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ABSTRACT  

   

Resistive random-access memory (RRAM) or memristor, is an emerging 

technology used in neuromorphic computing to exceed the traditional von Neumann 

obstacle by merging the processing and memory units. Two-dimensional (2D) materials 

with non-volatile switching behavior can be used as the switching layer of RRAMs, 

exhibiting superior behavior compared to conventional oxide-based RRAMs. The use of 

2D materials allows scaling the resistive switching layer thickness to sub-nanometer 

dimensions enabling devices to operate with low switching voltages and high programming 

speeds, offering large improvements in efficiency and performance as well as ultra-dense 

integration.  

This dissertation presents an extensive study of linear and logistic regression 

algorithms implemented with 1-transistor-1-resistor (1T1R) memristor crossbars arrays. 

For this task, a simulation platform is used that wraps circuit-level simulations of 1T1R 

crossbars and physics-based model of RRAM to elucidate the impact of device variability 

on algorithm accuracy, convergence rate, and precision. Moreover, a smart pulsing strategy 

is proposed for the practical implementation of synaptic weight updates that can accelerate 

training in real crossbar architectures.  

Next, this dissertation reports on the hardware implementation of analog dot-

product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This 

extends beyond previous work that studied isolated device characteristics towards the 

application of analog neural network accelerators based on 2D memristor arrays. The 

wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-

grown few-layer h-BN films. The dot-product operation shows excellent linearity and 
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repeatability, with low read energy consumption, with minimal error and deviation over 

various measurement cycles. Moreover, the successful implementation of a stochastic 

linear and logistic regression algorithm in 2D h-BN memristor hardware is presented for 

the classification of noisy images. Additionally, the electrical performance of novel 2D h-

BN memristor for SNN applications is extensively investigated. Then, using the 

experimental behavior of the h-BN memristor as the artificial synapse, an unsupervised 

spiking neural network (SNN) is simulated for the image classification task. A novel and 

simple Spike-Timing-Dependent-Plasticity (STDP)-based dropout technique is presented 

to enhance the recognition task of the h-BN memristor-based SNN.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

A study presented that the computer consumption used by the largest artificial 

intelligence (AI) training is doubling every few months compared to the Moore’s law 

scaling, doubling every two years (Sarker). Modern digital computers, following von 

Neumann architecture, use a lot of power, making them an unsustainable platform for 

artificial intelligence applications. Due to the physical separation between the processing 

unit and the memory unit, which causes high power consumption, processors are required 

to spend the majority of their time transporting data between the two units (Sarker). 

Therefore, it is important to find alternative solutions.  

A solution is brain-inspired computing also known as neuromorphic computing. 

The brain is highly functional and power-efficient, prompting scientists to look for ways 

to model data storage and processing after its fundamental principles (Sarker; Montesinos 

López et al.). The term "neuromorphic" refers to an architecture that draws inspiration from 

the human brain. It employs a number of methods similar to those found in the brain, such 

as combining memory and processing units in one location to maximize parallelism or 

using spike-based data that is resistant to noise found in nature (Montesinos López et al.). 

Figure 1.1a shows the architecture of von Neumann computing system compared to 

neuromorphic computing system in Figure 1.1b. 
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Numerous innovative technologies that draw inspiration from biology can act as 

synapses in neuromorphic computing (Khan). One of the fundamental technologies for 

implementing the neuromorphic computer system is the developing analog-type resistive 

switching memory (RSM) which enables in-memory architecture (Khan). RSM is a two-

terminal nonvolatile memory device that has the ability for analog programmability. It 

stores data in the form of various conductance levels (Khan). These devices can act as 

synaptic weights to simultaneously store and process input signals (Jo et al.). 

RSM can perform vector matrix multiplication (VMM) in a single step by 

measuring the cumulative output current using Ohm’s law and Kirchhoff’s law, resulting 

in high parallelism (Yao et al.). Analog RSM provides many advantages over conventional 

memory technologies like static random-access memory (SRAM) (Y.-H. Chen et al.) and 

Flash (Zhao et al.). Although SRAM technology is quick and has a developed 

manufacturing process due to CMOS scaling down, large-scale SRAM arrays are not 

Figure 1.1. (a) von Neumann computing system, (b) neuromorphic computing system (del 

Valle et al.). 
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desirable due to their poor area efficiency and high standby power (Burr et al.). Flash 

technology is a type of nonvolatile memory that exhibits analog programmability (Merrikh-

Bayat et al.). Table 1.1 compares the performance metrics of RSM device with Flash and 

SRAM (B. Li et al.). However, analog RSMs exhibit better switching speed, lower 

programming voltage, and higher endurance capacity when compared to Flash technology 

(Lee et al.). Therefore, RSM with such superior properties can benefit neuromorphic 

computing and significantly improve area efficiency. 

Table 1.1 RSM metrics compared to conventional memory. 

Compared to conventional digital memory circuits, resistive random-access 

memory (RRAM or memristor) technology, a subset of RSM, is a great candidate for 

nonvolatile memory (NVM) due to its low power consumption, excellent scalability, high-

speed functionality, CMOS compatibility, and analog programmability (i.e., the ability to 

retain analog values) (Prakash et al.; Wong et al.). Memristors are typically two-terminal 

devices made up of two metal layers with an insulating or switching layer (such as an 

oxide) sandwiched in between (Wong et al.). If we consider RRAM as a binary device for 

NVM applications, these devices can be programmed into either a low resistance state 

(LRS) or a high resistance state (HRS) (Wong et al.). Furthermore, programming a 

continuous range of states is essential for neuromorphic architectures and RRAM analog-

based implementations of in-memory computing. RRAM for NVM has also been used to 

Technology RSM SRAM Flash (NOR) 

Non-volatility Yes       No       Yes 

Cell size (F2) ≤ 2 > 100 10 

Write energy (pJ/bit) ~10
-13

 ~10
-15

 ~10
-10

 

Read time (ns) <10 1-3 10 

Write time (ns) <10 1-3 1000 

Retention 10 years 5.4 years 10 years 

Endurance (cycles) 10
12

 > 10
16

 10
5
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show multistate storage properties (Patel et al.). The formation and rupture of conductive 

filaments inside the cell's oxide/switching layer allow for the programming of various 

resistance states (Patel et al.). The stochastic nature of conductive filament activity 

introduces variability, programming abruptness, and non-linearity, which may present a 

significant challenge for machine learning applications using RRAM devices (Zhao et al.). 

As presented in (Zhao et al.), the basic reliability metrics relate to endurance, retention, 

noise, and write/read disturbs. Other reliability metrics, referred to as "functional" 

reliability metrics, include non-linearity, variability, dynamic range, precision, variation, 

asymmetry, and so on (Zhao et al.). These metrics directly affect the accuracy of 

neuromorphic computing (Zhao et al.). In the first section of this study, we concentrate on 

another functional reliability issue, namely, the variability in RRAM features, and its 

effects on gradient descent-based neural network training (convergence rate, accuracy, and 

precision). 

In recent years, researchers have discovered that a number of 2D materials also 

exhibit memristive phenomena, expanding the category of non-volatile resistive switching 

materials to include a vast array of ultrathin layered crystalline films (R. Ge et al.; Rehman 

et al.; Pradhan et al.). These 2D memristors can help alleviate some of the non-

idealities of oxide-based RRAM (Kumar et al.). For example, the layered structure 

of 2D materials could help minimize variation in resistive switching layer thickness 

to provide a more robust implementation of STDP (Chaudhuri and Chakrabarty). 

Moreover, compared to oxide-based RRAM, synaptic change occurs in confined and 

chemically stable defects surrounded by crystalline h-BN (Kumar et al.). Other 

factors that can further help enhance the energy efficiency of SNN are the low 
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programming voltages (J. Ge et al.) and fast switching speeds (Zhu, Liang, et al.; 

Wu et al.) of 2D-material-based memristors. A characteristic 2D insulator known as 

hexagonal boron nitride (h-BN) has been shown to exhibit resistive switching behavior in 

multilayer nanosheets (C. Pan et al.). These 2D-based memristors have characteristics such 

as forming-free operation, high on/off ratio (>106), quick switching speed (20 ns), and low 

switching voltage (1 V). In the second section of this research, the first-ever demonstration 

of machine learning algorithms has been done using novel h-BN 2D-based memristor 

arrays. 

1.2 Overview of Artificial Neural Networks 

Artificial intelligence (AI) has a branch called machine learning that allows 

computers to learn from data on their own and get better over time. To do this, machine 

learning models are trained on big datasets and given time to discover patterns and 

connections in the data. Following this learning, the models can use raw data to generate 

predictions or judgments (Sarker). Artificial neural networks (ANNs) are a type of machine 

learning technique that is loosely modeled after the structure and function of the human 

brain. ANNs consist of layers of interconnected nodes, also known as neurons, that process 

information and learn to recognize patterns in input data (Montesinos López et al.).  ANNs 

are capable of learning complex, non-linear relationships between inputs and outputs, and 

therefore, can simulate non-linear systems (Waterworth and Lees). For example, in drug 

discovery, the relationship between a molecule's structure and its activity against a 

particular target may be highly non-linear, making it difficult to predict using conventional 
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linear models. ANNs are able to capture this non-linearity, enabling more accurate 

predictions (Jiménez-Luna et al.).  

The applications of ANNs are vast and diverse, and span a variety of industries and 

domains. ANNs are used extensively in image recognition applications such as facial 

recognition and object detection (Khan). ANNs are also used for speech recognition 

applications, such as voice-activated assistants like Siri and Alexa. In a study by Yasar et 

al., an ANN-based approach was employed for the classification of Parkinson's disease 

using speech signals (Yasar et al.). Moreover, ANNs are used for natural language 

processing applications such as sentiment analysis and machine translation. An ANN-

based methodology was utilized in a study to analyze the sentiment of internet reviews 

(Niharika and Malhotra). In addition, ANNs are employed for financial forecasting 

applications such as stock market prediction and fraud detection. In a study published in 

ACM Southeast Conference, an ANN-based stock price prediction and trading system was 

developed which achieve comparable results against the Buy and Hold approach (Sezer et 

al.). Moreover, ANN is widely used in healthcare applications such as disease diagnosis 

and drug discovery. Wang et al. demonstrated that ANN models can increase the efficacy 

and precision of tumor image segmentation (Wang et al.). In a review study, ANN-based 

pharmaceutical research such as drug modeling, analytical data analysis, protein structure 

and function, dosage optimization and manufacturing have been discussed (Sutariya et al.). 

These are only a few examples of the numerous uses for ANNs in various industries. Future 

applications of ANNs are likely to be much more inventive as technology develops. 

Artificial neural networks (ANNs) learn through a process called training, which 

involves adjusting the weights and biases of the neurons in the network based on a set of 
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input-output pairs. There are several types of learning algorithms used in ANNs, but one 

of the most common is called backpropagation (Nigrin). In backpropagation, the network 

is first fed a set of inputs, and the output is calculated using the current weights and biases 

of the neurons. The output is then compared to the desired output, and an error signal is 

calculated. The error signal represents the difference between the predicted output and the 

desired output (Nigrin). The error signal is then propagated back through the network, and 

the weights and biases of the neurons are adjusted based on the magnitude and direction of 

the error signal. This process is repeated for many input-output pairs, gradually adjusting 

the weights and biases of the neurons until the network is able to accurately predict outputs 

for a given set of inputs. The learning process in ANNs is often iterative, meaning that the 

network is trained using a subset of the available data, and then tested on a separate subset 

of data to evaluate its performance. If the network's performance is not satisfactory, the 

Figure 1.2. A biological neuron compared to an artificial neuron: (a) human neuron, (b) 

mathematical model for artificial neuron, (c) ANN model (Meng et al.). 
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weights and biases are further adjusted, and the training process is repeated (Nigrin). It is 

important to note that the success of an ANN's learning depends on a number of factors, 

including the size and complexity of the network, the quality and quantity of the training 

data, and the choice of learning algorithm. But with careful design and training, ANNs can 

be highly effective at learning from data and making accurate predictions (Schmidhuber). 

An artificial neuron, also known as a perceptron, is a basic unit of computation in 

an artificial neural network allowing them to perform complex computations and learn 

from data. It is a mathematical function that takes inputs, performs a set of calculations on 

those inputs, and produces an output. The inputs to an artificial neuron are typically real-

valued numbers, and each input is assigned a weight that reflects its importance in the 

calculation. The neuron also has a bias term, which is a constant value that is added to the 

weighted sum of the inputs before being passed through an activation function 

(Schmidhuber; Rosenblatt). The activation function is a non-linear function that determines 

the output of the neuron. There are several types of activation functions used in ANNs, 

such as the sigmoid, ReLU, and tanh functions. The output of an artificial neuron is then 

passed on to the next layer of neurons in the network, or it may be the final output of the 

network if it is a single-layer perceptron. Figure 1.2a and 1.2b show a biological neuron in 

comparison to an artificial neuron. Figure 1.2c shows an artificial neural network with two 

hidden layers (Meng et al.).  
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Deep learning algorithms based on artificial neural networks require enormous 

matrix operations and are often trained on large datasets containing millions or billions of 

data points. This means that the matrix operations involved in training the model need to 

be performed many times, which can be very computationally intensive. As a result, 

training deep learning models often requires specialized hardware for edge application, 

such as graphics processing units (GPUs) or tensor processing units (TPUs), that can 

perform large-scale matrix operations efficiently (Taher; Strubell et al.; Sun and Kist; 

Hosseininoorbin et al.). Figure 1.3 shows a significant increase in computational power 

demand over the past 40 years measured in petaFLOPS days (Mehonic and Kenyon). From 

1970 until 2012, the demand for computing power doubled every 24 months. However, in 

more recent times, this doubling has occurred at a much faster rate, approximately every 2 

months (Mehonic and Kenyon). The same study demonstrates that training costs have 

Figure 1.3. Increase in the demand for computing power measured in petaFLOPS days 

(Mehonic and Kenyon). 
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climbed exponentially over the past decade and that hardware demand has increased more 

than 300 times between 2016 and 2021 (Mehonic and Kenyon). With all of them, it is clear 

that the conventional CMOS technology is not sustainable. 

Neuromorphic computing has emerged as a potential solution to the challenges 

posed by the end of Moore's Law. As the traditional computing paradigm reaches its limits 

in terms of speed and energy efficiency, neuromorphic computing offers an alternative 

approach that is modeled after the human brain. Instead of relying on a central processing 

unit (CPU) and sequential processing of instructions, neuromorphic computing utilizes 

networks of artificial neurons and synapses that are designed to mimic the behavior of 

biological neurons. These networks can process information in parallel and adapt to new 

data, making them well-suited for tasks such as pattern recognition and decision-making 

(Christensen et al.). Even though neuromorphic computing has the potential to offer 

significant improvements in energy efficiency and processing speed, there are still many 

challenges to overcome in terms of hardware design and programming paradigms before 

neuromorphic computing can become a mainstream technology. 

1.3 Overview of Neuromorphic Computing 

Despite remarkable advancements in ANNs, biological neural networks 

continue to outperform ANNs in terms of energy efficiency and capabilities for 

online learning. The brain consumes only ~20 W despite containing 109 neurons and 

1013 synapses (Sandberg). Since the brain is highly functional and power-efficient, 

scientists have been looking for ways to store and process data fundamentally differently 

by modeling the brain. Von Neumann architecture, which is the dominant architecture used 
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in conventional computers, separates memory and processing units and operates by 

manipulating data stored in memory using a central processing unit (CPU) through a 

sequential sequence of instructions. While this approach is highly flexible and suitable for 

a wide range of computing tasks, it can also be highly inefficient when dealing with certain 

types of data-intensive and computationally complex tasks, such as deep learning. 

Neuromorphic computing, on the other hand, is a field of computer engineering that 

is inspired by the structure and function of the human brain, and it aims to develop 

computing systems that can process information in a more efficient and brain-like way. 

