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ABSTRACT 

 The main objective of this study is to investigate the mechanical behaviour of 

cementitious based composites subjected dynamic tensile loading, with effects of strain 

rate, temperature, addition of short fibres etc. Fabric pullout model and tension stiffening 

model based on finite difference model, previously developed at Arizona State University 

were used to help study the bonding mechanism between fibre and matrix, and the 

phenomenon of tension stiffening due to the addition of fibres and textiles. Uniaxial tension 

tests were conducted on strain-hardening cement-based composites (SHCC), textile 

reinforced concrete (TRC) with and without addition of short fibres, at the strain rates 

ranging from 25 s-1 to 100 s-1.  Historical data on quasi-static tests of same materials were 

used to demonstrate the effects including increases in average tensile strength, strain 

capacity, work-to-fracture due to high strain rate. Polyvinyl alcohol (PVA), glass, 

polypropylene were employed as reinforcements of concrete. A state-of-the-art phantom 

v7 high speed camera was setup to record the video at frame rate of 10,000 fps. Random 

speckle pattern of texture style was made on the surface of specimens for image analysis. 

An optical non-contacting deformation measurement technique referred to as digital image 

correlation (DIC) method was used to conduct the image analysis by means of tracking the 

displacement field through comparison between the reference image and deformed images. 

DIC successfully obtained full-filed strain distribution, strain versus time responses, 

demonstrated the bonding mechanism from perspective of strain field, and corrected the 

stress-strain responses.      
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1. INTRODUCTION TO HIGH SPEED TENSILE TEST 

METHODOLOGY AND DIGITAL IMAGE CORRELATION (DIC) 

METHOD 

1.1 High Speed Tensile Test Methodology 

1.1.1 INTRODUCTION 

 This part discusses the various components of a high speed testing system, 

uniaxial tensile response cementitious composites at high strain rates and image 

analysis of the tests.  The components of the test set up in addition to test procedures, 

data reduction approaches, and material property calculations are described.  The 

high strain rate testing system includes MTS 5 kip servo-hydraulic tensile testing 

machine, MTS FlexTest SE control panels, laser extensometer, force measurement 

and data acquisition system.   

1.1.2 APPARATUS 

 The high strain rate testing system, shown as Figure 1.1, includes MTS 5 

kip servo-hydraulic tensile testing machine, MTS Flex SE control panels, laser 

extensometer, and data acquisition system.  Each of the components will be 

described in the following subsections.  Schematic diagram of this testing system 

is shown in Figure 1.2.  
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Figure 1.1 High Strain Rate Testing System 

1.1.3 MTS TEST MACHINE 

 MTS 5 kip servo-hydraulic test frame (Figure 1.3 (a)) operating in an open 

loop mode was used to perform high strain rate testing.  The velocity of the 

stroke/actuator is controlled by the servo-valve (Figure 1.3(b)).  Different velocities 

are manually obtained by opening the servo-valve to different levels. The more 

open the servo valve, the higher the velocity of the actuator.  A slack adaptor 

(Figure 1.3(c)) is used to facilitate the specimen setup and allows the stroke to 

accelerate to the needed test speed before the specimen is loaded.  The current 

system is capable of developing cross head velocity up to 550 inch/second. 
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Figure 1.2 Schematic Diagram of Testing System 

 
(a) 

 
(b) 

 
(c) 

Figure 1.3 (a) MTS Testing Machine (b) Servo-Valve (c) Slack Adaptor 
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1.1.4 SIGNAL CONDITIONERS AND CONTROL PANELS 

1.1.4.1 FlexTest SE Controllers 

 A state-of-the-art new MTS FlexTest SE control panels (Figure 1.4 (a)) and 

HP computer (Figure 1.4 (b)) for controlling the testing machine have been installed 

and calibrated. 

 
 (a) 

 
(b) 

Figure 1.4 (a) MTS FlexTest SE Controller  (b) HP Computer 

1.1.4.2 Dual Charge Amplifier 

 A Kistler 5010B dual charge amplifier (Figure 1-5) is used for conditioning 

the signal from the piezoelectric force transducer. Details are presented in the force 

measurement section.  

 The charge amplifier type 5002 is a DC amplifier with very high input 

impedance and capacitive negative feedback, intended to convert the electric charge 

from a piezoelectric transducer into a proportional voltage on the low impedance 

amplifier output.  The calibration factor setting (adjustment of transducer 

sensitivity of the amplifier) makes it possible to standardize the amplifier 
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sensitivities.  The overall measuring ranges of the charge amplifier are given in pC 

for each 10V output voltage.  However, the range in practice is given differently – 

as mechanical units per volt of output voltage making allowance for the sensitivity 

of the connected transducer (calibration factor, expressed in pC per M.U.).  

 

 
Figure 1.5 Dual Charge Amplifier 

 There are three different options for time constants (long, medium and short) 

on the charge amplifier.  The time constants are determined by the bleeder 

resistance and the range capacitor, and so are dependent on the measuring range.  

The time constant in the negative feedback circuit causes an exponential discharge 

of the range capacitor.  The calibration factor calculated at long time constant is 

used in this study.  It starts with the fact that all charge amplifiers have some drift 

on the output voltage.  This drift is re-zeroed every time the reset/operate function 

on the amplifier is used.  However, there are instances when it is not possible to use 

reset the control drift.  If the time period is long enough, amplifier drift may 
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accumulate to produce an unacceptable offset in the signal. Enabling a time 

constant constrains the drift rate. This is because a time constant is effectively a 

high-pass filter and a linear drift has zero frequency and is thus blocked by the 

filtering action.  The pulses, being high frequency, transmit right through the filter 

without distortion. 

1.1.4.3 High Rate Control Panel 

 To obtain the high speed function of the MTS machine, a high rate control 

panel is needed (Figure 1.6).  The switch with the key on the left side is used to 

select the closed loop option or the high rate option.  For the current high strain rate 

testing, the switch is also set at high rate option.  The blue button is the actuator 

reset button which resets the actuator/stroke to original position after test.  The 

yellow button is the arm button that indicates the system is ready for high rate test 

when it is lit.  When the arm button is pushed down, the red button on the right side 

of the panel is lit. The red fire button triggers the high rate test when pushed down.  

 
Figure 1.6 High Rate Control Panel 

1.1.5 GRIPPING SETS 

 To ensure low inertial forces in the high strain rate testing, it is important to 

maintain the weight of the grips as low as possible while ensuring a rigid attachment 

of the specimens to the grips.  A new gripping system for dynamic tests was 
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designed using internal wedges that were held inside the female portion of screw 

connectors. The grip wedges and gripping arrangement are shown in Figure 1.7 and 

Figure 1.8.  The total weight of the grip system is 6.8 lb.  Four steel wedges (1.0” 

wide, 2” long) are used to grip the specimen at both ends.  The entire length of the 

wedge grip faces was serrated in order to improve the contact with the test specimen.  

These wedges are housed inside hollow connecting rods.  The grip was tightened 

by turning the screw assembly that pushes the grip against two slanted surfaces 

inside the wedge.  Furthermore, care must be exercised to ensure that there is no 

relative sliding of the two faces of the grip as the wedge components slide and 

tighten.   

 
(a) 

 
 (b) 

Figure 1.7 Stainless steel parts used for gripping a) thin specimen such as pure 

fabrics and aluminum sheet and b) thick composites 
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Figure 1.8 Schematic of Grip Set 

1.1.6 FORCE MEASUREMENT 

 Strain gage based load cells are too soft and compliant at high strain rates.  

The frequency response of a standard load cell may not be sufficient to detect and 

measure the events which occur in a short duration.   

 
Figure 1.9 Piezoelectric Force Transducer 

A piezoelectric force transducer that is significantly stiffer than the conventional 

load cells will be used for high strain rate testing.  In the current testing, the force 

was measured by a Kistler 9041A piezoelectric force transducer (Figure 1.9) with 

a capacity of 90 kN and rigidity of 7.5 kN/μm and frequency response of 33 kHz. 
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The piezoelectric force transducer is connected to the charge amplifier as discussed 

in previous section to generate the force measurement in terms of analog voltage 

output for the data acquisition purposes.  

1.1.7 DATA ACQUISITION 

 A 4-channel data acquisition card has been installed on another computer 

that is used only for data acquisition purpose.  Using this new PCI.X (66 MHz / 32 

bit PCI card) data acquisition card, data can be continuously transferred to the PC 

host at 200 MBytes/s with four data channels.  The card has 64 MBytes (32 M 

Samples) memory as standard and can operate at the maximum sampling rate of 10 

M/s.  All the four channels on the data acquisition card (Figure 1.10) are used to 

acquire the electrical signals. Two of the channels provide sinusoidal wave signals 

from laser extensometer, one is analog output from piezoelectric force transducer 

and one is analog output from LVDT/stroke.   

 
Figure 1.10 Four-Channel Data Acquisition Card 

 The two connections on the left side are for external triggers that are not 

used in the current test.  The internal trigger function of the card is used for 

triggering the test event.  Using SBench 5.3 software system, the signals from four 
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channels stored in the onboard memory can be displayed on the computer screen 

and digitized and exported as ASCII files.   

 As the trigger is pushed, the actuator accelerates to reach and maintain the 

preset speed.  During this range of travel, the conical portion of the slack adaptor 

contacts the actuator and transfers the force to the specimen.  The slack adaptor 

consists of a sliding bar with a conical end that travels within a hollow tube with a 

matching conical fitting.  The hollow tube travels freely with the actuator at the 

specified velocity before making contact with the sliding bar. This eliminates the 

inertial effect of the actuator and the lower grip during the acceleration stage.  

However, the sudden engagement with the upper portion of the setup generates a 

high amplitude stress wave, causing oscillations at the system’s natural frequency 

[46]. To reduce the inertia effect, lightweight grips are recommended in dynamic 

tensile tests [59].  The stainless steel grips are shown in Figure 1.7 and weigh 

approximately 1500 grams (for gripping textiles) and about 2500 grams (for 

gripping TRC samples).  Specimens are installed between two steel wedges with 

serrated faces. Piezoelectric load washers are recommended for dynamic tests 

because conventional load cell has a much lower response frequency.  

1.1.8 Data Processing  

 The signals from the piezoelectric force-link and the LVDT of actuator were 

recorded at a sampling rate of 250 kHz and contained high frequency noise which 

was filtered using a low-pass filter with cut-off frequency of 3 kHz to obtain the 

specimen response.  An example of the recorded responses of textile-reinforced 
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cement composite generated by the high speed testing setup after applying the low-

pass filter is given in Figure 1.11.  The figure presents the recorded force (in volts) 

versus time (in seconds) of the entire test.  Due to the resistance provided by the 

test specimen, the test duration took less than 3 milliseconds at an average velocity 

of 2500 mm/s.   

 
(a) 

 
 (b) 

Figure 1.11 Tensile force is plotted vs. time: a) entire test period and b) actual test 

period 

 Figure 1.11b shows a closer observation of the force response and the 

corresponding displacement history of the same sample during the actual test.  The 

starting point of loading was used as the zero time (t=0).  The strain rate is defined 

as the slope of displacement -time curve divided by the gauge length of test 

specimen. Using the cross sectional area and gage length of the specimen, the 

nominal stress versus strain curve can be calculated. Toughness is evaluated using 

the total area under the stress–strain curve. The stress–strain curves were calculated 

for all specimens and the Young’s modulus, tensile strength (peak stress), 
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maximum strain and toughness. The reported results reflect the average and 

standard deviation values of each set. 

1.2 Digital Image Correlation (DIC) method 

1.2.1 Introduction and applications 

 In the past decades, contacting deformation measurement techniques and 

devices including linear variable differential transformer (LVDT) and electrical-

resistance strain gage were widely used in the field of experimental mechanics. 

However, both LVDT and strain gage only measure the displacement or strain at 

isolate locations that the deformation behavior of materials are not fully 

investigated. Additionally, the experiments are limited by disadvantages of these 

methods including the effective working range, which results in varieties types of 

LVDT and strain gages; environments such as the effect of temperature on strain 

gages; extra effort in experiment preparation like soldering, wiring and mounting; 

extra cost due to the disposable devices. Thus there is a demand on newer 

measurement techniques. Optical techniques such as moiré interferometry [1], 

holography [2] and speckle inteferometry [3] have been proven to be matured 

techniques to analyze macroscopic parameters and are being applied successfully 

in many different applications. However, all the interferometric techniques have 

stringent requirements for system’s stability. Moreover, the processing of fringe 

patterns is laborious and time-consuming [4]. This technical difficulty has raised 

many researchers’ attention and computerized procedures [5] have been developed 

to automate the processing of the data from the fringe patterns.  



13 

 

In the thirty years, a non-contacting optical technique, digital image correlation, has 

been developed by Sutton et al. [6, 7, 8, 9] and Bruck, et al. [10]. As of recent years, 

DIC was widely applied to measurement of displacements and strains in many 

fields such as material science, mechanical engineering, biomechanics and 

structural engineering. The applications include strain measurements for 

anisotropic plastic deformation during tension testing [11], strain measurements in 

a CuAlBe shape memory alloy [12], analysis of glassy polymer networks under 

uniaxial compression test [13], determination of displacement distributions in 

bolted steel tension elements [14], deformation measurement of fiber composite 

pressure vessel [ 15 ]. Besides the applications on full-field deformation 

measurement, DIC has also been used for many other further purposes including 

the investigation of the bond between FRP and masonry [16], evaluation of kissing 

bond in composite adhesive lap joints [17], tracking fatigue damage evolution of 

fiber reinforced composites [18], calibrating the constitutive models of steel beams 

subjected to local buckling [19], etc. 

 On the other hand, DIC technique can also be used together with other 

measurement method. For example, Rouchier et. al [20] conducted the damage 

monitoring in fibre reinforced mortar by combined DIC and acoustic emission; 

damage in CFRP composites was conducted by Goidescu et. al [21] using DIC, 

infrared thermography and X-ray tomography. He et. al [22] characterized the 

nonlinear shear properties for composite materials based on a combination of finite 

element method for stress calculation and DIC for measurement of deformation. 

The combination not only improved the accuracy of material properties but also 
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provided an opportunity to extract material properties from experiments where the 

stress and strain fields are non-uniform and simple stress approximation is not 

feasible, reported by authors.    

 However, the deformation measurements of cement based composites 

tested under dynamic loads using DIC method is very limited. Koerber et. Al [23] 

characterized the unidirectional carbon-epoxy IM7-8552 in transverse compression 

and in-plane shear, both under quasi-static and dynamic tests at strain rates up to 

350 s-1. Full-field strain measurement was conducted using DIC method, the 

process of in-plain shear and off axis compression failure modes was monitored 

and the fracture angle was measured. Silva et. al determined the displacement field 

and calculated spacing for sisal fiber cement composites under direct tension tests 

at strain rates ranging from 5.5 × 10-6 to 24.6-6 [24]. Different displacement levels 

were also observed after the first crack formation. The DIC process was conducted 

using a MATLAB code developed by Mobasher et. al [25], while the analysis was 

performed again using a more advanced tool in present paper.  

1.2.2 DIC discipline  

 Digital image correlation is no exception, and algorithms are employed that 

take the physics of the underlying deformation processes into account [26]. Due to 

the miniscule motions that are often of interest in engineering applications, the 

resolution requirements are much higher than for most other applications. To 

accurately measure the stress-strain curve for many engineering materials, length 

changes on the order of 10-5 m/m have to be resolved. The algorithm developed by 
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Sutton et al. [6, 7, 8, 9] targeted towards providing high resolution with minimal 

systematic errors. At the same time, a state-of-the-art phantom high camera 

mounted with high quality lens manufactured by Nikon was employed in the 

research.   

 
(a) 

 
(b) 

Figure 1.12 (a) Reference image; (b) Deformed image. 

 
Figure 1.13 Principle of digital image correlation 
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(a) 

 
 (b) 

Figure 1.14 Preferred speckle pattern; (b) Grey level distribution of the selected 

subset. 

 As shown in Figure 1.13, a reference image is taken before applying load 

and then a set of images are taken at sampling rate of 10,000 fps till the end of test. 

Deformation developed as the load increasing can be observed from the images 

taken after it starts, which is referred to as deformed images. As a result, the 

speckles at the surface of sample displace from their initial locations. These 

differences between speckle patterns can be calculated by correlating the pixels of 

the reference image and any deformed image. However, it is not possible to 

establish the correspondence of a single pixel in terms of grey scale level from one 

image to another. In order to address the correspondence problem uniquely, the 

object surface texture should be isotropic and non-periodic, i.e., it should not have 

a preferred orientation or repeating textures. These requirements naturally led to 

the use of random textures, such as the speckle patterns shown in Figure 1.15a. The 

pattern used in DIC adheres to the surface and deforms with it and therefore no loss 

of correlation occurs even under large deformations. One of the key features of 

Subset

Area of 
interest 
(AOI)
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good speckle patterns is their high information content. Since the entire surface is 

textured, information for pattern matching is available everywhere on the surface, 

and not only on a relatively sparse grid. This permits the use of a comparatively 

small aperture for pattern matching, referred to as a subset, see Figure 1.15a. The 

principle to measuring the displacement of subset is to match the subset in reference 

image with that in deformed image by means of a mapping function (Figure 1.14), 

based on the detection of grey level distribution. Figure 1.14b shows an example of 

a gray level distribution for an artificial texture. Its histogram corresponds to a non-

uniform distribution of gray levels. No significant saturation is observed and most 

of the dynamic range of the 8-bit camera is used.  The grey level as a function of x 

and y of reference image F(x,y) and that of a deformed image G(x’,y’) are related 

by 

𝐺(𝑥′, 𝑦′) = 𝐹(𝑥, 𝑦 + 𝑢(𝑥, 𝑦)) 

 Measurement of complex displacement fields is often an interest to 

engineering community; the specimen might experience elongation, compression, 

shear or rotation. An initially square reference subset might assume a distorted 

shape in a later image after deformation. This reduces the similarity between two 

subsets, which is often referred to as decorrelation. One of the significant 

advantages of DIC algorithm is that it is not only limited to determining pure 

translations but also can be easily extended to account for complex deformations. 

This is accomplished by introducing a subset shape function ξ(x,p) that transforms 

pixel coordinates in the reference subset in to coordinates in the image after 
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deformation. The squared sum of differences (SSD) cost function [26] can be 

written as 

χ2(𝑝) =  ∑ 𝐺(ξ(x, p)) − 𝐹(𝑥))2 

 Even under near ideal experimental conditions, there will be differences 

between the intensity of images recorded at different times, for reasons such as 

changes in lighting, specimen reflectivity due to the strain or changes in the 

orientation of the specimen. Thus it is significant to develop matching algorithms 

that can accurately measure the correct correspondence between subsets even if the 

intensity values undergo significant changes. The way to conduct template 

matching is to minimize the squared gray value differences between the reference 

subset and the subset after motion. The squared sum of differences (SSD) (Eq. (2)) 

is one of many optimization criteria that can be used for template matching, and 

indeed, gives the name of digital image correlation method. 

