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ABSTARCT 
 

Hepatocellular carcinoma (HCC) is a malignant tumor and seventh most common cancer 

in human. Every year there is a significant rise in the number of patients suffering from 

HCC. Most clinical research has focused on HCC early detection so that there are high 

chances of patient’s survival. Emerging advancements in functional and structural 

imaging techniques have provided the ability to detect microscopic changes in tumor 

microenvironment and microstructure. The prime focus of this thesis is to validate the 

applicability of advanced imaging modality, Magnetic Resonance Elastography (MRE), 

for HCC diagnosis. 

The research was carried out on three HCC patient’s data and three sets of experiments 

were conducted. The main focus was on quantitative aspect of MRE in conjunction with 

Texture Analysis, an advanced imaging processing pipeline and multi-variate analysis 

machine learning method for accurate HCC diagnosis. We analyzed the techniques to 

handle unbalanced data and evaluate the efficacy of sampling techniques. Along with this 

we studied different machine learning algorithms and developed models using them. 

Performance metrics such as Prediction Accuracy, Sensitivity and Specificity have been 

used for evaluation for the final developed model. 

We were able to identify the significant features in the dataset and also the selected 

classifier was robust in predicting the response class variable with high accuracy. 
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CHAPTER 1 

INTRODUCTION 

1.1 Hepatocellular Carcinoma Disease Diagnosis 
 

Hepatocellular carcinoma (HCC) is a malignant tumor and it is considered as the seventh 

most frequent occurring cancer in human [1]. An estimate incidence is between 250,000 

and 1.2 million cases per year, worldwide [1]. In the United States, the rise in HCC has 

increased by 80 % in the past two decades [2]. The incidence of HCC is mainly due to 

Hepatitis C, which also leads to chronic liver complications such as fibrosis, cirrhosis. 

Nonalcoholic Steatohepatitis (NASH) & Non-Alcoholic Fatty Liver Disease (NAFLD) 

are also major concerns that are growing really fast and it is expected that they will be 

surpassing Hepatitis C as the major cause in the near future. The recent high rise of HCC 

is partially due to the increased obese in the U.S. population. Currently, NAFLD has been 

considered the most common liver abnormality in the U.S with an estimated prevalence 

of 25% of the total population. Simple fat (steatosis) is the first stage which leads to fat 

with inflammation and scarring (NASH) and ultimately to end stage liver fibrosis 

(cirrhosis). 

Liver fibrosis, a symbol of structural liver damage, is an accumulation of Extracellular 

matrix (ECM) proteins in excess which includes collagen that is a characteristic of most 

types of liver diseases. It occurs from chronic damage to the liver along with the ECM 

proteins accumulation. This is an indication for most types of chronic liver diseases [3].   

Advanced liver fibrosis leads to cirrhosis which in turn causes hepatocellular dysfunction 

and increased intrahepatic blood flow resistance. This results in hepatic insufficiency and 
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hypertension, respectively [4]. In the majority of patients, development to cirrhosis from 

fibrosis occurs after a span of 15-20 years [3]. Although many patients suffering from 

cirrhosis may remain free of any major problems for several years, it is a serious sign for 

developing HCC. 

Most clinical research has focused on HCC early detection when the tumor might be 

curable by resection, liver transplantation, or ablation and a 5-year survival higher than 

50% can be achieved [5]. In the U.S. a screening program has been implemented for 

HCC early detection. In the screening program, biopsy is not required before the 

treatment and diagnosis of HCC can be done effectively using imaging characteristics. 

This is probably due to the great promises the recent advanced developments of imaging 

techniques are showing. Emerging advancements in functional and structural imaging 

techniques have provided the ability to detect microscopic changes in tumor 

microenvironment and microstructure, thus allowing the assessment of tumor response 

after locoregional treatment by observing alterations in tumor viability, perfusion or 

vascularity. 

Commonly used imaging techniques for HCC diagnosis include Ultrasound (US), 

Computed tomography (CT) and Magnetic resonance (MR). US has been largely 

replaced by CT and MRI due to its low sensitivity and specificity in HCC diagnosis [6]. 

As a result, liver disease diagnosis has mainly relied on CT and MRI imaging criteria. 

However, these two techniques are not without limitations. A retrospective analysis 

comparing the accuracy of radiologic staging with pathologic staging on liver disease 

patients found that imaging based diagnosis (both CT and MRI) resulted in a high 
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number of false positives labeling common benign focal abnormalities in the liver as 

malignant tissue [7]. 

One of the major difficulties in imaging cirrhosis is the detection of hyper vascular 

nodules which are smaller than 2 cm. These nodules often have nonspecific imaging 

characteristics making their detection highly complicated [8]. MR imaging technique is 

superior to CT in this area, even though the sensitivities for both of them remain highly 

disappointing. The MR imaging technique surpasses CT with 81 % pooled estimate of the 

sensitivity as compared to 68 % for CT as far as detection of HCC is concerned [8].  

These research findings indicate there is great room for improving diagnosis accuracy 

(both sensitivity and specificity). In this research, our central hypothesis is: MR 

Elastography (MRE), a novel imaging technique developed by Mayo Clinic has the 

promise to improve HCC tissue characterization. In conjunction with advanced imaging 

process technique, such as texture analysis, to extract multiple biomarkers as imaging 

signature, the diagnosis power may be significantly improved. Texture analysis is a 

generalized tool applicable to varied imaging modalities including US, CT and MRI 

which are briefly reviewed in the next section. 

1.2 Diagnostic Imaging for Hepatocellular Carcinoma 
 

We will first review three common noninvasive imaging modalities namely Ultrasound 

(US), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). In addition 

an advanced imaging modality, Magnetic Resonance Elastography (MRE) developed by 

Mayo Clinic is briefly reviewed. We further summarize some basic trend in the use of the 

modalities in HCC diagnosis. 
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1.2.1 Imaging Modalities 

(a) Ultrasound 
 

Ultrasonic Imaging is one of the most popular imaging techniques in medical field. 

Ultrasound Diagnosis working principle is based on the emission of sound waves with 

frequency far above the audibility threshold. Typical Ultrasonic frequency range lies 

from 2-15 MHz, sound frequency below such range is known as infrasound. At these 

frequencies the speed of sound travels in human body at 1540 m/s [9].  

The interval of this wavelength is in the range from 0.75 - 0.1 mm. When sound travels at 

this wavelength it can be focused in a particular direction and the region of interest (ROI) 

can therefore be interrogated [9]. Similar to an electromagnetic wave, a sound wave can 

be reflected, retracted, diffracted, scattered, absorbed or shifted in frequency. In current 

practices, Ultrasound (US) imaging is being replaced by advanced imaging modalities 

such as CT scan and MRI owing to low sensitivity and positive prediction value with 

coexisting cirrhosis. 

(b) Computed Tomography (CT)  
 

A CT (computed tomography) scan is a noninvasive imaging technique that is largely 

replacing US imaging. It uses a special x-ray machine that produces multiple images or 

pictures of patient’s internal organs and to join these images together a computational 

algorithm is applied thereby rendering cross-sectional views of the region of interest that 

is being studied. CT scans of internal organs, blood vessels, soft tissue and bones 

provides a superior clarity as compared to conventional x-ray exams. 
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CT imaging assessment of HCC suspected patients should be done using multiphase 

contrast imaging of the liver. The CT scans are carried out at different time intervals 

corresponding to the contrast enhancement phase. The accuracy of CT enhances with 

higher imaging speeds, which allows faster application of contrast media, thereby 

drastically improving contrast enhancement. The additional flexibility and speed of 

multidetector CT (MDCT) allows superior quality, thin-section imaging with 3D 

capabilities. 

(c) Magnetic Resonance Imaging (MRI)  
 

Another well used imaging for HCC diagnosis is MRI which uses similar concepts to 

those applied to CT imaging.  MRI imaging utilizes magnetic field and energy of radio 

wave pulses to take pictures inside the body. In many cases the information that cannot 

be seen on an X-ray, US or CT scans is provided by MRI scans. Recent advancement in 

MR technology captures images within the time frame of one breath hold. However, MRI 

sensitivity when evaluating HCC tumors which are <2 cm in diameter, is far less than 

satisfactory. 

(d) Magnetic Resonance Elastography (MRE)  
 

The technique of MRE developed by Mayo Clinic is emerging to become a promising 

modality for HCC diagnosis. There is increasing evidence that HCC’s behavior is 

mediated by its physical environment on a cellular level. Around 80% of HCCs is 

developed in the context of advanced liver fibrosis or cirrhosis where fibrosis is defined 

by changes in the physical and biochemical properties of the cellular microenvironment 

[10]. It is therefore obvious that development of HCC takes place in a niche with 
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mechanical properties different from those found in the normal liver. MRE is based on a 

transducer that transmits vibrations to the tissue that are of interest, a sequence of motion-

encoding gradients to image tissue displacement and a mathematical reconstruction 

designed to reflect the mechanical properties of the tissue [11]. Therefore, there is 

growing interests in applying MRE for HCC diagnosis. MRE requires a wave driver to 

produce the mechanical excitation in the target tissues. It must be positioned as closely as 

possible to the target to be scanned on the body surface. During the scan the driver 

vibrates at controllable frequencies and amplitudes. Each cycle is synchronized with the 

motion encoding sequence that measures mechanical vibrations. An elastogram is 

calculated by the help of the mechanical parameters such as amplitude, frequency, 

wavelength and phase in the image volume [11]. Figure 1 below shows the workflow of 

MRE as just discussed. 

 

Figure 1: Workflow of MRE 
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(e) Summary on Imaging Techniques for HCC diagnosis  
 

As each imaging modality is reviewed, we summarize the advantages and disadvantages 

of each modality in general medical practices in Table 1 below: 

Table 1: Pros and Cons of Imaging techniques 

Modality Pros Cons 

 

 

US 

� Inexpensive, quick and 

convenient. 
� By the use of US no harmful 

effects have been observed, 

at the intensity levels that are 

being used for imaging and 

examinations [6]. 

