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ABSTRACT  

   

Researchers have postulated that math academic achievement increases student 

success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of 

universities and 98% of community colleges require many of their first-year students to 

be placed in remedial courses (Bettinger & Long, 2009).  Many high school graduates are 

entering college ill prepared for the rigors of higher education, lacking understanding of 

basic and important principles (ACT, 2012).  The desire to increase academic 

achievement is a wide held aspiration in education and the idea of adapting instruction to 

individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a).  

Frequently, adaptive learning environments rely on a mastery learning approach, it is 

thought that when students are afforded the opportunity to master the material, deeper 

and more meaningful learning is likely to occur.  Researchers generally agree that the 

learning environment, the teaching approach, and the students’ attributes are all important 

to understanding the conditions that promote academic achievement (Bandura, 1977; 

Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, 

Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 

2011).  The present study investigated the role of college students’ affective attributes 

and skills, such as academic competence and academic resilience, in an adaptive mastery-

based learning environment on their academic performance, while enrolled in a remedial 

mathematics course.  The results showed that the combined influence of students’ 

affective attributes and academic resilience had a statistically significant effect on 

students’ academic performance.  Further, the mastery-based learning environment also 

had a significant effect on their academic competence and academic performance.  
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Chapter 1 

INTRODUCTION 

Thousands of high school graduates are not college ready (ACT, 2012; Bettinger 

& Long, 2009).  A student who meets the college readiness criteria should be able to 

enroll in a first-year mathematics course at a college or university, right out of high 

school (ACT, 2012).  The ACT research (2012) pointed to some dismal results: 25% of 

all ACT-tested high school students in the nation met all four benchmarks, English, 

reading, mathematics, and science; and 45% met the readiness benchmark in math.  In 

2011, the National Center for Educational Achievement (NCEA) identified the highest 

performing schools from over 300 school districts and drafted a report entitled The 20 

Non-Negotiable Characteristics of Higher Performing School Systems.  The NCEA 

identified various characteristics as signs of a successful school system:  the most 

important was the alignment of the curriculum to the needs of students to properly 

introduce, develop, and master content; the second most important was the assessment of 

concepts at each grade level.  Researchers have postulated that math academic 

achievement increases student success in college (Lee, 2012; Silverman & Seidman, 

2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges are placing 

a large number of first-year students in remedial courses to develop competence and help 

them attain college entry level skills (Bettinger & Long, 2009). 

Efforts to improve math performance have prompted the development of adaptive 

learning programs such as Knewton Math Readiness (Knewton, 2012), MyMathLab 

(Stewart, 2012), Carnegie Learning Math Series (Ritter, 2011), and many others.  In 

general, these computer-based programs address the needs of the student by using a 
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mastery approach to learning.  Knewton Math Readiness, for example, is a software 

program that automatically adapts the math content to the student’s level of academic 

performance while providing the necessary information for students to develop 

competence and achieve mastery at their current level before moving on to the next level.   

The efforts to improve math performance have also prompted much research on 

the need to improve the math skills nationwide; however, the research appears to be 

centered on the learning environments and how these environments impact learning or 

result in academic improvements (Bettinger & Long, 2009; Kim, 2012; Lee, 2010).  

While it is key to understand the dynamics that create effective learning environments, it 

is vital to understand the extent to which the students’ individual strengths and limitations 

promote or inhibit academic performance. 

Problem Statement 

Although the variables that contribute to academic success are widely 

investigated, these are mostly explored in isolation (Dearnley & Matthew, 2007; Dumais, 

2002; Jones & Jo, 2004; Kaighobadi & Allen, 2008; Meyer, 2011; Roosa et al., 2012; 

Silverman & Seidman, 2011; Strayhorn, 2010).  Aspects or attributes thought to 

contribute to academic success or lack thereof (e.g., prior achievement, study skills, 

motivation, personalized learning, self-efficacy, remediation, socioeconomic status, 

gender, and ethnicity) are investigated independent of each other, without taking into 

account their possible interaction and its variable effects on individuals.  Presently, it is 

not fully understood how these variables affect underperforming students.  How much 

relative growth does a student experience when placed in a remedial math course?  What 

aspects contribute to this growth?  What role does the students’ cognitive and affective 
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attributes play in getting back on track?  How much can be attributed to the students and 

how much is a product of the learning environment?  The present study was intended to 

investigate various aspects of college students’ academic competence, academic 

resilience, and academic performance, within a new adaptive learning environment.  This 

new environment was developed by Knewton and math professors at Arizona State 

University (ASU), to enable college students to advance in disciplines requiring an 

understanding of mathematics. 

The Research Literature 

A review of the literature revealed a trend towards ethnic and gender disparities, 

though these issues were not the focus of the present study, they were deemed worthy of 

investigation.  For example, college readiness scores have remained virtually stagnant for 

the last four years, with minority students meeting benchmarks at the lowest percentages 

(ACT, 2012).  Nationwide, only 11% of American Indians, 13% of Hispanics, and 5% of 

African Americans met all four benchmarks.  These minorities were also least likely to 

aspire to attain professional degrees.  The level of preparedness is also a contributor to 

low academic performance; only 8% of students who took less than three years of math 

courses were able to meet the mathematics ACT benchmark—evidence of the importance 

of prior achievement on current or future achievement.  

Strayhorn (2010) used Bourdieu’s (1977) cultural capital as a construct to 

understand the minority disparity where cultural capital refers to the perceptions, 

behaviors, and attitudes towards education that are passed along within family circles and 

their social class.  Strayhorn hypothesized that African American students enter schools 

with lower levels of cultural capital, and this phenomena seems accurate for most ethnic 
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minorities.  He surveyed 24,599 students (from the National Center for Education 

Statistics) of which 49% responded and the final selected sample was approximately 14% 

of the respondents (n = 1,766 Black students).  Findings indicated that prior achievement 

was statistically significantly related, r = .25, to math achievement, F(6, 1788) = 15.04, p 

< .01 (e.g., predictors included in the model: gender, parent’s level of education, and 

locus of control).  He also found that background and family variables accounted for an 

additional 14% of the variance in math achievement.  Gender and parents’ level of 

education were also significant predictors.  These findings validate the need for 

considering individual differences when addressing students’ instructional needs and 

even more so when addressing the needs of remedial students.  This was perhaps the most 

compelling reason for exploring personalized instruction, sometimes referred to or 

subsumed in the construct of adaptive learning. 

Adaptive Learning 

As the term indicates, adaptive learning refers to the process of adapting 

instruction to match the academic needs and abilities of the individual.  This is typically 

accomplished through software programs that employ a range of approaches, from basic 

non-linear branching and response-based scaffolding to the more complex adaptive 

learning software programs.  One such program is the Knewton Math Readiness 

Courseware, which uses a sophisticated system to respond to students’ performance in 

real-time continually adapting the material to match students’ known proficiencies 

(Knewton, 2012).  The adaptation of instruction where students’ proficiencies and 

deficiencies are continually taken into account is thought to create highly effective 

learning environments.  The concept of individualized learning has been shown to be a 
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key factor in academic success, particularly when the adaptation is based on the students’ 

current and prior knowledge.  It has long been established that prior-knowledge is a key 

component of learning, as it makes learning more meaningful and increases retention 

(Ebbinghaus, 1885; Ausubel, 1968).  This can be particularly important for novice 

learners, who tend to organize new knowledge around explicit or literal pieces of known 

information.   

Lalley and Gentile (2009a) examined the idea of adapting instruction to 

individuals.  They found that the term was loosely defined and varied widely in 

application.  Their aim was to identify variables that should be used as the guiding 

standards to adapt instruction.  Lalley and Gentile posited that instruction should adapt to 

the learners’ prior knowledge, content, and/or domain objectives.  These researchers 

believed instruction should not be based on learning styles, brain-hemisphericity (e.g., 

right brain, left brain, or brain-based), multiple intelligences, and cognitive styles.  They 

searched popular databases (e.g., Academic Search Premier, Psych INFO, ERIC, and 

Professional Development Collection) and discovered that only a fraction of the studies 

reviewed provided empirical support to back their claims.  Out of the 3,299 articles on 

learning styles, 132 had indicators of empirical evidence.  There were 120 brain-based 

articles, none of which matched Lalley and Gentile’s empirical evidence criteria.  The 

same was true for multiple intelligence, seven studies out of the 783 searched provided 

empirical evidence.  Similarly, 110 out of 3,445 on cognitive style matched the empirical 

evidence criteria.  Lalley and Gentile also evaluated and summarized the empirical 

evidence on various approaches and concluded that the evidence supported their 

assumptions on prior knowledge: “effective instruction should be tied to students’ prior 
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knowledge rather than students’ traits” (p. 471).  A key feature of well-designed adaptive 

learning environments is that instruction is closely aligned to what each student currently 

knows, as this alignment not only improves understanding, but it also enhances retention.   

Adapting instruction is just one of the many ways educators aim to increase 

academic achievement.  The desire to increase academic achievement is a widely held 

aspiration in education.  This can be quickly verified by simply performing an academic 

search on the phrase improving academic achievement; the results matching this search 

criteria numbered in the thousands.  Using Google Scholar to search for the same phrase, 

the search returned hundreds of thousands of matches.  The aspiration to improve 

academic achievement has resulted in a variety of interventions and initiatives; including 

teacher-initiated motivational strategies to improve student performance.  However, 

George (2010) cautions against the use of this approach with remedial math students.  

The concerns stem from the premise that teachers may inadvertently diminish students’ 

autonomy when they cease to use standardized performance-based motivators such as 

grades, tests, and homework and opt for motivational strategies such as making personal 

attempts to engage the student in the course; a dangerous approach that can move beyond 

teacher-responsibilities and into subjective judgments.  This is not to say that teachers 

should not care about their students’ success, but in the case of remedial students, where 

vulnerabilities are at their highest, it is best to use standardized processes as much as 

possible.  This may be a strong argument for considering the use of adaptive learning 

software programs as a means to systematically build skills, enhance self-efficacy, and 

fuel motivation without over tasking faculty or risking adverse effects to the students.  

Moreover, adaptive learning affords each student the time necessary to learn for mastery.  
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When students are able to stay on a topic until they have mastered it, deeper and more 

meaningful learning is likely to occur. 

Learning for Mastery  

In traditional instruction, concepts or topics are taught for a specific length of time 

and teachers move from topic to topic as defined by their curriculum schedule, rather 

than by the needs of the students (i.e., time-based).  In a learning-for-mastery approach, 

instruction is driven by the students’ academic needs and new topics are introduced only 

when the students have mastered the prerequisite topics (i.e., mastery-based).  Instruction 

is bound by the mastery of content, which is intended to ensure that students fully 

understand concepts as they move through the curriculum.   

Benjamin Bloom (1968) posited the concept of learning for mastery based in part 

on his belief (influenced by John Carroll, 1963) that given sufficient time and the 

appropriate learning conditions, 95% of students could achieve mastery.  Bloom (1978) 

later stated that 80% of students in mastery-based classrooms performed equal to the top 

20% of students in traditional classrooms.  He held that the main factor separating the top 

performers from the low performers was time (Bloom, 1974).  Since its inception, the 

mastery-based approach has been widely used and criticized (Chandler, 1982; Lalley & 

Gentile, 2009b).  Bloom (1974) acknowledged that learning for mastery can be time 

prohibitive for some, but he also believed that if effective teaching strategies were used, 

this time could be reduced (e.g., frequent feedback with specific guidance).  Arguably, 

the demands this instructional approach place on instructors may have limited its 

widespread adoption in traditional teacher-lead classrooms; however, with powerful 

software programs, this problem is now minimized.  Software programs can be designed 
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to excel at this task by quickly adapting to the individual learner’s response and present 

examples and practice exercises that provide just the right balance of success and 

challenge. 

There is a renewed interest in learning for mastery (Guskey, 2010), which may be 

a result of the current state of our education system; where thousands of students are 

completing courses but not mastering the content.  High school graduates are entering 

college ill-prepared for the rigors of higher education, lacking understanding of basic and 

important principles (ACT, 2012).  Nonetheless, some argue that learning for mastery is 

not a practical approach because it can lead to undesirable consequences.  Senko and 

Miles (2008) investigated the premise that a mastery approach can harm students’ 

likelihood of success, by allowing them to disproportionally focus their efforts on topics 

of more interest to them, or topics they find easier to attain.  While these researchers 

admittedly acknowledged that mastery learning promotes deeper learning, they claimed 

that the path taken towards mastery leads to predicted lower grades in the class.  They 

also held that mastery goal students reported using an interest-based approach, n = 240; β 

= .16, p < .05.  These researchers contend that students with a mastery orientation 

measure their learning with self-referential subjective standards, whereas the performance 

oriented students measure their learning by outperforming their peers (e.g., being ranked 

in the top 10%).  Several caveats are warranted about this research.  For instance, one 

flaw in the basis of their argument is the assumption that mastery-learning environments 

do not use criterion-referenced measures (e.g., assignments, tests, competency 

assessments).  Their argument also assumes that only performance-oriented students 

measure their performance with norm-referenced criteria and objective measures.  This is 
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not an accurate assumption; other possible explanations or alternatives were not explored 

by the authors, which one can argue weakens the validity of the original research.   

Perhaps the most serious criticism of mastery learning is the lack of a formal 

assessment method (Chandler, 1982).  The very nature of mastery learning makes 

standardized assessments problematic; when everyone is learning at a different pace and 

quite possibly different or new topics, teachers are faced with the challenge of 

systematically and objectively using a one-size-fits-all assessment tool.  Diegelman-

Parente (2011) proposed a logical approach that addresses this limitation.  That is, the use 

of competency-based assessment tools in mastery-based environments.  She suggests that 

students should demonstrate mastery of concepts that are deemed fundamental and 

meeting the criteria would earn a passing grade of C.  Students can then be given the 

opportunity to earn extra points by completing additional enrichment activities; the extra 

points translate into mastery level grades.  This approach seems a feasible compromise to 

allow faculty to maintain control over the learning process, while students are given the 

freedom to learn at their own pace, within the constraints of a semester, and achieve the 

level of mastery they desire. 

Bloom (1968; 1978) posited that mastery learning could also provide other 

benefits, such as reduced anxiety.  He argued that repeated academic success reduces 

anxiety about course achievement enabling students to better cope with academic 

demands.  Van Dinther, Dochy, and Segers (2011) evaluated 39 empirical studies on the 

effects of self-efficacy and learning and found that mastery experiences were 

significantly correlated to the development of a strong sense of self-efficacy.  It follows 

then that making progress towards a learning goal enhances students’ sense of self-
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efficacy.  According to Bandura (1977), self-efficacy is not only a predictor of academic 

success, but it also acts as a mediator of motivation and learning.  When students have the 

opportunity to work on attainable tasks, they develop confidence in their abilities, this 

confidence then becomes a motivator to learn.  Hence, mastery experiences motivate 

students to engage in activities that they perceive to be attainable, which in turn boosts 

their self-efficacy and fosters their self-regulation.   

Self-efficacy, Self-regulation, and Motivation 

Bandura’s (1977) self-efficacy refers to the judgments individuals make about 

their ability or inability to take the necessary actions required to perform a given task.  

Moreover, individuals who have a low sense of self-efficacy about their ability to do a 

certain task, tend to avoid doing that task.  Self-regulation acts as a monitoring 

mechanism of motivation to perform tasks through a goal system.  Goals can help 

individuals overcome their hesitation to do something, due to low self-efficacy, by 

increasing their desire to attempt the task by focusing on goal attainment (Bandura, 

1989); however, not all goals result in equal motivational benefits.  For instance, 

proximal goals yield the highest motivation because they tend to have a more immediate 

fulfillment or are more readily attainable.  Specific goals are better than general goals 

because the specific goals provide a plan of action.  The level of difficulty of a goal can 

also serve as a personal motivator and gauge for accomplishment for postsecondary 

students, particularly when goals become increasingly difficult as skills become more 

developed (Schunk, 1991).  Schunk explained that students assess their own capabilities 

based on cues they receive from others through vicarious experiences.  When students see 

peers accomplish a task, they are better able to visualize themselves accomplishing 
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similar tasks; however, the positive effects of vicarious experiences on self-efficacy are 

weak and can easily be offset by failure (Bandura, 1977).  When students receive verbal 

encouragement from others about their ability to perform a task, their self-efficacy 

experiences a temporary boost.  On the other hand, when students experience success 

through their own performance, the increase in self-efficacy has a stronger effect.  Thus, 

when students set specific performance goals their sense of self-efficacy is reinforced as 

they attain those goals. 

Affective and motivational factors traditionally have been overlooked in the 

evaluation of academic competence; however, the desire to understand these cognitive 

and affective relationships is rapidly increasing.  In a recent experimental study, 

Changeiywo, Wambugu, and Wachanga (2011) compared the effects of a mastery 

learning approach against a traditional teaching approach on students’ motivation to learn 

(n = 161).  Their results indicated that students in the mastery group had significantly 

higher motivation than the students in the traditional group, F(3, 157) = 36.3, P < 0.05.  

In an informal review of research on motivation and engagement, published in the 

Educational Digest, the authors found that motivational factors were more likely to 

contribute to academic success when students experienced greater levels of autonomy 

and had frequent opportunities to demonstrate academic competence (Toshalis & 

Nakkula, 2012). 

There have been studies where meaningful interactions between cognitive ability, 

motivation, and performance have not been clearly established, it is this very concept that 

prompted Hirschfeld, Lawson, and Mossholder (2004) to investigate the relationship 

between cognitive ability, performance and type of motivation.  They evaluated how 
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undergraduate students’ academic performance was impacted by context-specific—

academic achievement—motivation, general academic motivation, and cognitive ability 

(n = 364).  The comparisons led the researchers to conclude that the relationship between 

cognitive ability and performance was moderated by academic achievement motivation, β 

= 0.40, p < .01.  Furthermore, when achievement motivation was higher, cognitive ability 

was more predictive of performance, β = 0.53, p < .01.  These results align with findings 

presented in a review of motivation in remedial mathematics, in which it was concluded 

that motivation was a key factor in determining students’ math performance (George, 

2010).  Motivation has historically and intuitively been considered a key component in 

learning (Keller, 1979) and is critical to academic competence, academic resilience, and 

academic achievement.  After all, it is a teacher’s responsibility to know what to teach 

and when to teach it, but it is up to the students to decide if and how much they want to 

learn (Diegelman-Parente, 2011). 

Academic Competence  

DiPerna and Elliott (1999) defined academic competence “as a multi-dimensional 

construct composed of the skills, attitudes, and behaviors of a learner that contribute to 

academic success.” (p. 208).  Using this definition as a framework, they identified two 

domains that contributed to academic competence: academic skills and academic 

enablers.  The academic skills domain relates to the basic cognitive abilities that enable 

students to function in an academic environment.  This domain is comprised of three skill 

clusters: (a) mathematics and scientific inquiry, (b) reading and writing, and (c) critical 

thinking.  The academic enablers domain relates to specific attitudes and behaviors in 

four skill clusters: interpersonal skills, study skills, motivation, and engagement.  Figure 
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1 illustrates how each of these clusters contributes to a student’s overall academic 

competence. 

 

Figure 1. Visual representation of DiPerna and Elliott’s (2001) Academic 

Competence model for college students. 

