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ABSTRACT

3D models of white dwarf collisions are used to assess the likelihood of double-

degenerate mergers as progenitors for Type Ia supernovae (henceforth SNIa) and to

identify observational signatures of double-degenerate collisions. Observations of in-

dividual SNIa, SNIa rates in different galaxy types, and double white dwarf binary

systems suggest that mergers or collisions between two white dwarfs play a role in

the overall SNIa population. Given the possibility of two progenitor systems (single-

degenerate and double-degenerate), the sample of SNIa used in cosmological calcula-

tions needs to be carefully examined. To improve calculations of cosmological param-

eters, the development of calibrated diagnostics for double-degenerate progenitor SNIa

is essential. Head-on white dwarf collision simulations are used to provide an upper

limit on the 56Ni production in white dwarf collisions. In chapter II, I explore zero

impact parameter collisions of white dwarfs using the Eulerian grid code FLASH. The

initial 1D white dwarf profiles are created assuming hydrostatic equilibrium and a uni-

form composition of 50% 12C and 50% 16O. The masses range from 0.64 to 0.81 M�

and have an isothermal temperature of 107 K. I map these 1D models onto a 3D grid,

where the dimensions of the grid are each eight times the white dwarf radius, and the

dwarfs are initially placed four white dwarf radii apart (center to center). To provide

insight into a larger range of physical possibilities, I also model non-zero impact pa-

rameter white dwarf collisions (Chapter III). Although head-on white dwarf collisions

provide an upper limit on 56Ni production, non-zero impact parameter collisions pro-

vide insight into a wider range of physical scenarios. The initial conditions (box size,

initial separation, composition, and initial temperature) are identical to those used for

the head-on collisions (Chapter II) for the same range of masses. For each mass pair-

ing, collision simulations are carried out at impact parameters b=1 and b=2 (grazing).

Finally, I will address future work to be performed (Chapter IV).
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Chapter 1

INTRODUCTION

Type Ia supernovae (SNIa) play an integral role in cosmology and astrophysics. They

are the biggest thermonuclear explosions in the universe, synthesize about half of the

iron-group elements in the solar system (Wheeler et al. 1989; Timmes et al. 1995;

Feltzing et al. 2001; Strigari 2006), and provide evidence of the accelerated expansion

of the universe (Riess et al. 1998). To improve cosmological calculations that use

SNIa as distance indicators, an extensive understanding of SNIa progenitor properties

is essential.

Supernovae are classified by their spectral signatures, with SNIa lacking promi-

nent hydrogen lines and displaying a strong silicon feature (da Silva 1993). Fig. 1.1

shows the spectra of three SNIa about one week after maximum light. Rest wavelength

is on the x-axis and absolute magnitude plus a constant is on the y-axis. The identifying

lines are of the neutral or singly ionized intermediate mass elements such as Si II, Ca

II, S II, and O I. As shown in the diagram, the spectra of SNIa are quite similar at one

week after maximum light for these features (Filippenko et al. 1992).

SNIa are the result of the explosion of at least one white dwarf star. A white

dwarf star is the remnant of a low mass main sequence star that has exhausted its nu-

clear fuel. A low mass main sequence star expels its outer layers at the end of its main

sequence lifetime and creates a planetary nebula, leaving behind a hot core. White

dwarfs are made of very dense, electron degenerate matter. They are about the size of

the Earth, but have about the mass of the Sun. Thus white dwarf are very compact,

dense objects. The Pauli exclusion principle requires the free electrons to have differ-

ent energy levels. This requirement of higher energy quantum states (“degeneracy”)

appears as a pressure that balances the force of gravity in the white dwarf and is largely
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Figure 1.1: Remarkably similar spectra for three different supernovae about 1 week
after peak light. Figure from Filippenko et al. (1992).

independent of the temperature. For a degenerate star, the more massive the star is, the

smaller it is (R ∼ M−1/3), but there is a limit on the mass called the Chandrasekhar

limit, which is about 1.4 solar masses (Chandrasekhar 1935). The equation for the

limiting mass is given by Mlimit ≈ N2(h̄c/G)3/2, where N is the number of electrons

per unit mass, h̄ is the reduced Planck constant, c is the speed of light, and G is the

gravitational constant. As the Chandrasekhar limit is approached from the accretion

of material from a companion star, additional physics besides degeneracy pressure and

gravity comes into play, namely subsonic turbulence, nuclear burning, and electron

capture. Under appropriate conditions, the near Chandrasekhar mass white dwarf may

explode to produce a SNIa (Chandrasekhar 1984).

Although SNIa are not strictly “standard candles,” they obey a relation that

can “standardize” their light curves. This is called the Phillips relation, which states
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that for SNIa light curves, “brighter equals broader.” In other words, the longer it

takes the supernova to dim, the brighter it is (Phillips 1993). Fig. 1.2 shows a pair

of graphs from the Supernova Cosmology Project (Perlmutter et al. 1999) displaying

the Phillips relation. This is shown in the diagram on the left, with brightness on the

y-axis and days on the x-axis. The supernova light curves near the bottom are dimmer

and narrower, while those near the top are brighter and broader. Thus, brighter means

broader. Brighter SNIa light curves are a result of hotter (and more ionized) debris,

which is due to increased amounts of radioactive iron. This drives a higher opacity,

which leads to a longer time for radiation to leak out, thus the curve is broader. If we

then apply a stretch factor to the curves, they can be corrected such that they all fall

along the same curve. This is shown in the right diagram, again with time on the x-axis

and brightness on the y-axis. This ability to "standardize" SNIa light curves is what

makes SNIa useful as distance indicators.

One way in which SNIa are used as distance indicators is in the Hubble diagram.

The Hubble Space Telescope Cluster Supernova Survey has charted the expansion of

the universe using SNIa. Fig. 1.3 shows the Hubble diagram for their data. Each

point on the curve represents the observations of a single supernova. The x-axis is the

redshift of the galaxy in which the supernova resides. This redshift is determined by

comparing the spectral lines of the galaxy to spectral lines at rest to determine how

fast the galaxy is moving away from us. The y-axis is the distance modulus of the

supernova itself. The distance modulus (µ = m−M) is the difference between the

apparent magnitude m of the supernova and its absolute magnitude M. The distance

modulus can be corrected for interstellar reddening by adding a reddening term to the

distance equation. The line going through the points represents the best fit to the data

based on current universe models, and each color represents a different survey. The

shape of the fit can be described by the Friedmann Equation, which represents the

expansion of the universe and is given by:
3



H2(z)
H2

0
= Ωm(1+ z)3 +Ωk(1+ z)2 +ΩDE × exp

[∫
3(1+w(z))d ln(1+ z)

]
(1.1)

where H0 is the current rate of expansion, Ωm and ΩDE are the matter and dark energy

densities with respect to the critical density, w(z) is the dark energy equation of state

parameter, and Ωk = 1−Ωm −ΩDE is the spatial curvature of the universe. For the

case where w < −1/3, which is indicated by the current model, the universe is un-

dergoing accelerated expansion. The best fit to the data suggests ΩDE = 0.729, and

suggests that the universe is undergoing accelerated expansion that can be explained

by the presence of dark energy, which has negative pressure and accounts for 73% of

the matter energy in the universe. That Ωm and ΩDE sum to unity is a consequence of

a flat universe, which is supported by measurements of anisotropies in the cosmic mi-

crowave background (CMB) by the Wilkinson Microwave Anisotropy Probe (WMAP)

(Spergel et al. 2003). The error bars in the Hubble diagram suggest an uncertainty in

the luminosity distance value of about 10%. The current accepted value for H0 is 74.3

± 2.1 km s−1 Mpc−1 as measured by NASA’s Spitzer Telescope. In the case that there

are multiple populations represented in the Hubble diagram, identifying and removing

outliners from the primary population would help reduce the scatter in Hubble digram.

The broad goal in separating the populations is to reduce the scatter in the about dia-

gram to ∼ 1%.

Although a Type Ia supernova progenitor has never been directly observed, su-

pernovae spectra and light curves give clues about progenitor systems. Studies suggest

that there could be two populations of SNIa, which are distinguished by their progen-

itors. The single-degenerate scenario involves one white dwarf accreting mass from a

low-mass companion, while the double-degenerate scenario involves two white dwarfs

merging from a Keplerian orbit. The two populations are distinguished by properties

deduced from spectral signatures, including the amount of unburned carbon and the
4



silicon velocity structure. Wang & Han (2012) summarize recent observations to put

constraints on SNIa progenitor systems. They conclude that white dwarf binary sys-

tems could, under some conditions, produce average SNIa, and that there is likely more

than one progenitor responsible for the production of SNIa.

The most obvious outlying supernovae are removed from the sample used to

make a Hubble diagram, but some of the less obvious ones could remain. These alter-

nate progenitor supernovae could masquerade as “classical” Ia’s, creating scatter in the

Hubble diagram. To reduce the scatter in the Hubble diagram and improve calculations

of cosmological parameters, more needs to be known about double-degenerate progen-

itors and how to distinguish them from single-degenerate progenitors. To that end, our

goals for this project are to better understand the production of type Ia supernovae by

double-degenerate mergers and to improve cosmological calibrations of SNIa. Specif-

ically, from a stellar perspective we seek to know what systems contribute to the SNIa

population. From a cosmological perspective, one way to decrease the scatter in the

Hubble diagram is to homogenize the population used to make the diagram.

1.1 Previous Work

We are uncertain of what progenitor systems give rise to type Ia supernovae (Livio

2001). The single-degenerate scenario, involving a binary system containing a white

dwarf and a low-mass star, have long been considered the predominant SNIa progeni-

tors. In this paradigm, one option is that there are two main sequence stars in a binary

orbit, one containing more mass than the other. The primary star evolves to the asymp-

totic giant branch first, and it’s envelope expands. The primary star degenerates into a

white dwarf, and the secondary star evolves into a red giant. The red giant star begins

accreting mass onto the white dwarf, and the stars spiral in toward each other. When

the white dwarf reaches the Chandrasekhar limit, a nuclear explosion or a collapse into

5



a neutron star ensues. In addition to a red giant, the white dwarf could accrete mass

from a sub-giant or a main sequence star.

Although the single degenerate case has classically been favored, the single-

degenerate scenario has trouble explaining how to grow the white dwarf to the Chan-

drasekhar limit, and the failure to observe hydrogen and helium from a low-mass com-

panion. The double-degenerate scenario, on the other hand, involves two white dwarfs

merging from a binary orbit and there are many arguments in favor of this scenario.

These arguments include, but are not limited to: (1) double white dwarf binaries exist

as a natural consequence of stellar evolution; (2) they provide an easy way to approach

a critical mass; (3) they naturally explain the absence of hydrogen and helium in SNIa

spectra; (4) they provide a logical explanation for the SNIa rate as a function of galaxy

type; (5) population synthesis models have long predicted about the right frequency for

double-degenerate systems to significantly contribute to the overall SNIa population.

Observationally, several white dwarf binaries have been found that will merge

within a Hubble time (Napiwotzki et al. 2007). This model has not been favored in

the past because previous simulations have yielded temperatures at the core-envelope

interface too high to produce a Type Ia supernova (Livio 2000). However, the introduc-

tion of rotation could produce a more extended envelope, thereby reducing the interface

temperature.

Although SNIa light curves vary, their variations are typically due to distance-

independent parameters, such as the decline from B band maximum after 15 days

(Phillips 1993). Using standard template calibrations, SNIa distance indicators are

accurate to ∼10% (e.g., Silverman et al. 2012) and are primarily applied to “normal”

SNIa (Branch et al. 1993). These “normal” SNIa are assumed to emerge from a ho-

mogeneous population of white dwarf progenitors. Observations of SN 2011fe in the

galaxy M101 indicate the possibility of an alternate progenitor system (Nugent et al.
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2011a). At a distance of 6.4 Mpc, the exploding star of SN 2011fe was likely a carbon-

oxygen white dwarf. Due to the lack of an early shock, the companion was probably a

main-sequence star. From pre-explosion images, a luminous red giant and most helium

stars are ruled out as progenitors (Nugent et al. 2011b).

Other efforts, including those involving in-spiraling white dwarf binaries, have

focused on realism of initial conditions (Rasio & Shapiro 1995; Pakmor et al. 2010;

Dan et al. 2011; Raskin et al. 2012), unequal mass collisions (Benz et al. 1989, 1990;

Rosswog et al. 2009; Lorén-Aguilar et al. 2010; Raskin et al. 2010; Pakmor et al. 2012),

and the final long-term fate of merged systems (van Kerkwijk et al. 2010; Yoon et al.

