
Testing Independence of Parallel Pseudorandom Number Streams

Incorporating the Data’s Multivariate Nature

by

Chester Ismay

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2013 by the
Graduate Supervisory Committee:

Randall Eubank, Chair
Dennis Young

Ming-Hung Kao
Nicolas Lanchier

Mark Reiser

ARIZONA STATE UNIVERSITY

August 2013

ABSTRACT

Parallel Monte Carlo applications require the pseudorandom numbers used on each

processor to be independent in a probabilistic sense. The TestU01 software package is the

standard testing suite for detecting stream dependence and other properties that make certain

pseudorandom generators ineffective in parallel (as well as serial) settings.

TestU01 employs two basic schemes for testing parallel generated streams. The first

applies serial tests to the individual streams and then tests the resulting P -values for uniformity.

The second turns all the parallel generated streams into one long vector and then applies

serial tests to the resulting concatenated stream. Various forms of stream dependence can be

missed by each approach because neither one fully addresses the multivariate nature of the

accumulated data when generators are run in parallel.

This dissertation identifies these potential faults in the parallel testing methodologies

of TestU01 and investigates two different methods to better detect inter-stream dependencies:

correlation motivated multivariate tests and vector time series based tests. These methods

have been implemented in an extension to TestU01 built in C++ and the unique aspects of this

extension are discussed. A variety of different generation scenarios are then examined using

the TestU01 suite in concert with the extension. This enhanced software package is found to

better detect certain forms of inter-stream dependencies than the original TestU01 suites of

tests.

i

DEDICATION

To my lovely new bride, Karolyn. You are a dream come true.

ii

ACKNOWLEDGEMENTS

I am especially appreciative to my advisor, Dr. Randy Eubank. His patience, ability

to explain difficult concepts well, incredible work ethic, and willingness to show respect and

compassion have meant so much to me during our time working together. He also was vital in

helping me to land my first tenure-track job by providing advice, a great reference, and constant

support. Dr. Eubank has the qualities in a man that I hope everyone can someday have in their

lives. Randy really is the best, both in terms of academic prowess, mentorship, and also as a

human being. I am lucky to have worked with him and am honored that he accepted my offer

to be his doctoral student.

I am also thankful to my other committee members: Dr. Ming-Hung Kao, Dr. Nicolas

Lanchier, Dr. Mark Reiser, and Dr. Dennis Young. Their feedback has been extremely valuable

and thought-provoking. I am grateful to have had them as my professors with coursework and

also to have had the chance to work with them over the last eighteen months of dissertation

work. I am particularly thankful to Dennis, who came out of retirement a bit to serve on my

committee.

I also want to thank Debbie Olson, the Graduate Program Coordinator for the School

of Mathematical and Statistical Sciences (SoMSS) at Arizona State University. She responds

to requests in what seems to be within seconds every time and always works to make sure the

graduate students have exactly what they need. SoMSS just wouldn’t run without you, Debbie.

My wife Karolyn deserves more praise than I could ever give in a few words here.

She has remained by my side through all of the challenging times as a doctoral student and

provides strength and comfort that make me a better man every day. She has encouraged and

pushed me at just the right level and I am so very grateful to have her in my life.

A special thanks also goes to all of my friends at Arizona State University who took the

time to read through many versions of this document looking for typos, asked me to explain the

details further, and also listened to me explain my ideas to them over and over again. They are

too many to list and I’m sure I will miss a couple but here goes a partial list in no particular order:

Michael Tallman, Rebecca Everett, Arturo Valdivia, Arthur Mitrano, Eric DeMarco, Genevieve
iii

Toutain, Jon Adler, and Jason Bradshaw. You all are great and I am so fortunate to have been

able to spend this time with you.

My father Norm Ismay deserves special credit for introducing me to mathematics at

such a young age and fostering a love of numbers in me. I must also thank Dr. Roger Johnson

(South Dakota School of Mines and Technology) for first instilling an interest in statistics in

me so many years ago and for serving as my undergraduate advisor. Also deserving of great

recognition is Jen Pazour (University of Central Florida) who told me years ago that one day

I’d be a professor just like her.

iv

TABLE OF CONTENTS

Page

CHAPTER . 1

1 INTRODUCTION . 1

2 BACKGROUND INFORMATION ON GENERATING PSEUDORANDOM NUMBERS 6

2.1 Serial Generators . 6

Linear Congruential Generators . 6

Combined Multiple Recursive Generators . 8

Shift-Register Generators . 10

Lagged-Fibonacci Generators . 12

2.2 Parallel Pseudorandom Number Streams . 13

Parallelized Linear Congruential Generators 15

Parallelized Combined Multiple Recursive Generators 16

Parallelized Shift-Register Generators . 18

Parallelized Lagged-Fibonacci Generators . 19

3 CURRENT METHODS FOR TESTING PSEUDORANDOM NUMBERS 21

3.1 Empirical Tests of Serial Pseudorandom Number Generators 21

Tests for a Sequence of Real Numbers in (0, 1) 22

Tests for a Sequence of Bits . 25

Usage in TestU01 . 26

3.2 Testing Techniques for Parallel Pseudorandom Number Generators 27

Two-level Tests . 27

Parallel Filter . 28

4 PROBLEMS WITH EXISTING PARALLEL TESTING METHODS 29

4.1 Development of the CrushFile Addition . 30

4.2 Three Problematic Generators . 31

Normally Transformed VMA(1) process . 31

Univariate Time Series Moving Across the Processors 35

Bivariate Time Series Moving Across the Processors 38

4.3 Discussion . 40

v

CHAPTER Page
5 TESTU01 MULTIVARIATE EXTENSION - CORRELATION MOTIVATED MULTIVARI-

ATE TESTS . 42

5.1 Pairwise Correlations . 43

Aspects of the Pairwise Correlations Part of the Extension 43

Pearson correlation . 44

Spearman correlation . 45

Kendall correlation . 45

Computation of P -values . 45

Results . 46

Performance with the problematic generators 47

Mersenne Twister and MRG32k3a . 49

5.2 Testing for an Identity Correlation Matrix . 51

Results . 54

Performance with the problematic generators 54

Mersenne Twister and MRG32k3a . 56

6 TESTU01 MULTIVARIATE EXTENSION - VECTOR TIME SERIES BASED TESTS . 58

6.1 Hosking Portmanteau Test Statistic . 62

6.2 Li-McLeod Portmanteau Test Statistic . 62

6.3 Mahdi-McLeod Portmanteau Test Statistic . 63

6.4 Results . 63

Performance with the problematic generators 63

Mersenne Twister and MRG32k3a . 68

7 DESIGN CONSIDERATIONS FOR PARALLEL PROCESSING 72

7.1 Object-oriented Formulation . 72

7.2 Parallelization . 76

7.3 Discussion . 80

8 CONCLUSION . 82

REFERENCES . 85

APPENDIX A . 88

APPENDIX B . 126
vi

Chapter 1

INTRODUCTION

Random number generation has long been of interest to statisticians, computer programmers,

and scientists. Most often it provides the means for events in the real world to be modeled using

a generator algorithm that produces pseudorandom numbers. These pseudorandom numbers

can never truly be “random" in the sense that they must be programmed via a deterministic pro-

cess or numerical algorithm on a computer with finite memory. Each pseudorandom number

produced by this computer process will necessarily have some sort of deterministic relationship

to a given initial value (or seed) or to another pseudorandom number (or numbers) generated

by the process. In practice this absence of true “randomness" has been overlooked provided

the generated sequence of pseudorandom numbers “appears random": i.e., the numbers ex-

hibited the qualities of stochastic variables that are independent and identically distributed from

some specified distribution (usually a uniform distribution) as assessed by standard statistical

measures [16].

Other important properties are also needed for a given pseudorandom number gen-

erator (PRNG) to be considered “good." Including the two properties from above (that the

generated numbers are uniformly distributed and independent), an ideal generator should also

produce a stream of pseudorandom numbers that (1) is reproducible (on another computer or

on the same computer), (2) can be changed by inputting a different initial seed, (3) can be split

into many independent subsequences, and (4) can be quickly generated with little computer

memory [5]. There have been many different attempts at producing pseudorandom number

generators (PRNGs) that have these properties. Since it is impossible for correlations to not

exist in data produced by PRNGs due to the algorithmic nature of the generation process, we

hope to meet as many of these requirements as possible while understanding that meeting all

of them perfectly is not an attainable goal.

Chapter 2 begins with a discussion of many of the PRNGs that have been created and

commonly used over the last sixty years. One of the first generators to emerge in the literature

was the linear congruential generator (LCG). This generator is defined by a recurrence relation

1

starting on a given seed that is simple and fast to implement. The next value in a given stream

is based on the previous value only and, thus, this generator is of order one. Unfortunately, its

simplicity also leads to many problems in regards to the randomness properties of the numbers

it produces. Given this and the current speed of today’s processors and improvements made in

generators since the introduction of LCGs, the use of the family of linear congruential genera-

tors is not recommended. We consider it here for historical completeness and the connections

it has with modern generation methods.

An extension of the LCG is the family of multiple recursive generators (MRGs). MRGs

also use a linear recurrence but, in contrast to LCGs, the recurrence is of order greater than or

equal to two: i.e, two or more previously generated values are required to advance the current

state of the generator. In particular, this has the consequence that if one wants an order k

MRG, one must specify k seeds. A popular extension of the MRG is termed a combined mul-

tiple recursive generator (CMRG). As the name suggests, CMRGs are created by combining

(usually by averaging) the output of two or more MRGs together. There have been CMRGs with

particular parameter choices (such as the popular MRG32k3a generator developed by L’Ecuyer,

et al. [21]) that have performed well in meeting the requirements of a “good" PRNG [17].

A special group of MRGs called linear feedback shift register generators (LFSRs) was

proposed by Tausworthe in 1965. It is special in that it produces pseudorandom bits by a

linear recurrence modulo two. These generators work at the bitwise level thereby creating

numbers that are represented in binary. Similar to LCGs they produce numbers quickly but

have been shown to have many faults. In 1973, Lewis and Payne extended LFSRs to what

are called generalized feedback shift register generators. These usually involve working with

binary vectors and component-wise exclusive-or operations to produce integers. A further

variation on Lewis and Payne’s generator is the Mersenne Twister developed by Matsumoto

and Takuji [32]. Their particular variation of the LFSR has been known to pass many of the

most stringent of randomness tests and is one of today’s most used PRNGs.

The other standard class of PRNGs that will be mentioned here is the lagged-Fibonnaci

generators (LFGs). Their corresponding numerical recursion depends on two lag indices (s and

q with s > q) and a binary arithmetic operation such as addition, subtraction, or multiplication
2

moduloM for some large integer valueM . Thus, the method requires the storage of s previous

values in what is typically called the lag table. The choice of the lags is important to reduce cor-

relations among the generated values and lags of greater than 1000 are often recommended.

LFGs require more storage than other generators with their need for a lag table but are usually

quite quick to compute and some LFGs have proven to have “good" randomness properties

[4].

In addition to advancements in single processor speeds, we have also seen an in-

crease in the number of processors used on a single computer. Further, the availability of

processor clusters is now commonplace (such as the Saguaro cluster maintained by the Ad-

vanced Computing Center at Arizona State University). One way to effectively exploit these

types of computing resources for Monte Carlo studies is by computing pseudorandom num-

bers in parallel. By doing so, large amounts of data can be produced with nearly linear speedup

as compared to the same amount produced in the traditional serial generation process. This

continuation to a parallel computing environment has brought about many new challenges.

For example, it has been found that pseudorandom number streams generated in parallel of-

ten exhibit inter-stream dependencies [5]. In particular, long-range correlations are known to

be present in pseudorandom numbers produced by LCGs using either of the two most common

methods for parallelization of generators [7].

The second part of Chapter 2 discusses the two main ways to produce statistically

satisfactory parallel pseudorandom number streams. Both of the popular generation meth-

ods employ sophisticated ideas from number theory to create multiple pseudorandom number

streams. Both ideas can, in fact, be used to parallelize many of the popular PRNGs discussed

in Section 2.1. The first approach involves an idea outlined in [38] called parameterization.

The goal of parameterization is to determine a parameter in the recursion of the PRNG that

can be varied to create a unique, full-period stream of pseudorandom numbers. The second

approach involves taking substreams from one long-period PRNG. This is called the splitting

method and is further broken into two techniques of regular spacing and leapfrogging.

There has been much research done in the testing of serial generated pseudorandom

numbers to meet the “appears random" criteria described earlier. The TestU01 suite developed
3

by L’Ecuyer and Simard has become the standard in assessing the “goodness" of a particular

PRNG [19]. It employs many of the commonly used tests for this genre including all of those

described by Knuth [16] and in the classic DIEHARD suite [25] as well as nearly all of those

in the further developments for the SPRNG packages of Mascagni [28]. Some of these tests

include the gap, runs, collisions, monkey, poker, birthday spacings, and coupon collector tests.

These tests and many others are described in Chapter 3.

Chapter 3 also discusses the use of the “parallel filter" option and two-level tests of

the TestU01 suite to test parallel pseudorandom number generators (PPRNGs). These allow

for p different substreams from the same underlying generator started with different seeds to

be tested. The parallel generated streams are treated as one long vector and the “parallel

filter" runs the standard serial pseudorandom generator testing procedures on this new con-

catenated vector. The two-level tests do the single-level serial tests for each stream (or smaller

substream) and then check the resulting test statistics against their corresponding theoretical

distributions using goodness-of-fit tests.

In Chapter 4, we demonstrate that both of the parallel filter and two-level test methods

ignore the multivariate structure of the data in a way that can cause some dependencies to be

overlooked. Specifically, we were able to develop a generator using a vector moving average of

order one (VMA(1)) process with built-in stream dependence that passed the SmallCrushFile

battery of tests in TestU01 as well as a modified version of the Crush battery that was created

to work with a given inputted file of deviates. In addition, we developed two more generators

based on time series moving across the vectors. These two generators also passed all of the

tests in both SmallCrushFile and the much more stringent CrushFile, which was mentioned

earlier as a modified version of TestU01’s Crush.

In order to detect the type of dependence exhibited by our problematic example gen-

erators, we employed tools that derive from the area of multivariate statistical analysis. This

is the goal of the research summarized in this dissertation; rather than creating new parallel

generation techniques, our aim is the creation of new statistical testing methodology that can

be used to evaluate the performance of existing generators. In this regard, we developed an

extension to the TestU01 suite to test for the independence of parallel pseudorandom number
4

streams using tests based on (1) correlation analysis and (2) vector time series. The correla-

tion analysis approach includes checks for pairwise correlations among the streams in addition

to the use of a likelihood ratio statistic for testing that the resulting between stream correlation

matrix differs from the identity. Our vector time series tests correspond to portmanteau tests

for white noise (e.g., the Hosking, the Li-McLeod, and the Mahdi-McLeod tests). Chapters 5

and 6 provide more information on the specifics of our multivariate extension of TestU01 that

includes some highlights of the novel aspects of the code as well as details on its implemen-

tation with examples. In Chapter 7 we outline some ideas of how our extension and the base

TestU01 package could be implemented in a parallel computing environment. We conclude in

Chapter 8 with a discussion of our findings, a summary of the extension to the TestU01 suite,

and ideas that could be explored in future research.

5

Chapter 2

BACKGROUND INFORMATION ON GENERATING PSEUDORANDOM NUMBERS

In this chapter, we will discuss four of the most popular generators that have been used to

create pseudorandom numbers since the advent of computers. We will focus initially on se-

rial generation of numbers and will discuss methodologies for creating parallel generators in

Section 2.2.

2.1 Serial Generators

The serial generators discussed in this section are 1) linear congruential generators, 2) com-

bined multiple recursive generators, 3) shift-register generators, and 4) lagged-Fibonnaci gen-

erators. We will see that each of these generators are similar in that they produce a stream of

numbers in which the numbers are defined by some form of recursive process.

Linear Congruential Generators

The first and most basic generator discussed here is the linear congruential generator (LCG).

Each of the other generators we consider can be thought of as an extension of this generator

family. The LCG is defined by a recurrence relation starting on a given integer seed. We will

denote this initial value as x0. An integer sequence is then specified by the linear congruence

of order one

xi = (axi−1 + c) mod m. (2.1)

The integer a is called the multiplier with 0 ≤ a < m, the integer c is called the increment

with 0 ≤ c < m, and the integer m > 0 is called the modulus. The “mod m" notation here

refers to the integer remainder after the integer division of (axi−1 +c) by m. Thus, each integer

produced by (2.1) will fall between 0 and m− 1, inclusive. The length of the stream of integers

that derives from this recurrence relation before an integer is repeated is called the period of

the LCG. The maximal possible period for an LCG occurs when each of the integers 0 to m−1

appear exactly once in the sequence and is therefore at most m.

Not every choice of the parameter triplet (a, c,m) produces a maximal period. Knuth

described guidelines for “good" parameter choices that produce this largest period [16]. These

results are based on the notions of prime numbers and relatively prime numbers. Recall that

6

a prime number is a positive integer greater than one that has only one and itself as divisors.

Two positive integers are then relatively prime if their only common divisor is one.

Eubank and Kupresanin [8] summarize results from Knuth [16]:

Theorem. If c 6= 0, the period of the generator in (2.1) is equal to m if and only if the following

conditions hold: a) c is relatively prime to m, b) a− 1 is a multiple of every prime number that

divides m, and c) a− 1 is a multiple of 4 if m is a multiple of 4.

Knuth [16] also gives results for the more commonly used multiplicative case where

c = 0. Also, the binary nature of computer memory has made it common to have m chosen to

be a power of two. For example, matching up with a 32 bit computer architecture, choices for

m of 231 or 232 seem appropriate. However, choice of a prime modulus is often recommended

over a power-of-two modulus [5] and in this particular instance it can be shown thatm = 231−1

actually produces better results than 231 or 232 in the sense that the resulting number streams

appear more random. This is due, in part, to 231−1 being an extremely rare (there are currently

less than 50 discovered) type of number known as a Mersenne prime. As one can guess, a

Mersenne prime is a prime number that is one less than a power of two. It is noteworthy that

this particular Mersenne prime was discovered by Leonhard Euler in 1772.

It is important to understand that a long period does not guarantee a generator with

“good" properties. As noted in [8], taking a = 1 and c = 1 provides a maximal period stream;

but, this stream is simply the numbers 0 to m−1 in sequence which certainly does not “appear

random." In Chapter 3, we will discuss many of the tests used to assess whether a generator

provides sufficient randomness properties.

The spectral test, one of those tests noted in Chapter 3, also detects a problem with

linear congruential generators given by (2.1). George Marsaglia (in 1968) is noted as the first

to recognize this problem in that the numbers generated by linear congruential generators fall

on parallel hyperplanes. That is to say that these generated numbers do not “appear random"

if plotted in space but rather fall on a predictable number of multidimensional planes that run

equidistant to each other.

7

We will also see that the other three types of generators discussed subsequently have

the potential for much longer periods than those of LCGs. (One may ask here how it is possible

for a generator to have a period longer than m. We will revise our definition of period in the

next section to explain this distinction.) As computers have increased in power and storage

capabilities, LCGs have become essentially obsolete relative to the other three types we will

consider. Nonetheless, they are important both for historical and foundational reasons.

Frequently, the integers xi generated by an LCG (and other integer-type generators)

are transformed to pseudorandom uniform numbers ui on the unit interval (0, 1) by taking

ui = xi/m. These values can then be used by the inversion method which depends on

the probability integral transform to produce pseudorandom deviates from other non-uniform

distributions [8]. It follows by construction that if the LCG is full period the generated uniform

deviates will all differ numerically.

Combined Multiple Recursive Generators

A common incorrect assumption with pseudorandom number generation is that a more math-

ematically complex algorithm will produce a better result. To the contrary, as more complexity

is introduced, generators often break down and do not improve on what can be accomplished

with much simpler schemes. Marsaglia’s KISS (Keep It Simple Stupid) generator provides a

testament of sorts to this realization [26].

This section discusses one simple attempt at improving on LCGs known as multiple

recursive generators (MRGs). As the name implies, basic MRGs take the form

xi = (a1 xi−1 + a2 xi−2 + · · ·+ ak xi−k) mod m. (2.2)

Here the integers a1, . . . , ak are between 0 and m− 1 for some integer k and the modulus m

plays the same role as with LCGs. We now require k initial values (seeds) in order to begin

the generation of pseudorandom numbers with an MRG. Note that an LCG is a special case of

an MRG with k = 1. Knuth [16] states that the maximum period length for a multiple recursive

generator is mk − 1. We will now explain how this period length is possible with a revision of

the definition for the term period.

8

We noted in the last subsection that with a modulus of m, the longest possible period

was m, which corresponded to each of the values 0 to m − 1 appearing exactly once in the

generated stream. To obtain a period larger than m, we must allow for integers to be repeated

at another time in the stream. Therefore, we focus on the position of each generated integer

in relation to the others in the stream instead of the values themselves. With this modification,

the period of the generator now corresponds to the length of the sequence up until the entire

sequence begins to repeat, albeit with duplications of integers in the stream. This refinement

of the period concept encompasses our previous notion for LCG since the sequence of a full

period LCG will begin to repeat again after it has exhausted each value from 0 to m− 1.

The parameters of MRGs cannot be chosen arbitrarily since it has been shown that

MRGs produce values with the same sort of parallel hyperplane structure exhibited with LCGs.

Extensive searches for MRGs that pass the spectral test for having appropriate lattice structure

have been carried out by Kao and Tang [15] and L’Ecuyer et al.[18]. Tables of parameter values

that give these “good" MRGs are given in both of these articles.

A more general recursive generator allows for the modulus of MRGs to be varied and

then for the results of several MRGs to be combined. These types of generators are called

combined multiple recursive generators (CMRGs). The set-up here allows for J multiple recur-

sive generators of the form (2.2) with the jth generator producing the pseudorandom stream

defined by the nth step of the recursion

xj,n = [aj1 xj,n−1 + aj2 xj,n−2 + · · ·+ ajk xj,n−k] mod mj . (2.3)

To produce pseudorandom uniform numbers on (0, 1) we choose integers c1, . . . , cJ (with each

cj < mj) and use modulo-1 arithmetic on real numbers to obtain

un =

(
c1
x1,n

m1
+ c2

x2,n

m2
+ · · ·+ cJ

xJ,n
mJ

)
mod 1.

Specific CMRGs have period lengths as large as the product of the periods of each of the

individual J generators. Good parameter choices for combined multiple recursive generators

have been discovered via extensive computer searches with tables provided by L’Ecuyer [17].

We will introduce one popular combined multiple recursive generator here. It is known

as MRG32k3a and provides the framework for the software package RngStreams created by
9

L’Ecuyer et al. [21]. Using the notation in (2.3) we define the states

x1,n =(a11 x1,n−1 + a12 x1,n−2 + a13 x1,n−3) mod m1,

x2,n =(a21 x2,n−1 + a22 x2,n−2 + a23 x2,n−3) mod m2

with J = 2, k = 3, a11 = 0, a12 = 1403580, a13 = −810728, a21 = 527612, a22 = 0,

a23 = −1370589, m1 = 232 − 209, and m2 = 232 − 22853. Here, the given seeds are x1,−2,

x1,−1, x1,0, x2,−2, x2,−1, and x2,0. MRG32k3a then produces a pseudorandom uniform deviate

un via

zn =(x1,n − x2,n) mod (232 − 209),

un =

 zn/(2
32 − 208), if zn > 0,

(232 − 209)/(232 − 208), if zn = 0.

The corresponding period is approximately 2191 provided that the seeds x1,0, x1,−1, x1,−2 are

not all equal to 0 and are all less than m1 = (232−209) and the seeds x2,0, x2,−1, x2,−2 are all

less than m2 = (232 − 22853) and not all equal to 0 [8]. The generator is also known to pass

even the most stringent of serial statistical tests discussed in Chapter 3.

Shift-Register Generators

One instance of a multiple recursive generator is the class of linear feedback shift-register

generators (LFSRs) introduced by Tausworthe in 1965. For specified integers s and q with

s > q, they are defined by the linear recurrence

bi = bi−s + bi−(s−q) mod 2. (2.4)

We use the letter b here to stand for “bit" since LFSRs work on a bitwise level to produce

numbers in binary. Since addition modulo-2 is equivalent to bitwise exclusive-OR (⊕), this

recurrence is often denoted as bi = bi−s ⊕ bi−s+q.

The seed required for (2.4) requires a bit more explanation than the seeds from the

previous sections. For this purpose let us assume that the seed is given in the binary form

b1 · · · bs for some s with all bi either zero or one. We then generate subsequent bits as in (2.4)

for s > q. To generate r-bit integers with 2 ≤ r ≤ s, consecutive bits from (2.4) are grouped

10

as needed into disjoint r-sized blocks. This process can be iterated in a circular fashion by

changing the initial bit in the process and wrapping around to the beginning of the bit sequence.

In total, it is possible for LFSRs that use this multi-step approach to have a maximum period of

(2s − 1)/gcd(r, 2s − 1), where gcd represents the greatest common divisor. Therefore, as one

could guess from the relationship between LFSRs and MRGs, the maximum period for these

Tausworthe generators is 2s− 1. This relationship also leads to the space distribution problem

seen in LCGs and MRGs. Simple LFSRs are no longer recommended; but, more complex

combinations outlined below have been shown to perform well.

In 1973, Lewis and Payne [22] extended the idea behind Tausworthe generators by

thinking of the r-bit integers as binary vectors vj of length r consisting of 0 or 1 entries. This

group of generators is often called generalized linear feedback shift-register generators (GF-

SRs). Notationally, the generation algorithm is similar to that of the Tausworthe generator in

(2.4) but with ⊕ representing the component-wise application of the exclusive-OR operation:

i.e., the vector vi is produced by

vi = vi−s ⊕ vi−(s−q). (2.5)

As with LFSRs, GFSRs have maximum period 2s − 1.

Matsumoto and Kurita [30] pointed out drawbacks of the Lewis-Payne generators that

include

1) initial seed selection is very influential on the “randomness" of the generated values and is

rather time-consuming,

2) the algorithm requires a large amount of memory, and

3) the period is much smaller than the anticipated upper bound of 2pr − 1.

They described a generator called the twisted GFSR which eliminates each of these drawbacks

[30]. Further developments and improvements on this idea have led to the popular Mersenne

Twister [33] that has the massive period of 219937 − 1. It has also performed very well in

statistical testing.
11

Lagged-Fibonacci Generators

In the 1950s, one idea suggested for increasing the period for LCGs was to use the Fibonacci

sequence xi = (xi−1 + xi−2) mod m. Perhaps unsurprisingly the numbers produced by

this recurrence do not pass even basic “randomness" tests. However, revisions of this basic

premise have fared much better. For example, Mitchell and Moore in 1958 proposed using

xi = xi−24 + xi−55 mod m

where i ≥ 55. Here m must be even and x0, . . . , x54 are arbitrary integers that are not all

even. The values of 24 and 55 are called lags. They are not chosen arbitrarily and are among

those given in a table of values in Knuth [16] for the lag pairs (s, q) of the generic recursion

xi−q + xi−s that produce long periods. These types of generators are called lagged-Fibonnaci

generators (LFGs) and often use a modulus that is a power-of-two.

The general form of additive LFGs (assuming s > q and e an integer often related to

the computer’s architecture) is given by

xi = xi−s + xi−q mod 2e. (2.6)

The periods of all such generators given in the table in [16] are 2e−1(2q − 1).

Additive lagged-Fibonacci generators (ALFGs) consistently fail the birthday spacings

test discussed in Chapter 3 [16]. Modifications to the generated stream such as discarding

contiguous batches of numbers is one way to deal with this problem.

Replacing the binary operation defined in (2.6) with something different than addition

has also been proposed. Marsaglia revised Mitchell and Moore’s generator as

xi = xi−24 · xi−55 mod m

with m a multiple of 4 and the seeds x0, . . . , x54 not all congruent to 1 (modulo 4) [28].

Coddington [4] observed that overflow problems can arise when computing multipli-

cations for multiplicative LFGs (MLFGs) like those proposed by Marsaglia. However, current

programming languages and increasing memory availability have made computers much bet-

ter at handling this problem. Also, the choice of larger lags used to be a problem due to the
12

small amount of available memory and the need to store the seed values in a lag table. It is now

commonly recommended to use lags greater than 1000 and far apart to reduce correlations in

the data. As long as the necessary modifications are incorporated as noted, lagged-Fibonacci

generators are effective serial pseudorandom generators.

2.2 Parallel Pseudorandom Number Streams

In Section 2.1, we discussed four common ways to generate pseudorandom numbers in serial.

With serial processes, only one task is executed at a time. Sometimes with large simulation

studies, this type of operation is much too computationally intense, often requiring long waiting

times. One way to alleviate this problem is to use a system of multiple processors working in

parallel to break the single large task into multiple sub-tasks assigned to each of the different

processors. This section focuses on using parallelization techniques on serial pseudorandom

number generators to break a large generation exercise into smaller parts that can be executed

simultaneously.

One would hope that parallelizing a number generation scheme would make it possible

to obtain linear speedup. In other words, if there are p processors, ideally the parallel approach

would take 1/p the amount of time that the original serial process would take. However, in

general, there will be some inherently serial aspects of parallel code as well as delays due

to inter-processor communication that require us to settle for less than optimal performance

improvements.

Unfortunately, parallelization of even thoroughly tested, efficient serial pseudorandom

number generators has produced many problems. Coddington even went so far as to say,

“The main recommendation we would give to someone who needs to use a (pseudo)random

number generator on a parallel computer is very simple - never trust a parallel (pseudo)random

number generator" [5].

While many would argue that improvements have been made with parallel generators

since the time of Coddington’s assertion in 1996, theoretical results like those of serial gener-

ators are still largely not available and this area remains one of current interest for computer

scientists and statisticians alike. A focus of the remainder of this thesis will be on addressing

13

one of the common problems with parallel generation: namely, that parallel streams may not

behave as if they were probabilistically independent of each other.

For completeness, we note here the following additional requirements for a parallel

pseudorandom number generator (PPRNG) to be viewed as “good" [8]:

1. The PPRNG must make intra-processor streams of high statistical quality while showing

small dependence among the processor streams.

2. The PPRNG must be adaptable for use in different systems with multiple processors.

3. The PPRNG must produce no data movement among the different processors.

In this section, we will discuss the two common approaches to producing “good" paral-

lel pseudorandom number streams and we will give a brief overview of how the two approaches

can be applied to the four generator classes of the previous section. A mention of the impact

that lingering serial generator problems has on their parallel counterparts will be made as well.