The academic skills domain incorporates the students’ perception of their 

understanding and level of command in: written language, mental math and problem 

solving, application of scientific concepts, and higher order thinking.  The academic 

enablers domain takes into account the students’ affective awareness: their view on their 

academic attitudes and behaviors towards peers and faculty; the approach they take when 

learning new material; and how they evaluate their persistence and their desire to learn.  

The cognitive abilities and affective attributes that are comprised in the academic 

competence construct closely align with the concepts and principles that constitute the 

building blocks of academic resilience: self-efficacy, self-regulation, motivation, and 

engagement.  Self-efficacy aligns with the academic skills domain.  Self-regulation, 

motivation, and engagement align with the academic enablers domain.   

The literature review revealed that the learning environment, the teaching 

approach, and students’ academic competence are important to academic success.  It was 
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also evident that most of these variables have been primarily investigated in isolation.  To 

better understand the conditions that promote academic achievement, the intertwined 

nature of these variables cannot be dismissed.  Thus, it is important to concurrently 

evaluate all aspects of students’ academic performance: the learning method (i.e., 

teaching approach), the learning environment, academic competence, their affective 

attributes and academic resilience.   

Before elaborating on academic resilience, it is important to first understand the 

underlying construct—resilience.  Resilience refers to one’s ability to bounce back 

(Herrman, Stewart, Diaz-Granados, Berger, Jackson & Yuen, 2011).  When one thinks of 

resilience, the tendency is to think of this construct in terms of individuals being able to 

recover from adversity, distress, or even trauma.  The ability to maintain mental health 

through positive adaptation despite adversity is the essence of resilience; whereas, 

academic resilience centers on students’ self-efficacy, self-regulation, and motivation as 

key contributors to academic success (Morales, 2008; Scholar Centric, 2010). 

Although resiliency is relevant in any academic subject, it could be argued that 

students may benefit most from resilient behaviors when studying mathematics.  

Johnston-Wilder and Lee (2010) argue that students have a harder time developing 

resiliency when learning mathematics due to the anxiety intrinsic to the subject.  Students 

are typically expected to perform accurate and speedy calculations, but also their work is 

viewed as a reflection of their intelligence and their lack of performance is considered a 

failure.  These judgments are at times self-inflicted, but more often than not, given by 

peers and sometimes teachers or even parents.  Cassen, Feinstein, and Graham (2008) 

contend that resilience can be the one factor that can help counteract whatever risk factors 
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that may be present and contribute to poor academic performance (e.g., intelligence, 

mental health, and environmental influences such as, family backgrounds, socioeconomic 

status, the learning environment, and the school system).  

Academic Resilience   

Martin and Marsh (2006) present a validated assessment of academic resilience.   

Much of their work builds upon the work of Andrew J. Martin who has over a number of 

years (2001-2006) examined motivation from various perspectives and have developed 

tools such as the motivation and engagement wheel.  Based on this wheel, Martin and 

Marsh (2006) created their own model—the Student Motivation and Engagement Scale 

(SMES)—to evaluate predictors in adaptive and maladaptive dimensions related to 

motivation.  They proceeded to validate this scale with a sample of 402 Australian high 

school students.  The adaptive dimension of SMES included self-efficacy, mastery 

orientation, planning, valuing of school, study management, and persistence. The 

maladaptive dimension of SMES included anxiety, uncertain control, failure avoidance, 

and self-handicapping.  Marin and Marsh found five of these predictors to statistically 

significantly predict academic resilience: self-efficacy, control, planning, low anxiety, 

and persistence. Of the five predictors, self-efficacy (r = .33) and anxiety (r = -.66) were 

the strongest.  Martin and Marsh also found that academic resilience in turn predicted 

school enjoyment and class participation, both are thought to enhance commitment to 

learning.   

The literature findings provided further support that the variables investigated in 

the present study: the learning environment, the teaching approach, the students’ 
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academic competence, and their academic resilience were consistently found to have 

positive effects on academic success.  

Rationale for the Study 

Purpose 

The aim of this study was to investigate the role of academic competence and 

academic resilience, in an adaptive mastery-based learning environment, on the academic 

achievement of college students in need of remediation.  Specifically, the focus of this 

investigation was on: (1) the academic performance of students in a remedial 

mathematics course, (2) the relationship between specific cognitive and affective 

attributes that were deemed central to resilient behavior, and (3) valued academic 

outcomes such as course completion.   

Theoretical Framework  

The conceptual framework to guide this investigation was based on the social 

ecology of resilience (Ungar, 2011).  Ungar presented ecological resilience as a process 

where individuals dynamically interact with their environment based on the 

meaningfulness and relevance of their resources or opportunities, and the extent to which 

these opportunities meet their needs and personal capabilities.  Figure 2 illustrates an 

expression of academic performance, inspired by Ungar’s ecological resilience 

expression (Appendix C).  This expression was used as the guiding theory in attempting 

to understand and assign meaning to the relationships revealed in this investigation.  

Academic performance (Ap) is a function (f) of affective attributes (Aa) relative to the 

level of resilient behavior (Rb) while holding cognitive ability (Ca) constant and the 

extent to which the learning environment supports or inhibits (Env(s-i)l) learning.   
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Figure 2.  Academic performance expression based on Michael Ungar’s ecological 

resilience expression, 2011.  

Ungar (2011) theorized the Social Ecology of Resilience as an attempt to 

demonstrate that resilience is both an internal and external process.  He posited that an 

understanding of resilience would eliminate the cultural ambiguities associated with the 

construct.  His view of resilience is based on the notion that the construct is essentially 

two processes: (1) A sequence of events by which individuals learn to be resilient; that is, 

when one has access to resources that sustain our wellbeing, then we become resilient, 

and (2) the extent to which an individual’s social and physical ecology can provide those 

resources.  In the present study, this view of resilience was used as a conceptual guide 

and an attempt to operationalize the model was also made.  In this definition, resilience as 

a process can be thought of as the experiences through which one’s attitudes are modified 

as one learns to be resilient.  In contrast, resilience as an outcome can be thought of as the 

consequence of past experiences exhibited through behaviors.  When one is learning to be 

resilient through a particularly difficult experience, the level of support the environment 

provides directly impacts one’s attitude (i.e. process), which is evidenced in subsequent 

resilient behaviors (i.e. outcome).  For example, if a student attempting to complete a 

particularly challenging homework problem is provided with appropriate resources that 

would allow the exploration of possible solutions, the student can spend enough time to 

figure out the problem and come up with the correct approach.  If the student receives a 

favorable mark on this homework, the student’s attitude towards difficult problems is 



 

18 

modified, he or she might think: That wasn’t too bad, if I try hard enough, I can do this!  

On the other hand, if the environment is ill suited and the student can’t obtain timely 

answers, or have access to adequate resources, the student might take a best-guess 

approach.  If the student receives an adverse mark on this assignment, the student’s 

attitude towards difficult problems is negatively impacted and he or she might think: That 

was way too hard, its no use trying, there is no way I can do this!  Thus, the outcome for 

each of these cases would be exhibited in the next assignment, when the student is faced 

with a similar problem he or she will either embrace it or avoid it. 

Research Question 

The present study was designed to answer this primary research question: How do 

cognitive ability and affective attributes moderate the mathematics academic 

performance of students in need of remediation?  The following predictions are roughly 

illustrated in Figure 3.  

Prediction one.  It was anticipated that students’ cognitive ability would have a 

direct relationship to their academic performance; however, this relationship was 

expected to vary as a function of their affective characteristics.  Thus, students with 

effective study skills, who are highly motivated and highly engaged, would demonstrate 

superior academic performance to those with lower scores in those areas. 

Prediction two. It was further hypothesized that resilient behavior would mark 

the difference between students who succeed in the class compared to those who did not.  

That is, successful students would display higher resilient behaviors throughout the 

course than did their counterparts. 
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Prediction three.  It was hypothesized that a mastery approach to instruction 

would have a positive impact on the academic performance of remedial students while 

heightening their affective attributes.  Consequently, it was expected that a positive 

change would be seen in students’ academic competence.  More specifically, by the end 

of the course: (1) a positive change was expected in engagement and motivation, (2) a 

reassessment of academic skills that better aligned with the students’ actual performance 

was anticipated, and (3) no change was expected in interpersonal skills or study skills. 

 
Figure 3.  Graphic representation of predictions. 

The findings from this study were used as a framework to refine an instructional 

model for remedial math students.  Instructional designers and educators can use this 

model as a guide in the development of remedial math courses or to design interventions 

to improve the performance of remedial students.  Teachers may also be able to use the 

model to better understand the performance of their students.  
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Chapter 2 

METHODS 

Participants 

The present study utilized extant data collected as part of a concurrent research 

study entitled Student Success in Math—Longitudinal Study (data collected by ASU 

online staff).  Institutional Review Board approval with exempt status was obtained for 

the Student Success in Math study (Protocol #: 1108006723; Appendix A).  I was added 

to the study personnel of this protocol as a co-investigator.  College students, who were 

enrolled at ASU during the period of 2010 to 2012, were invited to participate in the 

Student Success in Math study, which used an adaptive learning environment—the 

Knewton Readiness Math program.  All students were presented with a consent form and 

given the opportunity to decline participation; a signed consent indicated they granted the 

research team access to their academic and institutional data (Appendix B).  Multiple 

courses were observed over a period of two years as part of the Student Success in Math 

study, with a sampling population of over 12,000 students.  However, due to matters 

beyond the scope of this study, the data accessible for this research were limited to the 

information gathered during the Fall 2012 semester, for the remedial course MAT 110 – 

Enhanced Freshman Mathematics. 

Initially, 2,880 students were enrolled in this course, removing students who had 

no course data brought the sample down to 2,226 students, of those only 1,970 had an 

active enrolled status.  To enroll in the first-year college algebra course students needed 

to earn a minimum of 40 points on the ALEKS (Assessment and Learning in Knowledge 

Spaces) placement test, and a minimum of 30 points for the college mathematics course.  
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Students who scored below these requirements were placed in MAT-110; however, 

students scoring beyond the minimum could also elect to enroll in the remedial course if 

they did not feel prepared for a first-year level course.  Table 1 illustrates the Fall 2012 

MAT-110 course’s initial and final enrollment, as well as the passing rates. 

Table 1 

Remedial Course: MAT 110, Fall 2012 Semester  

Enrollment status F-2012 Gender Course status 

Status Initial n Removed n Male Female Pass Fail 

 2,880  2,226 44% 57%   73% 

         2%a   

    1% 

Enrolled   1,970b         18%c  

Missing       654d         

Dropped  95       

Withdrawn  161      

Note. aPercent of students marked as LC (learning complete: awaiting a passing grade processing).  
bFinal enrollment number. cPercent of students marked as Z (in progress) which indicated they would 

continue the course the following semester.  dRecords with missing data. 

Approximately 78% of students were 18 to 20 years of age, with a relatively 

proportional gender distribution, 56% females, 44% males.  The ethnic distribution was 

less balanced, with Whites in the majority (52%), and the remaining students distributed 

among various races.  Hispanics made up the larger minority group (26%) followed by 

the African American group (11%, see Figure 4).  While the ethnic distribution did not 

appear to support the concerns for minority disparities found in the literature, when 

remedial enrollment is considered at the university level, then the minority disproportion 

aligns with the literature.  That is, the Black enrollment in this course would in reality 

represent approximately 72% of the African-American freshmen population (comparison 

data obtained from the 2012-2013 Common Data Set, 

http://uoia.asu.edu/sites/default/files/common/Common_Data_Set_2012-2013.pdf).  
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Figure 4. Ethnic and age distribution – Fall 2012 cohort.  

The average SAT and GPA scores (m = 480; see Table 2 and Figure 5), appeared 

to be slightly below the typical first-year college students’ SAT Math scores: first 

quartile = 490, third quartile = 630; GPA m = 3.42 (2012-2013 Common Data Set).  

Additionally, the initial enrollment in this course indicated that there were 2,880 students 

who were below the expected skill ability for a first-year college-level course during the 

Fall 2012 semester.  The total freshmen enrollment for the 2012 year was approximately 

10,600 students; thus, enrollment in the remedial course would represent roughly 27% of 

the freshmen student body.  After remediation, 75% of the students who completed the 

remedial course were eligible to enter a first-year college level mathematics course.  

Table 2 

Summary of MAT 110 Scores Distribution 

Scores N Missing M SD Variance Min 
1st 

Quartile Mdn 
3rd 

Quartile Max 

Cum GPA  2,124    102 2.57 1.03 1.06   0.00 2.05 2.78 3.33 4.33 

SAT I math  1,130 1,096 479.99 75.00 5,625.07 200 430.00 480.00 530.00 740.00 

ALEKS  2,122     104 26.82 14.94 223.25 0.00 18.00 25.00 32.00 100.00 

Final Exam  1,869    357 18.30 8.20 67.23 0.00 17.50 21.33 23.00 30.00 

 

 



 

23 

  

  

Figure 5.  Normal distributions of MAT 110 scores  

The focus of the present investigation was an attempt to understand the conditions 

that contribute to successful remediation and identify areas that may be further explored, 

which may prove helpful to remedial students. 

Research Design 

The present study utilized an extant dataset from a remedial mathematics course 

(MAT 110) offered during the Fall 2012 semester at ASU.  All data were collected by the 

ASU online staff; however, at the time of the original data collection, random assignment 

and a true experimental design were deemed to be unethical given the population of 

interest and nature of the treatment.  The evaluations of students and their performance in 

this course included correlational and comparative analyses within an intact group.  The 

key dependent variable was academic performance as measured by within-course test 

scores and final course exam scores.  The second dependent variable was academic 

competence, as measured by the ACES-College instrument.  Two types of independent 

variables of importance were cognitive ability and affective attributes.  GPA, ALEKS, 
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and SAT scores were used to operationalize cognitive ability.  The affective attributes 

and their associated measures were self-regulation (ACES-study skills), motivation 

(ACES-motivation), and engagement (ACES-engagement).  Academic resilience was 

operationalized as resilient behavior measured by two indicators self-efficacy (ACES-

academic skills) and course commitment—operationalized as perseverance (posttest 

attempt quantity), attendance (login frequency), and participation (lesson rate).  Due to 

the enduring concerns about underperformance of minorities and women in mathematics 

courses (ACT, 2012), ethnicity and gender were also used as independent variables 

during the analyses. 

Procedures 

Data collection and evaluation design.  The data gathered comprised a wide 

range of academic achievement determinants, such as institutional data, instructional 

data, evaluation data, and demographics.  The data were collected during three phases: 

screening, instructional, and evaluation.  The resulting evaluation design is illustrated in 

Figure 6.  The institutional data included: SAT, GPA, final exam, and course grade.  The 

instructional data included the Knewton embedded assessments and course engagement 

data (e.g., time records).  The evaluation data included: ACES-College pretest and 

posttest scores.  Missing data were removed using a listwise method; that is, all cases 

with missing values were removed from all analyses.  Descriptive information regarding 

the missing data were summarized to determine whether a bias was present in the results. 
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Figure 6.  Evaluation model of the assessment types and assessment occasions for Math 

110 taken during the Fall 2012 semester.  Modified version of original evaluation model. 

Data processing.  An initial examination of the data revealed several noteworthy 

issues.  For instance, it was possible that students took the ACES posttests in place of the 

ACES pretests and vice versa.  There were no mechanisms in place to ensure students 

took one test before the other, they could take the same test multiple times and/or leave 

blank answers.  This meant that further data processing was needed to arrive at a 

manageable, reliable, and consistent dataset.  The process used for cleaning the data is 

described below. 

Institutional data.  The demographics data were already compiled into rosters for 

the entire semester.  The rosters were matched to research IDs.  A copy of the original 

roster file was made and all the fields that would not be used for the present study were 

removed.  The information retained included: research ID, term, course number, 

enrollment status, course grade, GPA (e.g., current, cumulative, and transferred), 
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ethnicity, and gender.  The SAT scores, ALEKS scores and final exam scores were not 

part of the original data set, but were subsequently compiled by the ASU online staff.  

Evaluation data.  Two procedures were conducted: (1) duplicate records were 

marked but not removed; these were then evaluated against the three conditions, defined 

below, to determine if the records were true duplicates.  (2) Each ACES sub-scale was 

evaluated for missing items and addressed according to the ACES-College manual 

(DiPerna & Elliott, 2001), then subscales were summed and domain totals computed.  

After initial conceptualization, the actual filtering and data consolidation were performed 

by automated custom scripts using Excel (Appendix D part 1).  To start the cleanup 

process, a set of possible problem conditions were created along with a list of actions 

identifying how these conditions should be resolved when encountered.  These conditions 

are identified in Table and a summary of actions follow. 

Table 3 

Possible ACES Pre- and Posttest Conditions 

ACES test Number of times a test was attempted Record to be kept 

Pre 0 1 1 0 > 1 > 1 > 1 0 1 First 

Post 0 1 0 1 0 1 > 1 > 1 > 1 Last 

Note.  First and last records were verified by the start date. 

Prior to running the scripts, the data were sorted by research ID and start date for 

both ACES pretest and ACES posttest.   

First condition.  If multiple tests were taken (pre- or post) on the same day, only 

the first test record was kept.  This assumed that the first response may be less biased. 

Second condition.  If more than one test attempt was made on the same day and 

one of those attempts was incomplete, the incomplete record(s) was deleted.  This 
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assumes that there may have been some technical issue that prevented the student from 

completing the test.  This excludes actual incomplete cases; that is, if there was only one 

test attempt made but the record was incomplete, then the record was kept. 

Third condition. To address the possibility that posttests were mistakenly taken as 

pretests and vice versa, a rule of behavior was defined:  When a duplicate pretest record 

was found and no posttest record existed, then the last pretest record was assumed to be 

the posttest.  The opposite was done for the posttest: when a duplicate posttest record was 

found and no pretest record existed, then the first posttest record was assumed to be a 

pretest.  A minimum five-day span between each test date attempt was set as the 

conditional criterion for the pretest versus posttest assumption.  This reflected the 

absolute minimum number of days a student could conceivably go through the program. 

Instructional data.  The Knewton lesson session contains the in-course 

engagement information, which was tracked by number of logins.  This file contained 

thousands of records.  The same was true for the Knewton assessment data set, which 

contained the embedded assessments (lessons pretest and posttest scores) as well as the 

number of posttests attempted.  Together these files required processing hundreds of 

thousands of records, this called for the development of a set of more complex scripts 

(Appendix E – part 2).  These scripts matched each student ID with its corresponding 

lesson data, login data, and test data.  Then files were stitched together with the 

institutional data and ACES data.  Students who did not take a pretest or a posttest 

received a score of -100 respectively; for the analyses, these values were replaced with 

zeros.  In addition, totals for each of the course commitment indicators (resilient 

behavior) were drawn from the Knewton dataset: total number of test attempts, total 
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number of lessons taken and total number of logins.  Another outcome of these custom 

scripts was the creation of a matrix of lessons taken by students; the intent was to use this 

matrix to map out the path students took to mastering the content and allow comparisons 

between students and the differing behaviors towards content mastery.  

Instruments   

While there were several indicators that quantified students’ academic 

competencies, behaviors, and performance, only two of those were in an instrument 

format:  The ACES-College and the engagement survey.  The rest of the indicators were 

comprised of scores such as SAT, GPA, final exam, and course grades.  Key performance 

information was also derived from the Knewton embedded assessments. 

