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ABSTRACT 

Modern day gas turbine designers face the problem of hot mainstream gas 

ingestion into rotor-stator disk cavities. To counter this ingestion, seals are 

installed on the rotor and stator disk rims and purge air, bled off from the 

compressor, is injected into the cavities. It is desirable to reduce the supply of 

purge air as this decreases the net power output as well as efficiency of the gas 

turbine. Since the purge air influences the disk cavity flow field and effectively 

the amount of ingestion, the aim of this work was to study the cavity velocity field 

experimentally using Particle Image Velocimetry (PIV). 

Experiments were carried out in a model single-stage axial flow turbine 

set-up that featured blades as well as vanes, with purge air supplied at the hub of 

the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner 

labyrinth seal was provided which split the disk cavity into a rim cavity and an 

inner cavity. First, static gage pressure distribution was measured to ensure that 

nominally steady flow conditions had been achieved. The PIV experiments were 

then performed to map the velocity field on the radial-tangential plane within the 

rim cavity at four axial locations. 

Instantaneous velocity maps obtained by PIV were analyzed sector-by-

sector to understand the rim cavity flow field. It was observed that the tangential 

velocity dominated the cavity flow at low purge air flow rate, its dominance 

decreasing with increase in the purge air flow rate. Radially inboard of the rim 

cavity, negative radial velocity near the stator surface and positive radial velocity 

near the rotor surface indicated the presence of a recirculation region in the cavity 
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whose radial extent increased with increase in the purge air flow rate. Qualitative 

flow streamline patterns are plotted within the rim cavity for different 

experimental conditions by combining the PIV map information with ingestion 

measurements within the cavity as reported in Thiagarajan (2013). 
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NOMENCLATURE 

cw   non-dimensional mass flow rate of purge air,    purge /µRh 
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2
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Chapter 1 

INTRODUCTION 

1.1 Background 

A gas turbine is a rotary engine which extracts work from a combusted 

gas. The three main features of a gas turbine are: a compressor, a combustion 

chamber and a turbine. The main flow air is first compressed before it is injected 

with fuel and the mixture is ignited. The resulting high temperature, high pressure 

gas is then expanded in a turbine, producing work. Higher turbine inlet 

temperatures lead to incrementally higher efficiencies. Over the years, the inlet 

temperatures have risen from 1000 K in 1940 (Whittle W1 engine) to around 

1800 K at present. Such high temperatures, typically above the melting point of 

turbine metal components, have been possible due to advancement in material 

technology and the employment of effective sealing and cooling systems. 

Figure 1.1 shows a typical turbine cross-section with sealing and cooling 

arrangements. The high-temperature mainstream gas while flowing over the vanes 

and the blades can penetrate into the wheel space (or disk cavity) between the 

rotor and the stator of a stage, this being especially true for high pressure stages. 

This phenomenon of transport of hot main gas into disk cavities is termed 

“ingestion” and leads to overheating of internal components, especially of the 

rotor disk, reducing their durability. To reduce ingestion, seals are provided at the 

rims of rotor disk and stator. Additionally, cooler air bled-off from the compressor 

discharge (purge air) is supplied to the cavities. The purge air maybe supplied 
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with or without pre-swirl at various locations ranging from the cavity hub to near 

the rim seals. 

Nozzle Guide Vanes
Turbine Blades

Mainstream

Gas

Turbine Rim Seal

Pre-Swirl Nozzles

Blade-Cooling Air

Disk Cavity

Stator

Disk Cavity Sealing/

Cooling Air

H.P. Turbine

Rotor Disk
L.P. Turbine

Rotor Disk

 

Fig. 1.1 A typical turbine cross-section with sealing and cooling air system (by 

              courtesy of Wilson et al., 1995) 

 

 The amount of purge air used is an issue. Excessive purge air amount will 

lead to reduced overall gas turbine efficiency. On the other hand, inadequate 

supply of purge air will cause overheating of the turbine internals including the 

rotor disks and can result in damages. A sound understanding of the flow field in 

the mainstream gas path and in the disk cavity is an important step towards 

attaining the objective of optimal purge air use. 

 Simulation of these flow fields using three-dimensional unsteady 

computational fluid dynamics (CFD) codes has been an emerging trend, but it 
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requires validation. As such, bench-mark quality experiments in simplified 

laboratory turbine rigs are necessary. 

1.2 Literature Survey 

In this section, a brief survey of selected experimental, theoretical and 

computational studies is presented. 

In one of the first investigations of the flow between rotating and 

stationary disks, Batchelor (1951) suggested the presence of separate boundary 

layers on the rotor and stator disks with a fluid core rotating between them. 

According to him, the stator boundary layer will have radial inflow of fluid which 

eventually mixes with the core fluid, is entrained into the rotor boundary layer, 

and then out of the system. For this type of flow, the turbulent flow structure in 

the cavity depends on the swirl ratio (β) and the turbulent flow parameter (λT), 

Owen and Rogers (1989). 

Daily and Nece (1960) carried out pioneering experiments on rotor-stator 

disk cavities and classified the cavity flow on the basis of the rotational Reynolds 

number (Re) and axial gap ratio (G) into four regimes, I through IV. Regimes I 

and II are laminar, whereas regimes III and IV are turbulent. Regime IV, featuring 

turbulent flow and separate boundary layers on the rotor and stator, is 

approximately bounded by 10
5 

< Re < 10
7
 and 0.05 < G < 0.217 and pertains to 

our experiments. 

Bayley and Owen (1970) were among the first to present results on 

rotationally-induced ingestion in a shrouded rotor-stator system with superposed 

sealing air flow. They noted that the cavity pressure increased with increase in the 
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sealing air flow, reducing ingestion. Also, the seal clearance ratio (Gc), and not 

the gap ratio (G), was found to be the controlling parameter for the minimum 

mass flow rate, cw,min, required to prevent ingestion. 

Abe et al. (1979) conducted experiments in a rig featuring 27 vanes which 

turned the main flow by 50° along with a rotor disk with no blades. Various seal 

geometries were investigated via flow visualization, velocity, pressure and 

propane gas concentration measurements. It was proposed that the non-

axisymmetry of the main flow caused by the vanes affected the pressure 

distribution inside the cavity. This formed the basis for future studies on ingestion 

caused by the mainstream annulus flow. 

Phadke and Owen (1983 and 1988 a, b, c) performed experiments on 

several shroud geometries using flow visualization, as well as measurement of 

pressure and tracer gas concentration. Three mainstream flow cases were studied: 

quiescent (no flow), quasi-axisymmetric, and non-axisymmetric. In the quiescent 

mainstream flow experiments (1983), the radial clearance seals exhibited a 

pressure inversion effect at higher purge air flow rate; the wheelspace pressure 

increased with rotational speed, unlike the axial clearance seal case. This trend 

was later (1988 a) shown to be associated with the radially outward flow on the 

rotor impinging on the stator thereby creating a fluid curtain that helped prevent 

ingestion and rendered the radial clearance seal more effective than their axial 

clearance counterpart. A simple correlation was obtained for each of the seals for 

determining cw,min in terms of the shroud clearance and rotational speed. For the 

other two mainstream annulus flow cases, Phadke and Owen (1988 b, c) 
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suggested two flow regimes: a rotation-dominated regime at small values of 

Revax/Re, and an external-flow-dominated regime at large values of the same. It 

was concluded that the externally induced ingestion was mainly affected by the 

circumferential pressure asymmetry. 

Green and Turner (1994) were the first to perform experiments in a rotor-

stator rig with vanes and blades and an axial clearance rim seal. Surprisingly, the 

full stage (i.e. with blades and vanes) showed reduced ingestion compared to the 

stage with only the vanes (i.e. no blades). This suggested that the rotor blades may 

have had an effect of smoothening out the pressure asymmetry caused by the 

vanes. 

The physical mechanisms involved in the turbine rim seal ingestion 

process such as the vane/blade periodic pressure field and turbulent transport in 

the rim seal overlap region were discussed by Johnson et al. (1994). Large scale 

instabilities in some rotating flows were also showed to contribute to the ingestion 

process. 

Gallier et al. (2000) carried out an experimental study of unsteady flow in 

the mainstream gas path and near the rim seal region using Particle Image 

Velocimetry. Measurements were performed at specific blade positions relative to 

the vanes in order to characterize the effect of the rotor potential field on the 

behavior of the flow emerging from the rim seal. The purge air flow was found to 

have a significant effect on the main gas path flow. 

Gentilhomme et al. (2002) reported time-average pressure and ingestion 

measurements in a model single-stage axial flow turbine. Steady and unsteady 
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CFD simulations showed that the unsteady effects due to the rotor have a strong 

influence on the ingestion process. 

