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ABSTARCT

Hepatocellular carcinoma (HCC) is a malignant tuisiod seventh most common cancer
in human. Every year there is a significant risehi@ number of patients suffering from
HCC. Most clinical research has focused on HCCyedetection so that there are high
chances of patient’'s survival. Emerging advancement functional and structural

imaging techniques have provided the ability toedetmicroscopic changes in tumor
microenvironment and microstructure. The prime foi this thesis is to validate the
applicability of advanced imaging modality, MageeResonance Elastography (MRE),

for HCC diagnosis.

The research was carried out on three HCC patielata and three sets of experiments
were conducted. The main focus was on quantitasgect of MRE in conjunction with
Texture Analysis, an advanced imaging processipglipie and multi-variate analysis
machine learning method for accurate HCC diagnd&fis. analyzed the techniques to
handle unbalanced data and evaluate the efficasgrapling techniques. Along with this
we studied different machine learning algorithmsl aleveloped models using them.
Performance metrics such as Prediction AccuracysiBeity and Specificity have been

used for evaluation for the final developed model.

We were able to identify the significant featuresthe dataset and also the selected

classifier was robust in predicting the responassivariable with high accuracy.



ACKNOWLEDGMENTS
| would like to express my profound gratitude tg advisors Dr. Teresa Wu and Dr.
Ross Mitchell for their constant support, encouraget and valuable suggestions,

without which this thesis would not have been dassi

My sincere thanks to Dr. Amy Hara, Dr. Alvin Sihaand Dr. Wendy Stiles at Mayo
Clinic for their valuable contribution to this thes Thanks to the member of my

dissertation committee, Dr. Jing Li for her thodghtomments.

| am also grateful to all my lab mates for theitphand support: Miao He, Min Zhang
and Can Cui. Special thanks to my Mayo Clinic cudlees Helene Hilaire and Gil
Speyer, who had helped me a lot in extracting @ dkom Texture Analysis pipeline
and working late hours in order to make the sofewawork for me. It is for their

invaluable help and assistance that made the ctiomplef this project possible.

| would like to express my utmost gratitude to nayents, my brother and sister, and my

friends without whom this whole journey of educatiwould not even have started.



TABLE OF CONTENTS

Page
LIST OF TABLES ...t e e e e e e e e e e e e nnnns vii
LIST OF FIGURES ...t e e e e nmmn e e e eenes viii
CHAPTER
1. INTRODUCTION ... oo e e e e e e e e e e e e nnn s 1
1.1 Hepatocellular Carcinoma Disease DiagnoSiS..........cccevvirvreeeeerirnnnnnninnnnns 1.
1.2 Diagnostic Imaging for Hepatocellular CarcinOma.............ccceeeeeeeeeiiiieineennnnns 3
1.2.1 IMaging MOAlITIES.........uuuuriiiiiie ettt e e e eee e 4
() URraSOUNG .......cooiiiiiiiiiiiiiiii e ettt e e e e e e e e e eeeaeeaes 4
(b) Computed Tomography (CT) ..ccceeeieeeeiiieeeeeee e e e e e
(c) Magnetic Resonance Imaging (MRI) .......occooeeeeeeeiieeeeeee e

(d) Magnetic Resonance Elastography (MRE) . eeeieeeiiiiiiiiiiiiiiiiiiiienn 5

(e) Summary on Imaging Techniques for HCC diagnosis............ccccceeev..... 7
1.3 IMAGING ANAIYLICS ...oevviiiiiiiiiiie e er e e e e e e e 11
1.4 ReSEearCh ODJECHVE .....uuiei i e e e e e e 12
1.5 ThesisS OrganiZatioN.............uuuuuuuimmmmmmeeeeeeeeeeee et e e e e e e enaeaaaeaaaeaees 13
2. LITERATURE REVIEW ON ADVANCED IMAGING ANALYTICS........ccccceene. 14
2.1 TeXtUIE ANAIYSIS....cccccieeeieeeeeeeeee e s e e e e e e e e e e e e e e e e eeea e e e aeaaeaaaes 14



CHAPTER Page
2.1.1 Texture Analysis PIpPeliNg ........cccooeiieeeiiiiiiiiiiie e eeeeeeeees 16
6= ) I o (=] o] 0 1o =271 | o 17
(D)  Feature EXIraCtion .........ocoevviiiiiiieieie e et e e e e e e e e e eeees 17
(o) I Y g = 1Y L 18
2.1.2 Texture Analysis MethodolOgIES........cccceeiiiiiiiiiiiiiiiiieiee e 19
(@) Statistical MethodS ..........oooo i 19
(b)  Structural Methods ..........oooevviiiiiiceeemecceee e 21
(c) Mathematical Model Based Methods.......cccccceveeeeeeeiiieeieecee, 22
(d) Transform based Methods..............eeeeeiiiiiiiiiiiii e 23
2.2 Machine Learning Algorithms USEd ... iiiiiiiiiiiiiiiiiiii e 32
(@) Decision Trees (J48 & Random FOrest) ..ooooeeioeieeeiviiiiiieeeeeeiieeeeeeees 32
(D) ADA BOOSL: ....ccoiieiieieeeeieiie e s e e e e e e e e e e e e e e e e e e et ————- 32
() IR == Ve To 11 o USRI 33
(d) Support Vector Machings (SVM): ..........commmeeernniiisieeeeeeeseeeseeenennnnnnnnnns 33
(e) Artificial Neural Network (ANN): ... 34

2.3 Feature Selection TEChNIQUES USE ... cmmerrrennnniiiaiaaaeeeeeeeeeeeeeeiiieiviennes

2.4 Resampling Techniques used

2.5 Data Preprocessing and Data

ClEANING . s e+

35

36

37



CHAPTER Page

2.6 Summary and CONCIUSION ........uuuuuiiiieeeieee e e e e e e e e e e e e e e e eeeeeees 38
3. EXPERIMENTS AND ANALYSIS ... 40
3.1 INErOAUCTION ..ttt s e 40
3.2 General Workflow of the EXperiments ............oouvvvuiiiiiiiiiiiieeeeeeeeeeeeeviiinns 40
3.3 Dataset DESCIIPLION ......uuueuiii ettt e e e e e e e e e e e eeeeeeaeeeeneeeeaeeees 42
3.3.1 Pixel Based Datasert .............uueiieereereiiiiiiiiiiiieieeeeee e e e 45
3.3.2 ROI BaSed DAASEL ........ccviiiiiiiiieeeeeeeiiiiie et 46
I e q 0 1= 1T L PR 48
3.4.1 Experiment 1: Intensity Based ANAIYSIS e .ceivvveieeeiiiiiiiiiiiieeeeeeeeeeen 49
(@) Experiment 1.1: Paired t-teSt ..........coummmerrereeeeeeeeeeeeeeeeeiiiiiii s 49
(b) Experiment 1.2: Scatter PlOt..........ooceeeeeeiiiiieee e 51
3.4.2 Experiment 2: Texture Analysis features basedy ................cccceevnnee 53
(@) Experiment 2.1: Pixel Based Study-All features...........ccccceeeeiiiennnneenn. 53
(b) Experiment 2.2: Pixel Based Study-with seledesdures......................... 54
(c) Experiment 2.3: ROI based study-All featureS .............ccceeeeiiiiieeeeeeenn. 55
(d) Experiment 2.4: ROI based study-with selectatures........................... 56
3.4.3 Experiment 3: Testing Prediction Accuracyhaf build Classifier........... 59
(@) Experiment 3.1: Testing the model on ROI/Poah ...................cccee. 59
(b) Experiment 3.2: Prediction accuracy for Patiddata ........................... 61

Vv



CHAPTER Page

(c) Experiment 3.3: Prediction accuracy for Whoieelr............................... 62
4. CONCLUSION AND FUTURE WORK ....cciiiiiiiiiiceenee et 67
REFERENGCES ..ottt ettt e e e e et e e e e e e nsae e e e e nsaaeeeeeeaanns 72

Vi



LIST OF TABLES

Table Page
1. Pros and Cons of Imaging teChNIQUES.......cceeeeeeiiiviiiiiiiiie e e 7

2. Variables in Pixel based dataset...........cccceeeeieeiiiiiiiiiiccecc e 46

3. Variables in ROl based dataset ............ccceeeeee i 47

4, Paired t-test results for intensity Values .a...vvvveeiiiiiieiieeeeeeeeeeeceeeees 50

5. Percentage of correctly classified instances fpeerent 2.1...........cccccceeeennn. 54
6. Significant features selected for pixel based study.............cccevvvvvvviiiiiiiiennnn. 55
7. Percentage of correctly classified instances fopeerent 2.2...........cccccceeeennn. 55
8. Percentage of correctly classified instances fopeerent 2.3...........cccccceeeeennn. 56
9. Significant features selected for ROI based study.........ccccccoeeeeeeiiiievieiiiininnns 57
10.  Percentage of correctly classified instances fopeerment 2.4 ..................coeee 57
11. Percentage of correctly classified instances fopeerment 3.1..............c.coeveeeeee 60
12.  Prediction accuracy of SVM and RF for Patient £.3.........cccccceeeeeiviviveveeiiinn, 61
13.  Prediction accuracy of SVM and RF for Patient #Bole liver ......................... 62
14.  Confusion Matrix in general form ............cceeeieieiiiiiiiiie e 63
15.  Confusion Matrix for EXperiment 3.3.......ccoovveeiiiiiiiieieeeeeeees e 65

Vii



Figure

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

LIST OF FIGURES

Page
WOIKIIOW OF MRE ... ..ttt e e e e e e e 6
Use of imaging techniques in the HCC diagnosisrdulast ten years in medical

Year wise trend followed in diagnosis of HCC usthggnostic imaging

L0 0 10 18 =SS 11
Thesis organization FIOWCNArt.............iccrcceieeiiiiiciee e 13
Texture ANalysiS PIPEINE ...........uuei et e e e e e e eeenees 16
Data PreproCesSiNg SIEPS ...uu i eeeeeeeeiiiee s e e e e e e e e e e e e e e 17
Data ANAIYSIS STEPS ..uuuuiiiiiieeeeeeiee et s s e e e e e e e e e aeeeeeeesessrnnnnneeenees 18
General Format of CO-0CCUITENCE MALIIX..... .o errrrereeeiaiinreieeeessnineeeeeeens 12
Wavelet transform of the image...........oo e 25
Coronal slice of T1-weighted cerebral MRI ....ccceeevvvvviiiiiiiiiiiiieeeeeeeecceeeeeae 26
Three level 2-D PSWT decomposition of 128 x 128gma..............cccevvvvvvennns 27
Level 2-D wavelet packet decomposition of 128 x I8ge...............cceeeeeeee. 28
TeXture traiNiNg STEPS.....cciieiiiieiieeee e eee et s s e e e e e e e e eeeeeeeeeesrnnnnnseennnns 28
Texture classification SEPS ..........oi i i 28
An illustration on how to create the fabricatededapints in SMOTE................ 37
General Workflow of the Study .............ee e e eeeeiiiee e eeeeeeeees 41
Scatter plot of the Intensity values for tumor aath-tumor tissues ................... 51

viii



Figure Page
18. Receiver Operating Characteristics (ROC) spaceaithe under the ROC curve is

known as Area under the Curve (AUC)........ceeeemmioenieeee e 46



CHAPTER 1

INTRODUCTION

1.1 Hepatocellular Carcinoma Disease Diagnosis

Hepatocellular carcinoma (HCC) is a malignant tugad it is considered as the seventh
most frequent occurring cancer in human [1]. Anneste incidence is between 250,000
and 1.2 million cases per year, worldwide [1]. e United States, the rise in HCC has
increased by 80 % in the past two decades [2].ifitidence of HCC is mainly due to
Hepatitis C, which also leads to chronic liver cdicgiions such as fibrosis, cirrhosis.
Nonalcoholic Steatohepatitis (NASH) & Non-Alcoholiatty Liver Disease (NAFLD)
are also major concerns that are growing really dasl it is expected that they will be
surpassing Hepatitis C as the major cause in taefoeure. The recent high rise of HCC
is partially due to the increased obese in the population. Currently, NAFLD has been
considered the most common liver abnormality inth8 with an estimated prevalence
of 25% of the total population. Simple fat (ste&pss the first stage which leads to fat
with inflammation and scarring (NASH) and ultimateio end stage liver fibrosis

(cirrhosis).

