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ABSTRACT 

Alkali-activated aluminosilicates, commonly known as "geopolymers", are 

being increasingly studied as a potential replacement for Portland cement. These 

binders use an alkaline activator, typically alkali silicates, alkali hydroxides or a 

combination of both along with a silica-and-alumina rich material, such as fly ash 

or slag, to form a final product with properties comparable to or better than those 

of ordinary Portland cement.  

The kinetics of alkali activation is highly dependent on the chemical 

composition of the binder material and the activator concentration. The influence 

of binder composition (slag, fly ash or both), different levels of alkalinity, 

expressed using the ratios of Na2O-to-binders (n) and activator SiO2-to-Na2O 

ratios (Ms), on the early age behavior in sodium silicate solution (waterglass) 

activated fly ash-slag blended systems is discussed in this thesis.  

Optimal binder composition and the n values are selected based on the 

setting times. Higher activator alkalinity (n value) is required when the amount of 

slag in the fly ash-slag blended mixtures is reduced. Isothermal calorimetry is 

performed to evaluate the early age hydration process and to understand the 

reaction kinetics of the alkali activated systems. The differences in the 

calorimetric signatures between waterglass activated slag and fly ash-slag blends 

facilitate an understanding of the impact of the binder composition on the reaction 

rates. Kinetic modeling is used to quantify the differences in reaction kinetics 

using the Exponential as well as the Knudsen method. The influence of 
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temperature on the reaction kinetics of activated slag and fly ash-slag blends 

based on the hydration parameters are discussed.  

Very high compressive strengths can be obtained both at early ages as well 

as later ages (more than 70 MPa) with waterglass activated slag mortars. 

Compressive strength decreases with the increase in the fly ash content. A 

qualitative evidence of leaching is presented through the electrical conductivity 

changes in the saturating solution. The impact of leaching and the strength loss is 

found to be generally higher for the mixtures made using a higher activator Ms 

and a higher n value. Attenuated Total Reflectance-Fourier Transform Infrared 

Spectroscopy (ATR-FTIR) is used to obtain information about the reaction 

products. 
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1. INTRODUCTION 

As per the European Cement Association the global cement production in the year 

2011 is approximately 3.2 billion. Cement manufacture results in significant 

amounts of CO2 emissions. With the increased importance on sustainability the 

research on eco-friendly cements with fly ash and ground granulated blast furnace 

slag (GGBFS) has drawn global interest. 100% cement replacement in concrete 

can be achieved by alkali activation of alumino-silicate materials commonly 

referred to as Geopolymers. Most research is focused only with alkali-activation 

of fly ash or slag, however little information is reported on the combined use of 

both. The combination of fly ash and slag results in altering the chemical 

composition of the starting materials in order to develop beneficial properties that 

otherwise might not be possible. Thus this thesis focuses on explaining the 

influence of binder composition (fly ash, slag or both), activator solution 

concentration and curing conditions on the properties of slag and fly ash-slag 

blended systems. The influence of temperature on the kinetics of activation and 

hydration parameters is discussed through kinetic modeling. Detailed 

experimental studies have been conducted to understand the early age properties 

of the binder including its reaction kinetics and setting behavior. Reaction 

products formed in such systems have been characterized by means of advanced 

material characterization techniques. It is expected that an increased appreciation 

of the properties of these systems facilitated through this study would provide an 

impetus to the increased use of cement-free binder concretes.  
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1.1 Objectives 

The two main objectives of this study are: 

• To understand the early age behavior and the reaction kinetics of liquid sodium 

silicate (waterglass) activated slag and fly ash–slag blended systems.  

• To understand the influence of early age response on the mechanical properties 

and the reaction product formation in fly ash rich binders and to determine the 

optimal alkalinity needed to activate them under ambient conditions, while 

maintaining reasonable mechanical properties.  

1.2 Thesis Layout 

Chapter 2 provides a literature review on alkali activated binder systems. It 

includes a review of the reaction mechanisms of alkali activated binders and their 

properties. It also includes a review of the different testing techniques used in the 

characterization of alkali activated binders. Chapter 3 presents the material 

properties, mixture proportions, mixing procedure and test methods used to 

evaluate the properties of alkali activated slag and fly ash-slag blended systems.  

Chapter 4 details the early age behaviour and the reaction kinetics of waterglass 

activated slag and fly ash–slag blended systems. Setting time data is reported in 

this chapter that is used as a basis for identifying the optimal binder composition 

to be used for the isothermal calorimetric experiments. It also includes the 

isothermal calorimetry experimental procedure used to illustrate the influence of 

binder composition and the activator parameters on the reaction kinetics. The 

influence of temperature on the reaction kinetics of slag and fly ash rich blends 
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are also discussed in this chapter based on the hydration parameters. Finally, 

kinetic modeling is used to quantify the distinction in the reaction kinetics using 

different modeling methods and is compared to that of ordinary Portland cement 

hydration.  

Chapter 5 discusses the influence of curing duration, binder composition and 

activator characteristics on the compressive strength. The optimal alkalinity 

needed to activate the fly ash rich binders under ambient curing conditions are 

determined. The influence of leaching on strength reduction of highly alkaline 

activated systems is shown based on electrical conductivity measurements of 

solutions in which the specimens were leached. The reaction product formation in 

fly ash rich binders is studied using analysis of the ATR-FTIR spectra. A brief 

study on the influence of curing conditions on the compressive strength and the 

reaction product formation of heat cured fly ash rich binders is also reported.  

Finally, Chapter 6 provides a detailed conclusion of the studies carried out on 

alkali activated binder systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

2. LITERATURE REVIEW  

In this chapter the existing published work on the alkali activated fly ash, slag and 

other aluminosilicate materials as the binding medium is discussed. The early age 

properties of these materials are discussed along with the kinetics and chemical 

aspects of reaction product formation. 

2.1 Background and Overview 

Portland cement production increases global greenhouse gas emissions through 

the calcination of clinker in hydrocarbon heated furnaces. Traditionally, reduction 

in cement consumption has been attained by the use of industrial by products such 

as fly ash and ground granulated blast furnace slag (GGBFS) as partial cement 

replacement materials.  Nowadays with the increasing importance on 

sustainability, researchers have tried to use industrial by-products such as fly ash 

and slag as the sole binding material in concretes instead of partial replacement of 

ordinary Portland cement. Alkali activated binder concretes, also known as 

geopolymer concretes is a result of this approach. Due to their excellent 

mechanical properties, the use of geopolymeric materials in construction is 

gaining importance. This class of materials was originally developed in France in 

the 1980’s as the result of a search to develop new fire resistant building 

materials. In order to effectively apply these composites as engineering resources, 

it is essential to understand the properties, microstructure and performance 

characteristics of these materials. Numerous studies have been conducted over the 

last few decades to determine the composition-microstructure-property 
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relationships in such systems. This research will assist in a better understanding of 

the material and provide valuable information to adapt the material for specific 

applications in the infrastructure sector.  

2.2 Historical Developments of Alkali Activated Cement and Concretes 

Alkali was used as a component in the cementing material first by Kuhl (1930). 

He investigated the setting behaviour of mixtures of ground slag powder and 

caustic potash solution. Purdon (1940) did the first extensive laboratory study on 

cements consisting of slag and caustic alkalis produced by a base and an alkaline 

salt. Glukhovsky (1957) discovered that binders can be produced using calcium-

free aluminosilicate and alkali metal solutions. He referred the binders as “soil 

cements” and the corresponding concretes as “soil silicates”. Glukhovsky divided 

the binders into two groups: alkaline binding system Me2O–Me2O3–SiO2–H2O 

and alkaline earth alkali binding system Me2O–MeO–Me2O3–SiO2–H2O based on 

the composition of starting materials. In 1979, Davidovits developed a new type 

of binder similar to the alkaline binding system, using sintering products of 

kaolinite and limestone or dolomite as the aluminosilicate constituents. 

