
Optimization for Resource-Constrained Wireless Networks

by

Xi Fang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved January 2013 by the
Graduate Supervisory Committee:

Guoliang Xue, Chair
Sik-Sang Yau
Jieping Ye

Junshan Zhang

ARIZONA STATE UNIVERSITY

May 2013

ABSTRACT

Nowadays, wireless communications and networks have been widely used in

our daily lives. One of the most important topics related to networking research

is using optimization tools to improve the utilization of network resources. In

this dissertation, we concentrate on optimization for resource-constrained wireless

networks, and study two fundamental resource-allocation problems: 1) distributed

routing optimization and 2) anypath routing optimization.

The study on the distributed routing optimization problem is composed

of two main thrusts, targeted at understanding distributed routing and resource

optimization for multihop wireless networks. The first thrust is dedicated to un-

derstanding the impact of full-duplex transmission on wireless network resource

optimization. We propose two provably good distributed algorithms to optimize

the resources in a full-duplex wireless network. We prove their optimality and

also provide network status analysis using dual space information. The second

thrust is dedicated to understanding the influence of network entity load con-

straints on network resource allocation and routing computation. We propose a

provably good distributed algorithm to allocate wireless resources. In addition,

we propose a new subgradient optimization framework, which can provide find-

grained convergence, optimality, and dual space information at each iteration.

This framework can provide a useful theoretical foundation for many networking

optimization problems.

The study on the anypath routing optimization problem is composed of two

main thrusts. The first thrust is dedicated to understanding the computational

complexity of multi-constrained anypath routing and designing approximate so-

lutions. We prove that this problem is NP-hard when the number of constraints

i

is larger than one. We present two polynomial time K-approximation algorithms.

One is a centralized algorithm while the other one is a distributed algorithm. For

the second thrust, we study directional anypath routing and present a cross-layer

design of MAC and routing. For the MAC layer, we present a directional anycast

MAC. For the routing layer, we propose two polynomial time routing algorithms

to compute directional anypaths based on two antenna models, and prove their

optimality based on the packet delivery ratio metric.

ii

Dedicated to my family

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my sincerest gratitude to my advi-

sor, Dr. Guoliang Xue, for his professional guidance, patience, support, and

encouragement over the course of my PhD study. His immense knowledge and

enthusiastic attitude towards research quality have always inspired me. I greatly

appreciate his invaluable guidance in my research and his warm-hearted help in

my personal life. I am very fortunate to have him as my advisor without whom I

could not have my current achievement.

I would also like to thank all my committee members, Dr. Stephen Yau,

Dr. Jieping Ye, and Dr. Junshan Zhang for their invaluable advice. I learned

a lot from my committee members about research either by doing research with

them or taking their classes.

I also thank my colleagues and friends: Dejun Yang, Dr. Satyajayant

Misra, Lingjun Li, Xinxin Zhao, Dr. Jin Zhang, Jun Shen, Pritam Gundecha,

Vishnu Kilari, Gabriel Silva, Xiang Zhang, and Ziming Zhao for the pleasant and

inspiring discussion. Their friendship is a valuable experience for me.

Last but not least, I would like to thank my mother Xiaoling Chen, my

father Zhi Fang, and my wife Xinhui Hu, who give me endless love and constant

encouragement during my study at ASU and throughout my whole life. This

dissertation is dedicated to them!

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

1.1 Optimizing Distributed Routing for Multihop Wireless Networks . 1

1.1.1 Motivation . 1

1.1.2 Contribution . 3

1.2 Optimizing Anypath Routing for Multihop Wireless Networks . . 5

1.2.1 Motivation . 5

1.2.2 Contribution . 7

2 PATHBOOK: Distributed Algorithms for Multipath Routing in Full-

duplex Wireless Networks . 8

2.1 Introduction . 8

2.1.1 Motivation . 8

2.1.2 Contribution . 11

2.1.3 Related Work . 11

2.1.3.1 Full-Duplex Transmission 11

2.1.3.2 Opportunistic Multipath Routing 12

2.1.3.3 Network Resource Optimization 13

2.2 Model . 15

2.2.1 Preliminaries . 15

2.2.2 System Model . 16

2.2.2.1 Opportunistic Multipath Routing Sub-model . . 16

2.2.2.2 User Profit Sub-model 21

2.2.2.3 Node Constraint Sub-model 22
v

Chapter Page
2.2.2.4 Network Power Consumption Sub-model 23

2.3 Problem Formulation . 24

2.3.1 User Profit Optimization Problem (UPOP) 24

2.3.2 Network Power Consumption Optimization Problem (NPCOP) 24

2.4 Distributed Optimization Algorithms 25

2.4.1 Distributed Optimization Algorithm Pathbook-I for UPOP 26

2.4.2 Distributed Optimization Algorithm Pathbook-II for NPCOP 30

2.4.3 Algorithm Analysis . 32

2.4.3.1 Optimality Analysis 32

2.4.3.2 Dual Space Information Analysis 36

2.4.4 Discussion . 38

2.5 Performance Evaluation . 43

2.6 Conclusion . 45

3 RACER: Resource Allocation in Load-Constrained Multihop Wireless

Networks . 47

3.1 Introduction . 47

3.1.1 Motivation . 47

3.1.2 Contribution . 49

3.1.3 Related Work . 50

3.1.3.1 Network Resource Optimization 50

3.1.3.2 Subgradient Methods 51

3.2 Model . 52

3.2.1 Wireless Network Model 52

3.2.2 Scheduling Model . 53

3.2.2.1 General Interference Model (GIM) 53

vi

Chapter Page
3.2.2.2 Primary Interference Model (PIM) 53

3.2.3 User Utility Model . 54

3.2.4 Load Constraint Model . 55

3.3 Problem Formulation . 56

3.4 α-Approximation Dual Subgradient Method 57

3.4.1 Algorithm Description . 57

3.4.2 Algorithm Analysis . 59

3.5 Distributed Resource Allocation Algorithm 63

3.5.1 Algorithm Description . 63

3.5.1.1 Lagrange Multiplier Update 64

3.5.1.2 User Rate Control and Node Rate Control 64

3.5.2 Algorithm Analysis . 67

3.5.2.1 Optimality Analysis 67

3.5.2.2 Dual Space Information Analysis 68

3.6 Performance Evaluation . 72

3.7 Conclusion . 74

4 MAP: Multi-Constrained Anypath Routing in Wireless Mesh Networks 77

4.1 Introduction . 77

4.1.1 Motivation . 77

4.1.2 Contribution . 78

4.1.3 Related Work . 79

4.2 Model . 80

4.3 Problem Formulation . 84

4.4 Analysis of Computational Complexity 86

4.5 An Efficient Centralized K-Approximation Algorithm 91

vii

Chapter Page
4.5.1 Algorithm Description . 92

4.5.2 Algorithm Illustration . 95

4.5.3 Algorithm Analysis . 97

4.6 An Efficient Distributed K-Approximation Algorithm 113

4.6.1 Algorithm Description . 113

4.6.2 Algorithm Illustration . 114

4.6.3 Algorithm Analysis . 116

4.6.4 Distributed Implementation 119

4.7 Performance Evaluation . 120

4.7.1 Performance of MAP . 120

4.7.1.1 Evaluation of Running Time 123

4.7.1.2 Evaluation of Anypath Length 123

4.7.2 Performance of DMART 125

4.7.3 Performance of Anypaths 128

4.8 Conclusion . 132

5 DART: Directional Anypath Routing in Wireless Mesh Networks . . . 135

5.1 Introduction . 135

5.1.1 Motivation . 135

5.1.2 Contribution . 136

5.2 Model . 137

5.2.1 Antenna Model . 137

5.2.2 Network Model . 138

5.3 Problem Formulation . 143

5.4 MAC Layer Design . 144

5.4.1 Directional Anycast MAC 144

viii

Chapter Page
5.4.2 Practical Issues . 147

5.5 Routing Algorithm for FBDAR 150

5.5.1 Algorithm Description . 150

5.5.2 Algorithm Illustration . 151

5.5.3 Algorithm Analysis . 153

5.6 Routing Algorithm for VBDAR 160

5.6.1 Algorithm Description . 160

5.6.2 Algorithm Analysis . 162

5.7 Performance Evaluation . 167

5.8 Conclusion . 169

6 Conclusion and Future Work . 170

6.1 Optimizing Distributed Routing for Multihop Wireless Networks . 170

6.1.1 Conclusion . 170

6.1.2 Future Work . 170

6.2 Optimizing Anypath Routing for Multihop Wireless Networks . . 171

6.2.1 Conclusion . 171

6.2.2 Future Work . 172

REFERENCES . 173

ix

LIST OF TABLES

Table Page

4.1 Frequently Used Notation . 93

x

LIST OF FIGURES

Figure Page

2.1 An example network: if a node is located in another node’s transmis-

sion (or interference) range, there is a directed edge between them.

There are two users in this network. User 1 transmits data from v1 to

v5 through intermediate nodes v3 and v4, and user 2 transmits data

from v2 to v6 through v4 and v7. 18

2.2 Numerical results . 45

3.1 Numerical results . 75

4.1 Illustration of anypaths and subanypaths. The link labels show link

delivery probabilities; the vertex labels show (w1, w2) pairs. For exam-

ple, w1 and w2 represent the average transmission time and the average

energy consumption of the node for each transmission, respectively. . 81

4.2 An example to illustrate the computation of anypath weight 84

4.3 Reduction from Partition to DMCAP for K = 2. 86

4.4 Execution of Algorithm 2 from every node to t. The link labels show

link delivery probabilities; the vertex labels show (w1, w2) pairs of the

vertices; the labels next to each vertex show the currently computed

anypath weights (Ŵ1, Ŵ2) (the first row) and the AAW (Ŵm) (the

second row). (a)-(g) show the situations after each successive iteration

of the algorithm. (h) shows the optimal s− t anypath. 96

xi

Figure Page
4.5 Execution of DMART from every node to t. The link labels show

link delivery probabilities; the vertex labels show (w1, w2) pairs of the

vertices; the labels next to each vertex show the currently computed

anypath weights (W1,W2) (the first parenthesis in the first bracket),

the AAW (Wm) (the second element in the first bracket), and the for-

warding set (the second bracket). The original network graph is shown

in Fig.4.5a. Fig. 4.5b-4.5g show the situations after each iteration. Fig.

4.5h shows an optimal s-t anypath. 115

4.6 Running time . 123

4.7 Anypath lengths . 125

4.8 Numerical results . 127

4.9 Size of forwarding sets . 129

4.10 Single path property (Practical setting) 133

4.11 Single path property (Random setting: K = 2) 133

4.12 Single path property (Random setting: K = 3) 134

5.1 A motivating example of directional anypath routing. 135

5.2 Directional antenna model . 138

5.3 Illustration of anypaths. The edge weight denotes its packet delivery

ratio. The sector on each node represents its forwarding sector. . . . 141

xii

Figure Page
5.4 Illustration of the basic operation of DAM: suppose that currently the

channel between v1 and v2 is bad; (a)v1 broadcasts an MRTS to v2

(first highest relay priority), v3 (second highest relay priority) and v4

(third highest relay priority); the MRTS is heard by v3, v4 and v5;

v5 sets its DNAV and thus will not initiate a transmission towards

the direction of v1; (b) since v2 (with the highest relay priority) does

not receive the MRTS, v3 replies a CTS directionally after waiting for

(3×SIFS+CTS) time; v3’s CTS is heard by v1 and v6; v6 sets its DNAV

and thus will not initiate a transmission towards the direction of v3;

(c) v1 starts transmitting data directionally to v3; v3 locks on to the

direction of v1 and receives DATA; after having received the header of

the DATA, v4 suppresses its CTS reply, sets DNAV and thus will not

initiate a transmission towards the direction of v1; (d) once the DATA

is successfully received, v3 replies an ACK directionally. 148

5.5 Algorithm illustration: the weight on each link denotes its PDR. The

weight associated with each node denotes its currently computed short-

est DAD D(v). The sectors associated with each node denote its for-

warding sectors in its R(v). 153

5.6 Simulation results . 169

5.7 Running time . 169

xiii

Chapter 1

Introduction

Nowadays, wireless communications and networks have been widely used in our

daily lives. One of the most important topics related to networking research

is using optimization tools to improve the utilization of network resources. In

this dissertation, we concentrate on optimization for resource-constrained wireless

networks and study two fundamental resource optimization problems for such

wireless networks: 1) distributed routing optimization problem and 2) anypath

routing optimization problem.

1.1 Optimizing Distributed Routing for Multihop Wireless Networks

1.1.1 Motivation

The fact that the wireless spectrum is a limited resource motivates us to inves-

tigate how to use wireless resources effectively. This part is composed of the

following two main thrusts, targeted at understanding distributed routing and

resource optimization for multihop wireless networks.

The first thrust is dedicated to understanding the impact of full-duplex

transmission on wireless network resource optimization. A basic assumption in

wireless communications is that a radio cannot transmit and receive on the same

frequency at the same time. A recent research breakthrough on radio design chal-

lenges the half-duplex constraint, which has been used in wireless communication

and network research for several decades. Choi et al. [17] and Jain et al. [43]

implemented practical single-channel full-duplex radio systems. This encouraging

breakthrough calls for new research efforts in the design of network layer protocols

1

and algorithms for wireless networks, and motivates us to re-think the network

design, relaxing the basic assumption of half-duplexing, which has been used in

wireless communication research during the last decade. Therefore we will study

routing problems in emerging multihop wireless networks with full-duplex radios.

The second thrust is dedicated to understanding the influence of network

entity load constraints on network resource allocation and routing computation.

Most existing wireless routing algorithms aim at maximizing overall performance

of a network (total throughput, total energy consumption, etc.) without carefully

addressing the resource and social constraints, which is one of the main focuses of

this thrust. In addition, routing in multihop wireless networks is challenging due

to the impact of interference [43]. Traditional routing protocols such as AODV [83]

and DSR [48] essentially follow the design methodology of wired networks by ab-

stracting wireless links as wired links and look for path(s) with either the shortest

delay or the least cost for a user between a pair of source and destination nodes.

Recent advances on wireless routing took into account the impact of interference

and MAC layer resource allocation, which led to a few interference-aware routing

metrics and algorithms [82, 99, 101]. However, most of them are heuristic algo-

rithms that cannot provide any performance guarantees, which are very impor-

tant for real-time or mission-critical applications. Some optimization techniques

(such as linear programming) were applied to design centralized routing algo-

rithms in [3, 101], which may not be suitable for multihop wireless networks due

to the lack of a fixed infrastructure or a central control node. Recently, optimiza-

tion frameworks [13, 26, 62, 63] have been developed to solve routing and related

resource allocation problems in multihop wireless networks in a distributed way.

However, the state of the art cannot provide accurate convergence analysis when

the subproblems in the iterative process are NP-hard. Therefore, it is desirable

2

to have a general optimization framework with fine-grained convergence analysis

per iteration, which can deal with NP-hard subproblems and can lead to simple,

fast, and fully distributed routing algorithms.

1.1.2 Contribution

The main contribution of this part is summarized in the following.

For the first thrust, we study the following two problems in Chapter 2.

1. User profit optimization problem: how to optimize the total profit of multiple

simultaneous users in a full-duplex wireless network using multipath routing

subject to node constraints.

2. Network power consumption optimization problem: how to optimize the net-

work power consumption in a full-duplex wireless network using multipath

routing subject to minimum user rate demands and node constraints.

Our contribution is two-fold.

1. We propose a collision-free full-duplex broadcast MAC and prove the nec-

essary and sufficient conditions for successful collision-free broadcasts.

2. We formulate the two problems studied as convex programming systems

and present two distributed iterative algorithms to solve them, respectively.

Our algorithms compute the optimized user information flow (i.e. user be-

havior) for the network layer and the optimized node broadcast rate (i.e.

node behavior) for the MAC layer. In each iteration, Lagrange multipliers

are updated in a distributed manner according to the current user/node

behaviors, and then each user and each node individually adjusts its own

behavior based on the updated Lagrange multipliers. We provide bounds on
3

the amount of feasibility violation and the gap between our solution and the

optimal solution at each iteration. We also use the dual space information

to analyze the node load constraint violation at each iteration.

For the second thrust, we study the problem of allocating network re-

sources to maximize the total user utility for a load-constrained wireless network

in Chapter 3. Our contribution is two-fold.

1. The first contribution is a theoretical optimization framework, which may

be applicable for many networking optimization problems. We propose a

new subgradient optimization framework that has the following property.

Given an approximation/optimal algorithm for solving the subproblem at

each iteration, the framework leads to a result that can provide the follow-

ing bounds at each iteration: (a) the bounds on the Lagrangian multipliers;

(b) the bound on the amount of feasibility violation of the generated pri-

mal solutions; and (c) the upper and lower bounds on the gap between

the optimal solution and the generated primal solutions. Note that stan-

dard subgradient methods require one to solve a sub-problem optimally at

each iteration. However, in practice this sub-problem could be an NP-hard

problem, which makes efficiently computing an optimal solution impossible.

This problem was studied by Lin and Shroff [63] and Chen et al. [13]. How-

ever, the focus of these works is more on the asymptotic behavior of the

primal sequences. Our framework further advances this research by provid-

ing fine-grained convergence, optimality, and dual space information at each

iteration. We believe that this framework can provide a useful theoretical

foundation for many networking optimization problems.

2. We formulate the resource allocation problem as a convex programming sys-

4

tem. Based on our α-approximation dual subgradient algorithm, we present

a distributed iterative algorithm, which allows each user and each node to

individually adjust its own behavior in each iteration period. This feature is

of great importance for network scalability and self-organization. We prove

the bounds on the amount of feasibility violation and the gap between our

solution and the optimal solution at each iteration. We provide the bounds

on node queue lengths, user utility deficits, and node load violation ratios

at each iteration using dual space information.

1.2 Optimizing Anypath Routing for Multihop Wireless Networks

1.2.1 Motivation

Traditional routing algorithms and protocols for wireless networks often follow the

design methodology for wired networks by abstracting the wireless links as wired

links and looking for the shortest delay, least cost, or widest bandwidth path(s)

between a pair of source and destination nodes [113]. However, for unreliable

wireless networks, due to the broadcast nature of the wireless medium, it is usually

less costly to transmit a packet to one of the nodes in a set of neighbors than to one

specific neighbor. This observation motivated the emergence of a new technology,

known as opportunistic routing, which takes advantage of the intermediate nodes

overhearing the transmissions. It has been shown that opportunistic routing can

help improve the performance of wireless networks [6, 9]. Dubois-Ferrière [25]

generalized opportunistic routing and introduced the concept of anypath routing,

which was subsequently studied in [24, 58, 59, 94, 116]. In anypath routing, each

packet is broadcast to a forwarding set composed of several neighbors (called

forwarders), and the packet is retransmitted only if none of the forwarders in this

set receives it. As long as one of the forwarders receives this packet, it will be

forwarded.

5

This part is composed of the following two main thrusts, targeted at un-

derstanding anypath routing for multihop wireless networks.

The first thrust is dedicated to understanding the computational complex-

ity of multi-constrained anypath routing and designing approximate solutions.

Previous works on anypath routing are focused on computing a shortest delay or

least cost anypath, with only one QoS metric taken into account for route selec-

tion [24,25,58,59]. However, many applications are associated with multiple QoS

constraints. For instance, usually the energy consumption affects the network life-

time or the cost of the pair of source-destination nodes charged by the intermediate

nodes providing forwarding service. Obviously, both delay and energy consump-

tion should be taken into account when we are computing a route between a pair of

source-destination nodes. There have been extensive studies on multi-constrained

single path routing. Since the problem is NP-hard [105], many heuristics and

approximation algorithms have been proposed [14, 42, 66, 105, 107,109]. However,

to the best of our knowledge, multi-constrained anypath routing has not been

studied.

The second thrust is dedicated to cross-layer design for directional any-

path routing. Prior works along the line of research on anypath routing were

mainly focused on networks equipped with omnidirectional antennas. However,

Yi et al. [110] proved that wireless networks can achieve a capacity gain when di-

rectional antennas are exploited. Authors of [18, 34, 76, 90, 98, 100] have proposed

various schemes to improve performance of wireless networks by using directional

communications. Thus it is of interest to design an optimally combined use of

directional communications and anypath routing.

6

1.2.2 Contribution

The main contribution of this part is summarized in the following.

For the first thrust, we study the problem of anypath routing subject to

multiple (K) constraints in Chapter 4. Our contribution is two-fold.

1. We show that this problem is NP-hard when the number of constraints is

larger than one.

2. We present two polynomial time K-approximation algorithms. One is a

centralized algorithm while the other one is a distributed algorithm.

For the second thrust, we study directional anypath routing and present a

cross-layer design of MAC and routing layers in Chapter 5, which represents the

first attempt towards the practical design for directional anypath routing.

Our contribution is two-fold:

1. For the MAC layer, we present a directional anycast MAC (DAM). DAM is

an enhancement to the 802.11 MAC [41], and reduces to the 802.11 MAC

when there is only one forwarder for each node and only omnidirectional

antenna is being used.

2. For the routing layer, we propose two polynomial time routing algorithms

to compute directional anypaths based on two antenna models, and prove

their optimality based on the packet delivery ratio metric.

7

Chapter 2

PATHBOOK: Distributed Algorithms for Multipath Routing in Full-duplex

Wireless Networks

2.1 Introduction

2.1.1 Motivation

A basic assumption in wireless communications is that a radio cannot transmit

and receive on the same frequency at the same time. A recent research break-

through challenges this assumption. Choi et al. [17] combined antenna, RF, and

digital interference cancellation technologies, and designed the first practical single

channel wireless full-duplex system. Jain et al. [44] then presented a full-duplex

radio design using signal inversion and adaptive cancellation. This new design,

unlike the prior work [17], supports wideband and high power systems. In the-

ory, this new design has no limitation on bandwidth or power. Therefore, building

full-duplex wireless networks (e.g. full-duplex 802.11n wireless networks) becomes

possible.

These two fundamental works are mainly focused on the physical and MAC

layer design. This encouraging breakthrough further calls for new research efforts

in studying the impact of full-duplex radios on the network layer and design-

ing higher layer protocols and algorithms for wireless networks to harvest the

benefit brought by this technology. It motivates us to re-think of the network de-

sign from a theoretical perspective, relaxing this basic assumption that has been

used in wireless communication research during the last decade. In this work,

we concentrate on cross-layer optimization of the MAC and network layers for

resource allocation in full-duplex wireless networks, comprehensively considering

various resource and social constraints. We study resource allocation taking into

8

account three network entity roles: users, nodes, and network itself, which will be

described respectively in the following.

From the perspective of users, each user obtains an amount of utility if a

certain information rate is allocated to it. Since the intermediate nodes provide

forwarding service for the user, they may charge the user a service fee (i.e. cost).

Therefore, each user tries to maximize its profit (i.e. utility minus cost) by choos-

ing an optimized user behavior (i.e. a route). Furthermore, when there exists

more than one user in a wireless network, we need to solve the resource competi-

tion among users in order to maximize the total user profit, since individual user

behaviors usually may not lead to a global optimum.

From the perspective of nodes, each node may also have its own node con-

straints, and hence may have its own node behavior. In this work, we consider the

following two node constraints, which characterize a node’s individual requirement

and social requirement, respectively. The first node constraint is the node max

load constraint, specifically, the maximum load this node is willing to carry. This

constraint is important, since each node may have its own energy consumption

concern, or computation and transmission capacity limits. The second node con-

straint is the node load balance constraint. Load balancing is an important issue

in network design [30,74,84–86,117]. Without considering the node load balance,

the traditional routing design methodology, i.e., the shortest route is always cho-

sen, could result in congestion on the center of a network or hotspots which drain

the energy from the nodes in these areas much faster [57, 74]. Security may also

be an issue if node load balance is not taken into account [74]. For instance,

if a large number of messages go through a small number of nodes, then radio

jamming can be a vicious attack. In contrast, it would be less effective and more

expensive to jam a large number of nodes. Therefore, a node may set a maximum

9

allowed load difference compared with other nodes (such as H-hop neighbors).

This constraint guarantees that a node will not carry too much more load than

other nodes and hence balances the loads among different nodes. In summary,

the node max load constraint reflects a node’s own load requirement and the node

load balance constraint shapes the load relationships among different nodes.

From the perspective of a network, network energy efficiency is of great

importance, since wireless nodes are usually energy-constrained devices and in

some scenarios it is even infeasible to recharge or replace wireless nodes. Hence,

it is important to optimize the network energy efficiency.

We hence study the following two problems in this work.

1. User profit optimization problem (UPOP): how to optimize the total profit of

multiple simultaneous users in a full-duplex wireless network using multipath

routing subject to node constraints.

2. Network power consumption optimization problem (NPCOP): how to op-

timize the network power consumption in a full-duplex wireless network

using multipath routing subject to minimum user rate demands and node

constraints.

In this work, we realize multipath routing using an opportunistic routing

(OR) protocol, called MORE, that was proposed by Chachulski et al. in [9]. OR

has proved useful and effective for improving the performance of wireless net-

works by exploiting opportunistic forwarding capacity of intermediate nodes that

overhear packet transmissions [6, 9]. Therefore, OR allows any node overhearing

a packet to participate in forwarding it instead of deterministically choosing the

next hop before transmitting a packet. Such OR-based multipath routing is called

10

opportunistic multipath routing (OMR).

2.1.2 Contribution

Our contributions are as follows: We first propose a collision-free full-duplex

broadcast MAC and prove the necessary and sufficient conditions for success-

ful collision-free broadcasts. We then formulate UPOP and NPCOP as convex

programming systems and present two distributed iterative algorithms to solve

UPOP and NPCOP, respectively. Our algorithms compute the optimized user

information flow (i.e. user behavior) for the network layer and the optimized

node broadcast rate (i.e. node behavior) for the MAC layer. In each iteration,

Lagrange multipliers are updated in a distributed manner according to the cur-

rent user/node behaviors, and then each user and each node individually adjusts

its own behavior based on the updated Lagrange multipliers. We provide bounds

on the amount of feasibility violation and the gap between our solution and the

optimal solution at each iteration. We also use the dual space information to

analyze the node load constraint violation at each iteration. To the best of our

knowledge, this is the first work to study cross-layer optimization of the MAC

and network layers for resource allocation in full-duplex wireless networks.

2.1.3 Related Work

2.1.3.1 Full-Duplex Transmission

The current solution to the full-duplex transmission is designed based on the

interference cancellation technology. Digital cancellation has been extensively

used in the literature, such as ZigZag [33] and successive interference cancellation

[38]. Radunović et al. [88] suggested RF interference cancellation. Choi et al.

[17] combined antenna, RF and digital interference cancellation technologies, and

designed the first practical single channel wireless full-duplex system. This line of
11

research is further advanced by [23,92]. Recently, Jain et al. [44] presented a full-

duplex radio design using signal inversion and adaptive cancellation. This new

design, unlike [17], supports wideband and high power systems. In theory, this

new design has no limitation on bandwidth or power. Therefore, it is possible to

build full-duplex 802.11n devices. The difference between our work and the works

above is that we concentrate on the joint optimization of higher layers (specifically

the network layer and the MAC layer), rather than the physical layer, to exploit

full-duplex transmissions.

2.1.3.2 Opportunistic Multipath Routing

Traditional routing chooses the nexthop before transmitting a packet. However,

wireless links are usually unreliable and lossy. When link quality is poor, the

probability that the chosen nexthop receives the packet is low. Opportunistic

routing (OR), as a new technology for improving the performance of wireless net-

works, exploits spatial diversity and the broadcast nature of the wireless media.

In OR, once a node that is closer to the destination overhears the transmission,

it is allowed to participate in packet forwarding if needed. Biswas and Morris [6]

proposed the ExOR protocol, and demonstrated that throughput can be signif-

icantly improved by using this more relaxed choice of nexthop. Chachulski et

al. [9] further proposed MORE that integrates network coding into OR. Katti et

al. [50] proposed a more aggressive system, MIXIT, which exploits a basic prop-

erty of mesh networks: even when no node receives a packet correctly, any given

bit is likely to be received correctly by some node. In order to solve the resource

allocation problem in network coding based OR, Zhang and Li [115] introduced a

game theory framework named Dice to find a Nash bargaining point of user rates.

Koutsonikolas et al. [54] proposed CCACK, a new efficient network coding based

OR protocol, which exploits a novel cumulative coded acknowledgment scheme.
12

Rozner et al. [91] presented a simple opportunistic adaptive routing protocol in-

corporating adaptive forwarding path selection, priority timer-based forwarding,

local loss recovery, and adaptive rate control. The authors of [113,114] studied OR

in multirate and multichannel wireless networks, respectively. In order to iden-

tify the essential properties of OR using mathematical language, Lu and Wu [69]

designed a new OR algebra, based on the routing algebra. Dubois-Ferrière [25]

introduced the concept of anypath routing, which has been extensively studied

in [24, 27, 46, 58]. Radunović et al. [87] presented an optimization framework for

computing optimal flow control, routing, scheduling, and rate adaptation schemes,

and designed a distributed heuristic algorithm. Our work differs from the above

works in that we are the first to integrate full-duplex transmission into OR, and the

first to present a distributed resource allocation algorithm for full-duplex wireless

networks based on OR.

2.1.3.3 Network Resource Optimization

Optimizing network utility is an important objective in networking applications

[13, 26, 28, 47, 63, 64, 67, 68, 80, 81, 106] (see [16, 95] for more discussions on this

subject). Load balancing is also an important issue in network design. Gao and

Zhang [31] studied wireless network routing with the aim of achieving good per-

formance in terms of both stretch factor and load-balancing ratio. The proposed

algorithms can achieve constant competitive factors for both measures when all

the nodes are located in a narrow strip. Pham and Perreau [84] showed that

multi-path routing provides better congestion and traffic balancing. Further work

by Ganjali and Keshavarzian [30] showed that multipath routing can balance load

only if a very large number of paths are used. Popa et al. [85] showed that an

optimum routing scheme based on the shortest paths can be computed by using

linear programming. Zorzi and Rao [117] solved the energy-efficiency issues by
13

balancing the load reactively. Energy efficiency optimization is also an important

research topic. Abdulla et al. [1] proposed a solution to extend the network life-

time of wireless sensor networks through a hybrid approach that combines two

routing strategies, flat multi-hop routing and hierarchical multi-hop routing. Li

et al. [61] addressed the problem of energy efficient reliable routing for wireless

ad hoc networks in the presence of unreliable communication links, devices, or

lossy wireless link layers by integrating the power control techniques into the en-

ergy efficient routing. Ma et al. [72] proposed an interference aware metric, called

network allocation vector count, and showed that network lifetime can be no-

tably prolonged when this metric is employed to conduct transmit power control.

Mao et al. [73] studied energy efficient opportunistic routing in wireless sensor

networks and investigated how to select and prioritize forwarder list to minimize

energy consumptions. Singh et al. [97] studied a case for using new power-aware

metrics for determining routes in wireless ad hoc networks. Chang and Tassiu-

las used linear programming to capture the issue of power consumption in [10],

and proposed a centralized algorithm to determine the maximum lifetime in [11].

Sankar and Liu [93] studied the routing problem with the goal of maximizing the

network lifetime. Rao et al. [89] studied the tradeoff between energy consumption

and network performance in real-time wireless sensor networks by investigating

the interaction between the network performance optimization and network life-

time maximization problems. Liu et al. [65] proposed an energy-aware routing

protocol for sensor networks, which improves lifetime by minimizing energy con-

sumption for in-network communications and balancing the load among all the

nodes. Unlike the classic network optimization problems discussed above, we com-

prehensively take into account various resource and social requirements of users,

nodes, and network itself, which makes this work novel even if we do not consider

full-duplex transmission. In addition, we provide optimality and dual space infor-
14

mation analysis for each iteration rather than only providing asymptotic analysis.

2.2 Model

2.2.1 Preliminaries

In this section, we review MORE [9]. The basic operation of our OMR protocol

is based on MORE.

Source node The traffic coming from this source node is divided into a number

of batches each with M packets (called native packets) in it. The source contin-

uously generates coded packets from each batch using random linear network

coding. Specifically, each coded packet is m′
j =

∑

i cjimi, where cji is a random

coefficient, and mi is a native packet from the current batch. {cj1, ..., cji, ..., cjM}

is called the code vector of packet m′
j . The source node keeps generating and

sending coded packets from a batch until it receives the ACK for this batch from

the destination node.

Intermediate node The sender includes in the forwarder list the nodes which

are closer (in ETX metric [22]) to the destination than itself, ordered according

to their proximity to the destination. Whenever an intermediate node v hears

a packet, this node checks whether it is a forwarder by looking for its ID in the

forwarder list. If node v is a forwarder for this packet, node v then checks whether

the packet contains new information (i.e. whether it is an innovative packet)

using simple algebra, such as Gaussian Elimination. A packet is innovative if it

is linearly independent from the packets the node has received from this batch.

If this packet is an innovative packet, node v generates a new packet – a random

linear combination of the coded packets it has received from the same batch, and

broadcasts this new packet. Suppose, for example, that intermediate node v has

15

coded packets of the form m′
j =

∑

i cjimi. It generates more coded packets by

computing a linear combination of these coded packets as follows: m′′ =
∑

j ajm
′
j,

where aj ’s are random numbers. Obviously, m′′ is also a linear combination of the

native packets (i.e. m′′ =
∑

i(
∑

j ajcji)mi). Since wireless channels are unreliable,

MORE uses a heuristic algorithm to compute resource allocation. This heuristic

algorithm computes the expected number of transmissions an intermediate node

must make once it receives an innovative packet. Compared with this heuristic

algorithm, in order to optimize the resource allocation, our algorithms compute

the optimized user information flow (i.e. user behavior) for the network layer and

the optimized node broadcast rate (i.e. node behavior) for the MAC layer.

Destination node The destination node keeps all the received innovative pack-

ets untilM innovative packets from the current batch are received. It then decodes

the original whole batch using matrix inversion and sends an ACK back to the

source node.

2.2.2 System Model

We consider a full-duplex wireless network where there are K simultaneous users.

Each user maintains a session from a source node to a destination node, and uses

zero or more intermediate nodes to forward the packets. Our work is particularly

suitable for applications with long user sessions (e.g. large file transfer) in static

or slowly changing wireless networks (e.g. [2]).

2.2.2.1 Opportunistic Multipath Routing Sub-model

In this subsection, we model OMR in full-duplex wireless networks. We assume

that all the nodes are equipped with single channel full-duplex transceivers. There-

16

fore, a node in our model is capable of transmitting and receiving on the same

frequency simultaneously.

A wireless network is modeled as a directed graph G = (V,E), where E

is the set of edges and V is the set of vertices. We use the following terms in-

terchangeably: edge and link, vertex and node. Unlike the traditional unit-disk

model, the transmission range is defined as the distance where the reception prob-

ability falls below a small given threshold, as in [115]. There exists a directed edge

(u, v) in G if v is in u’s transmission range. Since the transmission range is defined

as the distance where the reception probability falls below a small threshold, as

in [115] we assume that the interference range equals to the transmission range.

As in [9], each user performs a distributed node pre-selection procedure to add

intermediate nodes into its forwarder list so that each forwarder is closer (in ETX

metric [22]) to the destination than its predecessors. Let G(V,E) denote the re-

sulting topology involved in the session of user k, where V and E are the set of

nodes and the set of directed links, respectively.

Collision-Free Full-Duplex Broadcast MAC We consider a collision-free

full-duplex broadcast MAC based on slotted scheduling: a broadcast transmission

from node u is collision-free if and only if all the other transmitters that are

transmitting packets are outside the range of any intended downstream receiver of

node u. Consider the example shown in Fig.2.1, where v3 and v4 are the intended

downstream receivers of node v1. If no collision occurs at v3, the transmitters of

nodes v4 and v5 should not transmit. If no collision occurs at v4, the transmitters

of nodes v2, v3, v5 and v6 should not transmit. Thus a collision-free broadcast

transmission from node v1 means that no collision occurs at both v3 and v4. Since

full-duplexing is supported, each node is able to receive packets while transmitting.

17

V 1 V 5V 6V 4V 2
V 7

V 3

Figure 2.1: An example network: if a node is located in another node’s transmis-
sion (or interference) range, there is a directed edge between them. There are two
users in this network. User 1 transmits data from v1 to v5 through intermediate
nodes v3 and v4, and user 2 transmits data from v2 to v6 through v4 and v7.

For example, v7 can transmit the previously received packets to v6 while receiving

packets from v2. Note that although v3 (or v4) is also capable of transmitting

and receiving simultaneously, when it is receiving packets from v1, it should not

transmit because that transmission will interfere with v4 (or v3).

Let R(u) denote the set of nodes whose transmission (interference) can be

heard by node u. For example, in the network shown in Fig.2.1, R(v1)={v2, v3, v4},

R(v2)={v1, v4, v7}, and R(v4)={v1, v2, v3, v5, v6}. We use B
(t)
k (u) to denote a bi-

nary variable indicating whether node u transmits user k’s data in slot t. We

assume that a node can only transmit one user’s data in one time slot. A neces-

sary and sufficient condition for collision-free broadcasts is that for any k ∈ [1, K],

the following inequality holds :

∑

m∈[1,K]

∑

v∈R(u)

B(t)
m (v) ≤ 1, ∀u ∈ V \ sk. (2.1)

This inequality means that any node u allows the broadcast transmission from

at most one transmitter within its range (excluding its transmit antenna). For

18

user k, its source sk is excluded, since sk does not need to receive data from

other nodes. Before proving this necessary and sufficient condition, let us use

the example shown in Fig.2.1 for an illustration. Assume that user 1 transmits

packets from v1 to v5 through v3 and v4, and user 2 transmits packets from v2

to v6 through v4 and v7. Thus V = {v1, v3, v4, v5} and V = {v2, v4, v6, v7}. The

corresponding necessary and sufficient conditions can be expressed as:

for k = 1,

for v3, B
(t)
1 (v1) +B

(t)
1 (v4) +B

(t)
2 (v4) ≤ 1; (2.2)

for v4, B
(t)
1 (v1) +B

(t)
1 (v3) +B

(t)
2 (v2) ≤ 1; (2.3)

for v5, B
(t)
1 (v3) +B

(t)
1 (v4) +B

(t)
2 (v4) ≤ 1; (2.4)

and for k = 2,

for v4, B
(t)
1 (v1) +B

(t)
1 (v3) +B

(t)
2 (v2) ≤ 1; (2.5)

for v6, B
(t)
1 (v4) +B

(t)
2 (v4) +B

(t)
2 (v7) ≤ 1; (2.6)

for v7, B
(t)
2 (v2) ≤ 1, (2.7)

where B
(t)
k (u) ∈ {0, 1} for k = 1 or 2 and u ∈ V . Note that B

(t)
1 (v2) = B

(t)
1 (v5) =

B
(t)
1 (v6) = B

(t)
1 (v7) = B

(t)
2 (v1) = B

(t)
2 (v3) = B

(t)
2 (v5) = B

(t)
2 (v6) = 0. Inequality

(2.2) means that if v3 can receive packets of user 1 from v1 without collision, then

v4 cannot transmit. Note that since full-duplexing is used, v3 does not have to

care whether its radio is transmitting. Although Inequalities (2.3) and (2.5) are

the same, they convey different meanings. Inequality (2.3) means that if v4 can

receive packets of user 1 from v1 without collision, then v2 and v3 cannot transmit.

Inequality (2.5) means that if v4 can receive packets of user 2 from v2 without

collision, then v1 and v3 cannot transmit. Likewise, since full-duplexing is used,

v4 does not have to care whether its radio is transmitting. Note that although

Inequalities (2.3) and (2.5) convey different meanings, in real computation, such
19

redundant inequalities can be removed to reduce computational complexity. In

addition, we do not have the inequalities for v1 and v2 since they are sources and

do not need to receive data from other nodes.

We now prove this necessary and sufficient condition. On one hand, if for

any k ∈ [1, K], Inequality (2.1) holds, then for any node u, no more than one of its

intended upstream transmitters is broadcasting. Due to the full-duplex operation,

no matter whether node u is transmitting, node u can hear this broadcasting

without collision. On the other hand, if condition (2.1) does not hold for some

k ∈ [1, K] and some node u ∈ V \ sk, then
∑

m∈[1,K]

∑

v∈R(u) B
(t)
m (v) ≥ 2. Recall

that a node can only transmit one user’s data in one time slot. This means that

at least two of u’s upstream transmitters are broadcasting, which results in a

collision at node u.

Assuming that the period of a schedule is T , for any k ∈ [1, K] we thus

have

C

T

∑

t∈[1,T]

∑

m∈[1,K]

∑

v∈R(u)

B(t)
m (v) ≤ C, ∀u ∈ V \ sk,

where C is the MAC layer capacity, which is the maximum broadcast rate of

a node when no interference presents. Since the average broadcast rate of node

u for user m (i.e. node u’s behavior for user m) can be computed as bm(u) =

limT→∞
C
T

∑

t∈[1,T]B
(t)
m (u), for any k ∈ [1, K] we have

∑

m∈[1,K]

∑

v∈R(u)

bm(v) ≤ C, ∀u ∈ V \ sk. (2.8)

Since we transformed an integer variable B
(t)
m (u) into continuous bm(u) by aver-

aging, constraint (2.8) is necessary, but not sufficient.