Liver fibrosis, a symbol of structural liver damage an accumulation of Extracellular
matrix (ECM) proteins in excess which includes agéin that is a characteristic of most
types of liver diseases. It occurs from chronic dgento the liver along with the ECM

proteins accumulation. This is an indication forsttypes of chronic liver diseases [3].

Advanced liver fibrosis leads to cirrhosis whichtumn causes hepatocellular dysfunction

and increased intrahepatic blood flow resistantgs fesults in hepatic insufficiency and
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hypertension, respectively [4]. In the majoritypztients, development to cirrhosis from
fibrosis occurs after a span of 15-20 years [3théligh many patients suffering from
cirrhosis may remain free of any major problemssieveral years, it is a serious sign for

developing HCC.

Most clinical research has focused on HCC earlga®n when the tumor might be
curable by resection, liver transplantation, oraibh and a 5-year survival higher than
50% can be achieved [5]. In the U.S. a screeningram has been implemented for
HCC early detection. In the screening program, ®jops not required before the
treatment and diagnosis of HCC can be done effagtiusing imaging characteristics.
This is probably due to the great promises thenteadvanced developments of imaging
techniques are showing. Emerging advancementsnatibinal and structural imaging
techniqgues have provided the ability to detect ascopic changes in tumor
microenvironment and microstructure, thus allowthg assessment of tumor response
after locoregional treatment by observing alteraion tumor viability, perfusion or

vascularity.

Commonly used imaging techniques for HCC diagnaosidude Ultrasound (US),
Computed tomography (CT) and Magnetic resonance )(MFS has been largely
replaced by CT and MRI due to its low sensitivitydaspecificity in HCC diagnosis [6].
As a result, liver disease diagnosis has mainlgdebn CT and MRI imaging criteria.
However, these two techniques are not without &trohs. A retrospective analysis
comparing the accuracy of radiologic staging widithplogic staging on liver disease

patients found that imaging based diagnosis (botha@d MRI) resulted in a high



number of false positives labeling common benigcafcabnormalities in the liver as

malignant tissue [7].

One of the major difficulties in imaging cirrhosis the detection of hyper vascular
nodules which are smaller than 2 cm. These nodofiiesr have nonspecific imaging
characteristics making their detection highly cocgikd [8]. MR imaging technique is
superior to CT in this area, even though the seitst for both of them remain highly
disappointing. The MR imaging technique surpassesvith 81 % pooled estimate of the
sensitivity as compared to 68 % for CT as far aedm®n of HCC is concerned [8].
These research findings indicate there is greatnréar improving diagnosis accuracy
(both sensitivity and specificity). In this resdarcour central hypothesis is: MR
Elastography (MRE), a novel imaging technique dawyetl by Mayo Clinic has the
promise to improve HCC tissue characterizationcdnjunction with advanced imaging
process technique, such as texture analysis, t@aaxnultiple biomarkers as imaging
signature, the diagnosis power may be significantiproved. Texture analysis is a
generalized tool applicable to varied imaging miigsl including US, CT and MRI

which are briefly reviewed in the next section.

1.2 Diagnostic I maging for Hepatocellular Carcinoma

We will first review three common noninvasive imagimodalities namely Ultrasound
(US), Computed Tomography (CT) and Magnetic Resomamaging (MRI). In addition
an advanced imaging modality, Magnetic Resonanastégraphy (MRE) developed by
Mayo Clinic is briefly reviewed. We further sumnagisome basic trend in the use of the

modalities in HCC diagnosis.



1.2.1 Imaging Modalities

(@) Ultrasound

Ultrasonic Imaging is one of the most popular imggtechniques in medical field.
Ultrasound Diagnosis working principle is basedtba emission of sound waves with
frequency far above the audibility threshold. TybitJIltrasonic frequency range lies
from 2-15 MHz, sound frequency below such rang&nswn as infrasound. At these

frequencies the speed of sound travels in humag &bti540 m/s [9].

The interval of this wavelength is in the rangenir0.75 - 0.1 mm. When sound travels at
this wavelength it can be focused in a particulezadion and the region of interest (ROI)

can therefore be interrogated [9]. Similar to aac#bmagnetic wave, a sound wave can
be reflected, retracted, diffracted, scatteredpddes] or shifted in frequency. In current

practices, Ultrasound (US) imaging is being repllabg advanced imaging modalities

such as CT scan and MRI owing to low sensitivityl gositive prediction value with

coexisting cirrhosis.

(b) Computed Tomography (CT)

A CT (computed tomography) scan is a noninvasivagimg technique that is largely
replacing US imaging. It uses a special x-ray maehhat produces multiple images or
pictures of patient’s internal organs and to jdiese images together a computational
algorithm is applied thereby rendering cross-seeli@iews of the region of interest that
is being studied. CT scans of internal organs, dleessels, soft tissue and bones

provides a superior clarity as compared to coneeatix-ray exams.



CT imaging assessment of HCC suspected patientsicsibe done using multiphase
contrast imaging of the liver. The CT scans arei@arout at different time intervals
corresponding to the contrast enhancement phase.atturacy of CT enhances with
higher imaging speeds, which allows faster appbcatof contrast media, thereby
drastically improving contrast enhancement. Theitemal flexibility and speed of
multidetector CT (MDCT) allows superior quality, inbsection imaging with 3D

capabilities.

(© Magnetic Resonance Imaging (MRI)

Another well used imaging for HCC diagnosis is Mi®lich uses similar concepts to
those applied to CT imaging. MRI imaging utilizeésgnetic field and energy of radio
wave pulses to take pictures inside the body. Inyr@ases the information that cannot
be seen on an X-ray, US or CT scans is provideMBY scans. Recent advancement in
MR technology captures images within the time fravshene breath hold. However, MRI

sensitivity when evaluating HCC tumors which arecr in diameter, is far less than

satisfactory.

(d) Magnetic Resonance Elastography (MRE)

The technique of MRE developed by Mayo Clinic iseeging to become a promising
modality for HCC diagnosis. There is increasingdewnce that HCC's behavior is
mediated by its physical environment on a celld@arel. Around 80% of HCCs is
developed in the context of advanced liver fibramigirrhosis where fibrosis is defined
by changes in the physical and biochemical propeif the cellular microenvironment
[10]. It is therefore obvious that development o€El takes place in a niche with
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mechanical properties different from those foundh® normal liver. MRE is based on a
transducer that transmits vibrations to the tighat are of interest, a sequence of motion-
encoding gradients to image tissue displacement andathematical reconstruction
designed to reflect the mechanical properties @f tissue [11]. Therefore, there is
growing interests in applying MRE for HCC diagnoRE requires a wave driver to
produce the mechanical excitation in the targsugs. It must be positioned as closely as
possible to the target to be scanned on the bodwcgu During the scan the driver
vibrates at controllable frequencies and amplituésh cycle is synchronized with the
motion encoding sequence that measures mechanioedtions. An elastogram is
calculated by the help of the mechanical parameteh as amplitude, frequency,
wavelength and phase in the image volume [11].réidubelow shows the workflow of

MRE as just discussed.

Synchronous
Trigger Pulses
Imaging
4 A Wave
Phase Encoding ~e_ Driver
I —
Sequence - —
T E— L, Phase & || 3D Elastic Tissue Model/ | | Elastogram
- — Amplitude Map Inversion Technique
Mechanical x s
Motion-sensitising
Excitation Gradient
Synchronisation of Image Signal Processing Construction of Elastogram

Sequence and Vibration

Figure 1: Workflow of MRE



(e)  Summary on Imaging Technigues for HCC diagnosis

As each imaging modality is reviewed, we summaitieeadvantages and disadvantages

of each modality in general medical practices ibl&éd below:

Table 1: Pros and Cons of Imaging techniques

M odality Pros Ccons

= Images resolution is often
limited.
= Cannot evaluate bone, lungs.
Highly skilled specialists arg
required to interpret ultrasound
images, especially when
complicated procedures dare
involved [12]

[®X

= Inexpensive, quick an
convenient.

us " By the use of US no harmfyl

effects have been observed,

at the intensity levels that afe

being used for imaging and

examinations [6].

= CT can display bone change§
much better than any other
imaging methodology.

CT scans requires exposure|to
some radiation. This radiatign
exposure is likely to increase

= CT can provide detailed . . .
CT . the risk of cancer in patients
—— images of bone, blood .
) who are getting scanned.
vessels and soft tissue. _
. . . = CT scan is not capable of
= CT is widely available at . . .
. identifying all diseases and
healthcare institutions . .
. medical conditions.
= Reasonably priced [13]
= MRI do not use ionized
radiations and thereby
avoiding patient's exposurnes MRI scanners can be affected
to the potential harms of su¢ch by movement therefore requiye
radiation [12] patients to hold still for
MRI |« MRI scans are useful far extended periods of time.

exhibiting soft tissue = People with  pacemakefs
structures, such as cartilage, cannot have MRIs. [6]
ligaments and organs such |as

the brain, eyes and heart [6]




The widespread use of MRE
relies on the same technology
and infrastructure a

= MRE measurements did npt
seem to be influenced by the
resence of obesity or ascites . . :
P y conventional MR imaging, an

= MRE proved to be a more

accurate and  reproducible so claustrophobic or very
MRL P obese patients and those wijth

technique  compared to o ,
. . . contraindications to MRI wil

conventional imaging ) L
be excluded from investigatign

features Dbetter diagnostic L

due to an inability to enter the
accuracy [11]

scanner [11]

o O

Other than reviewing the technical pros and corsagh modality, we further explore the
usage of each imaging technique in the medical tipemz Specifically, we used
“pubmed.gov”, search from 2000-2013, using the kays HCC and the related imaging
modality. The results are shown in Figure 1(pierfghand Figure 2 (bar-graph). We

observe:

(a) Ultrasonography (US) was most widely used for sillarece because it is not
expensive, not invasive, well accepted by patiamd can be repeated without
risk. One of the major drawbacks if that it is wiffit to distinguish small tumors
from the nodularity of the cirrhotic liver by US.

