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ABSTRACT 

When surgical resection becomes necessary to alleviate a patient’s epileptiform activity, 

that patient is monitored by video synchronized with electrocorticography (ECoG) to 

determine the type and location of seizure focus.  This provides a unique opportunity for 

researchers to gather neurophysiological data with high temporal and spatial resolution; 

these data are assessed prior to surgical resection to ensure the preservation of the 

patient’s quality of life, e.g. avoid the removal of brain tissue required for speech 

processing.  Currently considered the “gold standard” for the mapping of cortex, 

electrical cortical stimulation (ECS) involves the systematic activation of pairs of 

electrodes to localize functionally specific brain regions.  This method has distinct 

limitations, which often includes pain experienced by the patient.  Even in the best cases, 

the technique suffers from subjective assessments on the parts of both patients and 

physicians, and high inter- and intra-observer variability.  Recent advances have been 

made as researchers have reported the localization of language areas through several 

signal processing methodologies, all necessitating patient participation in a controlled 

experiment.  The development of a quantification tool to localize speech areas in which a 

patient is engaged in an unconstrained interpersonal conversation would eliminate the 

dependence of biased patient and reviewer input, as well as unnecessary discomfort to the 

patient.    

Post-hoc ECoG data were gathered from five patients with intractable epilepsy while 

each was engaged in a conversation with family members or clinicians.  After the data 

were separated into different speech conditions, the power of each was compared to 
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baseline to determine statistically significant activated electrodes.  The results of several 

analytical methods are presented here. 

The algorithms did not yield language-specific areas exclusively, as broad activation of 

statistically significant electrodes was apparent across cortical areas.  For one patient, 15 

adjacent contacts along superior temporal gyrus (STG) and posterior part of the temporal 

lobe were determined language-significant through a controlled experiment.  The task 

involved a patient lying in bed listening to repeated words, and yielded statistically 

significant activations that aligned with those of clinical evaluation.  The results of this 

study do not support the hypothesis that unconstrained conversation may be used to 

localize areas required for receptive and productive speech, yet suggests a simple 

listening task may be an adequate alternative to direct cortical stimulation.  

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENTS 

This study would not have been possible without the joint collaboration of Barrow 

National Institute at Phoenix Children’s Hospital and the Mayo Clinic with Arizona State 

University.  Specifically, the mentorship of Dr. Rèmy Wahnoun and Dr. Stephen Helms 

Tillery were crucial to the consummation of this study. 

Funding was provided by an Arizona Biomedical Research Commission grant, “A 

Practical Brain-Computer Interface” awarded to Dr. Stephen Helms Tillery and Dr. 

David Adelson.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

               Page 

LIST OF TABLES………………………………………………………………………. vi 

LIST OF FIGURES…………………………………………………………………….. vii 

INTRODUCTION……………………………………………………………………….. 1 

REVIEW OF LITERATURE……………………………………………………………. 4 

STATEMENT OF THE PROBLEM…………………………………………………… 11 

HYPOTHESIS………………………………………………………………………….. 11 

MATERIALS AND METHODS……………………………………………………….. 12 

 Subjects…………………………………………………………………………. 12 

 Direct Cortical Stimulation……………………………………………………... 13 

 ECoG Data……………………………………………………………………… 14 

 Estimation of Power…….………………………………………………………. 15 

 Statistical Analyses……………………………………………………………... 17 

RESULTS………………………………………………………………………………. 20 

DISCUSSION…………………………………………………………………………... 21 

 Conclusions……………………………………………………………………... 22 

Limitations……………………………………………………………………… 23 

Future Work…………………………………………………………………….. 24 

REFERENCES…………………………………………………………………………. 26 

APPENDIX 

 I  BRAIN SKETCHES OF SIGNIFICANT ACTIVATIONS…………………. 30 



v 
 

               Page 

II  INSTITUTIONAL REVIEW BOARD APPROVAL FORM………………. 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

Table           Page 

1. Patient Demographics………………………………………………………………. 12 

2. Patient Speech Contacts…………………………………………………………….. 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF FIGURES 

Figure                          Page 

1. ECoG Data Processing…………………………………………………………..…… 17 

2. Methods Flowchart: Continuous Conversation Stream ……………………….…….. 19 

3. Methods Flowchart:  Individual Speech Conditions…………………………...…….. 19 

4. Patient 1 Brain Sketch Segments…………………………………………………….. 20 

5. Patient 5 Brain Sketch Speaking……………………………………………………... 21 

6.  Patient 1 Brain Sketch Segments………………………………………………..…... 31 

7. Patient 1 Brain Sketch Segments (Frequency Ranges)…………………………….… 32  

8.  Patient 1 Brain Sketch Ratios……………………………………………………..… 33 

9.  Patient 1 Brain Sketch Ratios (Frequency Ranges)…………………….………….... 34 

10.  Patient 1 Brain Sketch Combined Speech (Segments)…………………………….. 35  

11.  Patient 1 Brain Sketch Combined Speech (Ratios)……………………………….... 36  

12.  Patient 2 Brain Sketch Segments…………………………………………………... 37 

13.  Patient 2 Brain Sketch Segments (Frequency Ranges)………………………….…. 38 

14.  Patient 2 Brain Sketch Ratios……………………………………………………… 39 

15.  Patient 2 Brain Sketch Ratios (Frequency Ranges)………………………………... 40 

16.  Patient 2 Brain Sketch Combined Speech (Segments) ……………………………. 41 

17.  Patient 2 Brain Sketch Combined Speech (Ratios) ………………………………... 42 

18.  Patient 3 Brain Sketch Segments…………………………………………………... 43 

19.  Patient 3 Brain Sketch Segments (Frequency Ranges)…………………………….. 44 

20.  Patient 3 Brain Sketch Ratios……………………………………………………… 45 



viii 
 

Figure                          Page 

21.  Patient 3 Brain Sketch Ratios (Frequency Ranges)………………………………... 46 

22.  Patient 3 Brain Sketch Combined Speech (Segments)…………………………….. 47 

23.  Patient 3 Brain Sketch Combined Speech (Ratios)………………………………… 48 

24.  Patient 4 Brain Sketch Segments…………………………………………………... 49 

25.  Patient 4 Brain Sketch Segments (Frequency Ranges)……………………….……. 50 

26.  Patient 4 Brain Sketch Ratios……………………………………………………… 51 

27.  Patient 4 Brain Sketch Ratios (Frequency Ranges)………………………………... 52 

28.  Patient 4 Brain Sketch Combined Speech (Segments) ……………………………. 53 

29.  Patient 4 Brain Sketch Combined Speech (Ratios) ……………………………….. 54 

30.  Patient 5 Brain Sketch Listening Activations……………………………………… 55 

31.  Patient 5 Brain Sketch Speaking Activations……………………………………… 56 

32.  Patient 5 Brain Sketch Listening to Words Activations…………………………… 57 

33.  Patient 5 Brain Sketch Reading Activations……………………………………….. 58 

34.  Patient 5 Brain Sketch Speech Combined Activations…………………………….. 59 

 