Bohn et al. (2003) performed unsteady 2D Laser Doppler Velocimetry 

measurements in a model 1.5-stage turbine to study the velocity distribution in 

and inboard of the upstream cavity rim seal. It was observed that ingestion 

increased whenever a rotor blade passed a vane. 

Cao et al. (2003) reported an experimental and CFD study of the 

interaction of the main gas path and rim sealing flows. The experiments were 

conducted in a model two-stage axial flow turbine rig with a simple axial gap 

between the rotor and stator disks. Unsteady flow structures in the rotor-stator gap 

near the rim were predicted by CFD and were thought to be associated with the 

interaction of the main annulus and cavity flows. A qualitative agreement was 

found between the unsteady pressure measurements and the corresponding 

unsteady CFD results. 

Johnson et al. (2006) developed a theoretical model wherein the rim seal 

clearance was treated as an orifice. Time-averaged pressure distributions from 

two-dimensional time-dependent CFD calculations along with a lumped orifice 

discharge coefficient were used in the model to estimate the pressure-driven 

ingestion and egress. The model showed good agreement with the experimental 

results by Bohn et al. (2003). Later, Johnson et al. (2008) used steady, three-

dimensional simulation and two different discharge coefficients, for ingestion and 

egress, to model ingestion. This model was compared with the experimental data 

from Arizona State University with good agreement. 
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Roy et al. (1999, 2000, 2005 and 2007) carried out experiments on a 

model single-stage axial turbine rig featuring blades, vanes, and seals on both 

rotor and stator rims. Time-averaged as well as unsteady static pressure 

measurements were obtained at various locations in the main gas path and the 

disk cavity. Tracer gas (CO2) concentration measurements were performed at 

several radial and axial locations in the disk cavity. The PIV technique was 

employed to investigate the cavity flow field. 

Zhou et al. (2011) reported experimental results for three rim cavity 

configurations of a model axial flow turbine stage with vanes, blades, and rim 

seals. The tracer gas (CO2) method was employed to measure ingestion of 

mainstream gas into the disk cavity and the flow field within the cavity was 

mapped by PIV. Unsteady three-dimensional CFD simulation of a half stage 

sector was carried out for one of the rim seal configurations; it under predicted the 

measured ingestion. Circumferentially rotating low-pressure structures in the disk 

cavity typically predicted by full-360° three-dimensional unsteady CFD 

simulations were suggested as one of the reasons. 

Wang et al. (2012) carried out unsteady three-dimensional full-360° CFD 

simulation of a model axial flow turbine stage and compared the results with the 

experimental data from the Arizona State University rig. Time-dependent pressure 

distribution in the main gas path showed irregular patterns which were attributed 

to the vane and blade flow interactions. The time-average circumferential pressure 

profiles in the main gas path were found to be in excellent agreement with the 
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experimental data. However, the measured tangential velocity distributions did 

not reach the high values predicted by the simulations. 

1.3 Overview of Present Work 

In this work, experiments were carried out in a model single-stage axial 

flow turbine rig with vanes, blades, and rim seals on both the rotor and stator, 

along with a labyrinth seal radially inboard in the disk cavity. Though simpler 

than an actual gas turbine stage, the model stage retained the important features 

which influence ingestion. 

The remainder of the thesis is organized as follows: 

Chapter 2 contains a description of the experimental facility, the turbine 

stage, the techniques and procedures followed for measuring the time-average 

static pressure in the main gas path and the disk cavity, and the instantaneous 

velocity field in the disk cavity.  

Chapter 3 contains the experimental results and their discussion.  

Finally, Chapter 4 summarizes the conclusions and provides some 

recommendations for future research. 
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Chapter 2 

THE EXPERIMENTS 

2.1 The Experimental Facility 

The experimental facility shown in Figs. 2.1 and 2.2 has three major 

components – the main blower, the secondary blower, and the rotor. Each of these 

is described in detail below. 

Main Blower 

The mainstream air flow for the turbine is supplied by a centrifugal blower 

(22.4 kW, Hauck, TBA-20-30). The main blower can supply an air flow rate of up 

to 1.42 m
3
/s (≅ 3000 cfm) and is controlled by a variable-frequency motor drive 

(Cutler Hammer, AF 95). The single-stage turbine section of the rig is located on 

the suction side of the blower. The blower inlet is connected to a 292 mm (11.5”) 

i.d. plexiglass circular duct via a diffuser with a divergence angle of 5°. The 

blower discharges to the ambient through an approximately 2.235 m (7’ 4”) long, 

311 mm (12.25”) i.d. vertical pipe connected to an exhaust duct. 

Measurement of mainstream air flow rate 

A pitot tube rake (United Sensor, USNH-N-107) is used to measure the 

mainstream air flow rate. The rake consists of five pitot tubes equally spaced 

along a manifold and is installed in the 292 mm i.d. plexiglass circular duct at 

approximately 0.984 m (3’ 2.75”) upstream of the main blower inlet. A digital 

manometer (Validyne, PS309, range: 0-2” water gage) is connected to the pitot 

tube rake to measure the dynamic pressure head, this being the difference between 

the stagnation pressure and the static pressure. The analog output from 
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Fig. 2.1 Rotor-stator disk cavity rig with axial injection of purge air 

 

 

 

 

 

 

 

 

Fig. 2.2 Schematic of ASU Turbine rig 
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the digital manometer is routed to a data acquisition system (Analogic 

DATA6500) which displays the mean and RMS values of the dynamic pressure. 

Secondary Blower 

The purge air flow is provided by a smaller secondary centrifugal blower 

(2.24 kW, Hauck, TBA-16-3). This blower is also controlled by a variable-

frequency motor drive (Emerson, Prism) and can provide an air flow rate of up to 

0.12 m
3
/s (≅ 250 cfm). The discharge from the secondary blower flows through a 

760 mm (29.9”) long, 50.8 mm (2.0”) nominal diameter insulated galvanized iron 

pipe; this ensures a well-developed flow upstream of a turbine flow meter 

installed downstream of the pipe. The purge air subsequently flows through a 

check valve to the hub of the disk cavity via a 1.780 m (5’ 10.1”) long, 38.1 mm 

(1.5”) i.d. plexiglass pipe. To straighten the air flow, a honeycomb section (12.7 

mm (0.5”) long, 3.2 mm (0.126”) hexagonal cell size) has been installed in the 

plexiglass secondary air pipe 1.600 mm (5’ 3”) upstream of the inlet to the disk 

cavity. 

Measurement of the purge air flow rate 

A turbine flow meter (EG&G Flow Technology, FT-32) is used to 

measure the purge air volumetric flow rate. The flow meter provides an analog 

voltage output that is routed to a digital multimeter (Model 45, Fluke) which 

converts the output voltage to the corresponding air flow rate via a calibration 

relation. 
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Rotor 

           The rotor disk, made of aluminum, is 31.8 mm (1.25”) thick and 391.4 mm 

(15.4”) in diameter. It is mounted on a 50.8 mm (2.0”) diameter mild-steel shaft 

which is belt-driven by a 2.24 kW (3 HP), 1750 rpm max, GE motor. The step-up 

belt drive has a speed ratio of 3.27:1, allowing a maximum rotor speed of 5720 

rpm. The motor speed is controlled by a 3.73 kW (5 HP) Eaton-Cutler Hammer 

adjustable frequency drive (AFD). The AFD helps maintain the rotor at particular 

rotational speeds during experiments. A digital photoelectric tachometer (Biddle 

Instruments, accuracy = ± 1 rpm) is used to measure the rotor speed. 

During shutdown, a rapid deceleration of the motor may cause it to 

become a generator, this feeding energy back into the AFD. To counter this, the 

AFD has been equipped with a dynamic braking resistor (Power-Ohm Registors, 

P13549-405), rated at 2.8 kW at a total resistance of 65.0 Ω. 

2.1.1 The Turbine Stage 

The turbine stage shown in Fig. 2.3 is located on the suction side of the 

blower so that the disk cavity remains optically accessible from the radial as well 

as the axial direction. A 120.7 mm (4.75”) long honeycomb section 

(Polypropylene, 0.315” cell size, black, Plascore, PP30-5) is provided in the 

annular main air passage 152.4 mm (6.0”) upstream of the vane to straighten the 

incoming flow.  

The plexiglass stator is 19.1 mm (0.75”) thick and has a diameter of 391.4 

mm (15.4”). There are 22 partial height, full length guide vanes which turn the 

mainstream air flow by 68.6°, thus applying a realistic swirl to the flow. The rotor   
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Fig. 2.3 Schematic diagram of the single-stage rim-seal arrangement (C: tracer 

gas concentration tap, P: time-average static pressure tap, T: thermocouple); all 

dimensions are in mm  
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disk is of the same diameter as the stator disk. The rotor has 28 partial height, 

partial length blades; the radial clearance between the blade tip and the steel outer 

shroud is 1.5 mm (0.059”). Given the main blower capacity, the partial blade and 

vane height allows the main air axial velocity in the annulus to be adequately 

high. The axial gap between the stator and rotor disks is maintained constant at 

16.5 mm (0.65”). 

