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ABSTRACT  

   

The Cape Floral Region (CFR) in southwestern South Africa is one of the most 

diverse in the world, with >9,000 plant species, 70% of which are endemic, in an area of 

only ~90,000 km
2
. Many have suggested that the CFR's heterogeneous environment, with 

respect to landscape gradients, vegetation, rainfall, elevation, and soil fertility, is 

responsible for the origin and maintenance of this biodiversity. While studies have 

struggled to link species diversity with these features, no study has attempted to associate 

patterns of gene flow with environmental data to determine how CFR biodiversity 

evolves on different scales. Here, a molecular population genetic data is presented for a 

widespread CFR plant, Leucadendron salignum, across 51 locations with 5-kb of 

chloroplast (cpDNA) and 6-kb of unlinked nuclear (nuDNA) DNA sequences in a dataset 

of 305 individuals. In the cpDNA dataset, significant genetic structure was found to vary 

on temporal and spatial scales, separating Western and Eastern Capes - the latter of which 

appears to be recently derived from the former - with the highest diversity in the heart of 

the CFR in a central region. A second study applied a statistical model using vegetation 

and soil composition and found fine-scale genetic divergence is better explained by this 

landscape resistance model than a geographic distance model. Finally, a third analysis 

contrasted cpDNA and nuDNA datasets, and revealed very little geographic structure in 

the latter, suggesting that seed and pollen dispersal can have different evolutionary 

genetic histories of gene flow on even small CFR scales. These three studies together 

caution that different genomic markers need to be considered when modeling the 

geographic and temporal origin of CFR groups. From a greater perspective, the results 

here are consistent with the hypothesis that landscape heterogeneity is one driving 



ii 

influence in limiting gene flow across the CFR that can lead to species diversity on fine-

scales. Nonetheless, while this pattern may be true of the widespread L. salignum, the 

extension of this approach is now warranted for other CFR species with varying ranges 

and dispersal mechanisms to determine how universal these patterns of landscape genetic 

diversity are.   
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Chapter 1 

APPLYING POPULATION GENETICS TO EXPLAIN DIVERSITY WITHIN THE 

CAPE FLORAL REGION: A REVIEW OF PRIOR WORK 

Introduction 

A recent panel convened by the United Nations (January 2012) has recognized a 

biodiversity crisis, as mass extinctions and increased land use threatens species across the 

globe. Biodiversity, or the quantity or number of species found within an environment, 

can be a measurement of the health and productivity of an ecosystem (Hagan & Whitman 

2006, Flombaum & Sala 2008). Losses of biodiversity within an ecosystem can have 

large impacts, reducing the sustainability of an environment through local extinctions and 

limiting available resources through habitat destruction (Costanza et al. 1997; Daily 

1997; Balmford et al. 2002; Singh et al. 2012). Currently, several threats exist to 

endanger biodiversity across the globe including the human impact of exploiting the 

environment through land development, over fishing, pollution and the natural threats 

from invasive species and disease. Understanding what contributes to the generation and 

maintenance of biodiversity on both spatial and temporal scales is paramount to 

sustaining biodiversity in the long-term. However, in practice this is difficult given the 

technical challenges of measuring biodiversity and the theoretical challenges of how to 

account for all potential mechanisms that may contribute to biodiversity at various scales. 

Therefore, a theoretical framework to define and assess biodiversity would aid in the 

development of conservation plans by informing groups about all processes underlying 

the current biodiversity in a region. The information collected from these studies can then 
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be used as quantitative measures of biodiversity, providing data of factors that influence 

biodiversity, which can be accounted for in conservation plans.  

One area facing this biodiversity crisis is the Cape Floral Region (CFR), a 

‘biodiversity hotspot’ (Cowling et al. 2003) located in South Africa (Fig. 1.1). It is one of 

the world’s richest botanical areas for its size and a regional area of endemism (Linder & 

Hardy 2004; Goldblatt 1978), often regarded as the smallest of the six Floral Kingdoms 

(Linder 2003). It covers less than 4% of the total land area of South Africa (Goldblatt 

1997) yet contains over 20% of Africa’s floral species. Nearly 9,000 species exist in the 

CFR, approximately 70% of which are endemic (Linder 2003), making it the most 

endemic and diverse geographic area excluding all island land masses and yet, all in a 

region covering only 90,000 km
2
. Many studies have tried to understand what contributes 

to and drives diversity in this region, however, owing to the heterogeneity found in the 

region on climatic, geographical, topographical, and even temporal scales this has been 

difficult. 

 The climate of the CFR has a Mediterranean-like climate with warm, dry 

summers and mild, wet winters. Species diversity is typical of Mediterranean regions 

(Linder 2003); however, when comparing species density and endemism per square 

kilometer of land, the diversity of the CFR far outweighs its Mediterranean counterparts 

(Linder 2003, Fig. 1.2). The immense diversity found on such a small geographic scale 

may be in part due to the environmental heterogeneity within the CFR which includes 

complex vegetation, graduated rainfall regimes, multiple soil types, and changing 

topography on a spatially fine scale.  
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The complex vegetation of the CFR includes five distinctive vegetation types: 

fynbos, karoo steppe, succulent shrubland, forest thicket, and evergreen forest (Goldblatt 

1997). Fynbos (meaning "fine bush" in Afrikaans) is endemic to the CFR, and itself is 

comprised of four fire-prone vegetation types: restiod reed-like bushes, ericoid fine leafed 

bushes, proteoid large leafed woody shrubs, and geophytes that contain large 

underground storage organs (Cowling et al. 1996). The high levels of plant endemism 

occur mostly in the fynbos vegetation that alone covers over half of the CFR and 

accounts for >80% of its plant species; several groups have hypothesized the unique 

composition of fynbos alone is what explains the species patterns found here (Goldblatt 

1978; Campbell 1983; Linder 2003).  

The CFR is naturally divided into two distinct coasts, the West and East coasts, 

which are referred to as the Western and Eastern Capes. This distinction is relevant 

because each cape is abutted by a different ocean; on the West is the Atlantic Ocean, and 

on the East is the Indian Ocean. The two oceans meet near the southern tip at Cape 

Agulhas, where the cooler Atlantic currents blend with the warmer Indian Ocean 

currents, creating unique oceanic environments and pressure systems. This blending of 

oceans also lends to substantial variation between the Capes with respect to climatic 

patterns. The Western Cape shows a Mediterranean climate pattern of summer rainfall 

and receives the highest concentration of rainfall near 60” per annum (Cowling et al. 

2005). The amount of rainfall decreases in a step-wise fashion moving towards and into 

the Eastern Cape, where the climate changes to a bi-annual rainfall regime, resulting in 

unreliable amounts of rainfall, with an average of near 10” per annum (Cowling & 

Lombard 2005). These distinct climate patterns are thought to have emerged and 
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remained stable throughout the Pleistocene, allowing for unrestricted access to the 

Western Cape (Cowling et al. 2009; Valente et al. 2010). Several researchers have 

suggested that the flora and fauna inhabiting each coast are largely determined by the 

local conditions (Linder & Vlok 1991; Linder 2003), so these unique climatic patterns 

may be contributing to the local diversity of each Cape. 

The terrain of the CFR changes considerably within its narrow borders; as 

mountain ranges separate the interior of the country from the coast, leading to a gradient 

of altitudes that can change from 3 m below sea level to 2,200 m above sea level and all 

within kilometers of each other (Latimer et al. 2006). Associated with rainfall and 

topographical instances is the variety of soils found across the CFR. These soils include 

rocky, nutrient-poor soil to nutritionally imbalanced dune and limestone sands of the 

coastal margin (Cowling & Proches 2005). Not only do these soils vary in type, but also 

quality, as the range of fertility and pH varies even on a fine scale. Altogether, this 

combination of topography, orography, and climatic diversity lends to the CFR areas rich 

with flora and desolate with sandy deserts; areas which can support the incredible plant 

diversity that has been well-documented. However, it is this exceptionally complex 

combination of factors on spatial and potentially temporal scales, which have been 

difficult to model both independently and collectively (Cowling et al. 2005).  

In the development of a theoretical framework that both assesses the biodiversity 

of the CFR and also determines what factors may be creating or maintaining this 

biodiversity, a set of questions has been posited. These questions reflect current ongoing 

research aims in the CFR and include: understanding if overall patterns at regional scales 

affect local diversity; how these patterns of diversity vary across the geological and 
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topographical gradients found in the CFR; if the variations of the environment cause 

these patterns; when these patterns arose; and what evolutionary processes contributed to 

these patterns of diversity (Linder 2003; Cowling & Proches 2005; Barraclough 2006).  

Numerous studies have been performed in the CFR in an effort to answer these 

questions; many studies have provided insight into how some of these processes have 

affected diversity of the CFR at some level. Despite these research efforts, many of these 

questions remain unanswered; therefore, several groups have suggested using population 

genetic studies as a means to understand population level genetic diversity. These studies 

can infer spatial and temporal information by generating data reflecting gene flow, 

population genetic structure and divergence, fine spatial scale variation, while also 

reflecting historic and recent expansions and bottlenecks in population size that relate 

information about temporal change on the scale of thousands of years (Perry et al. 2007; 

Zellmer & Knowles 2009).  

Although this temporal and spatial scale analysis has been strongly encouraged 

for species in the CFR (Barraclough 2006; Hardy 2006; Linder 2006), this approach has 

not been largely adopted because of several obstacles, including organismal sampling, 

collection of molecular markers, and appropriate statistical models. In using a population 

genetic approach, three basic questions can be answered within population based models: 

(i) what is the genetic structure of gene flow, (ii) what is the relationship among these 

individuals in time, and (iii) what factors are influencing gene flow. However, in order to 

implement a population genetic approach to answer these questions, we must consider the 

organism of study, both the physical and genetic sampling of that organism, and the 

statistical tests used for data analysis.  
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Any CFR population can be used to understanding how genetic diversity is 

distributed in the CFR, but the biology and life history of that organism are necessary to 

consider when making extrapolating conclusions to the overall CFR. This includes the 

organisms range (i.e. is it a local endemic or is it widely distributed), reproductive 

strategy (i.e. can it self-reproduce?), and the ability for movement (i.e. is it a sessile plant 

or a mobile animal), all of which can influence the underlying genetic diversity within a 

population. For example, in studies that examine flora, the fact that plants have two 

mechanisms of dispersal and gene flow via pollen and seed dispersal may play a role in 

understanding levels of gene flow and spatial genetic structure and must be taken into 

consideration when implementing a population genetic study.  

How an organism is sampled also determines how these questions can be 

answered as we can only answer questions regarding spatial genetic structure relative to 

the physical locations of the population sample. Population sampling can take on a 

number of strategies which include variations on the geographic range and number of 

individuals sampled. Some examples are: sampling which maximizes the number of 

locations but not the number of individuals across a broad range (e.g. single individuals 

sampled from many locations covering the entire CFR), focusing on maximizing 

individuals in a small range (e.g. sampling many individuals across a 10 x 10 m plot), or 

one that tries to both include a broad range while collecting a suitable number of 

individuals at each location to have the power to detect differences between each location 

using statistical analyses.  

The genetic markers used can influence genetic diversity and may limit temporal 

resolution as each of these markers can reflect different historical or evolutionary 
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backgrounds given their biological and evolutionary differences. Genetic markers include 

haploid mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA), or diploid nuclear 

DNA (nuDNA), with an understanding that nuclear ploidy can vary depending on the 

organism examined. The inheritance of each of these markers varies; mtDNA and 

cpDNA are largely maternally inherited and nuDNA is bi-parentally inherited, therefore 

nuDNA undergoes recombination whereas mtDNA and cpDNA do not (Pharmawati 

2004). Both mtDNA and cpDNA have a smaller effective population sizes because they 

are haploid and are more subject to genetic drift than nuDNA, they also can reflect 

different dispersal mechanisms, if female associated dispersal differs from males. The 

effects of drift in mtDNA and cpDNA may cause fixation of differences between 

sampled locations, which will appear as a signature of spatial genetic structure. 

Additionally, the mutation rates vary between these genomes, with nuclear DNA 

generally having a much slower mutation rate than both mtDNA and cpDNA, allowing 

for further resolution in time (Wolfe et al.1987; Anderson et al. 2010). These markers 

have their own advantages and disadvantages as they are each able to detect historical 

events at different temporal scales and through different lineages, therefore, when 

choosing which genetic markers to use for a population genetic study, it is important to 

consider these differences. 

Lastly, an abundance of statistical tests are available to analyze data, the 

importance lies in whether these tests provide the power to answer population genetic 

questions given the collected data. Thus, in presenting the evidence existing or necessary 

to address questions regarding gene flow, temporal relatedness, and what may be 
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influencing gene flow in the CFR, these factors with respect to sampling, genetic 

markers, and statistical analyses will become underlying themes throughout this review.  

Given these considerations for developing an overall framework to understand 

spatial genetic diversity in the CFR, as an overall hypothesis, a picture that compares and 

contrasts patterns of spatial genetic structure and gene flow within populations and across 

many species in the CFR could reveal where, geographically and regionally, specific 

focal points that are more important or relevant to generating species diversity. Here, 

previous genetic studies performed in the CFR are examined to see how each has 

contributed to the overall body of knowledge of understanding gene flow in the CFR and 

what factors may influence it. 

To what extent does population genetic structure exist on different spatial scales in 

the CFR?  

In determining levels of population structure and gene flow at different spatial 

scales, the heterogeneity of the CFR is an important component to consider and many 

studies have taken this into consideration. In continuing the theme, here studies are 

examined based on their sampling, genetic markers, and statistics in order to answer 

questions directly related to spatial genetic structure and gene flow for CFR populations. 

Sampling 

Locations 

For any organism, sampling strategies for studies conducted in the CFR have 

taken on three broad strategies: (i) small-scale sampling that collects individuals from 

local regions located within the CFR, (ii) sampling across the entirety of the CFR, and 

(iii) sampling both within and outside the CFR, as illustrated in (Fig. 1.3). These 
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sampling strategies each provide data to determine the spatial genetic structure and gene 

flow for organisms in the CFR, although these strategies each have benefits and 

limitations.  

Sampling across small geographic regions has provided a wealth of organismal-

specific data (Cunningham et al. 2002; Suchentrunk et al. 2009; Prunier & Holsinger 

2010; Segarra-Moragues & Ojeda 2010), while also increasing knowledge of within CFR 

species population structure and gene flow. Prunier & Holsinger (2010) examined four 

white protea species with local endemic ranges, for example, one species, Protea mundii 

has a small range distributed only along the slopes of the Potberg mountains (Manning 

2008). This study measured the spatial genetic structure and patterns of gene flow among 

these species, identifying eight genetic clusters, almost equal to the number of species 

examined, and finding little to no gene flow between these species. It is apparent the 

strategy of sampling on small geographic scales is unavoidable when organisms have 

locally endemic ranges, and can be useful when asking organismal-specific questions. 

Here, although populations were sampled for each protea species, the study question 

focused on the gene flow and genetic structure between species and therefore provided 

little information about each of these protea populations. It is clear that the spatial genetic 

structure of organisms can be determined using locally endemic sampling strategies; 

however, it is difficult to extrapolate this population to what may be driving overall 

diversity in the CFR.  

Several studies have sampled populations that span the heterogeneous 

environmental processes of the CFR in order to elucidate patterns of spatial genetic 

structure and gene flow (Lesia et al. 2002; Slingsby & Verboom 2006; Daniels et al. 
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2007; Price et al. 2007; Swart et al. 2009; Tolley et al. 2009). For example, Price et al. 

(2007) studied the CFR cicada species Platypleura stridula by collecting individuals 

from 66 sites encompassing the species’ broad range, this included locations spanning the 

from the northwest of the Western Cape to East London in the Eastern Cape. They found 

evidence for spatial genetic structure occurring in eastern, central, and western lineages; 

with such low overlap between clades they suggested identifying these groups as separate 

species, indicating little gene flow between these clades. Interestingly, the boundary 

between the central and eastern clades was centered near the boundary between the 

Western and Eastern Capes, suggesting this boundary may influence spatial genetic 

structure in cicadas. The authors also point out that the boundary between the central and 

western clades occurs in close proximity (10 km apart in two pairs) to one another, 

indicating spatial genetic structure is occurring on a very fine scale in the CFR. In this 

case, this widespread sampling strategy elucidated two discreet areas associated with 

gene flow and spatial genetic structure within the broad CFR and it is evident that these 

effects from the landscape can be identified using a similar sampling strategy for other 

organisms.  

Lastly, studies that sample both across the entirety of the CFR as well as outside 

its defined borders allow for extrinsic comparisons of genetic diversity. As Valente et al. 

(2010) indicates, without these comparisons it is difficult to attribute phenomena of 

genetic diversity specifically to the CFR; therefore, the authors used a sampling 

methodology to study the phylogenetic relationships among species in the genus Protea, 

by initiating a formal comparison between related clades both within and outside the 

CFR. They found that protea species outside of the CFR, sampled throughout Africa, 
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comprised only a single clade nested within Cape lineages. They also discovered that the 

increased diversification of the Cape lineages occurred at local scales across the 

landscape, concluding that understanding the diversity of the Cape requires knowledge 

for how Cape species diverge and persist at small spatial scales.  

To correlate population level processes to overall patterns of genetic diversity in 

the CFR, a sampling scheme that reflects the entirety of the CFR range is essential. 

Although organisms with small endemic ranges will provide information regarding local 

regions, they are not ideal for understanding the questions proposed regarding overall 

diversity of the CFR; it is nearly impossible to associate the large scale heterogeneity of 

the CFR to a locally endemic organism. In sampling organisms that span the 

heterogeneous environmental processes, patterns of spatial genetic structure and gene 

flow can be attributed to potential barriers associated with the landscape as Price et al. 

(2007) found associating clade divergence to the Western and Eastern Capes. 

Additionally the density of sampling across these ranges can aid in detecting patterns of 

local diversity at smaller spatial scales. Ideally, sampling that allows for a formal 

comparison between regions found inside and outside the CFR will help in determining if 

patterns are reflective of the CFR or some other underlying factor.  

Individuals 

Aside from sample locations, the numbers of individuals sampled at each location 

can largely influence estimates of spatial genetic structure. When sampling individuals at 

a location, it is necessary to consider the overall objective and the question being asked. 

For example, if the objective is to evaluate the spatial genetic structure for a 

biogeographically widespread CFR organism, the entirety of the range is paramount to 
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answering the question; that is samples across the range will be a first priority. However, 

it may also be necessary to have enough statistical power to test fine-scale differences 

between sampled locations. Without an adequate sampling of both individuals and 

locations, it becomes difficult to determine spatial genetic structure and gene flow on fine 

scales. For example, in the Price et al. (2007) study noted above, the authors were able to 

determine the overall spatial genetic structure of P. stridula, however, across their 66 

sampled locations only one individual per location was collected. So although they found 

patterns of spatial genetic structure, this sampling did not allow for testing of levels of 

genetic variation within any given location and testing where variation was partitioned 

between locations was severely limited. Similarly, Bergh et al. (2007) examined the 

spatial genetic variation in the renosterbos plant Elytropappus rhinocerotis, by 

comprehensively sampling across the entire known distribution range, which included 

locations inside and outside the CFR. In total, 26 locations were sampled, but the number 

of individuals collected at each location varied from one to ten. The authors note that this 

strategy met their goal of examining broad-scale patterns of spatial genetic structure; 

however, they recognize this was at a cost of dense within-population sampling. So 

although they found high levels of genetic diversity across broad scales (e.g. the “West” 

vs the “East, and “Northwest” vs “everywhere else”), their sampling strategy did not 

allow testing within each sampled region to determine how this genetic diversity might 

be generated at finer scales.  

An example where sampling strategy did allow for testing between locations is 

that of Segarra-Moragues & Ojeda (2010) who examined two populations of the fynbos 

plant Erica coccinea that have different responses for post-fire survival, that of reseeding 
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and resprouting. They sampled ten locations for each plant type spanning from the Cape 

Peninsula to just east of the Agulhas Peninsula, for a total of 267 seeder and 235 

resprouter individuals, with no less than 15 individuals collected per location. This 

allowed them not only to determine the spatial genetic structure and portioning of genetic 

variation between these populations, but also within populations. The authors found 

evidence for spatial genetic structure between these  resprouter and reseeder populations, 

with evidence of four spatial genetic structure clusters. They were also able to calculate 

FST values within and between these life history strategies, finding values were twice as 

high in seeder populations than in resprouter populations. Additionally, levels of 

variation within each sampled location showed that seeder populations also had higher 

genetic diversity within each sampled location compared to the resprouter sampled 

locations. 

Measures of genetic diversity can be made within populations that have a 

minimum of two sampled individuals because there are enough data to make a 

comparison, however as individuals are added, the power to detect differences that occur 

at lower frequencies is increased. With two individuals, this is limited to differences that 

are found in 50% of the population, with ten individuals, differences found at 10% can be 

determined. This is important when understanding genetic diversity as it is these 

differences that provide the data to quantify how and where variation is being partitioned 

among populations.  

Ultimately, how many individuals are sampled reflects what question is being 

asked. Studies like Price et al. (2007) may not have looked at a large number of 

individuals within each location, but in determining population genetic structure across 
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cicadas in the CFR, their sample size was 66 individuals, and across their population they 

could detect differences. On the other hand, studies that collected more than 10 

individuals at each sampled location were able to measure genetic variation both within 

each location and between locations, enabling an understanding of how genetic variation 

is partitioned on both broad and fine-scales. It is of note that although the number of 

individuals sampled dictates the ability to detect the frequency of variants the choice of 

genetic marker is important as well as the amount of information about genetic variation 

can differ between different genetic markers.  