Remark : We note that full-duplex transmission could lead to other routing de-

signs such as wormhole routing [17]. As the first attempt towards the routing
20

optimization for full-duplex wireless networks, this work mainly focuses on rout-

ing optimization based on this collision-free broadcast MAC.

Information Flow Considering the flow conservation principle, for any u ∈ V

we have

∑

(u,v)∈E

rk(u, v)−
∑

(w,u)∈E

rk(w, u) = hk(u), ∀k ∈ [1, K], (2.9)

where hk(u) is equal to λk if u = sk, −λk if u = dk, and 0 otherwise. sk and dk

denote user k’s source and destination, respectively. λk and rk(u, v) denote user

k’s total information rate and link information rate on link (u, v), respectively.

The link information rate vector −→rk represents user k’s behavior (i.e. user k’s

route).

Network Coding Constraint Our OMR is realized using network coding

based OR (see the operations of MORE in Section 2.2.1). Although Lun et al. [71]

made an exact characterization of the coding model, due to an exponential number

of constraints, it makes the problem intractable. To balance the model accuracy

and the computation tractability, we adopt the following model proposed in [115]:

bk(u)p(u, v) ≥ rk(u, v), ∀(u, v) ∈ E, (2.10)

where p(u, v)>0 is the packet delivery ratio of link (u, v). This is not a tight

bound. However, as discussed in [115], this is an effective approximation to the

behavior of an actual wireless network using network coding. It includes the useful

information that users and nodes can exploit to induce a better performance.

2.2.2.2 User Profit Sub-model

User k obtains a utility of Uk(λk) if it achieves a total information rate of λk.

We assume that Uk(·) is an increasing, concave and continuously differentiable
21

function, as in [51]. Since intermediate nodes provide forwarding services for a

user, each forwarder charges this user a service fee which is proportional to the

service rate (i.e. the broadcast rate) for this user. Let σk(u) denote the unit service

price charged by node u for user k. User k hence pays σk(u)bk(u) (σk(u) ≥ 0) for

node u’s forwarding service. User k’s profit is thus defined by

Pk(λk,
−→
b k) = Uk(λk) −

∑

u∈V \dk

σk(u)bk(u). (2.11)

2.2.2.3 Node Constraint Sub-model

Node Max Load Constraint Due to the energy consumption concern, or

computation and transmission capacity limits, each node u needs to consider

the maximum average broadcast rate (denoted byMmax(u)) that it is willing to

provide. As a result, node u sets an upper bound on its average broadcast rate:

b(u) =
∑

k∈[1,K]

bk(u) ≤M
max(u),Mmax(u) ∈ (0,Φ]. (2.12)

Node Load Balance Constraint We define a load balance area (i.e. a set of

nodes) for each node. We use v ∈ A(u) to denote that v is in u’s load balance

area. That is to say,

b(u)− b(v) ≤ Bmax(u, v),Bmax(u, v) ∈ (0,Θ], ∀v ∈ A(u), (2.13)

where Bmax(u, v) is a parameter set by node u. A(u) and Bmax(u, v) are used

by node u to achieve a controllable balanced load with other nodes. In this

work, we consider a symmetric load balance (i.e. v ∈ A(u) ⇐⇒ u ∈ A(v), and

Bmax(u, v) = Bmax(v, u)). Although in practice the load balance constraint could

be asymmetric, there would be no big difference for our mathematical analysis

and algorithm design. We hence concentrate on this simpler definition, which

makes our expressions clearer.
22

2.2.2.4 Network Power Consumption Sub-model

Based on our slotted MAC, we assume that a node’s power consumption is propor-

tional to its broadcast rate, since in most cases transmission operations dominate

the energy consumption. Specifically, node u’s average power consumption is com-

puted as l(u)b(u), where l(u) is the power consumption ratio. The network power

consumption is computed as:

P(
−→
b) =

∑

k∈[1,K]

∑

u∈V \dk

l(u)bk(u). (2.14)

23

2.3 Problem Formulation

2.3.1 User Profit Optimization Problem (UPOP)

By our user profit submodel (2.11), OMR submodel (2.8)-(2.10), and node con-

straint submodel (2.12), (2.13), the user profit optimization problem (UPOP) is

formulated as:

System 1(−→r ,
−→
b) :

max
∑

k∈[1,K]

(

Uk(λk)−
∑

u∈V \dk

σk(u)bk(u)
)

,

s.t.
∑

(u,v)∈E

rk(u, v)−
∑

(w,u)∈E

rk(w, u)=hk(u), ∀u ∈ V, k ∈ [1, K]; (2.15)

∑

m∈[1,K]

∑

v∈R(u)

bm(v) ≤ C, ∀u ∈ V \ sk, k ∈ [1, K]; (2.16)

bk(u)p(u, v) ≥ rk(u, v), ∀(u, v) ∈ E, k ∈ [1, K]; (2.17)

∑

k∈[1,K]

bk(u) ≤M
max(u), ∀u ∈ V ; (2.18)

∑

k∈[1,K]

bk(u1)−
∑

k∈[1,K]

bk(u2) ≤ B
max(u1, u2), ∀u2 ∈ A(u1), u1 ∈ V ; (2.19)

over rk(u, v) ∈ [0, C], ∀(u, v) ∈ E, k ∈ [1, K],

bk(u) ∈ [0, C], ∀u ∈ V \ dk, k ∈ [1, K].

2.3.2 Network Power Consumption Optimization Problem (NPCOP)

Each user k has a minimum user rate demand Λk. By our network power con-

sumption submodel (2.14), OMR submodel (2.8)-(2.10), node constraint submodel

(2.12), (2.13), and minimum user rate demand, the network power consumption

optimization problem (NPCOP) is formulated as System 2. We will discuss how

to select Λk in Section 2.4.4, since if some of them are too large, the network

resource may not be able to satisfy them and as a result System 2 may not have

a feasible solution.

24

System2(−→r ,
−→
b) :

min
∑

k∈[1,K]

∑

u∈V \dk

l(u)bk(u),

s.t. (2.15)− (2.19);

λk ≥ Λk, k ∈ [1, K]; (2.20)

over rk(u, v) ∈ [0, C], ∀(u, v) ∈ E, k ∈ [1, K],

bk(u) ∈ [0, C], ∀u ∈ V \ dk, k ∈ [1, K].

2.4 Distributed Optimization Algorithms

Although Systems 1 and 2 can be solved using traditional centralized convex

programming techniques [7], distributed algorithms are preferable for the purpose

of practical implementations. We combine Lagrangian decomposition with the

approximate dual subgradient method (ADSM) proposed by Nedić and Ozdaglar

in [78], and propose distributed algorithms for solving Systems 1 and 2 (denoted by

Pathbook-I and Pathbook-II, respectively). ADSM can be summarized as follows.

The primal problem is the following:

min f(~x), s.t. g(~x) � 0, over ~x ∈ ~X, (2.21)

where f(·):RN 7→R is a convex function (RN is an N -dimensional vector space),

g(·)=(g1(·), ..., gρ(·))T and each gj(·) : RN 7→ R is a convex function, and ~X ∈ RN

is a nonempty compact convex set. (·)T denotes the transpose of (·).

The dual problem is the following:

max q(~δ) = inf
~x∈ ~X

(

L(~x,~δ)
)

, s.t. ~δ � 0, over ~δ ∈ Rρ,

where L(~x,~δ) = f(~x)+~δTg(~x) is the Lagrangian of the primal problem, and ~δ is

the vector of Lagrange multipliers.

25

ADSM iteratively computes ~δ(1), ~x(1), ~δ(2), ~x(2), · · · from a starting point

{~δ(0),~x(0)}∈Rρ× ~X as follows:

for i ≥ 0,

~δ(i+1) = [~δ(i) + ηg(~x(i))]+,where ~x(i) ∈ argmin~x∈ ~X

(

f(~x) + (~δ(i))Tg(~x)
)

, (2.22)

where η is a constant stepsize. For a vector ~x∈RN , ~x+ is the projection of ~x

onto the nonnegative orthant in RN , i.e. ~x+=(max{0, x1}, ...,max{0, xN})T for

~x=(x1, ..., xN)T . The primal solution is approximated using averaging:

x̂(i) =
1

i

i−1
∑

m=0

~x(m), i ≥ 1. (2.23)

Our distributed algorithms use subgradient methods in the dual space and

exploit the subgradient information to produce near-feasible and near-optimal

primal solutions. The algorithmic framework of Pathbook-I and Pathbook-II is

designed based on ADSM. We now briefly outline this framework. Let ~δ(i) denote

the vector of Lagrange multipliers in the ith iteration, and ~x(i) denote the vector

((−→r (i))T , (
−→
b (i))T)T . According to ADSM, from a starting point we compute ~δ(1),

and then compute ~x(1) based on ~δ(1). In the second iteration, we compute ~δ(2)

based on ~δ(1) and ~x(1), and then compute ~x(2) based on ~δ(2). This procedure

continues until a stopping criterion is reached. Using Lagrangian decomposition,

the update operations for both ~δ(i) and ~x(i) can be done in a distributed manner.

2.4.1 Distributed Optimization Algorithm Pathbook-I for UPOP

After some simple mathematical manipulations and removing redundant inequal-

ities, the Lagrangian of System 1 subject to constraint (2.15) can be expressed

26

as:

L(−→r ,
−→
b ,−→α ,

−→
β ,−→µ ,−→ω)

=−
∑

k∈[1,K]

Uk(λk) +
∑

k∈[1,K]

∑

u∈V

σk(u)bk(u)

+
∑

u∈V

α(u)
(

∑

k∈[1,K]

∑

v∈R(u),u 6=sk

bk(v)− C
)

+
∑

k∈[1,K]

∑

(u,v)∈E

βk(u, v)
(

rk(u, v)− bk(u)p(u, v)
)

+
∑

u∈V

µ(u)
(

∑

k∈[1,K]

bk(u)−M
max(u)

)

+
∑

u1,u2∈V :u2∈A(u1)

ω(u1, u2)
(

∑

k∈[1,K]

(

bk(u1)−bk(u2)
)

−Bmax(u1, u2)
)

. (2.24)

In the ith iteration, according to formula (2.22) we update Lagrange mul-

tipliers as follows:

∀u ∈ V, α(i)(u) = [α(i−1)(u) + ηM(i−1)
u]+,

∀(u, v) ∈ E, β(i)
k (u, v) = [β

(i−1)
k (u, v) + ηC(i−1)

(k,u,v)]
+,

∀u ∈ V, µ(i)(u) = [µ(i−1)(u) + ηG(i−1)
u]+,

∀u ∈ V and v ∈ A(u), ω(i)(u, v) = [ω(i−1)(u, v) + ηH(i−1)
(u,v)]+,

where

M(i−1)
u =

∑

k∈[1,K]

∑

v∈R(u),u 6=sk

b
(i−1)
k (v)− C,

C(i−1)
(k,u,v) = r

(i−1)
k (u, v)− b(i−1)

k (u)p(u, v),

G(i−1)
u =

∑

k∈[1,K]

b
(i−1)
k (u)−Mmax(u),

H(i−1)
(u,v) =

∑

k∈[1,K]

(

b
(i−1)
k (u)− b(i−1)

k (v)
)

−Bmax(u, v).

After the Lagrange multipliers are computed, according to formula (2.22),

we need to find −→r (i) and
−→
b (i) so as to minimize L(−→r ,

−→
b ,−→α (i),

−→
β (i),−→µ (i),−→ω (i)).

27

After some mathematical manipulations, Equation (2.24) leads to the following:

L(−→r ,
−→
b ,−→α ,

−→
β ,−→µ ,−→ω)

=−





∑

k∈[1,K]

Uk(λk) +
∑

k∈[1,K]

∑

(u,v)∈E

βk(u, v)rk(u, v)





+





∑

k∈[1,K]

∑

u∈V

σk(u)bk(u) +
∑

k∈[1,K]

∑

u∈V

∑

v∈R(u),v 6=sk

α(v)bk(u)

−
∑

k∈[1,K]

∑

(u,v)∈E

βk(u, v)bk(u)p(u, v) +
∑

u∈V

µ(u)
∑

k∈[1,K]

bk(u)

+
∑

u1,u2∈V :u2∈A(u1)

ω(u1, u2)
∑

k∈[1,K]

(

bk(u1)− bk(u2)
)



−C
∑

u∈V

α(u)

− Bmax(u1, u2)
∑

u1,u2∈V :u2∈A(u1)

ω(u1, u2)−
∑

u∈V

µ(u)Mmax(u). (2.25)

Fortunately, by Equation (2.25) this minimization operation can be decomposed

to users’ behaviors and nodes’ behaviors. Specifically, in the ith iteration, user k

solves the following problem:

min −Uk(λ
(i)
k) +

∑

(u,v)∈E

β
(i)
k (u, v)r

(i)
k (u, v), (2.26)

s.t.
∑

(u,v)∈E

r
(i)
k (u, v)−

∑

(w,u)∈E

r
(i)
k (w, u) = h

(i)
k (u), u ∈ V,

over r
(i)
k (u, v) ∈ [0, C], ∀(u, v) ∈ E,

and node u solves the following problem:

min
(

σk(u) +
∑

v∈R(u),v 6=sk

α(i)(v)−
∑

(u,v)∈E

β
(i)
k (u, v)p(u, v)

+µ(i)(u) +
∑

v∈A(u)

ω(i)(u, v)−
∑

v∈A(u)

ω(i)(v, u)
)

b
(i)
k (u), (2.27)

over b
(i)
k (u) ∈ [0, C], u ∈ V \ dk.

Obviously, Problem (2.27) can be solved by each node u. Now we describe

how to solve Problem (2.26). Based on the flow-path formulation technique in
28

[115], we consider an equivalent problem:

min −Uk(
∑

π∈P

γk(π)) +
∑

π∈P

κk(π)γk(π),

over
∑

π∈P

γk(π) ∈ [0, C],

where P is a set of single paths, γk(π) is the flow rate of user k following path

π, and κk(π) is equal to
∑

(u,v)∈π β
(i)
k (u, v). Solving this equivalent problem will

ensure that the min-cost single path (with respect to β
(i)
k (u, v)) is always chosen.

We use Γk to denote the value of this single path flow, and hence transform the

problem above to

min − Uk(Γk) + κmink Γk, over Γk ∈ [0, C], (2.28)

where κmink is the cost of the min-cost path (with respect to β
(i)
k (u, v)). Therefore,

each user k can use a distributed shortest path algorithm to compute κmink , and

then solve Problem (2.28). r
(i)
k (u, v) is set to the solution to Problem (2.28) if

(u, v) is on this min-cost path, and 0 otherwise.

In the ith iteration, according to Formula (2.23) users and nodes can ap-

proximate the primal solutions in the following way: for i ≥ 1

r̂
(i)
k (u, v)=

1

i

i−1
∑

m=0

r
(m)
k (u, v), b̂

(i)
k (u)=

1

i

i−1
∑

m=0

b
(m)
k (u). (2.29)

After the ith iteration, user k uses r̂
(i)
k (u, v) as its user behavior on link (u, v) and

node u uses b̂
(i)
k (u) as its node behavior for user k until the next iteration. Equation

(2.29) tells each user its optimized information flow. However, transmissions in our

OMR are opportunistic. To realize this information flow, we adopt a transmission

credit mechanism (see Section 2.4.4).

We now analyze what information is needed in each iteration. We first

analyze the update operation for Lagrange multipliers. For α(i)(u), node u needs
29

its one-hop neighbors’ broadcast rates. For β
(i)
k (u, v), node u needs b

(i)
k (u) and

r
(i)
k (u, v). For µ(i)(u), node u needs its own broadcast rate b

(i)
k (u). For ω(i)(u, v),

node u needs the broadcast rates of the nodes located in its load balance area. We

then analyze the update operation of user and node behaviors when the Lagrange

multipliers have been computed. Each user can update its user behavior by using

a distributed shortest path algorithm. For node behaviors, each node needs the

information from its one-hop neighbors and the nodes in its load balance area.

This analysis indicates that no global information is needed as long as no node

includes all the nodes in its load balance area. In practice, a node can consider

the set of its 1 or 2-hop neighbors as its load balance area. Note that a large load

balance area will lead to many information exchanges. We will discuss this issue

in Section 2.4.4.

2.4.2 Distributed Optimization Algorithm Pathbook-II for NPCOP

As in Pathbook-I, we first compute the Lagrangian of System 2 subject to con-

straint (2.15) as follows:

L(−→r ,
−→
b ,−→α ,

−→
β ,−→µ ,−→ω ,−→y)

=
∑

k∈[1,K]

∑

u∈V \dk

l(u)bk(u)

+
∑

u∈V

α(u)
(

∑

k∈[1,K]

∑

v∈R(u),u 6=sk

bk(v)− C
)

+
∑

k∈[1,K]

∑

(u,v)∈E

βk(u, v)
(

rk(u, v)− bk(u)p(u, v)
)

+
∑

u∈V

µ(u)
(

∑

k∈[1,K]

bk(u)−M
max(u)

)

+
∑

u1,u2∈V :u2∈A(u1)

ω(u1, u2)
(

∑

k∈[1,K]

(

bk(u1)− bk(u2)
)

− Bmax(u1, u2)
)

+
∑

k∈[1,K]

yk(Λk − λk). (2.30)

30

In the ith iteration, according to Formula (2.22) we first need to update

the Lagrange multipliers. For α(i)(u), β
(i)
k (u, v), µ(i)(u), and ω(i)(u, v), we can

update them as in Pathbook-I. For y
(i)
k , we update it as follows: y

(i)
k = [y

(i−1)
k +

ηY
(i−1)
k]+, where Y

(i−1)
k = Λk − λ

(i−1)
k .

After the Lagrange multipliers are computed, according to Formula (2.22),

we need to find−→r (i) and
−→
b (i) so as to minimize L(−→r ,

−→
b ,−→α (i),

−→
β (i),−→µ (i),−→ω (i),−→y (i)).

As in Pathbook-I, after some manipulations, we decompose this minimization op-

eration to the following users’ behaviors and nodes’ behaviors.

In the ith iteration, user k solves the following problem:

min −y(i)
k λ

(i)
k +

∑

(u,v)∈E

β
(i)
k (u, v)r

(i)
k (u, v), (2.31)

s.t.
∑

(u,v)∈E

r
(i)
k (u, v)−

∑

(w,u)∈E

r
(i)
k (w, u) = h

(i)
k (u), u ∈ V,

over r
(i)
k (u, v) ∈ [0, C], ∀(u, v) ∈ E,

and node u solves the following problem:

min
(

l(u) +
∑

v∈R(u),v 6=sk

α(i)(v)−
∑

(u,v)∈E

β
(i)
k (u, v)p(u, v)

+µ(i)(u) +
∑

v∈A(u)

ω(i)(u, v)−
∑

v∈A(u)

ω(i)(v, u)
)

b
(i)
k (u), (2.32)

over b
(i)
k (u) ∈ [0, C], u ∈ V \ dk.

Problem (2.32) can be easily solved by each node u. For user problem

(2.31), as before we consider an equivalent problem:

min −y(i)
k

∑

π∈P

γk(π) +
∑

π∈P

κk(π)γk(π),

over
∑

π∈P

γk(π) ∈ [0, C].

31

Solving this equivalent problem will ensure that the min-cost path is always cho-

sen. Thus this problem is transformed to

min − y(i)
k Γk + κmink Γk, over Γk ∈ [0, C], (2.33)

where κmink is the cost of the min-cost path (with respect to β
(i)
k (u, v)). Therefore,

each user k can use a distributed shortest path algorithm to find the min-cost

path (with respect to β
(i)
k (u, v)) so as to compute κmink , and then solve Problem

(2.33). r
(i)
k (u, v) is set to the solution to Problem (2.33) if (u, v) is on this min-cost

path, and 0 otherwise.

Users and nodes can approximate the primal solutions using (2.29). After

the ith iteration, user k uses r̂
(i)
k (u, v) as its user behavior on link (u, v) and node

u uses b̂
(i)
k (u) as its node behavior for user k until the next iteration. We now

analyze what information is needed in each iteration. Similar to UPOP, the

update operations for −→r (i),
−→
b (i),−→α (i),

−→
β (i),−→µ (i), and −→ω (i) do not require global

information. For y
(i)
k , obviously it can be updated by user k itself. Thus, no global

information is required in the iterations.

2.4.3 Algorithm Analysis

2.4.3.1 Optimality Analysis

Theorem 1 states the optimality of our distributed algorithms. Let x̂(i) denote

the primal solution approximated in the ith iteration. Note that we reformulate

Systems 1 and 2 to the standard form (2.21) for brevity. Here we need to introduce

a lemma given by [78], which shows a bound on the Euclidean norms of the

Lagrange multipliers generated by ADSM.

Lemma 1. If 1) the Euclidean norms of the subgradients are bounded by a con-

stant L (i.e. L = max~x∈ ~X ||g(~x)|| < ∞) and 2) there exists a vector ~xs that

32

satisfies Slater’s condition [7], then for all i ≥ 1, ||~δ(i)|| is bounded by a constant ̺

= 2
̟

(f(~xs)−q(~δ(0)))+max{||~δ(0)||, 1
̟

(f(~xs)−q(~δ(0))+ ηL2

2
)+ηL}. Note that ̟>0

since ~xs is a Slater vector. �

Theorem 1. The following properties hold for all i ≥ 1:

1. An upper bound on the amount of constraint violation of the vector x̂(i) for

System 1 (System 2) is given by ||g(x̂(i))+|| ≤ ̺

iη
, where ̺ = 2

̟
(f(~xs) −

q(~δ(0))) + max{||~δ(0)||, 1
̟

(f(~xs) − q(~δ(0)) + ηL2

2
) + ηL}. For System 1 L ≤

(|V |+ |E|)KC + |V |Φ + |V |2Θ and for System 2 L ≤ (|V |+ |E|+ 1)KC +

|V |Φ + |V |2Θ.

2. An upper bound on f(x̂(i)) is given by f(x̂(i)) ≤ f ∗ + ||~δ(0)||2

2iη
+ ηL2

2
, where f ∗

is the primal optimal value of System 1(System 2).

3. A lower bound on f(x̂(i)) is given by f(x̂(i))≥f ∗- ̺2

iη
. �

Interpretation. Property 1) in Theorem 1 states that the amount of constraint

violation of our primal solution x̂(i) diminishes to zero at the rate 1
i

as the number

of iterations i increases. Properties 2) and 3) imply that as i increases, the primal

value of System 1 (System 2) using our solution x̂(i) converges to f ∗ within an

error level ηL2

2
at the rate of 1

i
.

Proof. First, we will prove the Slater’s condition holds for Systems 1 and 2. For

System 1, since Mmax(u) > 0,Bmax(u, v) > 0, p(u, v) > 0 and C > 0, we can

easily construct a strictly feasible solution by allocating each user a very small

amount of information flow so that all the constraints are strictly satisfied. For

System 2, we need to take care of the additional constraint: λk ≥ Λk, k ∈ [1, K].

In Section 2.4.4, we discuss how to compute a feasible minimum user rate. If we

33

set Λk to a value that is strictly smaller than the corresponding minimum user

rate computed in Section 2.4.4, the Slater’s condition also holds for System 2.

Second, we will construct an upper bound on the norms of the subgradi-

ents. For brevity, we use g1(
−→r ,
−→
b), g2(

−→r ,
−→
b), g3(

−→r ,
−→
b), g4(

−→r ,
−→
b), and g5(

−→r ,
−→
b)

to denote Inequalities (2.16), (2.17), (2.18), (2.19), and (2.20), respectively. Note

that g1(
−→r ,
−→
b) consists of

∑K

k=1 |V \sk| inequalities, g2(
−→r ,
−→
b) consists of

∑K

k=1 |E|

inequalities, g3(
−→r ,
−→
b) consists of |V | inequalities, g4(

−→r ,
−→
b) consists of

∑

v∈V |A(v)|

inequalities, and g5(
−→r ,
−→
b) consists of K inequalities. Due to bm(v) ≥ 0, we

know ||g1(
−→r ,
−→
b)|| ≤

∑K
k=1 |V \ sk|C ≤ K|V |C. Due to bk(v) ≤ C, rk(u, v) ≥ 0

and p(u, v) ∈ (0, 1], ||g2(
−→r ,
−→
b)|| ≤

∑K
k=1 |E|C ≤ K|E|C. Due to bk(v) ≥ 0,

||g3(
−→r ,
−→
b)|| ≤

∑

u∈VM
max(u). Obviously, ||g4(

−→r ,
−→
b)|| ≤

∑

v∈V

∑

u∈A(v) B
max(v, u),

and ||g5(
−→r ,
−→
b)|| ≤ KC −

∑K

k=1 Λk. Therefore, for System 1 we have

||g(−→r ,
−→
b)|| ≤

4
∑

j=1

||gj(
−→r ,
−→
b)||

≤ (|V |+ |E|)KC +
∑

u∈V

Mmax(u) +
∑

v∈V

∑

u∈A(v)

Bmax(v, u)

≤ (|V |+ |E|)KC + |V |Φ + |V |2Θ,

and for System 2 we have

||g(−→r ,
−→
b)|| ≤

5
∑

j=1

||gj(
−→r ,
−→
b)||

≤ (|V |+ |E|)KC +
∑

u∈V

Mmax(u) +
∑

v∈V

∑

u∈A(v)

Bmax(v, u) +KC −
K
∑

k=1

Λk

≤ (|V |+ |E|+ 1)KC + |V |Φ + |V |2Θ.

Therefore, for System 1 we have L ≤ (|V | + |E|)KC + |V |Φ + |V |2Θ and

for System 2 we have L ≤ (|V |+ |E|+ 1)KC + |V |Φ + |V |2Θ.

Now we are ready to prove the three properties. This proof follows the

proof framework used in [78] to prove the performance of ADSM.
34

We first prove property 1). According to our algorithm, we have

~δ(i+1) = [~δ(i) + ηg(~x(i))]+ ≥ ~δ(i) + ηg(~x(i)) for i ≥ 0.

We hence have ηg(~x(i)) ≤ ~δ(i+1)−~δ(i) for i ≥ 0. Summing them up over until i−1,

we have

η

i−1
∑

m=0

g(~x(m)) ≤ ~δ(i) − ~δ(0) ≤ ~δ(i) for i ≥ 1.

Since each of gj(·) is convex, we have for i ≥ 1,

g(x̂(i)) = g(
1

i

i−1
∑

m=0

~x(m)) ≤
1

i

i−1
∑

m=0

g(~x(m)) ≤
~δ(i)

ηi
.

Considering ~δ(i) ≥ 0, we know g(x̂(i))+ ≤
~δ(i)

ηi
, for all i ≥ 1. By Lemma 1, we

hence have

||g(x̂(i))+|| ≤
||~δ(i)||

ηi
≤

̺

iη
, for i ≥ 1.

We then prove property 2). Since f(·) is convex, we know

f(x̂(i))

≤
1

i

i−1
∑

m=0

f(~x(m))

= −
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)) +
1

i

i−1
∑

m=0

(

f(~x(m)) + ~δ(m) · g(~x(m))
)

= −
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)) +
1

i

i−1
∑

m=0

q(~δ(m))

≤ −
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)) + q∗ (2.34)

Additionally, for m ≥ 0 we know

||~δ(m+1)||2

= ||[~δ(m) + ηg(~x(m))]+||2

≤ ||~δ(m) + ηg(~x(m))||2

= ||~δ(m)||2 + ||ηg(~x(m))||2 + 2η~δ(m) · g(~x(m)).
35

It implies

−~δ(m) · g(~x(m)) ≤
||~δ(m)||2+||ηg(~x(m))||2−||~δ(m+1)||2

2η
.

Summing this inequality over m ∈ [0, i− 1] for i ≥ 1, we have

−
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)) ≤
||~δ(0)||2 − ||~δ(i)||2

2iη
+
η
∑i−1

m=0 ||g(~x
(m))||2

2i
.

Substituting this into Inequality (3.18), we have

f(x̂(i))≤ q∗ +
||~δ(0)||2 − ||~δ(i)||2

2iη
+
η
∑i−1

m=0 ||g(~x
(m))||2

2i

≤ q∗ +
||~δ(0)||2

2iη
+
ηL2

2
= f ∗ +

||~δ(0)||2

2iη
+
ηL2

2
. (2.35)

Note that Inequality (2.35) holds because of the Slater’s condition.

We finally prove property 3). Given a dual optimal solution ~δ∗, we have

f(x̂(i)) = f(x̂(i)) + ~δ∗ · g(x̂(i))− ~δ∗ · g(x̂(i)) ≥ q(~δ∗)− ~δ∗ · g(x̂(i)).

Additionally, since ~δ∗ ≥ 0 and g(x̂(i))+ ≥ g(x̂(i)), we have

−~δ∗ · g(x̂(i)) ≥ −~δ∗ · g(x̂(i))+ ≥ −||~δ∗||||g(x̂(i))+||.

Combining the two inequalities above, we have

f(x̂(i)) ≥ q(~δ∗)− ||~δ∗||||g(x̂(i))+|| ≥ q∗ −
̺2

iη
= f ∗ −

̺2

iη
.

2.4.3.2 Dual Space Information Analysis

Property 1) in Theorem 1 indicates that our algorithm cannot guarantee abso-

lute primal feasibility, although the constraint violation keeps decreasing as our

algorithm iterates. In this subsection, we specifically analyze the load constraint

violation using dual space information.
36

Next we define two metrics to quantify the node max load violation and

the node load balance violation.

For node u, we define the node max load ratio by

R(i)
m (u) =

∑i−1
m=0

∑

k∈[1,K] b
(m)
k (u)

iMmax(u)
, (2.36)

and the node load balance ratio by

R(i)
b (u) =

∑i−1
m=0

∑

k∈[1,K](b
(m)
k (u)− b(m)

k (v))

iBmax(u, v)
. (2.37)

We have the following theorem to bound these two ratios at each iteration

using dual space information.

Theorem 2. For any i ≥ 1,

R(i)
m (u) ≤ 1 +

µ(i)(u) + η
∑

k∈[1,K] b
(0)
k (u)

iMmax(u)η
; (2.38)

R(i)
b (u) ≤ 1+

ω(i)(u, v)+η
∑

k∈[1,K]

(

b
(0)
k (u)−b(0)k (v)

)

iBmax(u, v)η
. (2.39)

�

Interpretation. Theorem 2 shows the bounds on the node max load ratio and

the node load balance ratio using dual variables. According to Lemma 1, it is

easy to verify that µ(i)(u) and ω(i)(u, v) are bounded by L. Therefore, the upper

bounds on the node max load ratio and the node load balance ratio approach 1

at the rate of 1
i
.

Proof. We use τ to denote the length of each iteration. Let N (i)(u) =
∑i−1

m=0 τ
(

∑

k∈[1,K] b
(m)
k (u) −Mmax(u)) and A = η

(

∑

k∈[1,K] b
(0)
k (u)−Mmax(u)

)

.

We claim that for i ≥ 1

N (i)(u) ≤
τ

η
µ(i)(u) +

τ

η
A. (2.40)

37

Since µ(i)(u) ≥ 0, Inequality (2.40) trivially holds for i = 1. Suppose that

Inequality (2.40) holds for some i ≥ 1. We will prove that Inequality (2.40) also

holds for i+ 1 as follows.

N (i+1)(u) = N (i)(u) + τ





∑

k∈[1,K]

b
(i)
k (u)−Mmax(u)





≤
τ

η
µ(i)(u) +

τ

η
A+ τ





∑

k∈[1,K]

b
(i)
k (u)−Mmax(u)





≤
τ

η



µ(i)(u) + η





∑

k∈[1,K]

b
(i)
k (u)−Mmax(u)









+

+
τ

η
A

=
τ

η
µ(i+1)(u) +

τ

η
A.

Therefore, claim (2.40) is proved. This claim further implies that

∑i−1
m=0

∑

k∈[1,K] b
(m)
k (u)

iMmax(u)
≤ 1 +

µ(i)(u) + A

iMmax(u)η
. (2.41)

Therefore, Inequality (2.38) is proved. The proof of Inequality (2.39) is similar

and thus omitted.

2.4.4 Discussion

In this subsection, we discuss some practical issues.

Mixed-duplex networks In this work, we assume that all the nodes are equipped

with full-duplex transceivers. In practice, some nodes may be equipped with tradi-

tional half-duplex transceivers. We call such wireless networks, where each node is

equipped with either a half-duplex transceiver or a full-duplex tran-sceiver, mixed-

duplex networks. According to the collision-free broadcast model (i.e., Inequality

(4) in [115]), we know that for traditional half-duplex wireless networks, the node

38

average broadcast rate should satisfy

∑

m∈[1,K]

bm(u) +
∑

m∈[1,K]

∑

v∈R(u)

bm(v) ≤ C, ∀u ∈ V \ sk. (2.42)

Combining Inequalities (2.42) and (2.8), we know that for a mixed-duplex network,

the node average broadcast rate should satisfy

∑

m∈[1,K]

D(u)bm(u) +
∑

m∈[1,K]

∑

v∈R(u)

bm(v) ≤ C, ∀u ∈ V \ sk, (2.43)

where D(u) is a binary indicator variable, which is equal to 1 if u is equipped

with a half-duplex transceiver, and 0 otherwise. Therefore, to solve UPOP and

NPCOP for mixed-duplex networks, Constraint (2.16) in System 1 and System 2

should be replaced by Constraint (2.43). We can use distributed algorithms that

are similar to Pathbook-I and Pathbook-II to solve these two optimization systems

for mixed-duplex networks, respectively.

Transmission credit mechanism For each user k, our solution tells each node

the optimized information rate rk(u)=
∑

(u,v)∈E rk(u, v) and the optimized broad-

cast rate bk(u). We assume that a node should be triggered to transmit only when

it receives a packet, and should perform the transmission only when the MAC

permits. We need a transmission credit TXk(u), computed as TXk(u)=
bk(u)
rk(u)

if

rk(u)>0 and 0 otherwise. Once node u receives an innovative packet (defined in

Section 2.2.1) for user k from an upstream node, node u increments the associated

credit counter for user k by TXk(u). When a transmission is allowed by the MAC,

node u selects a user to serve by using a weighted round-robin algorithm [49] with

each user k having a weight of rk(u)
∑

i∈[1,K] ri(u)
. Node u then checks whether the

credit counter associated with this user is positive. If positive, node u generates a

coded packet, broadcasts this packet, and decrements the credit counter by one.

Otherwise, it picks a different user. If all the credit counters are non-positive,
39

node u keeps silent. Since a full-duplex MAC is still an open research area, our

transmission credit mechanism also provides a possible way to integrate our work

into some future full-duplex MACs.

Computing feasible minimum user rates The minimum user rates should

be carefully selected so that no user will request a minimum user rate demand

that is too large. Otherwise, the resources in the network may not satisfy these

users’ requirements. We propose the following two computation methods.

When a network is being deployed, the network administrator needs to

initially analyze this network and compute the max-min user rate Λ̂. The following

system provides a way to compute the max-min user rate.

System3(−→r ,
−→
b) :

max Λ̂,

s.t. (2.15)− (2.19) and λk ≥ Λ̂, ∀k ∈ [1, K].

It is easy to see that if each node sets its minimum user rate demand to a value

less than Λ̂, System 2 has a feasible solution. Although it seems that this method

uses a central network administrator to solve System 3, this mechanism is still

practical, since we only need to compute the max-min user rate once in the initial

phase. Thus users can still adaptively adjust their minimum user rate demands

when this network is being used. The nodes can also adjust their constraints as

long as these constraints are not tighter than those used in System 3. Therefore,

whenever the minimum user rate demands and node constraints change, the run-

time optimization for System 2 can still be done in a distributed manner.

Although the first method is very efficient, a central administrator is in-

volved. An alternative method is using System 1 as a starting point to estimate
40

the feasible minimum user rate demands. Specifically, users and nodes first run

Pathbook-I to solve System 1. After enough iterations, a solution is obtained.

Based on this solution, users can estimate the feasible minimum user rate de-

mands. In order to obtain fair minimum user rate demands, we can compute a

Nash bargaining point [29] of user rates by setting Uk(λk) = lnλk and σk(u) = 0.

The current solution to System 1 is a Nash bargaining point which captures the

notion of social efficiency and fairness.

Information exchanges We first consider the information exchanges for main-

taining node load balance. To set up a load balance area, each node runs a dis-

tributed node discovery algorithm [39] to discover other nodes (such as H-hop

neighbors). Through our previous analysis, we know that a large load balance

area will lead to many information exchanges. The following scheme can be used

to reduce the information exchanges by roughly reducing the overlap among the

load balance areas of different nodes. Suppose that node u1 wants to keep a bal-

anced load with node u2 (i.e. |b(u1)− b(u2)| ≤ Bmax(u1, u2)), and that u1 knows

another node u3 (closer to u1 than u2 with respect to hops) has a constraint

|b(u2)−b(u3)| ≤ Bmax(u2, u3) and Bmax(u1, u2) ≥ Bmax(u2, u3). Node u1 hence sets

|b(u1) − b(u3)| ≤ Bmax(u1, u3) = min{Bmax(u1, u3),Bmax(u1, u2) − Bmax(u2, u3)},

and excludes u2 from its load balance area. The information exchange between

u1 and u2 is hence not needed any more.

We now consider other information exchanges. In each iteration, each node

broadcasts the iteration stepsize, the iteration interval, the stopping criterion, the

information of the current iteration (i.e. computed user and node behaviors, and

Lagrange multipliers). Other nodes can hence obtain the necessary information

for the next iteration by overhearing others’ broadcasts. Considering that network

41

topology and user sessions may change, we can divide the timeline into a sequence

of intervals of a constant length. All the nodes and users roughly restart Pathbook-

I or Pathbook-II at the beginning of each interval.

Extensions The analytical model and system used in this work may be ex-

tensible when new requirements are taken into account. Here we present two

extensions.

The fist extension is looking for a Nash bargaining point [29] of user utility

Uk(λk), which can be formulated as

System4(−→r ,
−→
b) :

max
∑

k∈[1,K]

lnUk(λk), s.t.(2.15)− (2.19).

Note that a Nash bargaining point captures the notion of social efficiency and

fairness. In order to solve this system using Pathbook-I, we can assume that all

the σk(u)’s in System 1 are 0, and that Uk(λk) in System 1 actually is equal to

lnUk(λk) in System 4. In this way, we can use Pathbook-I to solve System 4.

The second extension is optimizing the user profit subject to an additional

user power consumption constraint
∑

u∈V \dk
l(u)bk(u) ≤ ck. This problem can be

formulated as

System5(−→r ,
−→
b) :

max
∑

k∈[1,K]

(

Uk(λk)−
∑

u∈V \dk

σk(u)bk(u)
)

,

s.t. (2.15)− (2.19), and
∑

u∈V \dk

l(u)bk(u) ≤ ck.

A distributed algorithm similar to Pathbook-I can be applied to solve this problem

and the details are hence omitted.

42

2.5 Performance Evaluation

We implemented OMR and compared its performance with that of an implementa-

tion of MORE [9]. Since to the best of our knowledge our work represents the first

attempt towards the design of joint optimization algorithms on MAC and routing

for full-duplex wireless networks, we assume that the nodes in MORE still adopt

half-duplex transmission. We uniformly distributed 20 nodes in a 1000m×1000m

square region. As in [27], we assume that the packet delivery ratio from a node

u to a node v is inversely proportional to their distance d(u, v) with a random

Gaussian deviation of 0.1. If this packet delivery ratio is greater than 0.1, we say

that v is in u’s transmission range. We set the channel capacity C to 1Mbps. The

number of users was chosen to be 1, 2, 4, and 8. For each user, we randomly chose

two different nodes as its source and destination. In Fig.2.2, NMLC and NLBC

denote the case where node max load constraints were not considered and the

case where node load balance constraints were not considered, respectively. For

node max load constraints, we normally generated each node u’s Mmax(u) with

a mean of mMbps and a variance of σMbps. Although u has its maximum load

constraint Mmax(u), in our experiments we allowed the real broadcast rates to

be greater than Mmax(u). We computed a violation ratio b(u)
Mmax(u)

for each node

to quantify the constraint violation. We chose among all the nodes the worst

(largest) violation ratio as the network violation ratio. In Fig.2.2, we use ρ to

denote the load balance area range of each node. If d(u, v)≤ρ, u(or v) is in v(or

u)’s load balance area. In order to quantify the load balance improvement, we

used the fairness index proposed in [45], defined by F =
(
∑

u∈V b(u))
2

|V |
∑

u∈V b(u)2
.

Figs. 2.2a-2.2c compare the results obtained by using MORE and Pathbook-

I. We used ln (1 + λk) as user k’s utility function, and the service price σk(u) was

43

set to 0.01 per Mbps. If u (or v) was in v (or u)’s load balance area, Bmax(u, v)

and Bmax(v, u) were set to 0.001χ×d(u, v)Mbps, where the value of χ is shown

in figures. In the experiments, all the users in MORE selfishly tried to transmit

data as much as possible. Fig. 2.2a shows that compared with MORE, Pathbook-

I increases total user profit by 6%-175% when no node constraint is considered.