Rim and inner seal arrangement 

Figure 2.3 shows the seal arrangement in the turbine stage. Rim seals are 

provided on the rotor and the stator disks; a labyrinth seal is also provided radially 

inboard. The rim seals have an axial overlap of 2.6 mm (0.102”) and the same 

radial clearance. The labyrinth seal has a radial clearance of 0.51 mm ± 0.01 mm 

(0.020”) and an axial overlap of 5.4 mm (0.212”). This divides the disk cavity into 

an inner cavity and a rim cavity. 
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Fig. 2.4 Main air velocity triangles 

 

Figure 2.4 shows the velocity triangle diagram of the main air at the vane 

exit. β2 is the angle of the main air velocity relative to the blade (W2) with respect 
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to the axial direction. A more useful estimate of β2 would be at the entrance of the 

blade. A large and positive β2 ensures that the rotor will operate as a turbine and 

this can be obtained with a low rotor speed and high main air flow rate. The low 

speeds of the rotor can be achieved by using the adjustable frequency drive and 

the braking resistor. The purge air supplied at the disk cavity hub exits the cavity 

into the main gas path through the rim seal gap and is known to affect the flow 

structure of the main air (Gallier et. al. 2000). However, the velocity triangle was 

unlikely to be altered as the maximum purge air flow rate in our experiments was 

only 2.1% of the lowest main air flow rate. 

2.2 Time-Average Static Pressure Measurement 

Time average static pressure measurement experiments were conducted 

initially to ensure that nominally steady state flow condition had been achieved. 

The experimental procedure and the instruments used for these measurements are 

described in brief here.  
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- drive system

- odd-even encoder/decoder

Drive 
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Controller
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Pressure
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Fig. 2.5 The static pressure measurement system 
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The pressure measurement system, outlined in Fig. 2.5, consists of static 

pressure taps, a Scanivalve, a differential pressure transducer, a signal carrier 

demodulator and a data acquisition system. 

2.2.1 System Components 

Static pressure taps 

Miniature bulged stainless steel tubulations (TUBN-063, 1.6 mm o.d., 1.0 

mm i.d., Scanivalve Corp.), shown in Fig. 2.6, were used in the static pressure 

taps. Silicone rubber sealant was applied around the tubes at their interface with 

the plexiglass surface to prevent air leakage. It was also ensured that no 

machining burrs were present on the plexiglass near the pressure taps as this may 

have affected the measurements. 
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Fig. 2.6 Schematic of a static pressure tap on the stator disk 
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Fig. 2.7 Static pressure taps on the outer shroud 

 

Pressure tap locations 

Pressure taps were provided in the disk cavity as well as in the main gas 

path. In the cavity, the taps were on the stator disk surface along a radial line at 

eight locations (r = 45 mm, 81 mm, 104 mm, 123 mm, 148 mm, 162 mm, 173 mm 

and 187 mm); of these, four locations were in the inner cavity and the remaining 

four in the rim cavity, Fig. 2.3. Additionally, six pressure taps were provided 

circumferentially over one vane pitch at r = 173 mm and 17 pressure taps at r = 

187 mm to measure the circumferential variation of static pressure in the rim 

cavity. The static pressure distribution on the stator rim seal (or vane platform) 
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was to be measured at 1 mm downstream of the vane trailing edge plane via 17 

pressure taps distributed over one vane pitch. In the main gas path between the 

vane trailing edge and the blade leading edge, 33 pressure taps were provided 

over two vane pitches circumferentially at each of three axial locations (1 mm, 

5mm and 15.5 mm downstream of the vane trailing edge), as shown in Fig. 2.7. 

Scanivalve 

Scanivalve (48J9-2621) is an oil-less pressure sampling scanner used for 

measuring multiple pressures. It has 48 inlet channels connected to the turbine rig 

pressure taps by flexible vinyl tubes (VINL-063, Scanivalve Corp.) and one outlet 

channel connected to the pressure transducer. A solenoid-controlled stepper drive 

operated manually rotates the 48-channel fluid switch wafer such that only one of 

the 48 inlet channels is connected at a time to the outlet channel. The particular 

inlet channel connected to the outlet channel is identified by a position 

encoder/decoder who transmits the angular position of the Scanivalve to a display 

unit. 

Pressure Transducer 

A variable-reluctance type differential pressure transducer (DP45-32, 

Validyne) with a range of 0 - 2 psi (0 - 14kPa) was used to measure the static gage 

pressure. The transducer has a magnetically permeable diaphragm clamped 

between two blocks of stainless steel, each embedded with an inductance coil. 

The diaphragm is provided with a pressure port on its either side with one port 

kept open to the ambient and the other connected to the output from the 

Scanivalve. The deflection of the diaphragm toward the low pressure side changes 
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the inductance in each coil and produces an output voltage proportional to applied 

pressure difference. 

Pressure Signal Carrier Demodulator 

A high-gain pressure carrier signal demodulator (CD12-A-1-B, Validyne) 

was employed to provide transducer excitation as well as to amplify and 

demodulate the output of the variable-reluctance type pressure transducer. The 

input range of the carrier demodulator is selected by a three-position switch which 

can be set at 1, 3, and 15 mV/V. It has a high input sensitivity range (0.9 to 

75mV/V) which allowed sensing of small fluctuations in the input signal. The 

CD12 analog output is displayed on the front panel as well as routed to a data 

acquisition system. 

Data Acquisition System 

Analog output from the carrier demodulator was further processed by a 

Universal Waveform Analyzer (Analogic, DATA 6500). The Analyzer was 

programmed to provide the time-mean and RMS of the pressure signal over a 

sequence of 30720 data points with a sampling period of 500 µs. 

2.2.2 Experimental Procedure 

After the rig attained the required nominal steady state condition as 

defined by the main air flow rate, rotor speed, and secondary (purge) air flow rate, 

static gage pressures were measured at the different pressure tap locations. As 

discussed earlier, the Scanivalve was used to sequentially connect the pressure 

taps to the differential pressure transducer. The analog signal from the CD12 was 
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routed to the data acquisition system which displayed the mean and RMS values 

of the measured gage pressure. 

The time-average static gage pressure is defined as 

   
 

 
        

 

 

  
 

 
   

 

   

 (2.1) 

In order to average out the pressure fluctuations arising from blade passage, the 

sampling rate of the data acquisition system was kept sufficiently high. The data 

acquisition system was set to acquire 30720 data points (N) at 2 kHz (500 μs 

sampling interval); the lowest and the highest blade passage frequency for the 

experiments were, respectively, 0.887 kHz (for 1900 rpm rotor speed) and 1.12 

kHz (for 2400 rpm rotor speed). 

 The main and purge air inlet pressures were measured, respectively at, the 

outer shroud 20 mm upstream of the vane leading edge plane and at the purge air 

supply tube wall 70 mm upstream of the disk cavity entrance. The exit static 

pressure of the main air mixed with the purge air was measured on the steel outer 

shroud 24 mm downstream of the blade trailing edge plane. These three pressures 

prescribe the entrance and the exit pressure conditions for the turbine stage. 

2.3 Disk Rim Cavity Velocity Field Measurement 

 To investigate the velocity field inside the rim cavity, the Particle Image 

Velocimetry (PIV) technique was used. In this non-intrusive method, 

instantaneous maps of velocity vectors are obtained by measuring over a known 

time interval, the displacements of small seed particles (1-2 µm dia.) which 

accurately follow the motion of the surrounding fluid. 
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2.3.1 Principle of PIV 

The fluid whose motion is to be mapped is uniformly seeded with fine 

light-scattering particles. In two-dimensional PIV, the plane of interest is 

illuminated by two laser light pulses separated by a very short and precisely 

known time interval. A high-speed digital camera, equipped with a CCD sensor, 

records the light scattered by the particles in two different frames - one for each 

light pulse. The camera output is stored in the memory of a computer. 

The local displacement of the seed particles is then statistically estimated 

from this image pair by dividing them into subareas called ‘interrogation spots’. 

Each interrogation spot from the first image is cross-correlated with the 

corresponding interrogation spot from the second image. The highest peak in the 

cross-correlation gives the mean displacement vector for that interrogation spot. 

The local velocity vector in the plane of measurement is then calculated by taking 

into account the time gap between the two images and the image magnification. 

Similar examination of all other interrogation spots yields the velocity field in the 

plane of the laser sheet. 

2.3.2 System Components and Parameters 

 Figure 2.8 shows the set-up for PIV experiments. The PIV system 

components are listed in Table 2.1 and their description follows. 