Genetic Markers 

In performing a population genetic study to understand the spatial genetic 

structure of gene flow, molecular genetic markers provide a means to quantify levels of 

genetic variation, which allows us to measure levels of gene flow at the genetic level. 

There are no CFR organisms for which “whole” or even partial genome sequences are 

available, which makes neutral nuclear locus collection difficult for any population 

genetic study performed here. Because of this, the studies that have been performed for 

organisms in the CFR have included bi-parental nuclear intronic sequences, 

microsatellites, inter simple sequence repeats (ISSR), as well as uniparental data from 

chloroplast and mitochondrial regions. Each of these genetic markers provides unique 

insights into the history and relationships between individuals.  

 Commonly used loci include mitochondrial regions such as cytb and control 

regions (CRI) (Gaubert et al. 2004; Kryger et al. 2004; Herron et al. 2005; Daniels et al. 

2007; Smit et al. 2007; Dubey et al. 2007; Tolley et al. 2009; Swart et al. 2009; Fritz et al. 

2010), nuclear microsatellite or inter-simple sequence repeat (ISSR) markers 



15 

(Cunningham et al. 2002; Moodley et al. 2005; Prunier & Holsinger 2010) and intronic 

gene regions (Ingram et al. 2004; Willows-Munro & Matthee 2009), or a combination of 

two markers from different genomes, such as microsatellites and mtDNA (Ingram et al. 

2004; Willows-Munro & Matthee 2009; Valente 2010) when conducting analyses.  

 Swart et al. (2009) used two mtDNA regions in a study of Agama atra lizards 

looking at spatial genetic structure between individuals across the CFR, finding 

congruency between the two mtDNA regions when building population networks. Since 

mtDNA is maternally inherited and does not undergo recombination, these two loci are 

presumably linked across the chromosome; therefore, this result was not surprising. The 

study did find geographical structuring of the A. atra  lizard across the CFR, 

encompassed by four groups, that of the Central CFR, Cape Peninsula, Northern CFR and 

Limietberg. The authors associate the split between the Cape Peninsula clade to the 

presence of the Cape Fold Mountains and indicate that these clades were not previously 

identified in a broad scale study; therefore, further fine-scale sampling may reveal 

additional areas of genetic diversity. While this study provides resolution into the 

population genetic structure of A. atra  lizards, it is limited in providing only information 

for the maternal lineage of these lizards. If female lizards are localized and male lizards 

disperse, this pattern will largely go unnoticed given this sampling.  

 To understand gene flow across the CFR it is beneficial to characterize a pattern 

of genetic diversity that reflects both lineages, this will provide an absolute picture of 

gene flow across the CFR, and in case there are genetic differences attributed to 

inheritance patterns of these haploid markers, comparisons between both sets would 

confirm if there are any discrepancies between marker sets.  
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In their study of the southern African shrew, Willows-Munro & Matthee (2011) found 

congruence between their mtDNA and nuDNA markers, with phylogenetic trees 

generated for both markers confirming relationships among clades, and measures of 

demographic history both indicated a recent expansion. Owing to their use of both 

mtDNA and nuDNA markers, the observations of four clades associated to the south, 

north, east, and west CFR are likely related to the organism and not the unique 

evolutionary history of the markers used.  

Nuclear markers, such as AFLPs and microsatellites are bi-parental neutral 

markers which show patterns of spatial genetic structure and gene flow for both males 

and females. These markers have multiple alleles and so fewer loci may be needed to 

differentiate individuals in populations (Anderson et al. 2010). In a study of a renosterbos 

plant Erica rhinocerotis, Bergh et al. (2007) used three ISSR markers finding that E. 

rhinocerotis has a large amount of shared ISSR variation leading to a lack of population 

genetic structure. They attributed this observation partially to the high levels of 

recombination among ISSR loci, which was likely facilitated by high levels of gene-flow 

among populations, and high outbreeding rates. However, this nuclear marker could also 

reflect a singular dispersal mechanism (e.g. the dispersal of pollen); therefore, the 

addition of maternally inherited markers may help decipher if these levels of high gene 

flow are universal for all genetic markers.  

Single nucleotide polymorphisms (SNPs) are bi-parental, recombining loci, which 

can be sampled from across the nuclear genome, they are largely slowly evolving, which 

provides historical temporal resolution, but can have difficulty to resolving recent 

phenomena. These markers are largely underused currently in CFR studies and are 
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beneficial for a number of reasons. Brumfield et al. (2003) shows that SNPs are often 

better for elucidating historical demographic patterns than microsatellites, and can be 

easily compared to patterns from mtDNA and cpDNA because they are on the same 

mutational scale (substitutions per site). Additionally, they suggest the variation using 

SNPs is easier to interpret than microsatellites or ISSR sequences, and when sampled 

blindly, can offer an unbiased description of genomic variation. SNPs have also been 

shown to outperform microsatellites in analyses of population genetic structure (Liu et al. 

2005; Heylar et al. 2011). Previously, given the lack of genomic data available for CFR 

organisms, SNP data took considerable effort to obtain. In light of recent advances in 

DNA sequencing technology, these genetic markers can be readily sequenced in non-

model organisms using Next Generation Sequencing technology (Davey et al. 2011), 

specifically through methods such as RAD-SEQ (Willing et al. 2011). In a recent study of 

a non-CFR organism, the globe artichoke, the use of RAD-SEQ generated a dataset of 

~34,000 SNPS and nearly 800 indels (Scaglione et al. 2012) across the entire genome. 

Additionally, Baxter et al. (2011) used this technique to sequence 24 diamondback moth 

individuals, generating 3,177 Rad alleles assigned to 31 chromosomes, and Peterson et al. 

(2012) collected 10,000 SNPs for an emerging model system, the deer mouse.  

 Overall, each marker type will elicit information in determining the spatial genetic 

structure of CFR organisms. The extent of which each marker can reveal historical 

demography and patterns of spatial genetic structure is tied directly to modes of 

inheritance, effective population size, and mutation rates underlying each marker. 

Therefore in considering questions of gene flow and spatial genetic structure in the CFR, 

each of these factors must be considered relative to conclusions and the underlying 
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question being asked. Ideally, the use of combinations of these marker sets will provide 

information about overall levels of gene flow for an organism independent of the 

evolutionary histories associated with each marker type.  

Statistical models  

In determining patterns of spatial genetic structure and gene flow for CFR 

organisms, several statistical analyses have been used to measure levels of genetic 

diversity and how genetic diversity is partitioned within and among groups. 

Measurements of spatial genetic structure range from individual based models to network 

building across a range. Each model can provide information regarding relatedness across 

a sampled population; however, that information is not always consistent between 

methods. Tests used in the estimate spatial genetic structure and genetic diversity in the 

CFR largely include analyses of molecular variance (AMOVA) or spatial analyses of 

molecular variance (SAMOVA), F-tests (e.g. FST, FSC) and computer programs such as 

STRUCTURE (Pritchard et al. 2000). 

 An AMOVA analysis is useful for partitioning genetic variation between groups 

and is often used as a first step in determining population genetic structure in many CFR 

studies (Kryger et al. 2004; Gaubert et al. 2005; Bergh et al. 2007; Smit et al. 2007, 2010; 

Swart et al. 2008; Willows-Munro & Matthee 2011) additionally, the analyses can add a 

spatial component (SAMOVA) which not only defines populations based on their genetic 

variation but can also identify genetic barriers between groups. Smit et al. (2007) used a 

SAMOVA in their study of two species of southern African elephant-shrews sampled 

from Namibia to the Eastern Cape to determine whether the spatial distribution of 

haplotypes found within and between the elephant-shrew species were significantly 
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different from random. They found for one species, Macroscelides proboscideus, there 

were two groups, one of the eastern most localities and the other containing the 

remainder of the population. However, one drawback when using AMOVA or SAMOVA 

analysis is the need of a priori information to bin individuals for testing.  

F-statistics are used to determine the distribution of variance among groups, with 

the main statistic FST determining how variation is partitioned among sub-populations as 

compared to the total population. While this statistic provides quantification for the 

amount of genetic diversity present in a population, it does not provide information 

regarding the relatedness of samples. Computation of an FST requires some assumptions, 

including the designation of what constitutes a population, which can become 

problematic when working on a new system where relationships have not been 

characterized among individuals in the population. This statistical analysis uses pairwise 

comparisons and only takes into account data from two populations at a time. 

Additionally, the bounded nature of FST values (i.e., between 0 and 1) limits 

quantification. Studies using FST, or a similar fixation index, as a measurement of spatial 

genetic structure are common in the CFR (Lesia et al. 2003, Swart et al. 2008, Prunier & 

Holsinger 2010, Segarra-Moragues & Ojeda 2010, Willows-Munro & Matthee 2011). In 

a study of the southern African shrew Myosorex varius, Willows-Munro & Matthee 

(2011) calculated F-statistics between populations of M. varius and in comparing 

Southern versus Northern populations, the variation between these groups was calculated 

as FST = 0. 72, with levels of genetic variation between populations within the groups 

calculated as FSC = 0.34. While this measurement provides information about how and 

where genetic variation is partitioned among these M. varius groups, it can be difficult to 
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interpret these FST values, especially if little information is known about the underlying 

genetic diversity present in an organism. A value at or near “1” reflects a large portion of 

genetic variation is found within groups, and little genetic variation is shared among 

groups; however, because of the bounded nature of the statistic, if the population contains 

enough genetic variation then these values will quickly become saturated, especially if 

initially grouped without understanding the underlying population genetic structure.  

These tests are useful in quantifying spatial genetic structure when population 

groups are known however one drawback for both of these tests is the a priori 

assignment of individuals to the groups being compared. The relationship of an 

individual with a specific population is generally unknown for CFR populations. Ideally 

an approach that uses an unbiased individual based assignment test will help in first 

determining which individuals are grouped together, so they may then be quantified using 

F-statistical tests.  

Analyses have been used in the CFR that determine spatial genetic structure 

without the a priori assignment of individuals. The individual-based program 

STRUCTURE (Pritchard et al. 2000, Falush et al. 2003, Hubisz et al. 2009) uses a 

Bayesian algorithm to cluster individual sequences based on the probability of 

relatedness between samples. Although few studies use individual based clustering 

methods in the CFR, those that do, tend to use STRUCTURE (Prunier & Holsinger 2010, 

Segarra-Moragues & Ojeda 2010). Segarra-Moragues & Ojeda (2010) used the program 

to examine the spatial genetic structure among the seeder and resprouter Erica coccinea 

plant populations, finding evidence for four structure clusters; the seeder populations 

clustered almost exclusively to two clusters and the resprouter population grouping into 
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another, the last cluster contained resprouter populations and one seeder population. 

Without this analysis, the authors may have grouped each resprouter and seeder 

population into separate groups, however since this preliminary analysis indicated 

similarities between the two plant types as well, they were able to perform unbiased tests 

to determine how variation was partitioned within and between these clusters. Here is an 

example where using an unbiased example can elucidate information about how 

individuals are clustered regardless of any bias. Programs such as STRUCTURE provide 

a good first step in determining the spatial genetic structure of gene flow. Some 

limitations do exist with this analytical approach, including difficulty in detecting 

hierarchical STRUCTURE (Fogelqvist 2010; Kalinowski 2011), for example, in their 

study of white proteas, Prunier & Holsinger (2010) used STRUCTURE to determine the 

spatial genetic clustering among all sampled protea species. They were able to associate 

individuals to clusters based on species, but they were unable to detect any fine scale 

differences within protea species, likely due to the large differences between these 

species. Additionally, this program is unable to quantify levels of variation found within 

and between assigned clusters.  

Understanding the magnitude of genetic differences between groups is important 

when trying to quantify the levels of gene flow necessary to create these population 

clusters. Therefore, in marrying this STRUCTURE analyses with those mentioned above 

an unbiased estimation of the partitioning of genetic variation can be made. Once this is 

accomplished, gene flow can be measure directly through programs such as MIGRATE 

(Beerli & Felsenstein 2001) or IMa (Hey & Neilson 2007), which use FST values in order 

to calculate rates of migration.  
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 One estimate that may be of use in the CFR is the conditional genetic distance 

(cGD), a value derived from the topology of a ‘population graph’ that analyzes data 

within a graph theoretic framework requiring no a priori knowledge of population 

arrangements (Dyer et al. 2004). Together, Population Graphs and cGD values can show 

how samples are related to one another across space, identifying complex population 

genetic structure while also quantifying that variation. Although currently unused in the 

CFR, this method has been used to determine genetic structure and gene flow in 

numerous organisms (Dyer et al. 2010; Domingues et al. 2012; Lopez & Barreiro 2013; 

Kluetsch et al. 2012). Domingues et al. (2012) built a population graph while 

understanding the tobacco budworm, a pest species, finding evidence for two population 

groups while also determining the connectedness of locations within those groups. They 

posit that historical demographic patterns could explain these patterns, although since this 

was the first examination of population genetic structure in budworms, they could not 

relate this pattern to any specific ecological feature. The cGD analysis has also been 

shown to outperform the traditional genetic distance measure of FST (Dyer et al. 2010) 

and this would be a useful tool for determining spatial genetic structure in the CFR given 

the abundance of non-model organisms and dearth of a priori population level 

information.  

Progress has been made to evaluate CFR populations using a population genetic 

approach since the original call for these studies (Barraclough 2006; Linder 2006; Hardy 

2006). Through these studies, it is apparent that spatial genetic structure exists across the 

CFR landscape as many of these groups have identified large patterns of genetic structure 

attributed to the boundary between the Eastern and Western Capes or the presence of the 
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Cape Fold Mountains. However, while these studies have been able to determine patterns 

across broad scales, many lack the sampling resolution to identify patterns at local scales. 

Therefore understanding the spatial genetic structure of CFR populations and how that 

structure may have led to the overall diversity in the CFR requires population sampling 

with enough resolution to test if patterns of spatial genetic structure are occurring on both 

broad and fine scales. Also, owing to the lack of a priori knowledge for many CFR 

populations, initial individual-based analyses should be prioritized. Altogether, this 

sampling and statistical methodology will aid in an unbiased assessment of where spatial 

genetic structure is occurring across the landscape and the magnitude and partitioning of 

that diversity. This will ultimately describe patterns of gene flow at local scales, and 

allow tests to determine if these patterns of genetic diversity can be attributed to the 

heterogeneous environment of the CFR.  

To what extent do demographic and temporal models of population genetics explain 

patterns of diversity within the CFR? 

 Understanding the temporal relationship among individuals in a population 

provides a backdrop to associate historical events that may have effected population level 

variation. These events may be historical population expansions, colonization events, or 

shifts in the climate that have taken place recently, or in the past. In the CFR, there are a 

number of known temporal and demographic events that have been postulated to drive 

diversity in the area. This includes climate changes leading to the establishment of the 

Benguela current around the Miocene-Pliocene boundary (Goldblatt & Manning 2000), a 

change in climate leading towards a full glacial period near the Plio-Pleistocene border 

(Hallam 2004), and the elevation of the Great Escarpment during the Pliocene (Partridge 
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& Maud 1990). The climate change that occurred near the Plio-Pleistocene border is 

thought to have established the current climatic conditions of the East and West Capes 

and is also associated with creating historic areas of refugia in the West and increasing 

extinction in the East (Cowling & Lombard 2002). Therefore, to associate any species or 

population events with these known spatial and temporal events, the divergence times 

within a population must first be estimated. Using the same population genetic approach 

here as was used for determining the genetic structure of gene flow, molecular genetic 

data can be analyzed to determine temporal relatedness, however, to test these temporal 

hypotheses, new considerations for sampling, molecular markers, and statistical models 

must be made.  

Sampling 

The considerations for sampling when asking questions of temporal relatedness 

depend on the underlying question. In the CFR there are a number of hypotheses about 

the origins of different groups across the landscape. When answering questions of 

temporal relatedness and attempting to try and estimate dates and origins of events, 

population sampling will be important. For instance when trying to estimate which region 

of the CFR may reflect the “oldest” or more ancestral region, a comparative sample 

across and outside the CFR is necessary. In this case, sampling in areas outside of the 

Western Cape where the CFR predominates and into the Eastern Cape will serve as an 

unbiased comparison. Of course, this gets back to arguments presented earlier in that if 

this question is of priority, then one must focus on an organism that is found within and 

across both Capes. On the other hand, and again most obvious, if studies are focused on 

aspects of the organism and the origin and the emergence of that particular organism, 
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then one will be limited to where the organism is and can be found as well as its natural 

range. This is simply a difference in priorities, where one of these two strategies can ask 

questions about age and origins of the CFR and different parts within it as a first 

objective, and not simply as a by-product of an analysis of which is actually research into 

a specific organism. Many studies in the CFR have examined the phylogenetic 

relationships both between species (Barker et al. 2004; Gaubert et al. 2005; Slingsby & 

Verboom 2006; Willows-Munro & Matthee 2009; Ingram et al. 2004; Fritz et al. 2010; 

Valente et al. 2010; Pirie et al. 2011; Schnitzler et al. 2011) and within a species (Daniels 

et al. 2007; Price et al. 2007; Smit et al. 2007; Swart et al. 2008; Willows-Munro & 

Matthee 2011) finding time estimates associated with their organism, but also those 

which coincide with known temporal events.  

Studies that use species in temporal analyses are likely to detect divergence times 

between said species; however, these time estimates may reflect broad processes 

affecting all organisms within the CFR. For example, Gaubert et al. (2005) sampled 50 

specimens representing 15 morphological genet species, and was able to estimate 

divergence times between species of genets in Africa as far back a 4.90 million years ago 

(MYA) between Genetta victoriae and G.maculata, with the most recent species split 

occurring around 0.31 MYA between G. maculata and G. tigrina. Within the species tree, 

several divergence points are associated with cyclical climate changes of the Quaternary 

period, including a climatic cooling around 2.80 MYA that corresponds to the emergence 

of G. felina; a time point that also coincides near the noted climatic shift during the Plio-

Pleistocene border. So although this study says little about relationships between 

individuals within populations, or the micro-evolutionary processes that may have 
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eventually led to the speciation events described, it does provide additional information 

for a large scale temporal event that may have effected micro-evolutionary processes in 

the CFR.  

Studies that examine populations can make inferences about divergence times for 

the overall population while also examining when any clustering groups began to diverge 

from one another. In Swart et al. (2008) the relationship between southern rock lizard 

populations was explored by collecting individuals from across the CFR, from locations 

ranging in the north near Elands Bay extending into the Eastern Cape near Port Elizabeth. 

These samples were used to produce a phylogenetic tree which dated the oldest of the 

four detected CFR clades to the northern CFR, which diverged around ~2.5 MYA and the 

most recent coalescent point between the Cape Peninsula and Central CFR clades, which 

diverged 0.64 MYA. Indicating these initial diversification events correspond to the 

climatic change of the Pleistocene. This sampling strategy provided data for temporal 

comparisons between different geographic regions indicating the spatial genetic structure 

of these lizards has occurred over time, with new populations differentiating as little as 

0.64 MYA. This shows that, over time, these populations have changed and although 

some changes can be directly associated with known historical events, other recent 

factors may be driving diversity between these populations.  

Although studies using separate species as samples can elicit temporal estimates 

for CFR events, these are likely to be ancient events, which are informative about 

processes driving macro-evolutionary events, such as the formation of those species, but 

do little to answer questions about understanding the temporal relationships among 

individuals in populations. These estimates of temporal relatedness largely complement 
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analyses of spatial genetic structure; therefore, to understand the temporal relatedness 

among individuals, it is best to mimic the ideal sampling scheme that initially determined 

the spatial genetic relationship among individuals while keeping in mind considerations 

for the questions being asked.  

Genetic Markers 

Questions addressing temporal relatedness can also be largely impacted by the 

molecular markers used in determining these relationships. As stated previously, CFR 

studies have utilized a number of molecular markers, including microsatellites, nuclear 

intronic regions, mitochondrial, and chloroplast DNA sequences. However, when 

choosing a marker to understand temporal relatedness among individuals, the choice of 

marker should reflect the time scale of interest. Each molecular marker has a unique 

biological and evolutionary background that can influence temporal results.   

 Both cpDNA and mtDNA DNA sequences evolve at comparatively slower 

molecular rates due to their low mutation rates than nuDNA sequences (Wolfe et al. 

1987; Anderson et al. 2010) and are able to answer questions regarding historical change; 

however, these genomes are also more susceptible to drift over time. Temporal patterns 

discovered when using these markers may be a reflection of the uni-parental inheritance 

of these chromosomes; therefore, these temporal patterns may change if bi-parentally 

inherited markers are used to estimate the same relationship (Anderson et al. 2010). Both 

cpDNA and mtDNA markers have been effective in dating population level temporal 

relatedness in the CFR (Slingsby & Verboom et al. 2006; Tolley et al. 2006, 2009; Price 

et al. 2007; Swart et al. 2008, 2009; Fritz et al. 2010; Willows-Munro & Matthee 2011) 

and are the most widely used markers in most studies. Studies using these markers have 
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found ancient temporal relatedness, for example, Daniels et al. (2007) dated the 

divergence between clades of angulate tortoises between 10.4 and 8.4 MYA using 

mtDNA markers, which corresponds to climate change due to the development of the 

Benguela Current. In addition, Willows-Munro & Matthee (2011) were able to date the 

radiation of the southern African shrew around 2 MYA using mtDNA, near the Plio-

Pleistocene border, as were Swart et al. (2008) in their examination of cape Agama 

lizards mentioned previously. Similarly, Price et al. (2007) placed the initial 

diversification of CFR cicadas to this time period as well, but also suggests that the 

neotectonic uplift ~2 MYA may also have driven the initial diversification within this 

group. It seems that from a number of studies, these markers place events in the distant 

past, with patterns occurring near the Plio-Pleistocene border around 1.5 – 2.5 MYA. 

