
Time Division Multiplexing of Network Access by Security

Groups in High Performance Computing Environments

by

Joshua Ferguson

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved March 2013 by the
Graduate Supervisory Committee:

Sandeep Gupta, Chair
George Ball

Georgios Varsamopoulos

ARIZONA STATE UNIVERSITY

May 2013

ABSTRACT

It is commonly known that High Performance Computing (HPC) systems are

most frequently used by multiple users for batch job, parallel computations. Less

well known, however, are the numerous HPC systems servicing data so sensitive

that administrators enforce either a) sequential job processing - only one job at

a time on the entire system, or b) physical separation - devoting an entire HPC

system to a single project until recommissioned. The driving forces behind this

type of security are numerous but share the common origin of data so sensitive

that measures above and beyond industry standard are used to ensure information

security. This paper presents a network security solution that provides information

security above and beyond industry standard, yet still enabling multi-user computations

on the system. This paper’s main contribution is a mechanism designed to enforce

high level time division multiplexing of network access (Time Division Multiple

Access, or TDMA) according to security groups. By dividing network access into

time windows, interactions between applications over the network can be prevented

in an easily verifiable way.

i

ACKNOWLEDGEMENTS

I would like to acknowledge and thank Dr. Gupta for taking a chance and

inviting me to work in Impact Lab, Dr. Varsamopoulos for his immense technical

guidance (especially regarding Linux), and Dr. Ball for his earnest support of this

thesis and its goals. I am intellectually and personally indebted to the members of

Impact Lab for their help with the myriad of tasks that arose during my time with

the lab. Special mention must go to Dr. Tridib Mukherjee, Dr. Ayan Bannerjee,

and (soon to be Dr.) Zahra Abbasi for helping me with their seemingly boundless

knowledge of the research we did, as well as Robin Gilbert for being a true friend

and great colleague. I thank Raytheon for their capital support of our research,

and the NSF for supporting work outside the scope of this thesis (through CNS

- 0855277 - BlueTool: Infrastructure for Innovative Cyber Physical Data Center

Management Research). Finally, I thank my parents and brother for their love and

support.

ii

To my wife, Sara, for her unwavering support

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Security Concerns . 1

1.2 Time Division Multiple Access Scheme 2

1.3 Thesis Outline . 3

2 RELATED WORK . 5

2.1 High Performance Computing Security 5

2.2 Time Division Multiple Access . 6

3 PROBLEM DEFINITION . 7

3.1 Assumptions on the Computing Environment 7

Compute Nodes . 8

Persistent Storage . 8

Administrative Nodes . 9

Network Infrastructure . 9

Job Execution . 9

3.2 Security Challenge . 11

3.3 Insufficient Solutions . 13

Encryption . 13

Virtual Local Area Networks (VLANs) 13

4 DESIGN GOALS . 15

4.1 A More Thorough and Intuitive Network Security 15

4.2 Dynamic Control . 15

4.3 Network Technology Agnosticism 16
iv

CHAPTER Page

4.4 User Application Transparent . 16

5 TIME DIVISION MULTIPLE ACCESS OF NETWORK ACCESS 17

5.1 Centralized Scheduling . 17

Dynamic Job Scheduling . 19

Job Failure . 19

5.2 Constraints on TDMA . 20

TCP Timeout . 20

Window Size . 21

5.3 Formal Definition . 22

6 IMPLEMENTATION . 26

6.1 Overview . 26

6.2 State Controller . 26

6.3 Ingress and Egress Controllers . 27

iptables and NetFilter . 29

6.4 Control Server . 30

7 PERFORMANCE . 32

7.1 TDMA Testbed . 32

7.2 Performance Tests . 33

Netperf . 33

Temporal Division . 34

Overhead . 34

ping . 35

TDMA’s effect on RTT . 36

8 CONCLUSION . 38

8.1 Further Work . 38

Improvements on TDMA . 39
v

CHAPTER Page

Alternative Mechanisms . 39

BIBLIOGRAPHY . 41

A IMPLEMENTED TDMA ALGORITHMS 47

B TDMA TESTBED DETAILS . 50

vi

List of Figures

Figure Page

1.1 A Beowulf cluster [36]. 1

1.2 The Cray I [33]. 1

1.3 IBM’s Blue Gene [24]. 1

1.4 The spectrum of environmental security requirements based on uses

and stakeholders. 2

1.5 Unmodified computing nodes. 3

1.6 TDMA overlaid onto Figure 1.5. 3

3.1 An abstract HPC environment. 7

3.2 The KG−200 Inline Media Encryptor, certified by the NSA for use in

securing persistent storage [1]. 8

3.3 The assumed model of application execution in an HPC environment.

αstart and αend are periods where execution is I/O bound, and ε is

the prominent period where execution is CPU bound. This structure

adheres to research showing batched I/O minimizes the I/O cost in

terms of time. 10

3.4 Simple example of common actions on an HPC network. 12

3.5 Actions that could permit data sharing between different user applications. 12

5.1 A simple round-robin time window policy for two security groups (S.G.#1

and #2). 17

5.2 A simple example of network access switching between two security

groups (S.G.#1 and #2). 18

6.1 State diagram of a compute node running the state controller. 27

vii

Figure Page

6.2 Data flow architecture of iptables, the packet filtering firewall with

NetFilter located within the Linux kernel. The input and output ”chains”

within NetFilter provide an interface for administrators to control and

filter packets sent into user space. 29

6.3 A detailed look at the logic within the NetFilter chains that makeup the

Ingress and Egress controllers on compute nodes. 30

6.4 State diagram of an example window controller. 31

7.1 The network architecture of TDMA testbed. 32

7.2 Network traffic between two security groups (S.G.#1 and #2) without

TDMA enabled. Compare to the time division visible in Figure 7.3. . . 33

7.3 A trace of network traffic under performance testing while TDMA controls

access. 34

7.4 The impact of TDMA on TCP performance under two different ’netperf’

tests. 35

7.5 RTT of ping under TDMA. 36

7.6 Linear regression fits of two high RTT sections within RTT results

under TDMA. 37

B.1 The TDMA test bed located in Impact Lab at Arizona State University. . 50

viii

Chapter 1

INTRODUCTION

High Performance Computing (HPC) systems consist of numerous individual computing

systems networked and administrated together such that they can be used as a single

system. Examples of these systems from popular culture include custom made

models such as the Cray I (historically one of the first systems deemed HPC) and

the modern IBM Blue Gene [25]. More common examples are simple Computer

Clusters such as Beowulf clusters in which Commercial Off The Shelf (COTS)

equipment is utilized [9]. These latter systems are simple enough that they are

frequently implemented by single users within hobbyists’ homes [8]. Figures 1.1,

1.2, and 1.3 show examples of these systems.

1.1 SECURITY CONCERNS

Application developers for these systems span a broad spectrum, ranging from

undergraduate students learning concurrent programming to defense contractors

executing classified simulations. Key characteristics of this spectrum are shown

in Figure 1.4. Moving towards the most demanding end of the spectrum, security

concerns among application-side stakeholders increase substantially and additional

Figure 1.1: A Beowulf
cluster [36].

