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ABSTRACT  

    An imaging measurement technique is developed using surface plasmon resonance. 

Plasmonic-based electrochemical current imaging (P-ECi) method has been developed to 

image the local electrochemical current optically, it allows us to measure the current 

density quickly and non-invasively [1, 2]. In this thesis, we solve the problems when we 

extand the P-ECi technique to the field of thin film system. The P-ECi signal in thin film 

structure was found to be directly proportional to the electrochemical current. The upper-

limit of thin film thickness to use the proportional relationship between P-ECi signal and 

EC current was discussed by experiment and simulation. Furthermore, a new algorithm 

which can calculate the current density from P-ECi signal without any thickness 

limitation is developed and tested. Besides, surface plasmon resonance is useful 

phenomenon which can be used to detect the changes in the refractive index near the gold 

sensing surface. With the assistance of pH indicator, by applied EC potential on the gold 

film as the working electrode, the detection of H2 evolution reaction can be enhanced. 

This measurement technique is useful in analyzing local EC information and H2 evolution. 
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CHAPTER 1  Introduction 

Since the ability to detect refractive index changes within the vicinity of a sensor 

surface, surface plasmon resonance (SPR) is a label-free and real-time surface sensing 

technique. Recently SPR attracts a great deal of attention. SPR acts as an optical method 

is sensitive to changes in refractive index within a couple hundred nanometers of the 

sensing surface. SPR is useful in applications including kinetics and affinity, chemical 

reactions, and environmental monitoring. SPR technology and its applications have been 

developed already and utilized rapidly. The advantages of SPR are label free, real time, 

versatile, and highly sensitive resulting in the rapid development of SPR. Among these 

advantages, for detecting biomolecular activities, label-free detection is the most 

important advantage of SPR. In other words, since SPR is able to rapidly monitor any 

dynamic process without the need of label, using SPR to probe surface interactions is 

advantageous.  

Electrochemical (EC) method is an extremely powerful analytical tool that has 

attracted widespread interested in and been used for a wide range of applications.[3-7] 

Since EC detection has many gratifying advantages, such as high-sensitivity, rapid 

response, and adaptation for detecting broad range of analytes, it overrides spectroscopic 

and chromatographic instruments.[8] However, the total EC current of an electrode is 

unable to provide local reaction information on the electrode surface. Recently, 

plasmonic-based electrochemical current imaging (P-ECi) technique has been developed 

for imaging local EC current by detecting the optical signal of the reaction from SPR.[2] 

The P-ECi technique is based on that the EC current and SPR signal are both related with 
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the reaction product concentrations near the electrode. The P-ECi method allows us to 

optically image the EC current quickly (µs to ms) and non-invasively.  

Moreover, in recent years, there has been a significant interest in exploiting 

microfluidic devices for performing on-chip chemical and biochemical reactions.[9, 10] 

There are many advantages of microfluidic devices over its competitors in terms of small 

consumption of sample, low cost, high sensitivity, and so on.[11-13] The use of 

microfluidic devices for EC detection method is very useful due to the ability to integrate 

several procedures into a single device. [14, 15] Therefore to extend P-ECi technique in 

microfluidic thin film structure is very important.  

The equation to calculate P-ECi current [1] in an EC cell is based on semi-infinite 

boundary condition, which has constant concentration at infinity distance from working 

electrode.[16] This condition will not hold anymore in thin film structure where the 

boundary conditions (concentration on top and bottom electrodes) will be affected due to 

the structure. For example, if we apply cyclic voltammetry (CV) potential, the boundary 

conditions change with applied potential all the time in the thin film structure, as shown 

in Fig. 1(b). Hence, for thin film EC system, it is no doubt that there is a need to develop 

new equation for P-ECi. In the next sections, a brief description of P-ECi detection is 

discussed.  
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CHAPTER 2 Background and Principle 

2.1 Surface plasmon resonance 

      Surface plasmons are quasi-particles describing the oscillation of charge density, 

according to a solution of Maxwell’s equations for a thin film contacting with a dielectric. 

The plasmons are the quanta of the oscillations of surface charge excited by an external 

electric field.  The propagating wave is bound to the interface of the metallic film/the 

electric fields and decays exponentially perpendicular to the surface.[17] When an 

external electric field excites on a plasma boundary, there will be surface charges like a 

step function (within the screening length of a few Å).  Due to the discontinuity seen by 

the electric field, p-polarized light is the only polarization capable of exciting surface 

plasmons.[18] For p-polarized light, the magnetic field component and the tangential 

electric field component, Ex, are both continuous across the interface assuming a relative 

permeability of 1, shown in Fig. 2.1.  The electric field component perpendicular to the 

boundary differs because the two media differ in permittivity, but the electric 

displacement is continuous across the boundary.  This will result in a surface charge 

density at the boundary and allow for excitation of surface plasmons.[17] The surface 

charge oscillations are localized in z direction within the screening length.[19]  
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Figure 2.1 Boundary Conditions. For p-polarized light, Ez component is discontinuous 
across the boundary and leads to surface charges on the boundary. 

      The most popular method to excite surface plasmons is to use light in a total internal 

reflection mode. The dispersion relation for light is such that it does not normally have 

the right wavevector and frequency to excite a surface plasmon.  Passing the light 

through a prism at an angle greater than the critical angle required for total internal 

reflection allows for matching of the wavevector and frequency of the light to that of the 

surface plasmon at a certain angle of incidence for the incoming light.  Two well-known 

optical setups have been developed for the excitation of surface plasmons: the Otto 

configuration [20] and the Kretchmann configuration [21] (shown in Fig. 2.2). The 

Kretschmann setup couples light energy into the metal’s plasmons via a metal film on top 

of a prism. Total internal reflection happens in the prism in the condition that light is 

reflected through a prism at an angle higher than the critical angle. The Kretschmann 

configuration is more common than the Otto configuration because of the easier 

adjustment of surface plasmon properties. The electric field intensity partially extends 
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beyond the reflecting boundary of the prism and then give rises to an evanescent field. 

