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ABSTRACT  

   

When people look for things in their environment they use a target template – a 

mental representation of the object they are attempting to locate – to guide their attention 

around a scene and to assess incoming visual input to determine if they have found that 

for which they are searching.  However, unlike laboratory experiments, searchers in the 

real-world rarely have perfect knowledge regarding the appearance of their target.  In five 

experiments (with nearly 1,000 participants), we examined how the precision of the 

observer’s template affects their ability to conduct visual search.  Specifically, we 

simulated template imprecision in two ways: First, by contaminating our searchers’ 

templates with inaccurate features, and second, by introducing extraneous features to the 

template that were unhelpful.  In those experiments we recorded the eye movements of 

our searchers in order to make inferences regarding the extent to which attentional 

guidance and decision-making are hindered by template imprecision.  We also examined 

a third way in which templates may become imprecise; namely, that they may deteriorate 

over time.  Overall, our findings support a dual-function theory of the target template, 

and highlight the importance of examining template precision in future research. 
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1 

 The world is replete with information of such richness and complexity that our 

visual systems are subjected to an overload of information.  Simply put, it is impossible 

to simultaneously process all of the information we are confronted with on a moment to 

moment basis.  Consider the simple act of sitting idly in a coffee shop, enjoying a drink.  

As you lazily take in your surroundings, your eyes are flooded with different colors, 

shapes, textures and contours.  You spot brightly colored boxes of tea high on a shelf, 

round reclining chairs in your periphery, the smooth surface of a linoleum floor, and the 

sharp edges of a table that you’ll need to avoid on your way out.  All the raw information 

that is absorbed by your retina is assembled in your cortex in such a way that you 

perceive not features, but coherent objects.  You don’t see “squat, opaque, and round”, 

you observe your coffee mug.  “Shiny, silver, and cylindrical” is not a collection of 

features that your eyes passively absorb; rather, it is the container of milk that you’re 

looking for on the condiment bar. 

 Despite the efficiency with which our visual system constructs these features into 

meaningful objects, we are limited in the extent to which this information can be 

processed at any given point in time.  Largely, the limitation comes from the physiology 

of our retinas.  The distribution of high-resolution cone photoreceptors is densely 

centered in the small fovea of our eyes.  As such, we process visual scenes through a 

series of alternating fixations and saccadic eye movements.  Over time, informative 

regions of space are briefly brought into focus on the fovea, and are stored in visual-short 

term memory, giving rise to the illusion that we have a static representation of our world.  

Each waking moment, our eyes dart around – usually three to four times per second – in 

search of objects of interest, familiar faces, or items for which we are searching.  Chaotic 
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as this behavior may seem, however, our eye movements are not simply random.  We are 

not passive observers of the world; we are active seekers of information.  And the way in 

which we examine a scene is highly governed by the low-level, visual characteristics of 

the environment, our experience viewing similar scenes in the past, and by the mental 

representation of that which we are seeking out.  

Guidance of attention by bottom-up and top-down information. 

 The factors that guide visual attention can broadly be categorized as either 

“bottom-up” or “top-down” information sources.  Under normal circumstances, 

processing seems to proceed from the “middle-out” (Kinchla & Wolfe, 1979).  That is, 

both sources of information seem to be acted upon in concert.  At times, one type of 

information may dominate the other, such as when a color singleton “pops out” from a 

display, despite whatever else you may be searching for (cf. Theeuwes & van der Burg, 

2011).  For instance, as a passenger in your friend’s car, it is your job to be on the lookout 

for a landmark that signals where to make the next turn, yet you may find your attention 

being inadvertently captured by a changing stoplight. 

 When people look for things in their environment, they make use of three primary 

sources of information: low-level salience, scene context, and target template information 

(Malcolm & Henderson, 2010).  Low-level salience is a bottom-up information source 

that is used to select regions of contrast in a scene, such as changes in color, luminance, 

or intensity (Itti & Koch, 2000, 2001; Koch & Ullman, 1985).  By contrast, higher-level 

(i.e., top-down) contextual knowledge is used to identify regions of a scene that are 

informative, or that have a high likelihood of containing the target object (Castelhano & 

Henderson, 2007; Neider & Zelinsky, 2006).  Finally, the searcher’s target “template” is 
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used to match information in the scene to a stored representation of the target in visual 

working memory (VWM).  Regions that share features with the template are selected for 

fixation (Rao et al., 2002; Zelinsky, 2008) and generally, the more similar an item is to 

the target, the more likely it is that that item will be selected for fixation (Eckstein et al., 

2007; Findlay, 1997; Tavassoli et al., 2009; Becker, 2011; Olivers, Meijer & Theeuwes, 

2006; Mannan et al., 2010).  Returning to the example of searching for a milk canister at 

a coffee shop, low-level salience information is used to decompose the store into regions 

of coherence, contextual knowledge is what makes you more likely to look on the 

condiment bar than the merchandise display shelves, and your target template is what 

helps you direct your eyes to regions of space that potentially match your target, and to 

ascertain if the item you are currently fixating is in fact that which you seek. 

 Early theories of visual search, such as Feature Integration Theory (or FIT; 

Treisman & Gelade, 1980), focused largely on how the low level characteristics of a 

scene influence one’s ability to find a target (see also attentional engagement theory; 

Duncan & Humphreys, 1989, 1992; Desimone & Duncan, 1995).  Search is easy, for 

instance, when you are looking for a color “singleton”, such as a red letter among 

distracting green letters.  Search becomes more difficult when features have to be 

combined to locate a conjunction stimulus, as when searching for a red X among red Os 

and green Xs.  A key weakness of strictly bottom-up approaches to search, however, is 

that they constrain search behavior to a strict dichotomy of efficiency.  That is, either 

search is easy, and therefore conducted by a parallel, pre-attentive processing mechanism, 

or it is difficult, in which case it involves a serial mechanism that maneuvers focal 

attention.  Clearly, however, the reality is that search behavior can fall along a continuum 
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of efficiency, depending on the lower level characteristics of a scene, and the top-down 

attentional set of the observer (Wolfe, 1998). 

 Although bottom-up information is undoubtedly necessary for basic visual 

processing (see Wolfe & Horowitz, 2004), it seems that relative to the influence of 

higher-level knowledge, the guidance of attention by lower level features has a rather 

limited utility (see Einhäuser et al., 2008; Henderson et al., 2007, 2009; Tatler & Vincent, 

2008, 2009).  For instance, it has been shown that top-down attentional control is entailed 

even in simple feature search tasks, which have been traditionally viewed as requiring 

little overt attention (Wolfe et al., 2003).  People can demonstrate remarkable feats of 

top-down attentional control: When only a subset of items are ever pertinent in a visual 

search task, they can learn to restrict their attention to the relevant stimuli (Kunar, 

Flusberg & Wolfe, 2008b; Frings, Wentura, & Wühr, 2012), and can learn the features of 

old distractors in order to successfully guide attention away from them (Yang, Chen & 

Zelinsky, 2009).  The “preview benefit” – the finding that search is facilitated by a brief 

preview of all or part of a display prior to visual search – shows that people can prioritize 

the selection of new stimuli via the top-down inhibition of previously seen items (Watson 

et al., 1997, 2000, 2003).  In essence, top-down guidance works in two ways: First, by 

biasing attention towards features or regions of space that are important, and second, by 

biasing attention away from features that are undesirable (or objects that have already 

been inspected; Al-Aidroos et al., 2012; Arita, Carlisle, & Woodman, in press; Woodman 

& Luck, 2007).   

It has even been shown that top-down guidance is strong enough to override the 

capture of attention by low-level salience.  Chen and Zelinsky (2006) had people search 
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for a target (a picture of a real-world object) with or without a preview.  In some 

conditions, a color singleton was present; without a preview, the singleton attracted 

attention, as indexed by initial saccades directed to that item.  However, when given top-

down context in the form of a preview, reaction times quickened, and more initial eye 

movements were guided to the target (rather than the singleton), suggesting that the top-

down set overrode the bottom-up salience signal.  It is unsurprising then, that more 

recent, successful models of visual search – such as the Guided Search model (Wolfe et 

al., 1989, 1994, 1996, 2007; Palmer et al., 2011) – incorporate top-down guidance as a 

key mechanism controlling attention. 

It is reasonable to assume that an optimal system would make use of all available 

information sources in order to guide search.  Indeed, recent computational models – 

such as the contextual guidance model (Torralba et al., 2006) and the Saliency Using 

Natural statistics model (SUN; Kanan et al., 2009) – have been developed to model the 

fixation positions of real observers (unlike Guided Search, which strictly models RTs), 

using one or more types of guiding information (see also Ehringer et al., 2009).  Both of 

these models have shown that combining two sources of information (relative to, for 

instance, using only salience-driven guidance) significantly improves the model’s ability 

to predict human fixation locations.  This suggests that humans are using both types of 

information to guide their attention, even if one is more beneficial than the other.  Taken 

together, the conclusion is clear: Our eyes are not slaves to the characteristics of the 

environment through which we are searching, but are instead guided by our previous 

experiences, and by the properties of the template we hold in memory.   
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The target template. 

The idea of a target template was first proposed not by psychologists, but by 

ethologists, who were studying the feeding behavior of birds.  When birds feed on 

insects, they tend to sample the common bugs disproportionately often, suggesting that 

their behavior is biased in favor of target features that previously resulted in a successful 

meal (Tinbergen, 1960; Pietrewicz & Kamil, 1979; Bond, 1983).  In the human literature, 

the “target template” (also referred to as the “attentional template” or “search template”) 

refers to the process whereby a person holds in visual working memory a representation 

of the to-be-located item, and uses this representation to facilitate the detection of the 

target (Wolfe et al., 2004; Malcolm & Henderson, 2009; Bravo & Farid, 2009, 2012; 

Vickery et al., 2005). 

 A considerable amount of work has been conducted with the aim of finding 

neuroscientific evidence of template use.  Much of this work has been conducted with 

primates (see Evans et al., 2011; Chelazzi et al., 1993, 1998).  Activation of the template 

involves neurons in the prefrontal cortex (PFC) that select and maintain behavioral goals 

(such as finding a target among distracting nontargets).  These neurons project to 

inferotemporal (IT) cortex, where visual objects are believed to be represented (Mruczek 

& Sheinberg, 2007; Peelen, Fei-Fei, & Kastner, 2009).  Importantly, the top-down input 

from PFC enhances the gain in IT neurons that are selective for the target object; in 

essence, the PFC appears to tell IT cortex which representations to favor, and which to 

inhibit (Stokes et al., 2009; Zhang et al., 2011).  Moreover, this bias may be relayed to 

V4, or other lower-level visual areas that encode basic stimulus features (Hon et al., 

2009).  Neurons in V4 are sensitive to stimulation in one specific region of the retina: 
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The cell’s “receptive field”.  Beyond spatial selectivity, however, these cells also tend to 

have a preferred color and/or shape that they selectively fire in response to (see Wolfe, 

2005, for an interesting treatment of this topic).   

In a study using macaque monkeys, Bichot, Rossi, and Desimone (2005) recorded 

from neurons in V4.  On trials where the target was (for instance) red, they found that 

red-selective neurons increased their firing rate even before the target had become the 

object of attention (i.e., before the monkey prepared to make an eye movement to the 

target location).  Moreover, other neurons that shared selectivity for the target feature 

(e.g., “red”) began to synchronize their activity, as if they were preparing to respond 

(more vigorously) to the presence of that feature.  More recently, Eimer, Kiss and 

Nicholas (2011) used event-related potentials (ERP) to study the benefits of advanced 

preparation in visual search, with human participants.  Their results suggested that 

advanced preparation (i.e., the use of a target template) accelerates target selection and 

resolves attentional competition by preventing irrelevant information from attracting 

attention or entering working memory.  Taken together, these findings suggest an 

interesting mechanism by which a target template may guide visual search behavior: 

Implementation of the template enhances the firing of cells that typically respond to the 

features of interest, and may inhibit cells that typically respond to irrelevant or unhelpful 

ones (Desimone & Duncan, 1995; Usher & Neiber, 1996). 

The ability to guide attention toward task-relevant objects (i.e., those that 

resemble the target) is critically dependent on the use of working memory (Soto et al., 

2005, 2008, Kang et al., 2011), which allows the searcher to “load” information into 

VWM in as little as 50 ms (Vogel, Woodman & Luck, 2006).  The storage capacity of 
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VWM is thought to be 3-4 objects (Cowan, 2001; Luck, 2008); an “object” does not 

mean a single feature, but rather, a perceptual whole that may be constructed from the 

conjunction of several features simultaneously (Luck & Vogel, 1997).  At present, there 

is a debate regarding the extent to which attention can be guided by multiple search 

templates in tandem.  By one account, only a single object can remain in a fully active 

state at any given time (McElree, 2001; Oberauer, 2002), and when a searcher uses 

multiple templates, s/he alternates between them, using only one to guide attention at any 

given moment (Olivers et al., 2011; Huang & Pashler, 2007).  By another account, the 

visual system can store search representations within the visual system itself (e.g., within 

primary visual cortex), which should make it possible for multiple VWM representations 

to control attention simultaneously (cf. Stroud et al., 2011, 2012).   

A recent article by Beck, Hollingworth and Luck (2012) shines light on this 

debate.  They had participants search for Landolt Cs with gaps on the top or bottom 

(distractors were oriented with gaps to the left or right; participants indicated the location 

of the gap using a response box).  In some conditions, people were induced to searching 

via a single template at a time: They were shown two colors (e.g., red and blue), and on 

80% of the trials, the target appeared in the former color, and in 20% of the trials, it 

appeared in the latter color (distractors were of four different colors).  Under these 

conditions, participants searched sequentially through many items of a single color (as 

indexed by “run lengths”: The number of consecutive items fixated of a single color), and 

then showed a switch cost before using the second template (as indexed by fixation 

durations on the last, for instance, red item prior to examination of blue ones).  In a 

different condition, wherein color cues were not reliable (i.e., targets were red on 50% of 
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trials and blue on 50%), participants demonstrated shorter run lengths and no switch 

costs, suggesting that they used both color templates to guide attention simultaneously.  

This finding is important because it suggests that there is not a bottleneck in top-down 

control whereby only a single object can guide attention at any given moment.  Rather, 

the findings indicate that multiple VWM representations may concurrently interact with 

the flow of information through the visual system (cf., Hollingworth et al., 2008, 2009, 

2012; Woodman & Luck, 2007, 2010). 

The problem of template imprecision. 

 In typical laboratory search experiments, participants look for a single, 

unambiguous target on every trial.  For instance, participants may be shown a picture of a 

bicycle and be asked to find that bicycle (unaltered) in a cluttered array of other objects.  

In other cases, a picture cue may not be provided; rather, a precise description of the 

target is given, such as when people are asked to search for a “vertical red bar” in a 

display that contains lines of various orientations and colors.  In both cases, the searcher’s 

mental template is highly accurate.  That is, they can anticipate exactly how the target 

will appear in the search array, either because they’ve already seen an isolated instance of 

that item, or because the target is so simply defined as to be unmistakable. 

 Real-life searches, by contrast, rarely afford the kind of template precision with 

which we provide our research participants.  This is an inevitable truth, because the 

appearance of objects in the world is frequently variable over time.  Consider the 

following scenario: Your spouse decided to treat your Scottish Terrier to a fun day spent 

in doggy-daycare.  It’s your task to pick up your beloved pet on the way home from 

work.  You arrive at an overcrowded daycare to retrieve your dog, but the place is 
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sprawling, filled with dogs, and unfortunately your mutt does not respond to your calls.  

So now you’ve got to navigate the area and retrieve your Scottie, hidden among other 

black dogs (e.g. labradors), other toy breeds (e.g., miniature poodles), and all manner of 

frolicking, four-legged companions.  Naturally, this is fairly easy for you.  Your template 

is precise, because you know all the specific features of your dog.  You know his height, 

the texture of his fur, the color of his collar, and so on.  Knowledge of these features 

allows you to efficiently hone in on dogs with scraggly black fur, or those with thick red 

collars, and to quickly reject those with mismatching features. 

 However, it’s possible that your dog has changed in appearance since last you saw 

him.  Consider performing the same undertaking, but now imagine that your spouse has 

also decided – without informing you – to pamper your pet by getting him a fresh 

grooming, and a new collar.  Now, the specific features that you have in mind may be 

unhelpful, inaccurate, or even altogether wrong.  You may have a hard time directing 

your attention accurately because you are incorrectly looking for a dog who has not been 

recently trimmed, or he may go unnoticed when your gaze falls directly upon him 

because you quickly reject this imposter due to the presence of a new thin blue collar.    

 In other situations, our templates may be made imprecise not through the 

intrusion of incorrect features, but by the presence of too many features, or too few.  If 

your task is, for instance, to pick up a pair of dogs at doggy-daycare, you will now have 

considerably more features in mind, depending on the similarity of your dogs to one 

another.  If you’ve got a pair of Scotties to locate, then your template is simple.  It has all 

the general features of a Scottie, plus a few additional characteristics that may be specific 

to your pets (e.g., a blue collar for the boy and a pink one for the girl).  By contrast, if you 
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are trying to locate a Scottie and a Basset Hound, the task becomes considerably more 

difficult.  Now you’ve got to simultaneously look for a black dog and one that is tri-color; 

one dog has short, perky ears, and another has long, droopy ones.  To the extent that these 

dogs are unlike one another, your template becomes more and more broad, because you 

add features to it that, though necessary to the overall task, may be unhelpful with respect 

to the singular animal that is under your gaze at any given moment in time. 

 At the opposite end of the spectrum are situations in which you have only broad, 

categorical knowledge of your target, and thus cannot necessarily load specific features 

into memory when constructing your mental template.  Perhaps the dog you are picking 

up belongs to a friend.  You’ve never seen this animal before, but you have a loose, 

verbal description of it.  Here, your template is quite imprecise, because you’ve had little 

or no direct experience with the target you seek out.  You know the dog has “scraggly” 

fur, but are unsure if that description indicates a dog with bristly, wiry fur, or longer, 

wavy fur.  It is worth noting that many of our day to day searches are conducted in an 

analogous manner.  That is, we very frequently construct a mental template not by calling 

to mind the specific features of one exemplar, but rather by assembling the features of our 

target that are typical of its category.  For instance, when looking for a rake in a friend’s 

cluttered garden shed, calling to mind a mental picture of your own rake(s) may not be 

helpful.  Rather, you search using the features you know are definitive of the category 

“rakes”, and perhaps allow your attention to be also guided to those features that are 

likely to appear.  You direct your attention to long, skinny tools, for instance, but will 

allow yourself to more closely examine those with either wooden or plastic handles. 
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 Although template imprecision may increase the difficulty of completing a search, 

it is unlikely that any of these tasks are insurmountable.  Like so many other daily 

activities we perform, we are often blissfully ignorant of the obstacles our cognitive 

systems overcome on a regular basis.  But the changes in behavior across these situations 

is potentially great, and perhaps even lawful.  Search speed likely slows down as a 

function of template imprecision, but why would that be so?  The overarching question 

that we seek to answer in this investigation is, “how does the precision of your internal 

template affect your ability to locate an item of interest?”  More specifically, we want to 

know the extent to which the similarity between the actual to-be-located item and your 

mental representation of that item influences (1) the efficiency with which attention can 

be directed to the target, and (2) the speed (and accuracy) with which one is able to 

identify the target once attention has fallen upon it.   

 Importantly, this work may have considerable implications, particularly for 

professional visual searchers, such as airport baggage (or medical) screeners.  Consider 

the difficulty of their profession: Their searches are conducted in high-stress 

environments, with constant time pressure.  The outcome of their search often lacks 

explicit feedback, and the cost of missing a target could be catastrophic (e.g., a weapon 

makes it aboard a plane, or a tumor goes undiagnosed).  Moreover, they must look for 

many potential threats simultaneously.  The searchers’ templates are often poorly 

specified because, for instance, real weapons are oriented bizarre ways, may be occluded 

by other items in the baggage, and so on.  The way in which searchers mentally represent 

potential targets, therefore, must be flexible and highly tolerant to deviations.  If they 

search for too many features, it takes too long, and the line backs up.  If they search for 
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too few features, or the wrong ones, they may miss a weapon altogether.  Certainly, 

understanding the nature of a searcher’s target representation may have important 

implications for everyday life, and for high-stakes searchers in particular. 

Simulating template imprecision using template-to-target similarity. 

 Similarity is a pervasive theoretical construct across many fields of psychology, 

including memory (e.g., Gillund & Shiffrin, 1984; Hintzman, 1986), language (e.g., 

Goldinger, 1998; Goldinger & Azuma, 2004), categorization (e.g., Homa, Proulx, & 

Blair, 2008; Homa, Hout, Milliken & Milliken, 2011), and others (see Shepard, 1987, 

2004 for a more thorough treatment).  Often, theorists rely critically upon a notion of 

“sameness” between stimulus items (Goldstone & Medin, 1994; Medin, Goldstone, & 

Gentner, 1993).  For instance, imagine you stumble across someone that seems familiar 

to you.  You cannot remember where (or if) you have seen them before, so you engage in 

a process whereby their face is compared to imperfect “traces” that you have stored in 

long-term memory (e.g., Hintzman, 1984, 1988).  If their face is highly similar to some of 

these stored experiences, you may conclude that you have encountered this person 

before; if the similarity is low, you may decide that this person is a stranger to you.  

Analogously, when conducting a visual search, you may compare the item you are gazing 

at to a stored representation of the target held in visual working memory.  When the 

perceived item is similar to that stored in VWM, you conclude that you have found your 

target; otherwise, you continue searching (Hout & Goldinger, 2011). 

   Broadly, similarity is a concept that has been crucial to theories of visual search.  

Building from Treisman’s Feature Integration Theory (Treisman & Gormican, 1988; 

Treisman & Sato, 1990), Duncan and Humphries (1989; 1992) proposed a new theory of 
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visual search that showed how search efficiency was hindered with increasing similarity 

of targets to nontargets, and by decreased similarity between nontargets (relative to one 

another).  When looking for your Scottie, for example, the presence of other small, black 

dogs will make it harder to find your own, and if the doggy-daycare has a wide 

assortment of dogs, it will be more difficult to locate your pet, relative to searching 

through a homogenous collection of bulldogs.  More recently, models of visual search 

have been developed, many of which rely extensively on visual similarity relationships 

(e.g., Hwang, Higgins, & Pomplun, 2009; Wolfe, 1994; Zelinsky, 2008). 

Although a vast literature exists which examines target-to-distractor similarity 

effects, and distractor-to-distractor similarity effects during search, there is a notable 

absence of work on template-to-target effects (i.e., the degree to which the to-be-located 

item matches your internal representation of it).  Largely, this may be because we can 

simply never know with much certainty how a person’s guiding representation is 

constructed.  This is a difficult problem to overcome.  The closest approximation to this 

line of questioning are experiments that compare template-guided search (i.e., search 

using picture cues) to categorical search (i.e., search using word cues).  In such 

experiments, an assumption is made that the searchers’ representations differ across the 

two situations: In template-guided search, the observer has a (nearly) veridical 

representation of the target in mind, and in categorical search, the observer has a much 

less precise guiding representation.  The initial approach of this investigation, however, is 

different in that we employed two (new) distinct techniques for manipulating the 

precision of our searchers’ internal representations.  More specifically, we aimed to 

induce a continuum of precision in our searchers’ templates by manipulating the 
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similarity of the target cue (or cues), relative to the target that actually appeared in the 

search display. 

