
Analog-based Neural Network Implementation

Using Hexagonal Boron Nitride Memristors

by

Sahra T. Afshari

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved April 2023 by the

Graduate Supervisory Committee:

Ivan Sanchez Esqueda, Chair

Hugh J. Barnaby

Jae-sun Seo

Yu Cao

ARIZONA STATE UNIVERSITY

May 2023

 i

ABSTRACT

Resistive random-access memory (RRAM) or memristor, is an emerging

technology used in neuromorphic computing to exceed the traditional von Neumann

obstacle by merging the processing and memory units. Two-dimensional (2D) materials

with non-volatile switching behavior can be used as the switching layer of RRAMs,

exhibiting superior behavior compared to conventional oxide-based RRAMs. The use of

2D materials allows scaling the resistive switching layer thickness to sub-nanometer

dimensions enabling devices to operate with low switching voltages and high programming

speeds, offering large improvements in efficiency and performance as well as ultra-dense

integration.

This dissertation presents an extensive study of linear and logistic regression

algorithms implemented with 1-transistor-1-resistor (1T1R) memristor crossbars arrays.

For this task, a simulation platform is used that wraps circuit-level simulations of 1T1R

crossbars and physics-based model of RRAM to elucidate the impact of device variability

on algorithm accuracy, convergence rate, and precision. Moreover, a smart pulsing strategy

is proposed for the practical implementation of synaptic weight updates that can accelerate

training in real crossbar architectures.

Next, this dissertation reports on the hardware implementation of analog dot-

product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This

extends beyond previous work that studied isolated device characteristics towards the

application of analog neural network accelerators based on 2D memristor arrays. The

wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-

grown few-layer h-BN films. The dot-product operation shows excellent linearity and

 ii

repeatability, with low read energy consumption, with minimal error and deviation over

various measurement cycles. Moreover, the successful implementation of a stochastic

linear and logistic regression algorithm in 2D h-BN memristor hardware is presented for

the classification of noisy images. Additionally, the electrical performance of novel 2D h-

BN memristor for SNN applications is extensively investigated. Then, using the

experimental behavior of the h-BN memristor as the artificial synapse, an unsupervised

spiking neural network (SNN) is simulated for the image classification task. A novel and

simple Spike-Timing-Dependent-Plasticity (STDP)-based dropout technique is presented

to enhance the recognition task of the h-BN memristor-based SNN.

 iii

DEDICATION

To “Women, Life, Freedom”

 iv

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor, Dr. Ivan Sanchez Esqueda,

for his unwavering support and guidance throughout my PhD journey. His trust, guidance,

and mentorship have been instrumental in shaping my research and contributing to my

academic growth and success. I would also like to extend my thanks to the members of my

committee, Dr. Hugh Barnaby, Dr. Jae-Sun Seo, and Dr. Yu Cao, for their vast expertise,

wise counsel, and constant support throughout my doctoral studies. I am particularly

grateful to Dr. Barnaby and Dr. Seo for their kindly allowing me to use their equipment for

neuromorphic hardware implementation, which was essential to the success of my

research. I would like to express my gratitude to my teammates, Jing Xie, Naim Patoary,

Guantong Zhou, Fahad Mamun, Mirembe Musisi-Nkambwe, Priyanka Apsangari and

Wangxin He, for their invaluable contributions to my research. Jing's efforts in the

fabrication and perfection of the 2D h-BN memristor chips have been crucial to the success

of my research. I am grateful to Mirembe, Naim, Guantong, and Fahad for their solid

support, company, and constructive criticism, as they have assisted me in overcoming

obstacles and enhancing my work. I would also like to thank Priyanka and Wangxin for

helping me with device testing and characterization. Moreover, I appreciate the efforts of

my FURI students, Sritharini Radhakrishnan and Jaafar Al Shamari.

I want to thank my family and friends from the bottom of my heart for their

everlasting love and support during my doctoral journey. I am particularly grateful to my

amazing sisters and best friends, Zainab and Najmeh, who have always trusted and

supported me wholeheartedly. Lastly, I thank Gajanan, my best friend, who has been my

constant support system.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

1 INTRODUCTION .. 1

1.1 Background and Motivation .. 1

1.2 Overview of Artificial Neural Networks .. 5

1.3 Overview of Neuromorphic Computing ... 10

1.4 Overview of Memristors as Synapses in Neuromorphic Computing 13

1.5 Goals and Approach .. 21

2 CIRCUIT-LEVEL IMPLEMENTATION OF REGRESSION ALGORITHMS

USING METAL-OXIDE MEMRISTOR ARRAYS.. 23

2.1 Variability in Oxide-based RRAM ... 23

2.2 Effects of Variability on Resistive-Switching Characteristic of 1-Transistor-1-

Resistor (1T1R) RRAM Cells ... 26

2.3 Implementation of Linear Regression on Memristor Crossbars 32

2.4 Implementation of Logistic Regression on Memristor Crossbars 38

3 DOT-PRODUCT COMPUTATION AND LOGISTIC REGRESSION WITH

2D HEXAGONAL-BORON NITRIDE (H-BN) MEMRISTOR ARRAYS..... 45

3.1. H-BN Memristors ... 45

3.2 Fabrication, Physical and Electrical Behavior of H-BN Memristors 49

3.3 Hardware Implementation of Dot-Product Using H-BN Memristor Array .. 54

 vi

CHAPTER Page

3.4 Hardware Implementation of Stochastic Logistic Regression 57

3.5 Methods ... 61

4 LINEAR REGRESSION WITH 2D HEXAGONAL-BORON NITRIDE (H-

BN) MEMRISTOR ARRAYS .. 64

4.1 Fabrication of H-BN Memristor Arrays ... 64

4.2 Resistive-Switching Properties and Multistate Pulse Programmability 64

4.3 Hardware Implementation of Linear Logistic Regression 68

4.4 Methods ... 70

5 UNSUPERVISED LEARNING IN HEXAGONAL BORON NITRIDE

MEMRISTOR-BASED SPIKING NEURAL NETWORKS 74

5.1 Overview of Memristor-based Spiking Neural Networks 74

5.2 Physical and Electrical Characteristics of H-BN Memristor Devices

 .. 76

5.3 Implementation of Unsupervised Learning in h-BN Memristor-Based Spiking

Neural Network ... 82

6 CONCLUSION ... 90

REFERENCES .. 93

APPENDIX

 A GLOSSARY OF NEUROMORPHIC SYSTEMS .. 103

 vii

LIST OF TABLES

Table Page

1.1 RSM Metrics Compared to Conventional Memory. ... 3

1.2 Desirable NVM Metrics for Neuromorphic Computing Applications 18

 viii

LIST OF FIGURES

Figure Page

1.1 Von Neumann vs. Neuromorphic Computing System .. 2

1.2 Biological Neuron vs. Artificial Neuron.. 7

1.3 Increase in the Demand for Computing Power ... 9

1.4 Neuro-Inspired Computing Architecture Solves Memory Bottleneck 12

1.5 Set/Reset Operations in the RRAM Device .. 15

1.6 In-Memory Computing with RRAM ... 16

1.7 Comparing Benchmarks in CMOS vs. RRAM Neuromorphic Chips 17

2.1 Variability in Recent Resistive-Switching Devices .. 25

2.2 Filamentary Operation in RRAM .. 26

2.3 Schematic of the 1T1R RRAM Cell and Crossbar Array 28

2.4 Variability Simulation in 1T1R RRAM Cell ... 29

2.5 Electrical Characteristics of 1T1R RRAM Considering Variability 30

2.6 Translation of ∆G for Hardware Implementation of the Gradient-Descent 32

2.7 Implementation of Linear Regression Algorithm on a Memristor Crossbar 34

2.8 Results of Linear Regression Simulation .. 36

2.9 Implementation of Logistic Regression Algorithm on a Memristor Crossbar ... 39

2.10 Results for Logistic Regression ... 41

2.11 Smart Pulsing vs. Single Pulsing ... 44

3.1 Comparison of Set Energy Consumption vs. Set Switching Energy. 47

3.2 2D h-BN Memristor Array ... 49

3.3 Fabrication and Physical Characteristics of H-BN Arrays.................................. 50

 ix

Figure Page

3.4 Electrical Characteristics of H-BN Memristors .. 52

3.5 Dot Product Computation Using H-BN Arrays .. 54

3.6 Implementation of Logistic Regression on H-BN Arrays 57

3.7 Results of Logistic Regression Algorithm on H-BN Array 59

3.8 Electrical Characterization Test Setup Using Keithley 4200. 63

3.9 Logistic Regression Test Setup Using NI .. 63

4.1 Hexagonal Boron Nitride (H-BN) Memristor Arrays ... 65

4.2 Resistive Switching Characteristics of H-BN Memristors 66

4.3 Multi-State Non-Volatile Pulse Programming of H-BN Memristors 67

4.4 Implementation of Linear Regression on H-BN Memristor Arrays 68

4.5 Electrical Characterization and Linear Regression Test Setup 71

5.1 Physical Characteristics of H-BN Memristor Arrays Wafer 76

5.2 Resistive Switching and Pulsing Characteristics of H-BN Memristors 77

5.3 Biological vs. Memristor-Based Artificial Neural Network 80

5.4 Implementation of SNN on H-BN Memristor Crossbar 81

5.5 Simplified STDP vs. STDP-Based Weight Dropout ... 84

5.6 Results for Simplified STDP vs. STDP-Based Weight Dropout 87

 1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

A study presented that the computer consumption used by the largest artificial

intelligence (AI) training is doubling every few months compared to the Moore’s law

scaling, doubling every two years (Sarker). Modern digital computers, following von

Neumann architecture, use a lot of power, making them an unsustainable platform for

artificial intelligence applications. Due to the physical separation between the processing

unit and the memory unit, which causes high power consumption, processors are required

to spend the majority of their time transporting data between the two units (Sarker).

Therefore, it is important to find alternative solutions.

A solution is brain-inspired computing also known as neuromorphic computing.

The brain is highly functional and power-efficient, prompting scientists to look for ways

to model data storage and processing after its fundamental principles (Sarker; Montesinos

López et al.). The term "neuromorphic" refers to an architecture that draws inspiration from

the human brain. It employs a number of methods similar to those found in the brain, such

as combining memory and processing units in one location to maximize parallelism or

using spike-based data that is resistant to noise found in nature (Montesinos López et al.).

Figure 1.1a shows the architecture of von Neumann computing system compared to

neuromorphic computing system in Figure 1.1b.

 2

Numerous innovative technologies that draw inspiration from biology can act as

synapses in neuromorphic computing (Khan). One of the fundamental technologies for

implementing the neuromorphic computer system is the developing analog-type resistive

switching memory (RSM) which enables in-memory architecture (Khan). RSM is a two-

terminal nonvolatile memory device that has the ability for analog programmability. It

stores data in the form of various conductance levels (Khan). These devices can act as

synaptic weights to simultaneously store and process input signals (Jo et al.).

RSM can perform vector matrix multiplication (VMM) in a single step by

measuring the cumulative output current using Ohm’s law and Kirchhoff’s law, resulting

in high parallelism (Yao et al.). Analog RSM provides many advantages over conventional

memory technologies like static random-access memory (SRAM) (Y.-H. Chen et al.) and

Flash (Zhao et al.). Although SRAM technology is quick and has a developed

manufacturing process due to CMOS scaling down, large-scale SRAM arrays are not

Figure 1.1. (a) von Neumann computing system, (b) neuromorphic computing system (del

Valle et al.).

 3

desirable due to their poor area efficiency and high standby power (Burr et al.). Flash

technology is a type of nonvolatile memory that exhibits analog programmability (Merrikh-

Bayat et al.). Table 1.1 compares the performance metrics of RSM device with Flash and

SRAM (B. Li et al.). However, analog RSMs exhibit better switching speed, lower

programming voltage, and higher endurance capacity when compared to Flash technology

(Lee et al.). Therefore, RSM with such superior properties can benefit neuromorphic

computing and significantly improve area efficiency.

Table 1.1 RSM metrics compared to conventional memory.

Compared to conventional digital memory circuits, resistive random-access

memory (RRAM or memristor) technology, a subset of RSM, is a great candidate for

nonvolatile memory (NVM) due to its low power consumption, excellent scalability, high-

speed functionality, CMOS compatibility, and analog programmability (i.e., the ability to

retain analog values) (Prakash et al.; Wong et al.). Memristors are typically two-terminal

devices made up of two metal layers with an insulating or switching layer (such as an

oxide) sandwiched in between (Wong et al.). If we consider RRAM as a binary device for

NVM applications, these devices can be programmed into either a low resistance state

(LRS) or a high resistance state (HRS) (Wong et al.). Furthermore, programming a

continuous range of states is essential for neuromorphic architectures and RRAM analog-

based implementations of in-memory computing. RRAM for NVM has also been used to

Technology RSM SRAM Flash (NOR)

Non-volatility Yes No Yes

Cell size (F2) ≤ 2 > 100 10

Write energy (pJ/bit) ~10
-13

 ~10
-15

 ~10
-10

Read time (ns) <10 1-3 10

Write time (ns) <10 1-3 1000

Retention 10 years 5.4 years 10 years

Endurance (cycles) 10
12

 > 10
16

 10
5

 4

show multistate storage properties (Patel et al.). The formation and rupture of conductive

filaments inside the cell's oxide/switching layer allow for the programming of various

resistance states (Patel et al.). The stochastic nature of conductive filament activity

introduces variability, programming abruptness, and non-linearity, which may present a

significant challenge for machine learning applications using RRAM devices (Zhao et al.).

As presented in (Zhao et al.), the basic reliability metrics relate to endurance, retention,

noise, and write/read disturbs. Other reliability metrics, referred to as "functional"

reliability metrics, include non-linearity, variability, dynamic range, precision, variation,

asymmetry, and so on (Zhao et al.). These metrics directly affect the accuracy of

neuromorphic computing (Zhao et al.). In the first section of this study, we concentrate on

another functional reliability issue, namely, the variability in RRAM features, and its

effects on gradient descent-based neural network training (convergence rate, accuracy, and

precision).

In recent years, researchers have discovered that a number of 2D materials also

exhibit memristive phenomena, expanding the category of non-volatile resistive switching

materials to include a vast array of ultrathin layered crystalline films (R. Ge et al.; Rehman

et al.; Pradhan et al.). These 2D memristors can help alleviate some of the non-

idealities of oxide-based RRAM (Kumar et al.). For example, the layered structure

of 2D materials could help minimize variation in resistive switching layer thickness

to provide a more robust implementation of STDP (Chaudhuri and Chakrabarty).

Moreover, compared to oxide-based RRAM, synaptic change occurs in confined and

chemically stable defects surrounded by crystalline h-BN (Kumar et al.). Other

factors that can further help enhance the energy efficiency of SNN are the low

 5

programming voltages (J. Ge et al.) and fast switching speeds (Zhu, Liang, et al.;

Wu et al.) of 2D-material-based memristors. A characteristic 2D insulator known as

hexagonal boron nitride (h-BN) has been shown to exhibit resistive switching behavior in

multilayer nanosheets (C. Pan et al.). These 2D-based memristors have characteristics such

as forming-free operation, high on/off ratio (>106), quick switching speed (20 ns), and low

switching voltage (1 V). In the second section of this research, the first-ever demonstration

of machine learning algorithms has been done using novel h-BN 2D-based memristor

arrays.

1.2 Overview of Artificial Neural Networks

Artificial intelligence (AI) has a branch called machine learning that allows

computers to learn from data on their own and get better over time. To do this, machine

learning models are trained on big datasets and given time to discover patterns and

connections in the data. Following this learning, the models can use raw data to generate

predictions or judgments (Sarker). Artificial neural networks (ANNs) are a type of machine

learning technique that is loosely modeled after the structure and function of the human

brain. ANNs consist of layers of interconnected nodes, also known as neurons, that process

information and learn to recognize patterns in input data (Montesinos López et al.). ANNs

are capable of learning complex, non-linear relationships between inputs and outputs, and

therefore, can simulate non-linear systems (Waterworth and Lees). For example, in drug

discovery, the relationship between a molecule's structure and its activity against a

particular target may be highly non-linear, making it difficult to predict using conventional

 6

linear models. ANNs are able to capture this non-linearity, enabling more accurate

predictions (Jiménez-Luna et al.).

The applications of ANNs are vast and diverse, and span a variety of industries and

domains. ANNs are used extensively in image recognition applications such as facial

recognition and object detection (Khan). ANNs are also used for speech recognition

applications, such as voice-activated assistants like Siri and Alexa. In a study by Yasar et

al., an ANN-based approach was employed for the classification of Parkinson's disease

using speech signals (Yasar et al.). Moreover, ANNs are used for natural language

processing applications such as sentiment analysis and machine translation. An ANN-

based methodology was utilized in a study to analyze the sentiment of internet reviews

(Niharika and Malhotra). In addition, ANNs are employed for financial forecasting

applications such as stock market prediction and fraud detection. In a study published in

ACM Southeast Conference, an ANN-based stock price prediction and trading system was

developed which achieve comparable results against the Buy and Hold approach (Sezer et

al.). Moreover, ANN is widely used in healthcare applications such as disease diagnosis

and drug discovery. Wang et al. demonstrated that ANN models can increase the efficacy

and precision of tumor image segmentation (Wang et al.). In a review study, ANN-based

pharmaceutical research such as drug modeling, analytical data analysis, protein structure

and function, dosage optimization and manufacturing have been discussed (Sutariya et al.).

These are only a few examples of the numerous uses for ANNs in various industries. Future

applications of ANNs are likely to be much more inventive as technology develops.

Artificial neural networks (ANNs) learn through a process called training, which

involves adjusting the weights and biases of the neurons in the network based on a set of

 7

input-output pairs. There are several types of learning algorithms used in ANNs, but one

of the most common is called backpropagation (Nigrin). In backpropagation, the network

is first fed a set of inputs, and the output is calculated using the current weights and biases

of the neurons. The output is then compared to the desired output, and an error signal is

calculated. The error signal represents the difference between the predicted output and the

desired output (Nigrin). The error signal is then propagated back through the network, and

the weights and biases of the neurons are adjusted based on the magnitude and direction of

the error signal. This process is repeated for many input-output pairs, gradually adjusting

the weights and biases of the neurons until the network is able to accurately predict outputs

for a given set of inputs. The learning process in ANNs is often iterative, meaning that the

network is trained using a subset of the available data, and then tested on a separate subset

of data to evaluate its performance. If the network's performance is not satisfactory, the

Figure 1.2. A biological neuron compared to an artificial neuron: (a) human neuron, (b)

mathematical model for artificial neuron, (c) ANN model (Meng et al.).

 8

weights and biases are further adjusted, and the training process is repeated (Nigrin). It is

important to note that the success of an ANN's learning depends on a number of factors,

including the size and complexity of the network, the quality and quantity of the training

data, and the choice of learning algorithm. But with careful design and training, ANNs can

be highly effective at learning from data and making accurate predictions (Schmidhuber).

An artificial neuron, also known as a perceptron, is a basic unit of computation in

an artificial neural network allowing them to perform complex computations and learn

from data. It is a mathematical function that takes inputs, performs a set of calculations on

those inputs, and produces an output. The inputs to an artificial neuron are typically real-

valued numbers, and each input is assigned a weight that reflects its importance in the

calculation. The neuron also has a bias term, which is a constant value that is added to the

weighted sum of the inputs before being passed through an activation function

(Schmidhuber; Rosenblatt). The activation function is a non-linear function that determines

the output of the neuron. There are several types of activation functions used in ANNs,

such as the sigmoid, ReLU, and tanh functions. The output of an artificial neuron is then

passed on to the next layer of neurons in the network, or it may be the final output of the

network if it is a single-layer perceptron. Figure 1.2a and 1.2b show a biological neuron in

comparison to an artificial neuron. Figure 1.2c shows an artificial neural network with two

hidden layers (Meng et al.).