Neuromorphic computing has the potential to address the high computational demands of 

deep learning and other complex machine learning tasks. This is achieved by mimicking 

the neural networks and synapses of the brain, which are capable of processing large 

amounts of data in parallel with high accuracy, computational, and power efficiency. The 

term "neuromorphic" refers to a hardware architecture that draws inspiration from the 

human brain. It employs a number of methods similar to those found in the brain, such as 

combining memory and processing units in one location to maximize parallelism or using 

spike-based data that is resistant to noise found in nature (Mehonic and Kenyon). Figure 

1.4a shows the architecture of the von-Neumann computing system compared to the 

neuromorphic computing system in Figure 1.4b (Zhang et al.). As observed in Figure 1.4a, 

the central processing unit (CPU) and memory unit are separated in von-Neumann design, 

coupled by a bus, and connected to external input and output devices. The CPU itself 

consists of various units such as the control unit, logic/arithmetic unit, and registers. The 
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CPU fetches data and instruction from the memory unit, and after processing, the results 

are stored back into the memory unit. The fetch/storage of data between memory unit and 

CPU is the main bottleneck of power consumption in modern digital computers. On the 

other hand, in neuromorphic architecture, hardware that mimics brain structure, parallel 

computation and memory units are governed by neurons and synapses. Synaptic weights 

are used to connect each nearby input and output neuron, and simple vector matrix 

multiplication (VMM) computations are carried out. Compared to von-Neumann 

processors with explicit instructions, programs in the neuromorphic model are defined by 

neural network structures and their parameters.    

Figure 1.4. (a) Memory bottleneck in von Neumann architecture, (b) computing paradigm 

in von Neumann architecture when data are fetched from or stored to memory, (c) neuro-

inspired architecture, (d) computing paradigm in neuro-inspired computing architecture 

(Zhang et al.). 
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Moreover, neuromorphic computing systems can be designed to be more fault-

tolerant and adaptable than traditional computing systems. This is because they can 

reconfigure their connectivity and processing resources in response to changing inputs or 

environmental conditions, much like the brain adapts to new situations (Davies et al.). 

Researchers are currently exploring a variety of hardware and software architectures for 

neuromorphic computing, including spiking neural networks, memristor-based systems, 

and field-programmable gate arrays (FPGAs) (“Beyond von Neumann”; Indiveri et al.; 

Merolla et al.). 

1.4 Overview of Memristors as Synapses in Neuromorphic Computing 

Resistive Random Access Memory (RRAM), also known as memristor, is a type 

of non-volatile memory that operates based on resistance switching of a thin film between 

two metal electrodes. The term "memristor" was first coined in 1971 by Leon Chua, a 

professor at the University of California, Berkeley, to describe a hypothetical fourth 

fundamental circuit element alongside the resistor, capacitor, and inductor (Chua). 

Memristor has been the subject of much research and development in recent years because 

of its promising properties, including high density, low power consumption, and fast 

switching speeds (Ielmini; F. Pan et al.).  

Memristors have been demonstrated to have potential for use in a variety of 

applications, including analog circuits, digital memory, and neural networks (F. Pan et al.). 

In recent years, memristors have received increasing attention as a promising technology 

for brain-inspired computing, due to their ability to emulate the synaptic plasticity and 

dynamics of biological synapses (F. Pan et al.). 
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Memristor operates by utilizing a thin film of a material, typically an oxide, 

sandwiched between two metal electrodes. The oxide film is initially in a high resistance 

state (HRS) but can be switched to a low resistance state (LRS) by applying a voltage or 

current pulse. The resistance of the oxide film can then be read by applying a small voltage 

to the electrodes, which produces a measurable current. Memristors operate by utilizing 

'set' and 'reset' processes to change the resistance state of a memory cell. During the "set" 

operation, a voltage is applied to the RRAM cell which causes the formation of a 

conductive filament or pathway within the insulating layer, resulting in a low resistance 

state. This low resistance state is often referred to as the "ON" state. During the "reset" 

operation, a voltage is applied in the opposite direction, which causes the filament or 

pathway to break down, returning the RRAM cell to its high resistance state. This high 

resistance state is often referred to as the "OFF" state. The ability to switch between the 

ON and OFF states is what allows RRAM to function as a memory device. The resistance 

values of the ON and OFF states can be used to represent binary values, with the ON state 

representing a "1" and the OFF state representing a "0" (YingTao Li et al.). Figure 1.5. 

shows the set /reset operations performed in oxide-based RRAM by formation and rupture 

of conductive filament (CF) (Ambrosi et al.).  

RRAM can be divided into the following two categories based on the nature of the 

conductive filament: (i) Conductive bridge random access memory (CBRAM), also 

referred to as electrochemical metallization memory (ECM), which is based on metal ions; 

and (ii) oxygen vacancies filament-based RRAM (OxRRAM), also known as valence 

change memory (VCM), which is based on oxygen vacancies filaments (Zahoor et al.). 
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RRAM has several advantages over other non-volatile memory technologies, such 

as Flash and Static Random Access Memory (SRAM). RRAM has a higher density than 

Flash, due to its smaller cell size and ability to stack multiple layers of memory cells. 

RRAM also has a lower power consumption than Flash and SRAM, due to its low operating 

voltage and ability to operate with low write currents. Additionally, RRAM has a faster 

switching speed than Flash and SRAM, due to its simpler write and read operations. 

Moreover, RRAM can perform vector matrix multiplication (VMM) in a single step by 

measuring the cumulative output current using Ohm’s law and Kirchhoff’s law, which 

results in high parallelism as shown in Figure 1.6. Therefore, RRAM with such superior 

properties can benefit neuromorphic computing.  

Recently, RRAM neuromorphic chips have shown improved performance 

compared to conventional digital neuromorphic computing (Zhang et al.). Four important 

benchmarking measures are used to assess the performance of the neuromorphic chips 

(Zhang et al.): (i) Computation density, defined as the chip’s efficiency. (ii) Power 

efficiency, an important factor in overcoming the power consumption gap between 

Figure 1.5. Set/reset operations in the RRAM device. By set process, device goes from 

HRS to LRS by forming conductive filament connecting the top electrode and the bottom 

electrode. In reset process the conductive filament is ruptured, and device goes to HRS. 
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biological brains and neuromorphic systems. (iii) Computation accuracy, which is 

impacted by imperfections in the hardware, such as thermal noise or reliability problems. 

Consequently, hardware accuracy is lower than simulation. (iv) The ability to learn: In 

most conventional chips, learning is carried out in the cloud, and learned parameters are 

transferred to edge devices. On-chip learning is necessary, nevertheless, for security, quick 

adaptation, and occasionally customization (Zhang et al.). 

Figure 1.7a shows improved computing densities for ANN and spiking neural 

network (SNN) chips based on RRAM technologies compared to CMOS-based 

neuromorphic chips. Additionally, in Figure 1.7b, we see improvement for RRAM-based 

neuromorphic chips in terms of synaptic operation energy (Zhang et al.).  

There are also a few application-dependent device metric requirements for RRAMs 

that affect the learning accuracy of artificial neural networks (Zhang et al.), including the 

number of analog states (the weight tuning precision), on/off ratio (dynamic range), 

Figure 1.6. In-memory computing with RRAM. RRAM (i) combines analog computing and 

data storage at the device level, (ii) use RRAM conductance as analog synaptic weights, 

and (iii) One-step vector matrix multiplication using Ohm’s law and Kirchhoff’s law. 
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linearity (conductance tuning linearity), asymmetry/abruptness (the trajectory of the weight 

increase/decrease process), endurance, retention, and yield (Zhang et al.). RRAM hardware 

can store more than just binary data because it can have many analog states. They can 

therefore be utilized in systems like artificial intelligence and neuromorphic computing. 

Moreover, they frequently have a high on/off ratio, which means that there is a substantial 

difference in the resistance of the device between its on and off states. They are therefore 

advantageous for uses like sensing and communications that demand high signal-to-noise 

ratios. The ability of RRAM devices to provide a linear output in response to a linear input 

is referred to as linearity. For applications such as digital-to-analog converters, RRAM 

devices are helpful because they often display strong linearity. The ability of RRAM 

devices to switch smoothly between their on and off states is referred to as their asymmetry 

or abruptness. The ideal transition between these states for RRAM devices should be sharp 

with little hysteresis. This is important for applications such as memory and logic circuits. 

The number of times an RRAM device may be switched between the on and off states 

without degrading or failing is referred to as its endurance. RRAM devices are appropriate 

Figure 1.7. Comparing benchmarks in CMOS-based vs. RRAM-based neuromorphic 

computing. (a) Benchmarking computing density, (b) benchmarking synaptic operation 

energy (Zhang et al.). 
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for use in non-volatile memory applications because they typically have good endurance. 

The ability of RRAM devices to maintain their on or off state over time, even when they 

are not being actively switched, is referred to as retention. RRAM devices often have strong 

retention, which is why they are advantageous for uses like data storage. The percentage 

of functional, standard-compliant devices on a wafer is referred to as the yield of RRAM 

devices. RRAM devices often have high yields, which are crucial for commercialization 

and mass production. 

 In terms of power efficiency, on-state resistance and write voltage are two 

additional metrics. The system's on-state resistance is a critical measure to assess its energy 

effectiveness. The crossbar array's current is inversely proportional to its resistance. In 

terms of write voltage, we require write voltages between 0.5 and 1 V, which can 

significantly lower the write energy consumption. Table 1.2 shows the desirable metrics 

for RRAM devices. 

Table 1.2 Desirable NVM metrics for neuromorphic computing applications 

However, conventional oxide-based memristor technologies present 

challenges such as a limited conductance range (Gokmen and Vlasov), asymmetric 

potentiation and depression characteristics, nonlinearity, and variability. As stated 

before, these non-idealities can affect neuromorphic system performance and 

efficiency (Christensen et al.; Degraeve et al.; Afshari et al.). Memristors based on 

Parameters Targets 

Asymmetry/Non-linearity 0/0 

Precision 64 

On/off ratio >10 

Retention >10 years 

Endurance >105 cycles 

On-state Resistance (RON) 100 kΩ -10 MΩ 

Write Voltage 0.5 V - 1V 
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two-dimensional (2D) materials can help alleviate some of the non-idealities of oxide-

based RRAM towards more efficient and better performing of neuromorphic 

computing. 2D materials have attracted significant interest for the downscaling of CMOS 

(complementary metal-oxide-semiconductor) (Huyghebaert et al.), as well as for beyond-

CMOS electronic applications (Robinson). Their atomic scale thicknesses and pristine (i.e., 

dangling-bond free) surfaces could enable ultra-dense integration for next-generation 

integrated electronic systems (Lemme et al.). Consequently, many studies have evolved 

from the demonstration of isolated devices (e.g., field effect transistors or FETs) based on 

exfoliated flakes towards large-area methods for fabrication of integrated circuits with 2D 

materials (Quellmalz et al.). While early device demonstrations focused predominantly on 

FET applications, recent studies have proposed memory and neuromorphic devices based 

on the non-volatile resistive-switching (NVRS) behavior observed in various 2D materials 

such as transition metal dichalcogenides (TMD) (R. Ge et al.), hexagonal boron 

nitride (h-BN) (Nikam et al.), black phosphorus (Rehman et al.), and graphene 

(Pradhan et al.). These devices are generally configured in vertical two-terminal 

structures, where the resistive switching layer is sandwiched between top and bottom metal 

electrodes. The use of 2D materials has enabled the demonstration of devices with 

atomically thin resistive switching layers having potential advantages. For example, the 

layered structure of 2D materials could help minimize variation in resistive 

switching layer thickness to provide a more robust implementation of synaptic 

operations (Chaudhuri and Chakrabarty). Moreover, compared to oxide-based 

RRAM, synaptic plasticity (long-term potentiation and depression) can be better 

controlled in CVD-grown h-BN memristors as filament formation/dissolution 
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occurs in confined and chemically stable defects surrounded by crystalline h-BN 

(Kumar et al.). Other factors that can further help enhance the energy efficiency of 

neuromorphic computing are the low programming voltages (J. Ge et al.) and fast 

switching speeds (Zhu, Liang, et al.) of 2D-material-based memristors.  

Chemical vapor deposition (CVD)-grown h-BN has attracted much attention for 

use as the resistive switching layer due to its compatibility with large-area wafer-scale 

fabrication, and arrays of h-BN memristors have been reported (S. Chen et al.). In CVD-

grown h-BN devices, the resistive switching process is attributed to the formation and 

rupture of conductive paths via penetration of metal ions into defects at h-BN grain 

boundaries. Initial studies of h-BN memristors reported on their non-volatile resistive 

switching behavior observed as transitions or hysteresis in measurements of DC current–

voltage characteristics (Wu et al.). Previous work (S. Chen et al.) has also shown the 

programming of multiple resistive states in h-BN memristors by the application of 

consecutive voltage pulses. Pulsed programming is required for practical memory and 

neuromorphic computing applications. Moreover, the pulsed programming of multiple 

conductive states is critical for the implementation of synaptic plasticity (i.e., long-term 

potentiation and depression) in neuromorphic hardware, as well as for the analog-based 

implementation of machine learning functions in memristor arrays (Musisi-Nkambwe et 

al.; Huh et al.). For example, most analog-based implementations of neural networks and/or 

machine learning hardware based on memristor crossbars rely on dot-product (i.e., 

multiply-accumulate) operations (Mahmoodi et al.; Hu et al.). Here, the accumulated 

currents at the outputs of the array result from the product of input voltage signals (input 

vector) and the conductance of the memristors in the array (column vectors) (Xie et al.).  
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In this work, we present the wafer-scale fabrication of memristor arrays using on 

CVD-grown h-BN resistive switching layers, and their multi-state analog programmability. 

We focus on the experimental demonstration of dot-product operation on h-BN memristor 

arrays and on the hardware implementation of multi-variable stochastic linear and logistic 

regression. This work extends beyond existing demonstrations of NVRS behavior in 

isolated h-BN memristors and paves the way for more sophisticated demonstrations of 

machine learning applications based on 2D materials. 

1.5 Goals and Approach  

This dissertation is divided into six chapters containing several topics related to 

simulations and hardware implementation of neuromorphic computing using memristors 

as synapses. The main focus of this dissertation is to provide a comprehensive study of 

hardware implementation of ANN-based machine learning algorithms using novel 2D 

materials. Chapter 2 presents an extensive study of linear and logistic regression algorithms 

implemented with 1T1R memristor crossbars arrays. Using a sophisticated simulation 

platform that wraps circuit-level simulations of 1T1R crossbars and physics-based models 

of RRAM (memristors), we elucidate the impact of device variability on algorithm 

accuracy, convergence rate and precision. Moreover, a smart pulsing strategy is proposed 

for practical implementation of synaptic weight updates that can accelerate training in real 

crossbar architectures. In chapter 3, we report on the hardware implementation of analog 

dot-product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This 

extends beyond previous work that studied isolated device characteristics towards the 

application of analog neural network accelerators based on 2D memristor arrays. The 



  22 

wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-

grown few-layer (8 layers) h-BN films. The dot-product operation shows excellent linearity 

and repeatability, with low read energy consumption (~200 aJ to 20 fJ per operation), with 

minimal error and deviation over various measurement cycles. Moreover, we present the 

implementation of a stochastic logistic regression algorithm in 2D h-BN memristor 

hardware for the classification of noisy images. In chapter 4, we demonstrate the hardware 

implementation of a linear regression algorithm on h-BN memristor arrays. Chapter 5 

investigates the electrical performance of 2D hexagonal Boron Nitride (h-BN) memristors 

towards their implementation in spiking neural networks (SNN). Based on experimental 

behavior of the h-BN memristors as artificial synapses, we simulate the implementation of 

unsupervised learning in spiking neural network (SNN) for image classification on the 

Modified National Institute of Standards and Technology (MNIST) dataset. Additionally, 

we propose a simple Spike-Timing-Dependent-Plasticity (STDP)-based dropout technique 

to enhance the recognition rate in h-BN memristor-based SNN. Finally, chapter 6 provides 

conclusions and summarizes the main contributions of this work. 
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CHAPTER 2 

CIRCUIT-LEVEL IMPLEMENTATION OF REGRESSION ALGORITHMS USING 

METAL-OXIDE MEMRISTOR ARRAYS 

2.1 Variability in Oxide-based RRAM  

RRAM operation for NVM applications typically involves programming (and 

reading) cells into two distinct (binary) states, a low resistance state (LRS) or high 

resistance state (HRS). Multistate storage has also been demonstrated using RRAM for 

NVM (Patel et al.). Additionally, RRAM analog-based implementations of in-memory 

computing and neuromorphic architectures rely on the ability to program a continuous 

range of states (Yin et al.). The programming of different resistive states is achieved via 

the formation and rupture of conductive filaments inside the oxide/switching layer of the 

cell. RRAM is considered a great candidate for training and inference applications (Yu et 

al.), but the stochastic essence of conductive filament activity (Ielmini), introduces 

variability, programming abruptness, and non-linearity that may present significant 

challenge for the implementation of RRAM-based in-memory computing applications and 

machine-learning (ML). In (Zhao et al.), reliability concerns for RRAM were identified 

and metrics were discussed based on the impact on distinguishability of states and 

computing accuracy. As presented in (Zhao et al.), the basic reliability metrics relate to 

endurance, retention, noise, and write/read disturbs. Other “functional” reliability metrics 

include non-linearity, variability, dynamic range, precision, variation, asymmetry, etc. 