Our first technique involved a search paradigm where on the majority of trials, the 

searcher was shown a target, and the item that showed up in the display matched that cue 

exactly.  Instructions indicated that the target cue may not be entirely specific to the item 

they were to find: “Please search for this item or something very much like it.”  On a 

minority of (randomly-dispersed) trials – the critical trials – the target that appeared in the 

display was a slight variation of that which was shown as a cue prior to search.  For 

example, the participant may have been shown a target coffee mug and then, in the search 

display, encountered the same mug, but oriented differently.  Or, their pre-search cue 

may have been a starfish, but the starfish encountered during search may have been a 

different color.  In general, our goal was to encourage people to adopt a particular, item-

specific template which was, on most trials, wholly accurate.  Then, performance on 

these exact match trials could be contrasted with situations in which the actual target was 

a slight mismatch to the cue.  By varying the similarity between these pairs of images 

(i.e., between the target cue and the target that actually appeared in the search display), 

inferences could then be made regarding the extent to which behavior was affected by 

precise or imprecise guiding representations.  Importantly, although the to-be-located 

target was sometimes different in appearance from its cue, our targets were always 

unmistakable.  When searching for a coffee mug, for example, the participant never 

encountered any other items (i.e., distractors) that could have been misconstrued as the 

target, therefore making our target cues imprecise, but unambiguous. 
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The second technique we employed involved manipulating the “width” of our 

searchers’ template “feature space”.  For this method, multiple-target search was 

conducted (though, we included single-target trials for control conditions).  Two target 

cues were shown prior to search, and the participants’ task was to locate one of the items 

(only one ever appeared in the search display).  Here, we widened the feature space of the 

search template by manipulating the similarity of the two potential target cues to one 

another.  When the two target cues were similar to one another (e.g., the same coffee 

mug, oriented in two different ways), the feature space was narrow, but to the extent that 

these two pictures were dissimilar to one another, the feature space became broader 

through the inclusion of new, potentially important feature dimensions (e.g., two different 

color dimensions, imposed by using a pair of distinct starfish cues).  By examining 

behavior across these different conditions, inferences could then be made about how 

search behaviors are affected by the width of the searcher’s guiding template. 

In essence, these two techniques allowed us to examine situations in which the 

searcher’s template is made imprecise either through the inclusion of inaccurate features, 

or the addition of unhelpful ones.  It is also worth mentioning that we stand to gain much 

from the analysis of eye movements during visual search.  It is well established that 

attention and eye movements are linked, at not just a functional (Deubel & Schneider, 

1996; Hoffman & Subramaniam, 1995; Williams et al., 1997), but a neuroanatomical 

level (Corbetta et al., 1998).  Importantly, for this investigation, we assume that eye 

movements can be used to directly infer cognitive processing during search.  This is an 

assumption that is made across a wide variety of studies in psychology.  Specifically, it 

has been shown that fixation durations are not arbitrary or random (Hooge & Erkelens, 
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1998), rather, that they reflect item processing and the properties of the stimulus being 

viewed (Rayner, 1998; Reingold et al., 2001, 2012; Henderson & Ferreira, 1990; Becker, 

2011; Pannasch, Schulz, & Velichkovsky, 2011).  This finding has been supported by 

research both within the field of visual search – for instance, in visual search through 

real-world scenes (Henderson & Pierce, 2006; Henderson & Smith, 2009; Henderson, 

2012; Nuthmann, et al., 2010) – and elsewhere, such as in reading research, wherein 

fixation durations are thought to reflect the time it takes for lexical access to occur on the 

currently fixated word (Pollatsek, Reichle, & Rayner, 2006; Rayner et al., 2004; Reichle 

et al., 1998, 2006, 2009, 2012).  Moreover, saccade metrics have been used to infer 

cognitive processing, particularly in the realm of learning and practice, where it has been 

found that saccadic metrics often account for a substantial amount of variability in the 

performance of observers over time (Phillips & Edelman, 2008; but see also McCarley et 

al., 2004; Kotowicz, Rutishauser & Koch, 2010).  Clearly, much can be gained from the 

analysis of eye movements during our search tasks, particularly when combined with 

standard behavioral indexes. 

Obtaining stimulus pairs along a continuum of similarity. 

 Empirically, manipulating the similarity of stimulus items is a challenging task.  

Early work accomplished this by employing simplistic stimuli, and varying a single 

feature of an item, such as the color or orientation of a rectangular bar (e.g., Treisman, 

1991).  But this is a suboptimal approach to higher-level vision.  Real-world objects are 

composed of many features, some of which may be ill-defined or inconsistent with 

respect to the ability of a searcher to guide attention based on them.  It is clear that 

properties like color, motion, and orientation are attributes by which one can guide 



18 

attention, but it is less clear whether or not people can direct their attention to items based 

on luminance, shape, or shading (Wolfe & Horowitz, 2004).  Importantly, these latter 

properties are indeed aspects of a stimulus that are subject to change over time.  The 

shape of your favorite coffee mug changes dramatically if the handle were to break off, 

so your ability to direct attention to the mug in a cluttered cabinet may be hindered if 

your mental representation of it has a fixed shape (e.g., round, with a protruding handle).  

Moreover, it is impossible to know a priori which features a person is likely to favor 

during search, and the salience of various stimulus dimensions is likely to change across 

contexts (cf. Adams & Chambers, 2012).  When looking for your Scottie, you would 

probably seek out dark-colored dogs if most of the animals have light fur, or instead 

focus your attention on small creatures if the daycare houses lots of larger breeds.   

The approach taken in this investigation (with respect to manipulating item 

similarity) was twofold.  First, we identified semantically matched pairs of images that 

were classified as state- or exemplar-pairs.  State-pairs were two pictures of the same 

item in different perceptual states, and exemplar-pairs were two distinct items from the 

same semantic category.  We argued that because the state-pairs involved two variations 

of the same object, they were more similar to one another than were the exemplar pairs.  

Moreover, in Experiment 1, we established limited empirical support for this claim, 

through the use of two perceptual discrimination tasks. 

Our second approach was, in Experiment 2, to obtain large-scale, explicit 

estimates of similarity, and to use multidimensional scaling (MDS) to find combinations 

of stimuli with varying degrees of similarity to one another.  The appeal of this technique 

is that it allows people to provide similarity estimates based on whatever featural 
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dimensions they so choose.  An MDS approach does not require a priori identification of 

feature dimensions, or arbitrary rating schemes (e.g., ranking the similarity of colored 

bars based on degree of rotation, or distance in RGB “color space”).  An inescapable 

concern is that with real-world objects (which are the sole focus of this investigation), 

similarity estimates may be governed by visual and nonvisual features alike (cf. Wolfe et 

al., 1992; Võ & Henderson, 2009), and there is currently a debate in the literature 

regarding the extent to which attention can be guided by semantic attributes (e.g., 

Godwin, Hout, & Menneer, under review; Schwarz & Eisel, 2012).  A curtain and a 

blanket, for example, are perceptually similar and conceptually dissimilar, whereas a 

curtain and window blinds serve a common purpose, despite being visually quite 

different.  When searching for curtains then, is one more likely to direct their attention to 

the visual competitor (the blanket) or the semantic one (the blinds)?  Some reports 

suggest that semantic information can guide even very early eye movements (Rayner, 

Castelhano, & Yang, 2009; Underwood et al., 2008; Yang & Zelinsky, 2009), but others 

have suggested that eye movements are not guided by semantic information at all (De 

Graef, Christiaens, & d’Ydewalle, 1990; Henderson, Weeks, & Hollingworth, 1999). 

An interesting, analogous experimental technique was employed by Alexander 

and Zelinsky (2011), who investigated how similarity relationships affect search 

guidance during categorical (i.e., word-cued) search.  They collected similarity rankings 

over the internet: Volunteers were shown five pictures (e.g., a lamppost, a desk, a stuffed 

rabbit), and were asked to rank-order the items from most to least similar, relative to the 

target category of interest (teddy bears or butterflies; target categories were always word-

cued but were now shown pictorially).  These similarity estimates were used to create 
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visual search backgrounds that were composed of distracting nontargets with varying 

degrees of similarity to the target category.  For instance, when searching for a teddy 

bear, observers sometimes encountered distractors with high similarity to the target 

category (e.g., other stuffed animals) and at other times, saw distractors with low 

similarity (e.g., furniture).  They also implemented a computer vision model that 

performed the same rank-ordering task by analyzing the pictures for color, texture, and 

shape similarity.  Often, but not universally, the human and model similarity estimates 

were in agreement.  In the final, critical experiment, they compared search behavior (i.e., 

search RTs, fixation durations) on backgrounds that were derived from cases upon which 

the model and human rankings agreed, and ones wherein the rankings differed.  Their 

findings revealed that similarity effects in visual search were best predicted by cases 

wherein the humans and model agreed, suggesting that this technique captured aspects of 

similarity that are important for guiding attention to categorically-defined targets. 

Because we were exclusively concerned with the similarity among pairs of 

semantically-matched images, the possibility that conceptual factors would contaminate 

our participants’ similarity ratings was a non-starter.  Simply put, our similarity ratings 

were always obtained within-categories, rather than across-categories, effectively 

isolating the visual characteristics of our stimuli from the conceptual ones. 
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 Experiment 1 

 In any investigation of visual search, it is important to consider the complexity of 

the stimuli that are to be employed.  In our experiments, we used pictures of real-world 

objects.  This is an appropriate level of complexity, because it strikes a balance by 

achieving a desirable degree of representativeness (or ecological validity), without 

sacrificing experimental control.  Restricting stimulus complexity to simple, arbitrary 

objects (e.g., rotated, colored shapes) may permit a high degree of experimental control, 

in that visual similarity (across items) can easily be assessed and manipulated.  But real-

world searches are rarely guided by a few arbitrary features, such as “red, 45-degree 

rotation, rectangular”.   

Instead, we used visually complex pictures of real-world objects; things that 

people are likely to encounter in everyday life, and that are defined by a conjunction of 

several features simultaneously.  This afforded us flexibility in stimulus selection, in that 

we could vary the individual features of an item without compromising its categorical 

distinction.  That is, we were able to vary the specific features of the target (from when it 

is shown as a cue prior to search, relative to its appearance in the search display itself), 

while maintaining its categorical label unambiguously.  For instance, a participant may 

have been shown a picture of a coffee mug as a cue, and been asked to search for “this or 

something very much like it”.  Then, in the search display, the mug may have changed 

orientation or color.  The target category was still “coffee mug”, but the particular 

features of that item were altered, thus simulating a situation in which the searcher has an 

imprecise template. 
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 Unlike real-world search, however, the backdrops of the displays in these 

experiments were simple (blank white screens).  The reason for this is that the use of real-

world scenes (e.g., searching for a coffee mug in a kitchen scene) introduces potential 

confounding factors related to issues of top-down attentional control.  The primary goal 

of this investigation is to examine how someone’s mental representation of a target 

affects their ability to find it.  But when people look through real-world scenes, they 

bring all kinds of other top-down knowledge to bear on the task.   

In nature, organisms and objects rarely appear as they do in an experiment: 

Isolated, scattered arbitrarily across a blank background.  Rather, they appear in 

predictable locations, relative to the rest of the scene (Biederman, 1972).  If you are asked 

to locate a person in a photograph of a college campus, you are unlikely to search for 

someone scaling the wall of a building, or hovering in space.  Instead, you will look for 

people standing on the sidewalk, sitting on the benches, and so forth.  The visual system 

is sensitive to these regularities.  For example, scan paths to objects that appear in natural 

locations (e.g., a beverage located on a bar) are shorter, relative to objects that appear in 

arbitrary locations (e.g., a microscope located on a bar; Henderson, Weeks, & 

Hollingworth, 1999), and models that incorporate such top-down contextual information 

have been successful in extrapolating regions of interest when compared to data from 

human observers (Oliva, Torralba, Castelhano, & Henderson, 2003).  By limiting the 

observers’ useable top-down knowledge solely to the features of the target stimulus, and 

not the background, the cognitive processes of current interest are effectively isolated.   

All of our stimuli came from the “Massive Memory” database (Brady et al., 2008; 

Konkle et al., 2010; cvcl.mit.edu/MM/stimuli.html).  A distinction that is used in 
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describing these stimuli is to identify pairs of items as “state-pairs” or “exemplar-pairs” 

(see Figure 1).  State-pairs are two pictures of the same object, presented in different 

perceptual states.  For instance, an old-fashioned phone, and the same phone oriented 

differently, with the receiver off-the-hook.  Exemplar-pairs are two discrete items that are 

compiled from the same semantic category.  For instance, two different cows.  As shown 

in Figure 1, our stimuli had a range of variation in how similar the pairs of images are to 

one another.  For the abacus state-pair, the difference is visually very subtle, just like the 

exemplar-pairing of bricks.  By contrast, there is arguably greater visual dissimilarity for 

the piggy-bank state-pair, and the pair of starfish exemplars.  Clearly, there is a wide 

range of similarity both within and across categorical labels.  On average, it seems likely 

that the state-pair items will be more similar to one another, relative to the exemplar-

pairs.  It is intuitive that one should find greater variation across objects, relative to when 

a single object is manipulated in some way.  Indeed, this is an assumption that is made in 

the current experiments. 

The goal of Experiment 1 was to provide empirical support for the assumption 

that state-pairs are more similar to one another than are exemplar-pairs.  A simple way to 

validate this notion could be to present people with pairs of stimuli, and have them rate 

(using a Likert-scale) how similar each pairing is.  However,  such a procedure is 

imperfect for two reasons: 1) Participants are likely to decipher the purpose of the 

experiment, which may influence their responses (e.g., “These are two different cows so I 

should rate them more dissimilar, relative to the phone I just saw in two orientations”).  

Secondly, 2) participants may allow nonvisual, semantic features to influence their 

ratings (e.g., “Those two pairs of bricks should be rated as dissimilar because I know they 
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are discrete items, even though they are visually very alike”).  Because the goal is to 

obtain estimates based solely on the perceptual characteristics of the stimuli, rather than 

semantic ones, we performed two perceptual experiments, wherein people had to quickly 

determine whether a pair of images belonged to the same semantic category, or different 

ones.  In Experiment 1a, participants saw two pictures presented simultaneously, and in 

Experiment 1b, participants kept one item in memory, and then made a swift eye 

movement to the comparison item. 

Experiment 1a Method 

Participants. 

 Thirty-seven students from Arizona State University participated in Experiment 

1a as partial fulfillment of a course requirement.  All participants had normal or 

corrected-to-normal vision, and all reported normal color vision.   

Design.   

 There were two trial types: 200 same-category trials, and 200 different-category 

trials, presented in random order.  Of the 200 same trials, 100 contained an exemplar-pair 

of images, and 100 contained a state-pair (presented in random order).  On the different 

trials, a single image was quasi-randomly selected from two distinct categories, with the 

stipulation that each image be used once (and only once).  Thus, each image was shown 

twice in the entire experiment: Once on a different trial, and once on a same trial.  There 

were four blocks of trials (with 100 trials per block), and a brief (2-minute) rest in 

between each block.   
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Stimuli.  

 The stimuli were photographs of real-world objects, resized (maintaining original 

proportions) to a maximum of 2.5° of visual angle (horizontal or vertical), from a 

viewing distance of 55 cm.  Images were no smaller than 2.0° of visual angle along either 

dimension.  The pictures contained no background; a single object or entity was present 

in each image (e.g., an ice cream cone, a pair of shoes).   

Apparatus. 

 Data were collected on up to 12 computers simultaneously (all had identical 

hardware and software profiles).  Dividing walls separated each subject station, and 

experimental sessions were monitored at all times by one or more research assistants.  

The PCs were Dell Optiplex 380 systems (3.06 GHz, 3.21 GB RAM) operating at 1366 x 

768 resolution on Dell E1912H 18.5” monitors (operated at a 60 Hz refresh rate).  

Displays were controlled by an Intel G41 Express chipset, and the operating systems 

were Windows XP.  E-Prime v2.0 Professsional software (Schneider, Eschman, & 

Zuccolotto, 2002) was used to control stimulus presentation and collect responses.   

Procedure.   

 Each trial began with a 500 msec fixation cross, followed by the presentation of a 

pair of images, side by side (placement of each image on the left or right was 

randomized).  Participants rested their fingers on the keyboard at all times, and pressed 

“f” when the two images were members of the same semantic category, and “j” when the 

items were from different categories.  The images remained on screen until the 

participant responded, or 2500 msec had elapsed (in which case the trial was marked as 

incorrect).  Feedback (in the form of a centrally-presented, large red “X”) was given only 
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for incorrect responses, to encourage accurate responding.  A 1000 msec inter-trial 

interval (ITI) preceded the start of the next trial.  People were encouraged to respond as 

quickly and accurately as possible, and were constantly reminded of the keyboard 

response options (text indicating the keys for “same” and “different” was displayed at the 

bottom of the screen throughout the experiment).   

Experiment 1a Results 

All data were analyzed using 3 (Trial Type: different category, same category 

state-pair, same category exemplar-pair) x 4 (Block: 1-4) within-subjects, repeated 

measures ANOVAs.  One participant was excluded from the analyses for producing 

reaction times that were more than 2.5 standard deviations above the mean of all 

participants. 

Accuracy. 

 We found a main effect of Trial Type, with the best performance on different 

trials (97%), followed by state-pair same trials (95%), and exemplar-pair same trials 

(93%); F(2, 34) = 20.83, p < .01, n2
p = .55.  See Table 1 for all observed means.  There 

was no main effect of Block, nor a Trial Type x Block interaction (Fs < 2). 

Reaction time. 

 Only RTs on correct response trials were analyzed.  There was a main effect of 

Trial Type (see Figure 2), with fastest responding on state-pair same trials (684 msec), 

followed by exemplar-pair same trials (707 msec) and different trials (727 msec); F(2, 

34) = 11.07, p < .01, n2
p = .39.  Planned-comparisons revealed a significant difference 

between state- and exemplar-pair same trials (p < .01).  We also found a significant main 

effect of Block: RTs decreased over time (784, 696, 681, and 663 msec for Blocks 1-4, 
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respectively); F(3, 33) = 23.16, p < .01, n2
p = .68.  The Trial Type x Block interaction 

was significant, F(6, 30) = 3.76, p < .01, n2
p = .43, indicating that RTs quickened more 

dramatically on different trials (by 50 msec per block), relative to exemplar- and state-

pair same trials (by 31 and 32 msec per block, respectively). 

Experiment 1a Discussion 

 These results lend credence to the contention that our state-pair stimuli are more 

similar to one another than are exemplar-pairs.  People more quickly indicated that state-

pair images were members of the same category, relative to exemplar pairs.  We 

conducted a second experiment in an attempt to replicate this finding, and to bring the 

procedure closer in spirit to the behaviors performed during a visual search task.  In 

Experiment 1a participants saw both images at the same time.  They were presented close 

enough to one another that a viewer could encode both of them simultaneously (if 

looking in between the pair) without moving their eyes.  However, it seems more likely 

that people looked at one image, then the other (and perhaps back again), before 

indicating their decision.  During visual search, however, one does not compare two 

items that are both visible.  Rather, each observed item is compared to a target 

representation held in memory.   

 In Experiment 1b, participants were asked to do two things that are ubiquitous in 

visual search: 1) to hold the target image in memory, and 2) to rapidly shift attention to 

the location of the target before responding.  Participants were first shown a single item, 

and then made a speeded saccadic eye movement to an unpredictable location, where the 

second image from the pair was shown. 
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Experiment 1b Method 

The design, stimuli, and apparatus were identical to Experiment 1a. 

Participants. 

 Seventeen new students from Arizona State University participated in Experiment 

1b as partial fulfillment of a course requirement.  All participants had normal or 

corrected-to-normal vision, and all reported normal color vision.   

Procedure.   

 Participants first saw a central fixation cross (see Figure 3) for 500 msec, 

followed by a single image (centrally presented) for 500 msec.  Then, a noisy backward-

mask appeared (at the location of the first item) for 250 msec, followed by a 50 msec 

blank screen, and then the second image.  This item was shown until the participant 

responded, or 2500 msec had elapsed (in which case the trial was marked as incorrect).  

The second item was shown in one of four locations: Equidistant from the center of the 

screen, at the top, bottom, left or right of fixation. 

Experiment 1b Results 

All data were analyzed in the same manner as Experiment 1a. 

Accuracy. 

 There was a main effect of Trial Type, with the best performance on different 

trials (98%), followed by state-pair same trials (95%), and exemplar-pair same trials 

(93%); F(2, 17) = 28.30, p < .01, n2
p = .79.  See Table 1 for all observed means.  There 

was no main effect of Block, nor a Trial Type x Block interaction (Fs < 2). 
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Reaction time. 

 We found a main effect of Trial Type (see Figure 2), with fastest RTs on state-

pair same trials (586 msec), followed by exemplar-pair same trials (595 msec) and 

different trials (620 msec); F(2, 15) = 9.30, p < .01, n2
p = .55.  However, planned-

comparisons revealed no significant difference between state- and exemplar-pair same 

trials (p =.57).  There was a significant main effect of Block, with RTs decreasing across 

blocks (682, 593, 575, and 552 msec, for Blocks 1-4, respectively); F(3, 14) = 21.59, p < 

.01, n2
p = .82.  The Trial Type x Block interaction was also significant, F(6, 11) = 

9.39, p < .01, n2
p = .84, indicating a sharper drop in RTs for different trials (by 56 msec 

per block), relative to exemplar- and state-pair same trials (by 34 and 32 msec per block, 

respectively). 

Experiment 1b Discussion 

 The trends of the data in Experiment 1b appear to be a replication of Experiment 

1a: Different trials elicited the longest RTs, and state-pair same trials the shortest.  

However, the difference between the two types of same trials was smaller in this 

experiment, and was not statistically reliable.  The conclusion from these experiments is 

simple.  The trends in accuracy and RT were all in the anticipated direction, if our 

contention that state-pairs are more similar (relative to exemplar-pairs) holds true.  We 

must make this conclusion with some caution, however, due to the unreliable RT finding 

in Experiment 1b.  Nevertheless, to preview the findings from forthcoming experiments, 

these small perceptual differences can elicit big changes in visual search behavior when 

they are used to simulate imprecise target representations in memory. 
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Experiment 2 

 In Experiment 1, we identified two classes of stimulus pairings: exemplar-pairs, 

and state-pairs.  The latter are assumed to be more similar to one another than are the 

former, and beginning in Experiment 3, this assumption plays a critical role; one that 

allows us to manipulate the precision of a searcher’s mental representation of the target.  

The manner in which this is accomplished relies critically on being able to faithfully 

estimate the similarity among pairs of images.  However, the results from Experiment 1 

indicate that the range of perceptual dissimilarity across these two stimulus classes is 

small, and potentially fragile.  That is, the state-pair images seem (on average) to be more 

similar to one another than are the exemplar-pairs, but the perceptual evidence supporting 

this claim is not robust.   

 In Experiment 2, we obtained similarity ratings in a more direct manner, by 

employing multi-dimensional scaling (MDS).  Our goal was to acquire a wider range of 

perceptual similarity in our stimulus pairings, in order to implement converging 

techniques for manipulating target template precision.  MDS is a tool by which 

researchers can obtain quantitative estimates of the similarity among groups of items 

(Hout, Papesh & Goldinger, 2013); in this instance, pictures of various object categories.  

More specifically, MDS is a set of statistical techniques that takes as input item-to-item 

similarity ratings.  It then uses data-reduction procedures to minimize the complexity of 

the similarity matrix, permitting (in many cases) a visual appreciation of the underlying 

relational structures that were used to govern the similarity ratings. 

As in Experiment 1, our stimuli were drawn from the Massive Memory database.  

We acquired a large selection of semantically-matched pictures: 200 object categories 
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that were represented by 17 individual exemplars, and another 40 object categories with 

16 exemplars each.  We then obtained MDS spaces for each of these 240 image 

categories (e.g., an MDS space of 17 coffee mugs, or 16 lamps).  These “psychological 

spaces” were used to identify stimulus pairings with varying degrees of similarity.  The 

logic is simple: By using the MDS spaces, pairs of images can be identified that are 

similar or dissimilar, indexed by their proximity in psychological space.  Thus, rather 

than having a simple dichotomy of similarity (defined by the use of state- or exemplar-

pairings), we were able to define pairwise similarity along a continuum of psychological 

distances.  In addition to providing a wider range of similarity, this technique is appealing 

because it provides similarity ratings that are psychologically tractable (rather than 

defined somewhat arbitrarily), and because the large sets of category exemplars provide 

far more stimulus pairings to draw upon in our more substantive experiments (i.e., 

Experiment 3 onward). 