Figs. 2.2b-2.2c show that Pathbook-I achieves 37%-67% smaller network violation

ratio and 9%-57% higher node load fairness index. This significant performance

improvement is as expected, because our analytical system considers joint resource

allocation by optimizing both users and nodes behaviors.

Figs. 2.2d-2.2f compare the results obtained by using MORE and Pathbook-

II. The minimum user rate demands were set to 0.01Mbps for all the users. If u

(or v) was in v (or u)’s load balance area, Bmax(u, v) and Bmax(v, u) were set to

0.0001χ×d(u, v)Mbps, where the value of χ is shown in figures. The power con-

sumption ratio l(u) was randomly chosen from (0, 1] for each node u. Note that

although full-duplex transmission introduces more operations [17], we can still

assume that a node’s power consumption ratios are the same in both half-duplex

and full-duplex modes. This is because the major power consumption comes from

the data transmission, and although two transmit antennas are being used by a

full-duplex node [17], each transmit antenna radiates half the power in order to

ensure the same total radiated power as with one transmit antenna used in the

half-duplex operation. We define a metric, called network power efficiency, which

is computed as
∑K

k=1 λk/P(
−→
b). It represents the achieved total user rate per unit

power consumption. In Figs. 2.2d-2.2f “MORE-limited” and “MORE-unlimited”

represent the case where all the users transmitted data following their minimum

user rate demands, and the case where all the users selfishly tried to transmit

data as much as possible, respectively. As shown in Figs. 2.2d-2.2f, we observe

44

1 2 4 8
0

0.2

0.4

T
o

ta
l
u

s
e

r
p

ro
fi
t

Number of users

MORE

Pathbook−I(NMLC, NLBC)

Pathbook−I((m, σ)= (0.1, 0.05), NLBC)

Pathbook−I(NMLC, (ρ=300, χ=1))

Pathbook−I(NMLC, (ρ=300, χ=0.5))

(a) Total user profit (System 1)

1 2 4 8
0

1

2

3

4

N
e

tw
o

rk
 v

io
la

ti
o

n
 r

a
ti
o

Number of users

More

Pathbook−I((m, σ)= (0.1, 0.05), NLBC)

(b) Network violation ratio (System 1)

1 2 4 8
0

0.25

0.5

0.75

1

N
o

d
e

 l
o

a
d

 f
a

ir
n

e
s
s
 i
n

d
e

x

Number of users

More

Pathbook−I(NMLC, (ρ=300, χ=1))

Pathbook−I(NMLC, (ρ=300, χ=0.5))

(c) Node load fairness index (System 1)

1 2 4 8
0

2

4

6

N
e

tw
o

rk
 p

o
w

e
r

e
ff
ic

ie
n

c
y

Number of users

MORE−limited
MORE−unlimited
Pathbook−II(NMLC, NLBC)

Pathbook−II((m, σ)= (0.1, 0.05), NLBC)

Pathbook−II(NMLC, (ρ=300, χ=1))

Pathbook−II(NMLC, (ρ=300, χ=0.5))

(d) Network power efficiency (System 2)

1 2 4 8
0

2

4

6

N
e
tw

o
rk

 v
io

la
ti
o
n
 r

a
ti
o

Number of users

More−limited
More−unlimited

Pathbook−II((m, σ)= (0.1, 0.05), NLBC)

(e) Network violation ratio (System 2)

1 2 4 8
0

0.25

0.5

0.75

1

N
o
d
e
 l
o
a
d
 f

a
ir
n
e
s
s
 i
n
d
e
x

Number of users

More−limited

More−unlimited

Pathbook−II(NMLC, (ρ=300, χ=1))

Pathbook−II(NMLC, (ρ=300, χ=0.5))

(f) Node load fairness index (System 2)

Figure 2.2: Numerical results

that compared with MORE-limited, Pathbook-II achieves 10%-24% higher net-

work power efficiency (when no node constraint is considered), 21%-35% smaller

network violation ratio, and 6%-41% higher node load fairness index (when the

number of users is no less than 2). Compared with MORE-unlimited, Pathbook-II

achieves 10%-183% higher network power efficiency, much smaller network viola-

tion ratio, and 15%-135% higher fairness index.

2.6 Conclusion

In this work, we have studied cross-layer optimization of MAC and routing in

full-duplex wireless networks, comprehensively considering various resource and

social constraints. We have proposed a collision-free full-duplex broadcast MAC

45

and proved its necessary and sufficient conditions. We have concentrated on the

user profit optimization problem and the network power consumption optimiza-

tion problem, and have formulated these two problems as convex programming

systems. By combining Lagrangian decomposition and subgradient methods, we

have proposed distributed iterative algorithms to solve these two systems, which

compute the optimized user information flow (i.e. user behavior) for the network

layer and the optimized node broadcast rate (i.e. node behavior) for the MAC

layer. Our algorithms allow each user and each node to adjust its behavior indi-

vidually in each iteration. We have analyzed the algorithm convergence, and have

provided bounds on the amount of constraint violation, and the gap between our

solution and the optimal solution at each iteration. We have also used the dual

space information to analyze the node load constraint violation at each iteration.

Simulation results show that our algorithm can significantly increase user profit,

node load fairness and network power efficiency, and reduce network violation

ratio.

46

Chapter 3

RACER: Resource Allocation in Load-Constrained Multihop Wireless Networks

3.1 Introduction

3.1.1 Motivation

The fact that the wireless spectrum is a limited resource motivates us to investi-

gate how to use wireless resources effectively. A wireless network has two kinds of

network entities – users and nodes, where a user maintains a session (multipath

flow) from a source node to a destination node, and uses intermediate nodes to

forward the packets.

From the perspective of users, first, a user can obtain an amount of utility

if a certain information rate is allocated to it. An optimized user transmission

rate can not only stabilize a network (without causing network congestion) but

also improve the actual obtained utility. Second, when there exist multiple users

in a wireless network, we have to solve the resource competition among users in

order to improve the total resource utilization, since individual user behaviors

may not lead to a global optimum. Third, different users may belong to different

quality of service (QoS) classes and may have different user QoS rate constraints.

One typical requirement is that the achievable information rate by each QoS class

must be in a range prescribed in the service level agreement [80]. Therefore, a

resource allocation mechanism needs to differentiate users in different QoS classes.

From the perspective of nodes, we consider two kinds of node constraints

that will affect node behaviors. These constraints characterize node individual

requirements and social requirements, respectively. The first constraint is called

node max load constraint, i.e., the maximum load this node is willing to carry.

This constraint is of importance because each node may have its own transmission

47

capacity limit or energy consumption concern. The second constraint is called

node load balance constraint. Load balancing is regarded as an important issue in

network design and optimization [28, 30, 74, 84, 85, 117]. Without considering the

node load balance, the traditional routing design methodology, that the shortest

route is always chosen, may result in congestion on the center of a network or

hotspots. A congested area or a hotspot will drain the energy from the nodes in

these areas much faster [57, 74]. We introduce the node load balance constraint

to control the load relationships among nodes. A node may set a maximum

allowed load difference compared with other nodes, such as H-hop neighbors.

This constraint ensures that a node will not carry too much more load than other

nodes, and hence smooths the load among different nodes.

From the perspective of both users and nodes, a node may set a service

level it is willing to provide for a user. This is called node-user load constraint.

For example, after receiving the bandwidth requests from users, a node decides

the largest bandwidth it may provide for each user according to these requests

and its own interest. This constraint profiles a social relationship between users

and nodes with respect to loads.

These four constraints (user QoS rate constraints, node max load con-

straints, node load balance constraints, and node-user load constraints) are called

the load constraints of a wireless network. A multihop wireless network with

load constraints is called a load-constrained multihop wireless network. Note that

we do not require all the network entities to have these constraints. We inte-

grate these constraints into a network for a practical purpose, i.e., they provide

heterogeneous network entities with the flexibility to adjust their individual re-

quirements (user QoS rate constraint and node max load constraint) and social

requirements (node load balance constraint and node-user load constraint). How-

48

ever, integrating these constraints makes resource allocation much harder due to

the complicated relationships introduced among the network entities.

In this work, we study the problem of allocating network resources to

maximize the total user utility in a load-constrained wireless network.

3.1.2 Contribution

Our contribution is two-fold. The first contribution is a theoretical optimization

framework, which may be applicable for many networking optimization problems.

We propose a new subgradient optimization framework that has the following

property. Given an approximation/optimal algorithm for solving the subproblem

at each iteration, the framework leads to a result that can provide the following

bounds at each iteration: (a) the bounds on the Lagrangian multipliers; (b) the

bound on the amount of feasibility violation of the generated primal solutions;

and (c) the upper and lower bounds on the gap between the optimal solution and

the generated primal solutions. Note that standard subgradient methods require

one to solve a sub-problem optimally at each iteration. However, in practice this

sub-problem could be an NP-hard problem, which makes efficiently computing an

optimal solution impossible. This problem was studied by Lin and Shroff [63] and

Chen et al. [13]. However, the focus of these works is more on the asymptotic

behavior of the primal sequences. Our framework further advances this research

by providing fine-grained convergence, optimality, and dual space information at

each iteration. We believe that this framework can provide a useful theoretical

foundation for many networking optimization problems.

Second, we formulate the resource allocation problem as a convex pro-

gramming system. Based on our α-approximation dual subgradient algorithm, we

present a distributed iterative algorithm, which allows each user and each node

49

to individually adjust its own behavior in each iteration period. This feature is

of great importance for network scalability and self-organization. We prove the

bounds on the amount of feasibility violation and the gap between our solution

and the optimal solution at each iteration. We provide the bounds on node queue

lengths, user utility deficits, and node load violation ratios at each iteration using

dual space information.

3.1.3 Related Work

3.1.3.1 Network Resource Optimization

Optimizing network utility is an important objective in networking applications

[13, 26, 47, 63, 64, 67, 68, 80, 81, 95, 106] (see Chiang et al. [16] and Shakkottai and

Srikant [95] for more discussions on this subject). In this work, we extend the

scope of resource allocation to load-constrained wireless networks, considering

various resource and social requirements.

Note that in literature there are some works focused on network load op-

timization to improve, for example, energy efficiency, load balance, and network

lifetime. Chang and Tassiulas [10] used linear programming to capture the issue

of power consumption. Ganjali and Keshavarzian [30] showed that multi-path

routing can balance loads only if a very large number of paths are used. Popa et

al. [85] showed that an optimum routing scheme based on the shortest paths can

be computed by using linear programming. Fang et al. [28] studied the optimiza-

tion of opportunistic routing subject to node constraints. Zorzi and Rao [117]

solved the energy efficiency issues by balancing the load reactively.

The difference between our work and the above line of research is that we

study the utility optimization problem taking into account various network entity

resource and social requirements. We present a distributed resource allocation

50

algorithm with provable bounds on the gap between our solution and the optimal

solution, queue lengths, user utility deficits, and node load violation ratios at each

iteration.

3.1.3.2 Subgradient Methods

In networking applications, subgradient methods have been used with great suc-

cess in developing distributed cross-layer resource allocation mechanisms (e.g.

[13,28,47,62,63,68,80,81,95,115]). See Nedić and Ozdaglar [78] for more discus-

sions on various schemes in the subgradient method family. Typically, standard

subgradient methods require one to optimally solve a sub-problem at each itera-

tion. However, in practice solving this sub-problem in a polynomial time may be

impossible. Lin and Shroff [63] and Chen et al. [13] show such applications: the

scheduling component in the optimal cross-layered rate control scheme requires

solving at each iteration a global optimization problem that is usually quite diffi-

cult.

Taking advantage of the primary solution recovery technique in [78], we

present an α-approximation dual subgradient algorithm, in which an approxima-

tion to the sub-problem at each iteration is allowed to be used. Our technique

enables us to prove a bound on the Lagrange multipliers, a bound on the amount

of feasibility violation, and upper and lower bounds on our solution at each it-

eration. Note that the scheme in [78] is a special case of our algorithm (i.e.,

α = 1).

51

3.2 Model

3.2.1 Wireless Network Model

We consider a multi-hop wireless network with K users. We model the wireless

network as a directed graph G = (V, E), where E is a set of links and V is a

set of nodes. For each user, a distributed node pre-selection procedure (e.g. [9])

is performed to add the nodes, which are reachable from the source node of this

user and can reach its destination node, into its intermediate forwarder set.

Let G(Vk, Ek) denote the resulting topology for user k, where Vk and Ek,

respectively, are the set of nodes and the set of directed links involved in the

session of user k. Let rk(u, v) (or rk(e), respectively) denote the rate of user

k’s flow on link (u, v) (or link e, respectively). We use Rk(u)=
∑

(u,v)∈Ek
rk(u, v)

(Rk(u)=
∑

(v,u)∈Ek
rk(v, u), respectively) to denote the rate of user k’s flow outgo-

ing from (incoming to, respectively) node u ∈ Vk. For notation consistency, Rk(u)

and Rk(u) are set to 0 if u /∈ Vk, and rk(u, v) is set to 0 if (u, v) /∈ Ek. Let R(u)

denote
∑K

k=1Rk(u). Let λk, sk, and dk denote the information rate, the source,

and the destination of user k. We use the following to model the flow of user

k = 1, ..., K:

Rk(u)− Rk(u)− hk(u) ≥ 0, ∀u ∈ Vk, (3.1)

where hk(u) equals λk if u = sk, −λk if u = dk, and 0 otherwise. For user k,

(3.1) specifies the relationship among the rates of incoming flow Rk(u), outgoing

flow Rk(u), and generating flow hk(u) at each node u ∈ Vk. It is similar to

the multicommodity flow model for the resource allocation rate constraint used

in [13, 62].

52

3.2.2 Scheduling Model

Due to the wireless link interference, we need to consider the scheduling feasibility

problem. In this work, we focus on the following two interference models.

3.2.2.1 General Interference Model (GIM)

We consider two widely used interference models: Protocol Model (PM) [36, 43,

104] and RTS/CTS Model (RCM) [3, 13, 43, 104]. In PM, when there is a single

wireless channel, a transmission from node u to node v is successful if and only if

1) v is in u’s transmission range and 2) v is not in the interference range of any

other transmitting node. In RCM, for every pair of simultaneous communication

links (say (u, v) and (w, y)), it should satisfy that 1) they are four distinct nodes;

and 2) neither u nor v is in the interference ranges of w or y, and vice versa. In

brief, for a successful transmission, PM requires only the receiver to be free of

interference, while RCM requires both the sender and the receiver to be free of

interference (e.g. in 802.11 MAC).

3.2.2.2 Primary Interference Model (PIM)

PIM, also known as node-exclusive spectrum sharing, has also been widely used

in literature [5, 8, 12, 13, 35, 37, 52, 63, 75, 96, 102, 111]. In this model, links that

share a common node cannot transmit simultaneously, but links that do not share

nodes can do so. PIM, for example, models a wireless network with multiple

frequencies/codes available for transmission (using FDMA/CDMA), and enables

parallel communications in a neighborhood using such orthogonal FDMA/CDMA

channels. See [102] for more discussions.

For PM, RCM, and PIM, we can use standard techniques [13, 43] to con-

53

struct a conflict graph CG to capture the contention relations among different

links. Each vertex in CG represents a link in the original graph G(V, E), and an

edge between two vertices represents the conflict between the two corresponding

links in G(V, E): these links cannot transmit at the same time in the correspond-

ing interference models (i.e. PM, RCM, or PIM). We will use the terms node and

link in reference to G(V, E) while reserving the terms vertex and edge for CG.

Each independent set in CG represents a set of links in G(V, E) that can

transmit simultaneously without collision. Note that an independent set is a

set of vertices which are pairwise non-adjacent. Let I denote the set of all the

independent sets in CG, and let C(e) denote the capacity of link e∈E. We denote

an independent set I∈I as an |E|-dimensional rate vector ~rI , where the e-th

entry is ~rI(e)=C(e) if link e’s corresponding vertex over CG is in I, and ~rI(e)=0

otherwise. Thus, the feasible region
∏

of an |E|-dimensional link rate vector ~r,

whose e-th entry is
∑K

k=1 rk(e), is defined by the convex hull of these rate vectors:

∏

= {~r : ~r =
∑

I∈I

cI~rI , cI ≥ 0,
∑

I∈I

cI = 1}. (3.2)

For example, we have a network with three links e1, e2, and e3, whose

capacities are 1, 2, and 3, respectively. Suppose that {e1}, {e2}, {e3}, and {e1, e3}

form all the independent sets I1, I2, I3, and I4 in CG. Then, ~rI1=(1, 0, 0), ~rI2=(0,

2, 0), ~rI3=(0, 0, 3), and ~rI4=(1, 0, 3). The feasible region
∏

= {~r : ~r = cI1~rI1 +

cI2~rI2 + cI3~rI3 + cI4~rI4, cI1 ≥ 0, cI2 ≥ 0, cI3 ≥ 0, cI4 ≥ 0, cI1 + cI2 + cI3 + cI4 = 1}.

3.2.3 User Utility Model

If an information rate λk is allocated to user k, then user k can have a utility of

Uk (λk), where the user-defined Uk (·) is an increasing, concave, and continually
54

differentiable function, and Uk (0) = 0.

3.2.4 Load Constraint Model

We consider four constraints.

User QoS Rate Constraint We consider the following requirement: the user

rate achieved by each QoS class cannot exceed a limit prescribed in the service

level agreement. For example, in a network preferring to allocate resources to

realtime services, a video service may have a higher rate limit while other non-

realtime services, such as FTP, may have a lower rate limit. This requirement can

be formulated as:

λk ≤ Qk, ∀k ∈ [1, K], (3.3)

where Qk > 0 is the rate limit set for user k.

Node Max Load Constraint The node max load constraint can be expressed

as:

R(u) ≤M(u), ∀u ∈ V, (3.4)

where M(u)>0 is the max load that node u is willing to carry.

Node Load Balance Constraint A node may set a limit on at most how much

more of the load it is willing to carry, compared with other nodes (such as H-hop

neighbors). We use A(u) to denote the set of such nodes (called load balance

area), which node u wants to keep balanced load with. Thus, this constraint can

be expressed as:

R(u)−R(w) ≤ B(u, w), ∀w ∈ A(u), ∀u ∈ V, (3.5)
55

where B(u, w)>0 is set by node u, which denotes at most how much more of the

load u is willing to carry, compared with that carried by w∈A(u). We assume that

w ∈ A(u) ⇔ u ∈ A(w) and B(u, w) = B(w, u) to simplify the expressions in the

following sections. However, there would be no big difference for the algorithm if

this assumption does not hold.

Node-User Rate Constraint The rate requirement enforced by node u on

user k can be expressed as:

Rk(u) ≤ Nk(u), ∀u ∈ Vk, ∀k ∈ [1, K], (3.6)

where Nk(u) > 0 is the rate limit on the information flow of user k that goes

through node u.

3.3 Problem Formulation

Based on the models above, we formulate our resource allocation problem as the

following convex programming:

max U(~λ) =

K
∑

k=1

Uk (λk) (3.7)

s.t. Rk(u)−Rk(u)−hk(u) ≥ 0, ∀u ∈ Vk, ∀k ∈ [1, K]; (3.8)

λk ≤ Qk, ∀k ∈ [1, K]; (3.9)

R(u) ≤ M(u), ∀u ∈ V; (3.10)

R(u)−R(w) ≤ B(u, w), ∀w ∈ A(u), ∀u ∈ V; (3.11)

Rk(u) ≤ Nk(u), ∀u ∈ Vk, ∀k ∈ [1, K]; (3.12)

over ~r ∈
∏

. (3.13)

56

Remark:

1. We do not require all the users and all the nodes to have all of these con-

straints. In that case, we remove the corresponding constraints from the

system above.

2. Although this system can be solved using traditional convex programming

techniques [7], a distributed algorithm is preferable for the purpose of prac-

tical implementations. We next present a distributed iterative algorithm

and analyze its performance at each iteration.

3. If we want to consider the proportional fairness among users [115], we can

replace the objective function
∑K

k=1 Uk (λk) by
∑K

k=1 logUk (λk). The algo-

rithm solving this objective is similar to the distributed algorithm solving

the above system.

3.4 α-Approximation Dual Subgradient Method

We first present a new subgradient method framework, which lays the foundation

of our resource allocation algorithm.

3.4.1 Algorithm Description

The primal problem is the following:

min f(~x), s.t. g(~x) � 0, over: ~x ∈ ~X, (3.14)

where ~X∈RN is a nonempty compact N -dimensional convex set, f(·):RN 7→ R is

a convex function, g(·) = (g1(·), g2(·), ..., gρ(·))T , and each gj(·):RN 7→R is a convex

function. Note that (·)T denotes the transpose of (·).

57

The dual problem is the following:

max q(~δ) = inf
~x∈ ~X

(

L(~x,~δ)
)

s.t. ~δ � 0, over: ~δ ∈ Rρ,

where L(~x,~δ) = f(~x) + ~δ · g(~x) is the Lagrangian of the primal problem, and ~δ is

the vector of the Lagrange multipliers.

Our α-ADSA is shown in Algorithm 1. It is an iterative algorithm. Given

an approximation/optimal algorithm for solving the subproblem at each iteration,

this framework leads to a result that can provide the following bounds at each

iteration: (a) the bounds on the Lagrangian multipliers; (b) the bound on the

amount of feasibility violation of the generated primal solutions; (c) the upper

and lower bounds on the gap between the optimal solution and the generated

primal solutions.

Algorithm 1 α-Approximation Dual Subgradient Algorithm

Output: a sequence of vectors x̂(i), i = 1, ...
1: i← 0
2: while the stopping criteria have not been reached do
3: i← i+ 1, x̂(i) = 1

i

∑i−1
m=0 ~x

(m)

4: update Lagrange multiplier: ~δ(i)=[~δ(i−1) +ηg(~x(i−1))]+

5: try to minimize L(~x,~δ(i)) over ~x∈ ~X: compute ~x(i) such that L(~x(i), ~δ(i)) ≤

α · inf~x∈ ~X L(~x,~δ(i)) = αq(~δ(i))
6: end while

In iteration 1, from a starting point (~x(0), ~δ(0)), we compute ~δ(1) (Line 4).

[·]+ denotes the projection to [0,+∞] (i.e., [~x]+ =(max(0, x1), ...,max(0, xN))T ,

where x1, ..., xN are elements of vector ~x). η is a constant step size. Based on

~δ(1), we compute ~x(1) (Line 5). In iteration 2, we compute ~δ(2) based on ~δ(1) and

~x(1), and then ~x(2) based on ~δ(2). This procedure continues until the stopping

criteria are reached. The primal solution x̂(i) in iteration i is generated by aver-

aging (Line 3). The difference between Algorithm 1 and the subgradient method
58

proposed by Nedić and Ozdaglar [78] is Line 5. Their scheme tries to find ~x(i)

such that L(~x(i), ~δ(i))=inf~x∈ ~X L(~x,~δ(i))=q(~δ(i)). However, sometimes it is impossi-

ble to achieve this efficiently. We allow an α-approximation to be integrated into

subgradient methods, as shown in Line 5. Note that α could be either in [1,+∞)

or (0, 1), since q(~δ(i)) could be either nonnegative or negative.

3.4.2 Algorithm Analysis

Theorem 3 shows the properties of Algorithm 1.

Theorem 3. If 1) the Euclidean norms of the subgradients are bounded by a

constant L (i.e. L = max~x∈ ~X ||g(~x)|| < ∞) and 2) there exists a vector ~xs that

satisfies Slater’s condition [7], then the following properties hold for all i ≥ 1:

1. ||~δ(i)|| is bounded by a constant ̺ = max{||~δ(0)||, 1
̟

(f(~xs) − q(~δ(0))
α

+ ηL2

2α
) +

ηL}+ 2
̟

(f(~xs)− q(~δ(0))), where ̟ = minj∈[1,ρ] (−gj(~xs)). Note that ̟ > 0,

as ~xs satisfies Slater’s condition [7].

2. The amount of constraint violation ||g(x̂(i))+|| is bounded by ̺

iη
.

3. f(x̂(i)) is upper bounded by αf ∗ + ||~δ(0)||2

2iη
+ ηL2

2
, where f ∗ is the optimal value

of the primal objective function.

4. f(x̂(i)) is lower bounded by f ∗−̺
2

iη
. �

Although α-ADSA is simple, the proof is quite involved.

Interpretation. 1) states that the Euclidean norm of the vector of the Lagrange

multipliers is bounded during the entire iteration process. 2) states that the

amount of feasibility violation of the primal solution so generated diminishes to

zero at the rate 1
i

as the number of iterations i increases. 3) and 4) imply that the

value of the primal solution so generated will enter an area [f ∗, αf ∗ + ηL2

2
] at the

59

rate 1
i
. Note that when α = 1, our algorithm becomes the algorithm presented in

Section 4 of [78], which converges to f ∗ within error level ηL2

2
at the rate 1

i
. We

can adjust η to obtain an arbitrarily small error at the cost of slowing down the

convergence rate.

Before proving Theorem 3, we need to give the following two lemmas.

Lemma 2. Consider that Slater’s condition holds. Let ~δS be a vector such that

the set S = {~δ ≥ 0|q(~δ) ≥ q(~δS)} is not empty. Then we have ||~δ|| ≤ 1
̟

(f(~xs) −

q(~δS)), ∀~δ ∈ S, where ̟ = minj∈[1,ρ] (−gj(~xs)) and ~xs is a Slater’s vector. �

This lemma is Lemma 1 in [78] but using our notations.

Lemma 3. For each i ≥ 0, ||~δ(i+1)−~δ||2 ≤ ||~δ(i)−~δ||2+η2||g(~x(i))||2+2η(αq(~δ(i))−

q(~δ)). �

Proof. First, we have

||~δ(i+1)−~δ||2= ||[~δ(i)+ηg(~x(i))]+−~δ||2≤||~δ(i)+ηg(~x(i))−~δ||2

= ||~δ(i) − ~δ||2 + 2ηg(~x(i)) · (~δ(i) − ~δ) + η2||g(~x(i))||2. (3.15)

Second, by Line 5 in Algorithm 1, we have f(~x(i)) +~δ(i) · g(~x(i)) ≤ αq(~δ(i)),

and by the definition of q(~δ), we know f(~x(i)) + ~δ · g(~x(i)) ≥ q(~δ). These two

inequalities imply that

αq(~δ(i)) ≥ f(~x(i)) + ~δ(i) · g(~x(i)) + ~δ · g(~x(i))− ~δ · g(~x(i))

≥ q(~δ) + ~δ(i) · g(~x(i))− ~δ · g(~x(i)).

Thus, we have g(~x(i)) · (~δ(i)−~δ) ≤ αq(~δ(i))−q(~δ). Substituting this inequality into

(3.15), we therefore prove this lemma.

60

Proof of Theorem 3.

1) Under Slater’s condition the optimal dual set is D∗ is not empty. Con-

sider the set S defined by S = {~δ ≥ 0|q(~δ) ≥ (q
∗

α
− ηL2

2α
)} which is nonempty in

view of D∗ ⊂ S, where q∗ is the optimal value of the dual problem. We fix an

arbitrary ~δ∗ ∈ D∗ and we first prove that for all i ≥ 0,

||~δ(i)−~δ∗|| ≤max{
1

̟
(f(~xs)−

q∗

α
+
ηL2

2α
) + ||~δ∗||+ ηL, ||~δ(0)−~δ∗||}. (3.16)

Recall that ̟ = minj∈[1,ρ] (−gj(~xs)). We will prove (3.16) by induction on i. It

obviously holds for i = 0. Assume that it holds for some i ≥ 0. We will prove

that it also holds for i+ 1. We consider two cases.

Case 1 : q(~δ(i)) ≥ q∗

α
− ηL2

2α
. We have

||~δ(i+1)−~δ∗||= ||[~δ(i)+ηg(~x(i))]+−~δ∗||≤||~δ(i)+ηg(~x(i))−~δ∗||

≤ ||~δ(i)||+ ||ηg(~x(i))||+ ||~δ∗|| ≤ ||~δ(i)||+ ηL+ ||~δ∗||.

Since q(~δ(i)) ≥ q∗

α
− ηL2

2α
, it follows that ~δ(i) ∈ S. By Lemma 2, ||~δ(i)|| ≤ 1

̟
(f(~xs)−

(q
∗

α
− ηL2

2α
)). We hence have ||~δ(i+1) − ~δ∗|| ≤ 1

̟
(f(~xs)− q∗

α
+ ηL2

2α
) + ηL+ ||~δ∗||.

Case 2 : q(~δ(i)) < q∗

α
− ηL2

2α
. By using Lemma 3 with ~δ = ~δ∗ ∈ D∗ and ||g(~x(i))||2 ≤

L2, we have

||~δ(i+1)−~δ∗||2≤||~δ(i)−~δ∗||2+η2||g(~x(i))||2+2η(αq(~δ(i))−q(~δ∗))

≤ ||~δ(i) − ~δ∗||2 + 2η(αq(~δ(i)) +
ηL2

2
− q∗) ≤ ||~δ(i) − ~δ∗||2.

Combining these two cases above, we have proved that (3.16) holds for all

i ≥ 0. Thus, we can further have

||~δ(i)|| ≤ ||~δ(i) − ~δ∗||+ ||~δ∗||

≤max

{

||~δ(0)−~δ∗||,
1

̟
(f(~xs)−

q∗

α
+
ηL2

2α
)+ηL+||~δ∗||

}

+||~δ∗||

≤max

{

||~δ(0)||,
1

̟
(f(~xs)−

q∗

α
+
ηL2

2α
) + ηL

}

+ 2||~δ∗||.

61

Considering D∗ = {~δ ≥ 0|q(~δ) ≥ q∗}, by Lemma 2, we know ||~δ∗|| ≤ 1
̟

(f(~xs)−q∗).

Therefore, for i ≥ 0 we have

||~δ(i)|| ≤ max{||~δ(0)||,
1

̟
(f(~xs)−

q∗

α
+
ηL2

2α
) + ηL}+

2

̟
(f(~xs)− q∗)

≤max{||~δ(0)||,
1

̟
(f(~xs)−

q(~δ(0))

α
+
ηL2

2α
)+ηL}+

2

̟
(f(~xs)−q(~δ(0))).(3.17)

We set ̺ = max{||~δ(0)||, 1
̟

(f(~xs)− q(~δ(0))
α

+ ηL2

2α
) + ηL}+ 2

̟
(f(~xs)− q(~δ(0))).

2) By Line 4 in Algorithm 1, we have ~δ(i+1) = [~δ(i) + ηg(~x(i))]+ ≥ ~δ(i) +

ηg(~x(i)) for i ≥ 0. We hence have ηg(~x(i)) ≤ ~δ(i+1) −~δ(i) for i ≥ 0. Summing them

up over until i−1, we have η
∑i−1

m=0 g(~x
(m)) ≤ ~δ(i)−~δ(0) ≤ ~δ(i) for i ≥ 1. Since each

of gj(·) is convex, we have for i ≥ 1, g(x̂(i)) = g(1
i

∑i−1
m=0 ~x

(m)) ≤ 1
i

∑i−1
m=0 g(~x

(m)) ≤

~δ(i)

ηi
. Considering ~δ(i) ≥ 0, we know g(x̂(i))+ ≤

~δ(i)

ηi
, for all i ≥ 1. By (3.17), we

hence have ||g(x̂(i))+|| ≤ ||~δ(i)||
ηi
≤ ̺

iη
, for i ≥ 1.

3) Since f(·) is convex, we know

f(x̂(i))≤
1

i

i−1
∑

m=0

f(~x(m))=
1

i

i−1
∑

m=0

(

f(~x(m)) + ~δ(m) · g(~x(m))
)

−
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)).(3.18)

Substituting f(~x(m)) + ~δ(m) · g(~x(m)) ≤ αq(~δ(m)) (by Line 5 in Algorithm 1) into

(3.18), we have

f(x̂(i)) ≤
1

i

i−1
∑

m=0

αq(~δ(m))−
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)).

≤ αq∗ −
1

i

i−1
∑

m=0

~δ(m) · g(~x(m)). (3.19)

Additionally, for m ≥ 0 we know

||~δ(m+1)||2=||[~δ(m)+ηg(~x(m))]+||2≤||~δ(m)+ηg(~x(m))||2

=||~δ(m)||2 + ||ηg(~x(m))||2 + 2η~δ(m) · g(~x(m)).

It implies −~δ(m) · g(~x(m)) ≤ ||~δ(m)||2+||ηg(~x(m))||2−||~δ(m+1)||2

2η
. Summing this inequality

over m ∈ [0, i − 1] for i ≥ 1, we have −1
i

∑i−1
m=0

~δ(m) · g(~x(m)) ≤ ||~δ(0)||2−||~δ(i)||2

2iη
+

η
∑i−1

m=0 ||g(~x(m))||2

2i
. Substituting this into (3.19), we have

62

f(x̂(i))≤ αq∗ +
||~δ(0)||2 − ||~δ(i)||2

2iη
+
η
∑i−1

m=0 ||g(~x
(m))||2

2i

≤ αq∗ +
||~δ(0)||2

2iη
+
ηL2

2
= αf ∗ +

||~δ(0)||2

2iη
+
ηL2

2
. (3.20)

Note that (3.20) holds because of Slater’s condition.

4) Given a dual optimal solution ~δ∗, we have

f(x̂(i))=f(x̂(i))+~δ∗·g(x̂(i))−~δ∗ ·g(x̂(i))≥q(~δ∗)−~δ∗ · g(x̂(i)).

Additionally, since ~δ∗ ≥ 0 and g(x̂(i))+ ≥ g(x̂(i)), we have

−~δ∗ · g(x̂(i)) ≥ −~δ∗ · g(x̂(i))+ ≥ −||~δ∗||||g(x̂(i))+||.

Combining the two inequalities above, we have f(x̂(i)) ≥ q(~δ∗)−||~δ∗||||g(x̂(i))+|| ≥

q∗ − ̺2

iη
= f ∗ − ̺2

iη
.

3.5 Distributed Resource Allocation Algorithm

In this subsection, we present a distributed iterative algorithm for solving our

resource allocation problem based on Algorithm 1.

3.5.1 Algorithm Description

We divide the timeline into a sequence of periods i=0, 1,· · · . In each period, our

algorithm iterates once. By Algorithm 1, in iteration period i ≥ 1, we need to

update Lagrange multipliers ~δ(i) (Line 4) and then compute ~x(i) (Line 5). The

details of these two operations are described in the following.

63

3.5.1.1 Lagrange Multiplier Update

By Line 4 of Algorithm 1, in iteration period i, we update the Lagrange multipliers

~δ(i)=((~α(i))T , (~β(i))T , (~ψ(i))T , (~ζ (i))T , (~θ(i))T)T as follows:

α
(i)
k (u)=

[

α
(i−1)
k (u)+η

(

h
(i−1)
k (u)−R(i−1)

k (u) +R
(i−1)

k (u)
)]+

,

β
(i)
k =

[

β
(i−1)
k + η

(

λ
(i−1)
k −Qk

)]+

,

ψ(i)(u) =
[

ψ(i−1)(u) + η
(

R(i−1)(u)−M(u)
)]+

,

ζ (i)(u, w)=
[

ζ (i−1)(u, w)+η
(

R(i−1)(u)−R(i−1)(w)−B(u, w)
)]+

,

θ
(i)
k (u) =

[

θ
(i−1)
k (u) + η

(

R
(i−1)
k (u)− Nk(u)

)]+

.

We now analyze what information is needed to update the Lagrange mul-

tipliers. Each node u can individually update α
(i)
k (u), ψ(i)(u), and θ

(i)
k (u). Each

user k can individually update β
(i)
k . In order to update ζ (i)(u, w), each node u

needs to know R(i−1)(w) of node w located in u’s load balance area. In practice,

a node can consider the set of its 1 or 2-hop neighbors as its load balance area.

In summary, updating Lagrange multipliers can be done in a distributed manner.

3.5.1.2 User Rate Control and Node Rate Control

Let us consider the Lagrangian of our primal problem:

L(~x,~δ) = L
(

(~λ T , ~r T)T , (~α T , ~β T , ~ψ T , ~ζ T , ~θ T)T
)

= −
K
∑

k=1

Uk (λk) +

K
∑

k=1

∑

u∈Vk

αk(u)
(

hk(u)−Rk(u)+Rk(u)
)

+
K
∑

k=1

βk (λk −Qk) +
∑

u∈V

ψ(u)(R(u)−M(u))

+
∑

u∈V

∑

w∈A(u)

ζ(u,w)(R(u)−R(w)−B(u, w))+
K
∑

k=1

∑

u∈Vk

θk(u)(Rk(u)−Nk(u)).

64

By Algorithm 1, in iteration period i, we need to find ~x(i) to minimize the

Lagrangian L(~x,~δ(i)). After some mathematical manipulations, minimizing the

above Lagrangian can be decomposed to solving the following two problems.

User k Rate Control Problem:

min −Uk
(

λ
(i)
k

)

+ (α
(i)
k (sk) + β

(i)
k − α

(i)
k (dk))λ

(i)
k , (3.21)

and Node Rate Control Problem:

min

K
∑

k=1

∑

u∈Vk

∑

(u,v)∈Ek

r
(i)
k (u, v)

(

−α(i)
k (u) + α

(i)
k (v) + ψ(i)(u)

+
∑

w∈A(u)

(ζ (i)(u, w)−ζ (i)(w, u)) + θ
(i)
k (u)

)

over ~r(i) ∈
∏

. (3.22)

Problem (3.21) can be easily solved by each user k. Hence, we next focus on

problem (3.22). Problem (3.22) is equivalent to

min −
∑

(u,v)∈E

r(i)(u, v) max
k∈[1,K]

(

α
(i)
k (u)− α(i)

k (v)− ψ(i)(u)

−
∑

w∈A(u)

(ζ (i)(u, w)− ζ (i)(w, u))− θ(i)
k (u)

)

over ~r(i) ∈
∏

. (3.23)

Note that if (u, v)/∈Ek, we remove the corresponding variables in (3.23) or set them

to 0. Let wu,v(i) denote maxk∈[1,K](α
(i)
k (u)−α(i)

k (v)−ψ(i)(u)−
∑

w∈A(u)(ζ
(i)(u, w)

−ζ (i)(w, u))−θ(i)
k (u)), and k∗ denote the corresponding k to achieve this maximum

value. Hence, (3.23) is rewritten as

minS(i)(~r(i))=−
∑

(u,v)∈E

r(i)(u, v)wu,v(i) over ~r(i)∈
∏

. (3.24)

Recall that the feasible region
∏

is the convex hull of the rate vectors con-

structed based on the independent sets in the conflict graph CG. This implies that

solving problem (3.24) is equivalent to finding a maximum weighted independent

set (MWIS) over CG, where the vertex corresponding to the link (u, v) in G(V, E)

has a weight r(i)(u, v)wu,v(i). However, finding an MWIS for a general graph is
65

NP-hard [4]. In the following, we will describe how to solve (3.24) for PIM and

GIM in a distributed manner, respectively.

PIM: Recall that in PIM there is a conflict between links which share

a common node. An MWIS in CG must correspond to a maximum weighted

matching (MWM) in G(V, E), since a matching is a set of links without common

nodes. Hence, solving (3.24) is equivalent to finding an MWM in G(V, E), where

the weight of link (u, v) is r(i)(u, v)wu,v(i). There exist polynomial-time distributed

approximation algorithms for this problem. We can use the distributed scheduling

algorithm in [13], which is based on [40], to solve this MWM problem. It finds a

matching in O(E) time, whose weight is at least 1/2 of that of the MWM. Hence,

in iteration period i, node u transmits information for user k∗ on link (u, v) at the

rate of C(u, v) if link (u, v) is in the resulting matching, and 0 otherwise. This

hence ensures that S(i)(~r(i)) ≤ 0.5S∗(i) ≤ 0, where S∗(i) is the optimal value of

(3.24) in PIM.

GIM: Different from PIM, for GIM we have to find an MWIS over CG.

This is an NP-hard problem for which even approximating in polynomial time is

NP-hard [4]. Moreover, finding an MWIS is very difficult to efficiently decentral-

ize in a general graph [60]. Thus, for the practical purpose we adopt the maximal

scheduling rather than maximum scheduling. More specifically, A maximal in-

dependent set is an independent set that is not properly contained in any other

independent set. We want to find a maximal independent set by choosing the

nodes of the set so to maximize the total weight (maximal weighted independent

set problem [4]). Note that the MWIS is the independent set with the biggest

weight among all the independent sets. Basagni [4] proposed a distributed algo-

rithm for the efficient determination of a maximal weighted independent set. This

algorithm is executed at each vertex in CG (i.e. each link in G(V, E)) with the

66

local topology knowledge required. Its time complexity is proven to be bounded

by the stability number of CG. Our extensive experiments show that it typically

achieves a weight which is at least 1/2 of that of the MWIS. Hence in iteration

period i, node u transmits information for user k∗ on link (u, v) at the rate of

C(u, v) if link (u, v) is in the resulting independent set, and 0 otherwise. This

ensures that S(i)(~r(i)) ≤ 0.5S∗(i) ≤ 0 in practice, where S∗(i) is the optimal value

of (3.24) in GIM.

