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ABSTRACT  

   

Solar energy, including solar heating, solar architecture, solar thermal electricity 

and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. 

Being one of the most important techniques, significant research has been conducted in 

solar cell efficiency improvement. Simulation of various structures and materials of solar 

cells provides a deeper understanding of device operation and ways to improve their 

efficiency.  

Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and 

Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been 

considered as one of the most promising candidate in the photovoltaic technologies, for 

their similar efficiency and low costs when compared to traditional silicon-based solar 

cells.  

In this work a fast one dimensional time-dependent/steady-state drift-diffusion 

simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for 

modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar 

cell. These models are used to reproduce transients of carrier transport in response to 

step-function signals of different bias and varied light intensity. The time-step control 

models are also used to help convergence in steady-state simulations where constrained 

material constants, such as carrier lifetimes in the order of nanosecond and carrier 

mobility in the order of 100 cm
2
/Vs, must be applied. 
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Chapter 1  INTRODUCTION 

1.1. Solar Energy 

 As the ultimate source of energy, the Sun shaped this blue planet called home. It 

generates atmospheric currents, drives river flow and provides energy in photo-synthesis, 

which converts solar energy directly into the chemical energy that fuels all living things 

on Earth. The annual amount of energy consumed by humans on Earth, roughly 5 × 10
20

 

joules, can be delivered by the Sun in an hour. The enormous power supplied 

continuously by Sun, 1.2 × 10
5
 terawatts, dwarfs every other energy source, renewable or 

fossil fuel. It dramatically exceeds the 13 TW power that human civilization produces[1]. 

 

Figure 1.1 Average solar energy on Earth. 

(Courtesy of Wikipedia) 

 As of today, solar energy technologies include solar heating and cooling, solar 
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thermal electricity and solar photovoltaics. Solar thermal technologies can be used for 

water heating, spacing heating, space cooling and process heat generation. Solar thermal 

electricity technology, also known as concentrated solar power systems, use mirrors and 

tracking systems to focus a large area of sunlight into a small beam, as illustrated below 

in Figure 1.2. The concentrated heat is then used as a source of a conventional power 

plant, where steam drives generators for electricity.  

 

Figure 1.2 An illustration of Concentrated Solar Power Systems. 

 A photovoltaic cell, or solar cell, is a device that converts light into electric 

current directly by utilizing photoelectric effect. Although the history of solar cells can be 

dated back to 1880s, Pearson, Fuller and Chapin started the whole new chapter of 

photovoltaics by creating the first silicon solar cell in 1954[2]. 

 

1.2. Solar Cell Operations 

 Solar cell works in three steps. First, Photons in sunlight are absorbed by solid 
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state materials, such as silicon and CdTe, known as photoelectric effect. Electron – hole 

pairs are generated with the absorption of photons. Secondly, carriers are separated by the 

built-in potential (or the depletion region) of pn junctions. At last, current flows when the 

separated carriers are extracted to external circuits. Figure 1.3 described these steps 

graphically. 

 

Figure 1.3 Three steps of the operation of solar cells. 

(Courtesy of Dr. Schroder) 

 The letter A, B and C in the middle of Figure 1.3, denote three operating 

conditions of solar cells. For condition A, where no bias or load is applied to the device, 

known as the ideal short circuit condition, carriers are being separated and extracted by 
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the pn junction itself. In this case, negative short circuit current, Isc or Jsc, the largest 

operating current of a solar cell, can be produced. If we apply a certain forward bias, Voc, 

to the diode that flat carrier densities are generated, Case C, the open circuit condition, 

can be achieved with zero current. Case C can also be interpreted as dark current 

balancing out the short circuit current. Theoretically, open circuit can be produced by 

applying an infinitely large load resulting in infinitesimally small current flowing. In 

reality, only a finite value of external load can be applied into the circuits. Thus the solar 

cell will operate between these two conditions, as shown by letter B in Figure 1.4, where 

positive bias applied and negative current flows, resulting in negative power 

consumption, which also means power is generated by the solar cell under illuminations. 

 

Figure 1.4 Typical IV characteristics of solar cells. 

(Courtesy of Dr. Schroder) 

 The operating regime of solar cells is the range of bias, from 0 to Voc, in which the 

cell generates power. The power reaches a maximum at the maximum power point, as 

marked ‘PMAX’ in Figure 1.5. This occurs at a voltage Vmp with a corresponding current 

density Jmp, also shown below. 
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Figure 1.5 Simulated IV characteristics of solar cells. 

 The efficiency, , one of the most important properties of solar cells, is the power 

density generated at the maximum power point as a fraction of the incident solar 

irradiance power density, Ps,  

   
mp mpMAX

s s

J VP

P P
        (1.1) 

The efficiency is related to Jsc and Voc, 

 


  sc ocMAX

s s

J V FFP

P P
       (1.2) 

where FF is the fill factor, which describes the ‘squareness’ of the J-V characteristics, is 

defined as the ratio, 

 
mp mp

sc oc

J V
FF

J V
        (1.3) 
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These four quantities: Jsc, Voc, FF and  are the key performance characteristics of a solar 

cell. Typical numbers of these PV cell characteristics are shown below from Green[3]. 

 

Table 1.1  Performance of common PV cells. 

Cell Type Voc (V) Jsc (mA/cm2) FF Efficiency (%) 

crystalline Si 0.706 42.7 82.8 25.0 

thin film GaAs 1.107 29.5 86.7 28.3 

CIGS 0.713 34.8 79.2 19.6 

CdTe 0.845 26.1 75.5 16.7 

 

1.3. CdS/CdTe Solar Cells 

  

Figure 1.6 Detailed balance for AM0 and AM1.5. 

 As the most commercially successful thin film solar cell, cadmium telluride 
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(CdTe) has a market share of around 8% in the PV industry; this exceeds all other non-

silicon solar cells. Research in CdTe dates back to the 1950s, after which the 1.5 eV 

bandgap of CdTe was found to be almost perfectly matched to the solar spectrum in terms 

of optimal conversion to electricity[4]. Figure 1.6 above shows the theoretical maximum 

efficiency one can get for different bandgaps. Another advantage of CdTe solar cells is 

the short optical absorption lengths. Two micrometer thick CdTe is able to absorb 99 

percent of photons under AM1.5G solar illumination, while hundreds of microns of 

silicon is required. 

 Due to the poor quality of n-typed doping of CdTe, a simple heterojunction design 

evolved in early 1960s in which p-type CdTe was matched with n-type cadmium sulfide 

(CdS) as window layer. A thin CdS layer (less than a micron) developed in the 1990s by 

Chu[5, 6] and Britt[7] in order to allow more photons passing through, resulted in 15% 

efficiency, a great success in terms of commercial potential.  

 A transparent conducting oxide (TCO) layer was added to CdTe solar cells, to 

facilitate the movement of currents across the top of the cell as the cells were being 

scaled up in size for large area products called modules. In this simulator, tin oxide, the 

most popular TCO material, was employed. And we arrived at the standard configuration 

of CdTe solar cells, as depicted in Figure 1.7. 