The two different parallelization methodologies are known as parameterization and

splitting. Parameterization involves the generation of multiple (hopefully) independent streams

by appropriate choices of the generator’s seeds/parameters. Splitting relies on partitioning of

one long sequence of pseudorandom deviates into disjoint streams that can then used on the

different processors. Two subcategories of splitting exist and we will see examples of both

subsequently. The first is known as regular spacing. Its principle is to divide the sequence

of pseudorandom numbers into disjoint contiguous blocks. Notationally, when splitting the

sequence {xi, i = 0, 1, . . .} into p streams (where p denotes the number of parallel processors)

each of length m, the stream assigned to processor j will be {xk+(j−1)m, k = 0, . . . ,m − 1}

for j = 1, 2, . . . , p [12].

The second splitting technique is called leapfrogging. The idea is analogous to a

standard card game in which cards are dealt cyclically among the players of the game un-

til no cards remain to be dealt. With this scheme the stream given to the jth processor is

{xj , xj+p, xj+2p, xj+3p, . . .}.

14

The parameterization technique uses different parameters on the same family of gener-

ator to produce different independent streams for each processor. Mascagni [38] describes this

process for some of our families of generators from Section 2.1 with Matsumoto and Nishimura

[33] showing how it can be accomplished for the Mersenne Twister generator. These results

as well as those for splitting are discussed below.

Parallelized Linear Congruential Generators

We mentioned in Section 2.1 that the modulus for linear congruential generators is often cho-

sen to be prime (often Mersenne prime) instead of a power-of-two. We will now briefly discuss

how to generate pseudorandom numbers in parallel using such an LCG based on either pa-

rameterization or leapfrogging.

If m is a prime modulus, the goal is to parameterize the multiplier a. By parameterizing

the multiplier instead of the modulus, one can ensure that the modular multiplication remains

optimal and does not vary throughout the generation [27]. To increase the speed in computa-

tion, c is often set to zero as well; so, parameterizing a is the best choice.

A result from number theory is needed to give an explicit parameterization for the

multiplier. If a is primitive modulo m, then any number relatively prime to m is congruent to ak

modulo m for some k. Also, if a and b are primitive modulo m, then b = ai mod m for some i

relatively prime to m−1 [28]. Mascagni [27] gives an efficient algorithm for finding the integers

relatively prime to m− 1. Given the primitive modulo m element a, we can parameterize a for

the jth primitive element aj as aj = a`j mod m with `j being the jth integer relatively prime

to m− 1.

A somewhat simpler calculation based on the generator’s recurrence formula can be

used to produce a leapfrogging formula. Specifically Knuth [16] gives a generalization of the

defining equation of an LCG for p ≥ 0 and j ≥ 0 as

xj+p =

(
apxj +

ap − 1

a− 1
c

)
mod m. (2.7)

Thus, processor j generates the subsequence {xj , xj+p, xj+2p, xj+3p, . . .} from (2.7).

15

The same dependence problems that persist with serial LCGs provide for correlation

problems with parallel LCGs. These long-range correlations have been well-documented [7]

and extreme caution should be used with LCGs in both serial and parallel settings.

Parallelized Combined Multiple Recursive Generators

From Section 2.1, we know that the nth state of the jth generator for a CMRG generator is

xj,n = [aj1 xj,n−1 + aj2 xj,n−2 + · · ·+ ajk xj,n−k] mod mj .

This can be written as the vectors

Xj,n =



xj,n

xj,n−1

...

xj,n−k


for j = 1, 2, ..., k. The recurrences in (2.3) can then be compactly expressed as

Xj,n+1 = (Aj Xj,n) mod mj ,

where Aj is the k × k matrix

Aj =



aj1 aj2 · · · aj(k−1) ajk

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
. . .

...

0 0 · · · 1 0


.

Based on this and similar to the work done with LCGs in the previous subsection, we determine

the leapfrog algorithm

Xj,n+ν = (Aνj Xj,n) mod mj (2.8)

for any non-negative integer ν. Computing Aνj for a large value of ν may appear to be a

daunting task but it can be done efficiently by squaring the Aj matrix iteratively using the

“divide and conquer" strategy [16] that we now explain.

16

Define ν as ν =
∑h

i=0 gib
i for some b > 2 and gi ∈ {0, 1, . . . , b−1}. Then, we compute

the following sequence: Aj , Abj , A
b2
j , . . . , A

bh
j mod mj . Computation of Xj,n+ν in (2.2) then

boils down to

Xj,n+ν = (Aνj Xj,n) mod mj =

(
h∏
i=0

Agib
i
Xj

)
mod mj

for j = 1, . . . , k.

This leapfrog procedure often performs quite well and is commonly thought to be the

best way to parallelize CMRGs. Mascagni [28] gives ways to parameterize simple MRGs

but not the more frequently used CMRGs. We will conclude this section by explaining the

parallelization of the MRG32k3a generator using the matrix multiplication techniques above.

Recall from Section 2.1 that MRG32k3a is a CMRG defined by the states

x1,n =(a11 x1,n−1 + a12 x1,n−2 + a13 x1,n−3) mod m1,

x2,n =(a21 x2,n−1 + a22 x2,n−2 + a23 x2,n−3) mod m2

with J = 2, k = 3, m1 = 232−209, a11 = 0, a12 = 1403580, a13 = −810728, m2 = 232−22853,

a21 = 527612, a22 = 0 and a23 = −1370589. If we express the states of the generator as

X1,n =


x1,n

x1,n−1

x1,n−2

 , X2,n =


x2,n

x2,n−1

x2,n−2

 ,

the two recurrences above become

X1,n+1 = (A1X1,n) mod m1, X2,n+1 = (A2X2,n) mod m2,

where A1 and A2 are 3× 3 matrices given by

A1 =


a11 a12 a13

1 0 0

0 1 0

 , A2 =


a21 a22 a23

1 0 0

0 1 0

 .

We then use the “divide and conquer" algorithm on the leapfrog equation to produce a parallel

MRG32k3a generator.

17

Parallelized Shift-Register Generators

Linear congruential generators and shift-register generators were the most popular options

for generating pseudorandom numbers up until the 1990s. As parallel computing began to

become commonplace, algorithms for creating parallel versions of both of these families of

generators were also introduced. Aluru et al. [1] and Mascagni [28] gave a leapfrogging

algorithm and parameterization algorithm, respectively, for parallelizing generalized feedback

shift register generators. Unfortunately, as with LCGs, GFSRs have many limitations and these

limitations frequently become more pronounced under parallelization. In this subsection, we

will focus on the modified GFSR mentioned in Section 2.1 known as the Mersenne Twister.

Attempts have been made to use leapfrogging to create a parallel version of the

Mersenne Twister similar to what was done with MRG32k3a in the previous subsection. However

here the strategy of working with a k × k matrix carries with it the need for large amounts of

memory. This is particularly relevant for the Mersenne Twister that requires a 19, 937× 19, 937

matrix. A different kind of algorithm to reduce the amount of storage was obtained through

a joint effort by L’Ecuyer, Matsumoto, and others [11]. This algorithm employs number the-

ory results based on polynomial evaluation to produce an efficient jump ahead method for the

Mersenne Twister. This more efficient approach uses the polynomial representation of the

Mersenne Twister recurrence. We write the characteristic polynomial of the general matrix A

(this was each of our Aj ’s in the previous subsection) as

p(z) = det(zI +A) = zk + α1z
k−1 + · · ·+ αk−1z + αk,

where I is the identity matrix and αj ∈ {0, 1}. The fundamental property of a characteristic

polynomial is p(A) = Ak + α1A
k−1 + · · ·+ αk−1A+ αkI = 0. Defining

g(z) = zν mod p(z) = a1z
k−1 + · · ·+ ak−1z + ak,

we note that, for some polynomial q(z),

g(z) = zν + q(z)p(z).

This result and p(A) = 0 gives that g(A) = Aν = a1A
k−1 + · · ·+ ak−1A+ akI.

18

We now have a computational formula for computing AνX for some vector X using

AνX = A(· · ·A(A(Aa1X + a2X) + a3X) + · · ·+ ak−1X) + akX.

This entails advancing the state of the Mersenne Twister generator by k − 1 steps from state

X. Then, we add the states obtained at the steps with nonzero ai’s. An algorithm that reduces

the number of these additions while somewhat increasing storage is given in [11].

The Mersenne Twister has also been parallelized using a parameterization technique

called dynamic creation, which wass developed and implemented by Matsumoto and Nishimura

in [33]. This technique creates a Mersenne Twister based on parameters such as a unique pro-

cessor ID, word size, and a Mersenne prime. As with the jump ahead algorithm presented in

this subsection, the characteristic polynomial of the Mersenne Twister is employed. The unique

ID is encoded into the characteristic polynomial to ensure relatively prime characteristic poly-

nomials. If we are working with r-sized words, the implementation given in [33] allows for 2r/2

parallel Mersenne Twisters with large Mersenne prime periods of up to 244497 − 1.

Parallelized Lagged-Fibonacci Generators

A method similar to the leapfrog matrix algorithm from (2.2) can be used to develop a par-

allelization scheme for additive LFGs. Remembering the general form of the ALFG given in

(2.6) as xi = xi−s + xi−q mod 2e, the states of the generator can be expressed as the vector

Xi = (xi, xi−1, . . . , xi−s−1)T . We then define the recurrence by

Xi+1 = AXi mod 2e,

where the s× s matrix A is defined by

A =



0 0 0 · · · 0 1 0 · · · 0 0 1

1 0 0 · · · 0 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 · · · 0 1 0


.

The ones in the first row correspond to the lags of q and s. A similar pattern is exhibited in

the remaining rows as was seen with the CMRG parallelization. Thus we can now use the
19

same “divide and conquer" strategy to produce a leapfrog additive lagged-Fibonacci parallel

pseudorandom generator.

Suppose that we force all seeds of MLFGs to be odd integers. Any odd integer x

modulo 2e can be expressed as

x = [(−1)y3z] mod 2e,

where y ∈ {0, 1} and z ∈ {0, 1, . . . , 2e−2 − 1} [29]. Substituting this relationship into (2.6)

gives

xi = [(−1)yi3zi] mod 2e. (2.9)

Here, yi and zi are from the recurrences

yi = (yi−s + yi−q) mod 2, zi = (zi−s + zi−q) mod 2e−2

and are recognized as ALFGs with periods of 2q−1 and 2e−3(2q − 1), respectively. Initializing

these two processes thereby gives us the appropriate seeds for use in (2.9).

Mascagni and Srinivasan [29] also describe a parallelization of the ALFG by a process

known as seed parameterization. This involves placing a different cycle defined by its seed on

each different processor. Defining different seeds to different processors does not guarantee

that there will not be overlap between the streams of two different processors. The authors

have, however, developed an algorithm that shows that seeds can be bit-wise initialized so that

each unique assignment gives a provably full-period cycle. They also extend these parameter-

ization results to MLFGs using (2.9) above.

20

Chapter 3

CURRENT METHODS FOR TESTING PSEUDORANDOM NUMBERS

3.1 Empirical Tests of Serial Pseudorandom Number Generators

The fundamental goal of serial pseudorandom number generation is to produce numbers that

“appear random." This notion of randomness translates into having the output of the generator,

say u0, u1, . . ., effectively imitate a random sample from a uniform distribution on the interval

[0, 1] or simply U [0, 1] subsequently. In the case of a generator that produces bits instead

of uniform deviates, we will say that randomness occurs if the bits take the values 0 or 1

independently with equal probabilities. A perfect imitation in either case is our null hypothesis

H0 whose validity must be assessed through the application of statistical methods. Each of

the test statistics described below differs in terms of the way they look for departure from

the null model to data produced by a generator but each one represents an attempt to find

contradictions to the claim that the output stream “appears random." Each has a known (or

approximately known) distribution under H0 so that departures from randomness manifest as

unusual (or unlikely) values for the statistic.

In this section we will focus on what are called single-level tests in TestU01. By this

we mean a test that computes the observed value y of the test statistic Y . We will define the

P -value as p = P(Y ≥ y|H0), where P denotes probability and “|H0” corresponds to the

condition that H0 is true. The decision rule will be to reject H0 if the P -value is too close to

either 0 or 1.

If the distribution of a test statistic Y is (approximately) continuous under H0, its cor-

responding P -values are (approximately) a U [0, 1] random variable under H0. A P -value too

close to 1 can be thought of as producing a stream that is overly uniform and a value too close

to 0 can be thought of as not uniform enough. If the null distribution of Y is discrete, we need to

use two different P -values to account for the jumps in the statistic’s probability mass function.

The right P -value is pR = P(Y ≤ y|H0) and the left P -value is pL = P(Y ≥ y|H0). Then, the

21

discrete P -value p is given in [20] by the piecewise function

p =


pR, if pR < pL

1− pL, if pR ≥ pL and pL < 0.5

0.5 otherwise.

In the next two subsections we will give details on many of the statistical methods that

are implemented in TestU01. Our presentation splits them into two categories: (1) those that

test H0 for a sequence of real numbers in (0, 1) and (2) those that test H0 for a sequence of

bits. Eleven common tests from group (1) and four tests from group (2) are described. Other

tests and further details can be found in [19] and [20].

Tests for a Sequence of Real Numbers in (0, 1)

Gap and runs tests

The gap test [16] looks for patterns in a sequence of numbers that may occur locally. One

first defines perimeters α and β with 0 ≤ α < β ≤ 1. We then count the number of steps

(also known as the gap size) between any pair of successive visits into [α, β] by numbers in

the generated stream. If Yj denotes the number of gaps of size j for j ≥ 0 the realized values

of Y0, Y1, . . . are compared to their mean values under H0 via a chi-square test.

The runs test also looks for local patterns. After generating n numbers, it counts the

different lengths of increasing (or decreasing) sequences (runs). After merging all run lengths

greater than or equal to six together, for large values of n, it produces a test statistic that is

approximately chi-square distributed.

Poker and coupon collector tests

The poker test [16] begins by generating k integers between 0 and d− 1 for d, k < 128. Let Y

denote the number of distinct integers that occur. This process is repeated n times to produce

observations Y = y1, . . . , Y = yn whose empirical frequencies are compared to the expected

frequencies under H0 via a chi-square test.

22

In a similar manner, the coupon collector test generates a sequence of integers in

{0, . . . , d − 1}. Denote by Y the count corresponding to how many different sequences must

be generated before each of the d possible integers appears exactly once. This process is

repeated n times. We then count how many times each of the different values of Y were

observed and use a chi-square test to compare these to their expected frequencies.

Knuth serial and related tests

Given a number of dimensions t, the Knuth serial test [16] divides the interval [0, 1) into d equal

segments which divides the corresponding t-dimensional hypercube [0, 1)t into dt hypercubes.

(We refer to this as the Knuth serial test to avoid confusion with the general term “serial tests"

that was used to describe the tests that are treated in this section.) A sample of n t-dimensional

vectors in [0, 1)t is created by grouping every t successive values from a generator into a vector

with no overlap. These vectors are viewed as points in t-dimensional space and we then count

the number that fall in each of the dt hypercubes. Again, these values are compared to the

theoretical counts via a chi-square test.

The collision test is a frequently used variant of the Knuth serial test. Instead of count-

ing the number of points in each of the smaller hypercubes, one counts how many times a

point falls in a hypercube that already has one or more points in it. The resulting statistic is

approximately Poisson distributed whenH0 holds [19]. Both the Knuth serial and collision tests

furnish measures of how clustered the data are that are produced by the generator.

A further modification of the Knuth serial and collision tests leads to the birthday spac-

ings test proposed by Marsaglia in 1985. One again generates n points in t-dimensional space

and divides the larger hypercube into k = dt smaller hypercubes (cells) while numbering them

from 0 to k − 1. The name of the test comes from the n points being viewed as n birth dates

in a single year consisting of k days. Denote the cell numbers where the n points fall as

I1, I2, . . . , In and sort them in increasing order. Next, we determine the spacings Ij+1 − Ij

for 1 ≤ j < n. If we denote the number of collisions/recurrences between these spacings

as Y , assuming H0 is true, Y is approximately Poisson distributed with mean n3/(4k). A

corresponding discrete P -value can be computed from this observed statistic.
23

Overlapping versions of the Knuth serial, collision, and birthday spacings tests were

also proposed by Marsaglia. He penned them as “monkey" tests since they treat the generator

as a monkey typing “random" characters from an alphabet containing d-letters. For exam-

ple, the overlapping collision test counts how many times each t-letter word appears in the

sequence typed by the monkey. For large sample sizes each test statistic is approximately

chi-square distributed.

Others

Another test concerning t-dimensional uniformity, called the spectral test, is described in de-

tail in [16]. It measures the maximal distance between adjacent parallel hyperplanes that are

created by the generation of n points in t-space. These n points are also created in an overlap-

ping way. Transformations of discrete Fourier coefficients are computed in the determination

of this largest distance and for large enough n the corresponding test statistic is approximately

normal.

The maximum-of-t test first generates t values in [0, 1). It then computes the maximum

value Y of these t values. This process is repeated n times. The empirical distribution of the

n values of Y is compared to the theoretical cumulative distribution function of the maximum,

F (y) = yt, via a chi-square test and an Anderson-Darling test.

The creators of the Mersenne Twister generator, Matsumoto and Kurita, have also

made a contribution to the testing of PRNGs that we mention here [31]. Their test generates k

uniform deviates u1, . . . , uk. Then, it computes the value

Y =
k∑
j=1

I[α ≤ uj < β]

with I corresponding to the indicator function. Therefore, this quantity represents the number

of uj ’s in the interval [α, β) for some 0 ≤ α < β < 1. Y ∼ Binomial(k, β − α) under H0.

If we repeat this process n times, the outcomes can be compared to the theoretical binomial

distribution with a chi-square test.

24

Tests for a Sequence of Bits

The first test discussed here is the autocorrelations test. The sample autocorrelation of lag d

for a sequence b1, . . . , bn of n bits is given by

Y =

n−d∑
i=1

bi ⊕ bi+d,

where ⊕ is the exclusive-or operation. It can be shown that, when H0 holds, Y is binomially

distributed with parameters n− d and 1/2. So for large n− d, Y is approximately normal. This

test is an attempt to quantify the clustering of the generated bits.

Gap, runs, and Knuth serial tests also exist for testing a string of bits. For the gap and

runs tests, we collect the lengths of all runs of 1’s and runs of 0’s and proceed similarly to

the corresponding tests described in the previous subsection. For the Knuth serial and similar

tests, we look at the number of occurrences of a given string in the n strings and compare that

to a theoretical expected value.

We can also test a sequence of bits by constructing a binary matrix. We fill up an L×k

matrix row by row using the generated bits in succession, compute the rank of the matrix, and

repeat this process n times while keeping track of the number of occurrences of each rank. As

one could guess, we compare the resulting frequencies to their null model expectations via a

chi-square test.

A Hamming weight test examines the proportion of 1’s in a segment of the generated

stream. More specifically, the test generates n disjoint blocks of L bits. Under H0, the num-

ber of 1’s in each block are independent and binomially distributed. The observed Hamming

weights are the number of blocks out of n having j 1’s, for 0 ≤ j ≤ n, and their values can be

compared to the binomial model using a chi-square statistic.

Lastly we will discuss the random walk test which creates a random integer walk using

l bits b1, . . . , bl. The walk begins at 0 and on the jth step moves one unit to the left if bj = 0 or

one unit to the right if bj = 1. Define S0 = 0 and Sk =
∑k

j=1(2bj − 1) for k > 0. Under H0,

25

the process {Sk, k ≥ 0} is a random walk and using the binomial distribution, we have

pk,y ≡

P[Sk = y] = 2−k
(

k
(k+y)/2

)
, if k + y is even,

0, otherwise.

Assuming l is even, we define the test statistics

H = l/2 + Sl/2 (the number of steps to the right),

M = max{Sk, 0 ≤ k ≤ l} (the maximum value reached by the walk),

J = 2

l/2∑
k=1

I[S2k−1 > 0] (the fraction of time spent to the right of the origin),

Py = min{k : Sk = y} for y > 0 (the first passage time at y),

R =

l∑
k=1

I[Sk = 0] (the number of returns to 0), and

C =
l∑

k=3

I[Sk−2Sk < 0] (the number of sign changes).

In 1968, Feller gave the null distributions for these statistics as

P[H = k] = P[Sl = 2k − l] = pl,2k−l = 2−l
(
l

k

)
, 0 ≤ k ≤ l,

P[M = y] = pl,y + pl,y+1, 0 ≤ y ≤ l,

P[J = k] = pk,0pl−k,0, 0 ≤ k ≤ l, k even,

P[Py = k] = (y/k)pk,y,

P[R = y] = pl−y,y 0 ≤ y ≤ l/2,

P[C = y] = 2pl−1,2y+1, 0 ≤ y ≤ (l − 1)/2.

The random walk test implemented in TestU01 proceeds in the following manner. Take

two even integers 0 < m0 < m as parameters and generate n random walks of length m. For

each l ∈ {m0,m0 + 2, ...,m}, compute the n values of the six statistics. Then one compares

the empirical distributions of these statistics with the corresponding theoretical ones via a chi-

square test.

Usage in TestU01

As mentioned in the introduction to this section, TestU01 enables users to choose any of the

above tests and run them on a particular built-in generator, an external generator built in C,
26

or on a given file of uniform deviates or bits. TestU01 also includes three batteries of tests

for a sequence of uniform deviates that encompass many of the most common tests. The

smallest and fastest battery is defined as SmallCrush and contains ten of the tests described

above: namely, the birthday spacings, collision, gap, poker, coupon collector, maximum-of-

t, Matsumoto and Kurita’s weight distribution, matrix rank, Hamming number, and random

walk tests. It usually requires only a few minutes of computation time. Crush contains 96

different variations of the tests explained above as well as other tests. It requires about an

hour of computation time and uses approximately 235 pseudorandom numbers [20]. The most

stringent of the batteries is BigCrush which is made up of 31 different tests and a total of 106

variations. It uses close to 238 pseudop-random numbers and usually takes around eight or

more hours to complete. Batteries also exist for testing generated bits and are called Rabbit

and Alphabit in TestU01.

It is worthy of mention here that both MRG32k3a and the Mersenne Twister that we have

focused on in Chapter 2 pass BigCrush. The problems that are present for linear congruential

and shift-register generators materialize in their failures to pass even SmallCrush or Rabbit

for many chosen parameters.

3.2 Testing Techniques for Parallel Pseudorandom Number Generators

TestU01 also has the capability to test parallel generated streams (or quasi-parallel, in that

parallel processors may not be used but different vectors are generated by the same processor)

in two different ways. The first is an extension of the single-level tests discussed in the previous

section. The second is what is known as a “parallel filter" in TestU01. This allows for the

output of several generators or different streams from the same generator to be combined

into a single stream of pseudorandom numbers and then tested using the techniques in the

previous section. Both approaches are described below.

Two-level Tests

In a two-level test, one replicates the single-level test p times. That is to say, one gener-

ates p (ideally) independent copies of the test statistic Y denoted Y1, Y2, . . . , Yp. We define

F to be the theoretical cumulative distribution function of Y under H0. For the continuous

case, the transformed variables U1 = F (Y1), . . . , Up = F (Yp) should imitate independent and
27

identically distributed U [0, 1] random variables. The second level of the test comes from tak-

ing these p uniform deviates and comparing them against the theoretical uniform distribution

via a goodness-of-fit test. TestU01 includes a module that calculates the value of common

goodness-of-fit measures such as the Kolmogorov-Smirnov, Anderson-Darling, and Crámer-

von Mises statistics. These two-level tests can also be performed by comparing the untrans-

formed observed test statistics Y1, . . . , Yp to the actual distribution of the test statistic for that

particular test via any of the goodness-of-fit tests.

One can see how this two-level test could work in testing parallel generated streams

of pseudorandom numbers. In that case, p corresponds to the number of processors used (or

possibly multiple smaller substreams on each processor could be tested). Then each of the

generated streams (or substreams) could be tested using one of the serial tests in TestU01

to produce an observed test statistic (and a P -value/transformed variable). These results can

then be tested at the second level against their theoretical counterparts via a goodness-of-fit

test. If the two-level test does not give evidence against the null hypothesis, we stick with the

original null model and proceed as if the streams are independent and identically distributed.

Since nearly all of the tests used in TestU01 produce test statistics that are (at least

approximately) distributed as chi-square, normal, or Poisson, we can also make use of the

fact that the sum of multiple test statistics from these distributions follow the same type of

distribution. For example, if Y is Poisson with mean λ, then Sp = Y1 + . . .+Yp is also Poisson

with parameter/mean pλ. TestU01 reports the results based on Sp for the case where p > 1

as well as the results of the other two-level methods described earlier.

Parallel Filter

By using the unif01_CreateParallelGen function in TestU01, one is able to specify p dif-

ferent generators (or p generators from the same family with identical or different parameters)

each with stream length L. The procedure then outputs these p streams one after another for

a total single stream length of pL. One can send a stream generated using this function to any

of the batteries of tests or each of the individual tests. Therefore, the “parallel filter" essentially

turns a matrix of generated values into a single serial stream of values and then tests that

single stream accordingly.
28

Chapter 4

PROBLEMS WITH EXISTING PARALLEL TESTING METHODS

Both of the parallel testing procedures in TestU01 fail to recognize the multivariate nature of the

generated data. In the two-level testing option, observed test statistics (and corresponding P -

values) from a particular serial test are generated for each vector of data. These statistics are

then combined into a new data set that is compared to a null distribution using a goodness-of-fit

test. This process loses information in the data by reducing each vector to a single univariate

summary measure, i.e., an observed test statistic or a P -value. In particular, the correlation

between streams is now marginalized to whatever correlation remains between the summary

measures and may be difficult to detect with goodness-of-fit methodology. In the parallel filter

option, the array or matrix of data from the different streams is transformed into a single vector

by stacking the processors’ outputs on top of each other. This vector is tested for randomness

using the standard serial testing procedures. Correlations between the different vectors are

likely rendered undetectable through this process especially if the correlated vectors reside

in locations that are far apart from each other in the flattened one-dimensional data array. In

this chapter we demonstrate that these parallel testing methods are in many ways unable to

effectively detect dependence of parallel pseudorandom generated streams.

The chapter begins with a description of the CrushFile addition that we created for

the TestU01 package. CrushFile is a modification of the stringent Crush battery of 96 tests

that is designed to test a file of deviates created by generators that have been implemented

in the R programming language. We will then use CrushFile to demonstrate that correlated

vectors of data can still go undetected in the batteries of tests in TestU01.

Three generators, that we will hereafter call the “Smoking Guns", have been designed

using time series ideas for the purpose of illustrating the flaws in the parallelization schemes

of TestU01. The motivation behind how these correlated vectors of data were created as

well as the different implementations to match the input requirements of SmallCrushFile and

CrushFile are discussed below. We will see that all three of our Smoking Guns were success-

ful in passing all of the tests in SmallCrushFile and CrushFile. This provides the prima facie

29

evidence we need to assert that TestU01 is unable to detect basic kinds of correlations that

could be anticipated with pseudorandom numbers generated in parallel. This poses a potential

problem for scientists conducting Monte Carlo studies since it violates the first of the additional

requirements for a PPRNG to be considered “good" by allowing strong dependencies to exist

among the processor streams.

4.1 Development of the CrushFile Addition

The SmallCrushFile test battery provides an adequate check of the ability of TestU01 to

detect problems with a given generator. However, it only computes 15 test statistics. While

it gives us some intuition about TestU01’s ability to detect correlations in data from a parallel

generation scheme, we believe it is more relevant to run a more demanding set of tests in an

attempt to detect shortcomings of the TestU01 parallel testing algorithms. The Crush battery

provides a suite of tests that is better suited to our purposes.

Crush is designed to work on a given external generator that has code written in C or

is a built-in generator in the TestU01 suite. In contrast our Smoking Gun generators in the next

section have all been written in R in order to employ the speed of its vector computations.

The SmallCrushFile test battery is a modification of the SmallCrush battery that

is included in the basic install of TestU01. The SmallCrush battery also requires either an

external generator or a pre-defined TestU01 generator for its testing purposes. The TestU01

authors created this to allow users to run tests on an inputted file of deviates. They did not

however create a CrushFile battery that could run the near 100 tests in Crush on an inputted

file of uniform deviates.

The complete listing of the modifications to the Crush battery that read data from an

inputted file of deviates is included in the appendix. The sizes of the files required to run this

CrushFile addition are very large. Since some of the tests in Crush require more than a billion

deviates, the file size is usually between 20 and 30 gigabytes. It then takes between 6 and 8

hours to fully run all of the tests in CrushFile on a modern machine.

In the next section we will describe the Smoking Gun generators that we mentioned

above. The results and details of running SmallCrushFile and this new CrushFile exten-

30

sion on their outputted deviates will then be reported. We will see that even seemingly large

correlations between vectors and easily noticeable dependencies go undetected in TestU01’s

parallel testing techniques.

4.2 Three Problematic Generators
Normally Transformed VMA(1) process

To illustrate the shortcomings of the two parallel testing methods in TestU01, we designed a

vector autoregressive moving average (VARMA) model based on standard normal pseudoran-

dom deviates. This model has built-in correlations among the generated vectors but still passed

TestU01’s SmallCrushFile and the CrushFile addition. In what follows we will describe this

model as well as provide code for its implementation in R.

We implemented the vector moving average of order one model which will be referred

to as VMA(1) going forward. A VMA(1) model is written as Xt = et + θet−1, where Xt is a

vector of length n, θ is an n× n matrix, and et is an n-dimensional normal random vector with

mean vector 0 and covariance matrix σ2
eIn with t = 1, . . . , p and In the n-dimensional identity

matrix. Here we are thinking of Xt as the stream that will be used by the tth process.

For this first Smoking Gun generator, we chose θ = 0.9I5,500,000 and p = 10. Each

et is generated from a N5,500,000(0, I5,500,000) distribution using rnorm in R, which is based on

the Mersenne Twister generator by default. An initial seed vector e0 is required and was also

chosen from the same distribution as a vector of length 5, 500, 000 using rnorm. The values of

p = 10 and n = 5, 500, 000 were chosen since SmallCrushFile in TestU01 requires around

55 million deviates.