Davidovits (1991) adopted the term “geopolymer” to emphasize the association of 

this binder with the earth mineral found in natural stone. He stated that this type 

of materials virtually belongs to the alkaline binding system. Later, Krivenko 

(1994) pointed out the difference between use of alkali as an accelerator and 

alkali as a part of structure forming element in such systems. 
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2.3 Applications of Alkali Activated Binder Systems 

Alkali activated binder systems have diverse applications. The commercial 

products developed using alkali activated binder systems include structural 

concrete, masonry blocks, concrete pavements, concrete pipes, utility poles and 

concrete sinks and trenches. It is also used in the development of autoclaved 

aerated concrete, refractory concrete and oil-well cements. Most of the 

commercial applications of this system have taken place in the former Soviet 

Union, China, and some Scandinavian countries. Alkali activated binder systems 

have been found to provide high strength and good durability characteristics. The 

system is found to show better fire resistance [Glifford and Gillot 1996, Bakharev 

2005, Kumar et al 2006, Kong et al 2007], thus providing the potential to replace 

Ordinary Portland Cement concretes. Alkali activated concretes also have been 

used as repair materials due to their superior early age strengths (in most cases, 

depending on the activator and source material chemistry) and better bonding 

with the substrate material [Huet al. 2008]. Geopolymers are ideal for high 

temperature applications as they remain structurally stable at temperatures up to 

800°C [Rashad and Zeedan 2011]. When combined with carbon fibers to form a 

composite material, geopolymers proved to be cost-effective when compared to 

traditional carbon fiber/resin composites and performed better in structural and 

functional applications including those at high temperatures [Lin et al. 2008]. The 

need for “green” technologies has also created applications for geopolymers in 

areas involving immobilizing toxic metals and reducing CO2 emissions 
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[Yunsheng et al. 2007]. Other siliceous calcareous materials, such as red mud-slag 

[Gong and Yang, 2000, Pan, Cheng, Lu and Yang, 2002] and high-calcium fly ash 

can also be activated to form binding materials [Chindaprasirt et al. 2007], 

although not as effectively as slag. The application of alkali activated 

aluminosilicates mainly depends on the Si/Al ratio of the starting material. Table 

2.1 shows the possible application of alkali aluminosilicate materials. 

Table 2.1: Applications of alkali aluminosilicates [Bakharev 2006] 

Si/Al Application 
1 Bricks, ceramics, fire protection 

2 
Low CO2 cements, concrete, radioactive and 

toxic waste encapsulation 

3 
Heat resistance composites, foundry equipment, 

fiber glass composites 
> 3 Sealants for industry 

20<Si/Al<35 Fire resistant and heat resistant fiber composites 

  

2.4 Alkaline Activators 

Fly ash, slag and other alumina silicate materials need to be activated using alkalis 

to form the resulting binding material. Typically, caustic alkalis or alkaline salts 

are used as alkaline activators. Table 2.2 shows the classification of alkali 

activators into six groups according to their chemical compositions.  

Table 2.2: Classification of Alkali activators [Glukhovsky et al. 1980] 
Alkali Activator Chemical Formula 

Hydroxides MOH 
Non-silicate weak acid salts M2CO3, M2SO3, M3PO4, MF 

Silicates M2O· nSiO2 
Aluminates M2O· nAl2O3 

Aluminosilicates M2O· Al2O3·(2–6)SiO2 
Non-silicate strong acid salts M2SO4 

               M - Metal 
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This section provides details on the alkali hydroxides and silicates used as 

activators.  

2.4.1 Alkali hydroxides 

Chemical compounds composing of an alkali metal cation and the hydroxide 

anion (OH-) are called alkali hydroxides. They are the most widely used as 

activating agents. Sodium and potassium hydroxides are the most commonly used 

alkali hydroxides in the production of alkali activated binders. NaOH is 

reasonably cheap when compared to KOH and largely available making it an 

obvious pick for activation of alumina silicate materials. The use of high 

concentrations of NaOH or KOH as the activating agent has been reported to lead 

to the formation of zeolitic structures after an extensive period of moist curing or 

a brief period of heat curing.  The dilution of NaOH releases a large amount of 

heat, thus requiring special precautions to be taken. The carbonation and leaching 

of the reaction products activated using the alkali hydroxides is a concern due to 

the high alkalinity in the system; so there is a need to identify the optimal 

alkalinity when using alkali activated systems which is also one of the main 

objectives of this work. 

2.4.2 Alkali silicates 

Sodium silicate is a very common alkali silicate used as activating agent for alkali 

activated binder systems. Sodium silicate is the generic name for a series of 

compounds with the formula Na2O·nSiO2. Theoretically, the ratio n can be any 

number. Sodium silicates with different n have different properties that may have 
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many diversified industrial applications. Sodium silicates are available in solid as 

well as in liquid form. Liquid sodium silicates are commercially termed as 

waterglass. Solid sodium silicate consists of a chain of polymeric anions 

composed of corner shared [SiO4] tetrahedral. Different grades of sodium silicate 

are generally characterized by their silica modulus (SiO2-to-Na2O (or K2O) ratio), 

which varies from 1.6 to 3.3. Commonly available waterglass has a silica modulus 

of 1.60 to 3.85 and contains 36-40% solids. It has been reported that waterglass 

are the most effective activators for most alkali-activated cementing materials 

[Shi and Li 1989a, b]. NaOH is often added to a sodium silicate solution to lower 

the silicate modulus to a more desired value. This method allows production of 

waterglass of the optimal modulus and concentration directly. The major 

difference between sodium and potassium silicates as far as their properties are 

concerned is the viscosity. Potassium silicate solutions have a markedly lower 

viscosity than sodium silicate at the same silica modulus, thereby making 

mixtures workable at a lower activator-to-binder ratio. However, potassium 

silicates are more expensive making them less conducive for practical 

applications.  

2.5 Alkaline Activation of Aluminosilicate Based Binders 

2.5.1 Source materials 

The source materials used for making geopolymers based on aluminosilicates 

should be rich in silicon (Si) and aluminium (Al). There are three different models 

for alkali activated cements. The first type is obtained by the alkali activation of 
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materials comprising primarily of aluminium and silicon with low-calcium 

contents. An example of this is the alkali activation of Class F fly ash or 

metakaolin. In this case more severe conditions (high alkalinity and curing 

temperatures from 60 to 200 ºC) are required. The main reaction product formed 

in this case is a three-dimensional alkaline inorganic polymer, an alkaline 

aluminosilicate gel that can be regarded to be a zeolite precursor (Palomo et al 

1999, Palomo et al. 2004, Duxson et al. 2007). The second type is obtained by the 

alkali activation of calcium and silicon rich materials such as ground granulated 

blast furnace slag. In this case the main reaction product is a calcium silicate 

hydrate or C-S-H gel (Fernández-Jiménez 2000, Shi et al 2006), similar to the gel 

obtained during Portland cement hydration. A third group of materials has 

recently come to the attention of researchers and may prove to be of particular 

interest to the construction industry. This group is the result of alkali activating a 

blend of the previous two, i.e., a Ca, Si and Al rich (Yip et al. 2005, Palomo et al. 

2007a) material. 

2.5.2 Aluminosilicate structure and nomenclature 

The molecular structures of geopolymers are identified by the term polysialate. 

The term was coined as a descriptor of the silico-aluminate structure for this type 

of material. The network is configured of SiO4 and AlO4 tetrahedrons united by 

oxygen atoms (Figure 2.1) [Davidovits 1999]. Due to the negative charge of the 

Al tetrahedral in IV-fold coordination, positive ions must be present to balance 

out this charge. Positive ions (Na+, K+) must compensate the negative charge 
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which is the reason why alkalis are used as the activating agents. SiO4 structural 

units can be classified into seven types: Q0, Q1, Q2cy−3, Q2, Q3cy−3, Q3 and Q4. 

[Shi et al., 2006]. The superscripts on the Q represent the number of linkages 

between the given Si atom and neighbouring Si atoms by =Si–O–Si= bonds. The 

symbols Q2cy−3 and Q3cy−3 represent intermediate or branched SiO4 structural 

units. 

Figure 2.1: Aluminosilicate Structure [Davidovits 2005]. 
 
2.5.3 Geopolymerization process 

The geopolymerization process is an exothermic polycondensation reaction 

involving alkali activation by a cation in solution. The reaction leading to the 

formation of a polysialate geopolymer is shown below: [Davidovits 1999] 

2.5.3.2 

2.5.3.1  
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In the above equations, M is the cation used to activate the reaction which is 

typically introduced as either KOH or NaOH. Additional amounts of amorphous 

silica must be present in order to form either the polysialate-siloxo or polysialate-

disiloxo structures of geopolymers. The reaction for the polysialate-siloxo 

formation is also provided below as an illustration of how the two reactions differ 

[Davidovits 2005]. After the geopolymerization process is completed, the final 

geopolymer obtained is described by the empirical formula: 

Mn{-(SiO2)z-(AlO2)}n + H2O 

Here M again is a cation used to activate the reaction, n is the degree of 

polycondensation, and z = 1, 2, 3 for polysialate, polysialate-siloxo, and 

polysialate-disiloxo structures respectively. The step-wise reaction is shown in 

Figure 2.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Geopolymerization process [Duxon et al. 2007] 



13 
 

2.5.4 Alkali activation of fly ash 

Fly ash is a by-product of coal combustion, generally captured by electrostatic 

precipitators before the flue gases reach the chimneys of thermal power plants. It 

is the preferred supplementary cementitious material and has extensively been 

used to replace part of cement in concrete. Unused fly ash is usually disposed into 

landfills contributing to soil, water and air pollution [Palomo et al 1999, Duxon et 

al. 2007]. Fly ash is usually classified as low-Ca fly ash or Class F fly ash and 

high Ca fly ash or Class C fly ash. Class F fly ash is generally preferred for 

synthesis of geopolymer concretes due to the high availability of reactive silica 

and alumina. Alkali activation of fly ash takes place through an exothermic 

reaction with dissolution during which the covalent bonds (Si-O-Si and Al-O-Al) 

in the glassy phase pass through the solution.  