(b) Computed tomography (CT) is a common imaging mogaised in diagnosing
HCC due to its widespread availability and shoraraiation time, but the
usefulness of CT in a surveillance program thatiireg periodical tests is limited
by the patient’s radiation exposure.

(c) Magnetic Resonance Imaging (MRI) has higher seftsitthan CT and US for

HCC (89-100%) detection [14]. However, MRI is resat for characterization



purposes, diagnostic confirmation and intrahepttioor staging because of

lower availability and high co:

(d) MRI provides higher lesic-to liver contrast than CT, which is a significi
advantage over CT.

(e) Several studies that have compared the acy of US, CT and MRI for HC(
diagnosis show that MRI is better in the diagna$isiCC when compared wit
CT and US. This is due to improved deion of small lesions 12-cm[15].

(H In MR imaging, an emerging technique is Maic Resonance Elastograp
(MRE). Use of MRE hasled to new quantitative tissue characterizal
parameters for differentiating benign and malignlagpatocellular nodules in
cirrhotic liver. MRE has proved to be a more actaiend reproducible techniq
compared to conventional imaging features betiagnostic accuracy. It is

relatively new technique and under considerationsniprovemen

<
2

34%

Cc
wn

22%

Figure 2: Use of imaging techniques in the HCC diagnosis cgilast ten years it
medical field



It is evident from the pie-chart (Figure 2) thatidg last ten years CT and MRI imaging
techniques have gained a lot of popularity in thedital field for detecting HCC. US
used to be a popular diagnostic imaging technigukee has been replaced by MRI and
CT owing to high sensitivity and accuracy of thettgchniques. MRE figures appear to
be small as it is a relatively new technique andeurconsiderations for improvement, but
MRE has proved to be a more accurate and reprddutdrhnique compared to

conventional imaging features better diagnostiwemzy.

The following bar chart (Figure 3) is another reyargation of the trend followed in
diagnosis of HCC using diagnostic imaging technsquié is evident that US was a
popular technique during early 2000 to 2004, btaréf005 CT and MRI has widely been
used as the preferred imaging techniques. Alsauit lmeen seen that although MRE is
fairly new imaging technique it has gained a sigaiiit amount of popularity during last
few years and seems to be the future of the Didgnbmaging technique for detecting

HCC.
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Figure 3: Year wise trend followed in diagnosis BCC using diagnostic imaging
techniques

1.3 Imaging Analytics

We have reviewed existing clinical literature oe tisage of different modalities in HCC
diagnosis. Other than the trend we observed, anatiteresting finding is that most
clinical research has focused on only limited imggbiomarkers. In addition, most
research published to date relies on subjective \arthble assessment of imaging
features. We believe Texture analysis is one piatletéchnique to generate multiple,

objective, reproducible, quantifiable features fromadical images.

In the field of HCC, an early diagnosis will conpesid to a more effective treatment if
this can be done at an early phase. Surveillame t reduce disease-specific mortality
by detecting HCC at a curable stage. The optimafilprfor this endpoint is when the

HCC is smaller than 2cm [16] while most conventianzaging techniques such as CT,
MRI fails. Classification of healthy and diseasecis using modern imaging such as

MRE in conjunction with Texture Analysis may addréisis clinical challenge [17].
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Texture recognition is an important aspect of madicnage analysis. In medical
imaging, texture can be defined as the distinctgenmtensity pattern that is helpful in
characterizing a tissue. Texture analysis also igesvthe local spectral or frequency
content of an image; any change in the local teximould in turn cause changes in the
local spatial frequency. Texture Analysis is of hignportance in medical imaging
analysis because, as the biological tissue becoab@®rmal during a disease, its

underlying texture could also change.

In Texture Analysis, the examined area of the sanff$sue) is represented by pixels.
The intensity of the pixels is input informatiorr fdassifying images because texture in
an image refers to the distribution of brightness aarkness (gray tones) within the
image. Texture Analysis evaluates the spatial lonaand signal intensity of each pixel
in the examined area. There are a number of methguilemented for Texture Analysis.

In general, we can divide them into four broad gatees: statistical, structural,

mathematical, transform based methods. These ca&edtave been described in detail

in the next chapter.

Texture Analysis has been successfully used forséparation of cirrhotic patients and
healthy volunteers, and unknown patient data casdely classified into the patient
group using MRI, CT. While promising, the applidaiiof Texture Analysis on MRE

images for HCC diagnosis is less studied. Thikesfocus of this thesis.

14 Resear ch Objective

This research is to validate the applicability oRE for HCC diagnosis. This study will

in particular concentrate on quantitative aspectM&E in conjunction with Texture

12



Analysis, an advanced imaging processing pipelm# multi-variate analysis machine
learning method for accurate HCC diagnosis. To eachithis goal, we have acquired

three patient data and three sets of experimeatsarducted.

15 Thesis Organization

The overall thesis layout is shown in Figure 4.s&&n, chapter 2 gives the in detailed
description of the literature reviews with backgrduand related work of Texture
Analysis imaging techniques and briefs the inivalrk done and the challenges faced in
the field of imaging technologies. This sectionoadgves the in-depth knowledge about
the current progress in Texture Analysis field grdvides an in-sight of the future
related works. Chapter 3 describes the dataseperiexents and results obtained. In this
section the knowledge gained from previous chapseapplied in more practical manner.
Here we do a retrospective comparison betweendHeetechniques and the proposed
techniques highlighting their pros and cons. Chapteconcludes the thesis with

observations from current work with summary andrgj\a list of possible future work.

Chapter 1 Chapter 2 Chapter 3 Chapter 4
> > . . N .
Introduction < Literature 2| Experimentation 2  Conclusion &
Review & Analysis Future Work

Figure 4: Thesis organization Flowchart
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CHAPTER 2

LITERATURE REVIEW ON ADVANCED IMAGING ANALYTICS

21 Texture Analysis

Texture definition of an image is an important asga medical analysis. In medical
imaging analysis, texture can be defined of asldlcal distinguish pattern of image
intensity that helps radiologists in identifyingtiasue. Texture analysis is important in
medical image study primarily because there is ywan underlying texture change
associated with a tissue as soon as it becomesrmabhduring a disease [18]. Current
imaging techniques, such as MR, are not capableigin@f providing microscopic
information of tissue that can be assessed visudlbyever, tissue changes caused by
some illnesses may bring about texture changdwimtages that can easily be identified

and quantified through texture analysis [19].

Thus, texture analysis is primarily a technique thaluates the intensity and position of
signal features, i.e. pixels, and also their cqoesling grey level intensity in digital

images. Texture features are therefore mathemataralmeters that are calculated from
the pixel distribution, which characterize the teet type and thus the underlying

structure of the objects shown in the image [19].

Analyzing the texture parameters gives us highlgfulsinformation that is obtainable
from medical images. In medical practices, the alisloservation of imaging texture may
be subjective. In addition, human observers magtite to observe only a limited part of
the diagnostic information carried by an image. tliex analysis makes use of

radiological images that are obtained in routin@gdostic practice, but involves

14



statistical analysis to be performed with the datatained within the images. As a result,
it is becoming a tool that helps in reducing mis&ln clinical stage determination and

also assists in unclear cases.

Texture Analysis provides innovation and diversitynany fields; it opens up a new era
of analysis. During last three decades extensigeareh has been done on texture
classification [20]. Few of the most popular teet@pproaches that were popular during
1980s, included gray level co-occurrence matriceEQM), Gauss—Markov random
field, and local linear transform. These approadiakrestriction that they could analyze
the spatial relations between neighboring pixelsaf@emall image region [20]. Texture
analysis is most important for those cases in whitdnge cannot be detected by direct
inspection of the image. The approaches for anadyixture are very diverse. We will

review some common methods applied in the textmatyais in the following section.
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211 TextureAnalysisPipdine

A computational pipeline is an integral part of Tlee Analysis study in Medical
Imaging. It was developed to combine texture ansly@nd pattern classification
algorithms for investigating associations betwe@hinesolution MRI / MRE features
and clinical patient data, and also between MRIRBJfeatures and histological data
[21]. A typical Pipeline design structure consigtshree main stages i.e., Preprocessing,
Feature extraction and Analysis. Figure 5 illugisathe pictorial representation of a

medical imaging pipeline.

Figure 5: Texture Analysis Pipeline
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@ Preprocessing

Preprocessing stage is the first and the most itapbistage of the Texture Analy:
Pipeline. The preprocessing stage reditimaging artifact effects, such as noise

intensity non standardization. It ismposed of three stepsoise filtering, Backgroun
segmentation and Intensity normaliza [21]. In roise filtering the homogeneous ar:
of the images are smoothened while preserving dhamgers. Background segmentat
separates the Region of Interest (RCom the surrounding area. Intensity Normaliza
methods helps in improvinghage compatibility. It reducase variability introduced b
different operators, differengain settings, and equipment variability anmdifies MR

image comparability.

Figure 6: Data Preprocessing Steps

(b) Feature Extraction

The feature extraction stage calculates all theuteXeatures used in tissue classificat
The features can be extracted for a single vox&henROI as well as the mean of all
voxels in the entire ROI. It includes Statistic8tructural, Matheiatical Model base
and Transform based texture features. Statistiaabd methods are of -occurrence
matrix type which includes 14 textural featurest@an be Run length Matrix type whi
consists of 88 features for different angles. Sanyl Strucural based methods inclu
features that are characterized by feature prigstiand their spatial arrangemel

Mathematical model based models consists of frautadels which generate empiric
17



models of each pixel in the image. Transform bdsatlre are wavelets totalizing z

features

() Analysis

The first step in analysis is data scaling. Theppsimproves the final accuracy in t
classification process of the data analysis. Infdiom gain is used as a measure in
feature selection for the md; it aims at finding the most relevant texturetteas for
the image. After testing out seveempirical tests, wehose only those texture featu
that have the highest information gain score a$ agethe highest percentage of corre
classified instances. Few classifiers that work very well fexture analysis featui
selection are Support Vector Machines (SVM), NeNatworks (NN) and Ada Boo
Classifiers. Parameters for each classifier arectsd based on the problem being fa
Once theclassifier is developed for problem it is testedtla testing data to justify tf

selection.

Figure 7: Data Analysis Steps
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2.1.2 Texture Analysis M ethodologies

The key categories of texture analysis methodoingide [22]:

ii)

Statistical Methods, in which the texture is characterized by statati
distribution of intensity values Example of thesethods, are Histogram,
GLCM, and Run Length Matrix.