The evanescent field excites the surface plasmons in the metal film with momentum 

matching conditions.[22] The intensity of coupling can be measured by the change in 

reflectance of the light from the prism. Especially, at the resonance angle, the light 

reflectance has its minimum value, as shown in Fig. 2.3. Gold and silver is common 

metal materials used for the surface plasmon layer because the resonance wavelength is 

within visible and near-infrared light region. In Kretchmann set up, shown in Fig. 2.2, p-

polarized light incident on the interface between the prism and a sensor chip (made by a 

glass slide coated with a thin metal film). The thickness of metal film should be small 

enough for the evanescent wave to reach the metal/sample interface (plasma boundary). 

 

Figure 2.2 Kretschmann SPR setup.   
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Figure 2.3 SPR curve. At the resonance angle, the light reflectance has its minimum 
value. 

       The refractive index of materials contacting with the metal film affect the property of 

surface plasmon. When the refractive index of sample region changes, the coupling 

efficiency of the light into the plasmon mode changes. The efficiency can be monitored 

by observing the surface plasmon coupling angle. The SPR angle mainly depends on the 

incidence light wavelength, the refractive index of the media on either side of the metal 

film, and the properties of the metal film. Therefore, the intensity of coupling can be 

measured by the change in reflectance of the light from the prism. In other words, by 

fixing the detector at a specific angle within the resonance dip’s linear regime, the 

reflected beam intensity is a linear function of refractive index changing in the testing 

sample, as shown in Fig 2.4. 
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Figure 2.4 SPR curve. Different refractive indexes have different resonance angles. At 
the fixed incident angle, the reflectivity is a linear function of refractive index changing on the 

testing sample. 

        Local information of SPR can be extracted by imaging method. SPR imaging is 

popular for higher throughput applications. SPR imaging method extracts local 

information typically from a fixed angle response. Hence, the localized changes in 

refractive index near the surface can be detected by the localized changes in the 

reflectance intensity. This imaging capability makes SPR imaging popular for high 

throughput applications.[23, 24] SPR imaging is a very powerful technique for imaging 

the surface and is the basis of the method discussed in this thesis.  

2.2 Electrochemical measurement 

Electrochemistry is concerned with the interrelation of electrical and chemical effects 

together. Most of this field researches relate with the study of chemical changes resulted 

from the passage of an electric current and the production of electrical energy by 



8 
 

chemical reactions. From the electrochemical measurement, there are various valuable 

messages, such as thermodynamic data of a reaction, decay rate of unstable intermediate, 

and trace amounts of organic species or metal ions. Many electrochemical methods have 

been well developed and even devised. 

Two types of processes occur at electrodes when there is applied potential in the 

electrochemical cell. In one kind of process, charges (e.g., electrons) are transferred 

across the interface of metal and solution. Electron transfer results in oxidation or 

reduction processes. This kind of process is determined by Faraday’s law and called 

Faradaic processes. In other words, the amount of chemical reaction resulted from the 

flow of current is proportional to the amount of electrons passed. In the other kind of 

process, non-Faradaic process, although there is no charge crossing the interface, external 

current flows when the potential changes. This charge flow is caused from adsorption and 

desorption processes, and the structure change of the electrode-solution interface. Both 

these two types of processes, Faradaic and non-Faradaic processes, occur when electrode 

reactions take place. Although Faradaic processes are primary interest in the electrode 

reaction investigated, non-Faradaic processes have to be taken into consideration in using 

electrochemical information to probe the charge transfer and associated reactions. 

Consider a typical electrochemical experiment, an electrochemical cell is composed 

of a reference electrode, a counter electrode, and a working electrode submerged in a 

solution, which in combination are called as a three-electrode setup. Common materials 

for the working electrode are platinum and gold. The counter electrode can be any 

material having good conductivity and stability (not react with the bulk solution). The 
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characteristic of the reference electrode is that the electrode stays at a constant 

electrochemical potential with respect to the reference potential. A potentiostat is used to 

control the electrochemical potential of a working electrode. The potential is with respect 

to a reference electrode. The reference electrode establishes a potential difference 

between the working electrode and itself. The flowing current flows through the path 

formed by the counter electrode, working electrode, and solution. Through feedback loop, 

the potential of the working electrode is adjusted by the current flow from the counter 

electrode through the solution to the working electrode. 

Cyclic voltammetry (CV) is a typical potentiodynamic electrochemical measurement. 

Any process including electron transfer can be investigated with CV. The working 

electrode potential ramps linearly versus time. The ramping is the experiment’s scan rate 

(V/s). Take the Fe3+/Fe2+ system as an example, the electrochemical reaction is 

Fe3+ + e- ⇔  Fe2+ 

At the electrode surface, an equilibrium electrochemistry occurs and satisfies the Nernst 

equation 

E = E0 +
]Fe[
]Fe[lnRT

2

3

+

+

nF
, (1) 

where E is the applied potential difference, and E0 is the standard electrode potential. The 

measured current increases as the potential reaches the reduction potential of the analyte. 

The current increases because the equilibrium position is shifted further to the right hand 

side and thus converts more reactant. And then the current peak occurs because the 

diffusion layer is sufficient on the electrode and then the flux of reactant to the electrode 
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is not fast enough to satisfy the Nernst equation. As a result, useful information, such as 

the redox potential and electrochemical reaction rates of the compounds, can be obtained. 

