
Dynamic Programming algorithm for Computing Temporal Logic Robustness

by

Hengyi Yang

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2013 by the

Graduate Supervisory Committee:

Georgios Fainekos, Chair

Hessam Sarjoughian

Aviral Shrivastava

ARIZONA STATE UNIVERSITY

May 2013

i

ABSTRACT

In this thesis we deal with the problem of temporal logic robustness estimation.

We present a dynamic programming algorithm for the robust estimation problem of

Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence.

This algorithm not only tests if the MTL specification is satisfied by the given input

which is a finite system trajectory, but also quantifies to what extend does the sequence

satisfies or violates the MTL specification. The implementation of the algorithm is the

DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust

computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories

of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near

linear running time and constant memory requirement depending on the structure of the

MTL formula. DP-TALIRO toolbox also integrates new features not supported in its

ancestor FW-TALIRO such as parameter replacement, most related iteration and most

related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed

in this thesis which applies dynamic programming algorithm for time robustness

computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO.

Finally, we present an application where DP-TALIRO is used as the robustness

computation core of S-TALIRO for a parameter estimation problem.

ii

ACKNOWLEDGEMENTS

I want to thank Dr. Georgios Fainekos for this wonderful opportunity to work on this

interesting research topic and more importantly work along with him. I benefit greatly

from his guidance, rigorous attitude and forward-looking spirit. I appreciate the financial

support from Dr. Georgios Fainekos and Arizona State University in the past two years. I

would also like to thank Dr. Hessam Sarjoughian and Dr. Aviral.Shrivastava for the

support and feedback they gave me as part of my thesis committee.

I want to thank my friends and colleagues at Arizona State University. I would

particularly like to thank colleagues of CPS lab including Parth Pandya, Ramtin Kermani,

Shihkai Su, Kangjin Kim, Shashank Srinivas, Bardh Hoxha, and Adel Dokhanchi who

helped and inspired me during past few years.

Also, I want to thank all the professors and staffs of Arizona State University who

altogether create a great learning and working environment and atmosphere for me.

This work has been partially supported by NSF award CNS-1017074. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National Science Foundation.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES...v

LIST OF FIGURES..vi

CHAPTER

1 INTRODUCTION ..1

Motivation of the Thesis ..1

Contribution of the Thesis ...5

Thesis Structure ..5

2 BACKGROUND AND FUNDAMENTALS ...7

Metric Temporal Logic ..7

Robustness ..9

Space robustness ... 9

Discrete-Time Robust Semantics ...12

Time robustness .. 12

Polarity ..14

Related work ..16

3 DP-TALIRO ...19

DP-TALIRO Overview ...19

Dynamic programming algorithm of DP-TALIRO ...21

Dynamic programming algorithm for time robustness ..33

Most related iteration and predicate...35

iv

CHAPTER Page

4 EXPERIMENTS AND APPLICATION ..39

Running time comparison between DP-TALIRO and FW-TALIRO39

Running time analysis of DP-TALIRO ...43

5 DP-TALIRO APPLICATION ..47

6 CONCLUSION AND FUTURE WORK ...50

REFERENCES51

APPENDIX

A DP-TALIRO USER GUIDE ..54

B DP-T-TALIRO USER GUIDE ..62

v

LIST OF TABLES

Table Page

3.1: Dynamic programming table for LTL formula............... 23

3.2: Input signal of Example 3.2.2 25

3.3: Robustness of formula regarding the input signal of Example 3.2.2..... 25

3.4: Dynamic programming table for MTL formula of Example 3.2.2 26

3.5: Input signal of Example 3.3.1 34

3.6: Robustness of formula = p regarding the input signal of Example 3.3.1. 34

3.7: Time robustness of formula = p regarding the input signal of Example 3.3.1. 34

3.8: Temperature regarding time as input signal of Example 3.5.1. 36

4.1: Time comparison between DP-TALIRO and FW-TALIRO 40

4.2: Comparison of DP-TALIRO and FW-TALIRO of Example 4.1.2 43

4.3: Running time of DP-TALIRO regarding different lengths of input trace 43

4.4: Running time of DP-TALIRO with respect to 129600 sampling points 46

vi

LIST OF FIGURES

Figure Page

1.1: The Simulink model of an automatic transmission controller4

2.1: The definition of distance and depth.. 9

2.2: Two signals sig1 and sig2 satisfy the specification G(x<0.9) 10

2.3: Signal1 is 3sin(2t); Signal2 is 2.5; Signal3 is 3sin(2t-3.14) 14

3.1: overview of S-TALIRO toolbox 20

3.2: Parsing tree of formula of Example 3.2.1 22

3.3: Parsing tree of formula of Example 3.2.2 25

3.4: most related iteration and predicate result of Example 3.5.1 38

4.1: The shift scheduler of Example 4.1.2 41

4.2: Running time of DP-TALIRO regarding large numbers of sampling points 44

5.1: Finite State Machine for the automatic drivetrain in Example 4.3.1 48

5.2: Robustness as a function of parameter θ and input μ in Example 4.3.1 49

1

Chapter 1

INTRODUCTION

1.1 Motivation of the Thesis

Nowadays the use of cyber-physical system (CPS) can be found in a wide range of

applications including automotive, aerospace, healthcare, transportation, infrastructure,

military and so on. The so called CPS represents a combinatorial system of computation,

networking and physical elements. While traditional embedded systems are designed to

achieve specific goals independently, most CPSs are designed with feedback loops of

which the inputs and outputs from physical elements would affect the final computation

result of the whole system and vice versa. The potential of such system has been

recognized gradually, and investments are made worldwide in developing the technology.

With the trend of CPSs being more diverse and universal in everyday life and especially

because of the critical areas where CPSs are used, it is essential to ensure correctness,

security and reliability of such systems and software deployed. We have already paid

extremely high price for software failures in the past. For example, the unmanned rocket

Ariane 5 Disaster [8] in 1996 which lead to a loss of more than 370 million dollars.

Ariane 5 explored 40 seconds after its launching due to software error. However the same

program functioned perfectly on Ariane 4, the only change had been made is the physical

part of the rocket. Thus, the need of system verification and validation is crucial for

CPSs.

Model Checking [25] is a tool that is very useful for verification of both software and

hardware systems and it has got increased attention from academia as well as industries

2

of automobiles and avionics. Model checking works as follows: Engineers establish a

model of a system by abstracting the dynamical characteristics of a physical object or a

set of physical parts, such as internal combustion engine and transmission gearbox, with

mathematical and logical models. And the model needs to be checked with some

specifications automatically. However, model checking is only suitable for finite-state

systems. It does not apply to systems with infinite state space including continuous

systems and hybrid systems. In some cases, model checking problem is undecidable for

systems whose state space is infinite space [26]. Recently, progress has been made to use

temporal logic to capture more information and better express the characteristics of

continuous and discrete-time signals. In this thesis, we mainly focus on Metric Temporal

Logic (MTL) [3] which provides the ability to express the time-varying behaviors of

continuous and hybrid systems.

One of the main motivations of the work in this thesis is the great efforts done by

Fainekos and Pappas [2] to apply robustness interpretation of MTL for continuous-time

signals in metric spaces. One can obtain not only traditional Boolean value of

satisfiability, but also the degree of how far away the specification is satisfied of falsified.

It is very useful application-wise especially in the optimization setting of a control

function to manage the behavior of the model of a physical system in [2]. The

computation of temporal logic robustness was implemented in a MATLAB toolbox

called FW-TALIRO which is one of the building blocks of the overall framework called

S-TALIRO [21]. Both toolboxes are available at [27].

3

However, industrial-scale systems can be quite complex. A system model can

contain as much as thousands of blocks or complicated hierarchical structure with lookup

tables and shared variables. The MTL formula may have dozens of predicates and

temporal logical operators with all kinds of time constraints and the real-time trace can be

multi-dimension with even millions of timed states. We found that FW-TALIRO does not

scale well under such circumstances. In fact, it may take several minutes for

FW-TALIRO to compute one robustness metric of a reasonable-size MTL formula over a

real-value trace with ten-thousand timed states. It is almost impossible to use

FW-TALIRO for optimization or falsification problem of these kinds of system since

they usually require hundreds of robustness metric computations. In this thesis, we

propose an improved algorithm to address the excessive time of computing robustness

metric.

Example 1.1.1: As an motivating example, we present a parameter estimation

problem of a Simulink model for a four-speed automatic transmission [12, 13, 15] of a

vehicle as shown in Fig 1.1. This example is presented in [11]. The model has two inputs:

the percentage of throttle schedule and brake schedule. And the output is the RPM of the

engine and the speed of the vehicle. In this example, we set the brake schedule to 0 for 30

seconds. The throttle schedule at each point in time can be any value from 0 (fully closed)

to 100 (fully open). At time 0 the vehicle is still so the speed and RPM is 0 initially. We

are interested in solving problems such as “What is the maximum time that the RPM

cannot exceed 4500 whatsoever”.