Thus far, we have ~x(i)=((~λ(i))T , (~r(i))T)T . By Line 3 of Algorithm 1, we

need to generate the primal solution x̂(i) by computing 1
i

∑i−1
m=0 ~x

(m). However,

we do not need to explicitly generate x̂(i), because our algorithm has automatically

generated x̂(i) in the following sense: For the first i iteration periods, following

~x(0), ..., ~x(i−1) is equivalent to following x̂(i) in every iteration period, as ix̂(i) =
∑i−1

m=0 ~x
(m).

3.5.2 Algorithm Analysis

3.5.2.1 Optimality Analysis

We first show that a bound on the norm of subgradients exists and Slater’s con-

dition holds. Since our programming system is defined on a compact set, by [78]

we know that there exists a constant L<∞ such that L=max~x∈ ~X ||g(~x)||. Slater’s

condition also holds, since we can easily construct a strictly feasible solution by

assigning each user a small amount of information flow, which goes through all

the nodes involved in its session, so that constraints (3.9-3.13) hold. Additionally,

we need to ensure that at each involved node the rate of outgoing flow is a slightly

greater than its incoming rate so that (3.8) is strictly feasible.

We rewrite our objective programming system (i.e. (3.7)-(3.13)) to the

standard form (3.14) for brevity. Since the norm of subgradients is bounded and

67

Slater’s condition holds, the properties shown in Theorem 3 hold for our resource

allocation algorithm. Note that for PIM, α in Theorem 3 is 0.5. This is because

we decompose the minimization of Lagrangian into two problems (3.21), which

we solve optimally, and (3.24), for which we have S(i)(~r(i))≤0.5S∗(i)≤0. Hence,

we have L(~x(i), ~δ(i))≤0.5 inf
~x∈ ~X L(~x,~δ(i)). For a similar reason, the typical value

of α for GIM is 0.5 in practice.

3.5.2.2 Dual Space Information Analysis

In this subsection, we analyze the dual space information and its implication on

the algorithm performance.

Network: Queue Length and System Stability Suppose that the length

of each iteration period is τ . Let Q(i)
k (u) denote the length of the queue for user

k at node u at the beginning of iteration period i. Q(i)
k (u) is computed by:

Q(i)
k (u)=

[

Q(i−1)
k (u)+τ

(

h
(i−1)
k (u)−R(i−1)

k (u)+R
(i−1)

k (u)
)]+

,

where the initial queue length is Q(0)
k (u). The following theorem shows a bound

on the queue length.

Theorem 4. For any i ≥ 0

Q(i)
k (u) ≤

τ

η
α

(i)
k (u) +

[

Q(0)
k (u)−

τ

η
α

(0)
k (u)

]+

.� (3.25)

Proof. We prove (3.25) by mathematical induction. Inequality (3.25) is obviously

true for i = 0. Suppose that it holds for some i ≥ 0. Now we prove that this also

holds for i+ 1.

Q(i+1)
k (u) =

[

Q(i)
k (u) + τ

(

h
(i)
k (u)− R(i)

k (u) +R
(i)

k (u)
)]+

≤
τ

η

[

α
(i)
k (u) + η

(

h
(i)
k (u)−R(i)

k (u) +R
(i)

k (u)
)]+

+

[

Q(0)
k (u)−

τ

η
α

(0)
k (u)

]+

≤
τ

η
α

(i+1)
k (u)+

[

Q(0)
k (u)−

τ

η
α

(0)
k (u)

]+

.

68

Interpretation of Theorem 4. Theorem 4 shows a bound on the queue length

in each iteration period. By Theorem 3.1, we know that ||~δ(i)|| ≤ ̺, which further

implies α
(i)
k (u) ≤ ̺. In addition, we know

[

Q(0)
k (u)− τ

η
α

(0)
k (u)

]+

≤ Q(0)
k (u). There-

fore, as long as the buffer at node u for user k is greater than τ
η
̺ + Q(0)

k (u), no

overflow will happen (note that both τ
η
̺ and Q(0)

k (u) are constants). This lemma

further implies that the system is stable, since the queue length is bounded and

does not blow up to infinity at any time.

User: User Utility Deficit Recall Theorem 3.2, which quantifies the feasibil-

ity violation. This property implies that α−ADSA, the underlying framework of

our resource allocation algorithm, cannot always ensure the constraint feasibility.

Hence, we next analyze, by using dual space information obtained from our re-

source allocation algorithm, at most how much more utility a user k could obtain

(called user utility deficit), compared with the maximum allowed utility Uk (Qk).

We use ∆
(i)
k =

∑i−1
m=0 τ(λ

(m)
k −Qk) to represent the gap between the total

amount of transmitted information and the maximum allowed amount from iter-

ation 0 to iteration period i− 1. Hence, the user utility deficit D(i)
k from iteration

period 0 to iteration period i − 1 is defined by Uk

(

iτQk+[∆
(i)
k]+

iτ

)

− Uk (Qk). The

following theorem shows a bound on D(i)
k .

Theorem 5. For i ≥ 1, D(i)
k ≤Uk(

β
(i)
k

iη
+

[λ
(0)
k
−Qk]+

i
). �

Proof. Let A1 = τ(λ
(0)
k − Qk). We claim that for i ≥ 1, ∆

(i)
k ≤

τ
η
β

(i)
k + [A1]

+,

and prove this claim by induction. This claim is obviously true for i = 1 since

β
(1)
k ≥ 0. Suppose that it holds for some i ≥ 1. Now we prove that the claim also

holds for i+ 1. By the definition of ∆
(i)
k , we have

69

∆
(i+1)
k =∆

(i)
k +τ(λ

(i)
k −Qk) ≤

τ

η
β

(i)
k +[A1]

+ +τ(λ
(i)
k −Qk)

≤
τ

η
[β

(i)
k + η(λ

(i)
k −Qk)]

+ + [A1]
+ =

τ

η
β

(i+1)
k + [A1]

+.

Thus, the claim is proved. We now can bound the user utility deficit using this

claim as follows.

D(i)
k = Uk

(

Qk+

[

∆
(i)
k

iτ

]+)

− Uk (Qk) ≤ Uk

([

∆
(i)
k

iτ

]+)

(3.26)

= Uk

(

β
(i)
k

iη
+

[A1]
+

iτ

)

.

Inequality (3.26) holds since Uk (·) is an increasing and concave function, and

Uk (0) = 0.

Interpretation of Theorem 5. Theorem 5 shows a bound on the user utility

deficit in each iteration period using dual variable β
(i)
k . Since β

(i)
k is bounded by

a constant ̺ according to Theorem 3.1 and [λ
(0)
k −Qk]

+ is a constant, Theorem 5

implies that the user utility deficit is decreasing to 0 at the rate 1
i
as our algorithm

iterates. When i is sufficiently large, our algorithm can guarantee nearly zero user

utility deficit.

Node: Load Violation Like the user utility deficit, we next analyze the node

load constraint violation from the following three aspects: node-user load viola-

tion, node max load violation, and node load balance violation.

For node u and user k, we define the node-user load violation ratio by

Ñ (i)
k (u) =

[

∑i−1
m=0 R

(m)
k (u)

iNk(u)
− 1

]+

. Note that
∑i−1

m=0 R
(m)
k (u)

iNk(u)
represents the ratio of the

total load carried by node u for user k until the beginning of iteration period i

over the maximum allowed load. We then subtract 1 from this ratio and take

[·]+ operation, because only when
∑i−1

m=0R
(m)
k (u) > iNk(u), the node-user load

constraint is violated. Similarly, we can define the node max load violation ratio

70

by M̃(i)(u) =
[
∑i−1

m=0R
(m)(u)

iM(u)
− 1
]+

, and the node load balance violation ratio by

B̃(i)(u, w) =

[

∑i−1
m=0(R(m)(u)−R(m)(w))

iB(u,w)
− 1

]+

.

We have the following theorem to bound these three ratios using dual space

information.

Theorem 6. For any i ≥ 1,

Ñ (i)
k (u) ≤

θ
(i)
k (u) + η

[

R
(0)
k (u)−Nk(u)

]+

iηNk(u)
;

M̃(i)(u) ≤
ψ(i)(u) + η

[

R(0)(u)−M(u)
]+

iηM(u)
;

B̃(i)(u, w)≤
ζ (i)(u, w)+η

[

R(0)(u)−R(0)(w)−B(u, w)
]+

iηB(u, w)
.�

Proof. The proofs for these three inequalities are similar. We hence only prove

the first inequality.

Let N ′(i)
k (u) =

∑i−1
m=0 τ(R

(m)
k (u) − Nk(u)), and A2 = η[R

(0)
k (u) − Nk(u)]

+.

We claim that for i≥1, N ′(i)
k (u) ≤ τ

η
θ

(i)
k (u)+ τ

η
A2. This is obviously true for i = 1.

Suppose that this claim holds for some i ≥ 1. We now prove that this claim also

holds for i+ 1.

N ′(i+1)
k (u) = N ′(i)

k (u) + τ
(

R
(i)
k (u)− Nk(u)

)

≤
τ

η
θ

(i)
k (u) +

τ

η
A2 + τ

(

R
(i)
k (u)− Nk(u)

)

≤
τ

η

[

θ
(i)
k (u)+η

(

R
(i)
k (u)−Nk(u)

)]+

+
τ

η
A2=

τ

η
θ

(i+1)
k (u)+

τ

η
A2.

The claim is proved, which implies
∑i−1

m=0R
(m)
k

(u)

iNk(u)
− 1 ≤

θ
(i)
k

(u)+A2

iηNk(u)
. Considering

θ
(i)
k (u)+A2

iηNk(u)
≥0, we know Ñ (i)

k (u)≤
θ
(i)
k (u)+A2

iηNk(u)
.

Interpretation of Theorem 6. Theorem 6 shows the bounds on the node-user

load violation ratios, node max load violation ratios, and node load balance vi-

olation ratios in each iteration period. Let us first consider the node-user load
71

violation ratios. Since θ
(i)
k (u) is bounded by ̺ according to Theorem 3.1 and

[

R
(0)
k (u)−Nk(u)

]+

Nk(u)
is a constant, this theorem indicates that the node-user load viola-

tion ratios are approaching zero at the rate 1
i

as our algorithm iterates. Similarly,

this theorem indicates both node max load violation ratios and node load balance

violation ratios approaching zero at the rate 1
i

as our algorithm iterates.

3.6 Performance Evaluation

We simulated a wireless network with 30 nodes and 10 users by randomly dis-

tributing nodes in a 1000×1000m region, and by randomly choosing two different

nodes as the source and the destination for each user. The node transmission

range was set to be 300m. In the simulation, we used a normalized rate. The ca-

pacity of each link followed a normal distribution with a mean of 1 and a variance

of 0.5. The iterative step size η was set to 0.01. We evaluated the performance of

our algorithm in both PIM and GIM. For GIM, we only evaluated RCM because

the obtained utility in RCM can be regarded as a lower bound (not tight) on that

in PM, since RCM takes into account more interference than PM does.

Fig.3.1a shows the average user utility obtained in each iteration period.

We evaluate two constraint settings. In Fig.3.1a, “NC” represents the setting

that no load constraint is being used, while “WC” represents the setting that

all the Qk’s, Nk(u)’s, M(u)’s and B(u, w)’s follow a normal distribution with a

mean of 0.1 and a variance of 0.05. We used the transmission rate λk of the

source of user k to compute the utility (specifically, Uk (λk) = ln(1 + λk)) rather

than the rate of the flow received by the destination, in order to observe how our

algorithm adjusts the transmission rate of the source. Note that the transmission

rate of the source may be far larger than the rate of the information received by

the destination before the network stabilizes. At the beginning, the source node

72

sends out information as much as possible. Hence, we observe that at this moment

the obtained utility is large. However, the corresponding rate is so large that the

available resources cannot satisfy such rate. Continually using this transmission

rate will result in network congestion and instability. As a result, we observe that

the obtained utility (and the corresponding outgoing flow rate) is reduced by our

algorithm. The utility drops quickly before iteration period 50 and then decreases

slowly, approaching a stable point. Hence, our algorithm converges very fast. In

addition, we observe that if the load constraints are considered, the utilities in

PIM and GIM (i.e. “WC, PIM”, “WC, GIM”) are almost the same although

GIM considers more interference. This is because our load constraints make links

unsaturated.

Fig. 3.1b shows the average length of node queues. We normalized the

length of iteration periods to 1. We observe that the queue length is increasing

but approaching a stable status. This length never exceeds 300 even after a very

long time (200,000 iteration periods).

Fig.3.1c-3.1g show user utility deficits, node-user load violation ratios, node

max load violation ratios, node load balance violation ratios, and load fairness in-

dices (defined later), respectively. In the simulation for Fig.3.1c, the Qk’s followed

a normal distribution with a mean of 0.1 and a variance of 0.05, while node-user

load constraints, node max load constraints, and node load balance constraints

were not taken into account. Similarly, in the simulation for Fig.3.1d (Fig.3.1e,

and Fig.3.1f, respectively), the Nk(u)’s (M(u)’s, and B(u, w)’s, respectively) fol-

lowed a normal distribution with a mean of 0.1 and a variance of 0.05, while

the other three constraints were not considered. In addition, the load balance

area of each node in the simulation for Fig.3.1f-3.1g was the set of its one-hop

neighbors. We compared our algorithm with the cross-layer congestion control,

73

routing, and scheduling design presented by Chen et al. [13] (denoted by “CO” in

Fig.3.1c-3.1g). This scheme optimizes the total user utility without considering

load constraints. We observe that the metrics for CO in Fig.3.1c-3.1f approach

stable values far larger than 0, while in our algorithm these metrics drop quickly to

a small value. Thus, our algorithm achieves small utility deficits, node-user load

violation ratios, node max load violation ratios, and node load balance violation

ratios within a fairly short time.

Recall that we introduce the node load balance constraints to shape the

load relationship among different nodes. However, such constraint is considered

from the perspective of each node. We hence use the following node load fairness

index to quantify the load balance level from the perspective of the entire network.

This index is defined by
(
∑

u∈V R(u))2

|V |
∑

u∈V R(u)2
[28, 115]. The parameter “B” in Fig.3.1g

means that in that test case, the B(u, w)’s followed a normal distribution with a

mean of B and a variance of B
2
. The number of nodes was chosen to be 10 and

30. Fig.3.1g shows that compared with CO, our algorithm increases the fairness

index by 13%-41%, and hence achieves a higher level of node load fairness.

3.7 Conclusion

In this work, we have studied the problem of allocating network resources to

maximize the total user utility in a load-constrained wireless network. We have

formulated this problem as a convex programming system. We have presented

an α-approximation dual subgradient algorithmic framework, and have proved

the upper bound on the Lagrange multipliers, the upper bound on the amount

of feasibility violation, and the upper bound and lower bound on our solution at

each iteration. Based on this framework, we have presented a distributed iterative

algorithm to solve the resource allocation problem, which provides user rate and

74

 80 160 240 320 400
0

0.5

1

1.5

2

Number of Iteration Periods

U
s
e
r

U
ti
lit

y

NC, PIM
NC, GIM
WC, PIM
WC, GIM

(a) Utility

0 50000 100000 150000 200000
0

100

200

300

Number of Iteration Periods

Q
u
e
u
e
 L

e
n
g
th

NC, PIM

NC, GIM

WC, PIM

WC, GIM

(b) Queue length

0 500 1000 1500 2000 2500
0

0.5

1

Number of Iteration Periods

U
s
e
r

U
ti
lit

y
 D

e
fi
c
it

CO
PIM
GIM

(c) User utility deficit

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

Number of Iteration Periods

N
o
d
e
−

u
s
e
r

L
o
a
d
 V

io
la

ti
o
n
 R

a
ti
o

CO
PIM
GIM

(d) Node-user load violation ratio

0 500 1000 1500 2000 2500
0

1

2

3

4

5

Number of Iteration Periods

N
o
d
e
 M

a
x
 L

o
a
d
 V

io
la

ti
o
n
 R

a
ti
o

CO
PIM
GIM

(e) Node max load violation ratio

0 500 1000 1500 2000 2500
0

1

2

3

Number of Iteration PeriodsN
o
d
e
 L

o
a
d
 B

a
la

n
c
e
 V

io
la

ti
o
n
 R

a
ti
o

CO
PIM
GIM

(f) Node load balance violation ratio

10 30
0

0.2

0.4

0.6

0.8

F
a
ir
n
e
s
s
 I
n
d
e
x

Number of Nodes

CO
B=0.05, PIM
B=0.1, PIM
B=0.2, PIM
B=0.05, GIM
B=0.1, GIM
B=0.2, GIM

(g) Node load fairness index

Figure 3.1: Numerical results

75

node rate control strategies in each iteration period. We have proved bounds

on the amount of feasibility violation and the gap between our solution and the

optimal solution at each iteration. We have also proved bounds on node queue

lengths, user utility deficits, and node load violation ratios in each iteration period

using dual space information.

76

Chapter 4

MAP: Multi-Constrained Anypath Routing in Wireless Mesh Networks

4.1 Introduction

4.1.1 Motivation

Traditional routing algorithms and protocols for wireless networks often follow the

design methodology for wired networks by abstracting the wireless links as wired

links and looking for the shortest delay, least cost, or widest bandwidth path(s)

between a pair of source and destination nodes [113]. However, for unreliable

wireless networks, due to the broadcast nature of the wireless medium, it is usually

less costly to transmit a packet to one of the nodes in a set of neighbors than to one

specific neighbor. This observation motivated the emergence of a new technology,

known as opportunistic routing, which takes advantage of the intermediate nodes

overhearing the transmissions. It has been shown that opportunistic routing can

help improve the performance of wireless networks [6, 9]. Dubois-Ferrière [25]

generalized opportunistic routing and introduced the concept of anypath routing,

which was subsequently studied in [24, 58, 59, 94, 116]. In anypath routing, each

packet is broadcast to a forwarding set composed of several neighbors (called

forwarders), and the packet is retransmitted only if none of the forwarders in this

set receives it. As long as one of the forwarders receives this packet, it will be

forwarded.

One of the key research issues in anypath routing is finding an anypath

which optimizes one or more QoS metrics, such as delay or cost. The anypath

computation often reduces to the selection of forwarders for each node. How-

ever, there is a tradeoff in selecting forwarders. On one hand, a node with more

forwarders can have less forwarding delay or cost to reach one of the these for-

77

warders. On the other hand, a neighbor not on the optimal single path does not

make as much progress as the next hop on the optimal single path. Therefore,

having too many forwarders may increase the likelihood of a packet veering away

from the optimal single path, and ultimately even result in loops in the routing

topology [24].

Previous works on anypath routing are focused on computing a shortest

delay or least cost anypath, with only one QoS metric taken into account for

route selection [24, 25, 58, 59]. However, many applications are associated with

multiple QoS constraints. For instance, usually the energy consumption affects

the network lifetime or the cost of the pair of source-destination nodes charged by

the intermediate nodes providing forwarding service. Obviously, both delay and

energy consumption should be taken into account when we are computing a route

between a pair of source-destination nodes.

There have been extensive studies on multi-constrained single path routing.

Since the problem is NP-hard [105], many heuristics and approximation algorithms

have been proposed [14,42,66,105,107,109]. However, to the best of our knowledge,

multi-constrained anypath routing has not been studied.

4.1.2 Contribution

In this work, we formulate and study the problem of anypath routing subject

to multiple (K) constraints. We show that the problem is NP-hard when the

number of constraints is larger than one. We then present two polynomial time

K-approximation algorithms for this problem. One is a centralized algorithm

while the other is a distributed algorithm.

78

4.1.3 Related Work

We now review the works on opportunistic routing and anypath routing theory.

Biswas and Morris [6] designed and implemented ExOR, an opportunistic routing

protocol for wireless mesh networks. Chachulski et al. [9] introduced MORE by

combining opportunistic routing and network coding. Dubois-Ferrière [25] intro-

duced the concept of anypath routing and studied the shortest anypath problem.

Dubois-Ferrière et al. [24] addressed the least-cost anypath routing problem. The

authors of [58] and [59] presented an optimal algorithm for computing a short-

est anypath when different nodes are allowed to use different transmission rates.

Schaefer et al. [94] proposed a coordinated anypath routing for energy-constrained

wireless sensor networks. Zorzi and Rao [117] combined opportunistic and geo-

graphic routing for wireless sensor networks.

For multi-constrained QoS routing algorithms, there are two lines of re-

search. One line is the design of provably good algorithms. The authors of

[66,79,103,107,109] presented fully polynomial time approximation schemes (FP-

TASs) for the delay constrained least cost single path problem. For the decision

version of MCP, Xue et al. [109] improved the algorithm proposed in [14]. Xue et

al. [107] introduced a metric to compare multiple feasible solutions to the decision

version of MCP. Based on this metric they studied an optimization version of

MCP, and proposed K -approximation algorithms for computing a provably good

single path. Tsaggouris and Zaroliagis [103] presented an FPTAS for a class of

multiobjective optimization problems. The other line of research is the develop-

ment of effective heuristic algorithms [14, 53, 112]. Two excellent surveys can be

found in [15,56]. A comparison of approximation and heuristic algorithms can be

found in [55].

79

Our work differs from the aforementioned works since we study anypath

routing subject to multiple constraints.

4.2 Model

In anypath routing, each node broadcasts a packet to one or more next hop

neighbors. As long as one of these neighbors receives this packet, the packet can

be forwarded on. We call this set of next hop neighbors a forwarding set, which

is similar to “next hop” for each node in classic routing. We also call node v a

forwarder of node u if v is in the forwarding set of u. Since more than one node in

a forwarding set may receive the same packet, unnecessary redundant forwarding

should be avoided. In order to suppress redundant forwarding, the nodes in a

forwarding set are each given a priority in relaying the received packets. Higher

priorities are assigned to the nodes with shorter distances (or less costs) to the

destination. A node forwards a received packet only when all higher priority nodes

in the same forwarding set fail to receive it. As a result, this node will forward

the packet towards the destination while other lower priority nodes suppress their

transmissions, even if they also receive the packet. For each packet, the source

keeps rebroadcasting it until someone in its forwarding set receives it or a threshold

is reached. Once a neighbor receives this packet, it will repeat the same procedure

until the packet is delivered to the destination.

As defined in [25], an anypath from a source to a destination is a directed

acyclic graph where every node (but the source) is a successor of the source,

and every node (but the destination) is a predecessor of the destination. Since

an anypath is acyclic, all of its potential paths are simple, hence no packet will

traverse a forwarder more than once.

We model a wireless mesh network by a directed graph G = (V,E), where

80

s(1 , 1)
v 1(3 , 1)
v 2(1 , 1)

v 3(2 , 4)
v 4(9 , 9)
v 5(1 , 2)

t(1 , 3)0 . 5
0 . 2 1 0 . 1 0 . 50 . 51

0 . 3 0 . 7 0 . 11
Figure 4.1: Illustration of anypaths and subanypaths. The link labels show link
delivery probabilities; the vertex labels show (w1, w2) pairs. For example, w1 and
w2 represent the average transmission time and the average energy consumption
of the node for each transmission, respectively.

V is the set of n vertices, and E is the set of m edges. We use the following

terms interchangeably: edge and link, vertex and node. Each edge (v, u) ∈ E

is associated with a packet delivery probability p(v, u). Let J be a forwarding set

of node v. The hyperlink delivery probability p(v, J) is defined as the probability

that a packet transmitted by node v is received by at least one of the nodes in

set J . As demonstrated in [58], the loss of a packet at different receivers occurs

independently in practice, such as in light load regimes. Therefore, the hyperlink

delivery probability can be computed as p(v, J) = 1 −
∏

j∈J (1− p(v, j)). For

example, consider the forwarding set J = {v1, v2} of node s in the network in

Fig. 4.1. We have p(s, J) = 1−(1−p(s, v1))(1−p(s, v2)) = 1−(1−0.2)(1−0.5) =

0.6.

Each node v ∈ V is also associated with K vertex weights wk(v), 1 ≤

k ≤ K, where K is a given integer. We use the following examples to explain

some possible physical meaning of vertex weights. For example, when K = 1,

w1(v) may represent average time required for node v to finish one transmission

on average (we call it transmission time). When K = 2, w1(v) may represent the

81

transmission time and w2(v) may represent the energy consumed by node v to

finish one transmission on average (we call it transmission energy consumption).

Based on vertex weights and link delivery probabilities, we define a new

metric, called expected weight of anypath transmissions (EWATX), as wk(v)
p(v,J)

, 1 ≤

k ≤ K. Consider the example of K = 2 mentioned before, where w1(v) repre-

sents the average transmission time for each transmission and w2(v) represents

the average energy consumption for each transmission. The first (second, respec-

tively) EWATX represents the expected transmission time (the expected energy

consumption, respectively) for a packet sent by node v to be successfully received

by at least one node in J .

Recall that the hyperlink delivery probability from a node v to its forward-

ing set (on the anypath Ps from source s to destination t) J(v, Ps) = <j1, j2, . . .>

is

p(v, J(v, Ps)) = 1−
∏

jβ∈J(v,Ps)

(1− p(v, jβ)) =
∑

jβ∈J(v,Ps)

p(v, jβ)

β−1
∏

q=1

(1− p(v, jq)).

We define the coefficient α(jβ, Ps) as follows:

α(jβ, Ps)=
p(v, jβ)

∏β−1
q=1 (1− p(v, jq))

p(v, J(v, Ps))
,∀jβ∈J(v, Ps). (4.1)

The numerator of the right hand side of Equation (4.1) is the probability that a

node in the forwarding set with priority β successfully forwards a packet. Recall

that it forwards a packet only when it receives this packet and none of the higher

priority nodes receives it. The denominator in Equation (4.1) is the normalizing

constant so that
∑

jβ∈J(v,Ps)
α(jβ, Ps) = 1.

We define the kth anypath weight of the forwarding set J(v, Ps) =<j1, j2, ...>

along anypath Ps as

Wk(J(v, Ps), Ps) =
∑

jβ∈J(v,Ps)

α(jβ, Ps)Wk(jβ, Ps). (4.2)

82

It is a weighed average of the anypath weights from the nodes (defined below) in

the forwarding set J(v, Ps) to the destination along Ps.

Based on Equations (4.1) and (4.2), we define the kth anypath weight from

v to t along an anypath Ps as

Wk(v, Ps) =
wk(v)

p(v, J(v, Ps))
+Wk(J(v, Ps), Ps), k = 1, 2, ..., K. (4.3)

Clearly, from Equations (4.1)-(4.3) we know that

Wk(v, Ps) =
wk(v)+

∑

jβ∈J(v,P)Wk(jβ, Ps)p(v, jβ)
∏β−1

q=1 (1−p(v, jq))

p(v, J(v, Ps))
,

k = 1, 2, ..., K. (4.4)

Note that we define the kth anypath weight in a recursive manner. The boundary

condition is Wk(t, Ps) = 0(1 ≤ k ≤ K) for destination node t.

Consider the example of K = 2 mentioned before, where w1(v) represents

the average transmission time for each transmission and w2(v) represents the aver-

age energy consumption for each transmission. W1(v, Ps) (W2(v, Ps), respectively)

represents the expected total transmission time (the expected total energy con-

sumption, respectively) necessary for a packet sent by v to be successfully received

by the destination node t along anypath Ps. Since an anypath is a directed acyclic

graph, once the anypath from s to t is given, we can compute the anypath weights

of all the nodes on this anypath in a reversed topological order.

As an example, let us consider the network depicted in Fig. 4.2 which is

slightly different from Fig. 4.1 and focus on the transmission time (k = 1).

An anypath Ps is shown by bold red lines. The topological order for this

anypath is s→ v2 → v3 → v5 → t. The boundary condition is W1(t, Ps) = 0. We

can first compute the first anypath weight of v5 (i.e. the expected transmission

83

s(1 , 1) v 1(3 , 1)
v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t0 . 5
0 . 2 1 0 . 1 0 . 50 . 51

0 . 3 0 . 7 0 . 11
Figure 4.2: An example to illustrate the computation of anypath weight

time of a packet sent from v5 to t via the forwarding set J = <t>) as follows:

W1(v5, Ps) =
w1(v5)

p(v5, <t>)
+W1(<t>, Ps)

=
w1(v5) + p(v5, t)W1(t, Ps)

p(v5, <t>)
=

1 + 0.5 ∗ 0

0.5
= 2.

Based on the values at t and v5, we can then compute the first anypath weight

of v3 (i.e. the expected transmission time of a packet sent from v3 to t via the

forwarding set J = <t, v5>) as follows:

W1(v3, Ps)

=
w1(v3)

p(v3, <t, v5>)
+W1(<t, v5>,Ps)

=
w1(v3)+p(v3, t)W1(t, Ps)+(1−p(v3, t))p(v3, v5)W1(v5, Ps)

1−(1−p(v3, t))(1−p(v3, v5))

=
2 + 0.5× 0 + (1− 0.5)× 1× 2

1− (1− 0.5)(1− 1)
= 3.

Continuing this process, we can computeW1(v2, Ps) = 3.9, andW1(s, Ps) =

5.9 (assuming that the forwarding set of v2 is <v5, v3>).

4.3 Problem Formulation

A decision version of the multi-constrained anypath problem, denoted by DM-

CAP, is defined as follows:

84

Definition 1. DMCAP(G, s, t,
−→
W,−→w ,−→p ,K): Instance: A directed graph G =

(V,E,−→w ,−→p), with a packet delivery probability p(e) ∈ (0, 1] associated with each

edge e ∈ E and K positive vertex weights wk(v)(k ∈ [1, K]) associated with each

vertex v ∈ V ; a constraint vector
−→
W = (W1,W2, ...,WK) where each element is

a positive constant; and a source-destination node pair (s, t). Problem: Find an

anypath Ps from source s to destination t such thatWk(s, Ps) ≤Wk, ∀k ∈ [1, K].�

The inequality Wk(s, Ps) ≤ Wk is called the kth QoS constraint. An any-

path Ps from s to t satisfying all K constraints is called a feasible solution to the

given instance of DMCAP.

The DMCAP problem is NP-hard, which we will show later. Therefore, we

study OMCAP, an optimization version of DMCAP, which approximates all K

constraints simultaneously. We introduce a metric, called anypath length, which

is similar to the concept of path length used in [107, 108]. The anypath length

from a node v to the destination node t along an anypath Ps is defined as

l(v, Ps) = max
1≤k≤K

Wk(v, Ps)

Wk

. (4.5)

Now we formally define OMCAP as follows.

Definition 2. OMCAP(G, s, t,
−→
W,−→w ,−→p ,K): Instance: A directed graph G =

(V,E,−→w ,−→p), with a packet delivery probability p(e) ∈ (0, 1] associated with each

edge e ∈ E and K positive vertex weights wk(v)(k ∈ [1, K]) associated with each

vertex v ∈ V ; a constraint vector
−→
W = (W1,W2, ...,WK) where each element is

a positive constant; and a source-destination node pair (s, t). Problem: Find an

s-t anypath Ps with minimum l(s, Ps). �

We briefly explain the relationship between DMCAP and OMCAP. If an

instance of OMCAP has a solution Ps such that l(s, Ps) ≤ 1, then the correspond-
85

ing instance of DMCAP has a feasible solution. Otherwise, the corresponding

instance of DMCAP does not have a feasible solution.

4.4 Analysis of Computational Complexity

Theorem 7. For any given integer K ≥ 2, DMCAP is NP-hard. The problem

remains NP-hard when no link in the network has packet delivery probability equal

to 1. �

In the following, we will prove the (weak) NP-hardness of DMCAP for a

special case K = 2 by a reduction from the Partition problem [21], which implies

that DMCAP is (weakly) NP-hard for any given K ≥ 2.

An instance of Partition is given by a finite set A, where each element a∈A

is associated with a positive integer s(a), called as the size of a. It asks for the

existence of a subset A′ of A such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a). This problem

is known to be (weakly) NP-hard [21].

In the following, we show how to construct an instance I2 of DMCAP for

K = 2 from an instance I1 of Partition, given by A = {a1, a2, . . . , an} and size

function s(·). An illustrative example is shown in Fig. 4.3.1
10 (1 , 1) (1 , 1)

s m + s (a 1) , s m 1 0 . 5 s (a 1)
s m 1 0 . 5 s (a 1) , s m + s (a 1)

2
2 2 (1 , 1)1 (1 , 1) n

n n (1 , 1)u n 9 1
s m + s (a 2) , s m 1 0 . 5 s (a 2) s m + s (a n) , s m 1 0 . 5 s (a n)

s m 1 0 . 5 s (a 2) , s m + s (a 2) s m 1 0 . 5 s (a n) , s m + s (a n)
Figure 4.3: Reduction from Partition to DMCAP for K = 2.

86

The set of nodes of graphG(V,E) is given by V = {u0, u1, . . . , un; x1, x2, . . . ,

xn; y1, y2, . . . , yn}. The vertex weights of nodes in the sets {u0, u1, . . . , ui, . . . , un}

are all set to (1, 1). The vertex weights of node xi ∈ {x1, x2, . . . , xn} are set

to (sm + s(ai), sm − 0.5s(ai)), where sm is the largest size of the elements in A

(i.e. sm = maxa∈A s(a)). The vertex weights of node yi ∈ {y1, y2, . . . , yn} are set

to (sm − 0.5s(ai), sm + s(ai)). Note that the sizes of all the elements in A are

positive. Therefore all the vertex weights so constructed are positive. The set

of directed links is given by {(ui−1, xi), (xi, ui), (ui−1, yi), (yi, ui)|i ∈ [1, n]}. The

packet delivery probabilities of all the links are set to 0.5. We set W1 = W2 =
∑

1≤i≤n s(ai)

2
+2nsm+ 4n

3
. In I2, we are looking for an anypath from u0 to un which

satisfies the above two constraints. The construction of I2 is complete and takes

polynomial time.

Clearly, for each node ui (i = 0, · · · , n − 1), we have the following four

forwarding set candidates: <xi+1, yi+1>, <yi+1, xi+1>, <xi+1>, and <yi+1>. One

of them is selected and used as the forwarding set for ui (i = 0, ..., n− 1). Next,

let us compute the corresponding anypath weights of node ui corresponding to

these four forwarding sets.

We use W1(ui) and W2(ui) to denote the first and the second anypath

weights from ui to un along an anypath, respectively. Clearly,W1(un) =W2(un) =

0. Given W1(ui+1) and W2(ui+1) (i = 0, ..., n− 1), we can compute W<J>
k (ui) for

k = 1, 2, which denotes the kth anypath weight from ui to un if we use J as the

87

forwarding set of node ui. Based on (4.3), we derive the following equations:

W<xi+1,yi+1>
1 (ui) =

4

3
+ 2sm + s(ai+1) +W1(ui+1); (4.6)

W
<yi+1,xi+1>
1 (ui) =

4

3
+ 2sm +W1(ui+1); (4.7)

W
<xi+1>
1 (ui) = 2 + 2sm + 2s(ai+1) +W1(ui+1); (4.8)

W
<yi+1>
1 (ui) = 2 + 2sm − s(ai+1) +W1(ui+1); (4.9)

W<xi+1,yi+1>
2 (ui) =

4

3
+ 2sm +W2(ui+1); (4.10)

W<yi+1,xi+1>
2 (ui) =

4

3
+ 2sm + s(ai+1) +W2(ui+1); (4.11)

W<xi+1>
2 (ui) = 2 + 2sm − s(ai+1) +W2(ui+1); (4.12)

W<yi+1>
2 (ui) = 2 + 2sm + 2s(ai+1) +W2(ui+1). (4.13)

We use binary variables Zx
y (ui), Z

y
x(ui), Z

x(ui), and Zy(ui) to denote the

following four forwarding set selections of node ui(i = 0, ..., n− 1), respectively.

• If forwarding set <xi+1, yi+1> is used as the forwarding set of ui, then

Zx
y (ui) = 1 and Zy

x(ui) = Zx(ui) = Zy(ui) = 0.

• If forwarding set <yi+1, xi+1> is used as the forwarding set of ui, then

Zy
x(ui) = 1 and Zx

y (ui) = Zx(ui) = Zy(ui) = 0.

• If forwarding set <xi+1> is used as the forwarding set of ui, then Zx(ui) = 1

and Zx
y (ui) = Zy

x(ui) = Zy(ui) = 0.

• If forwarding set <yi+1> is used as the forwarding set of ui, then Zy(ui) = 1

and Zx
y (ui) = Zy

x(ui) = Zx(ui) = 0.

According to (4.6)-(4.13), we can start from node un and compute the

anypath weights from ul(l = 0, ..., n − 1) to un using notation Zx
y (ul), Z

y
x(ul),

88

Zx(ul), and Zy(ul), as follows:

W1(ul) =

n−1
∑

i=l

(

Zx
y (ui)(

4

3
+ 2sm + s(ai+1)) + Zy

x(ui)(
4

3
+ 2sm)

+Zx(ui)(2 + 2sm + 2s(ai+1)) + Zy(ui)(2 + 2sm − s(ai+1))) , (4.14)

and

W2(ul) =

n−1
∑

i=l

(

Zx
y (ui)(

4

3
+ 2sm) + Zy

x(ui)(
4

3
+ 2sm + s(ai+1))

+Zx(ui)(2 + 2sm − s(ai+1)) + Zy(ui)(2 + 2sm + 2s(ai+1))) . (4.15)

We then prove the following two lemmas by leveraging (4.14) and (4.15).

Lemma 4. If instance I2 has a solution, then instance I1 also has a solution. �

Proof. If instance I2 has a solution, we know

W1(u0) ≤W1 =

∑

1≤i≤n s(ai)

2
+ 2nsm +

4n

3
(4.16)

and

W2(u0) ≤W2 =

∑

1≤i≤n s(ai)

2
+ 2nsm +

4n

3
. (4.17)

Therefore, we have

W1(u0) +W2(u0) ≤
∑

1≤i≤n

s(ai) + 4nsm +
8n

3
. (4.18)

According to (4.14), (4.15), and (4.18), we know that Zx(ui) and Zy(ui) have to

be zero for i = 0, 1, ..., n − 1. Otherwise, (4.18) can never be satisfied. In other

words, for node ui only <xi+1, yi+1> and <yi+1, xi+1> are possible forwarding sets

in the solution to instance I2. Therefore, according to (4.14) and (4.15), we have

89

W1(u0)

=

n−1
∑

i=0

(

Zx
y (ui)(

4

3
+ 2sm + s(ai+1)) + (1− Zx

y (ui))(
4

3
+ 2sm)

)

=
4n

3
+ 2nsm +

n−1
∑

i=0

Zx
y (ui)s(ai+1), (4.19)

and

W2(u0)

=
n−1
∑

i=0

(

Zx
y (ui)(

4

3
+ 2sm) + (1− Zx

y (ui))(
4

3
+ 2sm + s(ai+1))

)

=
4n

3
+ 2nsm +

n−1
∑

i=0

(1− Zx
y (ui))s(ai+1). (4.20)

According to (4.19) and (4.20), we know that

W1(u0) +W2(u0) =
∑

1≤i≤n

s(ai) + 4nsm +
8n

3
. (4.21)

Considering (4.16), (4.17), and (4.21) we know that

W1(u0) =W2(u0) =
4n

3
+ 2nsm +

∑

1≤i≤n s(ai)

2
. (4.22)

According to (4.19), (4.20), and (4.22), we thus can construct a solution

to instance I1 according to the solution to instance I2 as follows. If <xi+1, yi+1>

(i.e. Zx
y (ui) = 1) is the forwarding set of ui in the solution to instance I2, s(ai+1)

is added to A′. If <yi+1, xi+1> (i.e. Zx
y (ui) = 0) is the forwarding set of ui, s(ai+1)

is added to A \ A′. Due to (4.19), (4.20), and (4.22), this assignment can ensure

that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a) =
∑

1≤i≤n s(ai)

2
.

Lemma 5. If instance I1 has a solution, then instance I2 also has a solution. �

Proof. We can construct a solution to instance I2 according to the solution to I1

as follows. If ai is in A′, <xi, yi> is chosen as the forwarding set for node ui−1 (i.e.
90

Zx
y (ui−1) = 1, Zy

x(ui−1) = 0, Zx(ui−1) = 0, and Zy(ui−1) = 0); otherwise <yi, xi>

is chosen as the forwarding set for node ui−1 (i.e. Zx
y (ui−1) = 0, Zy

x(ui−1) = 1,

Zx(ui−1) = 0, and Zy(ui−1) = 0). Therefore, according to (4.14) and (4.15), we

have

W1(u0)

=
n−1
∑

i=0

(

Zx
y (ui)(

4

3
+ 2sm + s(ai+1) + (1− Zx

y (ui))(
4

3
+ 2sm)

)

=
4n

3
+ 2nsm +

n−1
∑

i=0

Zx
y (ui)s(ai+1)

=
4n

3
+ 2nsm +

∑

a∈A′

s(a) = W1 (4.23)

and

W2(u0)

=

n−1
∑

i=0

(

Zx
y (ui)(

4

3
+ 2sm) + (1− Zx

y (ui))(
4

3
+ 2sm + s(ai+1))

)

=
4n

3
+ 2nsm +

n−1
∑

i=0

(1− Zx
y (ui))s(ai+1)

=
4n

3
+ 2nsm +

∑

a∈A\A′

s(a) = W2. (4.24)

Note that (4.23) and (4.24) hold since we have a solution to instance I1 that

ensures
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a) =
∑

1≤i≤n s(ai)

2
.