 9

Deep learning algorithms based on artificial neural networks require enormous

matrix operations and are often trained on large datasets containing millions or billions of

data points. This means that the matrix operations involved in training the model need to

be performed many times, which can be very computationally intensive. As a result,

training deep learning models often requires specialized hardware for edge application,

such as graphics processing units (GPUs) or tensor processing units (TPUs), that can

perform large-scale matrix operations efficiently (Taher; Strubell et al.; Sun and Kist;

Hosseininoorbin et al.). Figure 1.3 shows a significant increase in computational power

demand over the past 40 years measured in petaFLOPS days (Mehonic and Kenyon). From

1970 until 2012, the demand for computing power doubled every 24 months. However, in

more recent times, this doubling has occurred at a much faster rate, approximately every 2

months (Mehonic and Kenyon). The same study demonstrates that training costs have

Figure 1.3. Increase in the demand for computing power measured in petaFLOPS days

(Mehonic and Kenyon).

 10

climbed exponentially over the past decade and that hardware demand has increased more

than 300 times between 2016 and 2021 (Mehonic and Kenyon). With all of them, it is clear

that the conventional CMOS technology is not sustainable.

Neuromorphic computing has emerged as a potential solution to the challenges

posed by the end of Moore's Law. As the traditional computing paradigm reaches its limits

in terms of speed and energy efficiency, neuromorphic computing offers an alternative

approach that is modeled after the human brain. Instead of relying on a central processing

unit (CPU) and sequential processing of instructions, neuromorphic computing utilizes

networks of artificial neurons and synapses that are designed to mimic the behavior of

biological neurons. These networks can process information in parallel and adapt to new

data, making them well-suited for tasks such as pattern recognition and decision-making

(Christensen et al.). Even though neuromorphic computing has the potential to offer

significant improvements in energy efficiency and processing speed, there are still many

challenges to overcome in terms of hardware design and programming paradigms before

neuromorphic computing can become a mainstream technology.

1.3 Overview of Neuromorphic Computing

Despite remarkable advancements in ANNs, biological neural networks

continue to outperform ANNs in terms of energy efficiency and capabilities for

online learning. The brain consumes only ~20 W despite containing 109 neurons and

1013 synapses (Sandberg). Since the brain is highly functional and power-efficient,

scientists have been looking for ways to store and process data fundamentally differently

by modeling the brain. Von Neumann architecture, which is the dominant architecture used

 11

in conventional computers, separates memory and processing units and operates by

manipulating data stored in memory using a central processing unit (CPU) through a

sequential sequence of instructions. While this approach is highly flexible and suitable for

a wide range of computing tasks, it can also be highly inefficient when dealing with certain

types of data-intensive and computationally complex tasks, such as deep learning.

Neuromorphic computing, on the other hand, is a field of computer engineering that

is inspired by the structure and function of the human brain, and it aims to develop

computing systems that can process information in a more efficient and brain-like way.

Neuromorphic computing has the potential to address the high computational demands of

deep learning and other complex machine learning tasks. This is achieved by mimicking

the neural networks and synapses of the brain, which are capable of processing large

amounts of data in parallel with high accuracy, computational, and power efficiency. The

term "neuromorphic" refers to a hardware architecture that draws inspiration from the

human brain. It employs a number of methods similar to those found in the brain, such as

combining memory and processing units in one location to maximize parallelism or using

spike-based data that is resistant to noise found in nature (Mehonic and Kenyon). Figure

1.4a shows the architecture of the von-Neumann computing system compared to the

neuromorphic computing system in Figure 1.4b (Zhang et al.). As observed in Figure 1.4a,

the central processing unit (CPU) and memory unit are separated in von-Neumann design,

coupled by a bus, and connected to external input and output devices. The CPU itself

consists of various units such as the control unit, logic/arithmetic unit, and registers. The

 12

CPU fetches data and instruction from the memory unit, and after processing, the results

are stored back into the memory unit. The fetch/storage of data between memory unit and

CPU is the main bottleneck of power consumption in modern digital computers. On the

other hand, in neuromorphic architecture, hardware that mimics brain structure, parallel

computation and memory units are governed by neurons and synapses. Synaptic weights

are used to connect each nearby input and output neuron, and simple vector matrix

multiplication (VMM) computations are carried out. Compared to von-Neumann

processors with explicit instructions, programs in the neuromorphic model are defined by

neural network structures and their parameters.

Figure 1.4. (a) Memory bottleneck in von Neumann architecture, (b) computing paradigm

in von Neumann architecture when data are fetched from or stored to memory, (c) neuro-

inspired architecture, (d) computing paradigm in neuro-inspired computing architecture

(Zhang et al.).

 13

Moreover, neuromorphic computing systems can be designed to be more fault-

tolerant and adaptable than traditional computing systems. This is because they can

reconfigure their connectivity and processing resources in response to changing inputs or

environmental conditions, much like the brain adapts to new situations (Davies et al.).

Researchers are currently exploring a variety of hardware and software architectures for

neuromorphic computing, including spiking neural networks, memristor-based systems,

and field-programmable gate arrays (FPGAs) (“Beyond von Neumann”; Indiveri et al.;

Merolla et al.).

1.4 Overview of Memristors as Synapses in Neuromorphic Computing

Resistive Random Access Memory (RRAM), also known as memristor, is a type

of non-volatile memory that operates based on resistance switching of a thin film between

two metal electrodes. The term "memristor" was first coined in 1971 by Leon Chua, a

professor at the University of California, Berkeley, to describe a hypothetical fourth

fundamental circuit element alongside the resistor, capacitor, and inductor (Chua).

Memristor has been the subject of much research and development in recent years because

of its promising properties, including high density, low power consumption, and fast

switching speeds (Ielmini; F. Pan et al.).

Memristors have been demonstrated to have potential for use in a variety of

applications, including analog circuits, digital memory, and neural networks (F. Pan et al.).

In recent years, memristors have received increasing attention as a promising technology

for brain-inspired computing, due to their ability to emulate the synaptic plasticity and

dynamics of biological synapses (F. Pan et al.).

 14

Memristor operates by utilizing a thin film of a material, typically an oxide,

sandwiched between two metal electrodes. The oxide film is initially in a high resistance

state (HRS) but can be switched to a low resistance state (LRS) by applying a voltage or

current pulse. The resistance of the oxide film can then be read by applying a small voltage

to the electrodes, which produces a measurable current. Memristors operate by utilizing

'set' and 'reset' processes to change the resistance state of a memory cell. During the "set"

operation, a voltage is applied to the RRAM cell which causes the formation of a

conductive filament or pathway within the insulating layer, resulting in a low resistance

state. This low resistance state is often referred to as the "ON" state. During the "reset"

operation, a voltage is applied in the opposite direction, which causes the filament or

pathway to break down, returning the RRAM cell to its high resistance state. This high

resistance state is often referred to as the "OFF" state. The ability to switch between the

ON and OFF states is what allows RRAM to function as a memory device. The resistance

values of the ON and OFF states can be used to represent binary values, with the ON state

representing a "1" and the OFF state representing a "0" (YingTao Li et al.). Figure 1.5.

shows the set /reset operations performed in oxide-based RRAM by formation and rupture

of conductive filament (CF) (Ambrosi et al.).

RRAM can be divided into the following two categories based on the nature of the

conductive filament: (i) Conductive bridge random access memory (CBRAM), also

referred to as electrochemical metallization memory (ECM), which is based on metal ions;

and (ii) oxygen vacancies filament-based RRAM (OxRRAM), also known as valence

change memory (VCM), which is based on oxygen vacancies filaments (Zahoor et al.).

 15

RRAM has several advantages over other non-volatile memory technologies, such

as Flash and Static Random Access Memory (SRAM). RRAM has a higher density than

Flash, due to its smaller cell size and ability to stack multiple layers of memory cells.

RRAM also has a lower power consumption than Flash and SRAM, due to its low operating

voltage and ability to operate with low write currents. Additionally, RRAM has a faster

switching speed than Flash and SRAM, due to its simpler write and read operations.

Moreover, RRAM can perform vector matrix multiplication (VMM) in a single step by

measuring the cumulative output current using Ohm’s law and Kirchhoff’s law, which

results in high parallelism as shown in Figure 1.6. Therefore, RRAM with such superior

properties can benefit neuromorphic computing.

Recently, RRAM neuromorphic chips have shown improved performance

compared to conventional digital neuromorphic computing (Zhang et al.). Four important

benchmarking measures are used to assess the performance of the neuromorphic chips

(Zhang et al.): (i) Computation density, defined as the chip’s efficiency. (ii) Power

efficiency, an important factor in overcoming the power consumption gap between

Figure 1.5. Set/reset operations in the RRAM device. By set process, device goes from

HRS to LRS by forming conductive filament connecting the top electrode and the bottom

electrode. In reset process the conductive filament is ruptured, and device goes to HRS.

 16

biological brains and neuromorphic systems. (iii) Computation accuracy, which is

impacted by imperfections in the hardware, such as thermal noise or reliability problems.

Consequently, hardware accuracy is lower than simulation. (iv) The ability to learn: In

most conventional chips, learning is carried out in the cloud, and learned parameters are

transferred to edge devices. On-chip learning is necessary, nevertheless, for security, quick

adaptation, and occasionally customization (Zhang et al.).

Figure 1.7a shows improved computing densities for ANN and spiking neural

network (SNN) chips based on RRAM technologies compared to CMOS-based

neuromorphic chips. Additionally, in Figure 1.7b, we see improvement for RRAM-based

neuromorphic chips in terms of synaptic operation energy (Zhang et al.).

There are also a few application-dependent device metric requirements for RRAMs

that affect the learning accuracy of artificial neural networks (Zhang et al.), including the

number of analog states (the weight tuning precision), on/off ratio (dynamic range),

Figure 1.6. In-memory computing with RRAM. RRAM (i) combines analog computing and

data storage at the device level, (ii) use RRAM conductance as analog synaptic weights,

and (iii) One-step vector matrix multiplication using Ohm’s law and Kirchhoff’s law.

 17

linearity (conductance tuning linearity), asymmetry/abruptness (the trajectory of the weight

increase/decrease process), endurance, retention, and yield (Zhang et al.). RRAM hardware

can store more than just binary data because it can have many analog states. They can

therefore be utilized in systems like artificial intelligence and neuromorphic computing.

Moreover, they frequently have a high on/off ratio, which means that there is a substantial

difference in the resistance of the device between its on and off states. They are therefore

advantageous for uses like sensing and communications that demand high signal-to-noise

ratios. The ability of RRAM devices to provide a linear output in response to a linear input

is referred to as linearity. For applications such as digital-to-analog converters, RRAM

devices are helpful because they often display strong linearity. The ability of RRAM

devices to switch smoothly between their on and off states is referred to as their asymmetry

or abruptness. The ideal transition between these states for RRAM devices should be sharp

with little hysteresis. This is important for applications such as memory and logic circuits.

The number of times an RRAM device may be switched between the on and off states

without degrading or failing is referred to as its endurance. RRAM devices are appropriate

Figure 1.7. Comparing benchmarks in CMOS-based vs. RRAM-based neuromorphic

computing. (a) Benchmarking computing density, (b) benchmarking synaptic operation

energy (Zhang et al.).

 18

for use in non-volatile memory applications because they typically have good endurance.

The ability of RRAM devices to maintain their on or off state over time, even when they

are not being actively switched, is referred to as retention. RRAM devices often have strong

retention, which is why they are advantageous for uses like data storage. The percentage

of functional, standard-compliant devices on a wafer is referred to as the yield of RRAM

devices. RRAM devices often have high yields, which are crucial for commercialization

and mass production.

 In terms of power efficiency, on-state resistance and write voltage are two

additional metrics. The system's on-state resistance is a critical measure to assess its energy

effectiveness. The crossbar array's current is inversely proportional to its resistance. In

terms of write voltage, we require write voltages between 0.5 and 1 V, which can

significantly lower the write energy consumption. Table 1.2 shows the desirable metrics

for RRAM devices.

Table 1.2 Desirable NVM metrics for neuromorphic computing applications

However, conventional oxide-based memristor technologies present

challenges such as a limited conductance range (Gokmen and Vlasov), asymmetric

potentiation and depression characteristics, nonlinearity, and variability. As stated

before, these non-idealities can affect neuromorphic system performance and

efficiency (Christensen et al.; Degraeve et al.; Afshari et al.). Memristors based on

Parameters Targets

Asymmetry/Non-linearity 0/0

Precision 64

On/off ratio >10

Retention >10 years

Endurance >105 cycles

On-state Resistance (RON) 100 kΩ -10 MΩ

Write Voltage 0.5 V - 1V

 19

two-dimensional (2D) materials can help alleviate some of the non-idealities of oxide-

based RRAM towards more efficient and better performing of neuromorphic

computing. 2D materials have attracted significant interest for the downscaling of CMOS

(complementary metal-oxide-semiconductor) (Huyghebaert et al.), as well as for beyond-

CMOS electronic applications (Robinson). Their atomic scale thicknesses and pristine (i.e.,

dangling-bond free) surfaces could enable ultra-dense integration for next-generation

integrated electronic systems (Lemme et al.). Consequently, many studies have evolved

from the demonstration of isolated devices (e.g., field effect transistors or FETs) based on

exfoliated flakes towards large-area methods for fabrication of integrated circuits with 2D

materials (Quellmalz et al.). While early device demonstrations focused predominantly on

FET applications, recent studies have proposed memory and neuromorphic devices based

on the non-volatile resistive-switching (NVRS) behavior observed in various 2D materials

such as transition metal dichalcogenides (TMD) (R. Ge et al.), hexagonal boron

nitride (h-BN) (Nikam et al.), black phosphorus (Rehman et al.), and graphene

(Pradhan et al.). These devices are generally configured in vertical two-terminal

structures, where the resistive switching layer is sandwiched between top and bottom metal

electrodes. The use of 2D materials has enabled the demonstration of devices with

atomically thin resistive switching layers having potential advantages. For example, the

layered structure of 2D materials could help minimize variation in resistive

switching layer thickness to provide a more robust implementation of synaptic

operations (Chaudhuri and Chakrabarty). Moreover, compared to oxide-based

RRAM, synaptic plasticity (long-term potentiation and depression) can be better

controlled in CVD-grown h-BN memristors as filament formation/dissolution

 20

occurs in confined and chemically stable defects surrounded by crystalline h-BN

(Kumar et al.). Other factors that can further help enhance the energy efficiency of

neuromorphic computing are the low programming voltages (J. Ge et al.) and fast

switching speeds (Zhu, Liang, et al.) of 2D-material-based memristors.

Chemical vapor deposition (CVD)-grown h-BN has attracted much attention for

use as the resistive switching layer due to its compatibility with large-area wafer-scale

fabrication, and arrays of h-BN memristors have been reported (S. Chen et al.). In CVD-

grown h-BN devices, the resistive switching process is attributed to the formation and

rupture of conductive paths via penetration of metal ions into defects at h-BN grain

boundaries. Initial studies of h-BN memristors reported on their non-volatile resistive

switching behavior observed as transitions or hysteresis in measurements of DC current–

voltage characteristics (Wu et al.). Previous work (S. Chen et al.) has also shown the

programming of multiple resistive states in h-BN memristors by the application of

consecutive voltage pulses. Pulsed programming is required for practical memory and

neuromorphic computing applications. Moreover, the pulsed programming of multiple

conductive states is critical for the implementation of synaptic plasticity (i.e., long-term

potentiation and depression) in neuromorphic hardware, as well as for the analog-based

implementation of machine learning functions in memristor arrays (Musisi-Nkambwe et

al.; Huh et al.). For example, most analog-based implementations of neural networks and/or

machine learning hardware based on memristor crossbars rely on dot-product (i.e.,

multiply-accumulate) operations (Mahmoodi et al.; Hu et al.). Here, the accumulated

currents at the outputs of the array result from the product of input voltage signals (input

vector) and the conductance of the memristors in the array (column vectors) (Xie et al.).

 21

In this work, we present the wafer-scale fabrication of memristor arrays using on

CVD-grown h-BN resistive switching layers, and their multi-state analog programmability.

We focus on the experimental demonstration of dot-product operation on h-BN memristor

arrays and on the hardware implementation of multi-variable stochastic linear and logistic

regression. This work extends beyond existing demonstrations of NVRS behavior in

isolated h-BN memristors and paves the way for more sophisticated demonstrations of

machine learning applications based on 2D materials.

1.5 Goals and Approach

This dissertation is divided into six chapters containing several topics related to

simulations and hardware implementation of neuromorphic computing using memristors

as synapses. The main focus of this dissertation is to provide a comprehensive study of

hardware implementation of ANN-based machine learning algorithms using novel 2D

materials. Chapter 2 presents an extensive study of linear and logistic regression algorithms

implemented with 1T1R memristor crossbars arrays. Using a sophisticated simulation

platform that wraps circuit-level simulations of 1T1R crossbars and physics-based models

of RRAM (memristors), we elucidate the impact of device variability on algorithm

accuracy, convergence rate and precision. Moreover, a smart pulsing strategy is proposed

for practical implementation of synaptic weight updates that can accelerate training in real

crossbar architectures. In chapter 3, we report on the hardware implementation of analog

dot-product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This

extends beyond previous work that studied isolated device characteristics towards the

application of analog neural network accelerators based on 2D memristor arrays. The

 22

wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-

grown few-layer (8 layers) h-BN films. The dot-product operation shows excellent linearity

and repeatability, with low read energy consumption (~200 aJ to 20 fJ per operation), with

minimal error and deviation over various measurement cycles. Moreover, we present the

implementation of a stochastic logistic regression algorithm in 2D h-BN memristor

hardware for the classification of noisy images. In chapter 4, we demonstrate the hardware

implementation of a linear regression algorithm on h-BN memristor arrays. Chapter 5

investigates the electrical performance of 2D hexagonal Boron Nitride (h-BN) memristors

towards their implementation in spiking neural networks (SNN). Based on experimental

behavior of the h-BN memristors as artificial synapses, we simulate the implementation of

unsupervised learning in spiking neural network (SNN) for image classification on the

Modified National Institute of Standards and Technology (MNIST) dataset. Additionally,

we propose a simple Spike-Timing-Dependent-Plasticity (STDP)-based dropout technique

to enhance the recognition rate in h-BN memristor-based SNN. Finally, chapter 6 provides

conclusions and summarizes the main contributions of this work.

 23

CHAPTER 2

CIRCUIT-LEVEL IMPLEMENTATION OF REGRESSION ALGORITHMS USING

METAL-OXIDE MEMRISTOR ARRAYS

2.1 Variability in Oxide-based RRAM

RRAM operation for NVM applications typically involves programming (and

reading) cells into two distinct (binary) states, a low resistance state (LRS) or high

resistance state (HRS). Multistate storage has also been demonstrated using RRAM for

NVM (Patel et al.). Additionally, RRAM analog-based implementations of in-memory

computing and neuromorphic architectures rely on the ability to program a continuous

range of states (Yin et al.). The programming of different resistive states is achieved via

the formation and rupture of conductive filaments inside the oxide/switching layer of the

cell. RRAM is considered a great candidate for training and inference applications (Yu et

al.), but the stochastic essence of conductive filament activity (Ielmini), introduces

variability, programming abruptness, and non-linearity that may present significant

challenge for the implementation of RRAM-based in-memory computing applications and

machine-learning (ML). In (Zhao et al.), reliability concerns for RRAM were identified

and metrics were discussed based on the impact on distinguishability of states and

computing accuracy. As presented in (Zhao et al.), the basic reliability metrics relate to

endurance, retention, noise, and write/read disturbs. Other “functional” reliability metrics

include non-linearity, variability, dynamic range, precision, variation, asymmetry, etc.

These reliability metrics refer to functional properties of RRAM that can have a severe

impact on computing accuracy when degraded. In this chapter, we focus on another

 24

functional reliability concern, i.e., variability in RRAM characteristics, and its impact on

neural network training (convergence rate, accuracy, precision) based on gradient descent

algorithms. In 2011, Chen et al presented a collection of results on the variability of LRS

and HRS in different RRAM and CBRAM technologies (Chen and Lin). A similar

collection of LRS and HRS variability from recent RRAM and CBRAM published results

is shown in Figure 2.1 (Fey; Mahadevaiah et al.; Milo et al.; Hong et al.; Belmonte et al.;

Guy et al.; Radhakrishnan et al.; Goux et al.). These indicate that large variation is prevalent

for newer generations of RRAM devices as expected due to the stochastic nature of the

resistive switching mechanisms. Thus, it is crucial to study the impact of device variability

on in-memory computing circuits to gain insight on the viability of RRAM

implementations. This chapter analyzes the effects of RRAM device variability on

accuracy and precision of gradient descent-based ML algorithms (linear and logistic

regression) using crossbar architectures. The algorithm-level analysis presented in this

work uses Spice (Synopsys HSpice) circuit-level simulations that incorporate a compact

memristor model previously developed and verified with experimental data (Chen and Yu).