Table 2.1 PIV – system components 

Component  Component description 

Seed particle 

generation  

Laskin nozzle particle generator (1-2 μm dia. olive oil 

particles) 

Light sheet optics  - 40 mm cylindrical lens; 1000 mm spherical lens  

Recording device  Power View 4M CCD camera (TSI)  
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External trigger  He-Ne laser, photoelectric detector/ amplifier (TTL signal) 

Synchronizer  Model 610034, TSI  

Image acquisition 

and processing  
Insight 6.1 software  

 

Seed particle generation and supply 

In PIV, the velocity of the flow is indirectly determined from the velocity 

of the tracer (seed) particles. Hence, it is imperative for the particles to follow the 

flow faithfully. In the moving fluid, the particles are subjected to drag forces 

linearly proportional to their size. As such, it is important to have particles of 

sufficiently small diameter (assuming spherical seed particles). The particles also 

need to scatter enough light to be detected by the camera, the intensity of 

scattered light being linearly proportional to the particle diameter. Due to the two 

contradictory requirements of the particle diameter, a tradeoff is necessary. 

For our PIV experiments, a Laskin nozzle particle generator was used to 

generate 1-2 µm diameter olive oil droplets (≈ 1.5 μm mean diameter). 

Compressed air of 4 to 5 psig pressure was used to atomize the olive oil and 

provide high enough particle concentration for reliable velocity measurements. 

The seed particles were introduced into the purge air flow approximately 1.8 m 

upstream of its entrance to the disk cavity. 

Light source 

 Laser light is the preferred light source for PIV experiments because of 

their high energy density, monochromatic nature and ease of forming thin light 

sheet. 
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 For the experiments conducted, a dual-cavity Nd:YAG laser (Spectra-

Physics GCR-200) was used. Inside the laser, high-intensity flash lamps were 

utilized to achieve excitation of the lasing medium. A Quality switch (Q-switch) 

was used which, when operated at the point of maximum population inversion 

causes high cavity loss and results in a short pulse with high peak power. Short 

pulse prevents streaking of particles in the images and high power of the laser 

light helps in good scattering of the light. An optimum Q-switch delay of 165 µs 

was used in the experiments. The laser produced pulses of 10 ns width with an 

output energy of 200 mJ per pulse at a maximum repetition frequency of 10 Hz. 

The average power of the two laser pulses was 2.0 W and the peak instantaneous 

power was 20 MW. It is important to have equal power in both the laser pulses to 

get identical illumination of the same particle in the two images and this was 

ensured by using a power meter. 

The laser also employed KD*P crystals, which functioned as a harmonic 

generator, to convert infrared light of 1064 nm wavelength to green visible light 

with wavelength of 532 nm. The short wavelength leads to thinner light sheets 

and improved particle light scattering. 

Light sheet optics 

 The 9 mm diameter beam from the laser was directed to the light sheet 

optics system comprised of spherical lens-cylindrical lens combination. The beam 

diameter and the field of view (FOV) to be illuminated determine the lens 

combination to be used. As seen in the Fig. 2.9, the focal length of the cylindrical 

lens governs the light sheet height and the focal length of the spherical lens  
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Fig. 2.9 Light sheet optics 

 

Fig. 2.10 PIV - Field of view 
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governs its thickness. It should be noted that increasing the light sheet height 

decreases its intensity. For the present experiments, a cylindrical lens of focal 

length - 40 mm and a spherical lens of focal length 1000 mm were selected. The 

light sheet height at the near end of the FOV was 201 mm and at the far end of the 

FOV 231 mm, Fig. 2.10. At the waist, the height was 216 mm. The light sheet 

thickness was 700 µm at the near and far edges of the FOV while at the waist it 

was only 70.7 µm. 

 The light sheet was positioned in the rim cavity with the help of a three-

dimensional traverse on which the light sheet optics system containing two right-

angled prisms (BK7) and the lenses was mounted. The lenses were mounted on a 

horizontal rotary base to render the light sheet parallel to the rotor surface.  

The laser beam was directed from the laser to the optics by an adjustable light 

arm. The light arm consisted of a counterweight and a series of rotating knuckles, 

specially coated mirrors, and aluminum tubes forming a fully enclosed device. 

Digital image recording 

 The PIV images were obtained using a high speed digital Cross-

Correlation camera (Power View 4M, TSI). The camera had a charge-coupled 

device (CCD) sensor which contained 2048 x 2048 light-sensitive pixels, each of 

7.4 µm x 7.4 µm size, arranged in a square array. When light photons impinge on 

the light sensitive area, an electrical charge is produced. The generated charge is 

proportional to the number of photons that hit the sensor. An analog-to-digital 

convertor then reads the charge value of each pixel and converts it into a digital 

value. 
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Fig. 2.11 Camera timing diagram 

 The double-frame/single exposure technique of the present work allows 

capturing of the two images on two different frames, ‘frame straddling’, Fig. 2.11. 

This removes the directional ambiguity while cross-correlating the frames, and 

also improves the dynamic range for velocity. When measuring velocities of a 

few meters per second the time interval between the two laser pulses, T, is 

restricted to a few mirco-seconds. But, the time required to transfer an image 

directly from the camera CCD to a computer is much larger. Hence, to enable 

frame-straddling, the camera used in the experiments featured a special 

progressive scan interline transfer CCD array. In this CCD array, each active pixel 

has a masked charge storage area next to it which allows the charges acquired by 

the pixels in the first image (frame A) to be transferred to the adjacent memory 

dump rapidly (in the order of nano-seconds). This permits full electronic 

shuttering of the entire first image between the laser pulses and help reset the 

active pixels for the second image (frame B). The accumulated charge in the 

memory storage from frame A is transferred sequentially (progressive scan) one 
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row at a time into an analog shift register and then read out by a charge-to-voltage 

converter. This data is then transferred to the frame grabber installed in the 

computer via an LVDS cable. Meanwhile, the active pixels hold on to the charges 

from the second frame. After the first image read-out is over, the second image is 

transferred to the computer in a similar manner. Thus, both the second image 

acquisition and the first image read-out take place in parallel; this facilitates 

frame-straddling. Figure 2.11 shows the timing diagram for the camera. 

Due to the presence of the masked area, the available light sensitive area 

of the CCD array is reduced. Hence, micro-lenses are deposited on the pixel array 

to enhance the collection of incoming light. The fill ratio, which is the measure of 

the percentage of available light sensitive area in a CCD array, is 60% (with 

micro-lenses) for the camera used. 

For the given frame rate of the camera (8.5 Hz or 4.5 Hz frame pair rate), 

PCI bus limit of the frame grabber (120 MB/sec), operating frequencies of the 

laser (10 Hz, 5 Hz, 3.33 Hz), size of each image (8 MB) and the computer 

memory (2 GB), the maximum frame pair-rate for the system was 3.33 image per 

second. 

Image synchronization 

In order to acquire two good correlatable images, it is critical to 

synchronize the working of all the components. For the PIV experiments, the 

timing and the sequencing of the events was software-controlled by INSIGHT 6.1 

via a synchronizer (Model 610034, TSI). The synchronizer was connected to the 

laser, external trigger, camera and computer. 
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 The images were acquired at the same vane and blade positions for all 

experiments by triggering the synchronizer using a TTL (Transistor-Transistor 

Logic) signal generated once every rotor revolution. An aluminum strip, 2 mm 

wide and 12 mm long and radially aligned with a rotor blade tip, reflected light 

from a low power He-Ne laser (7 mW, Melles Griot). This reflected light was 

received by a photoelectric detector/amplifier via a liquid light guide (Newport 

Corporation, Oriel Light sources, VIS liquid light guides, Model 77569). The 

photoelectric detector/amplifier converted the light signal into a +4.5 V square 

pulse, which is the TTL high required to trigger the synchronizer. 

 Immediately after the synchronizer receives the trigger signal, it begins the 

image capture and laser pulsing sequence, Fig. 2.11. The time from the start of the 

sequence (t=0) until the camera is triggered by the synchronizer is known as the 

“camera trigger delay time”. This parameter is adjusted so as to make 

measurements at a specific position of the rotor. The first frame is of very short 

duration, 230 μs. The time from the start of the camera trigger until the first laser 

pulse is the “pulse delay time”; this is adjusted so as to pulse the first laser exactly 

at the very end of the first frame. The Nd:YAG laser requires two signals (these 

are provided by the synchronizer) to create a laser pulse; one for the flashlamp 

and the second to open the Q-switch that pulses the laser. The time from the end 

of first frame to the start of the second is called as the “frame straddle time”. 

Within this short period of time, the frame A data is transferred to the adjacent 

storage sites and the CCD array is reset to capture the second image. The frame B 

exposure time is kept long enough to let the camera transmit the first image data 
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through to the frame grabber before the second image data moves into the readout 

registers. The synchronizer ignores the external trigger until the entire pulse 

sequence is completed. 