Alternatively, when asking questions that require a contemporary time scale, 

highly variable nuclear markers such as microsatellite loci, amplified fragment length 

polymorphism (AFLP), or inter simple sequence repeat (ISSR) sequences best reflect 

contemporary relationships between individuals (Anderson et al. 2010; Holderegger et al. 

2008). However, the higher mutation rate of these markers can cause homoplasy, making 

associations over long periods of time difficult. Though not abundantly used in studies of 

the CFR, Prunier & Holsinger (2010) were able to use microsatellites in three species of 

white protea to estimate more recent divergence between species at 0.16-0.56MYA.  

 Optimally, for questions regarding ancient process on the order of millions of 

years, SNP data should be used. Nuclear genomic sequences have a biparental mode of 

inheritance and they have a slower mutation rate compared to mtDNA, cpDNA, and 

microsatellites. These SNP data are often able to provide the same or better genetic 
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resolution as microsatellites (Smouse 2010). In the cape, studies using SNPs generated 

from nuclear genomic intron sequences are used for building species and population 

phylogenies (Ingram et al. 2004; Pirie et al. 2011; Willows-Munro & Matthee 2011). 

Ingram et al. (2004) found in their study of African mole-rats located throughout Africa a 

divergence time around 38 MYA, and Willows-Munro & Matthee (2011) were able to 

date divergence within a South African shrew using both mtDNA and SNP data, finding 

divergence times were 1.75 MYA for mtDNA, and near 2.64 MYA using SNP data. To 

date no studies in the CFR have used genome wide SNP data in studies of spatial genetic 

structure or in determining temporal relatedness among populations.  

Statistical Models 

A number of methods are available to build phylogenetic trees to estimate 

divergence times between individuals, and each again has benefits and drawbacks, 

overall it is clear there is no singular method that is ‘best’(Rutschmann 2006). Bayesian 

analyses are a coalescent-based estimation of demographic parameters from genetic data 

(Drummond et al. 2002; Wilson & Rannala 2003; Rannala & Yang 2003; Drummond & 

Rambaut 2007) and are commonly used for phylogenetic inferences in studies of the CFR 

(Ingram et al. 2004; Herron et al. 2005; Daniels et al. 2007; Tolley et al. 2009; Willows-

Munro & Matthee 2011), though other methods such as neighbor-joining and maximum 

likelihood trees have been used (Van Der Walt et al. 2011).  

However, one problem when asking questions about temporal relationships in the 

CFR is the lack of endemic fossil data for both flora and fauna needed to calibrate 

phylogenetic trees (Goldblatt & Manning 2002; Linder 2003; Cowling et al. 2005; 

Sauquet et al. 2009; Valente et al. 2009) and calculated mutation rates for endemic flora 
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and fauna. Some fossil data does exist, as Daniels et al. (2007) were able to use fossil 

data from Chersina tortoise species to date the relationship between clades of Chersina 

angulata, however, most studies lack the fossil data to appropriately calibrate rates of 

evolution and rely on estimates (Swart et al. 2008; Gaubert et al. 2004; Price et al. 2007). 

Time estimates for the emergence of some cape floral species have been calculated: 

Sauquet et al. (2009) used multiple calibration points for the Proteoideae to determine the 

emergence of some Protea genera; these data have successively been used to date the 

diversification of a number of species in genus Protea (Valente et al. 2009). Together, the 

Sauquet et al. (2009) and Valente et al. (2010) data were used by Prunier & Holsinger 

(2010), to estimate radiation times in white proteas, where they calculated that 

differentiation among the 6 species occurred between 0.16 and 0.56 MYA. These 

estimates have not been calculated for all endemic genera, so time point calibrations can 

still be difficult to ascertain for CFR species. For example, in the Schnitzler et al. (2011) 

study, two of the four CFR plant groups studied, Moraea and Babiana, lacked calibration 

data, so these points were estimated using recalibrated points from the Iridaceae family 

tree. As it is highly unlikely fossil data will appear in the CFR due to the poor soil found 

there, these estimates may be the best method to approximate dates in the CFR. The 

alternative method, which has been used in place of calibrating rates of evolution with 

fossil data, is to use relative estimates based on the molecular clock for genetic loci used. 

This method has drawbacks since many species do not have observed mutation rates, so 

proxy data are also used here. Some phylogenetic tree building programs do allow for 

hypothesis testing, such as BEAST (Drummond et al. 2007, 2012), which allows for 

either constant of variable rate molecular clock models, a choice of tree priors, and 
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flexibility of prior parameters and may be ideal for this area where little is known about 

fossil time points and rates of mutations specific to species.  

 Determining the temporal relationship between individuals associated with CFR 

populations can be difficult given the lack of fossil data to calibrate roots of trees, 

however, numerous questions regarding the timing of diversification events can still be 

answered from a population genetic perspective. Overall, when designing a population 

genetic study to answer temporal relatedness questions, it is important to consider 

sampling locations that encompass the question being asked. Molecular marker choice 

can potentially limit temporal resolution, so considerations must be made for the desired 

range of temporal resolution. Finally, it is useful to find a program for building 

phylogenetic trees that allows some flexibility in parameters when necessary, especially 

when a priori and fossil data are limited for many CFR species.  

To what extent does the landscape influence patterns of gene flow in the CFR? 

 The heterogeneity of the CFR has been hypothesized to influence genetic 

diversity, and while a handful of studies have sought to understand what might be driving 

differences in the CFR (Cowling & Lombard 200; Daniels et al 2007; Smit et al. 2007; 

Swart et al 2009; Tolley et al. 2009; Prunier & Holsinger 2010), these forces have been 

difficult to detect at the population level. As noted above, many studies have attributed 

large historical climatic shifts in the Plio-Pleistocene to patterns of genetic variation or 

speciation (Tolley et al. 2006, 2008, 2009; Swart et al. 2009; Willows-Munro & Matthee 

2011) while others have identified large geographic barriers, such as the Cape Fold 

Mountains (Daniels et al. 2007) as driving forces of genetic diversity, yet few have been 

able to quantify the effects of these barriers. It may be that the fine-scale heterogeneity of 
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the CFR may also be contributing to the diversity found here (Cowling et al. 1996; Linder 

2005; Thuiller et al. 2006), yet this hypothesis has received little attention and empirical 

testing in the CFR. The cause of the immense floral species diversity in the CFR is still 

unknown, but by understanding what drives diversity within a population; it is possible to 

extrapolate this knowledge to learn about speciation and conservation on a broad scale 

across the CFR as boundaries identified as barriers to gene flow between locations within 

a population may eventually lead to speciation.  

  A newly emerging field deemed landscape genetics was coined by Manel et al. 

(2003) and merges ideas of landscape ecology and population genetics to understand ‘the 

interaction between landscape features and micro-evolutionary processes’. This 

methodology may be helpful in testing hypotheses correlating landscape heterogeneity 

with population genetic spatial structure in the CFR. As with the questions of both 

temporal and spatial genetic relatedness, using a landscape genetic approach has similar 

requirements, although this approach also requires detailed landscape data. In landscape 

genetic studies, individuals become the operational unit, which avoids bias in a priori 

identification of populations, and allows for fine-scale sampling (Manel et al. 2003). The 

selection of appropriate genetic markers and statistical approaches to test correlations 

also need consideration. 

Sampling 

Landscape data 

Detailed spatial data have been collected for the CFR by Latimer et al. (2006), 

which includes information for a number of factors such as elevation, temperature, soil 

fertility, rainfall, and urbanization. Additionally, the South African National Biodiversity 



33 

Institute (SANBI) has published a detailed record of the distribution of all vegetation in 

the CFR (Mucina et al. 2007) allowing correlations between vegetation type and 

population genetic variation. SANBI has also sponsored the Protea Atlas Project, where 

amateurs collected data for the locations of all protea species in the CFR, generating data 

that include GPS coordinates of all known protea species locations 

(http://protea.worldonline.co.za). These data are necessary and extremely useful when 

implementing a landscape genetic approach as they provide a number of testable 

variables to correlate with population genetic data.  

Population sampling 

To execute a landscape genetic approach the collection of population genetic data 

is necessary, however, in collecting these data, new considerations for population 

sampling must be considered. Anderson et al. (2010) suggest sampling should ‘suit the 

ecological and evolutionary processes under consideration, which can include abiotic, 

biotic, and anthropogenic features. In the CFR, the landscape variables of interest may 

include vegetation, rainfall, elevation, or soil fertility. Also of consideration is the spatial 

scale when sampling, including the grain, extent, and resolution necessary for statistical 

analysis of landscape genetic data with the landscape features under question (Anderson 

et al. 2010). Given the heterogeneity of the CFR and the variable ranges between 

organisms, it is beneficial to consider first, the organism and its endemic range, and then 

the scale at which to sample the population. Therefore, in designing a landscape genetic 

study for the CFR, we must consider the organism, the range and distribution of the 

organism of interest, and how to sample within that range. 
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A review of landscape genetic studies by Storfer et al. (2007) indicated that the 

majority of landscape genetic studies examined vertebrates (62% of the total) compared 

to those which examined plants (14.5% of the total). Although these papers ask similar 

questions relating to the connectivity and barriers between populations sampled, the 

organismal sampling strategy must differ as vertebrates are mobile, whereas plants are 

sessile. Holderegger et al. (2010) reviews landscape genetic studies specifically studying 

plants, and notes one of the largest differences between studies of animals and plants is 

that plants have two methods of gene flow: first, the dispersal of diploid embryos in 

seeds, and second, the dispersal of the haploid pollen. Methods of dispersal for both of 

these structures can be influenced by abiotic factors such as wind or fire in the CFR, but 

also through insects and animals as well, and must be taken into consideration when 

analyzing data. Understanding the dispersal and range of any organism will direct 

sampling for a landscape genetic study, as these are both important when assessing gene 

flow and potential barriers.  

Different strategies have been discussed for sampling individuals who occupy 

both continually distributed ranges and discontinuously distributed ranges. Organisms 

with a continuous range present a problem of determining population structure as 

differences in the population could be caused by genetic structure or the physical distance 

between individuals; therefore it is suggested to sample at regular intervals across a 

widespread range to avoid spurious results caused by unsampled individuals in a 

population (Anderson et al. 2010). An illustration of this sampling is seen in Smit et al. 

(2007), who collected a comprehensive spatial sampling of southern African shrew 

individuals across their broad, continuous range. Organisms with discontinuous ranges 



35 

have undergone ‘population’ based sampling, where a representative population sample 

from each occupied location is collected. In all cases, the biological range of species will 

dictate sampling strategy. It has been noted, for either sampling strategy, to achieve 

statistical significance sample sizes of 50-100 individuals are minimal for landscape 

genetic analysis, with an optimum number of individuals in the hundreds (Anderson et al. 

2007).  

Genetic Markers 

Genetic markers provide the level of resolution for determining relatedness 

among individuals in a population. As mentioned previously, although microsatellites and 

both mtDNA and cpDNA are appropriate genetic markers, they can vary the temporal 

and spatial resolution detected, which must be taken into consideration when using these 

markers. Manel et al. (2003) suggests SNPs, however, Storfer et al. (2010) reported in 

their review microsatellites as the most commonly used molecular marker, so although 

SNPs are ideal, in the field they are not widely used. Neutral genome wide SNP data is 

posited to produce the most reliable data, with large numbers of SNPs preferred since any 

outlying loci that may have undergone selection can be removed (Manel et al. 2003). 

Given the Next Generation sequencing technologies available to generate these data 

mentioned previously, this method of marker collection should be implemented in future 

landscape genetic studies of CFR organisms.  

Statistical Models 

The traditional test to explain correlations between observed spatial patterns and 

spatial genetic structure used in landscape genetics is a simple isolation by distance (IBD) 

model, where linear physical distances are measured between sampling locations (Slatkin 
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1987). However, a number of spatial models have been used to characterize the 

connectivity between samples given their spatial distributions since they may reflect 

population networks better than a simple IBD model (Manel et al. 2003; Epperson et al. 

2010; Fall et al. 2007). In the CFR, a number of studies have used spatial models such as 

the Delauney triangulation and Gabriel networks (Willows-Munro & Matthee 2011; 

Tolley et al. 2009) in tests of IBD. The physical or spatial measurement of distance is 

then correlated to a measurement quantifying the genetic variation found between 

locations and generally the statistical measurement for assessing genetic variation is a 

linearized FST value; however, other measurements such as genetic chord distance and 

Nei’s distance can be used. This relationship between physical distance and genetic 

distance is then statistically tested using Mantel tests (Storfer et al. 2010).  

 Hypotheses of IBD have been tested in the CFR numerous times (Bergh et al. 

2007; Smit et al. 2007; Prunier & Holsinger 2010), but the results within the cape have 

been mixed. Prunier & Holsinger (2010) found a significant correlation between physical 

distance and genetic distance as measured using a linearized FST, they found IBD in one 

population of Proteas out of seven independent populations tested. Failure to accept IBD 

as the mechanism driving diversity leads to testing other variables, such as the biotic and 

abiotic factors of the landscape. This hypothesis testing has been applied in the CFR 

when environmental variables are correlated to the patterns of isolation, but not tested 

empirically, for example, Tolley et al. (2009) generated spatial connectivity data for each 

of three lizard species using Delauney triangulation and together with estimates of 

genetic distances over the landscape, created genetic landscapes that indicated higher 

diversity in the western CFR clades than the eastern CFR clades. Additionally, Tolley et 
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al. (2009) used these data in conjunction with both present and future climatic scenarios 

to explain differences here, finding that climate models predict patchy distribution of 

these lizards, and in the future, these patches may shrink further due to climatic 

suitability. 

While IBD provides an excellent null-model to test against, it has limited power 

to detect the effects of isolation on fine-scale levels as might be expected in the CFR, if 

the heterogeneous geography, topography, and climate of the CFR contribute to 

population isolation. Landscape genetics allows for the identification of landscape or 

environmental features as barriers to gene flow. To evaluate the impact of these variables, 

multiple analyses have been posited. One analysis is isolation by resistance (IBR), a term 

coined to explain how the landscape may resist or facilitate gene flow between regions. 

This method borrows from circuit theory, treating regions as nodes, gene flow as 

measured by a linearized FST, as current, and the landscape as the resistors or conductors 

that influence how gene flow occurs across the landscape (McRae 2006). The IBR 

method often generates a higher correlation with genetic distance than IBD (McRae and 

Beier 2007). The extent of use of IBR in the CFR is limited, but it was implemented by 

Smit et al. (2007) who reported similar results for both IBR and IBD analyses.  

 One limitation to both of these studies is the use of FST as a measure of gene flow 

between sampled populations. This pairwise test can prove difficult to use when extreme 

values are calculated for any pair of individuals or populations, even after linearization 

values approaching 0 or 1 quickly become significant outliers among the data, which 

effects correlation. As FST is not a measure of connectivity between groups, therefore, it 

is difficult to assess how populations contributing to these large values are associated 
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with the overall population and whether or not they should be removed from the analysis. 

This information is impossible to determine when using a strict IBD or IBR test.  

To address the issue of both large FST values and connectivity of individuals and 

locations, applying the cGD statistic (Dyer and Nason 2004) would be useful, as it gives 

an unbounded assessment of the relationship between locations sampled and has been 

shown to outperform genetic distances measured by a linearized FST (Dyer and Nason 

2004). Additionally, as ‘population graphs’ consider the topology of individuals, they can 

be directly correlated with measurements of resistance or distance. In the CFR 

implementing analyses of cGD as a measure of genetic distance with the potential 

resistance surfaces may provide insight into what landscape features are driving diversity. 

 Moving forward, to understand what is driving diversity in the CFR it is 

imperative to continue designing studies using a population genetic approach as called for 

by Barraclough (2006). Ideally, these studies could also be used for landscape genetic 

analyses, generating information across multiple organisms for the spatial genetic 

structure of each organism, how these relationships occur in time, and what may be 

driving the diversity found in each organism. Although study design is largely influenced 

by the organism, optimizing data collection by following the above recommendations 

will help in understanding the overall CFR diversity from a fine-scale perspective, which 

in turn, will allow us to understand how the fine-scale heterogeneity of the CFR 

influences these organisms. By consistently designing population genetic studies, these 

data can be combined to determine if a singular force or forces are contributing to the 

variation of organisms in the CFR.  

 



39 

Conclusion 

 In building a theoretical framework to define and assess biodiversity in the CFR, a 

population genetic approach will aid in understanding patterns of biodiversity at both 

local and broad scales across the CFR. Through both spatial and temporal modeling, the 

time points associated with diversification within populations can be addressed, and in 

landscape modeling, the heterogeneous features of the landscape can be examined as 

factors that contribute to resistance to gene flow. In the future, population genetic studies 

used to understand how diversity is generated in maintained in the CFR should include (i) 

a representative organismal sample with a widespread, continuous distribution across the 

CFR, (ii) a large sample of molecular markers from multiple genomes that reflect 

neutrality, (iii) a statistical model that identifies spatial genetic structure and temporal 

relatedness among samples without the input of a priori information, and finally (iv) a 

statistical model that correlates the landscape variables to estimates of genetic diversity.  
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Chapter 2 

A POPULATION GENETIC STUDY OF THE FYNBOS PLANT LEUCADENDRON 

SALIGNUM FROM THE CAPE FLORAL REGION, SOUTH AFRICA 

Introduction 

 Understanding what creates and maintains genetic diversity in geographic regions 

with high species diversity has been a paramount goal of evolutionary biology as 

biodiversity is one of the primary drivers of ecosystem health and productivity 

(Flombaum & Sala 2008). Studies to characterize diversity can take different approaches, 

including the use of molecular phylogenetics, which examine relationships and rates of 

diversification among extant species (Valente et al. 2009; Daniels et al. 2007), species 

accounts in abundance or density (Goldblatt 1997; Ojeda et al. 2001; Cowling et al. 2005, 

Proches et al. 2006; Manne et al. 2007) and fossil analyses, which look back through 

time, to measure ancient species diversity (Coetzee & Rogers 1982; Sauquet et al. 2009, 

Rector & Reed 2010). Although informative, these macro-evolutionary approaches to 

examine diversity lack insight into the underlying micro-evolutionary processes 

occurring within populations (Barraclough 2006), which are the starting points during 

which diversification occurs. Therefore, it is important to understand gene flow and 

genetic structure within populations as temporal and spatial variation in these factors can 

influence how species diversity originates.  

One example of an area with such high diversity is the Cape Floral Region (CFR) 

that is located on the Western Cape in South Africa. Specifically, the CFR extends from 

the north-west near Namibia along the Cape Folded Mountain Belt and terminates near 

Port Elizabeth in the Eastern Cape (Fig. 2.1). The CFR is a Mediterranean region and 
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hotspot of biodiversity, containing about 9,000 vascular plant species, of which 70% are 

endemic, in an area of only ~90,000 km
2

 (Linder 2003; Goldblatt & Manning 2002). 

Many groups have been working to maintain and preserve the diversity found in this 

region as recent urbanization has begun to threaten these species (Rouget et al. 2003). 

The predominant vegetation found here includes fynbos (meaning “fine bush” in 

Afrikaans), which accounts for >80% of the endemic CFR plant species (Cowling & 

Proches 2005). The fynbos alone is hypothesized to contribute to the unique speciation 

patterns found in the CFR (Goldblatt 1978; Campbell 1983; Linder 2003). Aside from the 

abundance of species, the CFR also has complex spatial heterogeneity, which includes 

vegetation, graduated rainfall regimes, and topography on a spatially fine scale (Latimer 

et al. 2006; Cowling & Proches 2005). This complex environment rich with species 

diversity has spawned numerous questions regarding the origins and maintenance of this 

diversity. One question in particular is to what extent patterns of gene flow and spatial 

structure contribute to the magnitude of endemic CFR species, and what factors influence 

these population processes.  

Two competing theories have been posited to explain the diversity of the CFR, 

one of the stability of the environment over time, and conversely, the instability of the 

environment over time (Linder 2003; Cowling & Proches 2005). It has been hypothesized 

that a climatic shift in the Pleistocene that is associated with the development of the 

seasonal winter rainfall regime of the Western Cape and the non-seasonal rainfall in the 

Eastern Cape was a historical driving factor in creating the diversity found between the 

two Capes (Cowling & Lombard 2002). This transition zone exists today and is 

associated with vegetation and topographical differences between the Western and 
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Eastern Capes, as not only does rainfall vary near this border, but vegetation and 

topography do as well, as the density of fynbos decreases moving east as thicket and 

succulent Karoo become the predominant vegetation (Cowling, Proches & Vlok 2005). It 

is thought that the topography and climate in the West may have created refugia, whereas 

the East experienced increased extinction (Cowling & Lombard 2002). If the 

environment were stable, then that may have allowed unrestricted access to the Western 

Cape (Cowling et al. 2009; Valente et al. 2010); conversely if climatic patterns were 

unpredictable with regards to rainfall regimes and climatic fluctuations then this may 

have led to differential selection and an increase in CFR diversity (Linder 2003).  