We also modified n, p, and θ to match the sample size needed for CrushFile and

created a file of deviates that was used as the input file for CrushFile. With Crush being a

much more rigorous series of tests than SmallCrushFile, the values for n and p were greatly

increased to accommodate the much larger number of deviates. (We determined, for example,

that some of the tests in Crush require around 1.3 billion deviates.) The choice of p was

increased from 10 to 100 and n was chosen to be 13 million instead of 5.5 million.

31

The built-in correlations are apparent for this Smoking Gun generator by how it is con-

structed. This is summarized in the steps taken for its creation:

1. A very long stream ei of iid N(0, 1) random variables is generated.

2. For j = 1, . . . , p, the components of the matrix X are defined as

Xij = .9e(i−1)p+j + e(i−1)p+j−1.

3. Thus, Cov(Xij , Xi,j+1) = .9 and Xij are iid N(0, (1 + .92)) for each j.

4. Therefore, Φ(Xij/
√

1 + .92) are iid U(0, 1) for each j, where Φ represents the cumula-

tive distribution function of the standard normal distribution.

As a result of Item 3 we are assured that correlation has been built into the consecutive vectors

that are produced by this Smoking Gun generator even if the precise form of the dependence

is masked by the transformation to uniform deviates. The correlation that manifests in the data

will be revealed empirically in the following chapters that show how our TestU01 multivariate

extension detects these dependencies. An explanation of how these steps are implemented in

R follows.

In order to produce pseudorandom U [0, 1] deviates we used the pnorm function in

R after converting the entries in the matrix of data (denoted as Xmat in the code below) to

standard normal random variables. The function pnorm returns the cumulative distribution

function for each of our 55 million transformed N(0, 1) deviates. This transformation gives the

desired U [0, 1] deviates. The following R code shows this process as well as the output to

a TXT file for the CrushFile case. (The SmallCrushFile code is very similar with the only

changes being the specification of p and n along with a change in the outputted filename. The

splitting of the u vector prior to output is also not necessary in the code for the SmallCrushFile

file of deviates.)

Listing 4.1: vma1_large.R

set.seed (123)

theta <- .9
32

p <- 100

n <- 13000000

e0 <- rnorm(n)

e <- rnorm(n*p)

Xmat <- matrix(0, n, p)

Xmat[, 1] <- theta*e0 + e[1:n]

for(t in 2:p){

Xmat[, t] <- e[(n*(t - 1) + 1):(n*t)]

+ theta*e[(n*(t - 2) + 1):(n*(t - 1))]

}

sigma <- sqrt(1 + theta ^2)

Xmat <- Xmat/sigma

Umat <- pnorm(Xmat)

X <- as.vector(Xmat)

u <- pnorm(X)

a <- u[1:500000000]

b <- u[500000001:1000000000]

c <- u[1000000001:1300000000]

write.table(a, file = "vma1_1.3bl.txt",

col.names = FALSE , row.names = FALSE)

write.table(b, file = "vma1_1.3bl.txt",

append = TRUE , col.names = FALSE , row.names = FALSE)

write.table(c, file = "vma1_1.3bl.txt",

append = TRUE , col.names = FALSE , row.names = FALSE)

The generated file vma1_55ml.txt was tested using the SmallCrushFile battery in

TestU01 via the following C++ code.

Listing 4.2: vma1_smallCrush.cpp

extern "C"{

#include "swrite.h"

#include "bbattery.h"

}

33

int main (void) {

swrite_Basic = FALSE;

bbattery_SmallCrushFile ("vma1_55ml.txt");

return 0;

}

The output below are the results of running this SmallCrushFile code.

Listing 4.3: vma1_smallCrush_out.txt

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

File: /home/ismay/VMA1/vma1_55ml.txt

Number of statistics: 15

Total CPU time: 00:02:08.68

All tests were passed

Similarly, the vma1_1.3bl.txt file was tested using the CrushFile addition via the

following C++ code. The main function from CrushFile is given below. (Recall that the full

code from the addition is in the appendix.)

Listing 4.4: vma1_crush.cpp

int main (){

bbattery_CrushFile ("vma1_1.3bl.txt");

return 0;

}

The output below are the results of running this CrushFile code.

Listing 4.5: vma1_Crush_out.txt

========= Summary results of Crush =========

34

Version: TestU01 1.2.3

Generator: ufile_CreateReadText

Number of statistics: 144

Total CPU time: 07:12:01.68

All tests were passed

Univariate Time Series Moving Across the Processors

Let us view the data from a parallel generation scheme as a matrix with columns that corre-

spond to the different streams/processors. Then, the first Smoking Gun creates a column-wise

dependence that has the same form for every row. As another alternative we investigated how

TestU01 would perform with a time series that evolves more locally by moving down rows and

moving across streams/processors. The univariate case of this will be discussed here and the

bivariate case will be discussed in the next subsection. We again used R for its ability to easily

simulate time series data to create a file of deviates for assessing both SmallCrushFile’s and

CrushFile’s ability to detect faulty parallel generators.

For this univariate case, we begin by simulating a long vector x of length n×p following

a moving average of order one process (MA(1)). This is similar to the VMA(1) process dis-

cussed in the last subsection except the process is now working down the individual elements

instead of across the vectors. For further specificity, the vector x can be written component-

wise as xt = et + θet−1, where xt represents the time series process at time t, θ = 0.3, and et

is the white noise error term at time t with t ∈ {1, . . . , np}. To standardize these data, we then

divide this vector x by
√

1 + θ2. Similar to the first Smoking Gun, we then transform to U [0, 1]

deviates by using the Φ function. The next step involves placing this long vector of deviates

into a matrix representing a time series moving across the vectors. Lastly, to prepare for the

parallel testing procedures in TestU01, we flatten this matrix into one long vector again and

output it to a file. The R code below shows this procedure for creating the file used as input

for CrushFile. (The SmallCrushFile code is similar apart from changes in the specification

35

of p, n, and the outputted filename. Again, the splitting of the Xvec vector prior to output is not

necessary for code corresponding to the input file for SmallCrushFile.)

Listing 4.6: mvaTS_1_huge.R

theta <- 0.3

p <- 100

n <- 13000000

set.seed (123)

x <- arima.sim(list(ma = theta), n*p)

sigma <- sqrt(1 + theta ^2)

x <- x/sigma

u <- pnorm(x)

Xmat <- matrix(0, n, p)

for(i in 1:n)

Xmat[i,] <- u[((i-1)*p + 1):(i*p)]

Xvec <- as.vector(Xmat)

a <- Xvec [1:500000000]

b <- Xvec [500000001:1000000000]

c <- Xvec [1000000001:1300000000]

write.table(a, file = "mvaTS_1_1.3bl.txt",

col.names = FALSE , row.names = FALSE)

write.table(b, file = "mvaTS_1_1.3bl.txt", append = TRUE ,

col.names = FALSE , row.names = FALSE)

write.table(c, file = "mvaTS_1_1.3bl.txt", append = TRUE ,

col.names = FALSE , row.names = FALSE)

The generated file mvaTS_1_55ml.txt was tested using the SmallCrushFile battery

in TestU01 via the following C++ program. The test results appear below the listing.

Listing 4.7: mvaTS_1_smallCrush.cpp

extern "C"{

#include "swrite.h"

#include "bbattery.h"

}

36

int main (void) {

swrite_Basic = FALSE;

bbattery_SmallCrushFile ("mvaTS_1_55ml.txt");

return 0;

}

The results of running this SmallCrushFile code are given in the output below.

Listing 4.8: mvaTS_1_smallCrush_out.txt

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

File: /home/ismay/MVATS/mvaTS_1_55ml.txt

Number of statistics: 15

Total CPU time: 00:02:06.77

All tests were passed

The mvaTS_1_1.3bl.txt file was analyzed similarly using the CrushFile addition as

indicated in the subsequent listing. The main function from CrushFile is given below with the

full set of code from the addition available in the appendix.

Listing 4.9: mvaTS_1_crush.cpp

int main (){

bbattery_CrushFile ("mvaTS_1_1.3bl.txt");

return 0;

}

The results of running this CrushFile code are given in the output below.

Listing 4.10: mvaTS_1_Crush_out.txt

37

========= Summary results of Crush =========

Version: TestU01 1.2.3

Generator: ufile_CreateReadText

Number of statistics: 144

Total CPU time: 06:03:29.84

All tests were passed

Bivariate Time Series Moving Across the Processors

For the bivariate case, we begin by simulating two long vectors x1 and x2 each of length

(np)/2 and each following a moving average of order one process (MA(1)). We then stack x1

on top of x2, divide this stacked matrix X by
√

1 + θ2, and transform to U [0, 1] deviates as

before. Then an array of data from the “processors" is filled in a similar fashion to that in the

previous subsection except in pairs instead of one at a time. Lastly, to prepare for the parallel

testing procedures in TestU01, we flatten this array into a long vector again and output the

result to a file. The R code below implements this procedure for creating the file used as input

for CrushFile. (The SmallCrushFile code requires only changes in p, n, and the outputted

filename. The Xvec2 vector need not be split in this case.)

Listing 4.11: mvaTS_2_huge.R

theta <- 0.3

p <- 1000

n <- 1300000

set.seed (123)

x1 <- arima.sim(list(ma = theta), n*p/2)

x2 <- arima.sim(list(ma = theta), n*p/2)

X <- rbind(x1, x2)

sigma <- sqrt(1 + theta ^2)

X <- X/sigma

U <- pnorm(X)

Xmat <- matrix(0, n, p)

for(i in 1:n)
38

Xmat[i,] <- as.vector(U[1:2, ((i-1)*p/2 + 1):(i*p/2)])

Xvec2 <- as.vector(Xmat)

a <- Xvec2 [1:500000000]

b <- Xvec2 [500000001:1000000000]

c <- Xvec2 [1000000001:1300000000]

write.table(a, file = "mvaTS_2_1.3bl.txt",

col.names = FALSE , row.names = FALSE)

write.table(b, file = "mvaTS_2_1.3bl.txt", append = TRUE ,

col.names = FALSE , row.names = FALSE)

write.table(c, file = "mvaTS_2_1.3bl.txt", append = TRUE ,

col.names = FALSE , row.names = FALSE)

The C++ code below tests mvaTS_2_55ml.txt using the SmallCrushFile test battery.

Listing 4.12: mvaTS_2_smallCrush.cpp

extern "C"{

#include "swrite.h"

#include "bbattery.h"

}

int main (void) {

swrite_Basic = FALSE;

bbattery_SmallCrushFile ("mvaTS_2_55ml.txt");

return 0;

}

The SmallCrushFile results are now given.

Listing 4.13: mvaTS_2_smallCrush_out.txt

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

File: /home/ismay/MVATS/mvaTS_2_55ml.txt

Number of statistics: 15

39

Total CPU time: 00:02:09.37

All tests were passed

The mvaTS_2_1.3bl.txt file was tested using the CrushFile addition for which the

main function is given below followed by the test results.

Listing 4.14: mvaTS_2_crush.cpp

int main (){

bbattery_CrushFile ("mvaTS_2_1.3bl.txt");

return 0;

}

The CrushFile results are now given.

Listing 4.15: mvaTS_2_Crush_out.txt

========= Summary results of Crush =========

Version: TestU01 1.2.3

Generator: ufile_CreateReadText

Number of statistics: 144

Total CPU time: 06:37:43.22

All tests were passed

4.3 Discussion

This chapter has provided three examples of generators with built-in dependencies among

streams/processors that pass the SmallCrushFile and CrushFile batteries of tests. These

support our contention that the flattening processes in TestU01 can weaken inter-stream de-

pendence to the extent that it becomes undetectable by the tests in the package.

40

The first of our Smoking Gun generators focused on building in pairwise correlations

between successive vectors. Since TestU01 requires a single serial stream, it was found that

these pairwise correlations go undetected because the correlated elements fall far apart in the

flattened vector of deviates.

The second and third Smoking Gun generators demonstrate that the flattening pro-

cesses mask dependence that is created by a time series progressing across the streams. In

concert with the first generator, they illustrate how simple it is to fool the TestU01 flattening

approach with cases where the dependence between streams is actually quite obvious.

The goal of the following chapters is to provide methodology for detecting dependen-

cies such as those found in our Smoking Gun generators and to show the importance of an-

alyzing the generation of parallel deviates from a multivariate perspective. The chapters will

describe an extension of TestU01 built in C++ that aims to add to the current strong serial

methodologies in the package by enhanced parallel testing techniques.

41

Chapter 5

TESTU01 MULTIVARIATE EXTENSION - CORRELATION MOTIVATED MULTIVARIATE

TESTS

In the next two chapters, we will describe the intuition behind, the development of, and the

results of tests housed in our multivariate extension to TestU01. This extension was built in

C++ and one of its purposes is to better detect types of inter-stream dependence that tend to

be overlooked by TestU01’s parallel testing schemes. In the following chapter, we will explore

the methods based on testing for correlations between the generated output of the different

vectors/processors. Chapter 6 will focus on tests deriving from time series analysis methodol-

ogy.

The first section of this chapter is focused on testing for pairwise correlations between

the vectors of generated data. As was noticed in the previous chapter, TestU01’s flattening

techniques allow for reasonably simple consecutive pairwise correlations to pass through its

suites of tests undetected. A few of the novel aspects of this portion of the C++ implementa-

tion will also be discussed including the use of the Benjamini/Hochberg/Yekutieli algorithm for

controlling the experiment-wise error rate for these simultaneous tests of significant pairwise

stream correlations that are an aspect of our extension. The section will conclude with the

results of testing a variety of different generators including our Smoking Guns from Chapter 4

with our pairwise correlation tests that are referred to as mcorr in the extension.

The second section of this chapter is related to the first section in that the focus is

on sample correlations. The difference is that we avoid the need for experiment-wise error

control by employing a single likelihood ratio statistic to test that the matrix of pairwise inter-

stream correlations is the identity. The details behind the derivation of this test statistic and

its rejection region are provided for completeness of exposition. Our discussion will highlight

a few interesting aspects of the code development and, similar to Section 5.1, results from a

variety of different generators will be analyzed via this mmult part of our extension.

All of the source code from the extension described in this chapter can be found in

Appendix B at the end of the thesis.

42

5.1 Pairwise Correlations

A typical data set in statistics would consist of n observations on p variables that is stored in

an n × p matrix. A natural choice for detecting dependencies between the variables is to test

for pairwise correlations among the columns of the data. In our setting the variables of interest

X1, . . . , Xp correspond to the pseudorandom numbers produced by the different streams or

processors. Our extension implemented three different traditional types of correlation coef-

ficients: Pearson’s product-moment coefficient, Spearman’s rank correlation coefficient, and

Kendall’s rank correlation coefficient. Transformation of these coefficients to (approximate)

normality was performed in each case. With the sample sizes being used in our setting, the

normal approximations can be relied on to give accurate P -values to help in the decision mak-

ing process.

Aspects of the Pairwise Correlations Part of the Extension

With matrices and vectors the primary storage unit in our code, we used the C++ version of

the Template Numerical Toolkit (TNT) developed by the National Institute of Standards and

Technology [35] throughout our TestU01 extension. This package is particularly valuable in

that it is open source and, as a result, successfully addresses many of the portability and

maintenance problems of creating and using multidimensional arrays in C++.

The constructor for our mcorr class requires an integer N corresponding to the number

of rows in the matrix of generated values to be tested, an integer P for the number of columns,

a TNT Array2D object Mat to store the inputted matrix of deviates, and a specified significance

level Alpha for the hypothesis tests that check for pairwise vector dependence. Given this

matrix of inputted deviates of size NP, we create three different correlation matrices containing

each of the three correlation coefficients for determining the correlations between the P vectors.

Since the correlation matrices are symmetric with unit diagonal entries, we save computation

time and space by computing only the lower triangular part of the matrices. This implies that(P
2

)
correlations are determined and stored in a TNT Array2D object corrData with

(P
2

)
rows

and three columns with the second and third columns specifying the locations for its entries in

the original correlation matrix.

43

To evaluate the binomial coefficient necessary to compute the size of
(P

2

)
, we used the

recursive identity (
N

K

)
=
N

K

(
N − 1

K − 1

)
.

This algorithm is much faster and more efficient than the traditional factorial recursive algorithm

that is often used to compute binomial coefficients. An implementation of this recursion is

provided in the C++ code listed below from the mcorr.cpp source file.

Listing 5.1: mcorr_binomCoef

unsigned int mcorr ::mcorr_binomCoef(unsigned int N,

unsigned int K){

if(K == 0 || K == N)

return 1;

else

return (N*mcorr_binomCoef(N - 1, K - 1))/K;

}

Note that we employ the C++ facility for recursion (i.e., a function may call itself) in carrying out

the calculation.

Pearson correlation

The mcorr.cpp file uses the standard two-pass algorithm for computing the lower triangle of

the Pearson correlation coefficient matrix. This entails computing the means of each column,

the resulting
(P

2

)
covariance matrix entries, and then the division necessary to create the corre-

lation values. Next, the Pearson correlation values are transformed into a z-score Z(r) based

on the Fisher transformation F (r)

F (r) =
1

2
ln

(
1 + r

1− r

)
as

Z(r) =
√
N− 3F (r),

where r represents the Pearson correlation and N is the number of rows/observations as before

[10]. These transformed values are stored in a TNT Array2D object Z keeping the three column

44

structure of the corrData object. Each of the Z(r) values follow approximately a standard

normal distribution under the null hypothesis of statistical independence. More precisely, we

are testing the hypothesis that Corr(Xt, Xt′) = 0 versus Corr(Xt, Xt′) 6= 0 for each of the

m =
(P

2

)
choices of t and t′. If this hypothesis is rejected for any (t, t′) it will signify rejection

of the overall inter-stream independence model.

Spearman correlation

The mcorr.cpp file includes code that also computes the lower half of the Spearman correla-

tion matrix by first ranking each column in ascending order and accounting for any possible ties

(duplicate values in a column). This new rank matrix Ranks is then passed into the Pearson

correlation function described above.

To convert the Spearman correlation values to z-scores, the Fisher transform is slightly

modified as

Zspear(r) =
1

2

√
N − 3

1.06
ln

(
1 + r

1− r

)
,

where r now represents the Spearman correlation [9]. The Zspear values are again stored in

a Z object as before. Similar tests for each of the m correlation values are then performed

analogous to the Pearson case.

Kendall correlation

Lastly, the extension provides the ability to compute Kendall pairwise correlation values. The

direct computation of the Kendall’s tau correlation is O(n2) in complexity which becomes ex-

tremely slow for any reasonably large value of n. An improved O(n log n) algorithm was im-

plemented in C by Simcha [37] and that is used in our extension to compute the
(
P
2

)
Kendall

correlations. These Kendall tau values are converted to approximate standard normal deviates

by dividing by
√

2(2N+5)
9N(N−1) [36]. The resulting z-scores are then tested as in the Pearson and

Spearman cases.

Computation of P -values

Since all the test statistics are approximately standard normal, P -values can be determined

by looking at the tail probabilities of the N(0, 1) distribution. This can be done for each of the

m values stored in the variable numCorrs below using a linear transformation of the comple-

45

mentary error function erfc that is built into C++ in conjunction with fabs, which denotes the

absolute value of a floating point argument. Here, column 0 corresponds to the P -values with

the other two columns of Z denoting the corresponding column and row of data.

Listing 5.2: mcorr_getPVals

void mcorr:: mcorr_getPVals (){

for(int i = 0; i < mcorr :: numCorrs; i++){

//Two tailed P-value from Z test

mcorr:: pVals[i][0] = erfc(fabs(mcorr ::Z[i][0]) / sqrt (2));

mcorr:: pVals[i][1] = mcorr::Z[i][1];

mcorr:: pVals[i][2] = mcorr::Z[i][2];

}

}

The tests returned corresponding P -values p1, . . . , pm. To control the experiment-

wise error rate, we used the Benjamini/Hochberg/Yekutieli (BHY) algorithm [2] as described in

Algorithm 1 below with the significance level, α, chosen accordingly by the user.

Algorithm 1 Benjamini/Hochberg/Yekutieli FDR control method
Arrange p1, . . . , pm in numerically ascending order as p(1) ≤ · · · ≤ p(m)

q = α/
∑m

j=1
1
j

k = max
{

1 ≤ i ≤ m : p(i) ≤ q ∗ (i/m)
}

if k exists then

Reject the null hypotheses corresponding to p(1), . . . , p(k)

else

Reject nothing

end if

Results

In this section, we will outline the results of testing all three of our Smoking Gun generators in

addition to a Mersenne Twister generator and a MRG32k3a generator using the three pairwise

correlation methods and the BHY algorithm. The output from the extension will be given and

46

then will be followed by a brief summary. This output was designed to match up with the output

given by the TestU01 suite.

Performance with the problematic generators

Each of the three Smoking Gun generators produced this same output.

Listing 5.3: Smoking Gun Pairwise Correlation output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

PairCorr test for Pearson Correlations:

n = 10000, p = 10

Test results using Benjamini/Hochberg/Yekutieli

for Pearson Correlations:

Alpha = 0.01

Reject the null hypotheses of nonzero correlation corresponding to

P-value_(1): Vector 6 and Vector 7

P-value_(2): Vector 3 and Vector 4

P-value_(3): Vector 4 and Vector 5

P-value_(4): Vector 5 and Vector 6

P-value_(5): Vector 7 and Vector 8

P-value_(6): Vector 9 and Vector 10

P-value_(7): Vector 1 and Vector 2

P-value_(8): Vector 2 and Vector 3

P-value_(9): Vector 8 and Vector 9

47

PairCorr test for Spearman Correlations:

n = 10000, p = 10

Test results using Benjamini/Hochberg/Yekutieli

for Spearman Correlations:

Alpha = 0.01

Reject the null hypotheses of nonzero correlation corresponding to

P-value_(1): Vector 6 and Vector 7

P-value_(2): Vector 3 and Vector 4

P-value_(3): Vector 4 and Vector 5

P-value_(4): Vector 5 and Vector 6

P-value_(5): Vector 7 and Vector 8

P-value_(6): Vector 9 and Vector 10

P-value_(7): Vector 1 and Vector 2

P-value_(8): Vector 2 and Vector 3

P-value_(9): Vector 8 and Vector 9

PairCorr test for Kendall Correlations:

n = 10000, p = 10

Test results using Benjamini/Hochberg/Yekutieli

for Kendall Correlations:

Alpha = 0.01

Reject the null hypotheses of nonzero correlation corresponding to

P-value_(1): Vector 6 and Vector 7

P-value_(2): Vector 3 and Vector 4

48

P-value_(3): Vector 4 and Vector 5

P-value_(4): Vector 5 and Vector 6

P-value_(5): Vector 7 and Vector 8

P-value_(6): Vector 9 and Vector 10

P-value_(7): Vector 1 and Vector 2

P-value_(8): Vector 2 and Vector 3

P-value_(9): Vector 8 and Vector 9

Each of the three correlation based test procedures resulted in rejection of H0 for each

of p(1), . . . , p(9) corresponding to the nine tests for nonzero correlation between vector 1 and

vector 2, vector 2 and vector 3, . . . , vector 9 and vector 10. This agrees with our intuition

about the generated data for the first Smoking Gun generator since the largest correlation

(about 0.5) occurs between successive pairs of the original normally distributed data. For the

transformed data that provides the actual streams, each of the corresponding P -values for

testing nonzero correlation was essentially 0 and the sample correlations are close to 0.48.

The built-in correlations in the second and third Smoking Guns are also easily detected by the

pairwise methods here.

Mersenne Twister and MRG32k3a

As a further check on our algorithms, we tested two known “good" generators that we dis-

cussed earlier in this document. For both the Mersenne Twister and MRG32k3a we obtained

Listing 5.4: Mersenne Twister and MRG32k3a Pairwise Correlation output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

PairCorr test for Pearson Correlations:

n = 10000, p = 10

49

Test results using Benjamini/Hochberg/Yekutieli

for Pearson Correlations:

Alpha = 0.01

Reject none of the null hypotheses

PairCorr test for Spearman Correlations:

n = 10000, p = 10

Test results using Benjamini/Hochberg/Yekutieli

for Spearman Correlations:

Alpha = 0.01

Reject none of the null hypotheses

PairCorr test for Kendall Correlations:

n = 10000, p = 10

Test results using Benjamini/Hochberg/Yekutieli

for Kendall Correlations:

50

Alpha = 0.01

Reject none of the null hypotheses.

5.2 Testing for an Identity Correlation Matrix

We now describe an alternative test statistic that can be used to test for pairwise dependence

in streams of uniform pseudorandom numbers that have been generated in parallel. We begin

by converting the uniform deviates to standard normal deviates by using the inverse of the

cumulative distribution function of the N(0, 1) distribution [3]. We then assume X1, . . . , Xn are

independent Np(0,Σ) random vectors with joint density f(·, θ) for θ, a parameter vector in the

parameter set Θ. In this case, Θ is the p(p+1)
2 -dimensional space of variances and covariances

such that Σ = ((σij)) is positive definite and θ′ = (σ11, . . . , σ1p, σ21, . . . , σ2p, . . . , σp−1,p, σpp).

We want to test that θ ≡ vec(Σ) = vec(Ip) versus the alternative θ 6= vec(Ip), where

vec(·) produces a column vector created by stacking the columns of its matrix argument on

top of one another. The first step is to derive the appropriate likelihood function L(θ). For this

purpose, suppose we observe X1 = x1, . . . , Xn = xn and let A =
∑n

i=1 xix
T
i .

The sample likelihood now takes the form

L(θ) = f(x1, . . . , xn; θ)

=
n∏
i=1

f(xi; θ)

=
n∏
i=1

[
(2π)−p/2(det Σ)−1/2 exp

{
−1

2
xTi Σ−1xi

}]

= (2π)−np/2(det Σ)−n/2 exp

{
n∑
i=1

−1

2
xTi Σ−1xi

}

= (2π)−np/2(det Σ)−n/2 exp

{
n∑
i=1

−1

2
tr
[
xTi Σ−1xi

]}
[
since

(
xTi Σ−1xi

)
is a 1× 1

]
= (2π)−np/2(det Σ)−n/2 exp

{
n∑
i=1

tr

[
−1

2
xTi Σ−1xi

]}

[since tr(cA) = c · tr(A)]

51

Continuing to simplify we have

L(θ) = (2π)−np/2(det Σ)−n/2 exp

{
n∑
i=1

tr

[
−1

2
Σ−1xix

T
i

]}

[since tr(ABC) = tr(BCA)]

= (2π)−np/2(det Σ)−n/2 exp

{
tr

(
n∑
i=1

[
−1

2
Σ−1xix

T
i

])}

[since tr(A+B) = tr(A) + tr(B)]

= (2π)−np/2(det Σ)−n/2 exp

{
tr

(
−1

2
Σ−1

n∑
i=1

[
xTi xi

])}
[
since − 1

2
Σ−1 does not depend on i

]
= (2π)−np/2(det Σ)−n/2 exp

{
tr

(
−1

2
Σ−1A

)}
[by substitution]

= (2π)−np/2(det Σ)−n/2 etr

(
−1

2
Σ−1A

)
[by defining etr(·) = exp {tr(·)}] .

From this we obtain Λ, the likelihood ratio statistic for testing our hypothesis, as

Λ =

sup
θ∈Θ0

L(θ)

sup
θ∈Θ

L(θ)
=

sup
Σ=Ip

L(Σ)

sup
Σ
L(Σ)

=
L(Ip)

L(Σ̂)
where Σ̂ = n−1A [By Theorem 3.1.5 of [34]]

with

L(Ip) = (2π)−np/2(det Ip)
−n/2 etr

(
−1

2
I−1
p A

)
= (2π)−np/2(1)−n/2 etr

(
−1

2
IpA

)
= (2π)−np/2 etr

(
−1

2
A

)

52

and

L(Σ̂) = (2π)−np/2(det

[
1

n
A

]
)−n/2 etr

(
−1

2

[
1

n
A

]−1

A

)

= (2π)−np/2
([

1

n

]p
detA

)−n/2
etr
(
−n

2
A−1A

)
[since A is p× p and det(c ·Ap×p) = cp det(A)]

= (2π)−np/2
[

1

n

]−np/2
[detA]−n/2 exp

(
−n

2
tr Ip

)
= (2π)−np/2

[
1

n

]−np/2
e−np/2[detA]−n/2

= (2π)−np/2
[e
n

]−np/2
[detA]−n/2.

After some simplification the expression for Λ reduces to

Λ =
(2π)−np/2 etr

(
−1

2A
)

(2π)−np/2
[
e
n

]−np/2
[detA]−n/2

=
etr
(
−1

2A
)[

e
n

]−np/2
[detA]−n/2

=
[e
n

]np/2
etr

(
−1

2
A

)
[detA]n/2.

From pages 219-220 of [14], the identity matrix hypothesis is rejected if Λ < cα with α

chosen appropriately for a size-α test. In practice, we know that

−2 ln Λ
d→ χ2

p(p+1)
2

,

with “ d→" indicating convergence in distribution. Thus, for large n, critical values can be ob-

tained from the chi-square distribution. Some algebra shows that −2 ln Λ can be simplified to

the expression that was used in our code: namely,

ln Λ = ln

[(e
n

)np/2]
+ ln

[
exp

{
tr

(
−1

2
A

)}]
+ ln

[
(detA)n/2

]
=
np

2
ln
(e
n

)
+ tr

(
−1

2
A

)
ln e+

n

2
ln(detA)

=
np

2
(ln e− lnn) + tr

(
−1

2
A

)
+
n

2
ln(detA)

53

Letting C = Σ̂ = n−1A and, thus, A = nC we have

ln Λ =
np

2
(1− lnn) + tr

(
−n

2
C
)

+
n

2
ln(det{nC})

=
np

2
(1− lnn)− n

2
tr(C) +

n

2
ln [np detC]

=
np

2
(1− lnn)− n

2
tr(C) +

n

2
[p lnn+ ln(detC)]

=
np

2
− np

2
lnn− n

2
tr(C) +

np

2
lnn+

n

2
ln(detC)

=
np

2
− n

2
tr(C) +

n

2
ln(detC)

or

−2 ln Λ = −np+ n tr(C)− n ln(detC) = n[tr(C)− ln(detC)− p].

P -values are then calculated using the cumulative distribution function of the χ2 distribution. A

specified significance level of 0.01 was used below in the results.

Results

Similar to the previous section, we now provide the results of the likelihood ratio test on the

three Smoking Gun, Mersenne Twister, and MRG32k3a generators.

Performance with the problematic generators

The first set of results are for the Smoking Gun based on a normally transformed VMA(1)

process.