 

 

 

 

 

 

Figure 2.3: Mechanism of Gel formations in alkali activated  
fly ash binder [Jimenez et al 2005] 

 

The products generated from dissolution start to accumulate for a certain period of 

time (called the induction period) during which the heat release is really low. 
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Isothermal calorimetric studies (explained in a forthcoming section) are used to 

distinguish the extent of the induction period in systems proportioned using 

different activator and binder types, concentration, and dosages. A condensation 

of the structure is produced (a highly exothermal stage), which involves the 

creation of a cementitious material with a poorly ordered structure, but high 

mechanical strength. The product is an amorphous alkali aluminosilicate gel 

having a structure similar to that of zeolitic precursors. This formation of reaction 

product as a layer around the fly ash particles is explained as the mechanism of 

geopolymerization and is depicted in Figure 2.3 below. Most research reveals that 

the activation of fly ash with alkalis requires heat curing to gain reasonable 

mechanical properties. The type of solution used for the activation of the fly ash is 

essential in the development of reactions. When the alkali solution contains 

soluble silicates (sodium or potassium silicate), the reactions occur at a higher 

rates than when hydroxides are used as the activators. 

2.6 Alkaline Activation of Slag 

2.6.1 Reaction mechanism 

The reaction mechanism of aluminosilicates containing a calcium bearing 

compound differs from the geopolymeric reaction as explained in the previous 

section. It has also been reported that the type of calcium bearing compound in 

the starting material also play an important role in the alkali activation of such 

materials.  An example of such is the alkali activation of slag. Alkalis first attack 

the slag particles breaking the outer layer and then a polycondensation of reaction 
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products takes place. Wang et al. (2004) suggested that though the initial reaction 

products form due to dissolution and precipitation, at later ages, a solid state 

mechanism is followed where the reaction takes place on the surface of the 

formed particles, dominated by slow diffusion of the ionic species into the 

unreacted core. Alkali cation (R+) acts as a mere catalyst for the reaction in the 

initial stages of hydration as shown in the following equations, via cation 

exchange with the Ca2+ ions [Glukhovsky, 1994 and Krivenko, 1994]. 

=Si-O- + R+ ���� =Si-O-R 

=Si-O-R + OH- ���� =Si-O-R-OH- 

=Si-O-R-OH- + Ca2+ ���� =Si-O-Ca-OH + R+ 

The alkaline cations act as structure creators. The nature of the anion in the 

solution also plays a determining role in activation, particularly in early ages and 

especially with regard to paste setting (Fernández-Jiménez and Puertas 2001, 

Fernández-Jiménez and Puertas 2003).  

The descriptive model is shown in Figure 2.4. The final products of the slag 

reaction are similar to the products of cement hydration (C-S-H); the major 

difference being the rate and intensity of the reaction. Slag also exhibits 

pozzolanic activity in the presence of calcium hydroxide [Mindess et al. 2003]. 

Therefore a mixture of Portland cement and slag will have at least three 

component reactions; cement hydration, slag hydraulic reaction, and slag 

pozzolanic reaction [Feng, et al. 2004]. It has also been observed that the alkalis 

are bound to the reaction products and are not freely available in the pore solution 
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(this depends on the alkali concentration used, though), thereby negating the 

potential for alkali-silica reactivity. Drying shrinkage of alkali-slag cement pastes 

is reported to be considerably higher than that of Portland cement pastes [Krizan 

and Zivanovic 2001]. 

 

 

 

 

 

 
 
 
 

Figure 2.4: Reaction mechanism of alkali activated slag [F Jimenez 2000] 

Figure 2.5 shows the concept mapping of the likely products resulting from the 

alkaline activation of alumina silicates in the presence of a calcium source. 

Figure 2.5: Concept mapping of the reaction products [Yip et al 2005] 
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2.7 Alkaline Activation of  Aluminosilicate Blended Binders 

2.7.1 Alkali activation of fly ash-slag systems 

Fly ash-slag blends are chosen to obtain inexpensive, low energy, and 

environmentally friendly materials. By combining both the materials the 

disadvantages of one activation process can be balanced by the advantages of the 

other one. In fly ash-slag blended systems the early age strength has shown to be 

decent, however it displayed very little strength gain beyond 28 days. Strength 

improvements may be obtained by varying fly ash-slag ratios or by increasing the 

fineness of the slag [Smith and Osborne 1977]. The fly ash-slag ratio has 

remarkable influence on the mechanical strength of the cementing material. As 

slag content in the pastes increases, compressive strength increases. The addition 

of a little amount of hydrated lime considerably increases the early-age strength 

but slightly decrease the later-age strength of the activated fly ash-slag blends [Shi 

and Day 1999]. The strength also increases with increased alkalinity. The 

mechanical strength development of the fly ash-slag pastes activated with NaOH 

solutions is found to be affected more by the fly ash-slag ratio and the activator 

concentration [Puertas et al 2000]. At 28 days of reaction, a mixture of 50% fly 

ash-50% slag activated with 10 M NaOH solution and cured at 25°C develops 

compressive strengths higher than 50 MPa. When NaOH was used as an activator, 

the slag blended with Class F fly ash or with Class C fly ash did not show a 

significant effect on strength development. Both fly ashes had a significant effect 

on the strength development when powdered sodium silicate was used as an 
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activator. Proper amount of fly ash can reduce the cost and without negative 

contribution to the flexural strength. The fly ash-slag blended cements carbonated 

much faster than pure slag cement and OPC. Carbonation of these materials leads 

to micro cracking which in turn reduces the strength [Bijen and Waltje 1989]. The 

present study is mainly concerned with the influence of binder composition, 

activator parameters (n and Ms) and temperature on the reaction kinetics of 

waterglass activated fly ash-slag blended systems. 

2.8 Synthesis of Alkali Activated Binders 

Production of cement free binder concrete needs an alumino silicate rich material 

as the binder, alkali for activation and in certain cases heat curing to attain 

reasonable mechanical properties. The silicon and aluminium oxides in the source 

material react with the alkaline liquid to form the geopolymer paste.  

2.8.1 Curing conditions 

Different types of curing methods are employed, such as moist curing, heat curing 

(low (more than ambient) and at very high temperatures up to 800°C), and steam 

curing. These curing methods can also be combined, for example,  heat curing 

during the initial few hours and then placed under moist curing [Puertas et al. 

2000] for the remaining duration to determine the strength at various ages. 

Activation of aluminosilicate materials with alkalis generally requires heat curing 

for the formation of alkali aluminosilicate binders. A wide range of temperatures 

ranging from 40oC to 90oC have been reported in order to produce alkali activated 

binders with considerable mechanical properties [Hardjito and Rangan 2005] with 
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a general improvement in mechanical properties when higher temperatures are 

used. Alkali activation of aluminosilicates without the presence of a Ca-bearing 

compounds certainly need heat curing to obtain requisite mechanical properties. 

Hence, one of the objectives of this study is to identify the optimal alkalinity 

required to activate fly ash rich blends under ambient curing conditions. Alkali 

activated slag concretes can be moist cured owing to the potential for the 

formation of calcium silicate hydrates (C-S-H) as the reaction product, as 

explained earlier. Prolonged heat curing leads to shrinkage and consequent 

cracking and thus curing duration and temperature is dependent on the type of 

binder and activator used. The start of heat curing of the geopolymer concrete can 

be delayed for several days. Tests have shown that a delay in initiation of heat-

curing up to five days did not produce any degradation in the compressive 

strength. In fact, such a delay in the start of heat-curing substantially increased the 

compressive strength of geopolymer concrete. The above flexibilities in the heat-

curing regime of geopolymer concrete can be exploited in practical applications. 

Curing temperature has a positive effect in the strength increase at the early days 

of reaction. At later ages, the effect is reversed and strengths are higher when 

curing temperature is low. The influence of curing temperature in the 

development of the strength of the pastes is low compared to the influence of 

other factors such as the ratio of fly ash-slag and the activator concentration 

[Puertas et al 2000]. If all other factors remain constant, the temperature increase 

tends to result in a gain of mechanical strength. [Paloma et al 1999]. Thus the 
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temperature and time of curing significantly affects the strength in the case of 

alkali activated fly ash. A study on the effects on curing conditions (sealed (using 

aluminium foil) and open (dry and moist) on the compressive strength 

development of heat cured fly ash systems are shown in Chapter 5. 

2.9 Properties of Alkali Activated Binders 

2.9.1 Early age properties 

Setting time is one of the early age property of cementitious systems. The setting 

times of alkali-activated slag cement pastes depend on the nature of activators. 