2007; Shen et al. 2012). In contrast, our simulations are idealized, and highlight the

essential physics and numerical convergence properties of the simplest possible config-

uration. These idealized simulations form a baseline for further studies that incorporate

more realistic initial conditions.

A double-degenerate merger model has been presented by Yoon et al. (2007).

This model shows the evolution of a double-degenerate system during the merging pro-

cess. The two stars in the model are 0.6 and 0.9 solar masses, making the total mass of

the system exceed the Chandrasekhar limit. They find that, with certain conditions met

(maximum temperature, minimum angular momentum loss time-scale, and maximum

mass accretion rate), double-degenerates are good progenitor candidates.

A study by Dan et al. (2012) considers white dwarfs with masses from 0.2 to

1.2 M� with different chemical compositions. Fig. 1.4 shows the parameter space of

mergers when the system first crosses. The x-axis is M1 and the y-axis is M2, ranging

from 0.4 to about 1.1 M� each. The colorbar represents density, with blue being the

sparsest and yellow the densest. They split the diagram into two regions, He-donors

below 0.6 M� and CO-donors above 0.6 M� for M2. Mergers that are near equal mass

produce symmetric, coalesced objects at the time shown, while highly unequal mass

7



mergers produce one object accreting mass from the other. They find that a supernova

progenitor can come from variety of dynamically unstable white dwarf merger systems,

and they find little evidence for explosion prior to the merger in carbon-oxygen systems.

Raskin et al. (2010) perform a similar exploration of parameter space. Fig. 1.5

shows 2D density images of a 3D projection of the white dwarf collision at different

points in time, from 20 seconds after the simulation start to 100 seconds after. The

arrows indicate the velocity vector of the stars at first contact. The stars orbit around

each other, and begin to transfer mass between them, finally coalescing into one object.

This study is amongst others that include, but arenâĂŹt limited to in-spiraling from a

binary orbit, unequal mass collisions, and the final long-term fate of merged systems.

1.2 FLASH

We use FLASH, a parallel, Eulerian grid-based code with adaptive mesh refinement

(AMR) and built-in self-gravity and nuclear burning. Fig. 1.6 illustrates adaptive mesh

refinement in FLASH (Fryxell et al. 2000), showing a set of blocks where each block

is outlined in bold. Each block has 8x8 cells, and the more refined regions have cells

that are smaller by a factor of two. Below the blocks, there is a diagram of the tree

structure and the block positions. At each step, the blocks can be refined or derefined

as necessary, in order to modify the grid based on changes in density. FLASH can be

used in two capacities: to investigate the global overview of the merger and to use AMR

as a microscope to look at specific areas. Most previous studies of double-degenerate

mergers were carried out using smooth particle hydrodynamics (SPH) codes. Addi-

tionally, our work is different from previous studies because we are going to use more

spatial resolution and improved physics (an improved equation of state). We use an

electron-positron equation of state based on table interpolation of the Helmholtz free

energy (Timmes & Swesty 2000).
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1.3 Physics of White Dwarfs

White dwarfs are composed of very dense degenerate matter, with a mass comparable

to the Sun and a radius comparable to the Earth. When a white dwarf reaches the

Chandrasekhar limit (≈ 1.4M�), the gravitational force exceeds the outward pressure

force and the star will collapse. We use a 1D white dwarf model with the Helmholtz

equation of state, then we map the 1D model onto the 3D grid. Hydrostatic equilibrium

is assumed, given by Eqns. 1.2 and 1.3. Eqn. 1.3 is the Tolman-Oppenheimer-Volkoff

(TOV) equation, which includes general relativistic effects. Without general relativity,

the equation would simplify to Eqn 1.4. Eqn. 1.2 is the mass equation.

dM(r)
dr

= 4πρ(r)r2 (1.2)

dP(r)
dr

=−ρ(r)
GM(r)

r2

(
1+

P(r)
ρ(r)c2

)1+ 4πP(r)r3

M(r)c2

1+ 2GM(r)
rc2

(1.3)

dP(r)
dr

=−ρ(r)
GM(r)

r2 (1.4)

Fig. 1.7 shows the result of integrating the two first two equations above. Each

line represents an integration for a different central density between 104 and 1011 g

cm−3. The point where each line crosses the x-axis indicates the total mass for each

central density.

Fig. 1.8 shows the total mass (the x-axis intercept from Fig. 1.7 versus the cen-

tral density. The relation is given for the n = 3 and n = 3/2 polytropes and for an Ideal

Fermi Gas. The polytropic equation of state is P = Kρ(n+1)/n, where K is a constant.

In the low central density limit, the Fermi Gas approaches the n = 3/2 polytrope, and

in the high central density limit it approaches the n = 3 polytrope. The polytropes pro-

vide a good first estimate, but the Ideal Fermi Gas is more realistic. The ideal Fermi
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gas equation of state is given by P = (1/40)(3/π)2/3(h2n5/3
e /me) for a fully degenerate

non-relativistic system and P= (1/16)(3/π)1/3hcn4/3
e for a fully degenerate relativistic

system. As the diagram shows, general relativity terms do not have much of an effect,

so we do not include them in our FLASH simulations.

1.4 Current Work

Our models start in FLASH with two white dwarfs, each of which is in hydrostatic equi-

librium, and evolve through the dynamical phase of the merger to the quasi-equilibrium

phase (a slowly-changing equilibrium where material is still falling in on the central ob-

ject). By comparing our model results to observations, we can learn more about what

distinguishes supernovae with double-degenerate progenitors. Features from spectra,

like those shown in Fig. 1.1, can be compared to expected values from the model.

We can find the total mass of the merged system, which will give an upper limit on

the amount of observed 56Ni. From the simulations, we will be able to determine the

density structure of the quasi-equilibrium merged white dwarf system. The density

structure determines the degree of compression of the layers responsible for produc-

ing silicon-group elements. This will place restrictions on the range of silicon velocity

structures we see. Also, the density structure will place constraints on the region where

carbon can burn into intermediate-mass elements. This will affect the amount of un-

burned carbon we observe (Filippenko et al. 1992). Using the results of our model and

the observational constraints determined from the density structure, we will have fur-

ther insight into the evolution of double-degenerate progenitors of SNIa. Understand-

ing the progenitor systems of type Ia supernovae will allow us to improve cosmological

calculations involving supernovae, leading to a better estimate of dark energy effects in

cosmology.

To that end, I seek to answer the following questions in this dissertation: 1) Do

collisions produce enough 56Ni to make them supernova progenitor candidates? 2) Are
10



there other observational signatures besides 56Ni to which we can direct our attention?

3) What parameters determine yields from mergers? 4) Are current results robust with

respect to spatial resolution in literature?
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We have discovered well over 50 high redshift Type Ia supernovae so 
far. Of these, approximately 50 have been followed with spectroscopy 
and photometry over two months of the light curve. The redshifts 
shown in this histogram are color coded to show the increasing depth 
of the search with each new “batch” of supernova discoveries.  The 
most recent supernovae, discovered the last week of 1997, are now 
being followed over their lightcurves with ground-based and (for those 
labeled “HST”) with the Hubble Space Telescope.

Type Ia supernovae observed “nearby” show a relationship between 
their peak absolute luminosity and the timescale of their light curve: the 
brighter supernovae are slower and the fainter supernovae are faster (see 
Phillips, Ap.J.Lett., 1993 and Riess, Press, & Kirshner, Ap.J.Lett., 
1995). We have found that a simple linear relation between the absolute 
magnitude and a “stretch factor” multiplying the lightcurve timescale 
fits the data quite well until over 45 restframe days past peak. The lower 
plot shows the “nearby” supernovae from the upper plot, after fitting 
and removing the stretch factor, and “correcting” peak magnitude with 
this simple calibration relation.
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Figure 1.2: Plots showing the Phillips relation from Supernova Cosmology Project
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factor can be used to standardize the curves (right).
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Figure 1.3: Hubble Diagram showing distance modulus versus redshift from Suzuki
et al. (2012). The colors represent different surveys and the curve is the best fit to the
current data. The shape of the fit can be described by the Friedmann Equation (Eqn.
1.1), which represents the expansion of the universe.
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8 M. Dan, S. Rosswog, J. Guillochon, E. Ramirez-Ruiz

Figure 7. Column density snapshots corresponding to the moment when the system first crosses (τnuc/τdyn)(T ) < 1, or, if that does

not occur, when (τnuc/τdyn)(T ) is minimum. The ten snapshots shown here are representative of all DD chemical composition and mass
combinations shown in Figure 1. In this parameter space we fully explore the possible combinations of WD donors and accretors and

investigate their orbital stability and whether detonations prior or at the merger moment are possible. Systems with a mass ratio close to

one (diagonal dashed-line) show a quick disruption, within about 20 orbits, while those away from this line show a slow depletion of the
donor (ie. low Ṁ) over dozens of orbits of mass transfer and the formation of an extended atmosphere surrounding the accretor. We find

that a large fraction of the systems with He donors (below the horizontal dashed-line) are expected to explode prior to or at the point
of merger. In contrast, the CO accreting systems (above the horizontal dashed-line) are unlikely to explode at or prior to the merger.

fected. Approximately half of the donor’s remaining mass
falls on top of the previously accreted He, but at a speed
that’s only a fraction of the escape speed from the accretor
as the shredded donor is partly held aloft by its angular mo-
mentum (Figure 7). Thus the final coalescence can be viewed
as a low-speed collision (Rosswog et al. 2009). In simulations
of WD-WD head-on collisions, collisions between pairs of
WDs with mass as low as 0.4 M⊙ He WDs were seen to pro-
duce detonations. The mutual escape speed of two 0.4 M⊙ at

the point of collision is
�

2G(M1 + M2)/(R1 + R2) = 3×108

cm s−1, which is approximately one-third of the escape speed
from a 0.8 M⊙ accretor.

At the point of disruption, half of the donor star falls
onto the accretor as the donor’s Roche lobe rapidly shrinks.
Once this has occurred, the donor star can be viewed as ma-
terial whose orbital dynamics are primarily determined by
the surviving accretor. This means that the common cen-
ter of motion, the barycenter, shifts from being located at a

c� 2011 RAS, MNRAS 000, 1–13

Figure 1.4: Figure from Dan et al. (2012) showing the parameter space of two white
dwarfs merging when the stars are at first contact. This happens at different simulation
times depending on the configuration. Each axis represents the mass (in solar masses)
of each star in the system. The y-axis has a demarkation between He donors and CO
donors at 0.6 solar masses. The colorbar corresponds to an integral of density with
respect to z. For stars of approximately equal mass, the system is mostly symmetrical
at first contact, and the stars are starting to form a single object. In systems where the
mass of one star is much greater than the other, a system has formed where one star is
accreting on to the other, and a single object has not formed.
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Figure 18. Masses of several isotopes at logarithmically spaced velocity bins
for the b = 0 case of mass pairing 8, 0.50 M! × 2.
(A color version of this figure is available in the online journal.)

detonation. The shocked region slowly heats up until carbon-
burning at its edges ignites a detonation.

It is clear from the velocity profile of the most abundant
isotopes from this collision, given in Figure 18, that carbon
and oxygen remain mostly unburned in this scenario. This
seems to suggest that collisions of low-mass white dwarfs
(M ! 0.6 M!) of the CO variety would not produce observable
transients. Other simulations introducing impact parameters
with this mass pair were not attempted with carbon–oxygen
white dwarfs as the b = 0 simulation yielded essentially a non-
result. However, further investigation involving helium white
dwarfs is warranted.

4. RESULTS AND ANALYSIS II: REMNANTS

As seen in Raskin et al. (2009), the b = 2 case of mass
pair 1 (0.64 M! × 2) did not feature a detonation and instead
formed a hot remnant of thermally supported carbon and oxygen
with some carbon-burning products. Figure 19 illustrates the
dynamics of this collision, starting with a glancing case that
leads to the constituent stars spinning off from each other before
coalescing into a single hot object.

The compact remnant core after 100 s featured a nearly
constant density of ρ ∼ 106 g cm−3. It was surrounded by a

thick, Keplerian disk ≈2.0 × 1010 cm in radius with a scale
radius of r0 ≈ 2.3×109 cm. The compact object at the center of
the disk is not strictly a white dwarf since much of its pressure
support is thermal (T ≈ 5 × 108 K). Indeed, since degeneracy
pressure support necessitates that more massive white dwarfs
are smaller than less massive ones, this object at ≈0.8 M! is far
too large to be wholly degenerate (rrem ≈ 2.5 × 109 cm), larger
than the 0.64 M! white dwarfs that entered into the collision
(r0.64 = 6.98 × 108 cm).