 Many improvements have been developed during the last two decades for higher 

conversion efficiency of CdTe solar cells, such as better junction quality, longer carrier 

lifetime and new buffering layers in laboratories; these improvements have resulted in 

18.3% conversion efficiency achievement by GE Global Research and NREL’s 
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confirmation in 2012[8]. In the commercial productions, average module efficiency of 

11.7% has been claimed by First Solar[9]. 

 

Figure 1.7 Typical configuration of a CdTe solar cell 

 

1.4. Semiconductor Device Simulations 

 Semiconductor device simulations provide an understanding of actual operations 

of solid state devices, with the necessary level of sophistication to capture the essential 

physics while at the same time minimizing the computational burden so that the results 

can be obtained within a reasonable time frame. 

 

1.4.1. Importance of Simulation 

 Due to increasing costs for R&D and production facilities with shorter process 
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technology life cycles, device simulation tools have been developed tremendously within 

the semiconductor industry.  Device modeling offers many advantages such as: providing 

problem diagnostics, providing full-field in-depth understanding, providing insight into 

extremely complex product sets where no direct characterization can be conducted, 

evaluating what-if scenarios rapidly, decreasing design cycle time and decreasing time to 

market. Simulations require enormous technical depth and expertise not only in 

simulation techniques and tools but also in the fields of physics and chemistry. 

Laboratory infrastructure and experimental expertise are essential for both model 

verification and input parameter evaluation in order to ensure truly effective and 

predictive simulations. The developer of simulation tools needs to be closely tied to the 

development activities in the research, the laboratories and commercial productions in 

industry. 

1.4.2. General Device Simulation Framework 

 

Figure 1.8 Schematic description of the device simulation sequence 

(Courtesy of Dr. Vasileska & Dr. Goodnick) 
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 Figure 1.8 shows the main components of semiconductor device simulations at 

any level. It begins with the electronic properties of solid state materials. The two main 

kernels, transport equations that govern charge flow and electromagnetic fields that drive 

charge flow, must be solved self-consistently and simultaneously with one and another, 

due to their strong coupling. The solution of transport equations, carrier distribution, can 

be used to evaluating the electromagnetic fields by solving Poisson’s equation in the 

quasi-static approximation. Electric field profiles are essential to obtain current and 

carrier density profiles from the transport equations. Although advanced models such as 

hydrodynamic equations, Monte Carlo method and Green’s Function method have been 

developed, drift diffusion equations were employed for the transport equations in this 

project, due to its simplicity for implementation, its relatively small computational 

burden and its accuracy for devices larger than 0.5 microns. 

 Implementation of the Poisson’s equation, drift diffusion equations and their 

solution techniques will be discussed in the next chapter. We will introduce other physical 

models, such as generation/recombination mechanisms and metal contacts in Chapter 3. 

In Chapter 4, our simulator will be compared with the results from commercial software 

such as Atlas, Silvaco. Interesting results, especially the transient behaviors of CdTe solar 

cells, will also be analyzed in Chapter 4. Transient simulator is implemented because of 

two reasons: (a) to get more accurate steady-state results with regard to the current 

conservation; and (b) to study true transients in the device that allow one to extract 

minority carrier lifetimes, etc. 

 Finally, this dissertation work was performed to provide better and more flexible 

solver from what currently exists in the academia and industry in terms of TCAD. 
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Chapter 2  NUMERICAL METHODS 

 In this chapter, the discretized form of Poisson’s equation and continuity 

equations will be derived for heterojunctions. 

 

2.1. Poisson Equation 

Poisson’s equation describes the relationship between electron charge and the 

electrostatic potentials[10]: 

 ( ( )) ( )         D Aq p n N N      (2.1) 

where  is the spatially varying electrostatic potential,  is the permittivity, q is the 

fundamental charge, p is the hole density, n is electron density, ND
+
 is the ionized donor 

concentration and NA
- 
is the activated acceptor concentration. In this simulator, instead of 

Boltzmann’s statistics, Fermi-Dirac statistics are considered and the following equations 

are employed: 

 

1/2

1/2

F C
C

V F
V

E E
n N F

kT

E E
p N F

kT

 
  

 

 
  

 

       (2.2) 

where NC and NV are the conduction and valence band effective density of states, EF is the 

Fermi energy level, EC is the conduction band energy level, EV is the valence band energy 

level, k is the Boltzmann’s constant, T is the lattice temperature and kT is the thermal 

energy in the system. Instead of solving the Fermi integral, a simple analytical 

approximation was employed to estimate the integral of the Fermi-Dirac distribution 

function[11].  
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2.1.1. Normalization of the Poisson’s Equation 

 Under equilibrium conditions, with all parameters as given above, 1D Poisson’s 

equation can be rewritten as equation 2.3:    

 ( ) ( )


      D A

d d
q p n N N

dx dx
     (2.3) 

Now consider Boltzmann statistics here, n and p can be defined by the equations 2.4, 

 

exp( )

exp( )

i

T

i

T

n n
V

p n
V







 
          (2.4) 

where ni is the intrinsic carrier density. Assuming that  =  + δ, applying e
±δ

 = 1 ± δ 

when δ is small, substituting this in equation 2.4 and using ( ND
+
 - NA

-
 ) / ni = C, equation 

2.5 reads, 

 ( ) (e e ) (e e )

   


 
 

     T T T TV V V V

i i

d d
qn C qn

dx dx
    (2.5) 

Substituting δ = φnew-φold, we get 

( ) (e e ) (e e ) (e e )

     


  
  

       T T T T T T

new
V V V V V Vnew old

i i i

d d
qn qn C qn

dx dx
                 

 (2.6) 

Rewriting in terms of n and p gives, 

 ( ) ( ) ( ) ( )


         
new

new old

i

d d
q p n q p n Cn q p n

dx dx
  (2.7) 

Changing permittivity to the relative permittivity, normalizing x with LD,  with VT, p and 
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n with ni, we will have the normalized form[12] of the Poisson’s Equation: 

 ( ) ( ) ( ) ( )


         
new

new old

r

d d
p n p n C p n

dx dx
  (2.8) 

 Although assumption of Boltzmann statistics has been made, the normalized 

Poisson’s equation is suitable for Fermi-Dirac statistics[13]. 

