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ABSTRACT 

Dwindling energy resources and associated environmental costs have 

resulted in a serious need to design and construct energy efficient buildings. One 

of the strategies to develop energy efficient structural materials is through the 

incorporation of phase change materials (PCM) in the host matrix.  This research 

work presents details of a finite element-based framework that is used to study the 

thermal performance of structural precast concrete wall elements with and without 

a layer of phase change material. The simulation platform developed can be 

implemented for a wide variety of input parameters. In this study, two different 

locations in the continental United States, representing different ambient 

temperature conditions (corresponding to hot, cold and typical days of the year) 

are studied. Two different types of concrete – normal weight and lightweight, 

different PCM types, gypsum wallboards with varying PCM percentages and 

different PCM layer thicknesses are also considered with an aim of understanding 

the energy flow across the wall member. Effect of changing PCM location and 

prolonged thermal loading are also studied. The temperature of the inside face of 

the wall and energy flow through the inside face of the wall, which determines the 

indoor HVAC energy consumption are used as the defining parameters. An ad-

hoc optimization scheme is also implemented where the PCM thickness is fixed 

but its location and properties are varied. Numerical results show that energy 

savings are possible with small changes in baseline values, facilitating appropriate 

material design for desired characteristics.  
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1.0 INTRODUCTION 

One of the greatest engineering challenges of the 21st century relates to 

energy sustainability. Buildings consume more than a third of the world’s energy, 

and the use is expected to grow as the population increases or becomes more 

urban and affluent. In the United States, the building sector accounts for about 

40% of the primary energy use, compared to 32% for the industrial sector and 

28% for the transportation sector [1]. The use of electric power and heat in 

buildings contribute to about 40% of the US greenhouse gas emissions [1]. Based 

on the current trends, it is anticipated that buildings will become the majority 

energy consumers by 2025 and would use as much energy as industry and 

transportation sectors combined by 2050 [2]. Therefore it is obvious that reducing 

the energy consumption in buildings can contribute significantly to the reduction 

of dependence on foreign sources of energy, and reduction in greenhouse gas 

emission. 

Phase Change Materials: 

PCMs have high heats of fusion which help provide more energy savings 

over all other energy storage materials. Heat is stored in a PCM is either sensible 

heat or latent heat. Sensible heat storage occurs when the heat transferred to any 

storage medium leads to a temperature increase in the medium. Latent heat 

storage occurs during phase transition of a material without increasing the 

temperature of the medium. PCMs compose of a huge range of material classes - 

organic, inorganic or eutectic mixes of both which have been explained in detail 
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later. The difference between using a common insulator and a PCM is due to the 

additional latent heat storage capacity of a PCM. Higher the melting enthalpy, 

more is the energy storage and lesser is the heat flow across the PCM layer. Also, 

a lower thermal conductivity leads to lesser heat flow across the PCM layer. 

Numerous analyses have been run for the opted locations with different PCMs 

and the most favorable for each location were chosen.  

Considerable energy savings in the built environment can be realized if the 

heating and cooling loads in buildings can be controlled. One potential passive 

methodology to attain this objective is through the use of thermal energy storage 

(TES) materials. TES can either be accomplished using sensible heat storage or 

latent heat storage [3, 4, 5]. While sensible heat storage systems rely on the 

specific heat capacity and density (or mass) of the material to store heat, they 

suffer from disadvantages related to low storage capacity per unit volume and 

non-isothermal behavior during heat storage and release [5, 6, 7]. This has led to 

substantial interest in the use of Phase Change Materials (PCM), which are latent 

heat storage materials, in building applications [8, 9, 10, 11, 12]. PCMs store 

energy when subjected to temperatures in excess of their melting point by 

changing from the solid to the liquid state.  The stored energy is released when the 

temperature drops below the melting point of the PCM. A schematic of this 

process is depicted in Figure 1-1[13]. It is primarily the latent heat contribution 

that drastically increases the energy storage capacity of PCMs when compared to 

sensible heat storage media, depending on the nature of the PCM and the 

temperature range of interest [5,14]. In building energy conservation applications, 
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PCM can serve twin purposes: (i) it can store the solar energy and release it when 

the indoor temperatures fall, and (ii) it can be used to shift the building heating or 

cooling load from peak to off-peak electricity periods [15, 16, 17, 18].  

 

Figure 1-1: Temperature dependent phase change and energy absorption/release 

by phase change materials [13]. 

A number of recent studies have investigated the use of different types of 

PCMs as integral component of building elements such as wallboards, concretes, 

and plastering mortars for TES applications [8, 19, 20, 21]. The method of 

incorporation of PCMs, by impregnation into the porous building material such as 

wallboard or concrete, or micro- and macro-encapsulation, have also been 

adequately addressed in the literature [20, 22, 23, 24, 25]. Figure 1-2 shows the 

relationship between heat energy absorbed by a cement paste when 5% of a 

microencapsulated PCM by mass is incorporated as an integral component of the 

paste [26]. In the phase transition temperature range (between 22
o
C – 24

o
C in this 
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case), the energy absorption capacity of the cement paste is enhanced by more 

than three times because of the incorporation of the PCM.  

 

Figure 1-2: Latent heat contribution of microencapsulated paraffin PCM in 

cement paste [26] 

The energy performance of prototype structures made using PCM-

integrated components has also been reported [26,27,28,29]. Numerical analyses 

of energy performance of buildings enclosed by PCM incorporated elements have 

also been reported in several studies. Many of these studies have carried out 

simulations in order to determine the optimal orientation of walls containing 

PCMs, parameters relating to the thermal inertia of system such as wall thickness, 

thermal conductivity, and heat capacity, and variation of internal temperature in 

enclosures subjected to passive cooling or without any climatic control [8, 24, 30, 

31]. While a number of studies have examined the energy efficiency of elements 

containing phase change materials, the boundary conditions relating to the 
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external temperature are such that the maximum difference between the desired 

indoor temperature and the maximum external temperature is not more than 10-

15
o
C, even including the effects of radiation [23, 32, 33]. The conclusions arrived 

at based on optimization studies under these conditions (for e.g., the optimal PCM 

layer thickness, maximum latent energy storage capacity) might not be directly 

applicable when the ambient and desired temperature differences are extremely 

high (in the range of 25
o
C, as in desert summers). This aspect is also considered 

in this study. 

Gypsum Wallboards 

One of the most effective methods of incorporating PCMs into building 

components is embedding PCMs into gypsum wall boards either by immersion of 

wallboards into a PCM bath or by direct mixing of PCM with gypsum prior to 

manufacture of the wall boards. However, due to interaction of PCM with the 

wallboard elements, leakage of liquid PCMs etc. the immersion method is the 

most popular method of PCM incorporation. Gypsum wallboards with higher 

porosity are more feasible for immersion. Percentage of PCM absorbed by a 

wallboard of course depends on time of immersion, temperature of bath, 

compatibility between wallboard and PCM. Higher amount of PCM is absorbed 

for higher immersion times [34, 35, 36], though increasing amount of PCM in the 

wallboards constitutes to increased fire-hazard risks. [34, 35] tested two methods 

of eliminating fire-hazards – limiting the amount of imbibed PCM to 20% or 

further treating the wall board with an insoluble fire retardant.  Several studies 

and experiments have been conducted on PCM treated wallboards to find their 
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physical, chemical and thermal properties [37, 38, 39]. Studies on a range of 

PCMs have also shown certain types of PCMs to be better suited for incorporation 

into gypsum wallboards like – Coconut fatty acids [37], Capric and Lauric acids 

[38], Paraffins [34, 35, 36]. Use of PCM treated wallboards over conventional 

wallboards increases thermal efficiency of buildings to a large extent and maybe 

the easiest method of PCM incorporation. Incorporating wallboards into a wall is 

most feasible and economic. Full scale experiments on rooms have shown that 

incorporation of PCM wallboards in walls reduce air temperature fluctuations in 

the room [24, 40]. 

Multiple PCMs 

The use of multiple PCMs has become a popular method for thermal 

energy storage in the recent years because of their potential for enhanced thermal 

performance. (Gong and Mujumdar, 1996) [41] developed a finite element model 

to study alternate melting and freezing heat transfer through several combinations 

of PCMs.  They discovered that charge-discharge rates of thermal energy can be 

significantly enhanced using various PCMs depending on arrangement of the 

PCMs, thermo physical properties and applied boundary conditions. (Shaikh and 

Lafdi, 2006) [42] developed a heat storage system using multiple rectangular 

slabs with different PCMs considering combined convection and diffusion. They 

studied the effect of buoyancy induced motion in the propagation of the melt 

interface of different PCM layers placed in series or parallel configuration. They 

concluded that for the same set of thermophysical properties, the total energy 

storage of the composite PCM arrangement can be enhanced much more than that 
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of a single PCM slab, by using PCMs with different phase change temperatures. 

Diaconu and Cruceru [18] developed a new composite wall system (three layer 

sandwich type insulating panel) with outer layers of PCM wallboards. Both PCM 

layers have different thermal functions- the outer layer has a higher melting point 

and is active only during the hot season whereas the inner layer has a lower 

melting point and is active in a cooler season. It is seen that presence of both these 

layers reduces annual energy demand and reduces peak heating/cooling loads. 

The current research work branches out on the above results to study effect of 

inter-changing PCM location with respect to the other and placing both PCMs at 

different points in the wall cross-section, although the study is concentrated for 

Phoenix, AZ area.  

Classification of PCMs 

PCMs can be classified into three major categories viz. Eutectic, Organic 

and Inorganic. Eutectics can be made by combining two organic compounds, two 

inorganic compounds or an inorganic and an organic compound. Most commonly 

used are eutectic water-salt solutions which have good storage density and 

melting temperatures below 0ºC due to addition of the salts [4]. Pure salts, 

inorganic mixtures and salt hydrates are types of inorganic PCMs. Organic PCMs 

include paraffins, fatty acids, sugar alcohols, polyethylene glycols and calthrates. 

Examples of each type of PCM can be seen from Figure 1-3: Classification of 

PCMs. Advantages and disadvantages of organic PCMs are listed on the next 

page.  
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Advantages Disadvantages 

 Safe, non-corrosive, non-toxic,  

non-reactive 

 Low volumetric latent heat 

storage capacity  

 Chemically and thermally stable  Lower density 

 No or little sub cooling  Flammable 

 Microencapsulation possible  Lower melting enthalpy 

 Show low thermal conductivity   Relatively more expensive 

 Self-nucleating (speeds solidification)  

 Do not Segregate  

 Exhibit ability to melt congruently  

       (i.e. no change in composition occurs during melting) 

Advantages and disadvantages of inorganic PCMs are listed below.  

Advantages Disadvantages 

 High melting enthalpy  Show sub cooling effect 

 High density  Corrosive 

 Non-flammable  Cycling stability 

 Low cost   Microencapsulation impossible  

 Easy availability  High thermal conductivity 

 High volumetric latent heat 

storage capacity 

 Nucleating agents required 

especially after repeated cycling 
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Figure 1-3: Classification of PCMs 
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Applications of PCM 

PCMs have a wide range of applications from transportation to medical 

and health purposes. Some of the applications have been shown in  

 

Thermal wear including vests, jackets, pants and underwear. Different 

PCMs are integrated into clothes making them suitable for regulating body 

temperature of people working in extreme climatic conditions. 

 

Transportation and storage of food especially perishable items over long 

distances or in areas like cargo bays of airplanes where there is no access to 

electricity to use coolers or heaters. 
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Warmers and sleeping bags. This is just another extension to integrating 

PCMs in clothes intended solely for the purpose of human comfort. 

 

Medical applications: Storage and transportation of blood, plasma or 

drugs that need stocking at very specific temperatures. 

 

In heat exchangers like refrigerators, air coolers, heaters. Incorporation 

of PCMs in these devices shows a significant reduction in energy consumption 

of the appliances. 
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PCMs are incorporated into building elements like concrete, precast 

blocks, tiles, wallboards, plaster etc to help regulate energy utilization by the 

room heating and cooling systems 

Objectives 

The present study focuses on providing answers to the following 

questions. 