2.3 Plasmonic-based electrochemical current imaging 

As mentioned above, although scanning electrochemical method does has the ability 

to image local current distribution, the throughput of this method is low and the 

instrument is complicated. Hence, a high throughput method with the ability to detect 

local current information is needed. This thesis will discuss this kind of technique called 

plasmoni-based electrochemical imaging (PECi) technique.  

As mentioned in 2.1, SPR imaging technique is an optical method which can observe 

the local refractive index change near the sensing surface. PECi technique takes 

advantage of SPR imaging technique and electrochemistry method. It has the ability to 

image the local electrochemical current on the electrode at a very high throughput 

(depending on the frame rate, ~ 1000 frames per second). Researches are taken in the 

PECi fields recently. The first SPR studies of electrochemical reactions was based on 

detecting local surface potential.[16]  There are other approaches based on PECi method, 

such as detection of surface bound redox species,[25-29] potential-controlled DNA 

melting, electrochemical polymerization,[30, 31] and detection of metal ions.[26] 

When an electrochemical potential applied onto the SPR sensing surface, two main 

effects will contribute to SPR signal: refractive index change due to the faradaic reaction, 

and the charge density in the metal film (non-faradaic process). When there is EC 

reaction in the solution, the refractive index near the SPR surface will change due to the 

change of redox molecule concentration. In order to demonstrate the principle of PECi, 
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the relationship between the PECi signal and the faradaic current measured by 

conventional electrochemical methods is demonstrated below. SPR measures the changes 

in the bulk refractive index near the electrode.  The SPR response, resonance angle shift, 

can be described by 

),/()],(),([)( /

0

lzdetzCtzCBt lz
RRoo

−
∞

∫ += ααθ  (2) 

where oC and RC are the reactant and product concentrations, oα and Rα are the changes 

in the local refractive index per unit concentration for the oxidized and reduced 

molecules, respectively. The constant, B, is the sensitivity of the SPR angle to a change 

in the bulk refractive index. B can be calibrated for a given SPR setup and reaction 

species. The exponential term is the decay of the evanesce field from the metal surface 

into the solution phase. The decay length, l , is ~200 nm. 

For a given set of initial and boundary conditions, CO and CR can be determined by 

solving the diffusion equations. Hence, SPR measures local kinetics of product. The 

ability is suitable for monitoring heterogeneous chemical reactions, taking the advantage 

of the spatial resolution of SPR imaging. 

In the condition of the measurement time scale is slower than the diffuse time of the 

reaction products over a SPR distance of 200 nm, Eq. 2 can be simplified to 

]|),(|),([)( 0z0z == += tzCtzCBt RRoo ααθ ,  (3) 

where 0z|),( =tzCo and 0z|),( =tzCR are the concentrations of the oxidized and reduced 

molecules near the electrode surface.  
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In contrast, conventional electrochemical methods measure current density as a 

function of potential or time, 

00 ||I == ∂
∂

−=
∂
∂

= z
R

Rz
o

o z
CnFD

z
CnFD , (4) 

where n is number of electrons transferred per electrochemical reaction, F is Faraday 

constant, oD  and RD are the diffusion coefficients of the reaction species. Comparing Eqs. 

2 and 4, both SPR and electrochemical current measurements are both related to the 

concentration of the reactant and product. SPR detects the concentration changes near the 

working electrode surface. Electrochemical current measures the concentration gradient 

on the working electrode. In this respect, SPR gives more direct information about 

electrochemical reaction than which is measured by current.  

In order to get the relationship between SPR signals and current, the concentration 

profile is critical. Let’s take a redox reaction into consideration under one-dimensional 

(along z-axis) and semi-infinite geometry, by solving the diffusion equation and 

performing Laplace transform, we can get the relation between concentrations and 

current density. 

∫ −− −−=
t

o
o
o dttttiDnFCt

0

2/112/1
O ')')('(])([),0(C π , (5) 

∫ −− −−=
t

R
o
RR dttttiDnFCtC

0

2/112/1 ')')('(])([),0( π , (6) 

Substituting Eqs. 5 and 6 into Eq. 3,  

∫ −−−− −−+=∆
t

OR dttttinFDDBt
0

2/112/12/1
O

2/1
R0 ')')('())(()( πααθθ , (7) 
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Eq. 7 describes a quantitative relation between the PECi signal and the electrochemical 

current density measured by conventional electrochemical methods. The PECi signal is a 

convolution function of the current. SPR signal can be calculated from current and also 

current can be calculated from SPR signal. 

Another non-faradaic current (charging current) is also contributed to the SPR signal 

in some conditions, such as high concentration of buffer or solution and no 

electrochemical reaction in solution. When metal electrode surface contacts an aqueous 

solution including electrolyte, electrical double layer is formed due to the differences in 

electron affinities of the surface and the solution.  When there is potential applied on the 

metal film, the potential changes the charge density in the electrical double layer. The 

change of surface charge causes a change in the resonance angle. The relation is shown as 

below: 

θασ ∆=∆  (8) 

where 

)1(
)2sin()(

2
1

2
12

−
+

−=
m

Rmemned
εε

θεεεα , (9) 

77.11 =ε  (water), 29.22 =ε  (BK7 prism), 47=md  nm, 28109.5 −×=en  m-3,  7.11−=mε  

for the gold film, and =Rθ 72o according to Eq. 2.    