Carbon ignition nominally takes place at approximately
(7–8)×108 K (e.g., Gasques et al. 2007), but recent phenomeno-
logical models (e.g., Jiang et al. 2007) have suggested a strongly
reduced, low-energy astrophysical S-factors for carbon fusion
reactions that potentially reduce carbon ignition temperatures
to ≈3 × 108 K, especially at densities of 109 g cm−3. A lower
carbon-burning threshold would be of interest to future studies
of collision remnants.

Since the system started in a bound state (T ! −V , where T in
this case is the total kinetic energy and V is the total gravitational
potential energy) and since any energy gained from nuclear
processes is negligible, most of the material cannot escape the
system and the disk remains bound to the compact core. It will
eventually cool and collapse onto the surface of the compact
object. However, the hot core may accelerate parts of the disk to
escape velocity via radiative processes, and so the calculation of
the final mass of the resultant white dwarf is beyond the scope
of this paper. Suffice it to say, the final mass will not exceed the
Chandrasekhar limit as only 1.28 M! of material is available.

For the b = 2 case of mass pair 2, 0.64 M! + 0.81 M!, the
compact remnant was slightly less massive at ≈0.75 M!. How-
ever, since the total mass of the system is super-Chandrasekhar,
the final remnant mass may result in a super-Chandrasekhar
white dwarf. Again, this final mass will depend greatly on ra-
diative processes, and the likelihood of producing an SN Ia will
hinge on the accretion rate of the disk onto the core.

The simulations of mass pair 3, 0.64 M! + 1.06 M!, resulted
in remnants in both the b = 1 and b = 2 cases as the 1.06 M!
white dwarf was too compact for the star to be much affected by a
grazing collision with a 0.64 M! white dwarf. In the b = 1 case,

Figure 19. Snapshots of density isosurfaces at six different times for the b = 2 simulation of mass pair 1, 0.64 M! × 2. After first colliding, the stars separate before
coalescing into a single object.
(A color version of this figure is available in the online journal.)

Figure 1.5: Figure from Raskin et al. (2010) showing a b=2 white dwarf collision from
20 seconds (first contact) to 100 seconds. The mass pairing is 0.64+0.64 solar masses.
The arrows indicate the velocity vectors of the stars at first contact. Within the period
of time shown, the white dwarfs exchange mass and coalesce into a single object. At
24 seconds the appear as though the have formed a single object, but at 28 seconds it
is apparent that they are starting to move away from each other. At 42 seconds a mass
exchange is seen between the two distinct objects, which then come back together by
65 seconds. At 100 seconds a single object has formed.
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Figure 1.6: Figure from Fryxell et al. (2000) showing blocks in FLASH. Each block
is outlined in bold, and contains 8x8 cells (the smaller boxes that are not in bold). For
each increasing level of refinement, the boxes are further decreased by a factor of 2 in
size in each dimension to allow more detail in regions with a higher change in density.
Although refined blocks are smaller than their parent blocks, all blocks contain 8x8
cells. Different node types are attributed to a block. Node type 1 blocks are leaf nodes.
The data of leaf nodes will always be valid. Leaf blocks have data which are used
for plotting. This two dimensional structure is expanded into three dimensions in our
simulations (each block is a cube with 8x8x8 cells.
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Figure 1.7: Density vs. interior mass for a cold (completely degenerate) white dwarf.
Each line (and individual color) represents a different total mass. The total mass is
shown by where the line hits the x-axis.For example, a white dwarf with a central
density of 106 g cm−3 has a total mass of 0.4 solar masses (dark blue line).
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Figure 1.8: Total mass vs. central density for a cold (perfectly degenerate) white dwarf.
The lines represent the n=3 polytrope (at the Chandrasekhar mass), the n=3/2 polytrope,
the ideal fermi gas, and contributions from general relativity. The n=3 polytrope has
constant total mass for every central density, while the n=3/2 polytrope has increasing
mass for increasing central density. The ideal Fermi gas starts out approximately the
same as the n=3/2 polytrope, but approaches the n=3 polytrope at high central density.
The contributions from general relativity are relatively small.
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Chapter 2

ZERO IMPACT PARAMETER WHITE DWARF COLLISIONS IN FLASH

Abstract

We systematically explore zero impact parameter collisions of white dwarfs with

the Eulerian adaptive grid code FLASH for 0.64+0.64 M� and 0.81+0.81 M�

mass pairings. Our models span a range of effective linear spatial resolutions

from 5.2×107 to 1.2×107 cm. However, even the highest resolution models do

not quite achieve strict numerical convergence, due to the challenge of properly

resolving small-scale burning and energy transport. The lack of strict numerical

convergence from these idealized configurations suggest that quantitative predic-

tions of the ejected elemental abundances that are generated by binary white dwarf

collision and merger simulations should be viewed with caution. Nevertheless,

the convergence trends do allow some patterns to be discerned. We find that the

0.64+0.64 M� head-on collision model produces 0.32 M� of 56Ni and 0.38 M�

of 28Si, while the 0.81+0.81 M� head-on collision model produces 0.39 M� of

56Ni and 0.55 M� of 28Si at the highest spatial resolutions. Both mass pairings

produce ∼0.2 M� of unburned 12C+16O. We also find the 0.64+0.64 M� head-on

collision begins carbon burning in the central region of the stalled shock between

the two white dwarfs, while the more energetic 0.81+0.81 M� head-on collision

raises the initial post-shock temperature enough to burn the entire stalled shock

region to nuclear statistical equilibrium.

2.1 Introduction

Supernova Type Ia (SNIa) have continued to be foremost probes of the universe’s accel-

erating expansion (Riess et al. 1998; Perlmutter et al. 1999; Riess et al. 2011; Sullivan

et al. 2011; Suzuki et al. 2012). While light curves between different SNIa vary, the
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variations generally correlate with distance independent light-curve properties, such

as the decline from B band maximum after 15 days (Phillips 1993). Calibration of

the light curves onto a standard template yields distance indicators accurate to ∼10%

(e.g., Silverman et al. 2012) and are primarily applied to SNIa not showing peculiarities

(Branch et al. 1993). These “normal” SNIa presumably emerge from a homogeneous

population of white dwarf progenitors. While the favored population is thought to be a

carbon-oxygen white dwarf (WD) accreting matter from a non-degenerate companion

star (e.g., Whelan & Iben 1973; Thielemann et al. 1986), recent observations suggest

that a fraction of SNIa may derive from double-degenerate progenitors (Howell et al.

2006; Hicken et al. 2007; Gilfanov & Bogdán 2010; Bianco et al. 2011).

In view of these and other observations of SNIa progenitor systems, recent theo-

retical studies have explored double degenerate mergers and collisions of white dwarfs

as potential progenitors of SNIa (Guerrero et al. 2004; Yoon et al. 2007; Maoz 2008;

Lorén-Aguilar et al. 2009; Raskin et al. 2009; Rosswog et al. 2009; Lorén-Aguilar et al.

2010; Pakmor et al. 2010; Raskin et al. 2010; Shen et al. 2012; Pakmor et al. 2012).

Almost all of these efforts use smooth particle hydrodynamic (SPH) codes to model

most of the collision or merger process. SPH and Eulerian grid codes, such as FLASH

(Fryxell et al. 2000), have well-known complimentary strengths and weaknesses − par-

ticle codes are inherently better at angular momentum conservation, whereas grid codes

have a superior treatment of shocks. Only Rosswog et al. (2009) included a zero impact

parameter white dwarf collision model with FLASH. They used a mirror gravitational

potential for one white dwarf at one spatial resolution. They found their FLASH cal-

culations yielded about half as much 56Ni as the equivalent SPH calculation (0.32 M�

for SPH, 0.16 M� for FLASH).

In this paper, we use the Eulerian adaptive mesh refinement code FLASH to

model the zero impact collisions between 0.64+0.64 M� and 0.81+0.81 M� carbon-

20



oxygen white dwarf mass pairings. Like the single case studied by Rosswog et al.

(2009), our configurations are highly idealized cases of head-on collisions between

identical, initially spherical white dwarfs. One aim of our paper is to determine whether

or not, given presently available computing resources and numerical algorithms, simu-

lations of collisions can be used to reliably predict the fraction of white dwarf material

that is converted by explosive nucleosynthesis into heavier elements such as silicon

and nickel. Other efforts have focused on the realism of the initial conditions and sub-

sequent evolution, including but limited to, in-spiraling from a binary orbit (Rasio &

Shapiro 1995; Pakmor et al. 2010; Dan et al. 2011; Raskin et al. 2012), unequal mass

collisions (Benz et al. 1989, 1990; Rosswog et al. 2009; Lorén-Aguilar et al. 2010;

Raskin et al. 2010; Pakmor et al. 2012), and the final long-term fate of merged systems

(van Kerkwijk et al. 2010; Yoon et al. 2007; Shen et al. 2012). Our simulations, through

their idealized nature, highlight the essential physics and numerical convergence prop-

erties of the simplest possible configuration. In addition, our idealized configurations

form a baseline for further studies that incorprate more realistic initial conditions.

Our paper is organized as follows. In §3.2, we describe the input physics, initial

conditions, and boundary conditions of our FLASH simulations. In §2.3, we discuss

the results of our studies over a range of spatial resolutions and time-step choices, and

in §2.4 we explore the implications of our results and describe directions for future

studies.

2.2 Input Physics, Initial Conditions, and Boundary Conditions

Our 3D simulations are carried out with FLASH 3.2, a 3D Eulerian hydrodynamics

code with adaptive mesh refinement (Fryxell et al. 2000; Calder et al. 2002). We use

the included Helmholtz equation of state (Timmes & Swesty 2000), the 13 isotope

alpha-chain reaction network that includes isotopes from 4He to 56Ni to model energy

generation from nuclear burning (Timmes 1999), and the multigrid Poisson gravity
21
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Figure 2.1: A 2D slice of density through the x-y mid-plane at t=0.0 s for the 0.64+0.64
M� collision. Each tick mark has a value of one white dwarf radius, which is 8.3×108

cm. The size of the domain is equal to eight white dwarf radii, and the white dwarfs
are positioned four white dwarf radii apart from center to center.

solver with Dirichlet boundaries (Ricker 2008). All the simulation domain boundaries

use a diode boundary condition, which is a zero-gradient boundary condition where

fluid velocities are not allowed to point back into the domain. We follow both white

dwarfs in 3D rectilinear coordinates throughout calculation, rather than using a mirror

gravitational potential and evolving one white dwarf (as used in Rosswog et al. 2009).

Our initial 1D white dwarf profiles are calculated assuming hydrostatic equilib-

rium and mass conservation1. Our initial white dwarf models use the same equation

of state as in FLASH, namely, the Helmholtz equation of state. We assume a uniform
1Code avaliable from http://cococubed.asu.edu/code_pages/coldwd.shtml
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composition of 50% 12C and 50% 16O. We use white dwarfs with masses 0.64 and 0.81

M�, to match the masses used in Raskin et al. (2010), with an isothermal temperature

of 107 K. We map the 1D white dwarf profiles for the density, temperature and com-

position onto a 3D rectilinear Cartesian grid. Our computational domain is a cubic box

chosen to be eight times the white dwarf radius (see Fig. 3.1). The white dwarfs are

initially placed four white dwarf radii apart from center to center, which is large enough

to allow the subsequent evolution to produce tidal distortions while allowing sufficient

numerical resolution in the central regions.

The symmetry of head-on collisions between identical, initially spherical white

dwarfs suggests 2D axisymmetric simulations may have been sufficient. Our rationale

for deploying 3D rectilinear coordinates is three-fold. First, we want to explicitly show

that FLASH maintains symmetry throughout the collision and subsequent explosion

processes. Second, we want to compare our results on this important numerical test

case with other existing 3D calculations (both grid and particle). Imposing axisymmet-

ric conditions would have complicated these comparisons because we would not know

if differences from existing 3D models were driven by different physics, different nu-

merics or the imposition of axisymmetry itself. Third, we anticipate exploring unequal

mass and non-zero impact parameter collision models with FLASH, both of which vi-

olate axisymmetry. To better assess the impact of these effects requires an equal mass,

zero impact parameter, 3D benchmark calculation.

We use the free-fall expression for the initial, relative speed of the two white

dwarfs, v = [2G(M1 +M2)/∆r]1/2, where Mi are the masses of the constituent white

dwarfs and ∆r is the initial separation of their centers of mass, which for our initial

conditions is 4RWD. Each white dwarf moves toward the other white dwarf, one in the

positive x-direction and the other in the negative x-direction, with half of the relative
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speed. The centers of both stars lie on the x-axis, and thus the initial velocities are

purely in the x-direction.