Likely the most common method for obtaining similarity estimates is simply to 

ask people to numerically rate object pairs via Likert scales.  In this technique, ratings are 

collected for every possible pairwise combination of stimuli (e.g., “respond ‘1’ when the 

items are most similar and ‘9’ when the pair is most dissimilar”).  This pairwise method 

is useful and simple to implement.  However, when the set of stimuli to be scaled is large, 

this technique is not ideal: The number of comparisons necessary to fill an item-to-item 

similarity (or proximity) matrix grows rapidly as a function of stimulus set size, leading 

to lengthy experimental protocols.  Data collection becomes cumbersome, and concerns 

therefore arise regarding the vigilance of the raters (see Hout, Goldinger & Ferguson, 

2013). 
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An alternative way to collect similarity estimates is the spatial arrangement 

method (SpAM), originally proposed by Goldstone (1994; see also Kriegeskorte & 

Marieke, 2012).  This technique is faster and more efficient than the pairwise method, 

and produces output data of equal quality, relative to its more well-established 

counterpart (Hout, Goldinger & Ferguson, 2013).  Here, many (or all) of the to-be-rated 

stimuli are presented at once, and participants move the items around on the computer 

screen, placing them at distances from one another that reflect the rater’s subjective 

similarity estimates (items that are rated as similar are placed close to one another, and 

dissimilar items are placed proportionately farther away).  The task can be conceptualized 

as having people project their own psychological spaces onto a two-dimensional plane 

(i.e., the computer screen).  Once the participant has finished organizing the space, a 

proximity matrix is derived from the pairwise Euclidean distances (measured in pixels) 

between every pair of items.  This technique is extremely well-suited for collecting a 

large quantity of MDS data in a relatively short period of time (a set of 17 stimuli would 

be scaled in roughly 20 minutes using the pairwise method, whereas SpAM could be 

completed in under 5 minutes).   

Experiment 2 Method 

The apparatus was identical to Experiment 1.  Tables A1 and A2 (in the 

Appendix) display a full list of categories for which MDS data was collected.  Also 

shown are the number of participants that contributed data to the scaling of each 

category. 
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Participants. 

 Two-hundred and forty new students from Arizona State University participated 

in Experiment 2 as partial fulfillment of a course requirement.  Additionally, ten 

undergraduate research assistants (from the Memory and Language Laboratory at 

Arizona State University) participated voluntarily.  All participants had normal or 

corrected-to-normal vision, and all reported normal color vision.   

Design. 

 One-hundred and fifty participants completed an experiment wherein they were 

given 15 SpAM trials.  On each trial, a new category of images was shown to the 

participant.  Selection of image categories was counterbalanced, such that for every 16 

participants, all 240 categories were scaled exactly once.  We also collected a smaller 

amount of data from 90 participants.  These people completed the same task, but were 

only administered 10 SpAM trials (with randomly selected categories).  This shortened 

version of the task was given because the SpAM task was appended to an unrelated 

experiment.  Finally, the 10 research assistants that participated in the experiment 

completed 16 sessions (with 15 SpAM trials per session), over the course of an entire 

semester.  Thus, each of these participants scaled every one of the 240 image categories 

exactly once.  For each image category, between 15 and 24 participants contributed 

similarity ratings (M = 19.48). 

Stimuli. 

 All stimuli were photographs of real-world objects, resized as in Experiment 1.  

The pictures contained no background; a single object or entity was present in each 
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image.  Two-hundred of the categories of images contained 17 distinct exemplars; forty 

of the categories contained 16 exemplars.   

Procedure.   

 On each trial, a new category of images was shown to the participant, arranged in 

discrete rows, with random item placement.  People were instructed to drag and drop the 

images in order to organize the space such that the distance among items was 

proportional to each pair’s similarity (with closer in space denoting greater similarity).  

Participants were given as much time as they needed to scale each category; typically, 

trials lasted between 2 and 5 minutes.  Once participants finished arranging the items, a 

right mouse-click completed the trial.  In order to avoid accidental termination of the 

trial, participants were then asked if they were satisfied with the space, or if they needed 

more time (responses were indicated via the keyboard). 

Experiment 2 Results 

MDS algorithm. 

 For each data set, we used the PROXSCAL scaling algorithm (Busing et al., 

1997), with 100 random starts, via SPSS 20.0 (SPSS Inc., 2011).  This algorithm uses a 

least-squares method of representation, and can accommodate multiple data sources (i.e., 

multiple participants).   The use of multiple random starts protects against the risk of the 

iterative scaling process falling into a local minimum (with respect to model fit).  Each 

time the algorithms were implemented, the data were scaled 100 times, and the solution 

with the lowest stress value (i.e., a measure of the fit between the distances in space and 

the input proximities, with lower values indicating closer fits) was selected for output. 
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Choice of dimensionality. 

The stress of the solutions were used to determine the appropriate dimensionality 

in which the data should be scaled.  In order to choose the “right” number of dimensions, 

scree plots were created, which display stress as a function of dimensionality.  Stress 

typically decreases with the addition of each dimension, but a useful heuristic is to look 

for the “elbow” in the plot; the value at which added dimensions cease to substantially 

improve fit (Jaworska & Chupetlovska-Anastasova, 2009; Lee, 2001).  Typically, 

dimension selection is performed conservatively, because increasing the dimensionality 

of the MDS solution is not universally beneficial.  Moreover, a common goal of MDS is 

to yield solutions in sufficiently low dimensionality to permit visual examination of the 

data (Rabinowitz, 1975).  Choosing the correct dimensionality, therefore, depends on 

stress levels and on interpretability (Kruskal & Wish, 1978).  In essence, one must strike 

a balance between finding a “good” solution, and one that is interpretable.  For the vast 

majority of data sets, the elbow of the scree plot appeared at Dimension 2 or 3.  To be 

consistent across stimulus sets, all data were scaled in three dimensions. 

Sample analysis. 

 The quantity of the MDS data prevents a full report of the results in this 

document.  However, below, we provide a sample analysis on two of the stimulus sets 

(teddy bears and butterflies), for demonstrative purposes.  All data were analyzed in 

identical fashion.  For the teddy bear category, 19 participants contributed data, and for 

the butterflies, there were 20 data matrices.  Figure 4 shows scree plots for both stimulus 

sets.  Clearly, stress is reduced to the largest degree moving from a single dimension to 

two dimensions, but the addition of a third dimension also appears to be meaningful (for 
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both data sets).  Higher dimensions (i.e., 4+) do not appear to substantially increase the 

quality of the solutions.  Figures 5 and 6 show MDS plots of the stimuli, in three two-

dimensional “maps”.  Dimension 1 is the primary dimension (i.e., the one that explains 

the largest amount of variance), followed in order by Dimensions 2 and 3.  See Figures 

A1 and A2, in the Appendix, for the MDS coordinates for these stimuli. 

Identification of item pairings along a continuum of similarity. 

 With the coordinates obtained from each psychological space, it was possible to 

identify pairs of items that are more or less similar to one another (relative to other pairs).  

No basic unit of measurement is present in MDS, so the inter-item distance values are 

arbitrary.  This makes it impossible to define “cutoff” values below which a pair is 

labeled as “very similar” (or conversely, above which a pair is labeled “very dissimilar”).  

In order to provide empirically-driven identification of item pairs that are tailored to each 

individual space, the followed procedure was employed. 

 First (for each MDS space), a vector of distances was obtained, corresponding to 

the three-dimensional Euclidean distance in psychological space between every pair of 

items.  For each 17-item category, there were 136 inter-item distances; for each 16-item 

category, there were 120 inter-item distances.  Next, the distances were rank-ordered, and 

categorized as “similar”, “moderate”, or “dissimilar”, based on a ternary-split.  For 

example, the 45 pairs of teddy bears with the smallest inter-item distances were called 

“similar”.  The 45 pairs with the largest inter-item distances were called “dissimilar”, and 

the 46 pairs in between were labeled “moderate” (in the forthcoming experiments, these 

labels were used to select pairs of stimuli for the manipulation of target template 

precision).  See Figures A3 and A4, in the Appendix, for a sampling of item pairings: 
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Displayed are the three most similar item pairs, the three most dissimilar pairs, and three 

chosen from the center of the rankings.  To appreciate this classification system, it may 

help to find these sample pairings in the MDS plots (shown in Figures 5 and 6).   

When this system was applied to the teddy bear data, we found that similar pairs 

had distances ranging from .42 to .81 (M = .60).  The moderate pairs had a range from .82 

to 1.06 (M = .96).  And the dissimilar pairs ranged from 1.07 to 1.34 (M = 1.21).  For the 

butterflies, similar pairs had distances ranging from .30 to .82 (M = .61).  Moderate pairs 

ranged from .83 to 1.10 (M = .96), and dissimilar pairs ranged from 1.11 to 1.38 (M = 

1.22). 

Experiment 2 Discussion 

 In Experiment 2, we collected a large amount of MDS data on a variety of item 

categories.  Our goal was to acquire a set of psychological spaces, which could be used in 

selecting item pairs across a range of visual similarity.  In the forthcoming experiments, 

this information was used in the service of selecting a pair of images that fit whatever 

degree of target-to-template similarity the experiment called for (on any given trial).  All 

240 image categories were used in each of the remaining experiments. 
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Experiment 3 

 The core theme of these experiments is that unlike typical laboratory searches, the 

items we locate in the real world are rarely, if ever, veridical representations of what we 

have in mind.  When I look for my favorite coffee mug in a cluttered cabinet, it is 

impossible for me to know what orientation I will find it in, whether or not it will be 

occluded by other dishes, or whether its appearance will have changed in some way since 

the last time I saw it (e.g., a broken handle).  In Experiment 3, we asked, “how does the 

inclusion of inaccurate features (in one’s template) affect search behavior?”  It is 

important to briefly reconsider the two specific hypothesized functions of the search 

template.  First, the template may contribute to attentional guidance.  That is, the template 

may affect the visual system’s activation map (i.e., the mental “map” that is used to 

determine where next to direct one’s eyes), by differentially weighting potential target 

locations as a function of their similarity to the stored representation in memory 

(Malcolm & Henderson, 2009).  Second, the template may be used in target verification, 

as the criterion to which the current visual input is compared (Malcolm & Henderson, 

2010). 

 As such, we entertained three possible hypotheses as to how peoples’ behavior 

would change when searching with an imprecise target template.  The first, dubbed the 

attentional guidance hypothesis, suggests that imprecise templates will hinder one’s 

ability to quickly put their attention in the right place.  Specifically, this idea states that 

the inclusion of incorrect features will cause people to direct their attention to regions of 

space that do not adequately match the target features, and thus their attentional guidance 

will be impeded.  The second idea, which we refer to as the decision-making hypothesis, 
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posits that an imprecise template will interfere with the comparison process whereby one 

decides if the current visual input matches their stored representation well enough to be 

identified as the target.  Here, inaccurate features may lead to slowed perceptual decision-

making, causing a delay in verifying the target.  The final hypothesis, called the dual-

function hypothesis, suggests simply that an imprecise target template will hinder both 

attentional guidance and decision-making during search. 2 

 In Experiment 3a, we first established that template imprecision – induced 

through the use of imperfect target cues – would lead to decrements in search RTs.  Then, 

in Experiment 3b, we honed in on this finding by using eye-tracking to deconstruct RTs 

into two functionally separate time periods.  Scanning, which was the time from the start 

of search to the moment wherein the target was first fixated, and decision-making, which 

was the time that passed from first fixation on the target to the participant’s overt 

response.  Specifically, we chose two dependent measures to characterize searcher 

behavior during these time periods.  Scan-path ratios (SPRs) were obtained by summing 

the amplitude of all saccades (in degrees of visual angle) prior to target fixation, and 

dividing that value by the shortest distance from central fixation, directly to the target.  

Thus, a SPR of one would indicate that the participant’s eye moved straight from central 

fixation to the target, without deviating.  Ratios greater than one indicate imperfect 

attentional guidance (i.e., that other locations were visited prior to the target being 

fixated).  Decision-times (DTs) were obtained by calculating the time between when the 

target was first fixated to the time at which the participant pressed the spacebar to 

indicate that the target had been found. 
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 In Experiments 3c and 3d, we provide converging evidence by manipulating the 

searchers’ templates in analogous fashion, using a wider range of similarity (obtained 

through MDS ratings), rather than relying on a within- versus across-item classification 

system (i.e., state- and exemplar-pairs).  Finally, in Experiments 3e and 3f, we 

supplement these findings with eye movement indexes. 

 Because these experiments were designed with several different factors (e.g., Set 

Size), a great many effects and interactions are possible.  Accuracy is reported for 

diligence, but is not substantively interesting in these experiments, as it was quite high 

throughout.  The specific findings we were interested in are any main effects of Template 

Precision (see below for an explanation), and any interactions of Template Precision with 

Block, which would indicate changes in behavior over time. 

Experiment 3a Method 

 The apparatus and stimuli were identical to Experiments 1 and 2.   

Participants. 

 Twenty new students from Arizona State University participated in Experiment 3a 

as partial fulfillment of a course requirement.  All participants had normal or corrected-

to-normal vision, and all reported normal color vision. 

Design. 

 Three levels of Template Precision (precise, imprecise, inaccurate) were 

manipulated within-subjects.  Within every condition, three levels of Set Size (12, 16, 20) 

were manipulated (in equal proportions).  There were four blocks of 90 experimental 

trials (for a total of 360 trials).   Additionally, four practice trials were administered 

during the instructions phase, to familiarize participants with the task.  Two-hundred and 
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forty experimental trials of the precise condition were administered, and sixty trials each 

of the imprecise and inaccurate conditions were given. 

Procedure.   

 Visual search.  At the beginning of each trial, participants were shown a target 

cue and were asked to “search for this item or something very similar to it” (see Figure 

7).  The participant was shown this cue for as long as they needed to encode it.  When 

they were ready to begin, they pressed the spacebar to start the trial.  Then, they saw a 

fixation cross for 500 msec, followed by the visual search display, which remained on 

screen until the participant responded or 10 seconds had elapsed (in which case the trial 

was marked as inaccurate).  People rested their fingers on the spacebar during search.  As 

soon as they found the target, they depressed the spacebar, which cleared the images from 

view (RTs were measured from the onset of the search display to the pressing of the 

spacebar).  Each image was then replaced with a randomly generated number (between 

one and the set size) for two seconds.  The numbers then disappeared and the participant 

was asked to indicate the number that appeared at the location of the target; they were 

shown the correct number and a randomly generated number (the correct number was 

presented equally often on the left or right of the screen).  Using the keyboard, they then 

indicated the number corresponding to the target location (“f” for the number shown on 

the left; “j” for the number shown on the right). 

 This procedure is novel, and was used to obtain the cleanest measure of visual 

search completion time possible, while still ensuring that the participant actually located 

the correct image.  Alternative methods, such has having participants click on the target 

image (using the mouse) add hand-movement time to the search RT; thus, “noise” would 
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be included in the RT, that varies as a function of distance from the starting location of 

the mouse cursor to the position of the target.  Feedback was provided on each trial in the 

form of a centrally presented green checkmark, or a large red “X”; feedback for correct 

trials was one second in duration, and was two seconds in duration for incorrect trials, to 

encourage accurate responding.  Instructions asked participants to respond as quickly as 

possible while still retaining a high degree of accuracy. 

 Search array organization.  A search array algorithm was used to create spatial 

configurations with pseudo-random organization (see Figure 8).  An equal number of 

objects appeared in each quadrant of the display (three, four, or five, according to set 

size).  Each quadrant was broken down into nine equally sized “cells” (effectively 

making the entire display into a 6x6 grid).  On each trial, images were placed in random 

cells (per quadrant); specific locations were generated within these cells to ensure a 

minimum of 1.5° of visual angle between adjacent images, and between any image and 

the edges of the screen.  No images appeared in the four centermost locations of the 

screen, to ensure that participants’ gaze would never immediately fall on a target at the 

start of a trial.  The target appeared in each quadrant of the display an equal number of 

times. 

 Stimulus selection.  On most trials (2/3 of the total), the target appeared in the 

search display exactly as it was cued (these are the “precise” Template Precision trials).  

On the minority of trials (1/3 of the total), the target that appeared in the display was a 

slight deviation from that which was shown as a cue prior to search.  These are the 

“imprecise” and “inaccurate” Template Precision trials.  The deviated target was either 

the state- or exemplar-partner of the picture shown as a cue (imprecise and inaccurate 
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conditions, respectively).    Participants were told that on the majority of trials, the target 

would appear exactly as it was cued to them, and that only on a minority of trials would 

they encounter a target item that deviated from the cue.  They were not given explicit 

information about the proportion of precise to imprecise/inaccurate trials (but all three 

trial types were administered during the practice session), nor were they able to anticipate 

the condition of any given trial.  Essentially, the goal was to encourage the participants to 

adopt the cue as a search template, by conducting an experiment wherein the cue was 

usually a “safe” template to adopt. 

On each trial, the target was selected quasi-randomly from among the 100 

exemplar- and 100 state-pairs (depending on which condition was being called for).  Each 

of these pairs of stimuli were used 1 or 2 times throughout the entire experiment.  On 

each trial, distractors were selected quasi-randomly from among the 240 categories 

(which were the focus of Experiment 2).  Distractors were chosen such that no more than 

one exemplar per semantic category was represented on any given trial; across trials, no 

category was repeated until each had been used at least once.  This set of images 

contained 4,040 distinct exemplars; each picture was used no more than twice over the 

entire experiment. 

Experiment 3a Results 

 All data were analyzed using 3 (Template Precision: precise, imprecise, 

inaccurate) x 3 (Set Size: 12, 16, 20) x 4 Block (1-4) within-subjects, repeated measures 

ANOVAs.  Only correct trial RTs were analyzed. 
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Accuracy. 

 Overall, accuracy was high (98%).  We found a main effect of Template 

Precision, with the best performance on precise trials (99%), followed by imprecise 

(98%) and inaccurate trials (96%); F(2, 18) = 7.94, p < .01, n2
p = .45.  The main effects 

of Set Size and Block were not significant (Fs < 2).  There was a Precision x Set Size 

interaction (F(4, 16) = 5.00, p < .01, n2
p = .55), indicating that higher set sizes were 

detrimental to the imprecise condition, but not the other conditions (means are presented 

in Table 2).  No other interactions were significant (Fs < 3). 

Reaction time. 

 There was a main effect of Template Precision, with fastest RTs on precise trials 

(1006 msec), followed by imprecise (1321 msec) and inaccurate (1941 msec); F(2, 18) = 

77.75, p < .01, n2
p = .90.  We also found main effects of Set Size (1242, 1424, and 1601 

msec for 12, 16, and 20, respectively), F(2, 18) = 24.05, p < .01, n2
p = .73, and Block 

(1579, 1473, 1360, and 1277 for Blocks 1-4), F(3, 17) = 13.53, p < .01, n2
p = .70: RTs 

lengthened with increasing set size, and decreased across blocks.  There was a Precision x 

Block interaction (see Figure 9; F(6, 14) = 5.89, p < .01, n2
p = .72), indicating that 

searchers improved to the greatest degree when their template was less precise 

(improvements of 128, 245, and 533 msec across blocks for the precise, imprecise, and 

inaccurate conditions, respectively). 

 We also performed a secondary analysis to ensure that the peculiarities of the 

stimuli themselves did not lead to differential responding.  For instance, perhaps the 

exemplar-pair stimuli are simply more difficult to process (e.g., due to visual complexity, 

ease of identification or naming), relative to the state-pairs.  If so, this would taint our 
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conclusion that template imprecision leads to increased RTs.  On each precise trial, only a 

single image was shown (as the cue and as the target during search), but the individual 

pictures were a priori identified as members of the state- or exemplar-pair sets.  

Therefore, we conducted an analysis that looked only at the precise trials, to determine if 

RTs were different for state- and exemplar-pair stimuli.  The analysis showed that RTs 

were equivalent across these groups of pictures (1025 and 987 msec for the state- and 

exemplar-pair stimuli, respectively), suggesting that there is nothing inherently more 

difficult about processing the exemplar-pair pictures, relative to the state-pairs. 

Experiment 3a Discussion 

 The results from Experiment 3a were straightforward.  We found that template 

imprecision caused a decrement in performance, such that people became slower 

searchers as their templates were made less precise.  We also found an interaction of 

Template Precision and Block, suggesting that the main effect of Block was not simply a 

practice effect.  That is, search RTs remained relatively flat in the precise condition, 

improved across trials in the imprecise condition, and improved to the greatest extent in 

the inaccurate condition.  There are two possible explanations for this interaction.  First, 

over time, participants may have become more resilient to the inaccurate features that 

were imposed upon them by imperfect target cues.  They may have adopted a broader 

(perhaps categorical) template based on the cue, rather than sticking to the specific 

features shown to them prior to search.  This could, for instance, lead to faster decision-

making when they viewed the actual target in the search display.  The second, less 

interesting possibility is simply that of a “ceiling effect”.  Search RTs were very fast 

overall, dipping to approximately one second in the fourth block for the precise 
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condition.  Therefore, it seems that a more parsimonious explanation of this interaction is 

simply that performance in the precise condition reached its peak, whereas the 

comparatively harder conditions afforded greater room to improve. 

 In Experiment 3b, we followed up on this question in two ways.  First, the 

introduction of eye-tracking allowed us greater insight into people’s behavior, by 

allowing us to deconstruct RTs into scanning and decision-making behavior.  If this 

interaction is not the result of a ceiling effect, we should expect to see an increase in 

decision-making efficiency without a concurrent increase in scanning efficiency.  It is 

unlikely that a broader template would increase the ability of a searcher to guide their 

attention to target relevant features, but it seems reasonable that a more tolerant template 

would allow faster resolution of search decisions once the target has been viewed.   

 The second way in which we addressed this interaction was to introduce a new 

manipulation in Experiment 3b.  Here, we manipulated (across participants) the 

proportion of trials in which the target was an exact match to the cue.  Arguably, an ideal 

observer would construct a template that respected the cue only to the degree in which 

they tended to be a reliable representation of the to-be-located items.  If the cues were 

perfectly reliable, a searcher should construct a template on each trial that strongly 

resembles the cue they are shown.  However, if the cues are rarely a good depiction of the 

actual targets that appeared in the search displays, then an ideal searcher would only 

loosely base his or her template upon those items.  Indeed, a recent study by Machizawa 

and colleagues (2012) suggests that the precision of working memory representations can 

be controlled at will (this study is discussed in further detail in the General Discussion of 

Experiment 3).  As such, we introduced a Match Frequency manipulation in Experiment 
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3b (this condition is explained in greater detail in the Methods section).  Across 

conditions, we varied the likelihood that the cue would perfectly match the to-be-located 

target, with the expectation that behavior in the various conditions would be qualified by 

the trustworthiness of the cues.  Specifically, for the high Match Frequency group (i.e., 

the people who encountered very trustworthy cues), we expected faster search RTs in the 

precise Template Precision condition, relative to the low Match Frequency group (i.e., the 

people who encountered very untrustworthy cues).  Then, in the inaccurate Template 

Precision condition, we expected a “flip”, whereby the high Match Frequency group 

would be slower than the low Match Frequency group, due to their strict adherence to the 

initial cue. 

Experiment 3b Method 

 The stimuli were identical to Experiment 3a. 

Participants. 

 Twenty-nine new students from Arizona State University participated in 

Experiment 3b as partial fulfillment of a course requirement.  All participants had normal 

or corrected-to-normal vision, and all reported normal color vision.  There were 10, 10, 

and 9 participants in the low, medium, and high Match Frequency groups, respectively. 

Apparatus. 

 Data were collected using a Dell Optiplex 755 PC ((2.66 GHz, 3.25 GB RAM). 

Our display was a 21-inch NEC FE21111 CRT monitor, with resolution set to 

1280x1024, and refresh rate of 60 Hz.  E-Prime v2.0 Professional software (Schneider, 

Eschman, & Zuccolotto, 2002) was used to control stimulus presentation and collect 

responses. Eye-movements were recorded by an Eyelink 1000 eye-tracker (SR Research 
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Ltd., Mississauga, Ontario, Canada), mounted on the desktop. Temporal resolution was 

1000 Hz, and spatial resolution was 0.01°.  An eye movement was classified as a saccade 

when its distance exceeded 0.5° and its velocity reached 30°/s (or acceleration reached 

8000°/s2).  Viewing was binocular, but only the left eye was recorded. 