One under-utilized approach for answering these questions of diversity has been 

through population genetic studies, which has long been suggested for the CFR 

(Barraclough 2006; Valente et al. 2010), to provide insight into population level 

processes such as gene flow, population structure and divergence over spatial and 

temporal scales. Specifically, these studies can provide information about fine-scale 

genetic variation, as well as reflect historic and recent expansions and bottlenecks in 

population size, and key temporal changes on the scale of tens to hundreds of thousands 

of years (Perry et al. 2007; Zellmer and Knowles 2009). Whereas several previous studies 

have made attempts to examine diversity in the CFR, these have largely come as by-

products of vertebrate and invertebrate organism-specific questions about 

phylogeography, in which case, species ranges, densities, and applicability to questions 

about the plant diversity on fine-scales have been serious limitations to understanding the 

dynamics of the CFR itself (Price et al. 2007; Swart et al. 2009; Tolley et al. 2009; 

Willows-Munro & Matthee 2009). Given the level of heterogeneity of the landscape in 
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such a small area of the CFR, several criteria should be met to conduct such a population 

genetic study: (i) a representative plant sample with a widespread biogeographic 

distribution, (ii) a large sample of molecular markers that reflect neutrality, and (iii) a 

statistical approach that can identify genetic structure on different scales in an unbiased 

way. Sampling diversity within and between locations, as well as inside and outside the 

CFR ranges, allows for formal comparisons between these groups and can answer 

temporal questions regarding when groups diverged from one another.  

In setting out to collect a population genetic dataset to address these questions of 

how, when, and where diversity has originated in the CFR, here, we focused on the 

endemic fynbos plant Leucadendron salignum, a shrub of the family Proteaceae. 

Leucadendron. salignum is the most biogeographically widespread fynbos plant (Barker 

et al. 2004), found not only in the CFR, but inhabits almost every area of fynbos in South 

Africa from the Northern Province across both the Eastern and Western Capes, covering 

mountain and coastal areas, as well as all rainfall regimes. It is a diploid, dioecious plant 

whose chloroplast DNA is maternally inherited (Pharmawati et al. 2004). Leucadendron 

salignum is insect pollinated, and has evolved a re-sprouting strategy as a fire-survival 

mechanism; however it also uses serotiny as a mechanism for seed dispersal, likely 

triggered by fire (Williams 1972; Hattingh & Giliomee 1989; Barker et al. 2004). In this 

respect, this fynbos plant is an ideal model for a much-needed population genetic 

approach in the CFR to generate hypotheses about how genetic diversity is found across 

temporal and spatial scales. Specifically, our analysis includes sampled locations from 

across the entire species range of Western and Eastern Capes, develops multiple DNA 
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sequence markers de novo, and applies several statistical and evolutionary tests of 

geographic and genetic structure.  

Methods 

Samples  

 Given our understanding of genetic diversity at any level with respect to 

geography and genomic regions is poorly understood for L. salignum, our sampling 

rationale intended to maximize information over the entire range while still estimating 

some level of within-location diversity. Specifically, we do not know on what spatial 

scale diversity is partitioned, and thus, our intention was to not oversample from any one 

locale/spot only to find that diversity is partitioned more between locales. This approach 

was especially important since our primary goal was to determine, initially, whether we 

can identify large-scale structure and geographic regions that may then require further 

sampling and resource focus on fine-scale. In this respect, we sampled leaves from a total 

of 305 Leucadendron salignum individuals from 51 locations spread over the entire 

geographic range of the species (Fig. 2.1, Table 2.1). This sampling reflects a number of 

different aspects of the landscape including western and eastern rainfall regimes of the 

different Capes, mountain and coastal fynbos regions, as well as urban and undisturbed 

sites. Leaves were preserved immediately in silica gel and stored at room temperature. 

DNA was extracted using the QIAGEN DNeasy Plant Mini Kit (QIAGEN, Inc., 

Valencia, CA) according to the manufacturer’s instructions.   

Data generation 

 As no genome sequences are available for L. salignum, or any fynbos plant for 

that matter, we chose to develop markers for DNA sequence analyses. While studies have 
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previously used regions such as ITS for resolving phylogenetic relationships among 

genera and species, these markers by definition are best for examining more distant 

evolutionary events due to their more slowly-evolving nature, and thus, we needed 

markers that best capture population-level processes. On the other hand, these conserved 

regions can be useful for generating primers. Specifically, we took advantage of one full 

genome sequence published, that of Arabidopsis thaliana, and designed many degenerate 

primers in chloroplast (cpDNA) regions typically conserved across taxa (Chaw et al. 

2005; Hu et al. 2000; Raspe et al. 2000; Birky 1995) to amplify across intergenic 

sequences via PCR for an initial dataset of markers. A set of individuals were first used to 

test many primer pairs and evaluate DNA sequences to omit those with complex repeats 

and otherwise unreadable data.  

 In total, ~5000 bp of cpDNA sequence across 6 different intergenic markers were 

collected from each of the 306 individuals. PCR products ranged from sizes of ~500 to 

~1500 bp and were prepared for DNA sequencing using shrimp alkaline phosphate and 

exonuclease I (Us Biochemicals, Cleveland, OH). Nucleotide sequences were generated 

on an Applied Biosystems 3720 capillary sequencer, and trace files were edited and 

aligned in Sequencher v. 4.6 (Gene Codes). All primer pairs and PCR conditions are 

available upon request. 

Population Structure and Gene flow analyses 

 Unless otherwise noted, all summary statistics and parameters were calculated in 

DNAsp v 5.5 (Rozas et al. 2003). Estimates of nucleotide diversity (π) and the number of 

polymorphic sites (S) following Watterson’s (1979) θ were estimated across all 

individuals as well as within geographic regions or genetic clusters as noted below. As 
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there is no a priori information on what dictates “neutrality” in the L. salignum genome, 

we generated a single nucleotide polymorphism (SNP) frequency spectrum and evaluated 

its departure from that expected under a standard coalescent model using Tajima’s (1989) 

D. Values significantly greater and less than one may be considered indicative of certain 

demographic events such as population structure (excess of common alleles) and 

expansion (excess of rare alleles), respectively.  

 The program STRUCTURE v 2.3.3 (Pritchard et al. 2000; Falush et al. 2003; 

Falush et al. 2007; Hubisz et al. 2009) was used to determine the underlying genetic 

relationship among L. salignum individuals. The analyses implemented in STRUCTURE 

present an unbiased picture of how diversity is distributed across the sampled localities, 

using an individual-based clustering approach. All individuals were assigned as separate 

entities and run using the assumption of K = 2-20 clusters; with 5 replicates of 10
6
 

generations and a burn-in of 10
4
 generations. The program Structure Harvester (Earl 

2009) was used to interpret the data using the Evanno method (Evanno et al. 2005) and 

produced the files necessary for the program CLUMPP 1.1.2 (Jakobsson & Rosenberg 

2007), which combined results from the 5 runs at the estimated K value. Clusters were 

visualized using the program DISTRUCT 1.1 (Rosenberg 2004). In addition, to assess 

how variance was partitioned among different geographic groups or genetic clusters as 

defined by STRUCTURE, FST statistics and their associated p-values (testing standard 

hypothesis of FST=0) were calculated using ARLEQUIN (Excoffier et al. 2005).  

 A coalescent approach was also used to calculate the effective population size 

(Ne) and asymmetrical migration rates between different geographic regions and genetic 

cluster groups. The program MIGRATE-N 3.2.16 (Beerli and Felsenstein 2001; Beerli 
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2002) employs a Markov Chain Monte Carlo (MCMC) sampling of gene trees to estimate 

Ne and migration rates among groups. MIGRATE-N was run under the maximum 

likelihood framework, with the datatype set to nucleotide polymorphism; each run 

consisted of 10 short chains and 3 long chains with a burn-in period of 10,000 trees. 

Divergence Time Estimates 

 Due to the difficulty of obtaining divergence times for South African plants in the 

fossil record, we employed the approach of Valente et al. (2009), which used estimated 

divergence times from fossil outgroup data in an iterative process to constrain the 

molecular clocks in a series of phylogenetic tree analyses. This analysis first required 

estimating the divergence times of species within the Leucadendron genus, which we did 

using a relaxed Bayesian MCMC approach implemented in BEAST v.1.7.5 (Drummond 

et al. 2007, 2012). ITS nucleotide sequence data from Barker et al. (2004) for 14 

Leucadendron species including L. salignum and one outgroup, Serruria adscendens 

(Table 2.2), for which phylogenetic relationships were estimated, but no divergence times 

were generated at the time, were downloaded from Genbank and analyzed in BEAUTi 

v.1.6.2 (Drummond et al. 2007, 2012). In BEAUTi a speciation model following a Yule 

process was chosen as the tree prior with the starting tree randomly generated, branch 

rates were set as uncorrelated lognormal, with rates estimated among branches. This tree 

reflected that first published in Barker et al. (2004), and thus, the species relationships 

were unchanged. Now, using the stem clade of Leucadendron estimated at 29.3-46.2 

MYA in Sauquet et al. (2009), we constrained the root node age in this tree to a normal 

distribution for three separate values across this time range. Five independent runs of 5 

million generations, sampling every 2000 generations were performed in BEAST for 
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each root value and the effective sample size (ESS) was assessed in Tracer v. 1.5 

(Rambaut & Drummond 2007, 2012). All runs were combined using LogCombiner and 

trees were annotated using TreeAnnotator v1.7.5 (Drummond & Raumbaut 2007) and 

visualized using FigTree v.1.3.1. The divergence time of L. salignum from closely-related 

Leucadendron species in these runs was conservatively estimated at 8 to 22 MYA.  

 Based on the Barker et al. (2004) analysis, Leucadendron species that are 

estimated to be closely related to L. salignum are very rare or endangered, and those 

potentially available to calibrate rates of evolution would appear to be highly diverged 

based on our new estimates here. Thus, in order to calibrate rates of evolution on our 

population tree, we collected samples of a Leucadendron species from the Cape 

Peninsula, which while unidentified, closely resemble L. salignum but are sufficiently 

genetically diverged. Specifically, although our cpDNA markers amplified in all 

individuals from multiple Leucadendron spp., they exhibit no shared variants with L. 

salignum but many fixed differences, with an estimated between species nucleotide 

divergence of 2.88% compared to that of 0.245% estimated between any two L. salignum 

individuals. In addition, our examination of genome-wide nuclear markers in L. salignum 

(see Chapter 4) could not be amplified in any of the Leucadendron spp. individuals, 

indicating that while the nuclear DNA has become sufficiently diverged, the cpDNA is 

still relatively conserved and appropriate for phylogenetic rooting here. Thus, as 

explained below, we calibrated rates of evolution for our cpDNA L. salignum population 

tree with these outgroup sequences and constrained the root time with the estimated 

divergence time from above.  
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 To evaluate the L. salignum population genetic data in BEAST, first, 

MODELTEST (Posada & Crandall, 1998) was used to determine the appropriate model 

of nucleotide evolution for the L. salignum SNP dataset. We used standard published 

estimates of the chloroplast sequence divergence range of 1.0-3.0 X 10
-9

 substitutions per 

site per year (Wolfe et al. 1987) in multiple runs. Independent runs for trees with roots 

constrained to a normal distribution across the range of 8-20 MYA were conducted. 

Markov Chain Monte Carlo (MCMC) analyses were performed using both strict and 

relaxed (uncorrelated lognormal) clocks as well as using the constant size, exponential 

growth, and Bayesian skyline population models. Rate variation was allowed under all 

models by setting a normal prior distribution for the molecular clock rate (mean = 0.001, 

SD = 0.00001). Each BEAST profile ran five times for 60 million generations with the 

first 6,000,000 discarded as burn-in, logging every 6000. All initial runs were viewed in 

the program TRACER 1.5 to analyze the parameter distributions estimated from BEAST 

and to check for convergence of the chains. Log files from each set of runs were then 

combined using LogCombiner and TreeAnnotator v1.6.1 which yielded a consensus tree 

for each set of analyses. Finally, as a comparison to these results regarding the 

relationships among individuals, a simple neighbor-joining tree, which employs fewer 

assumptions, was created in MEGA v. 5 (Tamura et al. 2011). 

Results 

Nucleotide Diversity 

 A dataset of ~5000 bp of cpDNA sequence totaling 104 variable sites that 

included 94 SNPs and 10 indels was collected for each of the L. salignum individuals. 

Overall nucleotide diversity was measured as θπ = 0.0025 and θs = 0.0030, with Tajima’s 
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(1989) D = -0.908 (Table 2.3). This latter analysis indicates no significant departures 

from that expected under neutrality, and thus, the dataset may be expected to fit a drift-

mutation model. Analyses performed between geographical groups show some 

differences from the overall statistics; for example, the Eastern Cape had much lower 

levels of overall nucleotide diversity (θπ = 0.0011, θs = 0.0013, D = -0.378). On the other 

hand, the Western Cape had levels of diversity similar to that found in the overall sample 

(θπ = 0.0019, θs = 0.0029, D = -1.090).    

Population Genetic Structure 

 The ΔK method (Evanno et al. 2005) implemented in Harvester showed a single 

peak at K=4 (average LnPD= -3116.3) with no secondary peak at larger K values, thus, it 

would be appropriately conservative to conclude that, based on our data and sample 

locations, we can detect four structure clusters. Thus, results are presented here for all K 

runs between 2 and 6 to illustrate the structure in these data (Fig. 2.2). Of note is that 

some clustering patterns emerged early in the runs that did not change significantly at 

higher K values; for example, samples collected from the Eastern cape clustered together 

beginning at K=2, and remained clustered throughout all K values. The four 

STRUCTURE clusters correlate well with distinct geographic areas of the CFR (north, 

southwest, central, and east), thus, signaling a geographic distance-based clustering. In 

addition, in cases where individuals could not be “binned” entirely into one structure 

cluster, they appear to be located on the edge of cluster “breaks” (Fig. 2.3).  

 Interestingly, the results for K=5-6 indicate further structure in the north and 

central regions (Fig. 2.2). These clusters are not fully resolved; however, the rate of 

increase in the relationship between K and ln(K) (Fig. 2.4) continues through K = 7, at 
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which point the variance of ln(K) becomes much larger between runs, suggesting there is 

already some evidence for significant structure even within these cluster groups.  

 To test this hypothesis of hierarchical structure, additional STRUCTURE analyses 

were run on each of the original clusters using the same parameters. Within the eastern 

cluster, which originally remained undifferentiated between all K values, STRUCTURE 

identified K=3 in the secondary analysis. In the subsequent post hoc analyses of the 

original clusters, STRUCTURE identified K=3 for the central, east and southwest 

clusters, as well. In order to explore this hierarchical pattern further and objectively, we 

examined the amount of variance at several levels from within and between locations to 

within and between the geographic cluster groups. The global FST among all individuals 

was equal to 0.78 (p <0.001), with pairwise FST analyses spanning the entire range (0.1-

1.0, Table 2.4). Fst analyses of the genetic cluster groups indicate there is less variation 

present between the East and West (FST = 0.43, p<0.001), and within the East (FST = 0.50, 

p<0.001), than in the overall sample (Table 2.5). However, within the central cluster (FST 

= 0. 73, p<0.001), variation is similar to that found in the overall sample. Migration rates 

estimated using MIGRATE-N indicate patterns of asymmetrical migration across large 

geographical regions, such as the between the Western and Eastern Cape, with <1 

migrant moving from West to East, and >1 migrant travelling from East to West, with 

possibly limited migration among STRUCTURE groups (e.g., <1 migrant per generation, 

Table 2.6). Finally, estimates of Ne  from MIGRATE-N for all STRUCTURE clusters 

show lower values for the East than all other regions (Table 2.6).  

Temporal Genetic Structure 
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 The results of the BEAST analysis (Fig. 2.5) corresponds to the four 

STRUCTURE clusters originally detected, which is not unusual given that cpDNA may 

be expected to reflect lineage sorting due to its non-recombining nature. The topology of 

the BEAST tree shows three key findings (Fig. 2.5). First, the coalescent point for all 

CFR locations (“A”, Fig. 2.5) indicates a deep divergence between groups with high 

support (posterior probability = 1.0) approximately ~1.17 MYA (with an estimated 95% 

CI of 0.73-1.63 MYA). Second, the tree shows the Eastern Cape locations form a 

monophyletic clade (“B”) and shares a common ancestor with locations only sampled in 

the south west, indicating more recent emergence from this geographic area. The age 

estimate at ~ 0.321 MYA (0.17-0.47 MYA) of the eastern clade is also significantly more 

recent than the other clades. Finally, there appears to be a much deeper ancestry for the 

remaining central and south west locations (“C”) ~ 0.885 MYA (0.518-1.26 MYA), 

indicating that although there are deep roots for many of the locations, the population 

structure here is not static as new groups have emerged recently. Finally, the neighbor 

joining tree analysis resulted in tree topologies similar to that found with our BEAST 

analysis, further indicating the robustness of these results when using a number of 

different parameters.  

Discussion  

 This analysis of 306 L. salignum individuals across 51 locations is one of the most 

comprehensive studies to examine population genetic estimates of diversity and structure 

within the CFR. By comparing locations both inside and outside the CFR, we were able 

to uncover significant amounts of spatial genetic structure that appears to be driven by the 

partitioning of genetic diversity at fine scales. Additionally, we were able to identify both 
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spatial and temporal differences for samples collected in the Eastern Cape compared to 

those in the Western Cape. Interestingly, we also found evidence that the creation of this 

spatial genetic structure, both inside and outside the CFR, has occurred across different 

time periods, indicating that the landscape of the CFR has been dynamic over time.  

Temporal differences within L. salignum 

Our phylogenetic analysis confirmed the initial clustering detected in 

STRUCTURE and suggests these broad groups have not been static; as the emergence of 

each clade varies across both time and space, with the oldest clade located in the central 

region and the newest clade in the East. Previous studies have indicated that the Eastern 

Cape is influenced by different climate controls than the West (Cowling & Lombard 

2002; Linder 2003; Daniels et al. 2007; Tolley et al. 2009), and these differences may 

contribute to diversity on both spatial and temporal scales. It has been hypothesized that 

either a historic climate shift or the current climatic regime near the border between the 

Western and Eastern Capes influences species near the East/West Cape boundary. The 

estimated relative divergence time between all L. salignum groups falls around ~1.17 

MYA, well within the estimated Plio-Pleistocene climate range, indicating that this 

historic climatic shift may have influenced the initial divergence of L. salignum. The 

oldest divergence point within L. salignum between groups is the coalescent point of the 

Southwest and Central groups, who shared a common ancestor ~0.885 MYA. This time 

period falls near the climatic upheaval associated with the Plio-Pleistocene, which was 

thought to create areas of refugia across the Western Cape. It may be, during this time, 

these two groups became isolated from one another, ultimately generating this diversity.  

However, one of the most surprising results of this study is the origin of the monophyletic 
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clade representing the East, which appears to have originated from the West more 

recently than any other clades ~0.321 MYA, a time period that is not associated with 

historical Plio-Pleistocene climatic shifts, but may be associated with the current climate 

conditions.  

This observation is consistent with our observations of genetic diversity; when 

comparing the values for Tajima’s D for all locations in the Eastern Cape (D = -0.38) to 

the value calculated for all locations found in the Western Cape (D = -1.09), the value is 

much larger in the East than the West. It is likely, given the low cpDNA mutation rate 

(Wolfe et al. 1987), the pattern observed for the East is a result of the recent colonization 

from a subset of ‘founding’ individuals, and these newly established groups have yet to 

acquire enough new rare variation to produce a signature of a recent expansion, in the 

form of a highly negative D value, and are still largely reflecting the colonizing 

individuals genotypes. Analyses from MIGRATE-N also corroborate the expansion 

hypothesis, as the effective population sizes of the East are much smaller than any other 

group, which is expected after a recent expansion. Additionally, gene flow can be 

detected at broad spatial scales outside defined structure clusters between locations in the 

north and east, with >1 effective migrants detected moving from the north to the east. 

This may be indicative of a signature of historical gene flow that is still detectable given 

the recent colonization and shared genetic variation. 

 Interestingly, this recent colonization of the East suggests that the initial historic 

climatic shifts from the Plio-Pleistocene epoch that are attributed to the differences in 

vegetation across the East and West Capes did not facilitate the move of fynbos into the 

Eastern Cape. This observed pattern is perhaps in part due to the stability of the 
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environment over time since the climatic upheavals, which has maintained the seasonal 

winter rainfall and bi-annual rainfall patterns found between the Western and Eastern 

Capes. Several groups have hypothesized these current climatic differences may 

influence diversity between the Capes (Cowling & Lombard 2002; Linder 2003), and 

these data of a recent expansion seem to support this hypothesis; however, the exact 

underlying mechanism that facilitated this recent expansion into the East is still unknown.  

Spatial genetic structure in L. salignum 

Considering the unique plant endemism found in the CFR, it is surprising that 

little is known about the genetic variation and micro-evolutionary processes occurring 

within plant species found in this region. The results presented here show that within L. 

salignum there are high levels of spatial genetic structure occurring on a fine-scale; 

however, many of these patterns were not detected until post hoc analyses were applied. 