If the background buffer or solution concentration is low, SPR signal due to charging 

effect can be ignored. The total SPR signal is mostly due to faradaic current. If there is no 

electrochemical reaction on the surface, the SPR signal is purely due to the charging 

effect. In other cases, both the faradaic and charging current contribute to the SPR signal.  
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CHAPTER 3        Thin-film Plasmonic-Based Electrochemical Current Imaging 

Technique                                                                                               

3.1 Introduction 

Electrochemical detection is a powerful analytical method being used for a wide 

range of applications. For example, DNA and protein detections, trace chemical analysis, 

glucose and neurotransmitter monitoring, and electrocatalysis studies. Conventional 

electrochemical measurement gives the total electrochemical current or other electrical 

quantities of an electrode. However, conventional method does not provide local reaction 

information of the electrode surface which is critically needed for many applications, 

such as local activities of cells, and protein and DNA microarrays. Scanning 

electrochemical microscopy [32] can overcome this limitation by probing local 

electrochemical current via scanning a microelectrode across the surface. 

The equation to calculate P-ECi current [1] in an EC cell is based on semi-infinite 

boundary condition, which has constant concentration at infinity distance from working 

electrode,[16] as shown in Fig. 3.1(a). This condition will not hold anymore in thin film 

structure where the boundary conditions (concentration on top and bottom electrodes) 

will be affected due to the structure. For example, if we apply cyclic voltammetry (CV) 

potential, the boundary conditions change with applied potential all the time in the thin 

film structure, as shown in Fig. 3.1(b). Hence, for thin film EC system, it is no doubt that 

there is a need to develop new equation for P-ECi. 
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Figure 3.1 Schematic illustration. Concentration profiles with changing potential for the 
(a) thicker and (b) thinner thin film structures. 

In this work, thickness-controlled thin film microfluidic structures with gold 

electrodes on both top and bottom micro-channel surface were fabricated with 

poly(dimethylsiloxane) (PDMS) gasket. First, a simulation has been used to demonstrate 

the SPR signal is proportional to the EC current in thin film microfluidic system. Then, 

conventional CV current and P-ECi signal have been simultaneously recorded, which 

demonstrates the P-ECi signal is proportional the EC current in thin film system (25µm 

and 40µm). Different thickness of thin film systems have been measured, we found that 

at 0.2V/s scan rate, when the thickness is thicker than 110um the linear relation between 

P-ECi signal and EC current will not hold any more. To overcome this limitation, an 

algorithm has been developed to calculate current from P-ECi signal. At the end, the 

critical scan rate and thin film thickness is discussed. 
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3.2 Experiment 

3.2.1 Reagents 

All chemicals were purchased from Sigma-Aldrich and were used without further 

purification. The 0.2 M sodium fluoride (NaF) solutionwas prepared in deionized water 

(18 MOhms.cm). The 0.5, 2, 5 and 10 mM ferricyanide/ferrocyanide (Fe(CN)6
3-/4-) 

solutions were prepared by dissolving the 1:1 molar ratio of Fe(CN)6
3- and Fe(CN)6

4- in 

the prepared NaF solution. 

3.2.2 Instrumentation 

We used the prism-based SPR imaging setup [33-36] for all experiments described in 

this article. Prism-based SPR system has been discussed in the literatures  we published 

previously [1, 35, 36]. In short, a collimated p-polarized red LED (Hamamatsu L7868-01) 

was used as light source and pass through a BK7 prism and shine onto the bottom of the 

thin film structure. A gold-coated microscope coverslip was placed on top of the prism 

using index matching oil and used as the SPR sensing surface. The reflected light is 

imaged by a high-speed CCD camera (Pike F-032B from Allied Vision Technologies, 

Newburyport, MA 01950). 

3.2.3 Preparation of the thin film structure 

The 22 × 22 mm no. 1 BK7 glass microscopy coverslips (VWR no. 48366045) were 

the substrates we used. Prior to the fabrication process, the substrates were cleaned with 

deionized water and 100 % ethanol. The cleaned coverslips were coated with 1.6 nm of 

chromium and 47 nm of gold by thermal evaporation (Edwards). The PDMS thin film 

structures with different thickness were prepared using sol-gel spin coating and thermal 
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annealing on the top of gold film. The thickness of PDMS thin films was controlled by 

simple changes in the spin coating rate (i.e., 1000 rpm, 2500 rpm, and 3000 rpm). Finally, 

the PDMS films were patterned and covered by another gold-coated coverslips as EC 

wells. 

3.2.4 Electrochemical measurement 

A potentiostat (microAutolab type III) was used for applying the potential and 

recording the potential and current. Two electrodes system was applied in thin film 

structure. For thin film structure, working electrode (WE) is connected to the bottom Au 

surface which also serves as SPR sensing surface. While reference electrode (RE) and 

counter electrode (CE) are shorted and connected to the top Au electrode (Fig. 3.2). For 

EC cell (cut from a flexiPERM 8-well removable and reusable TC Chamber, USA 

Scientific, Ocala, FL), the cell was placed on top of Au film for holding the reaction 

solution. Pt wire (CE) and Ag/AgCl (RE) were immersed into the EC cell from the top 

opening. CV potential is applied in this paper with different potential range. To 

synchronize the SPR imaging with the EC measurement, the potential and current from 

the potentiostat is recorded via a national instrument A/D board (NI USB-6210, from 

National Instruments, Austin, TX 78759) along with the open shutter trigger signal from 

the CCD camera by a MATLAB program. 

 

Figure 3.2 Schematic illustration of electrochemical measurement on thin film structure. 
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3.2.5 Calibration factor 

In order to calculate P-ECi current, according to the basic formalism of P-ECi 

method,[1] we determined the coefficient of current density per SPR angular shift unit. 

This was carried out by the experiments on different product concentration (2mM, 5mM, 

and 10mM) for 40-μm-thick thin film structure. There is a linear relation between the 

conversion coefficient and the measured concentration. The calibration factor was found 

to be 0.6 A/m2-mDeg. 