The surrounding ambient medium is set to the same temperature as the isother-

mal white dwarfs with a density that is small (10−4 g cm−3) compared to the density

of the outermost regions of the white dwarf (∼1-10 g cm−3). Table 3.1 lists the initial

conditions for each of our six simulations.

Table 2.1: Initial Conditions for the 3D FLASH models. Columns are the run num-
ber, white dwarf masses (M1, M2), maximum level of refinement (l), maximum spatial
resolution (R), domain size (D), white dwarf initial velocities (v1, v2), the value of the
timestep limiter ( f ), white dwarf radii (RWD), and central white dwarf densities (ρWD).

# M1, M2 l R D v1, v2 f RWD ρWD
(M�) (107 cm) (109 cm) (108 cm s−1) (108 cm) (106 g cm−3)

1 0.64 5 5.19 6.64 ±1.59 0.2 8.30 4.51
2 0.64 6 2.59 6.64 ±1.59 0.2 8.30 4.51
3 0.64 7 1.30 6.64 ±1.59 0.2 8.30 4.51
4 0.81 5 4.32 5.51 ±1.97 0.2 6.88 11.2
5 0.81 6 2.16 5.51 ±1.97 0.3 6.88 11.2
6 0.81 7 1.08 5.51 ±1.97 0.3 6.88 11.2

Our FLASH models begin with 1 top-level initial block, where each block con-

tains 8 cells in each direction (x,y,z). The blocks are refined or derefined at each

time-step based on changes in density and pressure. For each successive level of re-

finement, the block size decreases by a factor of two, creating a nested block structure.

At maximum refinement, the smallest block size is determined by R = D/(8× 2l−1),

where D is the domain size in one dimension and l is the maximum level of refinement

as seen in Table 3.1. At first contact between the white dwarfs, shock waves are sent

into the ambient medium, causing the grid in the ambient medium to rapidly become

maximally refined. To avoid concentrating resources on these less interesting regions

of the models, we use a derefine procedure at first contact that sets a radius equal to 1.2

white dwarf radii beyond which the blocks in the ambient material are forced to be less

refined than the blocks in the collision region.

24



The nuclear reaction network in FLASH uses constant thermodynamic con-

ditions over the course of a timestep. However, the Courant limited hydrodynamic

timestep may be so large compared to the burning timescale that the nuclear energy

released in a cell may exceed the existing specific internal energy. To ensure the hy-

drodynamics and burning remain coupled, as well as to capture the strong temperature

dependence of the nuclear reaction rates, we limit the timestep as a result of nuclear

burning by a factor f , which constrains the maximum allowable change in specific

internal energy. The overall timestep is dtn+1 = min[dthydro,dtburn], where

dtburn = dtn × f ×
ui

n−1

ui
n −ui

n−1
, (2.1)

where the subscript n refers to the timestep number, dthydro is the hydrodynamic timestep,

dtburn is the burning timestep, and ui is the specific internal energy of the ith cell. Ta-

ble 3.1 lists the nominal values of f used for our six simulations, and the effects of

using different values of f is discussed in §3.5.

2.3 Results

General Features of the Collision Models

Zero impact parameter, or head-on, white dwarf collisions undergo four distinct phases

of evolution. First, the white dwarfs become tidally distorted as they approach each

other. For the 0.64+0.64 M� case (hereafter 2×0.64), the velocity gradient across the

white dwarf at first contact ranges from about 3500 km s−1 to 5000 km s−1. Second, a

shock wave is produced normal to the x-axis at first contact. The shock stalls because

the speed of infalling material and the sound speed are comparable. Third, nuclear

burning is initiated within the stalled shock region. Finally, the nuclear energy released

unbinds the system, leading eventually to homologous expansion.

An overview of the evolution of the 2×0.64 collision is shown in Fig. 3.9. The

3D calculation has been sliced through the x-z mid-plane to show detail at the center
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t = 0.0 s t = 4.0 s t = 5.0 s t = 5.5 s

t = 6.9 st = 6.8 st = 6.5 st = 6.0 s

1.e10
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1.e-4

Figure 2.2: 3D images cut through the center of the y-axis of the 2×0.64 collision
density from first contact at 0.0 s to after ignition at 6.9 s. For scale, each white dwarf
has a radius of 8.3×108 cm. The density colorbar is logarithmic and extends from 10−4

to 1010 g cm−3

.

of the collision. Due to the symmetry of a head-on collision, a cut through the x-z

mid-plane will look identical to a cut through the x-y mid-plane. The top panel of the

figure represents four times in the collision from the start of the simulation (t=0.0 s), to

first contact (t=4.0 s), to the formation of the stalled shock region (t=5.0 s), and finally,

to the jettisoning of material orthogonal to the x-axis (t=5.5 s).

Given the white dwarf radius and initial velocity shown in Table 3.1 for the

2×0.64 collision, the time to first contact would be 2R/v=5.2 s if the initial speed was

constant and the white dwarfs remained spherical. However, the initial speed increases

due to gravitational acceleration and tidal distortion causes the white dwarfs to become

elongated along the x-axis. As a result the two white dwarfs experience first contact

sooner, at about 4.0 s.

The bottom panel represents the the further progression of the collision from

the continued jettison of material (t=6.0 s), to just before ignition (6.5 s), to just after

ignition (t=6.8 s), and finally to the spread of nuclear burning through the white dwarfs

(t=6.9 s). These steps are discussed in further detail below.
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Figure 2.3: Analysis images of the 2×0.64 collision at t=6.00 s, after first contact, but
before ignition. Top-left: Locations of all cells in the density-temperature plane. The
color of the points represents the primary composition of the corresponding cell: green
for 12C, blue for 28Si, and red for 56Ni. The data are binned into 100 equally spaced
bins in logarithmic density and temperature. Bottom-left: Temperature, x-velocity,
density, and sound speed along the x-axis. Right: A 2D slice of density through the x-y
mid-plane.

Fig. 3.4 shows the thermodynamic, mechanical, and morphological properties

of the 2×0.64 head-on collision model. At 6.00 s after the beginning of the model, the

white dwarfs are past first contact but have not yet begun runaway nuclear burning. The

right panel shows the mass density profiles of a slice through the simulation in the x-y

plane. In addition to the ambient medium (white in the figure), there are two distinct re-

gions of density: the uncollided white dwarf material and the stalled shock region. The

density and temperature are not yet high enough to fuel runaway burning. The lower

left panel of Fig. 3.4 shows these quantities as well as the sound speed and velocity in
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the x-direction along a line connecting the centers of the two white dwarfs and paral-

lel to the x-axis. The sound speed is lower than the infall velocity speed, causing the

stalling of the shock region. The temperature profile peaks at ≈109 K, which is not hot

enough to reach the carbon burning threshold. The upper left panel of Fig. 3.4 shows

the state of the collision in the density-temperature plane. The color of the points rep-

resents the primary composition of the corresponding cell; green for 12C, blue for 28Si,

and red for 56Ni. Material with T≈107 K represents the cold and dense parts of the two

stars that have not yet collided. The region with 107<T<109 K and 104<ρ<106.5 g

cm−3, represents the shocked material. At this point in the collision, “tracks” run from

the lower left to the upper right, representing tori of material orthogonal to the x-axis at

the center of the collision. In this case, 28Si and 56Ni have not yet been produced, thus

all the cells are primarily composed of 12C.

Fig. 3.5 has the same format as Fig. 3.4 at 6.60 s when runaway nuclear burning

has begun. On the right panel, there are three distinct regions of the collision at this

point in time: the white dwarf material which has not yet experienced the collision; the

lenticular, nearly isobaric, stalled shock region; and the central region where a deto-

nation has begun to propagate. The detonation front is outlined by the darker colored

(higher density) oval region in Figs. 3.5. Our FLASH simulations do not resolve the

initiation of the detonation. Instead, at all spatial resolutions investigated, the central-

most cell in the 2×0.64 head-on collision model undergoes runaway carbon burning

which begins to propagate a detonation.

In the lower left panel of Fig. 3.5, again, three distinct regions are visible - the

unshocked white dwarfs the stalled shock, and the central-most detonation region. The

temperature in the unshocked white dwarf material rises smoothly from the initially

imposed background temperature of 1×107 K to ≈ 3×107 K at the centers of both

white dwarfs because of low-amplitude velocity waves sloshing around the white dwarf
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Figure 2.4: Same format as Fig. 3.4, when the model is at t=6.60 s, right after ignition.

interiors. However, 3×107 K is well below the carbon burning threshold, does not

lift the electron degeneracy of the material, and does not impact our results. In the

unshocked region, the infall speed of material is greater than the local sound speed.

The material behind the stalled shock reaches temperatures that are sufficient to lift

electron degeneracy and are just below the carbon burning threshold of ≈2×109 K.

The density in the stalled shock region reaches a peak of ≈2×107 g cm−3. In the

innermost region where a detonation front has traveled ∼ 5×107 cm from the center,

the temperature is ≈6×109 K and the density dips to ≈1×107 g cm−3. In the upper

left panel of Fig. 3.5, hot, dense material with T>109 K and ρ>107 g cm−3 from the

central regions of the collision are in the upper right corner where the original carbon

material has burned to 28Si and 56Ni.
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Figure 2.5: Same format as Fig. 3.4, when the model is at t=6.79 s, as the stalled shock
region slightly expands and the densest parts of the white dwarfs begin to enter the
stalled shock region.

Fig. 3.6 has the same format as Fig. 3.4 and the right panel shows the density

profile when the detonation front has traveled outward from the center and the densest

parts of the white dwarfs are about to enter the stalled shock region. The upper left

panel indicates that more 12C material is present in the high density regime with ρ>107

g cm−3, and being burned to 28Si and 56Ni. The lower left panel shows that the sound

speed in the burned region is comparable with the speed of the infalling material, and

the width of the detonation has expanded.

As additional energy from nuclear burning is added, the double white dwarf

system eventually becomes gravitationally unbound. Fig. 3.7 has the same format as

Fig. 3.5. The right panel shows the density distribution of the system slightly before
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Figure 2.6: Same format as Fig. 3.4 at t=7.38 s, just before the system becomes gravi-
tationally unbound.

the explosion reaches homologous expansion. The innermost 109 cm reaches a nearly

constant temperature of ≈3×109 K with a slowly varying density distribution that peaks

at ≈5×106 g cm−3. The density-temperature plot in the upper left panel indicates larger

amounts of high density, high temperature material with ρ>106 g cm−3 and T>109 K.

More material has achieved the conditions necessary to synthesize 28Si (blue) and 56Ni

(red). the lower left panel shows the sound speed is always greater than the infall speed

of the remaining material.

The 0.81-0.81 M� (hereafter 2×0.81) collision models evolve through a similar

set of stages as the 2×0.64 collision models, except the larger kinetic energy at im-

pact is sufficient for the initial shock to raise the temperature well above the 12C+12C
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Figure 2.7: Same format as Fig. 3.4 at t=4.02 s for the 2×0.81 collision model.

threshold. Fig. 2.7 shows that the entire stalled shocked region burns rapidly to a state

of nuclear statistical equilibrium and achieves a nearly isothermal state. Central igni-

tion does not occur because the 12C+16O material has already been burned to nuclear

statistical equilibrium. We discuss this difference in additional detail in §2.3.

Otherwise, the stages of the 2×0.81 collision are very similar to the evolution of

the 2×0.64 collision seen above, with the 2×0.81 collision producing a greater amount

of 56Ni.

Numerical Convergence

To assess the numerical convergence, we performed the 2×0.64 and 2×0.81 simula-

tions at three different spatial resolutions. Each increase in spatial resolution is a factor
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of two more refined in one dimension, a factor of eight in volume (see Table 3.1), and

takes at least twice as many time steps depending on the burning timestep. As the spa-

tial resolution increases, the cells that are burning carbon to heavier elements become

smaller in volume and the timestep decreases, leading to improved coupling between

the hydrodynamics and nuclear burning.

Table 3.2 lists the ejected masses for each of the six convergence simulations

and Fig. 2.8 shows the convergence behavior of 12C+16O, 28Si, 56Ni yields, as well as

the internal energy, kinetic energy, and the total energy at the end of the simulation.

The upper plot in Fig. 2.8 shows that for the 2×0.64 collision the 56Ni mass (dashed

red) increases, the 28Si mass (dashed blue) decreases, and the 12C+16O (dashed green)

decreases as the spatial resolution increases. The percent change in 56Ni production

is 138% between the R = 5.19× 107 cm and R = 2.59× 107 cm models, and 3.3%

between the the R = 2.59× 107 cm and R = 1.30× 107 cm models. Although higher

resolution models are needed to reach numerical convergence, the 56Ni mass is ap-

proaching convergence at 0.32 M� (see Table 3.2). The internal energy (solid green) at

the end of the 2×0.64 collision simulation decreases with increasing spatial resolution,

but the kinetic energy (solid blue) when the model terminates increases with increasing

spatial resolution. The net result is that the total energy (solid red) is nearly constant

over the range of resolutions explored.

