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ABSTRACT  
   

In order to successfully implement a neural prosthetic system, it is necessary to 

understand the control of limb movements and the representation of body position in the 

nervous system. As this development process continues, it is becoming increasingly 

important to understand the way multiple sensory modalities are used in limb representation. 

In a previous study, Shi et al. (2013) examined the multimodal basis of limb position in the 

superior parietal lobule (SPL) as monkeys reached to and held their arm at various target 

locations in a frontal plane. Visual feedback was withheld in half the trials, though non-visual 

(i.e. somatic) feedback was available in all trials. Previous analysis showed that some of the 

neurons were tuned to limb position and that some neurons had their response modulated 

by the presence or absence of visual feedback. This modulation manifested in decreases in 

firing rate variability in the vision condition as compared to nonvision. The decreases in 

firing rate variability, as shown through decreases in both the Fano factor of spike counts 

and the coefficient of variation of the inter-spike intervals, suggested that changes were 

taking place in both trial-by-trial and intra-trial variability. I sought to further probe the 

source of the change in intra-trial variability through spectral analysis. It was hypothesized 

that the presence of temporal structure in the vision condition would account for a regularity 

in firing that would have decreased intra-trial variability. While no peaks were apparent in the 

spectra, differences in spectral power between visual conditions were found. These 

differences are suggestive of unique temporal spiking patterns at the individual neuron level 

that may be influential at the population level. 
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Chapter 1 

INTRODUCTION 

Neural engineering is a young field, emerging at the intersection of neuroscience and 

biomedical engineering. Applications of engineering approaches and quantitative 

methodology to problems in neuroscience differentiate neural engineering from other, 

established fields, such as neurophysiology. Neural engineers are using experimental, 

theoretical, computational, and clinical approaches to solution of neuroscience problems at 

the molecular, cellular, and systems levels (Durand, 2006). 

 There is a wealth of applications for the fruits of neural engineering research. This 

research can lead to better understanding of healthy neural activity and tissue, which can in 

turn, lead to better understanding of damages and impairments to the nervous system. This 

understanding can be leveraged toward the development of effective rehabilitation 

techniques for patients with stroke, traumatic brain injury, or any of a number of other 

neurological conditions. Furthermore, a deeper understanding of the way neural signals 

govern global behavior can lead to the development of neural prostheses or a brain-machine 

interface. In order to do this, it is necessary to implement a system that records the neural 

signals, decodes the commands carried by these signals, and uses it as a control signal for an 

external device, such as a robotic arm or a computer cursor. Such a system could be very 

beneficial to an amputee or paralyzed person. 

 In fact, over the last 50 years, a remarkable amount of progress has been made 

toward the development of functioning neural prosthetics and brain-machine interfaces 

(BMI). One of the first BMIs to be implemented was the cochlear implant in 1958, by 

French surgeons Andre Djourno and Charles Eyries (Eisen, 2003). In 1980, Dr. Edward 

Schmidt first proposed that a neuroprosthetic device could be used to restore motor 
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function to patients with severe paralysis (Nicolelis, 2003). Since its first suggestion, work in 

the field has continued for decades, to the extent that clinical trials are currently underway 

for chronically implanted electrodes that allow paralyzed users to control an external robotic 

arm in order to regain lost motor function (Hochberg et al., 2006). 

 While the progress being made towards achieving a functional robotic neurally-

controlled prosthesis is exciting and groundbreaking, the current approaches suffer from a 

few important limitations. Glial encapsulation of chronically implanted electrodes threatens 

to degrade signal integrity over time (Polikov, Tresco, & Reichert, 2005). Sparsity of 

sampling from the thousands of neurons involved in motor control creates challenges in 

decoding the entire command from a portion of the signal (Li, Smith, Hargrove, Weber, & 

Loeb, 2013). But one of the most fundamental issues with the current approach is that the 

user of the device is not receiving the same kind of feedback from the prosthetic device that 

a healthy person receives from his or her own limb (Schwartz et al., 2006). 
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Figure 1 Schematic of Control Systems and Block Diagram (Green and Kalaska, 2011) 