(1) How does the use of pure phase change materials embedded as a distinct layer 

in a typical wall configuration influence the energy flow through the wall? 

(2) Does PCM location within the wall play a role in energy consumption? 

(3) How do external temperatures influence the selection of optimal PCM 

thickness and material properties?  

(4) How do gypsum wallboards behave when embedded with PCM? 

(5) How does use of multiple PCM layers affect energy consumption as opposed 

to use of a single PCM layer? 

This research work presents a finite element simulation of transient heat 

transfer through structural precast concrete wall elements with and without a layer 

of phase change material. Two different PCM types and different PCM layer 
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thicknesses are considered in order to develop a fundamental understanding of the 

energy flow across the wall member as a function of the PCM characteristics and 

its location in the wall. Active temperature control in the enclosure is considered 

in this study. An ad-hoc optimization scheme is also implemented where the PCM 

thickness is fixed but its location and properties are varied. It is believed that this 

framework will lead to optimal selection of PCM parameters for a given set of 

external and internal temperature profiles. Effect of multiple PCM layers placed 

together or separately in the same wall has been studied and results discussed. Use 

of PCM incorporated gypsum board, along with effects of different wall 

thicknesses have also been discussed here. 

Four different temperature profiles (corresponding to two different 

locations in the continental USA) are considered. First one represents a typical 

summer day in Los Angeles, CA and the others represent a hot day, a cold day 

and a typical day in Phoenix, AZ. The baseline wall is made up of normal 

concrete (NC) or lightweight concrete (LWC), and the thermal performance of the 

PCM incorporated elements are compared against the baseline walls. Several 

model parameters are studied and they include: (a) the energy needed to maintain 

the interior temperature at a specified human comfort level temperature that varies 

with time of day, (b) the relationship between PCM thickness and the efficiency 

of the PCM to act as a thermal storage and barrier system, and (c) guidelines for 

designing the PCM thickness and location in the wall, considering the thermal 

efficiencies (the structural efficiency also needs to be a part of the discussion, 

which is covered in an on-going study).  
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2.0  FINITE ELEMENT ANALYSIS AND MODEL  

Heat transfer problems involving conduction, forced convection, and 

boundary radiation can be analyzed in ABAQUS. Current analysis assumes that 

the thermal and mechanical properties are independent of each other or uncoupled 

i.e. time rate of internal energy is independent of strains and displacements of the 

body and dependent only on the temperature at any given time. ABAQUS defines 

the relationship between specific heat (c) and the time rate of Internal energy (U) 

as in Equation (2.1); except for when phase change materials are used (rather 

phase change is specified). 

   
  

  
          (2.1) 

The inclusion of the latent heat and phase change temperatures makes the 

analysis non-linear. Latent heat is considered in addition to the specific heat (as 

seen in Figure 2-1).    

  

Figure 2-1: Sensible and Latent heat stored in PCM 

Heat conduction is assumed to be governed by the Fourier law:  

       
  

  
        (2.2) 

 Surface convection is given by, 
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                   (2.3) 

Element types used in the current analysis are first order 4-noded 

quadrilateral heat transfer elements. ABAQUS use a numerical integration rule 

for first order elements where the integration points are the 4 corners of the quad 

element. The solutions in this case are non-smooth. This method is very effective 

when latent heat effects are considered since the jacobian term associated with the 

energy rate is diagonal. When second order elements are to be considered, 

ABAQUS uses the conventional Gaussian integration approach where the 

solutions are smooth. Since latent heat effects are to be accounted for which make 

the solution non-smooth, first order elements are preferred over second order 

elements in this case. A one-dimensional heat flow through the wall is assumed. 

However, a two-dimensional finite element model [Refer to Section 3.1] is used 

as shown in Figure 2-2 so that the same model can be used later to include flow 

through non-uniform walls such as those containing openings. ABAQUS Version 

6.10 is used as the finite element program and it should be noted that the presence 

of a non-linear material (PCM) in the model necessitates a nonlinear, transient 

analysis. The wall height is taken as 1 m. Mixed boundary conditions are imposed 

on the outside and the inside faces. The ambient temperatures used as inputs to 

the model are obtained from reliable weather sources [43, 44]. The exterior 

convective heat transfer co-efficient, he is taken as 20 W/m2-ºC and the interior 

convective heat transfer co-efficient, hint is taken as 5 W/m2-ºC [24, 45]. Instead 

of applying solar radiation as a flux on the outside face of the wall, in this study, a 
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temperature equivalent (Teq) to radiation effect (during sunshine hours) is 

calculated as [24]: 

eq e

e

S
T T

h


            (2.4) 

 In the above equation, Te is the ambient temperature without the 

radiation effects (in 
o
C), α is the absorption coefficient (unit less), S is the solar 

Insolation (defined as rate of delivery of solar radiation per unit area with units of 

kWh/m
2
 per day), and he is the convective heat transfer coefficient, with units of 

W/m
2
-
o
C. 

x

y

 

Figure 2-2: Finite element model (1 m high) 

 In addition it is assumed that: (a) all the concrete and PCM layers 

are homogenous and isotropic, (b) thermal properties of concrete and PCM are 

constant and temperature independent, (c) convective flow, if any, inside the 

liquid PCM is ignored, (d) there is no interfacial resistance between the layers, 

and (e) the top and the bottom surfaces are perfectly insulated. The air and the air 
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flow in the HVAC-controlled enclosure are not modeled. The initial temperature 

(when the analysis starts) of the entire wall is assumed to be the near the initial 

temperature of the inside face of the wall (which is governed by the controlled 

climate inside). First order, 4-noded quadrilateral elements (DC2D4) are used in 

all cases.   

 
Figure 2-3: Computational framework for finite element analysis 

To automate the FE model construction, analysis, and post-processing 

steps, an in-house custom-built framework (WallDesign) is used (See Figure 2-3). 

The framework controls the executions as follows. It first reads the problem input 

file and generates the finite element model, followed by the ABAQUS input file. 

ABAQUS is launched and the program waits for the normal completion of the 

ABAQUS run. It then reads the ABAQUS output file and carries out the required 
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post-processing steps. The existing framework can be readily extended to carry 

out further studies such as design optimization using an optimization toolbox. 

Detailed description of the WallDesign framework is shown in appendix A. 

A convergence study was carried out to determine the optimal finite 

element model - one that would yield acceptably accurate results with the least 

amount of computational time. A uniform mesh was used in the study with the 

size of a typical element varying between 0.003 m and 0.01 m. A FE model 

containing a PCM layer was analyzed for a period of 7 days using time steps of 15 

minutes, 30 minutes and 60 minutes with varying element sizes. The results 

indicate that the system response stabilized after the first 24 hours, generally 

showed a cyclic pattern, and the final results at the end of the week are consistent. 

Figure 2-4 shows the energy flow through inside face (EFTIF) value and Figure 

2-5 shows the inside face temperature after 30 hours and 44 hours as a function of 

the element size. Both response measures show a nicely converging trend. Based 

on the results of the convergence study, the following model parameters were 

used in all subsequent finite element analyses: (a) element size of 0.5 cm, (b) 60 

minute time step, and (c) for different duration of analysis the results are reported 

for the second 24 hours. 

 



 

19 

 

 

Figure 2-4: EFTIF versus element size 

 

Figure 2-5: Inside wall temperature versus element size 
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Two performance metrics are considered when comparing different 

scenarios. They are:  

(i) Energy Flow Through the Inside Face (EFTIF): Heat flux values, 
x  (rate of 

heat energy transfer through a unit area) from the ABAQUS output file are 

used to compute energy flow through all the elements in the inside face 

(assuming unit depth) as:  

                 
 

 

  
  

     (2.5) 

Where, ti and tf are the initial and final time values and 1 reflects the 

unit distance in the y-direction. 

The energy flow can potentially take place from outside to inside or 

from inside to outside depending on the ambient temperature, because the 

indoor temperature is maintained within a desired range. In this study, EFTIF 

is the total energy flowing in both directions and represents a measure of the 

HVAC cost required to keep the air inside the building at the prescribed 

temperature range. An efficient passive system keeps the EFTIF minimum.  

(ii) PCM Efficiency (PCME): The energy stored in (or released from) the PCM is 

due to both the sensible and latent heat storage capacities of the PCM and they 

are computed as:  

f

i

T

s p

T

Q mC dT         (2.6) 

L PCMQ m H         (2.7) 
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In the above equations, Qs is the sensible heat storage capacity, QL is 

the latent heat storage capacity, m is the mass of the PCM or concrete, Cp is 

the specific heat capacity, and HPCM is the latent heat capacity of the PCM.  

These expressions are evaluated for each time step (60 minutes) and 

their absolute values are summed over the time duration to compute the total 

energy value. The efficiency of the PCM is calculated based on the energy 

stored in the PCM at any given time as:   

      
                    

                              
         (2.8) 

Since the cost of the PCM is a function of the amount of PCM used in 

the wall, the PCM characteristics that results in the maximum possible 

efficiency should be chosen.  

  



 

22 

 

3.0  PRELIMINARY STUDIES 

This chapter focuses on study of analysis parameters and selection of the 

best configuration feasible. In section 3.1, results from preliminary studies of 

types of PCM have been discussed. Based on these results paraffins were chosen 

for analysis in the research work. In section 3.2, heat flow through a 10cm thick 

and a 20cm thick concrete walls embedded with 0-20% of PCM was studied and 

results presented. Purpose of comparison between the two different wall sections 

is to verify basic heat transfer rules. Conclusions from this particular analysis 

were useful in drafting problem statements for other analyses. 

3.1 Selection of Suitable PCM 

Not all PCMs can be used for thermal storage. Selection of a suitable PCM 

is probably one of the most important steps to this research. The most ideal PCMs 

would have the following properties: 

 Suitable phase change temperature.  

 High latent heat of fusion per unit mass. 

 Good cycling stability without phase separation. 

 High specific heat provides additional sensible heat storage.  

 Little or no sub-cooling during freezing. 

 Good thermal conductivity. Low price and good recyclability. 

 Non-poisonous, non-flammable, non-explosive, non-corrosive and not 

subject to chemical decomposition. 
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Model Details and Material Properties 

For the analysis reported in this section, six different types of PCMs are 

considered along with analysis of a plain concrete wall for low temperatures at the 

inside face of the wall and low EFTIF. The properties of all materials used have 

been listed in Table 3-1. The baseline wall configuration can be seen in Figure 

3-1. The wall is 1m high and 0.2m wide, with a 1cm PCM layer embedded in the 

center of the wall. Ambient air temperature profile (applied to the outside face of 

the wall) and inside face air temperature (IFAT, applied to the inside face of the 

wall) for a typical day in Phoenix, AZ have been shown in Figure 3-2. 

  

(a) (b) 

Figure 3-1: (a) Typical plain concrete wall, (b) Wall with a centrally placed 

1cm PCM layer 
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Table 3-1: Material properties used in the analyses 

Property Type of PCM Density 
Specific 

Heat 
Conductivity 

Latent 

Heat 

Phase Change 

Temperature 

(PCT) 

Units kg/m
3
 J/kg-

o
C W/m-

o
C kJ/kg 

o
C K 

Concrete -  2400 750 1.45 - - - 

PEG 600 PEG 1126 2135 0.2 146.5 15 - 25 
288 - 

298 

Paraffin 
Polyethylene 

CnHm 
800 25000 0.35 245 

27.5 – 

29 

300.5 – 

302 

Microencapsulated PCM 

(MEP) 
Paraffin 800 2400 0.2 169 27 - 31 

300 - 

304 

Capric Acid (CA) Fatty acid 1000 1900 0.149 153 31 - 33 
304 - 

306 

CaCl Inorganic salt 1700 3020 1.0 190 29 - 31 
302 - 

304 

Butyl Stearate (BS) 
Stearic acid butyl 

ester 
850 1386 0.2256 140 18 - 20 

291 - 

293 
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Numerical Results 

Figure 3-2 shows variation of the temperature of the inside face of the wall 

with respect to time. Highest inside temperatures can be seen in case of a plain 

concrete wall and lowest inside temperatures can be seen for paraffin and PEG 

600 during daytime. At nighttime higher inside temperatures are seen when 

paraffin and PEG 600 are used. This is most desirable and clearly use of either 

polyethylene paraffins or PEG 600 is most beneficial.  