ACES-College.  The Academic Competence Evaluation Scales—ACES-College 

was the primary instrument used during the original data collection and, as such, it was 

an indispensable instrument for this study.  This scale was developed based on previous 

research and in accordance with the Standards for Educational and Psychological Testing 

(AERA, et al., 1999), as a means to systematically evaluate students’ academic 

competence for intervention purposes (Appendix F).  The information pertaining to this 

instrument was obtained directly from the ACES-College manual (DiPerna & Elliott, 

2001).  

The ACES-College is a 66-item questionnaire, written at a seventh-grade level 

using criterion-referenced ratings.  Reliability evidence is very good (i.e, average internal 

consistency coefficient = .97; average retest coefficient = .92).  The completion time for 

this instrument is estimated to be less than 20 minutes for both the Academic Skills and 

Academic Enablers domains.  In the Academic Skills domain, students were asked to 
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estimate their skill level within three subscales (reading and writing, mathematics and 

science, and critical thinking) in comparison to other students at their university.  These 

ratings used a five-point Likert scale, where one was Far Below and five was Far Above 

(Figure 7).  The skills in each of the subscales consisted of the most basic skills deemed 

necessary to be successful in school.  Each skill rating, as envisioned by the authors, 

should have included an importance rating of each skill (i.e., Not Important, Important, 

Critical).  Unfortunately, the importance ratings were not included or collected as part of 

the original data collection process (i.e., Success in Math Study) due to concerns about 

student time. 

 

 

 

Figure 7.  Academic skills sample items. 

In the Academic Enablers domain, students were asked to rate how often they 

used each skill within four subscales (interpersonal, engagement, motivation & study 

skills).  These ratings used a five-point Likert scale, where one was Never and five was 

Almost Always (Figure 8) and a three-point importance rating; however, as stated earlier, 

the importance rating was left out from the original data collection.  The questionnaire 

concluded with one open-ended question, which asked students to provide comments 

about themselves and how they learn best. 
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Figure 8.  Academic enablers sample items. 

The scoring process, outlined in the manual, directed to sum each subscale to 

obtain raw scores for each of the domains.  These raw scores were then totaled to obtain 

the domain scores.  That is, the raw scores for reading/writing, mathematics/science, and 

critical thinking were summed to obtain the score for the academic skills domain.  The 

same was done with the academic enablers.  Thus, the interpersonal skills, engagement, 

motivation, and study skills were summed to obtain the academic enablers domain score.  

Finally, academic domains skills and academic enablers were summed to yield the total 

academic competence score.   

The manual also offered a process for dealing with missing data, when a student 

did not provide a rating for two or fewer items in any subscale, each of the missing items 

were given a score of 3, on the assumption that this value represented a conservative 

average skill rating at grade-level.  When three or more item ratings were missing from a 

subscale, then the entire scale was omitted from the score and the domain to which the 

subscale belonged to was also omitted (pp. 18-20; DiPerna & Elliott, 2001).   
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The authors also defined three competence levels into the scoring process: 

Developing, Competent, and Advanced.  These competence levels were easily identified 

by plotting the raw scores on the competence continuum for each scale and subscale 

(Figure 9).  This competence continuum facilitated the construction of a confidence 

interval around students’ scores, which provided the range of scores within which their 

actual scores were likely to fall. 

 
Figure 9.  Competence levels for each of the ACES subscales. 

For the purposes of this study, the information resulting from this instrument was 

used to evaluate self-efficacy, self-regulation, motivation, and engagement—academic 

competence.  While one of the primary purposes of the ACES-College is to identify 

students’ academic strengths and weaknesses to assist in the design of potential remedial 

interventions, the learning and self-management strategy portion of the scale, was not 

part of the data gathered during the original data collection process.  Thus, the instrument 

could not provide a direct link for possible remediation interventions or instructional 

strategies.  Nonetheless, due to the nature of the information gathered with the instrument 

and despite the missing strategy component, it still served as a strong source for 

remediation recommendations. 

Engagement survey.  Students were asked to estimate the number of hours they 

spent doing various activities during a typical week (e.g., preparing for the course, during 
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and after class hours; working; and leisure activities).  They were also asked to state the 

grade they were working towards and the grade they would expect to earn in the class.  

The survey consisted of 22 questions that, for the purpose of this study, were categorized 

into three clusters: time, grades, and engagement.  The time clusters contained questions 

related to the amount of time students spent studying, time on-task, working for pay, and 

at leisure time.  The grades cluster contained questions related to their desired grade and 

their actual grades.  The engagement cluster contained all the Likert-type items (e.g., 

five-point scale; one being Extremely Characteristic of Me and five being Not at All 

Characteristic of Me), relating to students’ homework and classroom behaviors.  Figure 

10 shows a sample question from the time cluster.  The data gathered from this 

instrument were used to supplement the information given by the students in the Study 

Skills subscale (ACES-College) and to inform the revision of an instructional model for 

remedial students. 

 
Figure 10.  Engagement survey sample question.  For the entire survey, see appendix G 

Knewton embedded assessments.  The embedded assessments in the program 

consisted of content-specific quizzes within the lessons, and posttests to measure mastery 

(Figure 11).  These tests determined which lesson was most suitable to the students’ 

current knowledge level.  All lessons were initially locked; a pretest had to be taken to 

unlock the lesson.  Thus every lesson began with the Show us What You Know (SWYK) 

test.  Once the test was taken the lesson was unlocked, irrespective of the score earned., 



 

33 

Demonstrating 100% mastery on this test placed the student out of that lesson.  That is, 

the student was not required to view the lesson and could move on to the next lesson.  

Those who did not demonstrate 100% mastery had the option to view the lesson first and 

then take a Test your Skills (TYS) posttest, or go directly to the posttest.  Scoring a 

minimum of 70% on this first posttest would enable the student to move to the next 

lesson.  Students earning anything below 70% were required to go through the lesson, at 

the end of which another TYS test was given.  The same criteria applied for the second 

posttest, a student needed to earn 70% to move to the next lesson.   

However, scoring below 70% on the second posttest, would put the course in 

Focus Mode.  This meant the student would be taken to previous concepts, as far back as 

necessary to fill the knowledge gap, even to lessons out of which the student may have 

previously placed.  At the end of the Focus Mode, the students were presented with the 

third TYS posttest.  If a student did not earn the minimum 70% on this test, the student 

would remain in this lesson.  However, the student was given the option to move to the 

next lesson, if desired, but had to at some point return to this lesson and earn the 

minimum passing score (70%).  To complete the course, a passing score on all lessons 

was required and upon completion, access to the final exam was granted. 

As mentioned previously, during the data collection, if a student was missing a 

test (either pretest or posttest) a score of -100 was assigned.  The number of posttests was 

also meant to be an indicator of how much students may have interacted with the lesson.  

For example, a missing pretest could indicate that the student went straight to the posttest 

and skipped the lesson.  If a student had one pretest and only took one posttest, it was 

possible that part of the lesson was skipped.  If the student took two posttests, this 
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indicated the student would have gone through the entire lesson.  If a student had three 

posttests or more, then it was safely assumed the student was placed in Focus Mode. All 

posttests after the second posttest were identical. 

 

Figure 11. Diagram of Knewton embedded assessments 
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Knewton engagement time records.  The students’ level of engagement was 

tracked through session activity.  A session constituted a single login/logout period; 

students were considered logged off after 15 minutes of inactivity.  These session periods 

were only rough indicators of student activity, as some browser refresh rates may have 

caused the system to generate multiple logins.  Additionally, if students were working on 

multiple lessons at once, their activity was only registered as a single session.  Thus, this 

information was used with caution and checked against other indicators, such as in-lesson 

times (which started when the students began to view the content in the lesson and ended 

when they completed the posttest) and lessons posttests.  Despite the limitations, these 

data were expected to provide a level of resilient behavior in the course.   

The time records, along with the number of posttests taken, and the number of 

lessons completed, were used as a rough measure of course commitment (i.e., one of the 

indicators of resilient behavior).  Resilient behavior was not part of the planned data 

collection; however, the existing data aligned with what could be defined as resilient 

behavior.  For the purpose of this study, resilient behavior aimed to assess the level of 

academic resiliency exhibited by students during the course.  Self-efficacy was found to 

be the strongest predictor of academic resilience (Martin & Marsh, 2006).  Martin and 

Marsh hold that academically resilient students exhibit three specific behaviors: (1) they 

enjoy their courses, (2) they are more likely to participate, and (3) they have an enhanced 

commitment to learning.  The Knewton records were intended to serve as indices of 

resilient behavior to operationalize this construct.  Specifically: (1) course enjoyment was 

measured by attendance, operationalized as the frequency of logins, (2) participation was 

operationalized by the number of lessons viewed, and (3) commitment to learn was 
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measured by perseverance, operationalized as the number of posttests taken.   These 

indices collectively were referred to as course commitment. 

Program: Remedial Adaptive Math Course   

The remedial MAT 110 —Enhanced Freshman Mathematics course was 

developed to meet the needs and requirements of the university and to align with 

common core standards.  The course used the Knewton adaptive learning software 

program—Knewton Math Readiness.  The content was aligned with seven common core 

subjects: ratios and proportions, the number system, expressions and equations, 

geometry, statistics and probability, functions, and algebra.  The purpose of the course 

was to help students develop the skills needed to enter the first-year college mathematics 

course required by their program of study.  The enrollment in this course consisted of: 

students who were required to take MAT 117 but their ALEKS scores were between 0 – 

29; students who were required to take MAT 142 and their ALEKS scores were between 

0 – 39; and students who earned a passing score on ALEKS but did not feel ready to take 

a first-year college level mathematics course.   

According to one of the math professors who teaches these courses at ASU (I. 

Bloom, personal communication, March 14, 2013), students placed in the remedial 

course typically fall into one of three broad placement-categories: (1) lack of knowledge 

base, students with many deficiencies, (2) explicit deficiency, students who struggle with 

a specific concept, (3) negligence, students who do not take the placement test seriously.  

These categories tend to result in a wide range of skill proficiencies and deficiencies 

within a single classroom, posing a real challenge for the traditional one-size-fits-all 

teaching approach.  Professor Bloom believes the adaptive approach can be particularly 
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beneficial in addressing this challenge by allowing students to progress through the 

lessons at their own pace and at a rigor best suited to their ability.  She also believes that 

students are more likely to succeed in the course when faculty members utilize the 

information provided by the Knewton adaptive program to intervene as needed.  

Instructors who teach using the adaptive environment typically provide assistance during 

scheduled class times, and are able to use the Knewton student-progress information as a 

tool to determine the type of assistance to be given when it is most needed.  For example, 

when students struggle with a specific concept, those students are placed in a red zone, 

alerting faculty of the problem area and flagging the students to watch (Figure 12).  

Faculty can then approach the student, or a small group of students to provide focused 

instruction and further explanation of the concept in question.   

 
Figure 12.  Knewton: faculty tools and resources. 

The Knewton Math Readiness program uses a learner analytics adaptive engine 

to adapt instruction and create a self-paced system in which students’ math abilities are 

continually assessed using multiple indicators to determine the most appropriate 

individualized learning path.  The engine analyzes students behaviors and uses the 

students’ diagnostic quizzes to adapt instruction as needed.  Instruction is then 

personalized to students’ current skill proficiencies, using Knewton’s probabilistic model 
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(Figure 13), which identifies the specific content each student is most likely to master 

(Knewton, n.d.; 2012).  

 
Figure 13.  Knewton’s probabilistic graphical 

model presented in their whitepaper, 2012.  The 

model illustrates how relationships between 

concepts are determined. 

The Knewton lessons could be conceptualized as having four key segments with 

multiple opportunities for students to demonstrate mastery of the lesson content at any 

point during the lesson—Test your skills!  The first segment was a lesson introduction 

which presented the topic through a video lecture that provided a brisk high-level 

explanation.  The second segment was a Warm Up, which quizzed students on the 

concepts presented in the lesson introduction.  The third segment consisted of three or 

more Workshops depending on the topic; each of the workshops explained the key 

concepts discussed in the introduction in greater detail.  The workshops were presented as 

video lectures with many real-world examples; at the end of each workshop students 

were given the opportunity to solve similar problems through workshop-based quizzes—

Now try it!  All questions in every quiz were followed by detailed explanatory feedback, 

using video or a step-by-step written format.  Each activity took approximately 10-15 

minutes to complete.  The fourth segment was a Wrap Up which consisted of a lesson-
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based quiz.  Students were able to view their current progress through a dashboard and 

workspace which contained all the information related to the course, from scores earned 

to lessons to be completed.  Their dashboard also provided students access to lesson 

workshops previously viewed and feedback received on quizzes already taken (Figure 

14).   

  
Figure 14.  Knewton Dashboard:  student tools and resources. 
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The modality of this course is typically hybrid (online and face-to-face).  Most of 

the courses were offered for a period of 15 weeks, but there were also 7.5 week sessions.  

The course class time typically consisted of one 75-minute face-to-face period, and one 

open learning session per week.  Regardless of the course session length, the actual 

course length was determined by the students’ skill level as demonstrated by their 

mastery.  A student, with few deficiencies, could conceivably complete the course in as 

little as two weeks, however all students are given two full semesters to complete the 

MAT 110 course.  When students were not able to complete all the required lessons 

within the semester, a grade of Z (i.e., in progress) was given and those students would 

take the course again the following semester, with the course beginning where the 

students left off.  It is important to note that the grade Z should not be equated with a 

failing grade, as a student receiving a Z would be simply utilizing the maximum length 

allowed by the university to complete the course.  A student who continues on to the 

second semester and completes the course receives a mark of LC (i.e., learning 

complete); the instructor then assigns an actual grade through a grade-change process.  

Successful completion of the remedial math course enabled students to advance to 

the appropriate first-year mathematics course in their program.  The course was 

considered complete, when students passed all the core lessons (i.e., the minimum 

number of lessons required for their track).  Specifically, track one had 52 core lessons 

and prepared students for MAT 117: College Algebra. Track two had 46 core lessons and 

prepared students for MAT 142: College Mathematics.  The track was determined by the 

students’ program of study.  If a student was undeclared, by default, that student was 

placed in track one.  While there were a minimum number of lessons to be completed, the 
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content had up to 139 lessons, and students could take more or fewer lessons than the 

required minimum, depending on their skill level.  Note that placing out of a lesson 

counted as completing that lesson—hence students could take less than the minimum 

number of lessons.  The posttests generated from these lessons were the Knewton 

embedded assessments which were used as one of the performance indicators in this 

study.   

Data Analysis 

The academic performance expression presented earlier was used as a framework 

to answer the research question in this study (Figure 15).  This expression was also used 

as a basis to form this study’s predictions.  To answer the research question (i.e., How do 

cognitive ability and affective attributes moderate the mathematics academic 

performance of students in need of remediation?) a series of hypotheses were tested, 

using hierarchical linear regressions and analyses of covariance.  The breakdown in Table 

4 shows the variables used in the correlational analysis conducted to evaluate the 

relationship amongst the predictor variables. 

 
Figure 15.  Academic performance expression (expanded from Figure 2). 

 

  

-- DV 
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Table 4 

Statistical Analysis Breakdown – part 1 

Rationale Variables and analyses 

 

 

Evaluation of the 

correlation amongst 

predictors: cognitive 

ability, affective 

attributes, and resilient 

behavior. 

 

Correlations 

Cognitive Ability: 

SAT I (math) scores, ALEKS scores, and cumulative GPA 

scores  

Self-efficacy: 

ACES- pretest academic skills  

Motivation: 

ACES- pretest motivation 

Self-regulation: 

ACES- pretest: study skills 

Engagement: 

ACES- pretest: engagement 

Survey: 

Time: studying, on-task, at work, at play 

Grade: working towards, earned 

Engagement 

Resilient behavior: 

Perseverance: posttest frequency 

Participation: lesson completion rate 

Attendance: login frequency 

Ethnicity 

Gender  

 

It was anticipated that students’ cognitive ability would have a direct relationship 

to their academic performance, thus cognitive ability was used as a covariate throughout 

the analyses.  Also, the use of covariates was an attempt to equalize differences among 

the students thereby partially addressing issues related to the use of intact groups 

(Maxwell & Delaney, 2004).  The relationship between affective characteristics and 

academic performance was expected to vary as a function of resilient behavior.  To this 

end, a hierarchical multiple regression analysis was conducted to evaluate whether an 

interaction existed between affective attributes, resilient behavior, and academic 

performance and whether the interaction impacted the academic performance or students 

in a remedial course (Table 5).   
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Table 5 

Statistical Analysis Breakdown – part 2: Prediction One 

Rationale Variables Analyses 

Expression: 

 

Evaluating the expression: If 

academic performance was a 

function of cognitive ability 

(Ca) and affective attributes 

(Aa), then academic 

performance (Ap) was 

expected to significantly 

improve as cognitive ability 

and affective attributes 

increased; further this 

improvement was expected to 

vary as resilient behavior 

(Rb) varied.   

 

These analyses evaluated the 

relationship between 

cognitive ability, affective 

attributes, and academic 

performance; and the 

interaction between these 

variables and academic 

resilience, while controlling 

for cognitive ability.   

Control variables 

Cognitive ability (Ca):   

Prior achievement: SAT, ALEKS & 

GPA scores  

Independent variables 

Affective attributes (Aa): 

Motivation: ACES- pre Motivation 

Self-regulation:  ACES- pre Study 

skills 

Engagement: ACES- pre 

Engagement 

Resilient behavior (Rb):  

Self-efficacy:  

ACES- pre academic skills  

Course commitment:  

Perseverance: posttest quantity 

Participation: lesson rate 

Attendance: login frequency 

Dependent variables
a
 

Academic performance (Ap):  

Embedded quiz scores  

Final exam  

Course grade  

Hierarchical multiple 

regression 

 

Control variables 

Cognitive ability 

(Ca) 

Predictors
 (a)

 

Affective attributes 

(Aa) 

Resilient behavior 

(Rb) 

Dependent variables 
(a)

 

Academic 

performance (Ap) 

Note. 
a
One analysis for each dependent variable. 

It was further hypothesized that resilient behavior would mark the difference 

between the academic successes of students.  To better understand this relationship, 

another multiple regression analysis was conducted.  Table 6 shows the variables used for 

that analysis.   
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Table 6 

Statistical Analysis Breakdown – part 3: Prediction Two 

  Rationale Analyses 

To evaluate whether students with 

higher performance scores also had 

higher resilient behaviors  

 

 

 

Repeated measures ANOVA 

Within-subject factors:   

Resilient behavior (Rb) – pre / post 

Between-subject factors:  

Pass course & Fail course  
 

One-way ANOVA 

Factors
 :  

Resilient behavior (Rb)  

Between-subject factors:  

Pass final exam  &  Fail final exam 

 

A final prediction was made that the mastery environment would have a positive 

impact on the academic performance and the academic competence of students in need of 

remediation.  To this end, Analysis of covariance (ANCOVA) was conducted to evaluate 

how the learning environment affected each of the seven sub-scales of Academic 

Competence (Table 7).  The variables gender and ethnicity were also used in this analysis 

to determine if the effects varied across these variables. To evaluate the performance 

component of prediction Three, the paths the students took within the course were also 

examined.  That is, the way in which they approached the lesson content; the proportion 

of students that placed out of lessons and their corresponding performance scores 

compared to students who systematically went through every lesson and their 

corresponding performance scores.   
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Table 7 

Statistical Analysis Breakdown – part 4: Prediction Three 

Rationale Variables Analyses 

Evaluation of the effects of 

the learning environment 

on students’ academic 

competence, and whether 

the effects vary across 

gender and ethnicity and 

their academic 

performance. 