The primary goal of this work is to investigate the impact of device variability on the

performance of gradient-descent-based machine learning algorithms. Therefore, device-to-

device and cycle-to-cycle variations are introduced into key model parameters. The

approach involves randomly sampling the model parameters from an experimentally

verified distribution. For the ML algorithm analysis, a modified gradient-descent approach

is used to train the crossbar array, similar to that presented in previous work by Nair et al

(Nair and Dudek). In that previous work, a single programming voltage pulse of fixed

amplitude and width is used to adjust the memristor conductance (i.e., the synaptic weights)

 25

independent of the magnitude of the required update. The polarity of the pulse (positive vs.

negative amplitude) is selected based on the sign of the update as determined by the

algorithm. In this work, we extend the approach by allowing a discrete number of

programming pulses to update memristors in accordance with the necessary update. Based

on this new approach, we study the convergence rate and performance of gradient-descent

ML algorithms in the presence of large variation in memristor devices. The results of our

ML algorithm analysis provide insight on convergence rate, accuracy, and precision of

pattern classification experiments on RRAM crossbars and the effects of memristor

variability. The chapter is structured as follows: Section 2.2 identifies and analyzes the

effects of variability on the resistive-switching characteristic of 1-transistor-1-resistor

Figure 2.1. Variability of resistive-switching characteristics in recent metal-oxide RRAM

and CBRAM technologies discussed in previous research. Intersection for each device

represents the mean value of HRS and LRS.

 26

(1T1R) RRAM cells and describes the simulation approach for crossbar arrays. Section 2.3

and 2.4 present the implementation of linear and logistic regression on memristor crossbars

and establishes the impact of device variability on algorithm performance. Mainly, despite

large RRAM cell variability, the crossbar implementation of regression algorithms

achieves convergence (as indicated by clear improvements in accuracy with training), but

with noticeable degradation on precision (fluctuation in the accuracy of trained arrays).

2.2 Effects of Variability on Resistive-Switching Characteristic of 1-Transistor-1-

Resistor (1T1R) RRAM Cells

In this work, we use a compact model for HfOx-based RRAM devices (Chen and

Yu). The bipolar switching characteristics achieved in the model are based on fundamental

physics related to filamentary operation and have been experimentally verified with HfOx

Figure 2.2. Filamentary operation and top-level mathematical representation of the

physics-based RRAM model used in this work.

 27

devices (Yang Yin Chen et al.; Y. Y. Chen et al.; Fantini, Goux, Degraeve, D.J. Wouters,

et al.). A key parameter in the model that captures the internal state of the RRAM cell is

the gap (g), specified as the distance between the top electrode and conductive filament as

illustrated in Figure 2.2. The memristor conductance is directly related to this parameter.

The dynamic process of resistive switching and current flow are modeled by the two

general memristor equations shown in Figure 2.2. To model RRAM variation, the model

fitting parameters 𝐼0, 𝑣0 and 𝛾0 (related to filamentary formation/dissolution and

conductance) are allowed a dispersion 3σ/µ of 30%, 10% and 10%, respectively. These

values were extracted to fit experimental HRS and LRS distributions in TiN/Hf/HfOx/TiN-

based RRAM devices (cf. Figure 5 in (Chen and Yu)). As described in (Chen and Yu),

dispersion in all three parameters should be included to account for the actual

(experimental) variability in RRAM characteristics and measured distribution in LRS an

HRS. The RRAM model is implemented in Verilog-A and circuit-level simulations are

conducted using Synopsys HSpice. For simulating 1T1R cells we use a 65 nm n-type

CMOS transistor model based on the Predictive Technology Model (PTM) from Arizona

State University (Arizona State University, Predictive Technology Model (Ptm).). Figure

2.3a shows the schematic of the 1T1R cell, indicating the pulsing approach to increase or

decrease the conductance of the memristor (i.e., set/reset the memristor). The n-MOS

transistor acts as a selector device and the gate voltage is used to modulate or limit the

amount of current that flows through the cell. The 1T1R configuration helps eliminate

sneak path currents and improves analog programmability by reducing abrupt changes in

 28

conductance from set/reset pulses (Chen and Yu). Finally, Figure 2.3b is a schematic of

the RRAM 1T1R crossbar arrays simulated in this work.

The impact of RRAM variability on the 1T1R cell resistive switching properties is

summarized in Figure 2.4. Figures 2.4b-d show the effects of model parameter dispersion

individually (𝐼0, 𝑣0 and 𝛾0), and Figure 2.4a shows the combined effects on the resistive

switching current-voltage (I-V) characteristics.

Figure 2.5a plots the conductance-voltage (G-V) characteristics including

dispersion in all three model parameters. Figure 2.5b reveals the impact of variability on

the pulsed characteristics (change in conductance with consecutive pulses). In Figure 2.5b,

100 cycles are shown, each cycle consisting of 100 positive and 100 negative consecutive

pulses. A different visualization for the impact of variability on the resistive switching

Figure 2.3. (a), (b) Schematic of the 1T1R RRAM cell and crossbar array simulated with

Synopsys HSpice.

 29

properties is provided in Figure 2.5c. This plot shows contours for the cumulative

distribution function (CDF) of change in conductance (∆𝐺) as a function of conductance

(𝐺). It provides a graphical representation of the non-linear and abrupt response of ∆𝐺

resulting from the programming pulses (only shown for positive pulses). At low levels of

𝐺 (starting with a weak filament), the CDF shows that most pulses will result in large

changes in conductance (abrupt). As 𝐺 increases, the distribution shifts to smaller changes

in conductance (less abrupt) and distribution is narrower (less variation for ∆𝐺).

Figure 2.4. (a) I-V characteristics of 1T1R RRAM cell considering joint effects of

dispersion in model parameters, (b-d) simulation of DC resistive-switching I-V

characteristics of 1T1R RRAM cell considering individual effects of dispersion in model.

 30

The implementation and analysis of regression algorithms presented in this work

uses MATLAB scripts that organize and execute Synopsys HSpice circuit-level

simulations of RRAM 1T1R crossbars. In this simulation platform, the initialization of

RRAM devices as well as the functions of the peripheral circuits (e.g., normalization of

inputs and outputs, calculations of prediction/classification error, activation functions, etc.)

are conducted in MATLAB software. However, crossbar functions including vector matrix

multiplications (VMM) and pulsed programming of RRAM 1T1R cells are directly

implemented with HSpice circuit simulations using the described compact model. A

Figure 2.5. (a) G-V characteristics, (b) pulse-programming of memristor conductance

(multiple cycles and average), average is solid blue line with circles, (c) contour plot of

the CDF for change in conductance vs. conductance.

 31

detailed explanation of the work is provided in the supplementary material of (Afshari et

al.).

Smart Pulsing Strategy for Weight Updates

This work presents a new weight update strategy for accelerated training in ML

algorithms. The proposed strategy selects the number of programming pulses for each

memristor at each training step not only based on the sign of the required update, but also

on its magnitude. For practicality, the number of pulses is discretized to three different

ranges of required weight update (see Figure 2.6). For example, a large conductance update

requirement leads to more consecutive pulses compared to a smaller update requirement.

This leads to larger weight (conductance) changes during early training steps, and smaller

changes in later steps to help fine tune and maximize accuracy as the training advances.

We note that this technique does not affect the frequency of updates, as an update is still

done at every training step. In the next section, we demonstrate how this strategy results in

higher convergence rate, as well as improved precision and accuracy for the crossbar

implementation of multi-variable linear and logistic regression algorithms compared to

existing techniques based on fixed update pulsing methods.

Discussion About Peripheral Circuits

Pulse updates can be generated by a simple CML (current-mode logic) driver circuit

where the circuit is tuned to ensure enough drive voltage capability for loads presented in

terms of crossbar size (crossbar interconnect resistance and memristors). The write

voltages should be verified to have enough margin above the memristor write threshold to

 32

effectively drive the furthest memristor in the write path. More specifically, for our

proposed smart pulse update strategy, a configurable ring oscillator can be used to ensure

a specified number of similar spaced pulses as discussed in (Seo et al.). Read currents are

accumulated at the end of crossbar and need to be sensed prior to digital conversion and

further processing. The choices of voltage versus current mode sensing circuits are

described in (Musisi-Nkambwe et al.). In this solution, a current mode sensing mechanism

is preferred where a reference current is generated to compare against the accumulated

output current. This choice, while more area intensive, allows for trackability of device

variation mirrored in the reference crossbar array. A detailed scheme of the current-mode

sensing circuit is described in (Chang et al.).

2.3 Implementation of Linear Regression on Memristor Crossbars

This section presents the implementation of stochastic multivariable linear

regression on a 3×1 1T1R RRAM crossbar array. This is a type of regression algorithm

Figure 2.6. Translation of ∆G into number of positive or negative voltage pulses for

realistic hardware implementation of the gradient-descent.

 33

with multiple independent variables (𝑥0, 𝑥1, … 𝑥𝑛) combined into a linear prediction

function of the dependent variable (𝑦). The term stochastic comes from the stochastic

gradient descent optimization approach where a single sample or subset of the data is

randomly selected to update the model parameters during each training step. In practice,

we present one data sample at a time to our crossbar array. The model prediction (ℎ) is

given by the dot product of the input variables (𝑥0, 𝑥1, … 𝑥𝑛) and the model parameters

which are stored as the memristor conductances (𝐺0, 𝐺1, … 𝐺𝑛). Mathematically, the

prediction h is given by:

ℎ = 𝑥𝑇𝐺 , 𝑥 = [

𝑥0

𝑥1

𝑥2

] , 𝐺 = [
𝐺0

𝐺1

𝐺2

]. [1]

Here, 𝑥 is the normalized 3×1 input vector and 𝐺 is the 3×1 vector of the memristor

conductances. Figure 2.7a is a flowchart for the crossbar implementation of stochastic

multivariable linear regression. Figure 2.7b shows the schematic of the 3×1 1T1R RRAM

crossbar array as implemented in the simulation. The smart pulsing strategy used in this

demonstration is illustrated in Figure 2.6. This discretized approach would be a practical

implementation of gradient-descent on a real memristor crossbar. When training, the initial

steps will typically require larger updates in conductance (∆𝐺) because the error (𝛿) is

initially large, prompting a larger number of pulses. As the training advances and the error

is reduced, the required update is also reduced leading to a smaller number of applied

pulses. In Figure 2.6, three different versions of the pulsing strategy are shown. These

correspond to different sets of programming pulses (positive or negative) used to update

conductance based on the value of ∆𝐺𝑖. For example, in the pulsing strategy labeled 1-2-4,

 34

one, two or four programming pulses are applied depending on whether the required update

in conductance is between 0 and 0.5 µS, 0.5 and 1 µS, or above 1 µS. Our demonstration

of multivariable linear regression is based on an artificial data set for the price of a pizza

as a function of two independent variables, 𝑥1 and 𝑥2, where 𝑥1 represents the number of

ingredients, and 𝑥2 represents the size of the pizza. Note that the same approach can be

easily extended to 𝑁 independent variables on an (𝑁 + 1) crossbar array. In the hardware

implementation, the input variables are presented as voltage signals (𝑥𝑖 → 𝑣𝑖) on each row

of the crossbar (see Figure 2.7b), and the prediction is represented by the current flowing

on the crossbar array as given by Kirchhoff’s law: ℎ → 𝐼 = ∑𝑣𝑖𝐺𝑖. To ensure the accuracy

of the prediction in this hardware implementation, the amplitude of the input voltage

signals is normalized to a range between 0 and 0.25 V. This range results in good linearity

(i.e., current is directly proportional to voltage, or equivalently conductance is independent

of voltage) as shown in Figure 2.5c. In the optimization process that occurs during training,

a cost function 𝐽 proportional to the mean square error is minimized through the update of

the conductance values. The error is determined by the difference in the predicted and

actual values as 𝛿𝑛 = ℎ𝑛 − 𝑦𝑛, where the superscript indicates the n th data sample (also

Figure 2.7. (a) Flow chart of implementation of linear regression algorithm on a

memristor crossbar, (b) schematic of the 3×1 1T1R crossbar array implemented in

Synopsys HSpice.

 35

n th training step). At each training step, each device requires a conductance update given

by ∆𝐺𝑖 = −𝛼𝛿𝑛𝑣𝑖
𝑛. Here, 𝛼 is a learning rate. In practice, it is not feasible (or required) to

perfectly update the conductances by exactly ∆𝐺𝑖. The goal is to minimize the error (or

cost function). Therefore, the approach is to use a discrete number of programming pulses

(positive or negative) to approximate the change in conductance state of each memristor

according to the value of ∆𝐺𝑖. This approach is referred to as the smart pulsing strategy.

In our demonstration, a dataset of size 1000 is artificially generated to be used as

training of the crossbar array network. The conductance values are randomly initialized

within a range from 10 to 60 µS. The learning rate 𝛼 is initially set to 1, and for improved

convergence is reduced by 3% after each training step. Each iteration corresponds to

presenting a single sample from the dataset followed by the adjustment of the conductance

for each memristor based on the calculated ∆𝐺𝑖. Figure 2.8 summarizes the results of the

memristor crossbar implementation of the stochastic multivariable linear regression

algorithm (without variation). In Figure 2.8a, the blue dots are the dataset corresponding

to price of pizza plotted as a function of two independent variables, 𝑥1, number of

ingredients, and 𝑥2, size of the pizza. The algorithm is conducted five different times and

for each case the initial and final conductance states are recorded. The red mesh surfaces

represent the model prediction based on the initial (random) state of memristor

conductances in the crossbar. The green mesh surfaces represent the prediction after 1000

training steps (i.e., after all data samples have been presented to the array). The different

final predictions for each case result from the different random initial states along with

random shuffling in the sampling process. The results show a significant improvement in

the model prediction of the data set after training as indicated by the green mesh surfaces

 36

overlapping the data points. Figure 2.8b plots the evolution of conductance for each

memristor in the array as a function of the algorithm iteration step during training. It

indicates larger updates in conductance during the initial steps and a settling as

convergence is achieved. Figure 2.8c compares the convergence as indicated by the

prediction mean squared error (MSE) as a function of iteration number for the three

different versions of the pulsing strategy. It is clear from the slope of MSE vs. iteration

number that the pulsing strategy with larger number of pulses (i.e., 1-4-16) has a faster

initial convergence rate (can reach lower MSE with fewer iterations during the initial

Figure 2.8. (a) Results of linear regression algorithm for 5 simulations, (b) conductance

evolution for each memristor vs. iteration, (c) comparison of convergence rate for three

different cases, (d) convergence rate (with and without variation).

 37

training steps). However, as training advances, the convergence rate slows down and

eventually all three pulsing strategies achieve small MSE. We note that a fast initial

convergence rate may be desirable for specific training applications. The proposed pulsing

approach can achieve a fast initial convergence rate without compromising the high

prediction accuracy of the fully trained crossbar array. Finally, we examine the impact of

variability on the stochastic multivariable linear regression algorithm memristor crossbar

implementation. Figure 2.8d plots the prediction mean squared error (MSE) as a function

of iteration number for a pulsing strategy of 1-4-16, with and without memristor variation.

For the case of no variation (shown in green), we include the average MSE vs. iteration

from 10 simulations (solid line) and the range between maximum and minimum MSE

(shaded green region). For the case with variation, we only show the average MSE vs.

iteration number (solid red line). While the convergence is still good even with memristor

variability, we note the following effects: 1) The results indicate that the convergence is

slower (error is reduced at a slower rate with training), 2) The accuracy is degraded

(average error after training is slightly larger than what was obtained when neglecting

variation), 3) The most significant issue appears to be an impact on precision. The results

in Figure 2.8d show noticeable fluctuation in average error when variation is included. We

interpret these fluctuations as an impact on the algorithm precision resulting from

variability in the programming of memristor conductance states. It should be noted that

even with these detrimental effects of memristor variability, the prediction error is still

converging (i.e., error reduces with training) to about 3-5%. This is a promising result for

memristor crossbars implementations of regression algorithms that appears to indicate

some level of immunity to device variability at the algorithm-level. The same simulation

 38

was repeated to compare the individual effects of dispersion in model parameters 𝐼0, and

𝛾0 on the algorithm performance (not shown). We discover that the observed impact on

precision is due mainly to dispersion in 𝐼0, correlating with variation in conductance, and

not to dispersion in 𝛾0 which mostly correlates to dispersion in set/reset voltages (see

Figure 2.4a-d). This observation is reasonable as the algorithm implementation is based on

pulsed programming where the amplitudes of the applied voltage pulses (+1.8 V/-1.5 V)

have sufficient margins above/below the set/reset thresholds.

2.4 Implementation of Logistic Regression on Memristor Crossbars

This section describes the implementation of stochastic logistic regression in a

memristor crossbar for classification of 5×5-pixel binary images that represent characters

‘S’, ‘M’, ‘R’, and ‘T’. Figure 2.9a is a flowchart describing the logistic regression

implementation. The data set is artificially generated and includes “noisy” samples or

images where two of the binary pixels have been flipped (see Figure 2.9b). Separate data

were generated for training and to test the classification accuracy at fixed training intervals

(i.e., after a fixed amount of training images have been presented to the network). Figure

2.9c is a graphical representation of the neural network that is being implemented by the

memristor crossbar for this classification task. The crossbar schematic is shown in Figure

2.9d. Here, each synaptic connection is implemented by a memristor differential pair. The

effective conductance for each differential pair is given by: 𝐺𝑖𝑗 = 𝐺𝑖𝑗
+ − 𝐺𝑖𝑗

−. This enables

negative weights to be implemented with the crossbar array (all conductances are positive).

To perform the classification of the 5×5 images, a 25×8 memristor crossbar is simulated.

 39

During training, images that correspond to different characters (S, M, R, or T) are randomly

presented to the array, so all 4 neurons are simultaneously trained to recognize their

assigned character. As discussed in the previous section, the linear range for the I-V

characteristics of the memristors falls between the range of -0.25 to +0.25 V. Thus, during

the “read” operation, each pixel from the binary image is mapped to a crossbar input

voltage signal of 0.1 V for white pixels and -0.1 V for black pixels. The output current on

each neuron is essentially a dot product of the input voltage vector and the effective

conductance vector from the corresponding column pair. Mathematically, the output

currents are given by 𝐼𝑗 = ∑ 𝑣𝑖𝐺𝑖𝑗

25

𝑖=1
 where 𝐺𝑖𝑗 are the adjustable effective conductance

and vi are the input voltages. The output current is normalized and then goes through the

Figure 2.9. Image classification experiment: (a) flow chart for logistic regression

algorithm, (b) input binary images, (c) representation of the neural network

implementation for image classification, (d) partial schematic of the 25 × 8 memristor

crossbar.

 40

sigmoid activation function which returns the value of 𝑓𝑗 =
1

1+ⅇ
−𝐼𝑗

′ . Here, 𝐼𝑗
′ is the

normalized output current of each column. In this normalization, the original current (𝐼𝑗) is

simply divided by a constant factor and presented to logistic function as 𝐼𝑗
′ . The sigmoid

function gives an output ranging between 0 and 1. In this implementation, the classification

error (𝛿𝑗) is calculated for each neuron as: 𝛿𝑗 = 𝑓𝑗 − 𝑦𝑗, where 𝑦𝑗 is determined by the

label in the training data set (equals 1 for the neuron that corresponds to the training image

and zero for other neurons).