𝜒𝑁𝐶𝐶
2 =  

∑ 𝐹𝐺

∑ 𝐹2 ∑ 𝐺2
 

 The normalized cross-correlation criterion is bounded in the interval [0,1], 

and attains its maximum for perfectly matching patterns. Besides the basic principle 

discussed in this part, the solution to issues like changes in lightening was also 

addressed and integrated. Furthermore, optimization in computational efficiency of 

the algorithm and reduction of errors were conducted [26].  
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1.2.3 Testing setup and data flow 

  
Figure 1.15 Schematic drawing and setup of the camera 

 

 A state-of-the-art phantom high speed camera was used to record the video 

at frame rate 10,000 fps, the setup is shown in Figure 1.11. The videos were 

converted to images using ImageJ with tagged image file format (TIFF). The 

images were analyzed using DIC method to obtain the results including full-field 

strain field, strain distribution over the length of specimen, strain versus time 

histories and stress-strain responses combining with the mechanical parameters. 

Figure 1.13 represents the flow chart of the procedure of testing and data processing. 
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Figure 1.16 Flow chart of the testing and data analysis process 
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2. STRAIN RATE EFFECT ON THE TENSILE BEHAVIOR OF STRAIN-

HARDENING CEMENT-BASED COMPOSITES (SHCC) UNDER 

DYNAMIC LOADING AND DEFORMATION MEASUREMENT BY 

DIGITAL IMAGE CORRELATION 

2.1 Introduction 

 Strain-hardening cement-based composites (SHCC) reinforced by short 

PVA fibres constitute a relatively new class of building material, which exhibits 

pseudo-strain hardening behaviour with multiple cracking formation when tested 

under tension loads at quasi-static strain rates [27,28]. The high ductility and strain 

capacity of SHCC (also referred to as engineered cementitious composites (ECC) 

[29] are exceptional for cement-based materials. They give this material a marked 

potential for use in applications in which high non-elastic deformability is needed. 

Some examples of very promising applications are link-slabs for jointless bridge 

decks [30], structural repairs [31], and connecting beams for high-rise buildings in 

earthquake areas [32]. Specifically, RC beams repaired with SHCC showed no 

concrete crushing or spalling until final failure; improve moment strength and delay 

the time for reinforcement yielding; controlled the crack opening size [33].  

 Due to the ductility of SHCC, it might be expected that such material 

perform well when subjected to dynamic loading. On the other hand, the material’s 

behaviour under high strain rates might be very different from that under quasi-

static loading. Thus, the validity of stress-strain relations obtained in the quasi-static 

tests could be limited to low rate loading only. The use of such data in the analysis 

and design of dynamically loaded structures can lead either to overly cautious, 
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weighty designs or to premature structural failure. Examples of common dynamic 

loading in concrete structures are fast moving traffic (  of 10-6 to 5∙10-4s-1), gas 

explosions (5∙10-5 to 5∙10-4s-1), earthquakes (5∙10-3 to 5∙10-1s-1), pile driving (10-2 to 

1s-1) and aircraft landing (5∙10-2 to 2s-1) [34]. Blast loading, aircraft impact or 

impact by hard projectiles can produce strain rates much higher than the instances 

cited above. A proper understanding of the response of concrete-based materials to 

such loading is important to the correct design of structures against which industrial 

explosions, terrorist bombings, or military attacks may occur.  

 While there is still a lack of knowledge about the material behaviour of 

SHCC under strain rates above 1s-1, a few works have been published on its tensile 

behaviour at rates of up to 0.2s-1. Maalej et al. [35] tested hybrid-fibre SHCC 

containing a combination of high-modulus steel fibres and relatively low-modulus 

polyethylene fibres under tensile loading at strain rates ranging from 2∙10-6 to 0.2s-

1. With increasing strain rate, the tensile strength increased almost by two times but 

no obvious changes in the strain at failure were observed. According to Yang and 

Li [36], similarly, with strain rate increasing from 10-5 to 10-1s-1, the tensile strength 

of SHCC also increases by two times whereas the strain capacity decreased from 

3% to 0.5%. Furthermore, Douglas and Billington [37] reported a 53% decrease in 

the strain capacity and a 12% increase in tensile strength of a SHCC tested at a 

strain rate of  0.2s-1 when compared to the results of quasi-static tests (2x10-5s-1). 

To explain these phenomena, discussion centred on a strengthening of the bond at 

the interface with increasing strain rate, which resulted in premature fibre failure. 

This suggests that no complete fibre delaminating from the matrix and subsequently 
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no fibre pullout occurred at high loading rates. Boshoff et al. [38] found additionally 

that the probability of fibre failure increased with increased loading rate. 

Furthermore, they showed by means of fibre pullout tests that an increase in the 

pullout rate could change the failure mechanism from gradual pullout to 

predominant fibre rupture. 

 There is limited publications with regard to very high loading rates Maalej 

et al. [35] studied the impact resistance of SHCC to projectiles. According to these 

results SHCC showed clearly beneficial behaviour in comparison to ordinary or 

high-strength concrete: increased shatter resistance with a nearly complete lack of 

scabbing, spalling, or fragmentation and much better energy absorption through 

distributed micro-cracking. Characterisation of the mechanical properties of SHCC 

was not the subject of that study. Due to the lack of studies, Mechtcherine et. al [39] 

investigated the tensile behaviour of SHCC both under static and dynamic loads, at 

strain rates ranging from 10-5s-1 to 50s-1. An increase in tensile strength and a 

decrease in strain capacity was observed for tensile test performed at strain rates up 

to 10-2s-1. In addition, the number of cracks at the composite failure decreased as 

the strain rate increased, and a predominance of fibre failure was observed at higher 

strain rates. When loaded at high strain rates ranging from 10 to 50s-1 in this study, 

SHCC showed an increase in both tensile strength and strain capacity with 

increasing loading rate. No pronounced multiple cracking was observed. However, 

the failure of the composite was accompanied by the pullout of most of the fibres 

crossing the macro-crack. In addition, the coupled strain rate and temperature 

effects on the tensile behavior of strain-hardening cement-based composites 
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(SHCC) with PVA fibers Mechtcherine et. al [40] after their previous work. It is 

observed that SHCC shows an increase in tensile strength and reduction in strain 

capacity as the strain rate is augmented from 10−5 s−1 to 10−2 s−1, both at room 

temperature and 60 °C.  However, the values of strain capacity at elevated 

temperature were much higher than those of room temperature. 

 The objective of the current work is to obtain more detailed knowledge of 

mechanical behaviour of SHCC under conditions of high-speed loading. With that 

in mind, uniaxial tensile tests on plate specimens were carried out at different strain 

rates 25-1, 50-1, and 100-1. The full-field strain distribution was investigated by 

means of digital image correlation (DIC) method.  

2.2 The experiment  

2.2.1 Materials  

 The SHCC composition used in the present investigation is based on 

previous work by Mechtcherine et. al [28,40]. A combination of Portland cement 

42.5 R and fly ash was utilized as binder. The aggregate was uniformly graded 

quartz sand with particle sizes ranging from 0.06mm to 0.20mm. PVA fibres in a 

volume fraction of 2.2%, measuring 12mm in length and 0.04mm in diameter 

(Kuraray Co., Ltd., Kuralon K-II REC15) were used as reinforcement. A super 

plasticizer on a polycarboxilate-ether basis (SP) and a viscosity agent (VA) were 

added to the mix in order to adjust its rheological properties. 

Table 2-1 Mix proportions of SHCC under investigation. 
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Material  (kg/m
3
) 

Cement 42.5 R-HS (Heidelberger) 505.00 

Fly Ash 613.54 

Quartz sand (0.06-0.20 mm) 534.22 

Viscosity Agent 3.20 

Superplasticizer (Glenium ACE 30) 16.58 

Water 324.01 

SAP 2.02 

PVA – 12 mm (2.2 %) 29.30 

 

 Table 2-1 gives the mix proportions of the material developed. In 

comparison to the reference mix presented in Mechtcherine and Schulze [28], the 

proportion of cement and fly ash was altered. Furthermore, a superabsorbent 

polymer (SAP) was used as a multi-tasking agent: (1) to reduce autogenous 

shrinkage, (2) to improve the frost resistance, and (3) above all, to introduce micro-

defects, which are favourable with regard to inducing the formation of multiple 

cracks (see also Brüdern and Mechtcherine 2010).  

 The matrix was produced using a bench-mounted mixer of 20 litres capacity. 

The fines and sand were homogenized by dry mixing for 30s. Water mixed with 

one half of the super plasticizer was poured into the dry mix during 30s and mixed 

for an additional 60s. PVA fibres were added over a period of 30s and mixed for an 

additional 180s. The second half of the super plasticizer was added at this stage for 
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30s and mixed for another 180s. The mix was cast horizontally in steel moulds. The 

moulds were stored for 2 days in a room with controlled temperature (T = 25°C) 

and humidity (RH = 65%). After demoulding the specimens were sealed in plastic 

foil and stored at room temperature until testing. 

2.2.2 Dynamic tensile testing of SHCC at different strain rates 

 The high-speed tensile tests were performed in a high-rate MTS testing 

machine. The setup and procedure of the dynamic tensile testing were addressed in 

Chapter 1[1.1]. The tension tests were performed at strain rates of 10, 25 and 50s-1. 

Six specimens were tested for each strain rate. 

Material parameters derived from the experimental data included tensile strength 

(peak stress), strain capacity (strain on reaching tensile strength) and work to 

fracture. Work to fracture was calculated using the total area under the stress-strain 

curve. Average value and standard deviation are given for each strain rate. 

Furthermore, tensile stress-strain curves of the specimens tested under static and 

dynamic conditions are compared.  

2.3 Results and discussion 

2.3.1 Strain rate effect on the tensile behaviour of SHCC 

 Figure 2.1 shows typical stress-strain curves obtained for the high strain 

rates (25s-1, 50 s-1, and 100 s-1) on SHCC specimens. The strain-hardening effect 

was found to be very pronounced. The material parameters derived from the 

measured data are given in Table 2-2. An increase in both tensile strength and strain 

capacity (Figure 2.2b and c) was measured as the strain rate increased from 25 to 



27 

 

100s-1 (see Table 2-2.). The tensile strength increases from 8.13MPa to 9.94MPa, 

while the strain capacity rises from 0.86% to 1.82%. As a result, work-to-fracture 

also shows an improvement with the increasing strain rate, from 1.15J to 4.12J 

(Figure 2.2d). This observation agrees with the results reported by Mechtcherine et. 

al [40], who investigated the tensile behaviour of dumbbell-shaped SHCC 

specimens under dynamic loads at strain rates ranging from 10 to 50s-1 and strain 

rate effect on pullout behaviour of PVA fibre. It is found that the increase in strain 

rate lead only to a moderate increase in fibre strength but at the same time to a 

considerable increase of the pullout resistance. What is more, fibre pullout 

dominates the failure mode at very high strain rates. These two phenomenon may 

together contribute to the increase in tensile strength as the strain rate increases. It 

is also reported that both pullout length and plastic deformation of PVA fibre 

increased at strain rats over 10s-1, which might result in the improvement in strain 

capacity and work-to-fracture of SHCC specimens tested at high strain rates.  
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(a) 

 

(b) 
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(c) 

Figure 2.1 Representative stress-strain responses for SHCC specimens tested at 

(a) 25 s-1, (b) 50 s-1, and (c) 100 s-1.  

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 2.2 Effect of strain rate on the tensile behaviour of SHCC at high strain 

rates: (a) tensile stress-strain responses of SHCC, (b) effect of strain rate on the 

average tensile strength and tensile stress at initiation of non-linearity, (c) effect 

of strain rate on strain at peak load (strain capacity) and strain at complete fail 

(5% of maximum load in post peak), and (d) effect of strain rate on work-to-

fracture up to complete and up to peak. 
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Table 2-2 Summary of high-speed tension test results; average results (standard 

deviations are given in parentheses). 

Strain 
Rate 

NO. 
Tensile 

Strength 
(MPa) 

Tensile 
Stress at 
initiation 
of non-
linearity 

Strain 
at 

peak          
(%) 

Strain at 
5% of 

maximum 
stress in 

post peak 
(%) 

Work-to-
fracture up 

to 
completion    

(J) 

Work-to-
fracture  up 
to peak (J)  

25 

2 9.4907 9.2667 0.9010 1.7321 1.1901 0.5928 

3 8.4880 7.4907 0.8780 1.6475 1.0608 0.6235 

5 6.4160 6.2293 0.8090 1.6249 1.1909 0.3652 

AVG. 8.1316 7.6622 0.8627 1.6682 1.1473 0.5272 

STD. 
DEV 

1.2803 1.2459 0.0391 0.0461 0.0611 0.1152 

50 

2 8.4747 5.6027 1.0510 2.2247 1.4571 0.8139 

5 10.0453 7.7120 1.3800 2.6808 1.9765 1.0142 

6 8.1093 7.3333 2.1200 2.6945 2.1122 1.3326 

AVG. 8.8764 6.8827 1.5170 2.5333 1.8486 1.0536 

STD. 
DEV 

0.8399 0.9182 0.4470 0.2183 0.2823 0.2136 

100 

7 11.4693 9.5547 1.997 5.7884 4.6613 1.9858 

9 8.912 8.328 2.257 5.1694 3.8659 1.0581 

10 9.424 8.072 1.202 4.6774 3.836 1.0788 

AVG. 9.9351 8.6516 1.8187 5.2117 4.1211 1.3742 

STD. 
DEV 

1.1048 0.6471 0.4488 0.4546 0.3822 0.4325 
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Figure 2.3 Effect of strain rate on the tensile behaviour of SHCC at low strain 

rates (≤ 0.01s-1): (a) tensile stress-strain responses of SHCC, (b) effect of strain 

rate on the strain capacity and work to fracture of SHCC [40]. 

 To compare the high speed testing results with those of static tests, 

experiments conducted on dumbbell-shaped specimens at strain rates ranging from 

10-5 to 10-2s-1 [40] is referred, as shown in Figure 2.3. It can be seen that the shapes 

of the curves are significantly different from those obtained for high strain rates. 

However, the same trend of increasing in tensile strength was confirmed by each 

other. However, the strain capacity and work-to-fracture were found to be 

decreasing as the strain rates increased for static test. While the behaviour of SHCC 

under quasi-static tensile loading at the very low rate of   = 10-5s-1 was 

characterised by a rather pronounced strain-hardening response accompanied by 

multiple cracking, the SHCC response on higher, but still quasi-static rates (up to 

10-2s-1), revealed measurably less ductile behaviour and less multiple cracking. 

Similar rate dependence behaviour was also observed by Yang and Li [36] and 

Douglas and Billington [37]. Within this range of strain rates the increase in 
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strength and decrease in strain capacity is due to an increase in the bond strength 

between fibre and matrix according to reported pullout experiments performed at 

different strain rates [38]. As a result of the higher bond strength, fibre failure 

becomes more frequent, with a decrease in the frequency of fibre pullout, leading 

to a more brittle failure of the composite as a whole. 

(a) 

 

(b) 

 

(c) 

 
Figure 2.4 Fracture surface of three samples tested at: (a) 25s-1, (b) 50s-1, and (c) 

100s-1, images taken by the high speed camera.   

 Figure 2.6 Illustrates the fracture surfaces of samples tested at high strain 

rates. One visible macro crack formed leading to the failure of the specimen. 

According to the microscopic investigation of the fracture surfaces using ESEM 

conducted by Mechtcherine et. al[40], the samples tested with strain rates of 10s-1 

and higher showed a much more pronounced pullout length than with samples 

tested at strain rates of 10-2s-1 or lower. The fibre pullout length measures several 

millimetres in specimens tested at the higher rate whereas the corresponding lengths 

observed for the specimens tested at 10-3s-1 were considerably lower, less than 
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0.5mm in most cases. This can easily be traced back to the occurrence of 

pronounced fibre failure during the fast quasi-static tests.  

2.3.2 Image Analysis 

2.3.2.1 Strain field obtained from DIC 

 

  
 

  

T = 0.2 ms T = 0.3 ms T = 0.4 ms T = 0.5 ms 

(a) 

 

  
 

  

T = 0.3 ms T = 0.4 ms T = 0.5ms T = 0.6 ms 

(b) 
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T = 0.1 ms T = 0.2 ms T = 0.3ms T = 0.4 ms 

(d) 

Figure 2.5 Strain field obtained from DIC method for SHCC specimens tested at (a) 

25s-1, (b) 50s-1, and (c) 100s-1. 

 The strain field of SHCC specimens generated by the digital image 

correlation method is presented in Figure 2.7. It can be observed that a macro crack 

was formed either close to middle part (Figure 2.5a and c) or near the ends (Figure 

2.5b), which leads to the failure of sample. The formation of macro crack is 

attributed to highly stress concentration, which is required to store enough energy 

to create new surfaces, from the perspective of fracture mechanics. And this 

phenomenon of concentration was detected by DIC method, see Figure 2.5. 

According to the legend of the contour map, red color stands for maximum strain 

value while purple is the minimum, in this case, given the value of 0. Two bands in 

red can be seen on the deformed images on each side of the crack, followed by a 

gradually changed color path from yellow to blue. While the deformation over rest 

area of the specimen appears to be extremely small that cannot be detected 
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effectively. Another phenomenon observed from these images is the initiation of 

cracks always start from one side of the specimen and propagates across the 

specimen all the way to the other end, with a small angle with the transvers direction. 

The location where crack starts initiating and propagating could be a “weak point” 

or “weak section” of the specimen where the internal or external flaws that are 

obvious might exist. For example, a big pore on the specimen tested under 100s-1 

can be seen by eyes, which leads to the formation of a macro crack and failure of 

this sample, see Figure 2.5c. The difficulty in perfectly aligning specimen with 

testing machine could be another reason causing the crack initiation, which is 

attributed to the moment generated between the two ends. On the other hand, from 

the perspective of Hooke’s Law, the strain distribution is directly related to stress 

distribution, with two material properties elastic modulus E and Poisson’s ratio ν. 

However, it is difficult to generate the stress field from perspective of quantification, 

due to several reasons including the non-homogeneity of material, changing in 

material properties with formation of cracks, etc., which make it very complicated 

to determine the local E and ν. Even so, the overall strain field was clearly observed 

and from which the stress distribution can be roughly represented.  