Design. 

 The design was identical to Experiment 3a, with two exceptions.  First, the 

frequency of precise Template Precision trials (i.e., trials in which the target cue and the 

to-be-located item were identical) was manipulated between-subjects.  There were three 

levels of Match Frequency (low, medium, high).  For the low Match Frequency group, 

20% of the trials were of the precise Template Precision condition (the other 80% of 

trials were evenly split between imprecise and inaccurate Precision.  For the medium 

Match Frequency group, 53% of trials were precise (the other 47% of trials were evenly 

split between imprecise and inaccurate), and for the high Match Frequency group, 80% of 

trials were precise (and the remaining 20% were evenly split between imprecise and 

inaccurate).  The second change was that there were now only three blocks of 90 

experimental trials (for a total of 270 trials). 

Procedure.   

 The procedure was identical to Experiment 3a, with the exception of details 

pertaining to the addition of eye-tracking.  Participants used a chin-rest during all search 

trials, and were initially calibrated to ensure accurate tracking.  The chin rest was 

adjusted so that the position of the eyes was maintained centrally on the computer screen 

when the participant looked straight ahead.  The calibration procedure establishes a map 

of the participant’s known gaze position relative to the tracker’s coordinate estimate of 
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that position.  The routine proceeds by having participants fixated a black circle as it 

moves to 9 different positions (randomly) on the screen.  Calibration was accepted if the 

mean error was less than 0.5° of visual angle, with no error exceeding 1° of visual angle.  

Periodic drift correction and recalibrations ensured accurate recording of gaze position 

throughout the experiment.  Interest areas (IAs) were defined as the smallest rectangular 

area that encompassed a given image. 

 The trial procedure was modified to include a gaze-contingent fixation cross.  

When the fixation cross appeared, participants had to direct their gaze to it for 500 mec in 

order for the search display to appear.  If they did not do this within 10 seconds, due to 

human error or problems with the calibration, the trial was marked as incorrect, and a 

recalibration was performed before the start of the next trial. 

Experiment 3b Results 

 All data were analyzed using 3 (Template Precision: precise, imprecise, 

inaccurate) x 3 (Match Frequency: low, medium, high) x 3 (Set Size: 12, 16, 20) x 3 

Block (1-3) mixed-model, repeated measures ANOVAs.  Match Frequency was the only 

between-subjects factor.  We included two new dependent measures, obtained via eye-

tracking: 1) Scan-path ratios (SPR), and 2) decision-time (DT).  Only correct trial RTs, 

SPRs and DTs were analyzed.  SPRs and DTs were not analyzed for trials in which the 

target was not directly fixated. 

Accuracy. 

 Overall, accuracy was high (98%).  There was a marginal effect of Template 

Precision, with the best performance on precise trials (99%), followed by imprecise 

(98%), and inaccurate trials (97%); F(2, 25) = 3.05, p = .07, n2
p = .20.  None of the other 
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main effects (Match Frequency, Set Size, Block) were significant (Fs < 2).  There was a 

significant Precision x Match Frequency x Set Size interaction; F(8, 46) = 2.87, p < 

.05, n2
p = .33, but no other interactions were significant (Fs < 2).  Means are presented in 

Table 3. 

Reaction time. 

 We found a main effect of Template Precision, with fastest RTs on precise trials 

(1146 msec), followed by imprecise (1390 msec) and inaccurate (1889 msec); F(2, 25) = 

79.55, p < .01, n2
p = .86.  There was no main effect of Match Frequency (F < 1).  There 

were also main effects of Set Size (1339, 1449, and 1637 msec, for 12, 16, and 20, 

respectively), F(2, 25) = 23.84, p < .01, n2
p = .66, and Block (1581, 1531, and 1313 msec 

for Blocks 1-3), F(2, 25) = 28.49, p < .01, n2
p = .70: RTs lengthened with increasing set 

size and decreased across blocks.  There was a Template Precision x Block interaction 

(see Figure 10; F(4, 23) = 7.90, p < .01, n2
p = .58), indicating that searchers improved to 

the greatest degree when their template was less precise (improvements of 78, 294, and 

433 msec across blocks for the precise, imprecise, and inaccurate conditions, 

respectively).  See Figure 10 for the mean RTs, SPRs, and DTs.  No other interactions 

were significant (Fs < 2). 

Scan-path ratios. 

 There was a main effect of Template Precision, with most optimal SPRs on 

precise trials (1.63), followed by imprecise (1.79) and inaccurate (2.50); F(2, 25) = 

66.98, p < .01, n2
p = .84.  There was no main effect of Match Frequency (F < 1).  There 

were also main effects of Set Size (1.70, 1.96, and 2.26, for 12, 16, and 20, respectively), 

F(2, 25) = 25.73, p < .01, n2
p = .67, and Block (2.01, 2.03, and 1.88 for Blocks 1-3), F(2, 
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25) = 3.42, p < .05, n2
p = .22: SPRs increased with larger set size and decreased across 

blocks.  There was a Precision x Block interaction (see Figure 10; F(4, 23) = 3.59, p < 

.05, n2
p = .38), indicating that searchers improved across blocks when their template was 

imprecise or inaccurate (improvements of .23 and .20, respectively), but not when their 

template was precise (decrement of .05).  There was also a Set Size x Block interaction, 

F(4, 23) = 4.45, p < .01, n2
p = .44, and a Template Precision x Match Frequency x Block 

interaction, F(8, 46) = 2.21, p < .05, n2
p = .28.  These interactions are plotted in the 

Appendix (Figures A5 and A6, respectively).  No other interactions were significant (Fs 

< 2). 

Decision time. 

 We found a main effect of Template Precision, with fastest DTs on precise trials 

(443 msec), followed by imprecise (621 msec) and inaccurate (869 msec); F(2, 25) = 

47.04, p < .01, n2
p = .79.  There was no main effect of Match Frequency or Set Size (F < 

1).  We found a main effect of Block, F(2, 25) = 22.50, p < .01, n2
p = .64, with DTs 

decreasing over blocks (734, 665, and 534 msec, for Blocks 1-3).  There was a Precision 

x Block interaction (see Figure 10; F(4, 23) = 5.07, p < .01, n2
p = .47), indicating that 

searchers improved across blocks the most when their template was less precise 

(improvements of 98, 182, and 321 msec, for precise, imprecise, and inaccurate, 

respectively).  No other interactions were significant (Fs < 2). 

Experiment 3b Discussion 

 The findings from Experiment 3b supported those of Experiment 3a.  We 

replicated the finding that search RTs were slowed by the imposition of imprecise target 

templates, as well as the Template Precision by Block interaction.  We hypothesized that 
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this interaction may be due to an increased ability to accommodate imperfect target cues 

over time (rather than a generalized practice effect, combined with peak performance at 

the easier conditions).  However, our eye-tracking analyses do not support this 

contention.  If our searchers adopted a broader, more tolerant template, we would expect 

to find that their decision-making behavior improved over the course of the experiment, 

but that their scanning behavior remained constant, or worsened.  In fact, both aspects of 

search behavior improved significantly more among the harder conditions.  This suggests 

that the Template Precision by Block interactions we found are driven largely by our 

participants having reached peak levels of performance in the easiest condition.  

Moreover, we did not find any interactions of Block with Mismatch Frequency, which 

also suggests that participants were not willfully changing the nature of their search 

templates. 

 In fact, the only effect of Mismatch Frequency we found was a Template 

Precision by Match Frequency by Block interaction.  As shown in the Appendix (Figure 

A6), however, this interaction was not systematic.  This finding is surprising, and 

suggests that even with explicit instructions regarding the trustworthiness of the cue, our 

participants did not alter the manner in which they created a search template.  Rather, this 

seems to indicate that they universally adopted the cue as their template and adapted to 

the challenges imposed by its inaccuracy as necessary.  In Experiment 3d, we follow up 

on this question by introducing a condition wherein the cue was never a reliable indicator 

of the to-be-located target.  For instance, if a participant saw a target cue of a particular 

coffee mug prior to search, that person knew that they would be searching for the 

category “coffee mug”, but that they would not find that exact picture. 
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 To return to our attentional guidance, decision-making, and dual-function 

hypotheses: The eye-tracking results clearly argue in favor of the dual-function 

hypothesis.  We found clear effects of Template Precision on both scan-path ratios, and 

on decision-times, with patterns that mirror those of the overall search RTs.  We conclude 

that the presence of inaccurate features to one’s target template hinders not just their 

ability to put their attention in the correct location, but to verify the identity of the target 

once it is viewed.  It is also interesting to note that decision-making time accounts for 

nearly half of the overall RT, highlighting the importance of deconstructing RTs into the 

two processes that result in any successful search decision: Scanning, and deciding. 

 In Experiments 3c and 3d, we provide converging evidence for these findings 

through the use of a new method of defining template-to-target similarity.  Here, rather 

than define similarity based on a within- versus across-item classification system, we 

employed numerous exemplars of each category, and varied pairwise similarity by 

assessing the distance between any two items in MDS space.   

Experiments 3c and 3d Method 

 The stimuli and apparatus of Experiments 3c and 3d were identical to Experiment 

3a. 

Participants. 

 Thirty and sixty new students from Arizona State University participated in 

Experiments 3c and 3d, respectively, as partial fulfillment of a course requirement.  All 

participants had normal or corrected-to-normal vision, and all reported normal color 

vision.   
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Design. 

 The design of Experiment 3c was identical to Experiment 3a, save the manner in 

which Template Precision was manipulated.  Here, there were four levels of Template 

Precision (precise, similar, moderate, dissimilar).  There were four blocks of 60 

experimental trials, with 15 trials per Template Precision condition, presented in random 

order (for a total of 240 trials).  The design of Experiment 3d was identical to Experiment 

3c, except that the precise Template Precision condition was removed.  There were four 

blocks of 60 experimental trials, with 20 trials per Template Precision condition. 

Procedure.   

 The procedure of Experiments 3c and 3d was identical to Experiment 3a, with the 

exception of the manner in which stimuli were selected to manipulate Template 

Precision.  As before, precise Template Precision trials involved presenting a target in the 

search display that was unaltered, relative to when it appeared as a cue prior to search.  

On other trials, the target that appeared in the search display was a slight deviation from 

that which was shown as a cue.  In contrast to Experiment 3a (which relied on the state- 

and exemplar-pair designation to estimate cue-to-target similarity), pairwise similarity in 

Experiments 3c and 3d was manipulated by selecting item pairs from the MDS spaces 

obtained in Experiment 2. 

 On each trial, a pair of images was selected quasi-randomly from among the 240 

image categories for which we acquired MDS data.  When the similar Template Precision 

condition was called for, a pair of images was selected from the chosen category whose 

distance from one another fit the similar designation (i.e., from the 1/3 of item pairs 

which were closest to one another in MDS space).  One of the images was used as the 
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search cue, and its partner was presented in the visual search display (designation as the 

cue or actual search target was randomized).  When the moderate Template Precision 

condition was implemented, a pair of images was selected from among those with a 

moderate distance designation, and when the dissimilar Template Precision condition 

was employed, a pair of images was selected from among the dissimilar pairs.  

Distractors were chosen randomly from the other 239 categories, such that no more than 

one exemplar per semantic category was represented on any given trial.  Target pairs 

were used only once over the entire experiment. 

 In Experiment 3d, the precise Template Precision condition was removed, and 

participants were instructed that the exact target cue would never show up in the search 

display.  They were told that the cue was a “guide” for which to direct their attention to 

the appropriate target category during search. 

Experiments 3c and 3d Results 

 For Experiment 3c, all data were analyzed using 4 (Template Precision: precise, 

similar, moderate, dissimilar) x 3 (Set Size: 12, 16, 20) x 4 (Block: 1-4) within-subjects, 

repeated measures ANOVAs.  For Experiment 3d, data were analyzed in similar fashion, 

but the design was now a 3x3x4, due to removal of a condition from the Template 

Precision group.  Only correct RTs were analyzed. 

Accuracy. 

 Experiment 3c.  Accuracy was high overall (97%).  There were no main effects of 

Template Precision, Set Size, or Block (Fs < 3), and there were no interactions (Fs < 2).   

 Experiment 3d.  Accuracy remained high, overall (96%).  There were no main 

effects of Template Precision or Block (Fs < 2).  We found a main effect of Set Size, F(2, 
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58) = 6.43, p < .01, n2
p = .18, with poorer accuracy at the largest set size (97%, 97%, and 

96%, for 12, 16, and 20, respectively).  Table 4 presents the mean accuracy per condition, 

for Experiments 3c and 3d. 

Reaction time. 

 Experiment 3c.  We found a main effect of Template Precision, F(3, 27) = 

72.27, p < .01, n2
p = .89, with slower RTs as precision decreased (1487, 1985, 2128, and 

2221 msec for precise, similar, moderate, and dissimilar conditions, respectively).  See 

Figure 11.  We performed a further analysis to ensure that this effect was not driven 

exclusively by the difference between trials wherein the cue was a perfect match (i.e., 

precise trials) relative to those with cue-to-target mismatch.  These planned-comparisons 

revealed a significant difference between the similar and moderate conditions (p < .05) 

and between the similar and dissimilar conditions (p < .01), indicating that the main 

effect of Template Precision was not due solely to the precise condition.  We also found a 

main effect of Set Size, F(2, 28) = 42.29, p < .01, n2
p = .75, with slower RTs as set size 

increased (1753, 1946, and 2169 msec, for 12, 16, and 20, respectively).  There was no 

main effect of Block (F < 3), nor any interactions (Fs < 2).   

 Experiment 3d.  There was a main effect of Template Precision, F(2, 58) = 

5.97, p < .01, n2
p = .17, with slower RTs as precision decreased (2024, 2086, and 2153 

msec for similar, moderate, and dissimilar conditions, respectively).  We also found a 

main effect of Set Size, F(2, 58) = 92.72, p < .01, n2
p = .76, with slower RTs as set size 

increased (1884, 2054, and 2326 msec for 12, 16, and 20, respectively).  The main effect 

of Block was not significant (F < 3), nor were any interactions (Fs < 1).   
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Experiments 3c and 3d Discussion 

 In Experiments 3c and 3d, we again replicated the finding that imprecise 

templates hinder search times.  Importantly, we now found that this effect was not limited 

to the manipulation of template precision through state- and exemplar-pairing systems, 

but rather that a psychologically valid metric of similarity (i.e., MDS ratings) produced a 

comparable continuum of performance.  Moreover, the findings from Experiment 3d 

suggest that our participants were adopting the cues provided to them, and were not 

attempting to manipulate their target templates in the service of accommodating 

imperfect cues.  That is, the people in Experiment 3d never encountered a perfectly 

accurate cue, and yet, their RTs still deviated as a function of the similarity between the 

cue and the to-be-located target (measured in MDS units).  In Experiments 3e and 3f, we 

attempt to replicate this finding, and to examine our three hypotheses (attentional 

guidance, decision-making, and dual-function) by incorporating eye-tracking measures. 

Experiments 3e and 3f Method 

The stimuli were the same as in Experiments 3a-3d.  The apparatus was the same 

as Experiment 3b.  The procedure and design of Experiments 3e and 3f was identical to 

that of Experiments 3c and 3d, respectively, except that eye-tracking procedures were 

now added to the experiments. 

Participants. 

 Eighteen new students (each) from Arizona State University participated in 

Experiments 3e and 3f as partial fulfillment of a course requirement.  All participants had 

normal or corrected-to-normal vision, and all were subjected to the Ishihara 
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colorblindness assessment (Ishihara, 1993), and were deemed to have normal color 

vision. 1 

Experiments 3e and 3f Results 

 For Experiments 3e and 3f, all data were analyzed exactly as in Experiments 3c 

and 3d, respectively.  As before, only correct trial RTs, SPRs and DTs were analyzed, 

and SPRs and DTs were not analyzed for trials in which the target was not directly 

fixated. 

Accuracy. 

 Experiment 3e.  Accuracy was high overall (97%).  We found a main effect of 

Template Precision, F(3, 15) = 3.49, p < .05, n2
p = .41, with poorer accuracy as precision 

decreased (98%, 97%, 96%, and 96% for precise, similar, moderate, and dissimilar 

conditions, respectively).  There was also a main effect of Set Size, F(2, 16) = 5.31, p < 

.05, n2
p = .40, with poorer accuracy at the largest set size (97%, 97%, and 96% for 12, 16, 

and 20, respectively).  There was no main effect of Block (F < 1), nor any interactions 

(Fs < 1). 

 Experiment 3f.  Overall accuracy was high (97%).  There was a main effect of 

Template Precision, F(2, 15) = 3.98, p < .05, n2
p = .35, with highest accuracy for the 

moderate condition (98%), relative to the similar and dissimilar conditions (both 97%).  

The main effects of Set Size and Block were not significant (Fs < 4), and none of the 

interactions were significant (Fs < 3).  Table 5 presents the mean accuracy per condition, 

for Experiments 3e and 3f. 
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Reaction time. 

 Experiment 3e.  We found a main effect of Template Precision, F(3, 15) = 

73.82, p < .01, n2
p = .94, with slower RTs as precision decreased (1465, 2085, 2378, and 

2447 msec for precise, similar, moderate, and dissimilar conditions, respectively).  As 

before (in Experiment 3c), we performed planned-comparisons to ensure this main effect 

was not due exclusively to the precise condition.  We found a significant difference 

between the similar and dissimilar conditions (p < .01), indicating that this was not the 

case.  There was also a main effect of Set Size, F(2, 16) = 17.14, p < .01, n2
p = .68, with 

slower RTs as set size increased (1885, 2104, and 2293 msec for 12, 16, and 20, 

respectively).  The main effect of Block was not significant (F < 1), nor were any 

interactions (Fs < 1).  See Figure 12 for the mean RTs, SPRs, and DTs from Experiments 

3e and 3f.   

 Experiment 3f.  There was no main effect of Template Precision (F < 2), but the 

trend was in the same direction as prior experiments.  There was a main effect of Set 

Size, F(2, 15) = 26.28, p < .01, n2
p = .78, with slower RTs at higher set sizes (2067, 2290, 

and 2476 msec for 12, 16, and 20, respectively).  There was no main effect of Block (F < 

1), nor any interactions (Fs < 4). 

Scan-path ratios. 

 Experiment 3e.  We found a main effect of Template Precision, F(3, 15) = 

68.63, p < .01, n2
p = .93, with higher SPRs as precision decreased (2.18, 2.97, 3.35, and 

3.50 for precise, similar, moderate, and dissimilar, respectively).  Planned-comparisons 

revealed that this was not due to the precise condition exclusively (there was a significant 

difference between similar and dissimilar conditions; p < .05).  There was a main effect 
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of Set Size, F(2, 16) = 14.46, p < .01, n2
p = .64, with higher SPRs at larger set sizes (2.64, 

3.03, and 3.23 for 12, 16, and 20, respectively).  The main effect of Block was not 

significant (F < 1), nor were any interactions (Fs < 1).   

 Experiment 3f.  There was a marginal main effect of Template Precision, F(2, 15) 

= 3.57, p = .05, n2
p = .32; however, the trend was not consistent with prior experiments, 

as the moderate condition had the largest SPR (2.97, 3.23, and 3.09 for similar, moderate, 

and dissimilar, respectively).  We found a main effect of Set Size, F(2, 15) = 23.94, p < 

.01, n2
p = .76, with higher SPRs at larger set sizes (2.76, 3.14, and 3.39 for 12, 16, and 20, 

respectively).  There was no main effect of Block (F < 2), nor any interactions (Fs < 1). 

Decision time. 

 Experiment 3e.  There was a main effect of Template Precision, F(3, 15) = 

22.49, p < .01, n2
p = .82, with longer DTs as precision decreased (345, 644, 736, and 798 

msec for precise, similar, moderate, and dissimilar, respectively).  Planned-comparisons 

revealed that this was not due to the precise condition exclusively (there was a significant 

difference between similar and dissimilar conditions; p < .05)  There was no main effect 

of Set Size or Block (Fs < 1), nor were there any interactions (Fs < 2).   

 Experiment 3f.  The main effect of Template Precision was not significant (F < 2), 

although the trend was consistent with prior experiments (730, 746, and 819 msec for 

similar, moderate, and dissimilar, respectively).  There was no main effect of Set Size, (F 

< 1).  The main effect of Block was significant, F(3, 14) = 5.59, p < .05, n2
p = .55, with 

the longest DTs in Block 3 (713, 711, 836, and 802 msec for Blocks 1-4).  There was also 

a significant Set Size x Block interaction, F(6, 11) = 6.74, p < .01, n2
p = .79, indicating 
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that the effect of Set Size was inconsistent across blocks (see Figure A7, in the 

Appendix).  No other interactions were significant (Fs < 2). 

Experiments 3e and 3f Discussion 

 What we found in Experiments 3e and 3f was not a perfect replication of our prior 

findings.  In general, however, the data were largely consistent with the results of 

Experiments 3a – 3d.  In Experiment 3e, we found that search RTs lengthened as a 

function of Template Precision, and that both scan-path ratios and decision-times 

followed suit.  Moreover, we established (through planned-comparisons) that this effect 

was not driven only by the difference in performance from the precise Template 

Precision conditions (wherein the cue and the to-be-located item were the same picture), 

relative to the others (wherein the cue was different from the to-be-located target).  

Rather, this is a graded effect that increases in magnitude as the dissimilarity of the cue 

and target grows. 

 In Experiment 3f (wherein cues were never a perfectly representation of the 

target), we found consistent trends in the RT and decision-time data, whereby RTs and 

DTs slowed with less template precision, but neither of these findings were statistically 

reliable.  For the scan-path ratio data, we found that SPRs did not change systematically 

as a function of template precision. 

Experiment 3 General Discussion 

 The important findings from Experiment 3 can be summarized by the following 

three points: 1) Template imprecision, imposed through the use of imperfect target cues, 

causes a decrement in search performance that is inversely proportional to the similarity 

of the cue and the actual to-be-located target; 2) This finding holds true both when the 
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actual target is the same exemplar as the cue but in a different perceptual state (i.e., our 

state-pairs), and when the cue and target are different exemplars altogether (i.e., our 

exemplar-pairs, and our MDS derived pairings); and 3) this decrement in search RT 

arises due to deficiencies in both attentional guidance and decision-making during search. 

Target templates operate on low- and high-level aspects of visual search. 

 Our results are consistent with a large literature showing that the contents of 

VWM bias attention toward target-defining features (Olivers et al., 2011; Woodman et 

al., 2007; Dowd & Mitroff, in press; Soto et al., 2008).  For instance, it has been shown 

that search template works at a functionally low level, acting in the service of gaze 

correction.  Specifically, Hollingworth and colleagues (Hollingworth et al., 2009; 2010) 

found that small, corrective saccades tend to be directed towards features that match the 

searcher’s template, often outside of the observer’s conscious awareness.  We make 

thousands of saccades each day, but these eye movements are ballistic in nature, and 

therefore are highly prone to error.  When our eyes miss the intended location, we make 

rapid, corrective saccades to alight our eyes to the area of space for which we aimed 

(Becker, 1972; Deubel, Wolfe, & Hauske, 1982); these saccades are initiated quickly, 

almost reflexively (Kapoula & Robinson, 1986).   

Using a gaze correction paradigm, Hollingworth and colleagues induced saccadic 

errors using gaze-contingent displays.  Their participants fixated a central cross, and were 

shown a circular array of different colored patches.  One of the color patches then grew in 

size (and shrank back rapidly), signaling to the searcher that they must make an eye 

movement to that item.  On some trials, after the saccade was initiated, the circular array 

was rotated.  Participants did not notice the rotation, due to saccadic suppression (Ethel, 
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1974; Thiele et al., 2002), but this procedure artificially created saccadic error because 

the intended saccadic target was moved while the searcher’s eyes were “in flight”.  The 

arrays were rotated only a small amount, causing participants to fixate the middle region 

between the intended target and a distractor.  At this point, the task can be envisioned as a 

small-scale visual search, whereby the searcher must make a corrective eye movement to 

the target, and avoid bringing their eye upon the distractor.  The results demonstrated that 

gaze-correction was highly accurate and fast: Participants correctly moved their eyes to 

the target more than 90% of the time and often did so in under 200 msec (indicating that 

they did so without consciously realizing they made two distinct saccades; Hollingworth, 

Richard, & Luck, 2008).  This suggests that the search template – in this instance, simply 

a target color – biases attention in such a way as to allow the visual system to more 

accurately inspect regions of interest.   