4

As demonstrated in [11], this time estimation problem can be posed as a parameter

estimation problem in an MTL formula. Moreover, the parameter estimation problem is

further reduced to an optimization problem where the cost function is the MTL

robustness. This optimization problem is solved using stochastic search techniques and,

thus, the robustness computation must be performed quickly.

FW-TALIRO is not suitable to solve such problems due to the large number of

robustness values needed to be computed and high running time of FW-TALIRO. Thus

we need to develop a replacement that has much improved performance over

FW-TALIRO. We came up with the solution to apply dynamic programming algorithm

for temporal logic robustness and implemented in DP-TALIRO toolbox.

Fig 1.1: The Simulink model of an automatic transmission controller

5

1.2 Contribution of the Thesis

The main contribution of this thesis is that we have refined the dynamic

programming algorithm for temporal logic robustness problem and we implement the

algorithm into DP-TALIRO toolbox. As opposed to FW-TALIRO which uses formula

rewriting techniques, DP-TALIRO shows tremendous improvement on the running time

and memory used which as a result allows DP-TALIRO to handle larger size of input

sequences and more complex specifications.

DP-TALIRO also integrates features such as dynamic programming algorithm for

polarity and parameter estimation [10]. The implementation details are provided in this

thesis as well. We also present the algorithm for DP-T-TALIRO which is the toolbox for

dynamic computing time robustness [9] as a derivative of DP-TALIRO. It is also

integrated in S-TALIRO and it can run as a stand along toolbox as well.

1.3 Thesis Structure

This thesis is structured according to the following outline:

 Chapter 1: The first chapter introduces the motivation of the thesis.

 Chapter 2: In this chapter, we present the background and fundamentals of

the work including Metric Temporal Logic, definition of robustness and

time robustness as well as related researches.

 Chapter 3: In this chapter, we present the dynamic programming algorithm

along with implementation details and details of other features

incorporated in the toolbox.

6

 Chapter 4: In this chapter, we analyze the running time or DP-TALIRO

and compare it with FW-TALIRO.

 Chapter 5: We present an application where DP-TALIRO is used as the

robustness computation core of S-TALIRO for a parameter estimation

problem.

 Chapter 6: In the final chapter we make a conclusion and discuss some

possible future work.

 Appendices: The Appendices include the user manual of DP-TALIRO and

DP-T-TALIRO.

7

Chapter 2

BACKGROUND AND FUNDAMENTALS

2.1 Metric Temporal Logic

First, we recap the syntax and semantics of Metric Temporal Logic (MTL) here.

MTL is originally defined in [3]. Given a finite set AP of atomic propositions, the MTL

formula is defined recursively by time-constrained temporal operators as follows:

 ┓

 | X

Where p AP and I could be an open, closed or half-open half-closed interval whose

left and right end-points are rational numbers or ∞.If I equals to [0,+ ∞) then I is omitted

in the notation.

The MTL formula supports standard propositional constants and operators: true, false,

and (), or (), indicate (), equivalent () as well as temporal logic operators such as

always (G), eventually (F), until (U) and release (R). „Eventually‟, „always‟ and „release‟

can be derived from „until‟.

 ┓ ┓ .

 ┓ ┓

 ┓

Then, we define satisfaction problem. Given a trace which is a timed state sequence

 where denotes a finite sequence of states and is the timestamps which is

a finite sequence of real numbers and meaning the length of and are the

8

same. Intuitively, a sequence s represents an execution of a system model. We can

interpret a sequence s as at time the system was in state .

We define the notation as an observation map so that represents the set

of p. The formal definition is AP → P(X) such that for every we have the

corresponding set .

We define that a trace at time satisfies a formula , written as

inductively over the structure of the MTL formula as follows:

 is always true;

 is always false;

 iff ;

 iff

 and

;

 iff

 or

;

 ﹁

 iff

;

 iff for all that

;

 iff exist that

;

 iff exist while

 with and for

all

;

9

2.2 Robustness

2.2.1 Space robustness

By contrast with traditional use of temporal logic which a verdict evaluates to

whether a certain trace meets or violates an MTL formula. In this thesis we use the

concept of robustness degree for finite timed state sequences as introduced in [2]. The

robustness degree expresses how much error the signal could tolerate or how far away is

the signal to meet certain specification. Note that since the robustness here is essentially

the distance between the given signal and the boundary of the set of signals that satisfy

the requirement, we denote the robustness mentioned here as space robustness, as

opposed to time robustness that we will introduce later. In the rest of the paper, when we

say „robustness‟ we mean space robustness and we will specifically say „time robustness‟

if we need to use time robustness.

Fig 2.1: The definition of distance and depth

10

Fig 2.2: Two signals sig1 and sig2 satisfy the specification G(x<0.9)

Why we need space robustness? Here we present an example illustrating the

importance of space robustness. As shown in Fig 2.1, the distance defined is the shortest

distance from the point to any points inside set C. Similarly the depth defined is the

shortest distance from the point to any points outside set C. Thus this value defines how

robust certain signal is according to certain specification expressed by MTL. For instance,

consider sig1 and sig2 in Fig 2.2. The specification here requires that the input signal

should always be less than 0.9. Even though sig1 and sig2 both meet this requirement,

obviously sig1 meets the specification by a good margin while sig2 barely meets the

specification and sig1 would have the better ability to resist noise interferences than sig2.

Thus with the notion of robustness degree we would be able to capture this kind of

characteristic of signals.

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

x

sig1

sig2

11

Furthermore, the solution given in this thesis would not merely consider space

robustness, but also time robustness as defined in [9]. Time robustness defines how

robust an MTL formula is regarding a sequence at a certain point in time. In a nutshell

time robustness indicates how faraway the trace could shift in time to the future or to the

past without changing the satisfaction or violation status of an MTL formula.

The formal definition of space robustness degree is given as follows. Here, the

distance and depth notion is based on the generalized metric d. We refer reader to [4]

regarding the details of generalized metric.

First we define the distance from a point to a set. Let X and C be two sets, C X, x

be a point and x X, and d be a metric that induce the topology on set X. Then we could

define the Signed Distance from point x to set C to be:

While := inf{d(x, y) | y } ;

 := ;

That is to say this distance defined is the shortest distance from the point to any

points inside set C. Similarly the depth defined is the shortest distance from the point to

any points outside set C. Thus this value defines how robust a certain signal is according

to certain specification expressed by MTL. Noted that here we use the extended

definition regarding supremum (⊔) and infimum (⊓). To be specific, we define the

supremum of empty set to be the smallest element of the domain and the infimum of

empty set to be the largest element of the domain.

12

2.2.2 Discrete-Time Robust Semantics

In this section we combine MTL formula and robustness notion [15]. Here we

introduce the semantics which maps a discrete-time trace s regarding an MTL formula ϕ

to a value from a partially ordered set Ѵ. We denote the robustness value of formula ϕ

regarding trace s at sampling point i by [ϕ]d(s,i). We define .

The robust semantics of any MTL formula ϕ is defined recursively as follows:

[true]d(s,i) := + ∞

[p]d(s,i) := Distd(s(i), (p))

[┓ ϕ] d(s,i) := - [ϕ] d(s,i)

[ϕ1∧ϕ2] d(s,i) := [ϕ1] d(s,i) ⊓ [ϕ2] d(s,i)

[ϕ1UI ϕ2] d(s,i) :=

 ([ϕ2] d(s,i’) ⊓ ⊓ [ϕ1] d(s,i’’))

Where .

And because ϕ , we can derive the discrete-time robust semantics for

[ϕ]d(s,i) as follows:

 [ϕ] d(s,i) :=

 [ϕ] d(s,i’)

2.2.3 Time robustness

In this section we briefly recap time robustness. Originally, a notion of time

robustness was introduced in [2] for timed state sequences that are generated by

dynamical systems. In this thesis, we use the more general notion of past and future time

13

robustness as introduced in [9]. Time robustness is introduced in order to quantify the

satisfaction problem of signals regarding time and to obtain the characteristic of

time-shifting events.

The formal definition of left and right time robustness regarding discrete time is

shown below:

θ

θ

Here we defined the time robustness of MTL formula regarding a trace at

sampling point i. And then we apply this rule inductively to the rules of MTL formula

introduced in section 2.1.

Considering the signal in Fig 2.3, signal1 is 3sin(2t), signal2 is a constant with value

is 2.5 and signal3 is 3sin(2t-3.14) which is essentially signal1 shifted right for .

Suppose we have an MTL formula where p1 is x>2. The formula requires

that the signal eventually reach a value which exceeds 2 in time 0 to time 1 including

time 0 and time 1. If we apply space robustness computation here, we will get that the

space robustness degree for signal1 is 1, space robustness degree for signal2 is 0.5 and

space robustness degree for signal3 is -2. However, by observation signal2 satisfies the

requirement all the time during interval [0, 1] while signal1 fail to meet the requirement

about half of the time. To some sense, signal2 is more robustness with regard to time than

signal1 over formula . Also signal3 is signal1 shifted right and space robustness could

not catch this characteristic in this case. Thus, in order to quantify the satisfaction

14

problem regarding time and capture the effect of shifting events the time robustness is

introduced. In this thesis, we implemented a dynamic programming algorithm for time

robustness in MATLAB toolbox DP-T-TALIRO.