Table 2.2: Ejected Masses.

M1, M2 R 12C + 16O 28Si 56Ni
(M�) (107 cm) (M�) (M�) (M�)
0.64 5.19 0.29 0.45 0.13
0.64 2.59 0.21 0.37 0.31
0.64 1.30 0.19 0.37 0.32
0.81 4.32 0.19 0.41 0.62
0.81 2.16 0.19 0.50 0.45
0.81 1.08 0.18 0.53 0.39
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The lower panel in Fig. 2.8 shows that for the 2×0.81 collision the 56Ni mass

decreases, the 28Si mass increases as the spatial resolution increases, and the 12C+16O

slightly decreases. Although convergence has not been achieved, the 56Ni mass is

approaching convergence at 0.39 M� (see Table 3.2). We discuss the reason for the

different convergence trends between the 2×0.64 and 2×0.81 cases below. The internal

energy and kinetic energy at the end of the 2×0.81 collision simulations appears to be

oscillating towards convergence as the spatial resolution is increased. As a consequence

of the internal energy and kinetic energy being out of phase, the total energy is nearly

constant over the range of resolutions explored.

Although strict numerical convergence has not been achieved with these six

simulations, some trends can be seen. As the total mass of the binary system increases

in zero impact parameter collisions, the 56Ni mass increases, indicating that larger mass

collisions will produce more 56Ni. For both mass pairs at highest resolution, ≈0.2 M�

of unburned 12C+16O was ejected.

Higher numerical resolutions are desirable, but prohibitively expensive for this

study, as our most resolved 3D models required at least 200,000 CPU hours per run.

Simulations with higher spatial resolution are not possible in the context of the current

study because doubling the grid resolution in a 3D simulation effectively increases the

number of cells by a factor of ≈ 23 and the number of timesteps by a factor of 2, mean-

ing over an order-of-magnitude increase in computational time. Although these effects

can be ameliorated somewhat by adopting more aggressive derefinement criteria, fur-

ther restricting the computational domain size, or relaxing the timestep controller f ,

we expect that increasing the maximum resolution another factor of two (6.5×106 cm

for the 2×0.64 models and 5.04×106 cm for the 2×0.81 models) would require ≈ 2

million CPU hours per run, which is beyond our capabilities here.
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Figure 2.8: Convergence plot for the 2×0.64 (top) and 2×0.81 (bottom) head-on colli-
sions. Points from left to right correspond to 5-, 6-, and 7-level runs for each collision.
The dashed line colors represent different isotopes, where blue corresponds to 28Si,
green to 12C+16O, and red to 56Ni. The solid line colors represent internal energy
(green), kinetic energy (blue), and total energy (red).
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Reducing the timestep limiting factor, f , and thereby reducing the timestep dur-

ing nuclear burning changes the amount of 56Ni produced. For example, changing from

f =0.5 to f =0.1 in the 2×0.64 simulation with a spatial resolution of R = 2.59× 107

cm causes the 56Ni production to increase by approximately 0.1 M�, a 30% change.

Fig. 2.9 shows the evolution of the hydrodynamic time step (solid lines), burning time

step (dotted lines), and 56Ni mass (dashed lines) for the 5-level (red), 6-level (green),

and 7-level (blue) 2×0.81 collisions. We use f =0.2 for the 5-level run and f =0.3 for

the 6- and 7-level runs to force the burning timestep to fall below the hydrodynamic

timestep during the 56Ni production phase. In all our simulations, we set f such that

dtburn ≈0.01dthydro during the phase of evolution when nuclear burning is significant.

Setting f to smaller values greatly increases the computing time without having a sig-

nificant effect on the nucleosynthesis yields.

Fig. 2.8 shows that the 2×0.64 collision produces more 56Ni as spatial reso-

lution increases. To understand this behavior we examine profiles along the x-axis of

the density and temperature for 5-, 6-, and 7-levels of refinement. The upper panel of

Fig. 2.10 shows the three models with different spatial resolutions for the 2×0.64 colli-

sion at 5.6 s. The shocked region is widest in the 5-level model, and narrower in the 6-

and 7-level models. The density is smaller (just below 3×106 g cm−3) and nearly con-

stant for the 5-level model, larger for the 6-level model than the 5-level model (3.5×106

g cm−3), and slightly larger for the 7-level model than the 6-level model (3.6× 106 g

cm−3). Both the 6- and 7-level models show a small valley in the central density. The

peak temperature is smaller for the 5-level (≈ 109 K), and slightly higher for the 6-level

and 7-level models (both above 109 K).

At 6.4 s (middle panel in Fig. 2.10), the density and temperature profile patterns

as described for 5.6 s generally still hold, but the peak temperature is now the same for

all three levels of refinement (≈ 1.5× 109 K). Detonation occurs just after this time
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Figure 2.9: Evolution of the hydrodynamic time step (solid line), burning time step
(dotted line), and 56Ni mass (dashed line) for the 5-level (red), 6-level (green), and
7-level (blue) models of the 2×0.81 collision.

frame (as seen below). Thus, we expect to see more 56Ni produced for the 6-level and

7-level models than for the 5-level model because there is more material in the shocked

region with high density (> 107 g cm−3) at the same ignition temperature. We also

expect only a small difference in 56Ni production between the 6- and 7-level models

because the peak density is only slightly larger for the 7-level model and the width

of the density profile is approximately the same. This explains the pattern in the the

abundance yields with spatial resolution in Fig. 2.8.

At 6.9 s (lower panel in Fig. 2.10) when the detonation is underway, the Mach

number is larger in the 7-level model than the 5- and 6-level models because the pre-

detonation density is larger. This causes the 7-level temperature profile to be wider then
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Figure 2.10: Density and temperature profiles along the x-axis for the 2×0.64 collision
at 5.6 s, 6.4 s, and 6.9 s for different levels of refinement.
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the 6-level or the 5-level. That is, the burning front travels farther for the same amount

of time.

Unlike the 2×0.64 collision, the 2×0.81 collision produces less 56Ni as level of

refinement increases (see Fig. 2.8). The upper panel of Fig. 2.11 shows the three models

with different spatial resolutions for the 2×0.81 collision at 4.0 s. The temperatures for

all three resolutions are hot (> 3×109 K), indicating the energy generated by burning

is large. The shocked region is widest for the 7-level model and narrowest for the 5-

level model with the 6-level model in-between. The 7-level model has the lowest, and

nearly constant, density (≈ 8× 106 g cm−3) in the stalled shock region, and has the

largest magnitude spikes in the density (just below 2×107 g cm−3) at the edges of the

stalled shock. The spikes occur because the density of material is highest just behind

the shock front. The 6-level model has a slightly larger (≈ 8× 106 g cm−3), nearly

constant, density in the middle, and slightly smaller spikes in the density (just below

2×107 g cm−3) at its edges. The 5-level model has its density spikes (just above 107

g cm−3) close enough together that a nearly constant density in the middle in barely

reached.

The second panel of Fig. 2.11 shows at 4.4 s the width of the shocked, burning

region is larger for all three resolutions, because the energy generated by burning in the

hot shocked region is sufficient to overcome the standing shock formed from material

moving inwards. That is, the shocked burning region is growing. The temperature is

nearly the same and constant (≈ 5×109 K) across all three resolutions, but with small

spikes at the edges of each shocked region. The nearly constant density in the central

region of the 7-level model is still smaller and wider than the the 6-level model. The

5-level still has its two spikes near the center, thus a nearly constant central density

region is not reached.
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Figure 2.11: Density and temperature profiles along the x-axis for the 2×0.81 collision
at 4.0 s, 4.4 s, 4.5 s, 4.7 s, and 4.9 s for different levels of refinement.
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The third panel of Fig. 2.11 shows at 4.5 s the the 7 level model begins to

detonate, but the 6-level and 5-level models have not yet detonated. The same patterns

in density and temperature described for previous time points still hold. By 4.7 s, the

fourth panel Fig. 2.11 shows the 6-level model begin to detonate, but the 5 level model

has not yet detonated. The width of the burning region for the 6-level model is about

the same width as the 7-level model when the 7-level model detonated 0.2 s earlier.

At 4.9 s (bottom panel Fig. 2.11), the 5-level model is the last to detonate. The

5-level model has finally reached a state of nearly constant density in the central region

with spikes at the edges. This nearly constant density of 2×107 g cm−3 is larger than

the nearly constant density reached by either the 6-level or the 7-level models (both

about 107 g cm−3), but it has reached about the same width. Since the 7-level model

detonates at the lowest density (but the same mass since all reach about the same width

before detonating) and soonest in time, the 7-level model should produce the least

amount of 56Ni. The 5-level model detonates at a higher density (and same mass) and

latest in time, thus should produce the most 56Ni. This explains the pattern in the the

abundance yields with spatial resolution in Fig. 2.8.

Similarities and Differences Between the Explosion Models

Whether the explosion is initiated along the edge of the stalled shock region (as in the

2×0.81 collisions) or in the central regions of the stalled shock (as in the 2×0.64 colli-

sions) is controlled by the initial masses of the white dwarfs, as the masses set the infall

speed (escape velocity). The infall speed determines the strength of the initial shock,

and thus the initial post-shock temperature. In turn, the initial post-shock temperature

determines the amount of initial burning behind the shock, and hence the temperature

profile of the shocked region. Comparing the temperatures profiles in the shocked re-

gion between the 2×0.64 and 2×0.81 collisions, we see that the 2×0.64 temperature

barely reaches 109 K, while for the 2×0.81 temperature is a hot ≈ 5× 109 K over an
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Figure 2.12: Profiles of the density, temperature, pressure, and ram pressure along the
x-axis for the 2×0.64 collision at 5.55 s and 6.55 s.

extended region. The difference in the temperature between the two model collisions

is a direct consequence of the kinetic energy of the collision (larger kinetic energy

corresponding to larger temperature).

The initial shock in the 2×0.64 collision models barely raises the temperature

above the 12C+12C threshold. As carbon burning proceeds, the central shocked burning

region increases in temperature. The top panel of Fig. 2.12) shows the system cannot

explode yet because the temperature is not hot enough to overcome the ram pressure

from the infalling material, which continues to increase due to density profile of the

white dwarf. When the peak of the white dwarf density profiles enters the shocked
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Figure 2.13: Density, temperature, pressure, and ram pressure profiles along the x-axis
for the 2×0.81 collision at 3.60 s and 4.60 s.

region does the central peak undergo thermonuclear runaway, which creates enough

pressure to overcome the now decreasing ram pressure (see bottom panel of Fig. 2.12).

In contrast to the 2×0.64 collision model, the 2×0.81 collision model is en-

ergetic enough that the initial shock raises the temperature well above the 12C+12C

threshold. The entire stalled shocked region burns rapidly to a state of nuclear statis-

tical equilibrium and achieves a nearly isothermal state. Central ignition cannot occur

because the 12C+16O material has already lost nearly all of its energy in the burn to

nuclear statistical equilibrium. The top panel of Fig. 2.12 shows, similar to the 2×0.64

collision models, the 2×0.81 collision model cannot yet explode since the ram pressure

from the infalling material is greater than the pressure of the hot burned material push-
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ing outwards. When the pressure inside the hot burned region is larger than the ram

pressure does the system explode, giving the appearance of an edge-lit ignition (see

bottom panel of Fig. 2.12).

2.4 Discussion

We have performed the first systematic study of zero impact parameter collisions be-

tween two white dwarfs with an Eulerian grid code (FLASH). Our simulations spanned

a range of effective spatial resolutions for collisions between two 0.64 M� white dwarfs

and two 0.81 M� white dwarfs. However, even the highest resolution studies did not

achieve strict numerical convergence.

The lack of convergence in the simplest configuration (zero impact parameter,

equal masses) suggest that quantitative predictions of the ejected elemental abundances

that are generated by binary white dwarf collision and merger simulations should be

viewed with caution. However, the convergence trends do allow some patterns to be

discerned.