2.3.2.2 Shear lag based fiber/matrix bonding mechanism 

 The strain field obtained from DIC can be explained by the interfacial 

bonding mechanism between fiber and matrix. A fabric pullout model was 

developed based on earlier work by Naaman [41,42] with changes to account for 

the boundary effects, and then modified by Sueki et al. [43], to simulate the pullout 
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behavior for cement composites reinforced by four types of fabrics including alkali-

resistant glass, polypropylene, polyethylene and polyvinyl alcohol. The model had 

demonstrated the ability to fit various representative curves of different fabrics, 

matrices, embedded length, and processing methods. A modified shear lag 

approach is used to simulate the response of a fabric pullout from the matrix. The 

criterion for growth of the debonded fiber/matrix interface is expressed in terms of 

the interfacial stress, and three conditions of debonding, failure, and frictional 

pullout are modeled as a stress based approach. Static equilibrium requires that, 

along the embedded length of yarn in matrix, the tensile forces in the yarn (F) be 

transferred to the matrix (M) through the interface and reacted against the restraint 

plate by normal compressive matrix stresses.  This relationship expressed in the 

differential form is: 

dF dM

dx dx
           (1) 

where  is the equivalent circumference of the yarn and  is the shear stress at yarn-

matrix interface.  For small loads, the local shear stress behaves linear elastic as a 

function of slip with slope  defined from the shear strength diagram (the inset in 

Figure 2.6) and the slip S defined by the difference of the elongation of the yarn  y 

and shortening of the matrix m: 

 
0

( ) ( )

x

y m y mS x x dx                  (2)  
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where y

y y

F

A E
  , 

m

m m

F

A E
   , A is cross section area, E is Young modulus and 

subscripts ‘y’ and ‘m’ refer to yarn and matrix respectively. Substituting (2) in (1) 

and take the derivative with respect to x yields the differential equation for the yarn 

pullout force:  

2
2

2
0

d F
F

dx
          (3) 

where 
2 Q   and 

1 1

y y m m

Q
A E A E

  . The general solution of the second 

differential equation has the following form. 

1 2( ) x xF x C e C e          (4) 

 The axial force distribution is obtained by applying the force boundary 

conditions F(0) = 0 and F(L) = P in (4) and by taking a derivative with respect to 

x, shear stress distribution is obtained.  

sinh( )
( )

sinh( )

x
F x P

L




         (5) 

cosh( )
( )

sinh( )

P x
x

L

 


 
         (6) 
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Figure 2.6 Shear Stress Distribution along the Yarn: Shear Stress and Force 

Distribution along the Yarn: (a) Stage I (Elastic Response); (b) Stage II 

(Nonlinear Response); (c) Stage III (Dynamic Response); (c.1) The first dynamic 

responses (no sliding, d =0); (c.2) Subsequent dynamic responses (when sliding 

occurs,d>0). 

Elastic Stage (I): 

 As long as the shear stress at interface is less than the maximum shear 

strength max, yarn and matrix are fully bonded as shown by dashed line in Figure 

2.6a and the applied load is less than the maximum bonded load (P1 < P1b,max). 

When the shear stress at some location (where crack is about to initiate) reaches the 

maximum strength τmax, the elastic reponse is terminated. 

Nonlinear Stage (II) 

debonded

debonded

Crack initiation

τmax

τmax

τ frc

τdyn

debonded

Crack propagation

τ frc

(a) (b)

(c.1) (c.2)
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Loading beyond the elastic limit is initiated when the shear stress exceeds the 

maximum shear strength max. This leads to debonding for a length of d on the right 

of Figure 2.6b while the two materials are still perfectly bonded on the left portion 

(L-d).  The shear stress distribution is governed by a constant frictional stress frc 

along the debonded zone in addition to a shear lag model terminating with the 

maximum bond strength value max at the debonding junction.   

Dynamic Stage (III) 

 Stage III is defined as dynamic response (Figure 2.6c), which consists of 

two sub stages: initial and rigid body motion. It is assumed that at the time the yarn 

is completely debonded (d = 0), the shear resistance still remains a uniform value 

frc throughout the yarn length.  Sliding (d > 0) begins right after the completion 

of debonding. The resisting shear stress is assumed to drop to dynamic shear 

strength dyn leading to a simplified rigid body motion. It can be shown that during 

the rigid body motion stage (d > 0), the shear resistance drops to dyn, the embedded 

length reduces to (L-d).  

 The fabric pullout model based on shear lag theory confirmed well with the 

development of the strain field as shown in Figure 2.5. Generally for each set of 

time lapsed images, the first one or two frame is corresponding to the Elastic Stage 

(I). Shear stress reached its maximum max in the zone of strain concentration where 

a macro crack formed, followed by the debonding between fiber and matrix. 

Nonlinear Stage (II) was observed as the color within this zone turned into green or 

orange (second or third frame), when the crack initiated. At the same time, a 
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gradient of strain, represented by the changing in color from orange/yellow to blue, 

was detected, which is traced back to the shear lag effect. The decreasing in shear 

stresss from crack to far field leads to a decrease in axial deformation of matrix 

along the same direction. The third or third and fourth frame of each image set is 

associated with the crack propagation and the sliding of yarn from matrix occurred, 

which took place during Dynamic Stage (III).   

 

Figure 2.7 Selected line across the entire specimen for study of strain distribution 

 To digitize the distribution of strain, a line across the entire specimen tested 

under different strain rate was selected (see Figure 2.7) and the strain value at each 

point out of the line was extracted and plotted, as shown in Figure 2.8. The curves 

show a similar trend with the distribution of shear stress between fiber and matrix 

based on the fabric pull out model. When the shear stress between fiber and matrix 

exceeded shear strength τmax, the peaks corresponding to strain concentration were 

observed (at 0.1 ms). As load kept increasing, peak value rose dramatically up to 

about 6% (25 s-1), 9% (50 s-1), and 7% (100 s-1) while the failure occurred, 

respectively. On the contrary, uniform regions where the strain values were close 
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to zero can be seen, which are the regions in purple of time lapsed images (see 

Figure 2.5). 

 

Figure 2.8 Distribution of longitudinal strain over the length of specimen tested at 

(a) 25 s-1, (b) 50 s-1, and (c) 100 s-1 

 The fiber and matrix were perfectly bonded within this region and the shear 

stress is very small. As a transition from concentration to uniform, the strain 

decreased from peak towards both two directions of the top and bottom ends. This 

 
(a) 

 
(b) 

 
 (c) 
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gradient not only confirms with the gradually changing in color of strain field 

images, but also demonstrates the effect of shear lag perfectly. The discontinuous 

part of the curves can be traced back to the formation of crack which broke the 

speck pattern into segments. 

 
(a) 

 
(b) 

 
 (c) 

Figure 2.9 Dividing of three zones 

and point selection for the sample 

tested at (a) 25 s-1, (b) 50 s-1, and (c) 

100 s-1. 

 

 

 Based on the pullout model and observations from DIC, three zones were 

defined as Localization, Shear lag and Uniform as Figure 2.9 shows. To investigate 

the strain versus time histories within different zones, 9 or 12 locations for each 

specimen were selected shown as the small white points. Strain versus time 

responses at these points of interest zone were extracted and plotted, see Figure 

2.10 and summarized in Table 2-3, value in parenthesis refers to standard deviation. 

The difference of axial strain among different zones can be easily observed. For 

Shear lag

Localization

Uniform

Shear lag

Localization

Uniform

Shear lag

Localization

Uniform
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example, Figure 2.10a shows the 12 strain-time curves for the specimen tested at 

25s-1. The axial strain in zone of localization reached 5.5% as its peak value, while 

within the zone of shear lag, peak strain was found to be 2.3%, less than half of that 

in localized strain. The curve of strain within uniform zone is subjected to very 

slight oscillations around 0 with maximum value of 0.6%, which is not obvious in 

the coordinate system with ordinate ranging from 1% to 8%. Similar trends can be 

found on the sample tested under 50s-1 and 100s-1. 

 For the overall strain versus time responses, three distinct stages are 

identified using Arabic numerals, with two stages prior to and one after peak. Stage 

1 corresponds to a comprehensive process including the acceleration, some level of 

slippage existing in the gripping system to strengthen the frictional connection 

between specimen and fixture. More importantly, this stage may also be associated 

with the Elastic Stage as defined in the fabric pullout model from perspective of 

fiber and matrix bonding mechanism. That is, the shear stress is increasing up to 

the maximum shear strength τmax during this time, when the fiber and matrix are 

perfectly bonded. When it turns into stage 2, a steeply inclined and linear portion 

can be observed, and the axial strain quickly rose from 1% to peaks (5% to 7%) in 

0.1 to 0.4 ms, as the curves identified. This stage can be related to the Nonlinear 

and Dynamic stages, when the fiber and matrix were completed debonded followed 

by a rapid slippage or simplified rigid body motion as modeled, with shear stress 

dropping to a dynamic shear strength τdyn. This explanation is also supported by the 

study of Mechtcherine et al. [40], who pointed out the mode of failure for SHCC 

reinforced by PVA fiber subjected to tensile loads at strain rates above 1s-1 is 



46 

 

characterized by fiber-matrix pullout failure. As a result of debonding and fiber 

pullout, the concentration of strain was initiated and well developed, confirming 

with time elapsing images, see Figure 2.5. Stage 2 is terminated by the failure of 

the specimen, when strain reaches the peak. Thus, the slope in stage 1 is generally 

much smaller than that of stage 2. With the fracture of matrix and the rupture or 

completely pullout of fibers, a recovery of deformation in matrix was observed in 

stage 3, where the axial strain drops dramatically back to 0, sometimes followed by 

vibrations. This is attributed to the closing of invisible micro cracks bridging by 

fibers and elastic recovery of matrix itself. On the other hand, the whole strain 

response can also be divided as “pre-crack”, “crack” and “post-crack” behavior 

according to the effect on strain by the formation of crack. However, compared to 

the DIC, the post-crack behavior cannot be detected by traditional data analysis 

approach, where the nominal strain is defined as the displacement of actuator 

divided by the gage length of specimen. The traditional approach is based on two 

assumptions: (1) Elongation of the sample is equal to the movement of actuator; (2) 

strain distribution is uniform over the entire specimen. However, in fact, the 

existing of slippage in the gripping system makes the displacement in a way larger 

than the real elongation; and the actuator travels all the way down to a designated 

end level since the experiment was conducted using a servo-hydraulic machine 

under open loop. Thus the nominal strain will always increase with the moving 

actuator so that the recovery of deformation cannot be observed. Moreover, on the 

contrary with assumption (2), the distribution of strain is quite non-uniform with 
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concentration near the crack and uniform zone at far field as identified by the time 

elapsed images.  

 

(a) 

 

(b) 
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(c) 

Figure 2.10 Strain versus time histories obtained from DIC method selected from 

three defined regions for the sample tested at different strain rates: (a) 25s-1, (b) 

50s-1, and (c) 100s-1.    

Table 2-3 Summary of peak strains within different zones; average results (standard 

deviations are given in parentheses). 

Peak Strain (%) 25 s-1 50 s-1 100 s-1 

Localization 5.5078 (0.0887) 6.9030 (0.2819) 5.9705 (0.2162) 

Shear lag 2.3117 (0.0748) 2.3000 (0.0654) 2.3130 (0.0794) 

Uniform 0.0588 (0.0254) 0.0644 (0.0069) 0.0557 (0.0278) 

2.3.2.3 Stress-strain 

 The correlation between stress responses and strain responses obtained from 

DIC was also done for four individual speckled samples tested at different strain 

rate, as shown in Figure 2.11 and summarized in Table 2-4. Due to the non-uniform 

distribution of strain, the average value of strain along the selected lines (see Figure 
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2.9) was calculated and plotted with the stress. Since the images (source of strains) 

and loads (source of stress) were collected using two different systems, high speed 

camera and data acquisition system connected to testing machine, time was used to 

link the two sets of signals as the sampling rate of each system is known.  Figure 

2.11a shows the DIC based stress-strain curves of the four speckled samples and 

Figure 2.11b compares the stress-strain responses obtained from DIC with the 

original ones. It can be seen both from the plots and table that the initial slope of 

the four original curves, 1.15 GPa, 1.27 GPa, 7.70 GPa and 0.67 GPa, are quite low 

and showing large variation. While the initial linear portion is associated with the 

pre-crack stage of the test, when the fibre and matrix are perfectly bonded. During 

this stage, the tensile load is mostly taken by the matrix rather than the fibre. Thus 

the initial slope should be close to the elastic modulus of matrix. However, at the 

very beginning of test, slippage in the gripping system, demonstrated by the high 

speed video, takes place which leads to the error in measurement of deformation. 

In addition, testing condition like the frictional gripping force for each specimen 

differs from one to another, resulting in different amount of slippage. This effect of 

slippage enlarges the measured deformation in varying degrees thereby the low and 

varying initial slopes were observed. Nevertheless, strain measurement using DIC 

method can resolve this issue as it directly addresses the changing from reference 

and deformed images, which exclude the effect of gripping system. The initial slope 

were corrected to 29.40 GPa, 32.80 GPa, 29.80 GPa and 29.72 GPa, respectively 

as shown in Table 2-4, which are much closer to the general elastic modulus of 

concrete which ranges from 23 to 26 GPa. The variation was decreased as well that 
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can be easily observed in Figure 2.11a, initial linear portions following the same 

path on top of each other.  Another apparent difference detected is the evident 

decrease in strain at peak, which can be traced back to the slippage between fibre 

and matrix. The slippage is an internal displacement that cannot be tracked by DIC, 

as it is addressing the deformation on the surface. While the total elongation 

measured by means of acquiring the displacement of stroke is able to record this 

internal slippage. In that both the traditional and DIC methods should be employed 

for a better understanding of the mechanical behaviour of SHCC specimens under 

dynamic tensile testing.     

Table 2-4 Summary of strains at peak and initial slope of stress-strain curves 

Specimen 
ID 

Strain Rate   
(s-1) 

Strain at Peak (%) Stiffness (Gpa) 

Original DIC Original DIC 

m68_w33_2 25 0.92 0.07 1.15 29.40 

m68_w33_3 25 0.87 0.11 1.27 32.80 

m68_w32_3 50 0.70 0.27 7.70 29.80 

m68_w34_9 100 2.25 0.10 0.67 29.72 
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(a) 

 
(b) 

Figure 2.11 (a) Stress-strain responses based on DIC method and (b) comparison 

between original and DIC analysis results. 
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2.4 Conclusions  

 The following conclusions can be drawn from the present work on the 

behaviour of SHCC under high tensile strain rate loading:  

- For tensile tests performed at rates 25s-1, 50s-1, and 100s-1 in this study, 

SHCC showed an increase in tensile strength, strain capacity and work-to-

fracture with increasing loading rate. No pronounced multiple cracking was 

observed. And the failure of the composite was accompanied by the pullout 

of most of the fibres crossing the macro-crack. The increase in tensile 

strength is attributed to the considerable increase in bond strength between 

PVA fibre and matrix and the moderate increase in fiber strength at high 

strain rates. The observation of increase in the strain capacity of SHCC at 

high strain rates can be explained by the increase in fibre pullout length and 

the plastic deformation of the fibres.  

- DIC was a powerful tool to determine the non-uniform full-field strain field 

and pre-crack, crack, and post-crack behaviour for cement composites that 

cannot be obtained using the traditional deformation measurement and data 

processing approach. Three zones were observed and defined as localization, 

shear lag and uniform based on the strain fields. These observations are well 

associated with the fabric pullout model proposed by Sueki et al. [43], 

which explained the development of strain field obtained by DIC from 

perspective of fiber/matrix bonding mechanism. DIC method also 

successfully corrected the elastic modulus to a reasonable range as 

identified by the stress-strain responses based on DIC. However, due to the 
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basic theory, DIC method cannot detect the internal slippage between fiber 

and matrix, as it addresses the surface deformation. Thus, for the cement 

composite materials, the combination of traditional processing and DIC 

approach gives rise to a better and more comprehensive understanding of 

the mechanical behaviour. 
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3. EFFECT OF TEMPERATURE ON THE HIGH STRAIN TENSILE 

RESPONSE OF TEXTILE-REINFORCED CEMENT COMPOSITES  

3.1 Introduction 

 Cement-based materials may be subjected to dynamic loading due to 

explosions, projectiles, earthquakes, wind gusts, or moving objects. Due to the 

inherent brittleness and low tensile strength of most cement-based elements, 

dynamic loading can cause severe cracking and damage [44, 45]. In order to 

properly analyze and design structures that are subjected to dynamic loading, it is 

necessary to utilize the mechanical properties associated with the strain rates the 

structural components are subjected to.  

 Characterization of dynamic tensile properties of materials is challenging 

as the failure process is affected by the mode and method of testing.  Problems may 

appear at high-rate loading due to inertial effect, non-uniform loading, and 

difficulties in measuring reliable mechanical characteristics of the materials. There 

is a lack of general agreement about the standards and methodology used to conduct 

dynamic tensile tests [46].  This creates a challenge as correlation of the dynamic 

properties with published literature depends on several factors including the loading 

rate, method of testing, and the geometry of the tested element [47, 48, 49]. A 

number of experimental techniques exist to investigate high-strain rate material 

properties: split Hopkinson pressure bar (SHPB), falling weight devices, flywheel 

facilities and hydraulic machine [50, 51, 52, 53]. The use of servo-hydraulic 

machines in medium-strain rate for tensile testing has been reported for steel 

[54,55], plastics [46,56] and composite materials [57], however, test results for 
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cement-based composites are limited. The importance of specimen geometry and 

size in dynamic material testing has been recognized by the Society of Automotive 

Engineers (SAE) which coordinated the standardization of “High Strain Rate 

Tensile Test Techniques for Automotive Plastics” in order to develop guidelines 

for dynamic tensile testing at medium strain rates [58, 59].  The International Iron 

and Steel Institute (IISI) also formed a consortium to develop a high strain rate 

tensile test standard for sheet steel [60], while European researchers have been 

working on an ISO standard [61].   

 Textile reinforcement for cement-based materials has become popular as an 

effective way of enhancing the tensile capacity and energy absorption of the brittle 

material [ 62 , 63 ]. Textile-reinforced composites demonstrate a significant 

improvement in the energy absorption capacity under static loading as compared to 

plain concrete materials and other fibrous cement composites [64, 65, 66].  Recent 

work on impact behavior, has shown the potential of such components under high 

speed loading [67, 68, 69].  Research on dynamic tensile strength under high-strain 

rates of fibers and fabrics such as Aramid, Twaron, and Zylon has been reported by 

several authors [ 70 , 71 , 72 , 73 , 74 ].  Strain-rate effects on the mechanical 

properties of the Kevlar® 49 fibers was studied by Xia and Wang [73] who 

addressed rate dependence of Young's modulus, failure stress, and failure strain 

over a strain rate range of 10-4 s-1 to 1350 s-1 [75].  Differences in the behavior of 

fabrics under high speed loading directly affect the behavior of composites made 

with the fabrics.     
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 This paper presents the results of high-speed tensile testing for laminated 

cement composites reinforced with various types of textiles.  Three types of textiles 

were used: laminated Alkali Resistant (AR) glass, warp-knitted Alkali Resistant 

(AR) glass, and warp-knitted polypropylene. The two warp-knitted textiles 

produced by Institut für Textiltechnik (ITA).  The cement-based composites 

reinforced with these textiles were made and also tested to obtain the dynamic 

material properties, including tensile strength, toughness, and maximum strain. 