Listing 5.5: First Smoking Gun LRT output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Likelihood Ratio Test for

Pairwise Correlation Matrix = Identity:

Alpha = 0.01

n = 10000, p = 10
54

LR Test Statistic : 43779.6

p-value of test : 0

The next set of results are for the Smoking Gun based on a univariate time series

moving across the processors.

Listing 5.6: Second Smoking Gun LRT output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Likelihood Ratio Test for

Pairwise Correlation Matrix = Identity:

Alpha = 0.01

n = 10000, p = 10

LR Test Statistic : 7636.69

p-value of test : 0

Finally results for the Smoking Gun based on a bivariate time series moving across the

processors are given below.

Listing 5.7: Third Smoking Gun LRT output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

55

Likelihood Ratio Test for

Pairwise Correlation Matrix = Identity:

Alpha = 0.01

n = 10000, p = 10

LR Test Statistic : 6651.46

p-value of test : 0

Note that each of the P -values are essentially zero. Consequently, the test results

provide strong evidence that the vectors created by the three Smoking Gun generators are

correlated and, thus, that dependence exists among the streams.

Mersenne Twister and MRG32k3a

The results for the Mersenne Twister generator are given below.

Listing 5.8: Mersenne Twister LRT output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Likelihood Ratio Test for

Pairwise Correlation Matrix = Identity:

Alpha = 0.01

n = 10000, p = 10

LR Test Statistic : 65.2344

p-value of test : 0.162607

56

The next results are for the MRG32k3a generator.

Listing 5.9: MRG32k3a LRT output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Likelihood Ratio Test for

Pairwise Correlation Matrix = Identity:

Alpha = 0.01

n = 10000, p = 10

LR Test Statistic : 49.5653

p-value of test : 0.681589

Thus, both of the generators “pass" the likelihood ratio test.

57

Chapter 6

TESTU01 MULTIVARIATE EXTENSION - VECTOR TIME SERIES BASED TESTS

Vector time series techniques provide a rich collection of tools for modeling the evolution of

vector-valued random variables as a function of any type of discrete index. Tests for white noise

that arise in this context can be used for detection of between stream dependence when they

are applied to our particular setting. In this section we will focus on the following multivariate

portmanteau tests for white noise: the Hosking, the Li-McLeod, and the Mahdi-McLeod tests.

The portmanteau label signifies that the tests are all purpose in nature, and, at least in this

chapter, consistent against all alternatives.

We define a more general version of the VMA(1) process that was mentioned in Section

4.2. {Xt : t = 1, . . . , n}, a p-dimensional autoregressive moving average (VARMA) process of

order (γ, ω), is defined as
γ∑
`=0

Φ`Xt−` =
ω∑
`=0

Ξ`et−`. (6.1)

Here the Φ`, ` = 0, 1, . . . , γ, are p×pmatrices corresponding to potential autoregressive model

terms and the Ξ`, ` = 0, 1, . . . , ω, are p × p matrices that represent potential moving average

components. We adopt the convention that Φ0 and Ξ0 are identity matrices and assume that

Φγ 6= O and Ξω 6= O for O a matrix of all zeroes. The process {et} is assumed to be white-

noise: i.e., the et are independent and identically distributed random vectors of dimension p

with E(et) = 0, E(ete
T
t) = Σ = ((σij)), and Cov(et, et−`) = 0 for ` = 1, . . . ,m where m is

chosen large enough to cover all lags of interest. Note that our earlier VMA(1) process can

also be defined as a VARMA(0, 1) process.

For specificity, we are now thinking of the Xt as representing the vector of pseudoran-

dom numbers produced by the p processes at the tth step of the generation exercise. Given a

matrix of n × p deviates, we first mean-corrected each of the p columns of data so that each

could be viewed as the residuals from a white noise model "fit." Then we applied the tests

from this chapter to these residuals. The portmanteau nature of the test statistics gives them

power against any alternatives that have a VARMA form. At least approximately this includes

all covariance stationary processes.

58

The expression (6.1) can be written as

Φ(B)Xt = Ξ(B)et, (6.2)

where the backward shift operator B is defined by BXt = Xt−1. Φ(B) =
∑γ

`=0 Φ`B
` and

Ξ(B) =
∑ω

`=0 Ξ`B
`. The residuals êt from a fitted model (e.g., from maximum likelihood) are

given by

Φ̂(B)Xt = Ξ̂(B)êt,

where Φ̂ and Ξ̂ are the least squares (or asymptotically equivalent) estimators of Φ and Ξ,

respectively. These estimators are asymptotically normally distributed with variances O(n−1)

[6].

Define the `th white-noise autocovariance matrix C` as

C` = ((cij`)) = n−1
∑
t

ete
T
t−`

and the `th residual autocovariance matrix

Ĉ` = ((ĉij`)) = n−1
∑
t

êtê
T
t−`.

The least squares estimator of Σ is Σ̂ = Ĉ0 and Dunsmuir and Hannan [6] show that Σ̂ is

asymptotically normally distributed. Also, Σ̂ is asymptotically uncorrelated with the other least-

squares parameter estimators. Using these results, C` is seen to be asymptotically normally

distributed [13] with E(C`) = Σδ0` and asymptotically

Cov(cij`, ckl`′) = n−1σikσjlδ`,`′ , (6.3)

where δ`,`′ is the Kronecker delta function that is one when ` = `′ and zero otherwise. We will

use this fact along with an approximate linear relationship between C` and Ĉ` given below to

deduce the asymptotic distribution of the Ĉ` and vecĈ.

For some integer s, define C = (C1, C2, . . . , Cs), Ĉ = (Ĉ1, Ĉ2, . . . , Ĉs), and let Φ =

(Φ1,Φ2, . . . ,Φγ), Ξ = (Ξ1,Ξ2, . . . ,Ξω), and Λ = (Φ,Ξ). We also use vecC to denote the

vector formed by stacking the columns of C one on top of each other (similar to the parallel

filter option in TestU01 given in Section 3.2). Thus,

vecC = (c111, c211, . . . , c121, . . . , c112, . . . , cpps)
T .

59

We now define the two matrix power series Π(z) and Ψ(z) as

Π(z) = {Φ(z)}−1 =
∞∑
`=0

Π`z
`

and

Ψ(z) = {Φ(z)}−1Ξ(z) =
∞∑
`=0

Ψ`z
`

with the elements of Π` and Ψ` converging exponentially to zero as `→∞. A linear expansion

of the residuals êt can be made using Taylor’s theorem via

êt = et +

γ∑
`=1

∞∑
u=0

Πu(Φ̂` − Φ`)Xt−`−u −
ω∑
`=1

∞∑
u=0

Πu(Ξ̂` − Ξr)et−`−u +Op(n
−1), (6.4)

with Op corresponding to the order in probability. This result can be used to show that for

v > 0,

Ĉv = Cv +

γ∑
`=1

∞∑
u=0

Πu(Φ̂` − Φ`)Ψv−`−uΣ−
ω∑
`=1

Πv−`(Ξ̂` − Ξ`)Σ +Op(n
−1).

Using vec notation, (6.4) can be expressed as

vecÊ = vecE + Lvec(Λ̂− Λ),

where E represents the p × n matrix whose (i, t)th entry is eit. To define L let J` and K` be

pγ × n and pω× n matrices whose (i, t)th p subvectors are Xt−i−` and et−i−`, respectively. If

we now define M =
∑∞

`=0(JT` ⊗Π`) and N =
∑∞

`=0(KT
` ⊗Π`) with ⊗ denoting the Kronecker

product, L is the pn× p2(γ + ω) matrix (M −N).

Since the et are assumed independent and identically distributed with mean zero and

covariance Σ, vecE has mean zero and covariance In ⊗ Σ [13]. We can also use the vecĈv

notation to write Ĉv as

vecĈv = vecCv +

γ∑
`=1

Gv−`vec(Φ̂` − Φ`)−
ω∑
`=1

Dv−`vec(Ξ̂r − Ξ`),

where G` =
∑∞

u=0(ΣΨT
u ⊗Π`−u), D` = Σ⊗Π`, and G0 = D0 = Σ⊗ Ip. Thus,

vecĈ = vecC + V vec(Φ̂` − Φ`)− Y vec(Ξ̂` − Ξ`)

60

where

V =



G0 O O . . . O

G1 G0 O . . . O

...
...

...
. . .

...

Gs−1 Gs−2 Gs−3 . . . Gs−γ


and

Y =



D0 O O . . . O

D1 D0 O . . . O

...
...

...
. . .

...

Ds−1 Ds−2 Ds−3 . . . Ds−ω


.

Define W = Is ⊗Σ⊗Σ and Q = Z(ZTW−1Z)−1ZTW−1. Then Hosking [13] proves

that

vecĈ = (Ip2s −Q)vecC +Op(n
−1). (6.5)

From (6.3), asymptotically vecC ∼ Np2s(0, n
−1W). Using these results, asymptotically we

have vecĈ ∼ Np2s(0, n
−1(Ip2s −Q)W).

If a random vector X ∼ N(0, QΣ) where Q is idempotent of rank r and Σ is positive-

definite, then XTΣ−1X ∼ χ2
r . In our current setting, I −Q is idempotent of rank p2(s− γ−ω)

and W is positive-definite and symmetric. It therefore follows that

n(vecĈ)TW−1vecĈ ∼ χ2
p2(s−γ−ω). (6.6)

The result continues to hold if W−1 is replaced by a consistent estimator such as

Ŵ−1 = Is ⊗ Σ̂−1 ⊗ Σ̂−1 = Is ⊗ Ĉ−1
0 ⊗ Ĉ−1

0 .

Hence, the portmanteau statistic P for a white noise null model (i.e., Φ and Ξ are identity

operators) can be expressed approximately as

P = n(vecĈ)T
(
Is ⊗ Ĉ−1

0 ⊗ Ĉ−1
0

)
vecĈ.

Consequently, P is asympotically chi-square with degrees of freedom p2(s− γ − ω).

61

6.1 Hosking Portmanteau Test Statistic

Hosking [13] provides some convenient forms for computation of P including

P = n

s∑
`=1

tr(ĈT` Ĉ
−1
0 Ĉ`Ĉ

−1
0).

We can further simplify this form for P by writing the Cholesky factorization of C−1
0 as LLT for

L a lower triangular matrix and by defining

R̂` = LT Ĉ`L. (6.7)

Let r̂` = vecR̂T` be the 1×p2 row vector with the rows of R̂` laid successively one after another.

Then, Mahdi and McLeod [24] provide a simplified formula

P = n
m∑
`=1

r̂`(Ĉ
−1
0 ⊗ Ĉ−1

0)r̂T`

and give the following modified version of P that is commonly referred to as the Hosking test

statistic

PH(mod) = n2
m∑
`=1

(n− `)−1r̂`(Ĉ
−1
0 ⊗ Ĉ−1

0)r̂T` . (6.8)

PH(mod) has a large sample chi-square distribution with p2(m − γ − ω) degrees of freedom.

This modified portmanteau statistic is expected to have a small-sample distribution more nearly

χ2
p2(m−γ−ω) than that of P [13]. Recall that m denotes the size of the largest order to be tested

and is specified by the user of the extension. The PH(mod) test statistic is the first of the

portmanteau statistics that will be used in our extension to TestU01 called mport.

6.2 Li-McLeod Portmanteau Test Statistic

Another modification of P that was suggested by Li and McLeod [23] is the second portman-

teau statistic in mport. This test statistic and its asymptotic distribution are

QLM =
p2m(m+ 1)

2n
+ n

m∑
`=1

r̂`(Ĉ
−1
0 ⊗ Ĉ−1

0)r̂T` ∼ χ2
p2(m−γ−ω). (6.9)

This modification was done so that the expected value of the statistic QLM under the null

hypothesis was equal to the degrees of freedom p2(m− γ − ω) +Op(1/n).

62

6.3 Mahdi-McLeod Portmanteau Test Statistic

Mahdi and McLeod [24] proposed a multivariate portmanteau test statistic based on Hosking’s

original results and it is the third portmanteau statistic in our extension. The test statistic

depends on a matrix of matrices composed of the matrices R̂`, ` = 1, . . . ,m, and is given by

T̂ m =



R̂0 R̂1 . . . R̂m

R̂T1 R̂0 . . . R̂m−1

...
...

. . .
...

R̂Tm R̂Tm−1 . . . R̂0


with R̂0 = Ip. We then define

Am =
−3n

2m+ 1
log |T̂ m|. (6.10)

If there are no significant autocorrelations in the residuals, R̂` = Op(n
−1/2) and T̂ m is ap-

proximately block diagonal with |T̂ m| ≈ 1. When there is autocorrelation present, |T̂ m| will be

smaller than 1 so that we reject the white noise model for large values of Am. Under the null

model, the Mahdi-McLeod statistic Am is approximately chi-square distributed with degrees of

freedom p2

(
1.5m(m+ 1)

2m+ 1
− γ − ω

)
[24].

6.4 Results
Performance with the problematic generators

Testing of the first Smoking Gun generator with the white noise portmanteau tests produced

the following output.

Listing 6.1: First Smoking Gun Portmanteau Tests output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Portmanteau Test for White Noise (Hosking):
63

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Hosking Test Statistic : 1001.58

Degrees of Freedom : 1000

p-value of test : 0.479951

Portmanteau Test for White Noise (Li-McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Li -McLeod Test Statistic : 1001.59

Degrees of Freedom : 1000

p-value of test : 0.479892

Portmanteau Test for White Noise (Mahdi -McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

64

Determinant of Toeplitz Block matrix: 0.570518

Mahdi -McLeod Test Statistic : 801.73

Degrees of Freedom : 785.714

p-value of test : 0.337942

We see that, contrary to our initial expectations, the first Smoking Gun was able to

pass the portmanteau tests. The likely reason for this is that the number of rows n or length of

the vectors in the series is much larger than the number of columns (processors) p. Thus, the

time series here is actually quite short as it evolves over only ten columns.

The second and third Smoking Guns have lengthy built-in time series. These gener-

ators were able to pass SmallCrushFile and CrushFile. The results that follow are for the

second Smoking Gun generator based on a univariate time series.

Listing 6.2: Second Smoking Gun Portmanteau Tests output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Portmanteau Test for White Noise (Hosking):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Hosking Test Statistic : 1726.93

Degrees of Freedom : 1000
65

p-value of test : 0

Portmanteau Test for White Noise (Li-McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Li -McLeod Test Statistic : 1726.86

Degrees of Freedom : 1000

p-value of test : 0

Portmanteau Test for White Noise (Mahdi -McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Determinant of Toeplitz Block matrix: 0.270533

Mahdi -McLeod Test Statistic : 1867.66

Degrees of Freedom : 785.714

p-value of test : 0

The results for the third Smoking Gun follow. They are very similar to those of the

second Smoking Gun.

66

Listing 6.3: Third Smoking Gun Portmanteau Tests output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Portmanteau Test for White Noise (Hosking):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Hosking Test Statistic : 2612.72

Degrees of Freedom : 1000

p-value of test : 0

Portmanteau Test for White Noise (Li-McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Li -McLeod Test Statistic : 2612.57

Degrees of Freedom : 1000

p-value of test : 0

67

Portmanteau Test for White Noise (Mahdi -McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Determinant of Toeplitz Block matrix: 0.104578

Mahdi -McLeod Test Statistic : 3225.45

Degrees of Freedom : 785.714

p-value of test : 0

Thus, the portmanteau tests easily detect the built-in dependence in the second and

third Smoking Gun generators. All of the P -values are near zero which leads us to reject the

null hypothesis of white noise.

Mersenne Twister and MRG32k3a

As with the correlation tests in the previous chapter, we also tested the Mersenne Twister and

MRG32k3a generators with the results reported below. The output immediately following is for

the Mersenne Twister generator.

Listing 6.4: Mersenne Twister Portmanteau Tests output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Portmanteau Test for White Noise (Hosking):
68

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Hosking Test Statistic : 922.114

Degrees of Freedom : 1000

p-value of test : 0.961965

Portmanteau Test for White Noise (Li-McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Li -McLeod Test Statistic : 922.152

Degrees of Freedom : 1000

p-value of test : 0.961891

Portmanteau Test for White Noise (Mahdi -McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

69

Determinant of Toeplitz Block matrix: 0.603593

Mahdi -McLeod Test Statistic : 721.221

Degrees of Freedom : 785.714

p-value of test : 0.951215

Similar results for the MRG32k3a generator follow.

Listing 6.5: MRG32k3a Portmanteau Tests output

xxx

Starting Multivariate Extension

Version: TestU01 1.2.3

xxx

Portmanteau Test for White Noise (Hosking):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Hosking Test Statistic : 961.259

Degrees of Freedom : 1000

p-value of test : 0.805864

Portmanteau Test for White Noise (Li-McLeod):

Alpha = 0.01

70

n = 10000, p = 10, Lag order = 10

Li -McLeod Test Statistic : 961.255

Degrees of Freedom : 1000

p-value of test : 0.805895

Portmanteau Test for White Noise (Mahdi -McLeod):

Alpha = 0.01

n = 10000, p = 10, Lag order = 10

Determinant of Toeplitz Block matrix: 0.602564

Mahdi -McLeod Test Statistic : 723.658

Degrees of Freedom : 785.714

p-value of test : 0.944278

Thus, none of our time series based tests detects a departure from the white noise

model in the data produced by the Mersenne Twister or MRG32k3a.

71

Chapter 7

DESIGN CONSIDERATIONS FOR PARALLEL PROCESSING

The computations performed by TestU01 are conducted exclusively in serial mode. This is sat-

isfactory in the sense that parallel number generation schemes can still be evaluated provided

that the generators are paired with the package appropriately. However, the pairing mecha-

nism could be made more flexible and processing time could be reduced if the computations

were conducted in parallel. In this chapter we provide a simple illustration of how modern C++

code design might be employed to circumvent such shortcomings.

The problem we will focus on is that of computing the correlation matrix corresponding

to p streams of uniform pseudorandom numbers. We want to be able to calculate correlations

between streams that arise from a collection of possibly unrelated generators. That means,

for example, that all the generators need not be from a common class. There are two aspects

to consider: formulation of the problem in C++ and parallelization of the calculations. We will

address each of these in turn.

7.1 Object-oriented Formulation

Conceptually, we can view the situation as one where a user provides us with some arbitrary

conglomeration of pseudorandom number generators. We then reach into this “bucket” of

generators and select two generation algorithms that need to be compared in terms of their

linear correlation. Some structure must, of course, be imposed on how the conglomeration is

packaged in order for this to actually be feasible. A rather minimal standard would be that our

generator “bucket” take the form of a class/struct with the number of generators, nRng, as a

data member and that each generator be associated with a unique integer index in the range

from 0 to nRng - 1. This index can then be combined with an overloaded () operator to give

access to the pseudorandom numbers produced by each generator as shown below.

The generators in the user’s bucket should themselves be objects from a class. While

all the classes need not be the same, they do need to have a common function that returns the

pseudorandom uniform produced by the underlying generator. One way to accomplish this is

by overloading the () operator to produce what is then typically called a functor.

72

For purposes of illustration we will frequently use the RngStream class from the RngStreams

package that contains the MRG32k3a multiple recursive generator from previous chapters.

Pseudorandom uniforms for RngStream objects are produced with the RandU01 class mem-

ber function. Thus, the requisite functor property is obtained in this case by simply adding the

inline function

double operator ()(){ return RandU01 ();}

to the class header file RngStream.h.

As another illustration we have the standard Wichmann/Hill generator represented in

the next listing.

Listing 7.1: Wichmann/Hill generator code

//WH.h

#ifndef WH_H

#define WH_H

#include <math.h>

struct WH{

unsigned long seed [3];

WH(){};

WH(unsigned long Seed [3]){

for(int i = 0; i < 3; i++) seed[i] = Seed[i];

}

double operator ()(){

seed [0] = (171*seed [0])%30269;

seed [1] = (172*seed [1])%30307;

seed [2] = (173*seed [2])%30323;

return fmod((double)(seed [0])/30269.0

+ (double)(seed [1])/30307.0

+ (double)(seed [2])/30323.0 , 1.0);

}

};
73

#endif

This generator needs three integer seeds as class data members. These are initialized in the

class constructor. As for the RngStream class, we have defined the () operator to return the

values produced by the generation algorithm.

The code listing below shows how one might create a generator collection that includes

both the Wichmann/Hill and MRG32k3a generators.

Listing 7.2: rngBucket.h

//rngBucket.h

#ifndef RNGBUCKET_H

#define RNGBUCKET_H

#include "WH.h"

#include "RngStream.h"

struct rngBucket{

int nRngs;

WH w;

RngStream* pRng;

rngBucket(int nrngs , unsigned long seed1[3],

unsigned long seed2 [6]): nRngs(nrngs) {

w = WH(seed1);

RngStream :: SetPackageSeed(seed2);

pRng = new RngStream[nRngs - 1];

}

rngBucket(const rngBucket& rng){

nRngs = rng.nRngs;

w = rng.w;

pRng = new RngStream[nRngs - 1];

74

for(int i = 0; i < nRngs - 1; i++)

pRng[i] = rng.pRng[i];

}

double operator ()(int i){

if(i == 0) return w();

else return pRng[i - 1]();

}

};

#endif

The most important feature of our rngBucket class is the way we access the generators. This

again employs an overloaded () operator except that now the argument is the integer index

of the generator that is to be used in the calculation. Once that generator has been located,

its associated pseudorandom uniform algorithm is called this time using the generator specific

definition of (). In this example we used a single WH object along with an array of RngStream

objects to populate the bucket. However, it is clear that any finite number of generators all of

possibly different types can be bundled together in this fashion.

Note that a specific copy constructor has been included in the rngBucket class. This

is needed to insure that the dynamic memory allocated for the array of RngStream objects will

be handled correctly when an rngBucket object is passed into a function.

With the rngBucket class in hand, we can write a simple function to compute the

inter-stream correlation such as the following.

Listing 7.3: unifCorr

double unifCorr(rngBucket rng , int ind1 , int ind2 ,

int n){

double sum = 0.;

for(int i = 0; i < n; i++)

sum += (rng(ind1) - .5)*(rng(ind2) - .5);

return 12.*sum/(double)n;

}
75

Here we have used the fact that under the uniform (null) model, the population mean and vari-

ance are 1/2 and 1/12, respectively. Note that what requires storage in the calling program

is only an rngBucket object. The actual arrays of pseudorandom numbers produced by the

generators are not retained. This entails some loss of computational efficiency when conduct-

ing pairwise comparisons of generators, for example. However, for applications with very long

streams of pseudorandom numbers this is the only practical approach.

7.2 Parallelization

The next step is to speed up the computation of the correlation matrix by parallelizing the

computations. One way this can be accomplished is by having each processor perform the

calculations on a subset of the array elements and then combine their individual results onto

the master node.

Suppose that there are nStream = 2r streams (i.e., pseudorandom number genera-

tors) to be analyzed and r = b+ s so that we can group them as nb = 2b blocks each of which

corresponds to bs = 2s generators. This gives us a total of nTasks = nb*(nb + 1)/2 correla-

tion submatrices that must be evaluated corresponding to the pairings of all the streams in our

nb blocks. For the “diagonal” blocks (i.e., where the two stream subsets being compared are

the same) only the upper diagonal of the correlation submatrix need be evaluated. The block

indexing becomes quite tedious at this point and we have found it most expedient to simply

have every process create a (common) index array via the function

Listing 7.4: indexArray

void indexArray(int** indices , nb){

int ind = 0;

for(int i = 0; i < nb; i++)

for(int j = i; j < nb; j++){

indices[ind] = new int [2];

indices[ind][0] = i;

indices[ind][1] = j;

ind += 1;

76

}

}

This produces a two-dimensional array whose elements give the “row” and “column” indices

for all the blocks of the correlation matrix. This array will have nTasks rows that can then be

distributed to the processors. For simplicity we assume here that nTasks and the number of

processors coincide. More generally the tasks will need to be portioned out in groups to the

processors. This entails some additional code complexity that will be addressed in future work

on the package extension.

The main function for our MPI code now takes the form that appears in the next listing.

The twoToTheK function that is used here is a utility function that returns an integer value of

two raised to the power of its integer argument.

Listing 7.5: main MPI

int main(int argc , char** argv){

//number of variables

int nStream = twoToTheK(atoi(argv [1]));

//number of variables per block

int bs = twoToTheK(atoi(argv [2]));

//number of blocks

int nb = twoToTheK(atoi(argv [3]));

//WH seed

unsigned long seed1 [3] = {1, 2, 3};

//RngStream seed

unsigned long seed2 [6] = {1, 2, 3, 4, 5, 6};

//all processes initialize the same rngBucket object

rngBucket rng(nStream , seed1 , seed2);

//sample size

int n = atoi(argv [4]);

77

//number of processors = number of blocks

int nTasks = nb*(nb + 1)/2;

//all processes create the block index array

int** indices = new int*[nTasks];

indexArray(indices , nb);

MPI::Init ();

int myRank = MPI::COMM_WORLD.Get_rank ();

if(myRank == 0){

//0 node

cout << MPI::COMM_WORLD.Get_size() << endl;

//number of correlations to compute

int dim = nStream*(nStream - 1)/2;

double* corr = new double[dim];

//compute my part of the correlation array

int ind = 0;

for(int i = 0; i < bs; i++)

for(int j = i + 1; j < bs; j++){

corr[ind] = unifCorr(rng , i, j, n);

ind += 1;

}

//myLength <= maxLength

int maxLength = bs*bs;

double* tempCorr = new double[bs*bs];

int myLength = 0;

//Start with 0 process that has a diagonal block

int length = bs*(bs - 1)/2;

for(int i = 1; i < nTasks; i++){

MPI::COMM_WORLD.Recv(tempCorr , maxLength ,

MPI::DOUBLE , i, 1);

78

MPI::COMM_WORLD.Recv(&myLength , 1,

MPI::INT , i, 1);

for(int k = 0; k < myLength; k++)

corr[length + k] = tempCorr[k];

length += myLength;

}

//now give the results

for(int i = 0; i < length; i++)

cout << corr[i] << endl;

}

else{

double* myCorr;

int myLength;

//diagonal block

if(indices[myRank][0] == indices[myRank][1]){

myLength = bs*(bs - 1)/2;

myCorr = new double[myLength];

}

else{

myLength = bs*bs;

myCorr = new double[bs*bs];

}

int ind = 0;

for(int i = bs*indices[myRank][0];

i < bs*(indices[myRank][0] + 1); i++)

for(int j = bs*indices[myRank][1];

j < bs*(indices[myRank][1] + 1); j++)

if(i < j) {

myCorr[ind] = unifCorr(rng , i, j, n);

ind += 1;

}

MPI::COMM_WORLD.Send(myCorr , myLength ,

79

MPI::DOUBLE , 0, 1);

MPI::COMM_WORLD.Send(&myLength , 1,

MPI::INT , 0, 1);

}

MPI:: Finalize ();

return 0;

}

The number of streams, number of blocks, and block size are all determined from command

line input. Then, every process creates the same index array and the same rngBucket object.

Next, each process uses its rank to select an element of the index array indices that, in turn,

determines the task it will perform: that is, the correlation submatrix it will evaluate. Upon

completion of their tasks the processes send their results to the master or rank 0 node that

collects them into a vector that can be used, for example, in evaluation of the test statistics of

the previous two chapters.

We compiled and ran this program on the ASU Saguaro cluster. To illustrate the pos-

sible improvement in run time we then considered the case of 8 = 23 variables with a sample

size of n = 108. The 8 variables can be arranged as one block of size 8, 2 blocks of size

4 or 4 blocks of size 2. This translates into nTasks values of 1, 3 and 10, respectively. We

then assigned a processor to every task with the result that our observed speedup was 1.7

when using 2 blocks of size 4 with 3 processors and 5.9 when using 4 blocks of size 2 with 10

processors. This was based on an average of three run times for each of the three scenarios.

7.3 Discussion

The developments in this chapter can be viewed as providing a precursor of how the TestU01

package might be rewritten in C++ to incorporate parallel processing capabilities. The presen-

tation has been limited to the computation of correlations which is of most relevance to our

correlation based testing methods from Chapter 5. However, in principle, all the tests from the

TestU01 package can be adapted to this type of treatment.

80

One can envision C++ TestU01 classes that perform the operations that are currently

embodied in the procedural C code format. These would then operate on something such

as our rngBucket objects to compare and evaluate generators. Conceptually, this is fairly

straightforward although the actual code development will undoubtedly be quite involved and

challenging.

Of more statistical substance is how the TestU01 test statistics should be handled

when working in a true parallel setting. Our use of the rngBucket class provides one way

to package generators so that they can be easily used in such environments with a minimal

memory signature. Each process can then perform the relevant tests on some subset of the

generators in the bucket and communicate results back to the master node. This will work

fine for the two-level testing paradigm. However, effective implementation of the concatena-

tion scheme is more problematic. The communication of long pseudorandom number streams

across processes is impractical and even the storage of such streams on individual processes

is likely unfeasible. However, many of the tests are sums which provide the option of commu-

nicating partial sums back to the master node for subsequent processing.

81

Chapter 8

CONCLUSION

The research presented in this dissertation enhances the current methodology for testing par-

allel pseudorandom number generators. We have determined that stream dependencies can

be missed by the two parallel testing schemes of the standard TestU01 testing suite because

neither one adequately addresses the multivariate nature of the data that is generated in par-

allel. We then composed a multivariate extension to this suite in C++ using statistical tests

based on correlation analysis and vector time series.

We developed three examples of generators in the programming language R, referred

to as the “Smoking Gun" generators, with built-in stream dependencies that pass multiple

batteries of tests in TestU01. To provide for more stringent testing of these R based generators,

an addition to the TestU01 suite referred to as CrushFile was created. Each of the Smoking

Gun generators passed all of the nearly 100 tests of this intensive CrushFile addition. The

source code for CrushFile is included in Appendix A.

The first Smoking Gun generator was designed to create pairwise correlations between

consecutive streams. Since TestU01 requires the two-dimensional array of multiple streams

to be flattened into a single long vector, we showed that these pairwise correlations are not

detected by the TestU01 methods. This is due to the correlated elements being a long dis-

tance apart in the flattened array. The second and third Smoking Gun generators illustrate

that the dependencies inherent to a time series progressing across the streams are also con-

cealed by flattening techniques. Each of these generators provide corroboration that easily

seen inter-stream dependencies in parallel generated data become undetectable by the serial

transformation of the multivariate parallel data in the TestU01 package.