Covariates  

Cognitive ability: 

ALEKS scores  
 

Variables 

ACES–pretests and posttests: 

Academic competence  

Academic Skills (self-efficacy) 

Academic enablers 

Affective attributes (self-

regulation (study skills), 

engagement, motivation) 

Gender  

Ethnicity  

Repeated measures ANCOVA 

 

Covariates 

Cognitive ability 

Within-subject factors 

ACES pre Knewton 

ACES post Knewton 

Between-subject factors 

Gender  

Ethnicity   

Mixed methods 

To evaluate the paths 

taken by students and to 

identify patterns within 

the lessons 

Descriptive 

Proportion of lessons: 

Placed; one posttest; two posttests; and 

three posttests or higher.  

 

Two-way ANOVA 

Factors
 
 

Lesson average attempts (0, 2, 3) 

Gain score 

 

Independent samples  t-Test 

Variables
 
 

Lesson average attempts (0, 2, 3) 

Grouping variable
 
 

Pass exam / fail exam 

 

An additional descriptive analysis was conducted to evaluate the open-ended 

responses provided through the ACES instrument (Table 8), relating to students’ learning 

preferences and their reflections on how they learn best.  This information and the data 

gathered through the engagement survey were used to inform the recommendation made 

under the implications for practice section in Chapter Four.   
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Table 8 
Variables for Additional Exploratory Analysis  

Variables Analyses  

Independent measures  

Pre and post ACES: open-ended question 

Cognitive ability: ALEKS scores 

Engagement self-report Survey: 

Cluster I 

Time spent preparing and studying 

Time spent working 

Time spent playing 

Cluster II 

Grade working towards 

Grade earned 

Cluster III 

Rankings on the level of student 

engagement 

Dependent measures 

Academic performance: 

Final exam 

Descriptive 

 

Summary of ACES responses 

Summary of engagement responses 

 

Stepwise multiple regression (backward method) 

 

Control variables 

Cognitive ability (Ca) 

Predictors  

Time spent preparing and studying 

Grade working towards 

Engagement ratings 

Dependent variables 

Academic performance (Ap) 
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Chapter 3 

RESULTS 

This study examined the relationship between the academic performance of 

college students, in a remedial mathematics course, and key variables considered to be 

contributors to their academic success—cognitive ability, affective attributes, and 

resilient behavior.  Three predictions drove the examination of these variables and their 

relat1ionships.  To this end, several hierarchical multiple regression analyses and an 

analysis of covariance were conducted.  Before examining the results for each of these 

predictions, descriptive data for the key variables used throughout these analyses are 

presented in Table 9.  The cognitive ability related variables were previously presented in 

Table 2.   

Descriptive Data for Key Variables 

Affective attributes is not a formal construct measured on the ACES-College but 

rather a composite variable comprised of engagement, motivation, and self-regulation 

(study skills).  In this study, all three variables received ratings above grade level—

engagement (M = 30.85, SD = 5.43, n = 1,317), motivation (M = 43.08, SD = 5.53, n = 

1,315), and self-regulation (M = 43.60, SD = 5.47, n = 1,311)—indicating that students 

believed their affective attributes were at the high end of the competent level on the 

Competence Continuum of the ACES-College manual (see Figure 9).  Engagement fell 

within the competent range on the competence continuum, 90% CI [26.84, 34.84].  

Motivation and self-regulation were at the top end of the competent range, 90% CI 

[40.08, 46.08] and 90% CI [40.60, 46.60] respectively.   
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Resilient behavior was conceptualized as self-efficacy and class commitment.  

Overall, students rated their self-efficacy (academic skills) at grade level (M = 101.81, 

SD = 16.37, n = 1,317) falling well within the competent range on the competence 

continuum, 90% CI  [96.81, 106.81].  The variables that comprised class commitment 

were significantly skewed (perseverance, Skew = 3.96, SE = .07, Kurtosis = 31.76, SE = 

.14; participation, Skew = -1.70, SE = .07, Kurtosis = 2.81, SE = .14; attendance, Skew = 

3.54, SE = .07, Kurtosis = 20.55, SE = .14), therefore the median is presented to more 

meaningfully represent the sample.  Perseverance was operationalized as the number of 

posttests taken.  The median number of posttest taken was 53, with 37 posttests in the 

lower quartile, and 68 posttests in the upper quartile.  The minimum number of posttests 

taken was zero and the maximum was 482.  Participation was operationalized as the 

number of lessons completed.  The median number of lessons completed was 56, with 47 

lessons in the lower quartile, and 56 lessons in the upper quartile.  Attendance was 

operationalized as the number of logins.  The median number of logins was 88, with 61 

logins in the lower quartile, and 130 logins in the upper quartile.   

Academic success was operationalized through two key performance outcomes, 

final exam scores and the Knewton embedded assessment scores.  The maximum 

possible score on the final exam was 30 points.  Students needed to complete all the 

Knewton lessons before they gained access to this exam, thus not all students took the 

final exam (M = 18.30, SD = 8.20, n = 1,869).  An examination of the quartiles indicated 

that at least 50% of the students passed the exam and 25% of the students scored 77% or 

higher.  The Knewton embedded assessments were comprised of pretest scores and 

posttest scores for students’ math skills.    
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The averaged pretest and posttest scores shown in Table 9 represent the raw 

scores.  However, to compute the gain scores, placed-out students were taken into 

account.  When a student placed-out of a lesson, by scoring 100% on a pretest, the data 

collection criterion systematically assigned a -100 score to that student’s posttest.  For the 

purposes of this study, these values were changed to zero to maintain students’ actual 

score.  The choice to use a value of zero instead of non-value (e.g., blank) was to ensure 

SPSS would not treat these cases as missing data.  To avoid the misleading effects of 

leaving all the zeros in the data, before computing the gain score, all the pretests with a 

score of 100 were excluded and all the corresponding posttests with scores of zero were 

also excluded.  This created a more accurate representation of a gain score as a result of 

going through the lessons (M = 40.61, SD = 11.86, n = 1,303).  Students who placed-out 

of the lessons by definition already possessed the knowledge so they would not 

experience any gain; therefore, excluding these students from the gain scores was deemed 

appropriate. 
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Table 9 

Means and Standard Deviations for the Scores of Key Variables 

      Quartiles  

Variable n Missing M (SD) Variance Min 1st 2nd 3rd Max 

ACES pre 

Self-efficacya  1317 909 101.81 (16.364) 267.78 29 91 101 112 150 

Affective attributesb 1311 915 117.58 (13.77) 189.63 56 108 119 128 140 

Academic enablersc 1311 915 151.12 (19.23) 369.63 40 140 153 165 180 

Academic 

competenced 

1309 917 252.93 (30.38) 923.18 73 236 253 272 330 

ACES post 

Self-efficacy 806 1420 106.44 (16.94) 286.99 30 93 105 118 150 

Affective attributesb 803 1423 115.54 (16.17) 261.49 66 105 116 129 140 

Academic enablersc 803 1423 149.39 (19.54) 381.96 90 137 150 165 180 

Academic 

competenced 

802 1424 255.77 (30.54) 932.86 169 236 255 274 330 

Resilient behavior 

Course commitment: 

Perseverance 
1319 907 57.71 (38.28) 1465.48 0 37 53 68 482 

Participation 1320 906 49.31 (13.43)  180.35 1 47 56 56 125 

Attendance 1320 906 109.71 (90.15) 8126.99 0 61 88 130 909 

Academic success 

Knewton averaged 

pretest scores 

1319 907 56.18 (14.75) 217.64 0 46.20 57.07 66.52 100 

Knewton averaged 

posttest scores 

1319 907 60.68 (12.78) 163.22 0 54.46 61.96 68.54 100 

Knewton gaing 1303 923 40.60 (11.86) 140.78 -5 32.95  38.99  47.37   100 

Final exam 1869 357 18.30 (8.20) 67.23 0.00 17.50 21.30 23.00 30.00 

Engagement survey 

Study – preparation e 451 1775 2.92 (1.40) 1.96 1 2 2 4 8 

Time on-task e 450 1776 3.05 (1.60) 2.55 1 2 2 4 8 

Overall engagement f 438 1788 3.66 (0.80) 0.64 2 3 1 1 5 

Note. aScores represent the summed ratings on student’s ability in relation to other students at their grade level 

(e.g., 10 = Far Below and 50 = Far Above)—Academic Skills.  bScores represent the summed ratings of how 

often a given skill was used (e.g., Depending on the scale: engagement, motivation, or study skills) 8-10, = 

Never and 60-50 = Almost Always).  cScores Represent the total sum of the scales that make up the domain 

(e.g., academic skills: Reading/writing, math/science, and critical thinking.  Academic enablers:  Interpersonal 

skills, study skills, engagement, and motivation).  d Scores represent the grand total of all the scores of all the 

scales (e.g., academic skills and academic enablers).  eScores represent a range of hours (e.g., 1 = 0 hrs. and 8 = 

more than 30 hrs.). fScores represent averaged ratings (e.g., 1 = Not At All Engaged and 5 = Highly Engaged). 
gScores represent the difference between the total pretest average and the total posttest average, excluding pretest 

scores of 100 and posttest scores of zero. 
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Missing data strategy.  It is important to note that each of the analyses 

performed varied in sample size due to missing data.  A Little’s MCAR (Missing 

Completely at Random) test was conducted to determine if the missing values could be 

replaced with predicted values to retain a more consistent sample size throughout the 

analyses (Little, 1988).  However, this approach was not a viable option for this study, as 

the MCAR test yielded significant results (Chi-Square = 2144.27, df = 1789, p < .05).  

Multiple regression and ANCOVA assumptions were tested (i.e., normality, homogeneity 

of variances, multicollinearity) as described below.  All dependent measures were 

independent and continuous in nature. 

Normality and data transformations.   All variables were examined for 

normality and transformations were performed prior to conducting the statistical 

analyses.  A number of variables exhibited some level of non-normality and while a large 

sample size is robust to this assumption, there were some variables that exhibited extreme 

skewness and kurtosis exceeding what might be considered problematic (i.e., skew values 

greater than 2.0; von Hippel, 2010).  Some of the extreme scores contributed to the non-

normality of the data; however, those extreme scores were not isolated cases and 

removing them may have meant removing some aspect that described the true population.  

Thus, transforming the variables to address this non-normality was necessary.  

Logarithmic (log) transformations, as described in the transformations section, were 

performed on variables that exceeded the Skew = 2 threshold (Field 2009).   

The three variables ALEKS, cumulative GPA, and SAT were used as combined 

indicators of cognitive ability.  Therefore, it was important to attempt normality and 

consistency among these variables.  Additionally, all three indicators were measured on 
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different metrics and transformation to a single scale was necessary.  All three variables 

were transformed into Z-scores.  The SAT variable was normally distributed so the only 

transformation performed on this variable was a Z-score transformation.  The ALEKS 

variable had a pronounced positive skew and was kurtotic, Skew = 2.04, SE = .05, 

Kurtosis = 6.04, SE = .11, which exceeded the skewness criteria and thus log 

transformed.  The cumulative GPA variable was less extreme and did not meet skewness 

criteria, Skew = -.94, SE = .05, Kurtosis = .37, SE = .11.  Nonetheless, the desire to 

maintain consistency among these three variables was deemed more important and thus 

the cumulative GPA was also log transformed.   

The same reasoning was used for the Final Exam variable, which exhibited a 

negative skew, Skew = -1.49, SE = .06, Kurtosis = .77, SE = .11.  The resilient behavior 

variables perseverance, participation, and attendance also had non-normal distributions, 

all of which exceeded the skewness criteria and transformed accordingly (i.e., 

perseverance, Skew = 3.96, SE = .07, Kurtosis = 31.76, SE = .14; participation, Skew = -

1.89, SE = .07, Kurtosis = 2.26, SE = .14; attendance, Skew = 3.55, SE = .07, Kurtosis = 

20.59, SE = .14).  

The assumptions of the statistical parametric tests that were used in this 

investigation are contingent on a normal distribution.  A log transformation is believed to 

be particularly effective at addressing issues related to homogeneity of variance and 

normality (Field, 2009).  Given the skewness of the data, log transformations were 

selected to obtain residuals approximately symmetrically distributed.  Furthermore, all 

the variables that were transformed received the same type of transformation to avoid 

inconsistencies (Keene, 1995).  Two forms of log transformations were used: log natural 
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(Ln = base-e; where e = 2.72) and log common (Log10 = base-10).  The log natural 

transformation is suited for continuous variables whereas the log10 is better suited for 

ordinal data.  The latter was used on the resilient behavior data, which measured number 

of logins, number of posttests and number of lessons. 

Log transformations have specific rules that must be met for the procedure to 

work well; such as, the distributions should have a right skew, and all values contained in 

the variable must be greater than zero (e.g., no negative or zero values are accepted).  

Since the ALEKS variable was positively skewed, a log transformation was appropriate.  

However, this variable contained zero scores and negative scores, which resulted from 

the Z-score transformation.  Consequently, a value of two was added to each score at the 

time of the transformation to satisfy the rules of the log transform procedure.  The 

cumulative GPA, since it was standardized, violated the log transform rules on all 

accounts.  Specifically, it had negative skewness, it contained zeros, and negative scores.  

This indicated that a reflection transformation needed to be included with the log 

transform.   A reflection is the process of taking the largest score within the variable and 

adding a value of 1, and then every score is subtracted from the sum (highest score + 1).  

This method removes the negative values and the zeros, and then flips the distribution to 

the right.  The resulting distributions for each of the transformed variables are shown in 

Figure 16.  

Homogeneity of variance. Given the lack of randomization and lack of 

normality, Type I errors may have been at risk; however, the large sample size was 

expected to address this concern.  An alpha level of .05 was used to perform all the 

analyses.  To address the independence of scores, students’ cognitive ability scores were 
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used as covariates on all the statistical analyses to partially offset the use of intact groups.  

Moreover, Levene’s tests (Levene, 1960 as cited in Gastwirth, Gel & Miao, 2009) were 

computed by using a one-way ANOVA with Final Exam as the dependent variable.  The 

test of equality of error variances revealed that the error variance was equal across the 

key predictor variables.  Cognitive ability, Levene’s statistic: F(14, 54) = 1.05, p = .42.  

Affective attributes, Levene’s statistic: F(14, 54) = 1.78, p = .07.  Self-efficacy, Levene’s 

statistic: F(14, 54) = 1.01, p = .46.  Resilient behavior (course commitment) Levene’s 

statistic: F(14, 54) = 1.19, p = .31.  

 
  

  
 

 

  
Figure 16. Distributions for transformed variables 
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Multicollinearity.  A correlation analysis amongst the predictor variables was 

conducted.  To address the non-normal distribution and the presence of outliers in the 

data, the Spearman’s rho correlations analysis was used.  This selection was based on the 

assumption that Spearman’s correlations are more robust when dealing with non-normal 

data (Field, 2009).  The untransformed versions of each of the variables were used for the 

correlation analysis.  There was no indication of concern as most variables had relatively 

small correlations (Table 10).  Self-efficacy and resilient behavior were negatively 

correlated, which may have resulted from the non-normal distributions, whereas affective 

attributes and resilient behavior were positively correlated.  Featured results are: self-

efficacy and perseverance, r = -.09, p = .02, n = 607; self-efficacy and participation, r = -

.03, p = .48, n = 608; self-efficacy and attendance, r = -.15, p < .01, n = 608; affective 

attributes and perseverance, r = .13, p < .01, n = 601; affective attributes and 

participation, r = .06, p = .17, n = 602; affective attributes and attendance, r = .12, p < 

.05, n = 602; and self-efficacy and affective attributes, r = .31, p < .01, n = 1,309.   
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Table 10 

Spearman rho Correlation Matrix of Key Predictor Variables 

 
r (p) 

n 

Variables 1  2 3 4 5 6 7 8 9 10 

1.  SAT 1 (.00) 

1130 
         

2.  ALEKS  .00 (.05) 

1128 

1 (.00) 

2122 
        

3.  Cum GPA  .05 (.11) 

1130 

.12 (.00) 

2122 

1 (.00) 

2124 
       

4.  Self-efficacy-AS .20 (.00) 

658 

.15 (.00) 

1309 

.04 (.16) 

1310 

. 1 (.00) 

1317 
      

5.  Academic  

enablers(a) 

-.12 (.00) 

654 

-.01 (.00) 

1303 

.17 (.00) 

1304 

.33 (.00) 

1309 

1 (.00) 

1311 
     

6.  Affective  

attributes(b)  

-.13 (.00) 

654 

-.03 (.39) 

1303 

.19 (.00) 

1304 

.31 (.00) 

1309 

.95 (.00) 

1311 

1 (.00) 

1311 
    

7.  RB: Perseverance  -.41 (.00) 

716 

-.17 (.00) 

1218 

.03 (.23) 

1220 

-.09 (.02) 

607 

.12 (.00) 

601 

.13 (.00) 

601 

1 (.00) 

1319 
   

8.  RB: Participation  .08 (.05) 

716 

.23 (.00) 

1219 

.32 (.00) 

1221 

-.03 (.48) 

608 

.06 (.16) 

602 

.06 (.17) 

602 

.51 (.00) 

1319 

1 (.00) 

1320 
  

9.  RB: Attendance  -.45 (.00) 

716 

-.22 (.00) 

1219 

-.07 (.01) 

1220 

-.15 (.00) 

608 

.11 (.01) 

602 

.12 (.00) 

602 

.76 (.00) 

1319 

.45 (.00) 

1320 

1 (.00) 

1320 
 

10. Survey: 

Engagement 

-.04 (.56) 

240 

.06 (.17) 

435 

.17 (.00) 

436 

.07 (.23) 

324 

.32 (.00) 

324 

.33 (.00) 

324 

.00(.90) 

245 

-.02 (.73) 

245 

-.03 (.66) 

245 

1 (.00) 

438 

Note. 
a
Academic enablers are comprised of: interpersonal skills, engagement, motivation, and study skills. 

b
Affective 

attributes is comprised of engagement, motivation, and study skills.  These predictors were never used in the same analysis. 

Prediction One: Supported 

The prediction that college students’ cognitive ability, affective attributes, and 

resilient behavior would have a direct relationship to their mathematics academic 

performance was analyzed with two linear hierarchical regressions using the transformed 

variables.  A list-wise method was used to remove missing data across all three sets of 

predictors drastically reducing the sample size for each of the analyses.  For each of the 

analysis, the predictors were entered in three steps, as outlined below, which resulted in 

three separate regression models for each analysis.  The dependent variable for the first 
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analysis was the final exam and the dependent variable for the second analysis was the 

Knewton embedded assessments (gain scores). 

Regression variables: 

1. Covariates: SAT I math, ALEKS, and Cumulative GPA.  

2. Two sets of predictor variables:  

a. Affective attributes: engagement, motivation, and self-regulation. 

b. Resilient behavior:   

i. Self-efficacy: reading and writing, math and science, and 

critical thinking. 

ii. Class commitment: perseverance, participation, and attendance. 