Structural Methods, where the texture is characterized by featunifities
and their spatial arrangements

Mathematical model based Methods, such as fractal models which usually
generate an empirical model of all the pixels comté within that image
considering the weighted average of the pixel isitégs in its neighborhood.
Transform based Methods, where the image is converted into new form
using spatial frequency properties of the pixelemsity variations. Some
examples of this method are Wavelet Transform, iEourransform and S

transform.

Each of these methodologies has been briefly desttias following:

(@)

Statistical M ethods

In statistical methods, texture is described bgliection of statistics of selected features.

Statistical approach of texture analysis primadigcribes texture of regions in an image

using higher order moments of their grayscale grstms values [23]. Selecting various

textural features from a Gray level co-occurrenedrix (GLCM) is apparently, the most

commonly cited method for texture analysis [23]atidition to the traditional statistical

texture analysis methods, multivariate statistieahniques have also been considered for
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extraction of textural features. If we consideriarage as a matrix, the singular value
decomposition (SVD) spectrum of the image textsra summary vector represented by
its singular values [23]. Alternatively, the rumégh matrix (RLM) includes higher-order

statistics of the gray level histogram for an imabee RLM approach of texture analysis
distinguishes fine textures of an image as havavg pixels in a constant gray level run

and coarse textures with many pixels in such g28h

0] Histograms

In digital images, the allowed value for the greydl that can be given to a pixel is
limited. The grey value is usually an integer rawggirom O to 2b-1, where b denotes the
number of bits of the image [22]. The histogramanfimage is drawn by counting the
number of pixels in the image that possess a gywew-level value. For example in a 12
bits image, the histogram may be represented bnaphgwhere the x-coordinates range
from O to 4095 and y-coordinates represents theegponding pixel count [22]. From the

histogram many parameters may be derived, sudls agan, variance and percentiles.

(i) Run Length Matrix

The run-length matrix is a technique where we dedhe image, always across a
particular direction, for number of pixels that bahe same grey-level value. Therefore,
given a particular direction (for example, the igatt direction), the run-length matrix

computes for each allowed grey-level value how marstances there are runs of,
example, 2 consecutive pixels with the same gregtlgalue. Next it repeats the same
for 3 consecutive pixels, then for 4, 5 and so2#].[Thus using a single image, typically
four matrices are generated, for the vertical,Zwmnral and two diagonal directions [22].
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(i)  Haralick’s co-occurrence matri

The Haralick’s coaccurrence matrix is a method that helps us to egaiiistical
information of an image or an image ROI based atribution of pixels of that image.
is calculated by defining a direction and a diséane., the pairs of pixels separated
this distance. Once this has been done numberirsf gigpixelsis counted that contains
given distribution of greyevel valuesEach entry in the matrix therefgorresponds t

one similar greyevel distributior [22].

Co-occurrence matrix is gooc way to describe shape by statistically samplingaie
greydevels in relation to other gr-levels. This matrix is square with dimension |
where Ng is the total number of gray levels inithage. The [i,j]jth element of the mati
is produced by couimg the total occasions a pixel with value i issadint to a pixel witl
value j and then subsequently dividing the wholdrixay the total number of suc
comparisons that are made. Each entry in the neguibatrix is considered as t
probability thata pixel with value “i” is to be found that is adgaxt to a pixel of value

[ p(L)) p(L2) - p(LN,) ]|
| P2 p(22) - p(2N,) |

LFJINH“ p(N.2)...p(N_.N, J_|

Figure 8: General Format of C-occurrence Matrix

(b)  Structural Methods

This texture analysis technigicharacterizes a texture as the combinadiowell-defined
texture elements such as regularly spaced patalés. The image texture is defined

the properties and placement rules of the texture emsnDifferent structural texture
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analysis approaches have been recommended whigesainom utilizing different
shapes of structuring elements to understandirigeneiaures as distorted versions of ideal
textures. However, as far as practical applicatibthese methods is concerned, they are

in limited use since they can only describe vegutar textures [23].

(©) Mathematical Model Based M ethods

In this approach of texture analysis a texture m image is represented using
sophisticated mathematical models (such as stochastractal). The model parameters
are estimated and used for the image analysis Mathematical model based texture
analysis techniques generate an empirical modeboh pixel in the image based on a
weighted average of the pixel intensities in itgghborhood [23]. The disadvantage of
these models is that the estimation of these pasases computationally very complex
[22]. The estimated parameters of the image modets used as textural feature
descriptors. Examples of such model-based textasergptors are autoregressive (AR)

models, Markov random fields (MRF) and fractal med23].

(1) Auto-Regressive Model

The auto-regressive model assumes a local interabgtween image pixels in that the
pixel grey level value is a weighted sum of theygeyel values of the neighboring

pixels. The auto-regressive parameters are sintydyset of weights used to establish
these relations. It is expected that these relatéoe unique for a given type of object (or
shape) in an image and, therefore, they may catestat way of characterizing this object

[22].
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(i) Fractal Model

A fractal is a randongeometric objecthat hasan infinite nesting of structure at .
scales. One can finddctal objectsall around in nature, for exampia coastlines
snowflakes, fernmountains trees, clouds and bacteria. Few of tinest importan

properties of fractals are sedimilarity, non-integer fractal dimension acdkiao<[24].

The Fractal Dimension (FD) has beewsed in detection of arious biomedice
applications such abrain tumo, breast tumor and lung tumor [25There ee many
fractal based algorithmthat are being used in medical applicatisuch as piecewi-
threshold boxsounting (PTBC), piecewise modified I-counting (PMBC), ani
piecewisetriangular prism surfa-area (PTPSA) for detecting bratamors in MR

images based in 2D and 3pace [26].

The fractal dimension can be defined asfraction of the number of seffimilar pieces
N, to themagnification factor, 1/r, into whicyou split a figure The equation forD is as

follows [27]:

In (number of self-similar pieces) In N

ED—

In (magnification factor) ~ In(1/r)

(d)  Transform based Methods

Finally, the transfornbased texture analysmethod altershe image into a new foriby
using the spatial frequency properties of the pirébnsity variations. The success
these modern techniqués largely due tcthe type of transfornthey useto extract

textural featuregrom the imag [23]. In this methodhe texture properties @n image
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may be analyzed in the scale space or the frequararge. Transform based methods are

based on the Gabor, Fourier, or Wavelet transf¢22js

) Wavelet Transform

The Wavelet transform is a spatial/frequency amayttool which is being used
extensively during past ten years and has beemeanfar research for many researchers.
Wavelet transform is a traditional pyramid-typensorm that decomposes signals to sub
signals in low frequency channels [28]. Howeverrawback is that most significant
information of a textured image often appears erthddle frequency channels therefore
the conventional wavelet transform does not wordpprly in the texture context. To
rectify this drawback, the transform is modifieddaan energy function is used to
characterize the strength of a sub signal contained frequency channel requiring
further decomposition. This idea leads formationtreke structured wavelet transform

[28].

The methodology on which the wavelet transformska&as that it analyzes the frequency
content in an image for different scales of thaage. Therefore this analysis provides us
with a set of wavelet coefficients corresponding different scales and different
frequency directions for that image. While calcugtthe wavelet transform of an image,
each pixel is associated with a set of numbers knas/the wavelet coefficients [29].
This wavelet coefficient represents the frequerayent of the image at that point over a
set of scales. These coefficients are used in congpthe different texture parameters for
the image. Figure 9 shows an example of a wavedestorm for the image shown in

Figure 10. The top left corner of the image (Fig@)edepicts the low frequency and a
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small-scale version of the original image. Wher¢las other images in Figure 9

represents higher frequency versions of the originage but on different scales [22].

An example of a parameter derived from wavelet siam is the wavelet energy
associated with a given scale and given direciitis parameter gives us the measure of

the frequency content of the image on a given saadein a given direction [22].

Figure 9: Wavelet transform of the image

25



Figure 10: Coronal slice of T1-weighted cerebral MIR

Steps to construct two-dimensional Wavelet PacketriBform:

The wavelet transform provides us with an accueatd consolidated layout for the
analysis and identification of a signal in an imagelifferent scales. Wavelet Transform
is often considered as a multiresolution analysod tor the finite energy function. It can
be implemented effectively alongside the waveletkpa transform and the pyramid-
structured wavelet transform. Additional decompositof a signal is performed by the
pyramid-structured wavelet transform, in the loveguency regions. However, the
decomposition of a signal in all low and high freqay regions is performed by wavelet

packet transform [29].

The working of a wavelet transform starts with ttecomposition of an image into sub
images. The image is actually decomposed i.e.déd/into four sub-bands and discrete
wavelet transform is applied on and then it isicalty sub-sampled as shown in Figure
11. These four sub images represent the frequerioymation of the original image in

the frequency regions of LL, LH, HL, and HH respeely. Sub-bands labeled as LH1,
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HL1 and HH1 represents the wavelet coefficientshwiihest scales amongst all the
bands, whereas the sub-band LL1 corresponds toseobavel coefficients i.e.,

approximation image [20] .

The next step is decomposing the image further theonext coarse level of wavelet
coefficients. The sub-band LL1 alone is used fathier decomposition and critically
sampled. This results in two-level wavelet decontpos The process continues until
some final scale is reached. The 2-D wavelet padkatsform achieves a full

decomposition by disintegrating all the frequenegions, as shown in Figure 12 [20].

LL: | HL:
HIL.,
LH; | HH; .
1
LH; HEH;
L-H;_ I-n-ll

Figure 11: Three level 2-D PSWT decomposition of8l2 128 image
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ILL: | HL:; | LL: | HL; | LLy | HL: | LLy | HL»

LH: | HFH:; | LH: | HF:; | LH:; | HH; | LH: | HH;

LL: | HL: | LL; | HLy | LLy | HL: | LLy | HL,

LH; HF; | LH; | HHF; | LH; | HH; | LH; | HH;

LH; HH; | LH; | HF; | LH; | HH; | LH; | HH;

LL: | HL; | LL; | HL; | LLy | HL: | LL: | HL;

LH, | HH; | LH, | LH: | HFE; | HH; | LE:; | HH;

Figure 12: Level 2-D wavelet packet decompositidril@8 x 128 image
Further after the decomposition the steps involndtie texture classification is shown in

the Figures 13 and 14 [29].

Known Texture

Images
—_ | DWT » Feature Features
(Decomposition) Extraction Library
Figure 13: Texture training steps
Unknown Texture Classified Texture
Image Image
—| DWT » Feature Classifier g

f—

(Decomposition) Extraction

Figure 14: Texture classification steps
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(i) S-Transform

The S-transform (ST) relates closely to the comtirsuwavelet transform as it uses the
complex Morlet mother wavelet and therefore it noees directly the local frequency
composition in an image for each and every pixbk B-transform has been successful in
analyzing signals in various applications, suclymaind vibrations, seismic recordings,
gravitational waves, power system analysis and digdy. The 1D S-transform has
proved to be a useful tool for analyzing the mddgignals, such as laser Doppler
flowmetry, EEG and functional magnetic resonancagimg. The S-transform works
satisfactorily for texture analysis of images indical industry due to its optimum space-

frequency resolution and close connection to th&iEotransform (FT).