We found the 2×0.64 collision model head-on collision model produces 0.32

M� of 56Ni, 0.38 M� of 28Si, and 0.2 M� of unburned 12C+16O. Rosswog et al. (2009)

included one FLASH based model of a zero impact parameter collision of two 0.60 M�

white dwarfs in their study. They reported a 56Ni mass of 0.16 M�, about one-half of

what we find. While Rosswog et al. (2009) used slightly less massive white dwarfs than

our study, both sets of FLASH simulations used the same equation of state. The FLASH

model of Rosswog et al. (2009) achieved about a factor of 2.6 smaller spatial resolution

than our study R = 4.9× 106 cm versus R = 1.3× 107 cm), due to their evolving one

white dwarf and deploying a mirrored gravitational potential. This difference in the

maximum spatial resolution could account for the different 56Ni masses between the

two calculations, although the convergence trend shown in the upper panel Fig. 2.8
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suggests spatial resolution might not be the only reason for the difference. Another

potential reason for the difference in the 56Ni masses is the choice of the timestep,

and thus the coupling between the operator split processes of hydrodynamics and the

nuclear burning. In all our simulations, we limited the timestep to ≈0.01 of the Courant

limited hydrodynamic timestep during the nuclear burning phases (see Fig. 2.9). We

found changing the allowed timestep can change the 56Ni mass produced by 30% -

40%.

We find our FLASH-based, zero impact parameter, collision models systemati-

cally produce less 56Ni and more silicon-group elements than collisions models calcu-

lated with SNSPH by Raskin et al. (2010). This difference between particle and grid

based codes was first found by Rosswog et al. (2009), who suggested that differences

in nuclear reaction networks or advection effects could be responsible for the different

yields. While our FLASH models used the same equation of state and nuclear reac-

tion network as Raskin et al. (2010), and we checked the same output values were

returned for the same input values, a detailed investigation of the differences between

our FLASH model results and the Raskin et al. (2010) results with SNSPH are beyond

the scope of this paper.

Red and dim SNIa such as SN 1991bg (Leibundgut et al. 1993; Turatto et al.

1996; Hachinger et al. 2009) SN 1992K (Hamuy et al. 1994), SN 1999by (Garnavich

et al. 2004), and SN 2005bl (Taubenberger et al. 2008) are characterized by MV ≈-17.

The light curves of underluminous SNIa decline even more rapidly than expected from

a linear luminosity to decline-rate relation among normal SNIa (Phillips et al. 1999;

Taubenberger et al. 2008; Blondin et al. 2012). Spectroscopically, 91bg-like SNIa show

low line velocities around B-magnitude maximum (Filippenko et al. 1992) and clear

spectral signatures of Ti-II, indicating lower ionization (Mazzali et al. 1997). Taken

together, these properties together are consistent with ∼0.1 M� of newly synthesized
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56Ni. Our FLASH models suggest 2×0.64 M� and 2×0.81 M� head-on collision

models produce 56Ni masses below that needed for normal SNIa, but are within a range

consistent with observations of underlumnous SNIa. In addition, either mass pairing

produces ∼ 0.2 M� of unburned C+O, which may be a unique signature of mergers

and collisions between white dwarfs.

Future studies should include a survey of non-zero impact parameter white

dwarf collisions with FLASH, an exploration of unequal mass collisions, and an inves-

tigation why Lagrangian particles codes and Eulerian grid codes continue to find about

a factor of two difference in the mass of 56Ni ejected. The zero impact parameter is

insightful as an upper limit on 56Ni production, but a non-zero impact parameter study

will likely give a range of 56Ni yields for different collision configurations. An explo-

ration of unequal mass collisions could provide a broader physical parameter space and

allow an improved quantitative description of how SNIa luminosity scales with mass

pairings.
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Chapter 3

NON-ZERO IMPACT PARAMETER WHITE DWARF COLLISIONS IN FLASH

Abstract

We systematically explore 3D non-zero impact parameter collisions of white dwarfs

with the Eulerian adaptive grid code FLASH for 0.64+0.64 M� and 0.81+0.81 M�

mass pairings. For both mass pairings, we use two impact parameters, b = 1 (one

white dwarf radius from center to center at the time of collision), and b = 2 (two

white dwarf radii from center to center at the time of collision). Our models span

a range of effective linear spatial resolutions from 6.25×107 to 1.37×107 cm. The

5-level 0.64+0.64 M� collision is not energetic enough to fall on the convergence

curve, however general trends in element production can be seen. We find that the

0.64+0.64 M� b = 1 collision model produces 0.0562 M� of 56Ni and 0.494 M�

of 28Si, while the 0.81+0.81 M� b= 1 collision model produces 0.100 M� of 56Ni

and 0.656 M� of 28Si at the highest spatial resolutions. Both mass pairings pro-

duce ∼0.3 M� of unburned 12C+16O. The stars lose orbital angular momentum

due to a 50% increase in spin angular momentum as they approach each other.

However, total angular momentum is conserved to within 25%. For the b = 2

case, neither mass pairing produces a significant amount of 56Ni because a critical

density and temperature are never achieved in the burning region.

3.1 Introduction

Supernovae Type Ia (SNIa) are among the most energetic explosions known, reach-

ing a peak absolute magnitude of MV ∼-19.2, synthesizing ∼0.7 M� of radioactive

56Ni, and imparting ∼1051 ergs of kinetic energy to their ejecta. Removing the in-

trinsic, systematic variation of SNIa light curves to create standard candles generally

uses two quantities: the measured color, typically rest-frame BâĂŽÃăÃ V and often
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one additional optical color, and an empirically defined light curve shape parameter,

such as ∆m15 (Phillips 1993; Hamuy et al. 1996), ∆ (Riess et al. 1996; Jha et al. 2007),

and stretch s (Perlmutter et al. 1997; Guy et al. 2005; Conley et al. 2008), or xi (Guy

et al. 2007). The subsequent discovery of the accelerated expansion of the universe

using SNIa (Riess et al. 1998; Perlmutter et al. 1999) allows SNIa to serve as probes of

the dark energy equation of state, commonly parameterized by w(z) = P/ρ . The main

challenge to measuring w(z) using SNIa is reducing the systematic errors in the mea-

sured distance modulus from the current level of about 12% to about 1% (Kim et al.

2004). One avenue for increasing the accuracy of the measured distances is attempting

to homogenize the population of SNIa used for cosmological studies.

In the standard paradigm single-degenerate scenario, a carbon-oxygen white

dwarf in a close binary system accretes material from its companion and grows to the

Chandrasekhar mass (Iben & Tutukov 1984). As the white dwarf nears the mass limit,

slow carbon burning at central densities of ≈ 2−6×109 g cm−3 causes the core to

convectively simmer for 300− 1000 yr (Woosley et al. 2004; Piro & Chang 2008).

Subsonic burning fronts are then launched from matchhead masses that attain tem-

peratures of ≈ 8×109 K, which subsequently proceed to incinerate the white dwarf

(Nomoto et al. 1984; Thielemann et al. 1986; Woosley & Weaver 1986; Khokhlov

1991; Timmes & Woosley 1992; Jordan et al. 2008; Kasen et al. 2009; Townsley et al.

2009; Woosley et al. 2011). In contrast, the double-degenerate scenario involves the

dynamical coalescence of two carbon-oxygen white dwarfs to produce the desired ex-

plosion (Iben & Tutukov 1984; Webbink 1984; Benz et al. 1989, 1990; Mochkovitch &

Livio 1989; Rasio & Shapiro 1994; Segretain et al. 1997; Guerrero et al. 2004). While

for many years the single-degenerate scenario was the more prominent, a number of

observations (Mannucci et al. 2005; Scannapieco & Bildsten 2005; Howell et al. 2006;

Quimby et al. 2007; Hicken et al. 2007; Napiwotzki et al. 2007; Raskin et al. 2008;

Ruiter et al. 2009; Hachinger et al. 2009; Maoz 2010; Scalzo et al. 2010; Mullally et al.
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2009; Yamanaka et al. 2009; Tanaka et al. 2010; Maoz et al. 2011) have led to recent

efforts to better quantify the double-degenerate scenario (Yoon et al. 2007; Maoz 2008;

Raskin et al. 2009; Rosswog et al. 2009; Lorén-Aguilar et al. 2009, 2010; Pakmor et al.

2010; Raskin et al. 2010; Dan et al. 2011, 2012; Shen et al. 2012). Reviews of the var-

ious proposals for SNIa progenitors may be found in Branch et al. (1995); Hillebrandt

& Niemeyer (2000); Leibundgut (2001); Nomoto et al. (2003); Howell (2011); Wang

& Han (2012).

It is unknown if both single-degenerate and double-degenerate scenarios oper-

ate in reality, and if so, at what relative frequency. Pfahl et al. (2009) estimate an all-sky

rate of ≈ 0.1η(D/100 Mpc)3 yr−1 for SNIa in globular clusters where D is the distance

in Mpc, and η is the rate enhancement per unit mass. η is estimated to be about 2-10. A

globular cluster SNIa could provide evidence for double-degenerate mergers. The ho-

mogeneity of the SNIa progenitor population is relevant for measuring the dark energy

equation of state because younger stellar populations produce more luminous SNIa and

the star formation rate increases strongly with redshift, such that the mean properties of

SNIa are redshift dependent (Sullivan et al. 2006; Mannucci et al. 2006; Gallagher et al.

2008; Howell et al. 2009; Neill et al. 2009). While these dependencies can be calibrated

if all supernovae obey the same stretch-luminosity relationship, and obviously peculiar

SNIa are excluded, a mixture of single-degenerate and double-degenerate progenitors

could be lurking in supernova surveys and possibly increasing the intrinsic scatter in

the SNIa Hubble diagram.

In the previous chapter, we explored zero impact parameter collisions of white

dwarfs in 3D with the Eulerian adaptive grid code FLASH for 0.64+0.64 M� and

0.81+0.81 M� mass pairings. These idealized cases − head-on collisions between

identical, initially spherical white dwarfs − highlighted the essential physics and nu-

merical convergence properties of the simplest possible configuration. In this paper, we
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examine idealized collisions with non-zero impact parameters, b = 1 (one white dwarf

radius from center to center at the time of impact) and b = 2 (two white dwarf radii

from center to center at the time of impact; a grazing collision) in 3D with FLASH

for the same mass pairings. Two aims of our paper is to determine whether or not,

given our available computing resources and the numerical algorithms implemented

in FLASH, simulations of non-zero impact parameter collisions can adequately con-

serve angular momentum and dependably predict the amount of white dwarf material

that is converted into heavier elements by nuclear burning. Finally, our non-zero im-

pact parameter idealized configurations form a baseline for further merger studies that

incorporate more realistic initial conditions.

In §3.2 we discuss the input physics, initial conditions, and boundary conditions

of our simulations. §3.3 addresses angular momentum conservation properties of our

non-zero impact parameter double-degenerate collision models, and §3.4 presents the

general properties and nucleosynthesis of the b = 1 and b = 2 collision simulations.

A b = 1 collision means that the stars are one white dwarf radius apart at first contact

while a b = 2 collision means that the stars are two white dwarf radii apart at first

contact. Convergence trends and analysis are given in §3.5. A discussion of future

work is given in §3.6

3.2 Input Physics, Initial Conditions, and Boundary Conditions

We use FLASH version 3.3 (Fryxell et al. 2000; Calder et al. 2002) with its native

Helmholtz equation of state (Timmes & Swesty 2000), 13 isotope alpha-chain reaction

network to model energy generation from nuclear burning from 4He to 56Ni (Timmes

1999), and the multigrid Poisson gravity (Ricker 2008). We use the diode boundary

condition, which is a zero-gradient boundary condition where fluid velocities are not

allowed to point back into the domain.
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Figure 3.1: A 2D slice of density through the x-y mid-plane at t=0.0 seconds for the
b = 1 0.64+0.64 M� collision. Each tick mark has a value of one white dwarf radius,
which is 8.3×108 cm. The white dwarfs are positioned four white dwarf radii apart
from center to center. The x-direction offset to produce a b = 1 impact is determined
by a two-body solver from Raskin et al. (2010).

We calculate the 1D white dwarf profiles for two masses, 0.64 and 0.81 M�,

under the assumptions of hydrostatic equilibrium and mass conservation. We use the

Helmholtz equation of state, as does FLASH, and assume a composition of equal parts

12C and 16O with an isothermal temperature of 107 K. The 1D structure of the white

dwarf models were verified with MESA (Paxton et al. 2011). The 1D white dwarf

profiles are mapped onto a 3D rectilinear Cartesian grid with a box size set to the

smallest computational domain size that does not allow a significant amount of mass

leaving the grid before runaway nuclear burning takes place in the b=1 case for each
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mass pair (8×109 cm for the 0.64+0.64 M� mass pair, and 7×109 cm for the 0.81+0.81

M� mass pair).