� Images resolution is often 

limited. 
� Cannot evaluate bone, lungs. 
� Highly skilled specialists are 

required to interpret ultrasound 

images, especially when 

complicated procedures are 

involved [12] 

 

 

 

CT 

� CT can display bone changes 

much better than any other 

imaging methodology. 
� CT can provide detailed 

images of bone, blood 

vessels and soft tissue. 
� CT is widely available at 

healthcare institutions 
� Reasonably priced [13] 

� CT scans requires exposure to 

some radiation. This radiation 

exposure is likely to increase 

the risk of cancer in patients 

who are getting scanned. 
� CT scan is not capable of 

identifying all diseases and 

medical conditions. 

 

 

 

 

MRI 

� MRI do not use ionized 

radiations and thereby 

avoiding patient’s exposure 

to the potential harms of such 

radiation [12] 

� MRI scans are useful for 

exhibiting soft tissue 

structures, such as cartilage, 

ligaments and organs such as 

the brain, eyes and heart [6] 

� MRI scanners can be affected 

by movement therefore require 

patients to hold still for 

extended periods of time. 

� People with pacemakers 

cannot have MRIs. [6] 
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MRE 

� MRE measurements did not 

seem to be influenced by the 

presence of obesity or ascites 

� MRE proved to be a more 

accurate and reproducible 

technique compared to 

conventional imaging 

features better diagnostic 

accuracy [11] 

� The widespread use of MRE 

relies on the same technology 

and infrastructure as 

conventional MR imaging, and 

so claustrophobic or very 

obese patients and those with 

contraindications to MRI will 

be excluded from investigation 

due to an inability to enter the 

scanner [11] 

 

Other than reviewing the technical pros and cons of each modality, we further explore the 

usage of each imaging technique in the medical practices. Specifically, we used 

“pubmed.gov”, search from 2000-2013, using the keywords HCC and the related imaging 

modality. The results are shown in Figure 1(pie-chart) and Figure 2 (bar-graph). We 

observe: 

(a) Ultrasonography (US) was most widely used for surveillance because it is not 

expensive, not invasive, well accepted by patients and can be repeated without 

risk. One of the major drawbacks if that it is difficult to distinguish small tumors 

from the nodularity of the cirrhotic liver by US. 

(b) Computed tomography (CT) is a common imaging modality used in diagnosing 

HCC due to its widespread availability and short examination time, but the 

usefulness of CT in a surveillance program that requires periodical tests is limited 

by the patient’s radiation exposure. 

(c) Magnetic Resonance Imaging (MRI) has higher sensitivity than CT and US for 

HCC (89-100%) detection [14]. However, MRI is reserved for characterization 



 

purposes, diagnostic confirmation and intrahepatic tumor staging because of its 

lower availability and high cost.

(d) MRI provides higher lesion

advantage over CT. 

(e) Several studies that have compared the accura

diagnosis show that MRI is better in the diagnosis of HCC when compared with 

CT and US. This is due to improved detect

(f) In MR imaging, an emerging technique is Magnet

(MRE). Use of MRE has 

parameters for differentiating benign and malignant hepatocellular nodules in a 

cirrhotic liver. MRE has proved to be a more accurate and reproducible technique 

compared to conventional imaging features better d

relatively new technique and under considerations for improvement.

Figure 2: Use of imaging techniques in the HCC diagnosis during last ten years in 

MRI
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MRI provides higher lesion-to liver contrast than CT, which is a significant 

Several studies that have compared the accuracy of US, CT and MRI for HCC 

diagnosis show that MRI is better in the diagnosis of HCC when compared with 

CT and US. This is due to improved detection of small lesions 1–2 cm 

In MR imaging, an emerging technique is Magnetic Resonance Elastography 

(MRE). Use of MRE has led to new quantitative tissue characterization 

parameters for differentiating benign and malignant hepatocellular nodules in a 

cirrhotic liver. MRE has proved to be a more accurate and reproducible technique 

compared to conventional imaging features better diagnostic accuracy. It is a 

relatively new technique and under considerations for improvement. 

Use of imaging techniques in the HCC diagnosis during last ten years in 
medical field 
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to new quantitative tissue characterization 

parameters for differentiating benign and malignant hepatocellular nodules in a 

cirrhotic liver. MRE has proved to be a more accurate and reproducible technique 

iagnostic accuracy. It is a 
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It is evident from the pie-chart (Figure 2) that during last ten years CT and MRI imaging 

techniques have gained a lot of popularity in the medical field for detecting HCC. US 

used to be a popular diagnostic imaging technique earlier has been replaced by MRI and 

CT owing to high sensitivity and accuracy of the two techniques. MRE figures appear to 

be small as it is a relatively new technique and under considerations for improvement, but 

MRE has proved to be a more accurate and reproducible technique compared to 

conventional imaging features better diagnostic accuracy. 

The following bar chart (Figure 3) is another representation of the trend followed in 

diagnosis of HCC using diagnostic imaging techniques. It is evident that US was a 

popular technique during early 2000 to 2004, but after 2005 CT and MRI has widely been 

used as the preferred imaging techniques. Also it can been seen that although MRE is 

fairly new imaging technique it has gained a significant amount of popularity during last 

few years and seems to be the future of the Diagnostic Imaging technique for detecting 

HCC. 
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Figure 3: Year wise trend followed in diagnosis of HCC using diagnostic imaging 
techniques 

 

1.3 Imaging Analytics 
 

We have reviewed existing clinical literature on the usage of different modalities in HCC 

diagnosis. Other than the trend we observed, another interesting finding is that most 

clinical research has focused on only limited imaging biomarkers. In addition, most 

research published to date relies on subjective and variable assessment of imaging 

features. We believe Texture analysis is one potential technique to generate multiple, 

objective, reproducible, quantifiable features from medical images.  

In the field of HCC, an early diagnosis will correspond to a more effective treatment if 

this can be done at an early phase. Surveillance aims to reduce disease-specific mortality 

by detecting HCC at a curable stage. The optimal profile for this endpoint is when the 

HCC is smaller than 2cm [16] while most conventional imaging techniques such as CT, 

MRI fails. Classification of healthy and diseased livers using modern imaging such as 

MRE in conjunction with Texture Analysis may address this clinical challenge [17].  
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Texture recognition is an important aspect of medical image analysis. In medical 

imaging, texture can be defined as the distinct image intensity pattern that is helpful in 

characterizing a tissue. Texture analysis also provides the local spectral or frequency 

content of an image; any change in the local texture should in turn cause changes in the 

local spatial frequency. Texture Analysis is of high importance in medical imaging 

analysis because, as the biological tissue becomes abnormal during a disease, its 

underlying texture could also change.  

In Texture Analysis, the examined area of the sample (tissue) is represented by pixels. 

The intensity of the pixels is input information for classifying images because texture in 

an image refers to the distribution of brightness and darkness (gray tones) within the 

image. Texture Analysis evaluates the spatial location and signal intensity of each pixel 

in the examined area. There are a number of methods implemented for Texture Analysis. 

In general, we can divide them into four broad categories: statistical, structural, 

mathematical, transform based methods. These categories have been described in detail 

in the next chapter. 

Texture Analysis has been successfully used for the separation of cirrhotic patients and 

healthy volunteers, and unknown patient data can be safely classified into the patient 

group using MRI, CT. While promising, the applicability of Texture Analysis on MRE 

images for HCC diagnosis is less studied. This is the focus of this thesis. 

1.4 Research Objective 
 

This research is to validate the applicability of MRE for HCC diagnosis. This study will 

in particular concentrate on quantitative aspect of MRE in conjunction with Texture 
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Analysis, an advanced imaging processing pipeline and multi-variate analysis machine 

learning method for accurate HCC diagnosis. To achieve this goal, we have acquired 

three patient data and three sets of experiments are conducted. 

1.5 Thesis Organization 
 

The overall thesis layout is shown in Figure 4. As seen, chapter 2 gives the in detailed 

description of the literature reviews with background and related work of Texture 

Analysis imaging techniques and briefs the initial work done and the challenges faced in 

the field of imaging technologies. This section also gives the in-depth knowledge about 

the current progress in Texture Analysis field and provides an in-sight of the future 

related works. Chapter 3 describes the datasets, experiments and results obtained. In this 

section the knowledge gained from previous chapters is applied in more practical manner. 

Here we do a retrospective comparison between the earlier techniques and the proposed 

techniques highlighting their pros and cons. Chapter 4 concludes the thesis with 

observations from current work with summary and giving a list of possible future work.  

        

 

 

Figure 4: Thesis organization Flowchart 
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CHAPTER 2 

LITERATURE REVIEW ON ADVANCED IMAGING ANALYTICS 

2.1 Texture Analysis 
 

Texture definition of an image is an important aspect in medical analysis. In medical 

imaging analysis, texture can be defined of as the local distinguish pattern of image 

intensity that helps radiologists in identifying a tissue. Texture analysis is important in 

medical image study primarily because there is always an underlying texture change 

associated with a tissue as soon as it becomes abnormal during a disease [18]. Current 

imaging techniques, such as MR, are not capable enough of providing microscopic 

information of tissue that can be assessed visually. However, tissue changes caused by 

some illnesses may bring about texture changes in the images that can easily be identified 

and quantified through texture analysis [19]. 

Thus, texture analysis is primarily a technique that evaluates the intensity and position of 

signal features, i.e. pixels, and also their corresponding grey level intensity in digital 

images. Texture features are therefore mathematical parameters that are calculated from 

the pixel distribution, which characterize the texture type and thus the underlying 

structure of the objects shown in the image [19]. 