Figure 1.2: The Cray
I [33].

Figure 1.3: IBM’s Blue
Gene [24].

1

Little / No security
Single stakeholder

Little / No financial risk

Moderate / Thorough security
Numerous Internal / External

stakeholders
Significant / Large financial risk

Highest security
Powerful stakeholders

Existential risk

Hobbyist Light Industry / Academic Defense / Mission Critical

spectrum

Figure 1.4: The spectrum of environmental security requirements based on uses
and stakeholders.

methods are employed to enforce information security. At some point along this

spectrum, stakeholders demand physical separation of the system from other users

during operation to satisfy security concerns. This physical separation means completely

different systems, each with its own computing and networking hardware. The

reasons behind this can be numerous, but stem from two major goals: simplicity

of implementation and verification; and risk aversion/management. In the defense

industry particularly, information security breaches can threaten the existence of

entire programs due to certification revocation from agencies such as the Department

of Defense (DoD) [30], the DoD’s Defense Security Service (DSS) agency [31], and

the National Institute of Standards and Technology (NIST). Such risk reasonably

implies physical separation of systems under operation from other users.

It is undeniable that physical separation provides a level of information security

that is difficult to replicate through the use of software, however the financial costs

are significant - devoting entire HPC systems to a single project, or running jobs

sequentially with downtime for data cleansing between [31].

1.2 TIME DIVISION MULTIPLE ACCESS SCHEME

This paper presents a Time Division Multiple Access (TDMA) scheme of network

access as a viable alternative to physical separation. By modulating network access

2

Network
Infrastructure

Node Node Node Node

Compute Nodes

Figure 1.5: Unmodified computing
nodes.

Network
Infrastructure

Node Node Node Node

Compute Nodes

Gate Gate Gate Gate

Control
Server

Figure 1.6: TDMA overlaid onto
Figure 1.5.

between application security groups, we can provide an intuitive security mechanism,

verifiable in real-time, capable of mimicking aspects of the security provided by

physical separation. Furthermore, by implementing this mechanism at the operating

system level, it becomes transparent to user applications, meaning that no modification

to existing application code is necessary. Providing a mechanism for operating

multiple user applications on a single HPC system securely can provide substantial

monetary savings and efficiency gains over physical separation.

TDMA works by inserting gates to network access at each computing node

(computing devices devoted to executing user applications) within the system. These

gates are modulated open and closed by a central administrative program, denoted

as the control server, using knowledge of users and the data they own, denoted as

security groups. The key operation of the scheme is the control server modulating

network access of individual computing nodes such that systems executing application(s)

from one security group never have access at the same time as systems containing

data from a different security group.

1.3 THESIS OUTLINE

Chapter 2 presents the two major intersections of this work with existing research:

HPC security and other examples of time division multiple access schemes. Chapter 3

3

defines the environment in which TDMA operates and the security challenges that

motivate it. Chapter 4 discusses design goals that have both practical implications in

the use of TDMA, and implications on TDMA’s extensibility. Chapter 5 describes

(both informally and formally) the operations of TDMA and constraints on its

operations within HPC settings. Chapter 6 describes our implementation of TDMA

in terms of architecture and the technology used. Chapter 7 shows and analyzes the

performance impact of TDMA on network traffic. Finally, Chapter 8 summarizes

the thesis.

4

Chapter 2

RELATED WORK

The problem statement and proposed solution represent the intersection of two

somewhat disparate fields — Time Division Multiple Access and High Performance

Computing Security. Related works are therefore divided between the two.

2.1 HIGH PERFORMANCE COMPUTING SECURITY

The size and cost of HPC environments dictates that each system is somewhat

unique. The security solutions implemented within each are similarly unique. Sandholm

et al. make an attempt at rectifying this larger problem by creating a framework

that automates user access permissions and resource allocation using ”XACML

(eXtensible Access Control Markup Language)” [35]. They further extend their

solution by tying it in to existing job submission tools (Globus Toolkit [29] and

NorduGrid [32]).

Allcock et al. developed a high-speed data transport protocol, GridFTP, as well

as a corresponding administrative service providing for the creation, registration,

and secure transportation of scientific computing datasets [3]. For efficient execution,

HPC applications must carefully consider characteristics of the data set under operation

such as file size statistics, data creation/consumption rates, and logical distribution [10].

GridFTP implements management of these characteristics while maintaining customizable

security using the authentication mechanisms defined in RFC 2228 ”FTP Security

Extensions” [15]. This solution, while useful in most scientific computing setting,

still allows for application data, albeit encrypted, to be visible over the network to

other user applications. This visibility renders it insufficient for customers with the

most stringent data security needs.

5

2.2 TIME DIVISION MULTIPLE ACCESS

Mages and Feng patented a similar control scheme of computing resources via a

centralized controller over the network [28]. Their scheme, however, specifies only

local media resources of the node as under the control of the central administrative

node. Furthermore, their patent is intended for a much wider distributed use as

digital rights management and security in consumer media devices, rather than our

work on security in HPC environments.

6

Chapter 3

PROBLEM DEFINITION

We begin by defining an abstract HPC environment through which the general case

of our security challenge is shown. In this section we provide brief descriptions

of the major resources common to most HPC systems. Furthermore, to design our

mechanism, certain assumptions must be made on how each resources is operated.

3.1 ASSUMPTIONS ON THE COMPUTING ENVIRONMENT

There are four basic resources in most HPC systems represented in Figure 3.1 as

a) compute nodes, b) persistent storage, c) administrative nodes, and d) network

infrastructure. Worth consideration also is the process of job allocation and the

execution of jobs.

Administrative
Nodes

Compute
Nodes

Persistent
Storage /

NAS

Network
Infrastructure

1
2

3

4

Job Submission Interface

Private
Core

Figure 3.1: An abstract HPC environment.

7

Figure 3.2: The KG−200 Inline Media Encryptor, certified by the NSA for use in
securing persistent storage [1].

Compute Nodes

Compute nodes are independent computing devices designated to run user submitted

applications. These devices are capable of storing temporary data locally. They

send and receive data across network infrastructure for three main purposes:a) storing

or accessing data on the persistent storage devices; b) relaying data between other

compute nodes working in tandem on the same user application; c) and sending or

receiving commands (or reports, as the case may be) from the administrative nodes,

through which users interact.

It is assumed that these compute nodes do not run applications from different

users on the same node (i.e., co-locate disparate user applications) and that user

applications are not given administrative access at this level. No assumption is

made about the use of virtual machines on compute nodes.

Persistent Storage

Persistent storage as Network-Attached Storage (NAS) devices are capable of storing

large quantities of user application data, and are usually of much higher capacity

than the compute nodes. These devices commonly use RAID (redundant array of

inexpensive disks) technology [19] for higher storage efficiency and redundancy.