 In a healthy person, data on limb position and movement is provided through a few 

channels. The bottom of Figure 1A shows a simple set up of the system – motor commands 

generated in relevant cortical areas descend through spinal motor system pathways to the 

motor plant, where they are transformed into arm movements. Feedback to the system can 

be relayed to the central nervous system (CNS) through two routes. First and most obvious 

is visual information. Vision of the limb in space can be used by the nervous system in the 

planning and execution of movements. The second route, somatic information, comes from 

two sources: efference copy and proprioception. Figure 1B shows an illustration of the 

system thought to be used in the control of arm movements. The movement vector is 

calculated as the difference between hand and target position. Then, the hand kinematics 

required to achieve the vector are calculated, followed by the arm joint kinematics required 
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to achieve the desired hand kinematics to move to the target. The joint kinematics are 

translated into a set of joint and muscle torque commands which are relayed to the motor 

plant for execution of the planned movement. These commands are fed back into the 

system as what is known as “efference copy”. Provision of efference copy allows the system 

to make predictions of the effects of motor commands and estimate limb position based on 

the previous commands. Proprioception, which is the sense that allows an individual to 

know the position of his/her limb even in the absence of vision, is provided to the CNS by 

the Golgi tendon organs and muscle spindles. In this document, proprioception and 

efference copy are grouped together as “somatic feedback” and are distinguished from visual 

feedback. 

The top section of Figure 1A shows the same system as the bottom section, but for a 

BMI implementation. While a neural prosthetic device is obviously capable of being seen by 

the user and can therefore be accounted for by the visual feedback system, current neural 

prosthetic systems do not incorporate somatosensory feedback. Because the CNS is typically 

able to integrate data from multiple sensory modalities, a neural prosthesis with a unimodal 

(vision only) source of sensory feedback will not provide a full set of sensory data. As neural 

prosthetic systems become more advanced, this deficit of somatosensory data is becoming 

more pronounced and more necessary to correct (Schwartz et al., 2006). One way to do this 

is to provide stimulation into the nervous system in lieu of natural somatosensation. 

However, before artificial sensation can be effectively implemented, it will be important to 

fully understand the roles of the different types of sensory data in the sensorimotor 

integration process. 

 In studying neural activity in response to a stimulus, there are many characteristics of 

activity which are important to characterize in order to obtain a clear picture of the neural 
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behavior. Most obviously, the mean firing rate can show changes in activity – an overall 

increase or decrease in activity that occurs with stimulus onset (or offset) can indicate that 

the neuron is responding to the stimulus via excitation or suppression (respectively). 

However, as demonstrated by Churchland et al. (2010), even neurons that do not exhibit a 

change in mean firing rate can exhibit changes in neural variability in response to a stimulus. 

In fact, Churchland et al. (2010) showed that in a wide range of cortical areas neural 

variability decreases with stimulus onset (provided that the neuron in question is part of a 

network that responds to the stimulus in question).  

 Two statistical measures frequently used in studying the variability of neural activity 

are the Fano factor (FF) of the spike count and the square of the coefficient of variation 

(CV) of the inter-spike interval (Nawrot et al., 2008). Both FF and CV are normalized 

measures of the variance that control for the mean rate. The FF, which uses spike counts for 

each trial, helps to quantify trial-by-trial variability. The CV, using the inter-spike interval, 

measures the intra-trial variability. Assessing both trial-by-trial and intra-trial variability and 

comparing the two measures of variability between conditions can provide insight into the 

neural coding of both sensory and motor variables. 

 In addition to the Fano factor and the coefficient of variation, an important tool for 

describing the variance of a signal is the frequency spectrum. While it is easy to comprehend 

and visualize a signal in the time domain – it is simply a series of points representing the 

value of the signal at each time point – visualizing the same signal in the frequency domain 

can be somewhat more intuitively challenging. A key idea allowing time signals to be 

represented in the frequency domain is that any periodic signal can be decomposed and 

represented as a sum of elementary periodic signals (sine and cosine functions or complex 

exponentials). This idea is known as Fourier’s theorem, and the process of transforming a 
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function from its representation in the time domain to its frequency domain counterpart is 

called the Fourier transform (Maor, 2002). By taking the average magnitude squared of the 

Fourier transform, one obtains the periodogram of a time signal, which provides us with an 

estimate of its spectral density (Percival & Walden, 1993). 

In order to help conceptualize the spectrum, Figure 2 (from Jarvis & Mitra, 2001) 

provides spectra for three different hypothetical processes. In (A), a spectrum is provided 

for a completely homogeneous Poisson process. The spectrum is constant for all frequencies 

at the value  , which is the mean firing rate for the process. The second example, (B), shows 

a spectrum for a process with regular spiking interval    with a small amount of drift. The 

spectrum is defined by sharp peaks at frequencies that are multiples of 
 

  
. The addition of 

drift causes a blur to occur at higher frequencies and it stabilizes to   at high frequencies. In 

(C), a spectrum is shown for a process in which the probability of the next spike is 

suppressed immediately following a given spike, consistent with a refractory period. The 

spectrum is suppressed at low frequencies, but goes to the constant   at high frequencies. 