Mechanical response of textiles and composites were obtained at temperatures of -

30 °C, 25 °C, and 80 °C.  

3.2 High Speed Tensile Test Methodology 

3.2.1 Dynamic Tensile Test Procedure 

 The high-speed tensile tests were performed in a high-rate MTS testing 

machine. The setup and procedure of the dynamic tensile testing were addressed in 

Chapter 1[1.1]. The tension tests were performed at strain rate of 100s-1. An 

environmental chamber (see figure 3.1) was used for controlling the temperature 

for each test. The chamber uses heating elements for elevated and liquid nitrogen 

for low temperatures. The temperature data were recorded using a recording signal 

conditioner. Once the desired temperature was reached, the specimen was 

conditioned for 5 minutes before the high-speed test. 

 Material parameters derived from the experimental data included tensile 

strength (peak stress), strain capacity (strain on reaching tensile strength) and work 

to fracture. Work to fracture was calculated using the total area under the stress-
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strain curve. Average value and standard deviation are given for each strain rate. 

Furthermore, tensile stress-strain curves of the specimens tested under static and 

dynamic conditions are compared.  

 

Figure 3.1 High speed testing machine with environmental chamber at Arizona 

State University 

3.2.2 Data Processing  

 The approach of data processing for dynamic response was discussed in 

Chapter 1 [1.1.8]. 

3.2.3 Image analysis – digital image correlation (DIC) method 

 High speed videos were taken using a phantom camera, to be analyzed using 

DIC method. The setup of high speed camera, testing procedure, and discipline of 

DIC method were discussed in the first chapter [1.2].  
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3.3 Experimental Program 

3.3.1 Textiles 

 Three types of textiles were used in this study: 1) laminated alkali-resistant 

(AR) glass referred to as AR in this paper, 2) warp-knitted AR-glass referred to as 

GL in this paper, and 3) warp-knitted polypropylene-glass hybrid referred to as PP 

in this paper. Sample pictures are shown in Figure 3.2. It is noted that for the warp-

knitted textiles, weft is in the horizontal direction and warp is in the vertical 

direction. The GL and PP textiles have identical geometries and Table 3-1 includes 

the properties and dimensions for the various textiles used in this study. The knitted 

textiles were made with glass and polypropylene yarns, produced using a 

commingling setup at Institut für Textiltechnik der RWTH Aachen. More  details 

about the textile production can be found elsewhere [76]. 

 
(a) 

 
(b) 

 
 (c) 

Figure 3.2 Close up pictures of a) AR-glass textile (laminated), b) AR-glass 

textile (warp-knitted), and c) polypropylene textile (warp-knitted). Note: weft: 

horizontal and warp: vertical. 
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Table 3-1 Geometrical characteristics of textiles 

Material Weft (90 

deg) 

Warp (0 

deg) 

Knitting 

Yarn 

Yarn 

Count 

(Weft or 

Warp) 

Density 

    [tex] [g/cm^3] 

AR-Glass 

(AR) 

AR-

Glass 

AR-

Glass 

Laminated --- --- 

AR-Glass 

(GL) 

AR-

Glass 

AR-

Glass 

PES (167 

tex) 

1200 2.68 

Polypropylene 

(PP) 

AR-

Glass 

PP PES (167 

tex) 

400 0.9 

3.3.2 Composite Materials  

 Textile-reinforced cement composites were prepared with 4 layers of 

textiles using the pultrusion process as shown in Figure 3.4. The mixture 

proportions used for the cement paste are presented in Table 3-1. The textile passes 

through a slurry infiltration chamber to get coated, and then pulled through a set of 

rollers to squeeze the paste in between the fabric openings while removing 

excessive paste. The textile cement composites were then formed on a plate shaped 

mandrel resulting in layered sheets with 250 × 300 mm. After forming the samples, 

constant pressure was applied on the surface of the composite sheets to improve 

penetration of the matrix in between the yarn and fabric openings.  
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(a) 

 
(b) 

Figure 3.3 Pultrusion process for making TRC: a) schematics and b) actual system  

Table 3-2 Mixture proportions for the cementitious matrix 

Cement 

[gr.] 

Fly Ash 

[% of 

Cement] 

Water/CM Water   

[ml] 

Superplasticizer 

[% of CM] 

Superplasticizer 

[ml] 

800 160 0.3 290 0.25 2.5 

 Panels were demolded after 12 hours and cured under water at room 

temperature for 28 days.  Specimens of 25 mm wide and 150 mm long were 

prepared. A typical composite is shown in Figure 3.4. The average thickness of the 

composites was 11 mm.  Three replicate specimens were used for each composite 

type. Additionally, plain textile samples with dimensions of 25 mm in width and 

150 mm in length were cut and used for high-speed testing. Aluminum plates were 

glued onto the gripping edges of the specimen to minimize localized damage and 
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provide load transfer to the grips during the high speed tensile test.  The gauge 

length of all specimens was 50 mm. Typical textiles samples are shown in Figure 

3.5.  

 
Figure 3.4 Typical textile reinforced cement composite sample with 4 payers of 

textiles 

 

 
(a) 

 
(b) 

 
 (c) 

Figure 3.5 Typical textile samples prepared for testing: a) laminated AR-glass 

textile, b) knitted AR-glass textile, and c) knitted polypropylene textile  

 

3.4 Results and Discussion 

 High-strain tensile tests were performed on the prepared textile and TRC 

specimens under three different temperatures: -30 ○C, +25 ○C, and +80 ○C. state 



62 

 

the conditioning duration. The test results for laminated AR-glass textile and TRC 

are shown in Figure 3.6. The force applied to individually-tested textiles was scaled 

by 4 for comparison purposes. A V.7 Phantom high-speed camera was used for 

capturing high-speed videos during the test (under room temperature only). These 

images are shown in Figure 3.7 for laminated AR-glass textiles with time difference 

(Δt) between images of about 10-4 sec. Figure 3.8 shows the time-lapse images for 

AR composites with time difference (Δt) of about 3x10-4 sec. Multiple cracking 

and textile pull-out mechanism can be observed for this type of composite. Table 

3-3 and Table 3-4 summarize the experimental parameters calculated for each test. 

These include the force and strain at the first peak (the end of linear region), 

maximum force, maximum strain, toughness at peak and maximum toughness. The 

stress values for composites were calculated based on their cross-sectional 

dimensions; however stress calculation is not applicable for textile samples. In most 

cases, the maximum force is observed at the peak point, however, in some cases for 

composites the maximum force is obtained after the linear region in the strain 

hardening or strain softening regions.  

The maximum load for AR textiles tested under room temperature was 3367±704 

N. These values were 3044±828 N and 2561±425 N under low and high 

temperatures, respectively.  The nominal cross-section of one roving of knitted 

textiles has approximately 0.445 mm2 area and since four roving were used in each 

sample, the nominal cross-sectional area is approximately 1.78 mm2. This value is 

used for calculating the nominal maximum stress values for textile samples. The 

average maximum strain values for all temperatures was in the range of 0.04 and 
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0.052 mm/mm and the average maximum toughness was in the range of 2.6 and 4.2 

N.mm. The maximum force almost doubled in AR composites (up to 5995 N). 

Much lower standard deviation in the composites implying an enhanced bond 

between textile and cement matrix as compared to other systems. The maximum 

toughness values for AR composites was in the range of 12.7 and 27.3 N.mm which 

is approximately 6 times higher than textiles. The effect of temperature was not 

significant for AR textiles or AR composites.  

 The test results for knitted AR-glass textile and TRC are shown in Figure 

3.9. The high-speed images are shown in Figure 3.10 for GL textiles with Δt of 

about 10-4 sec and in Figure 3.11 for GL composites with time difference of about 

3x10-4 sec. Multiple cracking and textile pull-out mechanism can be also observed 

for this type of composite. Table 3-5 and Table 3-6 summarize the experimental 

parameters calculated for each test. The maximum load for GL textiles tested under 

room temperature was 1541±215 N. These values were 2767±213 N and 2425±118 

N under low and high temperatures, respectively. The average maximum strain 

values for all temperatures was in the range of 0.097 and 0.125 mm/mm and the 

average maximum toughness was in the range of 5.2 and 7.5 N.mm. The maximum 

force almost tripled in GL composites (up to 7615 N) due to the  bond between 

textile and cement matrix. The maximum toughness values for AR composites was 

in the range of 27.6 and 32.3 N.mm which is approximately 6 times higher than 

textiles. The effect of temperature was not significant for GL textiles either, 

however, lower temperatures resulted in higher force values in GL composites.  



64 

 

 The test results for knitted polypropylene textile and TRC are shown in 

Figure 3.12. The time-lapse images are shown in Figure 3.13 for PP textiles with 

Δt of about 10-4 sec and in Figure 3.14 for PP composites with time difference of 

about 3x10-4 sec. Unlike the AR-glass composites, multiple cracking and textile 

pull-out mechanism is non-existing for this type of composite. Table 3-7 and Table 

3-8 summarize the experimental parameters calculated for each test. Typical failed 

composite samples are shown in Figure 3.15. The maximum load for PP textiles 

tested under room temperature was 2578±220 N. These values were 2360±203 N 

and 2350±380 N under low and high temperatures, respectively. The average 

maximum strain values for all temperatures was in the range of 0.110 and 0.127 

mm/mm and the average maximum toughness was in the range of 7.7 and 9.3 N.mm. 

The maximum force remained almost the same in PP composites (up to 2856 N) 

due to the weak bond between textile and cement matrix. The maximum toughness 

values for PP composites was in the range of 10.5 and 16.8 N.mm which is 

approximately 1.5 times higher than textiles. The effect of temperature was not 

significant for PP textiles or PP composites. 
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Figure 3.6 High-strain test results for laminated AR-glass textile and TRC  
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Figure 3.7 Time lapse images for laminated AR-glass textile (Δt between images 

≈ 10-4 sec) 

 

             
Figure 3.8 Time lapse images for laminated AR-glass TRC (Δt between images ≈ 

3x10-4 sec)  
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Table 3-3 Experimental parameters for high-strain test for laminated AR-glass 

textiles 

* Force for 4 layers of textiles ** Nominal stress for 1 layer of textile 

Table 3-4 Experimental parameters for high-strain test for laminated AR-glass 

TRC 

 

Tem

p. 

Code 

Peak 

Force

* 

Nomi

nal 

Peak 

Stress

** 

Strain        

(at 

Peak) 

Tou

ghn

ess 

(at 

Pea

k) 

Max. 

Force* 

Nominal 

Max. 

Stress** 

Max. 

Strain 

Max. 

Toughn

ess 

Units N MPa mm/

mm 

N.

m 
N MPa mm/m

m 
N.m 

LT 

No.1 3108 437 0.025 2.3 3108 437 0.059 4.2 

No.2 2186 307 0.035 2.0 2186 307 0.046 2.9 

No.3 3838 539 0.034 3.0 3838 539 0.051 5.5 

AVG 3044 428 0.031 2.4 3044 428 0.052 4.2 

SD 828 116 0.006 0.5 828 116 0.007 1.3 

RT 

No.1 3413 479 0.031 2.5 3413 479 0.049 4.4 

No.2 2641 371 0.032 2.0 2641 371 0.063 4.4 

No.3 4046 568 0.019 1.9 4046 568 0.034 3.7 

AVG 3367 473 0.027 2.1 3367 473 0.049 4.2 

SD 704 99 0.007 0.3 704 99 0.015 0.4 

HT 

No.1 2529 355 0.018 1.3 2529 355 0.029 1.9 

No.2 2153 302 0.027 1.5 2153 302 0.042 2.4 

No.3 3002 422 0.027 1.9 3002 422 0.043 3.4 

AVG 2561 360 0.024 1.6 2561 360 0.038 2.6 

SD 425 60 0.005 0.3 425 60 0.008 0.8 

Temp. 
Code 

Peak 

Force  

Peak 

Stress  

Strain        

(at Peak)  

Toughnes

s (at Peak)  

Max. 

Force  

Max. 

Stress  

Ma

x. 

Str

ain  

Max. 

Tough

ness  
Units N MPa mm/mm N.m N MPa m

m/

m

m 

N.m 

LT 

No.1 4672 23.4 0.078 9.6 N/A N/A 0.1

00 
12.0 

No.2 6676 33.4 0.067 12.3 6076 30.4 0.0

99 

18.3 

No.3 5914 29.6 0.079 11.0 5914 29.6 0.1

09 

17.1 

AVG 5754 28.8 0.075 10.9 5995 30.0 0.1

03 

15.8 

SD 1012 5.1 0.007 1.4 115 0.6 0.0

06 

3.3 

RT 

No.1 4493 22.5 N/A 9.1 4493 22.5 0.1

22 

N/A 

No.2 4340 21.7 0.100 11.3 4340 21.7 0.2

18 

28.3 

No.3 4154 20.8 0.124 13.7 4154 20.8 0.0

23 

26.4 

AVG 4329 21.6 0.112 11.4 4329 21.6 0.1

21 

27.3 

SD 170 0.8 0.017 2.3 170 0.8 0.0

98 

1.4 

HT 

No.1 4718 23.6 0.091 11.6 4718 23.6 0.1

05 

13.5 

No.2 4441 22.2 0.074 8.4 4441 22.2 0.1

03 
14.1 

No.3 4702 23.5 0.075 9.4 4702 23.5 0.0

83 
10.6 

AVG 4620 23.1 0.080 9.8 4620 23.1 0.0

97 
12.7 

SD 156 0.8 0.010 1.6 156 0.8 0.0

12 
1.9 
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Figure 3.9 High-strain test results for knitted AR-glass textile and TRC  
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Figure 3.10 Time lapse images for knitted AR-glass textile (Δt between images ≈ 

10-4 sec) 

 

             

Figure 3.11 Time lapse images for knitted AR-glass TRC (Δt between images ≈ 

3x10-4 sec) 
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Table 3-5 Experimental parameters for high-strain test for knitted AR-glass 

textiles 

Tem

p. 

Code 

Peak 

Force

*  

Nomina

l Peak 

Stress**  

Strain        

(at 

Peak)  

Toug

hness 

(at 

Peak)  

Max. 

Force

*  

Nomin

al 

Max. 

Stress*

*  

Max. 

Strain  

Max. 

Toughne

ss  

Units N MPa mm/m

m 
N.m N MPa mm/

mm 
N.m 

LT 

No.1 2524 354 0.049 3.4 2524 354 0.098 6.0 

No.2 2918 410 0.060 5.2 2918 410 0.089 7.6 

No.3 2860 402 0.076 6.9 2860 402 0.104 9.0 

AVG 2767 389 0.062 5.2 2767 389 0.097 7.5 

SD 213 30 0.014 1.7 213 30 0.008 1.5 

RT 

No.1 1293 182 0.043 3.0 1293 182 0.123 4.1 

No.2 1649 232 0.037 1.6 1649 232 0.139 6.4 

No.3 1680 236 0.050 2.3 1680 236 0.114 5.2 

AVG 1541 216 0.043 2.3 1541 216 0.125 5.2 

SD 215 30 0.007 0.7 215 30 0.013 1.1 

HT 

No.1 2230 313 0.082 5.6 2230 313 0.140 10.5 

No.2 2625 369 0.051 3.8 2625 369 0.075 5.4 

No.3 2421 340 0.059 3.8 2421 340 0.114 6.4 

AVG 2425 341 0.064 4.4 2425 341 0.110 7.4 

SD 198 28 0.016 1.1 198 28 0.033 2.7 

* Force for 4 layers of textiles ** Nominal stress for 1 layer of textile 

Table 3-6 Experimental parameters for high-strain test for knitted AR-glass TRC 

Temp

eratur

e 

Code 
Peak 

Force  

Peak 

Stress  

Strain        

(at 

Peak)  

Tough

ness (at 

Peak)  

Max

. 

Forc

e  

Max. 

Stress  

Max. 

Strain  

Max. 

Toug

hness  

Units N MPa mm/mm N.m N MPa mm/m

m 
N.m 

LT 

No.1 7538 37.7 0.066 13.2 7538 37.7 0.100 21.3 

No.2 N/A N/A 0.042 N/A 7610 38.1 0.189 N/A 

No.3 7698 38.5 0.056 11.5 7698 38.5 0.130 33.5 

AVG 7618 38.1 0.055 12.4 7615 38.1 0.140 27.4 

SD 113 0.6 0.012 1.2 80 0.4 0.045 8.6 

RT 

No.1 4950 24.8 0.096 12.4 5861 29.3 0.195 37.9 

No.2 5492 27.5 0.088 13.2 5661 28.3 0.146 26.7 

No.3 5892 29.5 0.068 10.8 N/A N/A 0.190 N/A 

AVG 5445 27.2 0.084 12.1 5761 28.8 0.177 32.3 

SD 473 2.4 0.014 1.3 141 0.7 0.027 8.0 

HT 

No.1 4321 21.6 0.069 8.1 4642 23.2 0.160 25.4 

No.2 N/A N/A 0.084 12.7 N/A N/A 0.159 32.3 

No.3 4716 23.6 0.069 8.1 4716 23.6 0.157 25.2 

AVG 4519 22.6 0.074 9.6 4679 23.4 0.159 27.6 

SD 279 1.4 0.009 2.7 52 0.3 0.002 4.1 
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(a) 

 
(b) 

 
(c) 

Figure 3.12 High-strain test results for knitted PP textile and TRC  
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Figure 3.13 Time lapse images for knitted PP textile (Δt between images ≈ 10-4 

sec) 

 

             

Figure 3.14 Time lapse images for knitted PP TRC (Δt between images ≈ 3x10-4 

sec) 
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Table 3-7 Experimental parameters for high-strain test for knitted PP textiles 

* Force for 4 layers of textiles ** Nominal stress for 1 layer of textile 

Table 3-8 Experimental parameters for high-strain test for knitted PP TRC 

Tem

p. 

Code 

Peak 

Force

*  

Nomina

l Peak 

Stress**  

Strain        

(at 

Peak)  

Toug

hness 

(at 

Peak)  

Max

. 

Forc

e*  

Nomina

l Max. 

Stress**  

Max. 