The main obstacle of the S-transform algorithm idex application of S-transform -
based texture analysis for 2D images has beeedishdant nature. In order to calculate
and store the texture features of large medicafjegraextensive calculation time and a

large memory space are required [18].

As a result, the S-transform of a 256x256 MR imt&des almost one and half hours to
calculate on one computer with memory requiremeh@imost 32 GB [18]. Therefore,
previously the work that was done on 2D images itmtimitation for analysis of only
small ROIs and disintegrated to 1D spectrum. Howdesause of the small ROIls, the
resolution of the frequency spectra is reduced, thedeby reducing the sensitivity to
complex texture changes. These shortcomings makeapplication of 2D-S-Transform
to clinical medical applications not even difficldut also very impractical [18]. In

modern era, the clinical texture analysis methaglires an efficient algorithm that is
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capable of providing complete information about fedlquency components. However,
even though there are few limitations, the 2D-SAsfarm has demonstrated promising
results in identification of differences in textaréhat is associated with neurological

pathology [18].

(i)  Discrete Orthonormal S Transform (DOST)

The Discrete Orthonormal space-frequency transf@®@ST) is a relatively new and
effective approach for describing an image tex{@8. In order to obtain a rotationally
consistent set of texture features, the DOST compmsncan be combined together,
which in turn accurately distinguishes between @eseof texture patterns [18]. The
DOST is highly efficient as it provides the mulgate information and computational
efficiency of wavelet transforms, when it providdse texture features as Fourier
frequencies. It is better than other leading wavieésed texture analysis techniques and

is more efficient as compared to primitive Harakck€o-occurrence Matrix [18].

One of the biggest advantages of DOST is that éedp up the calculation of the S-
Transform and eliminates the redundant nature ef dhace frequency domain. The
DOST provides a spatial frequency illustration tiatsimilar to the discrete wavelet
transform. Along with all these advantages, the D@8&s the additional benefits as well.
It maintains the phase properties of the S- Transfand Fourier Transform and even

maintains the ability to crash exactly back toMoeirier domain [18].

The computational accuracy of DOST is fast andgitborward. It allows us to analyze
each and every pixel of an image within seconde DROST did very well in detecting

the even a small change in contrast and spatiquémecy when subjected to changes in
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frequency domains at various levels of noise araluaing against series of tailor-made
images which have known frequency content and addex®. The DOST is robust to the
presence of low or moderate noise levels. DOSTigkly accurate in identifying single

frequency components from the local spectra [18].

(iv)  East Time Frequency Transform (FTFT)

FTFT is a method that is developed by Chun Hingnghend Ross Mitchell from Mayo
Clinic. It is a fast and accurate way to generdteghly compressed form of the values of
S Transform directly. It is used when N is so latigat we cannot find and store the ST
values first. It encodes the time frequency repred®n (TRF) information uniformly
and so can then be used for analyzing the TRF dtyrand processing the data
efficiently and effectively. The compression thalF¥ provides can help storage,
transmission and visualization of S Transform. JsHTFT the values of S Transform
can be calculated at individual points, called lospectra, instantaneously and
accurately. This is useful for real-time monitorirgpntrol, manipulation and filtering.

This method is memory-efficient, robust and adaptiv
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2.2 Machine L earning Algorithms used

For analyzing the data for the three HCC patieoliewing machine learning algorithms

were studies and models were developed using them:

(@) Decision Trees (J48 & Random Forest)

Decision tree is a simple yet widely used clasaifan technique. They follow a
nonparametric approach for classification modeiglimg. In other words, it does
not require any previous assumptions regarding tyyge of probability
distributions that the class and other attributesud satisfy. In a decision tree,
every leaf node has an assigned class label. At&itest conditions are used to
separate records having different characteristidhe non-terminal nodes, which
consist of the root node and other internal nod®scision trees, especially
smaller-sized trees are relatively easier to ime&grprhey are quite robust to the
presence of noise, especially when methods fordawpi over fitting. The
accuracy of a decision trees is not adversely tteby the presence of redundant

attributes.

(b)  ADA Boost:

Ada Boost is an iterative technique that adaptivdignges the distribution of
training samples which helps the base classifeisoncentrate on examples that
are difficult to classify. Ada boost algorithm apss equal weights to all instances
at the beginning in the training data. It then Hscthe learning algorithm to

develop a classifier for this data and then rewsigtach instance in according to
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(€)

(d)

the classifier output. Therefore the weight of amges that were correctly

classified is decreased and that of misclassifregbon increased.

Bagging:

Bagging is also known as bootstrap aggregatinig. dt technique that repeatedly
samples from a dataset, with replacement, in aecmel with uniform probability
distribution. Every bootstrap sample has the sameas the original dataset. As
we see that the sampling is done with replacemémtiefore some of the
instances might appear more than once in the semm@ng set, while others
might get eliminated from the training set. Baggisa@ technique that improves
on the generalization error by reduction in vareaé the base classifiers. The
stability of the base classifier decides the pentomce of bagging method.
Bagging does not focus on any particular instaridbetraining data. This is due
to the fact that every sample has an equal prabaloil getting selected. It is

therefore less affected to over-fitting the modbkew applied to a noisy data.

Support Vector Machines (SVM):

A classification technique that has received carsible attention is Support
vector machine (SVM). This technique has origindtech the statistical learning
theory. SVM and has shown promising results in mpractical applications.
SVM works well with high-dimensional data and ist naffected by the
dimensionality problem. SVM performs capacity cohtby maximizing the
margin of the decision boundary. Nevertheless,uber must still provide other
parameters such as the type of kernel functiorseoand the cost function C for
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introducing each slack variable. SVM works well foinary class categorical

indicators.

Artificial Neural Network (ANN):

The study of artificial neural network (ANN) gositnspiration from simulation

models on biological neural systems. Similar to harbrain structure, an ANN
comprises of an interconnected network of nodesdiretted links. Multilayer

neural networks with at least one hidden layerwar@ersal approximators, i.e.,
they can be used to approximate any target funetidNN can handle redundant
features because the weights are automaticallypéeladuring training step. The
disadvantage of ANN is that they are sensitiveht® presence of noise in the
training data and also they are a time consumingegss, especially when the

number of hidden nodes is large.
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2.3 Featur e Selection Technigues used

Feature selection is an important step in datayaisaparticularly when you are handling
large number of features. Usually most of theswaufea are irrelevant to the classification
analysis and also dealing with large feature skiwssdown the algorithms. In this

experiment, significant features were selectedterdataset with two goals of attaining
highest accuracy and selecting smallest set ofifeat Two feature selection techniques

were used to determine the useful features in dtasdt:

() Best First Technique

Best first is a selection technique that combinegh bforward selection and
backward elimination rules. It is a method thatgloet just terminate when the
performance starts to drop but keeps a list chtilibute subsets evaluated so far,
sorted in order of the performance measure, so ithean revisit an earlier
configuration instead. Given enough time it willpéore the entire space, unless
this is prevented by some kind of stopping criteriti can search forward from
the empty set of attributes, backward from the $ell, or start at an intermediate
point and searches in both the directions by censgid all possible single-

attribute additions and deletions.

(i)  Greedy Stepwise Technique

Greedy stepwise searches greedily through the spledtribute subsets. Like
best first technique it may progress forward frérva €émpty set or backward from

the full set. Unlike best first technique, it doest backtrack but terminates as
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soon as adding or deleting the best remainingbatti decreases the evaluation

metric.

24 Resampling T echniques used

Resampling techniques were used since the twoedadghe response were not balanced
properly. There was a big imbalance between thedlasses. There is a tendency that
standard classifiers tend to be biased by the ajcdass and therefore they ignore the
minority class. Particularly they tend to produdghhpredictive accuracy over majority
class, but poor predictive accuracy over minoriass. Resampling the classes generates

a balanced dataset. For class balancing we udedving resampling techniques:

° Oversampling: Oversampling is a method that balances the datasget
increasing the number of minority class instan€é»gersampling generates new
instances based on the values of known samplestteréby increasing the
frequency of samples. This results in increas@umber of instances for the

minority class.

° Under sampling: Under sampling method extracts a smaller set obritgjclass

while preserving all the minority classes.

° SMOTE: In SMOTE, we over sample the minority class byrtgkeach minority
class sample and inducing fabricated/fake examgllasg the line segments that
joins any/all of the minority class k-nearest néigis. Depending on the number
of oversamples required, we randomly choose neighlimm the k-nearest
neighbors [30]. An example for SMOTE can be seethénFigure 15 below. Let

X is the point selected in the minority class aetdX; to X, is the selected nearest
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neighbors to X. therefore R1 to R4 are the fabeidgtoints that are created by
random interpolation. We have used Euclidean dtgtda select the neighbors to
the point X. in short what we just did in SMOTEf@ming a new minority class

examples by interpolating between several minariaggs examples that were in

the neighbor to the selected point.

R>

R1

R4 R, Xs

X4

Figure 15: An illustration on how to create the failzated data points in SMOTE

25 Data Preprocessing and Data Cleaning

One of the most important steps of model buildimgieprocessing of the dataset. For
data preprocessing, a good understanding of dafaseery important. Data pre-
processing consists of following steps: data clegnitransformation, normalization,
feature extraction and feature selection. The getgrocessing step is considered to be
an important step as it can have a significant chma how a supervised machine

learning algorithm performs.
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Data cleaning step involves handling the Missinpes in the dataset, aligning the data

into proper format, fixing the errors and outlielsitial analysis of the dataset did not

show presence of any missing values or outliersa @agnment was done since the data

collection activity was done on different dates dratl to be aligned together in a

common format.

2.6

Summary and Conclusion

After reviewing the existing techniques for Textarealysis we conclude:

1.

Statistical Texture Analysis techniques are propale most common and cited
technique for Texture Analysis. Statistical methogry from Grey level co-
occurrence matrix (GLCM), developed in 1980’s, amanore recent approaches
based on multivariate statistical methods foruedtfeature extraction.

Structural texture analysis techniques charactaizexture as the combination
of well-defined texture elements such as regulgplgced parallel lines. However,
these methods appear to be limited in practicalsisce they can only describe
very regular textures, making them limited in as®l defined to certain class of
textural patterns.

Mathematical model based methods for texture arsalggempts to represents
texture in an image using sophisticated mathematiodels. The disadvantage of
this technique is that the computational compleiivolved in the estimation of
these parameters is large, which makes these mditietult to interpret.
Transform-based texture analysis method altersirtfage into a new form by

using the spatial frequency properties of the Ipiréensity variations. These
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methods are based on the Fourier, Wavelet, Gahdr &transforms. Their
biggest advantage is that these methods can dmsiidjusted to the problem in

guestion making them most widely used textureyamatechnique.

Based on the above observations we decided to workransform based Texture
analysis technique FTFT-RIST which is based on &3iorm. As this is a new method

that has been developed my Mayo Clinic and neede tested in terms of accuracy and

computational speed.