We have developed an extension for TestU01 that is designed to better detect inter-

stream dependencies such as those produced by our Smoking Gun generators. The source

code for the extension is provided in Appendix B. Following the naming convention in TestU01,

this extension is divided into three parts each beginning with the letter ‘m’ denoting “multivari-

ate": mcorr, mmult, and mport.

82

The mcorr part addresses testing for pairwise correlations between the vectors of

generated data using standard normal transformations of the Pearson’s, Spearman’s, and

Kendall’s sample correlation measures. The algorithm developed by Benjamini, Hochberg,

and Yekutieli for controlling experiment-wise error rates is used in carrying out these pairwise

comparisons.

The mmult component of our extension contains a method to test for pairwise depen-

dence in streams of uniform pseudorandom numbers without the need to control for the global

error rate. The array of deviates is first transformed to standard normal deviates and then a

likelihood ratio test statistic for checking for significant deviations from an identity correlation

matrix based on sample correlations is calculated.

Lastly, the final piece of the multivariate extension, mport, uses vector time series

tests for white noise. These provide another strategy that can be used for detection of be-

tween stream dependence. Three different multivariate portmanteau tests for white noise are

included in mport: the Hosking, the Li-McLeod, and the Mahdi-McLeod tests.

Our multivariate extension was shown to detect the built-in stream dependencies of

each of the problematic Smoking Gun generators. The mcorr class detected significant cor-

relation between each of the consecutive streams in all three of the Smoking Gun generators.

It produced output with small P -values corresponding to correlations of successive pairs of

vectors: i.e., between vector 1 and vector 2, between vector 2 and vector 3, etc. Each of the

three correlation measures produced these same rejections of the null hypotheses of nonzero

pairwise correlation between each of the vectors of generated data.

Similar results were produced by the mmult component. In testing for the pairwise

correlation matrix equaling the identity using the likelihood ratio test, each of the Smoking

Gun generators produced P -values that were nearly zero. Much the same as the conclusions

found in using the mcorr class, this provides strong evidence that dependence exists among

the streams of the data generated using each of the three Smoking Gun generators.

The mport module was also able to detect the dependencies in both the second and

third Smoking Gun generators. In opposition to what was initially hypothesized, each of the

83

three tests in mport were unable to detect the dependencies in the first Smoking Gun gen-

erator. We speculate that this is due to the time series only evolving over a small number of

columns. The much longer time series of the second and third Smoking Gun generators al-

lowed the mport tests to produce P -values near zero again, thereby recommending rejection

of the null model of white noise of the mean-centered deviates.

These vector time series tests provide an avenue for future research. In our extension,

we fit the mean-corrected data to a zeroth order vector time series model. It could also be

beneficial to fit multivariate time series of order one or two (or larger) to the data. Then, the use

of Bayes’ Information Criterion could be used to determine which order vector autoregressive

model fits the raw mean-corrected data best. A likelihood ratio test could also be performed to

look at the significance of the model fit versus a constant fit of the data. One could then proceed

in either case similarly to the tests for white noise described above. If one was lead to reject

the null hypothesis, an estimator of the true correlation structure in the data would be provided

in the selection of the order fit, thereby providing additional potentially useful information that

is not available from our current methods.

The extension developed here works in serial with the two-dimensional array of values

that could be produced by processors running in parallel. It should also be possible to have

some parts of the testing components of this extension be computed in parallel. Some ideas

on these parallel aspects in terms of the correlation matrix calculations have been presented in

Chapter 7 of this dissertation. The TestU01 package could also be adapted to use the parallel

programming capabilities of C++. Parallelization would improve the speed with which both the

standard TestU01 suite and its extension discussed throughout are able to test large data sets

of deviates.

Parallel pseudorandom number generation is an emerging field of interest for scientists.

The work in this dissertation provides improved methodologies for enhancing the quality of the

generators used in these parallel settings. The extension to the TestU01 suite discussed here

in conjunction with the strong capabilities of the TestU01 serial tests provide researchers with a

fundamental tool for checking that their methodologies will appropriately represent the random

events they seek to study.
84

REFERENCES

[1] S. Aluru, G. M. Prabhu, and J. Gustafson. A random number generator for parallel com-
puters. Parallel Computing, 18:839–847, 1992.

[2] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics, 29(4):1165–1188, 2001.

[3] J. Burkardt. Prob source code. http://people.sc.fsu.edu/~jburkardt/cpp_src/
prob/prob.html, 2010.

[4] P. Coddington. Analysis of random number generators using Monte Carlo simulation. Int.
J. of Mod. Phys. C, 5:54–68, 1994.

[5] P. Coddington. Random number generators for parallel computers. The NHSE Review,
2, 1997.

[6] W. Dunsmuir and E. Hannan. Vector linear time series models. Advances in Applied
Probability, pages 339–364 1976.

[7] K. Entacher, A. Uhl, and S. Wegenkittl. Parallel random number generation: Long-range
correlations among multiple processors. ACPC, pages 107–116, 1999.

[8] R. L. Eubank and A. Kupresanin. Statistical Computing in C++ and R. CRC Press, Boca
Raton, FL, 2011.

[9] EC Fieller, HO Hartley, and ES Pearson. Tests for rank correlation coefficients. i.
Biometrika, 44(3/4):470–481

[10] Ronald Aylmer Fisher. On the “probable error" of a coefficient of correlation deduced from
a small sample. Metron, 1:3–32, 1921.

[11] H. Haramoto, M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer. Efficient
jump ahead for F2-linear random number generators. INFORMS Journal on Computing,
20(3):385–390, Summer 2008.

[12] D. R. C. Hill. Practical distribution of random streams for stochastic high performance
computing. In International Conference on High Performance Computing and Simulation
(HPCS), pages 1–8, 2010.

[13] J. R. M. Hosking. The multivariate portmanteau statistic. Journal of the American Statis-
tical Association, 75(371):602–608, September 1980.

[14] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall
Upper Saddle River, NJ, 6th edition, 2007.

85

http://people.sc.fsu.edu/~jburkardt/cpp_src/prob/prob.html
http://people.sc.fsu.edu/~jburkardt/cpp_src/prob/prob.html

[15] C. Kao and H. C. Tang. Systematic searches for good multiple recursive random number
generators. Computers and Operations Research, 24(10):899–905, October 1997.

[16] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Addison-Wesley, Reading, Mass., 3rd edition, 1997.

[17] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive ran-
dom number generators. Operations Research, 47(1):159–164, Jan. - Feb. 1999.

[18] P. L’Ecuyer, F. Blouin, and R. Couture. A search for good multiple recursive random
number generators. ACM Transactions on Modeling and Computer Simulation, 3(2):87–
98, April 1993.

[19] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number
generators. ACM Transactions on Mathematical Software, 33(22), August 2007.

[20] P. L’Ecuyer and R. Simard. TestU01: A software library in ANSI C for empirical testing of
random number generators, user’s guide, detailed version. Technical report, Université
de Montréal, 2009.

[21] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented random-number
package with many long streams and substreams. Operations Research, 50(6):1073–
1075, November-December 2002.

[22] T. G. Lewis and W. H. Payne. Generalized feedback shift register pseudorandom number
algorithm. Journal of the ACM (JACM), 20(3):456–468

[23] W. K. Li and A. I. McLeod. Distribution of the residual autocorrelations in multivariate
ARMA time series models. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pages 231–239

[24] E. Mahdi and A. I. McLeod. Improved multivariate portmanteau test. Journal of Time
Series Analysis, 33(2):211–222, 2012.

[25] G. Marsaglia. DIEHARD: a battery of tests of randomness. http://stat.fsu.edu/
~geo/diehard.html, 2013.

[26] G. Marsaglia and A. Zaman. The KISS generator. Technical report, University of Florida,
1993.

[27] M. Mascagni. Parallel linear congruential generators with prime moduli. Parallel Comput-
ing, 24:923–936, 1998.

86

http://stat.fsu.edu/~geo/diehard.html
http://stat.fsu.edu/~geo/diehard.html

[28] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A scalable library for pseudoran-
dom number generation. ACM Transactions on Mathematical Software, 26(3):436–461,
September 2000.

[29] M. Mascagni and A. Srinivasan. Parameterizing parallel multiplicative lagged-Fibonacci
generators. Parallel Computing, 30:899–916, 2004.

[30] M. Matsumoto and Y. Kurita. Twisted GFSR generators. ACM Transactions on Modeling
and Computer Simulation, 2:179–194, 1992.

[31] M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 4(3):254–266

[32] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Com-
puter Simulation, 8(1):3–30, January 1998.

[33] M. Matsumoto and T. Nishimura. Monte Carlo and Quasi-Monte Carlo Methods, chapter
Dynamic Creation of Pseudorandom Number Generators, pages 56–69. Springer, 2000.

[34] R. J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley-Interscience, 2nd edition,
2005.

[35] NIST. Template numerical toolkit. http://math.nist.gov/tnt/, March 2004.

[36] A. V. Prokhorov. Kendall coefficient of rank correlation. Online Encyclopedia of Mathe-
matics, 2001.

[37] D. Simcha. O (N log N) impl of Kendall’s Tau. https://stat.ethz.ch/pipermail/
r-devel/2010-February/056745.html, February 2010.

[38] A. Srinivasan, M. Mascagni, and D. Ceperley. Testing parallel random number generators.
Parallel Computing, 29(1):69–94, January 2003.

87

http://math.nist.gov/tnt/
https://stat.ethz.ch/pipermail/r-devel/2010-February/056745.html
https://stat.ethz.ch/pipermail/r-devel/2010-February/056745.html

APPENDIX A

Source Code for the CrushFile Addition

88

extern "C" {
#include " u t i l . h "
#include " smu l t i n . h "
#include " sknuth . h "
#include " smarsa . h "
#include " snpa i r . h "
#include " sva r i a . h "
#include " s s t r i n g . h "
#include " swalk . h "
#include " scomp . h "
#include " s s p e c t r a l . h "
#include " s w r i t e . h "
#include " sres . h "
#include " un i f01 . h "
#include " u f i l e . h "

#include " gofs . h "
#include " gofw . h "
#include " f d i s t . h "
#include " f ba r . h "
#include "num. h "
#include " chrono . h "

#include < s t d i o . h>
#include < s t r i n g . h>
#include <math . h>
#include <t ime . h>
#include < l i m i t s . h>
}

#define LEN 120
#define NAMELEN 30
#define NDIM 200 / ∗ Dimension o f extern ar rays ∗ /
#define THOUSAND 1000
#define MILLION (THOUSAND ∗ THOUSAND)
#define BILLION (THOUSAND ∗ MILLION)

/ ∗ The number o f t e s t s i n each b a t t e r y ∗ /
#define SMALLCRUSH_NUM 10
#define CRUSH_NUM 96
#define BIGCRUSH_NUM 106
#define RABBIT_NUM 26
#define ALPHABIT_NUM 9

#define PACKAGE_STRING " TestU01 1 .2 .3 "

double bba t te ry _pVal [1 + NDIM] = { 0 } ;
char ∗bba t te ry _TestNames [1 + NDIM] = { 0 } ;
i n t bba t te ry _NTests ;

s t a t i c char CharTemp [LEN + 1] ;

/ ∗ Gives the t e s t number as enumerated i n bba t te ry . tex . Some t e s t app l i es
more than one tes t , so the ar ray o f p−values does not correspond wi th
the t e s t number i n the doc . ∗ /

s t a t i c i n t TestNumber [1 + NDIM] = { 0 } ;

/ ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Funct ions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /

89

s t a t i c void GetName (un i f01 _Gen ∗ gen , char ∗genName)
{

char ∗p ;
i n t len1 , len2 ;

i f (NULL == gen) {
genName [0] = ’ \0 ’ ;
return ;

}

/ ∗ P r i n t on ly the generator name, w i thou t the parameters or seeds . ∗ /
/ ∗ The parameters s t a r t a f t e r the f i r s t b lank ; name ends wi th ’ : ’ ∗ /
genName [LEN] = ’ \0 ’ ;
len1 = s t rcspn (gen−>name, " : ") ;
len1 = u t i l _Min (LEN, len1) ;
s t rncpy (genName, gen−>name, (s ize _ t) len1) ;
genName [len1] = ’ \0 ’ ;
/ ∗ For F i l t e r s or Combined generators ∗ /
p = s t r s t r (&gen−>name[1 + len1] , " un i f01 ") ;
while (p ! = NULL) {

len1 += 2;
i f (len1 >= LEN)

return ;
s t r c a t (genName, " , ") ;
len2 = s t rcspn (p , " \0 ") ;
len2 = u t i l _Min (LEN − len1 , len2) ;
i f (len2 <= 0)

return ;
s t r n c a t (genName, p , (s i ze _ t) len2) ;
len1 = s t r l e n (genName) ;
genName [len1] = ’ \0 ’ ;
p += len2 ;
p = s t r s t r (p , " un i f01 ") ;

}
}

/ ∗===∗ /

s t a t i c void Wri tepVal (double p)
/ ∗
∗ Wri te a p−value wi th a n ice format .
∗ /

{
i f (p < gofw_Suspectp) {

gofw_Writep0 (p) ;

} else i f (p > 1.0 − gofw_Suspectp) {
i f (p >= 1.0 − gofw_Epsi lonp1) {

p r i n t f (" 1 − eps1 ") ;
} else i f (p >= 1.0 − 1.0e−4) {

p r i n t f (" 1 − ") ;
num_WriteD (1 .0 − p , 7 , 2 , 2) ;
/ ∗ p r i n t f (" 1 − %.2g " , 1.0 − p) ; ∗ /

} else i f (p >= 1.0 − 1.0e−2)
p r i n t f (" %.4 f " , p) ;

else

90

p r i n t f (" %.2 f " , p) ;
}

}

/ ∗===∗ /

s t a t i c void WriteReport (
char ∗genName, / ∗ Generator or f i l e name ∗ /
char ∗batName , / ∗ Bat te ry name ∗ /
i n t N, / ∗ Max . number o f t e s t s ∗ /
double pVal [] , / ∗ p−values o f the t e s t s ∗ /
chrono_Chrono ∗ Timer , / ∗ Timer ∗ /
l eboo l Flag , / ∗ = TRUE for a f i l e , FALSE for a gen ∗ /
l eboo l VersionFlag , / ∗ = TRUE: w r i t e the vers ion number ∗ /
double nb / ∗ Number o f b i t s i n the random f i l e ∗ /
)

{
i n t j , co ;

p r i n t f (" \ n========= Summary r e s u l t s o f ") ;
p r i n t f ("%s " , batName) ;
p r i n t f (" =========\n \ n ") ;
i f (Vers ionFlag)

p r i n t f (" Version : %s \ n " , PACKAGE_STRING) ;
i f (Flag)

p r i n t f (" F i l e : ") ;
else

p r i n t f (" Generator : ") ;
p r i n t f ("%s " , genName) ;
i f (nb > 0)

p r i n t f (" \ n Number o f b i t s : %.0 f " , nb) ;
co = 0;
/ ∗ Some of the t e s t s have not been done : t h e i r pVal [j] < 0 . ∗ /
for (j = 0 ; j < N; j ++) {

i f (pVal [j] >= 0 .0)
co++;

}
p r i n t f (" \ n Number o f s t a t i s t i c s : %1d \ n " , co) ;
p r i n t f (" To ta l CPU time : ") ;
chrono_Wri te (Timer , chrono_hms) ;

co = 0;
for (j = 0 ; j < N; j ++) {

i f (pVal [j] < 0 .0) / ∗ That t e s t was not done : pVal = −1 ∗ /
continue ;

i f ((pVal [j] < gofw_Suspectp) | | (pVal [j] > 1.0 − gofw_Suspectp)) {
co++;
break ;

}
}
i f (co == 0) {

p r i n t f (" \ n \ n A l l t e s t s were passed \ n \ n \ n \ n ") ;
return ;

}

i f (gofw_Suspectp >= 0.01)
p r i n t f (" \ n The f o l l o w i n g t e s t s gave p−values outs ide [%.4g , %.2 f] " ,

gofw_Suspectp , 1.0 − gofw_Suspectp) ;

91

else i f (gofw_Suspectp >= 0.0001)
p r i n t f (" \ n The f o l l o w i n g t e s t s gave p−values outs ide [%.4g , %.4 f] " ,

gofw_Suspectp , 1.0 − gofw_Suspectp) ;
else i f (gofw_Suspectp >= 0.000001)

p r i n t f (" \ n The f o l l o w i n g t e s t s gave p−values outs ide [%.4g , %.6 f] " ,
gofw_Suspectp , 1.0 − gofw_Suspectp) ;

else
p r i n t f (" \ n The f o l l o w i n g t e s t s gave p−values outs ide [%.4g , %.14 f] " ,

gofw_Suspectp , 1.0 − gofw_Suspectp) ;
p r i n t f (" : \ n (eps means a value < %6.1e) " , gofw_Epsi lonp) ;
p r i n t f (" : \ n (eps1 means a value < %6.1e) " , gofw_Epsi lonp1) ;
p r i n t f (" : \ n \ n Test p−value \ n ") ;
p r i n t f (" −−\n ") ;

co = 0;
for (j = 0 ; j < N; j ++) {

i f (pVal [j] < 0 .0) / ∗ That t e s t was not done : pVal = −1 ∗ /
continue ;

i f ((pVal [j] >= gofw_Suspectp) && (pVal [j] <= 1.0 − gofw_Suspectp))
continue ; / ∗ That t e s t was passed ∗ /

p r i n t f (" %2d " , TestNumber [j]) ;
p r i n t f (" %−30s " , bba t te ry _TestNames [j]) ;
Wr i tepVal (pVal [j]) ;
p r i n t f (" \ n ") ;
co++;

}

p r i n t f (" −−\n ") ;
i f (co < N − 1) {

p r i n t f (" A l l o ther t e s t s were passed \ n ") ;
}
p r i n t f (" \ n \ n \ n ") ;

}

/ ∗===∗ /

s t a t i c void GetPVal_Walk (long N, swalk_Res ∗ res , i n t ∗pj ,
const char ∗mess , i n t j 2)

/ ∗
∗ Get the p−values i n a swalk_RandomWalk1 t e s t
∗ /

{
i n t j = ∗ p j ;
const unsigned i n t l en = 20;

i f (N == 1) {
bba t te ry _pVal [++ j] = res−>H[0]−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 H") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>M[0]−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 M") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

92

bba t te ry _pVal [++ j] = res−>J[0]−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 J ") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>R[0]−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 R") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>C[0]−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 C") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

} else {
bba t te ry _pVal [++ j] = res−>H[0]−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 H") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>M[0]−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 M") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>J[0]−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 J ") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>R[0]−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 R") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

bba t te ry _pVal [++ j] = res−>C[0]−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , "RandomWalk1 C") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t rncpy (bba t te ry _TestNames [j] , CharTemp , (s ize _ t) LEN) ;

}

∗ p j = j ;
}

/ ∗===∗ /

s t a t i c void GetPVal_CPairs (long N, snpa i r _Res ∗ res , i n t ∗pj , char ∗mess ,
i n t j 2)

/ ∗
93

∗ Get the p−values i n a snpa i r _ClosePairs t e s t
∗ /

{
i n t j = ∗ p j ;
const unsigned i n t l en = 20;

i f (N == 1) {
bba t te ry _pVal [++ j] = res−>pVal [snpa i r _NP] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs NP") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

bba t te ry _pVal [++ j] = res−>pVal [snpa i r _mNP] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs mNP") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

} else {
bba t te ry _pVal [++ j] = res−>pVal [snpa i r _NP] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs NP") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

bba t te ry _pVal [++ j] = res−>pVal [snpa i r _mNP] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs mNP") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

bba t te ry _pVal [++ j] = res−>pVal [snpa i r _mNP1] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs mNP1") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

bba t te ry _pVal [++ j] = res−>pVal [snpa i r _mNP2] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs mNP2") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

bba t te ry _pVal [++ j] = res−>pVal [snpa i r _NJumps] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs NJumps") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

i f (snpa i r _mNP2S_Flag) {
bba t te ry _pVal [++ j] = res−>pVal [snpa i r _mNP2S] ;
TestNumber [j] = j 2 ;
s t r cpy (CharTemp , " ClosePairs mNP2S") ;
s t r n c a t (CharTemp , mess , (s i ze _ t) len) ;
s t r cpy (bba t te ry _TestNames [j] , CharTemp) ;

}
}

94

∗ p j = j ;
}

/ ∗===∗ /

s t a t i c void I n i t B a t (void)
/ ∗
∗ I n i t i a l i z e s the b a t t e r y o f t e s t s : sets a l l p−values to −1.
∗ /

{
i n t j ;
s t a t i c i n t f l a g = 0;
for (j = 0 ; j < NDIM; j ++)

bba t te ry _pVal [j] = −1.0;
i f (0 == f l a g) {

f l a g ++;
for (j = 0 ; j < NDIM; j ++)

bba t te ry _TestNames [j] = (char∗) u t i l _ Cal loc
(LEN + 1 , sizeof (char)) ; / / Modi f ied

}
}

/ ∗===∗ /

s t a t i c void Crush (un i f01 _Gen ∗ gen , char ∗ f i lename , i n t Rep [])
/ ∗
∗ A b a t t e r y o f s t r i n g e n t s t a t i s t i c a l t e s t s for Random Number Generators
∗ used i n s imu la t i on .
∗ Rep [i] g ives the number o f t imes t h a t t e s t i w i l l be done . The defaul t
∗ values are Rep [i] = 1 for a l l i .
∗ /

{
const i n t s = 30;
const i n t r = 0 ;
i n t i ;
chrono_Chrono ∗Timer ;
char genName [LEN + 1] = " " ;
i n t j = −1;
i n t j 2 = 0 ;

Timer = chrono_Create () ;
I n i t B a t () ;
i f (s w r i t e _Basic) {

p r i n t f (" xxx \ n "
" S t a r t i n g Crush \ n "
" Version : %s \ n "
" xxx \ n \ n \ n " ,
PACKAGE_STRING) ;

}

bool f i l e F l a g ;
/ / I nse r ted
i f (NULL == gen) {

gen = u f i l e _CreateReadText (f i lename , 2 ∗ BILLION) ;
f i l e F l a g = TRUE;

} else

95

f i l e F l a g = FALSE;
/ /

{
sres_Basic ∗ res ;
res = sres_CreateBasic () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Ser ia lOver (gen , res , 1 , 500 ∗ MILLION , 0 , 4096 , 2) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Ser ia lOver , t = 2 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Ser ia lOver (gen , res , 1 , 300 ∗ MILLION , 0 , 64 , 4) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Ser ia lOver , t = 4 ") ;

}
sres_DeleteBasic (res) ;

}
{

smarsa_Res ∗ res ;
res = smarsa_CreateRes () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 0 , 1024 ∗ 1024 , 2) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 2 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 10 , 1024 ∗ 1024 , 2) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 2 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 0 , 1024 , 4) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 4 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 20 , 1024 , 4) ;

96

bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 4 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 0 , 32 , 8) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 8 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 25 , 32 , 8) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 8 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 0 , 4 , 20) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 20 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_ Co l l i s i onOver (gen , res , 10 , 10 ∗ MILLION , 28 , 4 , 20) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionOver , t = 20 ") ;

}
smarsa_DeleteRes (res) ;

}

{
sres_Poisson ∗ res ;
res = sres_CreatePoisson () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted

i f d e f USE_LONGLONG
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

long d ;
i f LONG_MAX <= 2147483647L

d = 1073741824L ;
smarsa_Bir thdaySpacings (gen , res , 10 , 10 ∗ MILLION , 0 , d , 2 , 1) ;

#else
d = 2∗1073741824L ;
smarsa_Bir thdaySpacings (gen , res , 5 , 20 ∗ MILLION , 0 , d , 2 , 1) ;

#endif
bba t te ry _pVal [++ j] = res−>pVal2 ;

97

TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 2 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 5 , 20 ∗ MILLION , 0 , 2097152 , 3 ,
1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 3 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 5 , 20 ∗ MILLION , 0 , 65536 , 4 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 4 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 3 , 20 ∗ MILLION , 0 , 512 , 7 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 7 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 3 , 20 ∗ MILLION , 7 , 512 , 7 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 7 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 3 , 20 ∗ MILLION , 14 , 256 , 8 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 8 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 3 , 20 ∗ MILLION , 22 , 256 , 8 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 8 ") ;

}

98

#else
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 200 , 4 ∗ MILLION / 10 , 0 ,
67108864, 2 , 1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 2 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 100 , 4 ∗ MILLION / 10 , 0 , 131072 ,
3 , 1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 3 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 200 , 4 ∗ MILLION / 10 , 0 ,
1024 ∗ 8 , 4 , 1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 4 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 100 , 4 ∗ MILLION / 10 , 0 , 16 , 13 ,
1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 13 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 100 , 4 ∗ MILLION / 10 , 10 , 16 ,
13 , 1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 13 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 100 , 4 ∗ MILLION / 10 , 20 , 16 ,
13 , 1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 13 ") ;

99

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Bir thdaySpacings (gen , res , 100 , 4 ∗ MILLION / 10 , 26 , 16 ,
13 , 1) ;

bba t te ry _pVal [++ j] = res−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Bir thdaySpacings , t = 13 ") ;

}
#endif

sres_DeletePoisson (res) ;
}
{

l eboo l f l a g = snpa i r _mNP2S_Flag ;
snpa i r _Res ∗ res ;
res = snpa i r _CreateRes () ;

snpa i r _mNP2S_Flag = FALSE;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

snpa i r _ClosePairs (gen , res , 10 , 2 ∗ MILLION , 0 , 2 , 0 , 30) ;
GetPVal_CPairs (10 , res , &j , (char∗) " , t = 2 " , j 2) ;

}

snpa i r _mNP2S_Flag = TRUE;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

snpa i r _ClosePairs (gen , res , 10 , 2 ∗ MILLION , 0 , 3 , 0 , 30) ;
GetPVal_CPairs (10 , res , &j , (char∗) " , t = 3 " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

snpa i r _ClosePairs (gen , res , 5 , 2 ∗ MILLION , 0 , 7 , 0 , 30) ;
GetPVal_CPairs (10 , res , &j , (char∗) " , t = 7 " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

snpa i r _ClosePairsBi tMatch (gen , res , 4 , 4 ∗ MILLION , 0 , 2) ;
bba t te ry _pVal [++ j] = res−>pVal [snpa i r _BM] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " ClosePairsBi tMatch , t = 2 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

snpa i r _ClosePairsBi tMatch (gen , res , 2 , 4 ∗ MILLION , 0 , 4) ;
bba t te ry _pVal [++ j] = res−>pVal [snpa i r _BM] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " ClosePairsBi tMatch , t = 4 ") ;

100

}
snpa i r _DeleteRes (res) ;
snpa i r _mNP2S_Flag = f l a g ;

}

/ /SECOND RUN ENDS HERE (CrushVMA_out3 . t x t)
{

sres_Chi2 ∗ res ;
res = sres_CreateChi2 () ;

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_SimpPoker (gen , res , 1 , 40 ∗ MILLION , 0 , 16 , 16) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SimpPoker , d = 16 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_SimpPoker (gen , res , 1 , 40 ∗ MILLION , 26 , 16 , 16) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SimpPoker , d = 16 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_SimpPoker (gen , res , 1 , 10 ∗ MILLION , 0 , 64 , 64) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SimpPoker , d = 64 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_SimpPoker (gen , res , 1 , 10 ∗ MILLION , 24 , 64 , 64) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SimpPoker , d = 64 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_CouponCol lector (gen , res , 1 , 40 ∗ MILLION , 0 , 4) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " CouponCollector , d = 4 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_CouponCol lector (gen , res , 1 , 40 ∗ MILLION , 28 , 4) ;

101

bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " CouponCollector , d = 4 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_CouponCol lector (gen , res , 1 , 10 ∗ MILLION , 0 , 16) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " CouponCollector , d = 16 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_CouponCol lector (gen , res , 1 , 10 ∗ MILLION , 26 , 16) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " CouponCollector , d = 16 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Gap (gen , res , 1 , 100 ∗ MILLION , 0 , 0 .0 , 0 .125) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Gap , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Gap (gen , res , 1 , 100 ∗ MILLION , 27 , 0 .0 , 0 .125) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Gap , r = 27 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Gap (gen , res , 1 , 5 ∗ MILLION , 0 , 0 .0 , 1.0 / 256 .0) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Gap , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Gap (gen , res , 1 , 5 ∗ MILLION , 22 , 0 .0 , 1.0 / 256 .0) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Gap , r = 22 ") ;

}

102

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Run (gen , res , 1 , 500 ∗ MILLION , 0 , TRUE) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Run of U01 , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Run (gen , res , 1 , 500 ∗ MILLION , 15 , FALSE) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Run of U01 , r = 15 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Permutat ion (gen , res , 1 , 50 ∗ MILLION , 0 , 10) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Permutat ion , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_Permutat ion (gen , res , 1 , 50 ∗ MILLION , 15 , 10) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Permutat ion , r = 15 ") ;

}
sres_DeleteChi2 (res) ;

}
{

sknuth_Res2 ∗ res ;
res = sknuth_CreateRes2 () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_ Col l i s ionPermut (gen , res , 5 , 10 ∗ MILLION , 0 , 13) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionPermut , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_ Col l i s ionPermut (gen , res , 5 , 10 ∗ MILLION , 15 , 13) ;
bba t te ry _pVal [++ j] = res−>Pois−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Co l l i s ionPermut , r = 15 ") ;

}
sknuth_DeleteRes2 (res) ;

}

103

{
sknuth_Res1 ∗ res ;
res = sknuth_CreateRes1 () ;

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_MaxOft (gen , res , 10 , 10 ∗ MILLION , 0 , MILLION / 10 , 5) ;
bba t te ry _pVal [++ j] = res−>Chi−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft , t = 5 ") ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_AD] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft AD, t = 5 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_MaxOft (gen , res , 5 , 10 ∗ MILLION , 0 , MILLION / 10 , 10) ;
bba t te ry _pVal [++ j] = res−>Chi−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft , t = 10 ") ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_AD] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft AD, t = 10 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_MaxOft (gen , res , 1 , 10 ∗ MILLION , 0 , MILLION / 10 , 20) ;
bba t te ry _pVal [++ j] = res−>Chi−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft , t = 20 ") ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft AD, t = 20 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sknuth_MaxOft (gen , res , 1 , 10 ∗ MILLION , 0 , MILLION / 10 , 30) ;
bba t te ry _pVal [++ j] = res−>Chi−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft , t = 30 ") ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MaxOft AD, t = 30 ") ;