Strain  

Max. 

Toug

hness  

Units N MPa mm/mm N.m N MPa mm/mm N.m 

LT 

No.1 1691 238 0.053 2.3 2231 313 0.149 10.6 

No.2 2540 357 0.040 2.6 2254 317 0.104 8.3 

No.3 1946 273 0.048 2.3 2594 364 0.129 9.2 

AVG

. 
2059 289 0.047 2.4 2360 331 0.127 9.3 

S.D. 436 61 0.007 0.2 203 29 0.023 1.1 

RT 

No.1 2324 326 0.047 2.8 2587 363 0.098 8.0 

No.2 2794 392 0.074 6.0 2794 392 0.105 8.5 

No.3 2216 311 0.045 2.7 2354 331 0.149 11.2 

AVG

. 
2445 343 0.055 3.8 2578 362 0.117 9.3 

S.D. 307 43 0.016 1.8 220 31 0.028 1.7 

HT 

No.1 1967 276 0.050 2.7 1967 276 0.118 7.1 

No.2 2310 324 0.038 2.3 2727 383 0.119 9.7 

No.3 2351 330 0.043 2.6 2357 331 0.094 6.4 

AVG

. 
2209 310 0.044 2.5 2350 330 0.110 7.7 

S.D. 211 30 0.006 0.2 380 53 0.014 1.8 

Temp. 

Cod

e 

Peak 

Force  

Peak 

Stress  

Strain        

(at 

Peak)  

Toug

hness 

(at 

Peak)  

Max

. 

Forc

e  

Max. 

Stress  

Max. 

Strain  

Max. 

Toughne

ss  

Uni

ts 
N MPa mm/mm N.m N MPa mm/m

m 
N.m 

LT 

No.

1 
3018 15.1 0.070 5.4 3018 15.1 0.189 16.8 

No.

2 
3118 15.6 0.033 2.7 3118 15.6 0.187 18.3 

No.

3 
2432 12.2 0.078 4.9 2432 12.2 0.196 15.3 

AV

G. 
2856 14.3 0.060 4.3 2856 14.3 0.191 16.8 

S.D

. 
371 1.9 0.024 1.4 371 1.9 0.005 1.5 

RT 

No.

1 
1760 8.8 0.044 2.0 2330 11.7 0.161 12.3 

No.

2 
1976 9.9 N/A N/A 1976 9.9 0.240 14.9 

No.

3 
2146 10.7 0.055 2.1 2146 10.7 0.091 N/A 

AV

G. 
1961 9.8 0.050 2.0 2151 10.8 0.164 13.6 

S.D

. 
193 1.0 0.008 0.1 177 0.9 0.075 1.9 

HT 

No.

1 
2073 10.4 0.073 3.8 2171 10.9 0.138 9.3 

No.

2 
1942 9.7 0.080 4.1 1942 9.7 0.168 10.5 

No.

3 
2482 12.4 0.066 4.0 2482 12.4 0.158 11.7 

AV

G. 
2166 10.8 0.073 4.0 2198 11.0 0.155 10.5 

S.D

. 
282 1.4 0.007 0.2 271 1.4 0.015 1.2 
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(a) 

 
(b) 

 
 (c) 

Figure 3.15 Typical composite samples after testing: a) laminated AR-glass TRC, 

b) knitted AR-glass TRC, and c) knitted polypropylene TRC 
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(b) 

 

(c) 

Figure 3.16 Effect of temperature on the maximum force capacity of various 

textiles and composites  

3.5 Image Analysis  

 Figure 3.17 shows the sample with a contrasting speckle pattern on the 

surface, which is required by DIC technique. Flat paints of black and white color 

were used to generate these speckle patterns as black and white show a high contrast. 
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For the high quality images, high speed camera was only used to take images of 

samples testing under room temperature without the environmental chamber.  

 
(a) 

 
(b) 

 
(c) 

Figure 3.17 Speckle images of three different types of specimens: (a) PP, (b) SG, 

(c) GL 

 For the tension test, longitudinal strain εyy is of authors’ interest and has 

been investigated using DIC method. Strain field development with time is shown 

in Figure 3.18. According to the legend on the right, color of purple stands for zero 

strain while the red is 5%, while for glass red stands for 3%. Figure 3.18a shows 

the time lapsed images of polypropylene. A main crack in the middle portion of the 

sample can be observed, where the strain concentration around this area has also 

been detected by DIC. However, in fact a lot more extremely fine cracks were 

formed during the test, which can be seen in Figure 3.38a taken by a DSLR camera 

with much higher resolution. But for the phantom camera to record with a high 

frame rate, which is 10,000 fps, the resolution has to be decreased, 256 x 512 in 

this project. For image analysis, acquiring more effective images turns out to be 

more important than a higher resolution. Thus a compromise of reducing the 
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resolution was made. Additionally, another region with strain concentration is the 

bottom part near the end grips. The edge effect is attributed to the gripping force 

provided by the fixture since the frictional gripping systems are usually employed 

for the tensile tests. As a result, large compressive force is applied on both ends of 

the specimen to generate friction when the test starts. Similar phenomenon can be 

observed on AR and GL composites: strain concentration around the main crack in 

the middle and the region close to end grips. 

 Based on the time lapsed images and the whole process of the test, three 

regions regarding different locations and level of deformation can be defined as 

follows: 

Region I -- Strain concentration near the end grips; 

Region II -- Strain concentration in the middle part; 

Region III – Lower level of deformation indicating uncracked concrete or fine 

cracks. 
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T = 0 T = 0.61 ms T = 1.22 ms 

   
T = 1.83 ms T = 2.44 ms T = 3.04 ms 

   
T = 3.65 ms T = 4.26 ms T = 4.87 ms 

(a) 
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T = 0 T = 0.4 ms T = 0.8 ms 

   
T = 1.2 ms T = 1.6 ms T = 2.0 ms 

  
 

T = 2.4 ms T = 2.8 ms T = 3.2 ms 

(b) 
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T = 0 T = 1.0 ms T = 1.5 ms 

   
T = 2.0 ms T = 2.5 ms T = 3.0 ms 

  
 

T = 3.5 ms T = 4.0 ms T = 4.5 ms 

(c) 
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Figure 3.18 Time lapsed images showing the development of strain field for 

(a)PP, (b)SG, (c)GL composites 

 Traditional analysis of strains deals with a globalized deformation behavior, 

as the strain is calculated using the division of actuator displacement into the gauge 

length. However, the displacement of actuator is not the real elongation of the 

sample for the several reasons. First of all, slippage between sample and fixture or 

among the components does exist in frictional gripping system, see Figure 3.19. In 

that the nominal strain can be larger than the real deformation. In addition, the 

concept of nominal strain is based on the assumption that the strain is uniform 

distributed along the entire volume or length of the specimen. Nevertheless, strain 

filed distribution is quite non-uniform due to many effects, such as non-

homogeneity of materials, defects, formation of cracks, stress concentration, etc. It 

can also be seen from the time elapsed images discussed before (see Figure 3.18). 

As a result, it is important to investigate the localized deformation of the materials. 

Strain responses at specific spots and average strain along lines were exported, 

processed and presented below. 
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Figure 3.19 Slippage between the wedges and fixture occurred in the test 

measured as 11.19 mm  

 Five points on the surface of PP composite located in the different regions 

were selected (see Figure 3.20): 1 and 2 are located in region III, 3 and 4 are in 

region 2 while 5 from region I. Matlab programs have been developed to process 

the data including interpolation, smoothing, and correlating with the data recorded 

from MTS high speed machine.   

 
(a)  

(b) 

Figure 3.20 (a) Point selection, and (b) region dividing of polypropylene TRC 
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(a) 

 
(b) 

Figure 3.21 Strains responses at (a) selected points, and (b) representative 

responses at different regions. 

 Figure 3.21a represents the strain versus time responses at the 5 selected 

locations. As discussed above, strains points 1, 2 (region I) are smaller than those 
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of points 3 and 4 (region II), due to the effect of strain concentration along the main 

crack. However, longitudinal strain at point 5 increases much faster and ends up 

with a higher ultimate strain than all the other responses, due to the fact that failure 

happened near the bottom edge. In addition, as a feature of dynamic test, vibrations 

of the strain can be observed, specifically for point 5. One representative curve in 

each region has been selected to describe the whole process of deformation. Similar 

phenomenon can also be seen from the results of SG and GL composites, as shown 

in Figure 3.24-3.34. 

 
Figure 3.22 Stress-strain responses at selected points 
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Figure 3.23 Comparison between image analysis and traditional analysis 

 Data acquired from high speed machine including time, force and 

displacement have been correlated to the strain data obtained from DIC using a 

MATLAB code. Stress strain responses are shown in Figure 3.22. Due to the large 

vibration of strain at point 5 during pre-peak stage, stress strain response cannot 

show an initial linear portion. So it is not presented in the figure. Figure 3.23 

compares the stress-strain curves between DIC method and traditional method of 

data processing. Stress-strain curves of SG and GL composites are shown in Figure 

3.24-3.34. 
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(a)  

(b) 

Figure 3.24 (a) Point selection, and (b) region dividing of standard glass 
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(b) 

Figure 3.25 Strains responses at (a) selected points, and (b) representative 

responses at different regions.  

 
Figure 3.26 Stress-strain responses at selected points 
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Figure 3.27 Comparison between image analysis and traditional analysis 

 
(a)  

(b) 

Figure 3.28 (a) Point selection, and (b) region definitions of standard glass 
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(a) 

 
(b) 

Figure 3.29 Strains responses at (a) selected points, and (b) representative 

responses at different regions. 
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Figure 3.30 Stress-strain responses at selected points 

 
Figure 3.31 Comparison between image analysis and traditional analysis 
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 To study the localized mechanical behavior of a material, the results will be 

more reliable if more locations are selected for analysis. However, it is cumbersome 

to investigate hundreds of spots one by one. So besides the study of deformation at 

points, analysis of average strain along some selected lines has also been conducted.   

 Seven lines on the surface of PP composite were selected to investigate the 

average longitudinal strain and strain distribution, see Figure 3.35a.  Corresponding 

to the dividing of three regions, rules of line selection include: 

 Lines located in region III  (1 and 5); 

 Lines located in region I and II (2, 3, 4 and 6), these lines are usually 

selected adjacent to the cracks; 

 Vertical lines across the entire length of the area of interest (AOI). 

 Average strain of all the points on the line was calculated and processed. 

Strains versus time responses are shown in Figure 3.35b. All the responses show 

the similar trend and range of strain values with the data of specific points. Due to 

the fact that lines 1 and 5 are located in region III where the deformation is less 

compared to other areas, ultimate strains of lines 1 and 5 are obviously lower than 

others. Similar to strain response at point 7 which is close to the bottom grips 

(Figure 3.21a), strain response of line 6 along the bottom edge also shows a faster 

increasing and larger range of vibration from beginning. Again, its ultimate strain 

is dramatically larger than that of other lines. Specifically, since line 7 is across all 

three regions, so the strain response is supposed to be an average level out of all the 

data as can be seen in the figure.     
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(c) 

 
(d) 

Figure 3.32 (a) Line Selection, (b) Strain responses of selected lines, (c) Stress-

strain responses of selected lines, (d) Comparison between image analysis and 

traditional analysis 
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(c) 

 
(d) 

Figure 3.33(a) Line Selection, (b) Strain responses of selected lines, (c) Stress-

strain responses of selected lines, (d) Comparison between image analysis and 

traditional analysis 
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(c) 

 
(d) 

Figure 3.34 (a) Line Selection, (b) Strain responses of selected lines, (c) Stress-

strain responses of selected lines, (d) Comparison between image analysis and 

traditional analysis 
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 Figure 3.35 represents the longitudinal strain distribution along the axial 

direction of the composites. Abscissa stands for the axial location of the sample, 

where the origin corresponds to the bottom end. Similar phenomenon with previous 

discussion can also be seen and quantified. First of all, highest strain values are 

found to be at left end of the curves, which is the bottom end held by grips. Also, 

the vibration is detected again as the strains go back and forward. Additionally, 

strain values in the middle portion of the curves are higher than the other parts 

between main region of main cracks and edges, which is attributed to the strain 

concentration caused by the formation of cracks. The discontinuity refers to the 

location of main cracks, where the speckle pattern is separated. Thus the correlation 

across the cracks is interrupted and the data near these regions are lost.  
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(a) 

 
(b) 

c 

 
(c) 

Figure 3.35 Strain distribution along 

the axial direction of the samples (a) 

PP, (b) SG and (c) GL 

 

The last but not the least, the rest of the 

curves shows a relatively lower level of 

deformation. Strain distributions and 

the dividing of three regions discussed 

before confirm with each other very 

well. 
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3.6 Tension stiffening model 

 The finite difference tension stiffening model developed by Soranakom [77] 

was used to simulate the crack spacing and stress - strain response of the textile 

fiber reinforced composites under dynamic loads. In this model a cracked tension 

specimen is idealized as a series of 1-D segments consisting of fiber, matrix, and 

interface elements. The matrix is treated as brittle with no strain-softening response. 

As the load on the composite is increased such that the cracking stress of the matrix 

is reached, the matrix phase cracks, and the load is solely carried by the longitudinal 

yarns through the interface elements. The individual pullout segments are allowed 

to continue carrying the load at crack locations. In nonlinear analysis, an iterative 

solution algorithm is used to enforce load-deformations to follow the material 

constitutive laws. Once the slip distributions are solved and corresponding stress 

and strain responses are identified, results are added to represent the overall tensile 

response. The static model has a high bond strength and low slip range while the 

dynamic presents elastic plastic frictional shear with a longer slip range [Error! 

ookmark not defined.]. The material parameters were held constant for all the 

simulations and are described in Table 3-9.  

Table 3-9 Input parameters for finite difference simulation 

Fiber type 

Fiber 

modulus 

(Gpa) 

Fiber UTS 

(MPa) 

Matrix 

modulus 

(Mpa) 

Young’s 

Modulus 

efficiency factor 

PP 6.9 500 35000 1.0 

Glass 78 1360 35000 1.0 
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Figure 3.36 Numerical simulation of  the strain and crack spacing 

 

Figure 3.37 Comparison of numerical simulation and experimental data on tensile 

stress-strain response of TRC composites 
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 A simulation of the dynamic test for three different types of composites was 

performed and the results are presented in Figure 3.36 and 3.37. It can be seen that 

the PP composites has the largest number of cracks and smallest average crack 

spacing, while SG composites has the largest crack spacing but much less cracks 

than PP (see Figure 3.38). It indicates that the bond strength between polypropylene 

and concrete is higher than that of glass fiber, which is not enough to transfer load 

from matrix to the fiber. Thus for SG and GL composites, the mechanism of failure 

of is then converted to significant fiber pullout resulting in high energy absorption. 

This phenomenon is confirmed by the pictures taken after testing (see Figure 3.38), 

which has been discussed at the beginning of this part.   

(a) 

 
(b) 

 
(c) 

 
Figure 3.38 Distribution of cracks on the tested samples: (a) PP, (b) SG, (c) GL 

3.7 Summary and Conclusions 

 High-strain tensile tests (100 s-1) were performed for three types of textiles 

and textile-reinforced cement composites. A fairly uniform tensile behavior was 

observed for various replicate composite samples, demonstrating the reliability of 

this high speed test method. The highest load capacity and toughness values were 
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related to the knitted glass textile composites, implying excellent bond between 

textile and cement matrix. Maximum tensile force of 5761±141 N (equivalent to 

28.8±0.7 MPa) was obtained for this composite at room temperature. The load 

capacity for this composite was about three time higher than bundled textiles (4 

textiles). Multiple cracking behavior was observed for these composites, indicating 

good stress transfer within these systems.  The maximum load capacity and 

toughness increased with the reduction in temperature and decreased with the raise 

in temperature.  

 The lowest force capacity was related to the knitted polypropylene textile 

composite, implying weak bond between textile and cement matrix. Maximum 

tensile force of 2151±177 N (equivalent to 10.8±0.9 MPa) was obtained for this 

composite at room temperature. The load capacity for this composite was almost 

the same as the bundled textiles (4 textiles). Multiple cracking behavior was absent 

for these composites. Except for knitted glass textile composite, no specific trend 

was observed for the effect of temperature for other textile or textile cement 

composites.  

 The digital image correlation method was a powerful tool to determine the 

strain field in cement composites. A non-uniform distribution of longitudinal strain 

was observed in contrast with the assumption of traditional data analysis method. 

Strain concentration was detected around the main cracks and edges, indicating the 

concentrated stresses. Quantified study of strain responses confirms well with the 

strain field presented. Stress-strain curves combining mechanical parameters and 
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strain responses obtained from DIC method addresses the issue of slippage in the 

gripping system, showing more reasonable results. 

The tension stiffening model used was able to accurately predict the crack spacing 

and stress–strain behavior of the textile reinforced cement composites under 

dynamic and loading condition. The model has shown that under dynamic load, a 

reduced frictional bond results in a lower capacity of fiber-matrix stress transfer 

leading to wider crack spacing and promoting a fiber pullout failure mechanism 

which increases the energy absorption capacity of the composite system. 
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4. STRAIN RATE EFFECT ON THE TENSILE BEHAVIOR OF 

TEXTILE-REINFORCED CONCRETE UNDER DYNAMIC LOADING 

ABSTRACT 

4.1 Introduction 

 Textile reinforced concrete is a relatively new class of cement composite 

system that presents a strain hardening behavior with enhanced strength and 

ductility. This material is strong enough to be used as load bearing structural 

members in applications such as structural panels, impact & blast resistance, repair 

and retrofit, earthquake remediation, strengthening of unreinforced masonry walls, 

and beam-column connections. Thus, the response to impulse loading, for 

applications in extreme loading conditions, becomes of great importance.  

 The dynamic tensile response of cement based material is a difficult 

experiment to perform with a few published results. Most of the available literature 

on the dynamic tensile behavior of concrete is based on investigations of plain 

concrete which exhibits an increase in tensile strength for increasing strain rates 

[78, 79, 80,81,82, 83]. For example, Xiao et al. [78] reported that the dynamic 

tensile strengths of concrete tested at strain rates of 10-4, 10-3 and 10-2 s-1 increase 

by 6%, 10% and 18%, respectively, when compared to that of quasi-static. Birkimer 

and Lindemann [79] reported that the concrete tensile strength tested at a strain rate 

of 20 s-1 ranged between 17.2 MPa and 22.1 MPa, while the static tensile strength 

was 3.4 MPa. 