Analyzing the texture parameters gives us highly useful information that is obtainable 

from medical images. In medical practices, the visual observation of imaging texture may 

be subjective. In addition, human observers may be able to observe only a limited part of 

the diagnostic information carried by an image. Texture analysis makes use of 

radiological images that are obtained in routine diagnostic practice, but involves 
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statistical analysis to be performed with the data contained within the images. As a result, 

it is becoming a tool that helps in reducing mistakes in clinical stage determination and 

also assists in unclear cases. 

Texture Analysis provides innovation and diversity in many fields; it opens up a new era 

of analysis. During last three decades extensive research has been done on texture 

classification [20]. Few of the most popular texture approaches that were popular during 

1980s, included gray level co-occurrence matrices (GLCM), Gauss–Markov random 

field, and local linear transform. These approaches had restriction that they could analyze 

the spatial relations between neighboring pixels for a small image region [20]. Texture 

analysis is most important for those cases in which change cannot be detected by direct 

inspection of the image. The approaches for analyzing texture are very diverse. We will 

review some common methods applied in the texture analysis in the following section. 
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2.1.1 Texture Analysis Pipeline 
 

A computational pipeline is an integral part of Texture Analysis study in Medical 

Imaging. It was developed to combine texture analysis and pattern classification 

algorithms for investigating associations between high-resolution MRI / MRE features 

and clinical patient data, and also between MRI / MRE features and histological data 

[21]. A typical Pipeline design structure consists of three main stages i.e., Preprocessing, 

Feature extraction and Analysis. Figure 5 illustrates the pictorial representation of a 

medical imaging pipeline. 

 

Figure 5: Texture Analysis Pipeline 

 

 

 

 

Data Selection 
/ Format 
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Feature 
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(a) Preprocessing 
 

Preprocessing stage is the first and the most important stage of the Texture Analysis 

Pipeline. The preprocessing stage reduces 

intensity non standardization. It is co

segmentation and Intensity normalization

of the images are smoothened while preserving sharp borders. Background segmentation 

separates the Region of Interest (ROI) fr

methods helps in improving 

different operators, different 

image comparability. 

Figure 

(b) Feature Extraction 
 

The feature extraction stage calculates all the texture features used in tissue classification. 

The features can be extracted for a single voxel in the ROI as well as the mean of all the 

voxels in the entire ROI. It includes Statistical, Structural, Mathem

and Transform based texture features. Statistical based methods are of Co

matrix type which includes 14 textural features or it can be Run length Matrix type which 

consists of 88 features for different angles. Similarly Struct

features that are characterized by feature primitives and their spatial arrangements. 

Mathematical model based models consists of fractal models which generate empirical 

Noise Filtering
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Preprocessing stage is the first and the most important stage of the Texture Analysis 

Pipeline. The preprocessing stage reduces imaging artifact effects, such as noise and 

intensity non standardization. It is composed of three steps: noise filtering, Background 

segmentation and Intensity normalization [21]. In noise filtering the homogeneous areas 

of the images are smoothened while preserving sharp borders. Background segmentation 

separates the Region of Interest (ROI) from the surrounding area. Intensity Normalization 

 image compatibility. It reduces the variability introduced by 

operators, different gain settings, and equipment variability and simplifies

Figure 6: Data Preprocessing Steps 
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(c) Analysis 
 

The first step in analysis is data scaling. This step improves the final accuracy in the 

classification process of the data analysis. Information gain is used as a measure in the 

feature selection for the mode

the image.  After testing out several 

that have the highest information gain score as well as the highest percentage of correctly 

classified instances. Few classifiers that work very well for texture analysis feature 

selection are Support Vector Machines (SVM), Neural Networks (NN) and Ada Boost 

Classifiers. Parameters for each classifier are selected based on the problem being faced. 

Once the classifier is developed for problem it is tested on the testing data to justify the 

selection. 
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models of each pixel in the image. Transform based features are wavelets totalizing 24 

The first step in analysis is data scaling. This step improves the final accuracy in the 

classification process of the data analysis. Information gain is used as a measure in the 

feature selection for the model; it aims at finding the most relevant texture features for 

the image.  After testing out several empirical tests, we chose only those texture features 

that have the highest information gain score as well as the highest percentage of correctly 

instances. Few classifiers that work very well for texture analysis feature 

selection are Support Vector Machines (SVM), Neural Networks (NN) and Ada Boost 

Classifiers. Parameters for each classifier are selected based on the problem being faced. 

classifier is developed for problem it is tested on the testing data to justify the 

Figure 7: Data Analysis Steps 
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The first step in analysis is data scaling. This step improves the final accuracy in the 

classification process of the data analysis. Information gain is used as a measure in the 
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that have the highest information gain score as well as the highest percentage of correctly 

instances. Few classifiers that work very well for texture analysis feature 

selection are Support Vector Machines (SVM), Neural Networks (NN) and Ada Boost 

Classifiers. Parameters for each classifier are selected based on the problem being faced. 
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2.1.2 Texture Analysis Methodologies 
 

The key categories of texture analysis methodology include [22]: 

i) Statistical Methods, in which the texture is characterized by statistical 

distribution of intensity values Example of these methods, are Histogram, 

GLCM, and Run Length Matrix. 

ii)  Structural Methods, where the texture is characterized by feature primitives 

and their spatial arrangements  

iii)  Mathematical model based Methods, such as fractal models which usually 

generate an empirical model of all the pixels contained within that image 

considering the weighted average of the pixel intensities in its neighborhood. 

iv) Transform based Methods, where the image is converted into new form 

using spatial frequency properties of the pixel intensity variations. Some 

examples of this method are Wavelet Transform, Fourier Transform and S 

transform. 

Each of these methodologies has been briefly described as following: 

(a) Statistical Methods 
 

In statistical methods, texture is described by a collection of statistics of selected features. 

Statistical approach of texture analysis primarily describes texture of regions in an image 

using higher order moments of their grayscale histograms values [23]. Selecting various 

textural features from a Gray level co-occurrence matrix (GLCM) is apparently, the most 

commonly cited method for texture analysis [23]. In addition to the traditional statistical 

texture analysis methods, multivariate statistical techniques have also been considered for 
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extraction of textural features. If we consider an image as a matrix, the singular value 

decomposition (SVD) spectrum of the image texture is a summary vector represented by 

its singular values [23]. Alternatively, the run length matrix (RLM) includes higher-order 

statistics of the gray level histogram for an image. The RLM approach of texture analysis 

distinguishes fine textures of an image as having few pixels in a constant gray level run 

and coarse textures with many pixels in such a run [23]. 

(i) Histograms 
 

In digital images, the allowed value for the grey level that can be given to a pixel is 

limited. The grey value is usually an integer ranging from 0 to 2b-1, where b denotes the 

number of bits of the image [22]. The histogram of an image is drawn by counting the 

number of pixels in the image that possess a given grey-level value. For example in a 12 

bits image, the histogram may be represented by a graph, where the x-coordinates range 

from 0 to 4095 and y-coordinates represents the corresponding pixel count [22]. From the 

histogram many parameters may be derived, such as its mean, variance and percentiles. 

(ii)  Run Length Matrix 
 

The run-length matrix is a technique where we search the image, always across a 

particular direction, for number of pixels that have the same grey-level value. Therefore, 

given a particular direction (for example, the vertical direction), the run-length matrix 

computes for each allowed grey-level value how many instances there are runs of,  

example, 2 consecutive pixels with the same grey-level value. Next it repeats the same 

for 3 consecutive pixels, then for 4, 5 and so on [22]. Thus using a single image, typically 

four matrices are generated, for the vertical, horizontal and two diagonal directions [22]. 



 

(iii)  Haralick’s co-occurrence matrix
 

The Haralick’s co-occurrence matrix is a method that helps us to gather sta

information of an image or an image ROI based on distribution of pixels of that image. It 

is calculated by defining a direction and a distance i.e., the pairs of pixels separated by 

this distance. Once this has been done number of pairs of pixels 

given distribution of grey-level values. 

one similar grey-level distribution

Co-occurrence matrix is a good

grey-levels in relation to other grey

where Ng is the total number of gray levels in the image. The [i,j]th element of the matrix 

is produced by counting the total occasions a pixel with value i is adjacent to a pixel with 

value j and then subsequently dividing the whole matrix by the total number of such 

comparisons that are made. Each entry in the resulting matrix is considered as the 

probability that a pixel with value “i” is to be found that is adjacent to a pixel of value j.

Figure 8: General Format of Co

(b) Structural Methods 
 

This texture analysis technique 

texture elements such as regularly spaced parallel lines. 

the properties and placement rules of the texture elements. 
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analysis approaches have been recommended which ranges from utilizing different 

shapes of structuring elements to understanding real textures as distorted versions of ideal 

textures. However, as far as practical application of these methods is concerned, they are 

in limited use since they can only describe very regular textures [23]. 

(c) Mathematical Model Based Methods 
 

In this approach of texture analysis a texture in an image is represented using 

sophisticated mathematical models (such as stochastic or fractal). The model parameters 

are estimated and used for the image analysis [22]. Mathematical model based texture 

analysis techniques generate an empirical model of each pixel in the image based on a 

weighted average of the pixel intensities in its neighborhood [23].  The disadvantage of 

these models is that the estimation of these parameters is computationally very complex 

[22]. The estimated parameters of the image models are used as textural feature 

descriptors. Examples of such model-based texture descriptors are autoregressive (AR) 

models, Markov random fields (MRF) and fractal models [23]. 

(i) Auto-Regressive Model 
 

The auto-regressive model assumes a local interaction between image pixels in that the 

pixel grey level value is a weighted sum of the grey-level values of the neighboring 

pixels. The auto-regressive parameters are simply the set of weights used to establish 

these relations. It is expected that these relations are unique for a given type of object (or 

shape) in an image and, therefore, they may constitute a way of characterizing this object 

[22]. 