3. An interaction term: affective attributes-by-resilient behavior. 

Regression analysis one, DV: final exam.  The sample size for this analysis was 

315 students.  The first model yielded by this analysis contained the cognitive ability 

predictors, the second model contained the cognitive ability, affective attributes, and 

resilient behavior predictors, and the third model contained all the predictors plus the 

interaction term.  The second model was the model of interest that addressed the 

prediction which yielded significant results, R
2 

= .41, F(12, 302) = 17.29, p < .01.  This 

result indicated that the linear combination of all the variables—cognitive ability, 

affective attributes, and resilient behavior—statistically significantly predicted the 

variability in the academic performance of students on the final exam (Table 11).   

Affective attributes and resilient behavior accounted for and additional 16% of the 

variance in the academic performance on the final exam, beyond that accounted for by 

cognitive ability (Adjusted R
2 

= .38, ΔF(9, 302) = 9.12, p < .01).  The prediction that 
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affective attributes and resilient behavior would interact was also supported (ΔR
2 

= .01, 

ΔF(1, 301) = 7.27, p = .01), the relationship between academic performance and affective 

attributes-by-resilient behaviors strengthens as these variables increase.  It is inferred that 

students become more dedicated to their studies (e.g., more engaged, motivated, 

confident, and committed) as the slope of the relationship between affective attributes, 

resilient behavior, and academic performance become stronger β = .05, SEB = .02, p = 

.03, 95% CI for β [.004, .090].  In other words, above and beyond student’s cognitive 

ability, their final exam scores increased by .05 units as their affective attributes and 

resilient behavior increased (Figure 17).  This aligns with previous research on the factors 

that contribute to academic success (Bandura, 1977; Bloom, 1968, Schunk, 1991). 

Table 11 

Hierarchical Multiple Regression Coefficients.  DV: Final Exam 

Predictor β (SE) p 95% CI ΔR2 

Cognitive ability (institutional) constant 

SAT I - Math -.047 (.025) .068 [-.096, .003] .006 

ALEKS -.014 (.066) .831 [-.144, .116] .000 

Cumulative GPA -.572 (.079) .000 [.418, .727] .103 

Affective attributes (ACES) 

Engagement -.007 (.028) .812 [-.061, .048] .000 

Motivation .076 (.032) .018 [.013, .140] .011 

Self-regulation -.040 (.032) .211 [-.102, .023] .003 

Resilient behavior:  self-efficacy (ACES) 

Reading and writing -.074 (.033) .024 [-.139, -.010] .010 

Math and science -.061 (.030) .042 [-.119, -.002] .008 

Critical thinking .048 (.035) .164 [-.020, .116] .003 

Resilient behavior: class commitment (Knewton) 

Perseverance .672 (.217) .002 [.246, 1.098] .018 

Participation 7.305 (.937) .000 [5.461, 9.149] .119 

Attendance -.437 (.223) .051 [-.876, .002] .007 

Note. All predictors were standardized prior to analysis.  

 



 

59 

  

Figure 17. Graph of regression interaction effect 

Regression analysis two, DV: Knewton embedded assessment.  The sample 

size for this analysis was 327 students.  The dependent variable was the Knewton gain 

score.  The variables were entered in the same manner as with the final exam, thus three 

regression models were produced.  The second model, containing the covariate and 

predictor variables (affective attributes and resilient behavior), was also significant, R
2 

= 

.24, F(12, 314) = 8.28, p < .01.  Once again, the prediction of the relationship between 

cognitive ability, affective attributes, resilient behavior, and the academic performance of 

students measured by their math skill gains (total average math posttest – total average 

math pretest) was supported.  In this model, the linear combination of affective attributes 

and resilient behavior also proved to be a significant contributor to academic 

performance, accounting for an additional 5% of the variance in math skill gains 

(Adjusted R
2  

= .21, ΔF (9, 314) = 2.50, p = .01).   

The interaction prediction was not supported in this analysis (ΔR
2 

= .002, ΔF (1, 

313) = 1.01, p = .32) as documented in Table 12.  To ensure that this discrepancy in the 

Avg.: R
2
  =   .003 

 

High: R
2
  =   .506 

 

Low: R
2
  = 1.029 

 

Affective Attributes-by-Resilient Behavior 
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results was not potentially due to outliers in the resilient behavior data, a regression 

analysis was conducted excluding extreme values (n = 321).  As anticipated, the results 

indicated that the outliers did not present a problem, for the analysis yielded similar 

results for the interaction term (ΔR
2  

= .005, ΔF (1, 309) = 1.84, p = .18) and almost 

identical for the model of interest (R
2 

= .23, F(10, 310) = 9.49, p < .01).  

Table 12 

Hierarchical Multiple Regression Coefficients, DV: Knewton Embedded Assessment 

Predictor β (SE) p 95% CI ΔR2 

Cognitive ability (institutional) 

SAT I – Math -1.551 (.580) .008 [-2.693, -.409] .017 

ALEKS -4.918 (1.485) .001 [-7.840, -1.995] .026 

Cumulative GPA 1.808 (1.729) .296 [-1.593, 5.210] .002 

Affective attributes (ACES) 

Engagement .144 (.115) .212 [-.082, .369] .003 

Motivation -.022 (.133) .870 [-.283, .239] .000 

Self-regulation (study skills) .097(.130) .454 [-.158, .353] .001 

Resilient behavior:  self-efficacy (ACES) 

Reading and writing .054 (.119) .651 [-.181, .289] .000 

Math and science -.185 (.110) .092 [-.401, .031] .006 

Critical thinking -.108 (.122) .375 [-.349, .132] .001 

Resilient behavior: class commitment (Knewton) 

Perseverance 2.252 (5.049) .656 [-7.682, 12.186] .000 

Participation 1.596 (18.102) .930 [-34.020, 37.212] .000 

Attendance 11.641 (5.269) .028 [1.274, 22.007] .011 

 

Prediction Two: Not Supported 

It was also predicted that resilient behavior would mark the difference between 

students who succeed in the class compared to those who did not.  Success was defined 

as passing the course.  From the perspective of testing this prediction, an examination of 

the resilient behavior between students who failed against those students who passed was 

not possible, as there were no resilient scores for those who failed.  Conceivably, a 
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comparison was still possible if all those students who did not pass the class were 

grouped into a category of not-pass.  This category included students listed as in 

progress, students listed as learning complete, and students who withdrew from the 

course.  It is important to note that the students being grouped under the not-pass 

category were not considered failing, but expected to have some differences which may 

have accounted for not having completed the course within one semester.  

Acknowledging that the results of an alternate analysis would only partially address the 

prediction, a repeated-measures ANOVA was conducted to compare the resilient 

behaviors of those who passed against those who did not pass.  After removing cases with 

a list-wise method, the final sample size for this analysis was 607 students.  The between-

subject factor was course grade, with two levels: pass and not-pass.  The within-subject 

factor was resilient behavior with four levels: self-efficacy, perseverance, participation, 

and attendance (Table 13). 

The results of the between-subjects effects of the repeated measures ANOVA 

showed that the mean scores for resilient behavior between the pass and not-pass groups 

were not significantly different F(1, 605) = 2.23 p = .14, η
2
 = .004, indicating no 

significant differences in the resilient behavior of those who passed the exam compared 

to those who did not pass the exam (M = .04, SE = .03, p = .14, 95% CI [-.01, .09].  These 

results align to the notion that the students in the not-pass group did not constitute failing 

students.  Thus, Prediction Two was not supported by this alternate analysis.   

Nonetheless, a more meaningful comparison was still possible if the exam scores 

were dichotomized into a group of students with scores of 19.5 points and higher into a 

pass-exam group (e.g., assuming a 65% score to pass the exam) and a second group of 
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students with 19.4 points and below into the fail-exam group (n = 1163).  Using these 

pass/fail criteria, 72% of students passed the final exam.  A one-way ANOVA was 

conducted with the exam pass/fail category as the factor and resilient behavior as the 

dependent variable.  The results were not significant, F(1, 1161) = 3.31 p = .07.  There 

were no statistical differences in the academic resilience (self-efficacy, perseverance, 

participation, and attendance) mean scores between students who failed the exam and 

students who passed the exam.  This established without any further doubt that Prediction 

Two was not supported. 

Table 13 

Statistics for Repeated Measures ANOVA 

 Descriptive statistics Resilient behavior 

Variables Pass (n = x) Not-pass (n = x) Marginal means 

 M (SD) M(SD) M(SE) 95% CI 

Self-efficacy .01 (1.04) -.54 (1.11) -.022 (.054) [-.129, .084] 

RB: Perseverance .30 (.13) .20 (.24) .252 (.008) [.236, .268] 

RB: Participation .82 (.02) .88 (.06) .851 (.002) [.848, .854] 

RB: Attendance .30 (.14) .23 (.18) .266 (.008) [.251, .281] 

Grade: pass    .316 (.024) [.333, .380] 

Grade: not-pass   .316 (.024) [-.013, .013] 

Note. All variables were standardized.  

As part of Predictions Two and Three, an examination of the paths students took 

throughout the course was conducted.  The intent was to understand the role of student’s 

resilient behavior as students went through the lessons.  It was also desired to investigate 

the impact of the learning environment on academic performance.  Given that this 

exploration was going to be based on the relative performance of students, based on their 

pretest and posttest scores, a paired-sample t-test was conducted between the mean scores 

of these tests.  The results indicated that the mean differences were significant, t(1318) = 



 

63 

8.76, p < .01, Cohen’s d = .29 (corresponding to a small effect, Cohen 1992); thus, the 

qualitative analysis followed with the reassurance that these differences were not trivial.   

Analysis of lesson paths: Predictions two and three.  The lessons were 

reviewed to evaluate the impact of the environment on performance, and to identify 

patterns among the various student resilient behaviors: placing out of lessons, repeated 

posttest attempts, and viewing of entire lessons.  As stated before, when students 

demonstrated 100% mastery on a lesson pretest, they did not have to view the lesson or 

take the posttest.  Consequently, these students had zero posttest attempts and a score of 

zero on their posttests.  As one might expect, these occurrences resulted in quite an 

unbalanced proportion of lower posttest scores compared to the pretest scores (Table 14), 

particularly in lessons were the placed-out rate was as high as 79%. 

Table 14 

Lessons with High Placed-out Rate:  40% and higher 

  

Average mean 

scores 

   
Lessons in MAT 110-track-1 

(117) 

% Placed 

-out 

M 

 pre 

M 

 post 

Max 

atmpts n 

n Placed-

out 

The number system 

1) Factors and multiples 40 77.00 53.00 1 1221 499 

2) Negative quantities 48 81.27 44.60 1 1169 563 

3) Decimals 66 88.60 33.48 0 1221 807 

4) All about addition 79 92.97 21.42 0 1153 909 

Equations and expression 

5) Independent and dependent 

variables 

41 74.00 53.00 1 1197 495 

6) Inequalities on the number line 44 79.11 50.38 1 1197 529 

7) Testing values 45 81.73 47.44 1 1197 534 

Ratios and proportions 

8) Fraction division 53 75.93 40.63 1 1212 642 

9) Ratios and rates 55 83.46 42.71 1 1212 663 

Note.  The average number of attempts (atmpts) per lesson was 1. The 75
th

 Percentile score = 90 
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This was not as evident in the lessons were the proportion of placed-out students 

was below 20%.  Nevertheless, both of these circumstances evidenced the inverse 

relationship between placed-out rate and lesson difficulty (Figures 18-19), with a higher 

rate of students placing out of earlier lessons, up to 79% in the MAT 110-track-117 and 

as high as 90% in the MAT 100-track-142.  Their perseverance (number of test attempts) 

did not follow this obvious pattern, as one would expect the difficult lessons requiring 

additional posttest attempts, yet the majority of lessons had an average of one posttest 

attempt—36 out 52 completed lessons in the 117 track and 12 out of 32 completed 

lessons in the 142 track (Table 15). 

 
Figure 18.   High proportion of placed-out students by lesson 

Lesson names:  1) Factors and multiples.  2) Negative quantities.  3) Decimals.  4) All about 

addition.  5) Independent and dependent variables.  6) Inequalities on the number line.  7) Testing 

values.  8) Fraction division.  9) Ratios and rates (see Table 14) 
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Figure 19.   Low proportion of placed-out students by lesson 

Lesson names:  1) Rational exponent rules. 2) Moving in the xy-plane. 3) Scientific notation.  4) 

Tricks of equality. Ratios and Proportions. 5) Ratios and fractions.  6) Domains and change 7) 

Understanding functions. 8) Functions in the world. 9) Linear functions. 10) Inverting linear 

functions. 11) Graphing quadratic and piece-wise functions. 12) Slope. 13) Composing functions. 

14) Graphing radical and polynomial functions. 15) Building functions. 16) Linear and exponential 

expressions (see Table 16). 

The number of posttests also served as a rough indicator of whether a student 

viewed the content or not.  It is important to note that one test attempt may have indicated 

that the student did not go through the entire lesson or they could have skipped a lesson 

all together.  It was not possible to know which option the student could have taken, as 

upon completing the pretest, and scoring under 100%, students had access to both, the 

lesson and the first posttest. With the majority of lessons having an average of one 

posttest attempt (77% for the 117 track and 63% for the 142 track), it rendered a great 

portion of this data impractical to evaluate, as the meaning of the results would be 

inconclusive. 
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Table 15 

Lessons with an Average Posttest of One 

  

Average mean scores Posttest 

  

Lessons in MAT 110-track-1 (117) 

%  

Placed-

out 

M 

 pre 

M 

post 

Score at 

75P 

Max 

atmpts n 

n 

Placed-

out 

The number system 

1) Properties of math 17 61.28 67.92 80 21 1155 192 

2) Fractions and decimals 25 64.20 62.57 90 8 1153 293 

3) Negatives in the xy plane 28 71.43 59.73 90 12 1169 332 

4) Long division 32 79.57 62.25 90 6 1202 394 

Equations and expression 

5) Irrational numbers 5 53.84 79.69 90 21 1082 57 

6) Real world algebra 6 50.06 75.72 90 8 1188 66 

7) Exponent rules 12 51.16 71.30 90 12 1166 142 

8) Systems of linear equations 15 50.12 69.99 90 6 1029 151 

9) Solving linear equations 15 51.29 72.93 90 21 1029 154 

10) Mathematical expressions 26 67.74 58.68 80 8 1202 312 

11) Square and cube roots 29 61.86 65.36 100 12 1166 333 

12) Equivalent expressions 32 71.09 65.00 100 6 1202 386 

13) Equations 37 73.96 60.18 100 21 1197 442 

14) Variables and operations 38 73.65 56.74 90 8 1202 452 

Ratios and proportions 

15) Proportions 4 37.13 80.08 90 16 1177 44 

16) Ratio applications 15 60.50 71.92 90 16 1212 178 

17) Percents 19 55.38 75.35 100 15 1212 230 

18) Ratios and percents 32 61.21 60.83 100 23 1177 375 

Functions 

19) Basic functions 16 55.44 73.93 90 22 1102 176 

20) Features of linear and exponential 

functions 

17 53.96 69.59 90 20 1017 171 

21) Linear equations 18 46.84 69.20 90 22 1114 200 

22) Features of quadratic functions 21 54.21 67.85 90 22 969 199 

Algebra 

23) Polynomial operations 4 54.65 64.41 90 13 1022 44 

24) Using units 8 54.32 76.93 90 17 1128 90 

25) Complex numbers 10 35.67 76.37 90 20 1022 104 

26) Quadratic expressions 26 64.97 59.44 80 29 1022 268 

27) Solving word problems 35 70.70 57.55 90 12 1128 397 

Note.  The average posttest attempt for all these lessons was 1. 
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Contrariwise, two attempts on the posttest had a more substantial interpretation.  

Two posttests indicated that the student viewed the lesson in its entirety, as the second 

posttest would have resulted when a student did not pass the minimum 70% score on the 

first posttest attempt.  This would have required students to go through the lesson, at the 

end of which the second posttest would have been taken.  Table 16 lists the lessons, 

which had a minimum average attempt of two posttests for the 117 track.  Track 142 had 

a very small sample size in comparison (< 100), given that the topics were also different; 

this track was excluded from this part of the analysis to maintain consistency in the 

interpretations.  

Similarly, three posttest attempts indicated the student would have been placed in 

focus mode and additional lessons would have been presented.  Due to the possible 

number of lessons a student in focus mode could be exposed to (e.g., depending on the 

student’s deficiencies) the only way to identify when a student was placed in this mode 

was by the number of posttest attempts (e.g., three or more posttests).  Recalling that 

focus mode meant the student was not able to demonstrate at least 70% mastery of the 

content at the second posttest attempt.  That is, even after having viewed the lesson in its 

entirety, the student was still struggling with the concepts.  Only two lessons, in the 117 

track, had an average of three posttests (e.g., Tricks of Equality and Understanding 

Functions).  The scores in these lessons did not drastically differ from the other lessons 

with an average of two posttests, indicating that the overall performance was at some 

point leveled off (Table 16).  It is worth noting that the maximum number of attempts in 

all lessons, except the ones with a high placed-out rate, was very high, but these high 

attempts were all below the lower quartile.   
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Table 16 

Lessons that May Have Been Viewed in their Entirety - at least 2 posttest attempts 

  

Average Mean Scores Posttest 

  

Lessons in MAT 110-R117 

%
  

P
la

ce
d

-o
u

t 

M
 

 p
re

 

M
 

 p
o

st
 

S
co

re
 a

t 
7
5

P
 

M
ax

 a
tm

p
ts

 

n
 

n
 P

la
ce

d
-o

u
t 

The number system 

1) Rational exponent rules 6 28.70 80.01 90 40 1047 59 

2) Moving in the xy-plane 20 51.11 64.90 90 20 1169 231 

Equations and expression 

3) Scientific notation 8 32.42 73.12 90 34 1165 98 

4) Tricks of equalitya 8 40.38 72.25 80 38 1188 91 

Ratios and proportions 

5) Ratios and fractions 5 29.23 77.75 90 28 1177 54 

Functions 

6) Domains and change 1 23.60 79.17 90 30 1016 15 

7) Understanding functionsa 5 43.81 75.83 90 41 1017 50 

8) Functions in the world 5 35.78 78.22 90 20 1102 50 

9) Linear functions 5 33.03 77.08 90 44 1102 53 

10) Inverting linear functions 6 27.10 79.39 100 35 986 60 

11) Graphing quadratic and piece-wise 

functions 

7 39.42 75.42 90 35 969 63 

12) Slope 7 36.60 76.35 90 47 1114 75 

13) Composing functions 12 36.68 72.29 90 44 987 119 

14) Graphing radical and polynomial 

functions 

12 42.20 70.90 90 46 958 172 

15) Building functions 20 55.83 65.63 90 88 987 193 

Algebra 

16) Linear and exponential expressions 7 40.09 74.10 90 41 1054  

Note.  aAverage test attempts = 3.  All other lessons average test attempts = 2. 
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In general, it appeared that students experienced a higher increase in their scores 

when they viewed the entire lesson, relative to those who had may not have viewed the 

lessons.  The average gain for the lessons with two posttests was 37.49.  Whereas the 

average gains for the lessons with one posttest was 9.08.  To validate this notion of 

differences existing between the mean gain scores by the number of posttests taken, a 

two-way ANOVA was conducted. 