Initially, these L. salignum data group into four broad STRUCTRUE clusters, which 

correspond to geographical regions of the CFR: the north, southwest, central, and east 

regions (Fig. 2.3).  However, post hoc STRUCTURE analyses also indicate hierarchical 

structure occurring on spatially fine-scales; therefore, although four cluster groups largely 

represents the overall structure, it is not a definitive value, but rather a guide for 

understanding the broad spatial genetic structure of L. salignum. 

 One limitation of STRUCTURE is that it can be less effective at identifying fine 

scale variation when there are large differences between groups (Fogelqvist 2010; 

Kalinowski 2011). In one of the few CFR studies that have used STRUCTURE, Prunier 

& Holsinger (2010) were able to confirm the genetic distinctiveness of each species; 

however, they were unable to detect any fine-scale structure within their individual 
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population samples. While STRUCTURE is a useful tool in determining population 

structure when no a priori information is available, it does not provide the magnitude of 

differences that separate these groups. For example, in this study, the observed levels of 

genetic variation,  among the initial four STRUCTURE clusters are high, as measured by 

FST (Table 2.5), but within some of these clusters, FST values exceed those values found 

between the furthest groups of the East and West (Table 2.4). This evidence suggested 

hierarchical structure within the initial four clusters, confirmed by post hoc analyses. The 

clustering of smaller, localized areas detected in post hoc analyses indicated that genetic 

diversity in L. salignum is driven at the fine-scale. One hypothesis to explain these 

patterns is, if the complex heterogeneity of the CFR drives genetic diversity, we would 

expect that genetic variation will become partitioned between groups at small spatial 

scales.   

The magnitude of FST values found in this study suggests that the majority of 

genetic variation results from differences among groups found within sub-populations 

and is not shared. This was a surprising result as other studies of fynbos plants have 

reported low levels of genetic variation even between fynbos species (Bergh et al. 2007; 

Prunier & Holsinger 2010). However, these studies used bi-parentally inherited nuclear 

markers, which are difficult to compare to this study using cpDNA, given the differences 

in dispersal, effective population sizes, and inheritance between these marker sets. While 

it is difficult to know if these large FST values are specific to L. salignum or indicative of 

CFR plant genetic variation, we can compare these values within the overall sample to 

see that even within this population, the partitioning of genetic variation differs across 

groups. In the geographic region encompassed by the ‘central’ STRUCTURE cluster, FST 
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values are much higher than those found within any other cluster, indicating that, here, 

more variation is being partitioned between groups than in any other defined CFR 

clustered region. These large values may be attributed to the age of this STRUCTURE 

cluster, as it is one of the oldest clades identified by BEAST, more variation may have 

accumulated simply due to the temporal differences between this group and all others. 

Alternatively, this area may have been fragmented during periods of climatic shifts, 

creating many regions of refugia which were isolated over time, generating higher 

amounts of diversity in this region compared to others.  The locations represented by the 

east STRUCTURE cluster have the lowest amount of genetic variation which may be 

characteristic of its recent origins compared to all other groups. When comparing FST 

values between structure clusters, values are highest when compared to the East, 

indicating the variation between the East and all other clusters is not shared. This may be 

expected because the genetic variation found in all other groups is significantly older and 

more differentiated than in the Eastern cluster, and therefore, variation is portioned 

largely within each of these groups simply due to the temporal differences between them.  

 Lastly, sampling locations of L. salignum found both inside and outside the CFR 

allowed for comparisons in determining where genetic diversity is being generated. 

Given the range of L. salignum, we were able to collect four locations outside of the CFR 

for preliminary comparisons. Although this is a small proportion of the total number of 

locations collected, it is of note that in comparing these ‘outside’ samples to those found 

within the CFR, these outside samples all showed spatial genetic relatedness to CFR 

locations in STRUCTURE and common ancestry with CFR locations in BEAST. It does 

not appear that these locations are generating CFR diversity, but rather they show 
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origination from within the CFR but are then able to move outside of the defined CFR 

boundary. The influence of genetic diversity within the CFR is able to also contribute to 

genetic diversity outside of this region, a fact which may have gone unnoticed without 

this comparison. 

Conclusion 

 In this molecular population genetic study of L. salignum, we find evidence for 

significant amounts of spatial genetic structure through at least four STRUCTURE 

clusters, with evidence of hierarchical structure within each of these groups. It appears 

this spatial variation occurs on a fine-scale, as estimates of genetic diversity show that 

variation is largely found within sampled locations and is not shared between locations. 

In dating the temporal origins of these groups we find the emergence of these groups 

occurred across different times, with the east being the most recently colonized. These 

temporal differences indicate that the overall population of L. salignum is not yet at 

equilibrium, and that the genetic structure may not be spatially generated. In 

understanding what drives these patterns of diversity across spatial and temporal scales, 

we must consider alternate approaches to the traditional measures of isolation by distance 

generally evoked to explain patterns of diversity. It is apparent that the landscape of the 

CFR is dynamic on both spatial and temporal scales and without this preliminary 

understanding of the spatial genetic structure and temporal relatedness among individuals 

in the L. salignum population these patterns may not have been discovered. Moving 

forward, in determining what drives the diversity present in L. salignum it will be 

important to consider the fine-scale genetic variation and temporal differences between 

these identified groups, as well as compare the patterns found in this study to those from 
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bi-parentally inherited genetic markers to determine if these patterns are specifically 

associated with maternal markers or both lineages. 
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Abbreviation Location Name latitude longitude

1 VRP Vanrhyns Pass -31.37087 19.01587

2 GIP Gifberg Pass -31.76927 18.76999

3 PAP Pakhuis Pass -32.14442 19.02492

4 MIP Middelberg Pass -32.63051 19.15221

5 VEP Versfeld Pass -32.84253 18.73164

6 GYP Gydo Pass -33.23595 19.33648

7 WOR Worcester -33.60255 19.33463

8 GBY Grotto Bay -33.52580 18.35388

9 PHI Philadelphia -33.71750 18.54403

10 CPT Cape Town -33.91698 18.40488

11 SVR Silvermine -34.08278 18.41490

12 SIT Simons Town -34.20063 18.41121

13 SWB Smitswinkel Bay -34.26193 18.46104

14 PRB Pringle Bay -34.31126 18.83138

15 STL Stellenbosch -33.93238 18.87687

16 FRP Franschhoek Pass -33.91495 19.15701

17 GRY Greyton -34.03345 19.60752

18 STA Stanford -34.41032 19.58887

19 AGU Agulhas -34.66967 19.77530

20 DHP DeHoop -34.37937 20.52973

21 BTK Bontebok -34.04368 20.46947

22 KOP Kogmanskloof Pass -33.80377 20.10572

23 TRP Tradouws Pass -33.93706 20.71161

24 HID Heidelberg -34.01497 20.96603

25 GAP Garcia Pass -33.94164 21.20187

26 STB Still Bay -34.26279 21.37145

27 ALB Albertinia -34.22925 21.59360

28 VLB Vlees Bay -34.34412 21.86730

29 MOB Mossel Bay -34.16592 22.00785

30 GRB Grootbrak -34.06319 22.20193

31 CLP Cloete Pass -33.93095 21.76138

32 ROP Robinsons Pass -33.86390 22.02835

33 OUP Outeniqua Pass -33.88690 22.39971

34 DAS Daskop -33.76938 22.65600

35 RBP Rooiberg Pass -33.65101 21.63852

36 SEW Seweweekspoort -33.38633 21.40805

37 ANB Anysberg -33.47264 20.58203

38 SWP Swartberg Pass -33.35097 22.04737

39 BLB Blesberg -33.40775 22.73231

40 POP Potjiesberg Pass -33.70272 23.04364

41 PLB Plettenberg Bay -34.01325 23.38842

42 MIS Misgund -33.76043 23.48274

43 KOU Kougaberg -33.67525 23.50330

44 JOB Joubertina -33.82058 23.85400

45 NOT Nooitgedacht -33.82692 24.25445

46 AGS Assegaaibos -33.93455 24.30351

47 BAV East Baviaanskloof -33.63444 24.46917

48 HUM Humansdorp -33.95992 24.76670

49 SHB Stinkhoutberg -33.81534 24.95069

50 SUP Suurberg Pass -33.28263 25.72010

51 GRT Grahamstown -33.34028 26.51658

Table 2.1 Names and geographic coordinates for all sampled L. salignum locations



64 

 

Species

Leucadendron nervosum AY692171.1

Leucadendron album AY692167.1

Leucadendron ericifolium AF508855.1

 Leucadendron flexuosum AY692169.1

Leucadendron salignum AY692172.1

Leucadendron lanigerum AY692170.1

Leucadendron discolor AY692202.1

Leucadendron modestum AY692221.1

Leucadendron dregei AY692166.1

Leucadendron singulare AY692209.1

Leucadendron platyspermum AY692205.1

Leucadendron rubrum AY692186.1

Leucadendron argenteum AY692184.1

Leucadendron osbornei AY692168.1

Serruria adscendens AF508823.1

GenBank Accession  

Numbers

Table 2.2 Summary of species used in generating 

divergence times
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Table 2.3 Summary statistics of nucleotide variation

N Length (bp) S
a

θS
b

θπ
c D

d

All samples 305 4649 88 0.0030 0.0025 -0.908

East Samples 59 4649 28 0.0013 0.0011 -0.378

West Samples 246 4649 83 0.0029 0.0019 -1.090
a
Total number of SNPs

b
Watterson's θ

c
Average number of pairwise diffrences between sequences

d
Tajima's D statistic
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Fig. 2.4 The average log likelihood of the 20 STRUCTURE runs at each K. Error bars 

are standard deviations. Values for K 2 to 12 are shown. 



73 

 F
ig

. 
2
.5

 E
v
o
lu

ti
o
n
ar

y
 e

st
im

at
ed

 r
el

at
io

n
sh

ip
s 

o
f 

3
0
6
 i

n
d
iv

id
u
al

s 
b
as

ed
 o

n
 B

E
A

S
T

 a
n

al
y
si

s.
 T

h
e 

fo
u
r 

g
en

et
ic

 “
co

lo
r”

 c
lu

st
er

s 

sh
o
w

n
 i

n
 F

ig
. 
2

-3
 a

re
 m

ap
p
ed

 t
o
 t

h
e 

ri
g
h
t.

 A
g
e 

es
ti

m
at

es
 a

t 
n
o
d
es

 (
n
o
te

d
 i

n
 t

h
e 

te
x

t)
 i

n
 m

il
li

o
n
s 

o
f 

y
ea

rs
 a

re
 (

A
) 

1
.1

7
, 
(B

) 
0
.3

2
1
, 

an
d
 (

C
) 

0
.8

8
5

 



74 

Chapter 3 

A LANDSCAPE GENETIC STUDY OF THE FYNBOS PLANT LEUCADENDRON 

SALIGNUM FROM THE CAPE FLORAL REGION, SOUTH AFRICA 

Introduction 

 The Cape Floral Region (CFR) is a biodiversity ‘hot-spot’ and area of global 

significance (Meyers et al. 2000) that has long been a priority for conservation (Cowling 

et al. 2003). The CFR is extremely diverse, with over 9,000 vascular plant species of 

which approximately 70% are endemic, all within an area encompassing only 90,000 

km
2
. This includes five endemic plant types: fynbos, renosterveld, subtropical thicket and 

forest, and succulent karoo (Goldblatt 1997; Cowling & Proches 2004). Of these, fynbos 

and renosterveld are the predominant vegetation in the CFR, with the thicket, forest and 

succulent karoo occupying much smaller areas. The fynbos, which in Afrikaans means 

‘fine-leaved bush’ is characterized by restiod reed-like bushes, ericoid fine leafed bushes, 

proteoid large leafed woody shrubs, and geophytes that contain large underground 

storage organs (Cowling et al. 1996). The fynbos overall makes up 80% of the endemic 

plants found in the CFR; thus, many have hypothesized that the composition and unique 

characteristics of the fynbos alone may explain the high species diversity and patterns in 

the CFR (Goldblatt 1978; Campbell 1983; Linder 2003).  

 One hypothesis to explain the species richness of the CFR has been the 

heterogeneity of the CFR environment. For example, the coasts of South Africa that 

encompass the CFR create the distinct Western and Eastern Capes; substantial geological, 

topographical, and environmental variation exists between these two regions. The 

Western Cape receives the highest concentration of rainfall, receiving almost 69” per 
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annum. This volume decreases in an almost stepwise fashion across to the Eastern Cape 

which shifts to a bimodal rainfall pattern, with approximately 10” per annum, mostly 

falling in the spring and autumn (Cowling 1983, 2005a; Latimer et al. 2006). The Eastern 

Cape has been defined as a region of transition for climate, topography and geological 

processes (Cowling 1983). It has been hypothesized that the local conditions of each 

Cape determine the presence of flora and fauna in each region (Linder & Vlok 1991; 

Linder 2003). Fynbos becomes less common in the Eastern Cape and is replaced by 

thicket, which preferentially grows in semi-arid to subhumid and subtropical to warm-

temperate environments (Acocks 1953; Low & Rebelo 1996; Cowling et al. 1999, 

2005b). Soil composition and fertility ranges on a fine scale, from rocky, nutrient-poor 

soil to nutritionally imbalanced dune and limestone sands in the West while soils in the 

east contain more nitrogen and phosphorus (Campbell 1983). It has been suggested by 

Linder (2003) that ‘soil nutrient status may form an important barrier’ between different 

types of vegetation. Mountain ranges separate the interior of the country from the coast, 

acting as barriers to moisture and having a profound effect on the climate. These ranges 

create elevation gradients, where elevation can change from below sea-level upwards to 

over 2,200 meters all within a few kilometers. These folded mountains also form a set of 

ridges, with a range of eastern mountains falling parallel to the Eastern coast and a set 

which are parallel to the Atlantic, trending from the southern part of the Western Cape 

and moving north (Linder 2003). The mountain ranges, specifically the Cape Fold 

Mountains, which originate in the southwestern part of the country near Cape Town, have 

been identified as potential areas of refugia (Verboom et al. 2009) and plant species 

richness has been positively correlated with altitude (Cowling & Lombard 2002).  
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 The flora of the CFR are heterogeneous as well, with high levels of turnover 

between plant habitats at local scales, and high turnover between analogous habitats 

along geographical gradients (Cowling et al. 1992; Linder 2003), which is evident by the 

vegetation composition of the CFR (Fig. 3.1). Several studies have identified geographic 

areas of interest for generating diversity by correlating patterns of genetic diversity with 

large-scale features (Daniels et al. 2007; Price et al. 2007; Smit et al. 2007; Swart et al. 

2008; Willows-Munro & Matthee 2011). For example, by first observing the occurrence 

of three species clades in a study of angulate tortoises, Daniels et al. (2007) correlated the 

occurrence of these three distinct cape clades to the presence of the Cape Fold 

Mountains. Similar observations were made by Willows-Munro & Matthee (2011) in a 

study of southern African shrews, which found a distinct lineage that broadly followed 

the topology of the Cape Fold Mountains. In addition, Tolley et al. (2009) found in a 

study of Agama lizards that little gene flow occurred across the rainfall boundary which 

delineates the Western and Eastern Capes, suggesting this region presents a barrier to 

gene flow. However, the inability to localize these regions generating diversity beyond 

this large scale (i.e., “West vs East”) and to identify the cause of these genetic patterns 

specifically, brings into question whether these studies lack the sampling resolution, 

especially since the growing hypotheses have all targeted fine-scale heterogeneity as an 

important factor in generating diversity. That is, genetic sampling of organisms with fine-

scaled spatial distributions across the CFR would enable the empirical testing of 

landscape variables in correlation with spatial genetic structure. Using a landscape 

genetics approach, we could model the ‘interaction between landscape features and 
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microevolutionary processes, such as gene flow’ that may facilitate or isolate individuals 

and populations over short- and long-term periods (Manel et al. 2003).  

Traditionally, landscape genetic approaches have used an ‘isolation by distance’ 

(IBD) model as a null hypothesis, where it is assumed that populations in close proximity 

to one another will share more genetic variation than those that are further away (Wright  

1942). This has been tested by measuring the straight line distance between points; 

however, other spatial have been used. Spatial graphs connect points based on different 

underlying assumptions and may be helpful because they approximate connectivity 

between locations given their spatial distributions (Manel et al. 2003; Epperson et al. 

2010; Fall et al. 2007). The Delauney triangulation and Gabriel networks are most 

frequently used in spatial analyses (Dale and Fortin 2010; Diniz-Filho & Bini 2012) and 

have been used in the CFR (Willows-Munro & Matthee 2011; Tolley et al. 2009). As an 

alternative to a model of IBD, landscape genetic studies have also used ‘isolation by 

resistance’ (IBR) models (i.e., McRae 2006), which allow any landscape feature 

(including geographic distance) to be parameterized as a ‘resistance surface’ that weighs 

these different features in their ability to impede or facilitate gene flow. This method has 

been shown to have an increased correlation with genetic diversity over models of IBD 

(McRae &Beier 2007). While this IBR model could help in understanding landscape 

heterogeneity in the CFR, it has only been used rarely; a single study by Smit et al. 

(2007) tested patterns of IBR in the cape rock elephant-shrew using resistance calculated 

as the reciprocal of migration levels between sampled populations. They indicated 

patterns of clade divergence within the fynbos were significant under both models of IBD 

and IBR, however, although significant correlations were found, the IBR model did not 
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consider the landscape of the CFR directly as a factor in shaping the patterns of genetic 

diversity. 

One consideration for a landscape genetic analysis in the CFR is to focus on a 

plant model species with a broad widespread distribution, and yet one that can also be 

sampled at the population level across an array of fine-scale landscape features. 

Leucadendron salignum is a widespread fynbos plant, found across both the Western and 

Eastern Capes, at all levels of elevation and across an array of different soil types. Our 

previous population genetic analysis of a L. salignum data set, using ~5kb across multiple 

chloroplast DNA markers in 306 individuals from across 51 locations, revealed 

significant geographic clustering across the entire CFR range (Chapter 2; Fig. 3.2). 

Surprisingly, when using a pairwise FST analysis to partition the variation within and 

between these geographic clusters, it appeared that significant genetic diversity exists 

between locations even within these cluster groups (Table 3.1), suggesting fine-scale 

hierarchical structure. Some of this structure may be explained by temporal variation; for 

example, our phylogenetic analyses suggest that Eastern Cape locations are due to more 

recent colonization as an expanding monophyletic group out of the Western Cape. Thus, 

genetic heterogeneity in the Western Cape may be attributed to an older evolutionary and 

environmental history, whereas, the Easter Cape pattern reflects emergence into a 

different climatic and vegetation region.  

 While our previous work characterized patterns of spatial and temporal 

geographic structure for a plant model across the CFR, in this present study, we test 

hypotheses about how landscape features may generate this genetic diversity. 

Specifically, we use our L. salignum population genetic dataset combined with spatial 
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network IBD and IBR models, which incorporate vegetation and other environmental 

features of the CFR, to determine to what extent these models explain patterns of gene 

flow on broad- and fine-scales that may lead to increased genetic and phenotypic 

diversity. We propose that with this higher level of sampling in locations, individuals, 

and genetic markers, that resolution will be afforded to model not only previously noted 

broad-scale features (i.e., “West vs East”), but also detect fine-scale variation within the 

CFR. From a larger perspective, these models can be used to identify geographic regions 

and environmental features that are consistent, or dissimilar, across taxa in presenting a 

strategy for developing conservation and management plans in the CFR. 

Methods 

Samples and Data 

Our previous dataset of cpDNA markers totaling ~5kb of DNA sequence data 

collected from 306 Leucadendron salignum individuals from 51 locations inside and 

outside of the CFR (Fig. 3.1) was used here in all spatial and landscape analyses. These 

data include sampling across the defined geographic range of L. salignum, with GPS 

coordinates taken for each location. The sampling scheme also reflects the heterogeneity 

of the CFR, including samples from coastal and mountainous regions, found at all levels 

of elevation, across a broad range of vegetation, and located on both the Western and 

Eastern Capes of South Africa. Details on the molecular data collection protocols and 

explanations of population structure analyses are found in Chapter 2. 