NaOH and Na2CO3 activated slag cement pastes usually exhibited longer setting 

time than waterglass activated slag cements. The setting times usually decrease 

with the increase of activator dosage. The modulus of sodium silicate has a very 

significant effect on the setting times of sodium silicate-activated slag cements 

(Shi and Li 1989a, b, Bakharev et al. 1999a). Both the initial and final setting 

times of the pastes decrease with the increase in the silicate modulus when 

waterglass (liquid sodium silicate) is used [Cheng 2003]. Figure 2.6 shows the 

influence of activator dosage and silicate modulus on the setting time of 

waterglass activated slag. However when solid silicate is used the setting time 

increases with the increase in the silicate modulus. This is because both the 

dissolution rate and solubility of sodium silicate glasses decrease as the modulus 

of the solid sodium silicate increases 
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Figure 2.6: Effect of alkali dosage and silicate modulus on setting times of alkali-

activated slag (Shi and Li 1989b) 

 

Hydration is another important early age property of cementitious materials. 

Ordinary Portland cement hydration is usually a five stage process, as shown in 

Figure 2.7. The first stage is the initial dissolution (pre-induction stage) of cement 

grains when water is added. This stage is typically no more than few minutes. 

Following this is the dormant period (induction stage), in which the rate of 

reaction slows down significantly. This dormant period typically lasts for a few 

hours and allows for the transportation and placement of the mix. After this 

induction stage is the acceleration stage, where the rate of hydration accelerates 

rapidly and reaches a maximum within about 5-10 hours. The acceleration of the 

reaction is due to the formation of reaction products (C-S-H) [Shi 1999].  Post-

maxima the rate of hydration slows down gradually (deceleration and long-term 
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hydration stages), with the long-term hydration process being diffusion 

controlled.  

 
Figure 2.7: Rate of heat evolution during the hydration of OPC  

 
In alkali activated slag, the reaction product is predominantly C-S-H with low 

Ca/Si ratio. The reaction kinetics is influenced by the activator type, temperature 

and alkalinity of the activator. In waterglass activated slag a similar heat release 

response as seen for ordinary Portland cement hydration is observed as shown in 

Figure 2.8. The heat evolution peaks appears to be directly proportional to the 

alkali concentration and the time at which the heat evolution occurs decreases 

with alkali concentration. The cumulative heat of hydration increases by 

increasing the n modulus as well as the dosage of waterglass, but is still lower 

than that of Portland cement [Krizan and Zivanovic 2001]. It was found that the 

initial pH of activator solution has an important role in dissolving the slag and in 

promoting the early formation of some hydration products. The hydration of 

alkali-slag cements can be described by three models. The first model consists of 
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the case where there is only one initial peak and no further peaks. The second 

model includes one peak before the induction period and one peak after the 

induction period, and finally the third model includes two peaks before the 

induction period and one peak after the induction period. [Shi and Day 2004]. For 

NaOH activated slag the reaction takes place so quickly that the dissolution peaks 

are not captured. Figure 2.9 illustrates the reaction kinetics of alkali activated slag 

activated with NaOH. Temperature has a major influence on alkali activated 

systems. The reaction kinetics of fly ash rich blends is a complicated process 

since the fly ash particles reaction is accelerated only at higher temperatures. 

There is not much research that has been done in the case of blended alkali 

activated systems which is the focus of this research. 

 
 

 

 

 

 

 

 

 

 

Figure 2.8: Calorimetric response of waterglass activated slag showing similar 
calorimetric response to that of OPC hydration [Ravikumar and Neithalath 2012] 
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Figure 2.9: Calorimetric response of NaOH activated slag paste at different NaOH 

concentrations [Ravikumar and Neithalath 2012] 

2.9.2 Mechanical behavior 

Compressive strengths of alkali activated systems vary mainly because of the 

binders and the activators used. Concrete beams and columns made with activated 

fly ash have been tested for flexural and compressive strength and are reported to 

perform similar to or better than concretes produced with OPC. This might also be 

due to the better bonding of the reaction product with the aggregates. It has been 

proposed that the similar mechanical response could facilitate the use of similar 

structural design codes for alkali activated concretes as that currently exists for 

OPC concretes [Rangan et al. 2005]. Further study is required to learn the 

influence of binder composition and activator composition on the mechanical 

behaviour, of this new material. Limited studies on compressive behaviour of 

alkali activated fly ash concrete shows a similar compressive behaviour as that 
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seen for ordinary Portland cement concrete [Hardjito et al. 2005]. The modulus of 

elasticity of alkali activated slag concrete was in good agreement with that 

predicted from the equation specified in ACI 318-2011, however it was found that 

the alkali activated slag concretes had lower tensile capacity than those predicted 

from models for ordinary concretes [Yang et al. 2012].  

2.9.3 Reaction products and microstructure 

Fourier Transform Infra-Red (FTIR) Spectroscopy is an easy and quick method 

for analysis of reaction products in alkali activated binder systems. In infrared 

spectroscopy, infrared radiation is passed through a sample, where some of the 

radiation is absorbed and some transmitted. The resulting spectrum represents the 

molecular absorption and transmission, creating a molecular fingerprint of the 

sample. This makes infrared spectroscopy useful for identification of reaction 

products in these systems. Table 2.3 shows the common FTIR spectra peaks 

identified from literature for OPC and alkali activated pastes. 

Table 2.3: Attributing FTIR peak signals to typical bonds [Yu et al. 1999] 
 

  

 
 

Peak location (cm-1) Chemical bond characteristic of the signal 

3650 Hydrated Minerals (i.e. Ca(OH)2) 

3400 OH Stretching (H2O) 

1650 
S-O (Gypsum) 

H-O-H Bending (H2O) 
1430 C-O Asymmetric Stretching 

1035-1030 aluminosilicate bonding' 
1010-1000 Calcium Silicates 
960-800 Si-O, Al-O Stretching 

872 C-O Bending 
480 Si-O-Si and O-Si-O Bending 
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2.10 Summary 

This chapter reviewed previous studies conducted on alkali activated systems. 

The background information was used to help in the design, interpretation, and 

analysis of the experimental data. Hence, the discussions in this thesis build on 

many of the research referenced in this chapter. 
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3. MATERIALS AND EXPERIMENTAL METHODS 

This chapter describes the materials and methodology employed in the research 

presented in this thesis. The experimental methods used to make the samples are 

also explained in detail in this chapter along with a description of the analytical 

equipment employed. 

3.1 Materials 

The source materials used in this study are Class F fly ash conforming to ASTM 

C 618 and ground granulated blast furnace slag (GGBFS) Type 100 conforming 

to ASTM C 989, the chemical compositions of which are shown in Table 3.1. The 

reactivity of these materials, when activated with alkalis depends mainly on the 

CaO, SiO2 and Al2O3 content of the binders. Figure 3.1 shows the CaO-SiO2-

Al 2O3 ternary diagram indicating the location of the source materials.  

 
 Table 3.1: Chemical composition and physical characteristics  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chemical Analysis Class F Fly ash Slag 

Silicon Dioxide (SiO2) 57.96% 39.44% 

Aluminum Oxide (Al2O3) 23.33% 6.88% 

Iron Oxide (Fe2O3) 4.61% 0.43% 

Calcium Oxide (CaO) 5.03% 37.96% 

Sulfur Trioxide (SO3) 0.39% 2.09% 

Loss on Ignition (L.O.I) 0.45% 3.00% 

Sodium Oxide (Na2O) 1.28% 1.67% 

Others 6.95% 8.53% 

Density (g/cc) 2.28 2.9 
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Both these binding materials are rich in silica and alumina, which are required for 

the formation of the strength imparting phases in alkali activated binders. The 

silica-to-alumina (SiO2/Al 2O3) ratios were found to be approximately 2.48 and 

5.73 for fly ash and slag respectively. Apart from the high silica and alumina 

contents, slag also has a high CaO content (~38%) while the CaO content in fly 

ash is very low (5.03 %). 

 

 

 

 

 

 

Figure 3.1: CaO-SiO2-Al 2O3 composition of different materials 

Figure 3.2: Particle size distribution of fly ash and slag [Ravikumar, 2012] 
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The particle size distributions (obtained using a laser particle size analyzer) are 

shown in Figure 3.2. Particle size analysis shows that slag is finer than fly ash 

with 95% of particles finer than 30 µm compared to only 60% for fly ash. Fly ash 

and slag particle morphologies obtained using scanning electron microscopy is 

shown in Figure 3.3 (a) and (b) respectively. Fly ash has smooth spherical 

particles whereas slag is composed of angular particles of varying sizes. 

 
 
 
 
 
 
 
 
 
 
 

(a)                                                    (b) 

Figure 3.3: Scanning electron micrograph of a) Fly ash b) Slag (PCA 2000)  

 
3.2 Activator Parameters (n and Ms) 

The activator parameters that were chosen to be studied are the Na2O-to-binder 

ratio (n) and the SiO2-to-Na2O ratio (also called the silica modulus, Ms). Binders 

are fly ash, slag, or both in the case of fly ash–slag blends. Sodium silicate 

solution (waterglass) is used as the activating agent, with a Ms ratio of 3.26. 