The white dwarfs are initially placed four white dwarf radii apart from center

to center (see Fig. 3.1), allowing for the evolution to exchange angular momentum

and produce tidal distortions while maintaining sufficient numerical resolution near

the centers of the white dwarfs. The initial velocities are calculated by using a two-

body solver, which implements a Runge-Kutta integration with an adaptive time step,

assuming globular cluster velocity dispersion of σ = 10 km/s as described by Raskin

et al. (2010). The white dwarfs are given x and y velocities such that they will make

first contact with the specified impact parameter.

The surrounding ambient medium is set to the same temperature as the isother-

mal white dwarfs with a density that is small (10−4 g cm−3) compared to the density

of the outermost regions of the white dwarf (∼1-10 g cm−3). Table 3.1 lists the initial

conditions for each of our ten simulations.

Table 3.1: Initial Conditions for the 3D FLASH models. Columns are run number,
white dwarf masses (M1, M2), impact parameter (b), maximum level of refinement (l),
maximum spatial resolution (R), box size (D), white dwarf initial velocities (vx, vy),
white dwarf radius (RWD), and white dwarf central density (ρWD).

# M1, M2 b # l Max. R D vx1,2 vy1,2 RWD ρWD

(M�) (107 cm) (109 cm) (108 cm/s) (108 cm/s) 108 cm 106 g/cm3

1 0.64 1 5 6.25 8.0 ±4.29 ±1.93 8.30 4.51
2 0.64 1 6 3.13 8.0 ±4.29 ±1.93 8.30 4.51
3 0.64 1 7 1.56 8.0 ±4.29 ±1.93 8.30 4.51
4 0.64 2 5 6.25 8.0 ±4.00 ±1.93 8.30 4.51
5 0.64 2 6 3.13 8.0 ±4.00 ±1.93 8.30 4.51
6 0.81 1 5 5.47 7.0 ±3.57 ±1.56 6.88 11.2
7 0.81 1 6 2.73 7.0 ±3.57 ±1.56 6.88 11.2
8 0.81 1 7 1.37 7.0 ±3.57 ±1.56 6.88 11.2
9 0.81 2 5 5.47 7.0 ±3.16 ±1.56 6.88 11.2
10 0.81 2 6 2.73 7.0 ±3.16 ±1.56 6.88 11.2
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3.3 Angular Momentum Conservation

Angular momentum in grid-codes is poorly-studied thus far, with only a select few

publications addressing the topic. Marcello & Tohline (2012) study a numerical method

for investigating super-Eddington mass transfer in double-degenerate binary systems,

and they assume that most of the changes in angular momentum are due to errors in the

numerical method. They show angular momentum conserved to within a relative error

of 1.7×10−6 per orbit. Another study on mass transfer in binaries (Motl et al. 2002)

gives a relative error of ≈ 10−4 per orbit.

Angular momentum is an inherently circular phenomenon, and thus it is classi-

cally considered to be poorly conserved in FLASH, a grid-based code. However, our

angular momentum analysis tells a different story. Fig. 3.2 shows the angular momen-

tum for the 0.64+0.64 case where the 5- and 6-level are run from t=0 seconds. Frac-

tional angular momenta are shown with respect to the initial total angular momentum,

in this case 1.52×1050 g cm2 s−1. Angular momentum is given by J = L+S, where L

is the orbital angular momentum and S is the spin angular momentum. L is calculated

by taking the angular momentum around the system center of mass. The spin angular

momentum S is then the sum of the angular momenta for the material in each star with

respect to that star’s center of mass.

Spin angular momentum is only shown to first contact (t=2.96 seconds) as after

that the material on either side of the grid becomes mixed and there is difficulty telling

what material belongs to what star. The spin angular momentum up to first contact

is conserved to within 1%, indicating that the white dwarfs do not “spin up.” Total

angular momentum stays conserved to within 15% before first contact, then drops as

the stars begin their nuclear burning phase, dropping to the lowest point between 5 and

6 seconds, then returning to within 10% of the original angular momentum value near
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Figure 3.2: Angular momentum for the 0.64+0.64 case, where the total angular momen-
tum is J = L+ S, where L and S are orbital and spin angular momentum respectively.
For this series of runs, the 5- and 6-level were both started from t=0 s. All fractional
changes are with respect to the initial total angular momentum.

uniform expansion. The total angular momentum is fairly well-conserved to within

about 25%. The 5- and 6- level runs agree in angular momentum conservation to within

1%.

To eliminate any differences between runs for dynamics that happen before first

contact, the 6- and 7-level runs were run from the 5-level first contact checkpoint file.

The angular momentum for the “from first contact” runs is shown in Fig.3.3. Again,

the spin angular momentum before first contact doesn’t change to within 1%, then the

material becomes mixed and the spin angular momentum is no longer displayed. At

first contact, where the 6- and 7-level runs begin, and show better angular momentum
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Figure 3.3: Angular momentum for the 0.64+0.64 case, where the total angular momen-
tum is J = L+ S, where L and S are orbital and spin angular momentum respectively.
For this series of runs, the 6-level was started from the 5-level run just before first
contact. All fractional changes are with respect to the initial total angular momentum.

conservation than the runs from t=0. The angular momentum curves are the same

between the 6- and 7-level to within 1%, and they conserve angular momentum to

within 15%. They follow the same pattern as the 5-level, dropping between 5 and 6

seconds, then returning to a higher value (within 1% of the original angular momentum

value) near uniform expansion.

3.4 Runs

0.64+0.64 b=1 Collision

Fig. 3.4 shows the starting point of the 0.64+0.64 b = 1 collision. The simulation

was run to 2.96 seconds at l = 5, then restarted using l = 7. At this time, the white
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dwarfs are in a pre-first-contact configuration, and the low l = 5 spatial resolution is

noticeable. The top-left panel of Fig. 3.4 shows the density-temperature profile for the

cells (each cell is represented by a point, then the points are binned by 100 equally

spaced bins in logarithmic density and temperature space). The color of each point

represents the most prominent species in the cells, with green corresponding to 12C,

blue corresponding to 28Si, and red corresponding to 56Ni. At t=2.96 seconds, all the

points are green, indicating that all the cells are primarily composed of 12C. The cold,

un-shocked material has T < 108 K and ρ < 106.5 g cm−3. The lineout profile in the

bottom left shows temperature, density, velocity and sound speed along the line of

centers. The same density and temperature features mentioned above are shown in this

plot, and the sound speed cs < 4× 108 cm/s, less than the infall velocity. The centers

are 2.2×109 cm apart.

At t=4.07 seconds (see Fig. 3.5), the stars are at first contact. Most of the

material is still in the unshocked, cold, sparse region. There is a new region in the upper

left diagram with ρ < 105 g cm−3 and T < 109 K indicating the shocked material. The

same density features are seen in the diagram on the right. The centers are 1.8× 109

cm apart and cs < 3×108 cm/s, less than the infall velocity.

At t=6.55 seconds (see Fig. 3.6), the stars have started producing 28Si (blue

points in the upper left pane). A hot, dense region (T > 109 K, ρ > 106.5 g cm−3) in

the density-temperature plane indicates the first signs of runaway nuclear burning. In

the right pane, a lenticular region of high density is visible where 28Si generation is

occurring. The sound speed is now higher than the infall velocity in the center.

At t=6.75 seconds (see Fig. 3.7), the upper left pane indicates that more 28Si as

being produced, as well as 56Ni. Temperature peaks along the edges of the runaway

burning region at T = 8× 109 K, and is steady through the center at T = 5× 109 K.

The sounds speed is steady at cs = 6× 108 cm/s within the runaway burning region,

56



4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
log�� ( in g cm−�)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

lo
g
��

 (
T
 i
n
 K

)

��C ��Si ��Ni

−3 −2 −1 0 1 2 3

r (���  cm)

106

107

108

109

1010

(c
m

 s
−�

),
 (

g
 c

m
−�

),
 (

K
) c�

 

T
v −3 −2 −1 0 1 2 3

x (���  cm)

−3

−2

−1

0

1

2

3

y
 (
��

�
 c

m
)

log�� ( in g cm−�) at time = 2.96 s

4 5 6 7 8

Figure 3.4: Analysis images of the 2×0.64 b=1 collision at t=2.96 s when the con-
version is made from 5 to 7 levels. Top-left: Locations of all cells in the density-
temperature plane. The color of the points represents the primary composition of the
corresponding cell: green for 12C, blue for 28Si, and red for 56Ni. The data are binned
into 100 equally spaced bins in logarithmic density and temperature. Bottom-left: Tem-
perature, density, and sound speed along the line of centers. Right: A 2D slice of
density through the x-y mid-plane.

higher than the infall velocity, as indicated by the lower right pane. The density peaks

at 2×107 g cm−3 at the edges of the runaway burning region and is steady through the

center at 107 g cm−3. The burning region is 0.4×109 cm wide.

At t=7.30 seconds (see Fig. 3.8), as uniform expansion is almost reached, the

burning front is 1.2 × 109 cm wide with temperature and sound speed both steady

through to the center at 3× 109 K and 6× 108 cm/s respectively. Density peaks at
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Figure 3.5: Same format as Fig. 3.4, when the model is at t=4.07 s, at first contact.

the edge of the burning region and at the center, but is nearly constant at 5× 106 g

cm−3.

0.81+0.81 b=2 Collision

For both b = 2 collisions, runaway nuclear burning does not occur and no significant

amount of 56Ni is produced. A 3D figure displaying the two white dwarfs just after

first contact is shown in Fig. 3.9. The white dwarfs spiral around each other several

more times, but do not merge into a single object within the first 100 seconds after the

collision. As the b = 2 runs produces little to no 56Ni, we establish the SNIa production

above b = 1 at masses less than or equal to 0.81 M� are unlikely, however higher mass
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Figure 3.6: Same format as Fig. 3.4, when the model is at t=6.55 s, just before runaway
burning begins.

collisions could produce increased 56Ni values. Thus, we haven’t ruled out higher mass

b = 2 collisions as SNIa progenitors.

3.5 Convergence and Lineouts

Table 3.2 shows the final isotope masses for the 0.64+0.64 and 0.81+0.81 b = 1 colli-

sions. The same data are displayed in graph form in Fig. 3.10.

The 7-level is the first to reach the temperature necessary for runaway nuclear

burning to commence. For l = 7, ρmax > 1.5× 107 g cm−3 with ρcenter = 1.5× 107

g cm−3 and l = 7, Tmax = Tcenter = 3.5× 109 K. At the time that the 7-level reaches

this temperature, the 5- and 6-level are not yet dense or hot enough to do the same. At
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Figure 3.7: Same format as Fig. 3.4, when the model is at t=6.70 s, after runaway
burning has begun.

Table 3.2: Ejected Masses.

m1, m2 b # Levels 12C + 16O 28Si 56Ni
(M�) (M�) (M�) (M�)
0.64 1 5 0.424 0.486 0.0128
0.64 1 6 0.319 0.476 0.0765
0.64 1 7 0.315 0.494 0.0562
0.81 1 5 0.300 0.524 0.304
0.81 1 6 0.298 0.643 0.132
0.81 1 7 0.334 0.656 0.100

t=6.60 seconds (Fig. 3.11), for l = 5, ρmax = 107 g cm−3 and Tmax > 1.5×109 K. For

l = 6, ρmax = 1.5×107 g cm−3 an Tmax = 1.5×109 K.

The 6-level is the second to reach the conditions for runaway nuclear burn-

ing. More material has accumulated in the central dense, hot region, so the 56Ni yield
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Figure 3.8: Same format as Fig. 3.4, when the model is at t=7.30 s, during the expansion
phase.

is higher. For l = 6, ρmax = 1.5× 107 g cm−3 and Tmax = 2.5× 109 K. The 5-level

still hasn’t reached the conditions necessary for runaway nuclear burning. At t=6.80

seconds (Fig. 3.11), for l = 5, ρmax > 107 g cm−3 and Tmax > 4.0× 109 K. And for

l = 7, runaway burning is already underway, so ρmax=ρcenter = 1.5× 107 g cm−3 and

Tmax = 5×109 K with Tcenter = 4.0×109 K.

When the 5-level does meet the necessary criteria, runaway burning commences,

but at a lower density than it happened in the 6- and 7-level cases. Finally, at t=6.90

seconds (Fig. 3.11), for l = 5, ρmax = 1.5× 107 g cm−3 and Tmax > 4.0× 109 K. For

l = 6, ρmax > 2.0×107 g cm−3 and Tmax > 5.0×109 K with Tcenter = 4.0×109 K. And

for l = 7, ρmax=ρcenter = 107 g cm−3 and Tmax = 5×109 K with Tcenter = 4.0×109 K.
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Figure 3.9: A slice through the line of centers of temperature in the z direction of a 3D
figure for the 0.81+0.81 b=2 collision at t=7.4 seconds. The arrows are representative
of the velocity vectors at each star’s center of mass.
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Figure 3.10: Convergence plot for the 0.64+0.64 and 0.81+0.81 cases. Although con-
vergence is not definitively reached, some trench can be seen in isotope production.