3.2.6 Numerical Simulation 

To verify our theory, we simulated the concentration distribution and current response 

numerically. A commercial numerical simulation software COMSOL Multiphysics 4.2 

has been used to simulate the concentration profile of redox molecules in thin film with 

applied potential. Boundary condition is given by Nernst equation: 

                    )])(([exp
),0(
),0(C 0O EtE

RT
nF

tC
t

R

−=                   (10) 

Where R is the molar gas constant, T is temperature, and E0 is the standard potential. 

Concentration profile of redox molecules are obtained from diffusion equation and the 

boundary conditions. 

We also develop new algorithm to calculate P-ECi current from SPR response which 

will not have any thickness limitation on the reaction structure. Since P-ECi signal 

represents the redox molecule surface concentration, therefore we use P-ECi signal as the 

boundary conditions of concentrations at all reaction time. By applying this boundary 

conditions into COMSOL software, we can calculate the concentration gradient on the 

surface at any time which equals to the current.  The current response is simulated by  
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where n is number of electrons transferred per reaction, F is the Faraday constant and Do 

nad DR are the diffusion coefficients of the reaction species. 

3.3 Simulation 

As we discussed in introduction part, the semi-infinite boundary condition will no 

longer hold in thin film structure, we need to find new relation between surface 

concentration (proportional to P-ECi signal) and surface concentration gradient 

(proportional to current). To find out this relationship, we simulate the concentration 

profiles in the thin film at different potentials with COMSOL Multiphysics (see the 

Numerical Simulation Section). The simulated potential range is from -0.5V to 0.5V. 

Figure 3.3 shows the simulated concentration profiles with applied potential from 0 to 0.5 

V (quarter period of measurement). Note that both concentrations near the electrode and 

the concentration gradients increase with applied potential. In other words, the 

concentration gradients on the surface in the thin film structure are proportional to the 

concentration gradient.  
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Figure 3.3 Calculated concentration profiles of 40-μm-thick thin film structure. 

This is because the diffusion layers of top and bottom electrode overlap when the 

distance between top and bottom surface is small (less than 80um). The surface 

concentration at top electrode will directly affect the bottom electrode. When the 

thickness is small (25um and 40um), the concentration profile between two surfaces is 

close to straight line (Figure 3.3), therefore the surface concentration gradient or slope is 

proportional to the surface concentration difference between the top and bottom. Figure 

3.4 shows the simulated results of surface concentration gradient and surface 

concentration for 40-μm-thick thin film structure at different potentials. From the figure 

we can see that the two curves match perfectly which proves that in the thin film structure, 

the surface concentration is proportional to the surface concentration gradient. Since the 

EC current measures the surface concentration gradient on the electrode while P-ECi 

measures the surface concentration on the electrode, in the thin film structure the P-ECi 
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signal is directly proportional to the current density. This means that from P-ECi signal 

we can obtain the local current density of EC reactions without any transformation. 

 

Figure 3.4 Calculated surface concentration gradient (red line) and surface concentration 
(open circles) with applied potential. The electrode potential sweep from 0 V to 0.5 V 

with the step of 0.05 V. 

3.4 Results and discussion 

3.4.1 Different thickness 

To prove the linear relationship between P-ECi signal and current density in thin 

film system, we measured oxidation reduction reaction of Fe(CN)6
3-/4- with conventional 

CV and P-ECi techniques simultaneously. Since the thin film thickness will affect this 

relationship a lot, we did experiments on the thin film structures with different thickness 

(from 10 μm to 110 μm). The thickness is controlled by different spin coating speed of 

PDMS in fabrication process. Figure 3.5 (a) and (b) show the currents of conventional 

method and P-ECi method  
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Figure 3.5 Measured CVs by the conventional EC method (red line) and by the P-ECi 
method (open circles) for (a) 25-μm, (b) 40-μm, (c) 110-μm-thickness thin film structure 

and (d) EC cell. 

versus potential simultaneously. The experiment is carried out in 0.2 M NaF solution 

containing 10 mM Fe(CN)6
3-/4- in 25 and 40-μm-thick thin film structures, respectively. 

Note that the P-ECi current is directly obtained from P-ECi signal  multiplied by a 

coefficient (see the Calibration Factor section).  The currents obtained by the two 

methods have high agreement with each other; the overall correlation coefficients for 25 

um and 40 um are 0.98 and 0.95 respectively. This proves there is linear relationship 

between P-ECi signal and current density when thickness of thin film is small (25 um and 

40 um). Therefore at 0.2V/s scan rate we can use the equation, 
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                         θα∆          , t < 80 um                   (12) 

                I =  

                         ][ 2/11 θ∆− sbnFL  , t > 80 um                   (13) 

to calculate the current density in thin film structure, where I is the current density, Δθ is 

the shift in the SPR signal, α is the coefficient with A/m2-mDeg (as described in the 

Calibration Factor section), t is the thickness of thin film structure (the distance between 

two electrodes), )]([ 2/12/1 −− −= OORR DDBb αα , n is the number of electrons involved in the 

reaction, F is the Faraday constant, L-1 is the inverse Laplace transform of the SPR signal. 

In the expression of b, αO and αR are the changes in the local refractive indices per unit 

concentration for the oxidized and reduced products, DO and DR are the diffusion 

coefficient of the oxidized and reduced products. The selection of thickness condition (80 

um) is dependent on the diffusion coefficient and the scan rate of measurement potential. 

The different scan rate situation will be discussed in the last section. 