Similar to the linear regression demonstration, a smart pulsing strategy is used

where different number of pulses are applied at each iteration based on the required

conductance update given by 𝛥𝐺𝑖𝑗 = −𝛼𝛿𝑗𝑣𝑖. For 𝛥𝐺𝑖𝑗 greater than ±0.01 µS, five

positive/negative pulses are applied, for 𝛥𝐺𝑖𝑗 between ±0.005 and ±0.01, two

positive/negative pulses are applied and for 𝛥𝐺𝑖𝑗 smaller than ±0.005 µS, a single pulse is

applied. This pulsing strategy is illustrated in Figure 2.10a. In this demonstration, the

programming pulses have amplitudes of +1.4 V and –1.35 V, and widths of 20 ns and 10

ns respectively, and the learning rate, α, is constant with the value of 0.5. A single image

from the dataset is presented to the network during each training step, followed by an

adjustment of the effective conductance through the application of consecutive voltage

pulses determined based on 𝛥𝐺𝑖𝑗. For example, if the effective conductance (𝛥𝐺𝑖𝑗) needs

to be increased, positive pulses are applied to the positive memristor (𝐺𝑖𝑗
+) and negative

 41

pulses are applied to the negative memristor (𝐺𝑖𝑗
−) in the differential pair. This increases the

Figure 2.10. Results for logistic regression: (a) pulsing strategy, (b) mismatched patterns

for “S”, (c) evolution of convergence for output neurons, (d) histogram for the distribution,

(e),(f) confusion matrix before and after training.

 42

effective conductance. Similarly, if the effective conductance needs to be decreased,

negative pulses are applied to the positive memristor and positive pulses are applied to the

negative memristor in the differential pair. The accuracy of the prediction is evaluated at

fixed training intervals using a separate dataset that consists of 400 5x5 binary images (100

noisy images for each character). Figure 2.10 summarizes the results of the classification

algorithm. We first compare the smart pulsing strategy against the constant pulse update

approach described in (Nair and Dudek) and implemented in a real crossbar in (Prezioso et

al.). The constant pulsing approach is indicated by the dashed blue line in Figure 2.10a,

where a single pulse is applied independent of the value of 𝛥𝐺𝑖𝑗. Figure 2.10b shows the

number of mismatched patterns for character “S” in the evaluation set as a function of first

200 training steps. With increasing training steps, the percentage of mismatched patterns

decreases. Red lines indicate the smart pulsing strategy proposed in this paper whereas blue

shows the results for the constant pulsing method (Nair and Dudek; Prezioso et al.). The

solid red line corresponds to the average mismatch from 5 different trials with different

initial states and without variation. The shaded region indicates the range of maximum and

minimum mismatch from all 5 individual runs. The red dotted line is the average mismatch

with variation. As observed, it takes longer for the case with variation to reach almost

perfect classification (zero mismatched patterns). The blue line is the average mismatch

including memristor variability for the constant pulsing approach. Compared to the smart

pulsing strategy, convergence rate and accuracy are reduced. For the smart pulsing strategy,

Figure 2.10c shows the evolution of convergence based on the average output of the

sigmoid function (𝑓𝑗) at each of the neurons and for each of the different characters in the

evaluation data set (100 noisy images for each character). For example, for the neuron

 43

assigned to character ‘S’ (labeled “Neuron S” in Figure 2.10c), 𝑓𝑗 converges to a value

close to 1 for images corresponding to the character ‘S’ and to values close to 0 for others.

In Figure 2.10c, the results shown with open circles are the average of 5 different trials

(each up to 1000 training steps) without memristor variation. For comparison, solid lines

plot the case with variation (only shown for results from images that match the assigned

character to each neuron). These results indicate that memristor variation appears to have

minimal impact on classification accuracy but affects precision by introducing more

fluctuations as a function of training step (consistent with results from linear regression).

Figures 2.10e and 2.10f show the confusion matrix corresponding to 𝑓𝑗 values for each

neuron before and after training. Before training, the 𝑓𝑗 values for each neuron are

randomly distributed around 0.5 based on the initial random effective conductances (see

Figure 2.10d for distribution of initial and final effective conductance). The final values of

𝑓𝑗, after the training is complete (1000 steps), are shown in Figure 2.10f. The results are in

accordance with Figure 2.10c, where corresponding neurons converge towards 1 and the

non-corresponding neurons approach 0. Our results indicate that with memristor

variability, which is the realistic case for actual physical crossbars, more iterations are

necessary to converge to a desirable classification accuracy. For more complex patterns,

this gap may be large. From Figure 2.10c, it can be concluded that because of the nature of

logistic regression, where the output current (weighted sum of inputs) goes through the

logistic function (in this case), the variation does not have outstanding impact in the

learning process. It is important to point out that in some cases, small levels of device

variation (noise) can help achieve improvements in accuracy as it may act as a form of

regularization to prevent overfitting to the training set. This has been demonstrated in (Y.-

 44

C. Chen et al) for MNIST datasets where small levels of variability improved accuracy but

was ultimately degraded for larger levels of variation. Another technique to prevent

overfitting and overreliance on individual devices is dropout regularization and is

commonly used in multi-layer neural networks and was recently proposed to alleviate

stuck-at-faults in memristor crossbar implementations (Xu et al.). Moreover, the work in

(Lillicrap et al.) pointed out in the context of spiking neural networks that noise

symmetrically distributed about a mean of zero will integrate out when trained across many

samples. Another well-known source of noise that is neglected in the present analysis

results from quantization of bit-line currents as typical implementations of the logistic

function use digital circuits (Seo et al.).

Additionally, we compared the smart pulsing approach with the constant pulse

updating strategy that was outlined in (Mbarek et al.). The dashed line in Figure 2.11a and

b represents the single pulsing method, where a single pulse is applied regardless of the

conductance update value. The smart pulsing approach suggested in this study is indicated

by solid lines. Convergence rate and accuracy for a single pulsing method are lower than

they are for a smart pulsing strategy.

 45

CHAPTER 3

DOT-PRODUCT COMPUTATION AND LOGISTIC REGRESSION WITH 2D

HEXAGONAL-BORON NITRIDE (H-BN) MEMRISTOR ARRAYS

3.1. H-BN Memristors

Since the discovery of graphene, two-dimensional (2D) materials have been the

focus of intense research and have shown great potential to advance the capabilities of

future integrated electronic systems. Recent studies have proposed the possibility of adding

new functionality through the hybrid integration of 2D materials with complementary

metal oxide semiconductor (CMOS) technologies (Lemme et al.; Zhu, Wen, et al.). Here,

neuromorphic computing is recognized as one of the main applications of next-generation

electronic systems enabled by 2D materials integration (Lemme et al.). This

unconventional computing paradigm aims at the implementation of artificial neural

networks using compute-in-memory hardware to achieve energy-efficient data processing

for machine learning and artificial intelligence (AI) applications. It requires devices that

can emulate bio-inspired functions (e.g., artificial synapses and neurons) and memristors

have emerged as a primary choice (Yibo Li et al.). Memristors are electronic devices with

variable resistance states that depend on their past and recent experience with external

stimuli. Conventional memristor technologies are constructed from bulk materials and their

resistive switching behavior can be achieved through various mechanisms (e.g., ionic

transport, filamentary, phase change, charge trapping, etc.). Filamentary metal-oxide

resistive random-access memory (i.e., RRAM) is a widely studied technology due to its

nonvolatility, high switching speed, low switching energy, and small energy footprint.

 46

Recently, several studies have reported the non-volatile resistive switching (NVRS)

behavior of two-dimensional (2D) materials down to the single atomic layers (Wu et al.; J.

Ge et al.). A variety of 2D materials were shown to exhibit NVRS properties including

transition metal dichalcogenides (TMD) (R. Ge et al.), hexagonal boron nitride (h-BN)

(Nikam et al.; S. Chen et al.,), black phosphorus (Rehman et al.), graphene (Pradhan et al.),

etc. CVD-grown h-BN has attracted significant interest due to its compatibility with high-

density wafer-scale integration (S. Chen et al.). In CVD-grown h-BN memristors, the

NVRS behavior is attributed to the formation and dissolution of conductive nanofilaments

that result from the penetration and removal of metal ions (from an adjacent electrode) into

defects at grain boundaries in the h-BN film (Kumar et al.).

Two-dimensional h-BN memristors have demonstrated superior properties

compared to their bulk counterparts (e.g., metal-oxide memristors), making them ideal

candidates for future neuromorphic chips for artificial intelligence applications. For

example, they can extend the vertical scaling limit of oxide-based RRAM as the NVRS

behavior endures even in atomically thin h-BN monolayers (Wu et al.; Kumar et al.).

Moreover, the layered structure of h-BN may help alleviate programming errors and

variability (e.g., stuck-at issues) associated with non-uniformity in the thickness of the

resistive switching medium in bulk technologies (Chaudhuri and Chakrabarty).

Additionally, 2D h-BN memristors were shown to provide better analog control of

conductance programmability (e.g., long-term potentiation/depression of artificial

synapses) over a wide range of operating currents when compared to metal-oxide RRAM

where programmability is limited to high currents. This is attributed to filament formation

happening in native defects surrounded by stable crystalline 2D layered h-BN (Kumar et

 47

al.). In fact, the superior chemical stability of h-BN memristors is expected to also alleviate

oxidation reaction to filaments and prevent the redundant formation of undesired paths,

thus helping improve endurance, which has been an issue with oxide-based RRAM.

Despite their great potential for neuromorphic hardware, few reports of dot-product

computation using 2D memristors have appeared in the literature, even though it is crucial

for most analog-based implementations of neural network accelerators. Previous work

reported on dot-product computation in h-BN memristors (two devices in parallel) and its

application towards hardware implementation of linear regression algorithms (Xie et al.).

In this chapter, we report a more extensive dot-product computation with larger arrays

based on a wafer-scale process for 2D h-BN memristors. In addition to dot-product, our

analysis elucidates the NVRS characteristics of wafer-scale CVD-grown h-BN memristors,

including on/off ratio, low-voltage operation, endurance, retention, pulsed analog

programmability. Figure 3.1 presents a comparative analysis of the set switching energy

versus set switching time (set delay) of the fabricated device in our study, with similar

Figure 3.1. Comparison of energy consumption vs. switching time in our CVD-grown

h-BN device compared to counterparts and conventional oxide-based memristors.

 48

resistive switching materials and conventional oxide-based technology as reported in the

relevant literature. The ability to store information is a crucial factor in integrated circuits

that operate at high clock speeds, with switching time being a critical parameter in this

regard. The energy used during the training process is directly affected by the set/reset

switching energy, making it necessary to strive for lower switching energy levels (~1 pJ).

By reducing the ventilation requirements and enabling the use of wearable and self-

powered technologies, smaller switching energies can significantly enhance the practicality

of these devices (Lanza et al.). Our device shows promising results in terms of

power/energy efficiency. We examine the dot-product computation with respect to its

accuracy, variability, and energy efficiency. This analysis, the first of its kind for 2D

memristor technology, represents significant progress towards the practical

implementation of neuromorphic hardware using 2D materials. Finally, we demonstrate

the implementation of a logistic regression learning algorithm to classify noisy images

using our 2D h-BN memristor hardware with near-ideal performance and accuracy (by

comparisons with simulations).

 49

3.2 Fabrication, Physical Characteristics and Electrical Behavior of H-BN Memristor

Devices

Arrays of 2D memristors with a metal-insulator-metal (MIM) structure are

fabricated on Si/SiO2 wafers using CVD-grown few-layer h-BN films. A photograph of a

typical Si/SiO2 wafer with the h-BN memristor arrays is shown in Figure 3.2a. This work

reports on devices with Au bottom electrodes, and Ti top electrodes (capped with Au). A

micrograph of Au/h-BN/Ti memristor arrays under test is provided in Figure 3.2b, and

details of a single device cross section are depicted in Figure 3.2c. Each array shares a

common bottom electrode (BE) while the top electrodes (TE) are distinct. The fabrication

steps are illustrated in Figure 3.3a and include the patterning and deposition/lift-off of the

shared bottom electrodes (steps i, ii, iii), followed by transfer of the few-layer CVD-grown

h-BN film (~5 nm in thickness) and patterning of the active regions by dry-etching (steps

iv, v, vi). Finally, the top electrodes are prepared by photolithography, e-beam evaporation,

and lift-off (steps vii, viii, ix). See section 3.5 for more details on the fabrication process.

Figure 3.2. (a) Photograph of a typical 2D h-BN memristor array wafer, (b) micrograph

of h-BN memristor arrays under test, (c) cross-sectional schematic of the few-layer h-

BN memristor arrays with Ti/Au top electrode and Au bottom electrodes.

 50

Figure 3.3b is a micrograph of two different fully fabricated h-BN memristor arrays (1×3

and 1×10). We note that each fabricated sample contains over 200 h-BN memristor arrays,

and the majority of devices demonstrate reasonable resistive-switching behavior yielding

>90% working devices. This is consistent with previous work that used similar methods

for wafer-scale integration and processing of 2D memristive crossbars (reported 98% yield)

(S. Chen et al.). A critical step in the fabrication of the arrays to achieve good resistive-

switching behavior and high yield is the transfer of the CVD-grown h-BN film. Thus, to

verify the quality of the h-BN film, we conducted Raman spectroscopy at various randomly

selected locations immediately after the transfer step. Figure 3.3c shows Raman spectra

revealing peak positions at 1370 cm-1 for all different locations, consistent with previously

published results on few-layer h-BN films (Basu et al.). Additional verification of the h-

Figure 3.3. (a) CVD-grown fabrication steps for h-BN memristor arrays on Si/SiO2 wafers,

(b) micrograph of two different h-BN memristor arrays size 1×3 and 1×10, (c) Raman

spectra, (d) TEM cross-sectional image of Au/h-BN/Ti/Au memristors.

 51

BN memristor structure is achieved via cross-sectional TEM imaging (Figure 3.3d)

revealing the layered nature of the h-BN film. The dark and blurry regions in the TEM

image may reveal lattice disorder and native defects along grain boundaries known to be

responsible for conductive nanofilament formation and resistive switching behavior (C.

Pan et al.). Compositional analysis using electron energy loss spectroscopy (EELS)

confirms the regions of N, B and Ti within the stack as highlighted in Figure 3.3d (right

panels).

A comprehensive analysis of the resistive switching behavior of h-BN memristors

is provided in Figure 3.4. Dual voltage sweep measurements are used to observe hysteresis

in the current-voltage (I-V) characteristics associated with transitions between a high

resistance state (HRS) and a low resistance state (LRS). In these measurements, a DC

voltage across the top and bottom electrodes is swept (starting from zero) up to a positive

value (e.g., 1.5 V), then back to a negative value (e.g., –1 V), and back to zero, all while

measuring the current through the memristor. The results from 30 cycles of dual voltage

sweeps are plotted in Figure 3.4a for an h-BN memristor with 3 µm × 3 µm active area

(area of overlap between top and bottom electrodes). The number labels indicate the sweep

direction, each light gray line is data from a single cycle, and the blue line with circles is

the average from all 30 cycles. As shown, a compliance (limit) is applied to the current at

a value of 100 µA to control the programming of the LRS by limiting the “strength” of the

conductive path being formed. The measurements indicate repeatable results with little

cycle-to-cycle variation and low set and reset voltages (approximately +/- 0.5 V for

 52

set/reset). Figure 3.4b are cumulative distribution plots of the high and low resistance states

(HRS and LRS) from all I-V measurement cycles extracted at a read voltage of Vread = 0.1

V. The cumulative distribution plots reveal an on/off ratio exceeding an order of magnitude

(i.e., >10× ratio). Figure 3.4c shows the extracted HRS and LRS from the same device as

a function of cycle number, showing good cycle-to-cycle repeatability.

Finally, Figure 3.4d shows the results from a room temperature retention test, where

the current in an h-BN memristor is sampled for up to 10,000 seconds immediately after

programming to HRS and LRS. The results from the retention test show negligible drift in

the programmed state of the h-BN memristors. This could suggest another potential

Figure 3.4. (a) I-V characteristics, (b) cumulative distribution plot of HRS and LRS, (c)

the resistance corresponding to HRS and LRS as a function of cycle number, (d) room

temperature retention.

 53

advantage of 2D h-BN memristors over conventional (bulk) oxide-based RRAM which

suffers from the retention-induced conductive drift that can lead to significant degradation

in inference accuracy in neuromorphic computing systems (Baroni et al.).

In Figure 3.5a, we explore the analog programmability of the h-BN memristors

using 100 ns pulses. We use voltage amplitudes of 0.9 V for positive pulses and -1.1 V for

negative pulses. We apply 15 consecutive positive pulses followed by 15 consecutive

negative pulses and measure the current after each pulse using Vread = 0.1 V. The measured

data is plotted for 200 cycles (a total of 6,000 pulses). Here, the gray lines correspond to

the individual 30-pulse cycles, and the red line with circles is the average for all 200 cycles.

The results indicate good monotonic behavior with pulse polarity (i.e., current increases

with positive pulses and decreases with negative pulses). Moreover, the h-BN memristors

show good endurance to pulse programming as evidenced by consistent resistive switching

behavior even after 6,000 pulses. We note that the dynamic range in Figure 3.5a (range of

programmed currents) is small (~2.5×) due to the relatively small amplitudes of the

programming pulses (+0.9 V and –1.1 V). We can estimate the programming energy

(energy used in changing conductance with a single programming pulse) assuming a

current of approximately 45 µA (estimated current for Vpos = 0.9 V instead of Vread = 0.1

V) and using tset = 30 ns to obtain Eset = (Vpos)(Iset)(tset) ~ 1.2 pJ/pulse. In this calculation

we use tset = 30 ns instead of 100 ns (test instrument limitation), as determined by

extrapolation of transient measurements indicating that approximately 20-30 ns is

 54

sufficient to switch the h-BN memristors. Note that this programming energy is higher than

the energy used in reading the device in a dot-product operation as will be described next.

3.3 Hardware Implementation of Dot-Product Using H-BN Memristor Array

Having verified the NVRS and analog pulse programmability of individual devices, we

then test an array of h-BN memristors. Figure 3.5b is a schematic of the array, where we

illustrate the voltages applied to each top electrode, and the total current through the shared

bottom electrode given by the dot-product of voltages (𝑣𝑖) and the corresponding

Figure 3.5. (a) Pulse programming of a single h-BN memristor, (b) schematic of the h-BN

memristor array illustrating dot-product operation, (c) dot product computation in

hardware, (d),(e) MAE and standard deviation in the dot-product computation.

 55

memristor conductances (𝐺𝑖) as 𝐼 = ∑ 𝑣𝑖𝐺𝑖𝑖 . For the dot-product test, we sequentially

program individual devices from HRS to LRS (7 devices in a row). We conduct a voltage

sweep on the top electrodes (all top electrodes at the same voltage) after programming each

device. During the sweep, we measure the total current through the shared bottom

electrode. Once all devices have been programmed to LRS, we reset all devices to HRS

and begin the next cycle (repeated 10 times). The data is shown in Figure 3.5c as current

vs. swept voltage. Here, each color represents a different ‘state’ corresponding to a

different number of memristors in LRS. For each state, we plot the individual cycles (lines)

as well as the average (thick lines with circles). This is a direct measurement of dot-product

implementation on memristor hardware scanning both relevant parameters (i.e., voltages

and conductances). We note that the dot-product computations show good linearity and

reproducibility (quantitative analysis below). We estimate read energy from the dot-

product measurements as Eread = (Vread)(Iread)(tread)/N, where N is the number of memristors

in parallel. For the worst case (all devices in LRS), the energy is between 200 aJ and 20 fJ

per operation (each MAC counted as two operations).

Quantitative Analysis

Non-ideal memristor behavior (e.g., nonlinear I-V characteristics) as well as

variability in conductance programming (inherent stochastic nature of filamentary

resistive-switching mechanisms) can lead to inaccuracy in the computation of dot-

products. This inaccuracy can introduce significant error in the implementation of artificial

neural networks (ANN) using memristor hardware. To quantify accuracy in dot product

computation, we calculate the mean absolute error (MAE) as well as the standard deviation

 56

in our implementation using h-BN memristor arrays. To obtain MAE, we perform a linear

fit to the average currents (symbols) in Figure 3.5c for each state (using a least-squares

method). This linear fit represents a perfectly linear or “exact” dot-product implementation

for each corresponding state. We then compare the experimental values (all cycles) against

the exact calculation to obtain MAE over the entire voltage range (from –0.1 V up to +0.1

V). MAE is plotted in Figure 3.5d for each different state (average over all cycles). As

shown, the error is largest for state = ‘1’ which corresponds to all devices in HRS.