 
Figure 2 Sample spectra (a) shows a completely homogeneous Poisson process, (b) shows a process with 
regularly spaced spikes with jitter, and (c) shows a Poisson process with suppression at low frequencies. (Jarvis 
& Mitra, 2001). 

The spectrum can provide us with a fuller understanding of the variation of the 

signal, since the spectral value at a given frequency is representative of the amount of 

variation in the signal accounted for by the frequency in question. Spectral analysis is 
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frequently used in the study of continuous processes (such as the local field potential, or 

LFP) but can also be used to analyze point processes. Because action potential spikes are 

considered to be a uniform, binary occurrence – either a spike occurred or it did not – a train 

of spikes can be represented as simply a list of the times at which they occurred (Buneo et 

al., 2003). This data can easily be used to calculate the CV and FF, using the spike counts for 

each trial and the time interval between spikes (the inter-spike interval), but can also be used 

to create a frequency spectrum, which is then used for spectral analysis. This is done using 

the autocovariance of the process, which shows how similar a function is to itself at given 

time lags. In other words, given that a spike occurred at time T, how likely is it that a spike 

will occur at time T +  , where   is the time lag. 

Recently, in an effort to understand the roles of different sensory modalities 

underlying limb representation, rhesus monkeys were trained to perform a simple reaching 

task from a center starting point to one of eight target positions arranged radially around the 

starting point (Shi et al., 2013). After the monkey performed a successful reach to the target, 

he made a saccade back to the starting position while fixating his hand at the target position 

and held this position for a set holding period (see further description in Methods). In some 

trials, the monkey was provided visual feedback of his hand during the holding period, while 

in others, he was not. In so doing, comparisons can be made between the activity in trials 

when the monkey was provided with multimodal sensory data (vision + somatic) with trials 

when the monkey was only provided with unimodal sensory data (somatic). By 

characterizing the differences between the conditions, it is possible to expand the 

understanding of the roles of different sensory modalities in creating a limb representation in 

the brain. 
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 Initially, the analysis has been limited to characterization of the variance through use 

of the Fano factor and the coefficient of variation. Using these measures, it was found that 

FF and CV were larger in the non-vision conditions, as compared to vision (Shi et al., 2013). 

However, this is still an incomplete characterization of the variance – and one that does not 

explain the origin of the differences between conditions. In particular, it is unclear what is 

causing the changes in intra-trial variability. A lower CV of the inter-spike interval in trials 

with visual feedback suggests that perhaps vision is stabilizing the system, creating more 

regularity in the ISI. This effect could be seen in the temporal structure of the neural spiking 

behavior. In order to further understand the nature of the variance and differences between 

conditions, I calculated spectra for all of the recorded cells. This spectral analysis was 

expected to show differences in temporal structure between the two conditions, which may 

help to understand the differences in variance between them as well. 
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Chapter 2 

METHODS 

Experimental Apparatus 
Two head-fixed animals (monkey X, monkey B; Macaca Mulatta) were trained to 

make arm movements using visual feedback provided by a computer-generated, 3D virtual 

environment. A schematic is shown in Figure 3. Though vision of the animal’s arm was 

blocked, wrist position was shown as a green sphere displayed by a 3D monitor (Dimension 

Technologies, Inc.) that projected onto a mirror on the surface that blocked vision of the 

arm from the animal. Arm movements were monitored using an active LED-based motion 

tracking system (Phoenix Technologies Inc, sampling rate: 250 Hz, spatial resolution: 

0.015mm at 1.2m distance). A remote optical eye tracking system (Applied Science 

Laboratories Inc., sampling rate: 120 Hz, spatial resolution: 0.25 degrees of visual angle) was 

used to monitor eye movements. 
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Figure 3 Experimental Apparatus and Paradigm (A) Schematic of virtual reality set up. (B) Sequence of 
events of a single trial. Grey rectangle denotes static holding period that was the focus of this study. 