 

2.1.2. Discretization of the Poisson’s Equation 

 Using Selberherr’s central difference scheme[14], dφ/dx, d
2
φ/dx

2
, dεr/dx can 

written as following equation, 

 

1/2 1/2

1

2

1 1

2

1 1 1

1 1

1

1
( )

2

1 1
( ) ( )

2 2

2

i i

i i

i i i i

i i i i i i

i i ir

i i

d

dx
dx dx

d

dx
dx dx dx dx dx dx

d

dx dx dx

 

   

  

 



 

  

 








 
 

 

 




    (2.9) 

Expanding Equation 2.8 with Equation 2.9, we get,  

 

1 1

1 1
1

1 1

1 1

1 1
1

1

2
( ) / ( )

2

2
( ) / ( )

( )

new new new

i i i i i i i

i i i
i i i

i i i

i
i i i

i i

i i i
i i i

i i i

old

i i i i i i i

a b c f

a dx dx
dx dx dx

b p n
dx dx

c dx dx
dx dx dx

f n p C n p

  

  



  



 

 


 

 

 




  


  



  



  



    

     (2.10) 

where i represents the number of the grid point.   
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 The finite difference discretization of the one-dimensional Poisson’s equation 

leads to the coefficient matrix as the follows, with Dirichlet Boundary conditions (Ohmic 

Contact in this case) applied, 

 

11

22 2 2 2

3 3 3

2 2 1

11 1 1 1

1 0 0

0 0 1









  

   

 
 

   
   
   
   
   

   
   
   
 

 

 
   

 

 
 
 
 
 
 

  
 

new

new

n n n

new
nn n n n

new
nn

f

fa b c

a b c

a b c

fa b c

f

  (2.11) 

The solution technique of this coefficient matrix will be discussed in section 2.6. 

 

2.2. Discretization of Continuity Equations 

 To discretize the continuity equations, the determination of the currents on the 

mid-point of each neighboring grid points is required. Since all data are accessible only at 

the grid nodes, interpolation schemes must be employed. In consistency with Poisson’s 

equation we discussed, it is a common assumption that the potential varies linearly 

between connecting points; this is based on another assumption that constant field is 

observed between neighboring nodes. In addition, interpolation of carrier densities at the 

mid-points is also necessary to calculate the current. One simple way to evaluate the 

carrier density is to take the arithmetic average between two nodes under the assumption 

of linear variation of carrier densities. However, the exponential relationships between 

carrier density and electrostatic potentials make the linear variation valid only at small 

potential difference and near zero electric field between nodes, which is not acceptable 
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for non-equilibrium device simulation. 

 An optional approach is provided by Scharfetter and Gummel to solve this 

problem[15] with the acceptable linear potential variation between neighboring mesh 

nodes. Consider the one-dimensional electron current continuity equation: 
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        (2.12) 

which, by using the half-point difference gives: 
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where Drift Diffusion model is being employed and we have, 
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i i i i

dn
J qn E qD
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      (2.14) 

where  is the carrier mobility, E is electric field strength and D is the diffusion 

coefficients. Equation 2.14 can be written as: 

 1/2 1/2
1/2

1/2 1/2

  


 

 
n n

i i
in n

i i

Jdn
nE

dx D qD
       (2.15) 

Knowing that D=VT and Ei+1/2=(i+1-i)/dxi, one arrives at, 
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interpreted by the following equation, 

 1 

 
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  i i

i

dn dn d dn

dx d dx dx d
       (2.17) 

Equation 2.17 is next summarized as: 
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Using Laplace transformation, we get: 

      11 ( )    i in n g n g       (2.19) 

where g() is known as the growth function. Therefore, the Drift-Diffusion model 

electron current can be written as: 
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Similarly, 

 1/2 1 1
1/2 1

1

( )
     

 



    
    

   

n
n i i i i i
i i i

i T T

qD
J n B n B

dx V V
    (2.21) 

where B is the Bernoulli function,  
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Substituting Equation 2.20 and 2.21 into Equation 2.14, with implicit Euler method 

applied for the time discretization [16], gives the discretized electron continuity equation: 
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where Ui is the net generation rate of carriers, Δt is the time step interval, and 
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Similarly, discretized continuity equation of hole is derived to give 
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 (2.25) 

 The calculation of time step interval will be discussed in section 2.5, while the 

physical models implemented for the net generation rate will be evaluated in section 3.1. 

Equations 2.23 and 2.25, with appropriate boundary conditions applied, which will be 
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discussed in section 3.2, can be solved iteratively[17] as described in section 2.6. 

 

2.3. Incorporation with Heterojunctions 

 We have already discussed the discretization of Poisson’s equation and continuity 

equation for homojunctions in section 2.1 and 2.2. For heterostructures, modifications 

must be made to the electrostatic potential in order to adjust band offsets between 

different materials. Otherwise, abrupt electrostatic potential leads to divergence in the 

iterative solver. In this project, Band Parameter Approach[18] is employed to take into 

account the different band parameters, including bandgaps and electron affinities, to 

ensure ϕ varies continuously along the heterojunctions.  

 

Figure 2.1 Equilibrium energy band diagram of an abrupt heterostructure. 
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 With the aid of Figure 2.1, which shows us a band diagram of heterostructure 

comprising of two materials, we can have a better understanding of this band parameter 

approach. Let’s begin with the conduction band and the valence band, 
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As stated before, the carrier concentration should be written as: 
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Equation 2.27 can also be expressed as: 
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Also we have, 

 

2

2

2

2

exp ln

exp ln

C
C i

i

V
V i

i

N
N n

n

N
N n

n

  
   

   

  
   

   

       (2.29) 

substituting Equation 2.29 into 2.28, 
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  (2.30) 

Next we choose material 2, which most likely will be CdTe in CdS/CdTe solar cells, as 
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the reference point, hence we could assume the band parameters to be zero for this 

material: 
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ψ0 can be solved as: 
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where subscript ‘2’, refers to material 2. And the band parameter of material 1 can now 

be written as: 
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Equation 2.33 gives the band parameters consistent with the Boltzmann statistics. The 

band parameters for Fermi – Dirac Statistics had been derived by Lundstrom[19] as the 

following: 
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2.3.1 Poisson’s Equation for Heterojunctions 

 We already discussed in section 2.1 the discretized Poisson’s equation for 

homojunctions with permittivity varied. For complete heteroscturctures, except band 

parameters for adjusting quasi – Fermi level and carrier density, additional work is 

required to make the electrostatic potential to denote the relative energy level.  Another 

band parameter, intrinsic level offset, which represents the difference between intrinsic 

levels of different materials, has been employed as below: 
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By deducting these offsets before evaluating Equation 2.12, ϕ can be varied smoothly in 

an abrupt heterojunction. Also we need to restore the real electrostatic potentials by 

adding these offsets back when convergence is achieved for band structures plotting. 

 

2.3.2 Continuity Equations for Heterojunctions 

 In section 2.2 we have derived the discretized continuity equation for non-

uniform meshed homojunctions. Similar procedures will be conducted for the 

heterojunction equations, with appearance of new terms. Recall that the Drift – Diffusion 

current equation is of the form, 
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Where the electric field strength, E, should be based on the Fermi level, as below: 
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Equation 2.37 can be expanded as, 
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Combining Equation 2.36 and 2.38, the tradition drift diffusion terms and the effect of 

spatially varied electron affinity and density of states can be both reserved in Equation 

2.39: 
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Similarly as described in section 2.2, employing the Scharfetter and Gummel scheme 

after inserting Equation 2.39 into Continuity Equations, we obtain Equation 2.40 and 

2.41.  Note that ϕ
n
=ϕ+θn for electrons. 
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And ϕ
p
=ϕ-θp for holes, 
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2.4. Non-Uniform Mesh 

 Less grid points would accelerate the simulations, simply by lowering the number 

of calculations. It also means less accuracy, especially in heterojunctions, where crucial 

electrostatic potential and electric field exist. Non-uniform mesh is employed in this 

solver to relax the grid spacing where low electric field is observed and to retain dense 

meshing at junctions for high accuracy. In this section, the generation mechanism of non-

uniform mesh will be introduced.  