}
sknuth_DeleteRes1 (res) ;

}
{

sres_Basic ∗ res ;
res = sres_CreateBasic () ;

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;

104

for (i = 0 ; i < Rep [j 2] ; ++ i) {
sva r i a _SampleProd (gen , res , 1 , 10 ∗ MILLION , 0 , 10) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SampleProd , t = 10 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _SampleProd (gen , res , 1 , 10 ∗ MILLION , 0 , 30) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SampleProd , t = 30 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _SampleMean (gen , res , 10∗MILLION , 20 , 0) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_AD] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "SampleMean") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _SampleCorr (gen , res , 1 , 500 ∗ MILLION , 0 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SampleCorr ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _AppearanceSpacings (gen , res , 1 , 10 ∗ MILLION , 400 ∗ MILLION ,
r , 30 , 15) ;

bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AppearanceSpacings , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _AppearanceSpacings (gen , res , 1 , 10 ∗ MILLION , 100 ∗ MILLION ,
20 , 10 , 15) ;

bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AppearanceSpacings , r = 20 ") ;

}
sres_DeleteBasic (res) ;

}
{

smarsa_Res2 ∗ res2 ;
sres_Chi2 ∗ res ;
res = sres_CreateChi2 () ;

105

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _ Weigh tD is t r i b (gen , res , 1 , 2 ∗ MILLION , 0 , 256 , 0 .0 , 0 .125) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " We igh tD is t r ib , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _ Weigh tD is t r i b (gen , res , 1 , 2 ∗ MILLION , 8 , 256 , 0 .0 , 0 .125) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " We igh tD is t r ib , r = 8 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _ Weigh tD is t r i b (gen , res , 1 , 2 ∗ MILLION , 16 , 256 , 0 .0 , 0 .125) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " We igh tD is t r ib , r = 16 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _ Weigh tD is t r i b (gen , res , 1 , 2 ∗ MILLION , 24 , 256 , 0 .0 , 0 .125) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " We igh tD is t r ib , r = 24 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

sva r i a _SumCollector (gen , res , 1 , 20 ∗ MILLION , 0 , 1 0 . 0) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " SumCollector ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_MatrixRank (gen , res , 1 , MILLION , r , s , 2 ∗ s , 2 ∗ s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MatrixRank , 60 x 60 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_MatrixRank (gen , res , 1 , MILLION , 20 , 10 , 2 ∗ s , 2 ∗ s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;

106

TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MatrixRank , 60 x 60 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_MatrixRank (gen , res , 1 , 50 ∗ THOUSAND, r , s , 10 ∗ s , 10 ∗ s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MatrixRank , 300 x 300 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_MatrixRank (gen , res , 1 , 50 ∗ THOUSAND, 20 , 10 , 10 ∗ s ,
10 ∗ s) ;

bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MatrixRank , 300 x 300 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_MatrixRank (gen , res , 1 , 2 ∗ THOUSAND, r , s , 40 ∗ s , 40 ∗ s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MatrixRank , 1200 x 1200 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_MatrixRank (gen , res , 1 , 2 ∗ THOUSAND, 20 , 10 , 40 ∗ s , 40 ∗ s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " MatrixRank , 1200 x 1200 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_Savi r2 (gen , res , 1 , 20 ∗ MILLION , 0 , 1024∗1024 , 30) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Savi r2 ") ;

}
sres_DeleteChi2 (res) ;

res2 = smarsa_CreateRes2 () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_GCD (gen , res2 , 1 , 100 ∗ MILLION , 0 , 30) ;
bba t te ry _pVal [++ j] = res2−>GCD−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "GCD, r = 0 ") ;

107

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smarsa_GCD (gen , res2 , 1 , 40 ∗ MILLION , 10 , 20) ;
bba t te ry _pVal [++ j] = res2−>GCD−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "GCD, r = 10 ") ;

}
smarsa_DeleteRes2 (res2) ;

}
{

swalk_Res ∗ res ;
res = swalk_CreateRes () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , 1 , 50 ∗ MILLION , r , s , 90 , 90) ;
GetPVal_Walk (1 , res , &j , " (L = 90) " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , 1 , 10 ∗ MILLION , 20 , 10 , 90 , 90) ;
GetPVal_Walk (1 , res , &j , " (L = 90) " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , 1 , 5 ∗ MILLION , r , s , 1000 , 1000) ;
GetPVal_Walk (1 , res , &j , " (L = 1000) " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , 1 , MILLION , 20 , 10 , 1000 , 1000) ;
GetPVal_Walk (1 , res , &j , " (L = 1000) " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , 1 , MILLION / 2 , r , s , 10000 , 10000);
GetPVal_Walk (1 , res , &j , " (L = 10000) " , j 2) ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , 1 , MILLION / 10 , 20 , 10 , 10000 , 10000);
GetPVal_Walk (1 , res , &j , " (L = 10000) " , j 2) ;

}
swalk_DeleteRes (res) ;

}
{

108

scomp_Res ∗ res ;
res = scomp_CreateRes () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

scomp_LinearComp (gen , res , 1 , 120 ∗ THOUSAND, r , 1) ;
bba t te ry _pVal [++ j] = res−>JumpNum−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LinearComp , r = 0 ") ;
bba t te ry _pVal [++ j] = res−>JumpSize−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LinearComp , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

scomp_LinearComp (gen , res , 1 , 120 ∗ THOUSAND, 29 , 1) ;
bba t te ry _pVal [++ j] = res−>JumpNum−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LinearComp , r = 29 ") ;
bba t te ry _pVal [++ j] = res−>JumpSize−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LinearComp , r = 29 ") ;

}
scomp_DeleteRes (res) ;

}
{

sres_Basic ∗ res ;
res = sres_CreateBasic () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

scomp_LempelZiv (gen , res , 10 , 25 , r , s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LempelZiv ") ;

}
sres_DeleteBasic (res) ;

}
{

s s p e c t r a l _Res ∗ res ;
res = s s p e c t r a l _CreateRes () ;

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s p e c t r a l _ Four ie r3 (gen , res , 50 ∗ THOUSAND, 14 , r , s) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_AD] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Four ier3 , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s p e c t r a l _ Four ie r3 (gen , res , 50 ∗ THOUSAND, 14 , 20 , 10) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_AD] ;
TestNumber [j] = j 2 ;

109

s t r cpy (bba t te ry _TestNames [j] , " Four ier3 , r = 20 ") ;
}
s s p e c t r a l _DeleteRes (res) ;

}
{

s s t r i n g _Res2 ∗ res ;
res = s s t r i n g _CreateRes2 () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _LongestHeadRun (gen , res , 1 , 1000 , r , s , 20 + 10 ∗ MILLION) ;
bba t te ry _pVal [++ j] = res−>Chi−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LongestHeadRun , r = 0 ") ;
bba t te ry _pVal [++ j] = res−>Disc−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LongestHeadRun , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _LongestHeadRun (gen , res , 1 , 300 , 20 , 10 , 20 + 10 ∗ MILLION) ;
bba t te ry _pVal [++ j] = res−>Chi−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LongestHeadRun , r = 20 ") ;
bba t te ry _pVal [++ j] = res−>Disc−>pVal2 ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " LongestHeadRun , r = 20 ") ;

}
s s t r i n g _DeleteRes2 (res) ;

}
{

sres_Chi2 ∗ res ;
res = sres_CreateChi2 () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _ Per iods InS t r i ngs (gen , res , 1 , 300 ∗ MILLION , r , s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Per iods InSt r ings , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _ Per iods InS t r i ngs (gen , res , 1 , 300 ∗ MILLION , 15 , 15) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " Per iods InSt r ings , r = 15 ") ;

}
sres_DeleteChi2 (res) ;

}
{

sres_Basic ∗ res ;
res = sres_CreateBasic () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;

110

for (i = 0 ; i < Rep [j 2] ; ++ i) {
s s t r i n g _HammingWeight2 (gen , res , 100 , 100 ∗ MILLION , r , s , MILLION) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingWeight2 , r = 0 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingWeight2 (gen , res , 30 , 100 ∗ MILLION , 20 , 10 , MILLION) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingWeight2 , r = 20 ") ;

}
sres_DeleteBasic (res) ;

}
{

s s t r i n g _Res ∗ res ;
res = s s t r i n g _CreateRes () ;
/ ∗ s s t r i n g _HammingCorr w i l l probably be removed : less s e n s i t i v e than

sva r i a _HammingIndep ∗ /
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingCorr (gen , res , 1 , 500 ∗ MILLION , r , s , s) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingCorr , L = 30 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingCorr (gen , res , 1 , 50 ∗ MILLION , r , s , 10 ∗ s) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingCorr , L = 300 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingCorr (gen , res , 1 , 10 ∗ MILLION , r , s , 40 ∗ s) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingCorr , L = 1200 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingIndep (gen , res , 1 , 300 ∗ MILLION , r , s , s , 0) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingIndep , L = 30 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted

111

++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingIndep (gen , res , 1 , 100 ∗ MILLION , 20 , 10 , s , 0) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingIndep , L = 30 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingIndep (gen , res , 1 , 30 ∗ MILLION , r , s , 10 ∗ s , 0) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingIndep , L = 300 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingIndep (gen , res , 1 , 10 ∗ MILLION , 20 , 10 , 10 ∗ s , 0) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingIndep , L = 300 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingIndep (gen , res , 1 , 10 ∗ MILLION , r , s , 40 ∗ s , 0) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingIndep , L = 1200 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _HammingIndep (gen , res , 1 , MILLION , 20 , 10 , 40 ∗ s , 0) ;
bba t te ry _pVal [++ j] = res−>Bas−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " HammingIndep , L = 1200 ") ;

}
s s t r i n g _DeleteRes (res) ;

}
{

s s t r i n g _Res3 ∗ res ;
res = s s t r i n g _CreateRes3 () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _Run (gen , res , 1 , 1 ∗ BILLION , r , s) ;
bba t te ry _pVal [++ j] = res−>NRuns−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Run of b i t s , r = 0 ") ;
bba t te ry _pVal [++ j] = res−>NBits−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Run of b i t s , r = 0 ") ;

}

112

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _Run (gen , res , 1 , 1 ∗ BILLION , 20 , 10) ;
bba t te ry _pVal [++ j] = res−>NRuns−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Run of b i t s , r = 20 ") ;
bba t te ry _pVal [++ j] = res−>NBits−>pVal2 [gofw_Mean] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , "Run of b i t s , r = 20 ") ;

}
s s t r i n g _DeleteRes3 (res) ;

}
{

sres_Basic ∗ res ;
res = sres_CreateBasic () ;
i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _AutoCor (gen , res , 10 , 30 + BILLION , r , s , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AutoCor , d = 1 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _AutoCor (gen , res , 5 , 1 + BILLION , 20 , 10 , 1) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AutoCor , d = 1 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _AutoCor (gen , res , 10 , 31 + BILLION , r , s , s) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AutoCor , d = 30 ") ;

}

i f (f i l e F l a g) u f i l e _ In i tReadText () ; / / I nse r ted
++ j 2 ;

/ ∗ u t i l _Asser t (j 2 <= CRUSH_NUM, " Crush : j 2 > CRUSH_NUM") ; ∗ /
for (i = 0 ; i < Rep [j 2] ; ++ i) {

s s t r i n g _AutoCor (gen , res , 5 , 11 + BILLION , 20 , 10 , 10) ;
bba t te ry _pVal [++ j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AutoCor , d = 10 ") ;

}
sres_DeleteBasic (res) ;

}

bba t te ry _NTests = ++ j ;
GetName (gen , genName) ;
Wri teReport (genName, (char∗) " Crush " , bba t te ry _NTests ,

113

bba t te ry _pVal , Timer , FALSE, TRUE, 0 . 0) ;
chrono_Delete (Timer) ;

}

/ ∗===∗ /

void bba t te ry _Crush (un i f01 _Gen ∗ gen)
{

i n t i ;
i n t Rep [NDIM + 1] = { 0 } ;
for (i = 1 ; i <= CRUSH_NUM; ++ i)

Rep [i] = 1 ;
Crush (gen , NULL, Rep) ; / / Modi f ied

}

void bba t te ry _CrushFi le (char ∗ f i lename)
{

i n t i ;
i n t Rep[1 + NDIM] = { 0 } ;
for (i = 1 ; i <= CRUSH_NUM; ++ i)

Rep [i] = 1 ;
Crush (NULL, f i lename , Rep) ;

}

/ ∗===∗ /

void bba t te ry _RepeatCrush (un i f01 _Gen ∗ gen , i n t Rep [])
{

Crush (gen , NULL, Rep) ;
}

/ ∗===∗ /
i f 0
s t a t i c void WriteTime (t ime_ t t0 , t ime_ t t1)
{

i n t y1 ;
double y = 0;

y = d i f f t i m e (t1 , t0) ;
/ ∗ p r i n t f (" To ta l t ime : %.2 f sec \ n \ n " , y) ; ∗ /
p r i n t f (" To ta l t ime : ") ;
y1 = y / 3600;
p r i n t f ("%02d : " , y1) ;
y −= y1 ∗ 3600.0;
y1 = y / 60;
p r i n t f ("%02d : " , y1) ;
y −= y1 ∗ 60 .0 ;
p r i n t f (" %.2 f \ n \ n " , y) ;

}
#endif

/ ∗===∗ /

s t a t i c void DoMultinom (leboo l f i l e F l a g , / ∗ ∗ /

114

un i f01 _Gen ∗ gen , / ∗ ∗ /
double nb , / ∗ Number o f b i t s ∗ /
i n t ∗pj , / ∗ j ∗ /
i n t j2 , / ∗ Test number i n the b a t t e r y ∗ /
i n t Rep [] / ∗ Number o f r e p l i c a t i o n s ∗ /
)

/ ∗
∗ Do the smu l t i n _ M u l t i n o m i a l B i t s i n Rabbi t
∗ /

{
const long NLIM = 10000000;
long n , N;
i n t L , t ;
double x ;
i n t i ;
i n t j = ∗ p j ;
smu l t i n _Res ∗ res ;
smu l t i n _Param ∗par = NULL ;
double ValDel ta [] = { −1 } ;

u t i l _Asser t (nb > 0.0 , " M u l t i n o m i a l B i t s : nb <= 0 ") ;
par = smu l t i n _CreateParam (1 , ValDel ta , smu l t i n _GenerCel lSer ia l , −3);
res = smu l t i n _CreateRes (par) ;
i f (f i l e F l a g)

u f i l e _ In i tReadBin () ;

i f d e f USE_LONGLONG
/ ∗ L i m i t sample s ize n to NLIM because of memory l i m i t a t i o n s . ∗ /
/ ∗ Determine number o f r e p l i c a t i o n s N from th is . ∗ /
N = 1 + nb / NLIM ;
n = nb / N;
/ ∗ Time l i m i t on t e s t : N = 30 ∗ /
N = u t i l _Min (30 , N) ;
/ ∗ Set n as a m u l t i p l e o f s = 32 ∗ /
n −= n % 32;
L = num_Log2 (n / 200.0 ∗ n) ;
L = u t i l _Max (4 , L) ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

smu l t i n _ Mul t inomia lB i t sOver (gen , par , res , N, n , 0 , 32 , L , TRUE) ;
s t r cpy (bba t te ry _TestNames[++ j] , " Mu l t inomia lB i t sOver ") ;
bba t te ry _pVal [j] = res−>pCol l ;
TestNumber [j] = j 2 ;

}

#else
x = nb / 32 .0 ;
N = 1 + x / NLIM ;
n = x / N;
N = u t i l _Min (30 , N) ;
L = 16;
t = 32 / L ;
/ ∗ We want a number o f c o l l i s i o n s >= 2 ∗ /
while ((L > 1) && (n / num_TwoExp [L] ∗ n ∗ t ∗ t < 2 . 0)) {

L / = 2;
t = 32 / L ;

}
n = n ∗ (32 / L) ;
/ ∗ We want a dens i t y n / k < 2 to use case Sparse = TRUE ∗ /
i f (n > 2 ∗ num_TwoExp [L]) {

115

N = n / num_TwoExp [L] ∗ N;
n / = N;
while ((double) N ∗ n ∗ L > nb)

n−−;
}
while (n ∗ L % 32 > 0)

n−−;
i f (n > 3) {

for (i = 0 ; i < Rep [j 2] ; ++ i) {
smu l t i n _ M u l t i n o m i a l B i t s (gen , par , res , N, n , 0 , 32 , L , TRUE) ;
s t r cpy (bba t te ry _TestNames[++ j] , " M u l t i n o m i a l B i t s ") ;
bba t te ry _pVal [j] = res−>pCol l ;
TestNumber [j] = j 2 ;

}
}

#endif
∗ p j = j ;
smu l t i n _DeleteRes (res) ;
smu l t i n _DeleteParam (par) ;

}

/ ∗−−−∗ /

s t a t i c void DoAppear (l eboo l f i l e F l a g , / ∗ ∗ /
un i f01 _Gen ∗ gen , double nb , / ∗ Number o f b i t s to t e s t ∗ /
i n t ∗pj , / ∗ j ∗ /
i n t j2 , / ∗ Test number i n the b a t t e r y ∗ /
i n t Rep []
)

/ ∗
∗ Do the sva r i a _AppearanceSpacings t e s t i n Rabbi t
∗ /

{
sres_Basic ∗ res ;
const long NLIM = 2000000000;
i n t L ;
long N, Q;
i n t i ;
i n t j = ∗ p j ;
double temp = nb ∗ (30 .0 / 32.0) / 20 .0 ;

res = sres_CreateBasic () ;
i f (num_TwoExp [3 0] < temp / 30.0)

L = 30;
else i f (num_TwoExp [1 5] < temp / 15.0)

L = 15;
else i f (num_TwoExp [1 0] < temp / 10.0)

L = 10;
else i f (num_TwoExp [6] < temp / 6 .0)

L = 6;
else i f (num_TwoExp [5] < temp / 5 .0)

L = 5;
else i f (num_TwoExp [3] < temp / 3 .0)

L = 3;
else

L = 2;
temp = nb / 2;
temp ∗= 30.0 / 32 .0 ;

116

temp / = L ;
N = 1 + temp / NLIM ;
Q = temp / N;
N = 1;

i f (Q < 50)
return ;

i f (f i l e F l a g)
u f i l e _ In i tReadBin () ;

for (i = 0 ; i < Rep [j 2] ; ++ i) {
sva r i a _AppearanceSpacings (gen , res , N, Q, Q, 0 , 30 , L) ;
j ++;
i f (N == 1)

bba t te ry _pVal [j] = res−>pVal2 [gofw_Mean] ;
else

bba t te ry _pVal [j] = res−>pVal2 [gofw_Sum] ;
TestNumber [j] = j 2 ;
s t r cpy (bba t te ry _TestNames [j] , " AppearanceSpacings ") ;

}
sres_DeleteBasic (res) ;
∗ p j = j ;

}

/ ∗−−−∗ /

s t a t i c void DoWalk (l eboo l f i l e F l a g , / ∗ ∗ /
un i f01 _Gen ∗ gen , / ∗ ∗ /
double nb , / ∗ Number o f b i t s to t e s t ∗ /
i n t ∗pj , / ∗ j ∗ /
i n t j2 , / ∗ Test number i n the b a t t e r y ∗ /
i n t Rep []
)

/ ∗
∗ Do 3 swalk_RandomWalk1 t e s t s i n Rabbi t
∗ /

{
swalk_Res ∗ res ;
long n , N, L ;
double z ;
i n t i ;

L = 128;
z = nb / L ;
N = 1 + z / BILLION ;
n = z / N;
N = 1;
while (n < 100) {

L / = 2;
n ∗= 2;

}
i f (L < 4)

return ;
n = nb / (L ∗ N) ;
n = u t i l _Min (n , 500 ∗ MILLION) ;
i f (L < 32) {

while (32 ∗ n > nb)
n−−;

}

117

i f (n < 30)
return ;

res = swalk_CreateRes () ;
++ j 2 ;
i f (f i l e F l a g)

u f i l e _ In i tReadBin () ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , N, n , 0 , 32 , L , L) ;
GetPVal_Walk (N, res , p j , " " , j 2) ;

}
i f (L < 96)

return ;

L = 1024;
z = nb / L ;
N = 1 + z / BILLION ;
n = z / N;
n = u t i l _Min (n , 50 ∗ MILLION) ;
N = 1;
while ((double) n ∗ L > nb)

n−−;
i f (n < 30)

return ;

++ j 2 ;
i f (f i l e F l a g)

u f i l e _ In i tReadBin () ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , N, n , 0 , 32 , L , L) ;
GetPVal_Walk (N, res , p j , " (L = 1024) " , j 2) ;

}

L = 10016;
z = nb / L ;
N = 1 + z / BILLION ;
n = z / N;
n = u t i l _Min (n , 5 ∗ MILLION) ;
N = 1;
while ((double) n ∗ L > nb)

n−−;
i f (n < 30)

return ;
++ j 2 ;
i f (f i l e F l a g)

u f i l e _ In i tReadBin () ;
for (i = 0 ; i < Rep [j 2] ; ++ i) {

swalk_RandomWalk1 (gen , res , N, n , 0 , 32 , L , L) ;
GetPVal_Walk (N, res , p j , " (L = 10016) " , j 2) ;

}

swalk_DeleteRes (res) ;
}

/ ∗===∗ /

s t a t i c double Probabi l i teLHR (long j , double Lnl)
/ ∗

118

∗ Returns the p r o b a b i l i t y t h a t the longes t se r i es o f successive 1 has
∗ l eng th = j .
∗ /

{
double x , temp ;
temp = (j + 1) ∗ num_Ln2 − Lnl ;
x = exp (−exp (−temp)) ;
temp += num_Ln2 ;
x = exp (−exp (−temp)) − x ;
return x ;

}

/ ∗−−−∗ /

s t a t i c double GetPLongest (i n t l onges t)
/ ∗
∗ Get the p r o b a b i l i t i e s for the longes t run o f 1 or 0 over 20000 b i t s .
∗ /

{
double pLef t , pRight ;
double LnLen ;
i n t j ;

LnLen = log (20000 .0) ;
pLe f t = 0 . 0 ;
for (j = 0 ; j < longes t ; j ++)

pLe f t += Probabi l i teLHR (j , LnLen) ;
pRight = 1.0 − pLe f t ;
pLe f t += Probabi l i teLHR (longest , LnLen) ;
return gofw_pDisc (pLef t , pRight) ;

}

/ ∗−−−∗ /

s t a t i c void WriteReportFIPS_140_2 (
const char ∗genName, / ∗ Generator or f i l e name ∗ /
l eboo l Flag , / ∗ = TRUE for a f i l e , FALSE for a gen ∗ /
i n t nb i t , / ∗ Number o f b i t s ∗ /
i n t longest0 , / ∗ Longest s t r i n g o f 0 ∗ /
i n t longest1 , / ∗ Longest s t r i n g o f 1 ∗ /
i n t nrun0 [] , / ∗ Number o f 0 runs ∗ /
i n t nrun1 [] , / ∗ Number o f 1 runs ∗ /
i n t ncount [] / ∗ Number o f 4 b i t s values ∗ /
)

{
i n t i , j ;
double X;
fmass_INFO Q;
double p , pLef t , pRight ;
l eboo l f a i l F l a g = FALSE;

p r i n t f
(" \ n============== Summary r e s u l t s o f FIPS−140−2 ==============\n \ n ") ;

i f (Flag) {
p r i n t f (" F i l e : ") ;

} else {
p r i n t f (" Generator : ") ;

}

119

p r i n t f ("%s " , genName) ;
p r i n t f (" \ n Number o f b i t s : 20000\n ") ;

p r i n t f (" \ n Test s−value p−value FIPS Decis ion \ n ") ;
p r i n t f (" −−\n ") ;

/ ∗ Monobit r e s u l t s ∗ /
j = 0 ;
p r i n t f (" %−20s " , bba t te ry _TestNames [j]) ;
p r i n t f (" %5d " , n b i t) ;

Q = fmass_CreateBinomial (20000 , 0 .5 , 0 . 5) ;
pLe f t = f d i s t _Binomial2 (Q, n b i t) ;
pRight = fba r _Binomial2 (Q, n b i t) ;
fmass_DeleteBinomia l (Q) ;
p = gofw_pDisc (pLef t , pRight) ;
gofw_Writep0 (p) ;
i f ((n b i t <= 9725) | | n b i t >= 10275) {

p r i n t f (" %10s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %10s " , " Pass ") ;

p r i n t f (" \ n ") ;

/ ∗ Poker r e s u l t s ∗ /
X = 0;
for (i = 0 ; i < 16; i ++)

X += (double) ncount [i] ∗ ncount [i] ;
X = 16 ∗ X / 5000 − 5000;
j = 1 ;
p r i n t f (" %−16s " , bba t te ry _TestNames [j]) ;
p r i n t f (" %10.2 f " , X) ;
p = fba r _ChiSquare2 (15 , 12 , X) ;
gofw_Writep0 (p) ;
i f ((X <= 2.16) | | X >= 46.17) {

p r i n t f (" %10s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %10s " , " Pass ") ;

p r i n t f (" \ n \ n ") ;

/ ∗ Run r e s u l t s ∗ /
p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun0 [1]) ;
i f ((nrun0 [1] <= 2315) | | nrun0 [1] >= 2685) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun0 [2]) ;
i f ((nrun0 [2] <= 1114) | | nrun0 [2] >= 1386) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

120

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun0 [3]) ;
i f ((nrun0 [3] <= 527) | | nrun0 [3] >= 723) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun0 [4]) ;
i f ((nrun0 [4] <= 240) | | nrun0 [4] >= 384) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun0 [5]) ;
i f ((nrun0 [5] <= 103) | | nrun0 [5] >= 209) {

f a i l F l a g = TRUE;
p r i n t f (" %25s " , " F a i l ") ;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun0 [6]) ;
i f ((nrun0 [6] <= 103) | | nrun0 [6] >= 209) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun1 [1]) ;
i f ((nrun1 [1] <= 2315) | | nrun1 [1] >= 2685) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun1 [2]) ;
i f ((nrun1 [2] <= 1114) | | nrun1 [2] >= 1386) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun1 [3]) ;
i f ((nrun1 [3] <= 527) | | nrun1 [3] >= 723) {

p r i n t f (" %25s " , " F a i l ") ;

121

f a i l F l a g = TRUE;
} else

p r i n t f (" %25s " , " Pass ") ;
p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun1 [4]) ;
i f ((nrun1 [4] <= 240) | | nrun1 [4] >= 384) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun1 [5]) ;
i f ((nrun1 [5] <= 103) | | nrun1 [5] >= 209) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , nrun1 [6]) ;
i f ((nrun1 [6] <= 103) | | nrun1 [6] >= 209) {

p r i n t f (" %25s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %25s " , " Pass ") ;

p r i n t f (" \ n \ n ") ;

/ ∗ Longest run r e s u l t s ∗ /
p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , longest0) ;
p = GetPLongest (longest0) ;
gofw_Writep0 (p) ;
i f (longest0 >= 26) {

p r i n t f (" %10s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %10s " , " Pass ") ;

p r i n t f (" \ n ") ;

p r i n t f (" %−20s " , bba t te ry _TestNames[++ j]) ;
p r i n t f (" %5d " , longest1) ;
p = GetPLongest (longest1) ;
gofw_Writep0 (p) ;
i f (longest1 >= 26) {

p r i n t f (" %10s " , " F a i l ") ;
f a i l F l a g = TRUE;

} else
p r i n t f (" %10s " , " Pass ") ;

p r i n t f (" \ n ") ;

i f (! f a i l F l a g) {
p r i n t f (" −−\n ") ;
p r i n t f (" A l l values are w i t h i n the requ i red i n t e r v a l s o f FIPS−140−2\n ") ;

}

122

p r i n t f (" \ n \ n \ n ") ;
}

/ ∗−−−∗ /

#define SAMPLE 625 / ∗ 625 ∗ 32 = 20000 ∗ /
#define MASK4 15 / ∗ Mask of 4 b i t s ∗ /

s t a t i c void FIPS_140_2 (un i f01 _Gen ∗ gen , char ∗ f i lename)
{

i n t i , j ;
i n t n b i t = 0 ; / ∗ Number o f b i t s ∗ /
i n t longest0 = 0; / ∗ Longest s t r i n g o f 0 ∗ /
i n t longest1 = 0; / ∗ Longest s t r i n g o f 1 ∗ /
i n t nrun0 [7] = { 0 } ; / ∗ Number o f 0 runs ∗ /
i n t nrun1 [7] = { 0 } ; / ∗ Number o f 1 runs ∗ /
i n t ncount [1 6] = { 0 } ; / ∗ Number o f 4 b i t s values ∗ /
i n t p revB i t ; / ∗ Previous b i t ∗ /
i n t l en = 0; / ∗ Length o f run ∗ /
unsigned long j B i t ; / ∗ Current b i t ∗ /
unsigned long Z ; / ∗ Block o f 32 b i t s ∗ /
unsigned long B i t s [SAMPLE + 1] ;
l eboo l f i l e F l a g = FALSE;
char genName [LEN + 1] = " " ;

I n i t B a t () ;
i f (s w r i t e _Basic) {

p r i n t f (" xxx \ n "
" S t a r t i n g FIPS_140_ 2\ n "
" xxx \ n \ n \ n ") ;

}
u t i l _Asser t (NULL == gen | | NULL == f i lename ,

" bba t te ry _FIPS_140_ 2: one of gen or f i lename must be NULL") ;
u t i l _Asser t (! (NULL == gen && NULL == f i lename) ,

" bba t te ry _FIPS_140_ 2: no generator and no f i l e ") ;
u t i l _Asser t (! (NULL == gen && ! (strcmp (f i lename , " "))) ,

" bba t te ry _FIPS_140_ 2: no generator and no f i l e ") ;

i f ((NULL == gen) && f i lename && strcmp (f i lename , " ")) {
gen = u f i l e _CreateReadBin (f i lename , SAMPLE) ;
f i l e F l a g = TRUE;