It is assumed that Inline Media Encryptors (IMEs) and POSIX permissions are

8

used to enforce data access rules within persistent storage [11]. IMEs have been

certified for use in classified networks by the U.S. National Security Administration

since 2006 [1].

Administrative Nodes

Administrative nodes are computing devices where a) both administrators and users

interact with the system, common tasks of which include issuing job or system

commands, accessing reports and results, and performing maintenance; b) resource

management software is centrally located and executed [20], common examples

include IBM’s Tivoli Workload Scheduler and the MOAB Cluster Suite by Adaptive

Computing [4][17].

It is assumed that the scheduler located here is capable of providing access to

the list of current running applications and the hardware resources devoted to them.

Network Infrastructure

Network infrastructure devices facilitate the transmission of data between nodes

within the HPC system. Mediums vary widely and include copper, optical, and

wireless. The most common technologies used in HPC environments are Ethernet

and InfiniBand [7][27].

It is assumed that the network infrastructure uses Internet Protocol to communicate

among nodes.

Job Execution

Best practices for developing jobs run on HPC systems dictates the minimization

of I/O, both to disk and over the network [38]. This I/O minimization is due to the

dramatic increase in access time as data moves further away from the CPU and main

memory. It’s over 50 times more costly to access 1MB of data from the network

9

Action Time to Complete
L1 cache reference 0.5 ns
L2 cache reference 7 ns
Main memory reference 100 ns
Read 1 MB sequentially from memory 250,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Table 3.1: Access time examples showing the magnitude of difference between data
over I/O and data locally stored [12].

α ε

Execution
Time

endstart α

Figure 3.3: The assumed model of application execution in an HPC environment.
αstart and αend are periods where execution is I/O bound, and ε is the prominent
period where execution is CPU bound. This structure adheres to research showing
batched I/O minimizes the I/O cost in terms of time.

than it is from main memory [12]. This overhead increases to almost a factor of

100 if that data is initially read from disk then sent over the network [12].

In the effort to minimize the cost of I/O transactions, previous researchers have

shown that batching I/O into larger transactions can reduce overhead [37]. The

difference between sequentially reading 1K files from network disks and reading

256MB from network disks shows a factor of 1700 improved performance by

reading in larger batches [38]. The batching of I/O, especially the most costly

forms (disk and network) is therefore considered best practice when possible [6]. It

is therefore assumed that job developers will attempt to maximize I/O batching, the

optimal case of which would have an I/O transaction history similar to that shown

in Figure 3.3.

10

Solutions
Hardware Location Board Separation IME POSIX Permissions

Compute Nodes X X
Persistent Storage X X

Administrative Node X
Network Infrastructure

Table 3.2: Security challenges and technology used to solve them.

3.2 SECURITY CHALLENGE

The security fear of users with extremely sensitive data is that a different user

could, through chance or intention, acquire or manipulate their data. The four

basic resources described above represent the resources across which data may be

exposed. Table 3.2 organizes the aforementioned ways in which these resources are

secured [9].

So far we have described ways in which three of the four shared resources

are secured by technology that is either certified by national defense agencies (as

in the case of persistent storage) or intuitive and easily verifiable (as in the case

of compute node board separation and administrative POSIX permissions). This

leaves the shared networking resources as a point of data sharing.

Across the network compute nodes commonly transmit data to numerous destinations:

other compute nodes working on the same application, persistent storage for long

term access, and administrative nodes. Figure 3.4 shows examples of these common

actions.

Figure 3.5 shows examples of actions across the network that can share data

between different user applications. There are two ways this can happen:

1. a user application (App A) can transmit a network packet with the destination

listed as a compute node that is running code from a different application

11

Persistent
Storage /

NAS

Network
Infrastructure

Compute
Node X

Compute
Node Y

Administrative
Node

Network
Packet

Legend

Figure 3.4: Simple example of common actions on an HPC network.

Legend
Network
Packet

Network
Infrastructure

Compute
Node X:
App A

Compute
Node Y:
App B

Compute
Node Z:
App C

Destination:
App B

Figure 3.5: Actions that could permit data sharing between different user
applications.

(App B), or

2. another user application (App C) can actively receive all network packets that

are visible over the network (commonly referred to as ”packet sniffing”).

These are the actions that must be stopped in order to secure network resources

as a shared medium.

12

3.3 INSUFFICIENT SOLUTIONS

There exist current solutions for the strict problem of preventing plaintext data

sharing, but these solutions lack certain qualities that make them sufficient for the

narrow solution we’re seeking when trying to assure users assuming significant risk.

These existing solutions fail through their lack of thoroughness, lack of intuitiveness,

inability to be simply verified, and even through established security flaws.

Encryption

Socket to socket encryption is a common solution to preventing data theft over

a network, though somewhat out of place in an HPC environment due to their

overhead. This solution falls short in its inability to prevent data sharing as in the

case of App C in Figure 3.5. Though the data is encrypted, the value of the plaintext

(unencrypted data) is commonly so high that copying, storing and later decrypting

the network traffic a risk to be prevented.

Virtual Local Area Networks (VLANs)

VLANs, standardized in IEEE 802.1Q [26], are a common solution to preventing

data sharing specifically within large computing infrastructures such as data centers

and mainframes, though sometimes used in HPC environments. VLANs work by

tagging traffic on network switches and routers according to configurable tables of

LAN membership matched with physical interface, with the intention of mimicking

the configurability and security of LANs. Within the VLAN specification there lie

two inherent flaw with VLANs to verifiability that meets our envisioned users’

needs, as well as a few unresolved security flaws.

VLAN solutions are difficult to verify in two ways: a) the logic of VLAN

technology is hidden within firmware which is expensive to analyze. As VLAN

technology improves and becomes more complicated, this problem will only increase
13

in future versions of the systems [14][22]. b) VLAN hardware is commonly manufactured

by international firms that may have pressure from outside governments to include

secret backdoors in the firmware, further exacerbating the previous verification

difficulty. Examples of this uncertainty can be seen in a special report by the U.S.

House of Representatives from October 8th, 2012 [34].

Furthermore, due to backwards compatibility standards outlined in IEEE 802.1Q,

the tagging mechanism of VLANs can be abused via a ”double-encapsulated 802.1Q

/ Nested VLAN” attack which works by placing two VLAN tags on a packet. By

doing so, during certain situations it is possible for packets to ”escape” their VLAN

designation and convey messages to hosts outside their configured VLAN [39], still

allowing data sharing as in the case of App B in Figure 3.5.

14

Chapter 4

DESIGN GOALS

Chapter 3’s discussion on security flaws within HPC environments shows that there

exists an untouched niche for a software solution that replicates the security of

physical user separation. Here we describe the requirements and goals in designing

our solution to this problem.

4.1 A MORE THOROUGH AND INTUITIVE NETWORK SECURITY

The gap between the security mechanisms discussed in Chapter 3: Section 3.3 and

the current approach of physical user separation is large. From manufacturing and

political policy problems [34] to simple security flaws [39], current solutions are

insufficient. For users in this domain to accept a software approach to network

security in HPC environments, the proposed solution must be thorough, simple,

intuitive and easily verifiable. The thoroughness of physical user separation is

inherent in that it operates at the very lowest level of network operations, the

physical layer. The closer our mechanism approaches this layer, the more thorough

it will be considered.