 Initially a uniform mesh (mesh1) based on the Debye length criterion is generated 

and the equilibrium potential and electric field profiles (efield1) are solved iteratively, as 

will be discussed in section 2.7. Then, the mesh refinement (generation of non-uniform 

mesh) was done based on the uniform mesh electric field profile under equilibrium 

condition. The meshing factor was calculated using: 

 102 log ( 1 1)mesh fh efield fl         (2.42) 

where efield1 is the uniform mesh electric field under equilibrium in unit of V/m, fh is the 
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meshing coefficient for high field part (which also represents depletion region), and fl is 

the tuning factor for low field region. As shown below (Figure 2.2), larger fh gives higher 

meshing factor for high electric field while smaller fl gives lower factor for low field. In 

order to avoid negative numbers in taking the log function, absolute value of the electric 

field plus one is employed. 

 

Figure 2.2 Meshing factor vs. Electric field. 

 Once the meshing factor profile is evaluated, the grid spacing is determined by 

local Debye Length and the meshing factor together, 

 / 2Ddx L mesh         (2.43) 

It is clear from the results presented in Figure 2.2 that the factors are higher than 1 for 

high electric field, which will guarantee the accuracy of this meshing strategy by meeting 

the general meshing criteria of grid spacing smaller than the Debye Length[20].  
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 Since abrupt grid spacing would introduce spikes on the electrostatic potential 

profiles, keeping dx continuous is important for accurate simulations. The simple 

approach is to use one single Debye length for the entire meshing, which is convenient 

but not efficient. Employing the smallest Debye lengths from different materials leads to 

huge number of grid points, while using the largest will cause inappropriately coarse 

mesh and poor accuracy. 

 

Figure 2.3 Grid spacing for a typical SnO/CdS/CdTe/ZnTe solar cell. 

 A more complicated approach is being implemented in this solver to ensure dx 

varies smoothly at the junctions. We determined the local Debye length on its relative 

position and the LD of neighboring layer materials. As in the first half of CdTe layer in a 

typical SnO/CdS/CdTe/ZnTe solar cell, the local Debye length was evaluated by its own 

LD, LD of neighboring CdS layer and the relative position towards the CdS/CdTe 

heterojunction. While in the second half, the local Debye length should be calculated by 
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the Debye lengths of CdTe, neighboring ZnTe and the relative position towards the 

CdTe/ZnTe junction. Similar procedure was applied for the entire device, resulting in a 

meshing as depicted in the Figure 2.3 above, where comparison between electric field 

strength and grid spacing has been made.  The smooth variation of dx has also been 

observed clearly. 

   

2.5. Automatic Time Step Control 

 Similarly to the idea of non-uniform mesh, automatic time step control was 

developed for this solver, in order to accelerate the transient simulations. The general 

mechanism is to make time steps larger when the current changes with respect to time are 

smaller and to make time steps smaller when current changes significantly. To ensure that 

the solver converges, we introduced dt1 and dt3 as convergence protection in this 

simulator. 

The time step used at the beginning and end of a pulse signal, in our case dt1, 

should be small so that the solver could converge.  If the time step is too small, extra 

useless computations will be conducted.  Thus dt1 must be determined by the pulse width 

and limited by 10ps; the result is a semi-empirical number which can assure convergence 

for most cases: 

 11

1 1 100

1 10 _dt pulse width
        (2.44) 

 Figure below shows the dt1 for variety of pulse widths from 1us to 1ps.  It is clear 

that if we make dt1 as the constant time step in this solver, 100,000 iterations will be 

conducted for a 1us pulse, regardless of an even longer time period of current or 
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Photocurrent decay. 

 

Figure 2.4 dt1 vs. pulse widths. 

 As mentioned above, dt1 will be used at the beginning and end of pulse signals 

where significant current changes can be predicted. Thus dt3, the timing of the activation 

of automatic time step control, is crucial to this solver. Similarly to dt1, dt3 was evaluated 

by one tenth of the pulse widths and a semi-empirical 10ns time interval within which 

90% of current changes can be finished, as the following equation describes: 

 8

1 1 10

3 10 _dt pulse width
        (2.45) 

 As time is passing through dt3, automatic time step control is activated to 

accelerate the simulations. The same method is used in the evaluation of the automatic 

time step, Δt: 
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where 1ns is the time step used in steady states simulations for fast convergence, and the 

second term describes the current change with respect to time. Figure 2.5 below shows 

how the automatic time step varies for current changes orders of magnitude. 

 

Figure 2.5 Automatic time step Δt vs. current changes. 

 

2.6. Numerical Solution Techniques 

 In this section, LU Decomposition method, as the solution technique of 

discretized differential equations such as the discretized Poisson’s equation and 

continuity equations, will be discussed.  The implementation of Gummel’s scheme will 

also be introduced. 
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2.6.1 LU Decomposition Method 

 As derived above in section 2.2 and 2.3, both Poisson’s equation and continuity 

equations can be written in matrix form as, 

 [ ][ ] [ ]A x F          (2.47) 

where A is the coefficients matrix, x is the solution and F is the forcing function. Gauss 

Elimination Method[21] can be employed to solve this matrix equation. However it has 

the disadvantage that all right-hand sides, the forcing function in this case, must be 

known in advance for the elimination steps to proceed. The LU Decomposition 

Method[22] has the property that the matrix decomposition step can be performed 

independent of the forcing functions.  

 Square matrix equations as in Equation 2.12 and 2.48, can be solved by breaking 

the tridiagonal square coefficient matrix [A] into lower triangular and upper triangular 

matrices, usually named as [L] and [U] matrices, 

 [ ] [ ][ ]A L U         (2.48) 

And the original Equation 2.48 becomes, 

 [ ][ ][ ] [ ]L U x F         (2.49) 

Equation 2.50 can be further broken into two problems, 

 
[ ][ ] [ ]

[ ][ ] [ ]





L y F

U x y
         (2.50) 

[y] can be solved with a simple forward substitution step at first and then [x] can be 

evaluated by a backward substitution algorithm easily. Recall the discretized Matrix form 

of Poisson’s equation, 
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Decompose the coefficient matrix into a product of lower and upper triangular matrices:
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where, 
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Now we can have the [L][y]=[F] as following, 
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Using forward substitution, solutions can be easily obtained: 
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Then we have the matrix of [U][ϕ]=[y] as, 
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Similarly to the solution of the lower triangular matrix, [U] can be solved by backward 

substitution, 
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Thus we have the solution for [ϕ] at each grid node using this method. The carrier density 

of electrons and holes that appear in the forcing function [f] shall be updated 

immediately. Accurate solution is achieved within several iterations.  