 Dynamic tensile data on fiber reinforced concrete is even more limited. Zhu 

et al. [84] conducted tensile testing on three types of fabric-cement composites, PE, 
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AR Glass and carbon, under dynamic loads, using a servo-hydraulic testing 

machine. The strength of AR glass composite under high speed loading was found 

to be 35% higher than that tested under quasi-static loading condition. Also a 

significant difference was noticed in the strength, toughness and maximum strain 

of carbon composite between static and dynamic testing conditions. Kim et al. [85] 

investigated the strain rate effect on the tensile behavior of high performance fiber 

reinforced cement composites (HPFRCC) using two deformed high strength steel 

fibers, namely hooked fibers and twisted (Torex) fibers. The strain rate ranged from 

pseudo static (strain rate of 0.0001 s-1) to seismic (strain rate of 0.1 s-1). The results 

showed that the tensile behavior of HPFRCC with twisted fibers is sensitive to the 

strain rate, while hooked fiber reinforced specimens show no rate sensitivity. It was 

also observed that lower fiber volume fraction (Vf = 1%) reinforced specimens 

show higher sensitivity than higher volume fractions (Vf = 2%). Maalej et al. [86] 

performed dynamic tensile tests in Engineered Cement Composites (ECC) 

containing 0.5 % steel and 1.5 % polyethylene fibers (in volume). The applied strain 

rate ranged from 2x10−6 to 2x10−1 s−1. The results indicated that there is a 

substantial increase in the ultimate tensile strength from 3.1 to 6 MPa with 

increasing strain rate. The strain capacity did not appear to be affected by the strain 

rate. The tensile behavior of TRC under static and dynamic loading at different 

strain rates ranging from 0.0001 to 50 s-1 was studied by Silva et al. [87]. For tensile 

tests performed up to 0.1 s−1 an increase in tensile strength, strain capacity, work-

to-fracture, and first crack strength both for TRC with plain matrix and TRC with 

short fibres was observed. When tested at high strain rates from 5 s-1 to 50 s-1 the 
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TRC continued to tend to increasing tensile strength and work-to-fracture, but to a 

decrease in the strain capacity. This lower strain capacity was traced back to the 

increase in the stiffness of the composite in the post-crack region during the tensile 

test. 

 The response of TRC under impact loading has already been investigated 

[88]. It was reported that the maximum stress increases when increasing the impact 

energy sustaining high ranges of energy absorption capacity. Nevertheless, the TRC 

response under high speed tensile load and the influence of strain rate on its 

mechanical performance yet needs to be understood. 

 The addition of short fibers is known to be able to increase both the tensile 

strength and tensile toughness when used at sufficiently high volume fractions. 

However, the main effect of fibers on tensile response is the increase in toughness 

as they change the mode of failure from a brittle fracture to ductile behavior. 

Aveston et al. [ 89 ] addressed the mechanics of toughening in brittle matrix 

composites. Using energy balance, they showed the analytical foundations of 

increase strain capacity in composite systems when the fiber volume fraction 

exceeds a critical level. In recent years researchers have performed several test 

series to investigate the influence of short fibres on various properties of textile-

reinforced concrete [90, 91]. Adding PVA micro-fibers to a plain concrete matrix 

has little effect on its pre-cracking behavior but does substantially enhance its post-

cracking response, which leads to a greatly improved ductility and toughness, 

reported by Hamoush et al [92]. Their study also reveals that the addition of micro-

fibers enhances the ductile property of the materials, increases toughness, and 
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prevents the sudden brittle failure of the material, although it does not influence the 

compressive strength of concrete. However, the mechanisms inherent in the joint 

action of short fibre and textile reinforcement are still not fully understood. In order 

to gain more and better insight into the specific material behavior of the finely 

grained concrete with such hybrid reinforcement, a new investigative program has 

been initiated the TU Dresden. Hinzen et al. [93] investigated the addition of short 

glass, aramid and carbon fibers in the tensile response of TRC. It was found an 

increase in the first crack strength up to 40 % and a finer crack pattern leading to 

an increase in the ultimate strain. Barhum [94] studied the effect of the addition of 

glass and carbon short fibers on the tensile behavior of TRC. The first-crack 

strength was doubled due to the addition of 1.0% by volume dispersed short glass 

fibres. The energy absorption capacity also increased due to the addition of the short 

fibers. Silva et al. also investigated the strain effect on the tensile behavior on TRC 

with and without addition of short fibers. It is observed that the addition of short 

fibres increased first-crack and tensile strength for strain rates up to 0.1 s−1. The 

work-to-fracture showed a slight tendency to decrease with the addition of 0.5% of 

short glass fibres, which can be traced back to decrease in strain capacity [87]. The 

effect of the inclusion of short fibers, under high strain rates, steel needs to be 

investigated.  

 In the present work the dynamic tensile behavior of glass TRC has been 

studied.  Tensile tests were performed under dynamic loading condition at three 

different strain rates 25, 50 and 100 s-1. The effect of the addition of short fibers 

on the dynamic response of TRC has been investigated. A Phantom v7 high speed 
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digital camera with sampling rate of 10,000 fps captured the cracking and failure 

behavior of the different composites. The camera was placed in front of the 

specimen observing its full size in between the grips, as shown in Figure 1.15. The 

images acquired have been analyzed using digital image correlation (DIC) 

technique to investigate strain response over the entire surface of the specimens.  

4.2 Experimental Program 

4.2.1 Materials and Processing 

 A finely grained matrix was used in mixing the textile-reinforced concrete 

which consisted of cement, fly ash, micro silica, and quartz sand. Table 4-1 

summarizes the matrix composition. Superplasticizer with a basis of naphthalene-

sulphonate was added in order to achieve sufficient flowability. The average slump 

flow value measured with a small cone (bottom diameter 100mm, top diameter 

60mm, height 70mm) was 200mm.  

 Textile-reinforced concrete was produced with and without the addition of 

short glass fibres to the matrix. Polymer-coated biaxial fabric (see Figure 4.1) made 

of alkali-resistant glass (AR-glass) was used as reinforcement. The degree of 

reinforcement was calculated for one layer of fabric in volume as 66.33mm2/m. In 

total 3 layers of fabric were applied. The fineness of the weft and warp threads as 

well as the mean spacing between the yarns are given in Table 4-1. The fineness is 

given in tex, which is equal to the weight of one kilometre of yarn in grams. Note 

that the spacing of the yarns is uniform in the warp direction while it is non-uniform 

in the weft direction (cf. Figure 4.1). Nevertheless, the mean yarn spacing is 7.4mm 
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in both directions. Dispersed AR-glass short fibres with an average diameter of 

14_mand length of 6mmwere used as secondary reinforcement in a total volume 

fraction of 0.5%. These fibres disperse in water and are capable of being distributed 

in the mixture as single mono-filaments. The short glass fibres had a density of 2.68 

g/cm3, tensile strength of 1700MPa and Young’s modulus of 72 GPa. 

 

Figure 4.1 Biaxial textile reinforcement made of AR-glass: (a) photograph 

showing that the spacing between the yarns is uniform in the warp direction (with 

mean spacing of 7.4 mm), but not uniform in the weft direction and (b) sketch 

showing the details of the warp knitting. 

 Slender rectangular plates, 300 mm long and 50 mm wide, were cut from 

larger plates of length 525mm and width 425mm and were produced using a 

lamination technique. The laminating process started with the spreading of a thin 

concrete layer on the bottom of the mould. The first sheet of textile reinforcement 

was laid onto this fresh concrete layer and then, gently, partially pressed in and 
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smoothened. Complete embedment of the first textile layer took place during the 

application of the second concrete layer.  

Table 4-1 Matrix composition (kg/m³). 

Water-to-binder ratio 0.37 

CEM III B 32.5 NW-HS-NA 632 

Fly ash 265 

Micro silica suspension* 101 

Fine sand  0/1 947 

Water 234 

Superplasticizer 11 

* solid : water = 50:50 

         

Table 4-2 Textile properties. 

NWM3-013-07-p2 (30%) 

Warp Weft 

Fineness Spacing Fineness Spacing 

(tex) (mm) (tex) (mm) 

2*640 7.2 2*640 7.2 

 

 Subsequently these production steps were repeated until all three 

reinforcing layers were    placed and incorporated into the finegrained concrete. 

The thickness of the plates was 10mm. 
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 The plates were demoulded at the age of two days and stored in water until 

the age of 7 days. Subsequently, the plates were stored in a climate-controlled room 

at 20 ◦C and 65% RH until an age of 28 days. 

4.2.2 High-speed tensile testing 

 The high-speed tensile tests were performed in a high-rate MTS testing 

machine. The setup and procedure of the dynamic tensile testing were addressed in 

Chapter 1[1.1]. The tension tests were performed at strain rates of 10, 25 and 50s-1. 

Six specimens were tested for each strain rate. 

 Material parameters derived from the experimental data included tensile 

strength (peak stress), strain capacity (strain on reaching tensile strength) and work 

to fracture. Work to fracture was calculated using the total area under the stress-

strain curve. Average value and standard deviation are given for each strain rate. 

Furthermore, tensile stress-strain curves of the specimens tested under static and 

dynamic conditions are compared.  

 Four different types of specimens including plain mortar, micro glass fiber 

reinforced concrete, textile reinforced concrete, and textile reinforced concrete with 

addition of micro fiber have been tested under high-speed tension loads at strain 

rates of 25 s-1, 50 s-1, and 100 s-1(see Table 4-3). Results and parameters obtained 

from the experimental data include the stress-strain curves, Young’s modulus, 

tensile strength (peak stress), strain capacity (strain at peak stress), and work-to-

fracture. The work-to-fracture is evaluated using the total area under load vs. 

displacement curve. The reported results reflect both the average and standard 
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deviation values of each set tested. The high speed videos acquired by the phantom 

camera were used for image analysis to characterize the strain field.  

Table 4-3 Testing matrix 

Type Mortar 
Mortar+ 

micro fiber 
TRC 

TRC+ micro 

fiber 

25 s-1  x6 x6 x7 x6 

50 s-1  x5 x6 x7 x6 

100 s-1  x6 x4 x6 x6 

4.2.3 Image analysis – digital image correlation (DIC) method 

 High speed videos were taken using a phantom camera, to be analyzed using 

DIC method. The setup of high speed camera, testing procedure, and discipline of 

DIC method were discussed in the first chapter [1.2].  

4.3 Results, analysis and discussion 

4.3.1 Effects of the addition of short fibers on plain mortar  

 Figure 4.2 Compares the representative stress-strain curves obtained from 

tensile testing under dynamic load on plain mortar specimens both with and without 

the addition of short glass fibers. The addition of short fiber was relatively low in 

this test series which is 0.5% by volume. The water-to-binder ratio of the matrix 

used was 0.30. As summarized by Table 4-4, with the addition of short fibers, the 

average tensile strengths of specimen slightly increased at strain rates 25 s-1 (from 

4.71 MPa to 5.40 MPa) and 100 s-1 (2.66 MPa to 3.24 MPa), respectively. However, 

this parameter decreased from 3.30 MPa to 2.04 MPa when the strain rate was 50 

s-1. On the other hand, the work-to-fracture and strain capacity of the specimens 

were improved significantly by the addition of short fiber. The strain capacity rose 

from 1.06% to 3.44% (25 s-1), 1.62% to 3.08% (50 s-1), and 1.40% to 3.18% (100 
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s-1), while the work-to-fracture increased from 0.36J to 0.51J, 0.45J to 0.59J and 

0.28J to 1.01J, corresponding to three strain rates respectively. The improvements 

in ductility of the specimens can be traced back to the effect of lower w/b ratio on 

the quality of the fiber-matrix bond. The denser matrix with a w/b ratio of 0.30 

contributes to a better bonding than the matrix with higher w/b ratio, reported by 

Barhum and Mechtcherine []. This means that the fibre embedded in the matrix can 

contribute to a great extent to the bearing of stress in the ascending branch of the 

stress–strain curve. The extent of this contribution, pointed out by Barhum and 

Mechtcherine, is not only limited by the tensile strength of the fiber (1,700 MPa for 

the glass fiber employed in this study), and the fibre content, but also depends on 

the distribution and orientation of short fibre. The concrete was likely to have more 

voids due to entrapped air, caused by the worse workability while content of short 

fibre is increased. It is more difficult to achieve an even fibre distribution over the 

volume of the matrix for a higher volume fraction of short fiber.  
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(a) 

 
(b) 
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(c) 

Figure 4.2 Stress-strain responses of plain mortar with and without the addition of 

short fibers at strain rates of (a) 25 s-1, (b) 50 s-1, and (a) 100 s-1 

4.3.2 Effects of the addition of short fibers on TRC behavior 

 Figure 4.6 shows the summarized stress-strain curves of TRC samples with 

and without short fibers, testing results and parameters are shown in Table 4-4. 

From a qualitative perspective, the addition of short fibers leads to slight increases 

in tensile strength and work-to-fracture and the stress at bend-over-point (BOP) at 

strain rats of 25 s-1 and 50 s-1. The average tensile strengths of TRC at 25 s-1 (26.91 

MPa) to and 50 s-1 (26.99 MPa) are almost same, while the work-to-fracture slightly 

increased from 19.28 J to 20.95 J. When the samples were tested at strain rate 50 s-

1, tensile strength increased from 31.42 MPa to 32.35 MPa, work-to-fracture from 

14.77J to 19.01J. For the stresses at BOP, the improvements are 1.58 MPa and 1.09 

MPa, respectively for the two cases.  
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(a) 

 
(b) 
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(c) 

Figure 4.3 Stress-strain responses of TRC with and without the addition of short 

fibers at strain rates of (a) 25 s-1, (b) 50 s-1, and (a) 100 s-1 

 However, for the highest strain rates in this test series, which is 100 s-1, a 

decrease were observed for both tensile strengths (from 33.15 MPa to 25.42 MPa) 

and work-to-fracture (from 23.90J to 14.99J). This phenomenon of decreasing in 

both tensile strength and strain capacity agrees with the observations reported by 

Barhum and Mechtcherine [40].        
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4.3.3 Strain rate effects on mortar 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4.4 Tensile responses of plain mortar with and without short fibers under 

different testing strain rates: (a and c) plain mortar, (b) and (d) plain mortar + 

short fiber 
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 Figure 4.4 compares the tensile responses of plain mortar with and without 

short fibers under dynamic loading with different strain rates. It can be observed 

that the average tensile strengths did not differ that much at from 50 s-1 to 100 s-1, 

but found to be much higher when tested at 25 s-1. This phenomenon can be 

attributed to the effect on testing response due to the system ring, pointed out by 

Xiao [46]. To address the specimen machine interaction, the testing system can be 

represented by a single-degree freedom under-damped spring-mass system as 

developed Xiao the response of which can be obtained when the impulse velocity, 

damping ratio, and natural frequencies are known. All the tests were conducted with 

an actuator velocity of approximately 1 m/s. The modal analysis showed that the 

natural frequencies of the testing system were 900, 1400, 1600 Hz and the damping 

ratio is about 0.02. Based on these parameters, the effect of system ringing at 

frequencies of 900, 1400, 1600 Hz on stress level was calculated for the carbon 

fabric–cement and AR glass fabric–cement composites, the system was excited 

by a sudden velocity change of 1 m/s, as shown in Figure 4.5. One should notice 

that for the system ringing at 0.9 kHz, the maximum stresses were about 3.5 MPa 

and 7 MPa for AR glass and carbon composite, respectively, at 0.25 ms and the 

ringing effect became negligible after 0.5 ms. For the system ringing at 1.6 kHz, 

the response first increased with time, peaked at about 0.15 ms, and then decreased. 

The maximum stresses were about 2 MPa and 4 MPa for AR glass and carbon 

composites, respectively. The ringing effect became negligible after 0.3 ms. This 

analysis reveals that the natural frequency of the testing system affects the test 

results in high rate testing by contributing to the magnitude of the system ringing. 
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When tested at 50 s-1 and 100 s-1, the stresses reaches peak at about 0.2 ms before 

the ringing effect takes into place. But for the strain rate 25 s-1, the test duration was 

about 0.8 ms and even longer which allows the system ringing to dominate the 

response in the loading process. The stress oscillation in Figure 4.4 is the coupled 

result of specimen failure and system ringing.  

 

 
Figure 4.5 The effect of system ringing at frequencies of 900, 1400, 1600 Hz on 

stress level in carbon and AR glass composites. The system was excited by a 

sudden velocity change of 1m/s [84].  

4.3.4 Strain rate effects on TRC 

 Figure 4.6 represents the effects of strain rates on TRC samples with and 

without short fibers. It is observed that the average tensile strength and σBOP of TRC 

samples with and without short fibers increased with the increasing strain rate up 

to 50 s-1. The average tensile strength of TRC rose from 26.91 MPa to 31.42 MPa, 

and 26.99 MPa to 32.35 MPa with addition of short fibers. Significantly increases 
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in σBOP were observed for both two cases, where the factor of increasing is about 

1.6. However, both strain capacity and work-to-fracture reduced as the strain rate 

increased. The strain capacity decreased from 6.79% to 4.52% for TRC, and 6.66% 

to 5.99% for TRC with short fibers. While the work-to-fracture for TRC decreased 

from 19.28J to 14.77J with a loss of 31%. Nevertheless, the loss of work-to-fracture 

is found to be much smaller after the short fibers added, which slightly decreased 

from 20.95J to 19.01J. This can be attributed to the contribution of short fiber to 

the post-peak responses, that the post peak stresses were maintained at a relatively 

higher level compared to that of TRC samples without short fibers, which can be 

seen in Figure 4.6a and b. As a result, even though the strain capacity dropped 

dramatically, the area under the curve does not reduce a lot because the high level 

of post peak stresses. 

 However, these trends somehow changed when the strain rate increased to 

100 s-1. First of all, the shapes of the curves differ significantly to those obtained 

at lower strain rates. Obvious oscillations of the system at its natural frequency were 

observed for specimens tested at 25 s-1 and 50 s-1 attributed to the interaction 

between specimen and machine. These oscillations decreased as the strain rate 

increased to 100 s-1, as shown in Figure 4.6a and b, which ends up leading to a 

different shape of stress-strain curve. Second difference is found to be the steep 

increase in strain capacity for TRC without short fibers when the strain rate is 100 

s-1, from 4.52% to 10.62%. At the same time, a stage where the load stays but strain 

keeps increasing can be seen on the stress-strain curve, which contributes the most 

to the large strain capacity. This can be attributed to the pull out displacement 
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between fibers and matrix after the first macro crack formed, which was also 

included in the displacement acquired in the data. Moreover, according to the study 

of rate effects on fiber pull-out tests conducted by Boshoff et. al [95], the pull-out 

displacement at peak loads increased more than 100% when the pull-out rates rose 

from 0.01 mm/s to 100 mm/s. This effect can be caused by the higher inertia force 

generated by the acceleration of the actuator, and a higher acceleration is needed to 

excite higher strain rate, which results in a larger pull-out displacement. 