NaOH was added to the waterglass solution to adjust the Ms values as desired for 

beneficial activation. The ratio n provides the total amount of Na2O in the mixture 

whereas the ratio Ms dictates the proportion of NaOH and sodium silicate solution 
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in the activator. The total alkali content in the mixtures were adjusted using the 

Na2O-to-total source material content ratios (n), several values of which were 

used for activation, depending on the source material combination. For example, 

if a mixture with an n-value of 0.05 and a Ms of 1.5 is required, for every 1000 g 

of binders, 50 g of Na2O and 75 g of SiO2 is required. Since waterglass is the only 

source of silica from the activator, 75 g of SiO2 can be obtained from 245 g of 

waterglass containing 98g of sodium silicate powder which has a Ms of 3.26. The 

waterglass would also provide 23 g of Na2O. The remaining 27 g of Na2O (50g – 

23g) is then obtained by the addition of NaOH. Table 3.2 shows the mixture a 

proportion calculation for n values of 0.05 and 0.1 for three different Ms (1, 1.5 

and 2) for 1000g of binders and a liquid-to-powder ratio of 0.5. The liquid 

consisted of the water added (a part of which was used to prepare the NaOH 

solution) and the water present in waterglass. The powder part consisted of the 

binders (fly ash, slag, or both), solid fraction of waterglass and Na2O from NaOH. 

Table 3.2: Sample Mixture Proposition  

n Ms Binders (g) Waterglass (g) NaOH (g) Water (g) 

0.05 

1 1000 163 45 332 

1.5 1000 245 35 295 

2 1000 327 25 258 

0.1 

1 1000 327 90 264 

1.5 1000 490 70 190 

2 1000 653 50 117 
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3.3 Mixing Procedure 

The NaOH solution used to reduce the activator Ms was prepared by dissolving in 

water and added to the required amount of water glass. The resulting solution was 

then allowed to cool down to the room temperature for about 2 hours. The binders 

(fly ash, slag, or both) were first dry mixed together in a laboratory mortar mixer. 

The prepared activators are then mixed with the starting materials to prepare 

pastes. For mortars, fine aggregate (sand) was added to the source materials to 

obtain a 50% sand volume before the activators were added. They were mixed in 

a laboratory mixer for approximately 2 minutes until a homogeneous mixture is 

obtained. The mixtures were then cast in 50 mm cube molds for compressive 

strength testing. For the calorimetric and setting time studies, paste mixtures were 

used as soon as they were prepared. The liquid-to-powder ratio of 0.40 and 0.50 

were used.  

3.4 Early Age Tests 

3.4.1 Setting time 

The initial and final setting times of alkali activated pastes were determined using 

the method prescribed in ASTM C191 (Vicat needle method). Figure 3.4 shows 

the Vicat needle that has been used for determining the setting times.  
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         Figure 3.4: Vicat Needle 

3.4.2 Isothermal Calorimetry  

Isothermal calorimetry has been shown to be a useful technique to study the 

hydration of cementitious systems [Wadsö, 2003], particularly during the first 72 

hours of hydration. Isothermal calorimetry has the advantage of being able to test 

a material at a specific temperature. Typically, isothermal calorimetry is used to 

investigate the major thermal peak that occurs during the acceleration phase of the 

hydration process. The experiments were carried out in accordance with ASTM C 

1679. Sodium hydroxide (NaOH) was mixed in water and allowed to cool to 

ambient temperatures. It was then mixed with sodium silicate solution 

(waterglass) to form the activator of desired Ms. The pastes were mixed externally 

and loaded into the isothermal calorimeter. The time elapsed between the instant 

the activating solution was added to the powder and the paste loaded into the 

calorimeter was around 2 minutes. This method of mixing was employed to avoid 

the large instantaneous heat release associated with alkali dissolution in water. 
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The tests were run for 72 hours with the calorimeter set at three different 

temperatures (25oC, 35oC, and 40oC). 

 

 

 

 

 
 
 

Figure 3.5: Isothermal Calorimeter 

In the cases where temperatures different from the ambient temperature were used 

for isothermal calorimetric experiments, requisite amounts of the source materials 

and the activator were placed inside the calorimeter chamber without being mixed 

for an extended duration (typically overnight) so as to equilibrate at the desired 

temperatures. Figure 3.5 shows the isothermal calorimeter used for this study. 

3.5 Hardened Mortar Tests 

3.5.1 Determination of Compressive Strength  

The compressive strengths of the pastes and mortars were determined in 

accordance with ASTM C 109. The compressive strengths of the waterglass 

activated cubes at several ages were determined by testing at least three 

specimens from each mixture at the desired ages. Heat cured cubes were let to 

cool down over night before testing. Moist-cured specimens were tested at the 

respective ages without any drying. 
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3.6 Test Conducted to Quantify Leaching 

3.6.1 Electrical Solution Conductivity 

In order to quantify the leaching effects in alkali activated pastes, the cubes were 

placed in 300 ml of deionized water for an extended period of time. Electrical 

conductivity measurements of the deionized water in which the alkali activated 

specimens were stored for several days were conducted. Figure 3.6 shows the 

conductivity meter (Mettler Toledo) used to measure the conductivity of the 

solution containing the sample. 

 

 

 

 

 

 
 

Figure 3.6: Conductivity Meter with the Sample 

3.7 Reaction Product Analysis  

3.7.1 ATR – FTIR Spectroscopy 

Attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-

FTIR) allows the determination of transmission spectra without destructive 

sample preparation. Spectra are obtained from the absorption or transmittance of a 

wave which is transmitted through an internal reflection element (IRE) of high 

refractive index and penetrates a short distance into the sample, in contact with 
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the IRE. The IRE used is diamond, selected because of its resistance to high pH 

and abrasion from sample removal and cleaning. A picture of the ATR attachment 

along with a schematic diagram of the beam path through the apparatus is shown 

in Figure 3.7. 

 
(a)                                                   (b) 

Figure 3.7: (a). ATR attachment, (b). Schematic diagram showing the beam path 
through the ATR (1) torque head screw with limiter screw; (2) ATR crystal, (3) 

clamp bridge, (4) lens barrel, (5) mirrors. [Tuchbreiter et al. 2001] 
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4. REACTION KINETICS IN SODIUM SILICATE SOLUTION (WATE R 
GLASS) ACTIVATED SLAG AND FLY ASH-SLAG BINDERS 

EVALUATED USING ISOTHERMAL CALORIMETRY 

The kinetics of alkali activation is highly dependent on the chemical composition 

and the activator concentration. In this chapter, the influence of binder 

composition (amounts of fly ash and slag in the blend), alkali concentration, as 

expressed using the ratios of Na2O-to-binder (n) and Silicate modulus, expressed 

as the ratio of SiO2-to-Na2O (Ms), on the reaction kinetics of sodium silicate 

solution (waterglass) activated slag and fly ash-slag binder systems are examined. 

Optimal binder composition and n values are determined from the setting time 

data which are then used to determine the reaction kinetics using isothermal 

calorimetry experiments. The influence of temperature on the reaction kinetics of 

fly ash-slag blends are discussed based on the hydration parameters. Finally, 

kinetic modeling is used to quantify the distinction in the reaction kinetics using 

different modeling methods and is compared to that of ordinary cement hydration. 

4.1 Selection of Optimal Source Material and Activator Parameters  

4.1.1 Influence of binder composition on the setting time 

As described before, one of the major intentions of this study was to develop 

activated fly ash binders that can attain acceptable compressive strengths under 

normal moist curing conditions. Slag is used as the major constituent to achieve 

acceptable early age properties since it is well known that fly ash activation 

requires heat. In this study, the initial setting time is used as a basis for identifying 
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the acceptable binder compositions and n values to be used for extensive 

compressive strength (details given in Chapter 5) and calorimetry studies. 

Table 4.1: Initial and the final set values  

Binder  
Composition 

n Ms 
Initial Set  

(mins) 
Final Set   
(mins) 

100% Slag 

0.03 
1 541 946 
2 53 156 

0.05 
1 337 437 
2 33 72 

0.075 
1 110 270 
2 27 62 

50% Fly ash–50% 
Slag 

0.05 
1 -  
2 64 169 

0.075 
1 497 640 
2 58 114 

70% Fly ash–30% 
Slag 

0.075 1 - 

0.1 
1 627 1032 
2 133 231 

70% Fly ash–20% 
Slag-10% 

Metakaolin 

0.075 1 - 

0.1 
1 639 1042 
2 172 242 

80% Fly ash–10% 
Slag-10% 

Metakaolin 

0.075 1 - 

0.1 
1 - 
2 375 510 

85% Flyash–15% 
Slag 

0.075 1 - 

0.1 
1 - 
2 347 465 

 

Initial and final setting times of alkali activated fly ash, slag, or blended systems 

depend mainly on the binder composition, activator type and its concentration. 