Combining our reduction, the two lemmas above, and the fact that the

Partition problem is (weakly) NP-hard, we know that DMCAP is (weakly) NP-

hard when K = 2, which implies that DMCAP is (weakly) NP-hard for any given

K ≥ 2. Hence, the proof for Theorem 7 is complete.

4.5 An Efficient Centralized K-Approximation Algorithm

In this subsection we present an algorithm named MAP, which computes an s-t

anypath in polynomial time. Furthermore, we prove that the anypath so computed
91

is a K-approximation to the OMCAP problem. In other words, the length of the

anypath returned by our algorithm is within a factor K of the length of an optimal

solution.

In order to simplify the notations, we assume that W1=W2=· · ·=WK=1

in this subsection. This is equivalent to normalize all of the vertex weights (from

wk(v) to wk(v)/Wk for all v ∈ V and k = 1, 2, . . . , K). Therefore the algorithm

and all the proofs can be straightforwardly extended to the case without this

assumption.

4.5.1 Algorithm Description

Before presenting our algorithm, we define an auxiliary vertex weight ωm(v) (the

subscript m means “max”) for each node v ∈ V by ωm(v) = max1≤k≤K wk(v). We

define the auxiliary anypath weight (AAW) from node v to destination t along an

anypath Ps as:

Wm(v, Ps) =
ωm(v)

p(v, J(v, Ps))
+Wm(J(v, Ps), Ps), (4.25)

where

Wm(J(v, Ps), Ps) =
∑

jβ∈J(v,Ps)

α(jβ, Ps)Wm(jβ, Ps). (4.26)

HereWm(J(v, Ps), Ps) is the auxiliary anypath weight of the forwarding set J(v, Ps)

along the anypath Ps. The boundary condition is Wm(t, Ps) = 0.

We introduce AAW because it can be used to bridge l(s, πopts) and l(s, πms),

where πopts denotes an optimal anypath from s to t and πms denotes the anypath

computed by Algorithm 2. More specifically, in Theorem 8 we will prove that πms

is a shortest s–t anypath with respect to AAW; in Theorem 9, we will prove that

l(v, πmv) ≤ K · l(v, πoptv), which implies that Algorithm 2 is a K-approximation

algorithm for OMCAP.
92

Table 4.1 lists frequently used notations.

Table 4.1: Frequently Used Notation

wk(v) kth vertex weight of node v
Wk(v, P) kth anypath weight from node v to destination t along anypath

P
ωm(v) auxiliary vertex weight of node v
Wm(v, P) or
Wm(J, P)

auxiliary anypath weight from node v or a set of nodes J
(aggregated vertex) to destination t along anypath P

W(J)
m (v) auxiliary anypath weight from v to destination t via the for-

warding set J
Wk kth QoS constraint
l(v, P) length from v to destination t along anypath P
J(v, P) forwarding set of node v along anypath P
p(v, u) or p(v, J) packet delivery probability of link (v, u) or hyperlink (v, J)

We now present our MAP algorithm for the OMCAP problem. For every

node v ∈ V , we keep a variable Ŵm(v), a set Ĵ(v), and K variables Ŵk(v), k =

1, · · · , K. Ŵm(v) is the AAW of the currently computed anypath from v to t,

Ĵ(v) is the forwarding set of v on this currently computed anypath, and Ŵk(v)

is the currently computed kth anypath weight from v to t. We keep two data

structures: L and Q. L is a list, which is used to store the nodes for which we

have already found the shortest AAW anypaths. Q is a priority queue, in which

we store all the other nodes keyed by their current Ŵm values. In addition, we

also use Ŵm(J) and Ŵk(J), respectively, to denote the currently computed AAW

and the currently computed kth anypath weight of the set J .

The algorithm MAP is presented in Algorithm 2. MAP consists of two

major phases. In the first phase, it calculates the AAW for each node and ini-

tializes the data structures (Lines 1-4). In the second phase, it computes the

shortest AAW anypaths from all nodes to the given destination t (Lines 5-17).

Our algorithm for computing the shortest AAW anypaths is similar to the Short-

93

Algorithm 2 MAP

Input: graph G, destination node t, vertex weight vector −→w , delivery probabil-
ity vector −→p , and the number of constraints K

Output: an anypath from each node to destination node t
1: for each node v in V do
2: ωm(v)←max1≤k≤K wk(v), Ŵm(v)←∞, Ĵ(v)←∅
3: end for
4: Ŵm(t)← 0, L← ∅, Q← V
5: while Q 6= ∅ do
6: j ← Extract-Min(Q), L← L ∪ {j}
7: l(j, P)← max1≤k≤K Ŵk(j)
8: for each incoming link (v, j) in E do

9: F← Ĵ(v) ∪ {j}, Ŵ ′
m(v)← ωm(v)

p(v,F)
+Ŵm(F)

10: if Ŵ ′
m(v) < Ŵm(v) then

11: Ŵm(v)← Ŵ ′
m(v), update Q (i.e. decrease key for v), Ĵ(v)← F

12: for k = 1, 2, . . . , K do
13: Ŵk(v)←

wk(v)

p(v,Ĵ(v))
+ Ŵk(Ĵ(v))

14: end for
15: end if
16: end for
17: end while

est Anypath First (SAF) algorithm proposed by [58, 59]. We will prove that the

shortest AAW anypath actually is a K-approximation to OMCAP.

Now we explain the second phase (the while-loop) in detail. Each time

Line 6 is executed, from the set of nodes for which we have not found the shortest

AAW anypaths, we extract the one (denoted by j) that has the smallest Ŵm value

and insert this node into L. We then perform relaxation for each of its incoming

neighbors (denoted by v) as shown in Lines 8-16. In the relaxation operation for

node v, we check whether adding node j into v’s forwarding set can reduce v’s Ŵm

value (Lines 9-6). If so, we update v’s forwarding set, the priority queue Q and

the corresponding data structures as shown in Lines 7-12. Algorithm 2 repeats

this procedure until the priority queue Q becomes empty. In this way we can find

the shortest AAW anypath from each node to the given destination.

94

4.5.2 Algorithm Illustration

We illustrate the steps of the algorithm using the example shown in Fig. 4.4,

where K = 2. The original graph G is shown in Fig. 4.1.

In the initialization phase (Lines 1-4), we calculate the auxiliary vertex

weight for each node and initialize the necessary data structures. Ŵm(t) is set

to 0 and Ŵm(v) is set to ∞ for all v ∈ V \ {t}. Since now t has the smallest

Ŵm value, in the first iteration, Line 6 extracts t from Q and inserts it into

L, as shown in Fig. 4.4a. Then Lines 8-16 perform relaxations for its incoming

links and update the values of Ŵm of its incoming neighbors. For each incoming

neighbor, Line 6 checks whether adding t into the forwarding set can decrease its

Wm value. If so, Lines 7-12 update its forwarding set, AAW and anypath weights.

Therefore, at the end of the current iteration, nodes v3, v4 and v5 get updated

labels:
(

Ŵ1(v3), Ŵ2(v3)
)

= (4, 8), Ŵm(v3) = 8,
(

Ŵ1(v4), Ŵ2(v4)
)

= (90, 90),

Ŵm(v4) = 90,
(

Ŵ1(v5), Ŵ2(v5)
)

= (2, 4), and Ŵm(v5) = 4. Since now v5 has

the smallest Ŵm value, Line 6 will extract v5 from Q and insert it into L in the

second iteration and perform relaxations for its incoming links. Nodes v2 and v3

get updated labels due to the relaxations. This is shown in Fig. 4.4b. As shown

in Fig. 4.4c-4.4g, Algorithm 2 repeats this procedure until all the nodes have been

inserted into L. Note that the algorithm calculates anypaths from all the nodes

to t. If we just look for an s-t anypath, our algorithm can terminate once s is

inserted into L.

Note that the s–t anypath computed by our algorithm has a length of

max{5.9
1
, 8.8

1
} = 8.8, while as shown in Fig. 4.4h the optimal anypath has a length

of max{5.91
1
, 8.5

1
} = 8.5. Although the anypath computed by Algorithm 2 is not

optimal, its length is within a factor of 2 of that of the optimal anypath.

95

s(1 , 1) v 1(3 , 1)
v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(4 , 8)(8) (2 , 4)(4)
(a) t is inserted into L

s(1 , 1) v 1(3 , 1)
v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(3 , 6)(6) (2 , 4)(4)(1 2 , 1 4)(1 4)
(b) v5 is inserted into L) s(1 , 1) v 1(3 , 1)

v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)
v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(3 , 6)(6) (2 , 4)(4)(3 . 9 , 6 . 8)(6 . 8)(6 , 7)(9)

(c) v3 is inserted into L

s(1 , 1) v 1(3 , 1)
v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(3 , 6)(6) (2 , 4)(4)(3 . 9 , 6 . 8)(6 . 8)(6 , 7)(9)(5 . 9 , 8 . 8)(8 . 8)
(d) v2 is inserted into Ls(1 , 1) v 1(3 , 1)

v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)
v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(3 , 6)(6) (2 , 4)(4)(3 . 9 , 6 . 8)(6 . 8)(6 , 7)(9)(5 . 9 , 8 . 8)(8 . 8)

(e) s is inserted into L

s(1 , 1) v 1(3 , 1)
v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(3 , 6)(6) (2 , 4)(4)(3 . 9 , 6 . 8)(6 . 8)(6 , 7)(9)(5 . 9 , 8 . 8)(8 . 8)
(f) v1 is inserted into Ls(1 , 1) v 1(3 , 1)v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0)(9 0) (0 , 0)(0)(3 , 6)(6) (2 , 4)(4)(3 . 9 , 6 . 8)(6 . 8)(6 , 7)(9)(5 . 9 , 8 . 8)(8 . 8)
(g) v4 is inserted into L

s(1 , 1) v 1(3 , 1)
v 2(1 , 1) v 3(2 , 4) v 4(9 , 9)

v 5(1 , 2) t(1 , 3)0 . 50 . 2 1 0 . 1 0 . 50 . 510 . 3 0 . 7 0 . 11 (9 0 , 9 0) (0 , 0)(3 , 6) (2 , 4)(3 . 9 , 6 . 8)(6 , 7)(5 . 9 1 , 8 . 5)
(h) Optimal s− t anypath

Figure 4.4: Execution of Algorithm 2 from every node to t. The link labels show
link delivery probabilities; the vertex labels show (w1, w2) pairs of the vertices; the
labels next to each vertex show the currently computed anypath weights (Ŵ1, Ŵ2)
(the first row) and the AAW (Ŵm) (the second row). (a)-(g) show the situations
after each successive iteration of the algorithm. (h) shows the optimal s − t
anypath.

96

4.5.3 Algorithm Analysis

In this subsection, we analyze the performance of Algorithm 2. We use πoptv to de-

note an optimal anypath from v to t, and use πmv to denote the anypath computed

by Algorithm 2. Note that when the algorithm terminates, Wm(v, πmv) = Ŵm(v),

and Wk(v, π
m
v) = Ŵk(v), ∀k ∈ [1, K].

Theorem 8. Let v be any node that can reach the destination t. The anypath πmv

computed by Algorithm 2 is a shortest AAW anypath. This computation is done

in O(|V | log |V |+K|E|) time. �

Although the rigorous proof of Theorem 8 is very intricate, this complexity

is an aspect of the analysis, not of the algorithm itself. As we have seen before,

our algorithm is as simple as Dijkstra’s algorithm for computing a shortest path.

In the following proofs, we omit the notation P of the anypath for sim-

plicity. Instead, we use W(J)
m (v) to denote the AAW of v via the forwarding set

J if all the nodes in J are using their shortest AAW anypaths. In addition, we

use θ(v) to denote the AAW of v along πmv (i.e. the optimal AAW of v). Before

proving Theorem 8, we need the following four lemmas.

Lemma 6. Consider a forwarding set J = <j1, j2, . . . , jy> of a node v with

Wm(j1) ≤ Wm(j2) ≤ · · · ≤ Wm(jy) and a positive integer ∆ ≤ y. We can arbitrar-

ily divide J into ∆ subsets of nodes with contiguous priorities: <J1, J2, . . . , J∆>=

<<jτ1 , jτ1+1, . . . , jτ2−1>,<jτ2 , jτ2+1, . . . , jτ3−1>,. . . ,<jτ∆ , jτ∆+1, . . . , jτ∆+1−1>>, where

jτ1 = j1, jτ1+1 = j2, . . . , jτ∆+1−1 = jy. For instance, let us consider ∆ = 2.

<j1, j2, j3, j4, j5> can be divided to <<j1>,<j2, j3, j4, j5>>,<<j1, j2>,<j3, j4, j5>>,

97

<<j1, j2, j3>,<j4, j5>>, or <<j1, j2, j3, j4>, <j5>>. We have

W(J)
m (v) =

ωm(v)

1−
∏∆

δ=1(1− p(v, Jδ))
+
∑

Jδ∈J

p(v, Jδ)
∏δ−1

q=1(1− p(v, Jq))

1−
∏∆

δ=1(1− p(v, Jδ))
Wm(Jδ).

We call these J1, J2, . . . , J∆ contiguous priority forwarding subsets. �

Proof. By (4.1), (4.25) and (4.26),

W(J)
m (v)

=
ωm(v)

p(v, J)
+
∑

jβ∈J

p(v, jβ)
∏β−1

q=1 (1− p(v, jq))Wm(jq)

p(v, J)

=
ωm(v)

1−
∏∆

δ=1(1− p(v, Jδ))
+

∆
∑

δ=1

p(v, Jδ)Wm(Jδ)
∏τδ−1

q=1 (1− p(v, jq))

1−
∏∆

δ=1(1− p(v, Jδ))

=
ωm(v)

1−
∏∆

δ=1(1− p(v, Jδ))
+

∆
∑

δ=1

p(v, Jδ)
∏δ−1

q=1(1− p(v, Jq))

1−
∏∆

δ=1(1− p(v, Jδ))
Wm(Jδ).

Intuitively, this lemma implies that we can group together the nodes with

contiguous priorities as an “aggregated vertex”. In other words, each contiguous

priority forwarding subset is an aggregated vertex. For instance, when ∆ = 3,

<j1, j2, j3, j4, j5> can form three aggregated vertices:<j1, j2>, <j3>, <j4, j5>.

Note that an aggregated vertex can consist of a single node or a set of nodes with

contiguous priorities. Thus if J1, J2, . . . , Jβ, . . . are contiguous priority forwarding

subsets, we can rewrite (4.25) and (4.26) as

Wm(v, Ps) =
ωm(v)

p(v, J(v, Ps))
+Wm(J(v, Ps), Ps), (4.27)

where

Wm(J(v, Ps), Ps) =
∑

Jβ∈J(v,Ps)

α(Jβ, Ps)Wm(Jβ, Ps), (4.28)

and

α(Jβ, Ps) =
p(v, Jβ)

∏β−1
q=1 (1− p(v, Jq))

p(v, J(v, Ps))
. (4.29)

98

Note that β can be considered the forwarding priority of this aggregated vertex,

and that the boundary condition is Wm(t, Ps) = 0.

Lemma 7. For all the neighbors j1, j2, . . . , jz of a node v, where z is the number

of neighbors, if θ(j1) ≤ θ(j2) ≤ · · · ≤ θ(jz), then there must exist an AOFS of

the form <j1, j2, . . . , jb> for some b ∈ {1, 2, . . . , z}, called a full AAW optimal

forwarding set (FAOFS). �

Proof. We index all the neighbors of v in increasing order of their optimal AAWs.

In other words, a node j with a larger θ(j) should have a larger priority index.

Now each neighbor has a unique index which will be used in this proof. For a single

metric, Dubois-Ferrière [25] indicates that a lower priority should be assigned to a

forwarder with a larger anypath weight. Thus, a forwarder with a larger priority

index (i.e. a larger AAW) should have a lower priority. Since each node has a finite

number of neighbors, there must exist at least one AOFS for each node. Among

all the AOFSs of v, we compare the priority indices of their lowest priority nodes,

and select the AOFS whose lowest priority node has the smallest priority index.

We use jb to denote this node. If there are multiple such sets, we arbitrarily select

one (denoted by ψ). For instance, there are three AOFSs:<j1, j2, j3>, <j1, j2, j4>

and <j1, j3, j5>. The lowest priority node in <j1, j2, j3> has the smallest priority

index. Thus b = 3. We call the nodes with priority indices smaller than b potential

AAW optimal forwarders (PAOFs). In the example above, j1 and j2 are PAOFs.

Based on ψ, we will construct an FAOFS which is composed of

all the PAOFs and jb. The outline of our proof is as follows. We will prove

that inserting an arbitrary PAOF into the forwarding set, whose lowest priority

node is jb, will not increase the AAW of v. This implies that if a PAOF is not in

ψ, we can add it into ψ without increasing the AAW of v. Repeat this procedure

99

until the forwarding set contains all the PAOFs and jb. Take b = 5 as an example.

Assume the AOFS ψ is of the form <j1, j3, j5>. We will prove that the AAW of

v via ψ ∪ {j2} or ψ ∪ {j4} is not larger than that via ψ. After j2(or j4) is added

into the forwarding set, we will prove that the AAW of v via ψ ∪ {j2} ∪ {j4}

is not larger than that via ψ ∪ {j2}(or ψ ∪ {j4}). Clearly, the forwarding set

<j1, j2, j3, j4, j5> is not worse than ψ, thus it is also an AOFS. The term hole is

used to represent the PAOFs which are not in the forwarding set ψ. For instance,

j2 and j4 in the example above are holes. From now on, we deal with the case

that ψ has at least one hole, since for the case ψ has no hole, ψ is naturally an

FAOFS. Among all the PAOFs, we arbitrarily select one subset of PAOFs, which

has one hole (denoted by jh). We use Sh to denote the union of this selected set

and jb. Then taking this hole jh as a pivot, we divide this set into two subsets

Sl and Sr such that the optimal AAW of nodes in Sl (Sr) are not greater (less)

than θ(jh). Considering the example above, we select a set of PAOFs <j1, j2, j3>

and j2 is a hole. Then Sh is <j1, j2, j3, j5>. Taking j2 as a pivot, we can obtain

two subsets Sl = <j1> and Sr = <j3, j5>. Note that Sl could be empty since the

hole could be the highest priority node in Sh, while Sr is always nonempty since

it contains at least jb. Now we prove some properties of Sl, Sr and PAOFs.

First, for a nonempty set Sr, we know θ(jh) ≤ θ(jri), ∀jri ∈ Sr, i ∈ [1, |Sr|].

Thus, if each node in Sr uses its shortest AAW anypath, by (4.26) the AAW of

Sr can be calculated as follows:

Wm(Sr) =
∑

jri
∈Sr

p(v, jri)
∏i−1

q=1(1− p(v, jrq))

p(v, Sr)
θ(jri)

≥ θ(jh)
∑

jri
∈Sr

p(v, jri)
∏i−1

q=1(1− p(v, jrq))

1−
∏|Sr |

i=1(1− p(v, jri))
= θ(jh). (4.30)

Second, for any nonempty set S composed of PAOFs, we claim that if all
100

the nodes in S use their shortest AAW anypaths, the AAW of v via this forwarding

set S satisfies

W(S)
m (v) =

ωm(v)

p(v, S)
+Wm(S) > θ(jb). (4.31)

We will prove this claim by contradiction. Assume that there exists a set S ′
a such

that ωm(v)
p(v,S′

a)
+Wm(S ′

a) ≤ θ(jb). We use ψ′ to denote the set ψ \ {jb}. Since S ′
a is

composed of PAOFs, it does not contain jb. Let Sa denote the set S ′
a ∪ {jb} (i.e.

S ′
a = Sa \ {jb}). Since ψ is optimal with respect to AAW, we have

ωm(v)+p(v, S ′
a)Wm(S ′

a)+(1− p(v, S ′
a))p(v, jb)θ(jb)

p(v, Sa)
≥

ωm(v)+p(v, ψ′)Wm(ψ′)+(1−p(v, ψ′))p(v, jb)θ(jb)

p(v, ψ)
. (4.32)

By (4.27)(4.28)(4.29), the left side of (4.32) is the AAW of v via the forwarding

set Sa, and the right side is that of v via the AOFS ψ. We can transform (4.32)

to

(ωm(v)+p(v, ψ′)Wm(ψ′))(1−(1−p(v, S ′
a))(1−p(v, jb)))

−(ωm(v)+p(v, S ′
a)Wm(S ′

a))(1−(1−p(v, ψ′))(1−p(v, jb)))

+p(v, jb)θ(jb)(p(v, S
′
a)− p(v, ψ

′)) ≤ 0. (4.33)

According to the assumption ωm(v)
p(v,S′

a)
+Wm(S ′

a) ≤ θ(jb) and p(v, jb) > 0 (by the

definition of OMCAP), (4.33) implies

(ωm(v)+p(v, ψ′)Wm(ψ′))(1−(1−p(v, S ′
a))(1−p(v, jb)))

≤ θ(jb)p(v, ψ
′)(1− (1− p(v, S ′

a))(1− p(v, jb))). (4.34)

Since p(v, jb) > 0, we know 1 − (1 − p(v, S ′
a))(1 − p(v, jb)) > 0. Thus, we can

divide both sides of (4.34) by 1− (1− p(v, S ′
a))(1− p(v, jb)) and derive the AAW

of v via ψ′

W(ψ′)
m (v) =

ωm(v)

p(v, ψ′)
+Wm(ψ′) ≤ θ(jb). (4.35)

101

We can now prove (4.31) by contradiction. When v uses ψ as its forwarding set,

by (4.27-4.29), we know

W(ψ)
m (v) =

ωm(v)+p(v,ψ′)Wm(ψ′)+p(v,jb)(1−p(v, ψ′))θ(jb)

1− (1− p(v, jb))(1− p(v, ψ′))
. (4.36)

When v uses ψ′ as its forwarding set, its AAW is

W(ψ′)
m (v) =

ωm(v) + p(v, ψ′)Wm(ψ′)

p(v, ψ′)
. (4.37)

Combining (4.36) and (4.37), we have

W(ψ)
m (v)=

W(ψ′)
m (v)p(v,ψ′)+p(v, jb)(1−p(v,ψ′))θ(jb)

1− (1− p(v, jb))(1− p(v, ψ′))
. (4.38)

According to (4.35) and (4.38), we can derive W(ψ)
m (v) ≥ W(ψ′)

m (v). This is a

contradiction considering the following two cases. In the first case: W(ψ)
m (v) >

W(ψ′)
m (v). This implies ψ′ is better and thus ψ is not an AOFS, which is a contra-

diction. In the second case: W(ψ)
m (v) =W(ψ′)

m (v). We can therefore safely remove

jb from ψ to obtain another AOFS ψ′, whose lowest priority node has a smaller

priority index than that of jb. Recall that ψ is the AOFS whose lowest priority

node jb has the smallest priority index. This is also a contradiction. Therefore,

the inequality (4.31) is proved.

Third, since S is an arbitrary set composed of PAOFs, according to (4.31),

we know that when Sl is not empty (recall that Sl is composed of PAOFs),

W(Sl)
m (v) = ωm(v)

p(v,Sl)
+ Wm(Sl) > θ(jb). We know that θ(jb) is not smaller than

the optimal AAW of any PAOF and that jh is a PAOF. Thus

W(Sl)
m (v) =

ωm(v)

p(v, Sl)
+Wm(Sl) > θ(jh). (4.39)

Based on the three properties above, we will show that we can safely fill the

hole jh. We now compare the AAW of v via Sh with that via S ′
h = Sh \ {jh}. By

102

(4.27)(4.28)(4.29), we have

W
(S′

h)
m (v) =

ωm(v)+p(v, Sl)Wm(Sl)+(1−p(v, Sl))p(v, Sr)Wm(Sr)

1− (1− p(v, Sl))(1− p(v, Sr))
,

and

W(Sh)
m (v)

=
ωm(v) + p(v, Sl)Wm(Sl) + (1− p(v, Sl))p(v, jh)θ(jh)

1− (1− p(v, Sl))(1− p(v, Sr))(1− p(v, jh))

+
(1− p(v, Sl))(1− p(v, jh))p(v, Sr)Wm(Sr)

1− (1− p(v, Sl))(1− p(v, Sr))(1− p(v, jh))
.

Since p(v, S ′
h) = 1−(1−p(v, Sl))(1−p(v, Sr)) and p(v, Sh) = 1−(1−p(v, Sl))(1−

p(v, Sr))(1− p(v, jh)), we can have

W(Sh)
m (v)−W

(S′
h
)

m (v) =

=
−(1−p(v, Sl))p(v, jh)(ωm(v)+p(v, Sl)Wm(Sl))(1−p(v, Sr))

p(v, Sh)p(v, S ′
h)

−
(1−p(v, Sl))p(v, jh)p(v, Sr)Wm(Sr)

p(v, Sh)p(v, S
′
h)

+
(1−p(v, Sl))p(v, jh)θ(jh)(p(v, Sl)+p(v, Sr)−p(v, Sl)p(v, Sr))

p(v, Sh)p(v, S ′
h)

. (4.40)

We now consider two cases. The first case is that Sl is empty. Obviously, we can

set p(v, Sl) = p(v, Sl)Wm(Sl) = 0. Recall that Sr is always nonempty. Thus, we

can substitute (4.30) and p(v, Sl) = 0 into (4.40). We must have

W(Sh)
m (v)−W

(S′
h)

m (v) ≤
−p(v, jh)ωm(v)(1− p(v, Sr))

p(v, Sh)p(v, S
′
h)

≤ 0. (4.41)

The second case is that both Sl and Sr are nonempty. Substituting (4.30) and

(4.39) into (4.40), after some mathematical manipulation, we have

W(Sh)
m (v)−W

(S′
h)

m (v) ≤
−(1−p(v, Sl))p(v, jh)ωm(v)(1−p(v, Sr))

p(v, Sh)p(v, S
′
h)

≤ 0. (4.42)

Recall that Sh is the union of jb and an arbitrary set composed of PAOFs.

Inequalities (4.41) and (4.42) imply that if ψ has at least one hole, we can first
103

safely fill a hole in ψ without increasing the AAW of v. Then we can safely

continue to fill another hole in the forwarding set obtained in the step above

without increasing the AAW of v. The procedure is repeated until all the holes

are filled. Now, we have a forwarding set, which is composed of jb and all the

PAOFs. Furthermore, the AAW of v via this forwarding set is not larger than

that via ψ. Thus, we obtain an FAOFS.

Lemma 7 implies that if we want to find an AOFS, we only have to check

forwarding sets <j1>, <j1, j2>, Thus the complexity of the algorithm can

be reduced to polynomial time from exponential time. We call the full AAW

optimal forwarding set so constructed a minimum full AAW optimal forwarding

set (MFAOFS). Recall that the AAW of the lowest priority node in the MFAOFS

is not greater than that of the lower priority node in any other AOFS. Therefore,

if we check the forwarding sets in the order <j1>, <j1, j2>, . . . , the MFAOFS

would be found earliest among all the AOFSs. If all the nodes on a shortest AAW

anypath from v to t are using their MFAOFSs, we call it a full shortest AAW

anypath.

Lemma 8. The MFAOFS of v is <j1, j2, . . . , jb> with optimal AAWs θ(j1) ≤

θ(j2)≤ . . .≤θ(jb). We use Sµ to denote the forwarding set <j1, j2, . . . , jµ>, 1 ≤µ≤b.

Then we have W(S1)
m (v) >W(S2)

m (v) > . . . >W(Sb)
m (v) = θ(v). �

Proof. Consider an arbitrary integer µ in the range of [1, b−1]. By the definition

of AAW, we have

W(Sµ)
m (v) =

ωm(v) + p(v, Sµ)Wm(Sµ)

p(v, Sµ)
.

By (4.27-4.29), we have

W(Sµ+1)
m (v) =

ωm(v)+p(v, Sµ)Wm(Sµ)+p(v, jµ+1)(1−p(v, Sµ))θ(jµ+1)

1− (1− p(v, Sµ))(1− p(v, jµ+1))
.

104

Combining these two equalities, we have

W(Sµ+1)
m (v) =

W
(Sµ)
m (v)p(v, Sµ)+p(v, jµ+1)(1−p(v, Sµ))θ(jµ+1)

1− (1− p(v, Sµ))(1−p(v, jµ+1))
. (4.43)

Since the nonempty forwarding set Sµ is composed of PAOFs, by (4.31) we have

W
(Sµ)
m (v) > θ(jb). According to θ(jb) ≥ θ(jµ+1), we have W

(Sµ)
m (v) > θ(jµ+1). In

addition, we claim p(v, Sµ) < 1. Otherwise, according to the definition of AAW,

if p(v, Sµ) = 1, jb has no chance to forward a received packet. Thus jb can be

safely removed. This contradicts the fact that <j1, j2, . . . , jb> is an MFAOFS.

Substituting p(v, Sµ) < 1, p(v, jµ+1) > 0 (by the definition of OMCAP) and

W
(Sµ)
m (v) > θ(jµ+1) into (4.43), we have

W(Sµ+1)
m (v)<

p(v, Sµ)+p(v, jµ+1)(1−p(v, Sµ))

1− (1− p(v, Sµ))(1− p(v, jµ+1))
W(Sµ)

m (v) =W(Sµ)
m (v). (4.44)

Since µ is an arbitrary integer in the range of [1, b − 1], we have W(S1)
m (v) >

W(S2)
m (v) > · · · >W(Sb)

m (v) = θ(v).

Lemma 9. The optimal AAW θ(v) of a node v is always larger than the optimal

AAW θ(j) of any node j (other than v) on the full shortest AAW anypath of v.

�

Proof. First, we consider an arbitrary node j in v’s MFAOFS ψ. We use ψ′ to

denote the set ψ \ {jb} and thus ψ′ is composed of PAOFs. According to (4.31),

we have W(ψ′)
m (v) > θ(jb). By (4.38) and p(v, ψ′) > 0, we have

W(ψ)
m (v)

=
W(ψ′)

m (v)p(v, ψ′) + p(v, jb)(1− p(v, ψ′))θ(jb)

1− (1− p(v, jb))(1− p(v, ψ′))

>
p(v, ψ′) + p(v, jb)(1− p(v, ψ′)

1− (1− p(v, jb))(1− p(v, ψ′))
θ(jb) = θ(jb).

Since jb is the node with the largest AAW in ψ, we must have θ(v) =W(ψ)
m (v) >

θ(j) for every node j in ψ.
105

We can inductively apply the same proof to all the nodes in ψ. Repeating

this procedure, eventually we will have the conclusion that the optimal AAW θ(v)

of a node v is always larger than the optimal AAW θ(j) of any node j (other than

v) on the full shortest AAW anypath of v.

Proof of Theorem 8. We show that for each node v ∈ V , when it is inserted

into L, we have Wm(v) = θ(v).

For the purpose of contradiction, let u be the first node added to L for

which Wm(u) > θ(u). We claim that the MFAOFS of u contains at least one

node, which has not been added into L. Otherwise if all the nodes in its MFAOFS

have been added into L, Algorithm 2 must have found this MFAOFS for u for

the following reason. By Lemma 7, we know that there exists an MFAOFS of the

form <j1, j2, . . . , jb> for u. Moreover, u is the first node added to L for which

Wm(u) > θ(u). This implies that all the nodes already in its MFAOFS were

inserted into L in the increasing order of their optimal AAWs, since they satisfied

Wm(u) = θ(u) when they were added into L, and Algorithm 2 always chooses the

node with the smallest Wm(u) and adds it into L. Thus <j1>, <j1, j2>. . . have

been checked by Algorithm 2. By Lemma 8, if j1 and j2 are in the MFAOFS of u,

using <j1, j2> always provides a smaller AAW than just using <j1>. Thus the

condition in Line 6 of Algorithm 2 will be true and the forwarding set is updated

to <j1, j2>. The same procedure is repeated until the MFAOFS is found. Note

that by Lemma 7 the MFAOFS will be found earliest. This implies that when u is

added into L, it is using its MFAOFS. Furthermore, the AAWs of the nodes in the

MFAOFS of u are equal to their optimal values since u is the first one for which

Wm(u) > θ(u). We therefore know Wm(u) = θ(u). However, this contradicts

Wm(u) > θ(u). Hence, the MFAOFS of u contains at least one node, which has

not been added into L.

106

We arbitrarily select one of these nodes, denoted by u1. By Lemma 9, we

have θ(u1) < θ(u). Since we assumeWm(u) > θ(u), we must have θ(u1) <Wm(u).

Let us consider a full shortest AAW anypath πmu1
from u1 to t. Without loss of

generality, assume that node u2 has the smallest optimal AAW to t among all

nodes on πmu1
which have not been inserted into L. Thus θ(u1) ≥ θ(u2). Claim

(1): all the nodes in u2’s MFAOFS must be in L. To prove this claim, let us

assume that u3, which is in u2’s MFAOFS, is not in L. By Lemma 9, we know

that in this case we must have θ(u2) > θ(u3). However, since we assume that u2

has the smallest optimal AAW (note that u3 is also on πmu1
), then θ(u2) ≤ θ(u3),

which contradicts θ(u2) > θ(u3). Thus, all the nodes in u2’s MFAOFS are in L.

Since u is also in L, we next consider whether u is u2’s MFAOFS.

Claim (2): u is not in u2’s MFAOFS. We also prove this claim by con-

tradiction. Assume that u is in u2’s MFAOFS. By Lemma 9, we therefore know

θ(u2) > θ(u). On the other hand, since we have deduced that θ(u2) ≤ θ(u1) and

θ(u1) < θ(u), we know θ(u2) < θ(u), which contradicts θ(u2) > θ(u). Thus u in

not in u2’s MFAOFS.

Claims (1) and (2) imply that at the time just before u is inserted into

L, all the nodes in the MFAOFS of u2 have been inserted into L. Recall how we

proved that if all the nodes in the MFAOFS of u have been added into L, this

set must be found by Algorithm 2. We can use the same proof to prove that the

MFAOFS of u2 must have been found by Algorithm 2. Thus, at that timeWm(u2)

= θ(u2).

We now derive the contradiction based on our first assumption that u

is the first node added to L for which Wm(u) > θ(u). Since we have deduced

θ(u2) ≤ θ(u1) and θ(u1) < Wm(u), we have θ(u2) < Wm(u). Additionally, we

deduced Wm(u2) = θ(u2). We therefore know Wm(u2) <Wm(u). However this is

107

a contradiction, since this inequality implies that u2, which is a node outside of

L at the time u is inserted into L, should be inserted into L before u.

We therefore conclude that for each node v in L, we have Wm(v) = θ(v).

This implies that when a node is inserted into L, its shortest AAW anypath has

been found and will be returned by Algorithm 2.

We now analyze the running time of Algorithm 2. Lines 1-4 take O(K|V |)

to finish initializations. If we use a Fibonacci heap [21], each of the Extract-Min

operations takes O(log |V |) in Line 6, with a total of O(|V | log |V |). Each of the

max-operations in Line 7 takes O(K), with a total of O(K|V |). Note that the

for-loop of Lines 8-16 is executed O(|E|) times in total, since there are a total

number of |E| incoming links. If we use the technique proposed by [59], Lines 9

and 11 take constant time respectively. Thus each execution of the for-loop of

Lines 10-12 takes O(K), with a total of O(K|E|). Evaluating the condition in

Line 6 and the operations in Line 7 take O(|E|) in total, respectively. Updating

Q requires O(|E|) in total if a Fibonacci heap is used. Thus the total running

time is O(|V | log |V |+K|E|).

Theorem 8 states that the anypath so computed is a shortest AAW any-

path. In other words, the forwarding set of each node computed by Algorithm 2

is actually an optimal forwarding set with respect to AAW, namely AAW optimal

forwarding set (AOFS).

The next theorem is the main result of this work. It characterizes how good

Algorithm 2 is, compared to the optimal solution to OMCAP(G, s, t,
−→
W,−→w ,−→p ,K).

Theorem 9. Let πms be the anypath from s to t computed by Algorithm 2, and

πopts be any optimal solution to OMCAP(G, s, t,
−→
W,−→w ,−→p ,K). We have

l(s, πms) ≤ K · l(s, πopts). (4.45)
108

In other words, Algorithm 2 is a K-approximation algorithm for OMCAP. �

Proof. For an arbitrary node v in the network, we use πmv to denote the anypath

from v to t computed by Algorithm 2, and use πoptv to denote an optimal solution

to OMCAP(G, v, t,
−→
W,−→w ,−→p ,K). To prove the truth of the theorem, it suffices to

prove that the following three inequalities hold for every node v in the network.

l(v, πmv) ≤ Wm(v, πmv), (4.46)

Wm(v, πmv) ≤ Wm(v, πoptv), (4.47)

Wm(v, πoptv) ≤ K · l(v, πoptv). (4.48)

It follows from Theorem 8 that πmv is a shortest AAW anypath from v to

t. Therefore we have Inequality (4.47).

Next we will prove Inequality (4.46). According to Algorithm 2,

nodes are inserted into L one by one. We index all the nodes on πmv in this order.

Therefore the index of node t is 0, and v has the largest index (at the time v is

inserted into L). We use vi to denote the vertex with index i, and claim that for

each vi, we have

l(vi, π
m
v) ≤ Wm(vi, π

m
v). (4.49)

We will use mathematical induction to prove Inequality (4.49). For node v1, only

the destination t is in its forwarding set. Therefore we have

Wm(v1, π
m
v) =

ωm(v1)

p(v1, t)
+Wm(<t>, πmv) =

ωm(v1)

p(v1, t)
= max

1≤k≤K

wk(v1)

p(v1, t)
.

On the other hand, by the definition of anypath length, we have

l(v1, π
m
v) = max

1≤k≤K
Wk(v1, π

m
v) = max

1≤k≤K

wk(v1)

p(v1, t)
+Wk(<t>, π

m
v)= max

1≤k≤K

wk(v1)

p(v1, t)
.

Therefore we have l(v1, π
m
v) ≤ Wm(v1, π

m
v).

109

Assume that the claim (4.49) is true for all the nodes with indices in the

range [1, η]. We will prove that the claim is still true for vη+1. By the definition

of Wm, we have

Wm(vη+1, π
m
v) =

ωm(vη+1)

p(vη+1, J(vη+1, πmv))
+
∑

jβ∈J(vη+1,πm
v)

α(jβ , π
m
v)Wm(jβ, π

m
v). (4.50)

According to Algorithm 2, before vη+1 is inserted into L, all its forwarders along

πmv have been inserted into L. Thus, the assumption that the claim (4.49) is true

for all the nodes with indices in the range [1, η] can be applied to all its forwarders.

Therefore we have

Wm(jβ , π
m
v) ≥ l(jβ, π

m
v) = max

1≤k≤K
Wk(jβ , π

m
v), ∀jβ ∈ J(vη+1, π

m
v).

Substituting the above inequality and the definition of ωm(vη+1) into (4.50), we

have

Wm(vη+1, π
m
v)

≥ max
1≤k≤K

wk(vη+1)

p(vη+1, J(vη+1, πmv))

∑

jβ∈J(vη+1,πm
v)

α(jβ , π
m
v) max

1≤k≤K
Wk(jβ, π

m
v)

≥ max
1≤k≤K





wk(vη+1)

p(vη+1, J(vη+1, πmv))
+

∑

jβ∈J(vη+1,πm
v)

α(jβ, π
m
v)Wk(jβ , π

m
v)





= max
1≤k≤K

Wk(vη+1, π
m
v) = l(vη+1, π

m
v).

Therefore, we have proved claim (4.49), which implies Inequality (4.46).

Now we prove Inequality (4.48). Recall that the anypaths considered

are directed acyclic graphs. We can index all the nodes on the optimal anypath

πoptv of node v in a reversed topological order [21]. In other words, the index of t

is 0, v has the largest index, and the index of every node is always greater than

the indices of its forwarders. We use vi to denote the vertex with index i, and

claim that for any node vi on πoptv , we have

∑

1≤k≤K

Wk(vi, π
opt
v) ≥ Wm(vi, π

opt
v). (4.51)

110

We prove this claim using mathematical induction on i.

For v1, since only t is in its forwarding set, we have

∑

1≤k≤K

Wk(v1, π
opt
v)

=
∑

1≤k≤K

wk(v1)

p(v1, t)
+Wk(<t>, π

opt
v) =

∑

1≤k≤K

wk(v1)

p(v1, t)

≥
1

p(v1, t)
max

1≤k≤K
wk(v1) =

ωm(v1)

p(v1, t)
=Wm(v1, π

opt
v).