These reliability metrics refer to functional properties of RRAM that can have a severe 

impact on computing accuracy when degraded. In this chapter, we focus on another 
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functional reliability concern, i.e., variability in RRAM characteristics, and its impact on 

neural network training (convergence rate, accuracy, precision) based on gradient descent 

algorithms. In 2011, Chen et al presented a collection of results on the variability of LRS 

and HRS in different RRAM and CBRAM technologies (Chen and Lin). A similar 

collection of LRS and HRS variability from recent RRAM and CBRAM published results 

is shown in Figure 2.1 (Fey; Mahadevaiah et al.; Milo et al.; Hong et al.; Belmonte et al.; 

Guy et al.; Radhakrishnan et al.; Goux et al.). These indicate that large variation is prevalent 

for newer generations of RRAM devices as expected due to the stochastic nature of the 

resistive switching mechanisms. Thus, it is crucial to study the impact of device variability 

on in-memory computing circuits to gain insight on the viability of RRAM 

implementations. This chapter analyzes the effects of RRAM device variability on 

accuracy and precision of gradient descent-based ML algorithms (linear and logistic 

regression) using crossbar architectures. The algorithm-level analysis presented in this 

work uses Spice (Synopsys HSpice) circuit-level simulations that incorporate a compact 

memristor model previously developed and verified with experimental data (Chen and Yu). 

The primary goal of this work is to investigate the impact of device variability on the 

performance of gradient-descent-based machine learning algorithms. Therefore, device-to-

device and cycle-to-cycle variations are introduced into key model parameters. The 

approach involves randomly sampling the model parameters from an experimentally 

verified distribution. For the ML algorithm analysis, a modified gradient-descent approach 

is used to train the crossbar array, similar to that presented in previous work by Nair et al 

(Nair and Dudek). In that previous work, a single programming voltage pulse of fixed 

amplitude and width is used to adjust the memristor conductance (i.e., the synaptic weights) 
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independent of the magnitude of the required update. The polarity of the pulse (positive vs. 

negative amplitude) is selected based on the sign of the update as determined by the 

algorithm. In this work, we extend the approach by allowing a discrete number of 

programming pulses to update memristors in accordance with the necessary update. Based 

on this new approach, we study the convergence rate and performance of gradient-descent 

ML algorithms in the presence of large variation in memristor devices. The results of our 

ML algorithm analysis provide insight on convergence rate, accuracy, and precision of 

pattern classification experiments on RRAM crossbars and the effects of memristor 

variability. The chapter is structured as follows: Section 2.2 identifies and analyzes the 

effects of variability on the resistive-switching characteristic of 1-transistor-1-resistor 

Figure 2.1. Variability of resistive-switching characteristics in recent metal-oxide RRAM 

and CBRAM technologies discussed in previous research. Intersection for each device 

represents the mean value of HRS and LRS. 
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(1T1R) RRAM cells and describes the simulation approach for crossbar arrays. Section 2.3 

and 2.4 present the implementation of linear and logistic regression on memristor crossbars 

and establishes the impact of device variability on algorithm performance. Mainly, despite 

large RRAM cell variability, the crossbar implementation of regression algorithms 

achieves convergence (as indicated by clear improvements in accuracy with training), but 

with noticeable degradation on precision (fluctuation in the accuracy of trained arrays). 

2.2 Effects of Variability on Resistive-Switching Characteristic of 1-Transistor-1-

Resistor (1T1R) RRAM Cells 

In this work, we use a compact model for HfOx-based RRAM devices (Chen and 

Yu). The bipolar switching characteristics achieved in the model are based on fundamental 

physics related to filamentary operation and have been experimentally verified with HfOx 

Figure 2.2. Filamentary operation and top-level mathematical representation of the 

physics-based RRAM model used in this work. 
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devices (Yang Yin Chen et al.; Y. Y. Chen et al.; Fantini, Goux, Degraeve, D.J. Wouters, 

et al.). A key parameter in the model that captures the internal state of the RRAM cell is 

the gap (g), specified as the distance between the top electrode and conductive filament as 

illustrated in Figure 2.2. The memristor conductance is directly related to this parameter. 

The dynamic process of resistive switching and current flow are modeled by the two 

general memristor equations shown in Figure 2.2. To model RRAM variation, the model 

fitting parameters 𝐼0, 𝑣0 and 𝛾0 (related to filamentary formation/dissolution and 

conductance) are allowed a dispersion 3σ/µ of 30%, 10% and 10%, respectively. These 

values were extracted to fit experimental HRS and LRS distributions in TiN/Hf/HfOx/TiN-

based RRAM devices (cf. Figure 5 in (Chen and Yu)). As described in (Chen and Yu), 

dispersion in all three parameters should be included to account for the actual 

(experimental) variability in RRAM characteristics and measured distribution in LRS an 

HRS. The RRAM model is implemented in Verilog-A and circuit-level simulations are 

conducted using Synopsys HSpice. For simulating 1T1R cells we use a 65 nm n-type 

CMOS transistor model based on the Predictive Technology Model (PTM) from Arizona 

State University (Arizona State University, Predictive Technology Model (Ptm).). Figure 

2.3a shows the schematic of the 1T1R cell, indicating the pulsing approach to increase or 

decrease the conductance of the memristor (i.e., set/reset the memristor). The n-MOS 

transistor acts as a selector device and the gate voltage is used to modulate or limit the 

amount of current that flows through the cell. The 1T1R configuration helps eliminate 

sneak path currents and improves analog programmability by reducing abrupt changes in 
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conductance from set/reset pulses (Chen and Yu). Finally, Figure 2.3b is a schematic of 

the RRAM 1T1R crossbar arrays simulated in this work. 

The impact of RRAM variability on the 1T1R cell resistive switching properties is 

summarized in Figure 2.4. Figures 2.4b-d show the effects of model parameter dispersion 

individually (𝐼0, 𝑣0 and 𝛾0), and Figure 2.4a shows the combined effects on the resistive 

switching current-voltage (I-V) characteristics.  

Figure 2.5a plots the conductance-voltage (G-V) characteristics including 

dispersion in all three model parameters. Figure 2.5b reveals the impact of variability on 

the pulsed characteristics (change in conductance with consecutive pulses). In Figure 2.5b, 

100 cycles are shown, each cycle consisting of 100 positive and 100 negative consecutive 

pulses. A different visualization for the impact of variability on the resistive switching 

Figure 2.3. (a), (b) Schematic of the 1T1R RRAM cell and crossbar array simulated with 

Synopsys HSpice. 
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properties is provided in Figure 2.5c. This plot shows contours for the cumulative 

distribution function (CDF) of change in conductance (∆𝐺) as a function of conductance 

(𝐺). It provides a graphical representation of the non-linear and abrupt response of ∆𝐺 

resulting from the programming pulses (only shown for positive pulses). At low levels of 

𝐺 (starting with a weak filament), the CDF shows that most pulses will result in large 

changes in conductance (abrupt). As 𝐺 increases, the distribution shifts to smaller changes 

in conductance (less abrupt) and distribution is narrower (less variation for ∆𝐺). 

Figure 2.4. (a) I-V characteristics of 1T1R RRAM cell considering joint effects of 

dispersion in model parameters, (b-d) simulation of DC resistive-switching I-V 

characteristics of 1T1R RRAM cell considering individual effects of dispersion in model. 
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The implementation and analysis of regression algorithms presented in this work 

uses MATLAB scripts that organize and execute Synopsys HSpice circuit-level 

simulations of RRAM 1T1R crossbars. In this simulation platform, the initialization of 

RRAM devices as well as the functions of the peripheral circuits (e.g., normalization of 

inputs and outputs, calculations of prediction/classification error, activation functions, etc.) 

are conducted in MATLAB software. However, crossbar functions including vector matrix 

multiplications (VMM) and pulsed programming of RRAM 1T1R cells are directly 

implemented with HSpice circuit simulations using the described compact model. A 

Figure 2.5. (a) G-V characteristics, (b) pulse-programming of memristor conductance 

(multiple cycles and average), average is solid blue line with circles, (c) contour plot of 

the CDF for change in conductance vs. conductance.  
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detailed explanation of the work is provided in the supplementary material of (Afshari et 

al.). 

Smart Pulsing Strategy for Weight Updates  

This work presents a new weight update strategy for accelerated training in ML 

algorithms. The proposed strategy selects the number of programming pulses for each 

memristor at each training step not only based on the sign of the required update, but also 

on its magnitude. For practicality, the number of pulses is discretized to three different 

ranges of required weight update (see Figure 2.6). For example, a large conductance update 

requirement leads to more consecutive pulses compared to a smaller update requirement. 

This leads to larger weight (conductance) changes during early training steps, and smaller 

changes in later steps to help fine tune and maximize accuracy as the training advances. 

We note that this technique does not affect the frequency of updates, as an update is still 

done at every training step. In the next section, we demonstrate how this strategy results in 

higher convergence rate, as well as improved precision and accuracy for the crossbar 

implementation of multi-variable linear and logistic regression algorithms compared to 

existing techniques based on fixed update pulsing methods. 

Discussion About Peripheral Circuits  

Pulse updates can be generated by a simple CML (current-mode logic) driver circuit 

where the circuit is tuned to ensure enough drive voltage capability for loads presented in 

terms of crossbar size (crossbar interconnect resistance and memristors). The write 

voltages should be verified to have enough margin above the memristor write threshold to 
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effectively drive the furthest memristor in the write path. More specifically, for our 

proposed smart pulse update strategy, a configurable ring oscillator can be used to ensure 

a specified number of similar spaced pulses as discussed in (Seo et al.). Read currents are 

accumulated at the end of crossbar and need to be sensed prior to digital conversion and 

further processing. The choices of voltage versus current mode sensing circuits are 

described in (Musisi-Nkambwe et al.). In this solution, a current mode sensing mechanism 

is preferred where a reference current is generated to compare against the accumulated 

output current. This choice, while more area intensive, allows for trackability of device 

variation mirrored in the reference crossbar array. A detailed scheme of the current-mode 

sensing circuit is described in (Chang et al.). 

2.3 Implementation of Linear Regression on Memristor Crossbars 

This section presents the implementation of stochastic multivariable linear 

regression on a 3×1 1T1R RRAM crossbar array. This is a type of regression algorithm 

Figure 2.6. Translation of ∆G into number of positive or negative voltage pulses for 

realistic hardware implementation of the gradient-descent. 
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with multiple independent variables (𝑥0, 𝑥1, … 𝑥𝑛) combined into a linear prediction 

function of the dependent variable (𝑦). The term stochastic comes from the stochastic 

gradient descent optimization approach where a single sample or subset of the data is 

randomly selected to update the model parameters during each training step. In practice, 

we present one data sample at a time to our crossbar array. The model prediction (ℎ) is 

given by the dot product of the input variables (𝑥0, 𝑥1, … 𝑥𝑛) and the model parameters 

which are stored as the memristor conductances (𝐺0, 𝐺1, … 𝐺𝑛). Mathematically, the 

prediction h is given by:  

ℎ = 𝑥𝑇𝐺 , 𝑥 = [

𝑥0

𝑥1

𝑥2

] , 𝐺 = [
𝐺0

𝐺1

𝐺2

]. [1] 

Here, 𝑥 is the normalized 3×1 input vector and 𝐺 is the 3×1 vector of the memristor 

conductances. Figure 2.7a is a flowchart for the crossbar implementation of stochastic 

multivariable linear regression. Figure 2.7b shows the schematic of the 3×1 1T1R RRAM 

crossbar array as implemented in the simulation. The smart pulsing strategy used in this 

demonstration is illustrated in Figure 2.6. This discretized approach would be a practical 

implementation of gradient-descent on a real memristor crossbar. When training, the initial 

steps will typically require larger updates in conductance (∆𝐺) because the error (𝛿) is 

initially large, prompting a larger number of pulses. As the training advances and the error 

is reduced, the required update is also reduced leading to a smaller number of applied 

pulses. In Figure 2.6, three different versions of the pulsing strategy are shown. These 

correspond to different sets of programming pulses (positive or negative) used to update 

conductance based on the value of ∆𝐺𝑖. For example, in the pulsing strategy labeled 1-2-4, 
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one, two or four programming pulses are applied depending on whether the required update 

in conductance is between 0 and 0.5 µS, 0.5 and 1 µS, or above 1 µS. Our demonstration 

of multivariable linear regression is based on an artificial data set for the price of a pizza 

as a function of two independent variables, 𝑥1 and 𝑥2, where 𝑥1 represents the number of 

ingredients, and 𝑥2 represents the size of the pizza. Note that the same approach can be 

easily extended to 𝑁 independent variables on an (𝑁 + 1) crossbar array. In the hardware 

implementation, the input variables are presented as voltage signals (𝑥𝑖 → 𝑣𝑖) on each row 

of the crossbar (see Figure 2.7b), and the prediction is represented by the current flowing 

on the crossbar array as given by Kirchhoff’s law: ℎ → 𝐼 = ∑𝑣𝑖𝐺𝑖. To ensure the accuracy 

of the prediction in this hardware implementation, the amplitude of the input voltage 

signals is normalized to a range between 0 and 0.25 V. This range results in good linearity 

(i.e., current is directly proportional to voltage, or equivalently conductance is independent 

of voltage) as shown in Figure 2.5c. In the optimization process that occurs during training, 

a cost function 𝐽 proportional to the mean square error is minimized through the update of 

the conductance values. The error is determined by the difference in the predicted and 

actual values as 𝛿𝑛 = ℎ𝑛 − 𝑦𝑛, where the superscript indicates the n th data sample (also 

Figure 2.7. (a) Flow chart of implementation of linear regression algorithm on a 

memristor crossbar, (b) schematic of the 3×1 1T1R crossbar array implemented in 

Synopsys HSpice. 
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n th training step). At each training step, each device requires a conductance update given 

by ∆𝐺𝑖 = −𝛼𝛿𝑛𝑣𝑖
𝑛. Here, 𝛼 is a learning rate. In practice, it is not feasible (or required) to 

perfectly update the conductances by exactly ∆𝐺𝑖. The goal is to minimize the error (or 

cost function). Therefore, the approach is to use a discrete number of programming pulses 

(positive or negative) to approximate the change in conductance state of each memristor 

according to the value of ∆𝐺𝑖. This approach is referred to as the smart pulsing strategy. 