4.2 DYNAMIC CONTROL

Within HPC environments the type, number, and scale of jobs assigned to any of

the systems can be widely varied. To handle this, the solution must be capable of

receiving and modifying policy at the start of each new job. Furthermore, to manage

performance tradeoffs a fine-grained control of the mechanism at higher resolution

than job submission rate is desired.

15

4.3 NETWORK TECHNOLOGY AGNOSTICISM

Two major technologies are used to network HPC systems: Ethernet and InfiniBand.

Any tool for improving security across the broad spectrum of HPC systems must

be capable of operating in each. Further, numerous network topologies exist within

these technologies; switched fabric and tree structures are the most common for

InfiniBand and Ethernet, respectively. For our purposes we define this solution to

be network technology agnostic if it is conceptually capable of being implemented

in either Ethernet or InfiniBand networks.

4.4 USER APPLICATION TRANSPARENT

A fundamental requirement of the solution is that it be transparent to user applications.

Applications written for HPC environments are often quite complex and it is likely

that customers would be reluctant to make even minor modifications, especially to

programs written in the past that are under re-use. For our purposes we define user

application transparency as the ability to run an application without modification to

successful end on an HPC system using our solution, given that it can also do so on

a system not using our solution.

16

Chapter 5

TIME DIVISION MULTIPLE ACCESS OF NETWORK ACCESS

The TDMA scheme introduced in Chapter 1: Section 1.2 mimics the security of

physical separation by enforcing temporal separation of network access (and denial)

according to security groups. This network access denial must be enforced at the

operating system level on each compute node and controlled by the control server

which separates them into time windows. By denying disparate security groups the

ability to send or receive on the network during the same time window, both passive

(packet sniffing) and active (packet insertion) data sharing are prevented.

Figure 5.2 shows an intuitive graphical example of network access switching

between security groups as the system passes through time windows.

5.1 CENTRALIZED SCHEDULING

The size and order of time windows are controlled by a scheduling policy within

the control server. Figure 5.1 give a simple example of a round-robin policy on

two security groups, although more complex scheduling can be created to optimize

for throughput or enforce prioritization. Because the control server modulates the

opening and closing of network access at each time window, very fine grained

control of scheduling policy can be achieved. It is possible to switch from round-robin

. . .S.G. #1 S.G. #2 S.G. #1 S.G. #2 S.G. #1

Time

t 1 t 2 t 3 t 4 t 5

Figure 5.1: A simple round-robin time window policy for two security groups
(S.G.#1 and #2).

17

Network
Infrastructure

S.G. #1 S.G. #1 S.G. #2 S.G. #2
Gate Gate Gate Gate

Control
Server

Network
Infrastructure

S.G. #1 S.G. #1 S.G. #2 S.G. #2
Gate Gate Gate Gate

Control
Server

Network
Infrastructure

S.G. #1 S.G. #1 S.G. #2 S.G. #2
Gate Gate Gate Gate

Control
Server

Legend
Open Access

Closed Access

Time

Slot 1

Slot 2

Slot 3

. . .

Figure 5.2: A simple example of network access switching between two security
groups (S.G.#1 and #2).

18

scheduling during times of low network traffic to modulated window size during

heavy usage by particular users, or according to whatever quality of service scheme

best fits the applications. A number of heuristics are useful to consider for the

creation of a dynamic priority scheduling algorithm: queue memory usage of compute

nodes, number of TCP timeouts (see Section 5.2), and externally imposed priorities.

Dynamic Job Scheduling

To perform network access modulation the control server must have knowledge

of resource assignment within the system. This can be managed by a shared data

structure between the TDMA control server and the system resource manager, such

as a one-to-one mapping from IP address to user application (i.e., security group)

or by providing the control server with API access to the resource manager.

As jobs are added and finish according to the resource manager, TDMA manages

this dynamism as follows:

1. Non-allocated nodes run in a default state of network denial. Due to the

whitelist, however, these nodes are still capable of communicating with the

control server and other administrative nodes such as the resource manager.

2. Once a job is scheduled and allocated by the scheduler and resource manager,

the control server creates a security group using network information from

the resource manager and begins scheduling time windows for this security

group to communicate within itself.

Job Failure

Additional considerations must be made for the case when a scheduled job fails in

some way. There are two major ways in which jobs can fail on the system, and each

corresponds to a specific response from TDMA:

19

1. the job fails gracefully. In this case, some aspect of the user application fails

but does so in a way that does not halt the compute node it is assigned. Under

this scenario, TDMA operates normally and the resource manager and job

scheduler are left to reallocate those resources and reschedule the job.

2. the job fails and halts an assigned compute node. In this case of a compute

node halting error, TDMA on that node would be unable to function. This

causes the TDMA system to enter an insecure state. Resumption from this

insecure state can only happen by cancelling all jobs on the system and

restarting again from initialization data. This is how TDMA operates in a fail

safe manner. In the case that TDMA enters an insecure state (deviation from

the operations defined in Section 5.3) it must be assumed that the erroneous

security group could have either received network traffic from an outside

security group or transmitted network traffic to an outside security group.

5.2 CONSTRAINTS ON TDMA

For TDMA to function in an HPC environment, a number of practical constraints

must be enforced. These constraints revolve around ensuring that user applications

have ample access to network resources. This implies that they do not experience

disruptively long periods of network denial.

TCP Timeout

The main consideration is of TCP timeouts, since TCP is the predominant data

transfer protocol in HPC [2]. Although application programmers can specify TCP

timeout values [13], a practical goal is to prevent delaying communication beyond

the default TCP timeout. Default values for TCP timeout vary across operating

systems with some Linux distributions being as high as 20 seconds, and Windows

operating systems being as low as 5 seconds.
20

Given a TCP timeout value for the operating systems in use within an HPC

environment:

1. Time Window Size - any individual time window cannot be longer than the

default TCP timeout value. If any individual time window is that large, then

all other security groups are guaranteed to have their TCP connections reset

waiting for their time window.

2. ”Fair” Window Scheduling - time windows must be scheduled in such a

manner that no individual security group experiences a period of network

denial that lasts longer than the default TCP timeout. This constraint implies

a periodicity to time window scheduling by the control server.

Window Size

Given a TCP timeout value, timeout, for the operating systems in use within an HPC

environment, we define a relationship between window size, window transition

overhead (the time it takes to transition from one window to another), and the

timeout value.