Fig 2.3: Signal1 is 3sin(2t); Signal2 is 2.5; Signal3 is 3sin(2t-3.14)

2.2.4 Polarity

The polarity of a parameter is formally defined in [10]. It is mainly used in parameter

estimation problem. Essentially, given a MTL formula , if we increase the value of the

parameter p and it becomes easier to satisfy the formula then we say the polarity

is positive. Similarly the polarity is negative if we increase the value of the parameter and

it becomes harder to satisfy the MTL formula.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

Time t

V
a
lu

e
 x

signal1

signal2

signal3

15

Let „+‟ and „-‟ indicate positive and negative polarities respectively. And „ ‟ and „⊥‟

indicate undefined and mixed polarities and c denotes for a constant number. We can

inductively define the polarity of a magnitude parameter p in a MTL formula as

follows:

 ﹁

 = =

Operations and are defined as follows:

 + - ⊥

 + - ⊥

+ + ⊥ ⊥

- - ⊥ - ⊥

⊥ ⊥ ⊥ ⊥ ⊥

And

16

+ -

- +

⊥ ⊥

Timing parameters satisfy rules:

We call a formula a fine formula if the polarity of every parameter is either + or -.

2.3 Related work

The concept of robustness interpretation of requirements of MTL formulas form over

continuous and hybrid systems is introduced in [2]. It first forwards the concept of -ball

which is an open ball centered at any point of the trace with radius which assist to

explain the robustness degree notion. It defined the discrete-time robustness semantics of

MTL formulas in a recursive way. Moreover, it defined the procedure of recursively

computing robustness degree of an MTL formula over a finite timed state sequence. The

algorithm is implemented as a MATLAB toolbox called FW-TALIRO (ForWard

algorithm for TemporAl LogIc RObustness) within the software toolbox S-TALIRO [21].

17

As the name suggests, FW-TALIRO is based on formula rewriting techniques. More

details of FW-TALIRO could be found in [2, 18, 19, 20]

One of the works that motivated this thesis is the work done by Rosu and Havelund

in [5]. In that paper they presented a dynamic programming algorithm for Linear

Temporal Logic (LTL) [7] formula over finite discrete time signals. Given an LTL

formula the algorithm tests whether a finite trace satisfies the formula or not. And the

algorithm achieved linear running time and constant memory usage depending merely on

the size of LTL formula.

In [9], the authors analyzed the behaviors of continuous and hybrid dynamical

system admitting uncertain parameters in continuous time and space. They presented

several variants of robustness estimation including time robustness and space robustness

in order to reason a trajectory satisfying or violating a given requirement over continuous

and hybrid systems. In that paper they provided strategies to compute these robustness

variants and the sensitivity of them regarding the parameters of the system or the

parameters of the formula. The algorithm is implemented in a MATLAB toolbox called

Breach [17] which focuses on simulation of temporal logic properties and reachability

analysis and parameter synthesis of dynamic systems.

There have been other efforts in computing robustness degrees for MTL. The authors

in [6] introduce a different kind of temporal logic to specify properties of a timed state

sequence. They introduced the first application of temporal logic offline monitoring to

continuous and hybrid systems. The idea of using Metric Temporal Logic as a formal

specification to form real-time system is introduced in [3]. It first gives quantitative

18

temporal properties to a real-time system and then reasons about the system by turning

quantitative temporal operators into metric temporal operators. Thati and Rosu in [29]

presented a general monitoring algorithm for checking time stamped traces against

requirements represented by MTL and sublogics of MTL.

Authors in [18] introduced a framework based on discrete time analysis for testing

Metric Interval Temporal Logic (MITL) [28] specifications regarding continuous time

signals. And the parametric identification problem is introduced in [10] with the notion of

polarity and validity domain as well as the algorithm to compute the validity domains. At

the time of this thesis was written it was not possible to experimentally compare the

algorithms in [9, 10] with the algorithms presented here. Such comparison will be

delegated to future work.

19

Chapter 3

DP-TALIRO

This chapter provides an overview of the main algorithm of DP-TALIRO toolbox

and describes some main new features included in DP-TALIRO.

3.1 DP-TALIRO Overview

We introduce MATLAB toolbox S-TALIRO first to help readers understand what

DP-TALIRO does since DP-TALIRO is one of the building blocks of S-TALIRO.

S-TALIRO is a tool for the temporal logic falsification problem. It turns the temporal

logic falsification problem into an optimization problem by using the temporal logic

robustness as a cost function. Using stochastic optimization techniques, it minimizes the

temporal logic robustness in order to find counterexamples to the MTL properties.

The overview of the framework of S-TALIRO is shown in Fig 3.1. The dynamical

characteristic of the physical system is captured and abstracted in a Simulink/Stateflow

model. It outputs traces become one of the inputs of DP-TALIRO, which are then

checked against specifications represented by MTL formulas and atomic propositions

represented as predicates. DP-TALIRO computes the robustness metric of these traces

with respect to the MTL formula. Then, one of the optimization techniques is chosen to

let S-TALIRO regulate the physical model. The optimization algorithm aims to determine

what output trace of the model must be analyzed next based on the information of

robustness metric. S-TALIRO is equipped with Monte Carlo [22], Ant Colony

Optimization [23] and other optimization algorithms. The user can implement other

stochastic optimization methods as well. In the end, S-TALIRO would output a falsified

20

trace if one can be found. Otherwise the least robust trace would be outputted if the

process time-out and no falsifying traces can be found. The reader is referred to [15, 16,

21, 22] for more details about S-TALIRO.

As we can see in Fig 3.1, the main components of S-TALIRO toolbox are a temporal

logic robust computation block and the stochastic optimization algorithm. FW-TALIRO

was used as the main temporal logic robust computation block. FW-TALIRO is

developed based on formula rewriting techniques and it is suitable for online monitoring.

But for offline monitoring it is too slow which makes S-TALIRO almost impossible to

use on large-scale traces and MTL formulas. DP-TALIRO is developed for such

circumstances to replace FW-TALIRO as the temporal logic robustness computation

block of S-TALIRO.

Fig 3.1: overview of S-TALIRO toolbox

21

3.2 Dynamic programming algorithm of DP-TALIRO

In this section we present the details of the dynamic programming algorithm for

computing the space robustness metric of MTL formulas with respect to timed state

sequences. We also present details of the implementation of DP-TALIRO.

First, we explain how the dynamic programming algorithm works regarding LTL

formulas. In [5], a dynamic programming algorithm is first introduced to test the

satisfiability problem of LTL formula with respect to a finite trace of events. This

algorithm achieves linear running time and constant memory requirement depending on

the size of the LTL formula by visiting the trace of events backwards in time. We

develop our algorithm based on this algorithm and expand it for temporal logic robust

estimation problem regarding MTL formulas.

First we parse the LTL formula in a tree fashion. We assign subformulas from top

down of the parsing tree. The key idea of dynamic programming algorithm for LTL

formula is to compute robustness values backwards on the time axis from the last

sampling point of the input trace backwards to the first sampling point of the input trace

and to compute robustness from bottom up of the LTL formula parsing tree. We store and

reuse the temporal logic robustness values of all the subformulas of the sampling point at

the very next timed state to compute the temporal logic robustness value of the sampling

point at the current timed state. Afterward, robustness values of the sampling point at the

current timed state are stored and used to compute the robustness for the previous

sampling point while the robustness values stored before are discarded. This process

repeats all the way from the last sampling point of the trace to the initial sampling point

22

of the trace. The robustness of the subformula at root node of the LTL formula parsing

tree at the first sampling point of the trace is the robustness value of the LTL formula.

We next present an example to explain how this algorithm works by drawing a

dynamic programming table.

Example 3.2.1: Consider the LTL formula . We parse this formula

as follows in Fig 3.2:

Fig 3.2: Parsing tree of formula of Example 3.2.1

Then we assign subformulas from top down. The corresponding subformulas are:

 ;

We draw a dynamic programming table (Table 3.1) to demonstrate how the dynamic

programming algorithm works. Each subformula represents a row in the dynamic

23

programming table and each column represents different sampling point of the input trace.

We start from filling the rightmost column which represents the last sampling point of the

trace and moving to the left columns one by one.

R[I, J] J = i J = i+1

 R[1,i] ⊔ R[3,i+1] R[1,i+1]

 R[2,i] ⊓ R[3,i] R[2, i+1] ⊓ R[3, i+1]

 R[4,i] ⊓ R[5,i+1] R[4, i+1]

Table 3.1: Dynamic programming table for LTL formula

Here, the trace is . denotes the signal value of time t. Here, we

assume time J = i+1 is the last sample of the given trace. Thus, time J = i+1 defines the

boundary conditions.