Given the complexity of this dataset, to analyze this portion of the data, the total 

averaged gain scores were entered in a new file, along with their respective average test 

attempts.  Three groups were entered, one for lessons with high placed-out rates, a second 

one for lessons that were viewed (average of two attempts), and the last group for lessons 

that may have been skipped (single attempt).  The results indicated that the differences in 

students’ gain scores were significantly related to the number of posttest taken, F(2, 52) = 

3.71 p = .03, η
2
 = .136.  This in turn indicated that there may be differences in students’ 

academic performance depending on whether they viewed entire lessons or not, the mean 

difference between these groups was M = 25.91 SD = 6.30, p < .01, 95% CI [13.23, 

38.59].   

To explore these differences deeper, five lessons were selected: (a) the two 

lessons that had an average of three posttest attempts, then randomly selected one of each 

of the following, (b) a lesson with a zero average posttest attempt, (c) a lesson with one 

average posttest attempt, and (d) a lesson with two average posttest attempts.  An 

independent samples t-test was conducted.  The grouping variable used was the pass-

exam/fail-exam, established earlier, and the variables entered included: the five selected 

lessons’ pretest and posttest scores, their resilient behavior (number of posttests), and 
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cognitive ability variables.  This yielded a sample of 595 students.  The results indicated 

that the differences between those who passed the final exam and those who failed the 

exam, among the lesson categories were as follows:   

1. There was a significant difference in pretest scores in the lesson with an 

average of two posttest attempts, t(593) = 3.25, p <.01. 

2. There were significant differences in the pretest scores on both lessons with an 

average of three posttest attempts, t(143) = 3.252, p < .01 and t(593) = 2.98, p 

< .01. 

3. There was a significant difference in posttest scores in the lesson with an 

average of zero posttest attempts, t(141) = -3.01, p < .01. 

4. There were significant differences in the number of posttest attempts between 

the lessons with two posttest attempts and the lessons with one posttest 

attempt, t(593) = .71, p < .01. 

5. There were significant differences in students’ cognitive ability: ALEKS, 

t(593) = 2.59, p = .01, cumulative GPA, t(593) = 8.57, p < .01, and SAT, 

t(593) = 7.00, p =< .01.   

These results would indicate that while some students started out with significant 

differences in their math skills, these differences appeared to dissipate when students 

viewed the entire lessons, despite the differences in cognitive ability (Table 17).  This 

aligns with Bloom’s theory of learning for mastery (1974). 
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Table 17 

Independent Samples t-Tests 

Variable t (df) p MD (SD) 95% CI 

Cognitive ability  

ALEKS 2.592 (593) .010 3.404 (1.313)  [.825, 5.983] 

Cumulative GPA 8.468 (593) .000 .707 (.083) [.543, .871] 

SAT 7.001 (593) .000 54.965 (7.851) [39.544, 70.385] 

Lessons – pretest scores 

All about additiona -3.174 (125)e .002 7.062 (2.225) [2.656, 11.465] 

Real world algebrab 2.877 (145)e .005 7.872 (2.736) [2.464, 13.279] 

Composing functionsc 3.254 (593) .001 11.624 (3.572) [4.609, 18.639] 

Understanding functiond 3.252 (143)e .001 9.972 (3.066) [3.911, 16.032] 

Tricks of equalityd 2.975 (593) .003 8.425 (2.832) [2.863, 13.987] 

Lessons – posttest scores 

All about additiona -3.010 (141)e .003 4.667 (-23.270) [-23.270, -4.819] 

Real world algebrab .708 (593) .479 1.635 (2.310) [-2.902, 6.171] 

Composing functionsc -.075 (593) .941 -.254 (3.407) [-6.945, 6.437] 

Understanding functionsd -1.570 (593) .117 -3.452 (2.198) [-7.769, .866] 

Tricks of equalityd -.930 (593) .353 -2.297 92.471) [-7.149, 2.556] 

Resilient behavior-Perseverance: number of posttestsf 

All about additiona -3.104 (139)e .002 -1.62 (.052) [-.265, -.059] 

Real world algebrab -2.592 (593) .005 -.407 (.141) [-.686, -.127] 

Composing functionsc -.314 (593) .754 -.120 (.382) [-.870, .631] 

Understanding functionsd -.377 (593) .706 -.136 (.367) [-.859, .582] 

Tricks of equalityd -1.681 (593) .093 -.542 (.322) [-1.175, .091] 

Note.  
aLesson with 0 average posttest attempts.  bLesson with 1 average posttest attempt. cLesson with 2 

average posttest attempts. dLesson with 3 average posttest attempts. eEqual variances not assumed. fCompared 

against 2 posttest attempts. 

Prediction Three: Supported 

It was hypothesized that a mastery approach to instruction would have a positive 

impact on the academic performance of remedial students while heightening their 

affective attributes.  It was expected that specific areas that make up academic 

competence would exhibit a positive change by the end of the course.  Specifically, it was 

predicted that a positive change would be seen in engagement and motivation, and 

students would reassess their academic skills based on their course experience.  The self-
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paced, individualized nature of the Knewton course is not particularly designed to 

influence students’ study skills or the way in which they interact with others, so no 

change was expected in interpersonal skills and study skills.   

To test this hypothesis a repeated measures ANCOVA was conducted.  Cognitive 

ability (SAT I Math, ALEKS, and Cumulative GPA) indicators were entered as 

covariates.  These variables were minimally correlated to one another (see Table 10), thus 

it was deemed acceptable to use them together as covariates.  Academic competence was 

the within-subjects variable, with each of the subscales as a level, for a total of 14 levels: 

(a) pre and post: reading and writing, (b) pre and post: math and science, (c) pre and post: 

critical thinking, (d) pre and post: interpersonal skills, (e) pre and post: engagement, (f) 

pre and post: motivation, and (g) pre and post: study skills.  The between-subjects 

variables were gender and ethnicity and the dependent variable was the Knewton gain 

scores.  The variable of grade was also added as a between-subjects factor to ensure 

students who had completed the course were added to the analysis, as records containing 

only ACES data and no Knewton course data existed in the dataset.  A list-wise method 

was used to remove missing data across all variables resulting in 270 valid cases for the 

analysis including gender and ethnicity, and 581 cases for the within-subjects analysis.  

The results of the multivariate tests of the ANCOVA repeated measures analysis, 

using the Wilks’ lambda criterion (Λ), indicated that the academic competence means of 

students, before and after the Knewton course, were significantly different, n = 270, Λ = 

F(13, 233) = 8.70, p < 0.01, η
2
 = .33.  This analysis supported Prediction Three.  The 

results indicated that the mastery environment had a significant effect on student’s 

academic competence levels.  However, according to the between-subject results, the 
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significant main effect did not carry across gender, F(1, 245) = .49, p = .48, η
2
 = .002, or 

ethnicity, F(4, 245) = 1.62, p = .17, η
2
 = .026.  Given that academic competence is 

comprised of seven subscales, follow up paired sample t-tests were conducted to evaluate 

which of the mean differences were significant (Table 18).   

The comparisons were conducted to evaluate which pair of means was 

significantly different.  Each of these subscales are independent of each other, thus each 

pairwise comparison had only two levels.  The subscales were not being compared 

against each other.  Consequently, it was deemed unnecessary to adjust the alpha for each 

of the comparisons (e.g., using a Holm’s sequential Bonferroni procedure to control for 

Type I error).  Thus, each of the comparisons was evaluated at the .05 level, n = 581.   

Table 18 

Mastery Environment Effects on Academic Competence 

 Paired samples t-Test  

 Statistics Paired differences 

ACES Subscale M pre / M post SD pre / SD post M (SD) t(580) p Cohen’s d 

Math and science 30.60 / 33.06 5.72 / 6.65 -2.461 (5.708) -10.394 .000 -.40 

Reading and 

writing 36.56 / 37.63 6.23 / 6.76 -1.076 (5.555) -4.667 .000 -.17 

Critical thinking 35.00 / 36.12 5.98 / 6.76 -1.124 (5.965) -4.541 .000 -.18 

Engagement 30.78 / 31.16 5.56 / 6.16 -.380 (5.034) -1.821 .069 -.06 

Motivation 43.14 / 42.60 5.64 / 6.23 .542 (5.341) 2.447 .015 .09 

Interpersonal skills 34.39 / 33.93 4.30 / 4.86 .451 (4.593) 2.367 .018 .10 

Study skills 43.99 / 42.95 5.55 / 6.30 1.041 (5.578) 4.500 .000 .18 

 

All three subscales of the academic skills domain (self-efficacy) were statistically 

significant.  Specifically, students experienced a significant increase in their judgment 

about their ability in math, t(580) = -10.40, p < .01, about their reading skills, t(580) = -

4.67, p < .01, and their critical thinking, t(580) = -4.54, p < .01.  The academic enablers 
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(affective attributes) on the other hand, did not yield the expected results.  Interpersonal 

skills had been predicted to remain the same, yet students experienced a significant 

negative change in this area, t(580) = 2.37, p = .02.  Study skills (self-regulation) had also 

been anticipated to remain unchanged, still there was a significant decrease in the mean 

differences, t(580) = 4.50, p < .01.  The increase in engagement was not significant as it 

had been anticipated, t(580) = -1.82, p = .07. Motivation appeared to move in the 

opposite direction by a significant decrease in mean differences, t(580) = 2.45, p = .02.  

The results of the comparison of academic enablers reflected that the mastery 

environment appeared to affect all areas of academic competence.   

With the intent to verify the effects of the mastery environment on academic 

competence, an additional analysis was conducted.  This was the second part of the 

lesson paths analysis conducted for Predictions Two and Three, the independent samples 

t-test was replicated using the same pass-exam/fail-exam grouping variables, the five 

selected lessons and all seven subscales of academic competence.  The sample size for 

this analysis was 250 students.  The results indicated that among the differences between 

those who passed the final exam and those who failed the exam, only two had 

significance within the subscales of academic competence, post math and science t(34) = 

2.43, p = .02 (equal variances not assumed), and post study skills t(248) = 2.80, p < .01 

(Table 19).  These results confirmed that while the prediction about specific scales 

experiencing a change was partially supported by the statistically significant results, the 

effects of the learning environment on academic competence needed to be checked 

against the academic competence continuum to detect any shifts between competence 

levels. 
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Table 19 

Differences in Academic Competence Within Selected Lessons 

 Independent samples t-Test 

Variable t (248) p MD (SD) 95% CI 

ACES pre scores 

Reading and writing -.711  .478 -.946 (1.330) [-3.565, 1.673] 

Math and science 1.147  .253 1.294 (1.126) [-.929, 3.516] 

Critical thinking .937  .350 1.183 (1.262) [-1.304, 3.669] 

Interpersonal skills -.188  .851 -.174 (.926) [-1.999, 1.651] 

Engagement 1.401  .163 1.660 (1.185) [-.674, 3.994] 

Motivation 1.071  .285 1.376 (1.284) [-1.154, 3.906] 

Study skills 1.424  .156 1.763 (1.236) [-.675, 4.201] 

ACES post scores 

Reading and writing .099  .921 .142 (1.425) [-2.665, 2.948] 

Math and science 2.432a .020 2.428 (.998) [.400, 4.456] 

Critical thinking 1.043  .298 1.470 (1.410) [-1.307, 4.246] 

Interpersonal skills -.660 .510 -.672 (1.019) [-2.676, 1.334] 

Engagement 1.329  .185 1.829 (1.376) [-.881, 4.539] 

Motivation .946  .345 1.343 (1.420) [-1.453, 4.140] 

Study skills 2.797  .006 3.879 (1.387) [1.147, 6.612] 

Note. aEqual variances not assumed. df  = 34 

Inspection of students’ mean scores against the academic competence continuum 

revealed that the changes were negligible.  With the exception of the subscale math and 

science, which had a small to medium effect size, Cohen’s d = .40 (corresponding to a 

small-to-moderate effect size, Cohen, 1992) and moved from the developing range, 90% 

CI [27.06, 33.60], into the competent range, 90% CI [30.06, 36.06], all the other scales 

remained at their original range of competence (Figure 20).  While the more meaningful 

implications were in the area of math ability, all the other subscales remained high in the 

academic continuum, based on normed data.  These results suggest that the learning 

environment had a small but significant impact on academic competence.  
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Exploratory Analyses 

The qualitative data collected through the ACES open-ended questions and the 

information gathered through the engagement survey served as an additional source of 

information for instructional recommendations targeted at students in need of 

remediation.  To this end, qualitative and quantitative analyses were performed.   

The ACES open-ended question.  “If you have any comments about yourself 

and how you learn best, please write them down in the space below”  This question was 

presented at the pretest and posttest occasions; however, students either answered the 

question on the pretest and not the posttest, or vice versa.  Some students offered a single 

comment, while others offered multiple comments.  As a first step in summarizing this 

information, each comment was reviewed and shortened into concise and distinct 

statements.  Once all the comments had been simplified, the statements were grouped 

into similar thoughts, or categories.  Category labels were then created for each group to 

reflect the essence of the statements contained within.  As a final step in the process, the 

statements were tabulated.  From the 623 distinct statements that were offered, 20 

categories emerged (Figure 21).  

The top three categories were: (1) demonstrations—students felt they learned best 

from demonstrations and step-by-step explanations; (2) visual leaner—this statement was 

consistently offered with no further elaboration; and (3) hands-on learner—students felt 

they needed to do the work to learn and felt interacting with the teacher and the content 

was important.  The responses were not as robust as anticipated; they tended to be more 

general in nature, which may be a result of the way the question was worded.  It was not 
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clear whether students felt their learning styles and needs had been met or how much 

these aspects would have enhanced their learning.   

 

Figure 21.  Response categories. Obtained from open-ended ACES question.  Values represent 

frequency of responses within each category. 

Qualitative analysis of the engagement survey.  Data gathered through the 

engagement survey was grouped into clusters according to the type of responses each 

survey item prompted.  The first cluster contained four questions related to the amount of 

time students spent engaged in a given activity.  Two of those questions were related to 

studying and time on-task, conceivably a higher number would indicate higher 

engagement.  The other two questions related to tasks that would compete with studying 

or course work (e.g., employment and leisure), thus a higher number could indicate lower 

engagement.  The second cluster contained two questions related to the course grade they 

were working towards and the grade they earned (rated on a four-point Likert scale).  

Both of these questions were reverse scaled to fit the pattern of a higher number 
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indicating higher engagement.  The third cluster contained the rest of the questions (rated 

on a five-point Likert scale).  This entire cluster, with the exception of question 19, was 

reverse scaled to ensure the higher values were indicative of higher engagement.  

Additionally, this third cluster was grouped into an overall scale to get a sense of the 

extent to which students were engaged with the course material (Figure 22).   

 
Figure 22.  Engagement scale 

A total of 457 students responded to the survey.  The overall engagement scale, 

derived from cluster three, indicated that 80% of the respondents were somewhat 

engaged to moderately engaged with the course and course materials.  The results of 

cluster one revealed that 56% of the respondents did not work for pay, 28% worked under 

20 hours per week, and only 9% worked over 30 hours.  On the leisure question, 62% 

reported playing video games and watching TV less than five hours per week.  In terms 

of time-on task, in class (51%) and time studying or preparing for class (47%), the one- to 

five hour range was the average weekly amount devoted to coursework (Figure 23).  

Cluster two, indicated that 65% of students were working towards an A in the course, 

7% 

33% 

47% 

13% 
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30% towards a B and 5% towards a C, which suggested that for the most part students 

had a desire to be successful in the course. 

  
Figure 23.  Time spent working on-task in class and time spent preparing and studying 

Quantitative analysis of the engagement survey.  This survey measured 

engagement level with actions that are commonly considered desired behaviors and 

characteristics of a good student (e.g., completed homework, came to class, put forth the 

effort, studied regularly, desire to learn material, etc.), see Table 15.  The relationship 

between these behaviors and students’ performance on the final exam, and which 

behavior could be considered a stronger contributor to the relationship was explored.  To 

this end, a stepwise multiple regression analysis was conducted using selected survey 

questions as variables (Table 20).  

Each question was evaluated for redundancy and relevance.  For example, given 

that the majority of students spent a minimal amount of time at work or play, those items 

were excluded from the analysis.  Another example of the process of elimination would 

involve the categories, grade working towards, and put forth the effort.  Both of these 

variables are at the essence of many other variables.  That is, when a student is motivated 

by earning an A, then the student will put forth the effort to achieve that goal; hence, the 
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student will attend class, complete homework, and complete the readings.  It followed 

that removing these items was a conservative approach. 

Table 20 

Means and Standard Deviations for Engagement Survey Questions 

      Quartiles  

Variablesa n Missing M (SD) Variance Min 1st 2nd 3rd Max 

Cluster Ib 

Q1.  Time preparing 451 1775 2.92 (1.40) 1.96 1 2 2 4 8 

Q2.  Time on-task 450 1776 3.05 (1.60) 2.55 1 2 2 4 8 

Q3.  Time at work 445 1781 2.67 (1.59) 5.70 1 1 1 4 8 

Q4.  Time at play 450 1776 2.67 (1.59) 2.53 1 2 2 3 8 

Cluster IIc 

Q5.  Grade desired 455 1771 3.60 (0.89) 0.35 2 3 4 4 4 

Q6.  Grade earned 443 1783 2.99 (0.89) 0.79 1 2 3 4 4 

Cluster IIId 

Q7.  Completed 

homework 

451 1775 4.37 (0.855) 0.73 1 4 5 5 5 

Q8.  Came to class 451 1775 4.22 (0.89) 0.79 1 4 4 5 5 

Q9.  Thought about class 451 1775 3.75 (1.10) 1.22 1 3 4 5 5 

Q10. Found ways to make  

 interesting 

450 1776 3.29 (1.22) 1.48 1 3 3 4 5 

Q11. Desire to learn    

 material 

450 1776 3.47 (1.27) 1.60 1 3 4 4 5 

Q12. Put forth effort 450 1776 4.18 (0.80) 0.80 1 4 4 5 5 

Q13. Completed readings 450 1776 3.91 (1.06) 1.13 1 3 4 5 5 

Q14. Had fun in class 450 1776 2.93 (1.30) 1.68 1 2 3 4 5 

Q15. Studied regularly 450 1776 3.50 (1.12) 1.25 1 3 4 4 5 

Q16. Applied material to  

 life 

450 1777 2.94 (1.29) 1.65 1 2 3 4 5 

Q17. Paid attention in  

 class 

450 1776 3.86 (1.12) 1.26 1 3 4 5 5 

Q18. Asked questions 449 1777 3.43 (1.30) 1.69 1 3 4 5 5 

Q19. Did not complete  

 homework 

 448 1778 3.46 (1.35) 1.82 1 2 3 5 5 

Q20. Anticipated test  

 material 

449 1777 3.74 (1.05) 1.10 1 3 4 5 5 

Q21. Quizzed self 448 1778 3.49 (1.18) 1.39 1 3 4 4 5 

Q22. Discussed material  

 with classmates 

450 1776 3.24 (1.40) 1.94 1 2 3 4 5 

Note.  aAll variables included in the regression analysis were z-scored. bMeasured on an 8-point scale. cMeasured 

on a 4-point scale.  cMeasured on a 5-point scale. 
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Utilizing the process of elimination described above, the final selection included 

10 of the 22 survey questions: time preparing, time on-task, grade desired, found ways to 

make interesting, desire to learn material, put forth the effort, applied material to life, 

paid attention in class, quizzed self, and discussed with classmates.  The use of a 

covariate for cognitive ability could not be dismissed (SAT, ALEKS, cumulative GPA); 

however, to simplify the model, the variable that had the highest correlation with total 

engagement level scale was selected, cumulative GPA, r = .17.  