 

(ii)  Fractal Model 
 

A fractal is a random geometric object 

scales. One can find fractal objects 

snowflakes, fern, mountains,

properties of fractals are self-

The Fractal Dimension (FD) has been 

applications such as brain tumor

fractal based algorithms that are being used in medical applications 

threshold box-counting (PTBC), piecewise modified box

piecewise-triangular prism surface

images based in 2D and 3D spaces

The fractal dimension can be defined as the 

N, to the magnification factor, 1/r, into which 

follows [27]: 

(d) Transform based Methods
 

Finally, the transform-based texture analysis 

using the spatial frequency properties of the pixel intensity variations. The success of 

these modern techniques is largely due to 

textural features from the image
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geometric object that has an infinite nesting of structure at all 
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The Fractal Dimension (FD) has been used in detection of various biomedical 
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that are being used in medical applications such as piecewise

counting (PTBC), piecewise modified box-counting (PMBC), and 

triangular prism surface-area (PTPSA) for detecting brain tumors in MR 

spaces [26]. 

The fractal dimension can be defined as the fraction of the number of self-similar pieces, 

magnification factor, 1/r, into which you split a figure. The equation for F
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may be analyzed in the scale space or the frequency space. Transform based methods are 

based on the Gabor, Fourier, or Wavelet transforms [22]. 

(i) Wavelet Transform 
 

The Wavelet transform is a spatial/frequency analytical tool which is being used 

extensively during past ten years and has been an area for research for many researchers. 

Wavelet transform is a traditional pyramid-type transform that decomposes signals to sub 

signals in low frequency channels [28]. However a drawback is that most significant 

information of a textured image often appears in the middle frequency channels therefore 

the conventional wavelet transform does not work properly in the texture context. To 

rectify this drawback, the transform is modified and an energy function is used to 

characterize the strength of a sub signal contained in a frequency channel requiring 

further decomposition. This idea leads formation of tree structured wavelet transform 

[28]. 

The methodology on which the wavelet transforms works is that it analyzes the frequency 

content in an image for different scales of that image. Therefore this analysis provides us 

with a set of wavelet coefficients corresponding to different scales and different 

frequency directions for that image. While calculating the wavelet transform of an image, 

each pixel is associated with a set of numbers known as the wavelet coefficients [29]. 

This wavelet coefficient represents the frequency content of the image at that point over a 

set of scales. These coefficients are used in computing the different texture parameters for 

the image. Figure 9 shows an example of a wavelet transform for the image shown in 

Figure 10. The top left corner of the image (Figure 9) depicts the low frequency and a 
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small-scale version of the original image. Whereas the other images in Figure 9 

represents higher frequency versions of the original image but on different scales [22].  

An example of a parameter derived from wavelet transform is the wavelet energy 

associated with a given scale and given direction. This parameter gives us the measure of 

the frequency content of the image on a given scale and in a given direction [22]. 

 

Figure 9: Wavelet transform of the image 
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Figure 10: Coronal slice of T1-weighted cerebral MRI 

Steps to construct two-dimensional Wavelet Packet Transform: 

The wavelet transform provides us with an accurate and consolidated layout for the 

analysis and identification of a signal in an image at different scales. Wavelet Transform 

is often considered as a multiresolution analysis tool for the finite energy function. It can 

be implemented effectively alongside the wavelet packet transform and the pyramid-

structured wavelet transform. Additional decomposition of a signal is performed by the 

pyramid-structured wavelet transform, in the low frequency regions. However, the 

decomposition of a signal in all low and high frequency regions is performed by wavelet 

packet transform [29]. 

The working of a wavelet transform starts with the decomposition of an image into sub 

images. The image is actually decomposed i.e., divided into four sub-bands and discrete 

wavelet transform is applied on and then it is critically sub-sampled as shown in Figure 

11. These four sub images represent the frequency information of the original image in 

the frequency regions of LL, LH, HL, and HH respectively. Sub-bands labeled as LH1, 
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HL1 and HH1 represents the wavelet coefficients with finest scales amongst all the 

bands, whereas the sub-band LL1 corresponds to coarse level coefficients i.e., 

approximation image [20] .  

The next step is decomposing the image further into the next coarse level of wavelet 

coefficients. The sub-band LL1 alone is used for further decomposition and critically 

sampled. This results in two-level wavelet decomposition. The process continues until 

some final scale is reached. The 2-D wavelet packet transform achieves a full 

decomposition by disintegrating all the frequency regions, as shown in Figure 12 [20]. 

 

Figure 11: Three level 2-D PSWT decomposition of 128 x 128 image 
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Figure 12: Level 2-D wavelet packet decomposition of 128 x 128 image 

Further after the decomposition the steps involved in the texture classification is shown in 

the Figures 13 and 14 [29]. 

 

Figure 13: Texture training steps 

 

Figure 14: Texture classification steps 
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(ii)  S-Transform 
 

The S-transform (ST) relates closely to the continuous wavelet transform as it uses the 

complex Morlet mother wavelet and therefore it measures directly the local frequency 

composition in an image for each and every pixel. The S-transform has been successful in 

analyzing signals in various applications, such as ground vibrations, seismic recordings, 

gravitational waves, power system analysis and hydrology. The 1D S-transform has 

proved to be a useful tool for analyzing the medical signals, such as laser Doppler 

flowmetry, EEG and functional magnetic resonance imaging. The S-transform works 

satisfactorily for texture analysis of images in medical industry due to its optimum space-

frequency resolution and close connection to the Fourier transform (FT). 

The main obstacle of the S-transform algorithm in wider application of S-transform -

based texture analysis for 2D images has been its redundant nature. In order to calculate 

and store the texture features of large medical images, extensive calculation time and a 

large memory space are required [18]. 

As a result, the S-transform of a 256×256 MR image takes almost one and half hours to 

calculate on one computer with memory requirements of almost 32 GB [18]. Therefore, 

previously the work that was done on 2D images had its limitation for analysis of only 

small ROIs and disintegrated to 1D spectrum. However because of the small ROIs, the 

resolution of the frequency spectra is reduced, and thereby reducing the sensitivity to 

complex texture changes. These shortcomings make the application of 2D-S-Transform 

to clinical medical applications not even difficult but also very impractical [18]. In 

modern era, the clinical texture analysis method requires an efficient algorithm that is 
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capable of providing complete information about all frequency components. However, 

even though there are few limitations, the 2D-S-Transform has demonstrated promising 

results in identification of differences in textures that is associated with neurological 

pathology [18]. 

(iii)  Discrete Orthonormal S Transform (DOST) 
 

The Discrete Orthonormal space-frequency transform (DOST) is a relatively new and 

effective approach for describing an image texture [18]. In order to obtain a rotationally 

consistent set of texture features, the DOST components can be combined together, 

which in turn accurately distinguishes between a series of texture patterns [18]. The 

DOST is highly efficient as it provides the multi-scale information and computational 

efficiency of wavelet transforms, when it provides the texture features as Fourier 

frequencies. It is better than other leading wavelet-based texture analysis techniques and 

is more efficient as compared to primitive Haralick’s Co-occurrence Matrix [18]. 

One of the biggest advantages of DOST is that it speeds up the calculation of the S- 

Transform and eliminates the redundant nature of the space frequency domain. The 

DOST provides a spatial frequency illustration that is similar to the discrete wavelet 

transform. Along with all these advantages, the DOST has the additional benefits as well. 

It maintains the phase properties of the S- Transform and Fourier Transform and even 

maintains the ability to crash exactly back to the Fourier domain [18]. 

The computational accuracy of DOST is fast and straightforward. It allows us to analyze 

each and every pixel of an image within seconds. The DOST did very well in detecting 

the even a small change in contrast and spatial frequency when subjected to changes in 
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frequency domains at various levels of noise and evaluating against series of tailor-made 

images which have known frequency content and added noise. The DOST is robust to the 

presence of low or moderate noise levels. DOST is highly accurate in identifying single 

frequency components from the local spectra [18]. 

(iv) Fast Time Frequency Transform (FTFT) 
 

FTFT is a method that is developed by Chun Hing Cheng and Ross Mitchell from Mayo 

Clinic. It is a fast and accurate way to generate a highly compressed form of the values of 

S Transform directly. It is used when N is so large that we cannot find and store the ST 

values first. It encodes the time frequency representation (TRF) information uniformly 

and so can then be used for analyzing the TRF correctly and processing the data 

efficiently and effectively. The compression that FTFT provides can help storage, 

transmission and visualization of S Transform. Using FTFT the values of S Transform 

can be calculated at individual points, called local spectra, instantaneously and 

accurately. This is useful for real-time monitoring, control, manipulation and filtering. 

This method is memory-efficient, robust and adaptive.  
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2.2 Machine Learning Algorithms used  
 

For analyzing the data for the three HCC patients following machine learning algorithms 

were studies and models were developed using them: 

(a) Decision Trees (J48 & Random Forest) 
 

Decision tree is a simple yet widely used classification technique. They follow a 

nonparametric approach for classification models building. In other words, it does 

not require any previous assumptions regarding the type of probability 

distributions that the class and other attributes should satisfy. In a decision tree, 

every leaf node has an assigned class label. Attribute test conditions are used to 

separate records having different characteristics in the non-terminal nodes, which 

consist of the root node and other internal nodes. Decision trees, especially 

smaller-sized trees are relatively easier to interpret. They are quite robust to the 

presence of noise, especially when methods for avoiding over fitting. The 

accuracy of a decision trees is not adversely affected by the presence of redundant 

attributes. 

(b) ADA Boost:  
 

Ada Boost is an iterative technique that adaptively changes the distribution of 

training samples which helps the base classifiers to concentrate on examples that 

are difficult to classify. Ada boost algorithm assigns equal weights to all instances 

at the beginning in the training data. It then recalls the learning algorithm to 

develop a classifier for this data and then reweights each instance in according to 
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the classifier output. Therefore the weight of instances that were correctly 

classified is decreased and that of misclassified ones in increased. 