Nevertheless, this phenomenon disappeared with the addition of short fibers, as 

Figure 4.6b shows, which indicates the contribution to enhancing the entire bonding 

mechanism between fiber and matrix. In addition, the average tensile strengths 

dropped from 32.35 MPa to 25.42 MPa while the work-to-fracture decreased from 

19.01J to 14.99 J as the strain rate rose up from 50 s-1 to 100 s-1.  The reduction of 

work-to-fracture can be traced back to the drop in strain capacity. The reason of the 

increase and decrease of average strength as the strain rates increase is not clear. A 

possible explanation could be the interaction between specimens and system, that 

the oscillation is observed to affect the shape of stress-strain curves mostly at 50 s-1, 

as shown in Figure 4.6d. Moreover, the BOP was reached at about 0.1 ms followed 

by a series of vibrations and then leaded a steep drop at 0.4 ms As discussed before, 

the system ringing dominates the response within the time range from 0.1 ms to 0.3 

ms for a system with a natural frequency of 1600 Hz, see Figure 4.5. An interesting 

finding is that the peak stresses happened to be the stresses at BOP, when the 

response is dominated by system ringing. While in contrast to it, the peak stresses 

of the specimens tested at 25 s-1 and 100 s-1 took place around 0.5 ms and 4.4 ms, 
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respectively, when the effect of system ring is negligible. Thus the effect of system 

ringing need to be taken into consideration when comparing the average strength at 

different strain rates. However, when it comes to the TRC specimens, the time when 

peak stresses were reached for all the strain rates are found to be out of the range 

when system ringing affects, which are 4.4 ms, 2.6 ms and 1.3 ms, respectively. 

Based on the discussions, authors would predict that the TRC with addition of short 

fibers is not that sensitive to strain rates.   
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(c) 

 
(d) 

Figure 4.6 Tensile responses of plain mortar with and without short fibers under 

different testing strain rates: (a and c) TRC, (b) and (d) TRC + short fiber 
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4.3.5 Failure modes 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.7 Failure modes of (a) Plain mortar, (b) Plain mortar with micro fiber, (c) 

TRC and (d) TRC with micro fiber 

 Figure 4.7 compares the failure modes (crack pattern) of the four types of 

specimens obtained by the high speed camera: Plain mortar, plain mortar with short 

fiber, TRC, and TRC with short fiber. When the plain mortar specimens were 

subjected to direct tension, only one macro crack formed followed by the failure of 

samples, which is attributed to the brittleness of the material. While with the 

addition of short fibers, specimens yielded to the same failure mode with that of 

plain mortar, which can be traced back to the low volume fraction (0.5%). Multiple 

macro cracks were formed when it comes to TRC samples, showing an obvious 

change in failure mode. Additionally, when short fibers were added to TRC, more 

finer cracks were propagated compared to that of TRC. The type of short fibres 

used mitigated cracking and bridged the small cracks, thus enabling a finer crack 

pattern and smaller crack widths when compared to TRC without short fibres. This 

behaviour can be attributed, to the higher stress levels reached in the specimens 
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with short fibres, which even prior to the development of the first macro-crack, lead 

to the formation of a greater number of micro-cracks over the entire specimen 

volume or length. In the present work micro-cracks are defined as short, very fine 

and not interconnected cracks which do not lead to a considerable decrease in 

stiffness or stress carrying capacity of the matrix. A macro-crack is defined as such 

if it is continuous and spread over a considerable part of the specimen cross-section 

leading to a considerable decrease in stiffness and stress transfer across the crack. 

Beginning from the first-crack stress, these micro-cracks grow to develop the 

macro-cracks. A greater number of finely distributed micro-cracks offer more 

nuclei for macro-crack formation, thus leading to more pronounced multiple 

cracking. On the other hand, as amacro-crack form, the matrix stress in its vicinity 

decreases. Depending on the type and interface properties of the used reinforcement, 

the next crack may not form within a distance corresponding to a threshold value. 

The addition of short fibres causes an additional stress transfer over the macro-

cracks, which results in a less pronounced relaxation of the matrix in the vicinity of 

the cracks. A new crack can form at a smaller distance from an existing one; hence, 

more pronounced multiple cracking can be observed. So far the picture is clear. The 

short fibres bridging mechanism can lead to a non-uniform widening of the formed 

macro-cracks, which has still to be shown by precise measurements of crack 

opening history. However, depending on the orientation of short fibres, volume 

fraction and local bond properties, several cracks may be bridged in such an 

efficient manner that little or no macro-crack opening occurs. Consequently, with 

the increasing strain on the specimen, crack widening is located mainly at scattered 
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macrocracks which are less efficiently bridged by the short fibres. After these 

cracks exceed a specific opening, the load across them is transferred only by the 

textile reinforcement.  
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Table 4-4 Testing results of plain mortar with and without short fibers obtained 

from dynamic tensile testing subjected different strain rates 

Material 
Strain 

Rate 
NO. 

Tensile 

Strength 

Young's 

Modulus 

(Gpa) 

Strain capacity 
Work-to-fracture 

(J) 

Plain 

Mortar 

25 

1 3.6629 0.4767 0.0079 0.2041 

3 5.2603 0.5934 0.0144 0.4001 

4 5.2163 0.4143 0.0096 0.4868 

AVG. 4.7132 0.4948 0.0106 0.3637 

STD. 

DEV 
0.7429 0.0742 0.0027 0.1183 

50 

1 2.4667 0.3494 0.0132 0.3013 

2 5.1653 0.3293 0.0208 0.8025 

4 2.2747 0.1983 0.0145 0.2570 

AVG. 3.3022 0.2923 0.0162 0.4536 

STD. 

DEV 
1.3197 0.0670 0.0033 0.2474 

100 

1 2.2121 0.1459 0.0158 0.2461 

2 2.7692 0.2853 0.0142 0.3204 

5 2.9871 0.3195 0.0121 0.2657 

AVG. 2.6561 0.2502 0.0140 0.2774 

STD. 

DEV 
0.3263 0.0751 0.0015 0.0314 

Plain 

Mortar+

short 

fibers 

25 

3 4.4429 0.9424 0.0194 0.4756 

4 5.6228 1.2465 0.0492 0.4539 

6 6.1326 1.7459 0.0346 0.5879 

AVG. 5.3994 1.3116 0.0344 0.5058 

STD. 

DEV 
0.7077 0.3312 0.0122 0.0587 

50 

3 1.7416 0.2507 0.0244 0.3879 

5 2.7215 0.8839 0.0454 0.7654 

8 1.6655 0.1968 0.0226 0.6198 

AVG. 2.0429 0.4438 0.0308 0.5910 

STD. 

DEV 
0.4809 0.3120 0.0103 0.1555 

100 

1 4.8432 0.7957 0.022 1.1739 

2 1.9431 0.3289 0.0572 0.8001 

4 2.9477 0.303 0.0163 1.0678 

AVG. 3.2447 0.4759 0.0318 1.0139 

STD. 

DEV 
1.2024 0.2264 0.0181 0.1573 
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Table 4-5 Testing results of TRC with and without short fibers obtained from 

dynamic tensile testing subjected different strain rates  

Mat
erial 

Strai
n 

Rate 
NO. 

Tensile 
Streng

th 
σBOP+ 

Strain 
BOP+ 

Young's 
Modulus 

(Gpa) 

Post-
cracking 
stiffness 

(MPa) 

Strain 
capacit

y 

Work
-to-

fractu
re (J) 

TRC 

25 

1 25.53 21.19 0.01 2.08 117.55 0.07 18.61 

4 25.68 16.21 0.01 2.04 213.40 0.07 19.30 

5 29.50 18.31 0.01 1.84 237.42 0.06 19.92 

AVG. 26.91 18.57 0.01 1.99 189.46 0.07 19.28 

STD. 
DEV 

1.84 2.04 0.00 0.11 51.78 0.00 0.54 

50 

1 33.72 32.29 0.01 7.66   0.04 14.27 

2 29.13 30.30 0.01 7.74   0.05 15.81 

5 31.43 26.03 0.01 8.13   0.05 14.24 

AVG. 31.42 29.54 0.01 7.84   0.05 14.77 

STD. 
DEV 

1.87 2.61 0.00 0.20   0.00 0.73 

100 

1 41.40 7.44 0.04     0.12 28.17 

2 31.00 17.03 0.05     0.09 20.90 

3 27.06 16.49 0.05     0.10 22.64 

AVG. 33.15 13.65 0.05     0.11 23.90 

STD. 
DEV 

6.05 4.40 0.01     0.01 3.10 

TRC+
short 
fiber

s 

25 

2 23.71 19.31 0.01 2.03 817.88 0.07 17.29 

3 30.15 22.60 0.01 1.91 899.12 0.06 24.57 

5 27.10 18.53 0.01 1.95 1038.38 0.07 20.99 

AVG. 26.99 20.15 0.01 1.97 918.46 0.07 20.95 

STD. 
DEV 

2.63 1.76 0.00 0.05 91.05 0.00 2.97 

50 

2 32.96 32.92 0.01 11.46   0.05 16.35 

3 36.99 31.92 0.00 10.59   0.07 23.94 

5 27.09 27.05 0.00 16.72   0.06 16.73 

AVG. 32.35 30.63 0.00 12.92   0.06 19.01 

STD. 
DEV 

4.06 2.56 0.00 2.71   0.01 3.49 

100 

1 26.93         0.05 14.81 

4 23.08         0.05 15.57 

5 26.25         0.06 14.59 

  25.42         0.05 14.99 

  1.68         0.01 0.42 
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4.3.6 Image analysis 

 The strain field of plain mortar specimens with and without fibers generated 

by the digital image correlation method is presented in Figure 4.8. As discussed in 

the previous section – failure modes, one macro crack was formed which leads to a 

failure of brittle. On the other hand, the formation of macro crack is attributed to 

highly stress concentration, which is required to store enough energy to create new 

surfaces, from the perspective of fracture mechanics. And this phenomenon of 

concentration was detected by DIC method, see Figure 4.8. According to the legend 

of the contour map, red color stands for maximum strain value while purple is the 

minimum, in this case, given the value of 0. Two bands in red can be seen on the 

deformed images on each side of the crack, followed by a gradually changed color 

path from yellow to blue. While the deformation of over rest area of the specimen 

appears to be extremely small that cannot be detected effectively. The concentration 

of axial strains refers to the concentration of stresses which is straightforward. 

However, it is difficulty to generate the stress field from perspective of 

quantification, due to several reasons including the non-homogeneity material, 

changing in material properties with formation of cracks, etc. Even so, the overall 

strain field was clearly observed and general stress distribution can be described.  
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T = 0 T = 0.1 ms T = 0.2 ms T = 0.3 ms 

(e) 

Figure 4.8 Strain field (axial strain) obtained by DIC method for plain mortar 

specimens with and without short fibers tested at different strain rates: Plain 

mortar at (a) 25 s-1, (b) 50 s-1, (c) 100 s-1, and mortar + fiber at (d) 25 s-1, (e) 50 s-

1. 

 Figure 4.9 shows the strain filed of TRC samples with and without short 

fibers, tested at different strain rates. First of all, similar to mortar, intense 

concentration of strain took place close to cracks distributed over the specimen, see 

Figure 4.8a and c, which again, indicates the concentration of stress. However, the 

area of concentration is relatively larger than that of mortar specimen, which is 

attributed to the formation of multiple cracks instead of one. This phenomenon 

confirms well with the comparison of failure modes of composites before and after 

reinforced by TRC. Secondly, due to the existing of textile fabrics, the distribution 

of stress turns out to be more widely compared to plain mortar with and without 

short fibers. As can be seen in the figure, most area on the surface of specimens are 

in color of green, standing for strains from 1.5% to 3% according to the legend of 



138 

 

each set. While with respect to mortar specimens, most of them are in purple, i.e. 

zero strain, which means the potential properties of concrete were not utilized. The 

difference of strain distribution, directly related to stress distribution, implies the 

enhancement in overall strengthening and bonding, on the other word, behavior of 

tension stiffening, provided by textile fabrics.   
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T = 0.2 ms T = 0.4 ms T = 0.6ms T = 0.8 ms 

(f) 

Figure 4.9 Strain field (axial strain) obtained by DIC method for plain mortar 

specimens with and without short fibers tested at different strain rates: TRC at (a) 

25 s-1, (b) 50 s-1, (c) 100 s-1, and TRC + fiber at (d) 25 s-1, (e) 50 s-1, (f) 100 s-

1. 

4.4 Conclusions 

 High speed tests of four types of specimens were performed at three 

nominal strain rates of 25 s-1, 50 s-1, and 100 s-1 using a servo-hydraulic testing 

machine. Image analysis based on digital image correlation (DIC) method was 
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conducted to further study the failure modes. Following conclusions can be drawn 

from the present work: 

 For tensile tests performed up to 50 s-1, an increase in tensile strength and 

stress and bend-over-point (BOP), and decrease in strain capacity and work-to-

fracture were observed for TRC samples. However, this trend was changed when 

the strain rates increased to 100 s-1, effected by system vibrations at different strain 

rates.  Large pull-out displacement between fibers and matrix was observed at the 

highest strain rates, which results in an increase in strain capacity and work-to-

fracture. But the trend of increasing in tensile strength was still verified. 

The addition of short fibers brought the σBOP and work-to-fracture up for TRC 

specimens, while showing no obvious effect on tensile strength. Moreover, the 

modes of failure became more ductile since the short fibers bridging over micro 

cracks. With respect to the effect of strain rates, TRC with short fibers did not show 

a firm trend as the strain rates increased. 

 DIC was a powerful tool to determine the strain field in cement composites. 

The analysis results on different types of specimens clearly showed the contribution 

to the post-peak responses with the addition of textile fabrics, by identifying the 

effect and location of strain concentration and overall distribution.  

 

 

 

 

 



142 

 

References 

[1]  Post, D. Moiré Interferometry at VPI and SU. ExperimentalMechanics, 

1983, 23(2), 203-210. 

 

[2]  Fottenburg, W. G. Some Applications of Holographic Interferometry. 

Experimental Mechanics, 1969, 8, 281-285. 

 

[3] Wang, Y. Y., Chen, D. J. and Chiang, F. P. Material testing by computer 

aided speckle interferometry. Experimental Techniques, 1993, 17(5), 30-32. 

 

[4]  Po-Chih Hung and A. S. Voloshin, (2003), “In-plane strain measurement by 

digital image correlation”, J. Braz. Soc. Mech. Sci. & Eng. vol.25 no.3 Rio 

de Janeiro July/Sept. 2003. 

 

[5]  Bastawros, A. F. and Voloshin, A. S. Thermal Strain Measurements in 

Electronic Packages through Fractional Fringe Moiré Interferometry. 

Journal of Electronic Packaging, 1990, 112(4), 303-308. 

 

[6] Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F. and McNeil, S. 

R. Determination of Displacements Using an Improved Digital Correlation 

Method. Image and Vision Computating, 1983, 1(3), 133-139. 

 

[7] Sutton, M. A., Cheng, M. Q., Peters, W. H., Chao Y. J. and McNeill, S. R. 

Application of an Optimized Digital Correlation Method to Planar 

Deformation Analysis. Image and Vision Computing, 1986, 4(3), 143-151. 

 

[8]  Sutton, M. A., McNeill, S. R., Jang, J. and Babai, M. Effects of Subpixel 

Image Restoration on Digital Correlation Error. Journal of Optical 

Engineering, 1988, 27(10), 870-877. 

 

[9]  Sutton, M. A., Turner, J. L., Bruck, H. A. and Chae, T. A. Full-field 

Representation of Discretely Sampled Surface Deformation for 

Displacement and Strain Analysis. Experimental Mechanics, 1991, 31(2), 

168-177. 

 

[10] Bruck, H. A., McNeil, S. R., Sutton, M. A. and Peters, W. H. Digital Image 

Correlation Using Newton-Raphson Method of Partial Differential 

Correction. Experimental Mechanics, 1989, 29(3), 261-267. 

 

[11]  Tung, S., Shih, M., Kuo, J., (2010), “Application of digital image 

correlation for anisotropic plastic deformation during tension testing”, 

Optics and Lasers in Engineering 48(2010), 636-641 

                                                 



143 

 

                                                                                                                                     

[12] F.M. Sánchez-Arévalo, T. García-Fernández, G. Pulos, and M. Villagrán-

Muniz, (2009), “Use of digital speckle pattern correlation for strain 

measurements in a CuAlBe shape memory alloy”, MATERIALS 

CHARACTERIZATION, 60 (2009) 775–782. 

 

[13]  Stephen R. Heinz, Jeffrey S. Wiggins, (2010), “Uniaxial compression 

analysis of glassy polymer networks using digital image correlation”, 

Polymer Testing 29 (2010) 925–932 

 

[14]  S.Sozen, and M.Guler, (2011), “Determination of displacement 

distributions in bolted steel tension elements using digital image 

techniques”, Optics and Lasers in Engineering 49 (2011) 1428–1435. 

 

[15]  X.F. Yao, L.B. Meng, J.C. Jin, H.Y. Yeh, (2005), “Full-field deformation 

measurement of fiber composite pressure vessel using digital speckle 

correlation method”, Polymer Testing 24 (2005) 245–251. 

 

[16]  Ghiassi, B., Xavier, J., Oliveira, D.V., Lourenço, P.B., “Application of 

Digital Image         Correlation in Investigating the Bond Between FRP and 

Masonry”, Composite Structures (2013), doi: 

http://dx.doi.org/10.1016/j.compstruct.2013.06.024 

 

[17]  R.L. VijayaKumar, M.R.Bhat,C.R.L.Murthy, (2013), “Evaluation of 

kissing bond in composite adhesive lap joints using digital image 

correlation”, International Journal of Adhesion & Adhesives 42 (2013) 60–

68.  

 

[18]  S. Giancane*, F.W. Panella, R. Nobile, V. Dattoma, (2010), “Fatigue 

damage evolution of fiber reinforced composites with digital image 

correlation analysis”, Procedia Engineering 2 (2010) 1307-1315.  

 

[19]  François Hild, Stéphane Roux, Néstor Guerrero, Maria Eugenia Marante, 

Julio Flórez-López, (2011), “Calibration of constitutive models of steel 

beams subject to local buckling by using digital image correlation”, 

European Journal of Mechanics A/Solids 30 (2011) 1-10. 

 

[20]  Simon Rouchier, Geneviève Foray, Nathalie Godin, Monika Woloszyn, 

Jean-Jacques Roux, (2013), “Damage monitoring in fibre reinforced mortar 

by combined digital image correlation and acoustic emission”, Construction 

and Building Materials 38 (2013) 371–380. 