 

2.6.2 Gummel’s Iteration Method 

 Gummel’s method solves the coupled set of carrier continuity equations together 

with the Poisson’s equation via a decoupled procedure. The potential profile obtained 

from equilibrium simulations is substituted into the continuity equations (Equation 2.41 

and 2.42), for carriers distribution profile calculation. The result is then sent back into 
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Poisson’s equation (Equation 2.11) to update the forcing function and the central 

coefficients for new electrostatic energy profiles. This process is repeated until 

convergence requirement is achieved, as shown in Figure. 2.6. 

 

Figure 2.6 Gummel’s iteration scheme. 

 

 

 

 

 

 

 

Chapter 3  PHYSICAL MODELS 

 In this chapter, different kinds of physical models that we implemented in this 
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simulator, such as generation/recombination mechanisms, Schottky contact and partially 

ionized dopants will be discussed. 

 

3.1.   Generation and Recombination Mechanisms 

 Generation/recombination events take place when the device is under the 

influence of bias or illumination. They determine the performance and characteristics of 

devices. The simplest classification of generation and recombination mechanisms starts 

from the number of particles involved in the process, as shown in Figure 3.1. 

 

Figure 3.1 Classification of the generation/recombination process. 

 In this section the numerical expression for Ui, the net recombination rate in the 

continuity equations, will be evaluated. Shockley – Read - Hall recombination, as well as 

trap-assited recombination, radiative (band-to-band) recombination, surface 

recombination and optical generation will be introduced. Auger recombination has not 

been implemented since it does not dominate the bulk recombination mechanisms in 
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CdTe material. 

 

3.1.1. Shockley – Read – Hall Recombination 

 The Shockley – Read – Hall (SRH) model was first introduced in 1952 by 

Shockley, Read[23] and Hall[24] to describe the statistics of recombination and 

generation of carriers in semiconductors occurring through traps, which exist in every 

semiconductors. These trap levels, known as recombination-generation centers, lay 

within the forbidden band. Trap levels are caused by crystal lattice imperfection such as 

doped impurities and vacancies; they facilitate the recombination of carriers, since the 

jump can be split into two parts, requiring lower energy, as illustrated below. 

 

Figure 3.2 Graphical descriptions of the SRH recombination. 

(Courtesy of Dr. Schroder) 

 These mechanisms consist of: (a) electron capture (a free electron moves from the 
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conduction band to an unoccupied trap level), (b) electron emission (a trapped electron 

jumps to the conduction band), (c) hole capture (a hole recombines with an electron 

trapped in the bandgap and (d) hole emission (a trapped hole jumps to the valence band). 

Physical models for these processes involve equations for electron density in the 

conduction band, holes in the valence band, their capture probabilities, trapped carrier 

density, and relative emission rates. The conventional SRH net recombination rate is 

given by: 
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where, Et is the energy level of traps, Ei is the intrinsic Fermi level, n and p are the 

minority carrier lifetimes which are heavily dependent on the density of trap centers, σ is 

the capture cross section for different type of carriers and Vth, is the thermal velocity,  
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A simple model could be employed without the consideration of trap energy levels and 

the occupations of trap states when Et=Ei: 
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3.1.2. Optical Generation 
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 Carriers can be generated in semiconductors by illumination with light; this 

process is called photo-generation. An incoming photon with sufficient energy can excite 

electrons from valence band into the conduction band. Optical absorption can be a direct 

or indirect process, depending on the band structure of the semiconductor. With indirect 

bangdap materials, as Silicon, additional phonons are required to conserve the 

momentum in the process of carrier generation, as shown in the right panel of Figure 3.3, 

while phonons do not play big roles in the absorption of direct bandgap materials, such as 

GaAs, Germanium and CdTe, as illustrated in the left panel of Figure 3.3. For this reason, 

the band edge absorption coefficient for direct bandgap semiconductors is significantly 

larger than that of indirect gap materials. 

 

Figure 3.3 Photon absorptions in direct bangdap and indirect gap semiconductors. 

 Usually, the sufficient energy to excite electrons must be the bandgap energy, Eg. 

Due to the existence of Urbach tail[25], photons with energy less than bandgap can be 

E

k

Eg

Phonon emission

Phonon absorption

Indirect band-gap SCs

Virtual

states

E

k

Eg

Phonon emission

Phonon absorption

Indirect band-gap SCs

Virtual

states

phif

if

EEE

pp





final initial photon

phsif

sif

EEEE

ppp









final initial phonon

Ec

EV

E

kDirect band-gap SCs

Eg

Ec

EV

E

kDirect band-gap SCs

Ec

EV

E

k

Ec

EV

E

kDirect band-gap SCs

Eg



37 

absorbed, as the large absorption coefficients below bandgap depicted in Figure 3.4. The 

generation was determined by the absorption coefficients of the materials[26]: 
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   (3.4) 

where E is the incoming photon energy, α(E) is the absorption coefficient of the material 

at the incoming photon energy, R(E) is the reflection rate of certain photon energy at the 

front surface, A is the area of the illumination, Popt(E) is the light intensity for photons at 

the front surface. By numerical integrals over photon energy, we can determine the total 

generation rate, G(x). 

 

Figure 3.4 Absorption coefficients SnO, CdS and CdTe. 

 

3.1.3. Band-to-Band Recombination 
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 Contrary to optical generation, Band-to-band recombination annihilates electron-

hole pairs, with photons generated at the bandgap energy[27] – this is how LEDs and 

semiconductor lasers operate. It is also the major mechanism for Photoluminescence 

decay. Since both electrons and holes are required in this process, the recombination rate 

is proportional to the excess carrier density, and can be expressed as, 

 
2( ) bb rad iU b np n        (3.5) 

where brad is the bimolecular recombination constant. Since these generated photons have 

energy near the bandgap, it is possible to reabsorb these photons before they exit the solar 

cell. A well designed direct bandgap photovoltaic solar cell can take advantage of this 

photon recycling and increase the carrier lifetimes[28]. 

 With the derivation of radiative recombination, the net generation rates term in 

continuity equations, can be finally expressed as, 

   SRH bb opt

i i i iU R U G        (3.6) 

 

3.1.4. Surface Recombination 

 In real devices, defects are much more likely to stay at the interface between 

different crystal lattices, for example, we might have broken bonds at semiconductor-

metal contacts. In such cases, the trap states are constrained onto a 2D surface rather than 

3D bulk. It is also much more meaningful to express these r – g centers in terms of 

density per unit area than per unit volume. Unlike SRH recombination and optical 

generation, the relevant quantity that determines recombination velocity should be flux, 

instead of a volume recombination rate.  
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 Assume a surface contains Ns traps per unit area, then within an infinite thin layer 

δx around the surface, the recombination flux should be 
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per unit area, where ns, np are the carrier densities at the surface, Sn, Sp are the surface 

recombination velocity in unit of meter per second, defined as, 
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In p-type CdTe material, Equation 3.6 can be reduced to 

 0( )  s n nU x S n n       (3.9) 

where n0 is the minority carrier concentration, electron density in this case, under 

equilibrium. This leakage of minority carriers to the surface results in surface 

recombination current, derived as, 

 0( ) ( )  n s n nJ x qS n n        (3.10) 

Substitute Equation 3.9 into the electrons continuity equation, 
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Which can be written as, 
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The coefficients in Equation 3.13 should be the boundary conditions of the discretized 

electron continuity equation, of the form 
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where i denotes the surface node in the meshing. Similar derivation can be made for the 

hole continuity equation.  