Table 4.1 shows the initial and the final setting times of a number of unary, binary 

and ternary component alkali activated systems containing slag, fly ash, and 

metakaolin. Alkali activated mixtures with slag alone as the starting material 
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reaches its initial setting time faster than the fly ash rich mixes; the mixtures that 

use fly ash alone as the starting material do not reach their initial set in 12 hours 

for the activator characteristics used in this research work as shown in Figure 4.1  

 

 

 

 

 

 

 
 

Figure 4.1: Initial and final setting times of slag and fly ash activated pastes 

 

 

 

 

 
 
 
 

Figure 4.2: Comparison of the initial and the final setting times of fly ash rich 
blends with and without the addition of metakaolin. 
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It has been reported that activated mixtures with fly ash alone as the source 

material require heat for activation [Paloma et al. 1999, Van Jaarsveld et al. 1997, 

Vargas et al. 2011]. The addition of small amounts of metakaolin to the system 

does not result in any significant changes in the setting times as shown in Fig 4.2.  

 
4.1.2 Influence of activator parameters (n and Ms) on the setting time of 

waterglass activated systems 

From Table 4.1 it can be inferred that higher the n and Ms values, the faster the 

initial and the final setting times. For the same n value, a change in activator Ms 

from 1 to 2 results in a much larger impact on setting times, i.e. the apparent 

effect of SiO2 on setting behaviour is more pronounced than that of Na2O. In 

other words, the mixtures with lower n and higher Ms values set faster than the 

mixtures with higher n and lower Ms values. This is because a higher 

concentration of [SiO4]
4− increases the reaction rate [Chang et al. 2003]. This 

trend is observed irrespective of binder composition and the same is shown in 

Figure 4.3 for activated slag with n values of 0.05 and 0.075 and Ms of 1, 1.5 & 2.  

Reducing the amount of slag in the mixtures necessitates a higher alkalinity. For 

the fly ash-slag blended mixtures, the 50% fly ash – 50% slag mixture 

proportioned with an n value of 0.05 and Ms of 1 does not reach its initial set in 

12 hours. A higher n value of 0.075 is required to reach initial set in less than 12 

hours as shown in the Figures 4.4 (a) and (b). The 70% fly ash – 30% slag and 

85% fly ash – 15% slag mixtures also do not reach their initial set when an n 
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value of 0.075 and Ms of 1 is used. An n value of 0.1 is required in these cases as 

shown in Figures 4.5 (a) and (b); this illustrates the influence of a Ca bearing 

starting material on the early age response of alkali activated systems. 

     
 
 

Figure 4.3: Comparison of setting times of 100% Slag with different n values 
(a) n=0.05 (b) n=0.075 

 Figure 4.4: Comparison of setting times of 50% fly ash–50% slag mixture 
proportioned with an n value of (a) 0.05 and (b) 0.075 
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Figure 4.5: Comparison of setting times of fly ash rich blends proportioned   using 

different n values (a) 70% fly ash-30% slag and (b) 85% fly ash-15%slag. 
 

 

Figure 4.6: Selection of binder composition and n value based on the setting time. 
Mixes that reach initial set in 12 hours are selected 
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By extensively performing the setting time experiments the influence of binder 

composition and the n and Ms values on the early age behavior of the slag and fly 

ash-slag blends are determined. Mixtures that set in a reasonable time (12 hours) 

are selected for further experiments and are summarized in Figure 4.6. The 

minimum n values at which desirable initial setting is obtained for those mixtures 

are shown in Table 4.2. For further studies on calorimetric and mechanical 

response of these materials, these n values are used along with both lower and 

higher Ms values (1 and 2).  

Table 4.2: Minimum n values for which the mix reaches its initial set in 12 hrs  

Binder composition n value 

100% Slag 0.03A 

50%FA – 50%Slag 0.075 

70%FA – 30%Slag 0.1 

70%FA – 20%Slag – 10%MK 0.1 
A The n value used for calorimetric experiments in this case is 0.05 because this 
has been determined to be an optimal value [Wang et al. 1994]. The details are 
clarified in Chapter 5 
 
4.2 Isothermal Calorimetric Studies on Slag and Fly ash-Slag Blends  

4.2.1 Comparison of calorimetric signatures of activated slag and cement 

Figure 4.7 shows the heat evolution curves for waterglass activated slag pastes 

proportioned using an n value of 0.05 and Ms values of 1 and 2. The calorimetric 

response exhibits two peaks.  
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Figure 4.7: Comparison of calorimetric response of waterglass activated slag with 
ordinary Portland cement hydration.  The right graph magnifies the initial 12 

hours of heat evolution curves for the same sample. 

The very early narrow peak within the first few hours of mixing corresponds to 

the particle wetting and the dissolution of slag particles [Shi and Day 1995, 

Ravikumar and Neithalath 2012]. The dormant period that follows this peak is 

followed by an acceleration peak that is smaller in magnitude. The shape of the 

heat release curve is similar to that of OPC hydration even though the significant 

features are different with respect to their magnitudes and their occurrences in the 

time scale. The heat release curve for an OPC paste at a water-to-cement ratio 

(w/c) of 0.50 is also shown in Figure 4.7 to facilitate comparison. The induction 

period in waterglass activated slag paste is found to be considerably longer than 

that of the OPC paste, in line with observations reported previously [Ravikumar 

and Neithalath 2012]. This is because of the time required for the ionic species in 

solution to reach a critical concentration to form reaction products. The waterglass 

activated pastes also have a much smaller acceleration peak, bringing into view 

the contrast with OPC as far as reaction kinetics is concerned. Decrease in Ms (or 
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increase in alkalinity) resulted in broader acceleration peak for the waterglass 

activated slag pastes suggesting improved activation. 

 
4.2.2 Calorimetric signatures of fly ash rich blended pastes activated using 

waterglass 

Figures 4.8 (a) and (b) show the heat evolution as a function of time for 

waterglass activated fly ash-slag pastes proportioned using activator Ms of 1 and 2 

for n-values of 0.075 for the 50%fly ash-50%slag blend and 0.10 for the 70%fly 

ash-30%slag blend. Instead of the two-peak system observed for the OPC and 

activated slag pastes, the waterglass activated fly ash-slag systems show only one 

large peak that is generally observed within the first 2-3 hours. The only 

exception is the 50%fly ash-50%slag blend with Ms of 1 (higher alkalinity) that 

demonstrates a broader, low intensity peak after 20 hours. The general single-

peak trend in these mixtures is because of the fact that the dissolution of some of 

the initial materials happen early along with some gelation to form reaction 

products but no additional reaction products of exothermic kinetics are formed 

until much later (beyond the time that calorimetric experiments are conducted). It 

is anticipated that when the later reactions take place, the heat release rate is in all 

probability slow and low.  In both the slag and fly ash-slag blended systems, the 

initial dissolution peaks are narrower and steeper for pastes with higher Ms. This 

is due to the acceleration in the initial reaction due to high amounts of [SiO4]
4- 

ions. This corresponds to the faster setting of these mixes as seen in setting time 
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data. The appearance of the low intensity acceleration peak in the lower Ms paste 

can be attributed to the C-S-H gel formation in a diluted Ca containing system 

(only 50% of slag) under the influence of higher activator alkalinity. For the 70% 

fly ash-30% slag blend, the Ca ion concentration in the system is so low that a 

meaningful acceleration peak is absent. In this case, as well as the case for the 

50%fly ash-50%slag blend with a higher Ms value, the reaction products are 

formed by initial gelation, and further progress is diffusion controlled that results 

in little changes in the calorimetric signatures.  

 Figure 4.8: Calorimetric response of fly ash rich blends (a) 50% Fly ash – 50% 
Slag and (b) 70% Fly ash – 30% Slag for 72 hours. The right graph magnifies the 

initial 12 hours of heat evolution curves for the same sample. 

(a) 

(b) 
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4.3 Cumulative Heat Release and its use for Kinetic Modeling 

The cumulative heat released Q(t), obtained by integrating the heat flow curves, is 

shown in the Figure 4.9 for the waterglass activated slag mixes maintained at 

25oC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9: The cumulative heat release of (a) 100% slag (n=0.05), (b) 50% Fly 
ash – 50% Slag and (c) 70% Fly ash – 30% Slag for 72 hours. 

The initial ascent depicts the heat release contribution due to dissolution and the 

subsequent climb depicts the heat release contribution due to the acceleration 

peak. The induction period is represented by the relatively flatter regions in the 
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cumulative heat release curve between the initial dissolution rise and the latter 

acceleration rise. Cumulative heat release is initially high for mixes with higher 

Ms due to faster reaction facilitated by the high amount of SiO4 ions. However the 

total cumulative heat release after 72 hours is high for mixtures with a higher 

alkalinity (lower Ms and/or higher n). Furthermore, the cumulative heat release 

values of waterglass activated slag systems are lesser than that of OPC after 72 

hours and can be inferred from the Figure 4.9 (a). The heat released for the 

waterglass activated fly ash-slag blends is contributed by a single dissolution 

gelation peak represented by a single curve behaviour in the cumulative heat 

release except in the case of 50%fly ash and 50%slag with lower silicate modulus 

(Ms=1) where a small bulk hydration peak appears.  