Assume that the claim (4.51) is true for all the nodes with indices in the

range [1, η]. We will prove that the claim is still true for vη+1 as follows. For vη+1,

we have

∑

1≤k≤K

Wk(vη+1, π
opt
v)

=

K
∑

k=1





wk(vη+1)

p(vη+1, J(vη+1, π
opt
v))

+
∑

jβ∈J(vη+1,π
opt
v)

α(jβ, π
opt
v)Wk(jβ, π

opt
v)





≥ max
1≤k≤K

wk(vη+1)

p(vη+1, J(vη+1, π
opt
v))

+
∑

jβ∈J(vη+1,π
opt
v)

α(jβ, π
opt
v)

∑

1≤k≤K

Wk(jβ, π
opt
v).

Since the indices of the forwarders of vη+1 are smaller than that of vη+1, the

assumption that the claim (4.51) is true for all the nodes with indices in the range

[1, η] can be applied to all its forwarders, which means
∑

1≤k≤KWk(jβ, π
opt
v) ≥

Wm(jβ, π
opt
v), ∀jβ ∈ J(vη+1, π

opt
v). Hence, we have

∑

1≤k≤K

Wk(vη+1, π
opt
v)

≥ max
1≤k≤K

wk(vη+1)

p(vη+1, J(vη+1, π
opt
v))

+
∑

jβ∈J(vη+1,π
opt
v)

α(jβ , π
opt
v)Wm(jβ, π

opt
v)

=
ωm(vη+1)

p(vη+1, J(vη+1, π
opt
v))

+
∑

jβ∈J(vη+1,π
opt
v)

α(jβ , π
opt
v)Wm(jβ, π

opt
v)

=Wm(vη+1, π
opt
v).

111

Therefore we have proved Claim (4.51), which implies the following.

Wm(v, πoptv) ≤
∑

1≤k≤K

Wk(v, π
opt
v). (4.52)

According to (4.5), we haveWk(v, π
opt
v) ≤ l(v, πoptv), ∀k ∈ [1, K]. Therefore

Inequality (4.52) implies the following.

Wm(v, πoptv) ≤
∑

1≤k≤K

Wk(v, π
opt
v) ≤ K · l(v, πoptv), (4.53)

which implies Inequality (4.48).

Substituting v with s in Inequalities (4.46)-(4.48), we obtain Inequality

(4.45). This completes the proof of the theorem.

Remark. For the case K = 1, our algorithm computes an optimal solution to the

corresponding problem in polynomial time. When K ≥ 2, the problem becomes

NP-hard, and our algorithm computes a K-approximation solution in polynomial

time.

112

4.6 An Efficient Distributed K-Approximation Algorithm

In this subsection we first present a distributed algorithm DMART to compute

anypaths from all the nodes to a destination t and then analyze its performance.

As before, in order to simplify the notations, we assume that W1=W2=· · ·=WK=1

in this subsection. This is equivalent to normalize all of the vertex weights (from

wk(v) to wk(v)/Wk for all v ∈ V and k = 1, 2, . . . , K). Therefore the algorithm

and all the proofs can be straightforwardly extended to the case without this

assumption.

4.6.1 Algorithm Description

DMART requires each node to first initialize the data structures and then execute

a sequence of iterations. For every node v ∈ V we use a variable W(i)
m (v, P) to

denote the AAW from v to t along anypath P computed in the ith iteration.

In addition, each node v keeps a data structure Q(v) to store all its outgoing

neighbors. At the beginning of the ith iteration, each node v sorts the nodes in

Q(v) in the increasing order of their AAWs which are obtained in the (i − 1)th

iteration.

113

DMART’s initialization phase for node v:

1: ωm(v)←max1≤k≤K wk(v), Q(v)←∅, J(v, P)←∅
2: if v = t then
3: W(0)

m (v, P)←0
4: for each k do
5: Wk(v, P)← 0
6: end for
7: else
8: W(0)

m (v, P)←∞
9: for each k do

10: Wk(v, P)←∞
11: end for
12: end if

DMART’s ith iteration for node v:

1: Update Q(v) such that all the elements in it (denoted by j) are sorted in the

increasing order of W(i−1)
m (j, P).

2: F ← ∅, W(i)
m (v, P)←W(i−1)

m (v, P)
3: while Q(v) 6= ∅ do
4: j ← Extract-Min(Q(v)), F ← F ∪ {j}

5: W ′
m(v, P)← ωm(v)

p(v,F)
+
∑

jβ∈F
α(jβ, P)W(i−1)

m (jβ, P)

6: if W(i)
m (v, P) >W ′

m(v, P) then

7: J(v, P)← F,W(i)
m (v, P)←W ′

m(v, P)
8: end if
9: end while

10: for each k do
11: Wk(v, P)← wk(v)

p(v,J(v,P))
+Wk(J(v, P), P)

12: end for

4.6.2 Algorithm Illustration

We now illustrate how DMART works using a simple example, shown in Fig. 4.5.

In this example, K = 2 and W1 = W2 = 1.

In the initialization phase, each node calculates its auxiliary vertex weight

and initializes the necessary data structures. W(0)
m (t, P) is set to 0, andW(0)

m (v, P) =

∞ for all v ∈ V \ {t} since so far no anypath has been found for them.
114

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (∞ , ∞) , ∞ }{ Ø } { (∞ , ∞) , ∞ }{ Ø }
{ (∞ , ∞) , ∞ }{ Ø }{ (∞ , ∞) , ∞ }{ Ø } { (∞ , ∞) , ∞ }{ Ø } { (∞ , ∞) , ∞ }{ Ø } { (0 , 0) , 0 }{ Ø }{ (∞ , ∞) , ∞ }{ Ø }

(a) Initialization

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (∞ , ∞) , ∞ }{ Ø } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (∞ , ∞) , ∞ }{ Ø }

{ (∞ , ∞) , ∞ }{ Ø } { (4 , 8) , 8 }{ t } { (0 , 0) , 0 }{ Ø }{ (∞ , ∞) , ∞ }{ Ø }
(b) Iteration 1

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (2 6 , 2 1) , 2 6 }{ v 5 } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (1 2 , 1 4) , 1 4 }{ v 6 }

{ (5 , 1 2) , 1 2 }{ v 4 } { (3 , 6) , 6 }{ t , v 6 } { (0 , 0) , 0 }{ Ø }{ (∞ , ∞) , ∞ }{ Ø }
(c) Iteration 2

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (8 , 1 2 . 5) , 1 5 }{ v 3 } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (5 . 7 , 1 2 . 2) , 1 2 . 2 }{ v 6 , v 3 }

{ (5 , 1 2) , 1 2 }{ v 4 } { (3 , 6) , 6 }{ t , v 6 } { (0 , 0) , 0 }{ Ø }{ (6 . 4 , 1 3 . 2) , 1 3 . 2 }{ v 3 , v 2 }
(d) Iteration 3

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (8 , 1 2 . 5) , 1 5 }{ v 3 } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (5 . 7 , 1 2 . 2) , 1 2 . 2 }{ v 6 , v 3 }

{ (5 , 1 2) , 1 2 }{ v 4 } { (3 , 6) , 6 }{ t , v 6 } { (0 , 0) , 0 }{ Ø }{ (6 . 1 , 1 3 . 1) , 1 3 . 1 }{ v 3 , v 2 }
(e) Iteration 4

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (8 , 1 2 . 5) , 1 5 }{ v 3 } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (5 . 7 , 1 2 . 2) , 1 2 . 2 }{ v 6 , v 3 }

{ (5 , 1 2) , 1 2 }{ v 4 } { (3 , 6) , 6 }{ t , v 6 } { (0 , 0) , 0 }{ Ø }{ (6 . 1 , 1 3 . 1) , 1 3 . 1 }{ v 3 , v 2 }
(f) Iteration 5

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (8 , 1 2 . 5) , 1 5 }{ v 3 } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (5 . 7 , 1 2 . 2) , 1 2 . 2 }{ v 6 , v 3 }

{ (5 , 1 2) , 1 2 }{ v 4 } { (3 , 6) , 6 }{ t , v 6 } { (0 , 0) , 0 }{ Ø }{ (6 . 1 , 1 3 . 1) , 1 3 . 1 }{ v 3 , v 2 }
(g) Iteration 6 (s-t anypath)

s(1 , 1)v 1(3 , 0 . 5)v 2(1 , 1) v 3(1 , 4) v 5(8 , 8)v 6(1 , 2)t0 . 51 0 . 1 0 . 50 . 510 . 5 0 . 2 0 . 4v 4(2 , 4)1110 . 9{ (8 , 1 2 . 5) , 1 5 }{ v 3 } { (2 0 , 2 0) , 2 0 }{ t }
{ (2 , 4) , 4 }{ t }{ (5 . 7 , 1 2 . 2) , 1 2 . 2 }{ v 6 , v 3 }

{ (5 , 1 2) , 1 2 }{ v 4 } { (3 , 6) , 6 }{ t , v 6 } { (0 , 0) , 0 }{ Ø }{ (6 . 2 , 1 3) }{ v 3 , v 2 , v 1 }
(h) Optimal s− t anypath

Figure 4.5: Execution of DMART from every node to t. The link labels show link
delivery probabilities; the vertex labels show (w1, w2) pairs of the vertices; the
labels next to each vertex show the currently computed anypath weights (W1,W2)
(the first parenthesis in the first bracket), the AAW (Wm) (the second element
in the first bracket), and the forwarding set (the second bracket). The original
network graph is shown in Fig.4.5a. Fig. 4.5b-4.5g show the situations after each
iteration. Fig. 4.5h shows an optimal s-t anypath.

115

At the beginning of the first iteration, v4, v5 and v6 know thatW(0)
m (t, P) =

0. Now we take v4 as an example. Q(v4) has three elements t, v5 and v6. Note that

W(0)
m (v5, P) = W(0)

m (v6, P) = ∞. Thus in the first loop (Lines 3-9), v4 extracts

t (Line 4), and computes W ′
m(v, P) = 8 (Line 5). Since W(1)

m (v4, P) = ∞ >

W ′
m(v, P) = 8, Line 7 updates the AAW for v4. In the second loop, F is updated

to {t, v5}. Obviously, W ′
m(v, P) =∞, and thus Lines 6-8 will be skipped. In the

third loop, F is updated to {t, v5, v6}. Likewise W ′
m(v, P) = ∞, and Lines 6-8

will be skipped. The result of the first iteration is shown in Fig.4.5b.

At the beginning of the second iteration, for example, v1 knowsW(1)
m (v3, P)

=∞ andW(1)
m (v5, P) = 20. Similar to the procedure above, after two loops (Lines

3-9) v1 will select v5 as its forwarder. The same procedure repeats until no updates

happen any more.

We note that the s–t anypath obtained by DMART has a length of 13.1 =

max{6.1
1
, 13.1

1
}, while as shown in Fig. 4.5h the optimal one has a length of 13 =

max{6.2
1
, 13

1
}. Although the anypath so computed is not optimal, its length is

within a factor of 2 of that of the optimal one.

4.6.3 Algorithm Analysis

Theorem 10. DMART computes a K-approximation to the OMCAP problem

after at most D ≤ |V | iterations and each iteration can be done in O(∆(log ∆+K))

time by each node, where ∆ is the max out-degree of graph G. �

We now prove that the anypath computed by DMART is aK-approximation

to the OMCAP problem. Let θ(v) denote v’s optimal AAW. We use W(J)
m (v) to

denote v’s AAW via the forwarding set J if all the nodes in J use their shortest

AAW anypaths. Here we recall two lemmas which have been proved before.

116

Lemma 10. For all of node v’s neighbors j1, j2, . . . , jz, where z is the number of

v’s outdegree, if θ(j1) ≤ θ(j2) ≤ ··· ≤ θ(jz), then there must exist an AAW optimal

forwarding set (AOFS) of the form {j1, j2, . . . , jb} for some b ∈ {1, 2, . . . , z}, called

a full AAW optimal forwarding set (FAOFS). �

Lemma 10 implies that if we want to find an AOFS, we only need to check

forwarding sets {j1}, {j1, j2}, The complexity of the algorithm can therefore

be reduced to polynomial time from exponential time. Recall that the proof of this

lemma constructs a full AAW optimal forwarding set from a particular forward-

ing set. This constructed forwarding set is called a minimum full AAW optimal

forwarding set (MFAOFS). When all the nodes on a shortest AAW anypath from

v to t are using their MFAOFSs, we call it a full shortest AAW anypath.

Lemma 11. The MFAOFS of v is {j1, j2, ..., jb} with optimal AAWs θ(j1) ≤

θ(j2) ≤ · · · ≤ θ(jb). We use Sµ to denote the forwarding set {j1, j2, ..., jµ}, 1 ≤

µ ≤ b. Then we have W(S1)
m (v) >W(S2)

m (v) · ·· >W(Sb)
m (v) = θ(v). �

Now we define a distance index for each node v. Since the full shortest

AAW anypath from v to the destination t is an acyclic directed graph (recall

that we only consider the case in which anypaths are acyclic), we can use the

topological order [21] to index all the nodes on this anypath. In other words, t

has a distance index of 0, and v has the largest index. Since there may exist more

than one shortest AAW for node v, node v could have different topological orders

in different shortest anypaths. We select the smallest one as v’s distance index

(denoted by D(v)). Let D denote maxv∈V D(v). Obviously, D ≤ |V |.

Lemma 12. In iteration i, each node with distance index D(v) = i computes its

shortest AAW anypath to the destination t. �

117

Proof. We prove this lemma by using mathematical induction. Obviously, only

the destination node t has a distance index of 0. In the zeroth iteration (i.e. the

initialization phase), t can find its own shortest AAW anypath (although it is

trivial).

Now we assume that at iteration i ≥ 0 each node with the distance index

D(v) ∈ [0, i] finds or has found its shortest AAW anypath to the destination t. We

will prove the claim that in iteration (i+ 1) each node v with the distance index

D(v) = i+1 computes its shortest AAW anypath to the destination t. Since all the

nodes in v’s MFAOFS have distance indices less than i+1 (recall the definition of

the distance index), we know that all the nodes in v’s MFAOFS have found their

shortest AAW anypaths before the (i+ 1)th iteration. We are now ready to prove

that v can find its MFAOFS in the (i+ 1)th iteration.

By Lemma 10, we know there exists an MFAOFS of the form {j1, j2, ..., jb}

for v. The while loop (Lines 3-9) will check {j1}, {j1, j2}... By Lemma 11, if j1

and j2 are in v’s MFAOFS, using {j1, j2} always provides a smaller AAW than

just using {j1}. Thus the condition in Line 6 will be true and the forwarding set is

updated to {j1, j2}. The same procedure is repeated until the MFAOFS is found.

The claim is therefore proved. The proof is complete.

Proof of Theorem 10. Lemma 12 indicates that a shortest AAW anypath for

each node to the destination t can be found by DMART. According to Theo-

rem 9, we know that a shortest AAW anypath is actually a K-approximation

to the OMCAP(G, s, t,
−→
W,−→w ,−→p ,K) problem. Therefore DMART can find a K-

approximation anypath for each node after at most D ≤ |V | iterations.

We now analyze the running time of each iteration. For each node, Line 1

takes O(∆ log ∆) time. If we store some status variables as in [58], Line 5 takes

118

O(∆) in total. Obviously, Lines 4, 6 and 7 take O(1) time, with O(∆) in total.

Lines 10-12 take O(K∆) time. Thus each node needs O(∆(log ∆ +K)) time to

finish one iteration.

Remark. When K=1, our algorithm is the optimal algorithm for the correspond-

ing problem. The shortest anypath algorithm proposed in [25] is a special case of

DMART when K = 1 and all the vertex weights are equal to 1. When K ≥ 2,

our result is the first distributed O(1)-approximation algorithm for the NP-hard

OMCAP problem.

4.6.4 Distributed Implementation

Inspired by the Distributed Bellman-Ford protocol proposed in [21], we present the

following synchronous proactive protocol based on our DMART algorithm. Each

node maintains a routing table entry for each destination <destination, K anypath

weights, auxiliary anypath weight, forwarding set>. The timeline is divided into

a sequence of time intervals of a constant length, each of which is used for one

iteration in DMART. In each time interval, each node runs DMART to update

its anypath to each destination. If the entries in the routing table change, this

node sends path vector tuples <destination, K anypath weights, auxiliary anypath

weight> to all its immediate neighbors. This is called path vector updating. In the

next iteration, its immediate neighbors can use these new path vectors to update

their routing tables.

Since our synchronous proactive protocol requires a rough time synchro-

nization, we also propose an asynchronous proactive table-driven protocol. Every

node periodically sends path vector tuples <destination, K anypath weights, aux-

iliary anypath weight> to all its immediate neighbors. The updating operation

frequency depends on the size and the dynamic of the network. Whenever the

119

entries in the routing table change, this node also triggers the path vector updat-

ing. Once a node receives the path vector updates, it uses DMART to update the

anypath to the destination. If this computation leads to a routing table change,

it triggers a path vector updating.

Now we discuss the stopping criteria for the iterations in our synchronous

proactive protocol. Obviously, for a dynamic network this protocol should pe-

riodically update the path vector. However, for a static network, we may ask

when we can terminate the algorithm iteration. Although we know we can ter-

minate the algorithm after the upper bound of the number of iterations, the

tight upper bound D cannot be obtained easily and the loose bound |V | some-

times is too large. We propose the following “guessing” strategy. An obvious

stopping criterion is W(i−1)
m (v, P) = W(i)

m (v, P), ∀v ∈ V . We need the following

simple global status checking as a building block: every node v sends one bit to

a leader (elected using well-known leader-election algorithms) to notify whether

W(i−1)
m (v, P) =W(i)

m (v, P). If this leader finds W(i−1)
m (v, P) =W(i)

m (v, P), ∀v ∈ V ,

it sends back one bit iteration termination signaling. Although this global status

checking involves global information exchanges, obviously the overhead is very

small especially if the data fusion technique is used. In order to reduce the num-

ber of global status checking times, the “guessing” strategy works as follows: after

b0, b1, ...bh, ... iterations (b is an integer chosen by network administrators), we do

global status checking. Obviously, although we do not know the value of D, after

at most ⌈logbD⌉ global status checking operations, the algorithm will terminate.

4.7 Performance Evaluation

4.7.1 Performance of MAP

In this subsection, we present numerical results to demonstrate the performance

120

of our approximation algorithm MAP.

Since there is no previous algorithm for solving the OMCAP problem and

it takes exponential time to obtain an optimal solution, we compared MAP with

some variants of the SAF algorithm proposed in [58, 59]. Note that SAF is de-

signed based on EATX, rather than EWATX. However, we can extend the SAF

algorithm to support EWATX by computing EWATX instead of EATX in the

SAF algorithm. Since SAF is designed to optimize a single metric, we use SAF-k

(k = 1, . . . , K) to represent the implementation of SAF only taking into account

the kth weight, using EWATX instead of EATX. Using ideas similar to those in

the proof of Theorem 8, we can prove that SAF-k computes an optimal anypath

with respect to the kth EWATX.

All tests were performed on a 1.8GHz Linux PC with 2G bytes of memory.

In the simulation, we uniformly distributed nodes in a 1000m × 1000m square

region and evaluated different network sizes that will be described later. For each

network size, we randomly generated 1000 test cases by randomly choosing the

coordinates for all the nodes and the source-destination pair in each test. As

in [113], it is assumed the link delivery probability is inversely proportional to the

distance with a random Gaussian deviation of 0.1.

For the generation of vertex weights, we used two settings: a practical set-

ting and a random setting. For the practical setting, we used two vertex weights

which represent average transmission time and power consumption for each trans-

mission, respectively. All the nodes were equipped with 802.11 wireless LAN client

adapters. Since anypath routing needs a MAC that supports anycast with relay

priority enforced, we use the anycast MAC proposed by Jain and Das [46], which

is an enhancement to IEEE802.11. This scheme uses a variant of the IEEE 802.11

handshaking scheme to realize a reliable anycast MAC, and reduces to 802.11 when

121

there is only one next hop forwarder. We briefly describe this scheme in the follow-

ing. Please refer to [46] for details. This scheme follows the 802.11 Distributed

Coordination Function. The transmitter broadcasts to its forwarders an RTS

(called MRTS) with all the forwarder addresses (ordered according to their pri-

orities). Intended forwarders use the following rules to reply CTSs if they receive

this MRTS. These CTS transmissions must be staggered in time in order of their

priorities. The highest priority forwarder replies the CTS after an SIFS, the sec-

ond one replies after (CTS+3×SIFS) time, the third one after (2×CTS+5×SIFS)

time and so on. Once the transmitter receives a CTS, it sends the DATA to the

sender of this CTS after an SIFS interval. Other lower priority forwarders hearing

this DATA suppress their CTS replies. If DATA is successfully received, this for-

warder replies an ACK. Any other node that overhears the MRTS or a CTS will

set their corresponding network allocation vectors to avoid sending packets which

may result in collision or interference. Each node in our simulation can choose

one of the usable transmit power levels: 63, 50, 30, 20 and 10mW [20]. In addi-

tion, every node can use 18, 11, 6 or 1Mbps as its transmission rate. According

to [20], the corresponding maximum transmission ranges Rmax are 122, 149, 198

and 213m when the adapter is being used at the maximum transmit power. Since

the wireless card may operate on different power levels, the actual transmission

range of each transmission rate configuration satisfies Rmax× (Pt

Pmax
)

1
γ [32], where

the path loss exponent is γ = 2, the maximum transmit power is Pmax = 63mW ,

and its actual transmit power Pt is 63, 50, 30, 20 or 10mV . The two constraints

were defined by W1 = 30(ms) and W2 = 375(mW). Since the first weight and the

second weight represent delay and cost, respectively, we use SAF-D to represent

SAF-1 and SAF-C to represent SAF-2 in this setting.

For the random setting, we considered K = 2 and K = 3. All the vertex

122

weights of each node were uniformly chosen between [1, 10] and all the QoS

constraints were defined by Wk = 30 (k = 1, . . . , K). The node transmission

range was set to 200m.

We report simulation results about the algorithm running time, the lengths

of the anypaths obtained by MAP and SAF-k, and some properties of the anypaths

obtained by MAP.

4.7.1.1 Evaluation of Running Time

The running times of MAP and SAF are almost identical. Fig. 4.6 shows the

running time of MAP. Note that the running times of MAP for the random setting

and the practical setting are similar. We observe that the average running time

is no more than 3.5ms in all cases studied.

150 200 250 300 350
0

1

2

3

4

Number of Nodes

R
u

n
n

in
g

 T
im

e
(m

s
)

MAP

Figure 4.6: Running time

4.7.1.2 Evaluation of Anypath Length

We evaluated the lengths of the anypaths obtained by MAP and SAF-k for both

the practical setting and the random setting. The number of nodes was chosen

to be 150, 200,. . . , and 350.

123

For the practical setting, Fig. 4.7a shows the anypath lengths computed

by MAP, SAF-D, and SAF-C. We observe that compared with SAF-D and SAF-

C, MAP reduces the average anypath length by 5%-30%. This is as expected,

because SAF-D (SAF-C) uses only one metric in decision-making, while MAP

uses both metrics in decision-making. Essentially, MAP seeks for some tradeoff

between the two metrics.

In order to have a closer look at this tradeoff, we compared the delays of

the anypaths computed by MAP and SAF-D and also compared the costs of the

anypaths computed. Fig. 4.7b shows that the anypath computed by MAP has a

higher delay than the anypath computed by SAF-D. This is as expected, since

SAF-D aims to find the anypath with the shortest delay. However, the anypath

computed by SAF-D has a much larger cost than the anypath computed by MAP,

as shown in Fig. 4.7c. When multiple constraints are taken into account, MAP

can find a tradeoff (although the delay of the anypath it computes is larger than

that computed by SAF-D), so that the anypath length computed has a smaller

anypath length than the anypath computed by SAF-D.

Fig. 4.7a also shows that on average the anypath found by MAP is more

likely to be a feasible solution to DMCAP than the anypath found by either SAF-

D or SAF-C. Recall that an anypath is a feasible solution to DMCAP if and only

if its anypath length is less than or equal to 1.

Fig.4.7d and Fig. 4.7e show the comparison of the anypath lengths for the

random setting. We observe that compared with SAF-k (k = 1, . . . , K), MAP

reduces the anypath length by 29%-49%. As in the case of practical setting, we

observe that MAP is more likely to find a feasible solution to DMCAP than SAF-k

(k = 1, . . . , K).

124

150 200 250 300 350
0

0.5

1

1.5

Number of Nodes

A
n
y
p
a
th

 L
e
n
g
th

MAP
SAF−D
SAF−C

(a) Anypath length (practical setting)

150 200 250 300 350
0

0.5

1

1.5

Number of Nodes

A
n
y
p
a
th

 D
e
la

y

MAP
SAF−D

(b) Anypath delay (practical setting)

150 200 250 300 350
0

0.5

1

1.5

Number of Nodes

A
n
y
p
a
th

 C
o
s
t

MAP
SAF−D

(c) Anypath cost (practical setting)

150 200 250 300 350
0

0.5

1

1.5

2

Number of Nodes

A
n
y
p
a
th

 L
e
n
g
th

MAP
SAF−1
SAF−2

(d) Anypath length (random setting: K = 2)

150 200 250 300 350
0

0.5

1

1.5

2

2.5

Number of Nodes

A
n
y
p
a
th

 L
e
n
g
th

MAP
SAF−1
SAF−2
SAF−3

(e) Anypath length (random setting: K = 3)

Figure 4.7: Anypath lengths

4.7.2 Performance of DMART

In this subsection, we present some numerical results to evaluate the performance

of DMART. We implemented DMART for the case of K = 2 (i.e. average trans-

mission time and power consumption) in a practical setting using our synchronous

proactive protocol on a discrete event simulator. The two vertex weights represent

average transmission time and power consumption for each transmission, respec-

tively. We compared our implementation with the SAF algorithm in [58] and our

125

Algorithm 2. As before, we extended the SAF algorithm to support EWATX.

Since SAF can only deal with one metric each time, we used SAF to compute

the anypath lengths, with respect to the metrics transmission delay and power

consumption, respectively (denoted by SAF-D and SAF-C).

We assume that each node was equipped with an 802.11b/g wireless LAN

client adapter. Each node can choose 10, 20, 30, 50, or 63mW as its transmit

power level. In addition, each node randomly selected 1, 6, 11, or 18Mbps as its

transmission rate [20]. According to [20], the corresponding maximum transmis-

sion ranges Rmax are 213, 198, 149, and 122m when the adapter is being used at

the maximum transmit power. Since wireless cards may operate on different power

levels, the actual transmission range of each transmission rate configuration must

satisfy Rmax × (Pt

Pmax
)

1
γ [32], where the path loss exponent γ = 2, Pmax = 63mW

and Pt is the actual transmit power (10, 20, 30, 50, and 63mV) of a wireless

card. The link delivery probability was inversely proportional to the distance

with a random gaussian deviation of 0.1. The two constraints were set to 50ms

and 625mW . We uniformly distributed nodes in a 1000m× 1000m square region,

with the number of nodes chosen to be 150, 200, ... 500. For each network size,

we randomly generated 1000 test cases by randomly choosing the transmission

ranges and coordinates for all the nodes. We performed all tests on a 1.8GHz

Linux PC with 2G bytes of memory.

Fig. 4.8a shows the lengths of the anypaths computed by DMART, MAP,

SAF-D and SAF-C for a random source-destination pair. We observe that DMART

and MAP always outperform SAF-D and SAF-C. This is as expected, because

DMART and MAP combine two metrics and thus use more information in deci-

sion making, while with only one metric taken into account each time SAF-D and

SAF-C obtain biased results. In addition, the average anypath lengths obtained

126

150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Number of Nodes

A
n
y
p
a
th

 L
e
n
g
th

SAF−D
SAF−C
MAP
DMART

(a) Comparison of average anypath lengths

150 200 250 300 350 400 450 500
0

5

10

15

20

25

Number of Nodes

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

DMART

(b) Average number of iterations

150 200 250 300 350 400 450 500
0

2

4

6

Number of Nodes

N
u
m

b
e
r

o
f
B

ro
a
d
c
a
s
ts

DMART

(c) Average number of path vector updating
operations for each node

150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

−5

Number of Nodes

R
u
n
n
in

g
 T

im
e
 p

e
r

It
e
ra

ti
o
n
(s

)

DMART

(d) Average running time for each iteration

Figure 4.8: Numerical results

by DMART and MAP are almost the same. This is because both of DMART and

MAP approximate OMCAP by looking for the shortest AAW anypath. According

to our experiment data, in 97% test cases the anypaths computed by DMART and

MAP are the same. However, we must emphasize that DMART is a distributed

algorithm which just needs local information from one-hop neighbor, while MAP

is a centralized algorithm and needs the global information of the entire network.

Fig. 4.8b shows the average number of iterations required by DMART to

compute anypaths from all nodes to a destination. We observe that the average

number of iterations is around 20. Fig. 4.8c shows how many path vector updating

operations a node needs. In all cases studied, the number of updating operations

is no more than 6. Fig. 4.8d shows that the average running time which each node

needs to finish one iteration is also very small. Thus DMART is very efficient.

127

4.7.3 Performance of Anypaths

In the following, we report the simulation results which reveal some important

properties of the anypath computed by our algorithms. Note that since in 97%

test cases the anypaths found by MAP and DMART are the same, in the fol-

lowing experiments, we only consider the anypaths computed by MAP. First, we

analyze the size of the forwarding sets of the anypaths so computed. Second, we

analyze the properties of the single paths within an anypath that a packet may

traverse. Recall that different packets may take different single paths within a

given anypath. Since the number of single paths within a given anypath may be

exponential, we only studied four small network sizes, i.e., the number of nodes

was chosen to be 25, 50, 75, and 100.

Figs. 4.9a-4.9c report the size of the forwarding sets computed by MAP.

In these figures, “Average”, “Max”, and “Min” represent the average size, the

maximum size, and the minimum size of all the forwarding sets of a computed

anypath, respectively. Note that these parameters are computed once for each

test case and the results reported here are the averages over 1000 test cases. We

observe that the maximum size is no more than 5 in all the cases studied and the

average size is between 1 and 2.2. This indicates that in practice a node does not

use too many forwarders. We also observe that as the number of nodes increases,

the average size of forwarding sets increases as well. This is as expected, because

a higher node density implies that a node may have more forwarder candidates

to choose from.

The experimental results on the size of the forwarding sets reveal another

property of anypaths–the overhead of anypath routing compared to that of tra-

ditional routing. Recall that we can use the anycast scheme proposed in [46] as a

128

25 50 75 100
0

0.5

1

1.5

2

2.5

Number of Nodes

S
iz

e
 o

f
F

o
rw

a
rd

in
g
 S

e
ts

Average
Max
Min

(a) Practical setting

25 50 75 100
0

1

2

3

4

5

Number of Nodes

S
iz

e
 o

f
F

o
rw

a
rd

in
g
 S

e
ts

Average
Max
Min

(b) Random setting: K=2

25 50 75 100
0

1

2

3

4

5

Number of Nodes

S
iz

e
 o

f
F

o
rw

a
rd

in
g
 S

e
ts

Average
Max
Min

(c) Random setting: K=3

Figure 4.9: Size of forwarding sets

MAC protocol to support anypath routing. Compared with the overhead of tradi-

tional routing based on 802.11, we will have the following two types of overheads

due to the use of anypath: 1) the handshaking packet MRTS should have the

addresses of all the forwarders and 2) a forwarder receiving an MRTS has to wait

for a longer time before replying a CTS, in order to make sure that higher priority

forwarders also receiving the MRTS will reply CTS first. Both types of overheads

increase as the size of the forwarding sets increases. Fortunately, according to

our simulation, in practice the average size is between 1 and 2.2, which implies

that the overhead introduced is fairly small. In other words, compared with the

traditional routing protocols that abstract wireless links as wired links to compute

link states, anypath routing leverages the broadcast nature of wireless medium to

increase the transmission and reception opportunity, with fairly small overhead

introduced.

Recall that an anypath is composed of the union of many different paths.

129

For example, there exist five single paths in the anypath shown in Fig. 4.1.

Figs. 4.10a, 4.11a, and 4.12a show the hop counts of the single paths within the

computed anypath. In these figures, “Average”, “Max”, and “Min” represent the

average hop count, the maximum hop count, and the minimum hop count of all

the single paths existing in an anypath, respectively. Like before, these parameters

are computed once for each test case and the results reported here are the averages

over 1000 test cases. We observe that the maximum hop count is no more than 7

in the practical setting and no more than 12 in the random setting. Furthermore,

as the number of nodes increases, the average hop count increases as well. This

is because in a higher node density setting, a node may prefer shorter links that

may have higher packet delivery probabilities, which makes longer paths (in terms

of hops) involved.

Recall that in order to compute the results shown in Figs. 4.10a, 4.11a,

and 4.12a, we computed these parameters once for each test case and then aver-

aged them over 1000 test cases. In order to better understand the relationship

between the maximum hop count and the minimum hop count for the anypath

obtained in each test case, we use a new metric, called anypath hop count dispar-

ity ratio. Specifically, we first compute the ratio of the maximum hop count over

the minimum of all the single paths existing in the anypath obtained in each test

case, and then compute the anypath hop count disparity ratio, by averaging these

ratios over the 1000 test cases. We observe that this ratio is no more than 1.5

for the practical setting and no more than 3 for the random setting. This implies

that in the anypath so computed the longest single path is not too much longer

than the shortest single path in terms of hop counts.

Figs. 4.10c, 4.11c, and 4.12c show the number of single paths existing in

the anypath computed by MAP. We observe that the number of single paths

130

increases fast as the number of nodes increases. This is because the number of

single paths within a given anypath may be exponential. Although there may

exist a large number of single paths in an anypath, the maximum anypath hop

count is no more than 12 and the average anypath hop count is no more than 8

in all the cases studied. This shows that a packet may have many path choices in

an unreliable wireless environment but the number of hops it will take to reach

the destination is still small. Note that the path taken by a packet is determined

on-the-fly, depending on which nodes in the forwarding sets successfully receive

the packet at each hop.

Note that there may be many single paths within a given anypath. For

a given value of k, one of these single paths is shortest with respect to the kth

weight, where the kth weight of a single path P is defined as
∑

(v,w)∈P
wk(v)
p(v,w)

.

We use Figs. 4.10d, 4.10e, 4.11d, 4.11e, 4.12d, 4.12e, and 4.12f to illustrate the

distribution of the actual weights of the single paths existing in the anypath. Since

different anypaths in different test cases may have different lengths, we introduce

the following metric, called single path weight disparity ratio, which is computed in

the following way. For the kth weight, we first find the one with the smallest kth

path weight among all the single paths existing in the obtained anyapth. Then

for each single path we compute its kth path weight disparity ratio by dividing

its kth path weight by the kth path weight of the shortest one we have found.

Therefore, a ratio close to 1 means that this single path is almost as good as the

best single path. Fig. 4.10d, 4.10e, 4.11d, 4.11e, 4.12d, 4.12e, and 4.12f show the

distributions of the disparity ratios. More specifically, in the practical setting, the

distributions of the disparity ratios with respect to single path delay and single

path cost are shown in Fig. 4.10d and Fig. 4.10e, respectively. The disparity ratio

ranges in these two figures are [1, 1.2), [1.2, 1.4), · · · , [2.6, 2.8), and [2.8,∞). In the

131

random setting, the disparity ratios reported in Fig. 4.11d and Fig. 4.11e are the

first and the second path weight disparity ratios for the case K = 2, respectively.

The disparity ratios reported in Fig. 4.12d, Fig. 4.12e, and Fig. 4.12f are the first,

second, and third path weight disparity ratios for the case K = 3, respectively.

The disparity ratio ranges in these five figures are [1, 1.4), [1.4, 1.8), · · · , [4.2, 4.6),

and [4.6,∞).

We observe that the majority of the single paths have weights close to that

of the shortest one. Furthermore, the percentage of the disparity ratio decreases

significantly as its value increases. The percentages of the disparity ratios located

in [2.8,∞) for the practical setting and [4.6,∞) for the random setting are almost

zero. This indicates that most of the single paths actually are good enough com-

pared with the best one. If the packets take these single paths, the delay or cost is

just slightly worse compared with that by taking the best single path. However,

in an unreliable wireless environment, opportunistically exploiting many single

paths is usually less costly and can improve the network performance. Therefore,

these sub-optimal but good enough single paths provide such opportunities.

4.8 Conclusion

In this work, we have studied anypath routing subject to K ≥ 2 constraints.

We have proved its NP-hardness and presented a centralized polynomial time K-

approximation routing algorithm and a distributed polynomial timeK-approximation

routing algorithm. Numerical results show that our algorithms are very fast and

therefore suitable for implementation in wireless routing protocols.

132

25 50 75 100
0

2

4

6

8

Number of Nodes

A
n
y
p
a
th

 H
o
p
 C

o
u
n
t

Average
Max
Min

(a) Anypath hop count

25 50 75 100
0

0.5

1

1.5

2

Number of Nodes

A
n

y
p

a
th

 H
o

p
 C

o
u

n
t

D
is

p
a

ri
ty

 R
a

ti
o

(b) Anypath hop count dispar-
ity ratio

25 50 75 100
10

0

10
1

10
2

Number of Nodes

S
in

g
le

 P
a
th

 C
o
u
n
ti
n
g

(c) Single path counting

[1, 1.2)

[1.6, 1.8)

[2.2, 2.4)

[2.8,)
255075100

0

0.1

0.2

0.3

0.4

0.5

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(d) Delay disparity ratio dis-
tribution

[1, 1.2)

[1.6, 1.8)

[2.2, 2.4)

[2.8,)
255075100

0

0.1

0.2

0.3

0.4

0.5

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(e) Cost disparity ratio distri-
bution

Figure 4.10: Single path property (Practical setting)

25 50 75 100
0

5

10

15

Number of Nodes

A
n
y
p
a
th

 H
o
p
 C

o
u
n
t

Average
Max
Min

(a) Anypath hop count

25 50 75 100
0

1

2

3

Number of Nodes

A
n

y
p

a
th

 H
o

p
 C

o
u

n
t

D
is

p
a

ri
ty

 R
a

ti
o

(b) Anypath hop count dispar-
ity ratio

25 50 75 100
10

0

10
2

10
4

Number of Nodes

S
in

g
le

 P
a
th

 C
o
u
n
ti
n
g

(c) Single path counting

[1, 1.4)

[2.2, 2.6)

[3.4, 3.8)

[4.6,)
255075100

0

0.2

0.4

0.6

0.8

1

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(d) Single path weight disparity
ratio distribution (k = 1)

[1, 1.4)

[2.2, 2.6)

[3.4, 3.8)

[4.6,)
255075100

0

0.2

0.4

0.6

0.8

1

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(e) Single path weight disparity
ratio distribution (k = 2)

Figure 4.11: Single path property (Random setting: K = 2)

133

25 50 75 100
0

5

10

15

Number of Nodes

A
n
y
p
a
th

 H
o
p
 C

o
u
n
t

Average
Max
Min

(a) Anypath hop count

25 50 75 100
0

1

2

3

Number of Nodes

A
n

y
p

a
th

 H
o

p
 C

o
u

n
t

D
is

p
a

ri
ty

 R
a

ti
o

(b) Anypath hop count dispar-
ity ratio

25 50 75 100
10

0

10
2

10
4

Number of Nodes

S
in

g
le

 P
a
th

 C
o
u
n
ti
n
g

(c) Single path counting

[1, 1.4)

[2.2, 2.6)

[3.4, 3.8)

[4.6,)
255075100

0

0.1

0.2

0.3

0.4

0.5

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(d) Single path weight disparity
ratio distribution (k = 1)

[1, 1.4)

[2.2, 2.6)

[3.4, 3.8)

[4.6,)
255075100

0

0.1

0.2

0.3

0.4

0.5

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(e) Single path weight disparity
ratio distribution (k = 2)

[1, 1.4)

[2.2, 2.6)

[3.4, 3.8)

[4.6,)
255075100

0

0.1

0.2

0.3

0.4

0.5

Number of NodesDisparity ratio range

P
e
rc

e
n
ta

g
e

∞

(f) Single path weight disparity
ratio distribution (k = 3)

Figure 4.12: Single path property (Random setting: K = 3)

134

Chapter 5

DART: Directional Anypath Routing in Wireless Mesh Networks

5.1 Introduction

5.1.1 Motivation

Prior works along this line were mainly focused on networks equipped with om-

nidirectional antennas. However, [110] proved that wireless networks can achieve

a capacity gain when directional antennas are exploited. [18, 34, 76, 90, 98, 100]

have proposed various schemes to improve performance of wireless networks by

using directional communications. Thus it is of interest to design an optimally

combined use of directional communications and anypath routing. Let us consider

a motivating example shown in Fig. 5.1. s, v1, v2 and v3’s forwarding sets are

{v1, v2}, {t, v4}, {v3} and {v1}, respectively. Obviously, if the directional trans-

mission range of v1 just covers t and v4 as shown in Fig. 5.1, it will not interfere

with the transmission from v2 to v3, and thus the delay from v2 to v3 is reduced.