 

[21]  Cristina Goidescu, Hélène Welemane, Christian Garnier, Marina Fazzini, 

Romain Brault, Elodie Pé ronnet, Sébastien Mistou, (2013), “Damage 

investigation in CFRP composites using full-field measurement techniques: 

http://dx.doi.org/10.1016/j.compstruct.2013.06.024


144 

 

                                                                                                                                     

Combination of digital image stereo-correlation, infrared thermography and 

X-ray tomography”, Composites: Part B 48 (2013) 95–105. 

 

[22]  Yihong He, Andrew Makeev, Brian Shonkwiler, (2012), “Characterization 

of nonlinear shear properties for composite materials using digital image 

correlation and finite element analysis”, Composites Science and 

Technology 73 (2012) 64–71. 

 

[23] H. Koerber, J. Xavier, P.P. Camanho, (2010), “High strain rate 

characterisation of unidirectional carbon-epoxy IM7-8552 in transverse 

compression and in-plane shear using digital image correlation”, Mechanics 

of Materials 42 (2010) 1004–1019.  

 

[24]  Flavio de Andrade Silva, Deju Zhu, Barzin Mobasher, Chote Soranakom, 

Romildo Dias Toledo Filho, (2010), “High speed tensile behavior of sisal 

fiber cement composites”, Materials Science and Engineering A 527 (2010) 

544–552.  

 

[25] B. Mobasher, S.D. Rajan, Image Processing Applications for the Study of 

Displacements and Cracking in Composite Materials, American Society of 

Civil Engineers, 2004. 

 

[26]  Sutton A, Jose Orteu Jean, Hubert W Schreier. Image correlation for shape 

motion and deformation measurements, basic concepts, theory and applica- 

tions. 1st ed. New York: Springer publications; 2009. 

 

[27]  Li, V.C., Wang, S., Wu, C.  (2001) “Tensile-Strain hardening behavior of 

polyvinyl alcohol engineered cementitious composites (PVA-ECC).” ACI 

Materials Journal, 98, 483-492. 

 

[28] Mechtcherine, V., Schulze, J. (2005) “Ultra-ductile concrete – material 

design concept and testing.”  CPI Concrete Plant International, (5), 88-98.   

 

[29]  Li, V.C., Wang, S., Wu, C.  (2001) “Tensile-Strain hardening behavior of 

polyvinyl alcohol engineered cementitious composites (PVA-ECC).” ACI 

Materials Journal, 98, 483-492. 

 

[30]  Lepech, M. and Li, V.C. (2005) “Design and Field Demonstration of ECC 

Link Slabs for Jointless Bridge Decks.” In: 3rd International Conference on 

Construction Materials: Performance, Innovations and Structural 

Implications, Vancouver, British Columbia, 2005. 

 

[31] Li, V.C. (2004) “High Performance Fiber Reinforced Cementitious 

Composites as Durable Material for Concrete Structure Repair.” 

International Journal for Restoration, 10 (2), 163–180. 



145 

 

                                                                                                                                     

 

[32]  Rokugo, H. (2005) “Applications of Strain Hardening Cementitious 

Composites with multiple cracks in Japan.” In: Mechtcherine, V. (Ed.) 

Ultra-ductile concrete with short fibre – Development, Testing, 

Applications, Verlag, 121-133. 

 

[33]  Kim, S., Yun, H., (2011), “Crack-damage mitigation and flexural behavior 

of flexure-dominant reinforced concrete beams repaired with strain-

hardening cement-based composite”, Composites: Part B 42(2011), 645-

656. 

 

[34]  Banthia, N., Bindiganavile, V., Mindess, S. (2004) “Impact and blast 

protection with fiber reinforced concrete.” In: 6th Rilem Symposium on 

Fiber Reinforced Concretes – BEFIB,  Varenna, Italy, 2004, 31-44. 

 

[35]  Maalej, M., Quek, S.T., Zhang, J. (2005) “Behaviour of hybrid-fibre 

engineered cemetitious composites subjected to dynamic tensile loading 

and projectile impact.” Journal of Materials in Civil Engineering, 17 (2), 

143–152. 

 

[36]  Yang, E., Li, V.C. (2005) “Rate dependence in engineered cementitious 

composites.” In: HPFRCC RILEM Conference, Hawaii, 2005. 

 

[37]  Douglas, K.S., Billington, S.L. (2005) “Rate dependencies in high-

performance fibre reinforced cement-based composites for seismic 

application.” In: HPFRCC RILEM Conference, Hawaii, 2005. 

 

[38]  Boshoff, W.P., Mechtcherine, V., van Zijl, G.P.A.G. (2009) “Characterising 

the time-dependant behaviour on the single fibre level of SHCC: Part 2: The 

rate effects on fibre pull-out tests.” Cement and Concrete Research, 39 (9), 

787-797. 

 

[39] Mechtcherine, V.  Silva, F., Butler, M., Zhu, D., Mobasher, B., Gao, S. L., 

Mäder, E., “Mechanical behaviour of strain-hardening cement-based 

composites (SHCC) under low and high tensile strain rates”,  Journal of 

Advanced Concrete Technology, Vol. 9 No. 1, 51-62. 

(2011).  doi:10.3151/jact.9.51  

 

[40]  Mechtcherinea, V., Silva, F.A., Müller, S., Jun, P., Filho, R.D.T., (2012), 

“Coupled strain rate and temperature effects on the tensile behavior of 

strain-hardening cement-based composites (SHCC) with PVA fibers”, 

Cement and Concrete Research, 42(2012), 1417-1427. 

 



146 

 

                                                                                                                                     

[41] Naaman, E. A., Namur, G. G., Alwan, J. M., and Najm, H. S. (1991a). 

“Fiber Pullout and Bond Slip. I: Analytical Study.” J. of Structural Eng., 

117, 2769-2790. 

 

[42]  Naaman, E. A., Namur, G. G. Alwan, J. M. and Najm, H. S. (1991b). “Fiber 

Pullout and Bond Slip. II: Experimental Validation” J. of Structural Eng., 

117, 2791-2800. 

[43]  Sueki, S., Soranakom, C., Mobasher, B., and Peled, A. (2007). ”Pullout-

Slip Response of Fabrics Embedded in a Cement Paste Matrix.” J. Mater. 

Civ. Eng., 19(9), 718–727. 

 

[44] Gupta P. and Banthia N. (2000). Fiber Reinforced Wet-mix Shotcrete under 

Impact, J. of Materials in Civil Engineering (ASCE), pp. 81-90. 

 

[45] Banthia, N., Bindiganavile, V., and Mindess, S. (2004). Impact Blast 

Protection with Fiber Reinforced Concrete, Proceedings of RILEM 

Conference on Fiber reinforced Concrete, BEFIB, pp. 31-44. 

 

[46] Xiao, X.R. (2008). Dynamic Tensile Testing of Plastic Materials. Polymer 

Testing, 27, 164-178. 

 

[47] Xu, H., Mindess, S., and Duca, I.J. (2004). Performance of Plain and Fiber 

Reinforced Concrete Panels Subjected to Low Velocity Impact Loading, 6th 

RILEM Symposium on Fiber-Reinforced Concretes (FRC), BEFIB, 

Varenna, Italy, pp. 1257-1268. 

 

[48] Zhang, J., Maalej, M., Quek, S.T., Teo, Y.Y. (2005). Drop Weight Impact 

on Hybrid-Fiber ECC Blast / Shelter Panels. Proceedings of Third 

International Conference on Construction Materials: Performance, 

Innovation and Structural Applications, Vancouver, Canada. 

 

[49] Bharatkumar, B.H. and Shah, S.P. (2004), Impact Resistance of Hybrid 

Fiber Reinforced Mortar. International RILEM Symposium on Concrete 

Science and Engineering: A Tribute to Arnon Bentur, e-ISBN: 2912143926, 

RILEM Publication SARL. 

 

[50]  Meyers, M.A. (1994). Dynamic Behavior of Materials, John Wiley & Sons, 

New York. 

 

[51]  Nicholas, T. (1981).  Tensile Testing of Material at High Rates of Strain. 

Experimental Mechanics, 21, 177-185. 

 

[52]  Kenneth, G. H. (1966). Influence of Strain Rate on Mechanical Properties 

of 6061.T6 Aluminum under Uniaxial and Biaxial States of Stress. 

Experimental Mechanics, 6(4), 204-211. 



147 

 

                                                                                                                                     

 

[53]  Zabotkin, K., O’Toole, B. and Trabia, M. (2003). Identification of the 

Dynamic Properties of Materials under Moderate Strain Rates. 16th ASCE 

Engineering Mechanics Conference. Seattle, WA. 

 

[54]  Bastias, P.C., Kulkarni, S.M., Kim, K.Y. and Gargas, J. (1996). Non-

contacting Strain Measurements during Tensile Tests. Experimental  

Mechanics, 78, 78–83. 

 

[55]  Bruce, D.M., Matlock, D.K., Speer, J.G. and De, A.K. (2004), Assessment 

of the Strain-Rate Dependent Tensile Properties of Automotive Sheet Steels. 

SAE, 0507. 

 

[56]  Hill, S. and Sjöblom, P. (1998). Practical Considerations in Determining 

High Strain Rate Matererial Properties, SAE, 981136. 

 

[57]  Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., and Baptiste, D. (2005). 

Experimental Methodology for High Strain Rates Tensile Behavior 

Analysis of Polymer Matrix Composites. Composite Science Technology, 

65, 2174–2188. 

 

[58]  Hill, S.I. (2004). Standardization of High Strain Rate Test Techniques for 

Automotive Plastics Project, UDRI: Structural Test Group, UDR-TR-2004-

00016. 

 

[59]  Society of Automotive Engineers (SAE), (2006). High Strain Rate Testing 

of Polymers. J2749. 

 

[60]  Borsutzki, M., Cornette, D., Kuriyama, Y., Uenishi, A., Yan, B. and 

Opbroek, E. (2003). Recommended Practice for Dynamic Tensile Testing 

for Sheet Steels. International Iron and Steel Institute: High Strain Rate 

Experts Group. 

 

[61]  ISO. (2003). Plastics—Determination of Tensile Properties at High Strain 

Rates. a draft of ISO/CD 18872. 

 

[62] Häuβler-Combe, U., Jesse, F., Curbach, M. (2004). Textile Reinforced 

Composites – Oerview, Experimental and Theoretical Investigations. Proc., 

5th International Conference on Fracture Mechanics of Concrete and 

Concrete Structures, Ia-FraMCos 204, Vail, Colorado, pp.749-756. 

[63] Peled, A., and Mobasher, B. (2007). Tensile Behavior of Fabric Cement-

Based Composites: Pultruded and Cast, ASCE, J. of Materials in Civil 

Engineering, 19(4), 340-348. 

 



148 

 

                                                                                                                                     

[64] Mobasher, B., Peled, A., and Pahilajani, J. (2006). Distributed Cracking and 

Stiffness Degradation in Fabric-Cement Composites, Materials & Structure 

(RILEM) J. 39(3), 317-331. 

 

[65] Peled, A. and Bentur, A. (2003). Fabric Structure and Its Reinforcing 

Efficiency in Textile Reinforced Cement Composites, Composites, Part A, 

34, 107-118. 

 

[66] Kruger, M. Ozbolt, J., and Reinhardt, H.W. (2003). A New 3D Discrete 

Bond Model to Study the Influence of Bond on Structural Performance of 

Thin Reinforced and Prestressed Concrete Plates." Proc., High Performance 

Fiber Reinforced Cement Composites (HPFRCC4), RILEM, Ann Arbor, 

MI, pp.49-63. 

 

[67] Peled, A. (2007). Textiles as Reinforcements for Cement Composites under 

Impact Loading, Workshop on High Performance Fiber Reinforced Cement 

Composites (RILEM) HPFRCC-5, (Eds. H.W. Reinhardt and A.E. 

Naaman), Mainz, Germany, July 10-13, pp.455-462.  

 

[68] Butnariu, E., Peled, A., and Mobasher, B. (2006). Impact Behavior of 

Fabric-Cement Based Composites, Proceedings of the 8th International 

Symposium on Brittle Matrix Composites (BMC8) in Warsaw, October 23-

25, pp.293-302. 

 

[69]  Zhu, D., Gencoglu, M., Mobasher, B. (2009). Low Velocity Impact 

Behavior of AR Glass Fabric Reinforced Cement Composites in Flexure. 

Cement and Concrete Composites, 31(6), 379-387. 

 

[70] Farsi, D. B., Nemes, J. A. and Bolduc, M. (2006). Study of Parameters 

Affecting the Strength of Yarns. Journal of Physics IV, 134, 1183-1188. 

 

[71]  Wagner, H.D., Aronhime, J. and Marom, G. (1990). Dependence of Tensile 

Strength of Pitch-based Carbon and Para-aramid Fibres on the Rate of Strain. 

Proceeding of the Royal Society of London, A428, 493-510. 

 

[72]  Amaniampong, G. and Burgoyne, C. J. (1994). Statistical Variability in the 

Strength and Failure Strain of Aramid and Polyester Yarns. Journal of 

Material Science, 29, 5141-5152. 

[73]  Xia, Y., and Wang, Y. (1999). The Effects of Strain Rate on the Mechanical 

Behaviour of Kevlar Fibre Bundles: An experimental and Theoretical Study. 

Composites Part A, 29A, 1411-1415. 

 

[74]  Cheng, M., Chen W., Weerasooriya, T. (2005). Mechanical Properties of 

Kevar KM2 Single Fiber. Journal of Engineering Materials and Technology, 

127, 197-204. 



149 

 

                                                                                                                                     

 

[75]  Zhu, D., Mobasher, B., Juan Ermi, Saurabh Bansal, Rajan, S.D., Strain Rate 

and Gage Length Effects on Tensile Behavior of Kevlar 49 Single Yarn. 

Composites: Part A 43 (2012) 2021–2029, Composites Part A, 2012. 

 

[76]  Kravaev, P., Janetzko, S.,  Gries, T.,  Kang, B.,  Brameshuber, W., Zell, M., 

Hegger, J., “Commingling Yarns for Reinforcement of Concrete”, 4th 

Colloquium on Textile Reinforced Structures (CTRS4), 2009. 

 

[77]  C. Soranakom, Multi scale modeling of fiber and fabric reinforced cement 

based composites, PhD dissertation, Arizona State University, 2008. 

 

[78]  Xiao, X.R. (2008). Dynamic Tensile Testing of Plastic Materials. Polymer 

Testing, 27, 164-178. 

 

[79]  Birkimer, D.L., and Lindemann, R. (1971), “ Dynamic tensile strength of 

concrete materials,” Journal of the American Concrete Institute, 68, 47-49. 

[80]  Oh, B. H. (1987), “Behavior of concrete under dynamic tensile loads,” ACI 

Materials Journal, 84, 8-13. 

 

[81]  Rossi, P., Van Mier, J.G.M., Toutlemonde, F., Le Maou, F., and Boulay, C. 

(1994), “Effect of loading rate on the strength of concrete subjected to 

uniaxial tension,” Materials Structure, 27, 260–264. 

 

[82] Cadoni, E., Labibes, K., Albertini, C., Berra., M., and Giangrasso, M. 

(2001), “Strain-rate effect on the tensile behaviour of concrete at different 

relative humidity levels,” Materials and Structure, 34,21–26. 

 

[83]  Malvar, L.J., and Ross, C.A. (1998), “Review of static and dynamic 

properties of concrete in tension,”ACI Materials Journal, 95, 735–739. 

 

[84] Zhu, D., Peled, A., and Mobasher, B. (2011), “Dynamic tensile testing of 

fabric–cement composites,”Construction and Building Materials, 25, 

385–395. 

[85]  Kim, D.J., El-Tawil, S., and Naaman, A.E. (2009), “Rate-dependent 

tensile behavior of high performance fiber reinforced cementitious 

composites,” Materials and Structure, 42, 399–414. 

 

[86] Zhang, J., Maalej, M., Quek, S.T., and Teo, Y.Y. “Drop Weight Impact on 

Hybrid-Fiber ECC Blast/Shelter Panels. ”  Proceedings of Third 

International Conference on Construction Materials: Performance, 

Innovation and Structural Applications, Vancouver, Canada, 2005. 

 



150 

 

                                                                                                                                     

[87] Silva, F.A, Butler, M., Mechtcherine, Viktor., Zhu, D. and Mobasher, B. 

(2010), “Strain rate effect on the tensile behavior of textile-reinforced 

concrete under static and dynamic loading,” Materials Science and 

Engineering A, 528(2011), 1727-1734. 

 

[88] Zhu, D., Gencoglu, M., and Mobasher, B. (2009), “Low velocity impact 

behavior of AR glass fabric reinforced cement composites in flexure,” 

Cement and Concrete Composites, 31(6), 379–387. 

 

[89] Aveston, J., Cooper, G. A., and Kelly, A. (1971). “The Properties Fibre 

Composites,”Conference Proceedings of the National Physical Laboratory, 

IPC Science and Technology Press Ltd., Guildford, pp. 15–26. 

 

[90] Butler M, Hempel R, Schiekel M. The influence of short glass fibres on the 

working capacity of textile reinforced concrete. In: Hegger J,Brameshuber 

W,Will N, editors. Textile reinforced concrete: Proc. of the 1st International 

RILEM Symposium. Aachen; 2006. p. 45–54. 

 

[91] Hinzen M, Brameshuber W. Influence of short fibres on strength, ductility 

and crack development of textile reinforced concrete. In: Reinhardt HW, 

Naaman AE, editors. High performance fibre reinforced cement composites 

(HPFRCC5). Proc. of the 5th International RILEM workshop. Mainz; 2007. 

p.105–12. 

 

[92] Hamoush, S., Abu-Lebdeh, T. and Cummins, T., “Deflection behavior of 

concrete beams reinforced with PVA micro-fibers”, Construction and 

Building Materials, 24(2010), 2285-2293. 

 

[93] M. Hinzen, W. Brameshuber, in: M. Curbach, F. Jesse (Eds.), Textilbeton 

Theorie und Praxis, 4th Colloquium on Textile Reinforced Structures 

(CSTR4), 2009, pp. 261–272. 

[94] R. Barhum, V.Mechtcherine, in: B.H. Oh, et al. (Eds.), “Influence of Textile 

Alignment, Moisture and Shape of Specimens on First Crack Load and 

Load Bearing Behavior of Textile Reinforced Concrete Containing Short 

Fibers ” Fracture Mechanics of Concrete and Concrete Structures, Korea 

Concrete Institute, 2010, pp. 1498–1503. 

 

[95] Boshoff, W.P., Mechtcherine, V. and Zijl, G., “Characterising the time-

dependant behaviour on the single fibre level of SHCC: Part 2: The rate 

effects on fibre pull-out tests”, Cement and Concrete Research, 39(2009), 

787-797. 