Suppose SG is a set of security groups, sg ∈ SG, on the system, Wsg is the size

of an individual time window allotted to sg, and Osg is the time it takes to enter and

exit that time window (overhead). For any individual time window W assigned to a

security group current sg, then the following must be true:

{Wsg +Osg : ∀sg ∈ (SG/current sg)}< timeout

Intuitively, this means that for any given security group, the time windows that

occur between that group’s access to the network (both their explicitly stated length

and the overhead associated with transitioning between them) must be shorter, in

total, than the defined timeout for the system. Note that while window size (Wsg)

can be manipulated by the control server, switching overhead (Osg) is a function of

21

implementation. Because this overhead reduces overall network throughput Osg is

assumed to be minimized, and thus can be considered to remain relatively constant

for each security group within a defined implementation. This equation, along with

the constancy of Osg, shows two interesting properties of TDMA operation:

1. The explicit window sizes Wsg have a definite upper bound. For any specific

window Wsg < timeout. Further, if through measurements of an implementation

the HPC administrators can learn Osg, then the specific upper bound for which

Wsg < (timeout +Osg) can be learned.

2. While window sizes are maximally bound, the value of Osg implies a practical

lower bound. As window sizes are reduced, the ratio of
Osg

Wsg
increases and

approaches 1, a point at which the entire time window is used to transition

in and out of network access. This ratio,
Osg

Wsg
, gives the fraction of time

the system as a whole spends on TDMA overhead. To maximize overall

network throughput
Osg

Wsg
must be minimized subject to {Wsg +Osg : ∀sg ∈

(SG/current sg)}< timeout.

5.3 FORMAL DEFINITION

Before discussing our implementation of the solution, we first define an abstract

definition that describes how the mechanism works beyond any specific implementation

and in a more formal way than the beginning of this chapter. The best way to

describe this mechanism is through a language that represents the mechanism in

operation. This language is defined formally by stating the grammar that generates

it.

Suppose S is a finite set of security groups, s.t. each security group s∈ S is made

up of a number of compute nodes. Given S, the language our mechanism operates

on can be generated by the following grammar. Because the language is dependent
22

on the security groups S, this grammar must be generated based on it. This is done

in two steps:

First, we define the base grammar:

G1 = (V 1,Σ1,R1,A), where

V 1 = {A ,W} non-terminal symbols

Σ1 = { /0} terminal symbols

R1 = { A → ε, rules of production

A →WA |W}

This base grammar, through the non-terminal symbols and production rules,

establishes a means of generating the base language form of unordered windows

(W ∈V 1) in an arbitrary length such as WW or WWWWW .

Next, we generate the S specific definitions. To do so it is first necessary to

define notation for two special terminal symbols and three special sets:

os,i - an open command issued to node i within security group s,

as,i - an acknowledgement received from node i within security group s,

θs - the set of all os,i terminals for security group s,

αs - the set of all as,i terminals for security group s, and

π(A) - the set of all permutations of the set A.

These definitions allow us to define a final, special set:

Λs = π(θs)×π(αs)

23

Intuitively, Λs is a set of ordered sets expressing each permutation of θs matched

with each permutation of αs. For example, given a security group s made up of two

elements s.t. s = {1,2}, Λs is defined:

Λs = {(os,1,os,2,as,1,as,2), (os,2,os,1,as,1,as,2),

(os,1,os,2,as,2,as,1), (os,2,os,1,as,2,as,1)}

The sets within Λs represent all legitimate command sequences within a window

(W) for security group s. The key property of the sets within Λs is that each node

within the security group is issued an open command, in any order, followed by

acknowledgements from each node within the security group, once again in any

order.

With these definitions established we can now formally define an S specific

grammar:

G2 = (V 2,Σ2,R2, /0), where

V 2 = {W}

Σ2 = {[os,i,as,i] : ∀i ∈ ∀s ∈ S}

R2 = {[W → λ] : ∀λ ∈ Λs : ∀s ∈ S}

These definitions add new terminal symbols and the necessary production rules

to generate them. Note the use of Λs in the production rules. These rules provide

every possible command sequence possible for any window W s.t. every node

issued an open command is required to report back with an acknowledgement

before continuation onto another window.

Finally, the language our mechanism accepts for security group S can be formed

using the union of the previous two grammars:

24

G = (V,Σ,R,A), where

V =V 1∪V 2

Σ = Σ1∪Σ2

R = R1∪R2

25

Chapter 6

IMPLEMENTATION

As a proof of concept we have implemented a version of the tool for the Linux

operating system using C++11 [16]. In this section we will describe the tool’s

architecture, operation, and how it adheres to the design goals from Chapter 4.

6.1 OVERVIEW

The tool is composed of four major components: the control server, ingress controller,

egress controller, and the state controller. The control server can be located on any

administrative node within the system, preferably co-located with the system job

scheduler. The remaining controllers are located throughout the HPC environment,

with a copy on each compute node that is designated to execute user applications.

As jobs are scheduled on the system, the control server must be informed of the

Internet Protocol, or IP, addresses assigned to that application and the assigned

security group. As jobs are run on compute nodes throughout the system the

control server communicates with the state controller on each node to designate

time windows. This communication is sent via a standard TCP communications

socket. For any given time window in which a security group does not have access

to the network, outgoing network packets are stored in a local queue while incoming

packets not sourced according to a “whitelist” firewall are ignored and deleted.

The control server is tasked with alternating time window authorization between

security groups.

The following subsections describe each components operations in further detail.

6.2 STATE CONTROLLER

The state controller has four major tasks:
26

closed open

Open Command
Received

Timer Event
Occurs

send acknowledgement

set timer

Figure 6.1: State diagram of a compute node running the state controller.

1. Securely send and receive communication with the control server including

receiving open network access commands and sending acknowledgements

that the ingress and egress controllers have been transitioned to a state of

network denial (closed).

2. Transit both the ingress and egress controllers between states of network

access and denial.

3. Track time for which it must issue state transitions and communications with

the control server.

4. Collect and store performance data on the egress queue’s memory usage.

A state machine diagram of the state controller is shown in Figure 6.1. For a

detailed algorithm of the state controller see Algorithm 2 in Appendix A.

6.3 INGRESS AND EGRESS CONTROLLERS

The ingress and egress controllers are firewall rules created and manipulated by the

state controller. The rules are implemented using iptables and NetFilter, the packet

filtering firewall technology that has come standard with the Linux kernel since

version 2.4 [40]. These controllers occur in two states, network access and network

27

denial. When in the network access state, they are to allow network packets to

flow freely to and from local applications. When in the network denial state each

controller has a specific task:

1. The ingress controller must deny and drop all network packets received except

those specifically allowed according to a whitelist. This whitelist is specifically

issued by the control server at the beginning of execution, and dictates the IP

and MAC address of administrative services within the environment from

which communication must not be broken. Example of such services include

Network Time Protocol, resource scheduling communication, and the control

server itself must have an entry in this whitelist.

2. The egress controller must enqueue outgoing packets exempting those specifically

allowed through according to the aforementioned whitelist. These packets

must be stored in main memory in preparation for transmission once network

access is again granted.

When these controllers transition out of the network denial state, a certain

protocol must be followed in order to avoid the system dropping packets. All nodes

within the security group to which a state of network access is now being issued

must transition their ingress controllers before any single node within the group

transitions their egress controllers. The reason simply being that upon transitioning

egress controllers into the network access state, they will begin transmitting (in a

first-come first-served order) the packets sitting in their queue. If nodes within that

security group have yet to transition their ingress controller, packet arrivals sourced

from within their own security group would be dropped as if they were sourced

outside the security group.