Spatial models 

Although there are a number of ways (and methods) designed for examining 

spatial connectivity, we explored only a few that generated simple networks among our 
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locations in accordance with standard IBD models. These networks provide us with a set 

of hypothetical scenarios and relaxed assumptions with which to compare and interpret 

our IBR models below. Spatial relationships between sampled locations were modeled, 

unless otherwise specified, using PASSaGE (Rosenberg & Anderson 2011). Raw 

geographic distances were estimated from latitude and longitude coordinates as great-

circle distances for direct connections among populations. Hypotheses related to more 

limited spatial connectivity were also tested among locations by constructing four 

geometric graphs describing hypothetical connection schemes; each represents a fully 

connected graph. In order from most- to least-densely connected, these included the (1) 

Delaunay triangulation (Delaunay 1928, 1934), (2) Gabriel graph (Gabriel & Sokal 

1969), (3) relative neighborhood network (Toussaint 1980) and (4) minimum spanning 

tree (Gallager et al. 1983). As an alternative to direct geographic distance, the shortest 

path distance was determined among locations for each graph as a measure of network 

distance; the connectivity represented by each of these models is shown in Fig. 3.3  

Landscape resistance models 

The program Circuitscape 3.5.4 (McRae 2006) was used to model resistance to 

gene flow among sampled locations as isolation by resistance (IBR). The Circuitscape 

algorithm borrows from circuit theory (McRae & Beier 2007) and measures the 

resistance to gene flow between sampled locations by treating the system like a circuit 

board, where each location is a node connected by a series of resistors or conductors and 

gene flow is the current. The program allows flexibility in determining the resistance 

surface and weighting schemes applied for each environmental or landscape feature.  
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As many have previously suggested that landscape features can be highly 

correlated (i.e., rainfall and elevation), we recognize that with the significant 

heterogeneity in the CFR, a variable that takes into consideration as many of these 

features as possible would be most appropriate from a statistical perspective (i.e., relaxes 

the problem of independent contrasts). Thus, as a first attempt in generating landscape 

cost surfaces that can be modeled with our genetic data, we used the variable “vegetation 

type”, which reflects Floral and ecological characteristics of the vegetation strata 

including soil composition and fertility with fine-scale resolution (Mucina & Rutherford 

2007), as categorized by the National Vegetation Map study of the South African 

National Biodiversity Institute (SANBI) (Fig. 3.1). First, GIS data files of the SANBI 

database containing >404 vegetation types (Mucina et al. 2007) were overlapped with a 

file containing density data on L. salignum (Protea Atlas Project, 

http://www.proteaatlas.org.za) in the program ArcGIS. Next, the density of L. salignum 

was calculated for each vegetation type as the number of plants estimated per km
2
 (again 

using ArcGIS); this resulted in a return of 32 unique vegetation types (Table 3.2).  

The input file required for Circuitscape is a raster data set, where each cell 

represents the resistance value corresponding to the probability of the organism moving 

through that cell to adjacent cells. To create this input, the vegetation type layer from the 

SANBI vegetation map was exported to a raster map with 10m x 10m grid cells using 

SAGA GIS v2.0.8 (Conrad 2006). Vegetation types were then reclassified based on the 

density of L. salignum present in each vegetation type, with higher densities given a 

weight of lower resistance and lower densities given a weight of higher resistance. Given 

the unknown “true” cost of these different resistance surfaces, the scaled classifications 
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were modeled with a number of parameters following similar previous simulations (Koen 

et al. 2012). The models generated here use three classes of curves to represent the cost 

relationship, linear, bi-modal, and logistic, and each model was scaled with variable 

“steepness” controlled by the transition between high and low resistance costs. This was 

done using a logarithmic model that varied both the width of the curve (w), which 

controlled the steepness of the transition between high and low coasts, and the maximum 

cost (m) of the surface. After simulations of extremes using these two parameters 

presented a range of cost surfaces, we created nine resistance surfaces that captured the 

variation within these extremes by varying w = 1, 5, and 20, and m = 15, 50, 100.  

When vegetation types within the geographic region spanning our sample 

locations were found to have L. salignum densities ~0 they were assigned “infinite” 

resistance values to be conservative with respect to cost of gene flow, as suggested within 

the Circuitscape protocol. However, vegetation areas assigned infinite resistance such as 

the karoo that borders the entire northern range of the CFR, as well as areas such as the 

surrounding ocean, and bays and water bodies within the CFR, all accounted for <1% of 

the total geographic region encompassing our sample locations across the Western and 

Eastern Capes. In fact, the rarity of these areas resulted in very little impact on the cost 

surfaces at any scale (data not shown). Each cost surface, which now reflects different 

predictions of gene flow as a function of L. salignum density across the terrain, was 

analyzed using Circuitscape to generate a matrix of landscape resistance values. Runs 

were conducted between all pairs of locations based on average resistance and four-

neighbor connections settings (McRae 2006; McRae et al. 2008).  

Statistical Analyses 
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Mantel tests were used to evaluate the amount of genetic variation explained by 

the various spatial networks and our vegetation resistance models. Previously generated 

FST values calculated for this data set were used as measures of spatial genetic diversity 

(Chapter 2), that is, pairwise genetic distances, as calculated in ARLEQUIN v. 3.5 

(Excoffier & Lisher 2010). Statistical significance of the Mantel correlation between the 

FST matrix and each spatial and landscape resistance distance matrix was determined 

using standard permutation tests (999 iterations) in PASSaGE. An underappreciated 

aspect of resistance studies in landscape genetics is that there is often a particularly high 

correlation between spatial distance and resistance, and this was particularly true here for 

our data, as well (data not shown). Thus, to account for this correlation and examine the 

effect of the resistance models in the absence of the spatial component, partial Mantel 

tests (Smouse et al. 1986) were conducted between landscape resistance and FST while 

holding spatial distance constant. Comparisons of Mantel R values (and corresponding p) 

allowed for an assessment of the performance of each model relative to another. This 

statistical model and rationale was applied to the overall sampled locations of L. salignum 

as well as to local geographic areas as dictated by predictions based on previous analyses, 

as well as by our own genetic clustering data (Chapter 2, Fig 3.2).  

Results 

 Pairwise genetic distances between sampling localities based on the 5KB of 

cpDNA loci collected in Chapter 2 ranged from 0.00-1.0 (Table 3.3, same Results as in 

Chapter 2). When testing patterns of IBD among all sampled locations, a statistically 

significant pattern was observed for all spatial models (Table 3.4, R=0.296, all p-values 

<0.05). In comparison, our model using vegetation type as a measure of resistance for the 
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entire geographic scale that incorporates all locations was non-significant (R=0.090) after 

accounting for geographic distance in the model.  

 We tested distinct geographic areas identified by STRUCTURE analyses in 

Chapter 2 (Fig. 3.2), to examine the extent that models of IBD and IBR explain spatial 

genetic diversity. In the three regions tested, represented by the South West, East, and 

Central clusters, all models were non-significant for tests of IBD and IBR. Interestingly, 

although the Northwest cluster appears to be a significantly different cluster group in our 

data set, this clustering of only a few locations was not examined here due to low sample 

size ( but see Discussion).  Although models of IBD and IBR were non-significant for the 

Central cluster, it does represent a large geographic region of ~45,000 km
2
, and the 

degree of genetic diversity among sampled locations within this cluster is still 

unexpectedly high (FST = 0.731, p< 0.001). Therefore, like the overall sample, this region 

may be too large to detect effects of fine-scale heterogeneity on the landscape. To test 

this hypothesis, several post hoc tests were run by breaking this region arbitrarily into 

two smaller groups, Group A and Group B, each including 10 locations (Fig. 3.4). Group 

B, located in the easternmost part of the Central cluster, showed no significant 

correlations for IBD; however, our vegetation resistance model significantly explained 

patterns of genetic distance (R=0.556, all p<0.02) after controlling for geographic 

distance. In Group A, located in the west of the Central cluster, IBD was not significant 

and the vegetation type resistance model suggested a negative correlation with genetic 

diversity (R = -0.050, all p<0.010) after controlling for geographic distance.  

 Lastly, we tested geographic areas previously described as correlated to genetic 

diversity in CFR studies, these being the regions in the southwest CFR near the Cape 
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Fold Mountains and the border between the Western and Eastern Capes. Interestingly 

these areas also fall on “breaks” between our identified structure clusters (Fig. 3.2). Near 

the Cape Fold Mountains, along the border between the South West and Central clusters, 

the IBD model was non-significant, however, our model of vegetation resistance 

significantly explained genetic diversity (R=0.343, all p<0.03) after controlling for 

geographic distance. At the border between the Western and Eastern capes and the 

Central and East structure clusters (Fig. 3.2), models of IBD were significant (R=0.549, 

all p<0.001) as were models of IBR using vegetation type (R=0.340, all p<0.05) after 

controlling for geographic distance.   

Discussion 

Our previous study showed significant spatial genetic structure and genetic 

diversity on both large and small scales for the most biogeographically distributed CFR 

plant L. salignum. To understand how the landscape may be contributing to this genetic 

diversity, we tested hypotheses associating both spatial models of IBD and models of 

landscape IBR using the variable vegetation type across the broad population sampling of 

L. salignum. Overall, isolation by distance is a significant predictor of patterns of genetic 

diversity on a broad scale for L. salignum. However, when these models were applied to 

smaller spatial areas where previous studies had identified genetic patterns of divergence, 

including our own, an IBR model using vegetation type appears to predict fine-scale 

genetic patterns better than IBD models.  

Vegetation type as a predictor of genetic variation in the CFR 

The CFR contains a complex landscape filled with heterogeneity across numerous 

biotic and abiotic features, which implies that resistance from this landscape may explain 
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genetic diversity patterns and eventual high species diversity. In testing this hypothesis of 

IBR, we chose a variable that reflects a number of these different features while also 

being heterogeneous itself at small spatial scales. Vegetation type generated hypotheses 

regarding the distribution of fynbos owing to the patchy nature of these vegetation types, 

and the idea being the heterogeneity of vegetation itself may be driving diversity in L. 

salignum. This variable also reflects many features of the terrestrial biodiversity (Mucina 

et al. 2007) while allowing hypothesis testing of landscape resistance on a fine-scale. 

However, because the heterogeneity of vegetation type varies so considerably across fine 

scales (Fig. 3.1), further sampling resolution may be necessary in some regions. For 

example, the distribution of fynbos is highly concentrated in the west decreases in the 

east as thicket and forest begin to enter the region along the coast, and succulent and 

dwarf shrubland extend down from the Karoo (Werger 1978; Cowling 1983). Our 

variable of vegetation type does take these factors into consideration and was found to 

correlate significantly with measures of genetic diversity for our samples; however, it 

may be that the change in fynbos vegetation density moving from west to east is 

important in explaining patterns of genetic diversity between these two regions. 

Vegetation type not only captures where fynbos occurs on the landscape, but we 

can identify the density of L. salignum found in each vegetation type. It is apparent that 

the density at which L. salignum occurs across each vegetation type is highly variable, for 

example, sandstone fynbos occupies almost 60% of the region, yet the density of L. 

salignum is much lower here than in granite fynbos, which only occupies about 4% of the 

region but has a density twice that of sandstone. This observation alone suggests that 

although granite fynbos may appear to be the preferable vegetation type for L. salignum, 
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sandstone fynbos appears to provide connectivity across the CFR for L. salignum. 

Following this result, it may be interesting to examine how sandstone alone provides this 

connectivity on the landscape by modeling it directly with samples found only on its 

stratum, especially since it is more prevalent in the east than the west, and may have 

facilitated the colonization of the Eastern Cape by L. salignum. In addition, it will be 

interesting to study how this vegetation type, given its prevalence may or may not 

facilitate the dispersal and distribution of other taxa, noting the fact that the patterns here 

may be a result of our organism sample alone.  

While vegetation type significantly predicts genetic diversity at fine scales, it is 

worth noting that it is only a single feature, albeit a complex one that encapsulates and is 

correlated with a number of variables, including the presence of fynbos, soil type, and 

climate (Mucina et al. 2007). Adding to this feature, it will be interesting to examine how 

other landscape variables may further explain patterns of gene flow in the CFR at fine-

spatial scales, possibly as a step-wise multi-regression analysis (Epperson et al. 2010; 

Legendre &Fortin 2010). For example, rainfall is one climatic variable that might help 

determine or drive genetic diversity given its graduated regime in the CFR. However, this 

variable may be correlated to vegetation type, and it does not vary at a fine scale, but 

rather at the extremes in the northern part of the Western Cape and in the Eastern Cape 

(Latimer et al. 2006) and so, we may expect that it predicts only broad scale changes at 

these extremes edges. One heterogeneous variable with a limited correlation to vegetation 

type might be topographic features of the CFR terrain, which includes the presence of the 

Cape Fold Mountains.  
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Landscape resistance in the CFR 

In determining how spatial and temporal patterns affect genetic diversity in 

different regions across the CFR landscape, several hypotheses were tested. First, we 

tested spatial models of IBD across all sampled locations, finding the overall genetic 

pattern fit a model of IBD. However, when looking at the residual plot it appears that 

IBD explains only a small percentage (~8%) of the overall diversity (R=0.336, Fig. 3.5). 

Other than there being a large number of observations that lead to this “significance”, a 

number of points saturate the area where genetic diversity among locations is high and 

geographic distance is low, which is not expected by an IBD model. For example, 

Grootbrak and Mossel Bay are only 21 km apart from one another along the southern 

coast in the Central cluster region, yet, they appear very diverged (FST = 1). Therefore, 

although spatial models can explain some population genetic diversity, it is clear that they 

do not explain a majority of the genetic variation in our sample, especially on fine scales.  

We then tested how landscape resistance as measured by vegetation type 

contributes to the overall genetic diversity of our sampled L. salignum population and 

found no significant correlations. This indicates that, on a large scale, vegetation type is 

not a good predictor of genetic variation, likely because it reflects heterogeneity on fine-

scales, as well as it not being evenly distributed across the CFR. Additionally, models of 

IBR assigned high costs to regions (e.g. the karoo, bodies of water) through which L. 

salignum likely does not disperse, however, models of IBD do not account for these 

features. On the other hand, when looking at regional scales, we were able to shed light 

on how spatial and temporal variation is important. In the East, neither models of IBD 

nor IBR significantly explained genetic patterns, however; our previous study indicates 
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that this area reflects a recent colonization and appears much “younger” than Western 

clades. In this region levels of genetic diversity and structure are much lower than the 

west, which may simply be an artifact of the recent colonization of this region. Enough 

time may not have passed since the initial colonization for locations within this region to 

accumulate genetic variation on the same scale as locations from the West. Additionally, 

rainfall patterns switch from a winter regime to one of a seasonal rainfall in the East 

(Cowling et al. 2005; Latimer et al. 2006; Tolley et al. 2009), and the vegetation 

transitions to include the presence of thicket, forest, and succulent shrubland (Cowling 

1983). In the East, “vegetation type” as the resistance factor defined for this analysis, 

may not be a good predictor of genetic diversity because of the patchy presence of fynbos 

and the increase in different alternate vegetation types as noted above.  

Similar to some previous studies, our genetic structure data also showed a break 

between the East and Central clusters in this area, and it appears that our IBR model fits 

the patterns of genetic diversity. Here, the transition zone from largely fynbos to other 

vegetation types may act as a barrier to gene flow across this border, and thus, this 

transition zone may explain the recent emergence into the Eastern Cape by this species. It 

is worth noting again that L. salignum is the most widely distributed plant in the fynbos, 

and thus, it is possible that the pattern here may be unique with respect to CFR plants and 

specifically fynbos ones. 

 In the South West structure cluster, measures of IBD and IBR were both non-

significant, and it is likely that scale might be important for determining spatial genetic 

structure here. In this region, there are no temporal differences as in the East, but the 

presence of vegetation types is very heterogeneous within this area so it may be that 
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sampling resolution must occur at even finer scales to detect patterns of IBR using 

vegetation type here. This geographic area has been previously identified as a barrier to 

gene flow, often attributed to the Cape Fold Mountains (Daniels et al. 2007; Price et al. 

2007; Verboom et al. 2009). In our analyses that examined locations along the genetic 

cluster border we previously identified (Fig. 3.2), we found that IBD models do not 

predict genetic diversity, but that vegetation type did. This result corroborates with 

previous studies; however, it does not definitively identify what about this region is 

ultimately contributing to genetic diversity as vegetation type could be correlated with the 

Cape Fold Mountain terrain. To improve resolution here, additional sampling would help 

to fill in areas, allowing for more fine-scale testing.  

 In the Central region, neither our IBD nor IBR models significantly explain 

genetic diversity on large scale. However, this region harbors the largest amount of 

genetic diversity and it may be that the scale of this area (~45,000 km
2
) may be too large 

to detect resolution on fine-scales. Our post hoc analyses that broke up the region into 

smaller areas suggest that scale size may be the explanation; that is, until we examine 

correlations between genetic and landscape features on an even finer scale in this region, 

we are unlikely to have the resolution. Nevertheless, it is clear that this region exhibits 

the highest amount of genetic diversity on fine-scale and that landscape resistance plays a 

greater role than simply geographic distance. 

 Finally, it is of note that we were unable to test the North cluster due to 

insufficient sample size. Previous studies have found similar patterns of spatial genetic 

structure in this region, with clusters appearing in the northwest (Daniels et al. 2007; 

Matthee & Robinson 2007; Smit et al. 2010; Willows-Munro & Matthee 2011), so 
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although we were unable to apply our models of IBD and IBR to this area at this point, 

further sampling across this area would be justified to try and elucidate what may be 

driving the diversity in this region as well. Nonetheless, we should also note that this area 

does not reflect “recent” lineages such as the Eastern Cape, but instead, this area that is 

isolated looks quite the opposite in that it actually appears to harbor “older” diverged 

lineages (see Chapter 2), possibly even ancestral refugia as compared to those locations 

in the Western Cape. 

Conclusion 

  Using a molecular population genetic model of L. salignum, the most 

biogeographically widespread fynbos plant, we find that incorporating fine-scale 

sampling and variables of landscape resistance are more likely to elucidate how the CFR 

landscape contributes to spatial genetic variation among locations across the Western and 

Eastern Capes than does distance alone. Given the small area of the CFR and its fine-

scale heterogeneity, identifying patterns of gene flow on these small scales could have a 

large impact on identifying potential conservation areas within the CFR. Specifically, 

certain patterns, such as those in the Eastern Cape, indicate temporal factors have been 

influential in driving patterns of diversity, while patterns of variation in the Southwest 

may reflect that barriers, such as the Cape Fold Mountains, play a role, and even more in 

contrast is the Central region, where locations separated by close geographic range 

appear to be genetically very different. In all, temporal and spatial landscape variation 

contributes to genetic diversity and gene flow across the CFR, but clearly on different 

scales in these different regions. Our findings may not be universal across all organisms, 

suggesting that diversity may not be impacted the same way across the CFR for all taxa. 
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Specifically, while there may be certain “environmental triggers” (Linder and Hardy 

2004; Sauquet et al. 2009) to explain radiation and diversity in the CFR, there may be 

examples of certain taxa and certain geographic regions where this is not the case. 

Moving forward, studies seeking to explain genetic diversity using a similar model need 

to be wary of not only the number of genetic markers and individuals, but specifically the 

number and location of their samples inside and outside of the CFR. 
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Table 3.1 Pairwise FST values within and between Structure Clusters using cpDNA

North South West Central East within Structure cluster

North - 0.001 0.001 0.001 0.726 p<0.001

South West 0.38 - 0.001 0.001 0.626 p<0.000

Central 0.34 0.48 - 0.001 0.731 p<0.001

East 0.41 0.55 0.54 - 0.501 p<0.001

FST  values are listed below the diagonal and corresponding p-values are listed 

above the diagonal.



94 

 



95 

 



96 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

 

 

 

 

 

 

 

  

F
ig

. 
3
.1

 V
eg

et
at

io
n
 o

f 
th

e 
C

F
R

 a
n
d
 S

o
u
th

 A
fr

ic
a.

 E
ac

h
 c

o
lo

r 
re

p
re

se
n
ts

 a
 u

n
iq

u
e 

v
eg

et
at

io
n
 t

y
p
e 

as
 m

ea
su

re
d
 b

y
 S

A
N

B
I.

 

(M
u
ci

n
a 

et
 a

l.
 2

0
0
7
).

T
h
e 

ap
p
ro

x
im

at
e 

b
o
u
n
d

ar
y
 o

f 
th

e 
C

F
R

 (
as

 i
n
 T

u
rp

ie
 e

t 
al

. 
2
0
0
3
) 

is
 o

u
tl

in
ed

 i
n
 b

la
ck

. 
 

 



98 

  

 

 

 

 

 

 

2
0
0
 k

m

W
es

te
rn

 C
ap

e 

E
as

te
rn

 C
ap

e 

F
ig

. 
3
.2

 S
am

p
li

n
g
 l

o
ca

ti
o
n
s 

(i
n
d
ic

at
ed

 b
y
 d

o
ts

) 
fo

r 
L

. 
sa

li
g
n
u
m

. 
S

tr
u
ct

u
re

 c
lu

st
er

s 
ar

e 
sh

ad
ed

 a
s 

fo
ll

o
w

s:
 N

o
rt

h
 i

s 
in

 r
ed

  
 ,
 S

o
u
th

 

W
es

t 
is

 i
n

 y
el

lo
w

  
 ,
 C

en
tr

al
 i

s 
in

 g
re

en
  

 ,
 a

n
d
 E

as
t 

is
 i

n
 b

lu
e 

  
. 

L
o
ca

ti
o
n
s 

in
 t

h
e 

sq
u
ar

e 
an

d
 o

v
al

s 
re

p
re

se
n

t 
g
eo

g
ra

p
h

ic
al

 t
es

ti
n

g
 f

o
r 

th
e 

C
ap

e 
F

o
ld

 M
o
u
n
ta

in
s 

an
d
 b

o
u
n
d
ar

y
 b

et
w

ee
n
 t

h
e 

W
es

te
rn

 a
n
d
 E

as
te

rn
 C

ap
es

, 
re

sp
ec

ti
v

el
y.

 I
n
se

t 
is

 a
 m

ap
 o

f 
A

fr
ic

a,
 w

it
h
 t

h
e 

en
la

rg
ed

 a
re

a 
d
em

ar
ca

te
d

 b
y
 t

h
e 

b
o
x

. 
T

h
e 

C
F

R
 b

o
u
n
d
ar

y
 i

s 
o
u

tl
in

ed
 i

n
 b

lu
e.