1 
 

INTRODUCTION 

It is estimated that 2.5 million Americans are afflicted with epilepsy, and 65 million 

people worldwide.  Nearly a tenth of the population will have at least one seizure during 

their lifetime (W.H.O. 2012, Epilepsy Foundation 2012).  Seizures are episodes of 

abnormal electrical activity of the brain which can arise from multiple brain foci or from 

a single, localized focus.  These electrical discharges can disrupt normal function (clinical 

seizure) or remain undetected by the patient (electrographic seizure).  During a clinical 

seizure (seizure that exhibits clinical symptoms), one may experience unconsciousness, 

involuntary muscle contractions, postictal confusion, and memory loss (Schachter 2006), 

diminishing one’s quality of life.   

When the administration of antiepileptic drugs (AEDs) is ineffective in treating seizure 

formation, a patient may qualify for a more aggressive treatment modality.  In some cases 

surgery involving the removal of afflicted brain tissue can alleviate epileptic symptoms.  

Individualized consideration is taken to evaluate each patient’s candidacy for resection 

surgery; continued seizures and high doses of medication may affect a person’s 

emotional, psychological, social, or professional life (Weiner 2004), and are weighed 

against the risks involved with surgery.   

To assess one’s candidacy for surgical resection, it’s essential to first analyze the 

epileptiform signals, including their origin and propagation.  In many hospitals, this 

electrical activity is assessed by monitoring the patient via videotape synced with 

encephalography (EEG) in the Epilepsy Monitoring Unit (EMU).  If it appears the 

seizures originate in or near critical brain structures that could result in long-term 

functional deficits, e.g. language areas, or somatosensory and motor cortices, or the 
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seizures are general in nature, surgical resection is not an option (Hill et al. 2012).  

Patients identified as potential candidates for resection will undergo a preliminary 

surgery involving the implantation of an electrocorticographic (ECoG) grid(s).  This grid 

is placed on the surface of the patient’s brain at the surgeon’s discretion, and is used to 

more accurately depict the location of seizure focus and the function of adjacent cortical 

structures.  The patient will again be closely monitored via videotape synced with ECoG.   

Cortical mapping of regions required for higher-order cognitive processes is crucial to 

ensure functionality is preserved during surgical resection as well as to further the current 

understanding of integrated brain processes.  Pairs of electrodes are systematically 

activated to identify brain areas that elicit motor responses or inhibit language function, 

with the aim of generating a cortical topographical map.  After a pair of electrodes is 

stimulated the patient is asked to describe the sensation; this method heavily relies on the 

accuracy and clarity of the patient’s response.  Although currently considered the “gold 

standard” for mapping cortex, cortical stimulation is imperfect, inconvenient, at times 

extremely painful, and patients often experience seizure onset when the focus is 

localized.  Additionally, the inaccuracy and inconsistencies of EEG reporting has become 

the subject of discussion among researchers, specifically the lack of standardized protocol 

and nomenclature used throughout analysis (Benbadis et al. 2009, Gerber et al. 2008, 

Haut et al. 2002, Wu et al. 2010).  In fact, a large number of patients will continue to 

have seizures after treatment (Sun et al. 2007), possibly due to the imprecision of source 

localization.  The use of quantitative tools to assess these data would help eliminate the 

inaccuracy of subjective patient and reviewer input, and therefore reduce the existence of 
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inter- and intra-observer variability between reviewers (Lodder and J.A.M. van Putten 

2013).   

The higher-level processing involved in the ability to interpret and express verbal 

communication is central to one’s daily life, yet its functional organization remains 

uncertain.  It is known that language areas vary broadly among patients, further 

highlighting the necessity of identifying these areas before resection.  The implantation of 

ECoG grids provides a unique opportunity for epileptologists to record and stimulate 

areas of the brain as well as for researchers to gather neurophysiological data containing 

high temporal and spatial resolution; these data may be key in the development of an 

automated quantification tool to localize language areas, which would avoid dependence 

on subjective patient and reviewer input as well as unnecessary inconveniences to the 

patient.  As such, the purpose of this research is to determine the plausibility of 

developing an algorithm to successfully identify receptive and expressive speech areas of 

post-hoc ECoG data, specifically in which the patient was engaged in an uncontrolled 

interpersonal conversation. 
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REVIEW OF LITERATURE 

The first language center was identified in 1861 by the French neurosurgeon, Paul Broca.  

Broca worked closely with patients who could comprehend language, yet were unable to 

express themselves verbally nor in writing.  His famous patient “Tan”, was nicknamed so 

because after suffering a traumatic brain injury (TBI), it was the only word he could 

stutter.   After Tan’s death, Broca performed an autopsy and discovered a lesion across 

the lateral surface of the left frontal lobe (Dronkers et al. 2007).  Through comparison 

with subsequent patients with similar disability, Broca confirmed the posterior-inferior 

frontal gyrus of the left cerebral hemisphere as an important area for speech production, 

and it was dubbed “Broca’s area” accordingly.  “Broca’s aphasia” was coined in 

reference to any deficit in language articulation, thus implicating all aspects of the 

disorder to this one brain region.   

Similarly, Karl Wernicke studied aphasic patients to localize areas that correlate to 

speech perception.  However, Wernicke’s patients were unable to interpret written or 

spoken words, resulting in the production of meaningless speech despite maintaining the 

ability to physically articulate language (McCaffey 2008).  His patients had lesions on the 

posterior region of the superior temporal lobe (STG) of the left hemisphere and he 

identified this as “area of word images” (Weisman et al. 2003), further confirming 

Broca’s hypothesis of the left hemisphere as significant for language function.  Wernicke 

also realized the importance of the arcuate fasciculus (AF) in the transfer of information 

between the anterior and posterior language centers and posited that damage to this 

structure would result in a ‘fluent speech disorder with good comprehension, yet with 
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impaired spontaneous speech, naming, and repetition’ (Anderson et al. 1999).  As in the 

case of Broca, “Wernicke’s aphasia” and “conduction aphasia” were used in reference to 

specific deficits in speech perception.  