To further explore the boundary of validity, we measured the reaction in thicker 

(110 μm) structure and EC cell system (bulk structure) with both conventional and P-ECi 

methods. As shown in Fig. 3.5 (c) and (d), the CV currents and SPR voltammograms are 

not in good agreement anymore. The overall correlation coefficient decreases to 0.70 and 

0.68, for 110-um-thick structure and EC cell system respectively. The correlation 

coefficient decreases with increasing thickness. This is because the diffusion layers of top 

and bottom electrodes begin to separate with increased thickness and the linear relation 

will not applicable. The CVs and SPR voltammograms are in better agreement with each 

other for the thinner thin film system, since the surface concentration gradient is in better 

proportional relation with the surface concentration. This is because the 
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consumption/generation of Fe(CN)6
3-/4- on top metal electrode is supplemented by the 

generation/consumption of Fe(CN)6
3-/4- on the bottom electrode immediately. In other 

words, the product concentration is not constant on the surface of another electrode.  

 

Figure 3.6 Measured CVs by the conventional EC method (red line) and calculated CVs 
by the new algorithm (open squares) for (a) 25-μm, (b) 40-μm, (c) 110-μm-thickness thin 

film structure and (d) EC cell. 

3.4.2 Universal method 

To overcome the thickness limitation, we developed new algorithm to calculate the 

current density from P-ECi signal. Because the SPR is surface sensitive method, it only 

measures the concentration within 200 nm from electrode. When the reaction is slower 

than 1 mili-second [1], the concentration profile within 200 nm could be treated as 

constant. As a result, in most situations what SPR measured is surface concentration 

which corresponds to boundary condition of the reaction. Therefore, we converted the P-
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ECi signal to surface concentration and applied it into the COMSOL simulator to 

calculate the concentration profile at any time. From the concentration gradient we can 

easily calculate the current density. The current density calculated by this algorithm is 

shown in Figure 3.6. The P-ECi current calculated with the new algorithm have excellent 

agreement with all the thickness, which prove it is a universal method to calculate P-ECi 

current. 

From the results of Fig. 3.5 and Fig. 3.6, we can see that the relationship between 

SPR response and CVs varies with the thickness of thin film structures (the distance 

between working electrode and reference/counter electrode). The different relations are 

due to the different concentration profiles from different experiment parameters. The 

concentration profile is related with not only the boundary conditions (surface 

concentration on the electrodes) but the scan rate of potential sweep. If the diffusion time 

of Fe(CN)6
3-/4- between two electrodes is shorter than the scan time of quarter cycle of 

CV measurement, the diffusion layers of the two electrodes affect with each other with 

applied potential. Figure 3.7 shows the critical scan time for different thickness of 

channel and diffusion coefficient. Therefore, if the measurement parameters are above 

the critical scan time curve, we can use Eq. 13 to directly translate between P-ECi signals 

and CVs. Take our experiments for example, for 25-um-thick (red star) and 40-um-thick 

(blue star) thin film structure, measured SPR responses can give the local information of 

EC reactions directly. This figure provides a clear guideline for the method of P-ECi. 
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Figure 3.7 For direct PECi, critical scan time of quarter cycle on different conditions 
(thickness of thin-film channel and diffusion coefficient).   

3.5 Conclusion 

In conclusion, we have extended the P-ECi method to the thin film structures and 

developed a universal algorithm to calculate P-ECi current. The situation of thin film 

structures and traditional EC cell are different due to the different concentration profiles. 

By numerical simulation and measuring the SPR response and CVs of thin film structures 

with different thicknesses, it has been unambiguously demonstrated that we can directly 

track local EC reactions by SPR response when the diffusion layers of the electrodes are 

overlapped. To overcome the limitation on distance between electrodes, new thickness-

independent algorithm can give the P-ECi information from measured SPR response. 

Systematic discussion on the connection of SPR signals and CVs provides valuable 

information to strengthen the P-ECi method. 
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CHAPTER 4     Enhanced H+ Detection by pH Indicator                                                                                                   

4.1 Introduction 

Detection of biological and chemical species is a fundamental step to the screening of 

disease and drugs, as well as biomolecular analysis and gas detection.[37] For instance, 

the detection of proteins, virus, and DNA, the detection of calcium and potassium ion 

concentrations in vivo are critical.[38-41] Nanostructures, such as nanowires, nanotubes, 

and nanoparticles are particularly attractive as biosensors and chemical sensors.[42-44] 

Nanoparticles have attracted broad interests and numerous applications have been 

developed over the past two decades. The interested fields are included sensors,[45, 46] 

optoelectronics,[47] electrocatalysis,[48] and so on. Among these applications, one of the 

most important areas is the electrocatalysis reaction of nanoparticles.[48, 49] The main 

reason making nanoparticles popular is the advantage of high surface-to-volume ratios 

compared with bulk materials. The detection sensitivity is therefore enhanced greatly 

since the signal can be enhanced due to the large surface-to-volume ratio.  

The principle of SPR imaging technique has been demonstrated in Chapter 2 and 3. It 

has the advantages of mapping local information of an electrode with sub-micron 

resolution. Instead of probing on sensing surface point by point with microelectrode,[50] 

SPR imaging technique images the local characteristics optically by measuring the 

refractive index change near the electrode surface. A pH indicator is a halochromic 

chemical compound added in small amount into a solution, and the color of the solution 

changes depending on the pH value. When pH changes in the solution with pH indicators, 

the refractive index of solution also changes. Combine the advantages of SPR imaging 
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with the help of pH indicator, the sensitivity of H+ by SPR imaging technique can be 

enhanced.  

In this chapter, first, to demonstrate the ability of SPR imaging technique for 

detecting H+ changes with pH indicator, H+ detection is investigated by SPR imaging. 

The detection limit of H+ by SPR with the help of pH indicator is discussed. In addition, 

to exam the enhancement of P-ECi for H+ detection by pH indicator, hydrogen generation 

reaction by Pt nanoparticle is investigated by P-ECi. Platinum nanoparticle was modified 

onto Au surface. EC potential is applied on the Au surface, due to the H2 generates from 

the Pt nanoparticle area, the refractive index is changed which can be detected by P-ECi. 