(c) Bagging: 
 

Bagging is also known as bootstrap aggregating. It is a technique that repeatedly 

samples from a dataset, with replacement, in accordance with uniform probability 

distribution. Every bootstrap sample has the same size as the original dataset. As 

we see that the sampling is done with replacement, therefore some of the 

instances might appear more than once in the same training set, while others 

might get eliminated from the training set. Bagging is a technique that improves 

on the generalization error by reduction in variance of the base classifiers. The 

stability of the base classifier decides the performance of bagging method. 

Bagging does not focus on any particular instance of the training data. This is due 

to the fact that every sample has an equal probability of getting selected. It is 

therefore less affected to over-fitting the model when applied to a noisy data. 

(d) Support Vector Machines (SVM): 
 

A classification technique that has received considerable attention is Support 

vector machine (SVM). This technique has originated from the statistical learning 

theory. SVM and has shown promising results in many practical applications. 

SVM works well with high-dimensional data and is not affected by the 

dimensionality problem. SVM performs capacity control by maximizing the 

margin of the decision boundary. Nevertheless, the user must still provide other 

parameters such as the type of kernel function to use and the cost function C for 
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introducing each slack variable. SVM works well for binary class categorical 

indicators. 

(e) Artificial Neural Network (ANN): 
 

The study of artificial neural network (ANN) got its inspiration from simulation 

models on biological neural systems. Similar to human brain structure, an ANN 

comprises of an interconnected network of nodes and directed links. Multilayer 

neural networks with at least one hidden layer are universal approximators, i.e., 

they can be used to approximate any target functions. ANN can handle redundant 

features because the weights are automatically learned during training step. The 

disadvantage of ANN is that they are sensitive to the presence of noise in the 

training data and also they are a time consuming process, especially when the 

number of hidden nodes is large. 
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2.3 Feature Selection Techniques used 
 

Feature selection is an important step in data analysis particularly when you are handling 

large number of features. Usually most of these features are irrelevant to the classification 

analysis and also dealing with large feature sets slows down the algorithms. In this 

experiment, significant features were selected for the dataset with two goals of attaining 

highest accuracy and selecting smallest set of features. Two feature selection techniques 

were used to determine the useful features in the dataset:   

(i) Best First Technique 

Best first is a selection technique that combines both forward selection and 

backward elimination rules. It is a method that does not just terminate when the 

performance starts to drop but keeps a list of all attribute subsets evaluated so far, 

sorted in order of the performance measure, so that it can revisit an earlier 

configuration instead. Given enough time it will explore the entire space, unless 

this is prevented by some kind of stopping criterion. It can search forward from 

the empty set of attributes, backward from the full set, or start at an intermediate 

point and searches in both the directions by considering all possible single-

attribute additions and deletions. 

(ii) Greedy Stepwise Technique 

Greedy stepwise searches greedily through the space of attribute subsets. Like 

best first technique it may progress forward from the empty set or backward from 

the full set. Unlike best first technique, it does not backtrack but terminates as 
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soon as adding or deleting the best remaining attribute decreases the evaluation 

metric.  

2.4 Resampling Techniques used 
 
Resampling techniques were used since the two classes of the response were not balanced 

properly. There was a big imbalance between the two classes. There is a tendency that 

standard classifiers tend to be biased by the majority class and therefore they ignore the 

minority class. Particularly they tend to produce high predictive accuracy over majority 

class, but poor predictive accuracy over minority class. Resampling the classes generates 

a balanced dataset. For class balancing we used following resampling techniques: 

•••• Oversampling:  Oversampling is a method that balances the data-set by 

increasing the number of minority class instances .Oversampling generates new 

instances based on the values of known samples and thereby increasing the 

frequency of samples.  This results in increase in number of instances for the 

minority class. 

•••• Under sampling: Under sampling method extracts a smaller set of majority class 

while preserving all the minority classes.  

•••• SMOTE: In SMOTE, we over sample the minority class by taking each minority 

class sample and inducing fabricated/fake examples along the line segments that 

joins any/all of the minority class k-nearest neighbors. Depending on the number 

of oversamples required, we randomly choose neighbors from the k-nearest 

neighbors [30]. An example for SMOTE can be seen in the Figure 15 below. Let 

X is the point selected in the minority class and let X1 to X4 is the selected nearest 
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neighbors to X. therefore R1 to R4 are the fabricated points that are created by 

random interpolation. We have used Euclidean distance to select the neighbors to 

the point X. in short what we just did in SMOTE is forming a new minority class 

examples by interpolating between several minority class examples that were in 

the neighbor to the selected point. 

 

 

 

. 

 

 

 

Figure 15: An illustration on how to create the fabricated data points in SMOTE 

2.5 Data Preprocessing and Data Cleaning 
 

One of the most important steps of model building is preprocessing of the dataset. For 

data preprocessing, a good understanding of dataset is very important. Data pre-

processing consists of following steps: data cleaning, transformation, normalization, 

feature extraction and feature selection. The data preprocessing step is considered to be 

an important step as it can have a significant impact on how a supervised machine 

learning algorithm performs.  
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Data cleaning step involves handling the Missing values in the dataset, aligning the data 

into proper format, fixing the errors and outliers. Initial analysis of the dataset did not 

show presence of any missing values or outliers. Data alignment was done since the data 

collection activity was done on different dates and had to be aligned together in a 

common format. 

2.6 Summary and Conclusion 
 

After reviewing the existing techniques for Texture analysis we conclude: 

1. Statistical Texture Analysis techniques are probably the most common and cited 

 technique for Texture Analysis. Statistical methods vary from Grey level co-

 occurrence matrix (GLCM), developed in 1980’s, and to more recent approaches 

 based on multivariate statistical methods for textural feature extraction. 

2. Structural texture analysis techniques characterize a texture as the combination 

 of well-defined texture elements such as regularly spaced parallel lines. However, 

 these methods appear to be limited in practical use since they can only describe 

 very regular textures, making them limited in use and defined to certain class of 

 textural patterns. 

3. Mathematical model based methods for texture analysis attempts to represents 

 texture in an image using sophisticated mathematical models. The disadvantage of 

 this technique is that the computational complexity involved in the estimation of 

 these parameters is large, which makes these models difficult to interpret. 

4. Transform-based texture analysis method alters the image into a new form by 

 using the spatial frequency properties of the pixel intensity variations. These 
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 methods are based on the Fourier, Wavelet, Gabor and S-transforms. Their 

 biggest advantage is that these methods can easily be adjusted to the problem in 

 question making them most widely used texture analysis technique. 

Based on the above observations we decided to work on Transform based Texture 

analysis technique FTFT-RIST which is based on S-Transform. As this is a new method 

that has been developed my Mayo Clinic and needs to be tested in terms of accuracy and 

computational speed. 
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CHAPTER 3 

EXPERIMENTS AND ANALYSIS 

3.1 Introduction  
 

This chapter gives the in depth analysis and the experimentation for building the model, 

evaluating it and finally testing the prediction power and robustness. In this chapter firstly 

we would present the general workflow of the experiments that were conducted in this 

research. Data preprocessing and data cleaning were the next steps in analysis. Thereafter 

describing the datasets being used, what follows is the series of experiments that were 

conducted along with their conclusions. 

3.2 General Workflow of the Experiments 
 

MRE is known to be a promising imaging technique for HCC diagnosis. This research is 

to validate the applicability of MRE in conjunction with Texture Analysis pipeline. The 

study starts with drawing the ROIs, both tumor as well as Non tumor areas, on the MRE 

images with the help of the Radiologists. These images are tested on the Texture Analysis 

pipeline to present us with two types of dataset- pixel based and ROI based. These output 

datasets from the Texture Analysis pipeline are then subjected to data preprocessing 

where different sampling methods (undersampling, oversampling and SMOTE) are 

applied to get class balance in the dataset. Next various machine learning algorithms are 

applied on the data to develop a model, validate a model and final test the accuracy of the 

developed model. Major focus of this study has been concentrated on building the model, 

choosing the correct classifier to build a model, model validation and finally testing the 

build model. The following Figure 16 represents the general workflow of the study. 
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Figure 16: General Workflow of the Study 
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3.3 Dataset Description 
 

The dataset is derived from the MRE images for three patients suffering from Liver HCC. 

For Patients 1 & 3 we collected data from 1 ROI on tumor region and 2 ROIs on Normal 

regions for each patient. Patient 2 had two tumor regions on the Liver so we gathered the 

data from 2 ROIs on tumor region and 4 ROIs on Normal region. 

Tumor ROIs 

 

 

                           Patient 1     Patient 2 ROI 1 

 

           Patient 2 ROI 2                                 Patient 3 
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NON Tumor ROIs 
 

 

                       Patient 1 ROI 1               Patient 1 ROI 2 

 

 

Patient 2 ROI 1    Patient 2 ROI 2 
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Patient 2 ROI 3    Patient 2 ROI 4 

 

 

Patient 3 ROI 1             Patient 3 ROI 2 
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Following steps were followed to derive the data for the three patients liver cases: 

Step 1: With the help of Radiologists drawing the Tumor as well as Non tumor ROIs on 

the Liver MRE images. This was done using Osirix, version “v4.1.2 32-bits”. Save the 

images as Dicom file (.dcm). 

Step 2: Convert the Images from Dicom files (.dcm) to XML files (.xml) that can be 

easily read by the software while converting them to Mask. 

Step 3: Running the XML files of the images on “XML to Mask” Software to convert 

them to Mask before running them into FTFT-RIST algorithm. 

Step 4: Final Step of deriving the data out of the MRE images is running the Mask 

images, obtained in the previous step, onto the FTFT-RIST algorithm of texture analysis. 