 
4.4 Influence of Temperature on Calorimetric Response 

4.4.1 Comparison of the influence of temperature on the hydration of activated 

slag and fly ash rich blends 

The influence of temperature on the reaction kinetics of slag, fly ash, and their 

blends is elucidated in this section using the calorimetry tests conducted on 

waterglass activated slag and fly ash-slag blended pastes, and NaOH activated fly 

ash pastes at 25°C, 35°C, and 40°C . The temperature-linked heat release curves 

for a typical OPC paste is also shown for comparison. For the slag and fly ash-

slag blends, pastes with Ms of 2.0 were selected for studies on the influence of 

temperature. This was because these pastes demonstrated a weaker or non-
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existent acceleration peak at 25°C, and thus the effects of increasing temperature 

are more pronounced. 

 

Figure 4.10: Influence of temperature on the calorimetric response, the left graphs 
represent the heat evolution rate of (a) 100% slag (n-0.05, Ms=2) and (b) OPC 
(w/p=0.5 for 72 hours. The right graph magnifies the initial 12 hours of heat 

evolution curves for the same sample. 
 

Figure 4.10 (a) shows the heat release response of activated slag pastes at the 

three chosen temperatures while Figure 4.10(b) shows the response of an OPC 

paste for comparison since it was shown earlier that the response of activated slag 

is similar to that of OPC at ambient temperatures.  For the waterglass activated 

slag pastes, an increase in temperature from 25oC to 35oC results in significant 

changes in the calorimetric response, especially with respect to the temporal 
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location of the acceleration peak. Such a drastic change is not noticed for the OPC 

paste, even though the peak intensities change significantly in both the cases. A 

comparison between Figures 4.10(a) and (b) reveals the influence of temperature 

on hydration of both slag and OPC.    

Figures 4.11 (a) and (b) depict the calorimetric response of 8M NaOH activated 

fly ash and waterglass activated 50% fly ash-50% slag blend (n=0.075, Ms=2)  

pastes respectively. Figure 4.11 (a) shows that an increase in temperature has a 

profound effect on the heat release rates for the fly ash rich blends. However, the 

acceleration peak that was conspicuous in activated slag systems and which made 

an appearance in the ambient temperature response of the 50% fly ash-50% slag 

blend at an Ms of 1 is absent in this case. The dissolution of the glassy phases of 

fly ash and their gelation is taking place simultaneously as indicated by the single 

peak response. The significant increase in peak intensity at higher temperatures 

indicates an increased amount of reaction products during early stages. This result 

in the further diffusion controlled reactions being slowed down, consequently 

influencing the rate of property development in such systems. From Figure 4.12 

(a) it can be seen that the two-curve behavior observed for the activated slag paste 

at 25°C disappears at higher temperatures (35°C and 40°C) since the induction 

period is shortened by the acceleration in reaction rate due to the increased 

temperature. Table 4.3 shows that the increase in temperature increases the 

cumulative heat release after 72 hours in slag paste and also the OPC paste. The 

cumulative heat release values are of waterglass activated slag pastes are lower 
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than that of the OPC paste. The maximum cumulative heat release (at 40°C) after 

72 hours for waterglass activated slag paste is found to be 190 J/g when compared 

to that of OPC paste where it is 310 J/g (See Table 4.3). 

Figure 4.11(a) shows the influence of temperature on the calorimetric response of 

100% fly ash activated with 8M NaOH. At room temperature, the calorimetric 

responses of this paste and that of the 50% fly ash-50% slag blend are very 

similar. However, note the Y-axes scales which are very different in both the 

cases, suggesting the extent of exothermicity of the reactions. When the reaction 

temperature is increased, while there is no subsequent exothermic processes after 

the initial dissolution-gelation peak in the waterglass activated fly ash-slag blend, 

a distinct secondary exothermic process is observed for the NaOH activated fly 

ash paste. The process of dissolution of fly ash in a highly alkaline solution entails 

the breakdown of the covalent Si-O-Si and Al-O-Al bonds in the glassy phase of 

fly ash and the release of these ions into the pore solution. At room temperatures, 

structure formation does not happen because of the high activation energy barrier. 

At elevated temperatures, polycondensation happens, which is exothermal, 

leading to the secondary peaks in the isothermal calorimetry response. This step 

culminates in the formation of reaction products (N-A-S-H gel in this case) with a 

poorly ordered structure but a high mechanical strength [Paloma et al 1999]. The 

cumulative heat releases shown in Table 4.3, 105 J/g and 146 J/g for the pastes 

maintained at 35°C and 40°C after 72 hours, compared to 12.5 J/g at 25°C 

demonstrates this effect. A 10oC in the reaction temperature results in an almost 



51 
 

10-fold increase in the cumulative heat released, showing the effect of 

temperature on the activation of NaOH activated fly ash pastes. It can also be 

inferred from Figure 4.12 (b) that the influence of temperature for fly ash-slag 

blends is more pronounced and hence the difference in the cumulative heat flow 

curves are much larger for fly ash-slag blends when compared to slag and OPC 

systems. Similar effect can be seen in Table 4.3 with higher difference in 

cumulative heat release for fly-ash rich blends at higher temperatures. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 

 
 
 

Figure 4.11: Influence of temperature on the calorimetric response of, (a) 100% 
fly ash (8M NaOH).  and (b) 50% fly ash-50%slag blend, The left graph 

represents the heat evolution rate for 72 hours. The right graph represents the heat 
evolution rate at early ages (until 12 hours) 

 
 
 
 

(b) 

(a) 
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Figure 4.12: Influence of temperature on the cumulative heat release of (a) 100% 
Slag (n=0.05), (b) 50% FA – 50% Slag (n=0.075) 

 
Table 4.3: Heat curve analysis  

Binders 
 
n 
 

Ms 
T 

(°C) 

Peak Value 
(mW/g) 

Time of 
appearance 

of peaks 
(hrs) 

Cumulative 
heat 

released 
after 72 

hours (J/g) I II I II 

Slag    
(100%) 

0.05 2 
25 5.86 1.43 0.45 26.28 150.1 
35 4.3 4.33 0.65 8.62 169.19 
40 5.09 7.06 0.45 5.57 190.58 

Fly ash-
Slag 

(50%-
50%) 

0.05 2 
25 3.78 - 0.55 - 60.49 
35 9.65 - 0.22 - 117.36 
40 3.98 0.704 0.65 25.47 120.39 

0.075 2 
25 3.5 - 1.07 - 89.36 
35 5.78 - 0.78 - 140.68 
40 9.42 - 0.42 - 161.56 

Fly ash-
Slag 

(70%-
30%) 

0.075 2 
25 3.21 - 0.63 - 67.88 
35 5.7 - 0.63 - 90.23 
40 10.1 - 0.25 - 96.66 

0.1 2 
25 2.69 - 1.15 - 62.07 
35 4.71 - 0.78 - 93.08 
40 12.3 - 0.2 - 113.83 

Fly ash 
(100%) 

8M NaOH 
25 0.525 - 0.5 - 12.51 
35 0.514 0.635 1.33 24.77 104.6 
40 0.97 1.34 1.45 10.57 145.74 

OPC NA 
25 6.09 3.82 0.15 8.67 266.64 
35 11.5 7.47 0.1 5.43 287.62 
40 4.41 10.5 0.15 4.78 309.99 
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4.5 Kinetic Modeling  

4.5.1 Comparison of exponential and Knudsen models based on the cumulative 

heat release 

The maximum cumulative heat released Qmax is determined by two different 

methods in order to identify the effect of different hydration parameters on the 

reaction kinetics. 

In Method I the values of Qmax can be obtained by fitting an exponential model to 

the cumulative heat flow curve [Neithalath 2008] given by the following equation.  

                                   Q�t� � Q���e
��τ
�β�
                                                           

Qmax is the maximum heat that could be released because of the reaction.  τ is the 

hydration time parameter and β is the shape parameter. 

In Method II the total heat evolution of cement with time is described by the 

semi-empirical equation (Knudsen 1980, Roy and Idorn 1982, 1985, Shi et al. 

1991a, Zhou et al. 1993, Fernandez-Jimenez and Puertas 1997b):                                

     

                                    Q�t�  � Q���  . �� �.������
���.��������

 

Where Q(t) = total heat evolution at time t (kJ/kg); Qmax = total heat evolution at 

t=∞ (kJ/kg); K is a constant parameter which is equal to the reciprocal of t50, 

where t50 is the time to achieve 50% of Qmax; t = actual hydration time at 

temperature T (hours); to = time parameter. In order to maintain uniformity, time 

to reach isothermal conditions is taken as 2 hours after the start of the test for 

 

 4.2 

    4.1 
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calculating Qmax using both these methods, i.e the heat released in the first two 

hours are not considered for the Qmax calculation. 