28

Routing Forward Post-
RoutingLocal?

NetFilterOutputInput

Local Processes

No

Yes

Ingress Egress

Figure 6.2: Data flow architecture of iptables, the packet filtering firewall with
NetFilter located within the Linux kernel. The input and output ”chains” within
NetFilter provide an interface for administrators to control and filter packets sent
into user space.

iptables and NetFilter

Figure 6.2 provides a concise overview of the components within iptables. With

iptables enabled, all packets sent and received from the operating system are passed

through a series of checks. At each check, iptables is capable of transforming

the data within that packet according two edicts a) routing tables and b) NetFilter

chains before data is delivered from the network to local processes and before local

processes can deliver packets to the network medium.

It is within NetFilter that the logic of the ingress and (most of the) egress

controllers are located. Within NetFilter’s input and output processes administrators

can insert “chains” of logic to redirect the flow or, or manipulate the contents of

packets. Figure 6.3 provides a visual summary of the ingress and egress controller

logic located within NetFilter as chains.

The queue structure in Figure 6.3’s output section is controlled by the egress

29

Ingress
Closed?

Whitelisted?

Gate

Local Processes

Input Output

Yes
No

No

Yes

Yes

No
Q

ueue

N
etFilter C

hainsWhitelisted?

Figure 6.3: A detailed look at the logic within the NetFilter chains that makeup the
Ingress and Egress controllers on compute nodes.

controller registering a special subroutine to process the packets when in the network

access state. This subroutine is registered using NetFilter’s libnet f ilter queue

library [41].

6.4 CONTROL SERVER

The control server has three major tasks:

1. Determine system network access states for the next time window.

2. Validate the closure of the previous time window.

3. Communicate the next time window states to compute nodes.

To determine the network access states for the next time window the scheduler

must run a scheduling algorithm on a few historical inputs. A state machine of

the control server is shown in Figure 6.4. The control server transitions between

30

wait on App A
Ack's

wait on App B
Ack's

All App A Ack's
Recieved

send OPEN to i
forall i in App B

Start

send OPEN to i
forall i in App A

All App X Ack's
Recieved

send OPEN to i
forall i in App N

wait on App N
Ack's

. . .

All App B Ack's
Recieved

All App N Ack's
Recieved

send OPEN to i
forall i in App A

Figure 6.4: State diagram of an example window controller.

states of open network access for individual security groups. During these states

the control server waits to receive acknowledgement from the state controllers of

that security group showing network access denial has been enforced for all nodes

of the group.

For a detailed algorithm of the control server see Algorithm 1 in Appendix A.

31

Chapter 7

PERFORMANCE

To analyze the performance of TDMA a series of network performance tests were

run using Netperf, an open source network performance tool that is installed by

default on most Linux distributions [18] and the common UNIX ping command.

These tests were run on a TDMA testbed run in Impact Lab at Arizona State

University.

7.1 TDMA TESTBED

The testbed consisted of five servers (four compute nodes and one control server)

each connected to a single hub according to the layout shown in Figure 7.1. For

Control Server
192.168.1.1

Hub

Compute Nodes

Node 1
192.168.1.101

Node 2
192.168.1.102

Node 3
192.168.1.103

Node 4
192.168.1.104

Security Group #1 Security Group #2

Figure 7.1: The network architecture of TDMA testbed.

32

Figure 7.2: Network traffic between two security groups (S.G.#1 and #2) without
TDMA enabled. Compare to the time division visible in Figure 7.3.

reproduction purposes, the TDMA testbed is described in more detail in Appendix B.

7.2 PERFORMANCE TESTS

Using the TDMA testbed we ran three series of performance tests, one to display the

temporal division of security group packets, another to measure TDMA’s overhead

on system throughput, and a final test of impact on RTT.

Netperf

Netperf is the de facto standard for network throughput measurement [21][5][23][42]

from which we utilized two major TCP communication test types:

1. TCP Stream Performance (TCP STRM) - a simple test of bulk data transfer

in a client to server manner. This tests the combined throughput of both the

network and the networking interface of the client and server.

2. TCP Request Response (TCP RR) - a test of TCP request and response rates

between client and server. In addition to measuring the network’s throughput,

33

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

500

Time (1/20s)

P
ac

ke
ts

 T
ra

ns
m

itt
ed

Security Group 1
Security Group 2

Figure 7.3: A trace of network traffic under performance testing while TDMA
controls access.

this test measures the throughput of TCP transaction handling rather than just

buffered data transfer, the main goal of the TCP Stream Performance test.

Both of these tests are customizable by the packet payload size, send buffer, and

receive buffer.

Temporal Division

The main goal of this test was to display the temporal division of security group

packets. As such, variations on payload size and send/receive buffers makes little

difference. Figure 7.3 shows an historical trace of packets transferred by two

security groups, both running TCP STRM tests under TDMA. TDMA was configured

to have time windows of 1 second, the divisions of which are clearly visible.

Overhead

This series of tests was used to measure TDMA’s overhead when compared to the

same tests run without TDMA. In it, both TCP RR and TCP STRM tests were ran

on variations of payload size for 5 minutes each, with two security groups. Payload
34

TCP_RR TCP_STREAM
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t (

K
B

/s
)

TDMA Disabled
TDMA Enabled

Figure 7.4: The impact of TDMA on TCP performance under two different
’netperf’ tests.

sizes (in bytes) were varied by powers of two: 1024, 2048, 4096, 8192, and 16384.

The resulting throughputs were averaged through payload sizes to create throughput

values for each test with and without TDMA enforcement. Figure 7.4 shows the

results of this test series. It is visible that, although significant, the overhead of

TDMA is not dramatic. The overhead on TCP RR was an averaged 14% reduction

in throughput, while TCP STRM tests showed a smaller 11% reduction in throughput.

ping

ping is the de facto network connectivity test. Using Internet Control Message

Protocol (ICMP) messages, ping sends a message from a local network node to a

remote node, and the remote node should respond back if it receives this message.

If a response is received from a remote node then network connections are possible.

Reasons for ping to fail are either a lack of connectivity or firewall rules on either

machine that deny ICMP communication (not uncommon in production settings for

security reasons). For testing purposes, ping also includes the RTT of the message,

i.e. the time it took for the local node to receive a response.

35

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

ping # (sorted by RTT)

R
T

T
 (

m
s)

Figure 7.5: RTT of ping under TDMA.

TDMA’s effect on RTT

To test TDMA’s effect on RTT, two tests were performed: the test bed run with

pings issued every .2 seconds for 5 minutes without TDMA , and another test using

pings issued every .2 seconds for 5 minutes with TDMA enabled. Without TDMA,

these pings have a mean RTT of under 1ms. The RTT of pings with TDMA enabled

are shown in Figure 7.5.