In our demonstration, a dataset of size 1000 is artificially generated to be used as 

training of the crossbar array network. The conductance values are randomly initialized 

within a range from 10 to 60 µS. The learning rate 𝛼 is initially set to 1, and for improved 

convergence is reduced by 3% after each training step. Each iteration corresponds to 

presenting a single sample from the dataset followed by the adjustment of the conductance 

for each memristor based on the calculated ∆𝐺𝑖. Figure 2.8 summarizes the results of the 

memristor crossbar implementation of the stochastic multivariable linear regression 

algorithm (without variation). In Figure 2.8a, the blue dots are the dataset corresponding 

to price of pizza plotted as a function of two independent variables, 𝑥1, number of 

ingredients, and 𝑥2, size of the pizza. The algorithm is conducted five different times and 

for each case the initial and final conductance states are recorded. The red mesh surfaces 

represent the model prediction based on the initial (random) state of memristor 

conductances in the crossbar. The green mesh surfaces represent the prediction after 1000 

training steps (i.e., after all data samples have been presented to the array). The different 

final predictions for each case result from the different random initial states along with 

random shuffling in the sampling process. The results show a significant improvement in 

the model prediction of the data set after training as indicated by the green mesh surfaces 
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overlapping the data points. Figure 2.8b plots the evolution of conductance for each 

memristor in the array as a function of the algorithm iteration step during training. It 

indicates larger updates in conductance during the initial steps and a settling as 

convergence is achieved. Figure 2.8c compares the convergence as indicated by the 

prediction mean squared error (MSE) as a function of iteration number for the three 

different versions of the pulsing strategy. It is clear from the slope of MSE vs. iteration 

number that the pulsing strategy with larger number of pulses (i.e., 1-4-16) has a faster 

initial convergence rate (can reach lower MSE with fewer iterations during the initial 

Figure 2.8. (a) Results of linear regression algorithm for 5 simulations, (b) conductance 

evolution for each memristor vs. iteration, (c) comparison of convergence rate for three 

different cases, (d) convergence rate (with and without variation). 
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training steps). However, as training advances, the convergence rate slows down and 

eventually all three pulsing strategies achieve small MSE. We note that a fast initial 

convergence rate may be desirable for specific training applications. The proposed pulsing 

approach can achieve a fast initial convergence rate without compromising the high 

prediction accuracy of the fully trained crossbar array. Finally, we examine the impact of 

variability on the stochastic multivariable linear regression algorithm memristor crossbar 

implementation. Figure 2.8d plots the prediction mean squared error (MSE) as a function 

of iteration number for a pulsing strategy of 1-4-16, with and without memristor variation. 

For the case of no variation (shown in green), we include the average MSE vs. iteration 

from 10 simulations (solid line) and the range between maximum and minimum MSE 

(shaded green region). For the case with variation, we only show the average MSE vs. 

iteration number (solid red line). While the convergence is still good even with memristor 

variability, we note the following effects: 1) The results indicate that the convergence is 

slower (error is reduced at a slower rate with training), 2) The accuracy is degraded 

(average error after training is slightly larger than what was obtained when neglecting 

variation), 3) The most significant issue appears to be an impact on precision. The results 

in Figure 2.8d show noticeable fluctuation in average error when variation is included. We 

interpret these fluctuations as an impact on the algorithm precision resulting from 

variability in the programming of memristor conductance states. It should be noted that 

even with these detrimental effects of memristor variability, the prediction error is still 

converging (i.e., error reduces with training) to about 3-5%. This is a promising result for 

memristor crossbars implementations of regression algorithms that appears to indicate 

some level of immunity to device variability at the algorithm-level. The same simulation 
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was repeated to compare the individual effects of dispersion in model parameters 𝐼0, and 

𝛾0 on the algorithm performance (not shown). We discover that the observed impact on 

precision is due mainly to dispersion in 𝐼0, correlating with variation in conductance, and 

not to dispersion in 𝛾0 which mostly correlates to dispersion in set/reset voltages (see 

Figure 2.4a-d). This observation is reasonable as the algorithm implementation is based on 

pulsed programming where the amplitudes of the applied voltage pulses (+1.8 V/-1.5 V) 

have sufficient margins above/below the set/reset thresholds. 

2.4 Implementation of Logistic Regression on Memristor Crossbars 

This section describes the implementation of stochastic logistic regression in a 

memristor crossbar for classification of 5×5-pixel binary images that represent characters 

‘S’, ‘M’, ‘R’, and ‘T’. Figure 2.9a is a flowchart describing the logistic regression 

implementation. The data set is artificially generated and includes “noisy” samples or 

images where two of the binary pixels have been flipped (see Figure 2.9b). Separate data 

were generated for training and to test the classification accuracy at fixed training intervals 

(i.e., after a fixed amount of training images have been presented to the network). Figure 

2.9c is a graphical representation of the neural network that is being implemented by the 

memristor crossbar for this classification task. The crossbar schematic is shown in Figure 

2.9d. Here, each synaptic connection is implemented by a memristor differential pair. The 

effective conductance for each differential pair is given by: 𝐺𝑖𝑗 = 𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

−. This enables 

negative weights to be implemented with the crossbar array (all conductances are positive). 

To perform the classification of the 5×5 images, a 25×8 memristor crossbar is simulated. 
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During training, images that correspond to different characters (S, M, R, or T) are randomly 

presented to the array, so all 4 neurons are simultaneously trained to recognize their 

assigned character. As discussed in the previous section, the linear range for the I-V 

characteristics of the memristors falls between the range of -0.25 to +0.25 V. Thus, during 

the “read” operation, each pixel from the binary image is mapped to a crossbar input 

voltage signal of 0.1 V for white pixels and -0.1 V for black pixels. The output current on 

each neuron is essentially a dot product of the input voltage vector and the effective 

conductance vector from the corresponding column pair. Mathematically, the output 

currents are given by 𝐼𝑗 = ∑ 𝑣𝑖𝐺𝑖𝑗

25

𝑖=1
 where 𝐺𝑖𝑗 are the adjustable effective conductance 

and vi are the input voltages. The output current is normalized and then goes through the 

Figure 2.9. Image classification experiment: (a) flow chart for logistic regression 

algorithm, (b) input binary images, (c) representation of the neural network 

implementation for image classification, (d) partial schematic of the 25 × 8 memristor 

crossbar. 
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sigmoid activation function which returns the value of 𝑓𝑗 =
1

1+ⅇ
−𝐼𝑗

′ . Here, 𝐼𝑗
′ is the 

normalized output current of each column. In this normalization, the original current (𝐼𝑗) is 

simply divided by a constant factor and presented to logistic function as 𝐼𝑗
′ . The sigmoid 

function gives an output ranging between 0 and 1. In this implementation, the classification 

error (𝛿𝑗) is calculated for each neuron as: 𝛿𝑗 =  𝑓𝑗 −  𝑦𝑗, where 𝑦𝑗 is determined by the 

label in the training data set (equals 1 for the neuron that corresponds to the training image 

and zero for other neurons). 

Similar to the linear regression demonstration, a smart pulsing strategy is used 

where different number of pulses are applied at each iteration based on the required 

conductance update given by 𝛥𝐺𝑖𝑗 = −𝛼𝛿𝑗𝑣𝑖. For 𝛥𝐺𝑖𝑗 greater than ±0.01 µS, five 

positive/negative pulses are applied, for 𝛥𝐺𝑖𝑗  between ±0.005 and ±0.01, two 

positive/negative pulses are applied and for 𝛥𝐺𝑖𝑗 smaller than ±0.005 µS, a single pulse is 

applied. This pulsing strategy is illustrated in Figure 2.10a. In this demonstration, the 

programming pulses have amplitudes of +1.4 V and –1.35 V, and widths of 20 ns and 10 

ns respectively, and the learning rate, α, is constant with the value of 0.5. A single image 

from the dataset is presented to the network during each training step, followed by an 

adjustment of the effective conductance through the application of consecutive voltage 

pulses determined based on 𝛥𝐺𝑖𝑗. For example, if the effective conductance (𝛥𝐺𝑖𝑗) needs 

to be increased, positive pulses are applied to the positive memristor (𝐺𝑖𝑗
+) and negative 



  41 

pulses are applied to the negative memristor (𝐺𝑖𝑗
−) in the differential pair. This increases the 

Figure 2.10. Results for logistic regression: (a) pulsing strategy, (b) mismatched patterns 

for “S”, (c) evolution of convergence for output neurons, (d) histogram for the distribution, 

(e),(f) confusion matrix before and after training. 
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effective conductance. Similarly, if the effective conductance needs to be decreased, 

negative pulses are applied to the positive memristor and positive pulses are applied to the 

negative memristor in the differential pair. The accuracy of the prediction is evaluated at 

fixed training intervals using a separate dataset that consists of 400 5x5 binary images (100 

noisy images for each character). Figure 2.10 summarizes the results of the classification 

algorithm. We first compare the smart pulsing strategy against the constant pulse update 

approach described in (Nair and Dudek) and implemented in a real crossbar in (Prezioso et 

al.). The constant pulsing approach is indicated by the dashed blue line in Figure 2.10a, 

where a single pulse is applied independent of the value of 𝛥𝐺𝑖𝑗. Figure 2.10b shows the 

number of mismatched patterns for character “S” in the evaluation set as a function of first 

200 training steps. With increasing training steps, the percentage of mismatched patterns 

decreases. Red lines indicate the smart pulsing strategy proposed in this paper whereas blue 

shows the results for the constant pulsing method (Nair and Dudek; Prezioso et al.). The 

solid red line corresponds to the average mismatch from 5 different trials with different 

initial states and without variation. The shaded region indicates the range of maximum and 

minimum mismatch from all 5 individual runs. The red dotted line is the average mismatch 

with variation. As observed, it takes longer for the case with variation to reach almost 

perfect classification (zero mismatched patterns). The blue line is the average mismatch 

including memristor variability for the constant pulsing approach. Compared to the smart 

pulsing strategy, convergence rate and accuracy are reduced. For the smart pulsing strategy, 

Figure 2.10c shows the evolution of convergence based on the average output of the 

sigmoid function (𝑓𝑗) at each of the neurons and for each of the different characters in the 

evaluation data set (100 noisy images for each character). For example, for the neuron 
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assigned to character ‘S’ (labeled “Neuron S” in Figure 2.10c), 𝑓𝑗 converges to a value 

close to 1 for images corresponding to the character ‘S’ and to values close to 0 for others. 

In Figure 2.10c, the results shown with open circles are the average of 5 different trials 

(each up to 1000 training steps) without memristor variation. For comparison, solid lines 

plot the case with variation (only shown for results from images that match the assigned 

character to each neuron). These results indicate that memristor variation appears to have 

minimal impact on classification accuracy but affects precision by introducing more 

fluctuations as a function of training step (consistent with results from linear regression). 

Figures 2.10e and 2.10f show the confusion matrix corresponding to 𝑓𝑗 values for each 

neuron before and after training. Before training, the 𝑓𝑗 values for each neuron are 

randomly distributed around 0.5 based on the initial random effective conductances (see 

Figure 2.10d for distribution of initial and final effective conductance). The final values of 

𝑓𝑗, after the training is complete (1000 steps), are shown in Figure 2.10f. The results are in 

accordance with Figure 2.10c, where corresponding neurons converge towards 1 and the 

non-corresponding neurons approach 0. Our results indicate that with memristor 

variability, which is the realistic case for actual physical crossbars, more iterations are 

necessary to converge to a desirable classification accuracy. For more complex patterns, 

this gap may be large. From Figure 2.10c, it can be concluded that because of the nature of 

logistic regression, where the output current (weighted sum of inputs) goes through the 

logistic function (in this case), the variation does not have outstanding impact in the 

learning process. It is important to point out that in some cases, small levels of device 

variation (noise) can help achieve improvements in accuracy as it may act as a form of 

regularization to prevent overfitting to the training set. This has been demonstrated in (Y.-
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C. Chen et al) for MNIST datasets where small levels of variability improved accuracy but 

was ultimately degraded for larger levels of variation. Another technique to prevent 

overfitting and overreliance on individual devices is dropout regularization and is 

commonly used in multi-layer neural networks and was recently proposed to alleviate 

stuck-at-faults in memristor crossbar implementations (Xu et al.). Moreover, the work in 

(Lillicrap et al.) pointed out in the context of spiking neural networks that noise 

symmetrically distributed about a mean of zero will integrate out when trained across many 

samples. Another well-known source of noise that is neglected in the present analysis 

results from quantization of bit-line currents as typical implementations of the logistic 

function use digital circuits (Seo et al.). 

Additionally, we compared the smart pulsing approach with the constant pulse 

updating strategy that was outlined in (Mbarek et al.). The dashed line in Figure 2.11a and 

b represents the single pulsing method, where a single pulse is applied regardless of the 

conductance update value. The smart pulsing approach suggested in this study is indicated 

by solid lines. Convergence rate and accuracy for a single pulsing method are lower than 

they are for a smart pulsing strategy. 
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CHAPTER 3 

DOT-PRODUCT COMPUTATION AND LOGISTIC REGRESSION WITH 2D 

HEXAGONAL-BORON NITRIDE (H-BN) MEMRISTOR ARRAYS 

3.1. H-BN Memristors 

Since the discovery of graphene, two-dimensional (2D) materials have been the 

focus of intense research and have shown great potential to advance the capabilities of 

future integrated electronic systems. Recent studies have proposed the possibility of adding 

new functionality through the hybrid integration of 2D materials with complementary 

metal oxide semiconductor (CMOS) technologies (Lemme et al.; Zhu, Wen, et al.). Here, 

neuromorphic computing is recognized as one of the main applications of next-generation 

electronic systems enabled by 2D materials integration (Lemme et al.). This 

unconventional computing paradigm aims at the implementation of artificial neural 

networks using compute-in-memory hardware to achieve energy-efficient data processing 

for machine learning and artificial intelligence (AI) applications. It requires devices that 

can emulate bio-inspired functions (e.g., artificial synapses and neurons) and memristors 

have emerged as a primary choice (Yibo Li et al.). Memristors are electronic devices with 

variable resistance states that depend on their past and recent experience with external 

stimuli. Conventional memristor technologies are constructed from bulk materials and their 

resistive switching behavior can be achieved through various mechanisms (e.g., ionic 

transport, filamentary, phase change, charge trapping, etc.). Filamentary metal-oxide 

resistive random-access memory (i.e., RRAM) is a widely studied technology due to its 

nonvolatility, high switching speed, low switching energy, and small energy footprint. 
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Recently, several studies have reported the non-volatile resistive switching (NVRS) 

behavior of two-dimensional (2D) materials down to the single atomic layers (Wu et al.; J. 

Ge et al.). A variety of 2D materials were shown to exhibit NVRS properties including 

transition metal dichalcogenides (TMD) (R. Ge et al.), hexagonal boron nitride (h-BN) 

(Nikam et al.; S. Chen et al.,), black phosphorus (Rehman et al.), graphene (Pradhan et al.), 

etc. CVD-grown h-BN has attracted significant interest due to its compatibility with high-

density wafer-scale integration (S. Chen et al.). In CVD-grown h-BN memristors, the 

NVRS behavior is attributed to the formation and dissolution of conductive nanofilaments 

that result from the penetration and removal of metal ions (from an adjacent electrode) into 

defects at grain boundaries in the h-BN film (Kumar et al.). 

Two-dimensional h-BN memristors have demonstrated superior properties 

compared to their bulk counterparts (e.g., metal-oxide memristors), making them ideal 

candidates for future neuromorphic chips for artificial intelligence applications. For 

example, they can extend the vertical scaling limit of oxide-based RRAM as the NVRS 

behavior endures even in atomically thin h-BN monolayers (Wu et al.; Kumar et al.). 

Moreover, the layered structure of h-BN may help alleviate programming errors and 

variability (e.g., stuck-at issues) associated with non-uniformity in the thickness of the 

resistive switching medium in bulk technologies (Chaudhuri and Chakrabarty). 

Additionally, 2D h-BN memristors were shown to provide better analog control of 

conductance programmability (e.g., long-term potentiation/depression of artificial 

synapses) over a wide range of operating currents when compared to metal-oxide RRAM 

where programmability is limited to high currents. This is attributed to filament formation 

happening in native defects surrounded by stable crystalline 2D layered h-BN (Kumar et 
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al.). In fact, the superior chemical stability of h-BN memristors is expected to also alleviate 

oxidation reaction to filaments and prevent the redundant formation of undesired paths, 

thus helping improve endurance, which has been an issue with oxide-based RRAM. 

Despite their great potential for neuromorphic hardware, few reports of dot-product 

computation using 2D memristors have appeared in the literature, even though it is crucial 

for most analog-based implementations of neural network accelerators. Previous work 

reported on dot-product computation in h-BN memristors (two devices in parallel) and its 

application towards hardware implementation of linear regression algorithms (Xie et al.). 

In this chapter, we report a more extensive dot-product computation with larger arrays 

based on a wafer-scale process for 2D h-BN memristors. In addition to dot-product, our 

analysis elucidates the NVRS characteristics of wafer-scale CVD-grown h-BN memristors, 

including on/off ratio, low-voltage operation, endurance, retention, pulsed analog 

programmability. Figure 3.1 presents a comparative analysis of the set switching energy 

versus set switching time (set delay) of the fabricated device in our study, with similar 

Figure 3.1. Comparison of energy consumption vs. switching time in our CVD-grown  

h-BN device compared to counterparts and conventional oxide-based memristors. 
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resistive switching materials and conventional oxide-based technology as reported in the 

relevant literature. The ability to store information is a crucial factor in integrated circuits 

that operate at high clock speeds, with switching time being a critical parameter in this 

regard. The energy used during the training process is directly affected by the set/reset 

switching energy, making it necessary to strive for lower switching energy levels (~1 pJ). 