 At the other end of the complexity spectrum, it has been shown that the search 

template is used to direct attention in visually complex environments.  Malcolm and 

Henderson (2010) showed people pictures of real-world scenes, and asked them to locate 

a target that was either shown to them prior to search (using a picture cue), or one that 

was categorically defined (using a word cue).  They found that specific (i.e., picture-

cued) templates allowed observers to more efficiently place their attention at the location 

of the target (indexed by scan-path ratios), and to more quickly verify the identity of the 

target once their attention was situated appropriately (indexed by post-fixation reaction 

times).  These findings are entirely consistent with our own. 
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Template imprecision hinders attentional guidance and decision-making. 

 Our data are also consistent with a considerably smaller literature showing that 

imperfect target cues slow visual search.  Vickery and colleagues (2005), for example, 

conducted several experiments wherein people were asked to search for polygon shapes 

or real-world objects.  On some trials, the target cue was an imperfect representation of 

the to-be-located item.  Specifically, they manipulated the size and the orientation of 

targets, relative to the cue, and found that deviations along either dimension lead to 

reduced search speed.  Nevertheless, these imperfect pictorial cues still produced faster 

search performance than word cues (e.g., “Find a vertically symmetric polygon”, “Look 

for a tissue box”).  This suggests that detailed visual information is incorporated into the 

mental representation of the target during search. 

 Similarly, Bravo and Farid (2009) had people search for a variety of tropical fish 

in scenes of coral reefs.  Prior to conducting the search task, their participants were 

trained: They were shown a single exemplar from five different species, and learned to 

associate the name of the species with each particular fish.  The visual search task 

involved simply determining whether a fish of any species was present in the picture or 

not (no more than one fish was ever present).  Across experiments pictorial and word 

cues were used to indicate the type of fish that was likely to appear in the display.  

Importantly, the targets appeared in one of three conditions: 1) No variation – in which 

the target was identical to the studied image; 2) 2D viewpoint variation – in which the 

target was rotated, flipped, and scaled, relative to the studied image; and 3) Subordinate 

level variation – in which the target was a different fish from the same species.  When 

picture cues were used, participants found the targets most quickly when it was 
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untransformed, were slower when 2D viewpoint variations were implemented, and were 

slowest when another member of the species appeared.  By contrast, when word cues 

were used (e.g., “Search for a rainbow fish”), search times were equally fast when the 

target was unvaried or given a 2D viewpoint variation.  However, search times were 

significantly slower when a different member of the species appeared in the display.  This 

strongly suggests that participants create search templates that are detailed and specific, 

yet tolerant to deviation. 

 In our investigation, we built upon these findings by using a new method of 

imposing template imprecision, and by tracking the eye movements of our participants 

during search.  We entertained three hypotheses regarding the changes in behavior that 

were likely to appear when people conducted search using an imprecise guiding template.  

The first idea, which we referred to as the attentional guidance hypothesis, suggested that 

imprecise templates interfere with people’s ability to quickly place their attention in the 

region of space that contains the target.  Our second idea, called the decision-making 

hypothesis, posited that imprecise templates hinder the comparison process whereby one 

decides that the current visual input is in fact the target.  Our data strongly support the 

third idea, called the dual-function hypothesis, which conjectures that both aspects of 

visual search behavior will be impacted by template imprecision.   By deconstructing the 

search RTs into two functionally distinct epochs – scanning time and decision-making 

time – we consistently found that the inclusion of inaccurate features in our searchers’ 

target templates resulted in suboptimal performance in attentional guidance and decision-

making. 
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 Importantly, our results go beyond the published literature because of the manner 

in which template-to-target similarity was manipulated in our investigations.  The study 

by Vickery and colleagues (2005) used simple visual variations of the target (relative to 

the cue), and Bravo and Farid (2009) expanded this technique to involve new exemplars 

of the same category as the target.  Our method goes one step further by classifying the 

similarity of cross-exemplar pairings through the use of MDS, showing that when the cue 

and the target are distinct exemplars, there exists a graded decrement in performance that 

is proportional to the psychological (dis)similarity of the pair.   

Can templates be flexibly controlled? 

 The usefulness of precise target templates is uncontroversial.  Clearly, specific 

information about the appearance of the target can be used to guide attention, and to 

verify that incoming visual input matches (or does not match) that which the searcher 

seeks out.  But, as Bravo and Farid (2012) point out, an effective template must do two 

things: It must differentiate the target from potential distractors, but it must also be 

tolerant to variability in the appearance of the target.  After all, objects in the real-world 

frequently change appearance over time, and we can almost never perfectly predict 

exactly how an item will appear when we find it.  This certainty led us to ask whether or 

not the qualities of the search template are under voluntary control. 

 Indeed, it seems that people can willfully manipulate the precision with which 

information is stored in VWM.  Machizawa et al. (2012) used an orientation-

discrimination paradigm in which people were prompted to anticipate a fine- or coarse-

level discrimination following a delay interval.  Their participants were shown a sample 

display that consisted of several lines, oriented at different angles.  Then, the display was 
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removed for more than one second, and thereafter was replaced by a test probe.  This test 

probe looked exactly like the sample display, but one of the bars changed color and was 

rotated 15 or 45 degrees (fine- and coarse-level discriminations, respectively).  The task 

was to indicate if the bar rotated clockwise or counterclockwise.  Unbeknownst to the 

participants, there was an intermediate condition, wherein the bar was rotated 30 degrees.  

In this condition, discrimination performance was improved when participants were first 

prompted to anticipate a fine-level discrimination, relative to trials in which they were 

prompted to anticipate a coarse-level discrimination.  This suggests that participants used 

the prompt to adjust the precision with which information was stored in VWM.  Simply 

put, it seems that the quality of information storage in VWM is not all-or-none, but can 

be manipulated flexibly, depending on task demands. 

 A more recent study by Bravo and Farid (2012), examined the extent to which 

observers could hone their target template to meet variable task demands.  Participants 

again looked for tropical fish in underwater coral reef scenes.  There were two groups of 

participants: Half of the people searched for the same target image over and over again, 

whereas the other group of participants searched for multiple exemplars of the same 

species.  Everyone came back one or two days after the initial training session, and 

conducted a second round of testing that included new exemplars from the target 

category.  Search times to find these previously unseen pictures were faster by those who 

were trained on multiple exemplars, relative to those who were trained on a single 

category image.  This indicates that being trained on several instances of a category 

allowed the searchers to adopt a more general template that was tolerant to deviations 
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from that which was studied, thereby allowing them to efficiently locate items with 

similar features (even though those pictures had not been seen before). 

 In Experiment 3, we addressed this same question in two ways.  First, in 

Experiment 3b, we introduced a Match Frequency manipulation, whereby participants 

were told (accurately) how often the target would appear exactly as it was cued.  Our 

hypothesis was that participants who received frequently accurate cues would adopt a 

template that closely matched that of the cue.  By contrast, those who received 

infrequently accurate cues should adopt a template that was broader, and more tolerant to 

deviance from the cue on any given trial.  Unfortunately, we found no evidence that these 

strategies were in fact implemented: Our manipulation had no substantive effect on RT or 

eye movement indexes.  Our second way of approaching this question was to involve, in 

Experiments 3d and 3f, cues that were never an accurate representation of the target.  

Here, we hoped that our participants would be encouraged to adopt a generalized 

template, one that was representative of the category but that didn’t necessarily resemble 

the cue.  The results of these experiments were less straightforward, but in general, 

people’s performance tended to fall off as the similarity of the target (relative to the cue) 

decreased. 

It is tempting to suggest that our findings argue against the notion that people can 

flexibly control the quality of their search template.  An ideal searcher in Experiment 3b 

would construct a template that matched the cue only to the extent that those cues tended 

to be reliable.  In Experiments 3d and 3f, the cue only indicated the category that was to 

be searched for, and people never found that exact picture.  Therefore, they should 

construct a template that resembles a prototypical category member, rather than the cue 
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itself.  Neither of these “model searcher” scenarios arose, which may suggest that people 

cannot behave in such an ideal way.  However, upon closer consideration, it seems clear 

that our participants simply chose to adopt the cue as their template because that was the 

easiest thing to do. 

Simply put, it is likely that our manipulations were not strong enough to induce a 

change in the way searchers constructed their templates.  It seems reasonable to suggest 

that under both of the scenarios discussed above, creating a prototypical template was 

more effortful than simply calling to mind a representation of the picture cue that was 

shown.  Savvy research participants likely adopted our cues as their templates, and chose 

simply to deal with changes in the appearance of the target as necessary.  Thus, for now, 

our data cannot speak strongly to the question of whether or not target templates can be 

flexibly controlled in the service of ideal search behavior. 
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Experiment 4 

 In Experiment 4, we investigated a second way in which target templates may be 

imprecise.  Previously (in Experiment 3), our participants were shown imperfect target 

cues that created in their minds a template that contained inaccurate details regarding the 

appearance of the target.  Sometimes, however, our templates may be imprecise not 

because they are wrong, per se, but because they are too far-reaching.  Imagine, for 

instance, that you are searching for a particular brand of cereal at the supermarket.  You 

know that this brand just changed their logo, but you’re unsure if this particular grocery 

store will have boxes with the old logo or the new one.  If we define template precision as 

the similarity between your mental representation of the target and its actual appearance 

in the environment, then looking for both instances of the cereal box will make your 

target template imprecise, because you will only find one of them.  The features of the 

new logo, for instance, are superfluous if the store carries only boxes that bear the old 

one. 

 It now becomes necessary to requantify precision as the similarity between 

multiple items stored in VWM: We’ll call this the feature width of the searcher’s 

template.  Consider a scenario in which you are searching for one of two items that are 

highly similar to one another: For example, the new cereal logo may be identical to the 

old one, except that the brand name is in a different font.  Contrast this with a situation in 

which the two potential targets are highly dissimilar.  Now, perhaps, the new cereal logo 

includes a different font, a newly colored background, and a fresh mascot.  In both of 

these situations, your target template contains all of the “right” features, but in the second 
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scenario your template also contains several features that will not be helpful in locating 

the desired box. 

 Thus, in Experiment 4, we manipulated target precision by having people search 

for two targets at a time (only one of which ever appeared in the displays), with varying 

degrees of similarity to one another.  In Experiment 4a, we first established that this 

technique for influencing template precision would lead to decrements in search RTs.  

Then, in Experiment 4b, we supplemented our data by tracking the eye movements of 

participants during search.  In Experiment 4c we provided converging evidence by using 

MDS ratings to expand the range of pairwise similarity, and in Experiment 4d, we added 

eye tracking analyses to this technique.  All of the data were analyzed in the same manner 

as Experiment 3, whereby search RTs were deconstructed into eye-tracking indexes of 

scanning and decision-making behavior.  As in Experiment 3, the design of these 

experiments affords a great many effects and interactions.  Accuracy is again reported for 

diligence, but is not centrally interesting.  Specifically, in Experiment 4, we are 

particularly interested in any main effects of Feature Width and any interactions with that 

factor. 

 The central theme of Experiment 4 is that laboratory search tasks rarely provide 

the searcher with a cue that contains extraneous information about the appearance of the 

target.  In the real-world, however, we often encounter conditions of uncertainty, 

whereby we are unable to predict the features of a stimulus that are most likely to be 

beneficial to us.  Thus, we may be inclined to construct a search template with a wide 

range of possible features, even though some of those features may be unnecessary or 

unhelpful.  Thus, in this experiment we asked simply, “how does the inclusion of 
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inessential features (in one’s template) affect search behavior?”  To answer this question, 

we return again to the two hypothesized functions of the target template: That it is used in 

attentional guidance, and in perceptual decision-making.  Although the results of 

Experiment 3 argue strongly in favor of a dual-function hypothesis, there is no a priori 

reason to assume that this new manipulation will produce the same results.  That is, it is 

possible that the inclusion of extra features in the searcher’s template will hinder their 

ability to direct their attention to regions of space that contain target-similar features, but 

that the comparison process (of deciding whether or not the current visual input matches 

the target) will be unimpeded.  It seems likely that these extraneous factors will hinder 

attentional guidance because they may cause the searcher to be attracted to regions of 

space that do not actually match to to-be-located item.  By contrast, if one assumes, for 

instance, that a Sternberg-like comparison process (Sternberg, 1966; 1969; 1975) is 

completed upon viewing of each new item, then the similarity of the two potential targets 

in VWM should have no effect on decision-making times.     

Experiment 4a Method 

The apparatus and stimuli were identical to Experiments 1-3 (specifically, the 

non-eyetracking experiments). 

Participants. 

 Twenty-six new students from Arizona State University participated in 

Experiment 4a as partial fulfillment of a course requirement.  All participants had normal 

or corrected-to-normal vision, and all reported normal color vision.   
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Design. 

 Three levels of Feature Width (precise, narrow, wider) were manipulated within-

subjects.  As before, within every condition, three levels of Set Size (12, 16, 20) were 

manipulated (in equal proportions).  There were four blocks of 96 trials (for a total of 384 

trials).  There were four practice trials administered during the instructions phase.  Half of 

the experimental trials (192) were single-target trials (precise Feature Width), and half 

were two-target trials.  Of the two-target trials, half were of narrow Feature Width, and 

half were wider Template Precision. 

Procedure. 

 Visual search procedure.  The procedure for single-target trials was identical to 

prior experiments.  On two-target trials, participants were shown a pair of images at the 

beginning of each trial, and were asked to find one of them.  They were informed that 

only one of the images would appear in the search display, and that they could therefore 

stop searching after a single target had been found.  The actual search target was 

presented (during the cue phase) on the left and right of the screen equally often.  Visual 

search arrays were constructed of random spatial configurations, as in prior experiments. 

 Stimulus selection.  On each trial, a pair of images was selected quasi-randomly 

from among the 100 exemplar- and 100 state-pair stimuli.  In the precise Feature Width 

condition (i.e., single-target trials), only one item from the chosen pair was selected 

(randomly) to be used as the cue (prior to search) and the target that appeared in the 

visual search display.  Within these single-target trials, stimuli were selected from the 

exemplar- and state-pair “pools” equally often.  The narrow and wider Feature Width 

conditions were both two-target trials.  For narrow trials, a pair of images was selected 
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from the state-pair stimuli, and both pictures were shown as a cue prior to search; on 

wider trials, a pair of images was selected from the exemplar-pair stimuli for use as a cue.  

See Figure 13 for an example of target cues used across the different levels of Feature 

Width (note that the widest condition was not included in Experiment 4a, but was added 

to later experiments).  As in prior experiments, distractors were chosen quasi-randomly 

from the 240 picture categories, such that no more than one exemplar per semantic 

category was represented on any given trial.  Target stimuli were not used more than 

twice throughout the entire experiment, nor were any distractors. 

Experiment 4a Results 

 All data were analyzed using 3 (Feature Width: precise, narrow, wider) x 3 (Set 

Size: 12, 16, 20) x Block (1-4) within-subjects, repeated measures ANOVAs.  Only 

correct trial RTs were analyzed.  One participant was excluded from data analysis for 

producing mean accuracy and RTs that were more than 2.5 standard deviations below the 

mean of the group. 

Accuracy. 

 Accuracy was high overall (98%).  We found a main effect of Feature Width, F(2, 

23) = 6.27, p < .01, n2
p = .35, with poorer accuracy at the wider condition, relative to the 

other conditions (98%, 98%, and 97% for precise, narrow, and wider, respectively).  

There was no main effect of Set Size or Block (Fs < 3), nor any interactions (Fs < 2).  All 

means are presented in Table 6. 

Reaction time. 

 There was a main effect of Feature Width, F(2, 23) = 18.89, p < .01, n2
p = .62, 

with slower RTs as the feature space widened (909, 958, and 1053 msec for precise, 
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narrow, and wider, respectively).  We also found main effects of Set Size, F(2, 23) = 

82.63, p < .01, n2
p = .88, and Block, F(3, 22) = 4.00, p < .05, n2

p = .35.  RTs lengthened 

as set size increased (855, 975, and 1090 msec for 12, 16, and 20, respectively) and 

shortened over blocks (1037, 982, 958, and 917 msec for Blocks 1-4).  See Figure 14.  

There were no interactions (Fs < 2). 

Experiment 4a Discussion 

 The results of Experiment 4a were straightforward: We found that template 

feature width caused a decrement in performance, whereby people became slower 

searchers when their templates included extraneous features.  In Experiment 4b, we 

followed up on this finding by honing in on the two processes that contribute to the 

search RT, through the use of eye-tracking.  We also added a fourth condition to the 

Feature Width manipulation.  In the precise, narrow, and wider Feature Width conditions, 

our searchers were looking for a single category (that may or may not have been 

represented by a pair of exemplars).  Now, in the widest condition, we had people search 

for two semantic categories simultaneously, in order to provide a further comparison: 

Search for a single category (of varying feature width) to search for two distinct 

categories.  

Experiment 4b Method 

The apparatus and stimuli were identical to Experiments 1-3 (specifically, the 

eyetracking experiments). 
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Participants. 

 Sixteen new students from Arizona State University participated in Experiment 4b 

as partial fulfillment of a course requirement.  All participants had normal or corrected-

to-normal vision, and all reported normal color vision. 

Design. 

 The design was identical to Experiment 4a, with two exceptions.  First, a fourth 

condition was added to the Feature Width manipulation.  In this widest condition, two 

images were shown as cues prior to search, but these items were not semantically 

matched (see Figure 13).  The second change was that there were now only three blocks 

of 72 trials (for a total of 216 trials).   

Procedure. 

The procedure was identical to Experiment 4a, except that eye-tracking 

procedures were now added to the experiment, in addition to the fourth Feature Width 

condition.  In the widest Feature Width condition, two images were selected quasi-

randomly, to be used as cues prior to search (one item from the pair was randomly 

selected to be the actual search target).  Stimuli for this condition were pulled from the 

state- and exemplar-pairs in equal proportions.  Distractors were quasi-randomly selected 

from the 240 item categories, as in prior experiments; target and distractor stimuli were 

not used more than twice throughout the entire experiment. 

Experiment 4b Results 

 All data were analyzed using 4 (Feature Width: precise, narrow, wider, widest) x 

3 (Set Size: 12, 16, 20) x 3 (Block: 1-3) within-subjects, repeated measures ANOVAs.  
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Only correct trial RTs, SPRs, and DTs were analyzed; SPRs and DTs were only analyzed 

on trials in which the target was directly fixated. 

Accuracy. 

 Overall, accuracy was high (99%).  There was a marginal main effect of Feature 

Width, F(3, 13) = 3.33, p = .05, n2
p = .43, with poorer accuracy in the widest condition 

(97% for the widest condition, and 99% for each of the other conditions).  There was no 

main effect of Set Size or Block (Fs < 3), and no interactions (Fs < 3).  Table 7 presents 

the means for each condition. 

Reaction time. 

 We found a main effect of Feature Width, F(3, 13) = 51.76, p < .01, n2
p = .92, 

with longer RTs as feature space widened (958, 1016, 1119, and 1563 msec for precise, 

narrow, wider, and widest, respectively).  We also performed a further analysis to ensure 

that this main effect was not driven exclusively by the condition wherein people searched 

for two items that were not semantically matched (i.e., the widest condition).  Planned-

comparisons revealed a significant difference between the precise and wider conditions 

(p < .05), indicating that this was not the case.  See Figure 15 for mean RTs, SPRs, and 

DTs.  There were also main effects of Set Size, F(2, 14) = 46.32, p < .01, n2
p = .87, and 

Block, F(2, 14) = 3.90, p < .05, n2
p = .36: RTs lengthened at higher set sizes (1009, 1154, 

and 1329 msec for 12, 16, and 20, respectively), and were unequal across blocks (1215, 

1134, and 1143 msec for Blocks 1-3).  We found a significant Feature Width x Set Size 

interaction, F(6, 10) = 4.64, p < .05, n2
p = .74 indicating that increasing set size had a 

larger effect when people’s feature space was wider.  The slope of the best-fitting line 

relating RT to Set Size is a measure of the cost associated with adding each new item to 
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the display: Slopes were 15, 29, 44, and 72 msec/item for precise, narrow, wider, and 

widest conditions, respectively (see Figure A8 in the Appendix).   

Scan-path ratios. 

 There was a main effect of Feature Width, F(3, 13) = 68.67, p < .01, n2
p = .94, 

with larger SPRs as feature space widened (1.39, 1.46, 1.62, and 2.24 for precise, narrow, 

wider, and widest, respectively).  Planned-comparisons revealed that this effect was 

likely not driven exclusively by the widest condition; there was a marginally significant 

difference between the precise and wider conditions (p = .07).  We also found main 

effects of Set Size, F(2, 14) = 30.63, p < .01, n2
p = .81, and Block, F(2, 14) = 8.28, p < 

.01, n2
p = .54.  SPRs grew as set size increased (1.46, 1.66, and 1.91 for 12, 16, and 20, 

respectively), and were inconsistent across blocks (1.76, 1.60, and 1.67 for Blocks 1-3).  

There were no interactions (Fs < 2).   

Decision time. 

 We found a main effect of Feature Width, F(3, 13) = 11.78, p < .01, n2
p = .73, 

with longer DTs as feature space was widened (362, 415, 413, and 521 msec for precise, 

narrow, wider, and widest, respectively).  Planned-comparisons revealed that this effect 

was driven exclusively by the difference between the widest condition relative to the 

other conditions; no other pairwise comparisons revealed significant differences.  There 

was also a main effect of Block, F(2, 14) = 10.82, p < .01, n2
p = .61, indicating that 

people became faster decision-makers over the course of the experiment (478, 414, and 

391 msec for Blocks 1-3).  There was no main effect of Set Size (F < 2).  There was a 

significant Feature Width x Set Size x Block interaction, F(12, 4) = 27.72, p < .01, n2
p = 



79 

.99 (this interaction is plotted in Figure A9 in the Appendix).  No other interactions were 

significant (Fs < 2).   

Experiment 4b Discussion 

 The findings from Experiment 4b again showed that search RTs were slowed by 

target templates that were unnecessarily wide, and that this effect was not simply driven 

by the inclusion of the condition whereby people looked for two semantically different 

targets.  That is, planned-comparisons revealed a significant difference in performance 

within the single-category conditions alone.  The eye-tracking analyses revealed that 

widened target templates lead to a decrease in efficient attentional guidance and a 

decrement in decision-making behavior.  However, the scan-path ratio data showed a 

significant effect of Feature Width within the single-category conditions alone, whereas 

the decision-time data only revealed an effect of Feature Width when the two-category 

condition was included in the analysis.  This suggests that attentional guidance is affected 

more strongly by widening the feature space of the template than is decision-making 

ability.   

In Experiment 4c, we provide converging evidence by manipulating the feature 

width of the template through the use of MDS-derived item pairs.  Here, participants 

always searched for a single semantic category, but the width of the features of that 

category were varied: We compared search for a single category exemplar to search for a 

pair of exemplars with varying degrees of similarity (relative to one another).  

Experiment 4c Method 

The apparatus and stimuli were identical to Experiments 1-3 (specifically, the 

non-eyetracking experiments). 
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Participants. 

Sixty-five new students from Arizona State University participated in Experiment 

4c as partial fulfillment of a course requirement.  All participants had normal or 

corrected-to-normal vision, and all reported normal color vision.   

Design.   

 The design of Experiment 4c was identical to Experiment 4a, with two 

exceptions.  First, Feature Width was manipulated using the MDS spaces from 

Experiment 2.  Now, there were four levels of Feature Width: precise, similar, moderate, 

and dissimilar.  The second change was to the number of trials that were administered.  