Although Wernicke’s and Broca’s work laid the foundation for the modern understanding 

of language processing, advancements in neuroimaging techniques have improved our 

general understanding of neural processes.  Recent studies have challenged the traditional 

conceptualization of these brain regions being solely responsible for speech expression 

and perception.  Dronkers et al. retrieved the preserved brains of Broca’s patients, 

assessed the extent of their conditions via magnetic resonance imaging (MRI), and 

reported that each had significant medial lesions in addition to the lateral surface lesions- 

signifying that the posterior-inferior frontal gyrus does not singularly contribute to 

language production.  Further, Fridriksson et al. (2007) employed several neuroimaging 

methods to present a case study involving a patient that suffered a subcortical 

hemorrhagic stroke, inducing severe Broca’s aphasia.  Assessing the patient’s functional 

MRI (fMRI), it was evident the patient did not sustain Broca’s area damage; however 

further analysis through the use of tractology revealed a clear disconnect between Broca’s 

and Wernicke’s areas, via arcuate fasciculus.  Wernicke’s postulate has also been 

challenged, specifically the role of the AF in conduction aphasia.  Researchers have 

repeatedly shown through a variety of neuro- anatomical and -physiological techniques 

that cortical dysfunction alone may result in this disorder (Anderson et al. 1999, Bernal 

and Ardila 2009, Selnes et al. 2010, Hyeok and Sung 2011).   
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Over the past 150 years researchers have studied language processing to establish that 

language function is the result of a complex network of multiple cortices.  The most 

widely accepted model involves localized brain areas that encode for specific functions as 

well as “participate in networks employing multiple brain regions” required for higher-

order processing (Blumenfeld 2002, p. 827).  Wernicke’s area has been more clearly 

defined to Brodmann’s area 22, or the posterior two-thirds of the STG of the dominant 

hemisphere; Blumenfeld states other authors often include Brodmann’s areas 37, 39, and 

40 within Wernicke’s area as damage to these areas cause Wernicke’s aphasia.  Broca’s 

area corresponds to Brodmann’s areas 44 and 45, and rests in the inferior frontal gyrus; 

some authors include the adjacent areas 9, 46, and 47 while others go even further to 

include areas 6, 8, and 10 as damage to these areas can cause Broca’s aphasia 

(Blumenfeld 2002, p. 829).   

Although Broca’s and Wernicke’s areas are critical for language production and 

comprehension, both regions depend on reciprocal connections with surrounding cortex 

for higher-order functioning (Blumenfeld 2002, p. 829).  The anterior regions of Broca’s 

area are key for correct syntax in expressive and receptive speech, while the premotor 

cortex functions as an aid in speech planning and formulation (Duffau et al. 2003).  

Similarly, the cortex immediately posterior to Wernicke’s area contains the lexicon, used 

in both speaking and listening, while the angular gyrus is central to one’s ability to read.  

Wise et al. (2001) examined several positron emission tomography (PET) studies to 

localize functionally specific and anatomically separate streams of auditory processing 

found posterior to the auditory cortex; their findings include areas of activation 
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correlating to speech production at the junction of the inferior parietal lobe and posterior 

temporal lobe.  Blumenfeld states the connections through the corpus callosum allow the 

non-dominant hemisphere to contribute a deeper understanding of affective elements in 

speech (Blumenfeld 2002, p. 829).  Additionally, recent evidence has shown frontal lobe 

“corollary discharges” suppress the activity of receptive areas in the temporal lobe while 

speaking (Towle et al. 2008), which is hypothesized to explain the low level of attention 

given to one’s voice.   

The complexity of language’s intertwined neuronal networks is further emphasized as 

numerous studies report the significance of the motor system during both speech 

articulation and comprehension.  Hanlon et al. (1990) evaluated a variety of patients with 

differing aphasic subtypes and report gestures that activate the right-shoulder musculature 

enhances the naming performance of Broca’s aphasic subjects exclusively.  They 

postulate that during communicative gestures, functional activation of the primitive 

motor system allows access to the initial formative process, and climactically results in 

speech production.  These findings suggest sophisticated language processing evolved 

from and is significantly influenced by motor system recruitment.  As an extension of this 

work, Topper et al. (1998) applied focal transcranial magnetic stimulation (TMS) to the 

motor cortex for proximal arm muscles and to Wernicke’s cortex in non-aphasic subjects.  

Contributing to the postulate that motor programming and language processing have 

overlapping neuronal networks, and that perisylvian stimulation will preactivate the 

receptive language network, Topper et al. conclude TMS over Wernicke’s area facilitates 

a significant decrease in picture-naming latencies.  Other researchers’ findings align with 
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this paradigm in which anterior vs. posterior localizations for language function are 

interconnected and interdependent for the generation of receptive and expressive speech 

(Towle et al. 2008, Edwards et al. 2010, Wise et al. 2001, Lieberman et al. 1967, Wilson 

et al. 2004). 

Given the complexity of the language network, it is imperative to wholly identify 

language areas before surgical resection.  Currently considered the best method to map 

cortex, cortical stimulation involves the electrical stimulation between pairs of electrodes 

in attempt to localize the function of specific brain regions.  Cortical stimulation relies on 

the patient’s ability to participate and effectively communicate a sensation, which is not 

always optimal in patients who are being treated with heavy doses of peri-operative 

analgesics, or especially in young children.  Furthermore, the accuracy in which these 

tests are reported has been drawn into question.  Many researchers have shown high 

inter-rater variability within the reports among different reviewers and state standardized 

protocol, especially terminology, is clearly needed for the assessment of EEG reports 

(Haut et al. 2002, Benbadis et al. 2009, Gerber et al. 2008).  Though the instantiation of a 

standard guideline would improve the efficiency and possibly accuracy of these reports, 

an automated quantification tool for the localization of language areas would eliminate 

these issues all together. 

Several researchers have paved the road for speech localization through EEG and ECoG 

analysis in controlled experiments.  Though neither recording modalities are considered 

the “gold standard” for determining eloquent cortex (Towle et al. 2008), both exhibit 

long-term stability in signal acquisition as they avoid brain penetration.  While EEG is 
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non-invasive, ECoG has several advantages over EEG.  Unlike EEG, ECoG grids are 

subdural, have the ability to record at frequencies greater than 70 Hz (high gamma 

frequencies), and have enhanced spatial resolution and signal magnitude (Leuthardt et al. 