}

for (j = 0 ; j < SAMPLE; j ++)
B i t s [j] = un i f01 _ St r ipB (gen , 0 , 32) ;

i f (f i l e F l a g) {
u f i l e _DeleteReadBin (gen) ;
s t rncpy (genName, f i lename , (s ize _ t) LEN) ;

} else {
GetName (gen , genName) ;

}

/ ∗ Make sure to count the f i r s t run ; se t p revB i t ! = {0 , 1} ∗ /
p revB i t = 2 ;

for (j = 0 ; j < SAMPLE; j ++) {
/ ∗ Count the number o f 1 ∗ /

123

Z = B i t s [j] ;
while (Z > 0) {

Z &= Z − 1; / ∗ Clear lowest 1 b i t ∗ /
++ n b i t ;

}

/ ∗ Count the number o f 4 b i t s values ∗ /
Z = B i t s [j] ;
for (i = 0 ; i < 8 ; i ++) {

(ncount [Z & MASK4]) + + ;
Z >>= 4;

}

/ ∗ Count the number o f runs and get the longes t runs ∗ /
Z = B i t s [j] ;
j B i t = b i t s e t _maskUL [3 1] ;

while (j B i t > 0) {
i f (Z & j B i t) { / ∗ b i t 1 ∗ /

i f (p revB i t ! = 1) {
i f (len < 6)

(nrun0 [len]) + + ;
else

(nrun0 [6]) + + ;
i f (len > longest0)

longest0 = len ;
len = 1;

} else {
len ++;

}
p revB i t = 1 ;

} else { / ∗ b i t 0 ∗ /
i f (p revB i t ! = 0) {

i f (len < 6)
(nrun1 [len]) + + ;

else
(nrun1 [6]) + + ;

i f (len > longest1)
longest1 = len ;

len = 1;
} else {

len ++;
}
p revB i t = 0 ;

}
j B i t >>= 1;

}
}

s t r cpy (bba t te ry _TestNames [0] , " Monobit ") ;
s t r cpy (bba t te ry _TestNames [1] , " Poker ") ;
j = 1 ;
s t r cpy (bba t te ry _TestNames[++ j] , " 0 Runs , leng th 1 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 0 Runs , leng th 2 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 0 Runs , leng th 3 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 0 Runs , leng th 4 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 0 Runs , leng th 5 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 0 Runs , leng th 6+: ") ;

124

s t r cpy (bba t te ry _TestNames[++ j] , " 1 Runs , leng th 1 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 1 Runs , leng th 2 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 1 Runs , leng th 3 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 1 Runs , leng th 4 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 1 Runs , leng th 5 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " 1 Runs , leng th 6+: ") ;

s t r cpy (bba t te ry _TestNames[++ j] , " Longest run o f 0 : ") ;
s t r cpy (bba t te ry _TestNames[++ j] , " Longest run o f 1 : ") ;

WriteReportFIPS_140_2 (genName, f i l e F l a g , nb i t , longest0 , longest1 ,
nrun0 , nrun1 , ncount) ;

}

/ ∗−−−∗ /

void bba t te ry _FIPS_140_2 (un i f01 _Gen ∗ gen)
{

FIPS_140_2 (gen , NULL) ;
}

/ ∗−−−∗ /

void bba t te ry _FIPS_140_2 F i l e (char ∗ f i lename)
{

FIPS_140_2 (NULL, f i lename) ;
}

/ ∗===∗ /

125

APPENDIX B

Source code for TestU01 extension including MAKE files

126

/ / mcorr . cpp
#include " . / tn t jama / t n t . h "
using namespace TNT;
#include " kenda l l2 . c "
#include " mcorr . h "
#include <cmath>
using std : : cout ;
using std : : endl ;
using std : : i os ;
using std : : swap ;

/ / Const ruc tor
mcorr : : mcorr (i n t N, i n t P, TNT : : Array2D <long double> Mat , double Alpha) {

cout << " xxx "
<< endl
<< " S t a r t i n g M u l t i v a r i a t e Extension " << endl
<< " Version : TestU01 1 .2 .3 " << endl
<< " xxx "
<< endl << endl << endl ;

i f (N >= 1 && P >= 1) {
n = N;
p = P;
mat = Mat ;
numCorrs = mcorr_binomCoef (p , 2) ;
alpha = Alpha ;
corrData = TNT : : Array2D <long double >(numCorrs , 3) ;
pVals = TNT : : Array2D <long double >(numCorrs , 3) ;
Z = TNT : : Array2D <long double >(numCorrs , 3) ;
Ranks = TNT : : Array2D <long double >(n , p) ;

}
else

std : : cout << "Number o f rows and columns must be p o s i t i v e i n tege rs . "
<< std : : endl ;

} ;

/ / Pr i va te method d e f i n i t i o n s
unsigned i n t mcorr : : mcorr_binomCoef (unsigned i n t N, unsigned i n t K) {

i f (K == 0 | | K == N)
return 1;

else
return (N∗mcorr_binomCoef (N − 1 , K − 1)) /K;

}

void mcorr : : mcorr_ qu ickSor t (TNT : : Array2D<long double> matr ix ,
i n t cols , i n t l e f t , i n t r i g h t) {

i n t i = l e f t , j = r i g h t ;
long double p i v o t = mat r i x [(l e f t + r i g h t) / 2] [0] ;

/ / P a r t i t i o n i n g
while (i <= j) {

while (mat r i x [i] [0] < p i v o t)
i ++;

while (mat r i x [j] [0] > p i v o t)
j −−;

i f (i <= j) {
s td : : swap (mat r i x [i] [0] , mat r i x [j] [0]) ;
for (i n t k = 1; k < co ls ; k ++){

s td : : swap (mat r i x [i] [k] , mat r i x [j] [k]) ;

127

}
i ++;
j −−;

}
}

/ / Recursive c a l l s
i f (l e f t < j)

mcorr_ qu ickSor t (matr ix , cols , l e f t , j) ;
i f (i < r i g h t)

mcorr_ qu ickSor t (matr ix , cols , i , r i g h t) ;
}

/ / Pub l i c method d e f i n i t i o n s
void mcorr : : mcorr_ co r r (TNT : : Array2D <long double> mat r i x) {

i n t count = 0 ;
TNT : : Array1D <long double> mean(p , 0 . 0) ;
TNT : : Array2D <long double> Cov (p , p , 0 . 0) ;

/ / Two pass a lgo r i t hm
/ / Calcu la te the means of each column
for (i n t j = 0 ; j < p ; j ++){

for (i n t i = 0 ; i < n ; i ++)
mean [j] += mat [i] [j] ;

mean [j] / = n ;
}
/ / Compute covar iance mat r i x
for (i n t k = 0; k < p ; k ++){

for (i n t j = 0 ; j < p ; j ++){
for (i n t i = 0 ; i < n ; i ++)

Cov [k] [j] += (mcorr : : mat [i] [j] − mean [j])
∗ (mcorr : : mat [i] [k] − mean [k]) ;

Cov [k] [j] / = (n − 1) ;
}

}

/ / Compute the Pearson c o r r e l a t i o n c o e f f i c i e n t mat r i x
/ / (on ly bottom t r i a n g u l a r to save space and t ime)

for (i n t k = 0; k < mcorr : : p ; k++)
for (i n t j = 0 ; j < k ; j ++){

i f (Cov [k] [k] ∗Cov [j] [j] == 0.0 && Cov [k] [j] >= 0)
mcorr : : corrData [count] [0] = 1.0000;

else i f (Cov [k] [k] ∗Cov [j] [j] == 0.0 && Cov [k] [j] < 0)
mcorr : : corrData [count] [0] = −1.0000;

else
mcorr : : corrData [count] [0] = Cov [k] [j] / s q r t (Cov [k] [k] ∗Cov [j] [j]) ;

mcorr : : corrData [count] [1] = k ;
mcorr : : corrData [count] [2] = j ;
count ++;

}
}

void mcorr : : mcorr_ f i she rT rans (i n t type) {
for (i n t i = 0 ; i < mcorr : : numCorrs ; i ++){

mcorr : : Z [i] [0] = s q r t ((mcorr : : n − 3) / 1.06) ∗ 0.5
∗ l og ((1 .0 + mcorr : : corrData [i] [0])

/ (1 .0 − mcorr : : corrData [i] [0])) ;
i f (type == 1)

128

mcorr : : Z { i] [0] ∗= s q r t (1 . 0 6)
mcorr : : Z [i] [1] = mcorr : : corrData [i] [1] ;
mcorr : : Z [i] [2] = mcorr : : corrData [i] [2] ;

}
}

void mcorr : : mcorr_getPVals () {
for (i n t i = 0 ; i < mcorr : : numCorrs ; i ++){

/ /Two t a i l e d P−value from Z t e s t
mcorr : : pVals [i] [0] = e r f c (fabs (mcorr : : Z [i] [0]) / s q r t (2)) ;
mcorr : : pVals [i] [1] = mcorr : : Z [i] [1] ;
mcorr : : pVals [i] [2] = mcorr : : Z [i] [2] ;

}
}

i n t mcorr : : mcorr_BHY() {
double q ;
i n t k ;
sortedPVals = TNT : : Array2D <long double> (mcorr : : numCorrs , 4) ;
double tempSum ;

/ / Arrange P−values i n ascending order
mcorr_ qu ickSor t (mcorr : : pVals , 3 , 0 , mcorr : : numCorrs − 1) ;

/ / Prepare rank ings
for (i n t i = 0 ; i < mcorr : : numCorrs ; i ++){

sortedPVals [i] [0] = i ;
for (i n t j = 0 ; j < 3 ; j ++)

sortedPVals [i] [j +1] = mcorr : : pVals [i] [j] ;
}

/ / Define q
for (double j = 1 . 0 ; j <= mcorr : : numCorrs ; j ++)

tempSum += 1 / j ;
q = alpha / tempSum ;

/ / Compute k
k = 0;
for (double i = 1 . 0 ; i <= mcorr : : numCorrs ; i ++){

i f (sortedPVals [i −1] [1] <= q∗ (long double) (i / mcorr : : numCorrs))
k++;

}

return k ;
}

void mcorr : : mcorr_spearman () {
TNT : : Array1D<long double> rank ings (n , 0 . 0) ;
TNT : : Array2D<long double> temp (n , 3 , 0 . 0) ;
i n t j , j i , j t ;
double rank ;

for (i n t k = 0; k < p ; k ++){
for (i n t i = 0 ; i < n ; i ++){

temp [i] [0] = mcorr : : mat [i] [k] ;
temp [i] [1] = i ; / / O r i g i n a l p o s i t i o n (to s o r t by l a t e r)

}
j = 1 ;

129

/ / Sor t by f i r s t column and copy sor ted l i s t to rank ings
mcorr_ qu ickSor t (temp , 2 , 0 , n − 1) ;
for (i n t i = 0 ; i < n ; i ++)

rank ings [i] = temp [i] [0] ;

/ / Rank the sor ted vec to r (i n c l u d i n g midranks for t i e s)
while (j < n) {

i f (rank ings [j] ! = rank ings [j − 1]) { / / Not a t i e .
rank ings [j −1] = j ;
++ j ;

}
else { / /A t i e :

for (j t = j + 1 ; j t <= n
&& rank ings [j t − 1] == rank ings [j − 1] ; j t ++) ;

rank = 0.5 ∗ (j + j t − 1) ; / / Mean rank of the t i e
for (j i = j ; j i <= (j t − 1) ; j i ++)

/ / Enter mean rank i n t o a l l t i e d e n t r i e s
rank ings [j i − 1] = rank ;

j = j t ;
}

}
/ / I f the l a s t element was not t i ed , th is i s i t s rank
i f (j == n)

rank ings [n − 1] = n ;

/ / Swap f i r s t column and second column and i n s e r t
/ / rank ings as t h i r d column of temp
for (i n t i = 0 ; i < n ; i ++){

temp [i] [2] = rank ings [i] ;
swap (temp [i] [0] , temp [i] [1]) ;

}

/ / Sor t by o r i g i n a l p o s i t i o n
mcorr_ qu ickSor t (temp , 3 , 0 , n − 1) ;

/ / Place each rank column i n t o the rank mat r i x t h a t w i l l be passed
/ / i n t o the Pearson c o r r e l a t i o n f u n c t i o n
for (i n t i = 0 ; i < n ; i ++)

mcorr : : Ranks [i] [k] = temp [i] [2] ;
}

/ / Compute Spearman c o r r e l a t i o n mat r i x (on ly bottom t r i a n g u l a r)
mcorr : : mcorr_ co r r (Ranks) ;

}

void mcorr : : mcorr_ kenda l l () {
/ / Since kendal lNlogN requ i res f l o a t i n g po in te r s
double∗ ar r1 = new double [n] ;
double∗ ar r2 = new double [n] ;

i n t m = 0;
TNT : : Array2D <long double> newtemp (n , 2 , 0 . 0) ;

for (i n t k = 0; k < p ; k++)
for (i n t j = 0 ; j < k ; j ++){

130

for (i n t i = 0 ; i < n ; i ++){
newtemp [i] [0] = mcorr : : mat [i] [k] ;
newtemp [i] [1] = mcorr : : mat [i] [j] ;

}

/ / Sor t i n locks tep by column 1
mcorr_ qu ickSor t (newtemp , 2 , 0 , n − 1) ;

for (i n t i = 0 ; i < n ; i ++){
a r r1 [i] = newtemp [i] [0] ;
a r r2 [i] = newtemp [i] [1] ;

}

mcorr : : corrData [m] [0] = kendal lNlogN (arr1 , arr2 , n , 1) ;
mcorr : : corrData [m] [1] = k ;
mcorr : : corrData [m] [2] = j ;
m++;

}
delete [] a r r1 ;
delete [] a r r2 ;

}

void mcorr : : mcorr_kendal lNormal () {
for (i n t i = 0 ; i < mcorr : : numCorrs ; i ++){

mcorr : : Z [i] [0] = mcorr : : corrData [i] [0] /
s q r t ((2 .0 ∗ (2 .0 ∗n + 5 . 0)) / (9 .0 ∗ n ∗ (n − 1))) ;

mcorr : : Z [i] [1] = mcorr : : corrData [i] [1] ;
mcorr : : Z [i] [2] = mcorr : : corrData [i] [2] ;

}
}

void mcorr : : mcorr_ pa i rCor r (i n t corrType) {
i n t k = 0;

cout << "−−−" << endl
<< " Pa i rCor r t e s t " ;

i f (corrType == 0)
cout << " f o r Pearson C o r re l a t i ons : " << endl ;

else i f (corrType == 1)
cout << " f o r Spearman C or re l a t i ons : " << endl ;

else
cout << " f o r Kendal l C o r re l a t i ons : " << endl ;

cout << "−−−" << endl
<< " n = " << n << " , p = " << p << endl << endl << endl ;

i f (corrType == 0)
mcorr : : mcorr_ co r r (mat) ;

else i f (corrType == 1)
mcorr : : mcorr_spearman () ;

else
mcorr : : mcorr_ kenda l l () ;

i f (corrType == 0) {
/ / Transform Pearson c o r r e l a t i o n s i n t o normals using the
/ / Fisher r to z Transform
mcorr : : mcorr_ f i she rT rans (1) ;

}
else i f (corrType == 1) {

/ / Transform Spearman c o r r e l a t i o n s i n t o normals using the
/ / Fisher r to z Transform
mcorr : : mcorr_ f i she rT rans (0) ;

131

}
else {

/ / Transform Kendal l c o r r e l a t i o n s i n t o normals
mcorr : : mcorr_kendal lNormal () ;

}

mcorr : : mcorr_getPVals () ;
k = mcorr : : mcorr_BHY () ;

cout << "−−−" << endl ;
cout << " Test r e s u l t s using Benjamini / Hochberg / Y e k u t i e l i " << endl ;
i f (corrType == 0)

cout << " f o r Pearson C o r re l a t i ons : " << endl ;
else i f (corrType == 1)

cout << " f o r Spearman C or re l a t i ons : " << endl ;
else

cout << " f o r Kendal l C o r re l a t i ons : " << endl ;
cout << " Alpha = " << alpha << endl << endl ;

i f (k == 0) {
cout << " Reject none of the n u l l hypotheses "

<< endl << endl << endl ;
return ;

}

cout << " Reject the n u l l hypotheses of nonzero c o r r e l a t i o n "
<< " corresponding to " << endl ;

for (i n t i = 0 ; i < k ; i ++){
cout << "P−value_ (" << i + 1 << ") : Vector "

<< (i n t) (sortedPVals [i] [3] + 1)
<< " and Vector " << (i n t) (sortedPVals [i] [2] + 1) << endl ;

}
cout << endl << endl ;

}

132

/ / mcorr . h
i fndef mcorr_H
#define mcorr_H

#include " . / tn t jama / t n t . h "
using namespace TNT;

class mcorr {
/ / pr ivate class methods
unsigned i n t mcorr_binomCoef (unsigned i n t N,

unsigned i n t K) ;
void mcorr_ qu ickSor t (TNT : : Array2D<long double> matr ix ,

i n t cols , i n t l e f t , i n t r i g h t) ;

public :
/ / public class members
i n t n ; / / number o f rows of pseudorandom data
i n t p ; / / number o f columns of pseudorandom data
TNT : : Array2D <long double> mat ;
i n t numCorrs ;
double alpha ;
TNT : : Array2D <long double> corrData ;
TNT : : Array2D <long double> pVals ;
TNT : : Array2D <long double> sortedPVals ;
TNT : : Array2D <long double> Z ;
TNT : : Array2D <long double> Ranks ;

/ / cons t ruc to r & d e s t r u c t o r
mcorr (i n t N, i n t P, TNT : : Array2D <long double> Mat ,

double Alpha) ;
~mcorr () { } ;

/ / public class methods
void mcorr_ co r r (TNT : : Array2D <long double> mat r i x) ;
i n t mcorr_BHY () ;
void mcorr_ f i she rT rans (i n t type) ;
void mcorr_getPVals () ;
void mcorr_spearman () ;
void mcorr_ kenda l l () ;
void mcorr_kendal lNormal () ;

/ / corrType −> 0 = Pearson , 1 = Spearman , 2 = Kendal l
void mcorr_ pa i rCor r (i n t corrType) ;

} ;
#endif

133

/ / mmult . cpp
#include " . / tn t jama / t n t . h "
#include " . / tn t jama / jama_ l u . h "
using namespace TNT;
#include " mmult . h "
#include <cmath>
using std : : cout ;
using std : : endl ;
using std : : i os ;
using std : : swap ;

/ / Const ruc tor
mmult : : mmult (i n t N, i n t P, TNT : : Array2D <long double> Mat ,

double Alpha) {
cout << " xxx "

<< endl
<< " S t a r t i n g M u l t i v a r i a t e Extension " << endl
<< " Version : TestU01 1 .2 .3 " << endl
<< " xxx "
<< endl << endl << endl ;

i f (N >= 1 && P >= 1) {
n = N;
p = P;
mat = Mat ;
alpha = Alpha ;
normMat = TNT : : Array2D <long double> (N, P, 0 . 0) ;
A = TNT : : Array2D <long double> (P, P, 0 . 0) ;
C = TNT : : Array2D <long double> (A . dim1 () , A . dim2 () , 0 . 0) ;
obsTS = 0 . 0 ;
pValue = 0 . 0 ;

}
else

std : : cout << "Number o f rows and columns must be p o s i t i v e i n tege rs . "
<< std : : endl ;

} ;

/ / Pr i va te method d e f i n i t i o n s
/ / Determine t race of i npu t t ed square mat r i x
long double mmult : : t race (TNT : : Array2D <long double> A) {

long double matTrace = 0 . 0 ;
for (i n t i = 0 ; i < A . dim1 () ; i ++)

matTrace += A[i] [i] ;
return matTrace ;

}

/ / M u l t i p l y mat r i x by a constant
TNT : : Array2D <long double> mmult : : multConst (TNT : : Array2D <long double> A,

long double b) {
TNT : : Array2D <long double> newMat (A . dim1 () , A . dim2 () , 0 . 0) ;
for (i n t i = 0 ; i < newMat . dim1 () ; i ++)

for (i n t j = 0 ; j < newMat . dim2 () ; j ++)
newMat [i] [j] = b ∗ A[i] [j] ;

return newMat ;
}

/ / Copy mat r i x row i n t o Array1D
template <class T>

134

TNT : : Array1D<T> mmult : : copyRowToVec (const TNT : : Array2D<T> &M, i n t rowNum) {
TNT : : Array1D<T> vec (M. dim2 ()) ;
for (i n t c = 0; c < M. dim2 () ; ++c)

vec [c] = M[rowNum] [c] ;
return vec ;

}

/ / Computes an outer product o f two inpu t t ed vec to rs
template <class T>
TNT : : Array2D<T> mmult : : outerProd (const TNT : : Array1D<T> &v ,

const TNT : : Array1D<T> &v2) {
/ / dec lare v a r i a b l e to s to re mat r i x
TNT : : Array2D<T> outerMat (v . dim () , v2 . dim () , 0 . 0) ;

/ / m u l t i p l y components i n vec to r
for (i n t i = 0 ; i < v . dim () ; i ++)

for (i n t j = 0 ; j < v2 . dim () ; j ++)
outerMat [i] [j] = v [i] ∗ v2 [j] ;

/ / return answer
return outerMat ;

}

/ / Pub l i c method d e f i n i t i o n s
void mmult : : mmult_LRT () {

/ / Convert uni form (0 , 1) dev ia te mat r i x to normal (0 , 1) dev ia tes
for (i n t i = 0 ; i < mat . dim1 () ; i ++)

for (i n t j = 0 ; j < mat . dim2 () ; j ++)
normMat [i] [j] = normal_01_cdf_ i nv (mat [i] [j]) ; / / from prob . cpp

/ / Compute A mat r i x
for (i n t i = 0 ; i < n ; i ++){

TNT : : Array1D <long double> temp1 (normMat . dim2 () , 0 . 0) ;
temp1 = copyRowToVec (normMat , i) ;
A += outerProd (temp1 , temp1) ;

}

/ / Muirhead c a l c u l a t i o n s using C = n^{−1} A
C = multConst (A, (long double) (1 .0 / (long double) n)) ;

JAMA : : LU<long double> luC (C) ;

obsTS = n ∗ (t race (C) − log (luC . det ()) − p) ;

cout << "−−−" << endl
<< " L i ke l i hood Rat io Test f o r " << endl
<< " Pai rwise C o r r e l a t i o n Mat r i x = I d e n t i t y : " << endl
<< " Alpha = " << alpha << endl << endl
<< "−−−" << endl
<< " n = " << n << " , p = " << p << endl << endl << endl ;

cout << "−−−" << endl
<< "LR Test S t a t i s t i c : " << obsTS << endl
<< "p−value o f t e s t : " ;

i f (! s td : : isnan (obsTS))
pValue = 1 − ch i _square_cdf (obsTS , p ∗ (p + 1 .0) / 2 .0) ;

cout << pValue << endl << endl ;
}

135

/ / mmult . h
i fndef mmult_H
#define mmult_H

#include " . / prob / prob . hpp "

class mmult {
/ / pr ivate class methods
long double t race (TNT : : Array2D <long double> A) ;
TNT : : Array2D <long double> multConst (TNT : : Array2D <long double> A,

long double b) ;
template <class T> TNT : : Array1D<T>

copyRowToVec (const TNT : : Array2D<T> &M, i n t rowNum) ;
template <class T> TNT : : Array2D<T>

outerProd (const TNT : : Array1D<T> &v , const TNT : : Array1D<T> &v2) ;

public :
/ / public class members
i n t n ; / / number o f rows of pseudorandom data
i n t p ; / / number o f columns of pseudorandom data
TNT : : Array2D <long double> mat ; / / i npu t t ed mat r i x
double alpha ; / / s i g n i f i c a n c e l e v e l
TNT : : Array2D <long double> normMat ; / / normal ized i npu t
TNT : : Array2D <long double> A; / / r e l a t e d to covar iance mat r i x
TNT : : Array2D <long double> C; / / n^{−1} A
long double obsTS ; / / observed l i k e l i h o o d r a t i o t e s t s t a t i s t i c
double pValue ; / / corresponding p−value

/ / cons t ruc to r & d e s t r u c t o r
mmult (i n t N, i n t P, TNT : : Array2D <long double> Mat , double Alpha) ;
~mmult () { } ;

/ / public class methods
void mmult_LRT () ;

} ;
#endif

136

/ / mport . cpp
#include " . / tn t jama / jama_cholesky . h "
#include " . / tn t jama / jama_ l u . h "
#include " . / tn t jama / jama_qr . h "
#include " . / tn t jama / t n t . h "
#include " mport . h "
#include <iomanip >
#include <cmath>
using std : : cout ;
using std : : endl ;
using std : : i os ;
using std : : setw ;

/ / Const ruc tor
mport : : mport (i n t N, i n t P, TNT : : Array2D <long double> Mat ,

long double Alpha) {
cout << " xxx "

<< endl
<< " S t a r t i n g M u l t i v a r i a t e Extension " << endl
<< " Version : TestU01 1 .2 .3 " << endl
<< " xxx "
<< endl << endl << endl ;

i f (N >= 1 && P >= 1) {
n = N;
p = P;
mat = Mat ;
alpha = Alpha ;
lagOrder = 20; / / Spec i fy defaul t value i f none given

}
else

std : : cout << "Number o f rows and columns must be p o s i t i v e i n tege rs . "
<< std : : endl ;

} ;

/ / Pr i va te method d e f i n i t i o n s

/ / Creates i d e n t i t y mat r i x
TNT : : Array2D<long double> mport : : i d e n t i t y (i n t s ize) {

TNT : : Array2D <long double> iMat (s ize , s ize , 0 . 0) ;
for (i n t j = 0 ; j < iMat . dim1 () ; j ++)

iMat [j] [j] = 1 . 0 ;
return iMat ;

}

/ / From h t t p : / / w i k i . cs . p r ince ton . edu / index . php /TNT
/ / Compute transpose of a mat r i x
template <class T>
TNT : : Array2D<T> mport : : t ranspose (const TNT : : Array2D<T> &M)
{

TNT : : Array2D<T> t ran (M. dim2 () , M. dim1 ()) ;
for (i n t r = 0 ; r < M. dim1 () ; ++ r)

for (i n t c = 0; c < M. dim2 () ; ++c)
t r an [c] [r] = M[r] [c] ;

return t r an ;
}

/ / Get d iagonal values o f mat r i x i n 1D vec to r

137

template <class T>
TNT : : Array1D<T> mport : : d iag (const TNT : : Array2D<T> &M)
{

TNT : : Array1D<T> diagVec (M. dim1 () , 0 . 0) ;
for (i n t r = 0 ; r < M. dim1 () ; r ++)

diagVec [r] = M[r] [r] ;
return diagVec ;

}

/ / Computes an outer product o f two inpu t t ed vec to rs
template <class T>
TNT : : Array2D<T> mport : : mport_outerProd (const TNT : : Array1D<T> &v ,

const TNT : : Array1D<T> &v2)
{

/ / dec lare v a r i a b l e to s to re mat r i x
TNT : : Array2D<T> outerMat (v . dim () , v2 . dim () , 0 . 0) ;

/ / m u l t i p l y components i n vec to r
for (i n t i = 0 ; i < v . dim () ; i ++)

for (i n t j = 0 ; j < v2 . dim () ; j ++)
outerMat [i] [j] = v [i] ∗ v2 [j] ;

/ / return answer
return outerMat ;

}

/ / Added from h t t p : / / w i k i . cs . p r ince ton . edu / index . php /TNT
/ / I n v e r t mat r i x
TNT : : Array2D <long double>
mport : : i n v e r t (const TNT : : Array2D<long double> &M) {

asser t (M. dim1 () == M. dim2 ()) ; / / square matr ices only please

/ / solve for i nverse wi th LU decomposit ion
JAMA : : LU<long double> l u (M) ;

/ / create i d e n t i t y mat r i x
TNT : : Array2D<long double> i d (M. dim1 () , M. dim2 () , 0 . 0) ;
for (i n t i = 0 ; i < M. dim1 () ; i ++)

i d [i] [i] = 1 ;

/ / solves A ∗ A_ i nv = I d e n t i t y
return l u . so lve (i d) ;

}

/ / Mean center i npu t t ed mat r i x
void mport : : mport_centerMat () {

TNT : : Array2D <long double> meanMat ;
centMat = TNT : : Array2D <long double> (mat . dim1 () ,

mat . dim2 () , 0 . 0) ;

meanMat = TNT : : Array2D <long double> (1 , mat . dim2 () , 0 . 0) ;
/ / Means of columns of mat r i x
for (i n t j = 0 ; j < mat . dim2 () ; j ++){

for (i n t i = 0 ; i < mat . dim1 () ; i ++)
meanMat [0] [j] += mat [i] [j] ;

meanMat [0] [j] / = mat . dim1 () ;
}

138

TNT : : Array2D <long double> repmat (mat . dim1 () ,
mat . dim2 () , 0 . 0) ;

for (i n t i = 0 ; i < repmat . dim1 () ; i ++)
for (i n t j = 0 ; j < repmat . dim2 () ; j ++)

repmat [i] [j] = meanMat [0] [j] ;

/ / Mean center
centMat = mat − repmat ;

}

/ / Used to cons t ruc t T o e p l i t z Block mat r i x
/ / (mat r i x o f matr ices for Mahdi−McLeod t e s t)
void mport : : mport_ b l o c k F i l l (long double∗∗ pIn ,

TNT : : Array2D <long double> pToF i l l ,
i n t rowLoc , i n t colLoc , i n t b lkS ize) {

/ / put i n the blkSize−by−b lkS ize ar ray i n the
/ / (rowLoc , colLoc) b lock
i f (colLoc > rowLoc) / / top t r i a n g l e

for (i n t i = 0 ; i < b lkS ize ; i ++)
for (i n t j = 0 ; j < b lkS ize ; j ++)

p T o F i l l [i + b lkS ize∗rowLoc] [j + b lkS ize∗colLoc]
= pIn [i] [j] ;

else / / otherwise put i n the transpose (bottom t r i a n g l e)
for (i n t i = 0 ; i < b lkS ize ; i ++)

for (i n t j = 0 ; j < b lkS ize ; j ++)
p T o F i l l [i + b lkS ize∗rowLoc] [j + b lkS ize∗colLoc]

= pIn [j] [i] ;
}

/ / Hosking and Li−McLeod t e s t s
void mport : : mport_portmanteauTests (i n t lagOrder) {