 
Experimental Paradigm 

Animals performed a reaction-time task that combined eye and arm movements 

from a single starting position in the center of the workspace to one of eight peripheral 

targets, which were followed by a saccadic eye movement back to the central fixation point 

(Fig. 3) (Shi et al, 2013).  At the start of each trial, the starting position was presented, 

represented by a green sphere in the center of the visual workspace. After the animal moved 

his arm to the start position, he was required to maintain the position for 500 ms, at which 

point a second target was presented at one of 8 locations arranged in a rectangle (monkey X) 

or square (monkey B) in a frontal plane. After being presented with the target sphere, the 

animal moved its arm to the target. For monkey X, targets were separated by 5 cm along the 

horizontal axis and 4 cm along the vertical axis and were therefore up to 6.4 cm from the 

center of the workspace. For monkey B, targets were separated by 5 cm along both 
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horizontal and vertical axes and were therefore 7.1 cm from the center of the workspace (Shi 

et al., 2013).  

A green sphere representing hand position was displayed to the animal at the 

beginning of each trial and throughout the movement toward the target. After acquisition of 

the reach target by the animal, the target was extinguished after 300 ms (monkey X) or 400 

ms (monkey B). A yellow sphere was then presented at the center of the visual workspace, 

where the animal was required to fix his vision. After making a saccade to the yellow target 

sphere, a ‘static holding period’ began, during which the animals continued to fixate vision at 

the center of the display while also maintaining arm position at the peripheral target for a 

period of 800 ms. During this static holding period, visual feedback of hand position was 

provided on half of the trials (Visual condition (V)) but was withheld on the remaining trials 

(No Vision Condition (NV)). Data analysis focused on the 800 ms of the static holding 

period (Shi et al, 2013). 

Spherical windows with radius 2cm (monkey X) or 2.4 cm (monkey B) surrounded 

each reach target and a behavioral window of radius ~6.5 of visual angle surrounded the 

central visual fixation point. In order to successfully complete a trial, the animal was required 

to maintain position within these windows throughout the holding period. Five (5) trials 

were performed for each target, which were pseudorandomly selected (Shi et al., 2013). 

 
Neurophysiology 

All experimental procedures were conducted according to the “Principles of 

laboratory animal care” (NIH publication no. 86-23, revised 1985) and were approved by the 

Arizona State University Institutional Animal Care and Use Committee. Single cell 

recordings (N=343; 219 from monkey X and 124 from monkey B) were made in in the 
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superficial cortex of the superior parietal lobule (area 5), which was judged by recording 

depth and similarity to previous recordings made in this area (Buneo et al. 2008; Buneo et al 

2002; 2003), using standard neurophysiological techniques. Spiking activity was recorded 

extracellularly with varnish-coated tungsten microelectrodes (~1-2M impedance at 1 kHz). 

Single action potentials (spikes) were isolated from the amplified and filtered (600-6000 Hz) 

signal through use of a time-amplitude window discriminator (Plexon Inc.). Spike times were 

sampled at 2.5 kHz (Shi et al, 2013). 

Data Analysis 

Single cell and population spectra were calculated from activity recorded during the 

static holding period of the task – only spikes occurring in the 800 ms window after the 

monkey fixated on the central fixation point were used. Because the rate of neural spiking 

activity is approximately constant during this period, it can be reasonably assumed that the 

process is stationary. A sequence of spike arrival times {  }, j = 1…N is recorded on the 

interval [0,T]. The first step in evaluating the spectrum is to take the square of the modulus 

of the Fourier transform of the data: 

  ( )  
|∑            

   |
 

 
 

Subtracting N removes the mean from the data (Jarvis and Mitra, 2001). Next, the result is 

smoothed using a Gaussian kernel, which reduces its variance: 

   ( )  ∫  (    )  (  )   
 

  

 

This estimate is known as a lag window spectral estimator (Jarvis and Mitra, 2001). Spectral 

estimates were averaged over all trials for each cell in each direction in both conditions. 