 It is important to mention that this mechanism must be combined with a Schottky 

contact, since a particular value of surface recombination velocity results in excess 

minority carriers at the contact; this contradicts with the Ohmic contact model that 

assumes no excess minority carriers exists at the boundary. 

 

3.2.   Ohmic and Schotky Contact   

 Many of useful properties of p-n junctions can be achieved by forming different 

metal-semiconductor contacts[29]. The major difference between ohmic and Schottky 

contact is the Schottky barrier height, B, is non-positive or positive. For Ohmic contacts, 

the barrier height should be near zero or negative, forming accumulation type contacts, 

thus the majority carriers are free to flow out the semiconductors, as shown below in 
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Figure 3.5. While for Schottky contacts, on the contrary, the barrier height would be 

positive, forming depletion type contacts, so that the majority carriers cannot be absorbed 

freely due to the band bending caused by positive barrier height. Hence, the way we 

implemented them in our simulator is different. 

 

Figure 3.5 Accumulation type Ohmic contact. 

 

3.2.1. Modeling of Ohmic Contact 

 Although the barrier height could be negative for an Ohmic contact, we can treat 

them simply as flat band, with the carrier concentration and electrostatic potential under 

equilibrium. 

 For the discretized Poisson’s Equation, we applied the Dirichlet Boundary 

Conditions[30], that the coefficient matrix elements at boundary are fixed as the 

equilibrium results, during the iterative calculations, as the following Equation 3.15, 

where “1” denotes the first grid nodes and nmax represents the last grid point. 
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The carrier concentrations at the contact have been fixed at the equilibrium value for the 

discretized continuity equation, preventing any excess minority carriers’ existence. The 

following is an example of boundary conditions for the electron continuity equation of a 

p-n diode, 
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where np0 is the equilibrium electron concentration (minority carrier dentisy) at p-type 

material and nn0 is the equilibrium majority concentration in the n side. Similar boundary 

conditions can be defined for holes. 
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3.2.2. Modeling of Schottky Contact 

 Due to the self-compensation mechanism[31], CdTe is usually lightly doped in 

solar cells. Thus a Schottky must be formed due to the difference in working functions of 

metal contact and CdTe. A Schottky contact, similar to an Ohmic contact, is a Dirichlet 
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boundary contition in the discretized Poisson’s equation. The electrostatic potential is 

fixed at a certain value hence the derivation of the forcing function is crucial for the 

Schottky contact model. Let’s begin with the barrier height, 

   B F VE E          (3.18) 

It can be written as, 

 ( ) ( )    B F i i VE E E E        (3.19) 

 

Figure 3.6 P-doped depletion type Schottky contact. 

knowing that =EF-Ei and Ei-EV=Eg/2, Equation 3.18 arrives, 
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Thus the forcing function at the Schottky contact for Poisson’s equation will be, 
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All the other elements in the matrix form of Poisson’s equation should retain the same as 

Ohmic contact case. While for non-equilibrium, surface recombination can be applied 
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together with Schottky contact. 

 

3.3.   Partial Ionization of Dopants 

 As one kind of impurities, dopants are governed by distribution function of 

impurities, which differs from the Fermi - Dirac distribution. Due to the electron spin 

state, a modified distribution function for dopants can be given by, 
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Hence we can have the activated dopants density, 
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where gD and gA are the degeneracy factor for donors and acceptors, ED and EA are the 

actual dopants energy level. 

 The partial ionization of dopants works with Fermi – Dirac statistics in the charge 

neutrality equations for the solution of electrostatic potentials, which will be the initial 

guess in the Poisson equation solver. For a piece of n-type semiconductor, the charge 

neutrality equation is, 

 0    Dn N         (3.24) 
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taking the Fermi – Dirac distribution of electrons and partial ionization donors into 

consideration, we get,  
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Equation 3.25 can be solved iteratively or graphically, as shown below. 

 

Figure 3.7 Solution of  with partial ionized dopants and Fermi-Dirac statistics. 

 A similar evaluation of holes and acceptors can be made. It is necessary to update 

the dopant profile, Ci in Poisson’s equation, with any new electrostatic potential profiles 

obtained, both in the equilibrium solver and in non-equilibrium simulators. In this 

project, copper was employed as the acceptors in P-type CdTe[32]. And its activation 

energy level was set to be 0.1 eV above the valence band.  
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Chapter 4  SIMULATION RESULTS 

 It is important for simulators to have accurate material parameters to generate 

appropriate results. Much research has been conducted for cadmium telluride solar cell 

materials’ electronic properties recently. Thus we combined a variety of sources[33-35], 

and came up with a set of reasonable numbers for common CdTe solar cells. Table 4.1 

below shows the standard device configuration and the material parameters for 

equilibrium simulations.  

Table 4.1 Device parameters for equilibrium simulations. 

Temperature = 300 K SnO2 CdS CdTe 

Layer thickness (μm) 0.1 0.2 3.6 

Bandgap (eV) 3.6 2.38 1.46 

Electron Affinity (eV) 4.5 4.5 4.28 

Doping Density (cm
-3

) N-type: 10
17

 N-type: 10
17

 P-type: 3×10
14

 

Relative Permittivity  9.6 9.0 10.3 

Conduction Band DOS (cm
-3

) 2.24×10
18

 2.62×10
18

 1.07×10
18

 

Valence Band DOS (cm
-3

) 2.51×10
19

 1.72×10
19

 6.08×10
18

 

Dopants Acitivation Energy (eV) 0.03 0.03 0.1 

Schottky Barrier Height (eV) - - 0.44 

  

 For non-equilibrium simulations, typical material properties for CdTe solar cells 

are shown in Table 4.2. In this project, all parameters used are given in these two tables, 

unless mentioned otherwise. 
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Table 4.2 Materials properties for non-equilibrium simulations. 

Temperature = 300 K SnO2 CdS CdTe 

Electron Mobility (cm
2
/Vs) 100 100 100 

Hole Mobility (cm
2
/Vs) 60 60 50 

Electron Lifetime (s) 10
-9

 10
-9

 10
-9

 

Hole Lifetime (s) 10
-8

 10
-8

 5×10
-9

 

Radiative Recombination Rate (cm
3
/s)  4.72×10

-11
 4.72×10

-11
 4.72×10

-11
 

Surface Recombination Velocity (cm/s) - - 10
7
 

 

4.1.   Equilibrium Simulation Results 

 

Figure 4.1 Equilibrium energy band diagram. 