However, this MAE is relatively small (<1 µA) compared to the range of current (up to

~100 µA) and drops significantly (down to ~10 nA) with more devices in LRS. We attribute

the small error in the dot-product computation to good linearity in the h-BN memristor I-

V characteristics over this read voltage range (from –0.1 V to +0.1 V). We also quantify

cycle-to-cycle variability based on extractions of standard deviation (𝜎) in the effective

state conductance from the dot-product data (i.e., the slope from the I-V characteristics in

Figure 3.5c). The standard deviation is plotted in Figure 3.5e for each different state, where

the largest deviation of ~70 μS happens for state = ‘1’ which corresponds to all devices in

HRS. We note that this is small compared to the full range of conductance (200-1000 μS)

in the dot-product implementation.

 57

3.4 Hardware Implementation of Stochastic Logistic Regression Using H-BN

Memristor Array

As a demonstration of dot-product computation in a machine learning algorithm,

we present the implementation of gradient-descent-based stochastic logistic regression for

image classification. Logistic regression is widely employed for object categorization and

pattern identification. Here, we carry out the hardware-level computation of dot-product

(including the corresponding weight updates) on an array of h-BN memristors. Gradient

descent is an iterative optimization approach for minimization of a cost function associated

with classification error. In stochastic gradient descent (an online version of this technique

that processes data one observation at a time), the weight updates (pulse-based adjustments

in conductance) are exerted on the h-BN memristor array at every iteration in the training

process. Since memristive crossbar arrays are unable to achieve the steepest gradient

Figure 3.6. (a) Training images, (b) graph illustration of logistic regression on h-BN

memristor arrays, (c) a flowchart representing one iteration step in the training process

for stochastic logistic regression (see text).

 58

descent in an effective manner due to device limitations, we use a modified (hardware-

compatible) gradient descent rule to train the h-BN memristor array. In this approach, a

single pulse, or a set of consecutive programming pulses (with fixed amplitude and width)

are applied to update the conductance of each memristor in the array as determined by the

magnitude and polarity required weight updates given by the gradient descent optimization

algorithm. In this demonstration, we use a dataset of size 500 containing 3×3-pixel noisy

binary images of characters “T”, “L” and “n” (training images). We train a 9×1 h-BN

memristor array to discern images of character “T” from the other characters in a separate

dataset (test images). We note that the training and test images are independently generated

with one randomly flipped pixel. Figure 3.6a shows a subset of the images illustrating the

ideal characters (1st image for each row) as well as some noisy samples (1 modified pixel).

The training process includes two consecutive steps during each iteration: a

feedforward integration mode and a feedback update mode. In feedforward integration

mode, vector-matrix multiplication (a collection of dot-products) is performed to achieve

a hypothesis based on the accumulated output currents. In this hardware implementation,

each binary picture pixel is translated to a crossbar input voltage equal to +0.1 V for white

pixels and –0.1 V for black pixels, as shown in Figure 3.6b. Importantly, these input

voltages are within the range in the I-V characteristics of h-BN memristors showing good

linearity in dot-product computation (see Figure 3.5c). Then, the image-dependent array of

voltages is applied as inputs to the memristor array to obtain an output current given by

𝐼𝑗 = ∑ 𝑣𝑖𝐺𝑖
9
𝑖=1 (i.e., the dot-product of input voltages and conductance “weights”). We then

apply the logistic activation function 𝑓𝑗 =
1

1+ⅇ
−𝐼𝑗

 to the (normalized) current to obtain an

output bounded between 0 and 1. This output represents the likelihood that the input image

 59

corresponds to a specific category (i.e., corresponds to a specific character like “T”). Each

training image contains a “label” that indicates if it corresponds to a given category. In this

example we are training the memristor array to recognize character “T” from the rest, so

the training images have label 𝑦𝑗 = 1 for character “T” and 𝑦𝑗 = 0 for all other characters.

At each training step, the classification error is calculated as 𝛿𝑗 = 𝑓𝑗 − 𝑦𝑗 . In feedback

update mode, the conductance update (weight update) for each memristor is calculated as

𝛥𝐺𝑖𝑗 = −𝛿𝑗𝑣𝑖. Here we use a simplified, hardware-compatible update rule where a single

programming pulse of polarity determined by the sign of 𝛥𝐺𝑖𝑗 is applied to change the

Figure 3.7. (a) Convergence of a logistic regression algorithm, (b) confusion matrix before

and after training, (c) conductance maps before and after training, (d) evolution of

experimental conductance vs. iteration, (e) change in conductance during training.

 60

conductance of each memristor in the array. We use programming pulses with fixed widths

and amplitudes of 30 ns, and +2.5 V/-2.6 V respectively. Figure 3.6c provides a flow

diagram illustration of one iteration in our implementation of stochastic logistic regression

on h-BN memristor array hardware.

Figure 3.7 summarizes the results of the classification algorithm implemented on

the arrays of h-BN memristors. At predetermined training intervals, the classification

accuracy is assessed using the test images. Figure 3.7a plots the output of the logistic

function (𝑓𝑗) as a function of training step (iteration). This is actually the average for all

test images (100 test images for each character). The different lines with symbols

correspond to the measured output for each different character (maroon for “T”, blue for

“n”, and green for “L”). We see that for images of character “T” the value approaches 1,

while for “L” and “n” it approaches 0, meaning an accurate classification as this array was

trained to classify character “T”. Also shown in Figure 3.7a are simulation results for the

hardware implementation of stochastic multivariable logistic regression. The shaded

regions indicate the range of the simulation results (min to max) from 10 different runs

using random initial conductance values, and the solid line is the average. A small learning

rate is factored into the conductance updates obtained from gradient descent to ensure a

gradual change in conductance and improve convergence. In our simulations, we bound

conductance values to 𝐺𝑚𝑖𝑛 and 𝐺𝑚𝑎𝑥 values obtained experimentaly from pulse testing of

the h-BN memristors. The simulation represents an ideal situation where conductance

updates are perfectly controlled (no variability) for all memristors in the array, and the dot

product is linear and without cycle-to-cycle variability. The comparison between

simulations and experiments indicates that our hardware implementation achieves similar

 61

performance and accuracy to the ideal case. We note more abrupt changes in the

experimental data, likely due to abruptness in changes of memristor conductance, but this

appears to have little impact on the final accuracy. The rest of the results in Figure 3.7b-e

are only for experimental results on the h-BN memristor arrays. Figure 3.7b shows the

confusion matrix for the 𝑓𝑗 values before and after 500 training steps. Clearly, the

classification improves significantly with training, in accordance with Figure 3.7a. Figure

3.7c shows a conductance map of the h-BN memristor before and after the hardware-

implemented training. It is observed that after 500 training steps the pattern ‘T’ becomes

noticeable, while before training the conductance pattern was random. A reasonable

explanation for the full brightness of pixel 3 is the maximum percentage of reinforcement

applied to this pixel during training since it is only present in pattern “T” (not in “L” or

“n”). In fact, this is evident in the evolution of conductance for the full array over the course

of 250 training steps plotted in Figure 3.7b. Another visualization of the learning process

is the change in conductance during training for each h-BN memristor as plotted in Figure

3.7e. As shown, devices that correspond to pixels that are in the ideal “T” pattern are more

strongly reinforced (positive change in conductance) compared to the pixels that are not.

3.5 Methods

Ti/h-BN/Au memristor array fabrication: The Au/h-BN/Ti/Au (from bottom to

top) memristor arrays were fabricated on a 90 nm SiO2/Si wafer. First, the shared bottom

electrodes (5 nm Cr/20 nm Au) with 3 μm width were patterned on the substrate via

photolithography and e-beam evaporation. Then, the CVD-grown few-layer h-BN film on

copper from Six Carbon Technologies (Shenzhen) was transferred onto the prepared

 62

SiO2/Si substrate by wet transfer method. Subsequently, few-layer h-BN film was

patterned to expose the 100 μm by 100 μm bottom electrodes pads using photolithography

and oxygen plasma process. Finally, the top electrodes with 30 nm Ti and 30 nm Au were

patterned with the same electrode width and the same methods as that of the bottom

electrodes.

Electrical characterization: A Keithley 4200 semiconductor characterization

system (SCS) was used for the electrical characterization on a Cascade semiautomatic

probe station. Source measure units (SMUs) were used to measure I-V characteristics.

Pulse measure units (PMU, model 4225) were used in conjunction with SMUs to read

currents during pulse programming experiments. Keithley 4225-RPM remote

amplifier/switch is employed to switch between PMU and SMU for pulse measurements.

Figures 3.7 include photographs of the experimental setup.

Logistic regression test: The experimental demonstration of logistic regression

was performed utilizing a nine-slot National Instrument (NI) PXle-1078 chassis. A

customized probe card and test board together with a modular script developed in the

graphical development environment NI LabVIEW was used to interface the h-BN

memristor arrays and to implement the algorithm on hardware. For dot product

(feedforward mode), the input voltages applied to the memristor array used the PXl-6738,

a 32-channel analog card that sources analog signals, while an SMU (PXI-4140) channel

is used to read currents. In feedback update mode, positive and negative programming

pulses are utilized to update the conductance value of the memristors using the PXI

arbitrary waveform generator (PXI-5413) while SMUs are utilized to measure resistance

(conductance) at each iteration. Figures 3.8 include photographs of the experimental setup.

 63

Figure 3.8. Customized probe card on a Cascade semi-automatic probe station contacting

memristor array. Right panel shows a micrograph of probed h-BN memristor array.

Figure 3.9. Photo of the test setup showing nine-slot National Instrument (NI) PXle-1078

chassis connected to a customized PCB board interfacing between the NI device and probe

card. Right panel shows the customized PCB interface.

 64

CHAPTER 4

LINEAR REGRESSION WITH 2D HEXAGONAL-BORON NITRIDE (H-BN)

MEMRISTOR ARRAYS

4.1 Fabrication of H-BN Memristor Arrays

Multilayer CVD-grown h-BN was transferred from copper onto a 90 nm SiO2/Si

substrate patterned with Au bottom electrodes. The h-BN film was then shaped using

standard photolithographic and etching techniques to expose the bottom electrodes.

Subsequently, we prepared top electrodes through patterning and Ti deposition using

e-beam evaporation and lift-off. Figure 4.1a shows a schematic of the fabricated Au/h-

BN/Ti memristors arrays where the Au bottom electrode (BE) is shared across various

devices each having an independent Ti top electrode (TE) (1 × 3 and 1 × 10 arrays are

shown). Figure 4.1b illustrates the cross-section of Au/h-BN/Ti memristor. Figure 4.1c is a

photograph of the memristor arrays on a ~2 cm by 2 cm SiO2/Si wafer. A micrograph of

the fabricated h-BN memristor arrays shown in Figure 4.1d corroborates the dimensions of

the 100 µm × 100 µm squared pads and the narrow and long electrodes with 3 µm × 3 µm

active areas.

4.2 Resistive-Switching Properties and Multistate Non-Volatile Pulse

Programmability

Individual h-BN memristors from the arrays were measured electrically to evaluate

their resistive-switching properties (see Methods for details on electrical characterization).

Current-voltage (I-V) characteristics were obtained by sweeping a voltage across the top

and bottom electrodes while measuring current. Figure 4.2a plots 100 consecutive cycles

 65

of I-V measurements on an Au/h-BN/Ti memristor with a 3µm × 3 µm active area. A

compliance of 0.1 mA was activated for positive applied voltages. The numbered labels

indicate the sweeping process during the I-V measurement. As shown, clear transitions

occur between resistive states, evidence of a forming-free bipolar resistive-switching (RS)

operation with low cycle-to-cycle resistance variability and low set and reset voltages

(approximately 1 V and -1 V). The cumulative distribution plot of the resistive states

extracted at a read voltage of 0.1 V from all 100 cycles is shown in Figure 4.2b. Two distinct

states labelled as HRS (high resistance states) and LRS (low resistance state) are easily

observed as their distributions are separated by approximately two orders of magnitude.

Another illustration of the HRS and LRS distributions is provided in Figure 4.2c where the

resistances are plotted as a function of the cycle number. A histogram of the set and reset

Figure 4.1. (a) Schematic of the Au/h-BN/Ti memristor arrays, (b) cross-sectional

schematic of single memristor, (c) photograph of Au/h-BN/Ti memristor arrays on 90 nm

SiO2/Si wafer under ambient light, (d) micrograph of arrays with 3 µm × 3 µm active

areas.

 66

voltages corresponding to transitions between HRS and LRS is shown in Figure 4.2d. All

results indicate a stable and reliable RS bipolar operation.

Moreover, achieving multiple conductive states through the application of

programming pulses is critical for the implementation of neuromorphic hardware and for

the analog-based implementation of machine learning functions in memristor arrays. We

Figure 4.2. (a) I–V characteristics, (b) cumulative probability distribution of the HRS and

LRS (read at 0.1 V), (c) resistance vs. cycle number plot, (d) histogram of set and reset

voltages.

 67

investigate the multistate pulse programmability of the Au/h-BN/Ti memristors by

applying a sequence of positive/negative voltage pulses (pulse width is 500 ns, amplitudes

indicated in Figure 4.3b). After each pulse a small read of 0.1 V is applied to read the

current (conductive state) of the device (see Figure 4.3a top panel). The results are shown

in Figure 4.3b, where 100 cycles of 50 positive pulses followed by 50 negative pulses were

applied. The gray lines are the results from each individual cycle and the solid red line with

circles is the average from all 100 cycles. The results show a gradual change in conductance

(from ~ 4 to 10 µS) indicating good analog (i.e., multistate) programmability. Due to the

fast-switching behavior (nanoseconds), a low energy consumption per programming pulse

of 𝐸pulsⅇ = (𝐼)(𝑉)(𝑡pulsⅇ) ≈ 125 fJ is achieved. We note that this can be further reduced

to aJ/pulse by applying a low compliance current as previously reported on h-BN

memristors (S. Chen et al.).

Figure 4.3. (a) Diagram of the pulsed measurements and retention test, (b) 100 cycles of

pulse programming for Au/h-BN/Ti memristor with 3 µm × 3 µm active area.

 68

4.3 Hardware Implementation of Linear Logistic Regression Using H-BN Memristor

Array

We now demonstrate the implementation of stochastic multivariable linear

regression on the h-BN memristor arrays. In this implementation we use the h-BN

memristor arrays to predict the profit of a startup company given its investment in

marketing and in research and development (R&D). Our model is trained using a dataset

from 50 startup companies available online (Farhan). In this implementation, the memristor

Figure 4.4. (a) Flow diagram for stochastic multivariable linear regression, (b) model

prediction fit to training data training, (c) evolution of MSE with training, (d) evolution of

model parameters vs. iterations.

 69

conductances (𝐺1 and 𝐺2) are the model parameters. The training process is illustrated in

Figure 4.4a. For each training step a single sample from the dataset is randomly selected

(the sample includes profit, marketing, and R&D in $K). The input variables (marketing

and R&D) are translated (normalized) to voltages between 0 and 0.15 V. These voltages

are applied to the h-BN memristors (𝑣1 and 𝑣2). This is important for the implementation

of linear regression as the prediction (ℎ) is determined from the output current of the h-BN

memristor arrays given by the dot product as

𝐼 = 𝑣T𝐺 , 𝑣 = [
𝑣1

𝑣2
] , 𝐺 = [

𝐺1

𝐺2
] (1)

The prediction is then compared against the training sample (profit) from which we

determine the error and the required update for each of the model parameters (∆𝐺1 and

∆𝐺2) (see Methods for details of the implementation). Here we use a hardware-compatible

approach to update the model parameters whereby a single programming pulse is applied

to each memristor, and the polarity of the pulse is determined by the sign of ∆𝐺1 and ∆𝐺2.

This programming pulse will slightly adjust the conductances to ultimately minimize the

error in the prediction. To achieve good convergence, stochastic regression algorithms

typically limit the parameter updates with a learning rate that is gradually reduced with

training number. In our experiments the learning rate is implemented by gradually reducing

the amplitude of the programming pulses. We reduce the amplitude of the programming

pulses by 0.1% after each iteration (starting with ±1 V, the pulse amplitude will be reduced

to ±0.67 V after 400 training steps). The width of positive and negative programming

pulses is kept fixed at 500 ns throughout the training process.

 70

Figures 4.4b-d show the results of the stochastic linear regression implementation.

In Figure 4.4b we plot the training data (black dots) as well as the model prediction before

(magenta plane) and after 400 training steps (green plane). As shown, the trained model

clearly predicts the profit of startup companies based on their investments in marketing and

R&D much better than the before training. A more quantitative result is shown in Figure

4.4c where we plot the mean squared error (MSE) as a function of the training step (i.e.,

iteration) as given by MSE = (1/𝑁) ∑ 𝛿𝑖
2

𝑖 where 𝑁 is the sample size (50 in this case) and

𝛿𝑖 = ℎ𝑖 − 𝑦𝑖 is the error in the prediction. As shown, the MSE reduces with training

indicating good convergence of the algorithm. Figure 4.4d shows the change in

conductances 𝐺1 and 𝐺2 (the model parameters) during the training process. We see larger

updates and fluctuations in the conductances during the initial training steps, and eventually

converge to the optimal values for the model parameters.

4.4 Methods

h-BN memristor and memristor arrays fabrication: The Au/h-BN/Ti memristor

arrays were fabricated on a 90 nm SiO2/Si wafer. First, the bottom electrodes (5 nm Cr/35

nm Au) with 3, 20, and 50 µm width were patterned on the substrate via photolithography

and e-beam evaporation methods. Second, CVD-grown multilayer h-BN on copper from

Graphene Supermarket was transferred onto the prepared SiO2/Si substrate by wet transfer

method. Third, h-BN film was patterned to expose the 100 µm by 100 µm bottom

electrodes pads using oxygen plasma. Finally, the top electrodes (70 nm Ti) were patterned

with the same electrode width and the same methods as that of the bottom electrodes. The

top electrodes are exposed to air and a thin surface layer may be oxidized over time. This

oxidized layer can be easily penetrated with probe needles during measurements, and its

 71

impact on the resistive switching behavior has been ruled out by comparing against devices

with Au-capped top electrodes that show very similar characteristics.

Electrical characterization: The electrical characterization was conducted on a

Cascade semi-automatic probe station using a Keithley 4200 semiconductor

characterization system. The DC I-V measurements were performed using source measure

units (SMUs), while the pulse programming experiments used a combination of pulse

measure units (PMU, model 4225) for programming pulses and SMUs for reading currents.

In the pulse programming experiments we switched between PMU and SMU automatically

using a Keithley remote amplifier/switch (4225-RPM). Figure 4.5 shows the experimental

setup.

Figure 4.5. Probe connections made on the h-BN memristor array pads shown on the inset

are routed with triaxial cables through the Keithley remote amplifier/switch (RPM) where

we can automatically connect pulse or source/measure units (PMU or SMU).

 72

Linear regression test: Our implementation of multivariable stochastic linear

regression on the Au/h-BN/Ti memristor arrays was trained using a dataset available online

(Farhan). The experimental demonstration was done with a Keithley 4200 SCS using a

custom test script developed in the Keithley user library tool (KULT) and executed in the

Keithley interactive testing environment (KITE). The input parameters to the test script are

the minimum and maximum conductance values for each memristor (predetermined based

on pulse measurements, used to normalize output currents from the arrays), the initial

values for the programming pulse amplitudes, the constant value for the width of the

programming pulses, and the number of iterations. The test script loads the training data

and normalizes the independent variables (in this case marketing and R&D investments in

thousands of dollars) to voltages between 0 and 0.15 V. We also subtract a constant offset

(y-intercept) from the dependent variable (profit) so that the model is based only on two

regression coefficients (model parameters represented by the memristor conductances).