 
Figure 3-2: Comparison of temperature variation at the inside face of 

concrete wall 

It is also seen that incorporation of PCM into the wall system introduces a 

time lag for the peak ambient temperature (occurring at 6 hours) reaching the 

inside face of the wall. Smallest time lag is seen with plain concrete and CaCl as 

PCM (8 hours) and highest lag is seen with paraffin and PEG 600 (9-10 hours). A 
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higher time lag is more desirable since, it delays the maximum amount of heat 

reaching the inside face to nighttime when it is desirable to keep inside 

temperatures above the ambient temperature (within the IFAT range). 

Similar conclusions can be drawn by studying the EFTIF of the wall 

(Refer Figure 3-3). Highest EFTIF is seen in case of plain concrete, CaCl and 

lowest for again PEG 600 and paraffin. The drop in EFTIF values during the 13
th

 

– 14
th

 hour is due to change in transition of ambient temperature from above the 

IFAT range to below the IFAT range.  

  

Figure 3-3: Comparison of EFTIF of concrete wall 

In order to avoid some problems inherent with inorganic materials, 

researchers have turned towards some of the materials from the organic class, like 

PEG’s, fatty acids and paraffins [20]. Various studies have concluded that 

amongst all the classes of PCMs, paraffins comply with most of the above 

selection criteria [46, 47]. As seen in the results paraffins and PEG’s seem to be 

better suited for our current analysis purpose.  
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Hence, considering cost benefits, suitability and ease of availability four 

commercially available paraffins were chosen for the purpose of current research 

work [48, 49, 50]. The PCMs used here forth, PCM A, B, C and D [26], are all 

organic paraffins with molecular formula CnHm (m = 2n+2 in case of PCM A). 

Both PCMs have a low thermal conductivity and higher enthalpy of fusion. The 

temperature of phase change for both PCMs is suitable for the ambient 

temperature range for locations considered herewith. 

3.2 Comparison between 10cm and 20cm thick walls  

Current section deals with comparison of a 10cm thick wall and a 20cm 

thick wall with same % by volume of PCM layer (PCM A) sandwiched in 

between. The same FEA model as used in section 3.2 has been considered for this 

analysis with the distinction of wall thickness. Weather data of the hot day in 

Phoenix (June 14
th

 2011) is used for the purpose of this comparison as can be seen 

in Figure 3-4. 

Table 3-2 – Material Properties 

Property Units Concrete PCM-A 

Density kg/m
3
 2400 800 

Specific Heat J/kg-
o
C 750 2400 

Conductivity W/m-
o
C 1.45 0.2 

Latent Heat kJ/kg - 169 

Phase Change Temperature 

(PCT) 

o
C - 27 – 31 

o
K - 300 – 304 
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Numerical Results 

Table 3-3 shows values of EFTIF, energy savings, maximum sensible and 

latent energy stored for different percentages of PCM A placed centrally in a 

concrete wall. All reported results are for the second 24 hour period. Energy 

savings increase with increasing PCM percentage in both cases. Savings obtained 

with a 10cm thick wall is approximately 45-55% of savings obtained with 20cm 

thick wall (for the same % of PCM).  

  

(a) (b) 

Figure 3-4: Ambient air temperature profile for Phoenix, AZ: (a) without 

radiation effects, (b) with radiation effects  
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Table 3-3: EFTIF data summary for section 3.3 

Thickness 

(concrete wall) 

% of 

PCM 

Thickness EFTIF Savings 
Max. Sensible 

Energy 

Max. Latent 

Energy 

Cost of 1m x 

1m section 

(cm) ( kJ ) % ( kJ ) ( kJ ) $ 

10cm 

0 0 6138 
 

0 0 50 

5 0.5 5749 6 177 676 65 

10 1 5407 12 347 1352 81 

15 1.5 5103 17 509 2028 96 

20 2 4832 21 667 2704 111 

20cm 

0 0 5046 
 

0 0 101 

5 1 4540 10 310 1352 131 

10 2 4124 18 604 2704 161 

15 3 3767 25 885 4056 191 

20 4 3420 32 1151 5408 222 
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EFTIF decreases with increasing PCM mass and is higher for a 20cm thick 

wall with PCM than for a 10cm thick wall with the same % of PCM (Refer Figure 

3-5). It can be seen that a pure 20cm thick wall results in approx. the same amount 

of EFTIF as for a 10cm thick wall with 1.6cm PCM. Hence, to match EFTIF flow 

through a 10cm thick wall to that through a 20cm thick wall, a minimum of 1.6cm 

thick PCM layer is needed. In other words, instead of using a 20cm thick pure 

concrete wall, a 10cm thick concrete wall embedded with 1.6cm PCM may be 

used (where allowable by design constraints), which will ensure cost savings. 

 

Figure 3-5: EFTIF w.r.t. % of PCM in wall 
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Figure 3-6: Maximum energy stored in PCM 

Again as seen in Figure 3-6 energy stored in PCM increases with 

increasing PCM mass. For the same % of PCM (w.r.t. wall thickness) energy 

stored by PCM is higher in case of 20cm thick wall, which is due to higher mass 

of PCM. 

Summarizing, temperature of inside face decreases with increasing PCM 

thickness when ambient temperature is higher than IFAT and increases with 

increasing PCM thickness when ambient temperature is lower than IFAT. EFTIF 

decreases and savings increase with increase in PCM mass for any model 

including PCMs. Savings obtained from 10cm thick wall are half those from a 

20cm wall. A pure concrete wall 20cm thick has the same energy saving effects as 

a 10cm thick concrete wall embedded with 1.6cm thick PCM layer at the center. 
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4.0  EFFECT OF VARYING PCM THICKNESS AND AD-HOC 

OPTIMIZATION 

This chapter focuses on effect of variation of PCM thickness, PCM 

location and varying boundary conditions on study parameters. Only a single 

PCM layer has been studied. Widening scope of this review further, effect of 

changing PCM properties is also considered. An ad-hoc optimization is carried 

out (keeping the PCM thickness constant) and its significance observed. This can 

be used as a guideline for future optimization studies. 

4.1 Typical wall geometry and layout 

The baseline wall configuration is shown in Figure 4-1(a). The total wall 

thickness is taken as 20 cm (8 in, which corresponds to typical precast concrete 

structural wall thickness for industrial and high rise buildings) for all the analysis 

cases in this paper. One of the scenarios considered in this study, a centrally 

located PCM layer, is shown in Figure 4-1(b). The PCM thickness is varied 

between 1 and 5 cm. In other words, 5-25% of the wall volume is occupied by the 

PCM. The higher end values are not always practical when one considers the cost 

of the PCM, but is included in this analysis because the aim is to understand the 

influence of PCM volume (or layer thickness) on the thermal efficiency of the 

wall system. Furthermore, the analysis also considers an exceptionally hot 

climate, which necessitates a larger amount of TES material to achieve desirable 

performance levels. The outside face of the wall is exposed to the sun. The inside 

face is exposed to air whose temperature is controlled by a heating, ventilation 
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and air-conditioning (HVAC) system. This temperature is referred to as inside 

face air temperature (IFAT) in the rest of the paper.  

   

(a) (b) (c) 

Figure 4-1: (a) Typical concrete wall, (b) Wall with a centrally placed PCM layer, 

and (c) PCM layer placed closer to the inside face 

4.2 Concrete and PCM properties 

For the analyses reported in this paper, two types of concrete – normal 

weight and light weight (NC and LWC respectively) are chosen. Lightweight 

aggregates are used to produce lightweight concrete, and a density reduction in 

the range of 15-30% is generally achieved. This has implications in the heat 

transfer properties of the structural member. Additionally, the reduced density of 

the structural system results in economical design of supporting elements. The 

relevant physical properties of concrete are given in Table 4-1.  
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Table 4-1: Material properties used in the analyses 

Property Units NC LWC PCM-A PCM-B 

Density kg/m
3
 2400 1750 800 300 

Specific Heat J/kg-
o
C 750 960 2400 2500 

Conductivity W/m-
o
C 1.45 0.64 0.2 0.25 

Latent Heat kJ/kg - - 169 110 

Phase Change 

Temperature 

(PCT) 

o
C - - 27 – 31 22 – 25 

o
K - - 300 – 304 295 – 298 

Two types of PCMs are used, referred to as PCM-A and PCM-B in this 

study, the properties of which are also provided in Table 4-1.  Both these PCMs 

are microencapsulated paraffins, and thus relatively cost-effective and easy to use. 

The molecular weights of these paraffins as well as their encapsulation 

methodology are different, which results in changes in their material properties as 

shown in Table 4-1.  

4.3 Ambient temperature data 

The 24-hour variations in temperature for the two chosen locations are 

shown in Figure 4-2. The maximum temperature change during the 24-hour 

period is 5
o
C for Los Angeles and 14

o
C for Phoenix. It should be noted that 

weather data is available at a minimum frequency of 15 minutes. Instead of 
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applying solar radiation as a flux on the outside face of the wall, in this study, an 

equivalent temperature (Teq) is calculated (Refer Equation (2.4)).  

  

(a) June 19, 2011 (b) June 14, 2011 

Figure 4-2: Ambient air temperature profile [43]: (a) Phoenix, (b) Los Angeles 

The values for the coefficients which are used in the equation, for the 

analyses reported in this study are shown in Table 4-2. Note that the solar 

Insolation values for Los Angeles and Phoenix are very close to each other, 

potentially because of the same latitude in which both the cities lie. The computed 

additive component to the ambient temperature, which accounts for the radiation 

effects [51, 52], is therefore similar for both the cities (10.1
o
C for Los Angeles 

and 10.0
o
C for Phoenix). 
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Table 4-2: Radiation-related Data 

Location 

Solar 

Insolation (S) 

Absorption 

Coefficient 

Convective heat transfer 

coefficient: outside face (he) 
αS/he 

(W-s/m
2
/s) (α) (W/m

2 o
C) (

o
C) 

Los 

Angeles 
310.4 0.65 20 10.1 

Phoenix 309.2 0.65 20 10.0 

The effective ambient temperature profiles that include the equivalent 

radiation effects are shown in Figure 4-3, where the inside face air temperature 

(IFAT) is also shown. During the day hours (10 AM to 8 PM), IFAT for Los 

Angeles is taken as 18.9
o
C and during the rest of the time (9 PM to 9 AM) is 

taken as 21.9
o
C. Slightly different IFAT values and timings are used for Phoenix - 

a temperature of 19.9
o
C from 11 am to midnight and a temperature of 24.9

o
C 

from 1 AM to 10 AM. The differences in timings and temperatures are chosen so 

as to reflect differences between the two locations. Phoenix has: (a) a drier 

climate (lower humidity) than Los Angeles permitting a higher indoor target 

temperature with the same comfort level, and (b) a higher evening temperature 

and the night time cooling takes place very gradually. Effectively there is a 

maximum difference of 9
o
C for Los Angeles and 26

o
C for Phoenix between the 

outside air temperature and IFAT. It is evident that the energy requirements to 

maintain indoor comfort levels would then be different between these two 

locations, resulting in different PCM incorporated structural element design 

strategy. 
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(a) 

 

(b) 

Figure 4-3: Ambient air temperature profile with radiation effects for: (a) 

Los Angeles, and (b) Phoenix. IFAT is also shown for both the cases. 
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4.4 Results from Numerical Analysis 

The PCM layer is positioned at the center of the wall and the PCM layer 

thickness is varied between 0 and 5 cm with 0 cm being the baseline model 

(concrete only). The performance of the wall system where the primary 

component is normal concrete (NC) or light weight concrete (LWC) is 

considered. For each model, we calculate the following parameters over the 

second 24-hour period (starting at 10 AM): (a) the temporal change in 

temperature of the inner face, (b) EFTIF, and (c) PCME. We present details of the 

analysis and results only for Phoenix (to keep the discussions succinct) while the 

overall performance of the wall in both Los Angeles and Phoenix are compared at 

the end of this section.  