Although [70] touched on the opportunistic routing with directional antennas, it is

based on the node distribution models and cannot compute an actual anypath for

a source-destination pair in a wireless network. In order to bridge this gap, in this

work we study anypath routing for wireless networks equipped with directional

antennas. 12 3 4
Figure 5.1: A motivating example of directional anypath routing.

135

From the perspective of the MAC layer, the challenge is how to realize

directional anycast with relay priority guaranteed. A reliable anycast MAC even

in the omnidirectional antenna system is an active area of research [46]. From

the perspective of the routing layer, looking for an optimal anypath can reduce to

the selection of an optimal forwarding set for each node. However, the challenge

is that there is an exponential number of possible forwarding sets for each node,

which makes it intractable to try out all the forwarding sets. Furthermore, the

selected forwarders should not violate the beamwidth constraint of the directional

antenna.

We hence present DART, a cross-layer design of MAC and routing layers

for addressing the issues above, which represents the first attempt towards the

practical design for directional anypath routing.

5.1.2 Contribution

Our contribution is two-fold:

1. For the MAC layer, we present a directional anycast MAC (DAM). DAM is

an enhancement to the 802.11 MAC [41], and reduces to the 802.11 MAC

when there is only one forwarder for each node and only omnidirectional

antenna is being used. DAM thus makes DART suitable for integration into

the current 802.11 systems.

2. For the routing layer, we propose two polynomial time routing algorithms to

compute directional anypaths based on two antenna models, and prove their

optimality based on the packet delivery ratio metric.

Simulation results show that compared with omnidirectional anypath routing,

DART can reduce the average packet transmission delay by 28%-70%.
136

5.2 Model

5.2.1 Antenna Model

The antenna system has two separate modes: Directional and Omni, which could

be envisioned as two separate antennas: a steerable single beam antenna and

an omnidirectional antenna [18]. The boresight of the main lobe can be pointed

towards any specified direction in the Directional mode. This kind of antennas is

called electrically steerable antenna [18,34,77,98,100]. According to [77], a typical

beam switching latency is about 150µs. In principle, both the Directional and

the Omni modes can be used to transmit or receive packets. As in [18], the Omni

mode in this work is used for reception, while the Directional mode may be used for

transmission as well as reception. While idle (i.e. not transmitting or receiving)

a node stays in the Omni mode. This kind of antenna can be implemented by

integrating directional transmitters and omni/directional receivers [19].

The main lobe in the Directional mode is approximated as a circular sector

with radius r, called transmission range (i.e. the yellow area in Fig.5.2), where

As and Ae denote the start and end angles of the sector (measured counterclock-

wise from the horizontal axis), and Ab denotes its beamwidth. The line segments

Ls and Le are called the start and end boundaries. All the points in this trans-

mission range with the same distance from the center have the same directional

transmission gain. The radiation pattern of the side lobes is also approximated as

a sector. The gain of the side lobes is assumed to be very low, and is thus negligi-

ble. Note that this approximation is widely used in the literature [18,70,98,110],

and is often called ideal directional antenna model. For the beamwidth in the

Directional mode, we consider two models. In the fixed beamwidth model [34,90],

the beamwidth of each transmitter is fixed although different antennas can use

137

different beamwidths. In the variable beamwidth model [70, 76, 90], each trans-

mitter has an adjustable beamwidth Ab ∈ [Al, Au], where 0<Al≤Au≤2π. Note

that in practice usually Al cannot be too small to avoid the side effect of creating

a too sparse topology or creating too strong side lobes. As in [76], we consider

that nodes automatically control the transmit power such that the directional

transmission gain is maintained a constant when nodes adjust their beamwidths.b o r e s i g h t
es b se

Figure 5.2: Directional antenna model

5.2.2 Network Model

We model a wireless mesh network by a directed graph G = (V,E), where V is

the set of vertices, and E is the set of edges. If a sender v can reach a receiver u

directly by steering its boresight, we say that there exists a directed edge (v, u) in

G. We use the following terms interchangeably: edge and link, vertex and node.

In order to find a high-quality directional anypath, the first problem we are

facing is what path metric should be used for routing computation. However, this

problem is still an open issue when directional antenna is taken into account. A

widely used metric in wireless networks is expected transmission count (ETX) [22],

which is adopted by traditional and opportunistic routing [6, 9, 25, 27, 58]. Each

node computes a packet delivery ratio (PDR) for each outgoing link, and based

138

on that calculates the ETX (i.e. the inverse of PDR) for each link. The PDR is a

measured probability that a data packet sent by an omnidirectional transmitter

successfully arrives at the receiver. We still use PDR as the metric for our routing

computation considering the following two reasons:

1. As discussed in [22], this metric is an approximation. It reveals the link qual-

ity itself, but cannot reflect how much actual interference can be reduced for

a certain packet transmission by using directional antenna. However, only

when other nodes are actually carrying loads, the advantage of using direc-

tional communications for interference reduction can be fully appreciated.

Generally speaking, in an actual network this load information or pattern

is difficult to obtain in advance. Using PDR can avoid the oscillations that

sometimes plague load-adaptive routing metrics, and the route is thus se-

lected independently of network loads. How to resolve interference, collisions

and scheduling is actually handled by the MAC.

2. From a practical point of view, a simple routing metric is preferable and

important in real life networks due to the computation and measurement

complexity. PDR, which facilitates the metric measurement and practical

routing computation, includes the tractable information that a user can ex-

ploit to induce a better route.

In graph G, each directed edge (v, u) ∈ E is associated with a PDR

p(v, u) > 0. We will describe how to measure PDR using probes in Section

5.4. Since a busy link may cause a probe broadcast to be deferred, but ordinarily

does not cause it to be lost [22], we assume that the average PDR of edge (v, u)

is constant if the directional transmission gain of v at u does not change. This

implies that we can steer the boresight or adjust the beamwidth of a transmitter

139

without changing the PDRs of the edges in G. Thus PDR p(v, u) can be con-

sidered as a constant property of each edge for routing computation. Note that

this assumption holds for the ideal directional antenna model (see Section 5.2.1).

However, this assumption may not hold for some real antenna implementations.

Consider two locations with the same distance far away from a directional antenna.

The gain at the location close to the boundary of the transmission range may be

smaller than the gain at the location close to the boresight. For a real directional

antenna, if it satisfies that the obtained gain drops quickly when a location is

approaching the boundary, the ideal directional antenna is a good approximate

for such real direction antenna.

The hyperlink delivery ratio p(v, F) is defined as a measured probability

that a packet sent by node v is received by at least one of the nodes in forwarding

set F . Since [58] indicates that the loss of a packet at different receivers occurs

independently, it can be computed as p(v, F) = 1−
∏

u∈F (1− p(v, u)).

In directional anypath routing, each node is equipped with an antenna

system following the antenna model in Section 5.2.1. Each transmitter has a

steerable transmission range, called forwarding sector. The forwarders of a node

must be in its forwarding sector. We use F ∈ Λ to indicate that forwarding set

F is located in the forwarding sector Λ. Fig. 5.3 illustrates this concept. The

directional anypath is still shown in bold arrows. The forwarding sector of each

node is also shown. All the forwarders of a node must be located in its forwarding

sector. In brief, compared with traditional anypath routing, each node should

choose both its forwarding sector (boresight and beamwidth) and the forwarding

set of this forwarding sector rather than just forwarding set.

Now we are ready to define the directional anypath distance (DAD) based

on PDR. We will discuss the effectiveness of this PDR-based metric in Section

140

v 4 t0 . 50 . 2 1 0 . 20 . 510 . 3 0 . 7 0 . 11v 1
0 . 1 0 . 1 0 . 1 v 5v 6v 2s v 3

Figure 5.3: Illustration of anypaths. The edge weight denotes its packet delivery
ratio. The sector on each node represents its forwarding sector.

5.3. The distance d(v, F) from node v to a set of nodes F is defined as 1
p(v,F)

,

which represents the expected number of transmissions for a packet sent by v to

be received by at least one node in F . The DAD from v to t along a directional

anypath is recursively defined as:

D(v) = min
F∈Λ

(DF (v)) = min
F∈Λ

(d(v, F) + D(F)), (5.1)

where Λ is the forwarding sector of v, DF (v) = d(v, F) + D(F) is the anypath

distance of v via forwarding set F , and D(F) is the remaining DAD from F to

the destination. It is intuitively defined as a weighed average of the DADs from

the nodes in the forwarding set F to the destination:

D(F) =
∑

jββ∈F

α(jβ, jββ)D(jββ), (5.2)

with
∑

jββ∈F
α(jβ, jββ) = 1, where the coefficient α(jβ , jββ) represents the proba-

bility of a node with priority β ∈ [1, |F |] forwarding a received packet. The value of

the node priority (i.e. β) is called its priority index. For example, the highest pri-

ority node u1 has priority index 1.Thus, a forwarder with a larger DAD should have

a lower priority or a larger priority index [25]. Obviously, a node with priority β

forwards a packet only when it receives this packet and none of the higher priority

nodes receives it, which happens with probability p(v, jββ)
∏β−1

q=1 (1−p(v, uq)).Thus

141

α(jβ, jββ) can be computed as

α(jβ, jββ)=
p(v, jββ)

∏β−1
q=1(1−p(v, jβq))

p(v, F)
=
p(v, jββ)

∏β−1
q=1(1−p(v, jβq))

1−
∏|F |

q=1(1− p(v, jβq))
,

with the denominator being the normalizing constant. Obviously, according to

this definition, D(v) represents the expected total number of transmissions neces-

sary for a packet sent by v to be received by destination t along this directional

anypath. The forwarding set in Λ, which can provide the minimum DF (v), is

called the optimal forwarding set of Λ.

As an example, consider the network depicted in Fig. 5.3 to compute D(v3).

The forwarding sectors of v3 and v5 are shown as the two sectors. The anypath

distance from v3 to t via the forwarding set F = {t, v5} (note that t and v5 are

located in the forwarding sector of v3) is calculated as

DF (v3) = d(v3, F) + D(F)

=
1

1−(1− 0.5)(1− 1)
+

0.5×0+(1− 0.5)×1×(1
0.2

+0)

1− (1− 0.5)(1− 1)
=3.5.

Note that t can be considered as a forwarder with DAD 0, and that the DAD of v5

is calculated as (1
0.2

+0). Likewise, we can compute D{v5}(v3) = 6 and D{t}(v3) = 2.

Thus, D(v3) = min{2, 3.5, 6} = 2, and {t} is the optimal forwarding set of v3’s

current forwarding sector. As explained in [25, 58], adding an extra node to the

forwarding set is not always beneficial even if it reduces the forwarding delay from

a node to any of its forwarders. For instance, clearly the anypath distance of v3

via {t} is smaller than that via {t, v5}.

Remark: Note that the above routing metric does not consider boresight or

beamwidth adjustment delay. This is because we consider the routing metric

from the perspective of the number of transmissions. In an unreliable wireless

environment, compared with the total transmission time (including retransmission
142

time) of a packet, the boresight or beamwidth adjustment delay is usually much

smaller. Therefore, our routing metric does not consider boresight or beamwidth

adjustment delay.

5.3 Problem Formulation

MAC layer For directional anycast, the MAC should address the following

issues.

1. It must solve directional transmissions, interference, collisions and the cor-

responding scheduling problems existing in a directional antenna system.

2. It must realize anycast with relay priority guaranteed.

3. It must know whether a packet has been delivered to one of its forwarders,

and when to retransmit if failed.

4. It must consider the compatibility with the currently existing wireless net-

works (such as 802.11 networks).

Routing layer Routing layer aims to find a shortest directional anypath from

a source to a destination. We need to point out that the shortest directional

anypath defined on PDR may not be the real optimal one for a certain packet

transmission since the metric PDR cannot reflect the actual reduction on inter-

ference when directional antenna is being used. However as discussed in Section

5.2.2, we remark that this formulation is a practical and helpful approximation,

largely due to the undetermined load pattern and probabilistic nature of lossy

wireless networks.

We study two versions of the routing problem based on the two beamwidth

models described in Section 5.2.1. The first version is the fixed beamwidth shortest
143

directional anypath routing (FBDAR). Finding a shortest directional anypath is

equivalent to finding an optimal forwarding sector for each node, which can pro-

vide the shortest DAD, and the optimal forwarding set of this forwarding sector.

Note that since the beamwidth is fixed for each node, we only need to determine

the boresight of the optimal forwarding sector for each node. The second version

is the variable beamwidth shortest directional anypath routing (VBDAR). Similar

to FBDAR, we need to find an optimal forwarding sector and the optimal for-

warding set of this forwarding sector for each node. Note that in this version the

optimal forwarding sector refers to the one with the minimum beamwidth among

all the forwarding sectors which can provide the shortest DAD.

5.4 MAC Layer Design

In this subsection, we present a MAC design to support the practical implemen-

tation of DART.

5.4.1 Directional Anycast MAC

We present DAM, a directional anycast MAC, which is an enhancement to the

802.11 MAC [41]. A similar handshaking scheme (i.e. RTS/CTS/DATA/ACK

[41]) is used in DAM. We use a directional network allocation vector (DNAV) [18]

to keep track of the directions (and the corresponding durations) towards which

a node must not initiate a transmission. The well-known network allocation vec-

tor (NAV) used in 802.11 indicates the duration for which the node must defer

transmission to avoid interfering with some other transmission. The difference

between DNAV and NAV is that if a node receivers an RTS/CTS from a certain

direction, it needs to defer only those transmissions that are directed in that di-

rection. The entry in DNAV is updated based on the “duration” field and the

incoming direction of the overheard packets.

144

When the routing layer passes a packet and the information about for-

warders to DAM, DAM requests the physical layer to beamform to the forwarding

set, and performs carrier sensing for at least a DIFS (defined in 802.11 [41]) to

detect whether the channel is idle. Carrier sensing is performed by both physical

and virtual mechanisms. Virtual carrier sensing is performed based on DNAV.

More specifically, if node u has a packet to send to v, it must check its DNAV

table to decide if it is safe to transmit in the direction of v. If idle, DAM enters

the backoff phase as in 802.11. Once its backoff counter counts down to zero,

the transmitter will broadcast directionally to these forwarders an RTS (called

MRTS) with all the forwarder addresses (ordered according to their priorities). If

the medium is busy, the transmitter waits until it becomes idle.

Recall that all the idle nodes stay in the Omni mode. Once they receive

a signal arriving from a particular direction, they lock on to this direction and

receive it. If an intended forwarder receives the MRTS packet, it responds by a

CTS directionally. However, these CTS transmissions must be staggered in time

in order of their priorities. The highest priority forwarder replies the CTS after

an SIFS (defined in [41]), the second one replies after (CTS+3×SIFS) time, the

third one after (2×CTS+5×SIFS) time and so on. When the transmitter receives

a CTS, it directionally sends the DATA to the sender of this CTS after an SIFS

interval. This can guarantee that the lower priority forwarders hear this DATA

before they transmit CTSs, thus they suppress any further CTS transmissions.

This is the key point to enforce the prioritization among forwarders. All such

forwarders set their DNAVs (i.e. this direction is busy) until the end of the ACK

period, and switch back to Omni mode. Note that it is possible that an intended

forwarder has locked on to another direction, and is thus “deaf” to this MRTS.

DAM does not require all the intended forwarders to be idle when a node is trying

145

to send an MRTS. The “deafness” will be discussed in Section 5.4.1. If DATA is

successfully received, this forwarder replies an ACK directionally.

In practice the channel status could change from the point when CTS is

transmitted to the point when DATA or ACK is transmitted, which causes the

exchange to fail. However, [46] proves that the probability is low, since for static

or slowly changing dynamic wireless networks the coherence period is expected to

be large enough for the DATA transmission to succeed, if the transmissions of RTS

and CTS are indeed successful. If the DATA transmission fails indeed (i.e. ACK-

timeout), DAM just repeats the whole procedure (i.e. MRTS/CTS/DATA/ACK).

Any other node that overhears the MRTS or the DATA (i.e. exposed node)

sets its DNAV for the entire duration specified in the MRTS or DATA. Specifically,

if the MRTS is received, the DNAV is set to (k×CTS+(2k+1)×SIFS+DATA+ACK)

time, where k is the number of forwarders. If the header of the DATA is re-

ceived, the DNAV is set to (SIFS+DATA+ACK) time. Likewise, any node that

overhears any of the CTSs (i.e. hidden node) sets its DNAV until the ACK pe-

riod. That is to say, a node upon receiving the i-th CTS, must set its DNAV to

((2(k − i) + 1)×SIFS+(k − i)×CTS+DATA+ACK) time.

If no CTS comes back within a CTS-timeout duration, the transmitter’s

DAM will increase its contention window (if the maximum has not been reached),

enter the backoff phase as in 802.11, and schedule a retransmission of the MRTS.

Note that DAM actually slightly deviates from the basic operations of

anypath routing in [25]. [25] requires some forwarders to suppress redundant for-

wardings. DAM realizes this by suppressing redundant CTS replies to guarantee

that only one forwarder will be responsible for forwarding this packet.

We use Fig.5.4 to illustrate the basic operation of DAM. Suppose that

146

v1 has three forwarders v2, v3, and v4. v2 has the highest relay priority, v3 has

the second highest one, and v4 has the lowest one. v1 performs both physical

and virtual carrier sensing for at least a DIFS to detect whether the channel is

idle. Once it finds the channel is idle, it broadcasts an MRTS directionally to

its forwarders v2, v3, and v4 (see Fig.5.4a). Suppose that currently the channel

between v1 and v2 is bad. Thus v2, who has the highest relay priority, does not

receive the MRTS from v1. However, v3, v4 and v5 receive this MRTS. Since

v5 is not the intended forwarder, it sets its DNAV and thus will not initiate a

transmission towards the direction of v1 until the ACK period (see Fig.5.4e). v3

waits for (CTS+3×SIFS) time (see Fig.5.4e), and replies a CTS directionally (see

Fig.5.4b). Suppose that both v1 and v6 receive this CTS. Thus, v6 sets its DNAV

and will not initiate a transmission towards the direction of v3 until the ACK

period (see Fig.5.4e), and v1 starts to transmit DATA directionally to v3 (see

Fig.5.4c). After having received the header of the DATA, v4 suppresses its CTS

reply and sets its DNAV (see Fig.5.4e). When the DATA is received, v3 replies

an ACK directionally (see Fig.5.4d). Therefore, a successful priority-enforced

directional anycast is done.

5.4.2 Practical Issues

PDR measurement Although we suggest using the traditional PDR [22] as

our routing metric, considering that only the Directional mode is used for trans-

mission, we slightly modify its operation for adapting to DART. In order to mea-

sure the average PDR, each transmitter keeps track of actually used beamwidths,

and uses the moving average as the antenna beamwidth (if the beamwidth is ad-

justable) when it is measuring PDRs. In addition, each transmitter selects several

measure directions with directional transmission ranges covering the whole 360◦

area, and broadcasts dedicated link probe packets directionally and periodically
147

V 1 V 2V 3V 5V 4
V 6

(a) MRTS

1 2 3 54
6
(b) CTS

V 1 V 2V 3V 5V 4
V 6

(c) DATA

1 2 3 54
6
(d) ACK

D N A V D N A VD N A V
1 T r a n s m i t t e r2 F o r w a r d e r3 F o r w a r d e r4 F o r w a r d e r 2 * S I F SS I F S + C T S S I F S S I F SD I F S

56
h e a d e r

(e) Timeline showing a successful directional anycast

Figure 5.4: Illustration of the basic operation of DAM: suppose that currently
the channel between v1 and v2 is bad; (a)v1 broadcasts an MRTS to v2 (first
highest relay priority), v3 (second highest relay priority) and v4 (third highest
relay priority); the MRTS is heard by v3, v4 and v5; v5 sets its DNAV and thus
will not initiate a transmission towards the direction of v1; (b) since v2 (with the
highest relay priority) does not receive the MRTS, v3 replies a CTS directionally
after waiting for (3×SIFS+CTS) time; v3’s CTS is heard by v1 and v6; v6 sets its
DNAV and thus will not initiate a transmission towards the direction of v3; (c)
v1 starts transmitting data directionally to v3; v3 locks on to the direction of v1

and receives DATA; after having received the header of the DATA, v4 suppresses
its CTS reply, sets DNAV and thus will not initiate a transmission towards the
direction of v1; (d) once the DATA is successfully received, v3 replies an ACK
directionally.

if this direction is not busy. Every node remembers the probes it receives during

the last several seconds and calculates the PDR [22].

Dynamic networks and route computation We mainly consider static or

slowly changing dynamic mesh networks and thus use centralized routing algo-

148

rithms. In other word, network topology and link status are assumed to be static.

The MAC of each node periodically measures PDRs, and keeps certain neighbor-

hood status information dynamically. This status information from each node is

propagated periodically through the whole network. This helps each node have

the approximate knowledge of the network status periodically, and thus each node

can adaptively compute an anypath towards destinations.

Location information Each node can use the Angle of Arrival technique [100]

or the Direction of Arrival technique [18] to estimate the relative angle between

each of its neighbors and itself based on a virtual axis. We will see that this

relative angle information is enough for our routing algorithms.

Scheduling Since DAM is an enhancement to the 802.11 MAC, for the medium

access, DART respects the 802.11 Distributed Coordination Function (DCF) [41].

For the problem of deciding which forwarder should be scheduled to receive the

packet, DAM utilizes MRTS broadcasts and prioritized CTS replies. DAM does

not require all the intended forwarders to be idle when it is trying to send an

MRTS to fully utilize transmission opportunities if the transmission is safe.

Compatibility with existing wireless networks Our DAM reduces to the

Basic Directional MAC protocol in [18] to some extent when there is only one

forwarder for each node, and further reduces to 802.11 if only Omni mode is

allowed.

Deafness (or failed carrier sense) problems DAM could suffer from deaf-

ness. Note that these issues also exist in other directional MACs, such as [18].

How to completely solve these issues is out of the scope of this dissertation. In ad-
149

dition, during the switching between omni and directional mode, the node cannot

perform carrier sense and thus may transmit and interfere with other nodes’ trans-

missions. If these transmissions fail due to this interference, DAM just repeats

the whole procedure (i.e. MRTS/CTS/DATA/ACK). Considering the duration

of the switching operation between omni and directional mode is short, this case

does not occur too frequently.

5.5 Routing Algorithm for FBDAR

5.5.1 Algorithm Description

In this subsection we present an efficient algorithm F-DART for FBDAR, which

computes a shortest directional anypath from each node to the given destination

t.

From a high-level perspective, this algorithm is a Dijkstra-like algorithm.

However, as we study directional anypath routing, we need to use the formulas

given in Section 5.2.2 to update distances and the corresponding data structures.

For each node v ∈ V , we keep a variable D(v) to store the currently

computed shortest DAD from v to t. Let As(v) and F(v) denote the start angle

of the corresponding forwarding sector and the corresponding forwarding set of

this forwarding sector. Recall that in FBDAR for each node, its beamwidth is its

property and known as a fixed number. Therefore, the start angle can uniquely

determine the boresight of its forwarding sector. We use a list R(v) to keep track

of all the candidate forwarding sectors for v. Each element (called a record) in

R(v) keeps the corresponding information of this forwarding sector, including a

set F and two variables As and D, which denote its forwarding set, its start angle

and the anypath distance of v via this forwarding set, respectively. Additionally,

we keep two data structures: L and Q. L is a list that stores all the settled nodes

150

for which we have already found the shortest directional anypaths. We store all

the other nodes in a priority queue Q keyed by their current D(v) values.

Algorithm 3 F-DART

1: for each node v in V do
2: D(v)←∞, As(v)← 0, F(v)← ∅, R(v)← ∅.
3: end for
4: D(t)← 0, L← ∅, Q← V .
5: while Q 6= ∅ do
6: u← Extract-Min(Q), L← L ∪ {u}.
7: if D(u) =∞ then break.
8: for each unsettled incoming neighbor v do
9: for each record R in R(v) do

10: if u is in the forwarding sector of R then
11: F ← R.F ∪ {u}, D ← 1

p(v,F)
+ D(F).

12: if D < R.D then
13: R.F ← F , R.D ← D.
14: end if
15: end if
16: end for
17: Construct a record Rc for v such that u is on the start boundary of the

forwarding sector of Rc. Set Rc.F to the set of all the settled outgoing
neighbors located in this forwarding sector. Calculate Rc.D.

18: D(v)← min
R∈R(v)

R.D, As(v)← arg min
R.D

R.As,

F(v)← arg min
R.D

R.F ; update Q.

19: end for
20: end while

5.5.2 Algorithm Illustration

Now we briefly describe how Algorithm 3 works using the example shown in

Fig.5.5. Suppose that the beamwidths of s, v1 and v2 are 90◦, and the beamwidth

of v3 is 30◦. Lines 1-4 initialize all the data structures, and set D(t) to 0. In

the main while-loop, each time Line 6 extracts from Q a node with the minimum

D, and inserts it into L. If its D is ∞ already, all the nodes still in Q cannot

reach the destination t and thus the algorithm terminates. In the first iteration,

151

t is extracted in Line 6. Lines 8-18 then perform relaxations for all its incoming

neighbors v1, v2 and v3. We take v2 as an example. Since now for v2, its R(v2) is

empty, Lines 9-13 are skipped. Line 17 constructs a forwarding sector for v2 (as

shown in Fig.5.5b), and a corresponding record which stores the information of

this forwarding sector. Note that now t is added into the forwarding set associated

with this forwarding sector since t is the only settled outgoing neighbor located

in it. Then for v2, Line 18 updates the corresponding data structures by choosing

the one which can provide the shortest DAD among all the constructed records

(note that now v2 has only one record). Thus its currently computed shortest

DAD is 2. Similar relaxations are performed on v1 and v3, and their currently

computed shortest DADs are updated to 100 and 10, respectively. In the second

iteration, v2 is extracted in Line 6 since its D(v2) is the smallest among all the

unsettled nodes. Algorithm 3 repeats the similar procedure, relaxes its incoming

neighbor s and constructs the first record for s (as shown in Fig.5.5c) with the

forwarding set {v2} (since v2 is the only settled outgoing neighbor located in it.).

In the third iteration, v3 is extracted, and Lines 8-18 perform relaxations for its

incoming neighbor s. Note that now R(s) is not empty. Lines 9-13 check for the

first forwarding sector (the yellow one) in R(s) whether v3 is located in it. Since

this forwarding sector only has v2 in it, and v3 is not located in it, this if-branch

is skipped. Then Line 17 constructs the second forwarding sector for s (the green

one) as shown in Fig.5.5d, and sets its forwarding set of this record to the set of all

the settled outgoing neighbors located in this forwarding sector (i.e. v2 and v3).

Since the second record leads to a smaller DAD, Line 18 chooses this forwarding

sector and updates the corresponding data structure. As shown in Fig.5.5e, in

the fourth iteration s is extracted and thus settled.

152

s v 1v 2v 3 t0 . 1 0 . 50 .9 0 . 0 10 . 5 0 .1 0
(a) An example network

s v 1v 2v 3 t0 . 1 0 . 50 .9 0 . 0 10 . 5 0 .1
1 0 0

1 02 0
(b) t is settled

s v 1v 2v 3 t0 . 1 0 . 50 .9 0 . 0 10 . 5 0 .1
1 0 0

1 021 2 0
(c) v2 is settled

s v 1v 2v 3 t0 . 1 0 . 50 .9 0 . 0 10 . 5 0 .1
1 0 0

1 021 0 . 4 0
(d) v3 is settled

s v 1v 2v 3 t0 . 1 0 . 50 .9 0 . 0 10 . 5 0 .1
1 0 0

1 021 0 . 4 0
(e) s is settled

Figure 5.5: Algorithm illustration: the weight on each link denotes its PDR. The
weight associated with each node denotes its currently computed shortest DAD
D(v). The sectors associated with each node denote its forwarding sectors in its
R(v).

5.5.3 Algorithm Analysis

Theorem 11. Algorithm 3 finds a shortest directional anypath for FBDAR in

O (|E| (log |V |+ ∆(G) log ∆(G))) time, where ∆(G) is the maximum out-degree

of graph G. �

We need to give Lemmas 13-17 before proving Theorem 11. Let θ(v) denote

the optimal DAD of v. Note that Lemmas 13-15 are similar to Lemmas 7- 9,

153

which studied multi-constrained anypath routing. We can use similar techniques

to prove Lemmas 13-15 and thus omit the proofs for these three lemmas.

Lemma 13. If the forwarders of node v can only be chosen from a nonempty

subset of its outgoing neighbor nodes, denoted by N(v) = {u1, u2, . . . , uz} (with

θ(u1) ≤ θ(u2) ≤ · · · ≤ θ(uz)), there must exist an optimal forwarding set of the

form {u1, u2, . . . , ub} for some b ∈ {1, 2, . . . , z}, called a full optimal forwarding

set (FOFS) in N(v) for node v. �

Suppose that there are four optimal forwarding sets in N(v) for node v:

{u1, u2}, {u1, u2, u3}, {u1, u2, u3, u4}, and {u1, u2, u4}. This could happen, for ex-

ample, when p(v, u2) = 1. We can easily verify that these three forwarding sets

lead to the same DAD. {u1, u2}, {u1, u2, u3}, {u1, u2, u3, u4} are FOFSs. Recall

that a node’s forwarders must be located in its forwarding sector. Once the for-

warding sector is determined, the set of nodes, from which we choose forwarders,

is therefore determined. Let N(v) = {u1, u2, ..., uz} denote the set of these nodes.

Lemma 13 implies that we only need to check forwarding sets {u1}, {u1, u2},

Thus the time complexity of finding the optimal forwarding set of a forwarding

sector can be reduced to a polynomial time from an exponential time. The proof

of Lemma 13 will construct such an FOFS (refer to the proof of Lemma 7) that

among all the optimal forwarding sets in N(v), the largest priority index node in

this FOFS has the smallest priority index. Thus, if we check the forwarding sets

in this order {u1}, {u1, u2}, ..., this constructed FOFS would be found earliest

among all the optimal forwarding sets in N(v). We call this FOFS a minimum

FOFS (MFOFS) in N(v). Consider the example above. We have three FOFSs

{u1, u2}, {u1, u2, u3}, and {u1, u2, u3, u4}. The MFOFS is {u1, u2}, since the pri-

ority index of the largest priority index node in {u1, u2} is 2, which is smaller than

3 in {u1, u2, u3}, and 4 in {u1, u2, u3, u4}.
154

However, since there are an infinite number of possible boresights of the

forwarding sector, we may ask which is the optimal. Lemma 16 will show that we

only need to check a polynomial number of boresights. We call the MFOFS of the

optimal forwarding sector an optimal MFOFS (OMFOFS). For example, we have

two forwarding sectors available. The MFOFS in the first one leads to a DAD of

5, while the MFOFS in the second one leads to a DAD of 10. The MFOFS in the

first one is an OMFOFS.

If all the nodes on a shortest (i.e. optimal) directional anypath from v to

t use their OMFOFSs, we call it a full shortest anypath or a full optimal anypath.

Lemma 14. For an arbitrary nonempty subset N(v)={u1, u2, . . . , uz} of the out-

going neighbors of a node v, its MFOFS is {u1, u2, . . . , ub} with optimal distances

θ(u1) ≤ θ(u2) ≤ · · · ≤ θ(ub). Let Sµ denote the set {u1, u2, . . . , uµ}, 1 ≤ µ ≤ b.

Then we have DS1(v) > DS2(v) > · · · > DSb
(v). �

Lemma 15. The optimal DAD θ(v) of a node v is always larger than that of any

node (other than v) on the full shortest anypath from node v to destination t. �

Lemma 16. Let ∆(v) denote the out-degree of node v in G. Although there exist

an infinite number of possible forwarding sectors for v, in order to find the optimal

one, it is sufficient to check O(∆(v)) particular forwarding sectors. �

Proof. We construct the O(∆(v)) forwarding sectors for v as follows. For each

outgoing neighbor node of v, we construct a forwarding sector of v such that this

node is on its start boundary. We can therefore construct O(∆(v)) forwarding

sectors, called forwarding sector candidates. We now consider an arbitrary for-

warding sector Λ′ of v, and prove that the DAD of v via Λ′ cannot be smaller than

that via one particular forwarding sector candidate. If there is an outgoing neigh-

bor node of v on the start boundary of Λ′, Λ′ is a forwarding sector candidate.
155

Otherwise we rotate Λ′ counter-clockwise until the start boundary first touches

an outgoing neighbor node of v, which is originally in the interior of Λ′. Λ′ now

has been transformed to a forwarding sector candidate, denoted by Λ. Obviously,

the outgoing neighbor nodes of v, which are covered by Λ′, are also covered by

Λ. By (5.1), we therefore know that the DAD of v via Λ′ cannot be smaller than

that via Λ. Thus we do not need to check Λ′. Therefore it is sufficient to check

all the forwarding sector candidates.

Consider v’s OMFOFS ψ = {u1, u2, ..., ub} and an optimal forwarding sec-

tor of v, which covers all the nodes in ψ. As in the proof of Lemma 16, we rotate it

counterclockwise until its start boundary touches a node in ψ and we thus obtain

a forwarding sector candidate, denoted by Λo. Obviously, Λo is also an optimal

forwarding sector. An outgoing neighbor node of v is called a start boundary con-

struct node (SBCN) of Λo, if it is the one with the smallest optimal DAD, among

all the nodes in ψ, which are located on the start boundary of Λo. Intuitively,

if we check nodes in the order of u1, u2, ..., ub, and construct forwarding sector

candidates with these nodes on their start boundaries, the SBCN is the first node

which can correctly determine the start boundary of Λo.

Lemma 17. Let v be any node that can reach the destination t. The anypath

from v to t computed by Algorithm 3 is a shortest directional anypath. �

Proof. We show that for each node v, when it is inserted into L, we have

D(v) = θ(v). For the purpose of contradiction, let va be the first node added to

L for which D(va) > θ(va).

Since there could exist more than one OMFOFS for va, at first we prove

by contradiction a claim that all the OMFOFSs contain at least one unsettled

node at the time va is inserted into L. We assume that there exists an OMFOFS

156

ψ, in which all the nodes have been settled and added into L, and we will derive

that Algorithm 3 must find ψ and thus D(va) = θ(va). Lemma 16 indicates that

we only need to check the forwarding sector candidates of v. Now we prove ψ

will be constructed and found, as well as the corresponding optimal forwarding

sector Λo. We know Λo must exist. Let {u1, u2, ..., uz} denote the set of all the

outgoing neighbor nodes of v located in Λo, with θ(u1) ≤ θ(u2) ≤ · · · ≤ θ(uz).

By Lemma 13, we know ψ is of the form {u1, u2, ..., ub}. Since va is the first node

added to L for which D(va) > θ(va) and we assume all the nodes in ψ have been

added into L, all the nodes in ψ must be settled in the increasing order of their

optimal DADs. The SBCN of Λo, denoted by uc, is therefore settled before va

is added into L. When uc is settled, Λo is constructed in Line 17. Therefore,

Λo must be constructed before va is added into L, and all the nodes in Λo with

optimal DADs not greater than θ(uc) (i.e. u1, u2, ..., uc−1) are settled before Λo is

constructed. Recall that ψ is of the form {u1, u2, ..., ub}. This implies that we need

to add into the forwarding set of Λo all the settled outgoing neighbor nodes of v

in Λo (i.e. u1, u2, ..., uc) (Line 17). After that, {u1, u2, ..., uc+1}, {u1, u2, ..., uc+2}...

will be checked by Lines 10-15, since uc+1, uc+2, ...ub are settled in the increas-

ing order of their optimal DADs. By Lemma 14, if (c + 1) ≤ b, the DAD of

v via {u1, u2, ..., uc+1} is always smaller than that via {u1, u2, ..., uc}. Thus the

condition in Line 12 evaluates true and the forwarding set of Λo is updated to

{u1, u2, ..., uc+1}. This procedure is repeated until the forwarding set of Λo is

updated to ψ. So far, we have proved that Λo and ψ can be constructed by Algo-

rithm 3. However, how to find Λo among all the forwarding sectors constructed

by Algorithm 3? After updating the forwarding sector records of va, Line 18 com-

putes the currently best DAD of va by comparing the DADs via all the forwarding

sectors which have been constructed. Since the DADs via non-optimal forwarding

sectors cannot be smaller than that via Λo, Line 18 can find Λo and ψ when the
157

forwarding set of Λo is updated to ψ. Recall that since there might exist multiple

OMFOFSs and optimal forwarding sectors, Algorithm 3 finds the optimal for-

warding sector, whose forwarding set is updated to its MFOFS earliest. In brief,

when va is settled, if all the nodes in ψ have been settled, ψ and Λo must have

been found by Algorithm 3. This implies that D(va) = θ(va), which contradicts

D(va) > θ(va). Thus when va is inserted into L, all the OMFOFSs of va contain

at least one unsettled node.

We arbitrarily select one of these nodes, denoted by j. By Lemma 15, we

have θ(j) < θ(va). Since we assume D(va) > θ(va), we must have θ(j) < D(va).

Let us consider the full shortest anypath Pj from j to t. Without loss of generality,

assume that node j1 has the smallest optimal DAD to t among all the unsettled

nodes on Pj. Thus θ(j) ≥ θ(j1). We claim (1) all the nodes in the OMFOFS of j1

along Pj must have been settled when va is added into L. To prove this claim, let

us assume that j2, which is in this OMFOFS, is unsettled. By Lemma 15, we know

that θ(j1) > θ(j2). However, since we assume j1 has the smallest optimal DAD

(note that j2 is also on Pj), then θ(j1) ≤ θ(j2), which contradicts θ(j1) > θ(j2).

Thus, all the nodes in this OMFOFS are settled. Since va is also in L, we next

consider whether va is in this OMFOFS.

We claim (2) va is not in the OMFOFSs of j1. We also prove this claim

by contradiction. Assume that va is in one of its OMFOFSs. By Lemma 15,

we therefore know θ(j1) > θ(va). On the other hand, since we have deduced

that θ(j1) ≤ θ(j) and θ(j) < θ(va), we know θ(j1) < θ(va), which contradicts

θ(j1) > θ(va). Thus va is not in the OMFOFSs of j1.

The two claims above imply that at the time just before va is settled, all

the nodes in one of the OMFOFSs of j1 have been settled. Recall how we proved

that if all the nodes in one OMFOFS of va have been added into L, this set must

158

be found. We can use the same proof to prove that an OMFOFS of j1 must have

been found. Thus, at that time D(j1) = θ(j1).

We now derive the contradiction based on our first assumption that va is

the first settled node for which D(va) > θ(va). Since we have deduced θ(j1) ≤ θ(j)

and θ(j) < D(va), we have θ(j1) < D(va). Additionally, we deduced D(j1) = θ(j1).

We therefore know D(j1) < D(va). However this is a contradiction, since this

inequality implies that j1, which is a node outside of L at the time va is inserted

into L, should be inserted into L before va.

We hence conclude that for each node v in L, we have D(v) = θ(v). This

implies that when a node is settled, its shortest directional anypath has been found

by Algorithm 3.

Proof of Theorem 11. Lemma 17 has proved the optimality of Algorithm 3.

We now analyze its running time. Assuming that Q is a Fibonacci heap [21],

each of the Extract-Min operations in Line 6 takes O(log |V |) time, with a total

of O(|V | log |V |). Note that the for-loop of Lines 8-19 is executed O(|E|) times in

total, since there are a total number of |E| incoming neighbors of all the nodes.

For each unsettled incoming neighbor v, the for-loop of Lines 9-16 is executed

O(∆(v)) times, since Algorithm 3 constructs O(∆(v)) forwarding sectors for node

v. If we store some other status variables as in [58], computing D in Line 11 takes

a constant time. Thus Lines 11-13 take constant time. The for-loop of Lines 9-16

therefore takes O(∆(v)) time, with a total of O(∆(G)|E|). In Line 17, to obtain

the anypath distance requires first sorting all the settled outgoing neighbors of v lo-

cated in the forwarding sector in the increasing order of their optimal DADs, which

takes O(∆(v) log∆(v)) time [21], and then ∆(v) calculations. Obviously, it domi-

nates the other operations in this line. Thus Line 17 takes O(∆(v) log∆(v)) time,

with a total ofO(|E|∆(G) log∆(G)) time. Since each node keeps O(∆(v)) records,

159

Line 18 takes O(∆(v)) time to finish comparison operations and O(log |V |) time

to update priority queue Q [21], with a total of O((∆(G)+ log |V |)|E|). Thus the

total running time is O(|E|(log |V |+∆(G) log ∆(G))).

5.6 Routing Algorithm for VBDAR

5.6.1 Algorithm Description

In this section we present an efficient algorithm V-DART for VBDAR. In addition

to the data structures used in Algorithm 3, for every node we keep another variable

Ab(v) to store the beamwidth of the currently computed best forwarding sector.

Each element (record) in R(v) has another component Ab to denote the beamwidth

of the forwarding sector of this record. We say a node u is in the extendible area

of a forwarding sector of v, if this forwarding sector covers u, or can cover u

by rotating its start boundary clockwise (we say that u is in the start boundary

extendible area (SBEA)) or end boundary counterclockwise (we say that u is in

the end boundary extendible area (EBEA)) without exceeding the beamwidth

constraint Au(v).