The script then goes into a loop where it randomly selects a sample for the data set and

apply the read voltages (𝑣1 and 𝑣2) that correspond to the independent variables of that

sample. The current 𝐼 = 𝑣1𝐺1 + 𝑣2𝐺2 is read at the output of the h-BN memristor arrays

(shared bottom electrode) and is translated from Amps to dollars to be compared against

the training sample. This read operation is conducted with the Keithley SMUs. We then

calculate the error (𝛿) in the prediction as well as the required update for each model

parameter (i.e., ∆𝐺1 and ∆𝐺2). From the minimization of the cost function (i.e., 𝛿2/2) the

updates are calculated as ∆𝐺 = −𝛿𝑣. Here we propose a simplified hardware-compatible

regression approach where the memristor conductances (i.e., the model parameters) are

updated through the application of a single programming pulse, and the polarity of the

 73

pulse is determined by the sign of the corresponding ∆𝐺. The programming pulses are

applied using Keithley’s 4225 PMU (pulse width is fixed to 500 ns). Gradient descent

algorithms typically use learning rate decay to improve convergence, where model

parameter updates are weighted by a learning rate (𝛼) that is reduced gradually as training

advances. In our hardware demonstration we introduce learning rate decay by gradually

reducing the amplitude of the programming pulses (we have reduced the amplitude of the

programming pulses by 0.1% after each iteration).

 74

CHAPTER 5

UNSUPERVISED LEARNING IN HEXAGONAL BORON NITRIDE MEMRISTOR-

BASED SPIKING NEURAL NETWORKS

5.1 Overview of Memristor-based Spiking Neural Networks

Artificial neural networks (ANN) offer an approximate simulation of the

human brain and can be realized with highly interconnected processing units in

neuromorphic computing hardware. Despite remarkable advancements in

neuromorphic computing hardware, biological neural networks continue to

outperform ANNs in terms of energy efficiency and capabilities for online learning.

To better emulate biological neural networks and to bridge the gap between

neuroscience and machine learning, spiking neural networks (SNN) exploit event-

based spikes for data transfer and processing. SNNs employ processing units and

biologically plausible learning models (e.g., spike-timing-dependent-plasticity or

STDP) that closely mimic the human brain. SNN-based neuromorphic computing

systems are noteworthy and promising solution to improve energy efficiency as

demonstrated with TrueNorth, a neuromorphic CMOS integrated circuit produced

by IBM (Merolla et al.), and Loihi, a neuromorphic processor with on-chip learning

from Intel (Davies et al.). While not a direct comparison, TrueNorth can produce

400 billion SOPS (synaptic operations per second) per watt for networks with high

spike rates and a high number of active synapses, compared to one of the most

energy-efficient supercomputers at the time that only managed 4.5 billion FLOPS

(floating-point operations per second) per watt (Merolla et al.). Another comparison

 75

can be made between Loihi and a 1.67-GHz Atom CPU to solve L1-minimization.

Results showed that Loihi is 2.58x, 8.08x and 48.74x more energy efficient

depending on the number of unknowns (Davies et al.).

Here, we fabricate stable CVD-grown Au/Ti/h-BN/Au memristors and

further study their experimental properties in anticipation for their use in SNN. We

develop a recursive mathematical model which follows the experimental pulsing

behavior of the h-BN memristor to simulate an energy-efficient, CMOS-compatible,

and hardware-friendly SNN for pattern classification. In comparison to the

classification performance of 77.2% of the network trained using double-precision

floating-point network parameters with 50 output neurons (Boybat et al.), we get

classification accuracy of 67.5% while considering 40 output neurons. We then

propose a novel STDP-based weight dropout technique to improve classification

accuracy. Previous studies have shown the feasibility of SNN implementation

utilizing non-2D material memristors as synaptic devices (Sanchez Esqueda et al.;

Guo et al.). A recent study used an empirically extracted STDP learning rule to

examine the viability of Au/Ti/h-BN/Au memristors as synapses in a SNN (Roldan

et al.). Compared to this previous work, our method achieves similar classification

accuracy with fewer leaky integrate and fire (LIF) output neurons. In addition, our

proposed implementation complies with the experimental potentiation/depression

characteristics of h-BN memristor resulting from pulses of fixed amplitude and same

width. This makes our method hardware friendly as it eliminates the need for

complicated pulses with different shapes/width. Finally, we show that the proposed

STDP-based weight dropout strategy considerably enhances the outcomes by 12%

 76

reaching testing accuracy of ~80% for 40 output neurons, making our SNN more

computationally efficient as well as more hardware- and power-friendly. Our study

demonstrates the viability of training an adaptable SNN with memristors based on

2D materials.

5.2 Physical and Electrical Characteristics of H-BN Memristor Devices

This work uses 2D h-BN memristors with non-volatile and multi-state

resistive switching characteristics. The detailed fabrication methods for these

devices are found elsewhere (Xie et al.). Here, we investigate the physical and

electrical properties of the device towards their application as artificial synapses in

SNN. Figure 5.1a shows a picture of 2D h-BN memristor arrays fabricated on a

SiO2/Si wafer. A schematic of the memristor arrays is shown on the left side of

Figure 5.1. (a) The memristor arrays wafer, (b) schematic of the memristor arrays

(on left) and graphical design of a single Au/h-BN/Ti memristor (on right, (c)

atomic force microscope of the h-BN memristor, (d) Raman spectrum

measurements, (e) cross-sectional TEM image.

 77

Figure 5.1b. The Au bottom electrode is shared by 10 devices in a row, each device

having separate Ti/Au top electrode. The right side of Figure 5.1b depicts the design

of a single Au/Ti/h-BN/Au memristor. The top electrode (TE) is Ti (30 nm) capped

with Au (30 nm) to prevent oxidization. The resistive-switching medium is

multilayer h-BN, and the bottom electrode (BE) is Au. The thickness of the

multilayer h-BN is identified by atomic force microscope (AFM) as indicated in

Figure 5.1c and is approximately 10 nm. The CVD-grown multilayer h-BN film is

further characterized by its Raman spectrum plotted in Figure 5.1d (blue line), which

shows a peak position around 1368 cm-1 and full width at half maximum (FWHM)

of approximately 45 cm-1. For comparison, an exfoliated h-BN sample is also

characterized by its Raman spectrum and plotted in Figure 5.1d (red line). For the

exfoliated h-BN sample, the approximate peak position and FWHM are respectively

Figure 5.2. (a) I-V characteristics, (b) HRS and LRS cumulative probability, (c)

histogram of set and reset voltages, (d) retention tests, (e) pulse measurement, (f)

CDF plot for the green case in (e).

 78

1362 cm-1 and 10 cm-1. CVD-grown samples reveal a broadened FWHM compared

to exfoliated crystalline flakes because of random defects generated during the CVD

process.

A cross-sectional TEM image is shown in Figure 5.1e identifying the

multilayered h-BN structure (approximately 15 to 20 layers) and revealing defects

(blurred darker regions) associated with filamentary formation of conductive paths.

As proposed earlier. The CVD process promotes defects within the h-BN lattice (Wu

et al.) providing potential percolation paths for metallic filament penetration. This

penetration can be initiated a priori during the top electrode (TE) contact deposition

process (Mao et al.) (the extent being dependent on the deposition rate) as metal

atoms bombard the h-BN surface. However, the primary method for filamentary

behavior is by gradual migration of active metal ions (in this work Ti) into the h-BN

lattice (Mao et al.). With the application of a positive bias to the TE, metal ions can

cross the metal-dielectric interface and penetrate the h-BN lattice towards the bottom

electrode along boron-vacancy-rich grain boundaries (percolation paths). As the

filament forms, the conductive gap between the electrodes is reduced increasing the

electric field and further increasing current density (Yu and Philip Wong). We note

that a second resistive switching mechanism is proposed for devices with two

electrochemically inter electrodes (e.g., Pt/h-BN/Pt or Au/h-BN/Au, etc.) where to

existence of vacancies (B, N, or multi-vacancies) lead to the formation of interlayer

bridges (bonds) that modifying the electronic properties and conductance of the

switching medium around the site of the defects (Mao et al.; Ducry et al.).

 79

Figure 5.2a plots the experimental current-voltage (I-V) measurements of a

device with a 3 µm × 3 µm active area over 50 consecutive cycles. The data shows

a transition in resistance from HRS (high resistance state) to LRS (low resistance

state) and the arrows label the direction of the voltage sweep and I-V characteristics.

These I-V measurements were obtained by applying a sweeping voltage on the top

electrode (bottom electrode grounded) while measuring current to reveal the

resistive-switching effect (hysteresis in I-V curves). Here, a compliance of 10-3 and

10-2 A were activated for positive and negative applied voltages, respectively. Figure

5.2b plots the cumulative distribution of resistance (HRS and LRS) at a read voltage

of 0.1 V for all 50 cycles. Figure 5.2c shows histograms of the set and reset voltages

(Vset and Vreset) corresponding to transitions between HRS and LRS as extracted

from the 50 cycles of DC I-V measurements. Figure 5.2d illustrates the retention

(non-volatile) properties of the h-BN memristors by measurements of current as a

function of time up to 104 seconds with negligible drift in HRS and LRS.

In addition to DC I-V, we perform pulsed voltage experiments to capture

gradual changes in conductance and verify the feasibility of using h-BN memristors

to emulate synaptic functions (i.e., long-term potentiation and depression). Figure

5.2e shows the pulsed programming of the h-BN memristor. By delivering a

succession of positive/negative voltage pulses, we reveal analog conductance

characteristics compatible with the emulation of synaptic plasticity (i.e., changes in

the strength of neuron connections). We used 50 positive pulses followed by 50

negative pulses with fixed width of 100 ns and varying pulse amplitudes of +1.2 and

-1.4 V for case 1 (blue line), +1 and -1.2 V for case 2 (red line), and +0.9 and -1 V

 80

for case 3 (green line) over 30 consecutive cycles each. After each pulse, a voltage

of 0.1 V is applied to read current and obtain conductance. The results reveal a

gradual change in conductance with each programming pulse, indicating

applicability of h-BN devices as artificial synapses. Moreover, increasing the pulse

amplitudes achieves larges update in conductance (𝛥𝐺) suggesting advanced

synaptic functionality (e.g., tunable synaptic plasticity).

By observing the distribution of conductance updates (𝛥𝐺) as a function of

conductance (𝐺) form multiple programming/erase cycles we can better identify the

variability and linearity of the pulse update scheme. This is shown in Figure 5.2f as

Figure 5.3. (a) An illustration of a biological neurons consisting of pre-synaptic and

post-synaptic neurons, axon, and biological synapse, (b) a fully connected

memristor-based artificial neural network utilizing h-BN memristor device as an

artificial synapse.

 81

contours of the cumulative distribution function (CDF) of 𝛥𝐺 versus 𝐺 over 30

cycles (for positive and negative pulses). Note that the CDF plots correspond to the

data in Figure 5.2e (green) for pulse amplitudes of +0.9 and -1 V. In Figure 5.2f, the

green dashed line traces the midpoint in the distribution (i.e., the value of 0.5). For

a perfectly linear device, the midpoint line should remain constant as a function of

𝐺, and the transition through the midpoint would be abrupt in the absence of

variation. Here we observe a minor change in the distribution midpoint with 𝐺

indicating good linearity for both positive (potentiation) and negative (depression)

pulses. Moreover, we verify that cycle-to-cycle variability is small, as illustrated by

a short range in the distribution of 𝛥𝐺 transitioning through the midpoint (abrupt

change in contour plot).

Figure 5.4. (a) Flow chart of implementation of SNN on a h-BN memristor crossbar,

(b) demonstration of two-layer SNN, (c),(d) output current accumulation and

charge integration for an input voltage larger and smaller than 𝑡𝑝𝑠.

 82

5.3 Implementation of Unsupervised Learning in h-BN Memristor-Based Spiking

Neural Network

This section describes the implementation of our SNN model based on

experimental data from individual h-BN memristors. The SNN architecture consists

of two fully connected layers: 784 input neurons and 40 output neurons. For the

output neurons, we consider a commonly used spiking neuron model: the leaky

integrate-and-fire (LIF) model. In a circuit implementation of the LIF model, an RC

circuit with a threshold acts as integrator of synaptic signal inputs (Datta Sahoo).

The accumulated (integrated) signal is compared against a threshold reference and

will activate an output spike production circuit if the threshold is achieved. Figure

5.4a shows a flowchart for the simulated crossbar implementation of the SNN. The

simulation conducts unsupervised learning to classify the Modified National

Institute of Standards and Technology (MNIST) handwritten digit dataset. This

dataset consists of 60,000 training images of handwritten digits and 10,000 separate

testing images. In our implementation, SNN training is implemented through

feedforward/feedback modes. Both make use of experimental h-BN memristor data

(DC I-V and pulsed data) to simulate accumulated currents (based on Ohm’s law

and Kirchhoff’s law) and to update synaptic weights (conductance updates).

Phase 1: Feedforward mode (current and charge integration)

Initially, the pixel intensities of two-dimensional grey-scale input training

images (28-by-28 pixels) are translated to one-dimensional temporal voltages (784

input voltage pulses). Each voltage pulse has fixed amplitude of 𝑉𝑟 = 0.1 V and

 83

different widths (𝑡𝑤𝑖𝑑𝑡ℎ) ranging between 0 and 100 ms corresponding to pixel

intensity. A black pixel corresponds to a voltage pulse with minimum 𝑡𝑤𝑖𝑑𝑡ℎ

(minimum intensity), a white pixel corresponds to 𝑡𝑤𝑖𝑑𝑡ℎ = 100 ms (maximum

intensity), and any other pixel intensity translates to pulse widths between 0 and 100

ms. The input voltages, 𝑣𝑖(𝑡), are applied to the h-BN memristor crossbar and the

accumulated currents at the bottom electrodes are calculated at every time step.

Figure 5.4b depicts this procedure graphically. The post-synaptic currents at each

column (indexed with 𝑗) are obtained based on Kirchhoff’s law as 𝐼𝑗(𝑡) = ∑ 𝑣𝑖(𝑡)𝐺𝑖𝑗𝑖 ,

where 𝐺𝑖𝑗 are the adjustable h-BN memristor conductances and 𝑣𝑖(𝑡) are the input

voltages at each row in the crossbar. Mathematically, the output current vector

results from the multiplication of the input voltage vector and the matrix of

memristor conductances (vector-matrix multiplication or VMM). In the crossbar

architecture, VMM can be computed with a single read operation (parallel

computation). The SNN simulation follows with the calculation of accumulated

charge at the output LIF neurons based on

𝜏𝑅𝐶
𝑑𝑋𝑗(𝑡)

𝑑𝑡
− 𝑋𝑗(𝑡) = 𝐼𝑗(𝑡). (1)

In (1), 𝐼𝑗(𝑡) is the current in neuron 𝑗 at time 𝑡 and 𝑋𝑗(𝑡) is the accumulated

charge. Here, 𝜏𝑅𝐶 is the time constant associated with the LIF circuit. Reaching a

predetermined threshold (𝑋𝑡ℎ = 10 mC) at any of the output neuron will trigger the

 84

firing of a post-synaptic spike. In Figures 5.4c, d, 𝑡𝑝𝑠 denotes the triggering time of

the post-synaptic spike. Through lateral inhibition pathways, the output spike

propagates among other LIF output neurons to prevent them from firing at the same

time. In our implementation, following a post-synaptic spike, the charge at every

output neuron is reset to an initial condition (𝑋𝑖 = 0) and held there for a fixed time

(𝑡𝑖𝑛ℎ = 10 ms) except for the neuron that recently fired which can immediately return

to accumulating charge. This competitive learning model where neurons can inhibit

each other is known as winner-takes-all (WTA) (Datta Sahoo). WTA is thought to

be a basic component of cognitive tasks including attention and object recognition

(Maass). All synaptic connections to the neuron that fired will be adjusted. In

hardware, this means updating the conductance of memristors from a specific

Figure 5.5. (a) Simplified STDP vs. STDP-based weight dropout, (b) mathematical

model fit to experimental pulsed h-BN memristor data, (c) updates performed

during learning for STDP-based weight dropout rule with different positive time

filters.

 85

column connected to the neuron that fired. We must consider two cases of synaptic

plasticity: 1) strengthening the connection (potentiation) to inputs that contribute to

the firing (inputs that were active at the time of the post-synaptic spike, 𝑡𝑤𝑖𝑑𝑡ℎ >

𝑡𝑝𝑠); 2) weakening the connection (depression) for inputs that contribute less (inputs

that were inactive at the time of the post-synaptic spike, 𝑡𝑤𝑖𝑑𝑡ℎ < 𝑡𝑝𝑠). Figures 5c, d

respectively illustrate examples of potentiation and depression with plots of input

voltage (top), output current at the post-synaptic neuron (middle), and accumulated

charge (bottom) during a 100 ms timeframe (single training step). Synaptic weight

update is discussed next.

Phase 2: Feedback mode (synapse update)

We use a simplified learning rule to update synapse weights which follows

the experimental pulsing behavior of h-BN memristor. In our simplified hardware-

friendly STDP implementation, Δ𝐺 will be either positive or negative based on the

temporal correlation of corresponding input voltage pulse widths (𝑡𝑤𝑖𝑑𝑡ℎ) and post-

synaptic spikes (𝑡𝑝𝑠), and the magnitude will be modeled to simulate h-BN

memristor pulsed characteristics (see Figure 5.5a). In other words, a single or set of

consecutive positive (negative) voltage pulses are applied to memristors that require

potentiation (depression). The change in h-BN memristor conductance follows an

experimentally verified recursive model given by

Δ𝐺 = 𝑎𝑝 + 𝑏𝑝𝑒
−𝑐𝑝

𝐺−𝐺𝑚𝑖𝑛
𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛 Potentiation (2a)

Δ𝐺 = 𝑎𝑑 + 𝑏𝑑𝑒
−𝑐𝑑

𝐺𝑚𝑎𝑥−𝐺

𝐺𝑚𝑎𝑥−𝐺𝑚𝑖𝑛 , Depression (2b)

 86

where 𝑎𝑝, 𝑎𝑑 , 𝑏𝑝, 𝑏𝑑 , 𝑐𝑝, 𝑐𝑑 are fitting parameters and 𝐺𝑚𝑎𝑥, 𝐺𝑚𝑖𝑛 correspond

to the maximum and minimum experimental conductances respectively.

Figure 5.5b shows the model fit to experimental data with fitting parameters values

of 10-10, 10-4, 5×10-6, -10-4, 2.5, 0.05 for 𝑎𝑝, 𝑎𝑑 , 𝑏𝑝, 𝑏𝑑 , 𝑐𝑝 and 𝑐𝑑 respectively. The

conductance is bounded to 𝐺𝑚𝑖𝑛 𝑎𝑛𝑑 𝐺𝑚𝑎𝑥 which are measured at 108 and 165 µS

for the h-BN memristor with a 3 × 3 µm active area. The inset in Figure 5.5b

emphasizes how the simplified STDP approach introduces non-ideal (non-linear) h-

BN memristor behavior into our SNN simulation. For example, when 𝐺 is in the

lower end, the change in conductance with the application of a single pulse (positive

or negative) is larger compared to when 𝐺 is in towards the upper end. In addition,

the simulation incorporates homeostatic regulation to maintain similar firing rates

for all neurons by making small adjustments to the firing thresholds as given by

∆𝑋𝑡ℎ = 𝛾(𝑓𝑟 − 1/𝑁). Here, 𝛾 is a threshold update fitting factor (set to 5 μC), 𝑓𝑟 is

the firing rate, and 𝑁 is the number of output neurons. By adjusting 𝛾, recognition

and convergence rate changes. It is important to adjust 𝑋𝑡ℎ and 𝛿 to maintain

reasonable firing rates and to avoid overfitting in the learning SNN unsupervised

learning process.

 87

To improve the effectiveness of neural transmissions, excess neurons and

synaptic connections are removed through a process known as synaptic weight

dropout. Synapses connecting neurons with high spiking correlation are preserved,

while synapses with poor or uncorrelated spiking activity are pruned. Weight

dropout also mitigates overfitting in neural networks trained with large size data sets

by preventing unwanted specialization towards details and noise in the training data

and allowing better generalization (Faghihi et al.).