We obtained two different datasets for a single image from FTFT-RIST algorithm. The 

first dataset is ROI based dataset, wherein the values of the features are the mean values 

of the all the pixels contained in the ROI that is selected on the image while running the 

image on the algorithm. Second dataset is the Pixel based dataset that provide us with 

feature values for every pixel contained within that ROI. Both the datasets were used 

while developing the classifier for the cases. 

3.3.1 Pixel Based Dataset 
 
The dataset consists of 19 variables and a binary Response variable. The response 

variable has values C0 and C1 representing two classes. C0 indicates class for Non tumor 

region whereas C1 indicates class with Tumor Region. Total 2718 instances are there in 

the dataset that cover both tumors as well as non-tumor regions for all the three patients. 

Table 2 lists down all the features in the Pixel Based dataset. 
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Table 2: Variables in Pixel based dataset 

 

3.3.2 ROI Based Dataset 
 
The dataset consists of 68 variables and a binary Response variable. The response 

variable is same as in Pixel based dataset and has values C0 and C1 representing two 

classes. C0 indicating class for Non tumor region whereas C1 indicating class with 

Variable Name Variable Type Description

X Categorical X coordinate of Pixel

Y Categorical Y coordinate of Pixel

Raw Signal Categorical Intensity value of the pixel

Band 1 Mean RIST Numerical
It is the mean of the value in the RIST curve over 

the 1st frequency band

Band 2 Mean RIST Numerical
It is the mean of the value in the RIST curve over 

the 2nd frequency band

Band 3 Mean RIST Numerical
It is the mean of the value in the RIST curve over 

the 3rd frequency band

Band4 Mean RIST Numerical
It is the mean of the value in the RIST curve over 

the 4th frequency band

Band5 Mean RIST Numerical
It is the mean of the value in the RIST curve over 

the 5th frequency band

RIST Sum Numerical

It is the sum of RIST values over all the pixels in 

the entire semicircular region in the RIST 

diagram

Mean of k in RIST Curve Numerical
Measures the average frequency of texture at 

the pixel

SD of k in RIST Curve Numerical
Measures the spread of frequency contents at 

the pixel

Semicircle RIST Homogeneity Numerical
Measures the homogeneity as an average of 

squared wavelength in the texture.

Cell RIST Entropy Numerical

Measures the randomness of the RIST values 

over the entire semicircular region in the RIST 

diagram

SD of RIST Sums by Sectors Numerical
Measures the spread of RIST by sectors, i.e. by 

angles

SD of RIST Sums by Semicircles Numerical
Measures the spread of RIST by semicircles, i.e. 

by radius.

SD of RIST Sums by Cells Numerical
Measures the spread of RIST by cells, i.e. by 

angle and radius together.

RIST Sum in Major Sector Numerical
The sum of RIST values over all the pixels in the 

major sector in the RIST diagram

Mean of k in Major RIST Curve Numerical
Measures the average frequency of texture at 

the pixel in the direction of the major sector

SD of k in Major RIST Curve Numerical
It measures the spread of frequency contents at 

the pixel in the direction of the major sector

Y (Response) Categorical
Response that tells whether the tissue is tumor 

or non-tumor



 

Tumor Region. Total 12 instances are there in the dataset that cover both tumor as well as 

non-tumor ROIs for all the three patients. Table 3 lists down all the features in the 

Based dataset. 

Table 
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instances are there in the dataset that cover both tumor as well as 

for all the three patients. Table 3 lists down all the features in the 

Table 3: Variables in ROI based dataset 

 

 

 

 

instances are there in the dataset that cover both tumor as well as 

for all the three patients. Table 3 lists down all the features in the ROI 
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3.4 Experiments 
 

We conducted three distinct experiments with the dataset for the patients. 

Experiment 1: The objective of Experiment 1 is to quantitatively assess the diagnosis 

performance using Univariate approach on intensity information only. Specifically, the 

goal is to determine that intensity feature alone can distinguish comprehensively between 

the tumor region vs a non-tumor region for a HCC patient. 

Experiment 2: The objective of Experiment 2 is to analyze the multiple features 

collected from Texture Analysis and quantitatively evaluate the diagnosis performance 

using ROI based data feature and pixel based data features. In addition to this another 

objective of this experiment would be to determine significant features and evaluate 

model performance on these features. This experiment contributes to the model building 

phase of the thesis study and concentrates on developing the classifier on WEKA and 

cross validating it using 10 folds cross validation. 

Experiment 3: The objective of Experiment 3 is to evaluate the prediction power and the 

robustness of the developed model in HCC tissue characterization. This experiment 

contributes to the model testing phase of the thesis study.  
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3.4.1 Experiment 1: Intensity Based Analysis 
 

In this experiment we have a bivariate dataset i.e., intensity values and response (C0 or 

C1), therefore we decided to analyze the data using Paired t-test and Scatter plot to 

determine that whether or not we draw concrete conclusions based on intensity value 

alone. 

(a) Experiment 1.1: Paired t-test 
 

The paired t-test is a common method of analysis of data that are paired and is based on 

the assumption that the differences between the paired observations are normally 

distributed. With paired observations, in which each value in one sample has a 

corresponding observation in the other sample, the task of comparing two samples can be 

simplified by making it a one-sample test, wherein the differences in each pair of 

observations constitute the newly formed sample. Thus, the mean value is the mean of the 

differences and the standard deviation represents the variability of the differences.  

Let X and Y be the samples drawn from a population, then the test statistic (t-score) is 

defined by the equation: 

 

where SE, the standard error of the sampling distribution is computed as: 
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x and y are the sample means, n and m are the sample sizes, and Sx and Sy are the sample 

standard deviations of X and Y respectively. 

A paired t-test was conducted on the intensity values of both tumor and non-tumor region 

values for all 12 ROIs to check whether or not they are statistically different. 

Hypothesis: H0: Mean (Tumor) = Mean (Non tumor) 

H1: Means are different 

Paired t-test results are shown in Table 4 as follows: 

Table 4: Paired t-test results for intensity values 

 

At 95% for mean difference the CI was: (-11.788, -8.168) 

Based on Paired t-test analysis we conclude that the intensity information from tumor and 

non-tumor tissues differs significantly, as CI does not include zero value in it. However,  

1. The intensity information from tumor and non-tumor tissues differs significantly, 

 as the CI does not include zero. 

2. Paired t-test is population based test. If we are looking at each pixel, as observed 

 from the scatter plot, for some regions we are able to tell the differences, for other 

 regions we are not able to differentiate the pixels from tumor vs. non-tumor. 

3. We need a method that can predict the diagnosis on the pixel based level for 

 specific ROIs and whole liver. 

 

N Mean SD SE Mean

Tumor 679 47.984 20.058 0.77

Non Tumor 679 57.962 15.503 0.595

Difference 679 -9.978 24.026 0.922
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(b) Experiment 1.2: Scatter Plot 
 

A scatter plot also known as X-Y plot is one of the most useful and popular techniques 

for analyzing the data visually and exploring it. Analyzing a scatter plot we can identify 

the relationship between two attributes, cluster of points and outliers [31]. Such a 

relationship manifests themselves by any non-random structure in the plot. 

The Figure17 represents the scatter plot of the intensity value vs tumor/non-tumor 

regions. 

 

 

Figure 17: Scatter plot of the Intensity values for tumor and non-tumor tissues 

 

 

 

 

Red: Tumor Blue: Non tumor
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Based on the experiments we observe: 
 
1. Scatter plot highlights some key areas of the intensity based study and therefore 

 few good interpretations can be made by just analyzing the scatter plot of 

 intensity values. 

2. It is evident from the scatter plot that tumor is present in the liver for the intensity 

 values less than 23 and greater than 100. 

3. From intensity values between 43 and 48 presence of Tumor region is more likely 

 than Non tumor region. 

4. High number of Non tumor pixels lies between intensity values of 50 to 70. 

5. At all the other intensity values it is equi-likely for a pixel to be tumor or Non 

 tumor. 

6. Although visually analyzing the scatter plots gave first impression that the data set 

 is segregated in few regions as compared to other, a statistical test is needed in 

 order to conclude that the intensity values are statistically different. A paired t-test 

 was therefore done in order to confirm the results. 
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3.4.2 Experiment 2: Texture Analysis features based study 
 

We have divided this experiment into two sections-Pixel based study and ROI based 

study. Each section has two experiments individually. First experiment of each section is 

developing a model using all the features of the dataset and second experiment is building 

the model with selected significant features. These experiments are done for both pixels 

based study as well as ROI based study. 

(a) Experiment 2.1: Pixel Based Study-All features 
 

We conducted pixel based classification analysis using all the 19 features. Ten fold cross-

validation technique was used to validate the model. Cross-Validation is a statistical 

method of evaluating and comparing learning algorithms by dividing data into two 

segments: one used to learn or train a model and the other used for validating the model. 

In cross-validation technique, the training and validation set gets interchanged in 

successive rounds so that each data point gets a chance of being validated against each 

other. Following classifiers were used to build the model on the given dataset. 

(a) Decision Trees (J48 & Random Forest) 

(b) ADA Boost 

(c) Bagging 

(d) Support Vector Machines (SVM) 

(e) Artificial Neural Network (ANN) 

All the statistical classifier methods employed were able to differentiate between Tumor 

and Non Tumor regions for the patients with high accuracy. The table 5 summarizes the 
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% of correctly classified instances for different classifiers along with the resampling 

technique used on the dataset. 