Given the trends seen in the lineout plots, it becomes apparent that the later

runaway burning starts, the more 56Ni is produced, except in the case where the density

in the central region is too low to produce sufficient 56Ni. We believe that in this case,

the 5=level run is doesn’t have the necessary resolution to put it on the convergence

trend. If it did, it would have produced more 56Ni than the 6- and 7-level runs. However,

because of the higher energy in the 0.81+0.81 case, the convergence trend is what we

expect. Namely, the higher the resolution, the earlier the runaway burning starts, and

the less 56Ni is produced. This is the expected result.

Raskin et al. (2010) performed a similar study using SNSPH simulations for

non-zero impact parameter white dwarf collisions. They found that for b = 1, the
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Figure 3.11: A comparison of the lineouts for the 0.64+0.64 M�

collisions produced nearly the same, if not more, 56Ni than the b = 0 case, and that

most of the b = 2 collisions resulted in remnants. Our results differ in that they indicate

less 56Ni produced in the b= 1 case, but agree in that the b= 2 cases produce remnants.

3.6 Future Work

Higher resolution studies are needed to reach definite convergence. Although higher

resolution studies are currently prohibitively expensive, they would nonetheless be sci-

entifically insightful. While convergence has not been reached in this study, general

trends can still be seen. These trends disagree with the results of concurrent SPH stud-

ies. Thus, a further analysis of differences between FLASH and SPH are necessary.
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Additionally, the simplified initial conditions presented in this study could be expanded

upon to include mergers from a binary orbit.
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Chapter 4

DISCUSSION AND FUTURE WORK

In Chapter 1, I set out to answer four questions pertaining to this work: 1) Do collisions

produce enough 56Ni to make them supernova progenitor candidates? 2) Are there other

observational signatures besides 56Ni to which we can direct our attention? 3) What

parameters determine yields from mergers? 4) Are current results robust with respect

to spatial resolution in literature?

Let’s address them each one-by-one. To answer question 1, yes, some of the

collisions in this work produce enough 56Ni to make them candidates for subluminous

type Ia supernova progenitors. The collisions that produce the most 56Ni are of higher

mass (0.81 solar masses) and in a head-on configuration. Lower masses and off-center

collisions produce less 56Ni, and b=2 (grazing) collisions produce virtually none. In

the next section, I will address why expanded parameter space (including more impact

parameters and other masses) is important in this work.

To answer question 2, while we primarily look at 56Ni, we also find notable 28Si

abundances, as well as other intermediate mass elements. Further work on this topic

would include a study of the velocity structure of the abundances. Previous work by

groups such as Altavilla et al. (2009) suggest that the ratio R(Si II) of intermediate-z

and high redshift supernova as well as subclassification can help reduce systematic un-

certainties due to dust extinction. Foley & Kasen (2011) find that there is a correlation

between the intrinsic color of SNIa and their ejecta velocity. Taking into account the

different in intrinsic color helps reduce the scatter in the Hubble residuals. Addition-

ally, we would investigation into post-processing the data with a more extensive nuclear

reaction network and synthesizing light curves and spectra for these collision scenarios.
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Concerning question 3, we have only carried out collisions at b = 0, b = 1,

and b = 1. We have yet to do a merger simulation involving binaries with Roche lobe

overflow. Pakmor et al. (2010) performed a merger simulation for white dwarf with

high masses (0.9 and 1.1 solar masses), and found that the 56Ni mass was in the range

of a typical SNIa and that the synthetic spectra agree well with observations. However,

this study was conducted at white dwarf masses well above the statistical norm (about

0.6 solar masses) and assumes that a detonation occurs during the process of merging.

Raskin et al. (2012) find that SPH calculations of white dwarf mergers at different

masses most often produce a cold degenerate core surrounded by a hot disk, and they

find that some of the higher mass mergers produce helium detonations at the surface.

However, incorporating additional physics is needed to understand the evolution of the

mergers beyond the regime where hydrodynamics and nuclear burning dominate. For

example, radiative losses from the surface need to be incorporated as the disks around

the cores are optically thick. It seems, at least preliminarily, that the mass of the white

dwarfs is a major driver in the outcome of a merger, with higher masses producing

results that point toward the possibility of white dwarf mergers as progenitors of SNIa.

To more fully understand the parameters involved in a white dwarf merger calculation,

we would need to implement our FLASH routine in a merger configuration for a variety

of masses and include physics such as radiative loss.

Finally, to answer question 4, although we are able to see trends in the abun-

dances from collisions, more spatial resolution would be necessary in order to create a

robust set of results. For both the head-on and non-zero impact parameter cases, general

trends in 56Ni production are seen. We find that the 0.64+0.64 M� head-on collision

model produces 0.32 M� of 56Ni and 0.38 M� of 28Si, while the 0.81+0.81 M� head-

on collision model produces 0.39 M� of 56Ni and 0.55 M� of 28Si at the highest spatial

resolutions. Both mass pairings produce ∼0.2 M� of unburned 12C+16O. We find that

the 0.64+0.64 M� b = 1 collision model produces 0.0562 M� of 56Ni and 0.494 M�
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of 28Si, while the 0.81+0.81 M� b = 1 collision model produces 0.100 M� of 56Ni and

0.656 M� of 28Si at the highest spatial resolutions. Both mass pairings produce ∼0.3

M� of unburned 12C+16O. The section below about Computer Resources gives more

information about how future studies can improve upon those already in the literature.

4.1 Expanded Parameter Space

This work only addresses two masses at three impact parameters, 0.64 and 0.81 M� at

b = 0, b = 1, and b = 2. We choose these masses because 0.64 is very near the peak

of the distribution of white dwarf masses, and 0.81 is slightly larger and allows for a

second data point. The impact parameters range from head-on to grazing to represent a

variety of configurations plausible for a collision. We only consider one composition,

half carbon and half oxygen, because that is the simplest composition to model.

Higher mass collisions could produce interesting results, especially in the b = 2

case where lower masses do not reach a critical density and temperature in the burning

region to produce significant amounts of 56Ni. However, these higher masses require

an extra step not incorporated into the current model. The isothermal white dwarfs

oscillate in size by a small amount when the simulation starts, producing a higher tem-

perature center to the stars. Therefore an isothermalization routine is suggested to

remedy this problem. The routine would force the stars to remain isothermal through

the oscillations until they reach an equilibrium.

Unequal mass collisions would provide perspective on the symmetry of the

problem and would also fill in parts of the parameter space. With an unequal mass

collision, we could see how the ejected isotopes scale by secondary mass, and what the

resulting shape of the coalesced object would be impacted. This is especially useful

in helping guide future high-resolution observations of white dwarf binary systems, as

likely they will not have perfect mass symmetry.
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4.2 Computer Resources

A study with a full range of masses and impact parameters would allow trends in 56Ni

to become more apparent. While this work has strived to use physically simplistic

models (collisions) in order to use improved physics and equation of state, further work

is required to make a more physically realistic model (merger). These calculations

provide a stepping stone to a merger scenario, but a large amount of computational

resources is needed to carry out the merger simulations.

Our most resolved 3D models required at least 200,000 CPU hours per run.

Increasing by one level of refinement would mean increasing the number of blocks by

a factor of 8 (23) and increasing the timestep by at least a factor of two. This would

increase our CPU time by an order of magnitude or more. We can offset this effect

somewhat by using more aggressive derefinement criteria or restricting the domain

size, but we still expect that increasing the maximum resolution another factor of two

would require ≈ 2 million CPU hours per run, which is beyond our capabilities here.

Increased spatial resolution is necessary to see further convergence trends. In

both the zero and non-zero impact parameter studies, complete convergence is not

reached. In the non-zero impact parameter study, one of the runs produced a collision

that wasn’t energetic enough to make it onto the convergence curve. High resolution

studies would permit a fuller understanding of the trends in convergence that we see.

4.3 Comparison with SNSPH Simulations

A comparison between grid and particle codes could explain the discrepancies in results

between the two. While studies have been done separately on collisions in each type

of code, a full side-by-side comparison of the two has not been conducted. In order
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to understand why FLASH results differ from SPH results, such a study would be

extremely enlightening.

We compare our white dwarf collision results from FLASH to the results from

SNSPH for the same initial conditions (white dwarf masses, initial separations and ve-

locities). Our comparison indicates that FLASH produces less 56Ni for the same initial

conditions. For the 0.64-0.64 collision, the FLASH simulation produced 0.32 M� as

compared to 0.48 M� in SPH. Similarly, the 0.81-0.81 collision produces 0.45 M� in

FLASH and 0.84 M� in SPH. The inequity of 56Ni values is likely due to differences

in ignition criteria between FLASH and SPH. Fig. 4.1 shows a comparison between

the temperature, x-axis velocity, density, and sound speed for FLASH and SPH at two

times. The white dwarfs make first contact at the same time, but shortly after the col-

lision commences two different physical scenarios ensue. At 6.60 seconds (left side of

Fig. 4.1) the FLASH collision has already ignited in the center, while the SPH colli-

sion has yet to detonate. When detonation occurs in SPH, it happens along the edge of

the stalled shock region, allowing for the burning of more material. At 7.25 seconds

(right side of Fig. 4.1) the FLASH simulation has already reached expansion, while the

SPH simulation is still synthesizing 56Ni, leading to higher 56Ni production in the SPH

simulation.

Richardson et al. (2010) developed a tool to take Lagrangian-based SPH sim-

ulations and convert them for Eulerian-based AMR schemes, in particular for FLASH.

Each particle is mapped to the cell centers via their smoothing kernel. First mapped

is density, later normalized to ensure mass conservation, with the final density in a

given cell equal to a linear addition of each particle’s contribution. Subsequently, spe-

cific momentum and total energy are mapped by a mass weighted addition of each

particle’s value, later renormalized by the cell’s mass. Through this, energy, mass,

and momentum are conserved between the two schemes. Once the SPH-to-FLASH
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Figure 4.1: Comparison of the detonation structures in FLASH (top) and SNSPH (bot-
tom) at t=6.60 s (left) and t=7.25 s (right) for the 0.64-0.64 case.

mapping is complete, the simulation is progressed forward in FLASH until the homol-

ogous expansion phase. Fig. 4.2 shows the density mapping from SPH to FLASH at

first contact (determined visually from a logarithmic density plot) between the white

dwarfs for the 0.64-0.64 M� case. For the 0.64-0.64 M� and 0.81-0.81 M� collisions

the SPH-to-FLASH mapping produced results similar to the comparable FLASH runs.

The 56Ni produced in the FLASH-to-SPH mapping was 0.26 M� for 0.64-0.64 and

0.36M� for 0.81-0.81, as compared to 0.32 and 0.45 M� respectively in FLASH. This

indicates that differences in 56Ni production in FLASH and SPH are due to differences

in post-contact conditions in the codes.

We find that collision simulations done with FLASH systematically produce

less 56Ni and more silicon-group elements than collisions done with SNSPH. This be-
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havior was also noted by Rosswog et al. (2009), but the reason for the difference was

not positively identified. We tentatively attribute this behavior to the post-shock tem-

perature immediately after first contact. The SNSPH temperature is ≈10% higher than

the FLASH temperature. Nuclear burning with a temperature sensitivity of T22 exacer-

bates the temperature difference, and causes the central regions in SNSPH to be more

carbon depleted than in FLASH. With more carbon, the FLASH simulations runaway

in the central region more easily and sooner, producing less 56Ni. With less carbon, the

SNSPH simulations runaway less easily, closer to the edges of the stalled shock region,

and later in time, and thus produce more 56Ni.

4.4 Expanded Reaction Network

In this work, a thirteen isotope alpha-chain reaction network is used, and 56Ni is the pri-

mary observational signature studied. In future work, I will explore nucleosynthesis in

SNIa explosions in-depth by post-processing the explosion ejecta using tracer particles

in FLASH.

The FLASH passive tracer particles flow through the grid, and allow the prop-

erties of the grid to be tracked at each point in time. The density and temperature evolu-

tion of each tracer particle is tracked during the simulation, and used in post-processing

to determine the nucleosynthesis experienced by the particle. The total yield is then the

sum over all the tracer particles.
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Figure 4.2: Initial mapping of density from SPH to FLASH for the 0.64-0.64 M�
collision.
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