2.3.3 Experimental Procedure and Processing 

Image acquisition 

 PIV maps of velocity field in the radial-azimuthal plane were acquired at 

four axial positions in the rim cavity. The laser light sheet was introduced into the 

cavity through the polished plexiglass outer shroud. Two axial locations were near 

the stator, 1.9 mm and 2.6 mm from the stator surface; and two axial locations 

were near the rotor, 2.6 mm and 4 mm from the rotor surface, Fig. 2.12. It was not 

possible to obtain maps in planes midway through the cavity because of scattering 

and attendant reduction in the laser light intensity when passing through the two 

axially overlapping rim seals. 

The cross-correlation camera was mounted on a three-dimensional 

traverse that allowed it to be positioned to the mapping area of interest and the 

magnification required. A 50 mm camera lens (Nikon Micro-Nikkor) with an f-

ratio of 2.8 was used in all the experiments. 

The image magnification factor of 0.1075 for the setup was manually 

obtained with the help of a quarter sector graph sheet, taped flat onto the rotor 

surface. The two right-angled edges of the graph sheet were made exactly 

horizontal and vertical using the continuous mode of the camera in the INSIGHT 

software. The camera was focused sharply on the graph sheet and the x and y 

pixel differences between two points, a certain known x and y distance apart, 
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were calculated. From this, and the fact that each pixel was a square of side 7.4 

μm, the image magnification was obtained. The magnification value was verified 

at other random locations. From the magnification and the active area of the CCD 

array (15.2 mm x 15.2 mm), the field of view was calculated to be 141.308 mm x 

141.308 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.12 Laser light sheet axial positions in the disk cavity, all dimensions in mm. 

 

Figure 2.13 shows the quadrant of the rim cavity that was imaged. The 

mapped region extended from a radius of 138 mm (outer radius of the labyrinth 
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‘near rotor’ axial positions. These radii are denoted by the dashed circular arcs. 

The vane (V) and blade (B) locations at the instant of image capture are also 

shown. At the maximum rotor speed of 2400 rpm, the blade positions shift 

azimuthally by less than 0.3° during a pulse separation time of 15 μs. Ten 

instantaneous maps were obtained at each position to allow ensemble-averaging 

when necessary. 

 

Fig. 2.13 The mapped quadrant of the disk cavity showing vane/blade positions at 

the instant of image capture 
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camera trigger delay time (ms), Q-switch delay time (μs), and pulse separation 

time, T (μs). T was chosen to be 15 μs for cw = 1540, and 12 μs for cw = 3080 

and 4621. This was to accommodate the faster out-of-image plane particle motion 

at higher secondary flows. 

Processing 

 Each of the acquired image pairs was processed using the INSIGHT 

software to extract the velocity vector field. The steps involved in this processing 

are: image conditioning, grid generation, spot masking, correlation, peak location 

and vector validation. These steps are shown in a flow chart in Fig. 2.14. 

Background Subtraction Image Processor 

 Before beginning PIV processing, an optional step of eliminating 

background noise, image conditioning, may be applied to the acquired images. 

This step is particularly helpful for PIV experiments near the rotor where, due to 

the depth of field of the camera, the light reflected from the rotor surface is also 

seen in the images. Processing of such images tend to show rotor surface 

velocities in the image. To remove them, a set of 5 image pairs were obtained 

before the introduction of the olive oil particles. These background images were 

then processed using the Average Intensity Image Processor which finds over the 

sequence of images and over each pixel, the average intensity of those pixels. 

This average image pair was then subtracted from the raw images obtained in the 

actual experiment, prior to their processing. 
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Fig. 2.14 Flow chart of image processing steps in INSIGHT 6.1 

 

Grid Engine 

 The function of the grid engine is to break up the image frames into 

smaller spots. Spot ‘A’ and Spot ‘B’ refer to the spot sizes, in pixels, for frame A 

and frame B respectively. The ‘RecursiveNyquistGrid’ was used for increased 

accuracy and higher spatial resolution. This grid engine processes the images in 
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multiple passes. The first pass computes the vector field at the starting spot sizes 

with 50% overlap grid spacing with no spot offsets. The result of the first pass are 

used to optimize the spot offsets for the second processing pass so that it will have 

a peak location within half a pixel of the correlation center. If the final spot size 

(used for the second pass) is half of the start spot size (used for the first pass), 

then four times the initial number of vectors will be obtained. If the starting and 

final spot sizes are kept the same, the second pass uses the optimized window 

offsets to recompute the vector field with the same number of vectors. 

 For the conducted experiments, a start spot size and a final spot size of ‘32 

x 32’ pixels for both Spots A and B was found to give a good velocity 

distribution. 

Spot Mask Engine 

 Spot mask engine is used to modify or condition the image spots before 

they are processed. Certain correlation engines (such as FFT correlator) can work 

with only square spot sizes. The spot mask engine pads the non-square spots with 

zero intensity pixels to convert them into square spots. Since the selected 

correlation engine, Hart Correlator, can work with non-square spots, the ‘No 

Mask’ spot mask engine was used. 

Correlation Engine 

The correlation engine computes the correlation function of the spots A 

and B returning the results as a correlation map. The correlation function is an 

algorithm which numerically calculates the correlation of the spot intensity at all 

pixel displacements within the allowed displacement range. The highest 
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correlation map pixel is assumed to be the particle image displacement peak 

caused by the contributions of many particle pairs. 

The ‘Hart Correlator’ correlation engine was selected for our experiments 

since it reduces sub-pixel bias errors and eliminates spurious vectors from the 

velocity vector field. It is a direct correlation method that processes only the most 

significant pixels to improve processing speed. The compression ratio is used to 

set how many pixels are used in computing the correlation. A high compression 

ratio increases the processing speed. A lower value will include more pixels in the 

correlation which may, or may not, improve the correlation map signal-to-noise 

ratio. The default compression ratio value of 0.9 was used in the experiments 

implying that 10% of the most significant spot pixels were used in computing the 

correlation, while the remaining 90% of the pixels were excluded. 

A maximum displacement of 8 pixels was used to limit the correlation 

map search area from the zeroth pixel to increase processing speed and decrease 

memory use. 

The peak engine analyzes the correlation map created by the correlation 

engine and determines the location of the particle image displacement peak. When 

the ‘Hart Correlator’ is selected, ‘Bilinear Peak’ is set as the default peak engine. 

Errors in PIV image processing can occur due to out-of-plane particle 

motion, low seed particle density or from errors in correlation, resulting in 

spurious vectors. To eliminate them, the INSIGHT software provides various 

inbuilt validation filters such as standard deviation, range, median, mean and 

smooth.  
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Post Processing 

 The vector file generated by the INSIGHT software contained the u(x) and 

v(y) velocity components, in pixels, at the corresponding pixel co-ordinates. 

Making use of the camera magnification value, T, and the FOV position in the 

disk cavity, a MATLAB program was used to convert the pixel velocities to real 

co-ordinates. The radial and tangential velocity components were also calculated 

for each velocity vector location. The MATLAB generated data file was then 

plotted in TECPLOT FOCUS 2010 to show the velocity vector map. 
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Chapter 3 

RESULTS AND DISCUSSION 

3.1 Experimental Conditions 

 In order to understand the fluid flow field in the rim cavity, experiments 

were conducted for two different sets of rotor speeds and mainstream gas flow 

rates, and several different purge air flow rates as shown in Table 3.1. In the table, 

the experimental conditions are specified using non-dimensional parameters: main 

gas flow Reynolds number (Revax), rotor disk rotational Reynolds number (Re), 

and non dimensional mass flow rate of purge air (cw). 

Table 3.1 Experimental conditions 

Expt. Set 

No. 

Mainstream 

Gas Flow 

Rate 

(Revax) 

Rotor Disk 

Speed 

(Re) 

β2 

(°) 

Free Disk 

Pumping 

Flow Rate 

(cw,fd) 

Purge Air 

Flow Rate 

(cw) 

I 9.27×10
4
 4.85×10

5
 49.7 7745 

770 

1540 

3080 

4621 

6161 

II 1.12×10
5
 6.14×10

5
 48.3 9354 

770 

1540 

3080 

4621 

6161 

 

 The rotor speeds and main air flow rates were selected such that the angle 

β2 was maintained at a large positive value which ensured that the rotor operated 

in the turbine mode. The shape of the velocity triangle downstream of the vane 

trailing edge was conserved for the two sets of experiments. This was because, 

according to Roy et. al. (2005), the velocity triangle affects the ingestion process. 
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The purge air flow rates were chosen with reference to the free disk pumping flow 

rate (cw,fd), this being the pumping flow rate due to a flat disk rotating in a 

quiescent environment. 