39



CHAPTER 3

EXPERIMENTSAND ANALYSIS

3.1 | ntr oduction

This chapter gives the in depth analysis and tipe@xentation for building the model,

evaluating it and finally testing the predictiorwsr and robustness. In this chapter firstly
we would present the general workflow of the expents that were conducted in this
research. Data preprocessing and data cleaningtivereext steps in analysis. Thereafter
describing the datasets being used, what followhasseries of experiments that were

conducted along with their conclusions.

3.2 General Workflow of the Experiments

MRE is known to be a promising imaging techniqueH&C diagnosis. This research is
to validate the applicability of MRE in conjunctianith Texture Analysis pipelin€lhe
study starts with drawing the ROIs, both tumor &l &ws Non tumor areas, on the MRE
images with the help of the Radiologists. Theseag@esaare tested on the Texture Analysis
pipeline to present us with two types of datasetelpased and ROI based. These output
datasets from the Texture Analysis pipeline arenthebjected to data preprocessing
where different sampling methods (undersamplingereampling and SMOTE) are
applied to get class balance in the dataset. Nexows machine learning algorithms are
applied on the data to develop a model, validatedel and final test the accuracy of the
developed model. Major focus of this study has bmmrcentrated on building the model,
choosing the correct classifier to build a modebdel validation and finally testing the
build model. The following Figure 16 represents gleaeral workflow of the study.
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- Focus of this research

Figure 16: General Workflow of the Study
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3.3 Dataset Description

The dataset is derived from the MRE images forelatients suffering from Liver HCC.
For Patients 1 & 3 we collected data from 1 ROkumor region and 2 ROIs on Normal
regions for each patient. Patient 2 had two turagrons on the Liver so we gathered the

data from 2 ROIs on tumor region and 4 ROIs on Nomagion.

Tumor ROIs

MAG AX S 117.6

Elasto UPPER

Patient 2 ROI 2 Patient 3
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NON Tumor ROIs

Patient 1 ROI 1 Patient 1 ROI 2

Patient 2 ROI 1 Patient 2 ROI 2
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Patient 2 ROI 3 Patient 2 ROI 4

Patient 3 ROI 1 Patient 3 ROI 2
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Following steps were followed to derive the datathe three patients liver cases:

Step 1: With the help of Radiologists drawing the Tumerveell as Non tumor ROIs on
the Liver MRE images. This was done using Osiriegsion “v4.1.2 32-bits”. Save the
images as Dicom file (.dcm).

Step 2: Convert the Images from Dicom files (.dcm) to XMiles (.xml) that can be
easily read by the software while converting therviask.

Step 3: Running the XML files of the images on “XML to M’ Software to convert
them to Mask before running them into FTFT-RISToaidnm.

Step 4: Final Step of deriving the data out of the MREages is running the Mask

images, obtained in the previous step, onto theTFRFST algorithm of texture analysis.

We obtained two different datasets for a singlegentom FTFT-RIST algorithm. The
first dataset i$R0I based dataset, wherein the values of the features are the mahres

of the all the pixels contained in the ROI thasédected on the image while running the
image on the algorithm. Second dataset isRixel based dataset that provide us with
feature values for every pixel contained withinttReDI. Both the datasets were used

while developing the classifier for the cases.

3.3.1 Pixel Based Dataset

The dataset consists of 19 variables and a binagpéhse variable. The response
variable has values CO and C1 representing twee$a<0 indicates class for Non tumor
region whereas C1 indicates class with Tumor Rediatal 2718 instances are there in
the dataset that cover both tumors as well as mmoit regions for all the three patients.

Table 2 lists down all the features in the Pixet&hdataset.
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Table 2: Variables in Pixel based dataset

X Categorical X coordinate of Pixel
Y Categorical Y coordinate of Pixel
Raw Signal Categorical Intensity value of the pixel

It is the mean of the value in the RIST curve over

Band 1 Mean RIST Numerical
“ ! the 1st frequency band
Band 2 Mean RIST Numerical It is the mean of the value in the RIST curve over
the 2nd frequency band
Band 3 Mean RIST Numerical It is the mean of the value in the RIST curve over
the 3rd frequency band
Band4 Mean RIST Numerical It is the mean of the value in the RIST curve over
the 4th frequency band
Band5 Mean RIST Numerical It is the mean of the value in the RIST curve over
the 5th frequency band
It is the sum of RIST values over all the pixels in
RIST Sum Numerical the entire semicircular region in the RIST
diagram
Mean of k in RIST Curve Numerical Measures the average fr:equency of texture at
the pixel
SD of k in RIST Curve Numerical Measures the spread of.frequency contents at
the pixel
Semicircle RIST Homogeneity Numerical D v homogenen.ty as an average of
squared wavelength in the texture.
Measures the randomness of the RIST values
Cell RIST Entropy Numerical over the entire semicircular region in the RIST
diagram
SD of RIST Sums by Sectors Numerical Measures the spread of RIST by sectors, i.e. by
angles
SD of RIST Sums by Semicircles Numerical Measures the spread of R_IST by semicircles, i.e.
by radius.
SD of RIST Sums by Cells Numerical Measures the spread o.f RIST by cells, i.e. by
angle and radius together.
RIST Sum in Major Sector Numerical The sum of RIST valules over all th.e pixels in the
major sector in the RIST diagram
Mean of k in Major RIST Curve Numerical MeaSl.Jres.the ave.rage.frequency of'texture at
the pixel in the direction of the major sector
SD of k in Major RIST Curve Numerical It meas.ures. the sp|:ead .Of frequency Fontents at
the pixel in the direction of the major sector
Y (Response) Categorical Response that tells whether the tissue is tumor

or non-tumor

3.3.2 ROI Based Dataset

The dataset consists of 68 variables and a binaspéhse variable. The response
variable is same as in Pixel based dataset anddlass CO and C1 representing two

classes. CO indicating class for Non tumor regidmergas C1 indicating class with
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Tumor Region. Total 1ihstances are there in the dataset that covertbotbr as well a
non-tumor ROIdor all the three patients. Table 3 lists downthé features in thROI

Based dataset.

Table3: Variables in ROI based dataset

[oie]

Mean Numericai RiST Sum iiax Numericai Numericai

Band 1 Mean RISTSD  Numericai Mean of k in RIST curve Mean Numericai Numericai
Band 1 Mean RiST Min  Numericai Mean of k in RIST curve SD Numericai SD of RIST sums by ceiis Mean Numericai
Band 1 Mean RIST Max Numericai Mean of k in RIST curve Min Numericai SD of RIST sums by ceiis SD Numericai
- Numericai Mean of k in RIST curve Max Numericai SD of RIST sums by ceiis Min Numericai

Band Z Mean RISTSD  Numericai SD of k in RIST curve Mean Numericai SD of RIST sums by ceiis Max Numericai
Band Z Miean RIST Min  Numericai SD of k in RIST curve SD Numericai RIST sum in major sector iviean Numericai
Band Z iviean RiST Max Numericai S0 of k in RiST curve viin nNumericai RiST sum in major sector 50 nNumericai
Numericai Urve iviax Numericai RiST sum in major sector viin Numericai

Band 3 Mean RISTSD  Numericai Numericai RIST sum in major sector Max Numericai
Band 3 Mean RIST Min Numerical Semicircle RIST homogeneity SD Numerical Numerical
Band 3 iviean RiST iViax Numericai Semicircie RiST ilulllug:ll:iLy iviin Numericai ivi iki j Numericai

Band 4 Mean RIST

Semicircle RIST homogeneity

a

Mean Max
Band 4 Mean RISTSD  Numerical Cell RIST entropy Mean Numerical Mean of k in major RIST curve Max Numerical
Band 4 Mean RIST Min  Numerical Cell RIST entropy SD Numerical SD of k in major RIST curve Mean Numerical
Band 4 Mean RIST Max Numerical Cell RIST entropy Min Numerical SD of k in major RIST curve SD Numerical
i SMZI:” RIST Numerical Cell RIST entropy Max Numerical SD of k in major RIST curve Min Numerical
Band 5 Mean RISTSD  Numerical SD of RIST sums by Sectors Mean Numerical SD of k in major RIST curve Max Numerical
Band 5 Mean RIST Min  Numerical SD of RIST sum by Sectors SD Numerical Y (Response) Categorical
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34 Experiments

We conducted three distinct experiments with thteskt for the patients.

Experiment 1: The objective of Experiment 1 is to quantitativelssess the diagnosis
performance using Univariate approach on intensiftyrmation only. Specifically, the
goal is to determine that intensity feature aloae distinguish comprehensively between

the tumor region vs a non-tumor region for a HC Geo.

Experiment 2: The objective of Experiment 2 is to analyze theltiple features
collected from Texture Analysis and quantitativelyaluate the diagnosis performance
using ROI based data feature and pixel based éatarés. In addition to this another
objective of this experiment would be to determsignificant features and evaluate
model performance on these features. This expetig@ntributes to the model building
phase of the thesis study and concentrates on ajenglthe classifier on WEKA and

cross validating it using 10 folds cross validation

Experiment 3: The objective of Experiment 3 is to evaluate phediction power and the
robustness of the developed model in HCC tissueactkerization. This experiment

contributes to the model testing phase of the shatsidy.
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3.4.1 Experiment 1: Intensity Based Analysis

In this experiment we have a bivariate datasetingensity values and response (CO or
C1l), therefore we decided to analyze the data uBiaiged t-test and Scatter plot to
determine that whether or not we draw concrete losions based on intensity value

alone.

(@ Experiment 1.1: Paired t-test

The paired t-test is a common method of analysidatd that are paired and is based on
the assumption that the differences between theeghapbservations are normally
distributed. With paired observations, in which teacalue in one sample has a
corresponding observation in the other sampletable of comparing two samples can be
simplified by making it a one-sample test, wheréwe differences in each pair of
observations constitute the newly formed sampleisTthe mean value is the mean of the

differences and the standard deviation represkatgdriability of the differences.

Let X and Y be the samples drawn from a populattben the test statistic (t-score) is

defined by the equation:

== ' -
SE

where SE, the standard error of the sampling Oigtion is computed as:

0 3

SE = {[[(ZZ) + ()]
\,[ e ]

]
I
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x and y are the sample means, n and m are the s@mpk, and,Sand § are the sample

standard deviations of X and Y respectively.

A paired t-test was conducted on the intensity eslof both tumor and non-tumor region

values for all 12 ROls to check whether or not taey statistically different.

Hypothesis:  Hp: Mean (Tumor) = Mean (Non tumor)

H.: Means are different
Paired t-test results are shown in Table 4 asalio

Table 4: Paired t-test results for intensity values

N Mean SD SE Mean
Tumor 679 47.984 20.058 0.77
Non Tumor 679 57.962 15.503 0.595
Difference 679 -9.978 24.026 0.922

At 95% for mean difference the Cl was: (-11.788, -8.168)

Based on Paired t-test analysis we conclude tleaintensity information from tumor and

non-tumor tissues differs significantly, as Cl does include zero value in it. However,

1. The intensity information from tumor and non-tuntissues differs significantly,
as the Cl does not include zero.

2. Paired t-test is population based test. If we aokihg at each pixel, as observed
from the scatter plot, for some regions we are &blkell the differences, for other
regions we are not able to differentiate the @xedm tumor vs. non-tumor.