With the assistance of pH indicator, the detection limit of H+ reaction on Pt nanoparticle 

is enhanced. 

4.2 Experiment 

     The principle and experimental setup consists of two major components, a three-

electrode electrochemical setup and an optical detection system.  

     Three-electrode electrochemical reaction. A Teflon EC reaction cell is mounted on 

a BK7 glass slide coverd with 40-nm gold. The Au substrate is used as working electrode, 

Pt wires is used as counter electrode, and the Ag/AgCl is used as reference electrode. An 

Autolab potentiostat is used to apply potential to the electrochemical cell for cyclic 

voltammetry scan. 

     Optical detection setup. The substrate is placed on a BK7 prism covered with a drop 

of index matching oil. A p-polarized 670-nm laser beam is incident onto the prism 
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surface and the reflected beam is detected by a CCD camera. The incident angle was 

adjusted for a best sensitivity range. 

     Pt nanoparticle synthesis. Citrate-stabilized platinum nanoparticles are synthesized. 

A total of 1L of 1 % H2PtCl6 aqueous solution was added into 100 mL of DI water and 

heated to boiling. Then 3 mL of 1% sodium citrate aqueous solution is added quickly into 

the boiling solution. The mixture is kept boiling for 30 min, until the color of solution 

turns dark.[104] The size of PtNP is from 10 to 20nm. The Pt nanoparticle solution is 

dispensed onto Au surface. The droplets dry rapidly. Then the substrate is rinsed with DI 

water for 10 seconds to rinse out the residue from Pt nanoparticle solutions and 

nonbinding Pt nanoparticles. N2 gas is used to dry the substrate. 

4.3 Results and discussion 

4.3.1 Without applied voltage 

Different pH indicator. The position of the color-change interval in the pH value 

differs widely with different pH indicators. In order to find out the best common 

laboratory pH indicator for SPR sensing, different pH indicators are tested for their 

sensitivities to the pH changes. Besides, consider for future applications on biological 

reaction detection, the pH indicators we took have the transition pH range near the 

neutral region. We valuate three pH indicators: bromocresol green, phenol red, and 4-

nitrophenol. The characteristics of these three pH indicators are shown in Table 4.1. The 

pH indicator solution concentration is 1 mM in DI water. To change the pH value of the 

solution, 10 μl 0.25-M H2SO4 is added three times and 0.25 μl 0.25-M NaOH is added 

twenty times into the solution containing different pH indicators. The pH value changed 
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from 1 to 12. SPR intensity changes are recorded as a function of time with pH value 

changing, as shown in Fig. 4.2. For bromocresol green, there is an evident SPR intensity 

change as the pH value changing from 4.50 to 5.00. The pH values are measured. The 

result of the SPR intensity changing with the pH value for bromocresol green is shown in 

Fig. 4.3. For phenol red, the SPR intensity increases with increasing pH value in the pH 

range of 3.60-4.60. For 4-nitrophenol, the SPR intensity keeps increasing from the pH 

value changing to acid and back to base. From these results, it is clear that bromocresol 

green has the best intensity of changing pH value in our SPR experiment setup. 

 

Table 4.1 pH indicator characteristics.   
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Figure 4.2 SPR intensity changes are recorded as a function of time with pH value changing for 
different pH indicators: (a) bromocresol green, (b) ethyl red, and (c) 4-nitrophenol.   
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Figure 4.3 SPR intensity changes with pH value for the pH indicator of bromocresol green.  

The sensitivity is related with the refractive index (color) change of pH indicator. 

Hence, for these three pH indicators, absorbance spectra at different pH values are 

measured. The incidence-light wavelength range is from 500 nm to 820 nm. The light is 

normal incident into the solution. For bromocresol green, the absorbance has an obvious 

change at 670 nm (the light wavelength in SPR measurement setup) and the absorbance 

range moves in the red light region as the pH value changes from 4 to 5, as shown in Fig. 

4.4. For phenol red and 4-nitrophenol, the absorbance intensities change at 670 nm, but 

the absorbance bands keep the same at different pH values, as shown in Fig. 4.5. The 

absorbance band clearly changes with pH changing for bromocresol green. This results in 

the highest pH sensitivity by SPR detection due to the match between refractive index 

change and the light wavelength. Figure 4.6 shows the detection limit for 1-mM 

bromocresol green as the function of pH value. The detection limit is 180 number/μm2 

when the pH value changes from 4.31 to 4.35. 
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Figure 4.4 Absorbance spectra at different pH value for bromocresol green.  

 

Figure 4.5 Absorbance spectra. For different pH indicator, (a) phenol red and (b) 4-nitrophenol, 
absorbance spectra at different pH value. 
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Figure 4.6 The detection limit for 1-mM bromocresol green as the function of pH value. 

 

Figure 4.7 The highest detection limit for different-concentration pH indicator. 

In order to check whether the concentration of pH indicator affect the detection limit 

or not, we repeat the experiment on different concentrations of pH indicator, 0.01 μM, 0.1 

μM, 0.01 mM, and 1mM. The results are shown in Fig. 4.7. For all the different 
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concentrations of pH indicator, the detection limit has maximum value as the pH value 

changes near 4.30. The highest detection limit is 90 (number/μm2)/SPR intensity 

occurring with 0.1-μM pH indicator.   

4.3.2 With applied voltage 

      From the previous section results, 0.1-μM bromocresol green performs the best H+ 

detection limit. To further investigate the assistance of pH indicators, the hydrogen 

generation reaction by Pt nanoparticles is investigated by P-ECi. The potential is applied 

to the patterned Au surface by a three-electrode system as described in experiment 

section. The Pt nanoparticles are dispensed onto Au surface to form patterned surface. 