  
 

 

 



99 

 

  

F
ig

. 
3
.3

 S
p
at

ia
l 

n
et

w
o
rk

s 
co

n
n
ec

ti
n

g
 L

. 
sa

li
g
n
u
m

 d
ec

re
as

in
g
 f

ro
m

 m
o
st

 t
o
 l

ea
st

 c
o
n
n
ec

te
d
: 

A
. 
T

h
e 

D
el

au
n
a
y
 T

ri
an

g
u
la

ti
o
n
 B

. 

G
ab

ri
el

 N
et

w
o
rk

 C
. 
R

el
at

iv
e 

N
ei

g
h

b
o

rh
o
o
d
 N

et
w

o
rk

 D
. 

M
in

im
u
m

 S
p
an

n
in

g
 T

re
e 

 

lo
n
g
it
u
d
e

2
7

2
6
.5

2
6

2
5
.5

2
5

2
4
.5

2
4

2
3
.5

2
3

2
2
.5

2
2

2
1
.5

2
1

2
0
.5

2
0

1
9
.5

1
9

1
8
.5

1
8

1
7
.5

1
7

latitude

-3
0

-3
0
.5

-3
1

-3
1
.5

-3
2

-3
2
.5

-3
3

-3
3
.5

-3
4

-3
4
.5

-3
5

lo
n
g
it
u
d
e

2
7

2
6
.5

2
6

2
5
.5

2
5

2
4
.5

2
4

2
3
.5

2
3

2
2
.5

2
2

2
1
.5

2
1

2
0
.5

2
0

1
9
.5

1
9

1
8
.5

1
8

1
7
.5

1
7

latitude

-3
0

-3
0
.5

-3
1

-3
1
.5

-3
2

-3
2
.5

-3
3

-3
3
.5

-3
4

-3
4
.5

-3
5

lo
n
g
it
u
d
e

2
7

2
6
.5

2
6

2
5
.5

2
5

2
4
.5

2
4

2
3
.5

2
3

2
2
.5

2
2

2
1
.5

2
1

2
0
.5

2
0

1
9
.5

1
9

1
8
.5

1
8

1
7
.5

1
7

latitude

-3
0

-3
0
.5

-3
1

-3
1
.5

-3
2

-3
2
.5

-3
3

-3
3
.5

-3
4

-3
4
.5

-3
5

lo
n
g
it
u
d
e

2
7

2
6
.5

2
6

2
5
.5

2
5

2
4
.5

2
4

2
3
.5

2
3

2
2
.5

2
2

2
1
.5

2
1

2
0
.5

2
0

1
9
.5

1
9

1
8
.5

1
8

1
7
.5

1
7

latitude

-3
0

-3
0
.5

-3
1

-3
1
.5

-3
2

-3
2
.5

-3
3

-3
3
.5

-3
4

-3
4
.5

-3
5

A
. 

B
. 

C
. 

D
. 



100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

W
es

te
rn

 C
ap

e 

F
ig

. 
3
.4

 P
o

st
 h

o
c 

g
ro

u
p
in

g
 o

f 
C

en
tr

al
 S

T
R

U
C

T
U

R
E

 c
lu

st
er

. 
G

ro
u
p

 A
 i

s 
o
u

tl
in

ed
 b

y
 a

 s
o
li

d
 b

la
ck

 l
in

e,
 G

ro
u
p
 B

 i
s 

o
u

tl
in

ed
 b

y
 a

 

d
as

h
ed

 l
in

e.
  

 

E
as

te
rn

 C
ap

e 



101 

 
 

 

 

 

Geographic distance (km) 

F
S

T
 

R= 0.297 

p < 0.05 

Fig. 3.5 Mantel residuals for the test of IBD for all sampled locations (N=51) 

using geographic distance.   
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Chapter 4 

COMPARISONS OF SPATIAL AND TEMPORAL PATTERNS BETWEEN 

GENOMIC MARKERS FOR LEUCADENDRON SALIGNUM 

Introduction 

The Cape Floral Region (CFR) located in South Africa is considered the smallest 

of the six Floral kingdoms (Goldblatt 1978), with 9,000 vascular plant species, of which 

approximately 70% are endemic, all found in a region occupying only 90,000 km
2 

(Goldblatt & Manning 2002; Linder 2003; Cowling & Proches 2005). The diversity of 

this biogeographical region is similar to that found only on islands (Linder 2003), yet the 

vegetation found in the CFR is largely encapsulated by five plant types: fynbos, 

renosterveld, thicket, forest, and succulent karoo. Of these vegetation types the fynbos 

and renosterveld are predominant in the CFR, with fynbos accounting for 80% of the 

vegetation in the region (Cowling 1983). The fynbos, meaning ‘fine-leaved bush’ in 

Afrikaans, is comprised of four vegetation types: restiod reed-like bushes, proteoid large 

leafed woody shrubs, ericoid fine leafed bushes, and geophytes that contain large 

underground storage organs (Cowling et al. 1996), and alone makes up 80% of the 

endemic plants found in the CFR. 

Numerous hypotheses have been suggested to explain the richness and endemism 

of floral species in the CFR, with many studies focusing on patterns contributing to 

lineage and species diversification (Linder & Hardy 2004; Goldblatt & Manning 2002, 

Sauquet et al.  2009), however, an underlying factor that may lead to the speciation of the 

CFR is gene flow and the factors that may limit it between CFR plant populations (Linder 

2003). It is thought that the diverse limitations to plant specific gene flow present in the 
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CFR (e.g. heterogeneous landscapes) predict the floral speciation in the Cape (Goldblatt 

1996; Linder 2003). Gene flow maintains connectivity among individuals in populations, 

allowing genetic variation to be shared in a population by connecting organisms across 

the landscape; a reduction in gene flow will increase the probability of differentiation 

between populations (Slatkin 1987), and a permanent loss of gene flow can lead to 

speciation (Mayr 1947); therefore, understanding levels of gene flow within populations 

is paramount to understanding how diversity is generated at a population level.  

Levels of gene flow between plant populations can differ due to a number of 

underlying factors, and these differences in gene flow can create or maintain diversity in 

CFR plant populations. Within plants, there are specific biological mechanisms directly 

related to gene flow, including, the dispersal of seeds and the dispersal of pollen (Ennos 

1994). The levels of gene flow can vary between these two mechanisms depending on the 

distance of dispersal and can be measured directly through observations of pollen and 

seed movement or indirectly through estimates of population structure for the genomes 

associated with each mechanism (Slatkin 1985, 1989; Ennos 1994). Patterns of seed 

dispersal be apparent in maternally inherited organelles (Birky et al. 1989), whereas 

patterns of pollen dispersal will influence the nuclear genome. Within the CFR, the 

mechanism of seed dispersal is largely represented by two methods, passive dispersal and 

ant-mediated dispersal. Passive dispersal is a mechanism that is often associated with 

plants existing in nutrient poor soils (Goldblat 1996), and given that these soils are 

predominant throughout the CFR (Cowling & Proches 2005), it is unsurprising that 

passive dispersal is the common dispersal mechanism for plants here, distributing seeds 

around 5 m from the original plant. Another mechanism, ant mediated seed dispersal, is 
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unusually high in the CFR, as plants existing on such nutrient-poor soils will generally 

not produce seeds with the fatty bodies that attract ants (Bond & Slingsby 1983; 

Goldblatt 1996). Although this is an alternative to passive dispersal, this mechanism still 

only distributes seeds up to 6 m away from the maternal plant (Goldblatt 1996). Given 

the majority of seed dispersal mechanisms in the CFR are short ranged, this will likely 

impact levels of gene flow in plant species. Although seed dispersal may be limited, 

pollen dispersal can aid in connecting individuals or populations (Austerlitz et al. 2004; 

Ennos 1994). With respect to pollination and pollen dispersal for CFR plant species, wind 

pollination has been identified in two of the largest fynbos species, Erica and 

Leucadendron (Linder 2003; Barker et al. 2004), while anemophily is also very common 

in the Cape flora (Koutnik 1987). However, the apparent ability of pollen to disperse 

further than seeds in the CFR and thereby increasing gene flow across a larger range may 

likely maintain and introduce variation into plant populations. As a whole, pollination in 

the CFR is not significantly different from any other region in the world (Linder 1985) 

and therefore may not be a main contributor to the unique CFR species diversity; 

however, it is influential in mediating gene flow among populations. 

The physical dispersal of plant gametes is one factor that contributes to gene flow 

in plant species, but in addition to pollen and seed dispersal, another factor we must also 

consider is the complex genetic makeup of plants that is associated with these dispersal 

patterns. Plants have three separate genomes: chloroplast (cpDNA), mitochondrial 

(mtDNA), and nuclear (nuDNA) and the mode of inheritance of these genomes varies: 

cpDNA is often maternally inherited (Conde et al. 1979; Ennos 1994) as is mtDNA 

(Neale et al. 1991; Palmer 1992) whereas nuDNA is bi-parentally inherited. Additionally, 
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the nuclear genome of many plants can be polyploidy (e.g. have multiple sets of 

chromosomes) due to duplication events. It has been noted, that a consequence of these 

different modes of inheritance is that the extent of gene flow can differ for each of these 

genomes, which may be reflected in patterns found in genetic markers associated with 

each mode of inheritance (e.g., Birky et al. 1983, 1989; Takahata & Palumbi 1985). For 

example, we may expect that nuclear markers reflect higher levels of gene flow since 

they are carried across populations via pollen, whereas chloroplast or mitochondrial 

markers are represented by seed dispersal and may show lower levels of gene flow due to 

more limited dispersal patterns (Ennos 1994). This may lead to different patterns of 

genetic variation and spatial genetic structure among a singular population depending on 

which genetic marker is examined (Birky et al. 1989). Additionally, the effective 

population sizes differ between these genomes, with cpDNA and mtDNA having an 

effective population size one quarter that of nuDNA (Wright 1931). Therefore, the 

maternally inherited cpDNA and mtDNA are more likely to experience the effects of 

genetic drift, which may quickly produce differences in these markers between 

populations. Lastly, mutation rates vary between these genomes with rates almost an 

order of magnitude higher in nuDNA than in cpDNA or mtDNA (Wolfe et al. 1987), 

allowing for more variation to accumulate within the nuDNA over time.  

Studies of spatial genetic structure and gene flow for plant populations are 

infrequent in the CFR. Studies that measure gene flow indirectly speculate about the role 

of gene flow in speciation and population diversification (Goldblatt 1978; Bergh et al, 

2010; Prunier & Holsinger 2010; Rymer et al. 2010; Segarra-Moragues et al. 2010). In a 

study using nuclear ISSR markers, Bergh et al. (2007) found that within a species of the 



106 

widely distributed renosterbos, Elytropappus rhinocerotis, 80% of the total variation was 

found among individuals in the CFR. They suspected that this result reflected high levels 

of recombination among ISSR loci, a bi-product of high levels of gene flow and 

outbreeding rates. In a study of locally endemic white protea species, Prunier & 

Holsinger (2010) used 10 microsatellite nuclear loci to determine the spatial genetic 

structure between species and levels of gene flow within species. They found evidence 

for little gene flow between sampled population, with eight genetic clusters identified, 

nearly concordant with the number of species tested.  The only exception was a single 

species, Protea mundii, which was divided into two groups from the western and eastern 

capes. This result is in contrast to the Bergh et al. (2007) study, which found high levels 

of gene flow among a widespread plant, which suggests that gene flow is potentially 

correlated to plant ranges. Although these studies both used nuclear markers, the patterns 

are markedly different which may be a result of different dispersal mechanisms between 

the two plants, however, by only examining a single marker, these studies have not 

captured all potential avenues of gene flow in plants and any conclusion regarding 

dispersal cannot be made. It may be these patterns reflect the genetic markers used, the 

underlying dispersal associated with these markers, or potential influences from the CFR 

landscape. Investigating patterns correlated to both maternal and paternal markers may 

allow for tests for differences in dispersal   between these plants, a perspective that 

cannot be obtained without such a study.  

In a previous study, the spatial genetic diversity of the most widespread fynbos 

plant Leucadendron salignum was characterized using cpDNA across its entire range, 

both inside and outside the CFR (Chapter 2). Leucadendron salignum is a dioecious plant 
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that uses insect-mediated pollination and seed dispersal by ants (Barker et al. 2004; 

Williams 1972; Hattingh and Giliomee 1989). We were able to detect at least four major 

genetic cluster groups, with further evidence for hierarchical structure even between 

locations within close proximity within these major geographically clustered groups. In a 

second study (Chapter 3), we noted that this genetic diversity can be largely explained by 

resistance on the landscape due to vegetation type, which considers different aspects of 

the flora with respect to distribution of strata and landscape factors such as soil 

composition and fertility, and that this isolation can occur on a very fine-scale. However, 

this study only included cpDNA markers. Given arguments above, this one picture may 

limit our understanding of overall population structure and gene flow on temporal and 

spatial scales due its single mode of dispersal as well as a possible bias towards more 

recent events due to increased drift.  

In L. salignum, if seed dispersal is local and if the cpDNA is experiencing drift 

within these local regions, we would expect to see patterns of spatial genetic structure 

within geographic regions as in our previous study. By comparing patterns of spatial 

genetic structure found in the nuclear genome to those found in cpDNA we can determine 

if the same pattern is occurring across both markers. If patterns of spatial genetic 

structure are the same, regardless of the marker used, then it is clear markers are not 

sensitive to evolutionary history, dispersal, or inheritance, and conclusions made from 

any marker would reflect the influence of factors on the landscape. If, however, patterns 

are different across markers, then these differences in evolutionary history, dispersal, and 

inheritance must be taken into consideration when making conclusions. Therefore, to 

understand to what extent the use of different genomes alters our perspective of spatial 
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and temporal genetic and evolutionary histories and patterns of gene flow in L. salignum, 

we present a genome-wide assay of nuclear diversity in these same L. salignum 

population samples and compare these patterns with those seen in the haploid cpDNA 

dataset.  

Methods 

Samples 

To test the spatial genetic structure of L. salignum, leaves were collected from 

four individuals from 51 locations across South Africa, for a total of 204 samples 

representing the species’ entire known distribution range, including samples on the 

Western and Eastern Cape (Fig. 4.1, Table 4.1). Leaves were immediately placed in 

powdered silica for preservation and stored at room temperature. Details on the molecular 

data collection protocols are found in Chapter 2. 

Nuclear genetic loci generation  

As no previous genomic data are available for L. salignum, we developed a 

method to identify and collect random DNA sequences from homologous genome-wide 

nuclear regions. A total of 8 ISSR primers (Table 4.2) designed for use in plants were 

used in pairwise PCR reactions as in Bergh et al. (2007). All ISSR PCR reactions were 

carried out in 25-µl reactions each containing 100 ng DNA from one L. salignum 

individual at first, 10X GoTaq Flexi buffer (supplied with Promega GoTaq Flexi DNA 

polymerase, Promega), 3.0 mM MgCl2, 2.0 mM each dNTP, 10 µM of two of the ISSR 

primers, and 1 U Promega GoTaq flexi DNA polymerase (Promega). PCR amplifications 

were performed under the following conditions: 95 ˚C for 1 minute, followed by 39 

cycles of 95˚C for 30 seconds; 39˚C for 1 minute, and finally 72˚C for 2 minutes and 30 
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seconds. PCR products were run on 1.2% Agarose gels at 120 volts for 60 minutes, and 

lanes with multiple bands ranging from ~500 to 1500 bp were chosen for cloning. Each 

PCR product was first cleaned using shrimp alkaline phosphate and exonuclease 1 (US 

Biochemicals, Cleveland, OH); products were then cloned using the TOPO® XL PCR 

Cloning kit (Invitrogen, Carlsbad, Ca) according to the manufacturer’s instructions. To 

determine the sequence of each cloned fragment, single colonies were picked from agar 

media plates and separately placed in a PCR tube with 100 µL of ddH20, mixed 

thoroughly and incubated at 95 ˚C for 5 minutes; 4 µL of this solution was then used as 

the template for a PCR reaction using the following conditions: 10 X buffer, 3.0 mM 

MgCl2, 2.0 mM each dNTP, 10 µM M13 Forward primer (Invitrogen) and 10 µM M13 

Reverse primer (Invitrogen), and 1 U Promega GoTaq flexi DNA polymerase. PCR cycle 

conditions were run same as above. PCR products were cleaned using the same protocol 

as above, and nucleotide sequences were collected on an Applied Biosystems 3720 

capillary sequencer. 

 Resulting sequences were examined for length variants, repeat elements and 

microsatellites, then run through the NCBI BLAST-n algorithm. One attempt to prune 

non-nuclear sequences from the dataset was made by removing DNA sequences 

matching previously identified mitochondrial or chloroplast regions. A second step was 

made to determine if regions had open reading frames (whether they could be identified 

in GenBank or not), and these were discarded as well in order to build a dataset 

composed of variation that most closely resembled “neutrally-evolving” markers of the 

genome. Leucadendron salignum specific PCR primers were designed from these initial 

fragments to amplify 20 independent fragments adhering to these criteria, resulting in 9 
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random regions that could be readily replicated in multiple individuals of L. salignum. 

Finally, all regions, when eventually amplified and sequenced in multiple individuals, 

were also checked for “heterozygous” sites - as well as Hardy-Weinberg and linkage 

equilibrium - for their inclusion in our putatively nuclear region dataset. In addition to 

these markers, conserved primers for the nuclear ITS region 18S-26S were used to 

generate a single fragment as in Baldwin and Markos (1998). The DNA fragments were 

amplified for each individual using the following conditions. All PCR amplifications 

were carried out in 25-µl reactions with 100 ng DNA, 1X PCR buffer (supplied with 

KAPA2G Robust Taq polymerase, KAPA Biosystems, Woburn, MA) 2.5 mM MgCl2, 

2.0 mM each dNTP, 10 µM forward and reverse primers, and 0.3 U KAPA2G Robust 

HotStart DNA Polymerase (KAPA). PCR amplification was performed under the 

following conditions for all loci: 95
 o
C for 1 minute, then 39 cycles of 95 

o
C for 30 

seconds; 52
 o
C annealing and 78

 o
C for extension.  

Illumina MiSeq sequencing preparation 

After an initial dataset was compiled on individuals to check for the above criteria 

using the Applied Biosystems 3720 capillary sequencer, we collected the remaining 

nucleotide sequences via the Illumina MiSeq. For each individual, the concentration of 

each of the 10 amplicons was determined using a Nano Drop 1000 (Thermo Scientific). 

Amplicons were then pooled in equimolar concentrations for each individual, resulting in 

192 pooled samples. The concentration of each pool was then measured using Agilent 

Technologies Bioanaylzer and then diluted to 0.2 ng/µl for barcoding and preparation. 

Using the Nextera XT DNA sample preparation kit, according to the manufacturer’s 

instructions, 96 individuals were uniquely barcoded per run. Upon completion of sample 
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preparation, all 96 barcoded samples were pooled and sent to Ambry Genetics (Aliso 

Viejo, Ca) to be run on their Illumina MiSeq via standard protocol.  

Data processing 

The bioinformatics process of SNP calling of MiSeq data were performed using 

CLC Genomics Workbench v. 5.5 (CLC Bio, Cambridge, Ma) implemented by Ambry 

Genetics. Data sets were combined by aligning the FASTA files of Illumina data with the 

trace files from capillary sequences in Sequencher. All files were aligned and trimmed to 

equal lengths. FASTA files for the combined data sets were used to create two haplotypes 

for each individual, where nucleotides from heterozygous sites were assigned randomly 

to one of two haplotypes using the script PhaseSeqs (pers comm, M. S. Rosenberg) to be 

used in all downstream analyses.  

Population Differentiation 

Unless otherwise noted, all population genetic statistics were computed using 

DnaSP v 5.5 (Rozas et al. 2003). Estimates of diversity based on the number of 

segregating sites (S), corrected by sample size, were calculated using Wattersons’s θ 

(1975), as were estimates of π, which calculates diversity based on the average pairwise 

differences among sequences. Under neutrality, these two estimates are expected to be 

equal, and this hypothesis was tested using Tajima’s (1989) test to calculate per marker 

single nucleotide frequency spectra, as well as to generate a distribution of values across 

markers (as we have no a priori view of what this “neutral” distribution looks like across 

the genome). Values of Tajima’s D can indicate both natural selection and demographic 

history, with negative D values associated with directional selection or population 

expansions and positive D values with balancing selection or population structure. 
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Comparing D values across all loci can help identify unusual markers (i.e., outliers) in an 

attempt to reflect the genome-wide demographic history.  

The spatial genetic structure across L. salignum locations was determined 

previously for the chloroplast (cpDNA) genome (Chapter 2). In order to compare patterns 

of spatial genetic structure between genomes, genetic structure was estimated using the 

program Structure 2.3.3 (Pritchard et al. 2000, Falush et al. 2003, Falush et al. 2007, 

Hubisz et al. 2009), which uses an unbiased individual based clustering approach to 

partition variation across sampled locations. All individuals were assigned to separate 

“population” samples and run using the assumption K = 2-20; with 5 replicates of 10
6
 

generations and a burn-in of 10
4
 generations. Results were analyzed using the program 

Structure Harvester (Earl 2012) which both uses the Evanno method (Evanno et al. 2005) 

to evaluate the appropriate number of clusters and produces the files necessary to 

visualize the data using the programs CLUMP 1.1.2 (Jacobsson & Rosenberg 2007) and 

DISTRUCT 1.1 (Rosenberg 2004).  