Table 3.1 is populated from top down and from right to left. We fill R[1, i+1] first

applying a distance computation of atomic proposition with respect to the input trace

at sample i. Next, we fill R[2, i+1] applying the same semantic for atomic proposition .

We fill R[3, i+1], R[4, i+1] and R[5, i+1] in order based on the discrete-time robust

semantics defined in Section 2.2.2. Then, we fill R[1,i] to R[5,i] in order applying

semantics in Section 2.2.2 using a distance computation if the subformula is an atomic

proposition or a supremum/infimum operation or previously computed values. The

robustness value for the formula with respect to trace s at the initial

time is the value of R[5, i] when i = 1.

24

The worst case running time of the algorithm above is O(| || |) which is linear

regarding the size of the formula and the length of the trace. This is easy to verify since

the number of rows of the dynamic programming table above grows linearly according to

the size of the LTL formula and the number of the columns of the table equals to the

length of the trace.

Example 3.2.1 illustrates how a dynamic programming algorithm works for LTL

formulas. MTL formulas are essentially LTL formulas combined with time constraints

and the algorithm is more complicated. So the algorithm for MTL formulas has some

similarity with the algorithm for LTL formulas.

First, we parse the MTL formula in a tree fashion. We assign subformulas from top

down of the parsing tree. We still compute robustness values backwards in time from the

last sampling point to the first sampling point and compute robustness from bottom up of

the MTL formula parsing tree. For MTL formulas, we store and reuse the temporal logic

robustness values of all the subformulas with indices) in order to compute

the temporal logic robustness of the sampling point at the current state. The robustness

value of the subformula at root node of the MTL formula parsing tree at the first

sampling point of the trace is the robustness value of the MTL formula.

Here we use another example to illustrate dynamic programming algorithm for MTL

formulas.

Example 3.2.2: Consider MTL formula .

Atomic proposition: (p) = { | x>0} and input signal as follows:

25

t(time) 0 0.2 0.4 0.6 0.8

X(value) 5 4 3 2 1

Table 3.2: Input signal of Example 3.2.2

First we could easily compute the robustness of formula regarding the input

signal which is X-0 shown below

t(time) 0 0.2 0.4 0.6 0.8

p 5 4 3 2 1

Table 3.3: Robustness of formula regarding the input signal of Example

3.2.2

And we parse this MTL formula simply as follows:

Fig 3.3: Parsing tree of formula of Example 3.2.2

We assign the subformulas:

Filling the dynamic programming table for MTL formulas is similar to what we did

for the dynamic programming table of LTL formulas. Accord to the algorithm we should

use the results in column which indices belongs to through to

compute the results in column . Noted that here we use different boundary

26

conditions according to different temporal logic operators. In this example, the robustness

would be set to negative infinity (-∞) if boundary condition is triggered to indicate that

the set of indices is an empty set. We fill the dynamic programming table as follows:

i(index) 1 2 3 4 5

t(time) 0 0.2 0.4 0.6 0.8

 5 4 3 2 1

 3 ⊔ 2 ⊔ 1 2 ⊔ 1 1 -∞ -∞

Table 3.4: Dynamic programming table for MTL formula of Example 3.2.2

As shown in the table above, we start by filling at index i=5. We search for the

results of subformula

 from time 0.8+0.3 to 0.8+1.1 and the result is the empty set

since the timed state sequence is not defined. Thus, we apply the boundary condition and

since the temporal logic operator here is „eventually‟ operator we set the result as

negative infinity. Next, we fill the table at index i=4. We search for the results of

subformula

 from time 0.6+0.3 to 0.6+1.1 and again we can find none and we set the

robustness as negative infinity. For row

 column i=3, we search for the results of

subformula

 in between time interval [0.4+0.3, 0.4+1.1] which is the result in column

i=5. We apply the same rule and fill the table all the way down to column t=0 and the

result is 3 ⊔ 2 ⊔ 1 which is 3 ultimately. So the robustness of MTL formula

 regarding this given input signal is 3.

We can observe from Example 3.2.2 that even though we apply the dynamic

programming algorithm for MTL formula we still have to store results of subformula

27

in column i=3, i=4 and i=5 in order to compute the result of

 in column i=1. In fact,

the columns of results needed to be stored depend on the time constraints of the temporal

logic operators. The pseudocode for the dynamic programming algorithm of MTL

formulas is presented in Algorithm 3.1 from [15].

28

Algorithm 3.1 Temporal Logic Robustness Computation

Input: The MTL formula , the trace , the distance metric d and

the observation map

Output: Return the value stored in s[1,1]

1. Procedure DP-TALIRO

2. for j ← | | to 1; for i ← | | to 1 do

3. if ψi = T then s[i, j] = T

4. else if ψi = p then s[i, j] ← Distd ((j) , (p))

5. else if ψi = ┓ψk then s[i, j] ← - s[k, j]

6. else if ψi = ψk1 ∨ ψk2 then

7. s[i, j] ← s[k1, j] s[k2, j]

8. else if ψi = ψk1 I ψk2 then

9. if j = | | then s[i, j] ← Kϵ (0, I) ⊓ s[k2, j]

10. else if ℐ = [0, +∞) then

11. s[i, j] ← s[k2, j] (s[k1, j] ⊓ s[i, j+1])

12. else

13. bl ← min (j, I);

14. bu ← max (j, I);

15. smin ←⊓j≤j‟<bl s[k1, j‟];

16. s[i, j] ← ⊥;

17. for j‟ ← bl to bu do

18. s[i, j] ← s[i, j] (s[k2, j‟] ⊓ smin);

19. smin ← smin ⊓ s[k1, j‟];

20. end for

21. if sup I = +∞ then

22. s[i, j] ← s[i, j] (s[k1, j] ⊓ s[i, j+1])

23. end if

24. end if

25. end if

26. else if ψi = ℱI ψk1 then

27. if j = | | then s[i, j] ← Kϵ (0, I) ⊓ s[k1, j]
28. else if ℐ = [0, +∞) then

29. s[i, j] ← s[k1, j] s[i, j+1]
30. else

31. bl ← min (j, I);

32. bu ← max (j, I);
33. s[i, j] ← ⊥;
34. for j’ ← bl to bu do

35. s[i, j] ← s[i, j] s[k1, j’];
36. end for

29

37. if sup I = +∞ then

38. s[i, j] ← s[k1, bl] s[i, bl+1]
39. end if
40. end if
41. end if
42. end for

43. end procedure

where k, k1, k2 > i; Kϵ (a, A) = T if a A and ⊥ otherwise; and (j, I) =

-1
(((j) + RI) ⋂ ((j+1) + RI)) if sup I = +∞ and (j, I) =

-1
((j) + RI)

otherwise.

The worst case running time of Algorithm 3.1 is O(| || |c) where c equals to

max0 j j max j I . Here I is the time constraints of any temporal logic operators

in the MTL formula. We already know the worst case running time of dynamic

programming algorithm of LTL formula is O(| || |). And here „c‟ stands for the maximum

sampling point possible from any point j of the trace up to bu which is the maximum

sampling point allowed according to the time constraints and the structure of the trace. In

another word, „c‟ is the biggest number of iterations in line 17 and line 34 of Algorithm

3.1.

There are however two hidden factors that would affect the running time of the

algorithm above. One is the time cost to compute the distance function which is based on

the sets and the structure of state-space and the details are addressed in [2]. Another

factor is the time to compute bl and bu in line 13 and 14 and line 31 and 32. Since the

traces DP-TALIRO deals with can have thousands of sampling points with non-constant

steps between any two sampling points, and since for each sampling points bl and bu are

different, there are thousands of bl and bu needed to be calculated. We found that the time

computing bl and bu grows exponentially when the length of the input trace grows. The

30

time taken to compute bl and bu drastically slows down the computation speed of

DP-TALIRO toolbox. In order to address this problem, we propose an algorithm to

compute bl and bu in linear time. The pseudocode for the time-stamp computation is

presented in Algorithm 3.2.

We extract from the input MTL formula and store the higher bound value of a time

interval of an MTL subformula in „ubd‟ and the lower bound value in „lbd‟. We use

„Highi‟ and „Lowi‟ to indicate the temporal maximum and minimum index of sampling

points thus define the range in which we search for a maximum mapping index with

respect to current time stamp and store in bu and a minimum mapping index and store in

bl.

31

Algorithm 3.2 Time-stamp Bounds Computation

Input: The trace and the length of the trace = | |
Output: Return bl and bu

1. bu = -∞;

2. bl = ∞;

3. for i ← to 0

4. if ubd = +∞ then bu = ;

5. else

6. if bu = -∞ then

7. Highi = ;

8. else
9. Highi = bu;

10. Lowi = 0;

11. end if
12. for j ← Highi to Lowi

13. if j 0

14. TempU = ubd + time(i);

15. if time(j) < TempU

16. bu = j;

17. break;

18. end if

19. end if

20. end for

21. end if

22. if bl = ∞ then

23. Highi = ;

24. else
25. Highi = bl;

26. Lowi = Highi – 1;

27. end if
28. for j ← Highi to Lowi

29. if j 0

30. TempL = lbd + time(i);

31. If time(j) > TempL

32. bl = j;

33. Lowi = j-1;

34. end if

35. end if

36. end for

37. end for

We compute bu by finding the first/maximum sampling point which meets the

requirement of (j, I) in Algorithm 3.1 and compute bl by finding the last/minimum

32

sampling point which meets the requirement of (j, I). It is easy to verify that bl and bu is

non-increasing every iteration since the trace is monotonic.