By reducing the ventilation requirements and enabling the use of wearable and self-

powered technologies, smaller switching energies can significantly enhance the practicality 

of these devices (Lanza et al.). Our device shows promising results in terms of 

power/energy efficiency. We examine the dot-product computation with respect to its 

accuracy, variability, and energy efficiency. This analysis, the first of its kind for 2D 

memristor technology, represents significant progress towards the practical 

implementation of neuromorphic hardware using 2D materials. Finally, we demonstrate 

the implementation of a logistic regression learning algorithm to classify noisy images 

using our 2D h-BN memristor hardware with near-ideal performance and accuracy (by 

comparisons with simulations).  
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3.2 Fabrication, Physical Characteristics and Electrical Behavior of H-BN Memristor 

Devices 

Arrays of 2D memristors with a metal-insulator-metal (MIM) structure are 

fabricated on Si/SiO2 wafers using CVD-grown few-layer h-BN films. A photograph of a 

typical Si/SiO2 wafer with the h-BN memristor arrays is shown in Figure 3.2a. This work 

reports on devices with Au bottom electrodes, and Ti top electrodes (capped with Au). A 

micrograph of Au/h-BN/Ti memristor arrays under test is provided in Figure 3.2b, and 

details of a single device cross section are depicted in Figure 3.2c. Each array shares a 

common bottom electrode (BE) while the top electrodes (TE) are distinct. The fabrication 

steps are illustrated in Figure 3.3a and include the patterning and deposition/lift-off of the 

shared bottom electrodes (steps i, ii, iii), followed by transfer of the few-layer CVD-grown 

h-BN film (~5 nm in thickness) and patterning of the active regions by dry-etching (steps 

iv, v, vi). Finally, the top electrodes are prepared by photolithography, e-beam evaporation, 

and lift-off (steps vii, viii, ix). See section 3.5 for more details on the fabrication process. 

Figure 3.2. (a) Photograph of a typical 2D h-BN memristor array wafer, (b) micrograph 

of h-BN memristor arrays under test, (c) cross-sectional schematic of the few-layer h-

BN memristor arrays with Ti/Au top electrode and Au bottom electrodes.  
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Figure 3.3b is a micrograph of two different fully fabricated h-BN memristor arrays (1×3 

and 1×10). We note that each fabricated sample contains over 200 h-BN memristor arrays, 

and the majority of devices demonstrate reasonable resistive-switching behavior yielding 

>90% working devices. This is consistent with previous work that used similar methods 

for wafer-scale integration and processing of 2D memristive crossbars (reported 98% yield) 

(S. Chen et al.). A critical step in the fabrication of the arrays to achieve good resistive-

switching behavior and high yield is the transfer of the CVD-grown h-BN film. Thus, to 

verify the quality of the h-BN film, we conducted Raman spectroscopy at various randomly 

selected locations immediately after the transfer step. Figure 3.3c shows Raman spectra 

revealing peak positions at 1370 cm-1 for all different locations, consistent with previously 

published results on few-layer h-BN films (Basu et al.). Additional verification of the h-

Figure 3.3. (a) CVD-grown fabrication steps for h-BN memristor arrays on Si/SiO2 wafers, 

(b) micrograph of two different h-BN memristor arrays size 1×3 and 1×10, (c) Raman 

spectra, (d) TEM cross-sectional image of Au/h-BN/Ti/Au memristors. 
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BN memristor structure is achieved via cross-sectional TEM imaging (Figure 3.3d) 

revealing the layered nature of the h-BN film. The dark and blurry regions in the TEM 

image may reveal lattice disorder and native defects along grain boundaries known to be 

responsible for conductive nanofilament formation and resistive switching behavior (C. 

Pan et al.). Compositional analysis using electron energy loss spectroscopy (EELS) 

confirms the regions of N, B and Ti within the stack as highlighted in Figure 3.3d (right 

panels). 

A comprehensive analysis of the resistive switching behavior of h-BN memristors 

is provided in Figure 3.4. Dual voltage sweep measurements are used to observe hysteresis 

in the current-voltage (I-V) characteristics associated with transitions between a high 

resistance state (HRS) and a low resistance state (LRS). In these measurements, a DC 

voltage across the top and bottom electrodes is swept (starting from zero) up to a positive 

value (e.g., 1.5 V), then back to a negative value (e.g., –1 V), and back to zero, all while 

measuring the current through the memristor. The results from 30 cycles of dual voltage 

sweeps are plotted in Figure 3.4a for an h-BN memristor with 3 µm × 3 µm active area 

(area of overlap between top and bottom electrodes). The number labels indicate the sweep 

direction, each light gray line is data from a single cycle, and the blue line with circles is 

the average from all 30 cycles. As shown, a compliance (limit) is applied to the current at 

a value of 100 µA to control the programming of the LRS by limiting the “strength” of the 

conductive path being formed. The measurements indicate repeatable results with little 

cycle-to-cycle variation and low set and reset voltages (approximately +/- 0.5 V for 
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set/reset). Figure 3.4b are cumulative distribution plots of the high and low resistance states 

(HRS and LRS) from all I-V measurement cycles extracted at a read voltage of Vread = 0.1 

V. The cumulative distribution plots reveal an on/off ratio exceeding an order of magnitude 

(i.e., >10× ratio). Figure 3.4c shows the extracted HRS and LRS from the same device as 

a function of cycle number, showing good cycle-to-cycle repeatability.  

Finally, Figure 3.4d shows the results from a room temperature retention test, where 

the current in an h-BN memristor is sampled for up to 10,000 seconds immediately after 

programming to HRS and LRS. The results from the retention test show negligible drift in 

the programmed state of the h-BN memristors. This could suggest another potential 

Figure 3.4. (a) I-V characteristics, (b) cumulative distribution plot of HRS and LRS, (c) 

the resistance corresponding to HRS and LRS as a function of cycle number, (d) room 

temperature retention.  
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advantage of 2D h-BN memristors over conventional (bulk) oxide-based RRAM which 

suffers from the retention-induced conductive drift that can lead to significant degradation 

in inference accuracy in neuromorphic computing systems (Baroni et al.).  

In Figure 3.5a, we explore the analog programmability of the h-BN memristors 

using 100 ns pulses. We use voltage amplitudes of 0.9 V for positive pulses and -1.1 V for 

negative pulses. We apply 15 consecutive positive pulses followed by 15 consecutive 

negative pulses and measure the current after each pulse using Vread = 0.1 V. The measured 

data is plotted for 200 cycles (a total of 6,000 pulses). Here, the gray lines correspond to 

the individual 30-pulse cycles, and the red line with circles is the average for all 200 cycles. 

The results indicate good monotonic behavior with pulse polarity (i.e., current increases 

with positive pulses and decreases with negative pulses). Moreover, the h-BN memristors 

show good endurance to pulse programming as evidenced by consistent resistive switching 

behavior even after 6,000 pulses. We note that the dynamic range in Figure 3.5a (range of 

programmed currents) is small (~2.5×) due to the relatively small amplitudes of the 

programming pulses (+0.9 V and –1.1 V). We can estimate the programming energy 

(energy used in changing conductance with a single programming pulse) assuming a 

current of approximately 45 µA (estimated current for Vpos = 0.9 V instead of Vread = 0.1 

V) and using tset = 30 ns to obtain Eset = (Vpos)(Iset)(tset) ~ 1.2 pJ/pulse. In this calculation 

we use tset = 30 ns instead of 100 ns (test instrument limitation), as determined by 

extrapolation of transient measurements indicating that approximately 20-30 ns is 
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sufficient to switch the h-BN memristors. Note that this programming energy is higher than 

the energy used in reading the device in a dot-product operation as will be described next. 

3.3 Hardware Implementation of Dot-Product Using H-BN Memristor Array 

Having verified the NVRS and analog pulse programmability of individual devices, we 

then test an array of h-BN memristors. Figure 3.5b is a schematic of the array, where we 

illustrate the voltages applied to each top electrode, and the total current through the shared 

bottom electrode given by the dot-product of voltages (𝑣𝑖) and the corresponding 

Figure 3.5. (a) Pulse programming of a single h-BN memristor, (b) schematic of the h-BN 

memristor array illustrating dot-product operation, (c) dot product computation in 

hardware, (d),(e) MAE and standard deviation in the dot-product computation.  
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memristor conductances (𝐺𝑖) as 𝐼 = ∑ 𝑣𝑖𝐺𝑖𝑖 . For the dot-product test, we sequentially 

program individual devices from HRS to LRS (7 devices in a row). We conduct a voltage 

sweep on the top electrodes (all top electrodes at the same voltage) after programming each 

device. During the sweep, we measure the total current through the shared bottom 

electrode. Once all devices have been programmed to LRS, we reset all devices to HRS 

and begin the next cycle (repeated 10 times). The data is shown in Figure 3.5c as current 

vs. swept voltage. Here, each color represents a different ‘state’ corresponding to a 

different number of memristors in LRS. For each state, we plot the individual cycles (lines) 

as well as the average (thick lines with circles). This is a direct measurement of dot-product 

implementation on memristor hardware scanning both relevant parameters (i.e., voltages 

and conductances). We note that the dot-product computations show good linearity and 

reproducibility (quantitative analysis below). We estimate read energy from the dot-

product measurements as Eread = (Vread)(Iread)(tread)/N, where N is the number of memristors 

in parallel. For the worst case (all devices in LRS), the energy is between 200 aJ and 20 fJ 

per operation (each MAC counted as two operations).  

Quantitative Analysis  

Non-ideal memristor behavior (e.g., nonlinear I-V characteristics) as well as 

variability in conductance programming (inherent stochastic nature of filamentary 

resistive-switching mechanisms) can lead to inaccuracy in the computation of dot-

products. This inaccuracy can introduce significant error in the implementation of artificial 

neural networks (ANN) using memristor hardware. To quantify accuracy in dot product 

computation, we calculate the mean absolute error (MAE) as well as the standard deviation 
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in our implementation using h-BN memristor arrays. To obtain MAE, we perform a linear 

fit to the average currents (symbols) in Figure 3.5c for each state (using a least-squares 

method). This linear fit represents a perfectly linear or “exact” dot-product implementation 

for each corresponding state. We then compare the experimental values (all cycles) against 

the exact calculation to obtain MAE over the entire voltage range (from –0.1 V up to +0.1 

V). MAE is plotted in Figure 3.5d for each different state (average over all cycles). As 

shown, the error is largest for state = ‘1’ which corresponds to all devices in HRS. 

However, this MAE is relatively small (<1 µA) compared to the range of current (up to 

~100 µA) and drops significantly (down to ~10 nA) with more devices in LRS. We attribute 

the small error in the dot-product computation to good linearity in the h-BN memristor I-

V characteristics over this read voltage range (from –0.1 V to +0.1 V). We also quantify 

cycle-to-cycle variability based on extractions of standard deviation (𝜎) in the effective 

state conductance from the dot-product data (i.e., the slope from the I-V characteristics in 

Figure 3.5c). The standard deviation is plotted in Figure 3.5e for each different state, where 

the largest deviation of ~70 μS happens for state = ‘1’ which corresponds to all devices in 

HRS. We note that this is small compared to the full range of conductance (200-1000 μS) 

in the dot-product implementation.  
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3.4 Hardware Implementation of Stochastic Logistic Regression Using H-BN 

Memristor Array 

As a demonstration of dot-product computation in a machine learning algorithm, 

we present the implementation of gradient-descent-based stochastic logistic regression for 

image classification. Logistic regression is widely employed for object categorization and 

pattern identification. Here, we carry out the hardware-level computation of dot-product 

(including the corresponding weight updates) on an array of h-BN memristors. Gradient 

descent is an iterative optimization approach for minimization of a cost function associated 

with classification error. In stochastic gradient descent (an online version of this technique 

that processes data one observation at a time), the weight updates (pulse-based adjustments 

in conductance) are exerted on the h-BN memristor array at every iteration in the training 

process. Since memristive crossbar arrays are unable to achieve the steepest gradient 

Figure 3.6. (a) Training images, (b) graph illustration of logistic regression on h-BN 

memristor arrays, (c) a flowchart representing one iteration step in the training process 

for stochastic logistic regression (see text).  
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descent in an effective manner due to device limitations, we use a modified (hardware-

compatible) gradient descent rule to train the h-BN memristor array. In this approach, a 

single pulse, or a set of consecutive programming pulses (with fixed amplitude and width) 

are applied to update the conductance of each memristor in the array as determined by the 

magnitude and polarity required weight updates given by the gradient descent optimization 

algorithm. In this demonstration, we use a dataset of size 500 containing 3×3-pixel noisy 

binary images of characters “T”, “L” and “n” (training images). We train a 9×1 h-BN 

memristor array to discern images of character “T” from the other characters in a separate 

dataset (test images). We note that the training and test images are independently generated 

with one randomly flipped pixel. Figure 3.6a shows a subset of the images illustrating the 

ideal characters (1st image for each row) as well as some noisy samples (1 modified pixel).  

The training process includes two consecutive steps during each iteration: a 

feedforward integration mode and a feedback update mode. In feedforward integration 

mode, vector-matrix multiplication (a collection of dot-products) is performed to achieve 

a hypothesis based on the accumulated output currents. In this hardware implementation, 

each binary picture pixel is translated to a crossbar input voltage equal to +0.1 V for white 

pixels and –0.1 V for black pixels, as shown in Figure 3.6b. Importantly, these input 

voltages are within the range in the I-V characteristics of h-BN memristors showing good 

linearity in dot-product computation (see Figure 3.5c). Then, the image-dependent array of 

voltages is applied as inputs to the memristor array to obtain an output current given by 

𝐼𝑗 = ∑ 𝑣𝑖𝐺𝑖
9
𝑖=1  (i.e., the dot-product of input voltages and conductance “weights”). We then 

apply the logistic activation function 𝑓𝑗 =
1

1+ⅇ
−𝐼𝑗

 to the (normalized) current to obtain an 

output bounded between 0 and 1. This output represents the likelihood that the input image 
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corresponds to a specific category (i.e., corresponds to a specific character like “T”). Each 

training image contains a “label” that indicates if it corresponds to a given category. In this 

example we are training the memristor array to recognize character “T” from the rest, so 

the training images have label 𝑦𝑗 = 1 for character “T” and 𝑦𝑗 = 0 for all other characters. 

At each training step, the classification error is calculated as 𝛿𝑗 = 𝑓𝑗 − 𝑦𝑗 . In feedback 

update mode, the conductance update (weight update) for each memristor is calculated as 

𝛥𝐺𝑖𝑗 = −𝛿𝑗𝑣𝑖. Here we use a simplified, hardware-compatible update rule where a single 

programming pulse of polarity determined by the sign of 𝛥𝐺𝑖𝑗 is applied to change the 

Figure 3.7. (a) Convergence of a logistic regression algorithm, (b) confusion matrix before 

and after training, (c) conductance maps before and after training, (d) evolution of 

experimental conductance vs. iteration, (e) change in conductance during training. 
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conductance of each memristor in the array. We use programming pulses with fixed widths 

and amplitudes of 30 ns, and +2.5 V/-2.6 V respectively. Figure 3.6c provides a flow 

diagram illustration of one iteration in our implementation of stochastic logistic regression 

on h-BN memristor array hardware. 