3. We need a method that can predict the diagnosithemixel based level for

specific ROIs and whole liver.
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(b) Experiment 1.2: Scatter Plot

A scatter plot also known as X-Y plot is one of thest useful and popular techniques
for analyzing the data visually and exploring inalyzing a scatter plot we can identify
the relationship between two attributes, clusterpofnts and outliers [31]. Such a

relationship manifests themselves by any non-ranstoacture in the plot.

The Figurel?7 represents the scatter plot of thensity value vs tumor/non-tumor

regions.
T/ NT vs. Intensity
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Figure 17: Scatter plot of the Intensity values femmor and non-tumor tissues
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Based on the experiments we observe:

1. Scatter plot highlights some key areas of the sitgrbased study and therefore
few good interpretations can be made by just amaly the scatter plot of

intensity values.

2. It is evident from the scatter plot that tumor isgent in the liver for the intensity

values less than 23 and greater than 100.

3. From intensity values between 43 and 48 presendemibr region is more likely

than Non tumor region.

4. High number of Non tumor pixels lies between intgngalues of 50 to 70.

5. At all the other intensity values it is equi-likelgr a pixel to be tumor or Non
tumor.

6. Although visually analyzing the scatter plots gév&t impression that the data set

Is segregated in few regions as compared to o¢hstatistical test is needed in
order to conclude that the intensity values aa@isdically different. A paired t-test

was therefore done in order to confirm the results
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3.4.2 Experiment 2: Texture Analysisfeatures based study

We have divided this experiment into two secti®gel based study and ROI based

study. Each section has two experiments individuallystréxperiment of each section is
developing a model using all the features of thaskt and second experiment is building
the model with selected significant features. Theegeeriments are done for both pixels

based study as well as ROl based study.

@ Experiment 2.1: Pixel Based Study-All features

We conducted pixel based classification analysisguall the 19 features. Ten fold cross-
validation technique was used to validate the mo@ebss-Validation is a statistical
method of evaluating and comparing learning alporg by dividing data into two
segments: one used to learn or train a model andttier used for validating the model.
In cross-validation technique, the training andidation set gets interchanged in
successive rounds so that each data point getarecelof being validated against each

other. Following classifiers were used to build thedel on the given dataset.
(a) Decision Trees (J48 & Random Forest)
(b) ADA Boost
(c) Bagging
(d) Support Vector Machines (SVM)
(e) Artificial Neural Network (ANN)

All the statistical classifier methods employed &vable to differentiate between Tumor

and Non Tumor regions for the patients with highuaiacy. The table 5 summarizes the
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% of correctly classified instances for differeassifiers along with the resampling

technique used on the dataset.

Table 5: Percentage of correctly classified inst&scfor experiment 2.1

Ja8 99.88 99.94
Random Forest 99.96 99.88
Ada Boost with J48 99.96 99.69 99.94
Ada Boost with Random Forest 99.96 99.85 99.91
Bagging with J48 99.84 99.77
Bagging with Random forest 99.96 99.92 99.94
Neural Network (ANN) 99.77 99.91
Support Vector Machines (SVM) 97.95 99.95

|:| Worst performance |:| Best performance

(b) Experiment 2.2: Pixel Based Study-with selected features

Two feature selection techniques were used to migter the useful features in the

dataset:
. Best First Technique
° Greedy Stepwise Technique

Both the techniques selected same features to drefisant for the dataset. The

significant features selected are:
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Table 6: Significant features selected for pixeldsd study

S Percentage
Significant Feature Contribution

Band 1 Mean RIST 100
Band 4 Mean RIST 100
Band 5 Mean RIST 100
Mean of k in RIST Curve 100
SD of RIST Sums by Semicircles 80

All the statistical classifiers that we used inypoeis experiment were applied again on
the selected features to determine the accuracyamgutational speed. The results are

summarized in the table 7 below:

Table 7: Percentage of correctly classified inst&scfor experiment 2.2

Classification Algorithm Oversampling Under sampling SMOTE
Jag

99.88 99.61 99.71
Random Forest 99.77 99.88
Ada Boost with 48 99.77 99.88
Ada Boost with Random Forest 99.77
Bagging with J48 99.73 99.77 99.81
Bagging with Random forest . 99.84 99.77
Neural Network (ANN) 95.28 98.91

Support Vector Machines (SVM) 93.72 93.84 99.70
|:| Worst performance |:| Best performance

(© Experiment 2.3: ROI based study-All features

ROI based classification analysis was done usihghal 68 features. Ten fold cross-
validation technique was used to validate the mdsiehilar to experiment 2.1, following

classifiers were used to build the model on themigdataset.

(a) Decision Trees (J48 & Random Forest)
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(b) ADA Boost

(c) Bagging

(d) Support Vector Machines (SVM)
(e) Artificial Neural Network (ANN)

While conducting the data resampling, under-samgptachnique was not used as the
number of instances were low (12 rows of data)eidgsm under sampling. Therefore we
used oversampling and SMOTE techniques for resagpphe dataset for ROl based
classification. The table 8 illustrates the % ofreotly classified instances for different

classifiers along with the resampling techniqueduse the dataset.

Table 8: Percentage of correctly classified instascfor experiment 2.3

148 91.67
Random Forest 91.67 87.50
Ada Boost with 148 91.67
Ada Boost with Random Forest 83.33 87.50
Bagging with J48 91.67 87.50
Bagging with Random forest 87.50
Neural Network (ANN) 87.50
Support Vector Machines (SVM) | 8333 | | 9375 |

|:| Worst performance |:| Best performance

(d) Experiment 2.4: ROI based study-with selected features

Best First and Greedy Stepwise techniques were dseamine the significant features

and both the techniques yielded the same numb&gwificant features enlisted below:
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Table 9: Significant features selected for ROI basstudy

S Percentage
Significant Feature Contribution

Raw Signal SD

Raw Signal Minimum
Raw Signal Maximum
Feature 0 Mean
Feature 3 Minimum
Feature 7 SD

Feature 11 SD

Feature 15 Mean

100
20
90
30

100

100

100
70

All the statistical classifiers that we used inpoeis experiments were applied again on

the selected features to determine the accuracyamgutational speed. The results are

summarized in the table 10 below:

Table 10: Percentage of correctly classified instas for experiment 2.4

Classification Algorithm Oversampling SMOTE

148

Random Forest

Ada Boost with 148

Ada Boost with Random Forest
Bagging with J48

Bagging with Random forest
Neural Network (ANN)

Support Vector Machines (SVM)

|:| Worst performance

57

91.67 93.75
91.67
91.67 93.75
91.67
91.67 93.75
91.67

| 100.00 | | 100.00 |

| 6667 | | 6250 |
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In Experiment 2 we studied and analyzed both pbesled and ROI based datasets. We
also analyzed the data on selected features usatgré selection techniques. From these

experiments our conclusions are:

1. Pixel based analysis of the dataset seems to beratetl better than ROI based
analysis. The accuracy is 99%. Our explanatignxsl based has more instances
than the number of features and pixel based nmmdgl be more robust than ROI
based model.

2. Since the models are having very good performaticH, leaves less room for
using features selection to improve performaned, We do conclude comparable
performance can be achieved with less # of feature

3. Amongst all the models studied, Trees (J48 & Randmmest) gives us a good
result with high accuracy, easy to build and robo®utliers as well.

4, Trees classifiers are good at handling numericatelsas categorical predictors.
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3.4.3 Experiment 3: Testing Prediction Accuracy of the build Classifier

Given the promising results from Experiment 2, wanivto further assess the prediction
power and the robustness of the developed modelgssne characterization. This
experiment is therefore very crucial for the study, it is performed to determine how

accurate out model is and how confident we areedipting using this model.

Similar to experiment 2, we have divided this expent into two sections as well. The
first section will be testing the model performarare ROI/pixel data, and determining
the accuracy. This section will have two experirsentth series of tests to check the
robustness. Section 2 of this experiment will b&ting the model performance on the

whole liver-ROl/pixel data.

@ Experiment 3.1: Testing the model on ROI/Pixel data

In this experiment we set aside data from four R&gions (2 ROI regions of Tumor and
2 ROI regions of Non Tumor). This data was remofredn the training dataset and
saved as test data. The response column in thddtstontains “actual” predictions C1
or CO. Similar approach for developing a classiisrused in Experiment 2 was used on
the training data for Experiment 3. This experimerit help us determine the accuracy

of the developed classifier.

The output will contain both the actual and prestictiass. If in the class label for the test
class we have '?' for each instance, the "actlaBsclabel for each instance will not
provide us with useful information, however the dicted class label will. The
percentage of correctly classified instances dfdasaset determines the accuracy of the

developed classifier. Higher the accuracy, betierdeveloped classifier can predict the
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actual class. The following table 11 depicts thaessifier developed using the training

data and percentage of correctly classified ingarstng that classifier on the test data:

Table 11: Percentage of correctly classified instas for experiment 3.1

Ja8 66.82 66.82
Random Forest 9225 | | 6247
Ada Boost with 148 66.82 68.40
Ada Boost with Random Forest 64.77 76.75
Bagging with J48 56.05 | | 5677 |
Bagging with Random forest 66.70
Neural Network (ANN) 66.82 66.82

Support Vector Machines (SVM) 81.96 73.24
|:| Worst performance |:| Best performance

From the above experiment it seems that both SViiteres (Random Forest) appears to
be good approaches for predicting the response tashe pixel based study. Therefore
to further test the robustness of these two seledtessifiers we purposely and randomly
remove some data from the existing dataset, ubegemaining to build and validate the
model, use the removed data to test the performadriee series of random experiments
conducted and the prediction accuracy of SVM anchd@m forest have been

summarized in the table below. Both SVM and Randomest provide consistent

performance in prediction accuracy with high petagas.
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Table 12: Prediction accuracy of SVM and RF for Rant # 3

Tumor ROI from Patient 1 Remaining Dataset 92.5 90.1
Non-Tumor ROI from Patient 2 Remaining Dataset 100 85.3
Tumor ROI from Patient 3, . .

Non Tumor ROI from Patient 1 Remaining Dataset 92.2 85.2
All Tumor ROIs All Non Tumor ROIs 100 100
All Non Tumor ROIs All Tumor ROIs 100 100

(b) Experiment 3.2: Prediction accuracy for Patient #3 data

In this experiment we specifically use Patient 219 develop the model and use Patient
#3 to test the developed model. The objective isftist is primarily to determine that if
we develop our model on a particular patient’s dadaether or not it will be successful
in predicting the response of some other patiehgsg data has not been used in building

the model.

