximum distance
between two users is ≈ 5 m in the lab.
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This appendix attempts to present a couple of notes on the relation between coher-
ence time and bandwidth and the proposed deterministic- and statistical-channel prediction
frameworks. Both are general in the sense that they transcend the concepts of coherence
time or bandwidth. I will try to explain this in the following.

B.1 Coherence time

The deterministic channel prediction framework is general in the sense that it applies
equally to stationary wireless environments (i.e., static scatterers and users) and dynamic
ones (i.e., moving scatterers and users). For stationary environments, the wireless channel
between a user at a certain position and a set of antennas does not change over time (i.e., it
is time invariant). Hence, the change in the channel is completely defined by the user and
antenna set positions in the environment, and this is captured in the deterministic channel-
prediction framework, see Section 2.4 in the comprehensive monograph. For dynamic
environments, the bijectiveness assumption could be extended to time-varying channels; if
the position-to-channel function (Equation 2.3, Section 2.4.2 in the monograph) remains
bijective over time, the essence of deterministic channel prediction holds, and at any time
instance t, the channel-to-channel function (Equation 2.6, Proposition 1 in the monograph)
could be shown to exist. Hence, one could say that the deterministic prediction framework
is not restricted by coherence time.

Similar thing could be said about the statistical channel prediction framework, for it,
in essence, attempts to learn a conditional covariance (Equation 4.4, Section 4.5.1 in the
monograph) that characterizes the large-scale statistics (large-scale fading) of the channel
between a user and a set of antennas [47]. Such large-scale statistics are not restricted by
coherence time.

B.2 Coherence bandwidth

Whether we assume a stationary or a dynamic environment, deterministic channel pre-
diction targets learning the channel-to-channel function (Equation 2.6, Proposition 1 in
the monograph) that governs the relation between two sets of channels. The target function
could be broken down into two components. The first component is the channel-to-position
function (Equation 2.5, Section 2.4.2 in the monograph) which describes the relation be-
tween the observed channel at the first set of antennas and frequency f1 and a user at some
position xu. The second component is the position-to-channel (Equation 2.4, Section 2.4.2
in the monograph) function describing the relation between the same user position and the
channel at the second set of antennas and another frequency f2. Both components are func-
tions of their own channel parameters like positions, delays, paths, angles, path gains,..etc.
Hence, learning the composition function means that the machine learning algorithm im-
plicitly models the two components, and by doing so, the algorithm learns the environment
response to signals propagating at two different frequencies, i.e., f1 and f2. This indicates
that the algorithm is not restricted by the coherence bandwidth at either of the two fre-
quencies. A good evidence for that is the study case presented in Chapter 3 on predicting
mmWave beams from sub-6 GHz channels. As for the statistical prediction framework,
it learns large-scale statistics of the channel between a user and a set of antennas, and,
therefore, it is not restricted by coherence bandwidth.
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APPENDIX C

RELATION BETWEEN SAMPLE COVARIANCE AND CONDITIONAL
COVARIANCE
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When µhDL|hUL = 0, the conditional covariance defined in 4.4 could be decomposed
into real and imaginary parts as follows

C = Cr + jCim, (C.1)

where:

Cr =

 E[(hr1)2] . . . E[hr1h
r
M2

] + E[him1 himM2
]

... . . . ...
E[hr1h

r
M2

] + E[him1 himM2
] . . . E[(hrM2

)2]

 (C.2)

Cim =

 E[(him1 )2] . . . E[him1 hrM2
]− E[hr1h

im
M2

]
... . . . ...

E[him1 hrM2
]− E[hr1h

im
M2

] . . . E[(hrM2
)2]

 . (C.3)

On the other hand, the conditional sample covariance could be expanded as follows

E[Cs|h̃UL] =



E[(hr1)2] . . . E[hr1h
r
M2

] E[hr1h
im
1 ] . . . E[hr1h

im
M2

]
... . . . ...

... . . . ...
E[hrM2

hr1] . . . E[(hrM2
)2] E[hrM2

him1 ] . . . E[hrM2
himM2

]
E[him1 hr1] . . . E[him1 hrM2

] E[(him1 )2] . . . E[him1 himM2
]

... . . . ...
... . . . ...

E[himM2
hr1] . . . E[himM2

hrM2
] E[himM2

him1 ] . . . E[(himM2
)2],


(C.4)

given that µh̃DL|h̃UL = 0, as well. From (C.2), (C.3), and (C.4), one could readily see that
every element in both Cr and Cim could be constructed from those of E[Cs|h̃UL].
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