Using a 2-factor analysis of variance (ANOVA) on the mean firing rate with limb 

position and visual condition as the factors (p<0.05), spectral data for cells was sorted by 
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response to vision only (VO), position only (PO) and the position-vision interaction (PV) 

and by preferred direction for each cell (Shi et al, 2013). Population averages and 95% 

confidence intervals for both V and NV conditions were created using a bootstrap 

distribution with 1000 resamples. For PO, VO, and PV populations, comparisons between 

V and NV conditions were made in low frequency band (0-10 Hz) and gamma band 30-100 

Hz) using a permutation test with 1000 samples. 
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Chapter 3 

RESULTS 

Of 343 cells recorded, 39% (135) showed statistically significant response to limb 

position during the 800 ms static holding period, 13% (44) showed significant main effect of 

vision, and 9% (27) exhibited interaction effects of position and vision (main and/or 

interaction effects; ANOVA, p<0.05). In all, 44% of neurons showed some effect of 

position (i.e. had main and/or interaction effects) and 19% demonstrated either main or 

interaction effects of vision. Eleven (11) percent of neurons demonstrated effects of both 

position and vision. The neuron shown in Fig. 4 below is representative of the majority of 

neurons recorded in the study. Shown are spike rasters and peristimulus time histograms for 

the neuron. The cell responded similarly in both V and NV trials. ANOVA on mean firing 

rate during the static holding period showed a main effect of position (p<0.05) with no 

effect of visual condition (p=0.52) and no interaction effect (p=0.64). Because the cell 

responded to limb position regardless of visual condition, the cell appeared to encode limb 

position using only somatosensory data. 
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Figure 4 (left): Peristimulus Time Histogram for an individual neuron. Activity of single neuron aligned 
to the end of the static holding period. Center shows a polar plot of mean activity during analysis window (grey 
rectangle). Preferred direction for this neuron was 225 degrees (bottom left). (Shi et al., 2013) 
Figure 5 (right) Calculated spectra for same individual neuron shown in Figure 4. Black line represents 

spectrum, gray lines represent 95% confidence interval. Dotted line represents   for process. Low frequency 
and gamma bands are shown with large gray rectangles.  

Figure 5 shows the spectra calculated for the same neuron shown in Figure 4 for the 

neuron’s preferred direction (225°, lower left box of Figure 4) in both V and NV conditions. 

Spikes occurring in the gray rectangle on the right of each subplot were used in the 

construction of the spectra. The spectrum for a Poisson process would hover about the 

dotted horizontal line, with minor variations. This dotted line represents  , which is equal to 

the mean firing rate for the process. Temporal structure in the process would be evidenced 

by significant deviations from this value. However, the gray lines in the figure are 

representative of a 95% confidence interval and enclose the value of   throughout the 

spectrum. It is also worthwhile to note that the spectrum is significantly lower than the mean 

at low frequencies, though this is consistent with the idea that the probability of a spike is 

reduced immediately following a prior spike (Jarvis and Mitra, 2001). Two frequency bands 

are also highlighted in the spectra – in the darker gray is the low frequency band, 0-10 Hz, 

and in the lighter gray is the gamma band, 30-100 Hz. Comparisons of mean normalized 



16 

spectral value between visual conditions within each frequency band were made using a 

permutation test with 1000 resamples. For the example neuron shown, significant difference 

was found for both low-frequency and gamma bands between vision and nonvision 

conditions.  

 
Figure 6 (left) Population spectra for all cells with at least one significant effect (main or interaction) 
in the ANOVA. Plot conventions as in Figure 5. 
Figure 7 (right) Population spectra for all cells with significant main effect of vision. Plot conventions 
as in Figure 5. 

 

Figure 8 (left) Population spectra for all cells with significant main effect of position. Plot conventions 
as in Figure 5. 
Figure 9 (right) Population spectra for all cells with significant interaction effect of position and 
vision. Plot conventions as in Figure 5. 

 Figure 6 shows population spectra for all cells with responses to at least one main 

effect or interaction. These population spectra were constructed using a bootstrap mean and 

confidence interval with 1000 resamples of the calculated spectra for the responsive cells. 
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Similar to the individual neuron in Figure 5, the neuron does not show significant deviation 

from  . Comparisons of mean normalized spectral values between conditions within 

frequency bands showed no significant difference between conditions in either frequency 

band. 

 Figures 7-9 show population spectra for cells with significant main effects of vision 

(Fig. 7), position (Fig. 8), or an interaction of position and vision (Fig. 9). For all spectra in 

both conditions, no significant deviations from   are seen, excepting the suppression at low 

frequencies consistent with the refractory period of a neuron. Comparisons of mean 

normalized spectral values showed that cells with both main effects showed differences 

between conditions in the gamma band (30-100 Hz) but not in the low frequency band (0-10 

Hz) (Table 1). Cells with the position/vision interaction effects showed a significant 

difference between conditions in the gamma band and also in the low frequency band. Cells 

with main effects of vision or position did not show significant difference in the 0-10 Hz 

range. Differences can also be seen in Table 1. 