Figure 7.5 shows the RTT of pings under TDMA sorted according to RTT.

The results can be divided into two major sections, pings with RTT comparable

to operation without TDMA (the low RTT on the left portion of the graph) and

RTT affected by TDMA (the right side of the graph).

The linear growth (see Figure 7.6) of RTT under TDMA can be understood by

recognizing how the ping messages interact with TDMA. As the ping messages are

issued at a constant interval, during periods of network denial these messages are

being queued in order. Messages enqueued at the beginning of a network denial

period wait longer in the queue to reach the network than messages enqueued just

36

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500

3000

ping # (sorted by RTT)

R
T

T
 (

m
s)

RTT Measurements
Low range linear fit
High range linear fit

Figure 7.6: Linear regression fits of two high RTT sections within RTT results
under TDMA.

before network access is enabled. Due to the steady period of message generation

(every .2 seconds), there is a steady linear increase in RTT for these messages.

Furthermore, when, during a period of network access, these messages are

received by the remote node, there is a chance that the remote node will not have

processed the message to respond in time before another period of network denial

is enforced. This can drive the RTT up to the time of two full time windows, in

this case 2 seconds (1 second per time window), in addition to delays from network

congestion, to which we attribute RTT approaching 2.5 seconds.

37

Chapter 8

CONCLUSION

The problem of preventing data sharing among users in an HPC environment is

a difficult one. Further, creating a solution that is intuitive and secure enough

to convince highly sceptical stakeholders with great levels of risk of its security

narrows available options. Solutions that exist in similar domains are presented in

Section 3.3, and shown to be insufficient for security reasons or difficult to verify.

This thesis presents a method of solving this niche problem that is thorough,

intuitive, and verifiable. TDMA was inspired by the desire to mimic the physical

separation of applications such that it will be acceptable to risk-averse stakeholders.

This inspiration manifested in a solution that performs temporal separation of users

in lieu of physical separation.

TDMA’s operations are then formalized in Section 5.3 as a grammar, providing

an unambiguous description of operations. Out implementation of TDMA on an

Ethernet network is then described and analyzed in Chapters 6 and 7. TDMA’s

effects are shown to be apparent in Figure 7.3 and its overhead shown to be within

reason considering the massive performance and financial benefits that come from

running workloads concurrently.

8.1 FURTHER WORK

Continued work on this thesis can be divided into improvements and extensions of

the current implementation, and research into possible alternative solutions to the

driving problem of preventing interactions between applications over the network

in an intuitively and verifiable way.

38

Improvements on TDMA

While TDMA has been implemented for a small Ethernet testbed, more work remains

to be done. To gather more verbose performance measurements, TDMA needs to

be enforced on standard HPC workloads, rather than simple network performance

tests. While round-robin scheduling is sufficient for small testbeds, more intelligent

scheduling based on application bandwidth need should be implemented and tested.

Finally, to thoroughly convince sceptical stakeholders, formal verification of code

should be performed to ensure the formal design in Section 5.3 matched the code

that implements it.

Alternative Mechanisms

TDMA assumes a trusted agent on each compute node capable of intercepting,

blocking, and queuing network packets. In our implementation (Chapter 6) iptables

and NetFilter act as elements of this trusted agent. A possible alternative to TDMA

would be to configure this agent with packet filtering rules ensuring communication

to outside security groups fail. Filtering rules would be based on the whitelist

concept used in TDMA - each security group only allowing ingress and egress of

packets destined for nodes within its own security group and a select few administrative

nodes. As jobs are scheduled and enter the system, this alternative would work in

conjunction with the resource manager to reconfigure the whitelists on nodes within

the entering job’s security group.

This alternative provides the security benefits of TDMA without the network

bandwidth and RTT overhead of enforced time windows. The major drawback to

this alternative is the temporal sharing of network resources. Without the clearly

defined time windows, convincing verification mechanisms are more complicated

and must involve more than passive packet sniffing (the case under TDMA), such

39

as automated penetration testing and auditing (verification techniques traditionally

used within industry).

40

Bibliography

[1] United States National Security Administration. Inline media encryptor.
http://www.nsa.gov/ia/programs/inline media encryptor/index.shtml,
January 2009.

[2] Bill Allcock, Joe Bester, John Bresnahan, Ann L Chervenak, Ian Foster,
Carl Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven
Tuecke. Data management and transfer in high-performance computational
grid environments. Parallel Computing, 28(5):749–771, 2002.

[3] Bill Allcock, Joe Bester, John Bresnahan, Ann L Chervenak, Carl Kesselman,
Sam Meder, Veronika Nefedova, Darcy Quesnel, Steven Tuecke, and
Ian Foster. Secure, efficient data transport and replica management for
high-performance data-intensive computing. In Mass Storage Systems and
Technologies, 2001. MSS’01. Eighteenth IEEE Symposium on, pages 13–13.
IEEE, 2001.

[4] V.S. Arackal, B. Arunachalam, MB Bijoy, BB Prahlada Rao, B. Kalasagar,
R. Sridharan, and S. Chattopadhyay. An access mechanism for grid garuda.
In Internet Multimedia Services Architecture and Applications (IMSAA), 2009
IEEE International Conference on, pages 1–6. IEEE, 2009.

[5] Richard Blum. Network Performance Open Source Toolkit: Using Netperf,
tcptrace, NISTnet, and SSFNet. Wiley, 2003.

[6] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. Investigation
of leading hpc i/o performance using a scientific-application derived
benchmark. In Supercomputing, 2007. SC’07. Proceedings of the 2007
ACM/IEEE Conference on, pages 1–12. IEEE, 2007.

[7] M. Bozzo-Rey, M. Jeanson, M.N. Nguyen, C. Gauthier, M. Barrette,
P. Vachon, K. Gaven-Venet, H.Z. Lu, S. Allen, and A. Veilleux. Design,
deployment and bench of a large infiniband hpc cluster. In High-Performance
Computing in an Advanced Collaborative Environment, 2006. HPCS 2006.
20th International Symposium on, pages 8–8. IEEE, 2006.

[8] Robert G Brown. Engineering a beowulf-style compute cluster. Duke
University Physics Department, 2004.

41

[9] R. Buyya. High Performance Cluster Computing: Architectures and Systems,
volume 1. Prentice Hall, Upper SaddleRiver, NJ, USA, 1999.

[10] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven
Tuecke. The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of network and
computer applications, 23(3):187–200, 2000.

[11] G.N. Cohen, B. Kamenel, and C.M. Kubic. Security for integrated
ip-atm/tactical-strategic networks. In Military Communications Conference,
1996. MILCOM ’96, Conference Proceedings, IEEE, volume 2, pages 456
–460 vol.2, oct 1996.

[12] J. Dean. Designs, lessons and advice from building large distributed systems.
Presented at Large-Scale Distributed Systems and Middleware (LADIS),
2009.

[13] Lars Eggert and Fernando Gont. Tcp user timeout option. 2009.