4.4.1 PCM for Phoenix 

In this section we present and discuss the results for Phoenix with the FE 

model boundary conditions as described before. The external temperature profile 

is shown in Figure 4-3 and the model layout is shown in Figure 4-1. PCM-A is 

considered an appropriate choice for Phoenix since its Solidus-Liquidus 

temperature range is within the desired indoor air temperature range.  

Temperature variation on the inner face of the wall 

Figure 4-4 shows the variation of the temperature of the inside face as a 

function of time for NC and LWC walls. The results shown here indicate the 

influence of PCM thickness and concrete type on the temperature of the inside 

face of the wall. With a much higher difference in temperature between the 
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outside ambient air and inside face air temperature as in the case of Phoenix, the 

maximum temperature differences between the baseline configuration and the 

wall with 5 cm PCM are 5
o
C and 4

o
C for NC and LWC walls respectively. 

Needless to state, this is a significant change, which will impact the energy 

efficiency of the structure. For the same ambient temperature impulse, the 

lightweight concrete walls with and without PCM result in lower temperatures, in 

the range of about 2
o
C, in the inside face as compared to normal concrete walls. 

This is an expected response accounting for the thermal characteristics of 

lightweight concrete systems.  For normal concrete, the maximum temperature 

difference on the inside face of the wall is between 3-4
o
C for all four scenarios 

(no PCM, 1, 3 and 5 cm PCM), and for the lightweight concrete wall, the 

temperature difference is about 2-4
o
C. Another point to note from these figures is 

the relatively linear reduction in temperature of the inside face with increase in 

PCM thickness. This is an indication that, in the chosen range of boundary 

conditions and material parameters, the PCM layer reaches its energy absorption 

capacity fairly quickly and further energy absorption is facilitated by an increase 

in PCM thickness. From a structural-thermal-cost viewpoint, a detailed 

optimization exercise for PCM type and thickness is necessary, which is the focus 

of an upcoming paper by the authors.   
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(a)                                                                    (b) 

Figure 4-4: Temperature variation as a function of time at the inside face of the 

wall for ambient conditions corresponding to Phoenix: (a) NC, (b) LWC. The 

results shown are for PCM-A. 

Figure 4-5 shows the temperature profile through the wall with respect to 

thickness (0 is the outside face and 20 cm is the inside face) for the times of day 

when the outside air temperature is at their maximum (4:00 PM) and the 

minimum (5:00 AM) values - a snapshot in time to compare the different 

scenarios. The temperature of the inside face is between 26
o
C (5 cm PCM) and 

34
o
C (no PCM) for the different thicknesses of PCM when NC is used and 

between 24
o
C (5 cm PCM) and 31

o
C (no PCM) when LWC is used. The thermal 

gradient is much steeper through the PCM (more so for the thicker PCMs). This is 

to be expected as the PCM layer absorbs energy and delays the heat flow into the 

inner layer of concrete. 
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(a) 

 

(b) 

Figure 4-5: Temperature variation through the wall: (a) NC, (b) LWC 
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Energy flow through the inner face of the wall 

Figure 4-6 depicts the energy flow through the inner face of the normal 

and lightweight concrete walls. It is observed that EFTIF decreases with 

increasing PCM thickness. The performance of LWC is better than NC by as 

much as 32% when a PCM layer thickness of 2 cm PCM used. The relationship 

between energy flow and PCM thickness is mildly nonlinear for both the cases, 

even though a linear approximation would suffice to explain the system response.  

For both NC and LWC, the EFTIF values for a wall with 5 cm thick PCM layer 

are only 40% of that of the baseline case. Based on the modeled energy flow and 

using the specified ambient outdoor and the desired indoor temperatures, this type 

of analysis can help determine the optimal PCM layer thickness, keeping other 

considerations also in mind.   

 

(a)                                                 (b) 

Figure 4-6: Energy flow through inner face versus PCM thickness: 

 (a) NC, (b) LWC 
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In Figure 4-7, EFTIF is represented as a function of time for the normal 

and lightweight concrete walls. Each graph shows two zones – one corresponding 

to the daylight hours when energy demand to cool the inside air is high, and the 

other corresponding to the night time when energy demand is relatively lower. As 

before, the energy differences between the cases with or without PCM are higher 

for normal concrete walls as compared to lightweight concrete walls. The drop in 

EFTIF values after 12 hours can be attributed to the higher IFAT values at night. 

Since the difference between the ambient and IFAT temperatures is lower at 

night, there is lesser thermal load to handle by the wall/PCM and hence lower 

EFTIF values are observed.  

 

(a)                                          (b) 

Figure 4-7: Energy flow through inner face with respect to time: (a) NC (b) LWC  

The effect of LWC is prominent only at lower PCM thicknesses. In other 

words, the EFTIF values are almost the same for 5 cm thick PCM regardless of 

the type of concrete. It is noticed that the difference in the EFTIF values between 
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walls with 1 cm and 3 cm thick PCM is larger than those between walls with 3 cm 

and 5 cm PCM. The latent heat storage capacity of the PCM becomes dominant at 

higher PCM thicknesses, making the concrete type less significant. This has direct 

implications in the choice of the host system. If it is possible (from an economy 

and structural standpoint) to have higher volumes of PCMs in the structural 

system, it is not imperative to choose a concrete with optimal thermal properties. 

In other words, it is unnecessary to incur extra cost on lightweight aggregates 

solely from a total energy flow standpoint if the PCM volume fraction in the wall 

system is going to be large enough to attain the required thermal characteristics. 

Analyses such as those presented in Figure 4-7 can help the designer to optimize 

the material design in such cases.  

Energy stored in PCM 

Figure 4-8 and Figure 4-9 show the cumulative sensible and latent heat 

energies respectively, stored in the PCM as a function of time. While the energy 

stored in the PCM (latent and sensible energy) increases with increasing PCM 

content, the contribution from sensible energy is overshadowed by the latent heat 

storage capacity of the PCM. The higher thermal resistance of LWC delays the 

heat flow reaching the PCM layer and hence the latent energy stored in the LWC 

wall with PCM is about 10% lower compared to the NC wall with PCM. The 

PCM absorbs energy from about 10 AM to 11 PM and then starts releasing the 

energy till about 8 AM. This behavior is much more pronounced: (a) as the PCM 

thickness increases, and (b) in NC compared to LWC. Lower PCM thicknesses 

result in lower energy storage capacities and hence the fluctuation in energy 
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storage is a function of the PCM capacity. With higher thicknesses, more energy 

can be stored in the PCM as a result of which the energy storage and release is 

much more distinct. Again, since the thermal resistance of LWC is more than NC, 

PCM in NC is subjected to increased heat transfer, which causes more fluctuation 

in energy storage in the PCM in the case of NC. 

 

(a)                                                            (b) 

Figure 4-8: Cumulative sensible energy stored in PCM as a function of time: (a) 

NC, (b) LWC 

The temperature of PCM layer in the NC walls with 1 cm and 3 cm thick 

PCM layers is entirely above the Liquidus temperature throughout the time 

period, and hence there is no change in the latent heat energy stored in the PCM 

as shown in Figure 4-9. However, for the wall with 5 cm thick PCM (NC), the 

latent heat energy continues to increase for the next 21 hours before leveling off.  

The LWC scenario shows that the 5 cm thick PCM at the end of the 24-hour 

period has additional energy storage capacity (see Figure 4-9). As stated earlier, 

lower thermal resistance of the NC leads to higher heat flow across the PCM 
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layers embedded in a NC wall. Hence, the amount of energy stored in the PCM is 

higher for wall with NC than for the wall with LWC, i.e., the PCM layer in a NC 

wall gets saturated earlier than a similar layer in LWC. 

 

            (a) (b) 

Figure 4-9: Cumulative latent energy stored in PCM as a function of time: (a) NC, 

(b) LWC 

Figure 4-9 also shows the maximum PCM efficiency (PCME). The 

horizontal lines in these figures show the total latent heat energy capacity of the 

PCM layer. PCME is approximately 100% for both cases for the walls with 1 and 

3 cm PCM thicknesses. Only the case with 5 cm thick PCM shows less than 100% 

efficiency indicating that there is excess latent heat storage capacity. However, at 

later times, the efficiency of the wall with 5 cm thick PCM layer also approaches 

100%. This approach shows that, based on the desired IFAT and the desired 

reduction in HVAC costs (which depends on the energy flow across the wall), 

optimization of PCM thickness can be accomplished.  
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Effect of changing the PCM location 

In the first step, the role of PCM location is studied. The PCM layer is 

shifted close to the outside face, referred to as PCM-Outer, or close to the inner 

face, referred to as PCM-Inner (Figure 4-1(c)). The FE model boundary and initial 

conditions are the same as that used in the centrally-placed PCM models. Table 

4-3 summarizes the results for Phoenix (PCM-A).  

Table 4-3: EFTIF Summary Table for Phoenix (PCM-A) 

PCM-A 

Thickness 

(cm) 

PCM-Outer PCM-Center PCM-Inner 

EFTIF 

(kJ) 

% 

decrease 

EFTIF 

(kJ) 

% 

decrease 

EFTIF 

(kJ) 

% 

decrease 

0.0 4912 - 4912 - 4912 - 

1.0 4372 11.0 4381 10.9 4379 10.9 

2.0 3886 20.9 3896 20.9 3883 21.0 

3.0 3374 31.3 3305 33.3 3189 35.1 

4.0 2673 45.6 2560 48.5 2425 50.6 

5.0 1989 59.5 1935 61.1 1896 61.4 

In this case, there is very little difference in EFTIF when the PCM location 

is moved around. The perceptible differences (about 4-5 percentage points) are for 

the model with PCM layer thicknesses of 3-4 cm. In this case, the placement of 

PCM layer closer to the inside face of the wall is marginally more energy 

efficient. This is because of the delayed exposure of the PCM layer to the heat 

energy that is flowing into the wall. The thermal mass of a larger portion of 

concrete that facilitates this delayed exposure results in the PCM exposure 

starting only after a considerable part of high energy daylight hours. This results 
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in the PCM layer consuming more time to get fully saturated (i.e., complete the 

phase transition which stores the energy), thereby reducing the energy flow 

through the inside face of the wall. While this aspect does not get utilized for the 

1 cm thick PCM case (layer saturation happens fast because of the low thickness), 

for the large PCM layer thickness (5 cm), complete layer saturation might not be 

happening. 

4.4.2 PCM for Los Angeles 

Table 4-4 summarizes the results for Los Angeles (PCM-B) using the 

same model and similar BCs with weather data from Los Angeles (refer Figure 

4-3).  For both locations similar results are seen. Changing the PCM location does 

not affect the EFTIF incredibly. Energy savings obtained in a PCM embedded 

wall with respect to a pure concrete wall are lower than those obtained for 

Phoenix (PCM-A).  

Table 4-4: EFTIF Summary Table for Los Angeles (PCM-B) 

PCM-B 

Thickness 

(cm) 

PCM-Outer PCM-Center PCM-Inner 

EFTIF 

(kJ) 

% 

decrease 

EFTIF 

(kJ) 

% 

decrease 

EFTIF 

(kJ) 

% 

decrease 

0.0 1636 - 1636 - 1636 - 

1.0 1494 8.7 1494 8.6 1488 9.1 

2.0 1363 16.7 1357 17.1 1342 18.0 

3.0 1227 25.0 1215 25.7 1201 26.6 

4.0 1089 33.4 1079 35.0 1069 34.6 

5.0 961 41.3 954 41.7 947 42.1 
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4.4.3 Ad-hoc optimization for thermal efficiency 

In order to better understand the role of PCM in achieving thermal 

efficiency, an ad-hoc optimization procedure is carried out where the PCM 

thickness is fixed and the properties are varied. Only NC is used in this 

optimization exercise.  