Figure 4.8 shows the SPR image of Pt-nanoparticle patterned Au surface. The ellipsoidal 

shapes bright patterns represent the Pt nanoparticle area which has higher reflectivity due 

to the coverage of Pt nanoparticles. 

 

Figure 4.8 SPR image of Pt-nanoparticle patterned Au surface. 

     First, in order to confirm the suitable applied voltage range for detecting hydrogen 

generation reaction at different pH values, the experiments taken on purely Au surface 

without pH indicator. At lower pH value, the hydrogen generation starts to react at lower 
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applied voltage. When the pH value is 1, there is hydrogen generation on Au surface at 

~0.7 V. According to the investigated results shown in the previous section, the interested 

pH range is 3-5 because the lowest detection limit happened in this range of pH value. 

The suitable applied voltage range for the next step of the experiment, the P-ECi 

detection of hydrogen generation reaction on Pt nanoparticle area, is determined by that 

there is near-zero hydrogen generation on the Au surface at certain pH value. Hence, 

from the measurement results, for the pH value of 3 and 5, the suitable applied voltage 

range is from 0.3 V to -0.9 V. 

      Figure 4.7 shows the typical P-ECi response in which the black curve is the response 

of Au surface region and the red curve is Pt nanoparticle region. The applied voltage 

range is from 0.3 V to -0.9 V. The pH value of the solution is ~5. The Au area only 

shows the typical charging effect response throughout the entire scan. However, the 

response on Pt nanoparitcle area has much sharper peak at more negative potential (<-

0.70 V). This phenomenon is because Pt nanoparticles catalyze the H2 evolution reaction 

on its surface at negative potential (<-0.70 V), and thus the refractive index near sensing 

surface changes due to the generated H2 molecules on the Pt nanoparticle area. Hence, the 

P-ECi signal on Pt nanoparticle area decreases more at negative potential while the signal 

on Au area still governs by charging effect. In other words, the P-ECi signal has much 

shaper peak when applied potential is more negative than -0.70 V. Without bromocresol 

green in the electrolyte solution, the P-ECi response of Pt nanoparticle and Au region is 

almost the same.  
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Figure 4.9 P-ECi response of different region for 3 CV scan cycles (a) without and (b) with pH 
indicator in solution. Black curve: Au surface region, red curve: Pt nanoparticle region, and blue 

curve is the response difference between Pt nanoparticle and Au region. 

      By adding bromocresol green into the electrolyte solution, the responses of both Au 

and Pt nanoparticle regions are enhanced, as shown in Fig. 4.9(a). In other words, with 

the assistance of pH indicator, the P-ECi detection of hydrogen generation reaction (pH 

value increases) can be enhanced. Note that the H2 molecules generated from surface are 

dissolved in solution, and it does not nucleate until certain high concentration is reached. 
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In the case of our experiment case, as long as the potential is higher than certain value, 

the generated H2 molecule can diffuse away before the concentration increases to the 

limit to trigger the nucleation. Figure 4.10 shows the comparison of with and without pH 

indicator in the solution for Au and Pt nanoparticle area. The enhancement by pH 

indicator for Au area and Pt nanoparticle area is 2.03 times and 2.33 times, respectively. 

 

Figure 4.10 The enhanced detection of Pt nanoparticle catalytic reaction measured by P-ECi 
method. 

      According to the principle of P-ECi method, the detection is related with the 

concentration profile near the sensing surface. The concentration profile is determined by 

the generation and diffusion processes. Hence, the experiment’s scan rate also affects the 
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detection. There must be room for improvement of the detection limit by the proper scan 

rate. 

4.4 Conclusion 

In conclusion, a new method to measure the H2 evolution reaction is demonstrated by 

P-ECi technique. In this method, H+ concentration change near the metal substrate 

surface are driven by apply voltage to the surface, and the change is detected from the P-

ECi images. The pH indicator increases the refractive index change due to the color 

change with H+ changing, leading to a 2 times signal enhancement for detection of the H2 

evolution reaction. Because many biological and chemical reactions are related with H+ 

changing, the method could be used for high throughput analysis of H+. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

      Microscope technique has been developed for more than 400 years. The goal of the 

most type of microscopes is to measure the morphology or optical properties of the 

sample. The invention of scanning tunneling microscope (STM), atomic force 

microscope (AFM), and transmission electron microscope (TEM) expands the 

microscope to the resolution range from angstrom to millimeter. This thesis discussed the 

combination of the plasmonic based microscope with EC measurement to provide the 

chemical reaction information of the surface. 

SECM is a kind of method to obtain local EC properties of the surface. However, it 

needs microelectrodes to scan the sensing surface. The scanning microelectrode will 

perturb the reaction when the distance between electrode and sensing surface is within 

diffusion length of reaction. The other disadvantage is that the scalability of SECM has to 

be scaled down by smaller electrode. Recently, the P-ECi method has been developed to 

overcome the obstacles of SECM. The P-ECi method measures current by the SPR 

images which is accompanied with EC process current. In this thesis, we expand a new 

aspect of the P-ECi technique into thin film microfluidic system. Besides, a universal 

algorithm has been developed to calculate EC current from P-ECi response signal. 

Another application based on P-ECi method is demonstrated to enhanced the detection of 

imaging catalytic current on platinum nanoparticle. 

Gaining more insights into the correlation between the SPR imaging and EC current 

characteristics will benefit the application and improvement of P-ECi technique. P-ECi 

technique is useful for different applications which need local EC information. For 
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example, detection of DNA and protein array and cell based detection are promising 

applications. Further, based on the results in Chapter 4, it is possible to detect the EC 

reaction on single nanoparticle by P-ECi technique. As the P-ECi technique will 

inevitability matured and improved, more and more applications based on P-ECi will 

begin.  
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