There were four blocks of 80 experiment trials (for a total of 320 trials), with 20 trials per 

Feature Width condition. 

Procedure. 

  The procedure of Experiment 4c was identical to Experiment 4a, save the manner 

in which stimuli were selected to manipulate Feature Width.  As before, precise Feature 

Width trials involved only a single image that was used as a cue and the actual search 

target.  On other trials, two target cues were shown prior to search, but only one was 

present in the search display.  Pairwise similarity was used to manipulate Feature Width; 

image pairs were selected from the MDS spaces obtained in Experiment 2.  A pair of 

images was selected quasi-randomly from the 240 image categories.  When the similar 

Feature Width condition was called for, a pair of images was selected from the chosen 

category whose distance from one another fit the similar designation (and so on for the 

moderate and dissimilar conditions).  
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Experiment 4c Results 

 All data were analyzed using 4 (Feature Width: precise, similar, moderate, 

dissimilar) x 3 (Set Size: 12, 16, 20) x 4 (Block: 1-4) within-subjects, repeated measures 

ANOVAs.  Only correct trial RTs were analyzed.  Two participants were excluded from 

analysis for performing at a level of accuracy that was more than 2.5 standard deviations 

below the mean of the group. 

Accuracy. 

 Overall, accuracy was high (98%).  There was a main effect of Feature Width, 

F(3, 60) = 3.34, p < .05, n2
p = .15, with poorer accuracy at the dissimilar condition (97%), 

relative to the other conditions (98% each).  There was also a main effect of Block, F(3, 

60) = 7.68, p < .01, n2
p = .28, indicating slightly poorer accuracy over blocks (99%, 98%, 

97%, and 97% for Blocks 1-4).  There was no main effect of Set Size (F < 1), nor any 

interactions (Fs < 2).  Table 6 presents all means. 

Reaction time. 

 We found a main effect of Feature Width, F(3, 60) = 81.89, p < .01, n2
p = .80, 

with slower RTs as feature space widened (1111, 1366, 1374, and 1427 msec for precise, 

similar, moderate, and dissimilar, respectively).  We performed a follow-up analysis to 

ensure that this main effect was not driven exclusively by the difference between single-

target (i.e., precise Feature Width) trials and two-target trials (i.e., each of the other 

conditions).  Planned comparisons showed a significant difference between similar and 

dissimilar Feature Width conditions (p < .05), indicating that this was not the case.  We 

also found main effects of Set Size, F(2, 61) = 151.33, p < .01, n2
p = .83, and Block, F(3, 

60) = 3.24, p < .05, n2
p = .14.  RTs slowed as set size grew (1178, 1326, and 1455 msec 
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for 12, 16, and 20, respectively), and quickened over blocks (1401, 1320, 1277, and 1282 

msec for Blocks 1-4).  There was a Feature Width x Set Size interaction, F(6, 57) = 

2.50, p < .05, n2
p = .21, indicating steeper RT by Set Size slopes as feature space was 

widened: Slopes were 23, 36, 39, and 42 msec/item for precise, similar, moderate, and 

dissimilar conditions, respectively (see Appendix Figure A10).  No other interactions 

were significant (Fs < 2). 

Experiment 4c Discussion 

 In Experiment 4c, we found converging evidence for the notion that unnecessary 

features in one’s template inhibit the ability to quickly perform a visual search.  

Participants always searched for a single semantic category, but the width of their 

template was widened by having people search in conditions wherein the category was 

represented by a single exemplar, or a pair of exemplars with variable similarity to each 

other.  Importantly, we found that the effect of Feature Width was not driven exclusively 

by the difference between single-exemplar and two-exemplar trials; rather, there was a 

significant, graded effect within the two-exemplar conditions alone.  In Experiment 4d, 

we attempted to replicate this finding, and to elucidate the cause of the search RT 

decrement by tracking the eye movements of our participants. 

Experiment 4d Method 

 The apparatus and stimuli were identical to Experiments 1-3 (specifically, the 

eyetracking experiments).  The procedure was identical to Experiment 4c, except that 

eye-tracking procedures were now added to the experiment. 
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Participants. 

 Seventeen new students from Arizona State University participated in Experiment 

4d as partial fulfillment of a course requirement.  All participants had normal or 

corrected-to-normal vision, and all passed the Ishihara color-blindness assessment. 

Design. 

 The design was identical to Experiment 4c, with one exception.  Again, there 

were four blocks of experimental trials, but each block now only contained 60 trials (for a 

total of 240 trials), evenly split across the four Feature Width conditions. 

Experiment 4d Results 

 All data were analyzed using 4 (Feature Width: precise, similar, moderate, 

dissimilar) x 3 (Set Size: 12, 16, 20) x 4 (Block: 1-4) within-subjects, repeated measures 

ANOVAs.  Only correct trial RTs, SPRs, and DTs were analyzed, and SPRs and DTs 

were only calculated for trials in which the target was fixated directly. 

Accuracy. 

 Accuracy was high overall (98%).  There was no main effect of Feature Width or 

Set Size (Fs < 2).  We found a main effect of Block, F(3, 14) = 3.63, p < .05, n2
p = .44, 

with poorer accuracy in Block 3 relative to the other blocks (99%, 99%, 97%, and 98% 

for Blocks 1-4).  There were no interactions (Fs < 3).  Table 9 presents the means for 

each condition. 

Reaction time. 

 There was a main effect of Feature Width, F(3, 14) = 24.85, p < .01, n2
p = .84, 

with longer RTs as feature space widened (1193, 1507, 1544, and 1567 msec for precise, 

similar, moderate, and narrow, respectively).  Planned-comparisons revealed that this 
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effect was driven exclusively by the difference between single-target trials (i.e., precise 

Feature Width) relative to two-target trials (none of the other conditions were 

significantly different from one another).  See Figure 17 for mean RTs, SPRs, and DTs.  

There was a main effect of Set Size, F(2, 15) = 54.78, p < .01, n2
p = .88, with slower RTs 

at larger set sizes (1267, 1443, and 1649 msec for 12, 16, and 20, respectively).  The 

main effect of Block was not significant (F < 2).  We found a significant Feature Width x 

Block interaction, F(9, 8) = 4.89, p < .05, n2
p = .85, indicating an unstable effect of Block 

across levels of Feature Width (see Appendix Figure A11 for a plot of this interaction).  

No other interactions were significant (Fs < 1). 

Scan-path ratios. 

 We found a main effect of Feature Width, F(3, 14) = 8.31, p < .01, n2
p = .64, with 

longer SPRs for two-target trials, relative to single-target trials (1.87, 2.41, 2.26, and 2.40 

for precise, similar, moderate, and dissimilar conditions, respectively).  Planned-

comparisons supported the contention that the main effect was driven exclusively by the 

difference between single-target and two-target trials (none of the two-target trials were 

significantly different from one another).  There was also a main effect of Set Size, F(2, 

15) = 12.18, p < .01, n2
p = .62, with longer SPRs at higher set sizes (1.99, 2.20, and 2.51 

for 12, 16, and 20, respectively).  The main effect of Block was not significant (F < 1), 

nor were any interactions (Fs < 3). 

Decision time. 

 There was a main effect of Feature Width, F(3, 14) = 9.81, p < .01, n2
p = .68, 

again indicating a difference in performance during single-target trials, relative to two-

target trials (378, 499, 489, and 467 msec for precise, similar, moderate, and dissimilar 
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conditions, respectively).  Planned-comparisons showed that none of the two-target 

conditions were significantly different from one another.  There was a main effect of Set 

Size, F(2, 15) = 3.84, p < .05, n2
p = .34, with longer DTs at higher set sizes (393, 452, 

and 530 msec for 12, 16, and 20, respectively).  The main effect of Block was not 

significant (F < 3), nor were any interactions (Fs < 2).    

Experiment 4d Discussion 

 Our findings in Experiment 4d were an imperfect replication of the prior results.  

Specifically, in Experiment 4c we found a main effect of Feature Width that was not 

exclusively reliant on the difference in RT between single-target and two-target trials.  By 

contrast, in Experiment 4d, the main effect of Feature Width was in fact driven 

exclusively by the difference between the single-target condition relative to the others.  

The eye-tracking analyses revealed the same pattern of results: For both the scan-path 

ratios and decision-times, we found main effects of Feature Width that were not reliable 

when the single-target condition was excluded from the analyses. 

Experiment 4 General Discussion 

 The results of Experiment 4 can be summed up by the following three points: 1) 

Template imprecision, imposed by widening the “feature space” of our searchers’ 

templates, causes a slowing of search performance that seems to be inversely 

proportional to the similarity of the potential target images; 2) A clear performance 

change arises between single-target and two-target search conditions, and (within the 

two-target trials) between conditions in which the targets are semantically matched 

relative to when they are not; and 3) The eye-movement data showed that slowed search 
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RTs are caused by decrements in both attentional guidance and decision-making 

behavior. 

The cost of searching for more than one item. 

 We are adept visual searchers, probably stemming from the fact that we look for 

things in our environment so frequently.  In fact, under most circumstances, search is 

conducted so effortlessly that we can actively search for more than one thing at a time.  

Before departing for work at the start of the day, you often must search for several 

belongings to take with you: Your wallet, keys, and backpack, for instance.  Most people 

will stroll through their home and look for these items simultaneously.  It seems almost 

silly to suggest that a person would first locate their keys, then allow themselves to search 

for their wallet, and upon finding the wallet, begin looking for their backpack.  However, 

multiple-target search incurs performance costs, relative to single-target search.  For 

example, in prior work, we had people search for one, two, or three potential targets (a 

maximum of one target appeared on any given trial and participants were informed of this 

regularity) in cluttered search displays and in rapid-serial visual presentation “streams” 

(wherein single items were centrally presented for a brief duration; Hout & Goldinger, 

2010).  We found that multiple-target search affects both search accuracy and search 

speed: Participants are more likely to miss and to false-alarm during multiple-target 

search, and both locating the target (i.e., target-present trials) and determining its absence 

(i.e., target-absent trials) are performed more slowly, relative to single-target search.  

Moreover, these costs are revealed by the eye movement record as well.  In a second 

study, we found that when people look for multiple targets, they require more fixations to 

complete the task (Hout & Goldinger, 2012). 
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 Arguably, it feels more natural to conduct one multiple-target search than to, for 

instance, conduct several consecutive searches for each item one must collect before 

departing their home.  Menneer and colleagues (2007), however, found that this was not 

the most efficient strategy to adopt (see also Menneer et al., 2009; 2010).  They compared 

search performance when people looked for two targets simultaneously to conditions 

wherein people conducted two single-target searches back-to-back.  They found that 

dual-target search incurred accuracy and reaction time costs, whereby search for two 

targets took longer than the summed search times for two consecutive single-target 

searches.  In our everyday lives, this may seem like a trivial fact.  If you do not locate 

your keys or wallet on the first pass through your living room, you can simply return to 

reinspect the room a few moments later (or choose not to leave home).  However, for 

professional searchers, such as airport baggage screeners, this dual-target cost may have 

more dire consequences, as the opportunity for reinspection is lost once the passenger’s 

bag has cleared the security station (and the cost of missing a target weapon is not merely 

an inconvenience).  Menneer and colleagues’ work suggests that when people look for 

multiple items at once, the fidelity of the target representations cannot be maintained as 

accurately; thus, high-stakes searchers may be better served by a divided search strategy. 

 Our findings from Experiment 4 strongly support the notion of a dual-target cost 

in visual search.  We consistently found that search performance was worse when people 

constructed a template from a pair of target cues, relative to when they were only given a 

single cue.  Specifically, in Experiments 4a and 4b, performance was better in the precise 

Feature Width condition, relative to the narrow, wider and widest conditions, and in 

Experiments 4c and 4d, performance was better in the precise condition, relative to the 
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similar, moderate, and dissimilar conditions.  Furthermore, we found that when the two 

potential targets were from different semantic categories, performance declined, relative 

to when the two pictures were categorically alike: In Experiment 4b, performance was 

markedly worse in the widest Feature Space condition, relative to the others. 

What is the nature of the search template in multiple-target search? 

 An open question remains regarding the nature of mental representations during 

multiple-target search: Do people use multiple, discrete representations, or do they merge 

a pair of cues into a single, broad target template?  The answer, it seems, may depend on 

the demands of the task at hand.  Visual working memory is not an unlimited capacity 

system (Cowan, 2001; Vogel et al., 2005), and several different theoretical accounts exist 

that attempt to explain the organization of VWM in different ways.  Some theories 

propose that VWM contains a limited set of “slots” (Anderson et al., 2011; Awh et al., 

2007) in which information can be stored.  Others envision VWM as a dynamic resource 

that is limited by overall precision, rather than by number (Bays & Husain, 2008; 

Gorgoraptis et al., 2011).  And yet other theories suggest that the answer lies somewhere 

in between, as some kind of hybrid discrete-slot / dynamic-resource organization 

(Alvarez & Cavanagh, 2004; Buschman et al., 2011).   

 A recent study by Stroud and colleagues (2011; see also Godwin et al., 2010) 

investigated this question using single- and dual-target search for letter stimuli.  People 

looked for Ts of a certain color; distractors were Ls of various colors.  The authors 

entertained two hypotheses regarding the manner in which dual-target templates could be 

created.  First, it is possible that searchers maintained two target templates 

simultaneously (or alternated between them over time; see Moore & Osman, 1993).  The 
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alternative hypothesis was that a single target template was constructed that included a 

range of feature values from both targets, and possibly the feature values in between (i.e., 

those colors that occupied the “color space” between the two target colors).  Stroud 

systematically manipulated the similarity of the two potential targets by varying how far 

apart these items were in “color-steps” (defined using CIExyY color space).  When 

people searched for a single target, they exhibited a high degree of color selectivity, 

rarely fixating items that did not match the target color.  When looking for two targets, 

however, color selectivity was reduced, as people often fixated colors that did not match 

the targets.  However, the data were more nuanced: When the target colors were two 

steps away from one another, people tended to fixate the intervening colors more often 

than when the two targets were four steps away from one another.  This suggests that 

when the targets are similar, they are encoded as a single, unitary representation that 

meshes together the colors of the targets, as well as those in between.  When the targets 

are dissimilar, however, they seem to be encoded as separate and discrete representations 

that do not “absorb” the feature space that lies between them (but see Houtkamp & 

Roelfsema, 2009).   

Can our attentional-guidance and decision-making hypotheses answer this query? 

 Following the findings of Stroud and colleagues, we may be inclined to suggest 

that when people search for two targets that are highly similar (as when searching for two 

boxes of cereal who differ only in font), they are represented by a meshed, unitary 

representation, but when people search for dissimilar targets (as when searching for two 

boxes of cereal that differ in font, color, and mascot), they use detached representations.  

In Experiment 4b, the scan-path ratio data showed a marginally significant difference 
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between single-target and two-target search (i.e., between the precise and wider 

conditions), and a clear difference between the single-category and two-category 

conditions (i.e., between the widest condition, relative to all others).  In short, attentional 

guidance got worse as searchers moved from a single-target template to a two-target (but 

single-category) template, and from there to a two-category template.  In Experiment 4d, 

however, we found a main effect of Feature Width that was solely dependent on the 

difference between single-target and two-target search (i.e., between the precise 

condition, relative to all others); none of the two-target conditions (that varied in 

similarity defined by MDS space) were different from one another.  The decision-time 

data showed a similar pattern of results.  In Experiment 4b, the effect of Feature Width 

was driven exclusively by the difference between two-category trials relative to all 

others, and in Experiment 4d, the effect was driven exclusively by the difference between 

single-target trials relative to all others. 

 In short, we did not observe consistent, graded effects of Feature Width on 

attentional guidance or decision-making.  The overall main effects of Feature Width on 

scan-path ratios and decision-times were consistent, again strongly supporting the dual-

function hypothesis regarding the role of the search template.  Clearly, the addition of 

extraneous features in one’s template causes problems for both attentional guidance and 

decision-making.  But at present, the data are not strong enough to speak to the question 

of whether or not two-target templates are constructed in such a way that can be 

considered meshed or discrete.  It seems likely that when the two potential targets are 

highly similar (e.g., in our narrow Feature Width conditions), they may be fused into a 
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single, slightly broader template, and that highly dissimilar target must be represented by 

discrete templates.  But future studies will be needed to further clarify this issue. 
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Experiment 5 

 In the final experiment of this investigation, we turned our attention to another 

way in which target templates may become imprecise.  Sometimes our templates are 

imperfect not because they are wrong or unnecessarily broad, but because their quality 

becomes unstable over time.  Visual working-memory cannot retain information 

indefinitely (Baddeley, 2003; Vogel et al., 2001), though current theories of VWM 

disagree on whether individual features are lost gradually (e.g., Fougnie & Alvarez, 

2009) or if objects are lost all at once (e.g., Zhang & Luck, 2011). 

Imagine, for instance, that you are traveling to your hometown for a visit.  Your 

best friend is busy and so cannot pick you up, but he has graciously left his car for you at 

the airport, and mailed you a spare key in advance.  You know the general vicinity of his 

car in the parking lot, but it has been months since you’ve seen the car in person, and it is 

a very common make and model.  Being a savvy searcher (and wishing to avoid having 

to try your key on every Toyota Corolla in the parking garage), you requested that your 

friend send a picture of his car to your cell phone.  You open the phone and use the 

picture to refresh your mental template, before being confronted what seems like dozens 

of Toyota sedans.  As you scan the parking garage, you begin to lose the minute details 

that distinguish your friend’s car from other possible targets.  Does his car have hubcaps 

or rims?  Is there a spoiler on the back?  Was it silver or gray?  Gradually you become 

unconfident about the various details of your target vehicle, so you take your phone out 

once more to regenerate that pictorial template in your mind. 

 In Experiment 5, our aim was to examine how the target template changes over 

time, and how the dynamics of template decay affect search performance.  A key 
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comparison in these experiments is to distinguish between template-guided search (i.e., 

search using picture cues) and categorically-guided search (i.e., search using word cues).  

In particular, it was interesting to examine the extent to which internal representations 

generated from these different kinds of cues change over time.  In the vast majority of 

laboratory visual search experiments, each search is completed within a matter of several 

seconds.  This thrift is sub-optimal if we are interested in the extent to which a 

representation fades from VWM.  Accordingly, the procedure we adopted here was to 

prolong search by having people scan through several displays sequentially, sometimes 

encountering a target early, and sometimes having to perform up to four consecutive 

searches before the target was encountered.  We compared template-guided search to 

categorically-guided search, and investigated template deterioration by periodically 

“refreshing” some participants with the cue (or cues) after each search, and by showing 

other participants the cue only once (at the start of each trial). 

 Specifically, in Experiment 5, we were interested in both search accuracy and 

search RTs, predominantly during target-present trials.  With respect to search accuracy, 

we were interested in how the modality of the cue would interact with the absence of cue 

refreshing (i.e., the Cue Type by Cue Reminders interaction).  And for search RTs, we 

were specifically interested in how prolonged search would interact with these factors 

(i.e., the Cue Type by Cue Reminders by Search Length interaction). 

Experiments 5a Method 

 The apparatus and stimuli were identical to Experiments 1-4 (specifically, the 

non-eyetracking experiments). 
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Participants. 

 Sixty-four new students from Arizona State University participated in Experiment 

5a, as partial fulfillment of a course requirement.  All participants had normal or 

corrected-to-normal vision, and only one participant reported partial color-blindness (all 

others reported normal color vision). 

Design. 

 Two levels of Cue Type (pictures, words) and two levels of Cue Reminders 

(present, absent) were manipulated between-subjects.  All other manipulations were 

within-subjects.  Two levels of Target Load (1 target, 2 targets), two levels of Target 

Presence (present, absent), three levels of Set Size (12, 16, 20), and four levels of Search 

Length (1-4) were manipulated in equal proportions.  There were two blocks of 60 

experimental trials (for a total of 120 trials).  Four practice trials were administered 

during the instructions phase.   

Procedure.   

 The trial procedure (see Figure 18) was nearly identical to the previous 

experiments, except for two primary details.  First, when picture cues were used (in 

contrast to word cues), the search target was unambiguous.  That is, the picture shown 

prior to search was always a veridical representation of the target that appeared in the 

search display.  Second, participants in these experiments had (often) to complete several 

consecutive searches before they found the target (and sometimes they did not ever find a 

target).  Trials began by showing the participant the picture or word cue (or cues).  When 

people were ready to begin the trial, they pressed the spacebar, at which point they saw a 

central fixation cross for 1 second.  Then they saw the first search display.  Participants 
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rested their fingers on the spacebar during search, and depressed it when they found a 

target, or when they determined that no target was present.  The search array was then 

replaced by a prompt screen, wherein they indicated their search decision (using the “f” 

and “j” keys to indicate target presence or absence, respectively).   

 If they correctly located a target, the trial came to an end.  If the target was not 

present (and they indicated target absence), the next screen they encountered was either a 

reminder prompt wherein they saw the target cue(s) again (Cue Reminder present 

condition), or a prompt telling them simply to get ready to continue searching (Cue 

Reminder absent condition).  Next, they pressed the spacebar to begin searching anew.  

They saw another fixation cross, followed by a new visual search display, and so on.  

This sequence was repeated for up to 4 consecutive searches.  Eighty percent of the trials 

contained a target, which appeared with equal frequency across searches 1, 2, 3 or 4.  The 

remaining 20% were target-absent trials (i.e., participants searched four times but never 

encountered a target); these trials were included so people would not learn to expect a 

target on the penultimate search (i.e., search #4).  Incorrect responses (misses or false-

alarms) on any of the displays caused the trial to terminate.  Feedback was provided after 

each trial, and instructions asked participants to respond as quickly as possible while still 

retaining a high degree of accuracy.  Spatial configurations were randomized on each trial 

and each search, consistent with prior experiments. 

 Stimulus selection proceeded much like the previous experiments.  Here again, 

we used the state- and exemplar-pair stimuli for our target pool (however, we were no 

longer looking for pairs of stimuli with a set degree of similarity).  On each single-target 

trial, one image was quasi-randomly selected from among the 100 state- and 100 state-
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pair stimuli.  On two-target trials, images were selected from two different semantic 

categories.  Each target category was used only once in the experiment.  Distractors were 

chosen (from the pool of 240 semantic categories) for each search display such that no 

more than one exemplar per category was represented on any given display.  Each 

distractor was used no more than twice over the entire experiment. 

Experiment 5a Results 

 All data were analyzed using 2 (Cue Type: pictures, words) x 2 (Cue Reminders: 

present, absent) x 2 (Target Load: 1 target, 2 targets) x 3 (Set Size: 12, 16, 20) x 4 

(Search Length: 1-4) mixed-model, repeated measures ANOVAs.  Target-present and 

target-absent trials were analyzed separately, for simplicity, and because exhaustive 

searches were not of substantive interest in this experiment.  One and seven participants 

(from the picture- and word-cues groups, respectively) were excluded from analysis for 

producing accuracy more than 2.5 standard deviations below the mean of their group.  

One participant from the word-cue group was excluded from analysis for self-reporting 

partial color-blindness.  Only correct trial RTs were analyzed. 

Accuracy. 

 Target-present trials.  Accuracy was reasonably high (85%).  There was a main 

effect of Cue Type, F(1, 51) = 25.81, p < .01, n2
p = .34, with better performance for those 

who had seen picture-cues (89%), relative to word-cues (80%).  The main effect of Cue 

Reminders was not significant (F < 1).  We found a main effect of Target Load, F(1, 51) 

= 59.13, p < .01, n2
p = .54, with better performance on 1-target trials (89%), relative to 2-

target trials (81%).  The main effect of Set Size was significant, F(2, 50) = 11.77, p < 

.01, n2
p = .32, showing that participants committed an unequal proportion of errors across 
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set sizes (87%, 82%, and 84% for 12, 16, and 20, respectively).  The main effect of 

Search Length was not significant (F < 2).   