 The time-average static pressure measurements were carried out initially 

for all the experimental conditions of Table 3.1. Tracer gas concentration 

measurement experiments were also conducted, details of which can be found in 

Thiagarajan, 2013. PIV experiments were performed for the two experiment sets 

but for cw = 1540, 3080 and 4621 only. At cw = 770 the purge air flow rate was too 

low to obtain a good seed particle density, while at cw = 6161 the cavity flow was 

not expected to be very different from at cw = 4621. 

 For all of the experiments, the average laboratory ambient temperature 

was 23°C and the average laboratory ambient pressure was 101.375 kPa. 

Time-Average Static Pressure Distribution 

 The time-average static pressure distributions in the main gas annulus flow 

were obtained over two vane pitches at three axial locations on the outer shroud 

and over one vane pitch at one axial location on the vane platform. Measurements 

were obtained in the disk cavity at eight radial positions on the stator disk surface. 

The pressure tap locations are as shown in Figs. 2.3 and 2.7. 

 Figure 3.1 shows the circumferential distribution of time-average static 

pressure on the outer shroud and the vane platform for experimental set II, cw = 

1540. These measurements demonstrate that nominally steady, circumferentially 

periodic flow was achieved in the main gas path with the periodicity following the 

vane pitch. The pressure asymmetry produced by the vanes is maximum just 
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Fig. 3.1 Circumferential distribution of time-average static pressure at the outer 

shroud, vane platform, and stator disk near its rim – Revax = 1.12×10
5
, 

Re = 6.14×10
5
, cw = 1540 

 

Fig. 3.2 Effect of cw on the radial distribution of time average static pressure in 

the disk cavity at the stator disk for Revax = 1.12×10
5
, Re = 6.14×10

5
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downstream of the vane trailing edge, its strength decaying gradually towards the 

blades. 

The pressure on the vane platform and in the rim cavity on the stator 

surface is considerably lower than at the outer shroud. Circumferential variation 

of pressure is not discernible on the stator disk surface even near its rim (r = 187 

mm) which indicates that the pressure asymmetry in the mainstream flow due to 

the vanes is dissipated across the rim seals. The differential between the main gas 

flow pressure near the stator rim seal edge and the rim cavity pressure near the 

seals could cause the ingestion of main gas into the cavity. 

Figure 3.2 shows the radial distribution of pressure at the stator disk 

surface for experiment set II. As cw increases, the inner cavity pressure level 

increases markedly. This built-up pressure is seen to drop across the labyrinth seal 

to a small range of low pressures for all purge air flow rates. 

An increase in the purge air flow rate decreases the average pressure level 

in the main gas path and marginally increases the pressure near the cavity rim. 

This effectively reduces the potential for main gas ingestion. 

3.2 Velocity Field in the Disk Rim Cavity 

  PIV maps were obtained at four axial positions inside the rim cavity at 

varying purge air flow rates. Two axial positions near the stator surface (1.9 mm 

and 2.6 mm from the stator) and two axial positions near the rotor surface (4 mm 

and 2.6 mm from the rotor) were chosen. Ten instantaneous vector maps were 

obtained at each position. It should be noted that even though the vane-blade 

positions remained identical for each map, the velocity vector field near the rim 
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seals did not repeat in all the ten vector maps. Ensemble-averaging of the ten 

maps offered a smoother picture of the fluid velocity in the vicinity of the rim 

seals. For each experiment, one representative instantaneous vector map was 

chosen from the ten and analyzed. For brevity, only results for experiment set II 

1.9 mm from the stator surface and 2.6 mm from the rotor surface are discussed in 

detail. Results for the other two locations are similar to their respective closest 

positions; the significant differences between them are discussed later. 

Case of Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 1540 

 Figure 3.3(a) shows, for this experimental condition, an r- plane 

instantaneous velocity vector map at 1.9 mm from the stator surface in one 

quadrant of the rim cavity. The two dashed lines at the outer periphery represent 

the rotor rim seal location and the dashed line radially inboard represents the 

labyrinth seal outer edge. Also shown are the azimuthal positions of the vanes (V) 

and the blades (B) at the time instant of image capture. It is important to note 

these, since the relative positions of the vanes and blades and their associated 

pressure fields are known to influence the velocity field and the associated 

ingestion process. The map shows circumferential bands of increasing velocity 

along the radius. Since the flow is tangentially dominated at the low purge air 

flow rate, it is hard to visualize the radial component of the velocity, especially 

near the rim seals. Figure 3.3(b) shows the vector map of the radial velocity 

component for the same instantaneous file. Near the rim seal, non-periodic 

regions of outward and inward radial vectors can be seen. Two sectors of 3° each, 

one with maximum inward velocities near the rotor rim seal (bracketed by the two 
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(a) Instantaneous velocity 

 
(b) Instantaneous radial velocity 

Fig. 3.3 r- plane instantaneous velocity vector maps in the rim cavity at 1.9 mm 

from the stator surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 1540 (t = 15 µs) 
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(a) Radial Velocity 

 

 

(b) Tangential Velocity 

Fig. 3.4  r- plane instantaneous radial and tangential velocities in the rim cavity 

at 1.9 mm from the stator surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 1540 

(t = 15 µs) 
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red lines) and another showing maximum outward velocities near the rotor rim 

seal (bracketed by the two blue lines), were chosen for analysis. 

Figures 3.4(a) and (b) show, respectively, the radial and tangential 

velocity radial distributions for the two 3° sectors.  is defined as (90-), where  

is the azimuthal angle measured clockwise from the vertical centerline of the 

rotor. The average radial velocity is slightly less than zero before it moves upward 

(+) or downward (-) depending upon the circumferential sector. The negative 

radial velocities quite possibly correspond to the ingested main air. Conforming to 

the boundary condition at this axial position, the radial velocity becomes zero at 

the stator rim seal (as shown by the extrapolation dotted lines). It should be 

remarked that nine out of the ten vector files at this position showed two incoming 

radial velocity (red) regions compared to five out of ten at 2.6 mm from the stator. 

This may connote that much of the ingested flow remains very close to the stator 

surface. The tangential velocity, Fig. 3.4(b), increases inappreciably inboard of 

the rim cavity and with a steeper gradient as it approaches the rim seal. This 

higher tangential velocity near the rotor rim seal may be due to the combined 

effect of the rotor speed and the ingested main air which possesses high tangential 

velocity (as imparted by the vanes). It should be noted that the tangential velocity 

distribution overlaps for the two sectors under consideration. 

Figures 3.5(a) and (b) show, respectively, for the same experimental 

condition the instantaneous velocity map and the corresponding radial velocity 

component map at 2.6 mm from the rotor surface. Because of the rotor in   
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(a) Instantaneous velocity 

 
(b) Instantaneous radial velocity 

Fig. 3.5 r- plane instantaneous velocity vector maps in the rim cavity at 2.6 mm 

from the rotor surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 1540 (t = 15 µs) 
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(a) Radial Velocity 

 

 

(b) Tangential Velocity 

Fig. 3.6  r- plane instantaneous radial and tangential velocities in the rim cavity 

at 2.6 mm from the rotor surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 1540 

(t = 15 µs) 
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background, it was difficult to obtain a velocity map without some erroneous 

vectors provided by oil droplets sticking to the rotor surface. After their deletion, 

a few small areas devoid of vectors can be seen in Fig. 3.5(a). The average 

velocity at each radius appears to have decreased in comparison to the vector map 

at 1.9 mm from the stator. At 2.6 mm from the rotor, four 3° sectors were selected 

to obtain the instantaneous radial and tangential velocity distributions, Figs. 3.6(a) 

and (b). 

Figure 3.6(a) indicates that for all the four sectors, the radial velocity 

remains positive over the radius range, though low in magnitude. This is possibly 

due to the combined effects of rotor disk pumping and the purge air exiting the 

labyrinth seal gap. The tangential velocity, Fig. 3.6(b), is the dominant velocity 

component at this low purge air flow rate. Near the rotor rim seal the tangential 

velocity increases with a steep gradient. Here, the boundary conditions for the 

tangential velocity at the labyrinth seal and the rotor rim seal are the rotor 

velocities at their respective radii. 

Case of Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 3080 

 Figures 3.7(a) and (b) depict the r- instantaneous velocity and its radial 

component vector maps for this experimental condition at 1.9 mm from the stator 

surface. At this intermediate purge flow rate, a weak radial inflow is seen along 

with some suppression of the tangential velocity compared to the cw = 1540 case. 

The high tangential velocity (red) region seen for cw = 1540 at this same axial 

location are sparsely observed. The velocity bands are also no longer seen. The 

radial and tangential velocities for two selected sectors are shown in Fig. 3.8(a) 



  49 

 
(a) Instantaneous velocity 

 
(b) Instantaneous radial velocity 

Fig. 3.7 r- plane instantaneous velocity vector maps in the rim cavity at 1.9 mm 

from the stator surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 3080 (t = 12 µs) 
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and (b). The radial velocity for both sectors is negative till r = 172 mm, after 

which it becomes more negative or positive depending on the sector. The 

tangential velocity slightly dips as we proceed along the radius but increases 

markedly very close to the rotor rim seal. 