 By solving the Poisson equation solely, equilibrium results can be achieved. 

Shown in Figures 4.1-4.3 are the energy band diagram, the electric field profile and the 

carrier densities. The back contact was assumed to be Ohmic, so that flat band is 
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observed. All energy levels above are referenced with respect to the Fermi level, which 

equals to zero along the entire device. 

 

Figure 4.2 Electric field profile for uniform and non-uniform mesh at equilibrium. 

 

Figure 4.3 Carrier distributions at Equilibrium. 

 The number of grid points has been reduced from 688 to 74 with the non-uniform 
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strategy we developed. We also modeled the equilibrium with Schottky contact and the 

results of these simulations are as shown in Figure 4.4-4.6. The number of grid points 

increased to 79 due to the increasing electric field near Schottky contact. Both band 

bending and depleted majority carrier concentration were observed. 

 

Figure 4.4 Equilibrium band diagram with Schottky contact applied. 

 

Figure 4.5 Electric field profiles at equilibrium with Schottky contact applied. 



50 

 

Figure 4.6 Carrier distributions at equilibrium with Schottky contact applied. 

 We could also achieve the accumulation type Ohmic contact by adjusting the 

barrier height to near zero value, as depicted in Figure 4.7 below. 

 

Figure 4.7 Equilibrium band diagram with accumulation type Ohmic contact 
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4.2.   Steady-State Simulation Results 

 In this section, the current – voltage characteristics of the standard cadmium 

telluride solar cell will be simulated both under dark and under AM1.5G solar spectrum. 

The results will also be compared with Atlas. 

  

4.2.1 Under dark 

 

Figure 4.8 Comparisons between dark IV-characteristics. 

 As shown in Figure 4.8, the flat band Ohmic contact model was equivalent to the 

accumulative type Ohmic contact, while the Schottky contact reduced the current density 

at strong biases significantly[36, 37]. The Schottky barrier also helped the solver at small 

bias by avoiding negative currents near zero. As illustrated in Figure 4.9 below, both 

Ohmic contact models experienced unstable current below 0.3 V forward bias, which 

probably is caused by their more conducting nature. Also, the exponential relationship 

between bias and current is well observed for Schottky contact below threshold and for 
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Ohmic contact above 0.3 V. Figure 4.10 depicted the achievement of current conservation 

along the entire device. 

 

Figure 4.9 Semi log plot of dark IV-characteristics. 

 

Figure 4.10 Current conservation along the entire device. 

 



53 

4.2.2 Under illumination 

 For the SnO/CdS/CdTe standard configuration with thickness of 0.1/0.2/3.6 

micron and doping concentrations of 10
17

/10
17

/3×10
14

 cm
-3

, the illuminated IV 

characteristics are shown below in Figure 4.11. Current degradation caused by depleted 

Schottky contact is well observed, which can be explained by the carrier distribution 

figure below. The major performance characteristics shown in Table 4.3 are consistent 

with those from Table 1.1.  

 

Figure 4.11 Illuminated IV characteristics of CdTe solar cell. 

 

Table 4.3 Schottky contact’s effect on key performance characteristics. 

 Jsc (mA/cm
2
) Voc (V) Efficiency (%) Fill Factor 

Ohmic 28.77 0.8612 18.11 0.7310 

Schottky 28.02 0.8596 16.62 0.6901 
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Figure 4.12 The difference in carrier densities at strong bias. 

 As illustrated above majority carrier, holes were depleted near the contact, while 

large amount of excess minority carriers existed due to the band bending caused by the 

Schottky contact. The shift in the maximum power points is depicted in Figure 4.13. 

 

Figure 4.13 Power – voltage characteristics of CdTe solar cell 
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Figure 4.14 The effect of CdTe thickness on the solar cells 

 The CdTe layer thickness was changed from 0.5 m to 5 m; results are shown in 

Figure 4.14. All solar cell characteristics were kept almost unchanged at the thickness of 

2 – 5 m. However, due to the lack of the absorption of long wavelength photons, both 

Voc and Jsc decreased drastically below the thickness of 2 m, which eventually leads to 

the reduction in efficiency. Also, thinner CdTe layer, representing shorter length in the 
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direction of current flow, led to smaller internal series resistance of the solar cell, 

governed by the relationship between resistivity and resistance; this results in flat 

currents at weak bias, resulting in higher fill factor for smaller CdTe thickness. 

 

Figure 4.15 IV characteristics under different temperature. 

 

Figure 4.16 Power – voltage characteristics under different temperature. 
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 Due to the implementation of Fermi – Dirac statistics, we were able to produce IV 

characteristics under different temperature. The degradation of the device performance 

caused by high temperature is well observed, as shown above in Figure 4.16. 

 

4.3.   Transient Simulation Results 

4.3.1. Step Bias Response 

 The classic step function current densities of a p-n junction are reproduced by this 

simulator in this section. Due to small ΔV and pulse width applied, current overshoot is 

barely observed in Figure 4.17. 

 

Figure 4.17 Current transients for small pulse signals. 

 With similar ΔV and larger pulse widths applied, the turn on characteristics of p-n 

diodes are well observed: it only took several nanoseconds to reach 90 percent of the 

current increments, as illustrated in Figure 4.18. 
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Figure 4.18 Current transients for small ΔV and larger pulse widths. 

 The current overshoot observed for a strong pulse signal, as in Figure 4.19 below, 

can be explained by the storage charges. These excess carriers near the junction will be 

swept into the other side of the junction by the strong electric field in the depletion 

region. Hence a large reverse current will flow temporarily. 

 

Figure 4.19 Reverse recovery transient observed for turn-off. 
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Figure 4.20 Effects of a step turn-off transient on minority carriers in P-type CdTe. 

 Figure 4.20 shows the excess minority carriers drifting back to the n side of the 

junction. As can be seen, the electron concentration below 0.5 m actually increased in 

the first 0.5 ns due to the drift in the depletion region. 

 

Figure 4.21 Effects of a step turn-on transient on minority carriers in P-type CdTe 

 As for the turn-on transient, the diffusion process of the minority carriers is 
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produced as depicted in Figure 4.21. Carriers stored in the n side space charge region, 

diffusing into p side, caused high carrier concentration below 1 m in the first half 

nanosecond. These carriers can be further diffused into the entire CdTe layer, as shown 

for 2 ns, in which case the lower concentration below 1 m, indicates the number of 

injected carriers being reduced to a normal level, eventually resulting in the electron 

distribution of 100 ns. 

 

4.3.2. Photocurrent Transient 

 Similarly to the step bias response, a variety step functions of illumination have 

been applied to the standard solar cell under short circuit conditions, so that the current 

decay and carriers transients can be analyzed. Shown below are the charging and 

discharging processes in solar cells due to on and off illumination. The natural decay of 

current has been reproduced in Figure 4.23. 

 

Figure 4.22 Photocurrent transients. 
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Figure 4.23 Exponential decay of photocurrents. 