2011).  Leuthardt et al. state these higher frequencies are associated with speech 

functions in humans as well as being central to BCI operation.  For these reasons, 

researchers prefer electrocorticography as a recording modality when studying task-

related spectral modulations as it provides robust neural data whereas EEG lacks general 

recording quality.   

Functional activation of eloquent cortex is associated with event- or task-related signals 

in the high-gamma band (Sinai et al. 2005, Ray et al. 2008, Ball et al. 2008, Wu et al. 

2010).  These high frequencies contain an increase in spectral amplitude affiliated with 

numerous motor, language, and cognitive tasks (Crone et al. 2001, Crone et al. 1998, 

Leuthardt et al. 2007).  Though specific cutoff frequencies vary from study to study, the 

findings align to report an increase in high gamma activity over localized areas during 

language tasks.  Towle et al. considered the frequencies 70 Hz to 100 Hz and report 

perisylvian frontal, parietal, and temporal cortical areas demonstrate localized high-

frequency gamma activity during listening, interpreting, and speech articulation.  

Interestingly, they report electrodes along the temporal lobe show selective activation 

while hearing and repeating words, as whereas electrodes in the premotor hand area can 

be activated while listening.  Cho-Hisamoto et al. (2012) recorded data from a 

spontaneously cooing and babbling infant and found significant gamma-augmentation 

(30 Hz to 100 Hz) in the STG and Rolandic areas.  Others have assessed a broader range 
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of high gamma (70 Hz to 170 Hz, 200 Hz) frequencies for the partial decoding of speech 

(Kellis et al. 2010, Pei et al. 2011). 

Though these studies clearly indicate the actuality of mapping receptive and expressive 

language areas without ECS, they require the participation of distressed patients in 

controlled experiments.  The results of a recent study suggest the importance of 

spontaneous conversations to fully localize language areas.  Cervenka et al. (2013) have 

shown that subjects who name an object when presented with an auditory descriptive 

phrase exhibit activations in high gamma frequencies over language areas not present 

during the visual presentation of the object.  These locations were not identified during 

ECS, which highlights a substantial limitation of cortical stimulation in language 

mapping, but more importantly provides evidence that the use of unconstrained 

conversations to wholly identify speech areas is crucial, as conversing requires syntactic 

and phonetic processing.  Further, although they have not yet shown these results, Towle 

et al. have hinted at the plausibility of using post-hoc ECoG data of patient conversations 

to identify expressive and receptive speech areas. 
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STATEMENT OF THE PROBLEM 

The most commonly used method to identify language areas involves direct cortical 

stimulation which requires patient participation and is often noxious as well as 

inconsistent.  Previous studies have demonstrated the actuality of localizing speech areas 

during controlled language tasks, yet none have presented scientific evaluation of 

spontaneous speech.  Developing an automated algorithm that identifies these areas 

through post-hoc ECoG data would eliminate unnecessary inconveniences to the patient 

and could provide another benchmark to reduce misinterpretation issues by reviewers. 

HYPOTHESIS 

ECoG data containing spontaneous conversations can be used to develop an automated 

algorithm that localizes expressive and receptive language areas for surgical planning.  I 

expect to find activations associated with task-related augmented power (between the 

frequencies of 70 Hz and 110 Hz) over Wernicke’s area, throughout the STG, and 

possibly in premotor hand area (Towle et al. 2008) when the patient is perceiving speech.  

Additionally, I expect to find statistically significant activations over Broca’s area and its 

surrounding cortex, and possibly throughout the frontal lobe during productive speech 

(Blumenfeld 2002, p.827).  Although patient cortical stimulation reports are sometimes 

misleading and not wholly representative of language areas, I anticipate an alignment 

between statistically-significant activated electrodes with those found clinically. 
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MATERIALS AND METHODS 

All procedures were approved by the Institutional Review Board of Phoenix Children’s 

Hospital and the Mayo Clinic; the approval form can be viewed in Appendix II.   

Subjects 

Post-hoc ECoG data were extracted from five patients with intractable epilepsy.  Patient 

demographics, grid placement, and ictal contacts are shown in Table 1 below.   

Table 1.  Patient Demographics 

Patient Age Gender R/L Hand Dominant Grid Ictal Contacts 

1 21 F R 

LT LIF LSF LPF 

LPT LAT 

LIF2 5 LSF3 LPF4 LT5 

12 17 LAT5 6 

2 62 M Unknown G S G1 9 20 

3 34 F Unknown RFG RTG LT RTG 5 10 15 

3 66 M R G1 G3 D1 D3 G3.1-5 

4 15 M R  OS TS G LIH 

G7 G8 G15 G16 G39 G40 

G47 G48 G55 G56   

Table 1:  Patient demographics and seizure information.  LT-left temporal, LIF-left inferior 

frontal, LSF-left superior frontal, LPF-left posterior frontal, LPT-left posterior temporal (depth), 

LAT-left anterior temporal (depth), G-temporal gyrus, S- posterior temporal gyrus, OS- occipital,  

LIH- left hemispheric, TS- temporal superior, G- posterior auditory cortex-occipito-parietal, 

RGF- right frontal, and RTG- right temporal. 

Throughout the duration of each patient’s visit, antiepileptic drugs (AEDs) were tapered 

to induce the presence of seizures.  Data were extracted during stable interictal periods 

after seizures had been identified by epileptologists via ECoG video monitoring.  The 

grids (Ad-Tech) were platinum silicon arrays with a contact diameter of 1 mm and 

spacing of 1 cm.  The amount and type of array(s) were determined by the clinical needs 

of the patient.  Four of the five patients received implantations to the left hemisphere, 

varying in number and location, while one patient was implanted on the right hemisphere.  

Grid location relative to anatomical gyri was estimated by cross-referencing the patient’s 
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EEG report with the coronal and sagittal views of their computed tomography (CT) 

images.   

Direct Cortical Stimulation 

Electrical cortical stimulation for four of the five patients was conducted at bedside with 

the patient in supine position.  Stimulation was performed per standard protocol using a 

Grass stimulator with gradually increasing stimulation delivered to select electrodes; 

pairs of electrodes were systematically stimulated to identify eloquent cortex.  After each 

individual discharge, patients were asked to report signs or symptoms in an attempt to 

localize functionally specific brain regions; depending on the location of the array, 

behavioral and/or linguistic tasks were utilized.   

One patient did not receive ECS, and language areas were clinically determined by fMRI.  

Findings from direct cortical stimulation reports for all patients are listed in Table 2 

below.  Notice a few patients have unspecified language and motor tasks as well as grids 

positioned solely in suspected receptive speech areas. 