Of particular interest, we found a Cue Type x Cue Reminders x Target Load 

interaction, F(1, 51) = 10.93, p < .01, n2
p = .18 (see Figure 19).  To more closely examine 

this three-way interaction, we performed a post-hoc analysis that examined accuracy as a 

function of each factor, but separately for the picture- and word-cue groups.  For the 

picture-cue group, we found a marginal effect of Cue Reminders, F(1, 30) = 3.86, p = 

.06, n2
p = .11, a main effect of Target Load, F(1, 30) = 55.21, p < .01, n2

p = .65, and a 

Target Load x Cue Reminders interaction, F(1, 30) = 5.82, p < .05, n2
p = .16.  Simply, for 

picture cues, performance was worse under load, was worse without cue reminders, and 

these two factors were additive.  For the word-cue group, there was no main effect of Cue 

Reminders (F < 1).  There was a main effect of Target Load, F(1, 21) = 15.52, p < 

.01, n2
p = .41, and a Cue Reminders x Target Load interaction, F(1, 21) = 5.09, p < 

.05, n2
p = .20.  For word cues, performance was worse under load, as with picture cues.  

However, cue reminders were ineffectual, overall. 

Returning to the original omnibus ANOVA, there was also a Cue Reminders x 

Target Load x Set Size x Search Length interaction, F(6, 46) = 2.65, p < .05, n2
p = .26.  

No other interactions were significant (Fs < 3).  All means are presented in Table 10. 

 Target-absent trials.  Accuracy was high, overall (98%).  There was a main effect 

of Cue Type, F(1, 51) = 52.02, p < .01, n2
p = .51, with better performance by those who 

saw picture cues (99%), relative to those who saw word cues (97%).  The main effects of 

Cue Reminders, Target Load, Set Size, and Search Length were not significant (Fs < 4); 
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see Figure 20.  There was a Set Size x Search Length interaction, F(6, 46) = 2.66, p < 

.05, n2
p = .26 (see Appendix Figure A12).  All means are presented in Table 11. 

Reaction time. 

 Target-present trials.  We found a main effect of Cue Type, F(1, 51) = 62.48, p < 

.01, n2
p = .55, with shorter RTs among those who saw picture cues (1453 msec) relative 

to those who saw word cues (2303 msec).  There was a main effect of Cue Reminders, 

F(1, 51) = 4.57, p < .05, n2
p = .08, with faster RTs by those who saw cue reminders (1763 

msec) than those who did not (1992 msec).  There were main effects of Target Load, F(1, 

51) = 193.64, p < .01, n2
p = .79, and Set Size, F(2, 50) = 48.38, p < .01, n2

p = .66; RTs 

slowed when searching for multiple targets (1576 and 2179 msec for 1-target and 2-target 

search, respectively), and when searching at higher set sizes (1677, 1923, and 2032 msec 

for 12, 16, and 20, respectively).  The main effect of Search Length was not significant (F 

< 2). 

 We found several interactions: Cue Type x Length: F(3, 49) = 3.28, p < .05, n2
p = 

.17; Cue Type x Set Size: F(2, 50) = 8.18, p < .01, n2
p = .25; Cue Reminders x Set Size: 

F(2, 50) = 6.64, p < .01, n2
p = .21; and Cue Type x Target Load x Search Length: F(3, 

49) = 4.45, p < .01, n2
p = .21.  All group means are presented in Table 12. 

To more closely examine our data, we performed a post-hoc analysis that 

examined RTs as a function of each factor, but separately for the picture- and word-cue 

groups.  In particular, we were interested in the interaction of Cue Reminders and Search 

Length within each group (see Figure 21).  For the picture cues group, there was a main 

effect of Cue Reminders, F(1, 30) = 5.58, p < .05, n2
p = .16, and a marginally significant 

Cue Reminders x Length interaction, F(3, 28) = 2.74, p = .06, n2
p = .23.  For the word 
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cues group, neither the main effect of Cue Reminders, nor the Cue Reminders x Search 

Length interaction were significant (Fs < 1).  Put simply, for picture cues, cue reminders 

were effective in keeping search RTs short, and consistent across searches.  Without 

them, search RTs were worse overall, and got systematically worse as search wore on.  

By contrast, for word cues, cue reminders were ineffective. 

 Target-absent trials.  There was a main effect of Cue Type, F(1, 51) = 33.34, p < 

.01, n2
p = .40, with faster RTs when people were shown picture cues (2491 msec) relative 

to those shown word cues (3751 msec).  We found a marginal main effect of Cue 

Reminders, F(1, 51) = 3.39, p = .07, n2
p = .06, with faster RTs when people were shown 

reminders (2920 msec), relative to when they were not (3322 msec).  There were main 

effects of Target Load, F(1, 51) = 235.09, p < .01, n2
p = .82, Set Size, F(2, 50) = 

147.68, p < .01, n2
p = .86, and Search Length, F(3, 49) = 31.76, p < .01, n2

p = .66.  Search 

was slower under load (2609 and 3633 msec for 1-target and 2-target search, 

respectively), slower at larger set sizes (2620, 3151, and 3591 msec for 12, 16, and 20, 

respectively), and people searched more carefully as time progressed (2923, 3033, 3200, 

and 3328 msec for Searches 1-4). 

 We found several interactions: Cue Reminders x Search Length: F(3, 49) = 

8.00, p < .01, n2
p = .33; Target Load x Set Size: F(2, 50) = 11.08, p < .01, n2

p = .31; Cue 

Type x Target Load x Search Length: F(3, 49) = 3.16, p < .05, n2
p = .16; Cue Reminders 

x Target Load x Search Length: F(3, 49) = 3.15, p < .05, n2
p = .16; and Cue Type x Set 

Size x Search Length: F(6, 46) = 3.47, p < .01, n2
p = .31.  All group means are presented 

in Table 13. 
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  As with the target-present RTs, we performed a post-hoc analysis that isolated the 

effects of Cue Reminders and Search Length for the picture- and word-cues groups 

separately (see Figure 22).  For the picture cues group, there was no main effect of Cue 

Reminders (F < 3), but there was a Cue Reminders x Search Length interaction, F(3, 28) 

= 16.92, p < .01, n2
p = .64.  For those who saw word cues, there was no main effect of 

Cue Reminders (F < 2), nor was there a Cue Reminder x Search Length interaction (F < 

2).  As with target-present RTs, picture-cued RTs were affected by prolonged search 

without cue reminders, but with word-cues, reminders were ineffective overall. 

Experiment 5a Discussion 

 The important findings from Experiment 5a can be easily summarized.  First, 

when target templates were constructed from word cues, people committed more errors, 

relative to when the templates were created from picture cues.  Second, when picture-

cued searchers were not given target reminders, they committed more misses, but for 

word-cued searchers, cue reminders had no effect.  Third, picture-cued search allows 

observers to complete the task more quickly than word-cued search.  And fourth, without 

cue reminders, picture-derived templates deteriorate, resulting in slower search RTs to 

late arriving targets, but for word-derived templates, cue reminders had no effect. 

 These results are uncontroversial in showing that picture-cued search is faster and 

more accurate than word-cued search.  However, the novel finding here is that unless 

these picture-derived templates are refreshed, they result in decrements in performance as 

the quality of the mental representation decays over time.  One concern with the present 

method, however, is that the self-paced nature of the inter-search interval may have 

allowed people to refresh their own template, by attempting to call to mind the original 
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picture without any time pressure.  That is, in between searches, the participant may have 

taken a moment to reflect upon the original cue, creating a sort of self-imposed 

refreshing.  Indeed, Wilschut and colleagues (2013) showed that a visual memory 

representation (rather than a percept of the cue) can be turned into an attentional set in 

under one second.   

 Therefore, in Experiment 5b, we attempted to replicate these findings with one 

modification to the procedure.  Here, rather than a self-paced inter-search interval, we set 

the interval to one second in duration for all conditions, in order to limit the amount of 

time our participants would have to conduct self-refreshing.  We hoped that this would 

exacerbate the effects we found in Experiment 5a. 

Experiments 5b Method 

 The apparatus, stimuli, and design were identical to Experiment 5a. 

Participants. 

 Eighty new students from Arizona State University participated in Experiment 5b, 

as partial fulfillment of a course requirement.  All participants had normal or corrected-

to-normal vision, and all others reported normal color vision. 

Procedure.   

 The procedure was identical to Experiment 5a with one exception.  In Experiment 

5a, the cue-reminder prompt (presented after search search) was self-paced.  That is, 

participants were shown a reminder of the cue(s) or the “Get ready!” prompt for an 

indeterminate period of time.  When they were ready to begin searching anew, they 

pressed the spacebar to continue the trial.  In Experiment 5b, by contrast, this prompt was 

presented for one second, and then the trial continued without user input. 
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Experiment 5b Results 

 The data were analyzed in identical fashion to Experiment 5a.  Three participants 

from the picture-cues group were excluded from analysis for performance that was more 

than 2.5 standard deviations away from the mean of their group (one for abnormally low 

accuracy and two for abnormally high RTs).  Two participants from the word-cues group 

were excluded from analysis for producing accuracy that was more than 2.5 standard 

deviations below the mean of their group.  Only correct trial RTs were analyzed. 

Accuracy. 

 Target-present trials.  Accuracy was reasonably high (80%).  There was a main 

effect of Cue Type, F(1, 71) = 35.56, p < .01, n2
p = .33, with better performance by those 

who were given picture cues (85%), relative to those who saw word cues (76%).  The 

main effect of Cue Reminders was marginally significant, F(1, 71) = 3.66, p = .06, n2
p = 

.05, with better performance by those who saw cue reminders (82%), relative to those 

who did not (79%).  There were main effects of Target Load, F(1, 71) = 68.32, p < 

.01, n2
p = .49, Set Size, F(2, 70) = 4.00, p < .05, n2

p = .10, and Search Length, F(3, 69) = 

5.94, p < .01, n2
p = .21.  Participants committed more errors under load (85% and 77% 

for 1-target and 2-target search, respectively), more errors at higher set sizes (82%, 81%, 

and 79% for 12, 16, and 20, respectively), and an unequal amount of errors as the trials 

progressed (80%, 79%, 80% and 84% for Searches 1-4).  There was a Set Size x Search 

Length interaction, F(6, 66) = 3.27, p < .01, n2
p = .23 (see this interaction plotted in 

Appendix Figure A13).  No other interactions were significant (Fs < 3).  All means are 

presented in Table 14. 
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 Once again, we were particularly interested in the Cue Type x Cue Reminders x 

Target Load interaction (see Figure 23).  This interaction was not significant here (F < 1).  

However, to be consistent with Experiment 5a, we performed the same post-hoc analysis 

which examined accuracy separately for the picture- and word-cue groups.  For the 

picture-cue group, the main effect of Cue Reminders was not significant (F < 2).  There 

was a main effect of Target Load, F(1, 34) = 33.33, p < .01, n2
p = .50, but no Cue 

Reminders x Target Load interaction (F < 1).  For the word-cues group, there was no 

main effect of Cue Reminders (F < 3), but there was a main effect of Target Load, F(1, 

37) = 36.91, p < .01, n2
p = .50.  The Cue Reminders x Target Load interaction was not 

significant (F < 1).  For picture cues, performance was worse under load, and there was a 

trend for poorer performance without cue reminders (87% and 84% with and without cue 

reminders, respectively), but this effect was not statistically reliable.  Unlike in 

Experiment 5a, however, this factors did not exacerbate one another.  With word-cues 

also, performance was worse under load, performance was worse under load, but was 

unaffected by cue reminders. 

Target-absent trials.  Accuracy was high, overall (98%).  We found a main effect 

of Cue Type, F(1, 71) = 32.57, p < .01, n2
p = .31, with better performance by those who 

saw picture cues (99%), relative to those who saw word cues (98%).  See Figure 24.  

There was a main effect of Cue Reminders, F(1, 71) = 4.19, p < .05, n2
p = .06, with better 

performance by those who saw reminders (99%) than by those who did not (98%).  We 

found a main effect of Target Load, F(1, 71) = 4.25, p < .05, n2
p = .06, with fewer errors 

when searching for one target (99%), relative to searching for two targets (98%).  The 

main effects of Set Size and Search Length were not significant (Fs < 2).  There was a 
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Cue Type x Target Load x Search Length interaction, F(3, 69) = 2.81, p < .05, n2
p = .11 

(see Appendix Figure A14).  All means are presented in Table 15. 

Reaction time. 

Target-present trials.  There was a main effect of Cue Type, F(1, 71) = 

149.72, p < .01, n2
p = .68, with faster RTs by those who saw picture cues (1292 msec), 

relative to those who saw word cues (2425 msec).  There was no main effect of Cue 

Reminders (F < 1).  We found main effects of Target Load, F(1, 71) = 296.69, p < 

.01, n2
p = .81, Set Size, F(2, 70) = 56.13, p < .01, n2

p = .62, and Search Length, F(3, 69) = 

7.27, p < .01, n2
p = .24.  Search for a single target was faster than search for two (1578 

and 2137 msec for 1-target and 2-target search, respectively), was slower at higher set 

sizes (1641, 1891, and 2040 msec for 12, 16, and 20, respectively), and was inconsistent 

across searches (1720, 1899, 1959, and 1849 msec for Searches 1-4). 

We found several interactions: Cue Type x Target Load: F(1, 71) = 15.65, p < 

.01, n2
p = .18; Cue Type x Set Size: F(2, 70) = 16.30, p < .01, n2

p = .32; Target Load x 

Search Length: F(3, 69) = 3.96, p < .05, n2
p = .15; Set Size x Search Length, F(6, 66) = 

3.12, p < .01, n2
p = .22; Cue Type x Cue Reminders x Set Size x Search Length: F(6, 66) 

= 2.26, p < .05, n2
p = .17; and Cue Type x Cue Reminders x Target Load x Set Size x 

Search Length: F(6, 66) = 2.57, p < .05, n2
p = .19.  All group means are presented in 

Table 16. 

Of key interest was the post-hoc analysis that we performed (as in Experiment 5a) 

which looked at the picture- and word-cue groups separately.  Specifically, we are 

interested in the interaction of Cue Reminders and Search Length within each group (see 

Figure 25).  For the picture cues group, there was a marginally significant effect of Cue 
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Reminders, F(1, 34) = 3.40, p = .07, n2
p = .09, but no Cue Reminders x Search Length 

interaction (F < 2).  For the word-cues group, neither the main effect of Cue Reminders, 

nor the Cue Reminders x Search Length interaction were significant (Fs < 1).  Simply 

put, for those who saw picture cues, cue reminders kept RTs short, but were ineffective 

for those who saw word cues. 

Target-absent trials.  We found a main effect of Cue Type, F(1, 71) = 93.86, p < 

.01, n2
p = .57, with faster RTs by those who saw picture cues (2207 msec), relative to 

those who saw word cues (4023 msec).  There was no effect of Cue Reminders (F < 1).  

We found main effects of Target Load, F(1, 71) = 559.87, p < .01, n2
p = .89, Set Size, 

F(2, 70) = 187.27, p < .01, n2
p = .84, and Search Length, F(3, 69) = 34.26, p < .01, n2

p = 

.60.  RTs were longer when searching for two targets (2622 and 3607 msec for 1-target 

and 2-target search, respectively), longer at higher set sizes (2644, 3115, and 3584 msec 

for 12, 16, and 20, respectively), and were longer as the trials wore on (2983, 3008, 3196, 

and 3273 msec for Searches 1-4). 

There were several interactions: Cue Type x Target Load: F(1, 71) = 9.33, p < 

.12, n2
p = .33; Cue Type x Set Size: F(2, 70) = 21.87, p < .01, n2

p = .39; Cue Type x 

Search Length: F(3, 69) = 3.18, p < .05, n2
p = .12; Cue Reminders x Search Length: F(3, 

69) = 3.16, p < .05, n2
p = .12; Target Load x Set Size: F(2, 70) = 23.73, p < .01, n2

p = .40; 

and Target Load x Search Length: F(3, 69) = 5.67, p < .01, n2
p = .20.  All group means 

are presented in Table 17. 

As before, we performed a post-hoc analysis that isolated the effects of Cue 

Reminders and Search Length for the picture- and word-cue groups separately (see 

Figure 26).  For the picture-cues group, there was no main effect of Cue Reminders (F < 
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2), but there was a marginally significant Cue Reminders x Search Length interaction, 

F(3, 32) = 2.82, p = .06, n2
p = .21.  For the word-cues group, there was no main effect of 

Cue Reminders (F < 1), nor was there a Cue Reminders x Search Length interaction (F < 

2).  Thus, picture-cued RTs were affected by prolonged search when cue reminders were 

absent, but for those who saw word cues, reminders were ineffective. 

Experiment 5b Discussion 

 The results of Experiment 5b partially replicated those of Experiment 5a.  As 

before, picture-cued search was faster and more accurate, relative to word-cued search.  

Again there was a trend in picture-cued search to commit more misses without cue 

reminders, but this effect was not statistically reliable.   On target-present trials, RTs were 

slower for picture-cued searchers that did not receive cue reminders, but this effect did 

not interact with the duration of search as in Experiment 5a.  And for word-cued search, 

we replicated the finding that cue reminders did not benefit search in any measurable 

way. 

 Our initial rationale for changing the procedure of Experiment 5a was to reduce 

the amount of time that our participants had to self-refresh their template (when not given 

cue reminders).  It is possible, however, that the imperfect replication of effects in 

Experiment 5b was a side effect of this change in procedure.  Namely, by specifically 

controlling the duration of the inter-search interval, we also shortened the overall 

duration of the trials (on average), and thus may have afforded less time for the searchers’ 

templates to deteriorate naturally. 
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Experiment 5 General Discussion 

 The findings from Experiment 5 can be summarized by the following three points: 

1) picture-cued search is faster and more accurate than word-cued search; 2) When 

people are not given cue reminders, they tend to miss more targets when their templates 

are picture-derived, but cue reminders are unhelpful when templates are word-derived; 

and 3) Finding the target when it is present takes longer when a picture-cued template has 

deteriorated (over time), but this finding does not hold true for word-cued templates. 

 Increasing the specificity of the template aids search accuracy and speed. 

 One of the earliest studies to directly compare template- and categorical-search 

(picture cues and word cues, respectively) was conducted by Wolfe and colleagues 

(2004).  In their study, people searched for conjunctive targets (e.g., a black vertical bar) 

in blocks wherein the target was new on each trial, or where the target was consistent 

throughout a block of trials.  Target cues were either words or pictures, and were 

displayed on-screen briefly, followed by a variable stimulus onset asynchrony (SOA; 

between 50 and 800 msec).  When an exact picture cue was given, people could “set up” 

their template within 200 msec, such that performance to varied targets was just as 

efficient as performance to blocked targets (with SOAs under 200 msec, blocked 

performance was superior).  Importantly, word cues took longer to set up, and never quite 

reached the effectiveness of the picture cues.   

Using real-world scene stimuli, Malcolm and Henderson (2009, 2010) tracked the 

eye movements of participants as they searched for targets with picture or word cues.  

They divided search time into distinct behavioral epochs: Search initiation time (the time 

from the offset of the cue to the first fixation in the scene), scanning time (search time up 
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to first fixation on the target), and verification time (time from first fixation on the target 

to response).  They found that picture cues elicited faster scanning times, and faster 

verification times (but not faster initiation times).  Moreover, when picture cues were 

used, fewer scene regions (the displays were broken up into rectangular areas of interest) 

were visited, suggesting that knowledge of the target properties better allows the visual 

system to ignore “noisy” activity from regions of the scene that do not contain target 

relevant features.   

It is uncontroversial that picture cues produce better search performance, relative 

to word cues.  However, what is less certain is the extent to which categorical cues are 

able to guide attention.  Some researchers have argued that semantic factors either cannot 

guide eye movements, or can only do so very weakly (e.g., Henderson, Weeks, & 

Hollingworth, 1999; Võ & Henderson, 2009).  Others, however, have argued differently, 

for instance, after observing strong effects of categorical or semantic (rather than visual) 

similarity during visual search (e.g., Meyer et al., 2007; Belke et al., 2008).  For instance, 

Dahan and Tanenhaus (2005) found that when participants searched for an outstretched 

snake, they were more likely to fixate distractors that looked like typical snakes (e.g., a 

curled rope), relative to non-snakelike distractors (see also work on “language-mediated 

eye movements”: e.g., Huetigg & Altmann, 2005, 2011; Altmann & Kamide, 2007).   

Zelinsky and colleagues are likely the biggest proponents of categorical guidance 

in visual search.  Yang and Zelinsky (2009), for example, had people search for teddy 

bears using picture or word cues, and found that in the latter case, people searched longer 

and made more fixations.  However, they also found that categorically-defined targets 

were fixated far sooner than would be expected by chance, suggesting some level of 
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attentional guidance with word cues.  Importantly, Schmidt and Zelinsky (2009) argued 

that the amount of guidance that a cue elicits is directly related to the cue’s categorical 

specificity.  Their participants were given five different types of cues: An exact picture of 

the target (e.g., a picture of a pair of boots), an abstract textual description (e.g., 

“footwear”), a precise textual description (e.g., “boots”), an abstract plus color textual 

description (e.g., “brown footwear”), or a precise plus color textual description (e.g., 

“brown boots”).  They found that guidance (indexed by fixation and saccade metrics) 

increased as more information was added to the cue.  Their findings suggest that 

information used in guiding attention need not be limited to pictures of the target, and 

that guidance improves to the extent that visual information can be extracted from the 

cue, and loaded into VWM (these assumptions are also built into two recent search 

models: See Zhang et al., 2006; Navalpakkam & Itti, 2005). 

Constructing a template from word cues is effortful. 

 Deriving a mental template from a picture cue requires little more than simply 

remembering that picture for a short period of time.  By contrast, creating a template 

from a word cue is an effortful undertaking.  One must call upon target-defining features 

stored in long-term memory to construct a prototypical template that is suitable to the 

task at hand.  In a different investigation, we have been exploring the effortful creation of 

word-derived templates using pupillometry (Hout, Papesh, & Goldinger, 2012).  Our 

participants searched for one or three potential targets in a rapid-serial visual presentation 

(RSVP) stream.  Cues were either pictures or words.  Participants encoded the search 

targets and then pressed the spacebar to begin a trial.  They then saw a fixation cross for 2 

seconds, followed by 24 different pictures, centrally presented, for 250 msec each 
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(followed by a 50 msec blank interval in between picture presentation); at the end of the 

trial, they indicated if a single target was present, or if all targets were absent.  

Importantly, we used pupil dilation to index cognitive demand across conditions, and 

throughout the duration of a trial.  Pupil dilation is directly influenced by parasympathetic 

activity in the nervous system (Aston-Jones & Cohen, 2005), and reflects increases in 

mental effort (Steinhauer et al., 2004; Beatty, 1982; Beatty & Kahneman, 1966; 

Kahneman, 1973; Papesh & Goldinger, 2012) as well as the creation (and retrieval) of 

memories (Goldinger & Papesh, 2012; Papesh, Goldinger & Hout, 2011; Võ et al., 2008).  

Specifically, we found that pupil dilation 1) can be used to index the challenges of 

difficult searches (Porter, Troscianko & Gilchrist, 2007), 2) reflects the difficulty of 

setting up a categorical target representation from memory, and 3) is a reliable indicator 

of target identification (Privatera et al., 2010).   

 Specifically, we found a number of interesting effects that speak to the mental 

effort devoted to visual search under various conditions.  Recall that an assumption made 

in Experiment 4 was that by having people search for multiple targets, we increase the 

width of their feature space, and thereby make search more difficult.  Our pupil data 

corroborate this assumption by showing that pupils are more dilated under high load (i.e., 

search for three targets), relative to low load (i.e., search 1 target); see Figure 27.  More 

germane to Experiment 5 of the current investigation, we found that pupil dilation also 

increases as a function of cue type.  Figure 28 shows pupil dilation as a function of cue 

type (template vs. categorical) for target-present trials.  Most striking is the difference in 

pupil dilation during the fixation interest period (higher for word cues).  Keep in mind, 

nothing of interest was on the screen during this time (just a simple, central cross), and 
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there were no changes in luminance or anything to cause a reflexive pupil change.  Here, 

the participants were either “setting up” their target template(s) from long-term memory, 

or were simply trying to maintain the identity of the target(s).  Thus, we have evidence 

that search using word cues requires more cognitive effort, relative to word cues. 