We demonstrate an STDP-compatible technique to prune (remove)

insignificant weights for an improved network performance in terms of

classification accuracy. This technique applies a time filter on the temporal

correlation between input voltage pulse widths and post-synaptic spikes (i.e., Δ𝑡), to

limit the number of conductances that will be updated in the feedback phase. The

process is as follows. First, Δ𝑡 is calculated as

𝛥𝑡𝑛ⅇ𝑔 = 𝑡𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) − 0 (𝑚𝑠) … for 𝑡𝑤𝑖𝑑𝑡ℎ < 𝑡𝑝𝑠 (4a)

Figure 5.6. (a) Comparison of recognition rate as a function of iteration for

simplified STDP vs. STDP-based weight dropout with 4 different positive time, (b)

comparison of recognition rate vs. output neurons for simplified STDP vs. STDP-

based weight dropout.

 88

𝛥𝑡𝑝𝑜𝑠 = 100 (𝑚𝑠) − 𝑡𝑤𝑖𝑑𝑡ℎ (𝑚𝑠), … for 𝑡𝑤𝑖𝑑𝑡ℎ ≥ 𝑡𝑝𝑠 (4b)

where 𝑡𝑤𝑖𝑑𝑡ℎ denotes the input DC voltage width, 𝑡𝑝𝑠 denotes the post-spike

time (see Figure 5.4c, d). Next, the calculated Δ𝑡 is normalized to fall within the

STDP range (+/- 100 ms). As shown in Figure 5.5a, we define 𝑡𝑠1 as the positive

(potentiation) time filter and 𝑡𝑠2 as the negative (depression) time filter. All the

synapses with Δ𝑡 between 𝑡𝑠2 and 𝑡𝑠1 are subject to a conductance update determined

by the experimentally verified recursive model in equation (2). We have performed

simulations for 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 100, 75, 50 and 25 ms. In Figure 5.5c, the

same grayscale MNIST image (out of 60,000 training images) is shown with colored

pixel outlines indicating the synapses that were dropped (not updated) with various

values of the time filters 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 100, 75, 50 and 25 ms). Evidently,

the number of pruned (dropped) conductances is largest for 𝑡𝑠2 = -70 ms and 𝑡𝑠1 =

25 ms. Also, the figure labeled “original image” represents the case without weight

dropout. This implies that in simplified STDP learning approach no weight is

eliminated, and during each iteration all the corresponding synapses are updated.

Figure 5.6 summarizes the results from the SNN simulations using simplified

STDP as well as STDP-based weight dropout learning schemes. In Figure 5.6a, the

recognition rate for arrays with 40 output neurons is plotted as a function of training

number for both cases (different time filters shown for weight dropout). For each

case, the simulation is conducted five times, and the mean value is plotted with the

length of error bars indicating the standard deviation. Since the labels of training

images are not known to the network (training is unsupervised), recognition rate is

based on the spiking activity for all 10,000 test images of MNIST dataset. Each

 89

neuron is assigned to the handwritten digit for which it spiked the most, and the ratio

of spikes on the assigned digit to the total number of spikes is calculated as the

recognition rate. The recognition rate shown in Figure 5.6a is the average of all the

handwritten digits in MNIST dataset. As observed in Figure 5.6a, the final

recognition rate (after 60,000 training steps) for the STDP-based weight dropout rule

of 𝑡𝑠2 = -70 ms and 𝑡𝑠1 = 100 ms (in solid black line) has improved by 12% for 40

output neurons reaching 80.2% compared to the simplified STDP method

recognition rate of 67.5%. Figure 5.6b shows the results of the simulations for 10,

20, 40 and 80 output neurons when trained with recursive model-based simplified

STDP (red line) and STDP-based weight dropout with time filters of 𝑡𝑠2= -70 ms

and 𝑡𝑠1 = 100 ms (blue line). Plots are the average over five simulation cycles for

each case. The results shown for each number of output neurons are the recognition

rate after training with one single epoch (i.e., 60,000 training images). Improved

recognition rate is observed when the proposed STDP-based weight dropout

technique is applied. The improvement is attributed to alleviating overfitting in the

SNN, as the improvement appears more significantly towards the end of the training

epoch.

 90

CHAPTER 6

CONCLUSION

This dissertation offers an outline of neuromorphic computing as a remedy for high

power consumption in modern digital computers and as an efficient platform for AI

applications that are integrated into our daily lives. The dissertation then gives an overview

of memristor, a sort of analog resistive switching memory with excellent properties, a

promising candidate for artificial synapses in neuromorphic computing. Additionally, 2D

devices exhibit resistive switching properties that can be reduced to a single layer and

exhibit even superior properties, such as improved energy efficiency (see Figure 3.1).

Chapter 2 presents the circuit-level analysis of the 1T1R crossbar implementation

of the linear and logistic regression algorithms using a compact model for memristors that

was physics-based, variation-aware, and experimentally proven. The analysis includes the

impact of device variability on convergence, as well as on prediction/classification

accuracy and precision. The algorithm implementations are based on crossbar vector

matrix multiplication, which is the core operation of typical neuromorphic computing

platforms. This chapter also offers an enhanced gradient-descent strategy that works with

real-world hardware. With this method, a faster initial convergence rate can be attained

without sacrificing the excellent prediction accuracy. The findings of this study suggest

that our suggested smart pulsing technique can be modified to accelerate training in real

crossbar architectures. The following was the result of our analysis of how memristor

variability affects algorithm performance: Memristor variability does not seem to

significantly influence prediction accuracy in linear regression (can still attain high

accuracy), but convergence rate and precision are noticeably degraded. Variations in the

 91

prediction error as a function of training steps show degraded precision. Similar to logistic

regression, slower convergence rates and fluctuations in error as a function of algorithm

iteration (effect on precision) were noted. However, classification accuracy was not

significantly impacted by memristor variability in logistic regression. Additionally, we

have contrasted our suggested pulsing strategy with earlier approaches that applied a single

positive or negative pulse depending on the sign of the needed update at each iteration. The

suggested method classifies noisy binary images more accurately and more quickly even

when memristor fluctuation is present. The results of this study are crucial for

understanding how device variability affects algorithm performance and memristor

crossbar viability for prediction and classification tasks.

In chapter 3, we performed hardware-level implementation and simulations of ML

Algorithms Using Novel 2D Material, h-BN memristor. We demonstrate the

implementation of dot-product operations on h-BN memristor arrays showing excellent

linearity and reproducibility. Then, we demonstrate a hardware-compatible

implementation of stochastic logistic regression on h-BN memristor arrays for image

classification. The experimental results show classification accuracy and algorithm

performance comparable to arrays with ideal memristive behavior (from simulations).

Exceptional resistive switching characteristics, dot-product performance, and

implementation of logistic regression in h-BN memristor arrays indicate a significant step

towards the integration of 2D materials for next-generation neuromorphic computing

systems.

Next, in chapter 4, we performed hardware-level implementation of multivariable

stochastic linear regression on the h-BN memristor arrays using a dataset available online.

 92

We proposed a simplified hardware-compatible stochastic linear regression approach

where the memristor conductances (i.e., the model parameters) are updated through the

application of a single programming pulse, and the polarity of the pulse is determined by

the sign of the corresponding ΔG. The results showed that the model is trained to perfectly

fit the training data.

Moreover, we have reported the synaptic characteristics of 2D Au/h-BN/Ti

memristors for spiking neural network neuromorphic application in chapter 5. The devices

exhibit advanced synaptic functionality such as a larger dynamic range with increased

pulse amplitude, good linearity for both potentiation and depression, and small cycle-to-

cycle variability. Simulation results for MNIST pattern classification based on Au/h-BN/Ti

memristive SNN hardware following the experimental pulsing behavior of memristor

reaches satisfactory recognition rate of 67.5% for 40 output neurons. The recognition rate

improved as we increased the number of output neurons. We then proposed a STDP-based

pruning technique to improve the recognition rate to 80% for 40 output neurons by

improving the overfitting issue observed in our system. Our work is a step towards the

deployment of real 2D materials in SNN hardware for training and inference applications.

 93

REFERENCES

Afshari, Sahra, et al. “Analyzing the Impact of Memristor Variability on Crossbar

Implementation of Regression Algorithms With Smart Weight Update Pulsing

Techniques.” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

69, no. 5, May 2022, pp. 2025–34, https://doi.org/10.1109/TCSI.2022.3144240.

Ambrosi, Elia, et al. “Impact of Oxide and Electrode Materials on the Switching

Characteristics of Oxide ReRAM Devices.” Faraday Discussions, vol. 213, 2019,

pp. 87–98, https://doi.org/10.1039/C8FD00106E.

Arizona State University, Predictive Technology Model (Ptm).

Baroni, Andrea, et al. “Low Conductance State Drift Characterization and Mitigation in

Resistive Switching Memories (RRAM) for Artificial Neural Networks.” IEEE

Transactions on Device and Materials Reliability, vol. 22, no. 3, Sept. 2022, pp.

340–47, https://doi.org/10.1109/TDMR.2022.3182133.

Basu, Nilanjan, et al. “Large Area Few-Layer Hexagonal Boron Nitride as a Raman

Enhancement Material.” Nanomaterials, vol. 11, no. 3, Mar. 2021, p. 622,

https://doi.org/10.3390/nano11030622.

Belmonte, Attilio, et al. “Voltage-Controlled Reverse Filament Growth Boosts Resistive

Switching Memory.” Nano Research, vol. 11, no. 8, Aug. 2018, pp. 4017–25,

https://doi.org/10.1007/s12274-018-1983-2.

“Beyond von Neumann.” Nature Nanotechnology, vol. 15, no. 7, July 2020, pp. 507–507,

https://doi.org/10.1038/s41565-020-0738-x.

Boybat, Irem, et al. “Neuromorphic Computing with Multi-Memristive Synapses.”

Nature Communications, vol. 9, no. 1, June 2018, p. 2514,

https://doi.org/10.1038/s41467-018-04933-y.

Burr, Geoffrey W., et al. “Emerging Materials in Neuromorphic Computing: Guest

Editorial.” APL Materials, vol. 8, no. 1, Jan. 2020, p. 010401,

https://doi.org/10.1063/1.5143659.

Chang, Meng-Fan, et al. “Challenges and Circuit Techniques for Energy-Efficient On-

Chip Nonvolatile Memory Using Memristive Devices.” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 5, no. 2, June 2015, pp. 183–93,

https://doi.org/10.1109/JETCAS.2015.2426531.

Chaudhuri, Arjun, and Krishnendu Chakrabarty. “Analysis of Process Variations,

Defects, and Design-Induced Coupling in Memristors.” 2018 IEEE International

Test Conference (ITC), IEEE, 2018, pp. 1–10,

https://doi.org/10.1109/TEST.2018.8624819.

 94

Chen, An, and Ming-Ren Lin. “Variability of Resistive Switching Memories and Its

Impact on Crossbar Array Performance.” 2011 International Reliability Physics

Symposium, IEEE, 2011, p. MY.7.1-MY.7.4,

https://doi.org/10.1109/IRPS.2011.5784590.

Chen, Pai-Yu, and Shimeng Yu. “Compact Modeling of RRAM Devices and Its

Applications in 1T1R and 1S1R Array Design.” IEEE Transactions on Electron

Devices, vol. 62, no. 12, Dec. 2015, pp. 4022–28,

https://doi.org/10.1109/TED.2015.2492421.

Chen, Shaochuan, et al. “Wafer-Scale Integration of Two-Dimensional Materials in

High-Density Memristive Crossbar Arrays for Artificial Neural Networks.” Nature

Electronics, vol. 3, no. 10, Oct. 2020, pp. 638–45, https://doi.org/10.1038/s41928-

020-00473-w.

Chen, Yang Yin, et al. “Improvement of Data Retention in HfO<inf>2</Inf>/Hf 1T1R

RRAM Cell under Low Operating Current.” 2013 IEEE International Electron

Devices Meeting, IEEE, 2013, pp. 10.1.1-10.1.4,

https://doi.org/10.1109/IEDM.2013.6724598.

Chen, Ying-Chen, et al. “Analog Synaptic Behaviors in Carbon-Based Self-Selective

RRAM for In-Memory Supervised Learning.” 2021 IEEE 71st Electronic

Components and Technology Conference (ECTC), IEEE, 2021, pp. 1645–51,

https://doi.org/10.1109/ECTC32696.2021.00261.

Chen, Yu-Hsin, et al. “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep

Convolutional Neural Networks.” IEEE Journal of Solid-State Circuits, vol. 52, no.

1, Jan. 2017, pp. 127–38, https://doi.org/10.1109/JSSC.2016.2616357.

Christensen, Dennis V, et al. “2022 Roadmap on Neuromorphic Computing and

Engineering.” Neuromorphic Computing and Engineering, vol. 2, no. 2, June 2022,

p. 022501, https://doi.org/10.1088/2634-4386/ac4a83.

Chua, L. “Memristor-The Missing Circuit Element.” IEEE Transactions on Circuit

Theory, vol. 18, no. 5, 1971, pp. 507–19,

https://doi.org/10.1109/TCT.1971.1083337.

Datta Sahoo, Bibhu. “Ring Oscillator Based Sub-1V Leaky Integrate-and-Fire Neuron

Circuit.” 2017 IEEE International Symposium on Circuits and Systems (ISCAS),

IEEE, 2017, pp. 1–4, https://doi.org/10.1109/ISCAS.2017.8050980.

Davies, Mike, et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip

Learning.” IEEE Micro, vol. 38, no. 1, Jan. 2018, pp. 82–99,

https://doi.org/10.1109/MM.2018.112130359.

 95

Degraeve, R., et al. “Causes and Consequences of the Stochastic Aspect of Filamentary

RRAM.” Microelectronic Engineering, vol. 147, Nov. 2015, pp. 171–75,

https://doi.org/10.1016/j.mee.2015.04.025.

del Valle, Javier, et al. “Challenges in Materials and Devices for Resistive-Switching-

Based Neuromorphic Computing.” Journal of Applied Physics, vol. 124, no. 21,

Dec. 2018, p. 211101, https://doi.org/10.1063/1.5047800.

Ducry, Fabian, et al. “An Ab Initio Study on Resistance Switching in Hexagonal Boron

Nitride.” Npj 2D Materials and Applications, vol. 6, no. 1, Sept. 2022, p. 58,

https://doi.org/10.1038/s41699-022-00340-6.

Faghihi, Faramarz, et al. “A Synaptic Pruning-Based Spiking Neural Network for Hand-

Written Digits Classification.” Frontiers in Artificial Intelligence, vol. 5, Feb. 2022,

https://doi.org/10.3389/frai.2022.680165.

Fantini, A., et al. “Intrinsic Switching Variability in HfO<inf>2</Inf> RRAM.” 2013 5th

IEEE International Memory Workshop, IEEE, 2013, pp. 30–33,

https://doi.org/10.1109/IMW.2013.6582090.

Farhan. “50 Startups.” Https://Www.Kaggle.Com/Datasets/Farhanmd29/50-Startups ,

2022.

Fey, Dietmar. “Memristors Divide to Conquer Device Variability.” Nature Electronics,

vol. 1, no. 8, Aug. 2018, pp. 438–39, https://doi.org/10.1038/s41928-018-0123-z.

Ge, Jun, et al. “A Sub-500 MV Monolayer Hexagonal Boron Nitride Based Memory

Device.” Materials & Design, vol. 198, Jan. 2021, p. 109366,

https://doi.org/10.1016/j.matdes.2020.109366.

Ge, Ruijing, et al. “Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of

Transition Metal Dichalcogenides.” Nano Letters, vol. 18, no. 1, Jan. 2018, pp. 434–

41, https://doi.org/10.1021/acs.nanolett.7b04342.

Gokmen, Tayfun, and Yurii Vlasov. “Acceleration of Deep Neural Network Training

with Resistive Cross-Point Devices: Design Considerations.” Frontiers in

Neuroscience, vol. 10, July 2016, https://doi.org/10.3389/fnins.2016.00333.

Goux, Ludovic, et al. “Key Material Parameters Driving CBRAM Device Performances.”

Faraday Discussions, vol. 213, 2019, pp. 67–85,

https://doi.org/10.1039/C8FD00115D.

Guo, Yilong, et al. “Unsupervised Learning on Resistive Memory Array Based Spiking

Neural Networks.” Frontiers in Neuroscience, vol. 13, Aug. 2019,

https://doi.org/10.3389/fnins.2019.00812.

 96

Guy, J., et al. “Guidance to Reliability Improvement in CBRAM Using Advanced KMC

Modelling.” 2017 IEEE International Reliability Physics Symposium (IRPS), IEEE,

2017, p. PM-2.1-PM-2.5, https://doi.org/10.1109/IRPS.2017.7936384.

Hong, XiaoLiang, et al. “A Novel Geometry of ECM-Based RRAM with Improved

Variability.” Journal of Physics D: Applied Physics, May 2018,

https://doi.org/10.1088/1361-6463/aac2b4.

Hosseininoorbin, Seyedehfaezeh, et al. Exploring Deep Neural Networks on Edge TPU.

Oct. 2021.

Hu, Miao, et al. “Dot-Product Engine for Neuromorphic Computing.” Proceedings of the

53rd Annual Design Automation Conference, ACM, 2016, pp. 1–6,

https://doi.org/10.1145/2897937.2898010.

Huh, Woong, et al. “Memristors Based on 2D Materials as an Artificial Synapse for

Neuromorphic Electronics.” Advanced Materials, vol. 32, no. 51, Dec. 2020, p.

2002092, https://doi.org/10.1002/adma.202002092.

Huyghebaert, C., et al. “2D Materials: Roadmap to CMOS Integration.” 2018 IEEE

International Electron Devices Meeting (IEDM), IEEE, 2018, pp. 22.1.1-22.1.4,

https://doi.org/10.1109/IEDM.2018.8614679.

Ielmini, Daniele. “Resistive Switching Memories Based on Metal Oxides: Mechanisms,

Reliability and Scaling.” Semiconductor Science and Technology, vol. 31, no. 6,

June 2016, p. 063002, https://doi.org/10.1088/0268-1242/31/6/063002.

Indiveri, Giacomo, et al. “Neuromorphic Silicon Neuron Circuits.” Frontiers in

Neuroscience, vol. 5, 2011, https://doi.org/10.3389/fnins.2011.00073.

Jiménez-Luna, José, et al. “Drug Discovery with Explainable Artificial Intelligence.”

Nature Machine Intelligence, vol. 2, no. 10, Oct. 2020, pp. 573–84,

https://doi.org/10.1038/s42256-020-00236-4.

Jo, Sung Hyun, et al. “Nanoscale Memristor Device as Synapse in Neuromorphic

Systems.” Nano Letters, vol. 10, no. 4, Apr. 2010, pp. 1297–301,

https://doi.org/10.1021/nl904092h.

Khan, Amjad Rehman. “Facial Emotion Recognition Using Conventional Machine

Learning and Deep Learning Methods: Current Achievements, Analysis and

Remaining Challenges.” Information, vol. 13, no. 6, May 2022, p. 268,

https://doi.org/10.3390/info13060268.

Kumar, Pratik, et al. “Hybrid Architecture Based on Two-Dimensional Memristor

Crossbar Array and CMOS Integrated Circuit for Edge Computing.” Npj 2D

Materials and Applications, vol. 6, no. 1, Jan. 2022, p. 8,

https://doi.org/10.1038/s41699-021-00284-3.

 97

Lanza, Mario, et al. “Resistive Switching Crossbar Arrays Based on Layered Materials.”

Advanced Materials, vol. 35, no. 9, Mar. 2023, p. 2205402,

https://doi.org/10.1002/adma.202205402.

Lee, Myoung-Jae, et al. “A Fast, High-Endurance and Scalable Non-Volatile Memory

Device Made from Asymmetric Ta2O5−x/TaO2−x Bilayer Structures.” Nature

Materials, vol. 10, no. 8, Aug. 2011, pp. 625–30, https://doi.org/10.1038/nmat3070.