At 2.6 mm from the rotor surface, Figs. 3.9(a) and (b), radial outflow can 

be clearly seen. Also, a decrease in the velocity magnitude in the entire flow field 

is observed as compared to at 1.9 mm from the stator surface. For the four sectors 

selected for analysis, the radial velocity, Fig. 3.10(a), rises gradually along the 

radius in the inboard half of the rim cavity and then decreases in the outer half – 

reducing toward zero as the rotor rim seal is approached. The tangential velocity 

distribution, Fig. 3.10(b), is quite flat at this higher purge air flow rate. 

Case of Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 4261 

Figures 3.11(a) and (b) show the velocity vector maps for, respectively, the 

instantaneous velocity and its radial component at 1.9 mm from the stator surface 

for this experimental condition. These plots have regions devoid of vectors 

especially near the rim seal due to the rapid out-of-plane (axial) movement of the 

cavity air at the high purge air flow rate. In Fig. 3.11(b), distinct pockets of 

negative radial velocities separated by egress sectors can be seen with large 

magnitude negative radial velocities (red vectors) at the center of these pockets. 

As shown in Fig. 3.12(a), the radial velocity for both the selected sectors is mostly 

negative in the rim cavity, its magnitude increasing along the radius till the middle 

of the cavity after which the magnitude decreases, tending toward zero as the 

rotor rim seal is approached. In the rim seal region, the radial velocity  



  51 

 
(a) Radial Velocity 

 

 
(b) Tangential Velocity 

Fig. 3.8  r- plane instantaneous radial and tangential velocities in the rim cavity 

at 1.9 mm from the stator surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 3080 

(t = 12 µs) 
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(a) Instantaneous velocity 

 
(b) Instantaneous radial velocity 

Fig. 3.9 r- plane instantaneous velocity vector maps in the rim cavity at 2.6 mm 

from the rotor surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 3080 (t = 12 µs) 

V 2

V 3

V5

V 4

B 3

B 4

B 5

B6

B
7

B
0

B
1V

1

B
2

r (mm) along horizontal c.l.

r
(m

m
)

a
lo

n
g

v
e
rt

ic
a
l
c

.l
.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

vmag

21

18

15

12

9

6

10 m/s
[m/s]

V 2

V 3

V5

V 4

B 3

B 4

B 5

B6

B
7

B
0

B
1V

1

B
2

r (mm) along horizontal c.l.

r
(m

m
)

a
lo

n
g

v
e
rt

ic
a
l
c

.l
.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

ur

8

6

4

2

0

-2

-4

10 m/s
[m/s]



  53 

 

(a) Radial Velocity 

 

 

(b) Tangential Velocity 

Fig. 3.10  r- plane instantaneous radial and tangential velocities in the rim cavity 

at 2.6 mm from the rotor surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 3080 

(t = 12 µs) 
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(a) Instantaneous velocity 

 
(b) Instantaneous radial velocity 

Fig. 3.11 r- plane instantaneous velocity vector maps in the rim cavity at 1.9 mm 

from the stator surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 4621 (t = 12 µs) 
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separates out depending on the sector (egress or ingress). The flat tangential 

velocity distributions for the two sectors, Fig. 3.12(b), do not overlap in the mid-

rim cavity region – the ingress sector shows a decrease in the tangential velocity. 

Closer to the rotor rim seal, the tangential velocity shows a slight increase for 

both sectors. 

Figures 3.13(a) and (b) shows the instantaneous velocity vector maps for 

the same experimental condition at 2.6 mm from the rotor surface. Figure 3.14(a) 

depicts the dome-shaped distribution of the radial velocity. In the mid-rim cavity 

region, high radial velocity – comparable to the tangential velocity, Fig. 3.14(b), 

is observed. The tangential velocity indicates considerable scatter. The average 

tangential velocity is essentially flat across the entire rim cavity. 

Ensemble-Circumferential-Averages 

Figures 3.15(a), 3.16(a) and 3.17(a) show the ensemble-circumferential-

average radial velocity distribution at all axial locations for the experiment set II 

and cw = 1540, 3080 and 4621. The instantaneous radial velocities, for the near 

stator locations, Figs. 3.4(a), 3.8(a) and 3.12(a), move upward or downward near 

the rim seals depending upon the circumferential sector. The ensemble-

circumferential-averaging smoothens out this variation. However, inboard of the 

rim cavity, the instantaneous radial velocities do not vary circumferentially. 

Hence, ensemble-circumferential-averaging provides a much accurate trend of the 

fluid radial velocities inboard of the rim cavity, which are helpful in developing 

the qualitative streamline flow patterns presented later. 

  



  56 

 
(a) Radial Velocity 

 

 
(b) Tangential Velocity 

Fig. 3.12 r- plane instantaneous radial and tangential velocities in the rim cavity 

at 1.9 mm from the stator surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 4621 

(t = 12 µs) 
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(a) Instantaneous velocity 

 
(b) Instantaneous radial velocity 

Fig. 3.13 r- plane instantaneous velocity vector maps in the rim cavity at 2.6 mm 

from the rotor surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 4621 (t = 12 µs) 
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(a) Radial Velocity 

 

 

(b) Tangential Velocity 

Fig. 3.14 r- plane instantaneous radial and tangential velocities in the rim cavity 

at 2.6 mm from the rotor surface – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 4621 

(t = 12 µs) 
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(a) Radial Velocity 

 

 
(b) Tangential Velocity 

Fig. 3.15 Effect of axial measurement position on circumferential-average 

velocity in the rim cavity obtained from ensemble-averaged r- plane velocity 

vector maps – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 1540 
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(a) Radial Velocity 

 

 
(b) Tangential Velocity 

Fig. 3.16 Effect of axial measurement position on circumferential-average 

velocity in the rim cavity obtained from ensemble-averaged r- plane velocity 

vector maps – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 3080 
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(a) Radial Velocity 

 

 
(b) Tangential Velocity 

Fig. 3.17 Effect of axial measurement position on circumferential-average 

velocity in the rim cavity obtained from ensemble-averaged r- plane velocity 

vector maps – Revax = 1.12×10
5
, Re = 6.14×10

5
, cw = 4621 
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In the rim cavity, Figs. 3.15(a), 3.16(a) and 3.17(a), the radial velocity 

near the rotor surface becomes more positive and the radial velocity near the 

stator surface becomes more negative as the purge flow rate increases. This is 

attributed to the formation of a recirculation region. The negative radial velocity 

observed at 4 mm from the rotor surface near the vicinity of the stator inner seal 

for all purge flow rates should be noted. This quite possibly indicates that the flow 

is entering the inner cavity from the stator inner seal lip. 

The ensemble average tangential velocities are shown in Figs. 3.15 (b), 

3.16 (b) and 3.17 (b). The unexpected higher tangential velocities seen at the near 

stator surface locations compared to those at the near rotor surface locations for  

cw = 1540 and 3080 might be due to the ingested main air which possesses higher 

tangential velocity than the indigenous cavity air. An overall suppression of 

tangential velocity in the outboard region of the rim cavity with increase in purge 

flow rate can be seen. 

 Figures 3.18 to 3.20 show the ensemble average radial and tangential 

velocities for experiment set I. The magnitudes of the radial velocity in the rim 

cavity are slightly higher than those seen for experiment set II for the 

corresponding purge flow rate. This is due to the higher purge flow rate to main 

flow rate ratio and the reduction in the rotor speed. The tangential velocities show 

similar trend as shown for experiment set II except their magnitudes are 

considerably lower due to the lower rotor speed. 
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(a) Radial Velocity 

 

 
(b) Tangential Velocity 

Fig. 3.18 Effect of axial measurement position on circumferential-average 

velocity in the rim cavity obtained from ensemble-averaged r- plane velocity 

vector maps – Revax = 9.27×10
4
, Re = 4.85×10

5
, cw = 1540 
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(a) Radial Velocity 

 

 

(b) Tangential Velocity 

Fig. 3.19 Effect of axial measurement position on circumferential-average 

velocity in the rim cavity obtained from ensemble-averaged r- plane velocity 

vector maps – Revax = 9.27×10
4
, Re = 4.85×10

5
, cw = 3080 

-15

-10

-5

0

5

10

15

100 120 140 160 180 200

R
a

d
ia

l V
e

lo
c

it
y
, 

m
/s

Radial position, mm

2.6 mm from the rotor disk surface

4 mm from the rotor disk surface

2.6 mm from the stator disk surface

1.9 mm from the stator disk surface

s
ta

to
r
in

n
e
r
s
e
a
l

ro
to

r
o

u
te

r
ri

m
s
e
a
l

0

5

10

15

20

25

30

35

40

45

50

100 120 140 160 180 200

T
a

n
g

e
n

ti
a

l V
e

lo
c

it
y
, 
m

/s

Radial position, mm

2.6 mm from the rotor disk surface

4 mm from the rotor disk surface

2.6 mm from the stator disk surface

1.9 mm from the stator disk surface

s
ta

to
r
in

n
e
r

s
e
a
l

ro
to

r
o

u
te

r
ri

m
s
e
a
l



  65 

 
(a) Radial Velocity 

 