[14] Jean-Yvesc Emery, Cédricc Vandenweghe, Brunoc Thery, et al. Security
management process of at least one vlan of an ethernet network, April 13
2011. EP Patent 2,073,455.

[15] Marc Horowitz and Steve Lunt. Ftp security extensions. Technical report,
RFC 2228, October, 1997.

[16] ISO ISO. Iec 14882: 2011 information technologyprogramming
languagesc++. International Organization for Standardization, Geneva,
Switzerland, 27:59, 2012.

[17] D.B. Jackson. On-demand access to compute resources, April 7 2006. US
Patent App. 11/279,007.

[18] Rick Jones, Karen Choy, and David et al. Shield. netperf - a network
performance benchmark. http://www.netperf.org/netperf/. Version 2.5.0.

[19] R.H. Katz, G.A. Gibson, and D.A. Patterson. Disk system architectures for
high performance computing. Proceedings of the IEEE, 77(12):1842 –1858,
1989.

42

[20] A. Keller and A. Reinefeld. Anatomy of a resource management system for
hpc clusters. Annual Review of Scalable Computing, 3(1):1–31, 2001.

[21] J King. Parallel ftp performance in a high-bandwidth, high-latency wan.
SC2000, November, 2000.

[22] Raymond Kloth. Derived vlan mapping technique, March 27 2001. US Patent
6,208,649.

[23] Samad S Kolahi, Shaneel Narayan, Du DT Nguyen, Yonathan Sunarto, and
Paul Mani. The impact of wireless lan security on performance of different
windows operating systems. In Computers and Communications, 2008. ISCC
2008. IEEE Symposium on, pages 260–264. IEEE, 2008.

[24] Argonne National Laboratory. The ibm blue gene/p supercomputer
installation at the argonne leadership computing facility. http://en.wikipedia.
org/wiki/File:IBM Blue Gene P supercomputer.jpg, December 2007.

[25] N. Leavitt. Big iron moves toward exascale computing. Computer,
45(11):14–17, 2012.

[26] IEEE Local, Metropolitan Area Network Standards Committee, et al. Virtual
bridged local area networks, 1998.

[27] B. Madai and R. Al-Shaikh. Performance modeling and mpi evaluation using
westmere-based infiniband hpc cluster. In Computer Modeling and Simulation
(EMS), 2010 Fourth UKSim European Symposium on, pages 363–368. IEEE,
2010.

[28] Kenneth G Mages and Jie Feng. Method of secure server control of local
media via a trigger through a network for instant local access of encrypted
data on local media, April 6 1999. US Patent 5,892,825.

[29] University of Chicago. Globus toolkit homepage. http://www.globus.org/
toolkit/, 2013.

[30] Department of Defense. Dod manual 5200.01-v3 dod information security
program: Protection of classified information, February 2012.

43

[31] Department of Defense Defense Security Service. Clearing and sanitization
matrix as of: June 28, 2007, 2007.

[32] University of Oslo. Nordugrid homepage. http://www.nordugrid.org/, 2013.

[33] Clemens Pfeiffer. Ein cray-1, aufgenommen im deutschen museum,
mnchen. http://en.wikipedia.org/wiki/File:Cray-1-deutsches-museum.jpg,
November 2006.

[34] Mike Rogers and Dutch Ruppersberger. Investigative report on the u.s.
national security issues posed by chinese telecommunications companies
huawei and zte, October 2012.

[35] Thomas Sandholm, Peter Gardfjäll, Erik Elmroth, Lennart Johnsson, and Olle
Mulmo. An ogsa-based accounting system for allocation enforcement across
hpc centers. In Proceedings of the 2nd international conference on Service
oriented computing, pages 279–288. ACM, 2004.

[36] Alex Schenck. Picture of a beowulf cluster. http://en.wikipedia.org/wiki/File:
Beowulf.jpg, January 2008.

[37] Hongzhang Shan, Katie Antypas, and John Shalf. Characterizing and
predicting the i/o performance of hpc applications using a parameterized
synthetic benchmark. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, page 42. IEEE Press, 2008.

[38] Hongzhang Shan and John Shalf. Using ior to analyze the i/o performance for
hpc platforms. In Cray Users Group Meeting (CUG), pages 7–10, 2007.

[39] Cisco Systems. Vlan security white paper - cisco catalyst 6500
series switches. http://www.cisco.com/en/US/products/hw/switches/ps708/
products white paper09186a008013159f.shtml, 2002.

[40] The Netfilter webmaster. The netfilter.org project. http://www.netfilter.org/,
2010.

[41] Harald Welte. The netfilter.org libnetfilter queue project. http://www.netfilter.
org/projects/libnetfilter queue/index.html, 2010.

44

[42] Binbin Zhang, Xiaolin Wang, Rongfeng Lai, Liang Yang, Zhenlin Wang,
Yingwei Luo, and Xiaoming Li. Evaluating and optimizing i/o virtualization
in kernel-based virtual machine (kvm). Network and Parallel Computing,
pages 220–231, 2010.

45

APPENDIX A

IMPLEMENTED TDMA ALGORITHMS

46

Algorithm 1 Control Server opening and closing network access windows.

1: function Open Windows(Scheduler)
2: Scheduler.initialize();
3: while End Command Not Received do
4: Security Group← Scheduler.get next group();
5: Security Group.state← STATE.OPEN;
6: for each node ∈ Security Group do
7: send(node.address,

Security Group.crypto sign(COMMAND.OPEN));
8: node.state← STATE.OPEN;
9: while Security Group.state == STATE.OPEN do

10: node response← block on receive message();
11: if node response.state == STATE.CLOSED then
12: node.state← STATE.CLOSED;
13: else
14: throw ERROR.UNCLOSED NODE;
15: Security Group.state← STATE.CLOSED;
16: for each node ∈ Security Group do
17: if node.state == STATE.OPEN then
18: Security Group.state← STATE.OPEN;

47

Algorithm 2 State Controller Mechanism opening and closing network access to
nodes by security group.

1: function Node Control Mechanism
2: Queue← initialize queue;
3: while exit command not received do
4: state←Close Network Access(Queue);
5: while open command not received do
6: message← block on receive message();
7: state← Open Network Access(Queue);
8: sleep(message.time);
9: state←Close Network Access(Queue);

10: send acknowledgement(state);

11: function Close Network Access(Queue)
12: state.egress← Network Egress.enqueue(Queue);
13: state.ingress← Network Ingress.drop packets();
14: return state

15: function Open Network Access(Queue)
16: state.ingress← Network Ingress.accept packets();
17: state.egress← Queue.process packets to network();
18: return state

48

APPENDIX B

TDMA TESTBED DETAILS

49

Figure B.1: The TDMA test bed located in Impact Lab at Arizona State University.

To verify and test the mechanism a test bed was created out of five IBM x336

servers seen in Figure B.1. These servers run Ubuntu server version 12.04, with

Linux kernel 2.6.32-24, and had their network interfaces configured and connected

according to Figure 7.1. iptables/NetFilter version 1.4.4 was used in the implementation

of TDMA on this testbed.

50