Initially we set the value of bu to negative infinity and the value of bl to infinity

indicating neither bu nor bl is set.

To set the value for bu, we start by searching from the last sampling point backwards

in time until the first sampling point we found which time stamp is smaller than „ubd‟

plus current time stamp. The index value of this sampling point we found is stored in bu

as the maximum index with respect to the current time stamp and we terminate the „for‟

loop. We search the value for bu regarding next time stamp by starting from the index last

bu indicates and backwards in time.

To set the value for bl, we start by searching from the last sampling point backwards

in time until the last sampling point we found which time stamp is bigger than „lbd‟ plus

current time stamp. We search the value for bl regarding next time stamp by starting from

the index last bl indicates and backwards in time.

The worst case running time of Algorithm 3.2 is O(2| |). We traverse all the sampling

points backwards in time once and all the sampling points stored in bu and bl once more

and make as many comparisons.

Algorithm 3.2 computes from the last sampling point backwards to the first sampling

point because Algorithm 3.1 does so and, thus, we can save computation time by

executing both algorithms together and traverse the input trace once.

33

Noted that for an MTL formula or subformula which has the time constraints of [0,

∞), it is actually an LTL formula and DP-TALIRO would treat it as an LTL formula thus

saving computation time since computing an LTL formula is faster than computing an

MTL formula given other conditions being equal.

3.3 Dynamic programming algorithm for time robustness

We have introduced the dynamic programming algorithm for space robustness

computation of MTL formulas. In this section, we apply similar approach for time

robustness computation.

In order to compute time robustness, we only need to replace the distance

computation in line 4 of Algorithm 3.1 with time-distance computation.

Algorithm 3.3 Time-distance Computation

1. if CurSign = PrevSign

2. if CurSign

3. T_rob = |PrevT_rob| + |CurTime – PrevTime|;

4. else

5. T_rob = - (|PrevT_rob| + |CurTime – PrevTime|);

6. else

7. T_rob = 0;

Algorithm 3.3 presents the pseudocode of computing time-distance and itself is

computed dynamically. This algorithm could be used for computing both past time

distance and future time distance. It keeps updating „CurSign‟ and „PrevSign‟ by looking

up the space robustness value. We illustrate this algorithm by presenting another

example.

Example 3.3.1: Consider MTL formula where atomic proposition: (p) =

{ | x>0} and input signal as follows:

34

t(time) 0 0.2 0.4 0.6 0.8

X(value) 3 1 -1 -3 -5

Table 3.5: Input signal of Example 3.3.1

First, we could easily compute the space robustness of formula regarding the

input signal which is X-0 shown below:

t(time) 0 0.2 0.4 0.6 0.8

p 3 1 -1 -3 -5

Table 3.6: Robustness of formula = p regarding the input signal of Example 3.3.1.

And then we apply Algorithm 3.3 and compute the future time robustness and past

time robustness:

t(time) 0 0.2 0.4 0.6 0.8

p 3 1 -1 -3 -5

θ

 0.2 0 -0.4 -0.2 0

θ

 0 0.2 0 -0.2 -0.4

Table 3.7: Time robustness of formula = p regarding the input signal of Example

3.3.1

We compute the future time robustness θ

 from right to left and start with filling

the rightmost column and since it is the boundary of the input trace we set the time

robustness to 0 to indicate that there are no robustness values in the future which have the

same sign as the robustness value at current time. Then, we fill the column t = 0.6, we

look up the space robustness of the current column and the previous column and find that

they have the same sign because both of them are negative numbers. So we accumulate

35

the time-distance by adding the time interval which is 0.2 on the previous time robustness

which is 0. We multiply the time-distance by -1 which indicates that the space robustness

at current time is negative and the result is -0.2. Then, we fill the column t = 0.4 and so

on. Similarly we compute the past time robustness θ

 from left to right and fill the

leftmost column with 0 because of the boundary condition. We fill the column t = 0.2 by

adding the time interval which is 0.2 on the previous time robustness which is 0 and

multiple 1 and the result is 0.2. Finally we fill the column t = 0.8 with past time

robustness -0.4.

Noted that here we set both future time robustness and past time robustness to 0

whenever the signs are different between current column and the previous column. The

reason is that somewhere between these two sampling points the trace reach the boundary

of satisfying or violating the requirement of the MTL formula. Since there is no way to

know where exactly this boundary point lies given a discrete time trace, we choose to set

the time robustness to 0 in order to make sure the correctness of the toolbox. Dynamic

programming of time robustness is separately implemented as the DP-T-TALIRO

toolbox. DP-T-TALIRO is also integrated in S-TALIRO yet it could run alone as a

toolbox as well.

3.4 Most related iteration and predicate

DP-TALIRO can return the most related iteration and most related predicate

automatically. Here, „most related iteration‟ means if the robustness value is changed at

this specific iteration the output robustness value may be affected as well. Similarly,

„most related predicate‟ means if the robustness value of the specific predicate is changed

36

the output robustness value will be affected as well. When there is a tie (means several

different iterations or different predicates affect the output robustness equally), it will

only show one of them.

In this section, we illustrate how the feature „most related iteration‟ and „most related

predicate‟ works. We consider a room with a heater and two sensors. The heater is turned

on all the time so that the room temperature increases monotonically. The sensors are set

at different threshold values. If the room temperature exceeds the threshold values the

sensors will be activated and they will beep.

Example 3.5.1: There is a heater in the room and it is always turned on. The room

temperature signal is shown as follows:

Time(t) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Temperature(X) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Table 3.8: Temperature regarding time as input signal of Example 3.5.1.

Atomic proposition: (sensor1) = { | X > 4}

Atomic proposition: (sensor2) = { | X > 3}

The MTL formula is shown as follows:

 = ([0, 2]sensor1)\/([0,2]sensor2);

Formula ([0,2]sensor1)\/([0,2]sensor2) says that from time 0 to 2 either eventually

sensor1 is activated and start to beep or sensor2 is activated and start to beep. Apparently

according to the input trace, the maximum environmental temperature it could reach is 2

which is below the threshold values of both sensor1 and sensor2 so neither would be

37

activated. Here, the „most related predicate‟ function can provide information on which

sensor is closer to be activated and the „most related iteration‟ function can provide

information on which sampling point of the input trace is the most related sensor that is

closest to be activated. If we had to consider a bunch of sensors, it would be tedious to

solve the same problem manually. Thus, the „most related predicate‟ and the „most

related iteration‟ function can provide useful information automatically.

For Example 3.5.1 the robustness value is -1, the „most related predicate‟ is „sensor2‟

and the „most related iteration‟ is time t = 2. The robustness value is -1 meaning that the

specification (the MTL formula) is not met and the distance from meeting the

requirement is 1. To be specific, the maximum environmental temperature is 2 at time 2

and in order to meet the specification which is to activate either „sensor1‟ or „sensor2‟ the

environmental temperature should at least reach 3. The distance between 2 and 3 here is 1.

The input trace and atomic propositions are shown in Fig 3.5. The temperature grows as

time increases. The last sampling point is clearly the closet to both threshold values of

„sensor1‟ and „sensor2‟. Thus, it is the most related iteration and „sensor2‟ is closer to the

input trace. Thus it is the most related predicate.

38

Fig 3.4: most related iteration and predicate result of Example 3.5.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(t)

T
e
m

p
e
ra

tu
re

Input Trace

sensor1

sensor2

most

related

iteration

most related predicate

39

Chapter 4

EXPERIMENTS AND APPLICATION

4.1 Running time comparison between DP-TALIRO and FW-TALIRO

In this section, we will analyze the running time of DP-TALIRO and compare it with

FW-TALIRO over LTL and MTL formulas.

Example 4.1.1: Given the input sequence: Signal = t + 0.5sin(2t)

Atomic proposition p
1
 = { | x 2 }

Atomic proposition p
2
 = { | x 2 }

MTL specification to be = ([0, 6.28](p2/\ [0, 3.14] p1));

 Formula states that atomic proposition p
2
 and eventually p

1
 from time 0 to 3.14

hold within time interval [0, 6.28] should happen infinite often.

We use DP-TALIRO and FW-TALIRO to compute the robustness using the setting

above regarding the input sequence of different length 1, 5, 10, 20, 40 and 60 respectively

and record the computation time in the table below.