Table 5: Percentage of correctly classified instances for experiment 2.1 

 

 

(b) Experiment 2.2: Pixel Based Study-with selected features 
 

Two feature selection techniques were used to determine the useful features in the 

dataset:   

•••• Best First Technique 

•••• Greedy Stepwise Technique 

Both the techniques selected same features to be significant for the dataset. The 

significant features selected are: 

 

 

 

 

Classification Algorithm Oversampling Under sampling SMOTE

J48 99.88 99.62 99.94

Random Forest 99.96 100.00 99.88

Ada Boost with J48 99.96 99.69 99.94

Ada Boost with Random Forest 99.96 99.85 99.91

Bagging with J48 99.84 99.77 99.97

Bagging with Random forest 99.96 99.92 99.94

Neural Network (ANN) 99.97 99.77 99.91

Support Vector Machines (SVM) 99.43 97.95 99.95

Worst performance Best performance
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Table 6: Significant features selected for pixel based study 

 

All the statistical classifiers that we used in previous experiment were applied again on 

the selected features to determine the accuracy and computational speed. The results are 

summarized in the table 7 below: 

Table 7: Percentage of correctly classified instances for experiment 2.2 

 

 

(c) Experiment 2.3: ROI based study-All features 
 

ROI based classification analysis was done using all the 68 features. Ten fold cross-

validation technique was used to validate the model. Similar to experiment 2.1, following 

classifiers were used to build the model on the given dataset. 

(a) Decision Trees (J48 & Random Forest) 

Significant Feature
Percentage 

Contribution

Band 1 Mean RIST 100

Band 4 Mean RIST 100

Band 5 Mean RIST 100

Mean of k in RIST Curve 100

SD of RIST Sums by Semicircles 80

Classification Algorithm Oversampling Under sampling SMOTE

J48 99.88 99.61 99.71

Random Forest 99.92 99.77 99.88

Ada Boost with J48 99.92 99.77 99.88

Ada Boost with Random Forest 99.92 99.77 99.92

Bagging with J48 99.73 99.77 99.81

Bagging with Random forest 99.84 99.77 99.97

Neural Network (ANN) 95.28 94.60 98.91

Support Vector Machines (SVM) 93.72 93.84 99.70

Worst performance Best performance
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(b) ADA Boost 

(c) Bagging 

(d) Support Vector Machines (SVM) 

(e) Artificial Neural Network (ANN) 

While conducting the data resampling, under-sampling technique was not used as the 

number of instances were low (12 rows of data) to perform under sampling. Therefore we 

used oversampling and SMOTE techniques for resampling the dataset for ROI based 

classification. The table 8 illustrates the % of correctly classified instances for different 

classifiers along with the resampling technique used on the dataset. 

Table 8: Percentage of correctly classified instances for experiment 2.3 

 

 

(d) Experiment 2.4: ROI based study-with selected features 
 

Best First and Greedy Stepwise techniques were used determine the significant features 

and both the techniques yielded the same number of significant features enlisted below: 

 

Classification Algorithm Oversampling SMOTE

J48 91.67 93.75

Random Forest 91.67 87.50

Ada Boost with J48 91.67 93.75

Ada Boost with Random Forest 83.33 87.50

Bagging with J48 91.67 87.50

Bagging with Random forest 75.00 87.50

Neural Network (ANN) 83.33 87.50

Support Vector Machines (SVM) 83.33 93.75

Worst performance Best performance
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Table 9: Significant features selected for ROI based study 

 

All the statistical classifiers that we used in previous experiments were applied again on 

the selected features to determine the accuracy and computational speed. The results are 

summarized in the table 10 below: 

Table 10: Percentage of correctly classified instances for experiment 2.4 

 

 

 

 

Significant Feature
Percentage 

Contribution

Raw Signal SD 100

Raw Signal Minimum 20

Raw Signal Maximum 90

Feature 0 Mean 30

Feature 3 Minimum 100

Feature 7 SD 100

Feature 11 SD 100

Feature 15 Mean 70

Classification Algorithm Oversampling SMOTE

J48 91.67 93.75

Random Forest 91.67 100.00

Ada Boost with J48 91.67 93.75

Ada Boost with Random Forest 91.67 100.00

Bagging with J48 91.67 93.75

Bagging with Random forest 91.67 100.00

Neural Network (ANN) 100.00 100.00

Support Vector Machines (SVM) 66.67 62.50

Worst performance Best performance
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In Experiment 2 we studied and analyzed both pixel based and ROI based datasets. We 

also analyzed the data on selected features using feature selection techniques. From these 

experiments our conclusions are: 

1. Pixel based analysis of the dataset seems to be moderately better than ROI based 

 analysis. The accuracy is 99%. Our explanation is pixel based has more instances 

 than the number of features and pixel based model may be more robust than ROI 

 based model. 

2. Since the models are having very good performance, that leaves less room for 

 using features selection to improve performance. Yet, we do conclude comparable 

 performance can be achieved with less # of features.  

3. Amongst all the models studied, Trees (J48 & Random Forest) gives us a good 

 result with high accuracy, easy to build and robust to outliers as well. 

4. Trees classifiers are good at handling numerical as well as categorical predictors. 
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3.4.3 Experiment 3: Testing Prediction Accuracy of the build Classifier 
 

Given the promising results from Experiment 2, we want to further assess the prediction 

power and the robustness of the developed models in tissue characterization. This 

experiment is therefore very crucial for the study, as it is performed to determine how 

accurate out model is and how confident we are in predicting using this model. 

Similar to experiment 2, we have divided this experiment into two sections as well. The 

first section will be testing the model performance on ROI/pixel data, and determining 

the accuracy. This section will have two experiments with series of tests to check the 

robustness. Section 2 of this experiment will be testing the model performance on the 

whole liver-ROI/pixel data. 

(a) Experiment 3.1: Testing the model on ROI/Pixel data 
 

In this experiment we set aside data from four ROI regions (2 ROI regions of Tumor and 

2 ROI regions of Non Tumor). This data was removed from the training dataset and 

saved as test data. The response column in the test data contains “actual” predictions C1 

or C0. Similar approach for developing a classifier as used in Experiment 2 was used on 

the training data for Experiment 3. This experiment will help us determine the accuracy 

of the developed classifier.  

The output will contain both the actual and predicted class. If in the class label for the test 

class we have '?' for each instance, the "actual" class label for each instance will not 

provide us with useful information, however the predicted class label will. The 

percentage of correctly classified instances of test dataset determines the accuracy of the 

developed classifier. Higher the accuracy, better the developed classifier can predict the 
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actual class. The following table 11 depicts the classifier developed using the training 

data and percentage of correctly classified instance using that classifier on the test data:  

Table 11: Percentage of correctly classified instances for experiment 3.1 

 

 

From the above experiment it seems that both SVM and trees (Random Forest) appears to 

be good approaches for predicting the response class for the pixel based study. Therefore 

to further test the robustness of these two selected classifiers we purposely and randomly 

remove some data from the existing dataset, using the remaining to build and validate the 

model, use the removed data to test the performance. The series of random experiments 

conducted and the prediction accuracy of SVM and Random forest have been 

summarized in the table below. Both SVM and Random forest provide consistent 

performance in prediction accuracy with high percentages. 

 

 

 

Classification Algorithm Under sampling Over sampling

J48 66.82 66.82

Random Forest 92.25 62.47

Ada Boost with J48 66.82 68.40

Ada Boost with Random Forest 64.77 76.75

Bagging with J48 56.05 56.77

Bagging with Random forest 66.70 90.92

Neural Network (ANN) 66.82 66.82

Support Vector Machines (SVM) 81.96 73.24

Worst performance Best performance
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Table 12: Prediction accuracy of SVM and RF for Patient # 3 

 

(b) Experiment 3.2: Prediction accuracy for Patient #3 data 
 

In this experiment we specifically use Patient #1, 2 to develop the model and use Patient 

#3 to test the developed model. The objective of this test is primarily to determine that if 

we develop our model on a particular patient’s data, whether or not it will be successful 

in predicting the response of some other patient, whose data has not been used in building 

the model.  

Similar to the above experiment we have used pixel based dataset from Patient # 1, 2 to 

develop and train the classifier and used pixel based dataset from Patient #3 to test the 

developed classifier model. SVM and Random forest have been use as the classifier to 

develop the model as it is confirmed from Experiment 3.1 that these two classifiers 

outperforms the other classifiers as far as prediction accuracy is concerned. We have also 

used 10 fold cross validation techniques in this experiment. 

The results of this experiment were over whelming, as it confirms the classifier selection. 

SVM prediction accuracy was 99.6% for predicting the response class of Patient #3 and 

Random forest was 82.92% accurate. This experiment therefore confirmed that the 

Test Dataset Train Dataset SVM RF

Tumor ROI from Patient 1 Remaining Dataset 92.5 90.1

Non-Tumor ROI from Patient 2 Remaining Dataset 100 85.3

Tumor ROI from Patient 3,  

Non Tumor ROI from Patient 1
Remaining Dataset 92.2 85.2

All Tumor ROIs All Non Tumor ROIs 100 100

All Non Tumor ROIs All Tumor ROIs 100 100
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selected classifier to develop the model was accurate enough to predict the response of 

any random patient without training the classifier for that patient’s data. 

(c) Experiment 3.3: Prediction accuracy for Whole Liver 
 

This experiment was performed to predict the response class for all the pixels in the 

whole liver for patient# 3. Similar to experiment 3.2 this experiment will be testing the 

prediction power of the classifier. Along with this we will also be conducting sensitivity, 

specificity and accuracy tests to check the robustness of the developed model. The 

training data remains the same as the above experiment just the test data changes. In this 

experiment the test data used will be the whole liver for patient # 3. There are total 5955 

instances in the whole liver test dataset which contains both tumor as well as non-tumor 

tissues. The Actual Response column in the dataset replaced by “?”, therefore the actual 

class label for each instance will not contain useful information, but the predicted class 

label will. SVM will be used as the classifier to build and develop the model. 

A small part of the output after the model was run on WEKA is shown in table 13 below. 