Effect of changing PCM properties 

In the second step, ad-hoc optimization is carried out to determine the 

optimal PCM material property combination (for the centrally placed PCM) 

assuming that the material parameters (identified in Table 4-5 with column 

heading as Original) can be varied ±10%. The Phase change temperature (PCT) 

range, thermal conductivity, mass density, latent heat capacity (LHC) and specific 

heat capacity (SHC) are the parameters that are subjected to this change. It is 

evident that the energy efficiency can be improved by reducing the difference 

between the inside wall temperature and IFAT. Typically this can be achieved by: 

(a) decreasing the thermal conductivity (or increasing thermal resistance) that 

reduces the energy flow into the inside face of the wall, (b) increasing the mass 

density, latent heat capacity and specific heat capacity that all increase the ability 

of the PCM to store and release larger amount of energy, and (c) increasing the 

PCT range. This idea is used in the ad-hoc optimization scheme reported here. For 

the 1 cm PCM case, the original configuration is compared against a 

configuration where the PCT, LHC, SHC and density values are increased by 

10% and conductivity is decreased by 10% (identified as Combination 1-1). 

Similarly, for the 5 cm PCM case, the original configuration is compared against 
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two configurations - in Combination 5-1 the PCT, LHC, SHC and density values 

are increased by 10%, and conductivity is decreased by 10%; Combination 5-2 is 

the same as Combination 5-1 except that the PCT values are left unchanged (same 

as the original configuration). The results are summarized in Table 4-5.  

For the 1 cm thick PCM layer (Combination 1-1), overall energy decrease 

is hard to achieve with the range of available values. An insignificant reduction 

(2%) is achieved by decreasing the thermal conductivity, and increasing the mass 

density, LHC, SHC and PCT. However, with the 5 cm thick PCM layer 

(Combination 5-2), better thermal efficiency is achieved.  

A much larger decrease in EFTIF, of 17%, is observed. Understandably, 

changing the properties of PCM in a thicker layer is more effective. When the 

PCM efficiencies are determined in accordance with Equation 5, the Combination 

5-1 shows a PCME of only 69% showing that the latent energy storage capacity is 

not fully utilized in this case. This is because the phase change temperature (29.7-

34.1
o
C) is higher in this case as compared to the original scenario (27-31

o
C). In 

contrast, the original and Combination 5-2 cases have lower PCTs, resulting in 

PCMEs of 98% and 91% respectively.   



 

 

 

5
1
 

Table 4-5: Ad-Hoc Optimization for Centrally Placed PCM Model (Phoenix).  

The beneficial combinations as far as EFTIF is concerned, is shaded. 

 

Original 

Combination 

1-1 

Original 

Combination 

5-1 

Combination 

5-2 

PCM-A Thickness (cm) 1.0 1.0 5.0 5.0 5.0 

PCT (
o
C) 27-31 29.7-34.1 27-31 29.7-34.1 27-31 

PCT (K) 300-304 302.7-307.1 300-304 302.7-307.1 300-304 

PCT range (
o
C or K) 4.0 4.4 4.0 4.4 4.0 

Conductivity (W/m 
o
C) 0.2 0.18 0.2 0.18 0.18 

Density (kg/m
3
) 800 880 800 880 880 

LHC (kJ/kg) 169 185.9 169 185.9 185.9 

SHC (J/kg 
o
C) 2400 2640 2400 2640 2640 

EFTIF (kJ) 4381 4286 1935 2025 1603 

Normalized EFTIF 1.0 0.978 1.0 1.047 0.828 
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Figure 4-10 shows the temporal performance of Combination 5-2 with 

respect to EFTIF, temperatures in the outside and inside faces, and the 

temperatures at the extremities of the PCM layer. After the initial 24-hour period 

(which is not shown in the graph because the analysis uses the second 24 hours as 

explained earlier), heat flows consistently into the inside enclosure, the magnitude 

of which varies between 24 kJ and 104 kJ.  

The peak flow occurs during daytime hours, drops off at the start of the 

night time hours and gently increases thereafter. One important feature to note in 

this graph is the closeness of the values of the inside wall face temperature and 

the temperature of the inner interface of the PCM-concrete layer. This is ample 

demonstration of the effect of energy storage in the PCM whereby the inner face 

temperature does not go up significantly. The scenario where the inner face 

temperature closely follows the IFAT would be the ideal one as far as 

minimization of HVAC energy input is concerned. The finite element framework 

described in this paper is capable of simulating a variety of possible scenarios, 

and arriving at sensible structural-thermal-economic decisions. 
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Figure 4-10: Temperature at various locations in the wall and energy flow as a 

function of time for Combination 5-2 

The temporal change in EFTIF for Combinations 5-1 and 5-2 along with 

that of the original case are presented in Figure 4-11(a), which shows the reduced 

EFTIF for the Combination 5-2. The temperature difference between the original 

configuration and Combination 5-2 varies between 0.1 - 1.0 ºC and it is even 

larger between Combination 5-1 and 5-2 as seen from Figure 4-11(b). The higher 

temperatures in the inside face for the original and Combination 5-1 

configurations result in higher thermal gradients at the inside face of the wall and 

hence higher energy flow through the wall. 
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(a) 

 

(b) 

Figure 4-11: Comparison of: (a) energy flow through the inside face (EFTIF), 

and (b) inside face temperatures for Combinations 5-1 and 5-2 
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5.0  USE OF MULTIPLE PCMS AND GYPSUM WALLBOARDS 

EMBEDDED WITH PCM 

This chapter discusses the incorporation and placement of multiple PCMs 

in a concrete wall and their effect on output parameters. Also discussed is the 

incorporation of gypsum wallboards (WB) with varying percentages of PCM D 

(0% - 30%) placed in a concrete wall and its comparison to a case where pure 

PCM D is used as a separate layer in equivalent volumes. The typical cyclic 

behavior of a PCM under extended loading is also investigated. 

5.1 Weather Data 

The 24 hour variation in the inside face air temperature (IFAT) and 

ambient temperature can be seen in Figure 5-1. This temperature variation has 

been used for both the analyses. The equivalent temperature (instead of radiation 

flux) is calculated as in equation (2.4). This temperature value [43, 51] 

(Calculation shown in Table 5-1) is added to the actual ambient temperature 

profile (from Figure 5-1(a)) to obtain the applied ambient temperature profile 

applied to the wall (shown in Figure 5-1(b)). Here forth in the document, June 

14th will be denoted as a hot day, Jan 1st as a cold day and March 4th as a typical 

day. For comparison between multiple PCM layers weather data from both hot 

and cold Phoenix days have been used. For analysis of WBs and the equivalent 

volume of PCM D, weather data from a typical day only is chosen. The exterior 

convective heat transfer co-efficient, he is taken as 20W/m
2
-ºC and the interior 

convective heat transfer co-efficient, hint is taken as 5W/m
2
-ºC. 
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(a) 

 

(b) 

Figure 5-1: Ambient air temperature profile for Phoenix, AZ [43] (a) without 

radiation (b) with radiation 
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Table 5-1: Radiation-related Data 

Phoenix, Arizona (Day) 

Solar 

Insolation (S) 

Absorption 

Coefficient 
he S*α/he 

W-sec/m2/sec (α) W/ m2 -⁰C ⁰C 

June 14
th

 –Hot day 309.2 0.65 20 10 

January 1
st
 - Cold Day 135.42 0.65 20 4.4 

March 4
th

 - Typical Day 215.42 0.65 20 7 

5.2 Materials and Properties 

Tomlinson and Heberle [40] developed paraffin impregnated gypsum 

wallboards, the varying properties of which are listed in Table 5-2. The 

temperature of phase change of the PCM impregnated in the WB is from 25 - 29 

ºC and hence the typical day temperature profile is chosen for this analysis. 

Feustel and Stetiu [53] used the same WB properties to evaluate their latent 

storage performance. For the study of influence of multiple layers of PCM in a 

wall, PCM A and PCM C (which were also listed in earlier chapters) are used. 

Phase change temperature of PCM A is from 27–31 ⁰C; PCM C from 10-14 ºC 

and PCM D from 25-29 ºC. Hence the use of PCMs A and C together helps tackle 

the energy performance during hot and cold days. 

The standard wallboard thickness is 1.5cm. The equivalent volume of 

PCM D that will be used has been calculated with respect to the percentage of 

PCM in each WB layer and is converted into a change in the PCM D layer 

thickness (since area of wall remains constant - 1m high x 1m wide) as shown in 

Table 5-3. 
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Table 5-2 : Material properties used in the analyses 

Material 

Density Specific Conductivity Latent 

kg/m
3
 kJ/kg-C W/m-C kJ/kg 

Concrete 2400 0.750 1.450 -- 

PCM A 800 2.400 0.200 169 

PCM C 860 2.000 0.220 185 

PCM D 900 2.350 0.250 194 

Gypsum 

Wall 

board 

Conventional 

(No PCM) 
696 1.089 0.173 0 

10% PCM 720 1.215 0.187 19.3 

16% PCM 760 1.299 0.192 31.0 

20% PCM 800 1.341 0.204 38.9 

30% PCM 998 1.467 0.232 58.3 

Salyer and Sircar [34] conducted various fire retardation tests on different 

wallboards and concluded that wallboards with organic PCMs are potentially 

hazardous and will continue to burn after ignition under normal temperatures. 

They suggested that limiting the percentage of PCM in wallboards to 20% in 

order to reduce the hazard. 
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Table 5-3: Pure PCM D thickness 

PCM % PCM D Thickness (cm) 

10 0.15 

16 0.24 

20 0.3 

30 0.45 

100 1.5 

5.3 Model Details 

A concrete wall of height 1m is used, and it is assumed that the heat flow 

is unidirectional. The temperature of the inside face of the wall, depends on the 

outside air temperature, the effective thermal resistance of the wall and the 

temperature maintained by the air-conditioning or heating systems.  

In the first set of analysis, the effect on EFTIF of using multiple PCM 

layers embedded in a 20cm thick concrete wall was studied. In the first case PCM 

A is placed at 5cm from the outside face of the wall and PCM C is placed at 5cm 

from the inside face of the wall (here forth mentioned as Case AC-5). In the 

second case, PCM C is placed at 5cm from the outside face and PCM A is placed 

at 5cm from the inside face (here forth mentioned as Case CA-5) as shown in 

Figure 5-2. The results from the 5 layer model are compared to results from 3 

layer models (previously discussed). The 3 layer models discussed are Case A-3 

and Case C-3; when PCM A is placed in a concrete wall analyzed for a hot day 

and when PCM C is placed in a concrete wall analyzed for a cold day, 

respectively. 
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(a)        (b) 

Figure 5-2: (a) Plain concrete wall (b) Both PCMs placed separately (5 Layer 

Model). 

In the second set of analysis a 20cm thick wall has been analyzed using 

PCM impregnated wallboard (WB) of thickness 1.5cm, placed on the inside face 

of the concrete wall (see Figure 5-3). This analysis is run over a one week period 

where the ambient air temperature for any typical day of the week varies as shown 

in Figure 5-1. The efficiency of WBs is compared to an equivalent volume of 

PCM embedded as a single layer placed at the inside face of the wall. The amount 

of PCM percentage in the WB varies from 0%, 10%, 16%, 20% and 30% in the 

wallboards. An additional 1.5cm thick PCM D layer (100% by volume of WB) is 

also analyzed. 
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(a) (b) 

Figure 5-3: (a) Plain concrete wall (b) Concrete wall with centrally placed 

gypsum WB 

It is assumed that the inside air is maintained within a temperature of 15-

20 ºC on a cold day and 20-25 ºC on a hot and typical day (for Phoenix, Arizona). 