Finally, and perhaps most importantly, Figure 29 shows target-present trials, 

collapsed across all other factors.  Four separate lines are plotted, one for trials in which 

the target showed up in the first, second, third, or fourth quarter of the stream.  Two 

things are important to note about this figure.  First, in each case, the targets begin to 

peak shortly after presentation of the target, indicating that the target has been identified.  

And second, when the target shows up later in the stream, the height of the peak is 

reduced.  This suggests that as time elapses, the searcher’s target template begins to fade.  

When the target finally appears, it resonates less strongly with what is left of the 

representation in VWM.  This would not be an unprecedented finding.  For instance, 

recently (Papesh, Goldinger & Hout, 2011) we found that pupils were sensitive to the cue 

match between the first and second presentation of a spoken word.  When words were 

repeated in the same voice, pupils dilated more, relative to when voice was changed from 

encoding to test.  Moreover, strong memory responses (i.e., trials in which participants 

reported highly confident remembering) elicited higher pupil dilation, relative to weaker 

responses.   

We suggest that an analogous process is occurring here, with respect to the match 

between what is seen (i.e., the target in the stream), and the representation of that item in 

VWM.  If target templates are degrading over time, this is the exact pattern of findings 

we would expect, as the cue match becomes weaker with more fading from VWM.  
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Future studies are being carried out to delineate this account of our findings from 

alternative explanations.  Moreover, we are continuing to model this data using our 

multiple-trace memory model, Scanning QUiet Echoes And Learning (SQUEAL; Hout & 

Goldinger, 2011).   

The stability of picture- and word-derived templates. 

 Our current findings fit nicely with the established literature comparing picture-

cued to word-cued search.  Like others, we found that picture cues allow searchers to be 

fast and accurate, but there is a caveat.  Highly specific templates are only useful insofar 

as that specificity is able to be retained over time.  Unlike laboratory search experiments, 

search in the real-world can often be effortful and time-consuming.  Our data suggests 

that highly specific templates are prone to decrements in performance during prolonged 

search, because the features of such templates may be lost over time.  Whether this 

deterioration is due to decay from VWM, or interference with other information that is 

being viewed is unclear.  It is possible that feature values are simply lost with the passage 

of time, but it seems equally likely that incoming visual input – which makes its way into 

VWM in order to be compared to the search template – may be “pushing” the target 

features out of VWM over time.  Future work is needed to elucidate between these two 

possibilities. 

 What does seems clear is that templates derived from word cues, though slower 

and comparatively less accurate, are immune (or, at least, are resilient) to the hazardous 

effects of the passage of time.  It is important to note here, that we are arguing from a set 

of null effects: Specifically, the absence of Cue Reminders or Search Length effects on 

word-cued participants’ behavior.  It could therefore be argued that what we found was 
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not a resiliency to the passage of time, but rather “floor-level” performance.  Perhaps 

word-cued searchers were so slow and inaccurate that they could not perform any worse.  

Although we cannot use the observed pattern of effects to actively argue against this 

notion, we think this is a highly unlikely hypothesis.  Although word-cued search was 

inferior to picture-cued search, overall performance was still very high: Overall accuracy 

was in the 90% range, and target location infrequently took longer than three seconds.  It 

seems unlikely that a floor effect would be present in performance of such high caliber. 

 Undoubtedly, it is beneficial to have a target template that is highly precise and 

detailed.  And in some real-life situations, we are afforded such a luxury.  When we 

search for things we are highly familiar with, we often carry a mental picture of those 

items that is thorough, and perhaps robust to the passage of time.  Looking for one’s 

backpack, for instance, may be easy because the specific details of the item are known, 

and the backpack has been seen so many times that its features are unlikely to escape 

one’s mental representation easily.  But in other situations, such as looking for a friend’s 

car at the airport, our highly detailed representations may be more elusive, or prone to 

decay.  More challenging yet, is the fact that a great many of our everyday searches are 

conducted with no explicit knowledge regarding the appearance of the target.  Searching 

someone’s toolshed for a rake, or looking for a stuffed bunny at a toystore: These 

situations involve searching for an object that is categorically defined, and for which we 

have no specific prior experience.  Yet, we can conduct such tasks with little more effort 

than when we have seen our target previously.  Although a great many things have been 

learned about visual attention by studying picture-cued search, it seems high time that the  
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field turn its focus to situations that real searchers are more likely to encounter: Namely, 

searching for items for which we have limited, or imprecise knowledge. 

Future Directions 

 The experiments reported herein represent a substantial empirical contribution to 

the investigation of target templates in visual search, but they leave open several 

theoretical questions that may prove fruitful for future investigations.  In Experiment 3, 

we provided convincing evidence that when inaccurate features are included in one’s 

search template, both the attentional guidance and decision-making behavior of the 

searcher will be impaired.  One question that remains from this experiment regards the 

extent to which searchers have flexible control over the quality of their templates.  We 

attempted to answer this question by manipulating the trustworthiness of the cues, and by 

asking people to search using cues that were never fully accurate.  But our results suggest 

that the participants simply adopted the cue as their template, out of convenience.  In 

future experiments, it would be interesting to investigate the extent to which participants 

can create a broad, categorical template, or one that is dissimilar to the cue that is 

provided to them.  For instance, if participants know that a cue is categorically accurate, 

but dissimilar to the actual target they will locate, can they hone their templates to match 

the category and not the specific features of the cue?  If we show people a tall, red coffee 

mug, for example, are they able to create from memory an antithetical template that 

would allow them to quickly spot a short, blue mug?  If so, this would suggest that 

memory derived templates are under the flexible control of the observer, and can be 

honed with a high degree of expediency. 
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 In Experiment 4, we provided additional evidence that imprecise templates hinder 

both aspects of search, finding performance decrements when extraneous features were 

included in our searchers’ templates.  Taken together, these experiments provide strong 

support for a dual-function theory of target templates, whereby they are used both to 

select appropriate regions of space in which to place one’s attention, and as the 

comparison material against which incoming visual input is matched.  An unresolved 

issue from this experiment concerns the nature of mental representations in dual-target 

search.  When people look for two things at once, do they operate using a single, meshed 

template, or two discrete representations?  We attempted to answer this question by 

evaluating the eye-movement record between single- and two-target searches, and (within 

the two-target search conditions) between single-category and two-category search.  Our 

findings were suggestive that highly similar targets could be meshed into a single 

representation, and that highly dissimilar targets will be maintained separately.  The data, 

however, were inconclusive and so we cannot make a strong case for this at present.   

Future experiments should be aimed at further delineating this issue by, perhaps, 

attempting to model the decision-making process in analogous fashion to the Sternberg 

memory search experiments (e.g., Sternberg, 1966).  If we stretch out search to three, 

four or even five potential targets, and if we varied the similarity of items within those 

sets (relative to one another), it would be possible to fit a model to decision-times (and 

even individual fixation durations) in such a way as to make a case for the number of 

templates being maintained in tandem.  Imagine, for instance, that you are asked to 

search for three targets.  They could be three categorically different targets (e.g., a mug, a 

lamp, and a phone), or some combination wherein multiple targets are categorically alike 
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(e.g., a mug and two similar lamps, or a mug and two dissimilar lamps).  By contrasting 

the data across these various conditions, we may come to a closer understanding of the 

situations in which target templates can be collapsed, relative to when they must be 

maintained separately.  If, for example, the data when people search for one mug and two 

similar lamps resembles that of when they search for one mug and one lamp, we may be 

inclined to argue that the searcher collapsed the similar lamps into a single representation.  

This again would suggest that people have flexible control over their templates, and can 

constrain the peculiarities of their template to match changing task demands.  

 Finally, in the penultimate experiment, we provided evidence showing that the 

specificity of the template affects both search accuracy and search time.  When people 

have highly specific, picture-derived templates, their performance is superior to when 

they implement less detailed, word-derived templates.  However, the specificity 

advantage is fragile, in that highly tuned templates may degrade over time, and become 

less useful once they have deteriorated.  The next logical question to ask then, is whether 

or not there are situations in which categorical templates afford equal (or even superior) 

search performance to pictorial ones.  In essence, one might imagine that a picture-

derived template, given sufficient time to decay, would transform into something that 

resembles a categorical template.  If remembering the search target becomes particularly 

difficult, the searcher may in fact bring to mind incorrect features in an attempt to refresh 

their template.  When searching for a friend’s car in the airport parking garage, for 

example, you may incorrectly recall that the vehicle was silver, when in fact it was gray.  

As such, it would be interesting to elongate search to such an extent that picture-cued 

performance matches or is surpassed by word-cued search.  Finding this would suggest 
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that although template precision is important – and clearly all of the current results speak 

to this point – if that precision cannot be faithfully maintained over time, it may be better 

to adopt a more general template that is resilient, and tolerant to deviation. 
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FOOTNOTES 

1.  The Ishihara color-blindness assessment was not used in all experiments for two 

reasons.  First, this test can only be administered to one person at a time, which makes it 

unfeasible to test participants in the non-eyetracking experiments (wherein many 

participants took part in the experiment simultaneously).  As such, the Ishihara test was 

only administered during eyetracking studies, and we relied on self-report otherwise.  

Secondly, when some of the experiments were conducted, we did not yet have access to 

the Ishihara test, so eyetracking experiments did not universally employ it (only those 

that were conducted after January 2013 involved this test). 

 

2.  We did not entertain the next logical hypothesis – which would be that neither 

attentional guidance nor decision-making are hindered by imprecise templates – for two 

reasons.  First, because we felt that this was a straw-man hypothesis that no current 

theories are likely to support.  And second, because arguing for this hypothesis would 

require us to make conclusions based on a set of null effects. 

  



135 

TABLES 

Table 1. 

Same/different task accuracy from Experiments 1a and 1b, presented as a function of 

Trial Type and Block. 

 

   

  

Block

Trial Type 1 2 3 4 Mean

Experiment 1a

Different 96% 97% 97% 97% 97%

Same, state-pairs 96% 95% 95% 95% 95%

Same, exemplar-pairs 93% 94% 93% 93% 93%

Mean 95% 95% 95% 95% 95%

Experiment 1b

Different 97% 98% 99% 97% 98%

Same, state-pairs 95% 94% 97% 96% 95%

Same, exemplar-pairs 94% 93% 94% 92% 93%

Mean 95% 95% 96% 95% 95%
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Table 2. 

Visual search accuracy from Experiment 3a, presented as a function of Template 

Precision, Set Size, and Block. 

 

 

  

Template Precision Set Size Block 1 Block 2 Block 3 Block 4

12 99% 98% 99% 98%

Precise 16 99% 98% 98% 98%

20 99% 99% 99% 99%

12 100% 100% 99% 99%

Imprecise 16 98% 95% 97% 99%

20 99% 96% 93% 99%

12 93% 99% 95% 95%

Inaccurate 16 97% 98% 96% 94%

20 96% 96% 94% 96%
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Table 3. 

Visual search accuracy from Experiment 3b, presented as a function of Template 

Precision, Match Frequency, Set Size, and Block. 
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Table 4. 

Visual search accuracy from Experiments 3c and 3d, presented as a function of Template 

Precision, Set Size, and Block. 

 

 

  

Experiment 3c Experiment 3d

Template Precision Set Size Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

12 99% 98% 97% 97%

Precise 16 99% 99% 97% 98%

20 99% 97% 97% 97%

12 97% 98% 95% 97% 98% 96% 98% 96%

Similar 16 96% 96% 97% 97% 97% 98% 96% 96%

20 98% 98% 97% 98% 97% 96% 95% 92%

12 97% 98% 97% 98% 97% 97% 97% 97%

Moderate 16 95% 98% 96% 97% 97% 98% 95% 96%

20 95% 96% 97% 99% 96% 96% 95% 95%

12 97% 100% 98% 99% 98% 97% 97% 95%

Dissimilar 16 97% 98% 96% 97% 97% 97% 97% 95%

20 96% 99% 97% 96% 97% 96% 95% 96%
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Table 5. 

Visual search accuracy from Experiments 3e and 3f, presented as a function of Template 

Precision, Set Size, and Block. 

 

 

  

Experiment 3e Experiment 3f

Template Precision Set Size Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

12 98% 99% 98% 98%

Precise 16 99% 98% 99% 100%

20 97% 96% 98% 98%

12 98% 94% 98% 97% 98% 100% 98% 96%

Similar 16 98% 95% 98% 100% 99% 96% 97% 95%

20 96% 94% 96% 95% 98% 96% 97% 97%

12 98% 96% 96% 100% 99% 97% 99% 97%

Moderate 16 97% 100% 94% 94% 99% 98% 97% 96%

20 97% 94% 98% 94% 99% 97% 96% 95%

12 99% 98% 96% 96% 100% 96% 97% 98%

Dissimilar 16 96% 96% 96% 100% 95% 98% 96% 96%

20 92% 94% 97% 95% 96% 95% 94% 98%
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Table 6.   

Visual search accuracy from Experiment 4a, presented as a function of Feature Width, 

Set Size, and Block. 
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Table 7.   

Visual search accuracy from Experiment 4b, presented as a function of Feature Width, 

Set Size, and Block. 

 

 

Feature Width Set Size Block 1 Block 2 Block 3

12 99% 100% 99%

Precise 16 99% 98% 99%

20 99% 99% 100%

12 100% 100% 98%

Narrow 16 100% 98% 100%

20 100% 99% 100%

12 98% 100% 98%

Wider 16 100% 97% 99%

20 100% 100% 98%

12 99% 99% 97%

Widest 16 98% 97% 97%

20 98% 94% 97%
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Table 8.   

 

Visual search accuracy from Experiment 4c, presented as a function of Feature Width, 

Set Size, and Block. 

 

 

  

Feature Width Set Size Block 1 Block 2 Block 3 Block 4

12 99% 98% 97% 99%

Precise 16 98% 98% 97% 99%

20 100% 99% 98% 98%

12 98% 99% 96% 96%

Similar 16 99% 97% 97% 97%

20 99% 98% 98% 95%

12 99% 99% 98% 96%

Moderate 16 98% 98% 98% 97%

20 98% 98% 98% 96%

12 98% 97% 97% 98%

Dissimilar 16 98% 98% 97% 96%

20 99% 98% 96% 97%
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Table 9.   

Visual search accuracy from Experiment 4d, presented as a function of Feature Width, 

Set Size, and Block. 
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Table 10.   

Target-present visual search accuracy from Experiment 5a, presented as a function of 

Cue Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 11.   

Target-absent visual search accuracy from Experiment 5a, presented as a function of 

Cue Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 12.   

Target-present visual search RTs from Experiment 5a, presented as a function of Cue 

Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 13.   

Target-absent visual search RTs from Experiment 5a, presented as a function of Cue 

Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 14.   

Target-present visual search accuracy from Experiment 5b, presented as a function of 

Cue Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 15.   

Target-absent visual search accuracy from Experiment 5b, presented as a function of 

Cue Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 16.   

Target-present visual search RTs from Experiment 5b, presented as a function of Cue 

Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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Table 17.   

Target-absent visual search RTs from Experiment 5b, presented as a function of Cue 

Type, Cue Reminders, Set Size, Target Load, and Search Length. 
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FIGURES 

Figure 1.  Sample state- and exemplar-pair stimuli from the “Massive Memory” database 

(cvcl.mit.edu/MM/stimuli.html). 
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Figure 2.  Mean reaction time (on accurate trials) from Experiments 1a and 1b.  Error 

bars represent 1 standard error (SE) of the mean. 
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Figure 3.  Trial progression from Experiment 1b.  Dotted lines on the final display 

indicate alternative target locations; outlines were not actually shown. 
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Figure 4.  Scree plots for the teddy bear and butterfly categories, from Experiment 2.  

Stress values are plotted as a function of the dimensionality in which the MDS data were 

scaled.  
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Figure 5.  MDS solutions for the teddy bear stimuli, from Experiment 2.   
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Figure 6.  MDS solutions for the butterfly stimuli, from Experiment 2.   

 

 

  



158 

Figure 7.  Visual search trial progression, from Experiment 3a. 
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Figure 8.  Sample visual search display, from Experiment 3a, showing the search array 

organization grid.  Gridlines were imaginary; they were added to the figure for clarity.  

No images ever appeared in the centermost locations, shown here in gray. 
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Figure 9.  Mean visual search reaction time (on accurate trials) from Experiment 3a, 

presented as a function of Template Precision and Block.  Error bars represent 1 standard 

error (SE) of the mean. 
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Figure 10.  Mean visual search reaction time, scan-path ratio, and decision time (on 

accurate trials) from Experiment 3b, presented as a function of Template Precision and 

Block.  Error bars represent 1 standard error (SE) of the mean. 
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Figure 11.  Mean visual search reaction time from Experiments 3c and 3d, presented as a 

function of Template Precision.  Error bars represent 1 standard error (SE) of the mean. 
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Figure 12.  Mean visual search reaction time, scan-path ratio, and decision time (on 

accurate trials) from Experiments 3e and 3f, presented as a function of Template 

Precision.  Error bars represent 1 standard error (SE) of the mean. 
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Figure 13.  Sample single- and two-target visual search cues, from Experiment 4.  

Participants saw one or a pair of images and were instructed to find one of them.  In the 

precise Feature Space condition, only a single item was shown as the cue.  For the 

narrow condition a state-pair was used, and for the wider condition an exemplar-pair was 

selected.  In the widest condition, two images were selected from different semantic 

categories. 
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Figure 14.  Mean visual search reaction time (on accurate trials) from Experiment 4a, 

presented as a function of Feature Width.  Error bars represent 1 standard error (SE) of 

the mean. 
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Figure 15.  Mean visual search reaction time, scan-path ratio, and decision time (on 

accurate trials) from Experiment 4b, presented as a function of Feature Width.  Error bars 

represent 1 standard error (SE) of the mean. 
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Figure 16.  Mean visual search reaction time (on accurate trials) from Experiment 4c, 

presented as a function of Feature Width.  Error bars represent 1 standard error (SE) of 

the mean. 

 

 

  



168 

Figure 17.  Mean visual search reaction time, scan-path ratio, and decision time (on 

accurate trials) from Experiment 4d, presented as a function of Feature Width.  Error bars 

represent 1 standard error (SE) of the mean. 
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Figure 18.  Visual search trial progression, from Experiment 5. 
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Figure 19.  Target-present visual search accuracy, from Experiment 5a, presented as a 

function of Cue Type, Target Load, and Cue Reminders.  Error bars represent 1 standard 

error (SE) of the mean. 
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Figure 20.  Target-absent visual search accuracy, from Experiment 5a, presented as a 

function of Cue Type, Target Load, and Cue Reminders.  Error bars represent 1 standard 

error (SE) of the mean. 
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Figure 21.  Target-present visual search RTs (on correct trials), from Experiment 5a, 

presented as a function of Cue Type, Cue Reminders, Target Load, and Search Length.  

Error bars represent 1 standard error (SE) of the mean. 
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Figure 22.  Target-absent visual search RTs (on correct trials), from Experiment 5a, 

presented as a function of Cue Type, Cue Reminders, Target Load, and Search Length.  

Error bars represent 1 standard error (SE) of the mean. 
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Figure 23.  Target-present visual search accuracy, from Experiment 5b, presented as a 

function of Cue Type, Target Load, and Cue Reminders.  Error bars represent 1 standard 

error (SE) of the mean. 
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Figure 24.  Target-absent visual search accuracy, from Experiment 5b, presented as a 

function of Cue Type, Target Load, and Cue Reminders.  Error bars represent 1 standard 

error (SE) of the mean. 
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Figure 25.  Target-present visual search RTs (on correct trials), from Experiment 5b, 

presented as a function of Cue Type, Cue Reminders, Target Load, and Search Length.  

Error bars represent 1 standard error (SE) of the mean. 
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Figure 26.  Target-absent visual search RTs (on correct trials), from Experiment 5b, 

presented as a function of Cue Type, Cue Reminders, Target Load, and Search Length.  

Error bars represent 1 standard error (SE) of the mean. 
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Figure 27.  Pupil dilation, plotted as a function of the number of targets searched for (1 

target, bottom two lines; 3 targets, top two lines), and trial type (target-present, solid 

lines; target-absent, dotted lines).  On the X-axis time is represented from the start of the 

trial to the end; each quartile represents 6 items being presented in the stream.  From 

Hout, Papesh, & Goldinger, 2012. 
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Figure 28.  Pupil dilation, plotted as a function of cue type (picture cues in purple; word 

cues in green).  These are target-present trials wherein the target was one of the first six 

items in the stream.  From Hout, Papesh, & Goldinger, 2012. 
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Figure 29.  Pupil dilation, plotted as a function of when the target appeared (first, second, 

third or fourth quartile), collapsed across all other factors (target-absent trials excluded).  

From Hout, Papesh, & Goldinger, 2012. 
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APPENDIX A 

 

Table A1.  Stimulus categories 1-150, from Experiment 2.  Displayed are the number of 

participants who contributed data to each set. 
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Table A2.  Stimulus categories 151-240, from Experiment 2.  Displayed are the number 

of participants who contributed data to each set. 
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Figure A1.  MDS coordinates for each of the 17 teddy bear exemplars, from Experiment 

2. 
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Figure A2.  MDS coordinates for each of the 17 butterfly exemplars, from Experiment 2. 
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Figure A3.  Sample similar, moderate, and dissimilar item pairings for the teddy bear 

exemplars, from Experiment 2.  Rank indicates each pair’s status, relative to other pairs, 

with 1 being the pair that are closest to one another, and 136 being the pair that are 

farthest apart.  Distance is the three-dimensional Euclidean distance measured in arbitrary 

MDS units.  Item Pair indicates the numerical identifier of each item in the pair. 
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Figure A4.  Sample similar, moderate, and dissimilar item pairings for the butterfly 

exemplars, from Experiment 2.  Rank indicates each pair’s status, relative to other pairs, 

with 1 being the pair that are closest to one another, and 136 being the pair that are 

farthest apart.  Distance is the three-dimensional Euclidean distance measured in arbitrary 

MDS units.  Item Pair indicates the numerical identifier of each item in the pair. 
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Figure A5.  Mean scan-path ratio (on accurate trials), from Experiment 3b, presented as a 

function of Set Size and Block.  Error bars represent 1 standard error (SE) of the mean.  
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Figure A6.  Mean scan-path ratio (on accurate trials), from Experiment 3b, presented as a 

function of Precision, Match Frequency (MF), and Block.  Error bars represent 1 standard 

error (SE) of the mean.  
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Figure A7.  Mean decision time (on accurate trials) from Experiment 3f, presented as a 

function of Block and Set Size.  Error bars represent 1 standard error (SE) of the mean.  
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Figure A8.  Mean search RT (on accurate trials) from Experiment 4b, presented as a 

function of Feature Width and Set Size.  Error bars represent 1 standard error (SE) of the 

mean. 
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Figure A9.  Mean decision time (on accurate trials) from Experiment 4b, presented as a 

function of Feature Width, Set Size, and Block.  Error bars represent 1 standard error 

(SE) of the mean. 
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Figure A10.  Mean search RT (on accurate trials) from Experiment 4c, presented as a 

function of Feature Width and Set Size.  Error bars represent 1 standard error (SE) of the 

mean. 
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Figure A11.  Mean search RT (on accurate trials) from Experiment 4d, presented as a 

function of Feature Width and Block.  Error bars represent 1 standard error (SE) of the 

mean. 
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Figure A12.  Target-absent visual search accuracy, from Experiment 5a, presented as a 

function of Set Size and Search Length.  Error bars represent 1 standard error (SE) of the 

mean. 
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Figure A13.  Target-present visual search accuracy, from Experiment 5b, presented as a 

function of Set Size and Search Length.  Error bars represent 1 standard error (SE) of the 

mean. 
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Figure A14.  Target-absent visual search accuracy, from Experiment 5b, presented as a 

function of Cue Type, Target Load and Search Length.  Error bars represent 1 standard 

error (SE) of the mean. 
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APPENDIX B 

 

Figure B1.  Arizona State University Institutional Review Board Human Subjects 

Research Approval. 

 

 

 

 
 