Table 13: Prediction accuracy of SVM and RF for Patient #3, whole liver 

 

Instance # Actual Class Predicted Class

1 ? C0

2 ? C0

3 ? C0

4 ? C1

5 ? C0

6 ? C1

7 ? C1

8 ? C0

9 ? C0
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Since we do not have the actual class therefore the actual class is replaced by “?” and the 

predicted class label gives us the useful information about the response class for that 

pixel. 

Further we performed sensitivity, specificity and accuracy tests to check the robustness of 

the developed model. Commonly used confusion matrix for binary classification 

problems is shown in Table 14 below. 

Table 14: Confusion Matrix in general form 

 

In Table 14, TP refers to number of samples correctly identified as positive, FP refers to 

number of samples incorrectly identified as positive, TN refers to number of samples 

correctly identified as negative, and FN refers to number of samples incorrectly identified 

as negative. 

Outcome of the 

diagnostic test

Condition 

Positive Negative Row Total

Positive True Positive(TP) False Positive(FP) TP+FP

Negative False Negative(FN) True Negative(TN) FN+TN

Column Total TP+FN FP+TN N=TP+TN+FP+FN
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Figure 18: Receiver Operating Characteristics (ROC) space, the area under the ROC curve is 
known as Area under the Curve (AUC) 

 

For a given diagnostic test, the true positive rate (TPR), false positive rate (FPR) and 

Accuracy can be measured using following formulas: 

Sensitivity or TPR= TP / (TP+FN) 

Sensitivity or TPR is the proportion of true positives that are correctly identified by a 

diagnostic test. It is a measure of how efficient the test is at detecting a disease. 

FPR= FP / (FP+TN) 

FPR is actually the proportion of positive tests among people without the disease or 

condition.  

Specificity = TN / (FP+TN) 

Specificity is the proportion of the true negatives correctly identified by a diagnostic test. 

It tells us how efficient our test is at detecting normal (negative) condition. 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 
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Accuracy is defined as the percentage of true results, be it true positive or true negative, 

in a population. It is a measure of the degree of precision for a diagnostic test on a 

condition. 

The accuracy of a diagnostic test can also be measured by analyzing the area under ROC 

curve (AUC), shown in figure 16. Large area signifies an accurate the diagnostic test is. 

The confusion matrix for Experiment 3.3 is: 

Table 15: Confusion Matrix for Experiment 3.3 

 

Analysis of the dataset for Experiment 3.3 gave following results: 

Sensitivity: 100.00% 

Specificity: 85.82% 

Accuracy:   86.23% 

In Experiment 3 we studied the robustness and prediction power of the developed model. 

From these experiments our conclusions are: 

1. SVM is a robust classifier in predicting the response class variable especially 

 when the response has two categorical indicators, as in our case C1 & C0. 

Outcome of the 

diagnostic test

Condition 

Tumor Non Tumor Row Total

Tumor TP=170 FP=820 990

Non Tumor FN=0 TN=4965 4965

Column Total 170 5785 5955
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2. The classifier was able to predict the tumor tissues with high accuracy (sensitivity 

 100 %), but there is still room for improvement as far as predicting the correct 

 non-tumor tissues as specificity and accuracy were around 85 % mark. 

3. One disadvantage with SVM is its computational complexity, but WEKA takes 

 good care of it and present s the output in nice and easily interpretable format. 

4. Overall performance of SVM is superior compared to other classifiers tested 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

Hepatocellular carcinoma (HCC) is a malignant tumor and it is considered as the seventh 

most frequent occurring cancer in human [1]. The incidence of HCC is mainly due to 

Hepatitis C, which also leads to chronic liver complications such as fibrosis, cirrhosis. 

Nonalcoholic Steatohepatitis (NASH) & Non-Alcoholic Fatty Liver Disease (NAFLD) 

are also major concerns that are growing really fast and it is expected that they will be 

surpassing Hepatitis C as the major cause in the near future. Most clinical research has 

focused on HCC early detection when the tumor might be curable by resection, liver 

transplantation, or ablation and a 5-year survival higher than 50% can be achieved [5]. 

Commonly used imaging techniques for HCC diagnosis include Ultrasound (US), 

Computed tomography (CT) and Magnetic resonance (MR). US has been largely 

replaced by CT and MRI due to its low sensitivity and specificity in HCC diagnosis [6]. 

As a result, liver disease diagnosis has mainly relied on CT and MRI imaging criteria. 

However, these two techniques are not without limitations. A retrospective analysis 

comparing the accuracy of radiologic staging with pathologic staging on liver disease 

patients found that imaging based diagnosis (both CT and MRI) resulted in a high 

number of false positives labeling common benign focal abnormalities in the liver as 

malignant tissue [7]. 

Another emerging imaging technique that has been under discussion over the last few 

years is Magnetic Resonance Elastography (MRE), developed by Mayo Clinic. It is a 

relatively new technique and under considerations for improvement, but MRE has proved 

to be a more accurate and reproducible technique compared to conventional imaging 
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features better diagnostic accuracy. In addition, most research published to date relies on 

subjective and variable assessment of imaging features. We believe Texture analysis is 

one potential technique to generate multiple, objective, reproducible, quantifiable features 

from medical images. Classification of healthy and diseased livers using modern imaging 

such as MRE in conjunction with Texture Analysis may address this clinical challenge 

[17].  Texture recognition is an important aspect of medical image analysis.  Texture 

Analysis is of high importance in medical imaging analysis because, as the biological 

tissue becomes abnormal during a disease, its underlying texture could also change. 

Current imaging techniques, such as MR, are not capable enough of providing 

microscopic information of tissue that can be assessed visually. Texture Analysis can be 

successfully used for the separation of cirrhotic patients and healthy volunteers, and 

unknown patient data can be safely classified into the patient group. Different sets of 

Texture Analysis features can be used for a similar classification of patients. A 

combination of features significantly improves the ability of Texture Analysis to confirm 

the classification of the subjects.  

In this research we evaluated the features from Texture Analysis, to effectively diagnose 

HCC for three patient’s MRE images. The objective was to quantitatively assess and 

validate the applicability of MRE in conjunction with advanced imaging processing 

Texture Analysis pipeline and multi-variate analysis machine learning method for 

accurate HCC diagnosis. It was discovered that Texture Analysis pipeline is a useful tool 

to extract image signatures for these patients from their MRE images. During the analysis 

uni-variate approach for quantitatively assessing the diagnosis performance of MRE was 

also evaluated based on the intensity information of the tissues only. Three experiments 
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were performed, with each experiment having series of sub experiments to validate the 

applicability of MRE and Texture Analysis pipeline using multiple machine learning 

algorithms in WEKA. Major focus of this research has been concentrated on building the 

model, choosing the correct classifier to build a model, model validation and finally 

testing the build model. Based on our research and analysis we were able to draw 

concrete conclusions on the applicability of MRE along with Texture Analysis pipeline in 

HCC diagnosis, these conclusions are: 

(a) Texture analysis pipeline is a useful tool to extract image signatures, both Texture 

 Analysis and MRE proved to be promising imaging tools for HCC diagnosis. 

(b) The model that was developed and validated had 99% accuracy in HCC tissue 

 diagnosis. 

(c) The model that was tested had up to 92% accuracy robustly in HCC tissue 

 characterization. 

(d) Our testing model can predict the HCC tissue for Patient# 3 with sensitivity of 

 100 %, specificity of 85.82 % and accuracy of 86.23 % 

(e) Uni-variate study of the intensity information of tissues was able to give us a 

 broad picture that the intensities of tumor and non-tumor regions differs 

 significantly, but we were not able to precisely differentiate between the two 

 region, therefore an advanced study was required. 

(f) Multi-variate analysis is preferred in this study over uni-variate analysis, as it 

 provides us with rich information to harvest the image at pixel level with high 

 confidence. 
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(g) We observed that among all the image signatures, indeed, there may exist some 

 redundancies, in this case, the system can benefit from using feature selection to 

 narrow down to smaller number of significant features. 

(h) We also observed pixel based model tends to moderately outperforms ROI based 

 model. Yet, given the limited number of patient data available, this needs to be 

 confirmed in the future research.  

(i) We studied six machine learning methods; in general, SVM demonstrated 

 outperformance in most experiments. This is due to the fact that SVM is known 

 to be a good classifier for binary classification problem and robust in nature.   

(j) We also conclude the model develop can robustly provide accurate predictions. 

(k) The classifier was able to predict the tumor tissues with high accuracy (sensitivity 100%), 

 but there is still room for improvement as far as predicting the correct non-tumor  tissues 

 as specificity and accuracy were around 85 % mark. 

While we see that the results from the analysis are promising as far as applicability of 

MRE and Texture Analysis are concerned in HCC diagnosis, there is still plenty of room 

for improvement which can be implemented in future works: 

(a) The model performance is far better than we initially expected, this maybe 

 because the ROI was drawn precisely, which provides us a very good and 

 representative dataset. 

(b) This analysis was done on 2D, which proved its usefulness, yet with accuracy of 

 86.23 % with 2D. In addition, the specificity is only 85.82%. This concurs with 

 conclusion from most existing investigations that current imaging techniques may 

 result in a high number of false positives labeling common benign focal 
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 abnormalities in the liver as malignant tissue [7]. We believe there is scope of 

 improvement, for example exploring 3D MRE for better accuracy in terms of 

 tissue characterization. 

(c) This study involved only three patients due to limited number of available patients 

 for HCC diagnosis study. Future studies must include more number of patients for 

 further  validation of the model. 

(d) Phantom data may also be used for the validation study. 

(e) More variability can be introduced in the model building, by allowing different 

 radiologists to draw ROIs on the same MRE image for the patient. This will make 

 sure that radiologist’s variability is also included while building the model. 

By these experiments we can improve on the current study and further higher accuracy 

can be achieved for characterizing the tissues better. 
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