Variables were entered into the multiple regression analysis using a stepwise, 

backward method.  The final exam was entered as the dependent variable.  The list-wise 

method resulted in 404 students for this analysis.  The criteria for inclusion and exclusion 

from the model were left at their default values—for the probability of entry into the 

model PIN = .05 and POUT = .10 for the criteria for the probability of exclusion from the 

model (Field, 2009).  The analysis yielded a model with only three variables as its most 

parsimonious solution: cumulative GPA, grade desired, and effort put forth, R
2  

= .13, F 

(3,400) = 20.62, p < .01.  The variable of grade desired accounted for an additional 3% of 

the variance of the final exam scores, Adjusted R
2  

= .12, ΔF (1,401) = 14.20, p < .01 and 

the variable of put forth the effort contributed an additional 1% of the variance, Adjusted 

R
2  

= .13, ΔF (1,400) = 4.37, p = .04 (Table 21).  While the selected variables were 

statistically significant, their contribution to the overall model seemed smaller than 

anticipated.   
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Table 21 

Engagement Survey Variables 

 Regression coefficients 

Variables β SE t(401) p R2 

Included in the model 

Cumulative GPA .404 .068 5.92 .000 .063 

Grade desired (working towards) -.068 .020 -3.471 .001 .026 

Put forth effort -.041 .020 -2.09 .037 .009 

Excluded from the model 

 β In t(401) p Partial r Tolerance 

Time preparing (studying) -.021 -.445 .657 -.022 .965 

Time on task .050 1.054 .293 .053 .976 

Found ways to make interesting -.054 -.978 .329 -.049 .719 

Desire to learn material .011 .209 .834 .010 .769 

Applied material to life -.010 -.197 .844 -.010 .826 

Paid attention in class .055 .976 .330 .049 .690 

Quizzed self -.039 -.710 .478 -.036 .720 

Discussed with classmates .054 1.109 .268 .055 .926 

 

Summary 

In closing, the intent of this study was to understand the role of academic 

competence and academic resilience on performance and how the learning environment 

affected these variables.  The results indicated that cognitive ability, affective attributes, 

and resilient behaviors predicted student’s academic performance (Prediction One).  The 

learning environment appeared to play a role in academic success, but it was not clear the 

extent to which other variables may have contributed to these changes (Prediction Two).  

Furthermore, students’ academic competence levels experienced a significant, but small 

change after the mastery learning experience (Prediction Three).  An in-depth discussion 

of these findings is presented in Chapter Four.  
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Chapter 4 

DISCUSSION 

This investigation was conducted with the primary goal of elucidating the 

conditions that promote or inhibit academic performance for college students in 

technology-driven remedial mathematics course.  The process of investigating these 

conditions involved the evaluation of a number of variables: the learning environment, 

the teaching approach, affective attributes, and academic resilience, and how all these 

variables impacted students’ academic performance, in a remedial mathematics course.  

The learning environment was an adaptive learning system, with a hybrid delivery.  The 

teaching approach utilized a learning-for-mastery model.  Students’ academic 

competence was conceptualized to involve attributes of self-regulation, motivation, and 

engagement and students’ academic resilience, which included self-efficacy and course 

commitment.  Students’ cognitive ability also was operationalized by prior academic 

achievement measures.  

These learning conditions and student variables where investigated from a social 

ecology of resilience perspective.  That is, the extent to which these conditions work 

together and interact with the environment to either promote or inhibit academic 

performance.  As illustrated by the academic performance expression (Figures 2 & 15), it 

was hypothesized that the relationship between cognitive ability, affective attributes, and 

resilient behavior would vary as a function of the interaction between affective attributes-

by-resilient behavior and the level of support and resources afforded by the learning 

environment.   
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The study was conducted to answer the following research question: How do 

cognitive ability and affective attributes moderate the mathematics performance of 

students in need of remediation?  The research was conducted to investigate three 

fundamental predictions: (1) students with higher affective attributes and higher resilient 

behavior would exhibit higher performance; (2) more resilient students would fare better, 

academically, than less resilient students; (3) students’ academic performance and 

academic competence, particularly self-efficacy, motivation, and engagement would be 

positively influenced by the mastery environment.  Evidence based on robust samples of 

students was presented to support the first and third prediction.  The interpretations and 

implications of these results are presented in this Chapter. 

Discussion of Major Findings 

Prediction One.  As predicted, the results of this study confirmed a statistically 

significant relationship between the students’ academic performance and their cognitive 

ability, affective characteristics, and level of academic resilience.  This relationship 

indicates that in a mastery-based adaptive learning environment, the combined effects of 

the students’ affective attributes (engagement, motivation, self-regulation) and their 

resilient behavior (self-efficacy, course commitment) can strengthen academic success.  

These effects were over and above the effects of the students’ cognitive ability.    

These results are not surprising given the well-established findings that cognitive 

ability is a key determinant in academic success and the conception that affective 

attributes are important to this success as well.  Bandura (1977) established the 

importance of self-efficacy and self-regulation on students’ ability to perform and these 

constructs are entwined with motivation (Bandura, 1989; Schunk, 1991).  Motivation has 
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been the subject of many investigations as it relates to academic achievement and has 

been put forth as an important factor in academic success (Changeiywo, Wambugu, & 

Wachanga, 2011; Diegelman-Parente, 2011; George, 2010; Hirschfeld, Lawson, & 

Mossholder, 2004).  Likewise, the positive effects of engagement (Toshalis & Nakkula, 

2012) and academic resilience have also been investigated and found to have a 

measureable influence on academic success (Johnston-Wilder & Lee, 2010; Martin & 

Marsh, 2006).   

What was surprising about these findings was that the influences had such a small 

effect size.  A potential explanation for this could be attributed to the learning 

environment itself.  The benefits afforded by a mastery approach could have offset 

measurable differences among students.  According to Bloom (1968, 1974, 1978), given 

enough time all students can perform equally well.  Arguably, if all students perform at 

similar levels, then differences imparted by their affective attributes would be more 

difficult to detect, except in the more extreme cases; hence the small effect size.  

An interaction was also predicted; it was expected that student’s academic 

performance would increase as their affective attributes and academic resilience 

increased.  This interaction, however, was detected only when the performance outcome 

was the final exam.  Thus, this portion of the prediction was only partially supported by 

the evidence.  That is, students exhibited a slight but significant increase in their final 

exam scores when their affective attributes and resilient behavior increased.  This 

interaction did not appear to affect students’ embedded assessments scores.   

One possible reason the affective attributes-by-resilient behavior interaction was 

not present across both performance outcomes may have been a problem with the 
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performance indicator itself.  While the final exam was meant to assess the overall 

attainment of mastery of the content at the end of the course, the embedded assessments 

were ongoing measures of lesson mastery.  It is quite likely that this was not an adequate 

outcome indicator of academic performance and its application should have been limited 

to assessing progress.  For example, a student could have started with very low math 

skills, which would be reflected in the scores for the earlier lessons and as the student 

gained mastery of the material, the scores would increase over time.  Thus, the overall 

embedded assessment scores would only reflect relative growth.  That is, a student who 

experienced large learning gains could perform at the same level as someone who 

experienced minimal learning gains.  As these gains only reflect the relative growth that 

needed to take place to bring both students to the same level.  On the other hand, the final 

exam evaluated the final product and was not affected by the learning process or the 

relative growth.  In hindsight, using the final exam as the primary performance outcome 

for this analysis would have been a better approach. 

The resilient behavior measures also may have contributed to the discrepancy in 

the interaction results.  Recalling that in the present study academic resilience was 

operationalized as resilient behaviors with two key measures: self-efficacy and course 

commitment.  It is possible that the indicators were not sensitive enough.  The indicator 

for participation was quantified by the number of lessons, perseverance by the number of 

posttest attempts, and attendance by the frequency of logins.  The dynamics of the course 

were inconsistent with the intended purpose of these indicators.  Specifically, students’ 

had a core number of lessons to take for the course to be considered complete.  Thus, the 

majority of students took approximately the same number of lessons; this may have 
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caused a restriction of range for the participation indicator.  Additionally, students could 

not move to the next lesson until they mastered the current one.  In essence, the posttest 

attempts were a result of the course structure; hence, there would be negligible variability 

in the perseverance indicator.  The same may be true for the attendance indicator, since 

students had to login to view a lesson and all lessons had to be completed, the differences 

in number of logins may only represent the amount of time each student had at any given 

point to devote to a lesson.  In retrospect, these resilient behavior indicators did not 

appear to measure student attributes, as the behaviors were not self-initiated.   

Furthermore, the combination of the limitation of the resilient behavior indicators 

along with the differences in variability on the outcome performance measures may have 

contributed to the disparity in the results. This explanation seems reasonable as it 

addresses the discrepancy on both performance outcomes.  That is, one could infer that 

the limitations in the behavior measure underestimated the true interactions of both 

performance outcomes by: (1) yielding in a weak interaction between affective attributes-

by-resilient behavior and the final exam performance, and (2) failing to detect an 

interaction between affective attributes-by-resilient behavior on the embedded 

assessments performance.  Consequently, it could be concluded that using more accurate 

resilient behavior indicators (e.g., ACES self-efficacy and self-regulation) along with the 

outcome indicator with the highest variability (i.e., the final exam) would have increased 

the effect size of these findings. 

Prediction Two.  Academic resilience is an important attribute for students to 

have, particularly when learning math (Johnston-Wilder & Lee, 2010).  Academic 

resilient students exhibit a high sense of self-efficacy, are not easily discouraged, and are 
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motivated to attend and participate in class (Martin & Marsh, 2006).  Thus, it was 

predicted that resilient behavior would be the distinguishing variable between successful 

and unsuccessful students.  However, this prediction was not supported.  There were no 

significant differences in resilient behaviors between the students who passed the course 

and those who had not passed the course within the one semester timeframe.  

Furthermore, the mean differences between the resilient behaviors of the students who 

passed the final exam compared to those who did not pass the final exam were not 

statistically significant either.  It is important to recall that one posttest attempt suggested 

a student may or may not have viewed a lesson, and two posttests indicated that the entire 

lesson was viewed.  Interestingly, on average the majority of students took only one 

posttest.   

The non-significant findings are inconsistent with current research on academic 

resilience (Scholar Centric, 2010).   With the exception of the self-efficacy, which is 

highly predictive of academic resilience, the course commitment resilience indicators 

(perseverance, participation, and attendance) had limitations, as explained earlier, that 

likely contributed to the lack of significance. The resilience indicators were intended to 

capture self-initiated behaviors that would be indicative of resilient attributes.  For 

example, students who have high academic resilience tend to more actively participate in 

class, thus participation was measured by the number of lessons a student completed.  

This assumed that students completing a high number of lessons would represent those 

who were more involved with the course than students who completed fewer lessons.  

However, students were required to complete a core number of lessons to pass the course; 

hence, this indicator would not accurately capture a student’s desire to learn more or 
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engage with the course.  Essentially, it captures the fulfillment of requirements needed to 

complete the course.  Another example of a resilient attribute is perseverance, which was 

conceptualized as the students’ willingness and fortitude to make repeated attempts at 

passing the embedded assessments despite persistent failures; thus, this attribute was 

measured by the number of posttests.  However, the number of posttests was driven by 

the students ability to demonstrate mastery in the lesson content, which was typically 

achieved by the end of the lesson—two posttests.  Such behavior would not be indicative 

of perseverance, but rather the ability to master the content within x number of attempts.  

It is worth noting that these issues were not discovered until after all the data were fully 

integrated, and not fully understood until thorough exploration and examination of the 

course itself had been completed.  Both of these events took place too late in the process 

to allow for a redesign.  In retrospection, the course commitment measures were 

inadequately posited as indicators of resilience, as they would have been better suited for 

capturing course completion and content mastery.   

Nonetheless, it is important to acknowledge that an alternate justification may 

exist.  That is, it may be possible that the nature of the mastery approach and the adaptive 

learning environment enables students to participate and engage with the content at such 

optimal levels that significant academic resilience differences are more difficult to detect.  

Specifically, if all students are exposed to content best suited for their current skill level; 

it follows that students are less likely to be discouraged and more likely to engage with 

the content.  As students experience high levels of success resulting from their efforts, 

their self-efficacy and academic resilience are enhanced.  However, these behaviors are 

being elicited by the learning environment and may not necessarily depend on the student 
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to possess these attributes.  It could then be inferred that academic resilience is a less 

important attribute of learners working in a mastery-based, adaptive learning 

environment.  If this inference is accurate, non-significant academic resilience differences 

among students would be a logical outcome. 

Prediction Three.  This prediction stated that the mastery environment would 

have a positive effect on students’ academic competence and students’ academic 

performance.  This prediction was supported by the results.  That is, there was a 

statistically significant difference between students’ academic performance ratings before 

and after going through the mastery environment.  Due to continued interest in addressing 

disparities in academic performance among diverse populations (ACT, 2012; Strayhorn, 

2010) the variables of ethnicity and gender were also investigated in this analysis.  

However, there were no significant differences among the various ethnic groups or 

gender. 

Self-efficacy is enhanced by one’s ability to successfully perform a task, 

particularly when the task is perceived as difficult or unattainable.  A mastery-based 

environment affords students this opportunity through repeated experiential successes.  

Thus, it was predicted that the mastery environment would positively affect students’ 

self-efficacy.  It was also expected that these repeated successes would reduce anxiety 

and build confidence; hence motivation, and engagement were also expected to increase.  

The mastery environment was not expected to directly affect interpersonal and study 

skills; therefore, it was hypothesized that those skills would remain relatively unchanged.  

This prediction, however, was only partially supported.  For the majority of students, 
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their self-efficacy exhibited a significant gain; however, unexpectedly their motivation 

had a negative gain, and engagement had a positive gain.   

Contrary to what was predicted, interpersonal skills and self-regulation (e.g., 

study skills), also exhibited gains.  With the exception of the math and science subscale, 

the majority of students rated their academic skills at grade level and reported that they 

often used the behaviors indicative of strong affective attributes.  This would indicate that 

students, going into their remedial course, were not as confident in their math skills as 

they were about other skills. This may also suggest that students have a more accurate 

perception of their math skills, as math ability is evaluated at all school levels; whereas, 

affective attributes are rarely addressed at schools.  Thus students may not have an 

accurate perception of their affective attributes or may not be fully aware of these skills.  

Parenthetically, math and science was the only subscale in which there was a shift 

in competence levels.  This shift was statistically significant and it makes sense, 

considering students were taking a math course and one would expect students to reassess 

their skills after the course.  Additionally, it is quite likely that students experienced a 

more measureable gain in this area because the learning environment affords students 

repeated experiential success; this in turn, would have enhanced their perceptions about 

their math ability which is consistent with Bandura’ self-efficacy theories.  

The results on the other subscales, while statistically significant, were quite 

marginal in terms of moving students from one ACES competence level into another.  It 

is possible that students overestimated their affective skills and, after the course, 

reconsidered their ratings, thereby explaining the downward shifts or no shift at all on 

some of the subscales.  Conceivably, changes may have taken place as a result of the 
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mastery experience, and while students may have benefited or been inhibited by these 

experiences, the effects may not have been obvious or visible to them.  Consequently, 

they would not necessarily report a drastic increase or change in the affected areas.   

Another explanation focuses on the learning environment.  As stated earlier, the 

mastery environment is designed to provide students many experiences that help 

strengthen the academic resilience and affective attributes investigated in this study.  It 

had been anticipated that students’ self-regulation skills (study skills) would remain the 

same, for it was not evident that the learning environment would promote this.  Yet, 

students experienced a small but significant decrease in the area of study skills.  This may 

have resulted from the realization, after going through the course that they needed to 

learn to manage their time better or take better notes.  The structured approach of the 

learning environment may have indirectly altered students study habits and behaviors.  

Lesson results: on performance. When looking at students’ pretest and posttest 

scores independent of other variables, the mean scores were statistically significantly 

different.  Students in lessons that were, on average, viewed in their entirety appeared to 

overcome their math skill deficiencies, as these students started off with significantly 

lower scores and by the end of the course had no significant differences with their peers 

on those lessons.  This appears to align with previous findings supporting the positive 

effects of college remediation (Bettinger & Long, 2009).  Additionally, there were 

statistically significant differences in gain scores between students who took two 

posttests and those who had only one posttest attempt.  This would suggest that the 

learning environment can be a condition that enhances academic performance, which is 

consistent with learning for mastery theories.   
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Overall, the findings of this study speak to the possibility of the learning 

environment having imparted more influence on students’ performance than what was 

formally measured and inferred.  In addition to the benefits of the mastery-based 

approach (Bloom, 1968) and the notion of individualized learning (Lalley & Gentile, 

2009a), students appeared to value many of the instructionally sound practices present in 

the Knewton learning environment.  Instructional strategies such as step-by-step 

demonstrations, worked-out examples, the ability to work at their own pace, opportunities 

for practice, and explanatory feedback were all included in the students’ descriptions of 

how they learned best.  Additionally, many students appeared to be moderately engaged 

with the course, had the motivation to do well in the class, and put forth the effort.  This 

indicated that the learning environment may also have influenced motivation and 

engagement.  These results also underscore the important role of motivation in learning, 

particularly with computer-based learning systems (Keller, 2008). 

Limitations 

The most significant limitation for this study was the lack of a control or 

comparison group.  Students’ growth or lack thereof cannot be readily attributed to either 

the students’ attributes or the learning environment, as there was no consistency of 

treatment.  It is not possible to know the extent to which every student experienced the 

course under the same conditions, with the same limitations or resources.  There may 

have been other influences, outside those investigated in this study that contributed to the 

students’ academic success.  The reasons why some students may have engaged in some 

lessons more than in others are unknown.  For example, their actions could have been 

prompted by a previous lesson, by their prior knowledge, or the influence of a peer.  
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While statistically significant relationships have been established in this study, these 

findings should be carefully considered in light of this main limitation.  Additionally, the 

study was conducted with data from an intact group, from one semester, from students 

taking the same course, at the same university.  This sample may not constitute a 

representative sample of all remedial math students.  Thus, these findings should not be 

generalized to the entire population of remedial math students.  It is also possible that the 

positive effects of the learning environment are limited to this subject (i.e., mathematics). 

Missing data was also a substantial limitation, although the overall sample was 

large.  There were various categories that were missing substantial amounts of 

information.  There were data missing at either the case level or item level.  There were 

missing institutional records, incomplete cases that contained key variables, and a 

substantially smaller proportion of post measures compared to the pre measures.  This not 

only greatly reduced the sample size, but more importantly, it prevented direct 

comparisons across all analyses.  An important concern was whether these missing data 

might have biased the representatives of the sample.  There were many possible reasons 

for these data to be missing: (1) students may have been unwilling to complete the 

surveys/tests; (2) students may have dropped out as a result of their failure in the course; 

(3) students may have found the course to be ill-suited for them or they may have been 

inadequately placed; (4) students may have experienced some external cause that 

prevented them from continuing with the course; (5) or they may have simply decided to 

quit.  Numbers two and three represented the reasons of most concern, as these would 

have indicated a bias in the sample.  However, there was no evidence that any of these 

reasons in particular might have been at the root of the problem.  Nonetheless, an 
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underestimate of the true variability in the sample may still exist.  For the students who 

had complete data may have some underlying commonality not clearly identified in this 

study. 