Table 2.  Patient Speech Contacts 

Patient DCS test Speech Contacts (Clinical) 

1 Reading LT15 LT19 LT20 

2 Unspecified 

language 

G19 G20 S5 S6 (Possibly S3 S4) 

3 None (fMRI- 

reading) 

Unknown- 

bilateral 

4 Motor tasks G3.13 G3.18  

5 Listened to 

repeated words 

G41 42 43 44 49 50 51 57 58 59 60 TS3 

4 5 6 

Table 2:  Language-significant electrodes found clinically for each patient. 

 



14 
 

ECoG Data  

ECoG data synced with video were recorded continuously at 500 Hz (XL-tech Ltd., 

EMU128 amplifier) for the duration of the patient’s visit.  In the interest of conserving 

space on the hospital’s server, much of the patient data had been deleted by EEG 

technicians prior to this post-hoc study.  This left a total of five patients with ideal grid 

placement and sufficient data to complete this study.  The data were identified during 

stable interictal periods, in which each patient was engaged in conversation with family 

members or clinicians.  To separate the data into different speech conditions, patient 

videos were assessed to record the start and end time of each language segment. All 

patients contained segregated speaking, listening, and baseline segments.  For two of the 

five patients reading data were also available.  Due to the limited availability of data in 

this study, baseline was considered as an instance in which no one was performing a 

speech function, though some patients had background noise including television or 

music.  As the study evolved, the data analysis approach changed several times resulting 

in different extraction methods.  As such, four of the five patients’ data are entire 

conversations and were extracted from data at the Mayo Clinic, while the fifth patient’s 

data were taken from Phoenix Children’s Hospital and each file is comprised of 

individual speech segments.   

All data manipulation was performed in Matlab software (MathWorks 2012).  Data were 

extracted in a European Data Format (EDF), which is used for the exchange and storage 

of medical physiological data; the files were then converted into a readable Matlab 

format using a custom-written Matlab program.   



15 
 

Estimation of Power 

As this study attempts to determine the plausibility of utilizing spontaneous conversation 

to fully localize speech areas, a variety of signal processing modalities were employed.  

All calculations for every patient were performed after the removal of dead channels as 

well as those known to contain seizure activity and obvious external noise.   

For four of the patients, power was estimated for each individual condition using the 

Hilbert Transform (HT) at the median frequencies of the high gamma range (84.96 Hz 

and 142.5 Hz) (Towle et al. 2008) as well as averaged across the high gamma band (70 

Hz-110 Hz and 130 Hz -170 Hz).  The HT estimates instantaneous power, i.e. it yields 

accurate power across time-series data - which is useful when segmenting each speech 

condition across the continuous conversation stream.  Since all of Patient 5’s speech 

conditions are in separate files, power was estimated via spectrogram at the same 

frequencies (specified above).  When power is estimated using a spectrogram, the data 

lose time information of the signal; this is because it utilizes a fast Fourier transform 

(FFT) which transforms data from the time domain to the frequency domain.  All power 

estimations avoided the line noise evident at: 60 Hz, 120 Hz, 180 Hz, and 240 Hz, and 

were used in each of the analysis methods described below.  

For each of the four patients, all similar speech segments (speaking, listening, baseline, 

etc.) were first combined and compared to baseline.  Statistical data analysis was then 

performed to assess the significance of each electrode for each speech condition.  The 

second method combined all similar speech segments and divided by the average power 

of baseline to generate power ratios.  This was used to clearly distinguish an 
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augmentation in task-related power (value greater than 1 indicates power increase).  

Baseline was normalized and then compared to receptive and expressive speech power 

ratios in a statistical test for significance.  The last method combined all speech segments 

together (power was estimated at 84.96 Hz and 142.5 Hz) and then compared to baseline 

(Towle et al. 2008).   

A second set of data were generated by performing independent component analysis 

(ICA) for each of the four patients.  This de-noising method is a blind source separation 

(BSS) which allows the removal of statistically independent signal components.  Both 

power estimations were performed and run through the three different techniques with 

this data.   

The last patient (P5) contained data in which each speech segment had been extracted as 

an individual file; therefore the time-series data are insignificant during analysis, and the 

power of each speech condition was estimated via spectrogram that averaged frequency 

ranges from 70 Hz to 110 Hz and 130 Hz to 170 Hz.  This was also the only patient to 

contain a grid of 64 electrodes, which has been cited as the minimum number to allow a 

common-average reference (CAR) (Dien 1998). Several language conditions were 

available for P5, including reading, listening to words (with eyes closed), speaking, 

baseline, and listening during a conversation.  The segments were compared to baseline 

and tested for statistical significance.  Lastly, all speech conditions were combined 

(Towle et al. 2008) and compared to baseline.  
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Statistical Analyses 

The data were assessed by the Wilcoxon rank-sum statistical test to account for the data’s 

non-parametric attributes.  This is a two-sample t-test that is based on the order of which 

baseline and each specific language segment falls.  Each test was calculated with an alpha 

value of 0.05 to determine the statistical significance with 95% confidence. 

To clarify the analytic process, the following figures are presented.  Figure 1 illustrates 

the separation of speech data.   

Figure 1.  ECoG Data Processing 

Figure 1:  Illustration of ECoG signal analysis:  A) 4x4 ECoG grid; B) Raw signal with 

separate colors representing different speech conditions; C) Speaking, listening, and 

baseline power plots for each frequency band (Theta 4-8 Hz; Alpha 8-14 Hz; Beta 14-30 

Hz; Gamma 30-250 Hz) . 
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After the power of each speech condition is estimated (seen in Fig.1 (C)), one of several 

analytic methods are employed and then statistically tested.  Figures 2 and 3 illustrate the 

sequence of steps taken throughout the analytic process.  Figure 2 presents the methods 

for the first four patients (continuous conversation stream data).  Patient 5’s data did not 

require segregation into similar speech conditions (as the extraction process separated 

them), and therefore had a slightly different processing method than the first four 

patients; this is presented in Fig. 3. 
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Figure 2.  Methods Flowchart: Continuous Conversation Stream 

 

Figure 2:  Flowchart explaining the sequence of steps taken during analysis for Patients 1-4. 

 

Figure 3. Methods Flowchart:  Individual Speech Conditions 

 

Figure 3:  Flowchart explaining sequence of steps taken during analysis of Patient 5.  
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RESULTS 

All patient brain sketches containing electrodes in which each language activity was 

significantly different from baseline for each calculation method are located in Appendix 

I; each has a caption noting any interesting characteristics- please refer to them as 

needed.  Only two figures are presented in this section as they are representative of the 

results across all patients.   