40

Index Trace

Length

DP-TALIRO FW-TALIRO

1 1 0.003 0.003

2 5 0.003 0.004

3 10 0.003 0.016

4 20 0.003 0.267

5 40 0.003 6.222

6 60 0.004 27.56

Table 4.1: Time comparison between DP-TALIRO and FW-TALIRO

As we can see in Table 4.1, running time of FW-TALIRO grows exponentially and it

takes over 25 seconds to compute robustness over a trace with merely 60 sampling points

regarding a moderate sized MTL formula. Meanwhile, DP-TALIRO takes no more than

0.005 sec to compute the same robustness.

Example 4.1.2: We consider a more complex model of a powertrain system [30]. The

system is modeled in Checkmate [31]. This is the same example as used in [15]. The

Stateflow chart for the shift scheduler is shown in Fig 4.1. The system has 3 main

components, 6 continuous state variables and 2 Stateflow charts.

41

Fig 4.1: The shift scheduler of Example 4.1.2

 The challenge problem proposed in [30] is that whether the powertrain system will

switch from second gear to first to second from speed 0 to 100km/hr with respect to

constant road grade and throttle input. Here, the road grade and throttle position are the

initial parameters for the system and constant values of them must be chosen in order to

ensure the initial acceleration of the vehicle is greater than zero.

The LTL specification that represents the requirement for gear transition “second to

first to second” is shown below. and are atomic propositions indicating that the

system is in state first_gear and second_gear.

 ┓

42

 Applying S-TALIRO to the above problem we get one trajectory falsify when

road grade 0.128 and throttle 44.2. S-TALIRO equipped with DP-TALIRO used

1466 simulations and took 49.9 sec altogether. Each robustness computation time is about

0.011 sec.

We also consider a more useful property states that the gear transition from second to

first to second should not happen within 2.5 sec. To put another way, whenever the

system operates in first gear, then it should not operates in second gear within 2.5 sec.

The MTL specification that represents this requirement is:

 ┓ ┓

 Another useful property to be considered for powertrain systems is to verify that the

oscillation between gears is within acceptable limits. Such as, whenever the system is in

transition from gear 2 to gear 1, then the derivative of the torque is under certain limits.

The LTL specification that captures this requirement is:

 Where .

 We compare average computation time of robustness with respect to

between DP-TALIRO and FW-TALIRO as shown in Table 4.2. We remark that we did

following tests on an Intel Core Duo at 2.10GHz with 3.00 GB RAM and Windows Vista

32-bit operating system.

43

Spec. DP-TALIRO(sec) FW-TALIRO(sec)

 0.011 60<

 0.036 0.067

 0.018 0.009

Table 4.2: Comparison of DP-TALIRO and FW-TALIRO of Example 4.1.2

 We can see that robustness computation time of DP-TALIRO is acceptable for all

three formulas. But in certain circumstances such as formula in this example,

FW-TALIRO outperforms DP-TALIRO.

4.2 Running time analysis of DP-TALIRO

 In this section, we test the ability of DP-TALIRO of handling the large scale of data

required by S-TALIRO. We use the same trace and MTL formula as in Example 4.1.1

and increase the trace length to test the performance of DP-TALIRO.

Trace

Length

DP-TALIRO

100 0.004

600 0.006

3,600 0.021

21,600 0.113

129,600 0.642

Table 4.3: Running time of DP-TALIRO regarding different lengths of input trace

44

Fig 4.2: Running time of DP-TALIRO regarding large numbers of sampling points

 It takes less than 0.7 sec for DP-TALIRO to compute the robustness over 129600

sampling points and the running time grows almost linearly as shown in Fig 4.2.

 Next we test the running time of DP-TALIRO regarding different MTL formulas.

Here, we still use the same input trace with 129600 sampling points and test the running

time regarding 25 different MTL and LTL formulas. The result is shown in Table 4.4.

0 2 4 6 8 10 12 14

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
[] (<>_[0,6.28](p2 /\ <>_[0,3.14]p1))

Trace Length

T
im

e
(s

e
c
o
n
d
)

45

Index Formula: Time:

1 G [0,1] p1 0.208

2 G (3.14,∞) p1 0.213

3 G (p
1
 F ┓) 0.408

4 G (F [0,6.28](F [0,3.14] p1)) 0.719

5 p
1
 0.178

6 p
1
 0.174

7 F p
1
 0.174

8 G 0.165

9 X p
1
 0.126

10 G [0,1] p1 X 0.140

11 p
1
 U 0.173

12 p
1
 R 0.172

13 p
1
 U U p

1
 0.276

14 p
1
 R R p

1
 0.280

15 p
1
 U R p

1
U 0.390

16 p
1
 U [0.1,2] R [0.1,2] p1 U [0.1,2] 0.653

17 F [0.1,3] p1 0.254

18 (G p
1
 F [21.9911,∞)) 0.363

19 G (p
1
 F (0,1) ┓p

1
) 0.465

20 G (p
1
 F (0,5) (G (0,10) ┓p

1
)) 0.898

46

21 G (F (F p
1
)) 0.428

22 F p
1
 G (p

1
 F) 0.603

23 G (p
1
 F ┓p

1
) 0.452

24 G (┓p
1
 F (G ┓p

1
) p

1
) 0.513

25
(G (0,10)(┓p

1
 F [10,20] G ┓p

1
)) p

1
 U [0,20]

 R [20,30] p1 U

2.864

Table 4.4: Running time of DP-TALIRO with respect to 129600 sampling points

As we can see the running time regarding most formulas is less than 1 second with

one exception which is formula 25. Formula 25 is a complex MTL formula and it takes

some extra time to compute the robustness. However, even for formula 25, the running

time might still be acceptable for certain applications. We have experimentally

demonstrated that timing constrains and multiple nested temporal operators have an

impact on the robustness computation time. The experimental analysis agrees with the

theoretical time complexity analysis in Section 3.3.

47

Chapter 5

DP-TALIRO APPLICATION

In this section, we present an application of DP-TALIRO as part of S-TALIRO on a

parameter estimation problem. We demonstrate DP-TALIRO on the example from [11].

The problem defined in [11] states that given a hybrid system and an MTL formula with

one unknown parameter in a predefined range, find the optimal range of the parameter of

time that makes the hybrid system violate all the MTL formulas with the values of the

parameter in the resulting range. S-TALIRO relies on the temporal logic robustness

computation function of DP-TALIRO and turns the parameter estimation problem into an

optimization problem using falsification methods and stochastic search methods.

We consider the motivation problem in Example 1.1.1. Its Stateflow chart is shown

in Fig 5.1.

48

Fig 5.1: Finite State Machine for the automatic drivetrain in Example 4.3.1

 We can use S-TALIRO which equipped with DP-TALIRO to solve problems such as

“How quick we can reach and exceed 3250 RPM” or “What is the maximum time that the

RPM cannot exceed 4500 whatsoever”. We can write the specification for the

problem of “What is the maximum time that the RPM cannot exceed 4500 whatsoever”

as θ 0 θ ﹁p where p is (). The robustness of this specification as a

function of θ and the input which is the throttle schedule μ is shown in Fig 5.2. The

parameter starts from 0 second to 30 seconds and the throttle schedule span from 0 per

cent to 100 percent.

49

Fig 5.2: Robustness as a function of parameter θ and input μ in Example 4.3.1

The boundary values of parameter and input which make the robustness 0-that

RPM equals to 4500-is shown by the blue contour under the surface and we can infer

from the graph that . Thus, we say that for any ,

regarding this model.

50

Chapter 6

CONCLUSION AND FUTURE WORK

We think MTL is a promising approach for formalizing system requirements of

embedded control software. Thus, in this thesis, we have presented a toolbox

DP-TALIRO which is based on dynamic programming algorithm for computing temporal

logic robustness for MTL specifications. We have demonstrated that DP-TALIRO has

much improved performance over its ancestor FW-TALIRO. The experiments show that

DP-TALIRO has an approximated linear running time regarding LTL and MTL

specifications. Also we have integrated new features to increase the flexibility and

usability of DP-TALIRO.

There are several new directions worth exploring further. Currently DP-TALIRO

only supports future time temporal logic operators. In the future, we would like to support

past time temporal logic [14, 24] by including past time temporal logic operators such as

„since‟, „sometime in the past‟ and „always in the past‟. In order to further increase the

running speed, more work could be done by letting DP-TALIRO automatically detect and

omit irrelevant parts of the input trace and adjust the length of the input trace.

51

REFERENCES

[1] R. Alur and T. Henzinger. Real time logics: complexity and expressiveness. In

Fifth annual symposium on logic in computer science, pages 390-401. IEEE

Computer Society Press, 1990.

[2] G. E. Fainekos and G. J. Pappas, Robustness of temporal logic specifications for

continuous-time signals, Theoretical Computer Science, vol. 410, no. 42, pp.

4262–4291, 2009.

[3] Ron Koymans. Specifying real-time properties with metric temporal logic.

Real-Time System., 2(4):255–299, 1990.

[4] A. K. Seda and P. Hitzler, "Generalized distance functions in the theory of

computation," The Computer Journal, vol. 53, no. 4, pp. 443-464, 2010

[5] G. Roşu and K. Havelund. Synthesizing Dynamic Programming

Algorithms from LinearTemporal Logic Formulae. RIACS Technical report,

January 2001.