Figure 3.7 summarizes the results of the classification algorithm implemented on 

the arrays of h-BN memristors. At predetermined training intervals, the classification 

accuracy is assessed using the test images. Figure 3.7a plots the output of the logistic 

function (𝑓𝑗) as a function of training step (iteration). This is actually the average for all 

test images (100 test images for each character). The different lines with symbols 

correspond to the measured output for each different character (maroon for “T”, blue for 

“n”, and green for “L”). We see that for images of character “T” the value approaches 1, 

while for “L” and “n” it approaches 0, meaning an accurate classification as this array was 

trained to classify character “T”. Also shown in Figure 3.7a are simulation results for the 

hardware implementation of stochastic multivariable logistic regression. The shaded 

regions indicate the range of the simulation results (min to max) from 10 different runs 

using random initial conductance values, and the solid line is the average. A small learning 

rate is factored into the conductance updates obtained from gradient descent to ensure a 

gradual change in conductance and improve convergence. In our simulations, we bound 

conductance values to 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 values obtained experimentaly from pulse testing of 

the h-BN memristors. The simulation represents an ideal situation where conductance 

updates are perfectly controlled (no variability) for all memristors in the array, and the dot 

product is linear and without cycle-to-cycle variability. The comparison between 

simulations and experiments indicates that our hardware implementation achieves similar 
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performance and accuracy to the ideal case. We note more abrupt changes in the 

experimental data, likely due to abruptness in changes of memristor conductance, but this 

appears to have little impact on the final accuracy. The rest of the results in Figure 3.7b-e 

are only for experimental results on the h-BN memristor arrays. Figure 3.7b shows the 

confusion matrix for the 𝑓𝑗 values before and after 500 training steps. Clearly, the 

classification improves significantly with training, in accordance with Figure 3.7a. Figure 

3.7c shows a conductance map of the h-BN memristor before and after the hardware-

implemented training. It is observed that after 500 training steps the pattern ‘T’ becomes 

noticeable, while before training the conductance pattern was random. A reasonable 

explanation for the full brightness of pixel 3 is the maximum percentage of reinforcement 

applied to this pixel during training since it is only present in pattern “T” (not in “L” or 

“n”). In fact, this is evident in the evolution of conductance for the full array over the course 

of 250 training steps plotted in Figure 3.7b. Another visualization of the learning process 

is the change in conductance during training for each h-BN memristor as plotted in Figure 

3.7e. As shown, devices that correspond to pixels that are in the ideal “T” pattern are more 

strongly reinforced (positive change in conductance) compared to the pixels that are not.  

3.5 Methods 

Ti/h-BN/Au memristor array fabrication: The Au/h-BN/Ti/Au (from bottom to 

top) memristor arrays were fabricated on a 90 nm SiO2/Si wafer. First, the shared bottom 

electrodes (5 nm Cr/20 nm Au) with 3 μm width were patterned on the substrate via 

photolithography and e-beam evaporation. Then, the CVD-grown few-layer h-BN film on 

copper from Six Carbon Technologies (Shenzhen) was transferred onto the prepared 
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SiO2/Si substrate by wet transfer method. Subsequently, few-layer h-BN film was 

patterned to expose the 100 μm by 100 μm bottom electrodes pads using photolithography 

and oxygen plasma process. Finally, the top electrodes with 30 nm Ti and 30 nm Au were 

patterned with the same electrode width and the same methods as that of the bottom 

electrodes. 

Electrical characterization: A Keithley 4200 semiconductor characterization 

system (SCS) was used for the electrical characterization on a Cascade semiautomatic 

probe station. Source measure units (SMUs) were used to measure I-V characteristics. 

Pulse measure units (PMU, model 4225) were used in conjunction with SMUs to read 

currents during pulse programming experiments. Keithley 4225-RPM remote 

amplifier/switch is employed to switch between PMU and SMU for pulse measurements. 

Figures 3.7 include photographs of the experimental setup. 

Logistic regression test: The experimental demonstration of logistic regression 

was performed utilizing a nine-slot National Instrument (NI) PXle-1078 chassis. A 

customized probe card and test board together with a modular script developed in the 

graphical development environment NI LabVIEW was used to interface the h-BN 

memristor arrays and to implement the algorithm on hardware. For dot product 

(feedforward mode), the input voltages applied to the memristor array used the PXl-6738, 

a 32-channel analog card that sources analog signals, while an SMU (PXI-4140) channel 

is used to read currents. In feedback update mode, positive and negative programming 

pulses are utilized to update the conductance value of the memristors using the PXI 

arbitrary waveform generator (PXI-5413) while SMUs are utilized to measure resistance 

(conductance) at each iteration. Figures 3.8 include photographs of the experimental setup. 
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Figure 3.8. Customized probe card on a Cascade semi-automatic probe station contacting 

memristor array. Right panel shows a micrograph of probed h-BN memristor array. 

 

 

 

Figure 3.9. Photo of the test setup showing nine-slot National Instrument (NI) PXle-1078 

chassis connected to a customized PCB board interfacing between the NI device and probe 

card. Right panel shows the customized PCB interface. 
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CHAPTER 4 

LINEAR REGRESSION WITH 2D HEXAGONAL-BORON NITRIDE (H-BN) 

MEMRISTOR ARRAYS 

4.1 Fabrication of H-BN Memristor Arrays 

Multilayer CVD-grown h-BN was transferred from copper onto a 90 nm SiO2/Si 

substrate patterned with Au bottom electrodes. The h-BN film was then shaped using 

standard photolithographic and etching techniques to expose the bottom electrodes. 

Subsequently, we prepared top electrodes through patterning and Ti deposition using  

e-beam evaporation and lift-off. Figure 4.1a shows a schematic of the fabricated Au/h-

BN/Ti memristors arrays where the Au bottom electrode (BE) is shared across various 

devices each having an independent Ti top electrode (TE) (1 × 3 and 1 × 10 arrays are 

shown). Figure 4.1b illustrates the cross-section of Au/h-BN/Ti memristor. Figure 4.1c is a 

photograph of the memristor arrays on a ~2 cm by 2 cm SiO2/Si wafer. A micrograph of 

the fabricated h-BN memristor arrays shown in Figure 4.1d corroborates the dimensions of 

the 100 µm × 100 µm squared pads and the narrow and long electrodes with 3 µm × 3 µm 

active areas.  

4.2 Resistive-Switching Properties and Multistate Non-Volatile Pulse 

Programmability 

Individual h-BN memristors from the arrays were measured electrically to evaluate 

their resistive-switching properties (see Methods for details on electrical characterization). 

Current-voltage (I-V) characteristics were obtained by sweeping a voltage across the top 

and bottom electrodes while measuring current. Figure 4.2a plots 100 consecutive cycles 
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of I-V measurements on an Au/h-BN/Ti memristor with a 3µm × 3 µm active area. A 

compliance of 0.1 mA was activated for positive applied voltages. The numbered labels 

indicate the sweeping process during the I-V measurement. As shown, clear transitions 

occur between resistive states, evidence of a forming-free bipolar resistive-switching (RS) 

operation with low cycle-to-cycle resistance variability and low set and reset voltages 

(approximately 1 V and -1 V). The cumulative distribution plot of the resistive states 

extracted at a read voltage of 0.1 V from all 100 cycles is shown in Figure 4.2b. Two distinct 

states labelled as HRS (high resistance states) and LRS (low resistance state) are easily 

observed as their distributions are separated by approximately two orders of magnitude. 

Another illustration of the HRS and LRS distributions is provided in Figure 4.2c where the 

resistances are plotted as a function of the cycle number. A histogram of the set and reset 

Figure 4.1. (a) Schematic of the Au/h-BN/Ti memristor arrays, (b) cross-sectional 

schematic of single memristor, (c) photograph of Au/h-BN/Ti memristor arrays on 90 nm 

SiO2/Si wafer under ambient light, (d) micrograph of arrays with 3 µm × 3 µm active 

areas. 
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voltages corresponding to transitions between HRS and LRS is shown in Figure 4.2d. All 

results indicate a stable and reliable RS bipolar operation.  

Moreover, achieving multiple conductive states through the application of 

programming pulses is critical for the implementation of neuromorphic hardware and for 

the analog-based implementation of machine learning functions in memristor arrays. We 

Figure 4.2. (a) I–V characteristics, (b) cumulative probability distribution of the HRS and 

LRS (read at 0.1 V), (c) resistance vs. cycle number plot, (d) histogram of set and reset 

voltages. 
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investigate the multistate pulse programmability of the Au/h-BN/Ti memristors by 

applying a sequence of positive/negative voltage pulses (pulse width is 500 ns, amplitudes 

indicated in Figure 4.3b). After each pulse a small read of 0.1 V is applied to read the 

current (conductive state) of the device (see Figure 4.3a top panel). The results are shown 

in Figure 4.3b, where 100 cycles of 50 positive pulses followed by 50 negative pulses were 

applied. The gray lines are the results from each individual cycle and the solid red line with 

circles is the average from all 100 cycles. The results show a gradual change in conductance 

(from ~ 4 to 10 µS) indicating good analog (i.e., multistate) programmability. Due to the 

fast-switching behavior (nanoseconds), a low energy consumption per programming pulse 

of 𝐸pulsⅇ = (𝐼)(𝑉)(𝑡pulsⅇ) ≈ 125 fJ is achieved. We note that this can be further reduced 

to aJ/pulse by applying a low compliance current as previously reported on h-BN 

memristors (S. Chen et al.). 

Figure 4.3. (a) Diagram of the pulsed measurements and retention test, (b) 100 cycles of 

pulse programming for Au/h-BN/Ti memristor with 3 µm × 3 µm active area. 
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4.3 Hardware Implementation of Linear Logistic Regression Using H-BN Memristor 

Array 

We now demonstrate the implementation of stochastic multivariable linear 

regression on the h-BN memristor arrays. In this implementation we use the h-BN 

memristor arrays to predict the profit of a startup company given its investment in 

marketing and in research and development (R&D). Our model is trained using a dataset 

from 50 startup companies available online (Farhan). In this implementation, the memristor 

Figure 4.4. (a) Flow diagram for stochastic multivariable linear regression, (b) model 

prediction fit to training data training, (c) evolution of MSE with training, (d) evolution of 

model parameters vs. iterations. 
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conductances (𝐺1 and 𝐺2) are the model parameters. The training process is illustrated in 

Figure 4.4a. For each training step a single sample from the dataset is randomly selected 

(the sample includes profit, marketing, and R&D in $K). The input variables (marketing 

and R&D) are translated (normalized) to voltages between 0 and 0.15 V. These voltages 

are applied to the h-BN memristors (𝑣1 and 𝑣2). This is important for the implementation 

of linear regression as the prediction (ℎ) is determined from the output current of the h-BN 

memristor arrays given by the dot product as 

𝐼 = 𝑣T𝐺 , 𝑣 =  [
𝑣1

𝑣2
] , 𝐺 = [

𝐺1

𝐺2
]   (1) 

The prediction is then compared against the training sample (profit) from which we 

determine the error and the required update for each of the model parameters (∆𝐺1 and 

∆𝐺2) (see Methods for details of the implementation). Here we use a hardware-compatible 

approach to update the model parameters whereby a single programming pulse is applied 

to each memristor, and the polarity of the pulse is determined by the sign of ∆𝐺1 and ∆𝐺2. 

This programming pulse will slightly adjust the conductances to ultimately minimize the 

error in the prediction. To achieve good convergence, stochastic regression algorithms 

typically limit the parameter updates with a learning rate that is gradually reduced with 

training number. In our experiments the learning rate is implemented by gradually reducing 

the amplitude of the programming pulses. We reduce the amplitude of the programming 

pulses by 0.1% after each iteration (starting with ±1 V, the pulse amplitude will be reduced 

to ±0.67 V after 400 training steps). The width of positive and negative programming 

pulses is kept fixed at 500 ns throughout the training process.  
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Figures 4.4b-d show the results of the stochastic linear regression implementation. 

In Figure 4.4b we plot the training data (black dots) as well as the model prediction before 

(magenta plane) and after 400 training steps (green plane). As shown, the trained model 

clearly predicts the profit of startup companies based on their investments in marketing and 

R&D much better than the before training. A more quantitative result is shown in Figure 

4.4c where we plot the mean squared error (MSE) as a function of the training step (i.e., 

iteration) as given by MSE = (1/𝑁) ∑ 𝛿𝑖
2

𝑖  where 𝑁 is the sample size (50 in this case) and 

𝛿𝑖 = ℎ𝑖 − 𝑦𝑖 is the error in the prediction. As shown, the MSE reduces with training 

indicating good convergence of the algorithm. Figure 4.4d shows the change in 

conductances 𝐺1 and 𝐺2 (the model parameters) during the training process. We see larger 

updates and fluctuations in the conductances during the initial training steps, and eventually 

converge to the optimal values for the model parameters.  

4.4 Methods 

h-BN memristor and memristor arrays fabrication: The Au/h-BN/Ti memristor 

arrays were fabricated on a 90 nm SiO2/Si wafer. First, the bottom electrodes (5 nm Cr/35 

nm Au) with 3, 20, and 50 µm width were patterned on the substrate via photolithography 

and e-beam evaporation methods. Second, CVD-grown multilayer h-BN on copper from 

Graphene Supermarket was transferred onto the prepared SiO2/Si substrate by wet transfer 

method. Third, h-BN film was patterned to expose the 100 µm by 100 µm bottom 

electrodes pads using oxygen plasma. Finally, the top electrodes (70 nm Ti) were patterned 

with the same electrode width and the same methods as that of the bottom electrodes. The 

top electrodes are exposed to air and a thin surface layer may be oxidized over time. This 

oxidized layer can be easily penetrated with probe needles during measurements, and its 
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impact on the resistive switching behavior has been ruled out by comparing against devices 

with Au-capped top electrodes that show very similar characteristics.  

Electrical characterization: The electrical characterization was conducted on a 

Cascade semi-automatic probe station using a Keithley 4200 semiconductor 

characterization system. The DC I-V measurements were performed using source measure 

units (SMUs), while the pulse programming experiments used a combination of pulse 

measure units (PMU, model 4225) for programming pulses and SMUs for reading currents. 

In the pulse programming experiments we switched between PMU and SMU automatically 

using a Keithley remote amplifier/switch (4225-RPM). Figure 4.5 shows the experimental 

setup. 

Figure 4.5. Probe connections made on the h-BN memristor array pads shown on the inset 

are routed with triaxial cables through the Keithley remote amplifier/switch (RPM) where 

we can automatically connect pulse or source/measure units (PMU or SMU). 
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Linear regression test: Our implementation of multivariable stochastic linear 

regression on the Au/h-BN/Ti memristor arrays was trained using a dataset available online 

(Farhan). The experimental demonstration was done with a Keithley 4200 SCS using a 

custom test script developed in the Keithley user library tool (KULT) and executed in the 

Keithley interactive testing environment (KITE). The input parameters to the test script are 

the minimum and maximum conductance values for each memristor (predetermined based 

on pulse measurements, used to normalize output currents from the arrays), the initial 

values for the programming pulse amplitudes, the constant value for the width of the 

programming pulses, and the number of iterations. The test script loads the training data 

and normalizes the independent variables (in this case marketing and R&D investments in 

thousands of dollars) to voltages between 0 and 0.15 V. We also subtract a constant offset 

(y-intercept) from the dependent variable (profit) so that the model is based only on two 

regression coefficients (model parameters represented by the memristor conductances). 

The script then goes into a loop where it randomly selects a sample for the data set and 

apply the read voltages (𝑣1 and 𝑣2) that correspond to the independent variables of that 

sample. The current 𝐼 =  𝑣1𝐺1 + 𝑣2𝐺2 is read at the output of the h-BN memristor arrays 

(shared bottom electrode) and is translated from Amps to dollars to be compared against 

the training sample. This read operation is conducted with the Keithley SMUs. We then 

calculate the error (𝛿) in the prediction as well as the required update for each model 

parameter (i.e., ∆𝐺1 and ∆𝐺2). From the minimization of the cost function (i.e., 𝛿2/2) the 

updates are calculated as ∆𝐺 = −𝛿𝑣. Here we propose a simplified hardware-compatible 

regression approach where the memristor conductances (i.e., the model parameters) are 

updated through the application of a single programming pulse, and the polarity of the 
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pulse is determined by the sign of the corresponding ∆𝐺. The programming pulses are 

applied using Keithley’s 4225 PMU (pulse width is fixed to 500 ns). Gradient descent 

algorithms typically use learning rate decay to improve convergence, where model 

parameter updates are weighted by a learning rate (𝛼) that is reduced gradually as training 

advances. In our hardware demonstration we introduce learning rate decay by gradually 

reducing the amplitude of the programming pulses (we have reduced the amplitude of the 

programming pulses by 0.1% after each iteration).   
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CHAPTER 5 

UNSUPERVISED LEARNING IN HEXAGONAL BORON NITRIDE MEMRISTOR-

BASED SPIKING NEURAL NETWORKS 

5.1 Overview of Memristor-based Spiking Neural Networks 

Artificial neural networks (ANN) offer an approximate simulation of the 

human brain and can be realized with highly interconnected processing units in 

neuromorphic computing hardware. Despite remarkable advancements in 

neuromorphic computing hardware, biological neural networks continue to 

outperform ANNs in terms of energy efficiency and capabilities for online learning. 