Lemme, Max C., et al. “2D Materials for Future Heterogeneous Electronics.” Nature

Communications, vol. 13, no. 1, Mar. 2022, p. 1392, https://doi.org/10.1038/s41467-

022-29001-4.

Li, Bing, et al. “An Overview of In-Memory Processing with Emerging Non-Volatile

Memory for Data-Intensive Applications.” Proceedings of the 2019 on Great Lakes

Symposium on VLSI, ACM, 2019, pp. 381–86,

https://doi.org/10.1145/3299874.3319452.

Li, Yibo, et al. “Review of Memristor Devices in Neuromorphic Computing: Materials

Sciences and Device Challenges.” Journal of Physics D: Applied Physics, vol. 51,

no. 50, Dec. 2018, p. 503002, https://doi.org/10.1088/1361-6463/aade3f.

Li, YingTao, et al. “An Overview of Resistive Random Access Memory Devices.”

Chinese Science Bulletin, vol. 56, no. 28–29, Oct. 2011, pp. 3072–78,

https://doi.org/10.1007/s11434-011-4671-0.

Lillicrap, Timothy P., et al. “Backpropagation and the Brain.” Nature Reviews

Neuroscience, vol. 21, no. 6, June 2020, pp. 335–46, https://doi.org/10.1038/s41583-

020-0277-3.

Maass, Wolfgang. “On the Computational Power of Winner-Take-All.” Neural

Computation, vol. 12, no. 11, Nov. 2000, pp. 2519–35,

https://doi.org/10.1162/089976600300014827.

Mahadevaiah, M. K., et al. “Reliability of CMOS Integrated Memristive HfO2 Arrays

with Respect to Neuromorphic Computing.” 2019 IEEE International Reliability

Physics Symposium (IRPS), IEEE, 2019, pp. 1–4,

https://doi.org/10.1109/IRPS.2019.8720552.

Mahmoodi, M. R., et al. “Versatile Stochastic Dot Product Circuits Based on Nonvolatile

Memories for High Performance Neurocomputing and Neurooptimization.” Nature

Communications, vol. 10, no. 1, Nov. 2019, p. 5113, https://doi.org/10.1038/s41467-

019-13103-7.

Mao, Jing‐Yu, et al. “A van Der Waals Integrated Damage‐Free Memristor Based on

Layered 2D Hexagonal Boron Nitride.” Small, vol. 18, no. 12, Mar. 2022, p.

2106253, https://doi.org/10.1002/smll.202106253.

 98

Mbarek, Khaoula, et al. “On the Design and Analysis of a Compact Array with 1T1R

RRAM Memory Element.” Analog Integrated Circuits and Signal Processing, vol.

102, no. 1, Jan. 2020, pp. 27–37, https://doi.org/10.1007/s10470-019-01488-w.

Mehonic, A., and A. J. Kenyon. “Brain-Inspired Computing Needs a Master Plan.”

Nature, vol. 604, no. 7905, Apr. 2022, pp. 255–60, https://doi.org/10.1038/s41586-

021-04362-w.

Meng, Zhenzhu, et al. “Using a Data Driven Approach to Predict Waves Generated by

Gravity Driven Mass Flows.” Water, vol. 12, no. 2, Feb. 2020, p. 600,

https://doi.org/10.3390/w12020600.

Merolla, Paul A., et al. “A Million Spiking-Neuron Integrated Circuit with a Scalable

Communication Network and Interface.” Science, vol. 345, no. 6197, Aug. 2014, pp.

668–73, https://doi.org/10.1126/science.1254642.

Merrikh-Bayat, Farnood, et al. “High-Performance Mixed-Signal Neurocomputing With

Nanoscale Floating-Gate Memory Cell Arrays.” IEEE Transactions on Neural

Networks and Learning Systems, vol. 29, no. 10, Oct. 2018, pp. 4782–90,

https://doi.org/10.1109/TNNLS.2017.2778940.

Milo, V., et al. “Multilevel HfO 2 -Based RRAM Devices for Low-Power Neuromorphic

Networks.” APL Materials, vol. 7, no. 8, Aug. 2019, p. 081120,

https://doi.org/10.1063/1.5108650.

Montesinos López, Osval Antonio, et al. Multivariate Statistical Machine Learning

Methods for Genomic Prediction. Springer International Publishing, 2022,

https://doi.org/10.1007/978-3-030-89010-0.

Musisi-Nkambwe, Mirembe, et al. “The Viability of Analog-Based Accelerators for

Neuromorphic Computing: A Survey.” Neuromorphic Computing and Engineering,

vol. 1, no. 1, Sept. 2021, p. 012001, https://doi.org/10.1088/2634-4386/ac0242.

Nair, Manu V, and Piotr Dudek. “Gradient-Descent-Based Learning in Memristive

Crossbar Arrays.” 2015 International Joint Conference on Neural Networks

(IJCNN), IEEE, 2015, pp. 1–7, https://doi.org/10.1109/IJCNN.2015.7280658.

Nigrin, Albert. Neural Networks for Pattern Recognition. The MIT Press, 1993,

https://doi.org/10.7551/mitpress/4923.001.0001.

Niharika*, and Sona Malhotra. “Sentiment Analysis Using Artificial Neural Network.”

International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 5,

Jan. 2020, pp. 3267–73, https://doi.org/10.35940/ijrte.E6450.018520.

Nikam, Revannath Dnyandeo, et al. “Single‐Atom Quantum‐Point Contact Switch Using

Atomically Thin Hexagonal Boron Nitride.” Small, vol. 17, no. 7, Feb. 2021, p.

2006760, https://doi.org/10.1002/smll.202006760.

 99

Pan, Chengbin, et al. “Coexistence of Grain-Boundaries-Assisted Bipolar and Threshold

Resistive Switching in Multilayer Hexagonal Boron Nitride.” Advanced Functional

Materials, vol. 27, no. 10, Mar. 2017, p. 1604811,

https://doi.org/10.1002/adfm.201604811.

Pan, F., et al. “Recent Progress in Resistive Random Access Memories: Materials,

Switching Mechanisms, and Performance.” Materials Science and Engineering: R:

Reports, vol. 83, Sept. 2014, pp. 1–59, https://doi.org/10.1016/j.mser.2014.06.002.

Patel, Ravi, et al. “Multistate Register Based on Resistive RAM.” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, Sept. 2015, pp. 1750–

59, https://doi.org/10.1109/TVLSI.2014.2347926.

Pradhan, Sangram K., et al. “Resistive Switching Behavior of Reduced Graphene Oxide

Memory Cells for Low Power Nonvolatile Device Application.” Scientific Reports,

vol. 6, no. 1, May 2016, p. 26763, https://doi.org/10.1038/srep26763.

Prakash, Amit, et al. “TaO x -Based Resistive Switching Memories: Prospective and

Challenges.” Nanoscale Research Letters, vol. 8, no. 1, Dec. 2013, p. 418,

https://doi.org/10.1186/1556-276X-8-418.

Prezioso, M., et al. “Training and Operation of an Integrated Neuromorphic Network

Based on Metal-Oxide Memristors.” Nature, vol. 521, no. 7550, May 2015, pp. 61–

64, https://doi.org/10.1038/nature14441.

Quellmalz, Arne, et al. “Large-Area Integration of Two-Dimensional Materials and Their

Heterostructures by Wafer Bonding.” Nature Communications, vol. 12, no. 1, Feb.

2021, p. 917, https://doi.org/10.1038/s41467-021-21136-0.

Radhakrishnan, Janaki, et al. “Impacts of Ta Buffer Layer and Cu–Ge–Te Composition

on the Reliability of GeSe-Based CBRAM.” IEEE Transactions on Electron

Devices, vol. 66, no. 12, Dec. 2019, pp. 5133–38,

https://doi.org/10.1109/TED.2019.2948894.

Rehman, Shania, et al. “Thickness-Dependent Resistive Switching in Black Phosphorus

CBRAM.” Journal of Materials Chemistry C, vol. 7, no. 3, 2019, pp. 725–32,

https://doi.org/10.1039/C8TC04538K.

Robinson, Joshua A. “Perspective: 2D for beyond CMOS.” APL Materials, vol. 6, no. 5,

May 2018, p. 058202, https://doi.org/10.1063/1.5022769.

Roldan, Juan B., et al. “Spiking Neural Networks Based on Two-Dimensional Materials.”

Npj 2D Materials and Applications, vol. 6, no. 1, Sept. 2022, p. 63,

https://doi.org/10.1038/s41699-022-00341-5.

 100

Rosenblatt, F. “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain.” Psychological Review, vol. 65, no. 6, 1958, pp. 386–408,

https://doi.org/10.1037/h0042519.

Sanchez Esqueda, Ivan, et al. “Aligned Carbon Nanotube Synaptic Transistors for Large-

Scale Neuromorphic Computing.” ACS Nano, vol. 12, no. 7, July 2018, pp. 7352–

61, https://doi.org/10.1021/acsnano.8b03831.

Sandberg, Anders. Energetics of the Brain and AI. Feb. 2016.

Sarker, Iqbal H. “Machine Learning: Algorithms, Real-World Applications and Research

Directions.” SN Computer Science, vol. 2, no. 3, May 2021, p. 160,

https://doi.org/10.1007/s42979-021-00592-x.

Schmidhuber, Jürgen. “Deep Learning in Neural Networks: An Overview.” Neural

Networks, vol. 61, Jan. 2015, pp. 85–117,

https://doi.org/10.1016/j.neunet.2014.09.003.

Seo, Jae-sun, et al. “On-Chip Sparse Learning Acceleration With CMOS and Resistive

Synaptic Devices.” IEEE Transactions on Nanotechnology, vol. 14, no. 6, Nov.

2015, pp. 969–79, https://doi.org/10.1109/TNANO.2015.2478861.

Sezer, Omer Berat, et al. “An Artificial Neural Network-Based Stock Trading System

Using Technical Analysis and Big Data Framework.” Proceedings of the SouthEast

Conference, ACM, 2017, pp. 223–26, https://doi.org/10.1145/3077286.3077294.

Strubell, Emma, et al. Energy and Policy Considerations for Deep Learning in NLP. June

2019.

Sun, Yipeng, and Andreas M. Kist. Deep Learning on Edge TPUs. Aug. 2021.

Sutariya, Vijaykumar, et al. “Artificial Neural Network in Drug Delivery and

Pharmaceutical Research.” The Open Bioinformatics Journal, vol. 7, no. 1, Dec.

2013, pp. 49–62, https://doi.org/10.2174/1875036201307010049.

Taher, Mohamed. “Accelerating Scientific Applications Using GPU’s.” 2009 4th

International Design and Test Workshop (IDT), IEEE, 2009, pp. 1–6,

https://doi.org/10.1109/IDT.2009.5404114.

Wang, Shaohua, et al. “Advances on Tumor Image Segmentation Based on Artificial

Neural Network.” Journal of Biosciences and Medicines, vol. 08, no. 07, 2020, pp.

55–62, https://doi.org/10.4236/jbm.2020.87006.

Waterworth, G., and M. Lees. “Artificial Neural Networks in the Modelling and Control

of Non-Linear Systems.” IFAC Proceedings Volumes, vol. 33, no. 1, Feb. 2000, pp.

95–97, https://doi.org/10.1016/S1474-6670(17)35594-5.

 101

Wong, H. S. Philip, et al. “Metal–Oxide RRAM.” Proceedings of the IEEE, vol. 100, no.

6, June 2012, pp. 1951–70, https://doi.org/10.1109/JPROC.2012.2190369.

Wu, Xiaohan, et al. “Thinnest Nonvolatile Memory Based on Monolayer H‐BN.”

Advanced Materials, vol. 31, no. 15, Apr. 2019, p. 1806790,

https://doi.org/10.1002/adma.201806790.

Xie, Jing, et al. “Hexagonal Boron Nitride (h-BN) Memristor Arrays for Analog-Based

Machine Learning Hardware.” Npj 2D Materials and Applications, vol. 6, no. 1,

July 2022, p. 50, https://doi.org/10.1038/s41699-022-00328-2.

Xu, Qi, et al. “Reliability-Driven Neuromorphic Computing Systems Design.” 2021

Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,

2021, pp. 1586–91, https://doi.org/10.23919/DATE51398.2021.9473929.

Yang Yin Chen, et al. “Balancing SET/RESET Pulse for $>\hbox{10}^{10}$

Endurance in $\hbox{HfO}_{2}\hbox{/Hf}$ 1T1R Bipolar RRAM.” IEEE

Transactions on Electron Devices, vol. 59, no. 12, Dec. 2012, pp. 3243–49,

https://doi.org/10.1109/TED.2012.2218607.

Yao, Peng, et al. “Face Classification Using Electronic Synapses.” Nature

Communications, vol. 8, no. 1, May 2017, p. 15199,

https://doi.org/10.1038/ncomms15199.

Yasar, A., et al. “Classification of Parkinson Disease Data with Artificial Neural

Networks.” IOP Conference Series: Materials Science and Engineering, vol. 675,

no. 1, Nov. 2019, p. 012031, https://doi.org/10.1088/1757-899X/675/1/012031.

Yin, Shihui, et al. “Monolithically Integrated RRAM- and CMOS-Based In-Memory

Computing Optimizations for Efficient Deep Learning.” IEEE Micro, vol. 39, no. 6,

Nov. 2019, pp. 54–63, https://doi.org/10.1109/MM.2019.2943047.

Yu, Shimeng, et al. “RRAM for Compute-in-Memory: From Inference to Training.”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, July

2021, pp. 2753–65, https://doi.org/10.1109/TCSI.2021.3072200.

Yu, Shimeng, and H. S. Philip Wong. “Modeling the Switching Dynamics of

Programmable-Metallization-Cell (PMC) Memory and Its Application as Synapse

Device for a Neuromorphic Computation System.” 2010 International Electron

Devices Meeting, IEEE, 2010, pp. 22.1.1-22.1.4,

https://doi.org/10.1109/IEDM.2010.5703410.

Zahoor, Furqan, et al. “Resistive Random Access Memory (RRAM): An Overview of

Materials, Switching Mechanism, Performance, Multilevel Cell (Mlc) Storage,

Modeling, and Applications.” Nanoscale Research Letters, vol. 15, no. 1, Dec. 2020,

p. 90, https://doi.org/10.1186/s11671-020-03299-9.

 102

Zhang, Wenqiang, et al. “Neuro-Inspired Computing Chips.” Nature Electronics, vol. 3,

no. 7, July 2020, pp. 371–82, https://doi.org/10.1038/s41928-020-0435-7.

Zhao, Meiran, et al. “Reliability of Analog Resistive Switching Memory for

Neuromorphic Computing.” Applied Physics Reviews, vol. 7, no. 1, Mar. 2020, p.

011301, https://doi.org/10.1063/1.5124915.

Zhu, Kaichen, Xianhu Liang, et al. “Graphene–Boron Nitride–Graphene Cross-Point

Memristors with Three Stable Resistive States.” ACS Applied Materials &

Interfaces, vol. 11, no. 41, Oct. 2019, pp. 37999–8005,

https://doi.org/10.1021/acsami.9b04412.

Zhu, Kaichen, Chao Wen, et al. “The Development of Integrated Circuits Based on Two-

Dimensional Materials.” Nature Electronics, vol. 4, no. 11, Nov. 2021, pp. 775–85,

https://doi.org/10.1038/s41928-021-00672-z.

 103

APPENDIX A

GLOSSARY OF NEUROMORPHIC SYSTEMS

 104

1. Neuromorphic computing: An emerging field of computing intended to develop

computer systems that function more like biological brains. These systems employ

electronic components and circuits that mimic the behavior of neurons and synapses in the

brain to process information.

2. Machine Learning (ML): A subset of artificial intelligence that involves the use of

algorithms and statistical models to enable computer systems to automatically learn from

and improve upon data without being explicitly programmed.

3. Deep learning: A subset of machine learning which uses artificial neural networks to

help computers learn and make decisions from massive sets of complex data. These neural

networks process and extract information from the input data using numerous layers of

interconnected nodes. Deep learning models can find intricate patterns and relationships in

massive amounts of data that would be challenging for humans to observe.

4. Deep neural network: A type of artificial neural network used in deep learning that

consists of multiple layers of interconnected nodes. The output from the previous layer is

processed by each layer of nodes, enabling the extraction of increasingly abstract properties

from the incoming data.

5. In-memory computing: A type of computing architecture that uses random access

memory (RAM) to store and process data instead of the more conventional disk-based

storage. Large data sets can be processed and analyzed faster due to the greatly decreased

access times provided by in-memory data storage.

6. Moore’s law: A prediction made by Gordon Moore, co-founder of Intel, in 1965 that

the number of transistors on a microchip would double approximately every two years,

while the cost of computing would decrease.

7. Weight: In neuromorphic computing, weight is the measure of how strongly or intensely

neurons or artificial synapses are connected in a neural network. As they determine the

importance of the input data and the response of the neurons, these weights serve as a

representation of the network's ability for processing information.

 105

8. Activation function: In neural networks, activation function is a mathematical function

that is applied to a neuron's output to decide whether it should be activated. The network's

non-linearity, brought forth by the activation function, enables it to simulate complex

relationships between inputs and outputs. In neural networks, activation functions come in

a variety of forms, including:

▪ Sigmoid function: This function, which has the shape of a sigmoid, converts any

input into a number between 0 and 1. It is frequently employed in binary

classification issues where the output is a probability value.

▪ ReLU (Rectified Linear Unit) function: It outputs the input value if it is positive

and 0 otherwise. Due to its effectiveness and simplicity, ReLU is the activation

function that deep neural networks utilize the most frequently.

▪ Tanh function: Similar to the sigmoid function, the tanh function converts the input

to a number between -1 and 1. Often, feedforward neural networks use tanh.

▪ Softmax function: A generalization of the sigmoid function, the softmax function

converts the input to a probability distribution across many classes. It frequently

appears in multiclass classification problems.

9. Training/learning: In neural networks, training is the process of adjusting the weights

and biases of the network's artificial neurons to increase the predictability of the network.

10. Supervised/unsupervised learning: In supervised learning, the network is trained

using a labeled dataset, implying that the right output is given for each input. After then,

the network is trained to reduce the discrepancy between expected and actual output. In

unsupervised learning, neural networks are trained on unlabeled datasets, implying that

the correct output for each input is not provided. Instead, it is left to the network to identify

structure and patterns in the input data on its own. Tasks like clustering and anomaly

detection frequently involve unsupervised learning.

11. Epoch: A single iteration of the whole training dataset while a neural network is being

trained is referred to as an epoch in machine learning. In order to reduce the discrepancy

 106

between the expected output and the actual output, the network processes the full training

dataset during each epoch and adjusts the weights and biases of the neurons.

12. Loss/cost function: A loss or cost function in machine learning is a mathematical

function that assesses the discrepancy between a neural network's predicted and actual

output. By modifying the neural network's weights and biases, the training process aims to

reduce the value of loss function.

13. Learning rate: In machine learning, learning rate is a hyperparameter that controls

how frequently a neural network's weights and biases are updated during training. How

fast or slowly the network modifies its weights and biases in response to the discrepancy

between the projected output and the actual output depends on its learning rate.

14. Accelerator: A customized hardware device developed to expedite the training and

inference procedures of neural networks in the context of artificial intelligence.

Accelerators, as opposed to general-purpose CPUs or GPUs, are made to perform the large

computations needed by neural networks more effectively.

15. Inference: The practice of utilizing a trained neural network to generate decisions or

predictions based on fresh, unobserved data is known as inference in neural networks.

16. Overfitting: Overfitting is when the network gets too complicated and fits the training

data too closely. This leads to poor generalization to new data. In other words, the network

has gotten too specialized to that specific dataset as a result of how effectively it has learned

the training data.

17. Petaflop/s-days: It is a measure of communication volume (throughput). It represents

the total amount of computations that would be performed throughout a complete day on a

computer with a throughput of 1 PetaFLOP/s.

18. TOPS (Tera Operations Per Second): A measure of the computational efficiency of

a neural network accelerator or processor. The number of operations (such as multiply-

 107

accumulate operations) that a hardware device can complete in one second is measured by

TOPS.

19. TOPS/W: A measure of performance and energy efficiency.