TNT : : Array2D <long double> c0 (p , p , 0 . 0) ;
TNT : : Array2D <long double> c0inv (c0 . dim1 () , c0 . dim2 () , 0 . 0) ;
TNT : : Array1D <long double> d ;
TNT : : Array2D <long double> dd ;
TNT : : Array2D <long double> L ;
TNT : : Array2D <long double> matcTemp1 ;
TNT : : Array2D <long double> matcTemp2 ;
TNT : : Array2D <long double> tempMult ;
TNT : : Array3D <long double> c l (lagOrder , p , p , 0 . 0) ;
/ / Li−McLeod Portmanteau observed t e s t s t a t i s t i c
long double lmp = 0 . 0 ;
/ / Vector ized / Kronecker product used i n Hosking and LM
long double impCalc = 0 . 0 ;
long double tempDiv = 0 . 0 ;
long double hoskTemp = 0 . 0 ;
TNT : : Array2D <long double> vec_ c l (p ∗ p , 1 , 0 . 0) ;
TNT : : Array2D <long double> innerMu l t ;
double pValue_ lmp = 0 . 0 ;
/ / Hosking Portmanteau observed t e s t s t a t i s t i c
long double hosk = 0 . 0 ;
double pValue_hosk = 0 . 0 ;

/ / Compute lag zero c o r r e l a t i o n mat r i x
c0 = matmult (t ranspose (centMat) , centMat) ;
d = diag (c0) ;
dd = mport_outerProd (d , d) ;

139

for (i n t i = 0 ; i < dd . dim1 () ; i ++)
for (i n t j = 0 ; j < dd . dim2 () ; j ++)

dd [i] [j] = s q r t (dd [i] [j]) ;

for (i n t i = 0 ; i < dd . dim1 () ; i ++)
for (i n t j = 0 ; j < dd . dim2 () ; j ++)

c0 [i] [j] / = dd [i] [j] ;

c0 inv = i n v e r t (c0) ;

/ / Compute lag e l (e l = 0 , . . . lagOrder − 1)
/ / c o r r e l a t i o n matr ices and s to re i n 3D ar ray
for (i n t e l = 0 ; e l < c l . dim1 () ; e l ++){

matcTemp1 = TNT : : Array2D <long double> (n − e l − 1 ,
centMat . dim2 () , 0 . 0) ;

matcTemp2 = TNT : : Array2D <long double> (n − e l − 1 ,
centMat . dim2 () , 0 . 0) ;

for (i n t r = 0 ; r < matcTemp1 . dim1 () ; r ++)
for (i n t c = 0; c < matcTemp1 . dim2 () ; c++)

matcTemp1 [r] [c] = centMat [r] [c] ;

for (i n t r = 0 ; r < matcTemp2 . dim1 () ; r ++)
for (i n t c = 0; c < matcTemp2 . dim2 () ; c++)

matcTemp2 [r] [c] = centMat [r + e l + 1] [c] ;

tempMult = matmult (t ranspose (matcTemp1) , matcTemp2) ;
for (i n t r = 0 ; r < c l . dim2 () ; r ++)

for (i n t c = 0; c < c l . dim3 () ; c++)
c l [e l] [r] [c] = tempMult [r] [c] ;

for (i n t i = 0 ; i < dd . dim1 () ; i ++)
for (i n t j = 0 ; j < dd . dim2 () ; j ++)

c l [e l] [i] [j] / = dd [i] [j] ;
}

/ / Compute covar iance mat r i x i n Hosking & Li−McLeod s t a t i s t i c s

/ / Compute Kronecker product o f c0 inv w i th i t s e l f
TNT : : Array2D <long double> r r (c0 inv . dim1 () ∗ c0inv . dim1 () ,

c0 inv . dim2 () ∗ c0inv . dim2 () ,
0 . 0) ;

for (i n t r = 0 ; r < c0inv . dim1 () ; r ++)
for (i n t c = 0; c < c0inv . dim2 () ; c++)

for (i n t i = 0 ; i < c0 inv . dim1 () ; i ++)
for (i n t j = 0 ; j < c0 inv . dim2 () ; j ++)

r r [r ∗ c0inv . dim1 () + i] [c ∗ c0inv . dim2 () + j]
= c0 inv [r] [c] ∗ c0inv [i] [j] ;

/ / Vecto r i ze c l matr ices
for (i n t e l = 0 ; e l < c l . dim1 () ; e l ++){

for (i n t i = 0 ; i < c l . dim2 () ; i ++)
for (i n t j = 0 ; j < c l . dim3 () ; j ++)

vec_ c l [i + j ∗ c l . dim2 ()] [0] = c l [e l] [i] [j] ;

i nne rMu l t = matmult (matmult (t ranspose (vec_ c l) , r r) ,
vec_ c l) ;

impCalc += innerMu l t [0] [0] ;
tempDiv = innerMu l t [0] [0] / (long double) (n − e l − 1) ;

140

hoskTemp += tempDiv ;
}

/ / Li−McLeod t e s t r e s u l t s
lmp = n ∗ impCalc + p ∗ p ∗ lagOrder ∗ (lagOrder + 1)

/ (long double) (2 .0 ∗ n) ;
i f (s td : : isnan (lmp)) {

cout << " Li−McLeod Test S t a t i s t i c i s i n f i n i t e . "
<< " Program e x i t i n g . " << endl ;

return ;
}
d f = p ∗ p ∗ lagOrder ; / / modelOrder = 0
pValue_ lmp = 1 − gamma_ i nc ((double) d f / 2.0 ,

(double) lmp / 2 . 0) ;

cout << "−−−"
<< endl
<< " Portmanteau Test f o r White Noise (Li−McLeod) : "
<< endl
<< " Alpha = " << alpha << endl << endl
<< "−−−"
<< endl
<< " n = " << n << " , p = " << p
<< " , Lag order = " << lagOrder
<< endl << endl << endl ;

cout << "−−−"
<< endl
<< " Li−McLeod Test S t a t i s t i c : "
<< lmp << endl
<< " Degrees o f Freedom : "
<< df << endl
<< "p−value o f t e s t : "
<< pValue_ lmp << endl << endl << endl ;

/ / Hosking t e s t r e s u l t s
hosk = n ∗ n ∗ hoskTemp ;
i f (s td : : isnan (hosk)) {

cout << " Hosking Test S t a t i s t i c i s i n f i n i t e . "
<< " Program e x i t i n g . " << endl ;

return ;
}
pValue_hosk = 1 − gamma_ i nc ((double) d f / 2.0 ,

(double) hosk / 2 . 0) ;

cout << "−−−"
<< endl
<< " Portmanteau Test f o r White Noise (Hosking) : "
<< endl
<< " Alpha = " << alpha << endl << endl
<< "−−−"
<< endl
<< " n = " << n << " , p = " << p
<< " , Lag order = " << lagOrder
<< endl << endl << endl ;

cout << "−−−"
<< endl
<< " Hosking Test S t a t i s t i c : "

141

<< hosk << endl
<< " Degrees o f Freedom : "
<< df << endl
<< "p−value o f t e s t : "
<< pValue_hosk << endl << endl << endl ;

}

/ / Mahdi−McLeod t e s t
void mport : : mport_mahdiMcLeod (i n t lagOrder) {

TNT : : Array2D <long double> cov0 (p , p , 0 . 0) ;
TNT : : Array2D <long double> cov0inv (cov0 . dim1 () ,

cov0 . dim2 () , 0 . 0) ;
TNT : : Array2D <long double> matcTemp1 ;
TNT : : Array2D <long double> matcTemp2 ;
TNT : : Array2D <long double> tempMult ;
TNT : : Array3D <long double> cov l (lagOrder , p , p , 0 . 0) ;
TNT : : Array3D <long double> Rl (lagOrder , p , p , 0 . 0) ;
TNT : : Array2D <long double> mahdiMat (Rl . dim2 ()

∗ (lagOrder + 1) , Rl . dim3 ()
∗ (lagOrder + 1) , 0 . 0) ;

long double gv = 0 . 0 ;
long double df _gv = 0 . 0 ;
double pValue_gv = 0 . 0 ;

/ / Compute lag zero covar iance mat r i x
cov0 = matmult (t ranspose (centMat) , centMat) ;

for (i n t i = 0 ; i < cov0 . dim1 () ; i ++)
for (i n t j = 0 ; j < cov0 . dim2 () ; j ++)

cov0 [i] [j] / = (long double) n ;

/ / LL ’ = cov0^{−1}
cov0inv = i n v e r t (cov0) ;
JAMA : : Cholesky <long double > chol (cov0inv) ;
TNT : : Array2D <long double > L = chol . getL () ;

/ / Compute lag e l covar iance mat r i x
f o r (i n t e l = 0 ; e l < cov l . dim1 () ; e l ++){

matcTemp1 = TNT : : Array2D <long double > (n − e l − 1 ,
centMat . dim2 () , 0 . 0) ;

matcTemp2 = TNT : : Array2D <long double > (n − e l − 1 ,
centMat . dim2 () , 0 . 0) ;

f o r (i n t r = 0 ; r < matcTemp1 . dim1 () ; r ++)
f o r (i n t c = 0 ; c < matcTemp1 . dim2 () ; c++)

matcTemp1 [r] [c] = centMat [r] [c] ;

f o r (i n t r = 0 ; r < matcTemp2 . dim1 () ; r ++)
f o r (i n t c = 0 ; c < matcTemp2 . dim2 () ; c++)

matcTemp2 [r] [c] = centMat [r + e l + 1] [c] ;

tempMult = matmult (t ranspose (matcTemp1) , matcTemp2) ;
f o r (i n t r = 0 ; r < cov l . dim2 () ; r ++)

f o r (i n t c = 0 ; c < cov l . dim3 () ; c++)
cov l [e l] [r] [c] = tempMult [r] [c] ;

f o r (i n t i = 0 ; i < cov l . dim2 () ; i ++)
f o r (i n t j = 0 ; j < cov l . dim3 () ; j ++)

cov l [e l] [i] [j] / = (long double) n ;

142

}

/ / Rl = L ’ ∗ cov l ∗ L (mat r i x m u l t i p l i c a t i o n)
for (i n t e l = 0 ; e l < lagOrder ; e l ++){

TNT : : Array2D <long double> tempL (p , p , 0 . 0) ;
TNT : : Array2D <long double> tempL2 (p , p , 0 . 0) ;
for (i n t i = 0 ; i < Rl . dim2 () ; i ++)

for (i n t j = 0 ; j < Rl . dim3 () ; j ++)
tempL [i] [j] = cov l [e l] [i] [j] ;

tempL2 = transpose (matmult (matmult (t ranspose (L) , tempL) , L)) ;
for (i n t i = 0 ; i < Rl . dim2 () ; i ++)

for (i n t j = 0 ; j < Rl . dim3 () ; j ++)
Rl [e l] [i] [j] = tempL2 [i] [j] ;

}

/ / I n i t i a l i z e d iagonal to 1
for (i n t i = 0 ; i < mahdiMat . dim1 () ; i ++)

for (i n t j = 0 ; j < mahdiMat . dim2 () ; j ++){
i f (i == j)

mahdiMat [i] [j] = 1 . 0 ;
else

mahdiMat [i] [j] = 0 . 0 ;
}

/ / F i l l the upper t r i a n g l e o f the mat r i x o f matr ices
for (i n t i = 0 ; i < lagOrder + 1 ; i ++)

for (i n t j = i + 1 ; j < lagOrder + 1 ; j ++)
mport_ b l o c k F i l l (Rl [j − i − 1] , mahdiMat , i , j , Rl . dim2 ()) ;

/ / now f i l l the lower pa r t
for (i n t i = 1 ; i < lagOrder + 1 ; i ++)

for (i n t j = 0 ; j < i ; j ++)
mport_ b l o c k F i l l (Rl [i − j − 1] , mahdiMat , i , j , Rl . dim2 ()) ;

JAMA : : LU<long double> l u (mahdiMat) ;

/ / General ized Variance t e s t r e s u l t s
gv = (−3.0 ∗ n) / (2 .0 ∗ lagOrder + 1 .0) ∗ log (l u . det ()) ;
i f (s td : : isnan (gv)) {

cout << "GV Test S t a t i s t i c i s i n f i n i t e . "
<< " Program e x i t i n g . " << endl ;

return ;
}
d f _gv = p ∗ p ∗ (1 .5 ∗ lagOrder ∗ (lagOrder + 1)

/ (2 .0 ∗ lagOrder + 1 .0)) ; / / modelOrder = 0
pValue_gv = 1 − gamma_ i nc ((double) d f _gv / 2.0 ,

(double) gv / 2 . 0) ;

cout << "−−−"
<< endl
<< " Portmanteau Test f o r White Noise (Mahdi−McLeod) : "
<< endl
<< " Alpha = " << alpha << endl << endl
<< "−−−"
<< endl
<< " n = " << n << " , p = " << p
<< " , Lag order = " << lagOrder
<< endl << endl << endl ;

143

cout << "−−−"
<< endl
<< " Determinant o f T o e p l i t z Block mat r i x : "
<< l u . det () << endl
<< " Mahdi−McLeod Test S t a t i s t i c : "
<< gv << endl
<< " Degrees o f Freedom : "
<< df _gv << endl
<< "p−value o f t e s t : "
<< pValue_gv << endl << endl << endl ;

}

144

/ / mport . h
i fndef mport_H
#define mport_H

#include " . / prob / prob . hpp "

class mport {
/ / pr ivate class methods
void mport_ b l o c k F i l l (long double∗∗ pIn ,

TNT : : Array2D <long double> pToF i l l ,
i n t rowLoc , i n t colLoc , i n t b lkS ize) ;

TNT : : Array2D <long double> i d e n t i t y (i n t s ize) ;
template <class T> TNT : : Array2D<T>

transpose (const TNT : : Array2D<T> &M) ;
template <class T> TNT : : Array1D<T>

diag (const TNT : : Array2D<T> &M) ;
template <class T> TNT : : Array2D<T>

mport_outerProd (const TNT : : Array1D<T> &v ,
const TNT : : Array1D<T> &v2) ;

TNT : : Array2D <long double>
i n v e r t (const TNT : : Array2D<long double> &M) ;

public :
/ / public class members
i n t n ; / / number o f rows of pseudorandom data
i n t p ; / / number o f columns of pseudorandom data
/ / i npu t t ed mat r i x o f pseudorandom data
TNT : : Array2D <long double> mat ;
/ / mean centered mat r i x to t e s t for whi te noise
TNT : : Array2D <long double> centMat ;
long double alpha ; / / to compare p−values aga ins t
/ / upper l i m i t o f summation i n t e s t s t a t i s t i c s
i n t lagOrder ;
i n t df ; / / degrees o f freedom for Hosking & Li−McLeod t e s t s
i n t mahdiDf ; / / degrees o f freedom for Mahdi−McLeod t e s t

/ / cons t ruc to r & d e s t r u c t o r
mport (i n t N, i n t P, TNT : : Array2D <long double> Mat ,

long double Alpha) ;
~mport () { } ;

/ / public class methods
/ / mean center i npu t t ed mat r i x values
void mport_centerMat () ;
/ / Li−McLeod and Hosking Tests
void mport_portmanteauTests (i n t lagOrder) ;
/ / Mahdi−McLeod t e s t
void mport_mahdiMcLeod (i n t lagOrder) ;

} ;
#endif

145

/ / e x t D r i v e r _smokGun . cpp
/ / Test ing the f i r s t Smoking Gun generator
#include <iostream >
#include <fstream >
#include <iomanip >
#include <cmath>
#include " . / tn t jama / t n t . h "
#include " mcorr . h "
#include " mmult . h "
#include " mport . h "
#include " . / prob / prob . cpp "
using std : : cout ;
using std : : endl ;
using std : : i f s t r eam ;
using std : : setw ;

i n t main () {
i n t n = 10000 , p = 10;
TNT : : Array2D <long double> mat (n , p) ;
double Alpha ;

s td : : i f s t r eam f i n ;
f i n . open ("vma1_ 2. t x t ") ;

i f (! f i n . i s _open ()) {
s td : : cout << " Er ro r opening i npu t f i l e ! " << std : : endl ;
e x i t (1) ;

}

/ / I npu t f i l e one row a f t e r another
for (i n t i = 0 ; i < n ; i ++)

for (i n t j = 0 ; j < p ; j ++)
f i n >> mat [i] [j] ;

f i n . c lose () ;

Alpha = 0 .01 ;

mcorr mcorr1 = mcorr (n , p , mat , Alpha) ;

/ / Pearson
mcorr1 . mcorr_ pa i rCor r (0) ;
/ / Spearman
mcorr1 . mcorr_ pa i rCor r (1) ;
/ / Kendal l
mcorr1 . mcorr_ pa i rCor r (2) ;

/ / Test ing i f c o r r e l a t i o n mat r i x = i d e n t i t y
mmult mmult1 = mmult (n , p , mat , Alpha) ;
mmult1 . mmult_LRT () ;

/ / Portmanteau t e s t s for whi te noise w i th lag = p
mport mport1 = mport (n , p , mat , Alpha) ;
mport1 . mport_centerMat () ;
mport1 . mport_portmanteauTests (p) ;
mport1 . mport_mahdiMcLeod (p) ;

return 0;
}

146

MAKE file for testing first Smoking Gun

ext_smokGun : e x t D r i v e r _smokGun . o mcorr . o mmult . o mport . o
g++ −Wall e x t D r i v e r _smokGun . o mcorr . o mmult . o mport . o −o ext_smokGun

mcorr . o : mcorr . cpp mcorr . h
g++ −c −Wall mcorr . cpp

mmult . o : mmult . cpp mmult . h
g++ −c −Wall mmult . cpp

mport . o : mport . cpp mport . h
g++ −c −Wall mport . cpp

e x t D r i v e r _smokGun . o : e x t D r i v e r _smokGun . cpp mcorr . h mmult . h mport . h
g++ −c −Wall e x t D r i v e r _smokGun . cpp

147

/ / e x t D r i v e r _warmBarA . cpp
/ / Test ing the second Smoking Gun generator
#include <iostream >
#include <fstream >
#include <iomanip >
#include <cmath>
#include " . / tn t jama / t n t . h "
#include " mcorr . h "
#include " mmult . h "
#include " mport . h "
#include " . / prob / prob . cpp "
using std : : cout ;
using std : : endl ;
using std : : i f s t r eam ;
using std : : setw ;

i n t main () {
i n t n = 10000 , p = 10;
TNT : : Array2D <long double> mat (n , p) ;
double Alpha ;

s td : : i f s t r eam f i n ;
f i n . open ("mvaTS. t x t ") ;

i f (! f i n . i s _open ()) {
s td : : cout << " Er ro r opening i npu t f i l e ! " << std : : endl ;
e x i t (1) ;

}

/ / I npu t f i l e one row a f t e r another
for (i n t i = 0 ; i < n ; i ++)

for (i n t j = 0 ; j < p ; j ++)
f i n >> mat [i] [j] ;

f i n . c lose () ;

Alpha = 0 .01 ;

mcorr mcorr1 = mcorr (n , p , mat , Alpha) ;

/ / Pearson
mcorr1 . mcorr_ pa i rCor r (0) ;
/ / Spearman
mcorr1 . mcorr_ pa i rCor r (1) ;
/ / Kendal l
mcorr1 . mcorr_ pa i rCor r (2) ;

/ / Test ing i f c o r r e l a t i o n mat r i x = i d e n t i t y
mmult mmult1 = mmult (n , p , mat , Alpha) ;
mmult1 . mmult_LRT () ;

/ / Portmanteau t e s t s for whi te noise w i th lag = p
mport mport1 = mport (n , p , mat , Alpha) ;
mport1 . mport_centerMat () ;
mport1 . mport_portmanteauTests (p) ;
mport1 . mport_mahdiMcLeod (p) ;

return 0;
}

148

MAKE file for testing second Smoking Gun

ext_warmBarA : e x t D r i v e r _warmBarA . o mcorr . o mmult . o mport . o
g++ −Wall e x t D r i v e r _warmBarA . o mcorr . o mmult . o mport . o −o ext_warmBarA

mcorr . o : mcorr . cpp mcorr . h
g++ −c −Wall mcorr . cpp

mmult . o : mmult . cpp mmult . h
g++ −c −Wall mmult . cpp

mport . o : mport . cpp mport . h
g++ −c −Wall mport . cpp

e x t D r i v e r _warmBarA . o : e x t D r i v e r _warmBarA . cpp mcorr . h mmult . h mport . h
g++ −c −Wall e x t D r i v e r _warmBarA . cpp

149

/ / e x t D r i v e r _warmBarB . cpp
/ / Test ing the t h i r d Smoking Gun generator
#include <iostream >
#include <fstream >
#include <iomanip >
#include <cmath>
#include " . / tn t jama / t n t . h "
#include " mcorr . h "
#include " mmult . h "
#include " mport . h "
#include " . / prob / prob . cpp "
using std : : cout ;
using std : : endl ;
using std : : i f s t r eam ;
using std : : setw ;

i n t main () {
i n t n = 10000 , p = 10;
TNT : : Array2D <long double> mat (n , p) ;
double Alpha ;

s td : : i f s t r eam f i n ;
f i n . open ("mvaTSa . t x t ") ;

i f (! f i n . i s _open ()) {
s td : : cout << " Er ro r opening i npu t f i l e ! " << std : : endl ;
e x i t (1) ;

}

/ / I npu t f i l e one row a f t e r another
for (i n t i = 0 ; i < n ; i ++)

for (i n t j = 0 ; j < p ; j ++)
f i n >> mat [i] [j] ;

f i n . c lose () ;

Alpha = 0 .01 ;

mcorr mcorr1 = mcorr (n , p , mat , Alpha) ;

/ / Pearson
mcorr1 . mcorr_ pa i rCor r (0) ;
/ / Spearman
mcorr1 . mcorr_ pa i rCor r (1) ;
/ / Kendal l
mcorr1 . mcorr_ pa i rCor r (2) ;

/ / Test ing i f c o r r e l a t i o n mat r i x = i d e n t i t y
mmult mmult1 = mmult (n , p , mat , Alpha) ;
mmult1 . mmult_LRT () ;

/ / Portmanteau t e s t s for whi te noise w i th lag = p
mport mport1 = mport (n , p , mat , Alpha) ;
mport1 . mport_centerMat () ;
mport1 . mport_portmanteauTests (p) ;
mport1 . mport_mahdiMcLeod (p) ;

return 0;
}

150

MAKE file for testing third Smoking Gun

ext_warmBarB : e x t D r i v e r _warmBarB . o mcorr . o mmult . o mport . o
g++ −Wall e x t D r i v e r _warmBarB . o mcorr . o mmult . o mport . o −o ext_warmBarA

mcorr . o : mcorr . cpp mcorr . h
g++ −c −Wall mcorr . cpp

mmult . o : mmult . cpp mmult . h
g++ −c −Wall mmult . cpp

mport . o : mport . cpp mport . h
g++ −c −Wall mport . cpp

e x t D r i v e r _warmBarB . o : e x t D r i v e r _warmBarB . cpp mcorr . h mmult . h mport . h
g++ −c −Wall e x t D r i v e r _warmBarB . cpp

151

/ / e x t D r i v e r _mers . cpp
#include <iostream >
#include <fstream >
#include <iomanip >
#include <cmath>
#include " . / tn t jama / t n t . h "
#include " mcorr . h "
#include " mmult . h "
#include " mport . h "
#include " . / prob / prob . cpp "
using std : : cout ;
using std : : endl ;
using std : : i f s t r eam ;
using std : : setw ;

i n t main () {
i n t n = 10000 , p = 10;
TNT : : Array2D <long double> mat (n , p) ;
double Alpha ;

s td : : i f s t r eam f i n ;
f i n . open (" mers . t x t ") ;

i f (! f i n . i s _open ()) {
s td : : cout << " Er ro r opening i npu t f i l e ! " << std : : endl ;
e x i t (1) ;

}

/ / I npu t f i l e one row a f t e r another
for (i n t i = 0 ; i < n ; i ++)

for (i n t j = 0 ; j < p ; j ++)
f i n >> mat [i] [j] ;

f i n . c lose () ;

Alpha = 0 .01 ;

mcorr mcorr1 = mcorr (n , p , mat , Alpha) ;

/ / Pearson
mcorr1 . mcorr_ pa i rCor r (0) ;
/ / Spearman
mcorr1 . mcorr_ pa i rCor r (1) ;
/ / Kendal l
mcorr1 . mcorr_ pa i rCor r (2) ;

/ / Test ing i f c o r r e l a t i o n mat r i x = i d e n t i t y
mmult mmult1 = mmult (n , p , mat , Alpha) ;
mmult1 . mmult_LRT () ;

/ / Portmanteau t e s t s for whi te noise w i th lag = p
mport mport1 = mport (n , p , mat , Alpha) ;
mport1 . mport_centerMat () ;
mport1 . mport_portmanteauTests (p) ;
mport1 . mport_mahdiMcLeod (p) ;

return 0;
}

152

MAKE file for testing the Mersenne Twister

ext_mers : e x t D r i v e r _mers . o mcorr . o mmult . o mport . o
g++ −Wall e x t D r i v e r _mers . o mcorr . o mmult . o mport . o −o ext_mers

mcorr . o : mcorr . cpp mcorr . h
g++ −c −Wall mcorr . cpp

mmult . o : mmult . cpp mmult . h
g++ −c −Wall mmult . cpp

mport . o : mport . cpp mport . h
g++ −c −Wall mport . cpp

e x t D r i v e r _mers . o : e x t D r i v e r _mers . cpp mcorr . h mmult . h mport . h
g++ −c −Wall e x t D r i v e r _mers . cpp

153

/ / e x t D r i v e r _MRG32k3a . cpp
#include <iostream >
#include <fstream >
#include <iomanip >
#include <cmath>
#include " . / tn t jama / t n t . h "
#include " mcorr . h "
#include " mmult . h "
#include " mport . h "
#include " . / prob / prob . cpp "
extern "C" {
#include " gdef . h "
#include " un i f01 . h "
#include " u lec . h "
}
using s td : : cout ;
using s td : : endl ;
using s td : : i f s t r eam ;
using s td : : setw ;

i n t main () {
i n t n = 10000 , p = 10;
TNT : : Array2D <long double> mat (n , p) ;
double Alpha ;

un i f01 _Gen ∗gen ;

/ /MRG32k3a
gen = ulec_CreateMRG32k3a (123 . , 123. , 123. , 123. , 123. , 1 2 3 .) ;

/ / Generate values one row a f t e r another
for (i n t i = 0 ; i < n ; i ++)

for (i n t j = 0 ; j < p ; j ++)
mat [i] [j] = un i f01 _ Str ipD (gen , 0) ;

u lec_DeleteGen (gen) ;
Alpha = 0 .01 ;

mcorr mcorr1 = mcorr (n , p , mat , Alpha) ;

/ / Pearson
mcorr1 . mcorr_ pa i rCor r (0) ;
/ / Spearman
mcorr1 . mcorr_ pa i rCor r (1) ;
/ / Kendal l
mcorr1 . mcorr_ pa i rCor r (2) ;

/ / Test ing i f c o r r e l a t i o n mat r i x = i d e n t i t y
mmult mmult1 = mmult (n , p , mat , Alpha) ;
mmult1 . mmult_LRT () ;

/ / Portmanteau t e s t s for whi te noise w i th lag = p
mport mport1 = mport (n , p , mat , Alpha) ;
mport1 . mport_centerMat () ;
mport1 . mport_portmanteauTests (p) ;
mport1 . mport_mahdiMcLeod (p) ;

return 0;
}

154

MAKE file for testing MRG32k3a

ext_MRG32k3a : e x t D r i v e r _MRG32k3a . o mcorr . o mmult . o mport . o
g++ −Wall e x t D r i v e r _MRG32k3a . o mcorr . o mmult . o mport . o −o ext_MRG32k3a

mcorr . o : mcorr . cpp mcorr . h
g++ −c −Wall mcorr . cpp

mmult . o : mmult . cpp mmult . h
g++ −c −Wall mmult . cpp

mport . o : mport . cpp mport . h
g++ −c −Wall mport . cpp

e x t D r i v e r _MRG32k3a . o : e x t D r i v e r _MRG32k3a . cpp mcorr . h mmult . h mport . h
g++ −c −Wall e x t D r i v e r _MRG32k3a . cpp

155

	CHAPTER
	INTRODUCTION
	BACKGROUND INFORMATION ON GENERATING PSEUDORANDOM NUMBERS
	Serial Generators
	Linear Congruential Generators
	Combined Multiple Recursive Generators
	Shift-Register Generators
	Lagged-Fibonacci Generators

	Parallel Pseudorandom Number Streams
	Parallelized Linear Congruential Generators
	Parallelized Combined Multiple Recursive Generators
	Parallelized Shift-Register Generators
	Parallelized Lagged-Fibonacci Generators

	CURRENT METHODS FOR TESTING PSEUDORANDOM NUMBERS
	Empirical Tests of Serial Pseudorandom Number Generators
	Tests for a Sequence of Real Numbers in (0, 1)
	Tests for a Sequence of Bits
	Usage in TestU01

	Testing Techniques for Parallel Pseudorandom Number Generators
	Two-level Tests
	Parallel Filter

	PROBLEMS WITH EXISTING PARALLEL TESTING METHODS
	Development of the CrushFile Addition
	Three Problematic Generators
	Normally Transformed VMA(1) process
	Univariate Time Series Moving Across the Processors
	Bivariate Time Series Moving Across the Processors

	Discussion

	TESTU01 MULTIVARIATE EXTENSION - CORRELATION MOTIVATED MULTIVARIATE TESTS
	Pairwise Correlations
	Aspects of the Pairwise Correlations Part of the Extension
	Pearson correlation
	Spearman correlation
	Kendall correlation
	Computation of P-values

	Results
	Performance with the problematic generators
	Mersenne Twister and MRG32k3a

	Testing for an Identity Correlation Matrix
	Results
	Performance with the problematic generators
	Mersenne Twister and MRG32k3a

	TESTU01 MULTIVARIATE EXTENSION - VECTOR TIME SERIES BASED TESTS
	Hosking Portmanteau Test Statistic
	Li-McLeod Portmanteau Test Statistic
	Mahdi-McLeod Portmanteau Test Statistic
	Results
	Performance with the problematic generators
	Mersenne Twister and MRG32k3a

	DESIGN CONSIDERATIONS FOR PARALLEL PROCESSING
	Object-oriented Formulation
	Parallelization
	Discussion

	CONCLUSION
	REFERENCES
	APPENDIX A
	APPENDIX B