Actually the high-level framework of Algorithm 4 is similar to that of

Algorithm 3. The difference is that for a forwarding sector Algorithm 4 tries out

all the useful combinations of the start boundary and the end boundary rather

than just all the possible start boundaries as in Algorithm 3. We briefly describe

how Algorithm 4 works. Lines 1-4 initialize all the data structures, and set D(t) to

0. In the main while-loop, each time Line 6 extracts a node with the minimum D

from Q, and inserts it into L. If its D is∞ already, all the nodes still in Q cannot

reach t and thus the algorithm terminates. In the first iteration, t is extracted.

Lines 8-26 then perform relaxations for all its incoming neighbors. Since now for

each incoming neighbor v, its R(v) is empty, Lines 9-19 will be skipped. Then

160

Algorithm 4 V-DART

1: for each node v in V do
2: D(v)←∞, As(v)← 0, Ab(v)← Al(v), F(v)← ∅, R(v)← ∅.
3: end for
4: D(t)← 0, L← ∅, Q← V .
5: while Q 6= ∅ do
6: u← Extract-Min(Q), L← L ∪ {u}.
7: if D(u) =∞ then break.
8: for each unsettled incoming-neighbor v do
9: for each record R in R(v) do

10: if u is in the extendible area of the forwarding sector of R then
11: F ← R.F ∪ {u}, D ← 1

p(v,F)
+ D(F).

12: if D < R.D then
13: R.F ← F , R.D ← D.
14: if u is not in the forwarding sector of R then
15: if u is in the SBEA then
16: construct a new record R′ by copying R, rotate its start

boundary clockwise such that u is on the start boundary,
and update R′.Ab and R′.As.

17: end if
18: if u is in the EBEA then
19: construct a new record R′ by copying R, rotate its end bound-

ary counterclockwise such that u is on the end boundary, and
update R′.Ab.

20: end if
21: end if
22: end if
23: end if
24: end for
25: Construct two records for v with forwarding sector beamwidth of Al(v)

such that u is on one’s start boundary and the other’s end boundary.
For each record, set the forwarding set to the set of all the settled out-
going neighbor nodes of v in its forwarding sector, and calculate the
corresponding D.

26: D(v) ← min
R∈R(v)

R.D; select the one with the smallest beamwidth among

all the forwarding sectors which can provide D(v), and update the corre-
sponding As(v), F(v) and Ab(v); update Q.

27: end for
28: end while

161

based on t Line 25 constructs two forwarding sectors for v, and two corresponding

records which store the information of these two forwarding sectors. Then for

v, Line 26 chooses the one with minimum beamwidth among all the forwarding

sectors which can provide the shortest DAD, and updates the corresponding data

structures. Algorithm 4 repeats this procedure. If for an incoming neighbor v of a

currently settled node u, its R(v) is not empty, Lines 9-20 check for each existing

forwarding sector of v whether u is in its extensible area and whether adding u

into its forwarding set can lead to a smaller D. If so, Algorithm 4 adds u into

the forwarding set and extends the forwarding sector if u is not in it. Since the

original forwarding sector could be used later, Line(s) 16 and/or 19 make(s) a

copy of the original one.

5.6.2 Algorithm Analysis

Theorem 12. Algorithm 4 can find a shortest directional anypath for VBDAR in

O(|E|(log |V |+ ∆(G)2)) time. �

We need to prove Lemmas 18-19 before proving Theorem 12. Obviously,

Lemmas 13-15 still hold for Algorithm 4.

Lemma 18. Although for node v there exist an infinite number of possible for-

warding sectors, in order to find the optimal one, it is sufficient to check O(∆(v)2)

particular forwarding sectors. �

Proof. We construct the O(∆(v)2) forwarding sectors as follows. First, for each

outgoing neighbor of v, we construct two forwarding sectors centered at v with

beamwidth Al(v) such that this node is on one’s start boundary and the other’s

end boundary. Second, for each pair (denoted by {u1, u2}) of outgoing neigh-

bors of v, we construct two forwarding sectors of v such that u1 is on one’s start

162

boundary and the other’s end boundary, and u2 is on one’s end boundary and

the other’s start boundary, if the beamwidths of these two forwarding sectors are

in the range of [Al(v), Au(v)]. Third, since the first step and the second step

could construct the same forwarding sectors, we delete the redundant forwarding

sectors. We therefore constructed O(∆(v)2) forwarding sectors, called forwarding

sector candidates. We now consider an arbitrary forwarding sector Λ′ of v with

beamwidth in the range of [Al(v), Au(v)]. We will prove that the DAD via Λ′ can-

not be smaller than that via one particular forwarding sector candidate (denoted

by Λ), and that the beamwidth of Λ cannot be larger than that of Λ′. We first

rotate Λ′ counterclockwise (or clockwise) until its start boundary (or end bound-

ary) touches an outgoing neighbor node of v. Then we rotate the end boundary

of Λ′ clockwise (or the start boundary counterclockwise) until the beamwidth of

Λ′ reaches Al(v) or it touches an outgoing neighbor node of v. Λ is therefore

constructed. We have three observations: 1)Λ is a forwarding sector candidate;

2) the beamwidth of Λ is not larger than that of Λ′; 3) all the outgoing neighbor

nodes of v in Λ′ are also covered by Λ. Thus by (5.1) the DAD via Λ′ cannot be

smaller than that via Λ. Thus we do not need to check Λ′. This implies that it is

sufficient to check all the forwarding sector candidates.

Consider an OMFOFS ψ of a node v and its corresponding optimal for-

warding sector. As in the proof of Lemma 18, we rotate it counterclockwise until

its start boundary touches a node in ψ, and then rotate its end boundary clock-

wise until it touches a node in ψ or its beamwidth reaches Al(v). We thus obtain

a forwarding sector candidate, denoted by Λo. Obviously, it is an optimal for-

warding sector. As in Section 5.5, we define the start boundary construct node

(SBCN) of Λo, which is the one with the smallest optimal DAD, among all the

nodes in ψ, which are located on the start boundary of Λo.

163

Lemma 19. Let v be any node that can reach the destination t. The anypath

from v to t computed by Algorithm 4 is a shortest directional anypath. �

Proof. The proof is similar to the proof of Lemma 17 except the part of proving

the OMFOFS can be found when all the nodes in the OMFOFS are settled. We

hence concentrate on this part and omit the proof for the other parts.

We claim that an OMFOFS ψ of v and its corresponding optimal forward-

ing sector Λo must be found if all the nodes in ψ are settled in the increasing order

of their optimal DADs. Recall how we constructed Λo above.

We prove this claim by proving a series of sub-claims in a recursive manner.

By Lemma 18, we know we only need to check the forwarding sector candidates.

We know ψ and Λo must exist. Let {u1, u2, ..., uz} denote the set of all the outgoing

neighbors of v in Λo, with θ(u1) ≤ θ(u2) ≤ · · · ≤ θ(uz). By Lemma 13, we know

ψ is of the form {u1, u2, ..., ub}.

We first consider the SBCN of Λo, denoted by uc1. When it is settled,

Line 25 constructs a forwarding sector (denoted by Λa) of beamwidth Al with uc1

on its start boundary. Recall that when uc1 is settled, u1, u2, ..., uc1−1 have been

settled. Now we consider two cases. The first case is that u1, u2, ..., uc1−1 are

located in Λa. Line 25 adds u1, u2, ..., uc1 into the forwarding set of Λa. After that

when uc1+1, uc1+2, ..., ub are settled in order, by Lemma 14 Lines 12-13 will add

them into the forwarding set of Λa one by one until ψ is constructed. Note that

Λa could be extended counterclockwise by Line 19 if some newly settled nodes

are not in it. The second case is that not all u1, u2, ..., uc1−1 are located in

Λa. Among them we select the counterclockwise farthest node from uc1(measured

by angle), denoted by uc2. If there is more than one such node, we select the

one with the minimum optimal DAD. Sub-claim (1): Algorithm 4 must have

164

constructed a forwarding sector Λ1 with uc1 on its start boundary and uc2 on its

end boundary, whose forwarding set is {u1, u2, ..., uc1}. If this is true, after that

when uc1+1, uc1+2, ..., ub are settled, by Lemma 14 Lines 12-13 will add them into

the forwarding set of Λ1 one by one until ψ is constructed, and Λ1 will keep being

extended by Lines 18-19 until it is updated to Λo. In brief, if sub-claim (1) is

true, ψ and Λo will be constructed by Algorithm 4.

Now we consider uc2. When uc2 is settled, Line 25 constructs a forwarding

sector (denoted by Λb) of beamwidth Al with uc2 on its end boundary. Similar to

the discussion before, we consider two cases. The first case is that u1, u2, ...uc2−1

are located in Λb. Line 25 adds u1, u2, ...uc2 into the forwarding set of Λb. After

that when uc2+1, uc2+2, ..., uc1 are settled, by Lemma 14 Lines 12 -13 will add

them into the forwarding set of Λb one by one, and Λb will keep being extended

by Lines 15-16. Eventually Λb will have uc1 on its start boundary and uc2 on its end

boundary, and its forwarding set is {u1, u2, ..., uc1}. In other words, the current

Λb is Λ1. Thus sub-claim (1) is true in this case. The second case is that not

all u1, u2, ...uc2−1 are located in Λb. Among them we select the clockwise farthest

node from uc2 (measured by angle), denoted by uc3. Sub-claim (2): Algorithm 4

must have constructed a forwarding sector Λ2 with uc3 on its start boundary and

uc2 on its end boundary, whose forwarding set is {u1, u2, ...uc2}. If sub-claim (2)

is true, similar to the discussion before, after that when uc2+1, uc2+2, ..., uc1 are

settled, by Lemma 14 Lines 12 -13 will add them into the forwarding set of Λ2

one by one, and Λ2 will keep being extended in Lines 15-16 until it is updated to

Λ1. In brief, if sub-claim (2) is true, sub-claim (1) will be true.

This “zigzag” procedure is repeated until we consider such a node ucx that

u1, u2, ..., ucx are all located in a forwarding sector Λx, where Λx is a forwarding

sector of beamwidth Al and has ucx on its start boundary (if x is odd) or its

165

end boundary (if x is even). This node must exist, since at least u1 satisfies

this. When ucx is settled, Line 25 constructs Λx and adds u1, u2, ..., ucx into its

forwarding set. Now consider the sub-claim associated with ucx−1. Sub-claim

(x − 1): Algorithm 4 must have constructed a forwarding sector Λx−1 with ucx−1

on its start boundary and ucx on its end boundary (if x is even) or with ucx on its

start boundary and ucx−1 on its end boundary (if x is odd), whose forwarding set

is {u1, u2, ...ucx−1}. Now come back to consider Λx. Without loss of generality, we

assume x is odd. After ucx is settled, ucx+1, ucx+2, ..., ucx−1 will be settled in order.

Thus by Lemma 14 Lines 12-13 will add them into the forwarding set of Λx one

by one, and Λx will keep being extended in Lines 18-19. Eventually, Λx becomes

a forwarding sector with ucx on its start boundary and ucx−1 on its end boundary,

whose forwarding set is {u1, u2, ...ucx−1}. In other words, the current Λx is Λx−1.

Thus sub-claim (x− 1) is proved. Repeat this procedure and sub-claim (1) is

hence correct. Recall that if sub-claim (1) is true, ψ and Λo must be constructed.

Moreover, Λo either has a beamwidth of Al, or has uc1 on its start boundary and

a node on its end boundary. Thus its beamwidth cannot be reduced anymore.

How to find Λo among all the forwarding sectors constructed by Algo-

rithm 4? Like Algorithm 3, after updating the forwarding sector records, Line 26

computes the currently best DAD by comparing the DADs via all the forwarding

sectors which have been constructed. Since the DADs via non-optimal forwarding

sectors cannot be smaller than the optimal, Line 26 can find the optimal DAD.

Furthermore, if there exist multiple forwarding sectors associated with this short-

est DAD, Line 26 chooses the one with the minimum beamwidth and thus finds

the optimal forwarding sector. The claim is hence proved.

Proof of Theorem 12. Lemma 19 has proved the optimality of Algorithm 4.

The time complexity analysis is similar to that of Algorithm 3 and is omitted.

166

5.7 Performance Evaluation

In this subsection, we evaluate the performance of DART. Since DART represents

the first attempt towards the practical design for directional anypath routing, we

compare it with the shortest anypath routing proposed in [58] for omnidirectional

antenna, which presented the Shortest Anypath First (SAF) algorithm to compute

the shortest anypath. In the implementations of F-DART and V-DART, all the

nodes adopted directional transmission, and in the implementation of SAF, all

the nodes adopted omnidirectional transmission.

In the simulation, we uniformly distributed 802.11 nodes in a 1000m×1000m

square region. The numbers of nodes were chosen to be 50, 100, · · · , 300. The

transmit rate of each node was set to 2Mbps, and both the directional and om-

nidirectional transmission ranges were set to 200m. As in [27], we assume that

the PDR is inversely proportional to the distance with a random Gaussian de-

viation of 0.1. For each network size, we evaluated 6 test cases by choosing 6

different beamwidth constraints: π
6
, π

3
, ...π. For example, when the constraint was

π
6
, the beamwidths of transmitters in the implementation of F-DART and Au in

the implementation of V-DART were set to π
6
. Al was always set to Au

6
. For each

test case, we randomly generated 100 subcases by randomly choosing a source-

destination pair and the coordinates of the nodes. In each subcase, the source sent

100 packets of size 1024 bytes to its destination. Thus the results were averaged

over 10,000 packets. All tests were performed on a 1.8GHz Linux PC with 2G

bytes of memory. We simulated a random network traffic pattern. More specif-

ically, the nodes, which were not on the anypath returned by DART or SAF,

carried random loads, and their beamwidths in the implementation of F-DART

and V-DART were set to the beamwidth constraint.

167

Since DART looks for the shortest directional anypath, we study the im-

provement on the average packet transmission delay from the source to the desti-

nation in our experiments. From Fig.5.6a-5.6c, we can make the following obser-

vations. When the network is exploiting directional antennas, the packet trans-

mission delay is reduced by 28%-70%. This significant improvement clearly shows

the importance of the directional communication and justifies the necessity of di-

rectional anypath routing. Additionally, we can observe that as the beamwidth

constraint increases, the average packet transmission delay also increases. For the

implementation of F-DART, this is because, with the increase of the beamwidth

constraint, the beamwidths of all the nodes also increase, and as a result the

mutual interference increases. For the implementation of V-DART, although

the nodes on the anypath from the source to the destination can adjust their

beamwidths to reduce the interference, considering the simulation setup that the

beamwidths of the other nodes are increased with the increase of the beamwidth

constraint, the packet transmission delay still increases. However, note that with

the increase of the beamwidth constraint, the gap between the packet transmis-

sion delays of F-DART and V-DART is enlarged up to 20%. This is expected,

because V-DART can keep using smaller beamwidths to decrease interference.

Fig.5.7 compares the running times of computing a source-destination any-

path when the beamwidth constraint is set to π
2
. Although F-DART and V-DART

take more time, their running time is still satisfactory in practice. In all cases

studied, the average running times of F-DART and V-DART are no more than

30ms and 140ms, respectively. Considering the significant improvement on the

packet transmission delay, the sacrificed negligible running time is worthwhile.

168

30 60 90 120 150 180
0

50

100

150

Beamwidth constraint(degree)

T
ra

n
s
m

is
s
io

n
 d

e
la

y
(m

s
)

SAF(50nodes)

F−DART(50nodes)

V−DART(50nodes)

SAF(100nodes)

F−DART(100nodes)

V−DART(100nodes)

(a) Transmission delay(50/100nodes)

30 60 90 120 150 180
0

50

100

150

Beamwidth constraint(degree)

T
ra

n
s
m

is
s
io

n
 d

e
la

y
(m

s
)

SAF(150nodes)

F−DART(150nodes)

V−DART(150nodes)

SAF(200nodes)

F−DART(200nodes)

V−DART(200nodes)

(b) Transmission delay(150/200nodes)

30 60 90 120 150 180
0

50

100

150

200

Beamwidth constraint(degree)

T
ra

n
s
m

is
s
io

n
 d

e
la

y
(m

s
)

SAF(250nodes)

F−DART(250nodes)

V−DART(250nodes)

SAF(300nodes)

F−DART(300nodes)

V−DART(300nodes)

(c) Transmission delay(250/300nodes)

Figure 5.6: Simulation results

50 100 150 200 250 300
0

50

100

150

R
u
n
n
in

g
 t
im

e
(m

s
)

Number of nodes

SAF
F−DART
V−DART

Figure 5.7: Running time

5.8 Conclusion

In this work, we have proposed DART, a cross-layer design for anypath routing

in wireless networks with directional antennas. For the MAC layer, we have

presented a directional anycast MAC, which is an enhancement to the IEEE 802.11

MAC protocol, making DART suitable for integration into current systems. For

the routing layer, we have proposed two polynomial time routing algorithms based

on two antenna models, and have proved their optimality. Simulation results show

that DART can significantly reduce the packet transmission delay.

169

Chapter 6

Conclusion and Future Work

In this dissertation, we have concentrated on optimization for resource-constrained

wireless networks, and have studied two fundamental resource-allocation prob-

lems: 1) distributed routing optimization and 2) anypath routing optimization.

6.1 Optimizing Distributed Routing for Multihop Wireless Networks

6.1.1 Conclusion

The study on the distributed routing optimization problem is composed of two

main thrusts, targeted at understanding distributed routing and resource opti-

mization for multihop wireless networks. The first thrust is dedicated to un-

derstanding the impact of full-duplex transmission on wireless network resource

optimization. We have proposed two provably good distributed algorithms to

optimize the resources in a full-duplex wireless network. The second thrust is

dedicated to understanding the influence of network entity load constraints on

network resource allocation and routing computation. We have proposed a prov-

ably good distributed algorithm to allocate wireless resources. In addition, we

have proposed a new subgradient optimization framework, which can provide

find-grained convergence, optimality, and dual space information at each iteration.

This framework can provide a useful theoretical foundation for many networking

optimization problems.

6.1.2 Future Work

As for the future work, one interesting research task is to investigate the impact

of full-duplex radios on end-to-end delay. The constraints and problem formula-

tion used before might be still applicable since our problem is formulated from a

170

perspective of stable network flows. However, this formulation cannot effectively

capture the delay improvement that can be brought by using full-duplex radios.

We expect that the network delay reduction is a non-decreasing function of the

percentage of the nodes equipped with full-duplex radios. Therefore, it would

be interesting to exploit the potential impact of full-duplex radios on end-to-end

delay.

Another interesting research topic is extending our preliminary results de-

scribed above to the mixed-duplex and multi-channel case. Some of the constraints

we used before may still hold, but we need to specifically handle the problems in

the MAC layer once multiple channels are being used.

6.2 Optimizing Anypath Routing for Multihop Wireless Networks

6.2.1 Conclusion

This study on the anypath routing optimization problem is composed of two main

thrusts. The first thrust is dedicated to understanding the computational com-

plexity of multi-constrained anypath routing and designing approximate solutions.

We have shown that the problem is NP-hard when the number of constraints is

larger than one. We have presented two polynomial time K-approximation algo-

rithms. One is a centralized algorithm while the other one is a distributed algo-

rithm. For the second thrust, we have studied directional anypath routing and

present DART, a cross-layer design of MAC and routing layers, which represents

the first attempt towards the practical design for directional anypath routing. For

the MAC layer, we have presented a directional anycast MAC, an enhancement

to the 802.11 MAC. For the routing layer, we have proposed two polynomial time

routing algorithms to compute directional anypaths based on two antenna models,

and proved their optimality based on the packet delivery ratio metric.

171

6.2.2 Future Work

As for the future work, possible future research topics along the line of research on

multi-constrained anypath routing include either designing better approximation

algorithms or establishing stronger hardness results. This is because our NP-

hardness proof proves the problem to be weakly NP-hard, as opposed to strongly

NP-hard.

A possible future research topic along the line of research on directional

anypath routing is designing distributed algorithms. Although we have presented

two centralized routing algorithms, in practice distributed algorithms might be

preferable. Essentially speaking, our routing algorithms are Dijkstra-like algo-

rithms. We strongly believe that our algorithms can be converted to Bellman-

Ford-like algorithms. In this way, it is likely that we can decentralize the routing

algorithms.

172

REFERENCES

[1] A. Abdulla, H. Nishiyama, and N. Kato. Extending the lifetime of wireless
sensor networks: A hybrid routing algorithm. Computer Communication,
35(9):1056–1063, 2012.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-level mea-
surements from an 802.11b mesh network. In Proceedings of the ACM SIG-
COMM, pages 121–132, 2004.

[3] M. Alicherry, R. Bhatia, and L. E. Li. Joint channel assignment and rout-
ing for throughput optimization in multi-radio wireless mesh networks. In
Proceedings of the ACM MOBICOM, pages 58–72, 2005.

[4] S. Basagni. Finding a maximal weighted independent set in wireless net-
works. Telecommunication Systems, 18:155–168, 2001.

[5] R. Bhatia, A. Segall, and G. Zussman. Analysis of bandwidth allocation al-
gorithms for wireless personal area networks. Wireless Networks, 12(5):589–
603, 2006.

[6] S. Biswas and R. Morris. Exor: opportunistic multi-hop routing for wireless
networks. In Proceedings of the ACM SIGCOMM, pages 133–144, 2005.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[8] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous con-
gestion control and distributed scheduling for multihop wireless networks.
IEEE/ACM Transactions on Networking, 2008.

[9] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading structure for
randomness in wireless opportunistic routing. In Proceedings of the ACM
SIGCOMM, pages 169–180, 2007.

[10] J.-H. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc
networks. In Proceedings of the IEEE INFOCOM, pages 22 –31, 2000.

[11] J.-H. Chang and L. Tassiulas. Fast approximate algorithms for maximum
lifetime routing in wireless ad-hoc networks. In Proceedings of the IFIP-TC6
/ European Commission International Conference on Broadband Commu-
nications, High Performance Networking, and Performance of Communica-
tion Networks, pages 702–713, 2000.

173

[12] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar. Throughput and fairness
guarantees through maximal scheduling in wireless networks. IEEE Trans-
actions on Information Theory, 54(2):572 –594, 2008.

[13] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Cross-layer congestion
control, routing and scheduling design in ad hoc wireless networks. In Pro-
ceedings of the IEEE INFOCOM, pages 1 –13, 2006.

[14] S. Chen and K. Nahrstedt. On finding multi-constrained paths. In Proceed-
ings of the IEEE ICC, pages 874 –879, 1998.

[15] S. Chen and K. Nahrstedt. An overview of quality of service routing for next-
generation high-speed networks: problems and solutions. IEEE Network,
12(6):64 –79, 1998.

[16] M. Chiang, S. Low, A. Calderbank, and J. Doyle. Layering as optimization
decomposition: A mathematical theory of network architectures. Proceed-
ings of the IEEE, 95(1):255 –312, 2007.

[17] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving single
channel, full duplex wireless communication. In Proceedings of the ACM
MOBICOM, pages 1–12, 2010.

[18] R. R. Choudhury, X. Yang, R. Ramanathan, and N. H. Vaidya. Using direc-
tional antennas for medium access control in ad hoc networks. In Proceedings
of the ACM MOBICOM, pages 59–70, 2002.

[19] Cisco. Cisco aironet antennas and accessories reference guide.

[20] Cisco. Cisco aironet 802.11a/b/g wireless lan client adapters (CB21AG and
PI21AG) installation and configuration guide. 2007.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. 2001.

[22] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. In Proceedings of the ACM
MOBICOM, pages 134–146, 2003.

[23] M. Duarte and A. Sabharwal. Full-duplex wireless communications using off-
the-shelf radios: Feasibility and first results. In 2010 Conference Record of

174

the Forty Fourth Asilomar Conference on Signals, Systems and Computers,
pages 1558 –1562, 2010.

[24] H. Dubois-Ferrieàndre, M. Grossglauser, and M. Vetterli. Valuable de-
tours: Least-cost anypath routing. IEEE/ACM Transactions on Network-
ing, 19(2):333 –346, 2011.

[25] H. Dubois-Ferrière. Anypath routing. Ph.D dissertation, EPFL, 2006.

[26] A. Eryilmaz and R. Srikant. Joint congestion control, routing, and mac for
stability and fairness in wireless networks. IEEE Journal on Selected Areas
in Communications, 24(8):1514 –1524, 2006.

[27] X. Fang, D. Yang, P. Gundecha, and G. Xue. Multi-constrained anypath
routing in wireless mesh networks. In Proceedings of the IEEE SECON,
pages 1 –9, 2010.

[28] X. Fang, D. Yang, and G. Xue. Consort: Node-constrained opportunistic
routing in wireless mesh networks. In Proceedings of the IEEE INFOCOM,
pages 1907 –1915, 2011.

[29] F. Forgo, J. Szep, and F. Szidarovszky. Introduction to the theory of games.
Kluwer Academic, 1999.

[30] Y. Ganjali and A. Keshavarzian. Load balancing in ad hoc networks: single-
path routing vs. multi-path routing. In Proceedings of the IEEE INFOCOM,
pages 1120 – 1125, 2004.

[31] J. Gao and L. Zhang. Load-balanced short-path routing in wireless networks.
IEEE Transactions on Parallel and Distributed Systems, 17(4):377 – 388,
2006.

[32] A. Goldsmith. Wireless communications. Cambridge University, 2005.

[33] S. Gollakota and D. Katabi. Zigzag decoding: combating hidden terminals
in wireless networks. In Proceedings of the ACM SIGCOMM, pages 159–170,
2008.

[34] S. Guo and O. W. Yang. Antenna orientation optimization for minimum-
energy multicast tree construction in wireless ad hoc networks with direc-

175

tional antennas. In Proceedings of the ACM MOBIHOC, pages 234–243,
2004.

[35] A. Gupta, X. Lin, and R. Srikant. Low-complexity distributed scheduling
algorithms for wireless networks. IEEE/ACM Transactions on Networking,
17(6):1846–1859, 2009.

[36] P. Gupta and P. Kumar. The capacity of wireless networks. IEEE Trans-
actions on Information Theory, 46(2):388 –404, 2000.

[37] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE Trans-
actions on Information Theory, 34(5):910 –917, 1988.

[38] D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of carrier
sense: interference cancellation for wireless lans. In Proceedings of the ACM
MOBICOM, pages 339–350, 2008.

[39] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource discovery in dis-
tributed networks. In Proceedings of the ACM PODC, pages 229–237, 1999.

[40] J. Hoepman. Simple distributed weighted matchings. http: // arxiv.

org/ abs/ cs/ 0410047 .

[41] IEEE. IEEE Standard 802.11, http://standards.ieee.org/getieee802/download
/802.11-2007.pdf.

[42] J. Jaffe. Algorithms for finding paths with multiple constraints. Networks,
14(1):95 – 116, 2006.

[43] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference
on multi-hop wireless network performance. In Proceedings of the ACM
MOBICOM, pages 66–80, 2003.

[44] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis,
S. Katti, and P. Sinha. Practical, real-time, full duplex wireless. In Pro-
ceedings of the ACM MOBICOM, pages 301–312, 2011.

[45] R. Jain, D.-M. Chiu, and W. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems. CoRR,
1998.

176

[46] S. Jain and S. R. Das. Exploiting path diversity in the link layer in wireless
ad hoc networks. Ad Hoc Networks, 6(5):805–825, 2008.

[47] L. Jang-Won, T. Ao, H. Jianwei, M. Chiang, and A. Robert. Reverse-
engineering mac: A non-cooperative game model. IEEE Journal on Selected
Areas in Communications, 25(6):1135 –1147, 2007.

[48] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless
networks. In Mobile Computing, pages 153–181. Kluwer Academic Publish-
ers, 1996.

[49] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin
cell multiplexing in a general-purpose atm switch chip. IEEE Journal on
Selected Areas in Communications, 9(8):1265 –1279, 1991.

[50] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-level network
coding for wireless mesh networks. In Proceedings of the ACM SIGCOMM,
pages 401–412, 2008.

[51] F. Kelly. Charging and rate control for elastic traffic. European Transactions
on Telecommunications, 8(1):33–37, 1997.

[52] M. Kodialam and T. Nandagopal. Characterizing achievable rates in multi-
hop wireless networks: the joint routing and scheduling problem. In Pro-
ceedings of the ACM MOBICOM, pages 42–54, 2003.

[53] T. Korkmaz and M. Krunz. A randomized algorithm for finding a path
subject to multiple QoS requirements. Computer Networks, 36(2-3):251–
268, 2001.

[54] D. Koutsonikolas, C.-C. Wang, and Y. Hu. Efficient network-coding-
based opportunistic routing through cumulative coded acknowledgments.
IEEE/ACM Transactions on Networking, 19(5):1368 –1381, 2011.

[55] F. Kuipers, A. Orda, D. Raz, and P. Van Mieghem. A comparison of ex-
act and e-approximation algorithms for constrained routing. In Proceedings
of the 5th international IFIP-TC6 conference on Networking Technologies,
Services, and Protocols; Performance of Computer and Communication Net-
works; Mobile and Wireless Communications Systems, pages 197–208, 2006.

177

[56] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz. An overview of
constraint-based path selection algorithms for QoS routing. IEEE Commu-
nications Magazine, 40(12):50 – 55, 2002.

[57] S. Kwon and N. Shroff. Paradox of shortest path routing for large multi-
hop wireless networks. In Proceedings of the IEEE INFOCOM, pages 1001
–1009, 2007.

[58] R. Laufer, H. Dubois-Ferriere, and L. Kleinrock. Multirate anypath routing
in wireless mesh networks. In Proceedings of the IEEE INFOCOM, pages
37 –45, 2009.

[59] R. Laufer and L. Kleinrock. Multirate anypath routing in wireless mesh
networks. UCLA Computer Science Department, Tech. Rep. UCLA-CSD-
TR080025, 2008.

[60] M. Leconte, J. Ni, and R. Srikant. Improved bounds on the throughput
efficiency of greedy maximal scheduling in wireless networks. IEEE/ACM
Transactions on Networking, 19(3):709–720, 2011.

[61] X.-Y. Li, Y. Wang, H. Chen, X. Chu, Y. Wu, and Y. Qi. Reliable and
energy-efficient routing for static wireless ad hoc networks with unreliable
links. IEEE Transactions on Parallel and Distributed Systems, 20(10):1408
–1421, 2009.

[62] X. Lin and N. Shroff. Joint rate control and scheduling in multihop wireless
networks. In Proceedings of the IEEE CDC, volume 2, 2004.

[63] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-layer
rate control in wireless networks. In Proceedings of the IEEE INFOCOM,
pages 1804 – 1814, 2005.

[64] X. Lin and N. Shroff. Utility maximization for communication networks with
multipath routing. IEEE Transactions on Automatic Control, 51(5):766 –
781, 2006.

[65] M. Liu, J. Cao, G. Chen, and X. Wang. An energy-aware routing protocol
in wireless sensor networks. Sensors, 9(1):445–462, 2009.

178

[66] D. H. Lorenz and D. Raz. A simple efficient approximation scheme for the
restricted shortest path problem. Operations Research Letters, 28:213–219,
1999.

[67] S. Low. A duality model of tcp and queue management algorithms.
IEEE/ACM Transactions on Networking, 11(4):525 – 536, 2003.

[68] S. Low and D. Lapsley. Optimization flow control. i. basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6):861 –874, 1999.

[69] M. Lu and J. Wu. Opportunistic routing algebra and its applications. In
Proceedings of the IEEE INFOCOM, pages 2374 –2382, 2009.

[70] C. P. Luk, W. C. Lau, and O. C. Yue. Opportunistic routing with directional
antennas in wireless mesh networks. In Proceedings of the IEEE INFOCOM,
pages 2886 –2890, 2009.

[71] D. Lun, M. Medard, and R. Koetter. Network coding for efficient wireless
unicast. In International Zurich Seminar on Communications, pages 74 –77,
2006.

[72] L. Ma, Q. Zhang, and X. Cheng. A power controlled interference aware
routing protocol for dense multi-hop wireless networks. Wireless Networks,
14(2):247–257, 2008.

[73] X. Mao, S. Tang, X. Xu, X.-Y. Li, and H. Ma. Energy-efficient opportunistic
routing in wireless sensor networks. IEEE Transactions on Parallel and
Distributed Systems, 22(11):1934 –1942, 2011.

[74] A. Mei and J. Stefa. Routing in outer space: fair traffic load in multi-hop
wireless networks. In Proceedings of the ACM MOBIHOC, pages 23–32,
2008.

[75] E. Modiano, D. Shah, and G. Zussman. Maximizing through-
put in wireless networks via gossiping. In Proceedings of SIGMET-
RICS’06/Performance’06, pages 27–38, 2006.

[76] A. Nasipuri, K. Li, and U. Sappidi. Power consumption and throughput in
mobile ad hoc networks using directional antennas. In Proceedings of the
IEEE ICCCN, pages 620 – 626, 2002.

179

[77] V. Navda, A. P. Subramanian, K. Dhanasekaran, A. Timm-Giel, and S. Das.
Mobisteer: using steerable beam directional antenna for vehicular network
access. In Proceedings of MOBISYS, pages 192–205, 2007.

[78] A. Nedić and A. Ozdaglar. Approximate primal solutions and rate analysis
for dual subgradient methods. SIAM Journal on Optimization, 19(4):1757–
1780, 2009.

[79] A. Orda and A. Sprintson. Precomputation schemes for QoS routing.
IEEE/ACM Transactions on Networking, 11(4):578–591, 2003.

[80] D. Palomar and M. Chiang. A tutorial on decomposition methods for net-
work utility maximization. IEEE Journal on Selected Areas in Communi-
cations, pages 1439 –1451, 2006.

[81] D. Palomar and M. Chiang. Alternative distributed algorithms for network
utility maximization: Framework and applications. IEEE Transactions on
Automatic Control, 52(12):2254 –2269, 2007.

[82] G. Parissidis, M. Karaliopoulos, T. Spyropoulos, and B. Plattner.
Interference-aware routing in wireless multihop networks. IEEE Transac-
tions on Mobile Computing, 10(5):716 –733, 2011.

[83] C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. In
IEEE Workshop on Mobile Computing Systems and Applications, pages 90
–100, 1999.

[84] P. P. Pham and S. Perreau. Increasing the network performance using multi-
path routing mechanism with load balance. Ad Hoc Networks, 2(4):433 –
459, 2004.

[85] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica. Bal-
ancing traffic load in wireless networks with curveball routing. In Proceedings
of the ACM MOBIHOC, pages 170–179, 2007.

[86] S. Prabhavat, H. Nishiyama, N. Ansari, and N. Kato. On load distribution
over multipath networks. IEEE Communications Surveys Tutorials, (99):1–
19, 2011.

180

[87] B. Radunovic, C. Gkantsidis, P. Key, and P. Rodriguez. An optimization
framework for opportunistic multipath routing in wireless mesh networks.
In Proceedings of the IEEE INFOCOM, pages 2252 –2260, 2008.

[88] B. Radunovic, D. Gunawardena, P. Key, A. Proutiere, N. Singh, V. Balan,
and G. Dejean. Rethinking indoor wireless mesh design: Low power, low
frequency, full-duplex. In 2010 Fifth IEEE Workshop on Wireless Mesh
Networks, pages 1 –6, 2010.

[89] L. Rao, X. Liu, J.-J. Chen, and W. Liu. Joint optimization of system lifetime
and network performance for real-time wireless sensor networks. In Quality
of Service in Heterogeneous Networks, volume 22 of Lecture Notes of the In-
stitute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 317–333. Springer Berlin Heidelberg, 2009.

[90] S. Roy, Y. C. Hu, D. Peroulis, and X.-Y. Li. Minimum-energy broadcast
using practical directional antennas in all-wireless networks. In Proceedings
of the IEEE INFOCOM, pages 1 –12, 2006.

[91] E. Rozner, J. Seshadri, Y. Mehta, and L. Qiu. Soar: Simple opportunistic
adaptive routing protocol for wireless mesh networks. IEEE Transactions
on Mobile Computing, 8(12):1622 –1635, 2009.

[92] A. Sahai, G. Patel, and A. Sabharwal. Pushing the limits of full-duplex:
Design and real-time implementation. CoRR, 2011.

[93] A. Sankar and Z. Liu. Maximum lifetime routing in wireless ad-hoc net-
works. In Proceedings of the IEEE INFOCOM, pages 1089 – 1097, 2004.

[94] G. Schaefer, F. Ingelrest, and M. Vetterli. Potentials of opportunistic routing
in energy-constrained wireless sensor networks. In Proceedings of the 6th
European Conference on Wireless Sensor Networks, pages 118–133, 2009.

[95] S. Shakkottai and R. Srikant. Network optimization and control. Found.
Trends Networks, 2(3):271–379, 2007.

[96] G. Sharma, R. R. Mazumdar, and N. B. Shroff. On the complexity of
scheduling in wireless networks. In Proceedings of the ACM MOBICOM,
pages 227–238, 2006.

181

[97] S. Singh, M. Woo, and C. S. Raghavendra. Power-aware routing in mobile
ad hoc networks. In Proceedings of the ACM MOBICOM, pages 181–190,
1998.

[98] A. Spyropoulos and C. Raghavendra. Energy efficient communications in
ad hoc networks using directional antennas. In Proceedings of the IEEE
INFOCOM, pages 220 – 228, 2002.

[99] A. Subramanian, M. Buddhikot, and S. Miller. Interference aware routing in
multi-radio wireless mesh networks. In IEEE Workshop on Wireless Mesh
Networks, pages 55 –63, 2006.

[100] M. Takai, J. Martin, R. Bagrodia, and A. Ren. Directional virtual carrier
sensing for directional antennas in mobile ad hoc networks. In Proceedings
of the ACM MOBIHOC, pages 183–193, 2002.

[101] J. Tang, G. Xue, and W. Zhang. Interference-aware topology control and
QoS routing in multi-channel wireless mesh networks. In Proceedings of the
ACM MOBIHOC, pages 68–77, 2005.

[102] L. Tassiulas and S. Sarkar. Maxmin fair scheduling in wireless networks. In
Proceedings of the IEEE INFOCOM, pages 763 – 772, 2002.

[103] G. Tsaggouris and C. Zaroliagis. Multiobjective optimization: Improved
fptas for shortest paths and non-linear objectives with applications. Theor.
Comp. Sys., 45(1):162–186, 2009.

[104] W. Wang, Y. Wang, X.-Y. Li, W.-Z. Song, and O. Frieder. Efficient
interference-aware tdma link scheduling for static wireless networks. In
Proceedings of the ACM MOBICOM, pages 262–273, 2006.

[105] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting mul-
timedia applications. IEEE Journal on Selected Areas in Communications,
14(7):1228 –1234, 1996.

[106] J. Wu, M. Lu, and F. Li. Utility-based opportunistic routing in multi-hop
wireless networks. In International Conference on Distributed Computing
Systems, pages 470 –477, 2008.

182

[107] G. Xue, A. Sen, W. Zhang, J. Tang, and K. Thulasiraman. Finding a path
subject to many additive QoS constraints. IEEE/ACM Transactions on
Networking, 15(1):201 –211, 2007.

[108] G. Xue and W. Zhang. Multiconstrained QoS routing: Greedy is good. In
Proceedings of IEEE GLOBECOM, pages 1866 –1871, 2007.

[109] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman. Polynomial time approx-
imation algorithms for multi-constrained QoS routing. IEEE/ACM Trans-
actions on Networking, 16(3):656 –669, 2008.

[110] S. Yi, Y. Pei, and S. Kalyanaraman. On the capacity improvement of ad
hoc wireless networks using directional antennas. In Proceedings of the ACM
MOBIHOC, pages 108–116, 2003.

[111] Y. Yi and S. Shakkottai. Hop-by-hop congestion control over a wireless
multi-hop network. IEEE/ACM Transactions on Networking, 15(1):133 –
144, 2007.

[112] X. Yuan and X. Liu. Heuristic algorithms for multi-constrained quality of
service routing. In Proceedings of the IEEE INFOCOM, pages 844–853,
2001.

[113] K. Zeng, W. Lou, and H. Zhai. On end-to-end throughput of opportunistic
routing in multirate and multihop wireless networks. In Proceedings of the
IEEE INFOCOM, pages 816 –824, 2008.

[114] K. Zeng, Z. Yang, and W. Lou. Opportunistic routing in multi-radio multi-
channel multi-hop wireless networks. In Proceedings of the IEEE INFO-
COM, pages 1 –5, 2010.

[115] X. Zhang and B. Li. Dice: a game theoretic framework for wireless multipath
network coding. In Proceedings of the ACM MOBIHOC, pages 293–302,
2008.

[116] Z. Zhong, J. Wang, S. Nelakuditi, and G.-H. Lu. On selection of candidates
for opportunistic anypath forwarding. SIGMOBILE Mobile Computing and
Communications Review, 10(4):1–2, 2006.

183

[117] M. Zorzi and R. Rao. Geographic random forwarding (GeRaF) for ad hoc
and sensor networks: energy and latency performance. IEEE Transactions
on Mobile Computing, 2(4):349 – 365, 2003.

184