[6] Oded Maler, Dejan Nickovic: Monitoring Temporal Properties of Continuous

Signals. FORMATS/FTRTFT 2004: 152-166

[7] Amir Pnueli, The temporal logic of programs. Proceedings of the 18th Annual

Symposium on Foundations of Computer Science (FOCS), 1977, 46–57.

[8] Baber, R. L., The Ariane 5 Explosion: A Software Engineer‟s View, Technical

Report, Computer Science, University of the Witwatersrand, South Africa,

February 1997

[9] A. Donze and O. Maler. Robust satisfaction of temporal logic over real-valued

signals. In K. Chatterjee and T. A. Henzinger, editors, FORMATS, volume 6246

of Lecture Notes in Computer Science, pages 92-106. Springer, 2010.

[10] E. Asarin, A. Donzé, O. Maler and D. Nickovic. Parametric Identification of

Temporal Properties, In: Runtime Verification. Volume 7186 of LNCS., Springer

(2012) 147-160

[11] Hengyi Yang, Bardh Hoxha, Georgios E. Fainekos: Querying Parametric

Temporal Logic Properties on Embedded Systems. ICTSS 2012: 136-151

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Maler:Oded.html
http://www.informatik.uni-trier.de/~ley/db/conf/formats/formats2004.html#MalerN04
http://en.wikipedia.org/wiki/Amir_Pnueli
http://www.easychair.org/utils/wild.cgi?url=http://www-verimag.imag.fr/~maler/
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hoxha:Bardh.html
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fainekos:Georgios_E=.html
http://www.informatik.uni-trier.de/~ley/db/conf/pts/ictss2012.html#YangHF12

52

[12] Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.:

Probabilistic temporal logic falsification of cyber-physical systems. ACM

Transactions on Embedded Computing Systems (In Press) (2011).

[13] Zhao, Q., Krogh, B.H., Hubbard, P.: Generating test inputs for embedded control

systems. IEEE Control Systems Magazine August (2003) 49-57

[14] A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of Past LTL. In

Proceedings of the 5th International Conference on Formal Methods in

Computer-Aided Design (FMCAD), volume 3312 of LNCS, pages 245-259.

Springer-Verlag, 2004.

[15] Georgios Fainekos, Sriram Sankaranarayanan, Koichi Ueda and Hakan Yazarel

Verification of Automotive Control Applications using S-TaLiRo American

Control Conference, Montreal, Canada, June 2012

[16] Sriram Sankaranarayanan and Georgios Fainekos, Falsification of Temporal

Properties of Hybrid Systems Using the Cross-Entropy Method, ACM

International Conference on Hybrid Systems: Computation and Control, Beijing,

China, Apr. 2012

[17] A. Donze. Breach: A Toolbox for Verification and Parameter Synthesis of Hybrid

Systems. In Computer-Aided Verification, pages 167-170, 2010.

[18] Georgios E. Fainekos and George J. Pappas, Robust Sampling for MITL

Specifications, In the 5th Inter. Conference on Formal Modeling and Analysis of

Timed Systems, Salzburg, Austria, October 2007

[19] Georgios E. Fainekos and George J. Pappas, Robustness of Temporal Logic

Specifications, In the Workshop on Formal Approaches to Testing and Runtime

Verification, Seattle, USA, August 2006

[20] Georgios E. Fainekos and George J. Pappas, Robustness of Temporal Logic

Specifications for Finite State Sequences in Metric Spaces, Technical Report

MS-CIS-06-05, Department of CIS, University of Pennsylvania, May 2006

[21] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos and S. Sankaranarayanan,

S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems, In the

Proc. of Tools and algorithms for the construction and analysis of systems,

Saarbrucken, Germany, March 2011

53

[22] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta and G.

Pappas, Monte-Carlo Techniques for Falsification of Temporal Properties of

Non-Linear Systems, Hybrid Systems: Computation and Control, Stockholm,

Sweden, Apr. 2010

[23] Yashwanth Singh Rahul Annapureddy and Georgios E. Fainekos, Ant Colonies

for Temporal Logic Falsification of Hybrid Systems, In the Proceedings of the

36th Annual Conference of IEEE Industrial Electronics, Phoenix, AZ, Nov. 2010

[24] M. Benedetti and A. Cimatti. Bounded model checking for past LTL. In Tools

and Algorithms for the Construction and Analysis of Systems, 9th International

Conference, TACAS‟03, Lecture Notes in Computer Science, Warsaw, Poland,

April 2003. Springer-Verlag.

[25] Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled, Model

Checking, MIT Press, 1999, ISBN 0-262-03270-8.

[26] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, S. Yovine, The algorithmic analysis of hybrid systems,

Theoretical Computer Science 138 (1) (1995) 3-34.

[27] TaLiRo Tools. [Online]. Available: https://sites.google.com/a/asu.edu/s-taliro/

[28] R. Alur, T. Feder and T. A. Henzinger. The benefits of relaxing punctuality.

Journal of the ACM, 43:116–146, 1996

[29] Prasanna Thati, Grigore Roşu, Monitoring Algorithms for Metric Temporal Logic

Specifications, Electronic Notes in Theoretical Computer Science (ENTCS), 113,

p.145-162, January, 2005

[30] A. Chutinan and K. R. Butts, "Dynamic analysis of hybrid system models for

design validation," Ford Motor Company, Tech. Rep., 2002.

[31] B. I. Silva and B. H. Krogh, "Formal verification of hybrid systems using

CheckMate: a case study," in Proceedings of the American Control Conference,

vol. 3, Jun. 2000, pp. 1679 – 1683.

http://en.wikipedia.org/wiki/MIT_Press
http://en.wikipedia.org/wiki/Special:BookSources/0262032708
http://dl.acm.org/citation.cfm?id=1705797&CFID=317864731&CFTOKEN=70491290
http://dl.acm.org/citation.cfm?id=1705797&CFID=317864731&CFTOKEN=70491290
http://dl.acm.org/citation.cfm?id=1705797&CFID=317864731&CFTOKEN=70491290

54

APPENDIX A

DP-TALIRO USER GUIDE

55

DP-TALIRO is a tool that computes the robustness estimate of a propositional

temporal logic specification with respect to a finite timed state sequence. DP-TALIRO

stands for dynamic programming temporal logic robustness computation engine.

DP-TALIRO is implemented in MATLAB C (MEX) with dynamic programming based

algorithm for both Linear Temporal Logic (LTL) and Metric Temporal Logic (MTL)

specifications. The specification is an LTL formula when there is no temporal operator

with timing constraints. The time and memory requirements of such formulas are linear

with respect to the size of the formula and the input signal. For MTL formulas, the time

and memory requirements also depend on the real time constraints.

Version 1.1 supports multi-dimensional signals and time parameter as an input with

specified parameter value or range. The time parameter is used in time constraints to

provide more flexibility. DP-TALIRO version 1.1 can also output the most related

iteration and the most related predicate, as well. Here, the most related iteration means

that if the robustness value is changed at this specific iteration the output robustness value

could be affected as well. Similarly, the most related predicate means if the robustness

value of the specific predicate is changed the output robustness value would be affected

as well. When there is a tie i.e., several different iterations or different predicates affect

the output robustness, it will only show one of them. DP-TALIRO is integrated into

S-TALIRO but it can still be run as a stand along tool.

In this section, we describe the use of function DP-TALIRO in MATLAB. To

compile and set up the MATLAB path to DP-TALIRO, one could run

setup-dp-taliro or setup_staliro.

56

The use interface is as follows:

 [rob_dp,aux] = dp_taliro(phi,Pred,seqS,seqT,seqL,A,G)

Or

rob_dp = dp_taliro(phi,Pred,seqS,seqT,seqL,A,G)

User can decide whether they want to output auxiliary information (most related

iteration and most related predicate) or not.

57

Output arguments

rob The robustness estimate. This is a double precision floating point number in

case continuous system trajectories or a HyDis object for hybrid system

trajectory robustness. To get the continuous state robustness type get(rob,2).

aux
A structure that contains information on the most related iteration and most

related predicate.

aux.i indicates the most related iteration for robustness

 aux.pred indicates the most related predicate index of the robustness

Input arguments

phi
An MTL or LTL formula. The following indicates the correspondence

between the symbols of the logic operators and the input ASCII characters and

how to define the timing constraints on the temporal operators. If there are no

timing constraints following any temporal operators then it is an LTL formula.

Syntax:

phi := p | (phi) | !phi | phi \/ phi | phi /\ phi | phi -> phi | phi <-> phi |

 | X_{a,b} phi | phi U_{a,b} phi | phi R_{a,b} phi |

| <>_{a,b} phi | []_{a,b} phi

p a predicate (it can be any lowercase string)

! „not‟

\/ 'or'

/\ 'and'

-> 'implies'

<-> 'if and only if'

{a,b} where { is [or (, and } is] or) is for defining

open or closed timing bounds on the temporal operators.