To better emulate biological neural networks and to bridge the gap between 

neuroscience and machine learning, spiking neural networks (SNN) exploit event-

based spikes for data transfer and processing. SNNs employ processing units and 

biologically plausible learning models (e.g., spike-timing-dependent-plasticity or 

STDP) that closely mimic the human brain. SNN-based neuromorphic computing 

systems are noteworthy and promising solution to improve energy efficiency as 

demonstrated with TrueNorth, a neuromorphic CMOS integrated circuit produced 

by IBM (Merolla et al.), and Loihi, a neuromorphic processor with on-chip learning 

from Intel (Davies et al.). While not a direct comparison, TrueNorth can produce 

400 billion SOPS (synaptic operations per second) per watt for networks with high 

spike rates and a high number of active synapses, compared to one of the most 

energy-efficient supercomputers at the time that only managed 4.5 billion FLOPS 

(floating-point operations per second) per watt (Merolla et al.). Another comparison 
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can be made between Loihi and a 1.67-GHz Atom CPU to solve L1-minimization. 

Results showed that Loihi is 2.58x, 8.08x and 48.74x more energy efficient 

depending on the number of unknowns (Davies et al.).  

Here, we fabricate stable CVD-grown Au/Ti/h-BN/Au memristors and 

further study their experimental properties in anticipation for their use in SNN. We 

develop a recursive mathematical model which follows the experimental pulsing 

behavior of the h-BN memristor to simulate an energy-efficient, CMOS-compatible, 

and hardware-friendly SNN for pattern classification. In comparison to the 

classification performance of 77.2% of the network trained using double-precision 

floating-point network parameters with 50 output neurons (Boybat et al.), we get 

classification accuracy of 67.5% while considering 40 output neurons. We then 

propose a novel STDP-based weight dropout technique to improve classification 

accuracy. Previous studies have shown the feasibility of SNN implementation 

utilizing non-2D material memristors as synaptic devices (Sanchez Esqueda et al.; 

Guo et al.). A recent study used an empirically extracted STDP learning rule to 

examine the viability of Au/Ti/h-BN/Au memristors as synapses in a SNN (Roldan 

et al.). Compared to this previous work, our method achieves similar classification 

accuracy with fewer leaky integrate and fire (LIF) output neurons. In addition, our 

proposed implementation complies with the experimental potentiation/depression 

characteristics of h-BN memristor resulting from pulses of fixed amplitude and same 

width. This makes our method hardware friendly as it eliminates the need for 

complicated pulses with different shapes/width. Finally, we show that the proposed 

STDP-based weight dropout strategy considerably enhances the outcomes by 12% 
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reaching testing accuracy of ~80% for 40 output neurons, making our SNN more 

computationally efficient as well as more hardware- and power-friendly. Our study 

demonstrates the viability of training an adaptable SNN with memristors based on 

2D materials. 

5.2 Physical and Electrical Characteristics of H-BN Memristor Devices 

This work uses 2D h-BN memristors with non-volatile and multi-state 

resistive switching characteristics. The detailed fabrication methods for these 

devices are found elsewhere (Xie et al.). Here, we investigate the physical and 

electrical properties of the device towards their application as artificial synapses in 

SNN. Figure 5.1a shows a picture of 2D h-BN memristor arrays fabricated on a 

SiO2/Si wafer. A schematic of the memristor arrays is shown on the left side of 

Figure 5.1. (a) The memristor arrays wafer, (b) schematic of the memristor arrays 

(on left) and graphical design of a single Au/h-BN/Ti memristor (on right, (c) 

atomic force microscope of the h-BN memristor, (d) Raman spectrum 

measurements, (e) cross-sectional TEM image. 
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Figure 5.1b. The Au bottom electrode is shared by 10 devices in a row, each device 

having separate Ti/Au top electrode. The right side of Figure 5.1b depicts the design 

of a single Au/Ti/h-BN/Au memristor. The top electrode (TE) is Ti (30 nm) capped 

with Au (30 nm) to prevent oxidization. The resistive-switching medium is 

multilayer h-BN, and the bottom electrode (BE) is Au. The thickness of the 

multilayer h-BN is identified by atomic force microscope (AFM) as indicated in 

Figure 5.1c and is approximately 10 nm. The CVD-grown multilayer h-BN film is 

further characterized by its Raman spectrum plotted in Figure 5.1d (blue line), which 

shows a peak position around 1368 cm-1 and full width at half maximum (FWHM) 

of approximately 45 cm-1. For comparison, an exfoliated h-BN sample is also 

characterized by its Raman spectrum and plotted in Figure 5.1d (red line). For the 

exfoliated h-BN sample, the approximate peak position and FWHM are respectively 

Figure 5.2. (a) I-V characteristics, (b) HRS and LRS cumulative probability, (c) 

histogram of set and reset voltages, (d) retention tests, (e) pulse measurement, (f) 

CDF plot for the green case in (e). 
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1362 cm-1 and 10 cm-1. CVD-grown samples reveal a broadened FWHM compared 

to exfoliated crystalline flakes because of random defects generated during the CVD 

process.  

A cross-sectional TEM image is shown in Figure 5.1e identifying the 

multilayered h-BN structure (approximately 15 to 20 layers) and revealing defects 

(blurred darker regions) associated with filamentary formation of conductive paths. 

As proposed earlier. The CVD process promotes defects within the h-BN lattice (Wu 

et al.) providing potential percolation paths for metallic filament penetration. This 

penetration can be initiated a priori during the top electrode (TE) contact deposition 

process (Mao et al.) (the extent being dependent on the deposition rate) as metal 

atoms bombard the h-BN surface. However, the primary method for filamentary 

behavior is by gradual migration of active metal ions (in this work Ti) into the h-BN 

lattice (Mao et al.). With the application of a positive bias to the TE, metal ions can 

cross the metal-dielectric interface and penetrate the h-BN lattice towards the bottom 

electrode along boron-vacancy-rich grain boundaries (percolation paths). As the 

filament forms, the conductive gap between the electrodes is reduced increasing the 

electric field and further increasing current density (Yu and Philip Wong). We note 

that a second resistive switching mechanism is proposed for devices with two 

electrochemically inter electrodes (e.g., Pt/h-BN/Pt or Au/h-BN/Au, etc.) where to 

existence of vacancies (B, N, or multi-vacancies) lead to the formation of interlayer 

bridges (bonds) that modifying the electronic properties and conductance of the 

switching medium around the site of the defects (Mao et al.; Ducry et al.). 
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Figure 5.2a plots the experimental current-voltage (I-V) measurements of a 

device with a 3 µm × 3 µm active area over 50 consecutive cycles. The data shows 

a transition in resistance from HRS (high resistance state) to LRS (low resistance 

state) and the arrows label the direction of the voltage sweep and I-V characteristics. 

These I-V measurements were obtained by applying a sweeping voltage on the top 

electrode (bottom electrode grounded) while measuring current to reveal the 

resistive-switching effect (hysteresis in I-V curves). Here, a compliance of 10-3 and 

10-2 A were activated for positive and negative applied voltages, respectively. Figure 

5.2b plots the cumulative distribution of resistance (HRS and LRS) at a read voltage 

of 0.1 V for all 50 cycles. Figure 5.2c shows histograms of the set and reset voltages 

(Vset and Vreset) corresponding to transitions between HRS and LRS as extracted 

from the 50 cycles of DC I-V measurements. Figure 5.2d illustrates the retention 

(non-volatile) properties of the h-BN memristors by measurements of current as a 

function of time up to 104 seconds with negligible drift in HRS and LRS.  

In addition to DC I-V, we perform pulsed voltage experiments to capture 

gradual changes in conductance and verify the feasibility of using h-BN memristors 

to emulate synaptic functions (i.e., long-term potentiation and depression). Figure 

5.2e shows the pulsed programming of the h-BN memristor. By delivering a 

succession of positive/negative voltage pulses, we reveal analog conductance 

characteristics compatible with the emulation of synaptic plasticity (i.e., changes in 

the strength of neuron connections). We used 50 positive pulses followed by 50 

negative pulses with fixed width of 100 ns and varying pulse amplitudes of +1.2 and 

-1.4 V for case 1 (blue line), +1 and -1.2 V for case 2 (red line), and +0.9 and -1 V 
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for case 3 (green line) over 30 consecutive cycles each. After each pulse, a voltage 

of 0.1 V is applied to read current and obtain conductance. The results reveal a 

gradual change in conductance with each programming pulse, indicating 

applicability of h-BN devices as artificial synapses. Moreover, increasing the pulse 

amplitudes achieves larges update in conductance (𝛥𝐺) suggesting advanced 

synaptic functionality (e.g., tunable synaptic plasticity). 

By observing the distribution of conductance updates (𝛥𝐺) as a function of 

conductance (𝐺) form multiple programming/erase cycles we can better identify the 

variability and linearity of the pulse update scheme. This is shown in Figure 5.2f as 

Figure 5.3. (a) An illustration of a biological neurons consisting of pre-synaptic and 

post-synaptic neurons, axon, and biological synapse, (b) a fully connected 

memristor-based artificial neural network utilizing h-BN memristor device as an 

artificial synapse. 
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contours of the cumulative distribution function (CDF) of 𝛥𝐺 versus 𝐺 over 30 

cycles (for positive and negative pulses). Note that the CDF plots correspond to the 

data in Figure 5.2e (green) for pulse amplitudes of +0.9 and -1 V. In Figure 5.2f, the 

green dashed line traces the midpoint in the distribution (i.e., the value of 0.5). For 

a perfectly linear device, the midpoint line should remain constant as a function of 

𝐺, and the transition through the midpoint would be abrupt in the absence of 

variation. Here we observe a minor change in the distribution midpoint with 𝐺 

indicating good linearity for both positive (potentiation) and negative (depression) 

pulses. Moreover, we verify that cycle-to-cycle variability is small, as illustrated by 

a short range in the distribution of 𝛥𝐺 transitioning through the midpoint (abrupt 

change in contour plot). 

Figure 5.4. (a) Flow chart of implementation of SNN on a h-BN memristor crossbar, 

(b) demonstration of two-layer SNN, (c),(d) output current accumulation and 

charge integration for an input voltage larger and smaller than 𝑡𝑝𝑠. 
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5.3 Implementation of Unsupervised Learning in h-BN Memristor-Based Spiking 

Neural Network 

This section describes the implementation of our SNN model based on 

experimental data from individual h-BN memristors. The SNN architecture consists 

of two fully connected layers: 784 input neurons and 40 output neurons. For the 

output neurons, we consider a commonly used spiking neuron model: the leaky 

integrate-and-fire (LIF) model. In a circuit implementation of the LIF model, an RC 

circuit with a threshold acts as integrator of synaptic signal inputs (Datta Sahoo). 

The accumulated (integrated) signal is compared against a threshold reference and 

will activate an output spike production circuit if the threshold is achieved. Figure 

5.4a shows a flowchart for the simulated crossbar implementation of the SNN. The 

simulation conducts unsupervised learning to classify the Modified National 

Institute of Standards and Technology (MNIST) handwritten digit dataset. This 

dataset consists of 60,000 training images of handwritten digits and 10,000 separate 

testing images. In our implementation, SNN training is implemented through 

feedforward/feedback modes. Both make use of experimental h-BN memristor data 

(DC I-V and pulsed data) to simulate accumulated currents (based on Ohm’s law 

and Kirchhoff’s law) and to update synaptic weights (conductance updates).  

Phase 1: Feedforward mode (current and charge integration) 

Initially, the pixel intensities of two-dimensional grey-scale input training 

images (28-by-28 pixels) are translated to one-dimensional temporal voltages (784 

input voltage pulses). Each voltage pulse has fixed amplitude of 𝑉𝑟 = 0.1 V and 
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different widths (𝑡𝑤𝑖𝑑𝑡ℎ) ranging between 0 and 100 ms corresponding to pixel 

intensity. A black pixel corresponds to a voltage pulse with minimum 𝑡𝑤𝑖𝑑𝑡ℎ 

(minimum intensity), a white pixel corresponds to 𝑡𝑤𝑖𝑑𝑡ℎ = 100 ms (maximum 

intensity), and any other pixel intensity translates to pulse widths between 0 and 100 

ms. The input voltages, 𝑣𝑖(𝑡), are applied to the h-BN memristor crossbar and the 

accumulated currents at the bottom electrodes are calculated at every time step. 

Figure 5.4b depicts this procedure graphically. The post-synaptic currents at each 

column (indexed with 𝑗) are obtained based on Kirchhoff’s law as 𝐼𝑗(𝑡) = ∑ 𝑣𝑖(𝑡)𝐺𝑖𝑗𝑖 , 

where 𝐺𝑖𝑗 are the adjustable h-BN memristor conductances and 𝑣𝑖(𝑡) are the input 

voltages at each row in the crossbar. Mathematically, the output current vector 

results from the multiplication of the input voltage vector and the matrix of 

memristor conductances (vector-matrix multiplication or VMM). In the crossbar 

architecture, VMM can be computed with a single read operation (parallel 

computation). The SNN simulation follows with the calculation of accumulated 

charge at the output LIF neurons based on 

𝜏𝑅𝐶
𝑑𝑋𝑗(𝑡)

𝑑𝑡
− 𝑋𝑗(𝑡) = 𝐼𝑗(𝑡).  (1) 

In (1), 𝐼𝑗(𝑡) is the current in neuron 𝑗 at time 𝑡 and 𝑋𝑗(𝑡) is the accumulated 

charge. Here, 𝜏𝑅𝐶 is the time constant associated with the LIF circuit. Reaching a 

predetermined threshold (𝑋𝑡ℎ = 10 mC) at any of the output neuron will trigger the 
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firing of a post-synaptic spike. In Figures 5.4c, d, 𝑡𝑝𝑠 denotes the triggering time of 

the post-synaptic spike. Through lateral inhibition pathways, the output spike 

propagates among other LIF output neurons to prevent them from firing at the same 

time. In our implementation, following a post-synaptic spike, the charge at every 

output neuron is reset to an initial condition (𝑋𝑖 = 0) and held there for a fixed time 

(𝑡𝑖𝑛ℎ = 10 ms) except for the neuron that recently fired which can immediately return 

to accumulating charge. This competitive learning model where neurons can inhibit 

each other is known as winner-takes-all (WTA) (Datta Sahoo). WTA is thought to 

be a basic component of cognitive tasks including attention and object recognition 

(Maass). All synaptic connections to the neuron that fired will be adjusted. In 

hardware, this means updating the conductance of memristors from a specific 

Figure 5.5. (a) Simplified STDP vs. STDP-based weight dropout, (b) mathematical 

model fit to experimental pulsed h-BN memristor data, (c) updates performed 

during learning for STDP-based weight dropout rule with different positive time 

filters. 
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column connected to the neuron that fired. We must consider two cases of synaptic 

plasticity: 1) strengthening the connection (potentiation) to inputs that contribute to 

the firing (inputs that were active at the time of the post-synaptic spike, 𝑡𝑤𝑖𝑑𝑡ℎ >

𝑡𝑝𝑠); 2) weakening the connection (depression) for inputs that contribute less (inputs 

that were inactive at the time of the post-synaptic spike, 𝑡𝑤𝑖𝑑𝑡ℎ < 𝑡𝑝𝑠). Figures 5c, d 

respectively illustrate examples of potentiation and depression with plots of input 

voltage (top), output current at the post-synaptic neuron (middle), and accumulated 

charge (bottom) during a 100 ms timeframe (single training step). Synaptic weight 

update is discussed next. 