The constraints placed by the type of data were another limitation.  Grades used a 

pass/fail criterion, which limited the possibility of evaluating various levels of 

performance.  Also, there were many students that had pending grades (in-progress, 

learning complete) and others were missing grades.  This prevented a true evaluation of 

the pass/fail categories.  The Knewton data contained pretest and posttest scores; 

however, when students placed-out of a lesson, the posttest attempt would register as a 

zero.  This meant that scores had to be examined in tandem, or a zero attempt resulting 

from a placed-out score could not be discerned from a true zero attempt.  Given the size 

of this dataset, the evaluation of the individual lessons across all variables was 

impractical.  Similarly, lesson data were only reported for core lessons.  That is, there 

was no way of tracing the path a student took when placed in focus mode, and as a result 

the number of posttest attempts was used as a basic way of identifying those students.  

Another limitation was the amount of “noise” in the data.  That is, the number of 

logins operationalized students’ attendance and could have been used as a measure of 

engagement during a given lesson.  Unfortunately, there were many factors that were not 

controlled for: from the type of browser used, to the number of lessons a student could be 

running simultaneously.  Ultimately, these data were used for attendance and provided 

only a glimpse at the students’ true behaviors. 

A final limitation related to the ACES pre- and post-tests, which collected 

information for the key variables in this study (self-efficacy, engagement, motivation, and 
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self-regulation).  The ACES pre- and post-tests did not appear to be rigorously 

administered.  Mechanisms to ensure students took the pretest before a posttest were not 

in place and there was no enforcement to ensure students took the posttest after 

completion of the course.  Due to time constraints and other conflicts, valuable parts of 

the ACES-College instrument were not included in the data collection, which weakened 

the rigor of the data. 

Implications for Future Research and Practice 

With the ongoing issue of the underperformance of high school graduates (ACT, 

2012) and the nation’s desire to improve math academic achievement (NCEA. 2011), it is 

certainly worthwhile to invest in developing skills beyond students’ cognitive abilities.  

The results of the present study indicate that while cognitive ability is indeed the most 

important contributor to academic success, self-regulation, engagement, motivation, self-

efficacy (i.e., academic competence), and academic resilience can strengthen this success 

and add to an understanding of students’ learning.  It is important to investigate the 

collective contribution of these variables and how they interact with the learning 

environment.  Moving away from looking at the isolated effects of any given attribute 

and exploring complex relationships may complicate the research process, but it may 

bring us closer to fully understanding the conditions that promote academic success. 

Additionally, the finding of this study can provide support for future research aimed at 

promoting the shift from a time-based system towards a mastery-based system. 

Future research.  The most important research that could possibly follow from 

this study would be to compare the effects of a mastery adaptive learning environment on 

student’s performance against the effects of a traditional, teacher-led classroom learning 
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environment.  Such a study should be conducted using an experimental design, and after 

carefully addressing the data limitations listed above.  This type of research would be 

important not only to ground the results of the present study, but also yield generalizable 

findings.  It would also be important to explore how much more math guidance, in the 

form of step-by-step demonstration, students get in the mastery-based adaptive 

environment, as opposed to the traditional classroom environment.  Additionally, it may 

be interesting to explore if students who need additional time to learn and/or those who 

work best independently thrive in one environment compared to the other.   

The suitability of a mastery-based, adaptive environment for students in need of 

remediation should also be investigated.  The present study suggests successful 

remediation; however, to validate these findings, students’ performance should be 

measured in subsequent courses to determine if their performance is at the same level as 

the performance of students who did not need remediation.  The findings also indicated a 

significant impact on students’ mathematics self-efficacy; thus, it would be important to 

explore whether their self-efficacy yields similar results in a subsequent course. Namely, 

do remediated students perform at the same level as students who did not need 

remediation?  Do they also exhibit a gain in their self-efficacy?  Do they exhibit a higher 

sense of self-efficacy than the non-remediated students?  That is, if a student who was 

successfully remediated performs equally well on a subsequent course, then that student’s 

perception of his or her mathematics ability would be further reinforced and a stronger 

more permanent change in self-efficacy would be expected. 

Another possible research direction would be to investigate the impact of a hybrid 

approach compared to fully online instruction.  Some students expressed the importance 
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of having access to instructors face-to-face.  It would be important to explore whether the 

lack of access, for the fully online group, adversely impacts students’ performance.  Yet 

another direction could be to explore the applicability of the ACES instrument and the 

theoretical academic performance model to other content areas.  Finally, the addition of a 

resilience measure would strengthen the findings of any of these research directions.  

There are many validated instruments that could be used for this purpose, such as the 

Resilience Scale (Wagnild, 2009) or the Resilience Factor Inventory (Reivich & Shatte, 

2002; available through AdaptivLearning.com), both of which measure overall resilience 

and are suitable for a variety of populations.  Another approach would be to enlist the 

cooperation of programs geared towards assessing academic resilience, such as scholar 

centric (www.scholarcentri.com/research.html).  In addition to a resilience measure, 

socioeconomic status indicators may also prove helpful in understanding the level of 

support and cultural capital the student has upon entering a course (Dumais, 2002; 

Strayhorn, 2010).  That is, including information such as parental status (e.g., single 

parent) and parent’s highest education level, in addition to ethnicity and gender, can help 

evaluate how well the students’ background matches the academic culture they are 

entering (Morales, 2008; Roosa et al., 2012). 

Implications for practice.  It was speculated that variables would come to light 

that would inform the refinement of an instructional model for remedial math students.  

The results indicate that the combined effects of affective attributes and academic 

resilience strengthen predictions about students’ academic performance.  Thus, it may be 

wise to include items that address academic resilience (perseverance) in addition to self-

efficacy, engagement motivation, and self-regulation in models targeted at college 
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students in need of remediation.  Additionally, the results of this study provide modest 

but valid evidence that the mastery-based environment plays a key role in students’ 

academic success.  These findings could be viewed as an opportunity to exploit the 

potential of making the highest and most positive impact.  Recommendations to address 

the implications of these findings are provided below. 

Recommendations for the ACES-College.  The current ACES-College addresses 

most of the variables described above.  That is, the academic skills domain assesses self-

efficacy.  The academic enablers domain assesses engagement, motivation, study skills 

(self-regulation and participation), and interpersonal skills.  A strong recommendation to 

add a new subscale to the ACES-College instrument is presented here.  The addition of a 

resilience subscale would enhance this instruments ability to better identify skills and 

behaviors that contribute to academic success.  The academic skills and academic enabler 

domains already assess self-efficacy, motivation, self-regulation related skills, all of 

which are key components of academic resilience.  Academic resilience has been put 

forth as a construct that is highly predictive of academic success (Howard & Johnson, 

2000; Martin & Marsh, 2006).  Thus, a resilience subscale would complement and 

strengthen this instrument (see Appendix H  for a sample of the recommended scale).   

In addition, a modified version of the current relationship model between 

academic competence and instruction is presented in Figure 24 (p.4; DiPerna & Elliott, 

2001).  This revised ACES-College instrument could help designers and practitioners 

better understand factors that should be accounted for, or included in the design of 

instructional interventions for remedial math students.  The influences discovered by this 

study illustrate the relationship between the learning environment, students’ academic 
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competence (e.g., affective attributes and academic resilience) and their academic 

performance. The revised model provides practitioners with a simple guide to ensure they 

consider these aspects as they design interventions suitable for students in remedial 

courses.  

 

Figure 24.  Modified academic competence model.  This model illustrates the relationship between 

academic competence and Instruction and academic outcomes. 

Recommendations for Knewton.  From an instructional design perspective, a 

couple of recommendations could be made to improve the already sound Knewton 

program.  Currently, the lessons align to Merrill’s (2013) “tell-ask-show” approach but it 

seems to fall short on the “do” (i.e., application) component.  While students are asked to 

answer many problems, they are not given the opportunity to solve contextualized 

problems.  That is, students would benefit from seeing how math skills can be applied to 

a real-world situation and the consequences of their decisions.  For example, if a math 

problem was presented in a simulated professional scenario, say a nurse preparing the 

proper dose for a patient, and if the students miscalculate the dose, they should be able to 

see the patient go into a critical condition or something drastic.  They could also be given 

the opportunity to experiment with answers and see the consequences of the different 

choices.  An approach such as this would take the gamification component of this 

courseware beyond earning badges (Prof. K. Werbach, University of Pennsylvania, 

Gamification lectures [Coursera], October, 2012).  The current system appears to do a 
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marvelous job at matching content to the students’ current skill, going beyond what can 

be done in a traditional classroom.  However, asking students to solve math problems 

using the traditional approach of “tell-ask,” simply replicates what can already be done in 

a classroom with pencil and paper.  Thus, the opportunity to use the technology to truly 

engage the student with the content is not fully exploited. 

Another recommendation would involve the focus mode process.  It is clear that 

students benefit from the individualized learning afforded by the Knewton courseware.  It 

is also clear that when students do view the entire lessons they benefit albeit, not all 

students are driven enough to work through the lessons.  When students are placed on 

focus mode, they are evidently struggling with the content.  The approach to start the 

remedial lessons with the “show us what you know” may not be the best approach for 

them.  These students know they are not doing well, asking them to answer more 

questions may prove too frustrating and discouraging.  It is acknowledged that these tests 

are the means for the system to determine what content to present.  Nonetheless, 

struggling students may instead benefit from a set of choices, designed to foster a sense 

of self-determination, an important component of intrinsic motivation (Steinberg, 1989; 

Snow, 1992; Toshalis & Nakkula, 2012).  That is, giving students the opportunity to 

choose from a list of topics.  The list would be based on the last failed lesson, this way 

students are given a sense of control without risking that novice students might take the 

wrong path (Granger & Levine, 2010).  Once the student has chosen a topic, they can 

then decide whether they know the content and attempt to place out by answering the 

“show us what you know” questions (see Appendix I).   
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A final recommendation is related to data gathering.  It may be beneficial to 

collect more detailed information on student’s actions throughout the lessons.  At this 

point it is not clear whether a student viewed a lesson (e.g., partially, fully, or skipped) 

before making their first posttest attempt.  Without this information, it is difficult to make 

solid conclusions about the extent to which the lessons benefit students.  The results of 

this study indicated that students appeared to benefit from viewing the entire lessons; 

however, this could be a result of having already attempted a posttest and gained an 

insight as to the type of questions to expect.  Similarly, it may also be beneficial to collect 

more detailed information relating to the number of lessons a student takes after being 

placed in focus mode.  As it is not clear whether students are going around in circles on 

the same lesson, or further deficiencies are being identified along the way.  

Recommendations for the academic performance expression.  The findings also 

illustrate the role of the learning environment on students’ academic competence and 

academic performance.  These findings align with the ecological view of resilience, 

where the environment is believed to strongly influence the outcomes (Ungar, 2011).  

Consequently, a modified version of the academic expression, based on the current 

findings is presented in Figure 25.  Where academic performance (Ap) is a function of 

students’ cognitive ability (Ca), and the extent to which the learning environment (LEnv) 

supports their affective attributes (Aa) and resilient behavior (Rb).  It is important to note 

that to operationalize this expression, terms should be entered into a hierarchical 

regression model as follows: Ca + Aa + Rb + (Aa . Rb), DV = performance indicator.  
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Figure 25.  Modified academic performance expression.  Based on the findings 

of the present study. 

 

Conclusions   

The overall results of the study highlight the importance of fostering self-efficacy, 

motivation, self-regulation, resiliency, and engagement in students in need of 

remediation, as these attributes play a small but significant role in their academic success 

in remedial mathematics.  The findings of this study also suggest that a mastery adaptive 

learning environment may promote academic performance and directly or indirectly act 

as a vehicle to enhance affective attributes and resilient behaviors.  These findings align 

to the theory that a mastery-based learning environment enhances academic performance 

(Bloom, 1976; Carroll, 1989).  While the present investigation provided an explanation 

for these relationships, the evidence is modest and further investigation using a control 

group and randomization is needed to validate these results.   

If a message were to be sought from these findings, it would be a 

recommendation that students’ cognitive abilities continue to be the focus of instruction.  

That the learning environment be most concerned with implementing sound instructional 

design practices.  And that students’ self-efficacy, motivation, self-regulation, resiliency, 

and engagement be taken into account when designing and delivering instruction targeted 
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at college students in need of remediation. As these appear to be the conditions that 

promote academic success. 

In conclusion, given the mathematics underperformance problem in our nation, 

the findings of this study provide modest evidence and justification for future research 

exploring the benefits of adaptive, mastery-based environments for remedial mathematics 

courses.  Furthermore, the findings of this study also suggest that an adaptive, mastery-

based environment may be a condition that promotes academic performance and may 

indirectly or directly act as an agent to enhance affective attributes and resilient 

behaviors.  Thus, it can be inferred that allowing students to work at a level consistent 

with their current skills and giving them the opportunity to learn through mastery 

experiences is an effective approach to promoting conditions for academic success.  
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ASU Student Success in Math 

Study Information 

 

**After you read through this information, you must complete the ONE yes-no 

question to earn credit on this evaluation activity** 
 

As of fall 2011, ASU has adopted a web-based adaptive learning platform for its 

developmental math course (MAT 110) and its entry-level math courses (MAT 142, 

MAT 117).  ASU Online and the Learning Sciences Institute (LSI) are working with the 

Math Department to study student success in these newly designed Math courses and to 

examine how students’ experiences in these courses impact their success in subsequent 

math courses as well as longer-term persistence/retention to graduation from ASU. 

  

The purpose of this research is to gather and analyze course and institutional data from 

students who are enrolled in MAT 110, MAT 142 and MAT 117 from Fall 2011 through 

Fall 2012. We are asking your consent to use your student data as part of this study.  You 

will not be asked to complete additional materials as part of your 

participation.  Participation only involves giving the research team access to your course 

data. 

  

Your participation in this study is voluntary. If you choose not to participate or to 

withdraw from the study at any time, there will be no penalty and it will not affect your 

grade in this course. You must be 18 years or older to participate in this study. 

  

Your participation benefits the Math Department, ASU Online, and the Learning 

Sciences Institute at ASU in that your consent will allow the research teams from these 

units to examine student experiences with the new adaptive technology curriculum that 

was implemented in MAT 110, MAT 142 and MAT 117 beginning Fall 2011. There are 

no foreseeable risks or discomforts to your participation. 

  

If you agree, the research team will gain access to your course experience data (i.e. 

results on assessments, surveys, course grades, and system data, like time spent on web-

based course material).  In addition, your ASURITE User ID will be used to facilitate 

matching demographic items (i.e., age, academic level, race, sex) and to track your 

experiences in subsequent math courses and your persistence to graduation from ASU 

(over the next 6 years).  If you choose to participate your ID will be used solely for 

retrieving information from the student data warehouse and matching it to your course 

data.  Once data is retrieved and matched your ASURITE User ID will be removed from 

all data files and will be replaced with a study ID that will allow the longer-term tracking 

of your experiences in future ASU Mathematics courses and your persistence to 

graduation (for up to 6 years or until you leave the University).  All individually 

identifying information (like your name, ASURITE ID, ASU Student ID) will be 

removed from data files and files will be kept secure. The results of this study may be 

used in reports, presentations, or publications but your name will not be used.  All study 

findings will be presented in the aggregate to further ensure confidentiality. 
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If you have any questions concerning the research study, please contact Kim Marrone 

Beckert, Ed.D. atkimberly.beckert@asu.edu or (480) 884-1917. If you have any 

questions about your rights as a subject/participant in this research, or if you feel you 

have been placed at risk, you can contact the Chair of the Human Subjects Institutional 

Review Board, through the ASU Office of Research Integrity and Assurance, at (480) 

965-6788. 

 

ASU Student Success in Math 

Consent 

 

Please indicate your decision to participate by answering “Yes” or “No” to the following 

consent statement.  Note your agreement decision does not impact your course 

requirements in any way.  In either case, you are responsible for completing the four 

evaluation activities and other course work. 
I consent to have my MAT 110, MAT 142 or MAT 117 course data, student demographic data, as 

well as institutional data to track my enrollment and outcomes in subsequent math courses and 

my persistence/retention at ASU be used as part of the Student Success in Math Study. 

 

Yes 

No 

 

 

Please select "Next Page" to submit. 
 

 
 

 

Survey Powered By Qualtrics 

 

mailto:kimberly.beckert@asu.edu
http://www.qualtrics.com/
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APPENDIX C 

ECOLOGICAL RESILIENCE EXPRESSION 

BY MICHAEL UNGAR, 2011 
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“Behavior is the function of the person (P), including the person’s neurophysiological strengths and 

other personal capacities, interacting in dynamic but unspecified ways with an environment (E) that 

provides for his or her needs. …. A process-oriented and contextualized understanding of resilience 

and the behaviors associated with positive development under adversity (RB) requires sensitivity to 

the opportunity structure (O). …. The developmental pathways adopted depend on the availability 

(Av) and accessibility (Ac) of health-sustaining resources and the meaning (M) that is constructed 

for each within the child’s culture and context. …. These opportunities and their co-constructed 

meanings interact with the individual’s strengths (S) and challenges (C), though the influence of 

these is strongly mitigated by the opportunity structure that supports or suppresses their 

expression.” (pp. 11-12). 
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APPENDIX D 

PART 1 –DATA FILTERING SAMPLE CODE  
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APPENDIX E 

PART 2 –DATA CONSOLIDATION SAMPLE CODE  
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APPENDIX F 

ACADEMIC COMPETENCE EVALUATION SCALES: ACES-COLLEGE 
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Only Pre-test is shown here.  Post-test questions are the same  
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ENGAGEMENT SURVEY 
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APPENDIX H 

POSSIBLE ITEMS FOR THE ACES-COLLEGE 
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Following is a suggested set of possible items (Table 22) based on the resilience 

scale, RS-14 (Wagnild, 2009) and the resilience scale, CD-RISC10 (Connor & Davidson, 

2003).  

Suggested Resilience Subscale 

 Not 

True 

Seldom 

True 

Sometimes 

True 

Often 

True 

Very 

True 

Possible Items  1 2 3 4 5 

1. I am not easily discouraged.      

2. When I start something, I stick with it.      

3. I can handle multiple things at once.      

4. I am proud of my accomplishments.      

5. I get by one way or another.      

6. I am able to adapt.      

7. I can cope with stress.      

8. I have people I can count on.      

 

These items can be scored using the current scale values.  The original resilience 

scales, used as a reference, apply a straightforward scoring system of low scores 

indicating low resilience and high scores indicating high resilience.  Where the highest 

scores suggest students respond well to adversity and the lowest scores suggest students 

give up when faced with adversity.  Needless to say, the validity of these items would 

need to be investigated and an appropriate confidence interval established.   
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APPENDIX I 

PROPOSED KNEWTON FOCUS MODE BRANCHING 
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APPENDIX I 

ACES PERMISSION FOR USE 
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