For example, {a,b} can be [0,1] or (1,2]

X_{a,b} the 'next' operator with time bounds {a,b}. It

means that the next event should occur within time {a,b} from the

current event. If timing constraints are not needed, then simply use

X.

U_{a,b} the 'until' operator with time bounds {a,b}. If

no time bounds are required, then use U.

R_{a,b} the 'release' operator with time bounds {a,b}. If

no time bounds are required, then use R.

<>_{a,b} the 'eventually' operator with time bounds {a,b}. If no timining

constraints are required, then simply use <>.

[]_{a,b} the 'always' operator with time bounds {a,b}. If no timining

constraints are required, then simply use [].

58

Examples:

* Always 'a' implies eventually 'b' within 1 time unit:

 phi = '[](a -> <>_[0,1] b)';

* a is true until b becomes true after 4 and before 7.5 time units:

 phi = 'a U_(4,7.5) b';

Pred
Pred(i).str the predicate name as a string

Pred(i).A,

Pred(i).b

a constraint of the form Ax<=b

Pred(i).loc a vector with the control locations on which the predicate

should hold in case of trajectories of hybrid systems. If the

control location vector is empty, then the predicate should

hold in any location,

Pred(i).par the timing parameter name (aka. parameter), one predicate

could only have either „str‟ field or „par‟ field. Meaning it

could either be a traditional predicate or a timing parameter.
1

Pred(i).value the value of the parameter

Pred(i).range search range of a parameter
2

Examples:

 Define a predicate „p1‟ x 1.5 hold in control location 1 or 2:

Pred(1).str = 'p1';

Pred(1).A = 1;

Pred(1).b = 1.5;

Pred(i).loc = [1,2]

 Define a parameter „t‟ with value 2.5 in formula phi = 'F_(t,7.5) p1':

Pred(2).par = 's';

Pred(2).value = 2.5;

seqS
The sequence of states from a Euclidean space X. Each row must be a

different sampling instance and each column a different dimension in the state

space.

For example, a 2D signal sampled at 3 time instances is:

 seqS = [0.1 0.2; 0.15 0.19; 0.14 0.18];

seqT
The time-stamps of the trace. It must be a column vector.

For example:

 seqT = [0 0.1 0.2]';

It should be a monotonically increasing sequence.

Enter [] or ignore if you are interested only about LTL properties.

1
 Note that a parameter is not a field of predicate but a different type of predicate. We

include parameter in the predicate as a special type in order to keep the interface

unchanged for better compatibility.
2
 If a parameter has both „value‟ and „range‟ field, the „range‟ field would be omitted and

the specific parameter would have a certain value instead of a defined range.

59

seqL
This is the sequence of locations in case of hybrid system trajectory. It is

assumed that each location has a unique numerical (integer) value. It can be

omitted in case the predicates refer to global conditions on the continuous

state space.

CLG
The control location graph. This is the adjacency matrix or graph of the

control locations of the Hybrid Automaton. It can be omitted in case the

predicates refer to global conditions on the continuous state space.

GRD
Guard set for each edge of the CLG. For each edge (i,j) of CLG, the set that

enables the transition is a polytope of the form Ax <= b. This is a 2D array of

stractures:

 GRD(i,j).A

 GRD(i,j).b

60

To setup DP-TaLiRo run setup_dp_taliro.

For the hybrid distance metric with distances to the location guards the

Matlab package MatlabBGL is required:

http://www.mathworks.com/matlabcentral/fileexchange/10922

SVN repository for the current version:

https://subversion.assembla.com/svn/s_taliro/truck/dp_taliro

License:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

61

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

62

APPENDIX B

DP-T-TALIRO USER GUIDE

63

DP-T-TALIRO is a tool that computes the time robustness estimate of a

propositional temporal logic specification with respect to a finite timed state sequence. It

is developed based on DP-TALIRO. DP-T-TALIRO is implemented in MATLAB C

(MEX) with dynamic programming based algorithm for both Linear Temporal Logic

(LTL) and Metric Temporal Logic (MTL) specifications. The specification is an LTL

formula when there is no temporal operator with timing constraints. Version 1.0 supports

multi-dimensional signals. DP-T-TALIRO is integrated into S-TALIRO but it can still be

run as a stand along tool.

In this section, we describe the use of function DP-T-TALIRO in MATLAB. To

compile and set up the MATLAB path to DP-T-TALIRO, one could run

setup-dp-t-taliro or setup_staliro.

The use interface is as follows:

rob = dp_t_taliro(phi,Pred,seqS,seqT,seqL,A,G)

64

Output arguments

rob The robustness estimate. This is a structure consist of two floating point

numbers indicating past time and future time robustness. To get the future

time robustness type rob.ft. To get the past time robustness type rob.pt. .

Input arguments

phi
An MTL or LTL formula. The following indicates the correspondence

between the symbols of the logic operators and the input ASCII characters and

how to define the timing constraints on the temporal operators. If there are no

timing constraints following any temporal operators then it is an LTL formula.

Syntax:

phi := p | (phi) | !phi | phi \/ phi | phi /\ phi | phi -> phi | phi <-> phi |

 | X_{a,b} phi | phi U_{a,b} phi | phi R_{a,b} phi |

| <>_{a,b} phi | []_{a,b} phi

p a predicate (it can be any lowercase string)

! „not‟

\/ 'or'

/\ 'and'

-> 'implies'

<-> 'if and only if'

{a,b} where { is [or (, and } is] or) is for defining

open or closed timing bounds on the temporal operators.

For example, {a,b} can be [0,1] or (1,2]

X_{a,b} the 'next' operator with time bounds {a,b}. It

means that the next event should occur within time {a,b} from the

current event. If timing constraints are not needed, then simply use

X.

U_{a,b} the 'until' operator with time bounds {a,b}. If

no time bounds are required, then use U.

R_{a,b} the 'release' operator with time bounds {a,b}. If

no time bounds are required, then use R.

<>_{a,b} the 'eventually' operator with time bounds {a,b}. If no timining

constraints are required, then simply use <>.

[]_{a,b} the 'always' operator with time bounds {a,b}. If no timining

constraints are required, then simply use [].

Examples:

* Always 'a' implies eventually 'b' within 1 time unit:

 phi = '[](a -> <>_[0,1] b)';

* a is true until b becomes true after 4 and before 7.5 time units:

 phi = 'a U_(4,7.5) b';

Pred
Pred(i).str the predicate name as a string

65

Pred(i).A,

Pred(i).b

a constraint of the form Ax<=b

Pred(i).loc a vector with the control locations on which the predicate

should hold in case of trajectories of hybrid systems. If the

control location vector is empty, then the predicate should

hold in any location,

Pred(i).par the timing parameter name (aka. parameter), one predicate

could only have either „str‟ field or „par‟ field. Meaning it

could either be a traditional predicate or a timing parameter.
3

Pred(i).value the value of the parameter

Pred(i).range search range of a parameter
4

Examples:

 Define a predicate „p1‟ x 1.5 hold in control location 1 or 2:

Pred(1).str = 'p1';

Pred(1).A = 1;

Pred(1).b = 1.5;

Pred(i).loc = [1,2]

 Define a parameter „t‟ with value 2.5 in formula phi = 'F_(t,7.5) p1':

Pred(2).par = 's';

Pred(2).value = 2.5;

seqS
The sequence of states from a Euclidean space X. Each row must be a

different sampling instance and each column a different dimension in the state

space.

For example, a 2D signal sampled at 3 time instances is:

 seqS = [0.1 0.2; 0.15 0.19; 0.14 0.18];

seqT
The time-stamps of the trace. It must be a column vector.

For example:

 seqT = [0 0.1 0.2]';

It should be a monotonically increasing sequence.

Enter [] or ignore if you are interested only about LTL properties.

seqL
This is the sequence of locations in case of hybrid system trajectory. It is

assumed that each location has a unique numerical (integer) value. It can be

omitted in case the predicates refer to global conditions on the continuous

state space.

CLG
The control location graph. This is the adjacency matrix or graph of the

control locations of the Hybrid Automaton. It can be omitted in case the

predicates refer to global conditions on the continuous state space.

3
 Note that a parameter is not a field of predicate but a different type of predicate. We

include parameter in the predicate as a special type in order to keep the interface

unchanged for better compatibility.
4
 If a parameter has both „value‟ and „range‟ field, the „range‟ field would be omitted and

the specific parameter would have a certain value instead of a defined range.

66

GRD
Guard set for each edge of the CLG. For each edge (i,j) of CLG, the set that

enables the transition is a polytope of the form Ax <= b. This is a 2D array of

stractures:

 GRD(i,j).A

 GRD(i,j).b

67

To setup DP-T-TaLiRo run setup_dp_t_taliro.

For the hybrid distance metric with distances to the location guards the

Matlab package MatlabBGL is required:

http://www.mathworks.com/matlabcentral/fileexchange/10922

SVN repository for the current version:

https://subversion.assembla.com/svn/s_taliro/truck/dp_t_taliro

License:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

68

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