Other assumptions made for these analyses are: all the layers are homogenous and 

isotropic, thermal properties of concrete and PCM are constant, thermal expansion 

of concrete and PCM is negligible, natural convection effect inside the liquid 

PCM is ignored, all surfaces other than the outside and inside surfaces are 

insulated and no heat flow occurs in the y and z direction, i.e. heat flow is one-

dimensional. 
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5.4 Numerical Results 

Section 5.4.1, presents the use of multiple PCM layers in various 

placement combinations. In section 5.4.2, comparison is made between varying 

percentages (by volume) of PCM embedded in a 1.5cm thick gypsum board 

where the WB is placed at the inside face of the wall. 

5.4.1 Use of Both PCM A and PCM C Together  

In this section, two cases are discussed - when PCM A and PCM C are 

placed in the wall simultaneously so as to account for both hot and cold days in 

Phoenix, AZ. In both the cases, AC-5 and CA-5, the thickness of each individual 

PCM layer (PCM A and PCM C) is 50% of total PCM thickness. Only the total 

PCM thickness is referred to in the coming sections, instead of referring to 

individual PCM thicknesses. For cases A-3 and C-3 that are used for comparison, 

the thickness of PCM for the 3 layer model is same as thickness of both PCMs 

together in the 5 layer model. In the case for cold days it was observed that EFTIF 

and temperature of inside face of the wall stabilize after 7 days so results for only 

the 7
th

 day have been discussed for this case. 

Temperature variation across wall  

As can be seen from Figure 5-4 and Figure 5-5, the temperature of the 

inside face decreases with increase in PCM thickness for hot weather and 

increases with increasing PCM thickness for cold weather conditions which is the 

expected result, although the difference is most prominent during hot weather 

than during the cold weather. This is likely because of the fact that the ambient 

conditions for the hot weather day are much larger than the phase change 
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temperature of the PCM used to account for higher temperatures (PCM A) 

whereas the PCM D has a phase change temperature range much closer to the 

ambient conditions of a cold weather day. Position of the two PCMs with respect 

to each other (Case AC-5 and CA-5), does not affect the temperature on the inside 

face of the wall.  

 

Figure 5-4: Temperature of the inside face for Case AC-5 

 

Figure 5-5: Temperature of the inside face for Case CA-5 

Energy stored in PCM 

Figure 5-6 shows the energy stored by both PCM A and PCM C for the 

two different cases discussed. Since PCM A is suitable for a hot day and PCM C 

is suitable for a cold day, PCM A does not store any latent heat on a cold day and 

PCM C does not store any latent heat on a hot day. For a hot day the latent energy 

stored does not change for PCM A after the first few hours i.e. it reaches 
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maximum latent heat capacity, and hence the efficiency remains 100% at all times 

irrespective of its position within the wall. PCM C stores a maximum energy of 

52% of its total capacity when placed near the outside; but it stores about 78% of 

its total capacity when placed near the inside. Further investigations showed that 

only part of the PCM C layer is within its phase change temperature range in 

cases CA-5 and C-3 but in case AC-5 the entire layer is within the phase change 

temperature range at all times. Hence, PCM C stores highest amount of latent 

energy in case AC-5. 

 

(a) (b) 

  

 

(a) (b) 

Figure 5-6: Cumulative latent energy stored in (a) PCM A and (b) PCM C 

for Case AC-5; and in c) PCM A and (d) PCM C for Case CA-5 
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Energy flow into and out of the room 

Figure 5-7 shows EFTIF variation over time for both cases. It is seen that 

increase in PCM thickness reduces EFTIF. Also, placement of either PCM with 

respect to the other does not affect EFTIF. Each graph shows two zones 

corresponding to daylight hours when energy demand to cool the inside air is high 

and nighttime when energy demand is relatively lower. The drop in EFTIF values 

after 12 hours can be attributed to the increase in the IFAT values at night. Since, 

the difference between the ambient and IFAT temperatures is lesser at night, the 

work done by the wall/PCM is lesser and hence lower EFTIF values are seen. 

Lower values of EFTIF are seen in walls with PCM than in a pure concrete wall 

as expected. An EFTIF decrease  of up to 200 kJ (51%) can be obtained by adding 

PCM for hot days and a decrease of up to 90 kJ (54%) for cold days. 

 

(a) 

 

(b) 

Figure 5-7: EFTIF (a) for Case AC-C; (b) for Case CA-C 



 

66 

 

Table 5-4 and Table 5-5show EFTIF and savings over a 24 hour period. 

Energy savings increases as total PCM thickness increases, as expected. This 

shows that the placement of each PCM relative to each other does not affect the 

EFTIF values, and neither does placing both PCMs together or apart affect the 

EFTIF values. Therefore, the EFTIF values are a function of PCM thickness and 

material properties only. 

Table 5-4: EFTIF and Energy savings for a Hot Day 

Hot day - 14th June 

PCM 

thickness 

CA-5 AC-5 

Separate Separate 

EFTIF Savings EFTIF Savings 

kJ % kJ % 

0 6932 
 

6932 
 

0.5 4829 30.3 4829 30.3 

1 4599 33.6 4600 33.6 

2 4200 39.4 4200 39.4 

3 3864 44.3 3864 44.3 

As seen in Table 5-4, for a hot day, energy savings in the 5 layer model is 

slightly less than that of the wall with only PCM A of the same thickness 

irrespective of position. This is an expected result since in a 5 layer model the 

thickness of PCM A only is half as that in a 3 layer model, which means the 

energy storage capacity also becomes half of that of a 3 layer wall. In this case 

contribution from PCM C is neglected since it does not store any latent heat. 
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Table 5-5 shows results for a cold day when PCM C is active and PCM A is 

mostly redundant. In this case, slightly different results are seen, the energy 

savings of a 5 layer model are higher than that of a 3 layer model. To explain the 

results better, only a 3cm PCM layer model is chosen for each case, which is 

discussed in detail. 

Table 5-5: EFTIF and Energy savings for a Cold Day 

Cold day - 1st Jan 

PCM 

thickness 

CA-5 AC-5 

Separate Separate 

EFTIF Savings EFTIF Savings 

kJ % kJ % 

0 2911   2911   

0.5 2028 30.3 2028 30.3 

1 1931 33.7 1931 33.6 

2 1763 39.4 1764 39.4 

3 1622 44.3 1625 44.2 

Discussion for a 3cm thick PCM Layer 

Figure 5-8 shows energy flow at different points across the wall thickness 

for Cases CA-5 and AC-5. The total energy flowing into and out of the wall at the 

outside face is higher for case CA-5 than for case AC-5. The layer of PCM C 

when placed near the outside retards the flow of energy across itself. This is effect 

is not seen when the PCM A layer is placed near the outside for a cold day. 
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(a)  

  

(b) (c) 

Figure 5-8: Energy flow at different points across wall thickness (a) Case C-3 

(b) Case CA-5 (c) Case AC-5 

These results can be attributed to the placement of PCM C within the 

concrete layer. When any PCM is placed closer to the inside face of the wall it 

will tend to affect the EFTIF more than when compared to PCMs placed near the 

outside face because the parameter of interest is the energy flow through the 

inside face. The thermal conductivity of PCM A is lower than that of PCM C and 

the specific heat capacity of PCM A is higher than that of PCM C. PCM A acts as 
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a thermal barrier letting in lesser heat to the PCM C layer in the CA-5 case. 

Hence, case CA-5 shows lower EFTIF values.  

Energy savings in almost all the cases considered are not significantly 

different. Thus it can be concluded that the placement location of PCM does not 

influence EFTIF significantly. A slightly better case would be when the PCM 

with a higher phase change temperature is placed near the inside face and the 

PCM with lower phase change temperature is placed near the outside face (Case 

CA-5). In any case, even if a 3 layer model might be better suited for a particular 

day, to account for all possible weather models, a multiple PCM layer wall model 

with two PCMs placed together should be considered. 

In other words PCMs can be placed in any order at any location within the 

concrete wall as feasible for construction. In the previous chapter, the effect of 

placement a single PCM layer on the outside and inside faces of a concrete wall 

was evaluated and similar conclusions obtained. Combining both results we can 

say that placement of PCMs at any location from outside face of the wall to the 

inside face would not affect EFTIF in any way. In such cases precedence should 

be given to construction constraints. 
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5.4.2 Comparison between WB and Pure PCM D 

Temperature variation across wall  

Figure 5-9 shows variation of temperature at the inside face of the wall 

with respect to time. Using a 1.5cm pure PCM D layer shows lower inside face 

temperatures than using WBs, which in turn shows lower inside face temperatures 

than using pure PCM D layers of same volume. At nighttime, concrete wall with a 

1.5cm PCM D layer shows higher inside temperatures than WB’s which in turn 

show higher inside temperatures than equivalent volumes of PCM D and vice 

versa during daytime.  

It can be clearly seen that although the peak ambient air temperature is 

reached after 6 hours (refer Figure 5-1), the peak temperature at the inside face of 

the wall is reached after 12 hours in case of a plain concrete wall, after 12-15 

hours when WB is placed in the wall, after 12-13 hours for equivalent PCM D 

volume and after 14-17 hours when a 1.5cm PCM D layer is used. This shows 

that the time lag for the temperature inside to rise above the IFAT temperature 

range is higher for wall with 1.5cm PCM D layer than for WB than for equivalent 

volumes of pure PCM. For a WB embedded with 30% paraffins, cost data was 

taken from [54]. Cost of wallboards embedded with PCM is $6.35/kg and cost of 

pure PCM is $4.41/kg. Therefore, using a 1.5cm PCM D layer would be the best 

case for energy conservation, and would be less expensive than using WBs, 

provided the embedment of pure PCM layer can be satisfactorily accomplished. 

This analysis does not consider any other structural effects that might favor the 

use of a wallboard. 
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Figure 5-9: Temperature variation inside the room with respect to time 

Energy flow into and out of the room 

Figure 5-10 (a) shows EFTIF when WBs and equivalent PCM are used 

with respect to % of PCM present. 0 on the % of PCM scale denotes a both plain 

concrete wall and conventional (0% PCM) WB. Use of 1.5cm layer of PCM D in 

a concrete wall shows a lower value of EFTIF than that obtained by use WBs, 

which in turn shows lower EFTIF than that for an equivalent volume of pure 

PCMs (0-30% PCM). This means that EFTIF decreases and savings increase as 

the percentage of PCM increases (refer Table 5-6).  

Figure 5-10 (b) shows variation of EFTIF over the second 24 hour period. 

The two different zones in the graph correspond to daytime and nighttime 

respectively. Higher energy flow is required to cool the inside during the day and 

lower energy flow is required to heat the inside at night. Highest ambient air 
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temperature on a typical day is seen after 6 hours and lowest temperature is seen 

after 19 hours. The maximum EFTIF during the daytime is seen after 9-11 hours 

(with a lag of 4 hours) for a concrete wall with WBs and pure PCMs. 

At nighttime close to zero EFTIF values are seen for all cases (viz. at 15-

17 hours for all cases), except for a 1.5cm layer of PCM D, where the lower 

EFTIF is seen after 18 hours and 12 hours. If we refer to Figure 5-9, it is seen that 

the temperature of the inside face of the wall approaches 25 ºC  (IFAT) at almost 

the same time as the EFTIF reaches zero. Since, the wall temperature reaches the 

IFAT temperature, no more energy is consumed. In the case of a 1.5cm layer 

PCM D, EFTIF reaches 0 at two points (viz. 12 and 18 hours) because the inside 

temperature remains almost constant at 25 ºC within this time period. Again this 

shows that the best case scenario would be using a 1.5cm pure PCM D layer. 