Table 1: Significant Differences between V and NV conditions for population, main and interaction 

effects and different frequency bands. 

 Vision Position Interaction 

0-10 Hz - - * 

30-100 Hz * * * 
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Chapter 4 

DISCUSSION 

 The aim of this study was to assess the temporal structure in neural spiking activity in 

area 5 of the parietal cortex and to assess differences in neural behavior in conditions with 

and without visual feedback provided. Spectral analysis of the population responses showed 

that there was no significant temporal structure that deviated from the structure of a 

homogeneous Poisson process (i.e. flat at value  , the mean firing rate), excepting a small 

amount of suppression at low frequencies, consistent with the existence of a refractory 

period where spike probability is reduced immediately following a spike. However, it was 

noted that differences in normalized spectral power occurred in the gamma band (30-100 

Hz) for cells with significant main effect of vision condition, limb position, and/or 

interaction effect. These differences are suggestive of unique temporal spiking patterns at the 

individual level that may be influential at the population level. 

 In attempting to understand the way that neural spiking behavior can encode 

information, there are two main features of a spike train that can be decoded: mean and 

variance (Pesaran, 2002). It is well known that mean firing rate of a neuron can be used to 

indicate the responsiveness of a neuron (or population of neurons) to a given stimulus, but it 

is recently becoming clear that the variance of the spiking pattern can also be used to encode 

information about the response to the stimulus (Churchland et al., 2010). The frequency 

spectrum of a signal is an important tool in assessing the temporal structure of a signal that 

can contribute to sources of variability within the signal. Reverberations in a neural signal are 

thought to be important in cognitive processing of neural information (Pesaran, 2002). 

Temporal structure – characterized by peaks in the spectrum at frequencies with 
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concentrated power – could potentially be used along with mean rate information by other 

brain areas to give task-relevant activity such as the direction of a planned reach or other 

movement (Buneo, 2003). 

 Two other statistical tools that can be used to measure the variability are the Fano 

factor (FF) and coefficient of variation (CV), which are measures of variance normalized by 

the mean. In studying neural data, FF is used with the spike count for a trial, and as such, 

measures trial-by-trial variability in neural response to a stimulus. It has been shown that FF 

decreases with stimulus onset, suggesting that neural systems stabilize when being driven 

(Churchland, 2010). The previous analysis, in which it was found that the FF was lower in 

trials where vision was provided than in trials where vision was withheld, was consistent with 

this idea. The CV uses the inter-spike interval for a neuron and so measures the intra-trial 

variability of the signal. In previous analysis, it found that the CV was also lower in trials 

with vision than in trials without, suggesting a difference in intra-trial variability between the 

two conditions. In order to further probe the source of these differences in intra-trial 

variability, I employed spectral analysis to analyze the temporal structure of the signals in 

each condition, to see if differences there could account for the differences in the CV. 

 Peaks in the spectrum can be been indicative of enhanced rhythmicity, creating 

oscillations that may be read out by other brain areas (Buneo, 2003). However, this behavior 

was not seen in area 5. While spectral analysis did not yield significant differences in 

temporal structure, differences in mean normalized power were observed in the gamma 

band for cells with responses to each effect (main and interaction effects). These results 

imply that maintenance of static limb position in the presence or absence of visual feedback 

is associated with unique temporal patterns of spiking in the parietal cortex. The differences 

in these patterns of spike timing do not appear to be associated with a unique temporal 
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structure. This is consistent with the findings of Joelving et al. (2007), who found that 

rhythmic neuronal firing at the single neuron level is not a characteristic of active 

maintenance of visuospatial information in memory in area 7 of the parietal cortex. The 

authors also noted that while oscillatory activity may not be apparent at the single cell level, a 

sufficiently large population may be able to exhibit rhythmic activity, if individual neurons 

lock in to the oscillations at different times. 

 In order to gain deeper insight into activity in area 5, future work may include 

analysis of local field potential (LFP) data. It has been shown that spiking behavior and LFPs 

are coherent in the lateral intraparietal area in the gamma frequency band (Pesaran, 2002), 

making this a promising avenue to understanding neural behavior in area 5. Understanding 

the relationship between spiking behavior and LFP can help bridge the gap between single-

neuron and population activity (Joelving et al., 2007). In continuing to study the behavior of 

area 5, it is possible to further advance the understanding of multimodal representation of 

limb position in the brain, an important step in the development of neural prosthetics. 
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