Figure 4: Patient 1 Brain Sketch Segments 

Figure 4:  Two brains with electrodes found to be language-specific.  Brain (A) 

illustrates widespread statistically significant electrode activations during both listening 

and speaking conditions for Patient 1. The power of each language condition was 

estimated by the HT from the above frequencies and separated into similar segments; 

speaking and listening were then compared to baseline.  The black electrodes were 

removed from analysis (dead channel or contained prominent seizure activity).  Again, 

grid locations are estimated from cross-referencing CT images with patient reports. 

 

Notice every contact was activated for both conditions except listening at 84.96 Hz in 

suspected Broca’s area and primary auditory cortex, and listening at 142.5 Hz near 

Wernicke’s area.   
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Figure 5:  Patient 5 Brain Sketch Speaking 

 

Figure 5: Two brains from Patient 5 with language-specific electrodes.  Brain (A) 

illustrates activations found while the patient was speaking during an unconstrained 

conversation.  Brain (B) shows significant activations during an experiment in which the 

patient was listening to a computer generate words.  Power was calculated by a 

spectrogram. 

 

Notice every electrode was significantly different than baseline during this speech 

condition. 

DISCUSSION 

The success of this study is not measured by the alignment of contacts found by each 

method and of those determined clinically.  Little comparison was made between my 

results and the DCS reports as they are not wholly representative of language areas and 

are, at times, inaccurate.  Further, analysis in this study is qualitative as grid placement is 

inferred and true language areas are unknown.   

All patient brain sketches contain broad activations across cortex during each speech 

condition.  These could represent functional activations due to distractions (e.g. occipital 

and motor area recruitment), and may be an indicator that spontaneous conversation is 

too unconstrained to localize speech-specific regions.  
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Conclusions 

The study doesn’t yield results which lead to clear, distinct results, yet I draw several 

conclusions nonetheless.   

Most importantly, my data do not support the hypothesis that spontaneous conversations 

can be used to localize receptive and expressive language areas.  However, this study 

suffers some key limitations.   First, the data sets lack adequate baseline data needed for 

comparison. All speech conditions were tested for statistical significance against baseline, 

so an insufficient sample would yield inaccurate results. 

Also, since language function is the result of interconnected neuronal networks, it’s likely 

that functional activation occurs across many high frequencies.  Though using the 

specific frequencies of 84.96 Hz and 142.5 Hz was adequate for Towle et al.’s study, this 

method is not advised for future investigations.  The latter ignores all high-gamma 

frequencies other than those specified, which can exclude important features.  For 

example, in this study P5’s receptive areas were found at 93 Hz during the experimental 

control.  Data analysis should include a range of frequencies across the high gamma 

spectrum. 

A last thought on the pursuit of spontaneous conversation analysis:  in consideration of 

the two data extraction methods, extracting conversation data as a continuous stream may 

yield better results.  In this way any underlying artifacts or signal noise would be uniform 

across language conditions.  This would be more accurate than making the contrast 

between a baseline and speaking segment recorded in different environments. 
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It is important to keep in mind the goal of this research: localize speech areas as non-

invasively as possible.  Though a simple reading or listening task requires patient 

participation, it may be an adequate substitution for cortical stimulation.  Along that line 

of thought, the controlled experiment for P5 is the most non-invasive, as it involved the 

patient lying in bed, listening to a computer repeat words. 

Limitations  

There are several distinct limitations to this study.  The most obvious is the estimation of 

electrode locations due to insufficient patient radiological records.  Patient MRI and CT 

DICOMs would yield precise electrode positions, therefore enabling further quantitative 

analysis (McAndrew et al. 2011).  Additionally, the number and location of the grids are 

placed at the surgeon’s discretion, often limiting analysis to a small area. 

Another complication is data quality.  All data were taken from epileptic patients in 

which electrographic seizures could mistakenly be considered task-related activations.  

Further, the amount of data was limited - few patients had desired grid placement as well 

as sufficient conversation data.  This often necessitated extracting data segments from 

conversations during meals, which can enhance the presence of artifacts.     

Finally, using ECoG data from spontaneous conversations has suffers from a lack of 

behavioral control.  For instance, a patient’s attention cannot be accounted for during 

each speech condition, especially while listening (e.g. daydreaming).  This lack of focus 

can contribute to the presence of non-task related activations.  Also, every patient had 

background noise in their rooms, including music and television, during their 
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conversations.  This increases the potential for additional artifacts in already difficult 

data.   

It became clear data lost significant information during the ICA de-noising process, and 

this analysis was therefore dismissed. 

Future Work 

The next phase of this study is to generate 3-dimensional brain models containing 

accurate electrode placement; therefore, patient CT and MRI DICOMs must be procured.  

This would allow quantification of each method’s detection ability.  One area on which to 

focus is the calculation of individual speech condition latencies - it would be impossible 

to determine the correlation between functional activation latencies and cortical structures 

without the precise electrode location.   

Also, the next researcher should be mindful of standardizing the data extraction protocol.  

As this study evolved, certain limitations necessitated that data were extracted differently 

for several patients.  It was difficult to test all patients in the same way- the first four 

patients required the manual recording of exact times in which each speech condition 

changed throughout their conversations- which necessitated the use of the HT to estimate 

their power.  P5’s data were single epochs which allowed the use of a spectrogram to 

estimate power.   

Further, since the results of the study are based on the comparison of speech segments to 

baseline, special attention should be given to the data that are chosen.  A “good” baseline 

should involve as little activity as possible, and include an adequate amount (only a few 

seconds of baseline was available for several patients).       
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Another important step would be to demonstrate reproducibility.  If the results of the 

experimental control were repeated for subsequent patients, this task (listening to words) 

may be considered a suitable alternative to DCS.   