Table 5-6: EFTIF data summary for section 4.2 

% of PCM 
PCM embedded WB 

Equivalent volume of  

Pure PCM D 

EFTIF ( kJ ) Savings (%) EFTIF ( kJ ) Savings (%) 

Plain Concrete 757   757   

Wallboard 

(No PCM) 
604 20.1 N/A  N/A  

10% PCM 600 20.7 725 4.2 

16% PCM 593 21.7 722 4.5 

20% PCM 594 21.5 721 4.7 

30% PCM 591 21.9 719 5.0 

1.5 cm Pure 

PCM 
- - 484 36.0 
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(a) 

 
(b) 

Figure 5-10: (a) Energy flow into and out of the room with respect to thickness 

(b) Energy flow into and out of the with respect to time 
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Energy stored in PCM 

Figure 5-11 shows cumulative sensible and latent energy stored by PCM 

as a function of time. Increasing portion of the curve (during the day) indicates 

energy storage by PCM and the decreasing portion (at nighttime) indicates energy 

released by PCM to the inside. Latent energy is stored/released by the PCM only 

during peak hours of the day (i.e. between 3rd to 17th hours) when the 

temperature of the PCM reaches its phase change temperature. Hence, a change in 

the curve is observed. During the rest of the day (i.e. 0-3 hours and 17-24 hours) 

there is no change in the total latent energy stored in the PCM. The increment 

seen during the 0th hour is the net latent energy stored during the first 48 hours. 

The temperature of the PCM/WB layer is always within the phase change 

temperature range, but when pure PCM D is used in equivalent volumes the 

difference in temperature (ΔT) at any given time is always less than for the case 

when WBs embedded with PCMs are used. Since, magnitude of latent heat 

stored/released depends on ΔT at any given point, pure PCM layers absorb less 

latent energy compared to PCM embedded WBs at any given time. A PCM layer 

of 1.5cm stores higher amount of energy as compared to all the other cases. 
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(a) 

 

(b) 

Figure 5-11: (a) Sensible energy (b) Latent energy; stored in PCM with respect 

to time  
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Cyclic Nature over long periods 

A typical day ambient temperature is perfectly cyclic and varies above and 

below the phase change temperature of PCM D impeccably. Hence, these 

particular results have been used to show the cyclic nature of temperature and 

energy profiles. As can be seen from Figure 5-12, temperature of inside face, 

EFTIF and cumulative sensible energy stored (results not reported) have a 

repeating pattern after the first 24 hours which discounts the effect of all initial 

conditions on the analysis.  The slight irregularity at every 12-13 hours in the 

EFTIF graphs signifies the transition period where the ambient temperature falls 

below the IFAT temperature (Figure 5-1). In the EFTIF curve (Figure 5-12(b)) the 

irregularities at every 24-26 hours correspond to the period where ambient 

temperature rises above the IFAT temperature. Since, heat flow is hindered by the 

action of PCM, the inside temperature curve is relatively more smooth. 

  
(a) (b) 

Figure 5-12: Temperature of inside face (b) EFTIF with respect to time over 

one week 
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The only exception to the general rule appears to be the cumulative latent 

heats stored by the PCM shown in Figure 5-14. Latent heat stored in a day is 

higher than that released. Hence, the latent heat storage though cyclic, shows 

increments at every time step. The latent energy stored every 24 hours is the same 

after the first 24 hours (Figure 5-13(a)), which can be attributed to the initial 

conditions of the analysis. Hence, to negate this effect completely, results from 

only the second day have been discussed throughout the study.  

If the analysis is carried out for a longer period, after the PCM reaches its 

maximum storage capacity, the latent energy storage curve becomes perfectly 

periodic for all cases as seen in Figure 5-14. The time when the latent heat stored 

by PCM becomes perfectly periodic depends on the PCM mass, PCM thickness 

and method of PCM incorporation.  

 

Figure 5-13: Net latent energy stored in PCM each day 
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(a) 

 
(b) 

Figure 5-14: Latent energy stored in PCM with respect to time over 
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6.0  CONCLUSIONS & FUTURE WORK 

6.1 Conclusions 

A framework for studying the performance of thermal efficiency of 

external walls in buildings made using Portland cement concrete is developed in 

this paper. This framework allows for studying the effects of several structural 

and material design parameters commonly used in building analysis and designs - 

wall thickness, type of concrete, PCM type, thickness and location, and external 

and internal temperature profiles. By changing the material parameters, the design 

can be implemented for a variety of material types, subjected to wide ranging 

climatic conditions. Since multiple weather scenarios are considered in this study, 

the framework can be readily extended to include other desirable scenarios, so 

that a comprehensive solution for all seasonal weather patterns using multiple 

PCM types and layers can be developed. Further analysis to include the effects of 

using wallboards and multiple PCMs in buildings and changing wall thickness to 

better understand thermal efficiency needs are provided. The process is 

automated, aiding in increased processing speed. The computational framework 

requires very little computer memory and wall clock time (about 80 s for a 48 

hour simulation on a Pentium 4-E5440-2.83 GHz Workstation running Windows 

7) to obtain the response and hence can be used effectively in finding optimal 

solutions where hundreds of analyses are usually required. 
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The major findings from this study are summarized below: 

Effect of varying PCM thickness and location: 

i. The use of PCMs as a layer in the concrete wall helps the regulation of inside 

temperature. For the cases studied in this paper, larger PCM layers are 

beneficial for hotter temperatures where the latent heat capacity of the PCM 

is better utilized. Also, the increased thermal resistance and specific heat of 

lightweight concrete is found to provide a better thermal barrier compared to 

normal weight concrete. PCM incorporated lightweight concrete wall design 

is generally found to be a better methodology to reduce HVAC costs in hot 

climates. However this conclusion is not applicable when the PCM layer 

thickness is very large, in which case the wall type becomes inconsequential 

in the energy performance. 

ii. Temperature of inside face decreases with increasing PCM thickness when 

ambient temperature is higher than IFAT and increases with increasing PCM 

thickness when ambient temperature is lower than IFAT. EFTIF decreases 

and savings increase with increase in PCM mass for any model including 

PCMs.  

iii. The energy flow into the building decreases almost linearly with increasing 

PCM thickness for both the normal weight and lightweight concrete walls. 

For a 5 cm thick PCM layer in the wall, the EFTIF values are only about 

40% as that of the baseline case for both normal and lightweight concrete.   

iv. For the two geographic locations considered in this study and the boundary 

conditions, the overall thermal response is relatively insensitive to the 
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location of the PCM layer. Numerical results show a slightly better response 

for PCM placed closer to the inside face of the wall compared to other 

locations, especially for hotter climates.  

v. A set of optimal PCM properties for the desired ambient impulse can be 

obtained using the simulations described in this study. The ad-hoc procedure 

reported here works for a small number of design parameters. However, a 

formal design optimization framework (using formal nonlinear programming 

techniques such as gradient-based and population-based methods) will make 

it possible to find the best possible combination of the PCM and wall design 

parameters and allow for the inclusion of life-cycle analysis in the design 

process. 

Use of multiple PCMs and gypsum wallboards: 

vi. Effect of initial conditions can be seen during the first day of any analysis. 

Stable results/Perfectly periodic results can be seen only after the second day. 

Except for latent heat stored in PCM all other factors (EFTIF, inside 

temperature, sensible energy stored etc) are perfectly periodic after the first 

48 hours. Latent heat storage curve becomes perfectly periodic after PCM 

reaches its storage capacity. The only case where results stabilize after 7 days 

is when a cold day PCM is introduced into the model. 

vii. When using multiple PCMs in a concrete wall, neither use of single or 

multiple PCMs nor placement of the PCM affects output parameters studied. 

Hence precedence could be given to construction feasibility and artistic 

wishes. 



 

82 

 

viii. WBs show lower inside temp than concrete walls with pure PCM of 

equivalent volume, since lag for heat reaching inside face of wall is higher 

for wall with PCMs and PCM embedded WBs than for pure concrete wall.  

At nighttime for the given combination EFTIF touches 0, since inside 

temperatures reach the IFAT temperatures. 

ix. More savings is seen in case of WBs than in case of pure PCM of equivalent 

amount. Highest savings is obtained for the case of 1.5cm pure PCM. Since, 

cost of PCMs is less than that of PCM incorporated WBs, preference should 

be given to use of pure PCM layers than WBs. 

6.2 Future Work 

Current research work deals with PCMs and their applications in 

sustainable construction. The framework developed is preliminary and deals with 

specific cases. This framework can be advanced further for optimization of wall 

design (material properties, thicknesses) to minimize the lifetime costs. 

Minimization of energy consumption and material/maintenance costs are two very 

important considerations. The framework can also be further modified to include 

discontinuities in the geometry of the wall model like to include openings. 

Furthermore non-linear finite element analysis can be included into the 

framework to eliminate dependence on ABAQUS or any other FEA software. 

Moreover structural analysis needs to be done on selected wall segments to 

improve strength of the wall with PCM. 
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APPENDIX 

WALL DESIGN PROGRAM 
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Introduction 

The wall design program is used to carry out linear or non-linear two-

dimensional transient heat transfer analysis on any homogeneous or composite 

rectangular structure, along with optimization of the material thicknesses of the 

structure. The program is specifically made using Microsoft Visual Studio C++ 

(2010) dependent on ABAQUS V6.9-1. It cannot be run without the aid of 

ABAQUS or the ABAQUS output files. Only structures with uniform cross-

section in the z-direction can be analyzed, since the program considers only 2D 

surfaces. Heat is assumed to flow only in the x-direction (unidirectional). Any 

irregularities in the geometry of the model are ignored.   

 

Figure 6-1: WallDesign Program 
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Program Execution 

Input file name has to be specified as an essential command argument. 

Use the process below to enter the filename in the format mentioned. There are 

three options of the type of analysis that can be executed that include FE analysis, 

post process only and optimization. The FE analysis creates an ABAQUS model 

and then analyzes outputs the results of the given model. This is performed by 

using the “–fea” command in the command arguments. The post process only 

runs just the computational part of the energy analysis after the ABAQUS output 

file (*.dat) is already present. This is done by using the “–postprocess” command 

in the command arguments. The optimization of the model can be performed 

using the “–optimize” command.  

 

Figure 6-2: Procedure to start program 

 

Start Program 

Go to Project 
(menu bar) 

WallDesign 
Properties 

Configuration 
Properties 

Debugging 

Command 
Arguments 

ENTER 

"filename.txt -fea" 

or  

"filename.txt -postprocess"        
or  

"filename.txt -optimize" 

Go to Debug 
(menu bar) 

Start without 
debugging 

 (Ctrl + F5) 
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Algorithm 

1. Check number of input arguments and process accordingly 

2. Check total number of runs and loop through each run separately 

3. Open I/P and O/P files 

4. Read data from Input ("*.txt") file  

5. Write ABAQUS input file ("*.inp") 

6. Launch ABAQUS and analyze the input file 

7. ABAQUS creates the output file (“*.dat”) from the heat analysis 

8. Read data from ABAQUS output file ("*.dat")  

9. Start POST PROCESSING ABAQUS results 

10. Loop through all time steps 

11. Calculate the value of Energy flow through inside face (EFTIF) and 

Energy flow through outside face (EFTOF) 

12. Loop though all elements 

13. Calculate values for Latent energy, Sensible energy and Total energy 

stored in each element and sum them up for each time step 

14. Print all values of energy to the output file 

15. Optimize if appropriate (see the optimization section later) 

16. Close all files and terminate program 
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Program Organization 

OutputBanner : 

This function prints a banner with license, time and date of analysis on 

each output file. 

FEAOnly : 

This function runs all appropriate functions for carrying out the FE 

analysis and re-runs entire analysis for number of specified run times. 

PostProcessOnly : 

This function runs all appropriate functions for performing the post 

process analysis only and re-runs entire analysis for number of specified run 

times. 

Optimize : 

Runs all appropriate functions for carrying out the optimization process 

Interpolate :  

Function to interpolate between any given set of x-y values, when called. 

VerifyCommandLineInput : 

The function adds the non-optional input file name along with either “–

fea”, “–postprocess” or “–optimize” arguments to the program. The “–fea” lets FE 

analysis in ABAQUS take place. The “-postprocess” option lets you skip the 

ABAQUS analysis and carry out only post-processesing. The “–optimize” lets 
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optimization of the model to take place. Function also creates and opens the input 

file.  