Following the use of STRUCTURE, a secondary analysis was performed to 

estimate potential inbreeding given the sessile nature of plants using InStruct (Gao et al. 

2007). This program uses an approach similar to STRUCTURE to determine population 

clusters; however, InStruct also takes into consideration inbreeding among samples. 

InStruct was run to infer population structure and individual inbreeding coefficients, with 

100,000 Markov chain Monte Carlo (MCMC) iterations, a burn-in of 10000, thinning of 

10, and testing for k groups of 1–5 with five separate chains for each K grouping. The 

individual runs were combined using the program CLUMP 1.1.2, and a final output was 

created using DISTRUCT 1.1.  
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To determine how variance was partitioned within and among groups, an FST 

analysis (e.g., Wright 1951) was conducted with 10,000 permutations calculated to assess 

significant differences (from a model of FST =0) using ARLEQUIN (Excoffier et al. 

2005). Three different groupings were assessed, first samples were grouped by sampling 

location to assess the average variation between locations and second, samples were 

grouped geographically by their presence in either the Western or Eastern Cape. Lastly 

samples were grouped to compare with the cpDNA patterns, specifically, they were based 

on previous STRUCTURE clusters (Chapter 2). These statistics can also serve as an 

estimation of migration between tested groups.  

Divergence time estimates  

Given the limited information available for L. salignum, the flexible program 

BEAST 1.5.6 (Drummond and Rambaut 2007; Drummond et al. 2012) was used to 

determine the temporal relationships among samples. DNA sequence data were run 

through MODELTEST (Posada and Crandall, 1998) to determine the appropriate 

nucleotide substitution model for the L. salignum SNP dataset. The sequence divergence 

range was estimated using the conservative value of 30 X 10
-8

 substitutions per site per 

year (Wolfe et al. 1987). The Markov Chain Monte Carlo (MCMC) analysis was 

performed using a relaxed uncorrelated lognormal clock, using the Bayesian skyline 

population models. The BEAST profile was run five times for 30 million generations 

with the first 3,000,000 discarded as burnin, logging ever 3000. All runs were viewed in 

the program TRACER 1.5 (Drummond et al. 2012) to check for convergence of the 

chains and estimate parameter distributions. All log files and tree files were combined 

using LogCombiner and tree files were annotated using TreeAnnotator v.1.6.1 
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(Drummond et al. 2012), which produced a consensus tree for these analyses. As a 

comparison to these BEAST results, a neighbor-joining tree was also created in MEGA v. 

5 (Tamura et al. 2011). 

Results 

Nucleotide Diversity 

These data were obtained primarily to estimate neutral levels of variation and 

patterns of geographic and temporal structure for the nuclear genome for comparison to 

data obtained for cpDNA in L. salignum. This nuclear data set represents the first large-

scale nuclear data set for any South African plant species. A total of 5600 KB of nuclear 

DNA sequence was collected for each of the L. salignum individuals resulting in a total 

of 616 SNPs. Population genetic analyses detected some variance in SNP diversity (Table 

4.3), with the average values measuring as θπ = 0.005 and θs = 0.01 across all loci. Using 

Tajima’s (1989) test, similar negative values were observed across all loci, with an 

average value of D = -1.79, which is non-significant (compared to 0) and overall these 

unlinked random markers reflect neutrality. Analyses of θπ and θs performed between 

cluster groups identified previously by STRUCTURE analyses on cpDNA (Chapter 2) 

showed similar D values as compared to the overall population sample (Table 4.3). After 

adjusting for effective population size in the cpDNA dataset (i.e., nuclear sequences 

expected to have an effective population size four times that of the haploid genome), 

values of of θπ and θs were similar for both marker types (Table 4.3). In comparing these 

data to the previously generated cpDNA dataset we can associate the different spatial and 

temporal scales between markers (Anderson et al. 2010, Wolfe et al. 1987) and how those 
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inherent differences may influence analyses of nucleotide diversity and historical 

demographics for the sampled L. salignum population across the CFR landscape.  

Population Genetic Structure 

Structure results are presented here for K= 2 to 4 to illustrate the lack of diversity 

across samples (Fig. 4.2). These results suggest that we cannot reject K > 1, as it appears 

that we have little evidence to suggest that the nuclear diversity is consistent with 

anything but a single population sample. This is in contrast to the cpDNA dataset where 

K is at least four, and evidence for hierarchical structure indicates possibly more. Results 

from InStruct were similar, with evidence for no more than one cluster. Levels of 

individual inbreeding coefficients (F) within the sample were detected between 0.025-

0.880, with an average of F= 0.307. The variance of this estimator is likely the result of 

small samples within locations; thus, the overall estimate is not unusually high and is 

consistent with the lack of isolation seen from the STRUCTURE analysis.  

Although statistically significant, levels of genetic variation among all locations 

as measured by FST were low in the L. salignum nuclear dataset (FST =0.14, p <0.0001; 

Table 4.4), compared to values obtained for the overall cpDNA data set (FST = 0.78, 

p<0.001). This analysis was also repeated among groups in the nuclear dataset that were 

binned based on the group analyses in the cpDNA as a comparison. Levels of genetic 

variation measured between samples located on the Western and Eastern capes were very 

low, although again, significant (FST = 0.03, p<0.0001), compared to levels of genetic 

variation found in our previous cpDNA study (FST=0.43, p<0.001). Additional analyses 

measuring genetic variation for the STRUCTURE clusters all showed lower levels of 

variation ranging from FST = 0.08 to 0.10, p<0.00001, than those detected in our cpDNA 
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study (Table 4.5 which found values between FST = 0.50 to 0.73, p<0.001. Altogether, 

these analyses show much lower levels of genetic variation among locations, both at far 

and near proximities in the nuclear dataset than in the cpDNA dataset.  

Temporal Genetic Structure 

Given the low levels of genetic diversity within these samples, there was little 

differentiation and phylogenetic signal in the nuDNA dataset compared to the cpDNA 

dataset. Both trees in MEGA and BEAST failed to resolve clusters seen in the cpDNA 

dataset. In fact, where we had previously identified a monophyletic branch for the East, 

here all individuals previously associated with that cluster were found distributed 

throughout the tree. Similarly, the branches associated with the North, South West, and 

Central groups disappeared and individuals found from these locations were placed in 

random places throughout the tree (Fig. 4.3). Although branch patterns were inconsistent 

from our cpDNA tree, the age of the nuDNA tree was consistent, with an estimated root 

around 1.7 MYA.  

Discussion 

Our previous study of spatial genetic structure using the cpDNA markers showed 

significant spatial genetic structure and genetic diversity for L. salignum, including at 

least four structure clusters, with evidence for even more in the detection of hierarchical 

structure within these groups. In contrast, this study using nuDNA showed patterns of 

panmixia among populations, with no evidence for spatial genetic structure. The different 

patterns observed between these two data sets indicate that these markers do not provide 

concordant patterns of spatial genetic structure and genetic diversity for L. salignum; 

therefore, they may be influenced by underlying factors affecting the markers themselves 
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such as dispersal, inheritance, or evolutionary history which are unique to each of these 

markers.  

Tests of marker neutrality indicated that both marker sets approximate neutrality 

and reflect similar evolutionary patterns. The levels of nucleotide diversity measured by 

θS were similar between the two data sets, after adjusting for the difference in effective 

population sizes, indicating that genetic diversity reflected by sequence data are 

comparable. Measures of Tajima’s (1989) D showed similar negative values between all 

amplicons, as well as between the cpDNA and nuDNA data sets, indicating these markers 

all reflect similar demographic histories. The underlying measures of genetic mutations 

are consistent and comparable across both data sets, however, given that patterns of 

spatial genetic structure are not consistent between data sets, additional forces including 

the evolutionary history associated with each marker genome or gamete dispersal may be 

contributing to patterns of spatial genetic structure.  

Previous studies indicate that cpDNA is maternally inherited and does not 

recombine in L. salignum (Pharmawati et al. 2004); it has an effective population size 

that is smaller than the nuclear genome (Wright 1931) and reflects seed dispersal (Ennos 

1994). Therefore, this marker likely reflects the effects of drift more so than a nuclear 

marker. As mentioned previously, drift is more likely to create spatial genetic structure 

on local levels for our markers; therefore the pattern of spatial genetic structure found in 

the cpDNA dataset may be due to this driving force alone. Ennos (1994) suggested that 

gene flow will likely be higher in pollen than maternally inherited markers and 

population differentiation is expected to differ between these markers (Birky et al. 1989). 

The bi-parental nature of nuDNA reflects recombination and a much larger effective 



118 

population size, and it also represents pollen dispersal in our organism of study here. 

Given the data, it appears that patterns from evolutionary history are different between 

these two markers and must be taken into consideration when drawing conclusions about 

how the landscape affects the overall population genetic structure in L. salignum.  

An alternative to the evolutionary history driving these patterns is that the 

dispersal associated with each of the two genome types is contributing to the patterns of 

spatial genetic structure found in each data set. The lack of a spatial genetic pattern 

observed for the nuDNA data set suggest that, in L. salignum pollen is widely dispersed, 

whereas the highly structured cpDNA data suggest seed dispersal is local. If pollen 

dispersal were local, we would expect to see similar spatial genetic structure patterns as 

in cpDNA, however, these results show conflicting patterns, so it is likely that pollen is 

dispersing at a level that is maintaining connectivity across the entire population over 

time, and therefore maintaining the high levels of shared variation evident in the nuDNA 

data. Interestingly, in our previous study, there was a positive association between 

vegetation type in the fynbos and patterns of cpDNA spatial genetic structure; it may be 

that vegetation acts to facilitate seed dispersal in L. salignum but has little influence on 

pollen dispersal. Specifically, on local scales, the heterogeneity of the landscape as 

measured by vegetation type predicts seed dispersal patterns in L. salignum, while pollen 

is maintaining connectivity amongst locations on possibly broad and fine-scales.  

The interaction between seed and pollen dispersal is noteworthy, as previous CFR 

studies have indicated limited seed dispersal for fynbos plants (Goldblatt 1996). The 

limited dispersal of seeds is likely generating local diversity in associated maternal 

genomes and without the influx of variation from pollen, these local regions could 
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become genetically different from one another very quickly. Since it seems as though 

pollen maintains variation across the landscape, any change resulting in a reduction of 

pollen dispersal could likely result in eventual speciation. Although we did not directly 

measure levels of pollen dispersal, understanding how both pollen and seed dispersal 

contribute to genetic diversity on the landscape is essential when studying plant species.  

Our study suggests that L. salignum is a genetically diverse fynbos plant, with 

levels of spatial genetic structure more apparent in cpDNA than nuDNA. Some 

limitations of this study may include our sample collection of eight chromosomes (i.e. 

marker sequences) per location, which suggests that variants at less than ~13% (i.e., 1 of 

8) within each of these locations would not be identified. However, while additional 

samples at each location would help detect these rare variants, it is unlikely to uncover 

many common variants to come even close to the patterns seen among the cpDNA 

markers. Thus, the most one could say is that subtle differences in nuDNA among our 

locations, if they exist, are generating some population structure. It is worth noting that 

differences are not even found at large scales as no IBD model fits diversity between 

locations separated at the most extremes of our sampling. On the other hand, with fewer 

individuals per location and fewer variants, we find non-subtle cpDNA variation among 

locations at not only broad scales across the Western and Eastern Capes, but also within 

locations in close proximity. Thus, it is clear that cpDNA simply exhibits much more 

population structure than nuDNA and overall reflects a very different evolutionary 

history of gene flow across the Western and Eastern Capes. That said, although L. 

salignum is the most widespread fynbos plant in the CFR and sheds insight into how 

landscape features and genetic markers can influence patterns of diversity, it still is an 
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“N” of 1. Therefore, it is essential that population genetic data be collected from other 

CFR plants with varying dispersal and geographic ranges. This will allow for 

comparisons of patterns of structure and gene flow to see if and how similar forces are 

driving and maintaining genetic diversity across the landscape.  

Conclusion 

Using only haploid markers will result in patterns that are likely associated with 

the evolutionary history of that marker and dispersal of seedd and not necessarily the 

contributions of the landscape. Likewise, using only nuclear markers may result in an 

overall picture, but the influences of the maternal lineage through seed dispersal will not 

be found. Using both haploid and nuclear markers will help determine if pollen and seed 

dispersal are similar and if the landscape is affecting the patterns of gene flow in both 

markers. It is clear from this study each genome marker can give decidedly different 

pictures of gene flow and consequently different conclusions regarding the importance of 

landscape in the CFR. Conservation efforts need to consider perspectives from both 

genomes when designing conservation plans because pollen dispersal is maintaining 

connectivity among populations on broad scales, however, it appears the landscape is 

creating diversity on local scales by affecting seed dispersal. Therefore, the loss of 

vegetation associated with these patterns in cpDNA may result in the loss of diversity in 

L. salignum and potentially in the CFR as a whole. This may make it necessary to focus 

on these smaller areas when designing conservation plans, even though nuDNA is still 

maintaining diversity at broad scales.  
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Abbreviation Location Name latitude longitude

1 VRP Vanrhyns Pass -31.37087 19.01587

2 GIP Gifberg Pass -31.76927 18.76999

3 PAP Pakhuis Pass -32.14442 19.02492

4 MIP Middelberg Pass -32.63051 19.15221

5 VEP Versfeld Pass -32.84253 18.73164

6 GYP Gydo Pass -33.23595 19.33648

7 WOR Worcester -33.60255 19.33463

8 GBY Grotto Bay -33.52580 18.35388

9 PHI Philadelphia -33.71750 18.54403

10 CPT Cape Town -33.91698 18.40488

11 SVR Silvermine -34.08278 18.41490

12 SIT Simons Town -34.20063 18.41121

13 SWB Smitswinkel Bay -34.26193 18.46104

14 PRB Pringle Bay -34.31126 18.83138

15 STL Stellenbosch -33.93238 18.87687

16 FRP Franschhoek Pass -33.91495 19.15701

17 GRY Greyton -34.03345 19.60752

18 STA Stanford -34.41032 19.58887

19 AGU Agulhas -34.66967 19.77530

20 DHP DeHoop -34.37937 20.52973

21 BTK Bontebok -34.04368 20.46947

22 KOP Kogmanskloof Pass -33.80377 20.10572

23 TRP Tradouws Pass -33.93706 20.71161

24 HID Heidelberg -34.01497 20.96603

25 GAP Garcia Pass -33.94164 21.20187

26 STB Still Bay -34.26279 21.37145

27 ALB Albertinia -34.22925 21.59360

28 VLB Vlees Bay -34.34412 21.86730

29 MOB Mossel Bay -34.16592 22.00785

30 GRB Grootbrak -34.06319 22.20193

31 CLP Cloete Pass -33.93095 21.76138

32 ROP Robinsons Pass -33.86390 22.02835

33 OUP Outeniqua Pass -33.88690 22.39971

34 DAS Daskop -33.76938 22.65600

35 RBP Rooiberg Pass -33.65101 21.63852

36 SEW Seweweekspoort -33.38633 21.40805

37 ANB Anysberg -33.47264 20.58203

38 SWP Swartberg Pass -33.35097 22.04737

39 BLB Blesberg -33.40775 22.73231

40 POP Potjiesberg Pass -33.70272 23.04364

41 PLB Plettenberg Bay -34.01325 23.38842

42 MIS Misgund -33.76043 23.48274

43 KOU Kougaberg -33.67525 23.50330

44 JOB Joubertina -33.82058 23.85400

45 NOT Nooitgedacht -33.82692 24.25445

46 AGS Assegaaibos -33.93455 24.30351

47 BAV East Baviaanskloof -33.63444 24.46917

48 HUM Humansdorp -33.95992 24.76670

49 SHB Stinkhoutberg -33.81534 24.95069

50 SUP Suurberg Pass -33.28263 25.72010

51 GRT Grahamstown -33.34028 26.51658

Table 4.1 Names and geographic coordinates for all sampled L. salignum locations
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Chapter 5 

CONCLUSION 

The main objective of this research was to examine spatial genetic structure and gene 

flow over both spatial and temporal scales for a widespread fynbos plant, L. salignum, to 

understand levels of genetic diversity within endemic populations of the Cape Floral 

Region (CFR) and ultimately discover what factors might contribute to the diversity 

found within and among populations and to the region as a whole. The genetic diversity 

of L. salignum was characterized using both chloroplast (cpDNA) and nuclear DNA 

(nuDNA) markers to estimate temporal and spatial diversity using each of these markers. 

This method captured the two modes of gene flow available for plants through seed and 

pollen dispersal, allowing for comparisons between levels of gene flow which contribute 

to the overall genetic diversity of L. salignum.  

 As discussed in Chapter 2, the spatial genetic structure of L. salignum found using 

cpDNA varies on even a fine scale, with at least four broad STRUCTURE clusters and 

evidence for more through post hoc analyses. Interestingly, it was revealed that while 

locations within the L. salignum population vary spatially, they vary temporally as well, 

as it was shown that there has been a recent expansion of L. salignum into the Eastern 

Cape. These spatial and temporal differences found between groups suggest the 

landscape of the CFR is rather dynamic. These results support the idea that the current 

climatic differences between the Western and Eastern capes may be contributing to 

genetic variation currently. Given these patterns of fine scale genetic structure, it was 

next of interest to determine what may be driving these patterns of fine scale differences. 
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 As discussed in Chapter 3 a model of isolation by distance explained the overall 

diversity in L. salignum; however, the fine-scale heterogeneity of the landscape was 

likely contributing to diversity as well. It was found that in measuring how the 

heterogeneity of the landscape contributes to genetic diversity through isolation by 

resistance analyses, vegetation type was an appropriate resistance variable that could 

explain some of the patterns of fine scale spatial genetic structure. However, in some 

regions, it appeared that other factors may better explain diversity. It was also clear, 

given these results, that further sampling in certain areas would help resolve how 

landscape resistance is generating diversity, for near the Cape Fold Mountains. In this 

region  patterns of resistance were complex, and other groups (Daniels et al. 2007; Tolley 

et al. 2009) have hypothesized the mountains themselves are barriers to gene flow. 

Sampling in this area could disentangle the effects of the mountain topology from other 

factors on the landscape, such as vegetation type. Additionally, further sampling in the 

northern area of the CFR would allow for tests of isolation by resistance, as the current 

sampling scheme included too few individuals from that region. This region is especially 

of interest because it contained samples ‘outside’ the CFR, so understanding how L. 

salignum was able to move outside this area would add to our understanding of how 

plants are able to colonize outside their endemic region. Lastly, further sampling within 

the region that encompasses both the Western and Eastern Capes could elucidate where 

the definitive break is between the identified genetic groups. This area has been 

hypothesized to generate diversity over both contemporary and historical time scales; 

therefore, increased sampling here will improve our understanding of how L. salignum 

was able to recently expand into the area, as well as identify if the potential for expansion 



131 

is available for other fynbos plants. Overall, while vegetation resistance was able to 

predict genetic diversity in many areas, it is not the only landscape variable contributing 

to the patterns of genetic diversity found here. Further tests that capture additional 

geographic factors, such as topography, and their interaction with vegetation type may 

better explain genetic diversity than our single variable alone. In the future, it would be 

beneficial to incorporate more complex variables to better reflect the complex 

heterogeneity of the landscape in understanding patterns of gene flow and spatial genetic 

structure.  

 Lastly, as discussed in Chapter 4, patterns of gene flow and spatial genetic 

diversity changed significantly when using a nuDNA model. Here, we failed to detect 

spatial genetic structure with nuDNA markers. This contrasting pattern of genetic 

admixture to the highly structured cpDNA indicated that dispersal may be essential when 

studying gene flow, especially in plants which have two methods of dispersal and gene 

flow. It was clear from these data that these dispersal mechanisms are not equivalent in L. 

salignum, and therefore both methods were generating and maintaining diversity on 

different scales. The seed dispersal appeared to generate fine-scale spatial genetic 

structure, whereas pollen was maintaining diversity across the broad distribution of L. 

salignum. In moving forward with any study of gene flow and genetic diversity in CFR 

plants, it will be important to examine both maternally and bi-parentally inherited 

markers since levels of gene flow can vary between the two markers.   

In summary, this research is the first to generate a population genetic data set for a 

widespread fynbos plant. This study provides insight into the micro-evolutionary 

processes occurring within a CFR species for two genomic data sets. For conservation 
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efforts, this study identified areas of importance which should be the foci of management 

efforts. Important areas identified were the region near the Cape Fold Mountains or the 

border between the Western and Eastern Capes, where diversity is apparently generated. 

This study also identified landscape factors that may be generating genetic diversity on a 

fine scale for one of the plant genomes, which can now also be incorporated into 

conservation plans. These fine-scale areas are important because although pollen 

maintains connectivity throughout the L. salignum population, it is the local dispersal of 

seeds that allows for the initial colonization of an area. Therefore, conserving vegetation 

that aids in seed dispersal will help maintain genetic diversity in L. salignum. This work 

has provided a model on which further studies can build upon, through examining other 

fynbos plants. In generating data for a number of fynbos plants, this methodology can  

contribute to understanding gene flow and spatial genetic structure across populations, 

allowing for the identification of patterns and processes that are shared among multiple 

plant species, which may be contributing to the diversity of the species rich CFR. 
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