 

Figure 4.24 Current transient under 10 Sun illumination with 30 ns pulse width. 

 A ten Sun concentrated AM1.5G spectrum lasting 30 nanoseconds, was tested for 

a clearer view on the majority carrier transients on P-type CdTe. Figure 4.25 shows the 

process of holes being optically generated and drifting from the depletion region. The 

black dash line represents the generated holes density within the first 0.01 ns, which 
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matched perfectly with the carriers distribution at 0.01 ns, except the carriers drifted due 

to strong electric field below 0.4 m. It is clear that the hole concentration near junction 

increased to the magnitude of the 30ns distribution, which can be seen as steady state 

values here, within 0.5 ns. 

 

Figure 4.25 Majority carriers’ transient near junction in P-type CdTe. 

 

Figure 4.26 Majority carriers’ transient near contact in P-type CdTe. 
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 While at the contact region, where optical generation rate can be neglected, it took 

at least 10 ns for the carrier density to get close to the steady-state value, as illustrated in 

Figure 4.26; this can also be seen as the carriers generated at the deletion region got 

drifting to the contact, as current flows.  

 

Figure 4.27 Turn-off transient of majority carriers near junction in P-type CdTe. 

 

Figure 4.28 Turn-off transient of majority carriers near contact in P-type CdTe. 

 As for the turn-off transient after 30ns in Figure 4.24, the reverse processes of the 
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turn-on transient were reproduced: the majority carriers near junction drifted away from 

the depletion region within 5 nanoseconds, while majority carriers at the contact region 

returned to equilibrium value with at least 30 nanoseconds after the turn-off, as shown 

above in Figure 4.27 and 4.28. For a more clear view of the drift of holes under 

illumination, a 10 sun illumination was applied to the device for 0.1 ns, resulting in the 

following plot. 

 

Figure 4.29 Transient of photoluminescence current for a short light pulse. 

 The positive current in the first 0.1 ns depicted in the left panel of the above graph, 

was due to the immediate collection of photo-generated holes at the N-type front contact 

and carrier separation caused by the TiO/CdS heterojunction. The negative current after 

the turn-off of the illumination is the collection of excess holes at the back P-type contact, 

which is usually called light current at steady state. Due to the configuration of the solar 

cell, it may take some time for the holes to travel through the entire device and get 
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collected at the back contact, thus the decay process of the light current took hundreds of 

nanoseconds, as shown in the left panel of Figure 4.29. 

 As shown in the excess carrier distribution picture below, the light signal had 

been transferred into electric signal in terms of carriers movement. Photo generation had 

been captured well at the first 0.1 ns, while the movement of concentration peaks 

indicated the drift of carriers within the first nanosecond after the shutdown of 

illuminations. Also the reduction in carrier velocity was observed, as the displacement of 

concentration peaks shrinks between 0.1 – 0.4 ns and 0.4 – 1 ns time interval, due to the 

deeper position in the P-type layer, where electric field was significantly weaker than the 

junction area. 

 

Figure 4.30 Transient of excess holes for a short light pulse. 
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Chapter 5  CONCLUSIONS AND FUTURE WORK 

 This chapter summarizes the key features of this thesis project and its results, 

followed by the plan for future research into the role of the defects in CdTe solar cells. 

 

5.1.  Conclusions 

 To conclude, a drift – diffusion model has been developed from scratch to 

simulate the steady state and transient operation of CdS/CdTe solar cells. The self-

consistent solutions of potential and carrier distributions are obtained by solving the 

coupled Poissons’ equation and the continuity equations. The configuration of the solar 

cell is a SnO/CdS/CdTe heterostructure, with an n
+
-n

+
-p doping profile. The effect of 

Schottky contact was observed in both dark current and light current simulations. This 

simulator has been tested for solar cells under dark, and compared to the dark current 

obtained from other commercial tools with acceptable differences.  The conversion 

efficiency of the device changes with the absorber’s thickness due to its ability to capture 

long wavelength photons but the efficiency starts decreasing after a critical length, due to 

the loss of uncollected carriers. The capability of modeling the device at low temperature 

has been certified for temperatures down to 220K. High temperature degradation effect 

on the device performance was also shown clearly via the simulations presented. The step 

function bias turn-on characteristics and the effects of storage charges on the turn-off 

transient, usually called current overshoot, has been reproduced by this solver. The 

charging and discharging processes caused by illumination were also simulated. Natural 

decay of photocurrent has been generated. The mechanisms behind these characteristics 

have been analyzed with the corresponding carrier transients generated by this very 
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simulator.  

 

5.2.  Future Work 

 The simulations presented here have been done on a standard SnO/CdS/CdTe 

abrupt heterojunction solar cell, but the code is capable of modeling graded 

heterojunctions constructed with other materials. Photon recycling has not been 

implemented in the current version of code. For complete simulations of 

Photoluminescence, the absorption of regenerated photons will be implemented in the 

next version of the code. 

 
Figure 5.1 The polycrystalline nature of the CdS and CdTe layers are indicated 

schematically and are not to scale. 

 Many of the physical properties of crystalline solids depend on the presence of 

native or foreign point defects and grain boundaries (see Figure 5.1). In pure compound 

crystals the native defects are atoms missing from lattice sites where, according to the 

crystal structure, atoms should be (vacancies); atoms present at sites where atoms should 

not be (interstitials); and atoms occupying sites normally occupied by other atoms 

(misplaced atoms). In addition, there may be defects in the electronic structure: quasi-free 
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electrons in the conduction band or electrons missing from the valence band (holes). In 

impure or doped crystals there are also defects involving the foreign atoms. These may 

occupy normal lattice sites (substitutional foreign atoms) or interstitial sites (interstitial 

foreign atoms). In elemental crystals similar point defects occur, only misplaced atoms 

are missing. 

 

Figure 5.2 Schematic drawing of the band diagram for CdS/CdTe solar cells using 

different back contact strategies. (a) No strategies used. (b) Strategies I and II, to use an 

etchant and to dope the back. (Strategy III, to use a material with matching valence band. 

 Also, the performance of CdTe solar cells strongly relies on the formation of a 

low-barrier back contact (see Figure 5.2). This usually involves including Cu as a key 

element in the contacting process. The back-contact behavior and open-circuit voltage 

(V
oc

) improve with the application of an optimal amount of Cu during the process. 

Unfortunately, rapid diffusion of Cu from the back contact toward the main junction is 

believed to contribute to degradation observed in long-term stability studies. Cu can form 

both deep interstitial donors Cu
i 
and substitutional acceptors Cu

cd 
in CdTe. Cu can also 

migrate along grain boundaries toward the main junction. Thus, while modest amounts of 

Cu enhance cell performance, excessive amounts degrade device quality and reduce 

performance. Cu increases the acceptor density in CdTe, however, Cu also forms defects 
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that lower the lifetime, and hence reduce open circuit voltage Voc and the fill factor (FF). 

The presence of Cu in the CdS layers is responsible for the crossover and Anomalous QE 

effects. 
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