Similar to the above experiment we have used pgoaskd dataset from Patient # 1, 2 to
develop and train the classifier and used pixekbatataset from Patient #3 to test the
developed classifier model. SVM and Random forestehbeen use as the classifier to
develop the model as it is confirmed from Experim8rl that these two classifiers

outperforms the other classifiers as far as prestic@ccuracy is concerned. We have also

used 10 fold cross validation techniques in thigegxnent.

The results of this experiment were over whelmawit confirms the classifier selection.
SVM prediction accuracy was 99.6% for predicting tkesponse class of Patient #3 and

Random forest was 82.92% accurate. This experinterefore confirmed that the
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selected classifier to develop the model was ateweaough to predict the response of

any random patient without training the classif@rthat patient’s data.

(©) Experiment 3.3: Prediction accuracy for Whole Liver

This experiment was performed to predict the resporiass for all the pixels in the
whole liver for patient# 3. Similar to experimeng3his experiment will be testing the
prediction power of the classifier. Along with tiviee will also be conducting sensitivity,
specificity and accuracy tests to check the rolasstnof the developed model. The
training data remains the same as the above exgetist the test data changes. In this
experiment the test data used will be the wholerlfer patient # 3. There are total 5955
instances in the whole liver test dataset whichtaios both tumor as well as non-tumor
tissues. The Actual Response column in the datap&iced by “?”, therefore the actual
class label for each instance will not contain ukefformation, but the predicted class

label will. SVM will be used as the classifier toildl and develop the model.

A small part of the output after the model was ounWEKA is shown in table 13 below.

Table 13: Prediction accuracy of SVM and RF for Rant #3, whole liver

1 ? co
2 ? co
3 ? co
4 ? C1
5 ? co
6 ? C1
7 ? C1
8 ? co
9 ? co
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Since we do not have the actual class thereforachel class is replaced by “?” and the
predicted class label gives us the useful inforama&bout the response class for that

pixel.

Further we performed sensitivity, specificity arat@racy tests to check the robustness of
the developed model. Commonly used confusion matoix binary classification

problems is shown in Table 14 below.

Table 14: Confusion Matrix in general form

OUtcome Of the
diagnostic test

- True Positive(TP) False Positive(FP) TP+FP

False Negative(FN)  True Negative(TN) FN+TN

TP+FN FP+TN N=TP+TN+FP+FN

In Table 14, TP refers to number of samples cdgredéntified as positive, FP refers to
number of samples incorrectly identified as positiTN refers to number of samples
correctly identified as negative, and FN referatmnber of samples incorrectly identified

as negative.
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Figure 18: Receiver Operating Characteristics (RO§pace, the area under the ROC curve is
known as Area under the Curve (AUC)

For a given diagnostic test, the true positive (@i R), false positive rate (FPR) and

Accuracy can be measured using following formulas:
Sensitivity or TPR=TP / (TP+FN)
Sensitivity or TPR is the proportion of true posts that are correctly identified by a

diagnostic test. It is a measure of how efficidmt test is at detecting a disease.

FPR=FP/(FP+TN)
FPR is actually the proportion of positive testsoag people without the disease or
condition.
Specificity = TN/ (FP+TN)
Specificity is the proportion of the true negativesrectly identified by a diagnostic test.

It tells us how efficient our test is at detectmgymal (negative) condition.

Accuracy = (TP+TN) / (TP+TN+FP+FN)
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Accuracy is defined as the percentage of true t®sé it true positive or true negative,
in a population. It is a measure of the degree retipion for a diagnostic test on a

condition.

The accuracy of a diagnostic test can also be measy analyzing the area under ROC

curve (AUC), shown in figure 16. Large area sigrgfan accurate the diagnostic test is.

The confusion matrix for Experiment 3.3 is:

Table 15: Confusion Matrix for Experiment 3.3

ouu:ome Of the
diagnostic test

Tumor Non Tumor Row Total
Tumor TP=170 FP=820 990
Non Tumor FN=0 TN=4965 4965
Column Total 170 5785 5955

Analysis of the dataset for Experiment 3.3 gaviWing results:

Sensitivity: 100.00%
Specificity: 85.82%
Accuracy: 86.23%

In Experiment 3 we studied the robustness and giredipower of the developed model.

From these experiments our conclusions are:

1. SVM is a robust classifier in predicting the resporclass variable especially

when the response has two categorical indica&srs) our case C1 & CO.
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The classifier was able to predict the tumor tissweh high accuracy (sensitivity
100 %), but there is still room for improvementfas as predicting the correct

non-tumor tissues as specificity and accuracy \wevand 85 % mark.

One disadvantage with SVM is its computational claxipy, but WEKA takes

good care of it and present s the output in nickeasily interpretable format.

Overall performance of SVM is superior comparedtteer classifiers tested
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CHAPTER 4
CONCLUSION AND FUTURE WORK

Hepatocellular carcinoma (HCC) is a malignant tuigad it is considered as the seventh
most frequent occurring cancer in human [1]. Thadence of HCC is mainly due to
Hepatitis C, which also leads to chronic liver cdicgiions such as fibrosis, cirrhosis.
Nonalcoholic Steatohepatitis (NASH) & Non-Alcoholiatty Liver Disease (NAFLD)
are also major concerns that are growing really dasl it is expected that they will be
surpassing Hepatitis C as the major cause in the féure. Most clinical research has
focused on HCC early detection when the tumor mlightcurable by resection, liver

transplantation, or ablation and a 5-year survivglher than 50% can be achieved [5].

Commonly used imaging techniques for HCC diagnaosidude Ultrasound (US),
Computed tomography (CT) and Magnetic resonance )(MFS has been largely
replaced by CT and MRI due to its low sensitivitdaspecificity in HCC diagnosis [6].
As a result, liver disease diagnosis has mainlgdebn CT and MRI imaging criteria.
However, these two techniques are not without &trohs. A retrospective analysis
comparing the accuracy of radiologic staging widithplogic staging on liver disease
patients found that imaging based diagnosis (botha@d MRI) resulted in a high
number of false positives labeling common benigoafeabnormalities in the liver as

malignant tissue [7].

Another emerging imaging technique that has beeateudiscussion over the last few
years is Magnetic Resonance Elastography (MRE)eldped by Mayo Clinic. It is a
relatively new technique and under considerationsniprovement, but MRE has proved

to be a more accurate and reproducible techniquepaced to conventional imaging
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features better diagnostic accuracy. In additioostmesearch published to date relies on
subjective and variable assessment of imaging festWe believe Texture analysis is
one potential technique to generate multiple, dhjecreproducible, quantifiable features
from medical images. Classification of healthy amkased livers using modern imaging
such as MRE in conjunction with Texture Analysisynaaldress this clinical challenge
[17]. Texture recognition is an important aspettreedical image analysis. Texture
Analysis is of high importance in medical imagingalysis because, as the biological
tissue becomes abnormal during a disease, its lymdertexture could also change.
Current imaging techniques, such as MR, are notaldap enough of providing
microscopic information of tissue that can be assgwvisually. Texture Analysis can be
successfully used for the separation of cirrhotatignts and healthy volunteers, and
unknown patient data can be safely classified tht patient group. Different sets of
Texture Analysis features can be used for a simdiassification of patients. A
combination of features significantly improves #islity of Texture Analysis to confirm

the classification of the subjects.

In this research we evaluated the features frontufexAnalysis, to effectively diagnose
HCC for three patient's MRE images. The objectivaswio quantitatively assess and
validate the applicability of MRE in conjunction tWi advanced imaging processing
Texture Analysis pipeline and multi-variate anadysnachine learning method for
accurate HCC diagnosis. It was discovered thaturexAnalysis pipeline is a useful tool
to extract image signatures for these patients fteeir MRE images. During the analysis
uni-variate approach for quantitatively assesshegdiagnosis performance of MRE was

also evaluated based on the intensity informatiothe tissues only. Three experiments
68



were performed, with each experiment having sesfesub experiments to validate the

applicability of MRE and Texture Analysis pipelinsing multiple machine learning

algorithms in WEKA. Major focus of this researclstizeen concentrated on building the

model, choosing the correct classifier to build adel, model validation and finally

testing the build model. Based on our research amalysis we were able to draw

concrete conclusions on the applicability of MRErg with Texture Analysis pipeline in

HCC diagnosis, these conclusions are:

(@)

(b)

(€)

(d)

(e)

(f)

Texture analysis pipeline is a useful tool to esttienage signatures, both Texture
Analysis and MRE proved to be promising imagingigdor HCC diagnosis.

The model that was developed and validated had 88&aracy in HCC tissue
diagnosis.

The model that was tested had up to 92% accurabystly in HCC tissue
characterization.

Our testing model can predict the HCC tissue farelRg# 3 with sensitivity of
100 %, specificity of 85.82 % and accuracy of 8822

Uni-variate study of the intensity information o$dues was able to give us a
broad picture that the intensities of tumor andh-tomor regions differs
significantly, but we were not able to preciseljfatentiate between the two
region, therefore an advanced study was required.

Multi-variate analysis is preferred in this studyeo uni-variate analysis, as it
provides us with rich information to harvest timeage at pixel level with high

confidence.
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(9)

(h)

(i)

()
(k)

We observed that among all the image signaturegenh, there may exist some
redundancies, in this case, the system can bdrafit using feature selection to
narrow down to smaller number of significant featu

We also observed pixel based model tends to madgratitperforms ROI based
model. Yet, given the limited number of patientadavailable, this needs to be
confirmed in the future research.

We studied six machine learning methods; in gene®/M demonstrated
outperformance in most experiments. This is duthéofact that SVM is known
to be a good classifier for binary classificatmoblem and robust in nature.

We also conclude the model develop can robustlyigecaccurate predictions.

The classifier was able to predict the tumor tissuigh high accuracy (sensitivity 100%),
but there is still room for improvement as fapasdicting the correct non-tumor tissues

as specificity and accuracy were around 85 % mark.

While we see that the results from the analysispaomising as far as applicability of

MRE and Texture Analysis are concerned in HCC diagm there is still plenty of room

for improvement which can be implemented in futwoeks:

(@)

(b)

The model performance is far better than we imtiaxpected, this maybe
because the ROI was drawn precisely, which previde a very good and
representative dataset.

This analysis was done on 2D, which proved itsulsets, yet with accuracy of
86.23 % with 2D. In addition, the specificity islp 85.82%. This concurs with
conclusion from most existing investigations tbatrent imaging techniques may

result in a high number of false positives labglinommon benign focal
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abnormalities in the liver as malignant tissue Me believe there is scope of
improvement, for example exploring 3D MRE for ketaccuracy in terms of
tissue characterization.

(© This study involved only three patients due to fedinumber of available patients
for HCC diagnosis study. Future studies must ihelmore number of patients for
further validation of the model.

(d) Phantom data may also be used for the validatigyst

(e) More variability can be introduced in the modellBung, by allowing different
radiologists to draw ROIs on the same MRE imagetfe patient. This will make

sure that radiologist’s variability is also incedlwhile building the model.

By these experiments we can improve on the custmty and further higher accuracy

can be achieved for characterizing the tissuegbett
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