 

(b) Tangential Velocity 

Fig. 3.20 Effect of axial measurement position on circumferential-average 

velocity in the rim cavity obtained from ensemble-averaged r- plane velocity 

vector maps – Revax = 9.27×10
4
, Re = 4.85×10

5
, cw = 4621 
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3.4 Relating the Measured Velocity Field to the Static Pressure and 

Ingestion Distributions 

For this particular configuration, along with the static-gage pressure and 

PIV measurements, ingestion of mainstream gas was also measured at the stator 

surface as well as at some locations in the cavity. Though these ingestion 

measurements do not form a part of this thesis, they play an important part in 

quantifying the main gas ingestion and understanding the flow field inside the rim 

cavity. Figure 3.21 shows the distribution of sealing effectiveness on the stator 

surface for the experiment set II. A brief summary of the ingestion distribution 

results is given below: 

1. The sealing effectiveness in the rim cavity increases as the purge air flow 

rate increases. 

2. In the inner cavity the overall sealing effectiveness is relatively high but it 

decreases slightly with increase in purge air flow rate. 

3. The sealing effectiveness values for experiment set I are a marginally 

higher than observed for experiment set II. 

For cw = 1540, the sealing effectiveness values remain constant at around 

0.80 till r ≈ 162 mm after which a gradual decrease is found as the rim seal is 

approached. The constant values of sealing effectiveness would suggest the 

existence of a well mixed region. Even the analysis of the instantaneous vector 

file, obtained at 4 mm from the stator, shows a separation of the ingress and 

egress sector radial velocities at around the radius of 162 mm. These findings and 

Fig. 3.15(a) point out towards a weak recirculation region radially inboard in the 
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rim cavity. Figures 3.22(a) and (b) show, qualitatively, separate flow streamline 

sketches in the r-x plane for an egress sector and an ingress sector. 

 
Fig. 3.21 Radial distribution of sealing effectiveness at the stator disk surface – 

Revax = 1.12×10
5
, Re = 6.14×10

5
 

 

On similar lines, for cw = 3080 the sealing effectiveness in the rim cavity 

remains constant at 0.90 till r ≈ 172 mm after which it decreases steadily with the 

radius. In the instantaneous PIV map, Fig. 3.8(a), the ingress and egress radial 

velocities branch out at about the same radius. Thus, a recirculation region 

extending further up the radius can be anticipated as depicted in Figs. 3.23(a) and 

(b). 

For cw = 4621, Figs. 3.21 and 3.17(a), the presence of a strong 

recirculation region extending over the entire rim cavity can be inferred; this is 

shown in Figs. 3.24(a) and (b). 
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(a) Ingress Sector 

 

 
(b) Egress Sector 

Fig. 3.22 Qualitative streamline flow patterns in the r-x plane – Revax = 1.12×10
5
, 

Re = 6.14×10
5
, cw = 1540 
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(a) Ingress Sector 

 

 
(b) Egress Sector 

Fig. 3.23 Qualitative streamline flow patterns in the r-x plane – Revax = 1.12×10
5
, 

Re = 6.14×10
5
, cw = 3080 
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(a) Ingress Sector 

 

 
(b) Egress Sector 

Fig. 3.24 Qualitative streamline flow patterns in the r-x plane – Revax = 1.12×10
5
, 

Re = 6.14×10
5
, cw = 4621 
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In the PIV maps, negative radial velocities are seen at 4 mm from the rotor 

in the vicinity of the stator inner seal for all of the experimental conditions. The 

‘sharpness’ of the radial velocity going from positive value to negative value as 

the inner seal is approached at this axial plane should be noted. This quite 

possibly indicates that there is flow entering the inner cavity from near the stator 

inner seal lip – a possible justification for the observed drop in sealing 

effectiveness in the inner cavity with increasing cw, Fig. 3.21. This may have been 

caused by the presence of unsteady low-pressure structures in the outer region of 

the inner cavity. 
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Chapter 4 

CONCLUSION 

4.1 Concluding Remarks 

 Results have been reported for experiments in which time-average static 

pressure distribution in the main gas path and disk cavity and instantaneous fluid 

velocity field in the disk rim cavity were measured in a model single-stage axial 

flow turbine. Two different sets of rotor speed and mainstream gas flow rate, and 

several purge air flow rates were investigated. The main gas path featured vanes 

and blades; the disk cavity featured rim seals on the rotor disk and the stator with 

radial clearance and axial overlap as well as an inner labyrinth seal. 

 The static pressure in the main gas path annulus showed circumferentially 

periodic variation following the vane pitch. This pressure asymmetry produced by 

the vanes increased approximately quadratically with the mainstream air flow rate 

and was found to be maximum on the outer shroud immediately downstream of 

the vane trailing edge, its strength decaying gradually toward the blades. In the 

disk cavity, no periodic variation in pressure was found, indicating that the main 

gas path pressure asymmetry dissipated across the rim seals. The static pressure in 

the inner cavity (i.e., inboard of the labyrinth seal) increased substantially with 

increasing purge air flow rate, dropping down to a small range of lower pressures 

outboard of the labyrinth seal for all purge air flow rates. It was also observed that 

a higher purge air flow rate lowered the pressure level in the main gas path while 

increasing the pressure just inboard of the cavity rim, thus effectively reducing the 

potential for main gas ingestion. 
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 Instantaneous velocity vector maps on the radial-azimuthal plane obtained 

at four axial locations in the rim cavity were discussed. At low purge air flow rate, 

the rim cavity flow was dominated by its tangential velocity component while the 

radial velocity component was nearly zero in the inboard half of the cavity. In the 

outboard half, the flow was either radially outward or inward depending upon the 

circumferential sector. As the purge air flow rate increased, more of radially 

inward flow was observed near the stator and more of radially outward flow near 

the rotor. The tangential velocity radial distribution became flat as the purge air 

flow rate increased. 

Scrutiny of the static pressure, sealing effectiveness (Thiagarajan 2013) 

and PIV data led to the inference that a recirculation region was present in the rim 

cavity. The radial extent of this region expanded as the purge air flow rate 

increased. A sharp change in the radial velocity component from radially outward 

to inward was observed near the stator inner seal lip, this indicating that the rim 

cavity fluid entered the inner cavity here. This may explain the decrease in sealing 

effectiveness that was measured in the inner cavity as purge air flow rate 

increased. Such a trend may have been caused by unsteady low-pressure 

structures in the outermost region of the inner cavity. 

4.2 Recommendations for Future Work 

In the present experiments the radial location of the labyrinth seal in the 

disk cavity as well as the labyrinth seal gap was fixed. In order to further 

understand the influence of the labyrinth seal on the rim cavity flow, experiments 

should be performed by changing these parameters separately. For example, it 
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would be interesting to see the effect of changing in the radial location of the 

labyrinth seal on the size of the recirculation region in the rim cavity at varying 

purge air flow rates. 

PIV velocity vector maps should also be obtained in the inner cavity. 

These maps will help ascertain whether there occurs radially inward flow of rim 

cavity fluid into the inner cavity at higher purge air flow rates. Unsteady pressure 

measurements should be carried out in the inner cavity to determine whether 

unsteady low-pressure structures are present in the inner cavity; this were 

believed to be the cause for the reduction in sealing effectiveness in the inner 

cavity at higher purge air flow rates. 

Currently three-dimensional unsteady CFD simulations are being carried 

out for the given stage configuration. The computational results will complement 

the experimental results reported. 
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APPENDIX A 

CALIBRATION OF PIV SYSTEM 
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Calibration of the PIV system was done in order to determine whether the 

PIV setup could measure the velocity in the disk cavity accurately. The 

calibration test was carried out by focusing the camera and the light sheet on the 

rotor surface. Olive oil particles were injected into the secondary flow for a brief 

moment and then the oil valve was turned off. After sufficient time, the PIV 

experiment was carried out. The oil particles sticking on to the rotor surface due 

to the jet impingement effect of the labyrinth seal were seen in the images 

captured by the digital camera. These images were analyzed by TSI INSIGHT 

software. For the reported calibration experiment, the actual velocity of the oil 

particles sticking on to the rotor is purely tangential. Figure 2.13 shows the plot 

for the calibration experiment. The maximum mismatch between the experimental 

and actual value is 5.19%. 

 

Fig. 2.13 Calibration of PIV system 
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