Phase 2: Feedback mode (synapse update) 

We use a simplified learning rule to update synapse weights which follows 

the experimental pulsing behavior of h-BN memristor. In our simplified hardware-

friendly STDP implementation, Δ𝐺 will be either positive or negative based on the 

temporal correlation of corresponding input voltage pulse widths (𝑡𝑤𝑖𝑑𝑡ℎ) and post-

synaptic spikes (𝑡𝑝𝑠), and the magnitude will be modeled to simulate h-BN 

memristor pulsed characteristics (see Figure 5.5a). In other words, a single or set of 

consecutive positive (negative) voltage pulses are applied to memristors that require 

potentiation (depression). The change in h-BN memristor conductance follows an 

experimentally verified recursive model given by  

Δ𝐺 = 𝑎𝑝 + 𝑏𝑝𝑒
−𝑐𝑝

𝐺−𝐺𝑚𝑖𝑛
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛   Potentiation  (2a) 

Δ𝐺 = 𝑎𝑑 + 𝑏𝑑𝑒
−𝑐𝑑

𝐺𝑚𝑎𝑥−𝐺

𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛 ,  Depression  (2b) 
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where 𝑎𝑝, 𝑎𝑑 , 𝑏𝑝, 𝑏𝑑 , 𝑐𝑝, 𝑐𝑑 are fitting parameters and 𝐺𝑚𝑎𝑥, 𝐺𝑚𝑖𝑛 correspond 

to the maximum and minimum experimental conductances respectively.  

Figure 5.5b shows the model fit to experimental data with fitting parameters values 

of 10-10, 10-4, 5×10-6, -10-4, 2.5, 0.05 for 𝑎𝑝, 𝑎𝑑 , 𝑏𝑝, 𝑏𝑑 , 𝑐𝑝 and 𝑐𝑑 respectively. The 

conductance is bounded to 𝐺𝑚𝑖𝑛 𝑎𝑛𝑑 𝐺𝑚𝑎𝑥 which are measured at 108 and 165 µS 

for the h-BN memristor with a 3 × 3 µm active area. The inset in Figure 5.5b 

emphasizes how the simplified STDP approach introduces non-ideal (non-linear) h-

BN memristor behavior into our SNN simulation. For example, when 𝐺 is in the 

lower end, the change in conductance with the application of a single pulse (positive 

or negative) is larger compared to when 𝐺 is in towards the upper end. In addition, 

the simulation incorporates homeostatic regulation to maintain similar firing rates 

for all neurons by making small adjustments to the firing thresholds as given by 

∆𝑋𝑡ℎ = 𝛾(𝑓𝑟 − 1/𝑁). Here, 𝛾 is a threshold update fitting factor (set to 5 μC), 𝑓𝑟 is 

the firing rate, and 𝑁 is the number of output neurons. By adjusting 𝛾, recognition 

and convergence rate changes. It is important to adjust 𝑋𝑡ℎ and 𝛿 to maintain 

reasonable firing rates and to avoid overfitting in the learning SNN unsupervised 

learning process. 
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To improve the effectiveness of neural transmissions, excess neurons and 

synaptic connections are removed through a process known as synaptic weight 

dropout. Synapses connecting neurons with high spiking correlation are preserved, 

while synapses with poor or uncorrelated spiking activity are pruned. Weight 

dropout also mitigates overfitting in neural networks trained with large size data sets 

by preventing unwanted specialization towards details and noise in the training data 

and allowing better generalization (Faghihi et al.). 

We demonstrate an STDP-compatible technique to prune (remove) 

insignificant weights for an improved network performance in terms of 

classification accuracy. This technique applies a time filter on the temporal 

correlation between input voltage pulse widths and post-synaptic spikes (i.e., Δ𝑡), to 

limit the number of conductances that will be updated in the feedback phase. The 

process is as follows. First, Δ𝑡 is calculated as 

𝛥𝑡𝑛ⅇ𝑔 = 𝑡𝑤𝑖𝑑𝑡ℎ  (𝑚𝑠) − 0 (𝑚𝑠) …      for 𝑡𝑤𝑖𝑑𝑡ℎ < 𝑡𝑝𝑠 (4a) 

Figure 5.6. (a) Comparison of recognition rate as a function of iteration for 

simplified STDP vs. STDP-based weight dropout with 4 different positive time, (b) 

comparison of recognition rate vs. output neurons for simplified STDP vs. STDP-

based weight dropout. 



  88 

𝛥𝑡𝑝𝑜𝑠 = 100 (𝑚𝑠) − 𝑡𝑤𝑖𝑑𝑡ℎ  (𝑚𝑠), … for 𝑡𝑤𝑖𝑑𝑡ℎ ≥ 𝑡𝑝𝑠 (4b) 

where 𝑡𝑤𝑖𝑑𝑡ℎ  denotes the input DC voltage width, 𝑡𝑝𝑠 denotes the post-spike 

time (see Figure 5.4c, d). Next, the calculated Δ𝑡 is normalized to fall within the 

STDP range (+/- 100 ms). As shown in Figure 5.5a, we define 𝑡𝑠1 as the positive 

(potentiation) time filter and 𝑡𝑠2 as the negative (depression) time filter. All the 

synapses with Δ𝑡 between 𝑡𝑠2 and 𝑡𝑠1 are subject to a conductance update determined 

by the experimentally verified recursive model in equation (2). We have performed 

simulations for 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 100, 75, 50 and 25 ms. In Figure 5.5c, the 

same grayscale MNIST image (out of 60,000 training images) is shown with colored 

pixel outlines indicating the synapses that were dropped (not updated) with various 

values of the time filters 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 100, 75, 50 and 25 ms). Evidently, 

the number of pruned (dropped) conductances is largest for 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 

25 ms. Also, the figure labeled “original image” represents the case without weight 

dropout. This implies that in simplified STDP learning approach no weight is 

eliminated, and during each iteration all the corresponding synapses are updated.  

Figure 5.6 summarizes the results from the SNN simulations using simplified 

STDP as well as STDP-based weight dropout learning schemes. In Figure 5.6a, the 

recognition rate for arrays with 40 output neurons is plotted as a function of training 

number for both cases (different time filters shown for weight dropout). For each 

case, the simulation is conducted five times, and the mean value is plotted with the 

length of error bars indicating the standard deviation. Since the labels of training 

images are not known to the network (training is unsupervised), recognition rate is 

based on the spiking activity for all 10,000 test images of MNIST dataset. Each 
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neuron is assigned to the handwritten digit for which it spiked the most, and the ratio 

of spikes on the assigned digit to the total number of spikes is calculated as the 

recognition rate. The recognition rate shown in Figure 5.6a is the average of all the 

handwritten digits in MNIST dataset. As observed in Figure 5.6a, the final 

recognition rate (after 60,000 training steps) for the STDP-based weight dropout rule 

of 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 100 ms (in solid black line) has improved by 12% for 40 

output neurons reaching 80.2% compared to the simplified STDP method 

recognition rate of 67.5%. Figure 5.6b shows the results of the simulations for 10, 

20, 40 and 80 output neurons when trained with recursive model-based simplified 

STDP (red line) and STDP-based weight dropout with time filters of 𝑡𝑠2= -70 ms 

and 𝑡𝑠1 = 100 ms (blue line). Plots are the average over five simulation cycles for 

each case. The results shown for each number of output neurons are the recognition 

rate after training with one single epoch (i.e., 60,000 training images). Improved 

recognition rate is observed when the proposed STDP-based weight dropout 

technique is applied. The improvement is attributed to alleviating overfitting in the 

SNN, as the improvement appears more significantly towards the end of the training 

epoch. 
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CHAPTER 6 

CONCLUSION 

This dissertation offers an outline of neuromorphic computing as a remedy for high 

power consumption in modern digital computers and as an efficient platform for AI 

applications that are integrated into our daily lives. The dissertation then gives an overview 

of memristor, a sort of analog resistive switching memory with excellent properties, a 

promising candidate for artificial synapses in neuromorphic computing. Additionally, 2D 

devices exhibit resistive switching properties that can be reduced to a single layer and 

exhibit even superior properties, such as improved energy efficiency (see Figure 3.1). 

Chapter 2 presents the circuit-level analysis of the 1T1R crossbar implementation 

of the linear and logistic regression algorithms using a compact model for memristors that 

was physics-based, variation-aware, and experimentally proven. The analysis includes the 

impact of device variability on convergence, as well as on prediction/classification 

accuracy and precision. The algorithm implementations are based on crossbar vector 

matrix multiplication, which is the core operation of typical neuromorphic computing 

platforms. This chapter also offers an enhanced gradient-descent strategy that works with 

real-world hardware. With this method, a faster initial convergence rate can be attained 

without sacrificing the excellent prediction accuracy. The findings of this study suggest 

that our suggested smart pulsing technique can be modified to accelerate training in real 

crossbar architectures. The following was the result of our analysis of how memristor 

variability affects algorithm performance: Memristor variability does not seem to 

significantly influence prediction accuracy in linear regression (can still attain high 

accuracy), but convergence rate and precision are noticeably degraded. Variations in the 
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prediction error as a function of training steps show degraded precision. Similar to logistic 

regression, slower convergence rates and fluctuations in error as a function of algorithm 

iteration (effect on precision) were noted. However, classification accuracy was not 

significantly impacted by memristor variability in logistic regression. Additionally, we 

have contrasted our suggested pulsing strategy with earlier approaches that applied a single 

positive or negative pulse depending on the sign of the needed update at each iteration. The 

suggested method classifies noisy binary images more accurately and more quickly even 

when memristor fluctuation is present. The results of this study are crucial for 

understanding how device variability affects algorithm performance and memristor 

crossbar viability for prediction and classification tasks.  

In chapter 3, we performed hardware-level implementation and simulations of ML 

Algorithms Using Novel 2D Material, h-BN memristor. We demonstrate the 

implementation of dot-product operations on h-BN memristor arrays showing excellent 

linearity and reproducibility. Then, we demonstrate a hardware-compatible 

implementation of stochastic logistic regression on h-BN memristor arrays for image 

classification. The experimental results show classification accuracy and algorithm 

performance comparable to arrays with ideal memristive behavior (from simulations). 

Exceptional resistive switching characteristics, dot-product performance, and 

implementation of logistic regression in h-BN memristor arrays indicate a significant step 

towards the integration of 2D materials for next-generation neuromorphic computing 

systems.  

Next, in chapter 4, we performed hardware-level implementation of multivariable 

stochastic linear regression on the h-BN memristor arrays using a dataset available online. 
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We proposed a simplified hardware-compatible stochastic linear regression approach 

where the memristor conductances (i.e., the model parameters) are updated through the 

application of a single programming pulse, and the polarity of the pulse is determined by 

the sign of the corresponding ΔG. The results showed that the model is trained to perfectly 

fit the training data.  

Moreover, we have reported the synaptic characteristics of 2D Au/h-BN/Ti 

memristors for spiking neural network neuromorphic application in chapter 5. The devices 

exhibit advanced synaptic functionality such as a larger dynamic range with increased 

pulse amplitude, good linearity for both potentiation and depression, and small cycle-to-

cycle variability. Simulation results for MNIST pattern classification based on Au/h-BN/Ti 

memristive SNN hardware following the experimental pulsing behavior of memristor 

reaches satisfactory recognition rate of 67.5% for 40 output neurons. The recognition rate 

improved as we increased the number of output neurons. We then proposed a STDP-based 

pruning technique to improve the recognition rate to 80% for 40 output neurons by 

improving the overfitting issue observed in our system. Our work is a step towards the 

deployment of real 2D materials in SNN hardware for training and inference applications.  
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1. Neuromorphic computing: An emerging field of computing intended to develop 

computer systems that function more like biological brains. These systems employ 

electronic components and circuits that mimic the behavior of neurons and synapses in the 

brain to process information. 

2. Machine Learning (ML): A subset of artificial intelligence that involves the use of 

algorithms and statistical models to enable computer systems to automatically learn from 

and improve upon data without being explicitly programmed. 

3. Deep learning: A subset of machine learning which uses artificial neural networks to 

help computers learn and make decisions from massive sets of complex data. These neural 

networks process and extract information from the input data using numerous layers of 

interconnected nodes. Deep learning models can find intricate patterns and relationships in 

massive amounts of data that would be challenging for humans to observe. 

4. Deep neural network: A type of artificial neural network used in deep learning that 

consists of multiple layers of interconnected nodes. The output from the previous layer is 

processed by each layer of nodes, enabling the extraction of increasingly abstract properties 

from the incoming data. 

5. In-memory computing: A type of computing architecture that uses random access 

memory (RAM) to store and process data instead of the more conventional disk-based 

storage. Large data sets can be processed and analyzed faster due to the greatly decreased 

access times provided by in-memory data storage. 

6. Moore’s law: A prediction made by Gordon Moore, co-founder of Intel, in 1965 that 

the number of transistors on a microchip would double approximately every two years, 

while the cost of computing would decrease. 

7. Weight: In neuromorphic computing, weight is the measure of how strongly or intensely 

neurons or artificial synapses are connected in a neural network. As they determine the 

importance of the input data and the response of the neurons, these weights serve as a 

representation of the network's ability for processing information. 
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8. Activation function: In neural networks, activation function is a mathematical function 

that is applied to a neuron's output to decide whether it should be activated. The network's 

non-linearity, brought forth by the activation function, enables it to simulate complex 

relationships between inputs and outputs. In neural networks, activation functions come in 

a variety of forms, including:  

▪ Sigmoid function: This function, which has the shape of a sigmoid, converts any 

input into a number between 0 and 1. It is frequently employed in binary 

classification issues where the output is a probability value. 

▪ ReLU (Rectified Linear Unit) function: It outputs the input value if it is positive 

and 0 otherwise. Due to its effectiveness and simplicity, ReLU is the activation 

function that deep neural networks utilize the most frequently. 

▪ Tanh function: Similar to the sigmoid function, the tanh function converts the input 

to a number between -1 and 1. Often, feedforward neural networks use tanh. 

▪ Softmax function: A generalization of the sigmoid function, the softmax function 

converts the input to a probability distribution across many classes. It frequently 

appears in multiclass classification problems. 

9. Training/learning: In neural networks, training is the process of adjusting the weights 

and biases of the network's artificial neurons to increase the predictability of the network.  

10. Supervised/unsupervised learning: In supervised learning, the network is trained 

using a labeled dataset, implying that the right output is given for each input. After then, 

the network is trained to reduce the discrepancy between expected and actual output. In 

unsupervised learning, neural networks are trained on unlabeled datasets, implying that 

the correct output for each input is not provided. Instead, it is left to the network to identify 

structure and patterns in the input data on its own. Tasks like clustering and anomaly 

detection frequently involve unsupervised learning. 

11. Epoch: A single iteration of the whole training dataset while a neural network is being 

trained is referred to as an epoch in machine learning. In order to reduce the discrepancy 
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between the expected output and the actual output, the network processes the full training 

dataset during each epoch and adjusts the weights and biases of the neurons. 

12. Loss/cost function: A loss or cost function in machine learning is a mathematical 

function that assesses the discrepancy between a neural network's predicted and actual 

output. By modifying the neural network's weights and biases, the training process aims to 

reduce the value of loss function. 

13. Learning rate: In machine learning, learning rate is a hyperparameter that controls 

how frequently a neural network's weights and biases are updated during training. How 

fast or slowly the network modifies its weights and biases in response to the discrepancy 

between the projected output and the actual output depends on its learning rate. 

14. Accelerator: A customized hardware device developed to expedite the training and 

inference procedures of neural networks in the context of artificial intelligence. 

Accelerators, as opposed to general-purpose CPUs or GPUs, are made to perform the large 

computations needed by neural networks more effectively. 

15. Inference: The practice of utilizing a trained neural network to generate decisions or 

predictions based on fresh, unobserved data is known as inference in neural networks. 

16. Overfitting: Overfitting is when the network gets too complicated and fits the training 

data too closely. This leads to poor generalization to new data. In other words, the network 

has gotten too specialized to that specific dataset as a result of how effectively it has learned 

the training data. 

17. Petaflop/s-days: It is a measure of communication volume (throughput). It represents 

the total amount of computations that would be performed throughout a complete day on a 

computer with a throughput of 1 PetaFLOP/s. 

18. TOPS (Tera Operations Per Second): A measure of the computational efficiency of 

a neural network accelerator or processor. The number of operations (such as multiply-
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accumulate operations) that a hardware device can complete in one second is measured by 

TOPS. 

19. TOPS/W: A measure of performance and energy efficiency.  

 