OpenOutputFiles : 

Opens the ABAQUS input file (if needed) and all the output files. 

TerminateProgram  and CloseAllFiles : 

Closes all files and exits the program. 

ReadInputFile : 

Reads the input (“*.txt”) file and stores all data required. The function 

runs through the input file twice, the first time to set all the variable sizes and get 

a rough estimate of the number of parameters. During the second pass all the data 

is stored in the required structure. 

Analyze :  

According to the size of the elements given or the number of elements 

through thickness given in the input file, a mesh is generated (i.e. nodal and 

elemental data for the FE analysis in ABAQUS are generated) and the data is 

printed to the ABAQUS input file ("*.inp"). Also, the input file is completed with 

all time steps, material data and boundary conditions. After completion of the 

input file the ABAQUS command program is launched and the input file is 

processed to create the FE model and ABAQUS output file to use for post 

processing. 
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PostProcess :  

After ABAQUS analysis is complete, the function reads the nodal 

temperature and elemental heat flux data from the ABAQUS output file ("*.out") 

and stores it in an appropriate structure. 

ComputeStoredEnergy_Version2: 

This function carries out all the post-processing procedures mentioned in 

the next section. 

ErrorHandler : 

The error handler function detects any errors in the input file, analysis or 

the post-processes and exits the program with the appropriate error message. 

 POST PROCESSING  

After the ABAQUS analysis is complete and the ABAQUS output file 

gives the data for nodal temperature and heat flux at every point for all time steps, 

the Wall Design program stores and processes this data and creates another set of 

energy related outputs. The program runs a nested loop for each time step and 

each element. Energy stored in the form of sensible heat, latent heat and the total 

energy stored are calculated separately for each element, and then summed over 

all elements for each time step. Output from the program gives cumulative 

sensible energy, cumulative latent energy and step-wise total energy stored in 

each layer during each time step. From the output data, the maximum value of the 

latent energy stored in PCM is used to compute efficiency. 
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Energy flow through the inside and outside walls is calculated using the 

heat flux data from the ABAQUS output file. For each set of either outer or inner 

elements, the flux obtained is multiplied by the (outer or inner) surface area to 

obtain energy flow through each surface for every time step. If the flux is negative 

(i.e. heat flows into the wall on the inside and out of the wall on the outside) 

energy flow is also considered to be negative. The positive and negative energy 

flow through the (outer and inner) face of the wall is tabulated separately in the 

output file for every time step, summation of which gives us the total energy flow. 

OUTPUT FILES 

The program WallDesign creates 5 different output files. If the Debug 

Level of the program is set to 0, only the first two output files are generated. If the 

debug level is set to 1, all the output files are generated. 

1)  filename_Output.out 

This is a text file which stores Energy flow through outer and inner face 

and the energy stored by each layer for every time step. It also outputs the energy 

storage capacity of the PCM in a single line at the  bottom. 

2)  filename_OutputALL.xls 

This is an excel format output file that stores the below data only for the 

output increments desired. 

Time Step, Sensible heat stored, Latent heat stored, Energy flow 

through Inner face (EFTIF), PCM Efficiency (PCME), Outer face 

temperature, interface temperature's for all layers, inside face temperature, 
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temperature of nodes just before the inside face, Left end applied 

temperature., Right end applied temperature. 

3) filename_NT.xls 

This is an excel (2003-2007) format output file that stores the Nodal 

temperature data for the outer, inner and interface nodes for all time steps. 

4) filename_OutputEnergy.xls 

This is an excel (2003-2007) format output file which stores the 

cumulative values of sensible energy, latent energy, total energy stored in the 

PCM respectively. 

5) filename_Output1.xls 

This is an excel (2003-2007) format output file that stores the following 

data, for each element for each time step. Values output are only for the particular 

element. 

Time Step, Layer No., Element #, Initial Temp, final Temp, Delta T, 

Sensible heat stored, Latent heat stored, Total energy stored (cumulative), 

specific heat capacity, Latent heat per degree, mass of element.  
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INPUT FILE FORMAT 

*heading  

Analysis of concrete wall  

*units  

length, m  

mass, kg  

time, s  

temperature, K  

energy, J  

*parameter  

**name, value  

H, 1.0  (Height of model) 

T_CONCRETE, 5  (thickness of Layer 1)  

T_PCM, 5  (thickness of Layer 2 and so on) 

E_CONCRETE, 2 ( # of elements through thickness desired 

for Layer 1)  

E_PCM, 2 ( # of elements through thickness desired 

for Layer 2 and so on) 

*sel, value   

  

Constant value of element thickness  (to 

be used instead of value of # of elements 

through thickness) 

*debug level, 0 or 1 Value of 0 or 1 will decide which output 

files are to be printed 

*run, 1, Name1 # of sets of different BC's to be applied 

and name of file to be printed 

*dimensions  

**Height x Thickness  

H, T_CONCRETE+T_PCM Parameters used for denoting height and 

total thickness of model 

*table, name1, # of rows, # of columns, 

Time 

Time to be mentioned only if x-data is 

time 

x1, y1  
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x2, y2  

x3, y3 and so on  

*table, name2, # of rows, # of columns, 

Time 

Repeat for as many tables as required 

x1, y1  

x2, y2  

x3, y3 and so on  

*layer Define layer name, geometry and material 

properties 

**name, thickness, number of elements through thickness 

Concrete, T_Concrete, E_Concrete   

**density, conductivity or table name, specific heat or table name 

2400.0, 1.45, 750.00  

**latent, solidus temperature, Liquidus 

temperature 

 

0, 0, 0 

 (replace with 0 if no value is to be 

assigned), 

 Repeat layer data for all layers 

*initial temperature Initial condition of model 

1, value Run # and initial temperature 

*time steps  

**# of time steps, final time value, output increment start, output increment end 

48, 172800, 25, 48  Final time value should be in consistent 

units. Output will be displayed on for the 

increments mentioned 

*left end bc  

**Run #, type, table name, value 1, value 2 

* 1, mixed, Table1, 1.0, 20.0 If BC type is mixed, and temperature 

varies over time. Value 1 is the base value 

for which amplitude is specified, Value 2 

is heat transfer co-efficient for left end 

* 1, mixed, , 300.0, 20.0 If BC type is mixed, and temperature 

remains constant over time. Value 1 is the 

temperature, Value 2 is heat transfer co-

efficient for left end 
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*1,  ebc,  , 300.0 If BC type is EBC. Value 1 is the fixed 

temperature 

* 1, nbc, , 1000.0 If BC type is NBC. Value 1 is the value of 

heat flux (negative value indicates heat 

flow out of model), Value 2 not required 

 Repeat above line for all runs 

*right end bc  

** Run #, type, table name, value 1, value 2 

* 1, mixed, Table1, 1.0, 20.0 (same rules apply as in Left end BC) 

*1, mixed, , 300.0, 20.0  

* 1, ebc,  , 300.0  

* 1, nbc, , 1000.0  

 Repeat above line for all runs 

*postprocess  

stored_energy, PCM  

energy_flow, rightend  

 

*end Indicates last line of input file 
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SAMPLE INPUT FILE 

Model Details:  

Input file has been written for a 20cm thick concrete wall (1m in height) 

with a 1cm PCM layer placed at the center of the wall. Ambient air temperature 

acts on the outside face, i.e. mixed BC over 24 hours. 2 different sets of ambient 

temperature and inside temperature have been applied to the wall for 2 separate 

days. Conductivity and specific heat capacity of the PCM vary with temperature. 

Mixed BC of 300 K acts on the inside face (i.e. temperature of the air inside is 

constant at 300 K). Initial temperature of the wall for day 1 is 296 K and day 2 is 

280 K. Outside and inside heat transfer coefficients are 20 and 5 W/m
2
-K 

respectively. Output is desired only from 20-24 hours. Element size is fixed at 

0.5cm. 
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Figure 6-3: Model details for sample input file 
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INPUT FILE 

*heading 

Analysis of a 20cm Wall - 1cm PCM placed in center of wall 

*units 

Length, m 

Mass, kg 

Time, s 

Temperature, K 

Energy, J 

************************************************************* 

*parameter 

**name, value 

H, 1.0 

T_CONCRETE1, 0.095 

T_PCM, 0.01 

T_CONCRETE2, 0.095 

E_CONCRETE1, 2 

E_PCM, 2 

E_CONCRETE2, 2 

*sel, 0.005 

*debug level, 0 

*run, 2, Day1, Day2 

************************************************************* 
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*dimensions 

**Height x thickness 

H, T_CONCRETE1+T_PCM+T_CONCRETE2 

************************************************************* 

*table, CONDPCM, 4, 2 

0.2206 , 273 , 

0.2233 , 284 , 

0.214 , 288 , 

0.1838 , 309 , 

*table, SHPCM, 4, 2 

3670 , 275 , 

5400 , 287 , 

15000 , 295 , 

4200 , 305 , 

************************************************************* 

*table, CONV1, 24, 2, TIME  

3600 , 299.3775 

7200 , 301.1996 

10800 , 303.0223 

14400 , 304.6773 

18000 , 305.7222 

21600 , 306.4888 

25200 , 306.6441 
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28800 , 306.3554 

32400 , 305.4553 

36000 , 304.2772 

39600 , 302.7111 

43200 , 300.9779 

46800 , 299.0771 

50400 , 297.2337 

54000 , 295.3892 

57600 , 293.5441 

61200 , 292.0335 

64800 , 290.6887 

68400 , 289.73366 

72000 , 289.27805 

75600 , 289.26634 

79200 , 290.1446 

82800 , 291.9109 

86400 , 294.567 

************************************************************* 

*table, CONV2, 24, 2, TIME 

3600 , 281.3 

7200 , 282.4 

10800 , 284.1 

14400 , 284.6 



 

104 

 

18000 , 285.7 

21600 , 286.3 

25200 , 286.3 

28800 , 286.3 

32400 , 285.7 

36000 , 283.5 

39600 , 282.4 

43200 , 282.4 

46800 , 281.3 

50400 , 280.7 

54000 , 280.2 

57600 , 277.4 

61200 , 277.4 

64800 , 278 

68400 , 278 

72000 , 276.8 

75600 , 276.8 

79200 , 276.8 

82800 , 278.5 

86400 , 279.1 

************************************************************* 

*layer, 1 

**name, thickness, number of elements through thickness 
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CONCRETE1, T_CONCRETE1, E_CONCRETE1 

**density, conductivity or table name, specific heat or table name 

2400.0, 1.45, 750.0 

**latent heat, solidus temp, Liquidus temp 

0, 0, 0 

************************************************************* 

*layer, 2 

**name, thickness, number of elements through thickness 

PCM, T_PCM, E_PCM 

**density, conductivity or table name, specific heat or table name 

 1000, CONDPCM, SHPCM 

**latent heat, solidus temp, Liquidus temp 

 194000, 298, 302 

************************************************************* 

*layer, 3 

**name, thickness, number of elements through thickness 

CONCRETE2, T_CONCRETE2, E_CONCRETE2 

**density, conductivity or table name, specific heat or table name 

2400.0, 1.45, 750.0 

**latent heat, solidus temp, Liquidus temp 

0, 0, 0 

************************************************************* 

*initial temperature 
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1, 296.0 

2, 280.0 

************************************************************* 

*time steps 

**# of time steps, final time value, output increment start, output increment end 

24, 86400, 20, 24 

************************************************************* 

*left end BC 

** Run #, type, table name, value 1, value 2 

1, mixed, CONV1, 1.0, 20.0 

2, mixed, CONV2, 1.0, 20.0 

************************************************************* 

*right end BC 

** Run #, type, table name, value 1, value 2 

1, mixed, 300.0, 1.0, 5.0 

2, ebc, 290.0 

************************************************************* 

*postprocess 

stored_energy, PCM 

energy_flow, rightend 

*end 

 