Finally, establishing a better relationship with the EMU technicians is a simple yet 

critical step in addressing data insufficiency.  It should be clearly understood what data 

are required to remain on the hospital’s server (for a reasonable amount of time) until 

data extraction.  This would allow the reviewer to be more selective in their choice of 

data containing conversations (i.e. not during meals and patient is obviously engaged in 

conversation).     
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APPENDIX I 

 

BRAIN SKETCHES OF SIGNIFICANT ACTIVATIONS 
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Figure 6.  Patient 1 Brain Sketch Segments   

 

Figure 6:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during both listening and speaking conditions for Patient 1. The power of each language condition was 

estimated by the HT from the above frequencies and separated into similar segments; speaking and listening were then compared to 

baseline.  The black electrodes were removed from analysis (dead channel or contained prominent seizure activity).  Notice every 

contact was activated for both conditions except listening at 84.96 Hz in suspected Broca’s area and primary auditory cortex, nor 

listening at 142.5 Hz near Wernicke’s area. Again, grid locations are estimated from cross-referencing CT images with patient 

reports. 
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Figure 7.  Patient 1 Brain Sketch Segments (Frequency Ranges) 

 

 

Figure 7:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during both listening and speaking conditions for Patient 1. The power of each language condition was 

estimated by the HT from the above frequencies and separated into similar segments; speaking and listening were then compared to 

baseline.  The black electrodes were removed from analysis (dead channel or contained prominent seizure activity).  Notice every 

contact was activated for both conditions except listening at 142.5 Hz in anterior STG and frontal lobe.  Again, grid locations are 

estimated from cross-referencing CT images with patient reports. 
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Figure 8.  Patient 1 Brain Sketch Ratios 

 

Figure 8:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during listening and speaking conditions for Patient 1. The power of each language condition was estimated by 

the HT from the above frequencies and separated into similar segments; each condition was then divided by the averaged baseline.  

The power ratios of speaking and listening were then compared to normalized baseline.  The black electrodes were removed from 

analysis (dead channel or contained prominent seizure activity).   
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Figure 9.  Patient 1 Brain Sketch Ratios (Frequency Ranges) 

 

Figure 9:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during listening and speaking conditions for Patient 1. The power of each language condition was estimated by 

the HT from the above frequencies and separated into similar segments; each condition was then divided by the averaged baseline.  

The power ratios of speaking and listening were then compared to normalized baseline.  The black electrodes were removed from 

analysis (dead channel or contained prominent seizure activity).   

 

 



 

 
 

 3
5
 

Figure 10.  Patient 1 Brain Sketch Combined Speech (Segments) 

 

Figure 10:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during combined speech conditions for Patient 1 over the left temporal and frontal lobes. The power of each 

language condition was estimated from the above specified frequencies and separated from baseline segments; the combined speech 

segments were then compared to baseline.  Notice the power for both frequencies are significantly different than baseline for all 

electrodes (black electrodes were removed from analysis), except immediately inferior STG at 84.96 Hz. 
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Figure 11.  Patient 1 Brain Sketch Combined Speech (Ratios) 

 

Figure 11:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during listening and speaking conditions for Patient 1. The power of each language condition was estimated by 

the HT from the above frequencies and separated into similar segments; each condition was then divided by the averaged baseline.  

The power ratios of speaking and listening were then compared to normalized baseline.  The black electrodes were removed from 

analysis (dead channel or contained prominent seizure activity). Notice all channels were activated for both frequencies except 

immediately inferior STG at 142.5 Hz.  
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Figure 12.  Patient 2 Brain Sketch Segments 

 

Figure 12:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during both listening and speaking conditions for Patient 2 over the temporal lobe. The power of each language 

condition was estimated by the HT from the above frequencies and separated into similar segments; speaking and listening were then 

compared to baseline.  The black electrodes were removed from analysis (dead channel or contained prominent seizure activity).  

Notice every electrode is activated for both speech conditions, except speaking at 142.5 Hz over the most posterior part of the 

temporal lobe.   
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Figure 13.  Patient 2 Brain Sketch Segments (Frequency Ranges) 

 

Figure 13:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during both listening and speaking conditions for Patient 2 over the temporal lobe. The power of each language 

condition was estimated by the HT from the above frequencies and separated into similar segments; speaking and listening were then 

compared to baseline.   
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Figure 14.  Patient 2 Brain Sketch Ratios                                

 

Figure 14:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during listening and speaking conditions for Patient 2 over the temporal lobe.  The power of each language 

condition was estimated by the HT from the above frequencies and separated into similar segments; each condition was then divided 

by the averaged baseline.  The power ratios of speaking and listening were then compared to normalized baseline.  Notice the 

posterior temporal lobe is activated during both conditions- for all frequencies, while the anterior part shows slight discrimination. 
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Figure 15.  Patient 2 Brain Sketch Ratios (Frequency Ranges) 

 

Figure 15:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during listening and speaking conditions for Patient 2. The power of each language condition was estimated by 

the HT from the above frequencies and separated into similar segments; each condition was then divided by the averaged baseline.  

The power ratios of speaking and listening were then compared to normalized baseline.  Notice listening at 84.96 Hz was significantly 

different from baseline throughout the entire grid except at the two most superior rostral electrodes. 
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Figure 16.  Patient 2 Brain Sketch Combined Speech (Segments) 

 

Figure 16:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during combined speech conditions for Patient 2 over the left temporal lobe. The power of each language 

condition was estimated from the above specified frequencies and separated from baseline segments; the combined speech segments 

were then compared to baseline.  Notice the power for both frequencies are significantly different than baseline for all electrodes, 

except one near the most inferior part of the temporal lobe. 
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Figure 17.  Patient 2 Brain Sketch Combined Speech (Ratios) 

 

Figure 17:  Two brains with electrodes found to be language-specific.  Brain (A) illustrates widespread statistically significant 

electrode activations during listening and speaking conditions for Patient 2 over the temporal lobe. The power of each language 

condition was estimated by the HT from the above frequencies and separated into similar segments; each condition was then divided 

by the averaged baseline.  The power ratios of speaking and listening were then compared to normalized baseline 
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Figure 18.  Patient 3 Brain Sketch Segments

 

Figure 18:  the left and right brain of Patient 3 with electrodes found to be language-specific; clinically-determined bilateral 

language areas (reading task) via fMRI.  The power of each language condition was estimated from the above frequencies and 

separated into similar segments.  Reading and listening were then compared to baseline.  Both brains show broad frontal and 

temporal lobe activity.   
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Figure 19.  Patient 3 Brain Sketch Segments (Frequency Ranges) 

 

Figure 19:  Left and right brain of Patient 3 with electrodes found to be language-specific; clinically-determined bilateral language 

areas (reading task) via fMRI.  The power of each language condition was estimated from the above frequencies and separated into 

similar segments.  Reading and listening were then compared to baseline.  Notice broad activations except during reading near 

primary auditory cortex as well as Broca’s area.  Power during listening (@ 70 Hz to 110 Hz) is similar during baseline throughout 

the temporal grid, specifically near the primary auditory cortex.  
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Figure 20.  Patient 3 Brain Sketch Ratios  

 

Figure 20:  Left and right brain of Patient 3 with electrodes found to be language-specific; clinically-determined bilateral language 

areas (reading task) via fMRI.  The power of each language condition was estimated from the above specified frequencies and 

separated into similar segments; each condition was then divided by the averaged baseline.  Power ratios of reading and listening 

were compared to normalized baseline.  Notice widespread activation throughout the right temporal and frontal cortices. 
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Figure 21.  Patient 3 Brain Sketch Ratios (Frequency Ranges) 

 

Figure 21: Left and right brain of Patient 3 with electrodes found to be language-specific; clinically-determined bilateral language 

areas (reading task) via fMRI. The power of each language condition was estimated from the above specified frequencies and 

separated into similar segments; each condition was then divided by the averaged baseline.  Power ratios of reading and listening 

were compared to normalized baseline.   
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Figure 22.  Patient 3 Brain Sketch Combined Speech (Segments)  

 

Figure 22: Left and right brains with electrodes found to be language-specific, these illustrate statistically significant electrode 

activations for listening and reading combined for Patient 3.  The power of each language condition was estimated from the above 

specified frequencies and separated from baseline segments; the combined speech segments were then compared to baseline power.  

Notice two adjacent electrodes near suspected Broca’s area are activated for combined speech at 142.5 Hz only. 
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Figure 23.  Patient 3 Brain Sketch Combined Speech (Ratios) 

 

Figure 23: Left and right brain of Patient 3 with electrodes found to be language-specific; clinically-determined bilateral language 

areas (reading task) via fMRI.  The power of each language condition was estimated from the above specified frequencies and 

separated into similar segments; each condition was then divided by the averaged baseline.  The power ratios of reading and listening 

were combined and compared to the baseline ratio.  
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Figure 24.  Patient 4 Brain Sketch Segments 

 

Figure 24: Two brains with electrodes found to be language-specific.  The brain on the left illustrates statistically significant electrode 

activations during speaking and listening conditions for Patient 4 over the left temporal grid and estimated motor area (cross-

referenced from CT images).  The power of each language condition was estimated from the above frequencies and separated into 

similar segments.  Speaking and listening were then compared to baseline.  Notice widespread activation across the temporal and 

motor cortices. 
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Figure 25.  Patient 4 Brain Sketch Segments (Frequency Ranges) 

Figure 25:  Two brains with electrodes found to be language-specific.  The brain on the left illustrates statistically significant 

electrode activations during speaking and listening conditions for Patient 4 over the left temporal grid and estimated motor area 

(cross-referenced from CT images).  The power of each language condition was estimated from the above frequencies and separated 

into similar segments.  Speaking and listening were then compared to baseline.  
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Figure 26.  Patient 4 Brain Sketch Ratios 

 

Figure 26:  Two brains with electrodes found to be language-specific.  The brain on the left illustrates statistically significant 

electrode activations during speaking and listening conditions for Patient 4 over the left temporal grid and estimated motor area 

(cross-referenced from CT images).  The power of each language condition was estimated from the above specified frequencies and 

separated into similar segments; each condition was then divided by the averaged baseline.  The power ratios of speaking and 

listening were compared to normalized baseline.   
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Figure 27.  Patient 1 Brain Sketch Ratios (Frequency Ranges) 

 

Figure 27: Two brains with electrodes found to be language-specific.  The brain on the left illustrates statistically significant electrode 

activations during speaking and listening conditions for Patient 4 over the left temporal grid and estimated motor area (cross-

referenced from CT images).  The power of each language condition was estimated from the above specified frequencies and 

separated into similar segments; each condition was then divided by the averaged baseline.  The power ratios of speaking and 

listening compared to normalized baseline.   

 



 

 
 

 5
3
 

Figure 28.  Patient 4 Brain Sketch Combined Speech (Segments) 

 

Figure 28:  Two brains with electrodes found to be language-specific.  The brain on the left illustrates statistically significant 

electrode activations during speaking and listening conditions for Patient 4 over the left temporal grid and estimated motor area 

(cross-referenced from CT images).  The power of each language condition was estimated from the above frequencies and separated 

from baseline segments; the combined speech segments were then compared to baseline power.   
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Figure 29.  Patient 4 Brain Sketch Combined Speech (Ratios) 

  

 

Figure 29:  Two brains with electrodes found to be language-specific.  The brain on the left illustrates statistically significant 

electrode activations during speaking and listening conditions for Patient 4 over the left temporal grid and estimated motor area 

(cross-referenced from CT images).  The power of each language condition was estimated from the above specified frequencies and 

separated into similar segments; each condition was then divided by the averaged baseline.  The speaking and listening power ratios 

were combined and compared to the baseline ratio.   
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Figure 30.  Patient 5 Brain Sketch Listening 

 

Figure 30: Two brains from Patient 5 with language-specific electrodes.  The brain on the right illustrates activations found during an 

experiment in which the patient was listening to a computer generate words.  The brain on the left yields statistically significant 

activations that were calculated from listening segments in a conversation.  Power was calculated by a spectrogram.  Notice only one 

electrode near inferior, posterior temporal lobe was similar to baseline during listening at 70-110 Hz.  
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Figure 31.  Patient 5 Brain Sketch Speaking 

 

Figure 31: Two brains from Patient 5 with language-specific electrodes.  The brain on the right illustrates activations found during an 

experiment in which the patient was listening to a computer generate words.  The brain on the left yields statistically significant 

activations that were calculated from speaking segments in a conversation. Power was calculated by a spectrogram. 
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Figure 32.  Patient 5 Brain Sketch Listening to Words 

 

Figure 32: Two brains from Patient 5 with language-specific electrodes.  The brain on the right illustrates activations found during an 

experiment in which the patient was listening to a computer generate words.  The brain on the left yields statistically significant 

activations that were calculated from segments taken from which the experimental control was being conducted.   
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Figure 33.  Patient 5 Brain Sketch Reading 

 
Figure 33:  Two brains from Patient 5 with language-specific electrodes.  The brain on the right illustrates activations found during 

an experiment in which the patient was listening to a computer generate words.  The brain on the left yields statistically significant 

activations that were calculated from reading segments.  Power was calculated by a spectrogram.   
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Figure 34.  Patient 5 Brain Sketch Combined Speech 

 

 

 

Figure 34:  Two brains from Patient 5 with language-specific electrodes.  The brain on the right illustrates activations found during 

an experiment in which the patient was listening to a computer generate words.  The brain on the left yields statistically significant 

activations found when all speech conditions were combined.  Power was calculated via spectrogram.  
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APPENDIX II 

INSTITUTIONAL REVIEW BOARD APPROVAL FORM 
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