Activation energy which is the minimum energy required to start a chemical 

reaction is defined by the Arrhenius law using the equation 4.3 

                                K�T� �  A. e����
�� � 

Where K(T) is the rate constant determined at different temperatures. A is a pre-

exponential factor that does not change much with temperature. Ea is the activation 

energy, T is the temperature (in K) and R is the universal gas constant (in J/K/mol) 

.The slope of the plot ln K(T) vs 1/T gives the slope –Ea/R from which activation 

energy can be determined. 

 
4.5.2 Influence of binder composition and temperature on the hydration 

parameters 

The hydration parameters are influenced to a large extent by the binder 

composition. Table 4.4 gives the predicted Qmax values based on the fit of Q (t) 

and t plots using Method I and Method II for activated slag paste and ordinary 

Portland cement paste. Qmax increases with an increase in temperature for same 

binder composition and alkali concentration. τ and to values corresponding to the 

hydration time decreases with the increase in the temperature since the induction 

period and the time to reach the starting point of the acceleration period in both 

slag and cement decreases with increase in temperature. 

 4.3 
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Table 4.4: Qmax values based on Method I and II for activated slag and OPC  

Binders   
T 

(°C) 

Method I 

 Q���e
��τ��β�
 

 
Method II 

Q���  . � K. �t ! t"�
1 $ K. �t ! t"�%� 

Ea 
(KJ/ 
mol) 

Qmax 

(J/g) 
τ 

(hrs) 
β 

Qmax 

(J/g) 
to 

(hrs) 
K 

(hrs-1) 
Slag  

(n=0.05, 
Ms=2) 

25 162.2 29.1 1.59 175.7 6.10 0.030 
56.7 35 159.5 10.6 1.40 192.7 2.42 0.060 

40 183.1 7.8 1.17 201.1 1.71 0.091 

OPC 
25 274.4 11.8 1.35 334.6 2.60 0.051 

46.8 35 276.1 7.10 1.36 310.3 1.65 0.106 
40 314.1 6.1 1.12 335.6 1.33 0.122 

 

to values are always lesser than that of τ for the same mix at the specified 

temperature; therefore the predicted Qmax determined using Knudsen method 

(Method II) is found to be higher than the Qmax values determined using the 

exponential method (Method I). The value of β decreases with the increase in the 

temperature. This can be related to the decrease in the slope of the cumulative 

heat release curves with temperature. 

The t0 value determined using Knudsen method gives a better estimate of the 

second peak corresponding to the end of induction period (start of the acceleration 

peak) in the case of cement paste, similar to that reported by other researchers 

(Knudsen 1980, Roy and Idorn 1982, Fernandez-Jimenez 1997b). However the τ 

value determined using the exponential method gives a superior assessment of the 

second peak in the case of activated slag pastes and can be related to the time to 

the end of acceleration. This can be attributed to the distinct changes in the shape 

of the curve (from two curves to a single curve) with increasing temperature in the 
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case of slag pastes. Hence the exponential method with the shape parameter β 

gives a better indication of the reaction kinetics in this case. The parameter K 

determined using the fits increases with an increase in the temperature in the case 

of slag and cement pastes and it is found to be equal to the reciprocal of the time 

to achieve 50% of Qmax. Hence this constant parameter can be considered as a rate 

determining parameter in the case of slag and cement. These rate constant values 

can be used in determining the apparent activation energy (Ea) using Arrhenius 

law using equation 4.3 and are shown in Table 4.4. The Ea value for activated slag 

are higher (56.7 KJ/mol) than that of cement (46.8 KJ/mol). This shows even with 

the introduction of alkalis into the system the alkali activated slag requires higher 

activation energy to initiate the reaction. 

Table 4.5 gives the predicted Qmax values based on the fit of Q(t) vs. t plots using 

Method I and Method II for fly ash rich blends. Qmax values increases with an 

increase in the temperature for the same binder composition and alkali 

concentration. However the difference in Qmax values at higher temperatures 

(35°C and 40°C) are significantly higher in the case of fly ash rich blends where 

the reaction rate at higher temperature increases in comparison to the very low or 

non-existent reactivity at ambient temperature (note the very low Qmax values). to 

values are always lesser than that of τ for the same mix at the specified 

temperature similar to activated slag and cement pastes; however the predicted 

Qmax  determined using Knudsen method (Method II) is found to be lower than the 

Qmax values determined using the exponential method (Method I) in most cases. 
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Table 4.5: Qmax values based on Method I and II for fly ash rich blends 

Binders       n Ms 
T 

(°C) 

Method I 

 Q���e
��τ��β�
 

 
Method II 

Q���  . � K. �t ! t"�
1 $ K. �t ! t"�%� 

Qmax 

(J/g) 
τ 

(hrs) 
β 

Qmax 

(J/g) 
to 

(hrs) 
K  

(hrs-1) 

Fly ash-
Slag                      

Blends 
(50%-
50%) 

0.5 2 
25 51.7 16.20 0.70 54.2 0.50 0.032 
35 195.7 58.00 0.70 166.7 2.01 0.012 
40 270.9 64.19 0.57 250.1 2.46 0.011 

0.075 2 
25 86.2 14.41 0.74 82.0 1.53 0.048 
35 165.0 21.47 0.79 143.6 2.62 0.042 
40 200.4 21.75 0.66 182.5 1.77 0.033 

Fly ash-
Slag                      

Blends 
(70%-
30%) 

0.075 2 
25 80.5 17.17 0.52 62.7 0.79 0.054 
35 85.1 13.85 0.60 72.7 0.98 0.058 
40 93.7 13.55 0.62 81.4 1.05 0.058 

0.1 2 
25 63.9 9.36 0.69 59.0 1.02 0.078 
35 105.6 16.45 0.56 85.8 0.91 0.053 
40 112.1 17.01 0.58 93.0 1.05 0.049 

Fly ash 
(100%) 

8M NaOH 
25 15.6 17.34 0.59 13.0 1.07 0.047 
35 185.0 19.00 0.95 164.0 3.01 0.020 
40 202.0 23.03 0.96 266.0 3.36 0.019 

 

The reaction mechanism of fly ash rich blends should be better understood in 

order to estimate the hydration parameters, however the parameters do not seem 

to follow any trend in these cases. It is found that the constant parameter K 

decreases with an increase in temperature from 25oC to 35oC due to the vast 

difference in the Qmax values in this case. This shows that an increase in 10oC 

allows the material to overcome its activation energy barrier and react to form 

binding compounds. This is an important observation that has implications in 

deciding the optimal curing parameters for desired reactivity and mechanical 

properties. Since the values of K decreases with temperature it cannot be 
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considered as a rate determining parameter in the case of fly ash rich blends and 

hence it cannot be used in determining the apparent activation energy (Ea). 

However, with another temperature, perhaps higher than the 35oC, used for 

calorimetric experiments, might result in the same approach being capable of 

extracting the activation energies.  

 
4.5.3 Influence of two-curve analysis in activated slag systems 

Since waterglass activated slag paste show a two part calorimetric signature, with 

an initial peak corresponding to the dissolution of slag particles and the second 

bulk peak corresponding to precipitation of the reaction products, it is expected 

that a two-part equation would be ideal to fit the cumulative heat release response. 

This helps in separating out the influence of the activator on the dissolution and 

precipitation reactions individually. Figure 4.13 shows a representative fit of the 

hydration heat curve using the two-part equation explained above. The second 

curve starts from a point in the induction period determined by drawing tangents 

at the ascending portion of the second curve and extending the tangent to meet the 

x-axis. The Q(t) value corresponding to this point on the x-axis is considered as 

the starting point for the second curve.  

The values of τ, β, to and K reported in Table 4.6 corresponds only to the second 

part of the curve. It should be noted that since the mixing of the paste is done 

outside the calorimeter, a significant part of the first phase is lost and hence the 

Qmax1 value might not be very accurate. 
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Table 4.6: Qmax values based on the 2 curve fit approach for slag mixes 

T  
(°C) 

Method I 

 Q���e
��τ��β�
 

 
Method II 

Q���  . � K. �t ! t"�
1 $ K. �t ! t"�%� 

Q1 
(J/g) 

Q2 
(J/g) 

τ 
(hrs) 

β 
Q1 

(J/g) 
Q2 

(J/g) 
to 

(hrs) 
K  

(hrs-1) 

25 42.5 141.1 27.4 2.19 39.9 182.0 17.6 0.02 

35 25.8 159.4 10.64 1.41 24.2 169.8 5.81 0.12 

40 12.2 183.9 7.76 1.15 11.5 191.4 3.16 0.13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Two-curve fitting for the cumulative heat release of slag (n=0.05, 
Ms=2) (experiments done at 25°C) 

The Qmax2 values (which are equivalent to the Qmax values shown in Table 4.4 for 

the corresponding temperatures) are lower when predicted using the two-curve 

fitting method.  The constant parameter K determined using Knudsen equation 

increases with temperature. However the difference in the K values are large 

(from 25°C to 35°C) for to calculate the apparent activation energy.  While this is 
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a useful method to predict the accurate heats of hydration, the vast difference in 

the rate determining parameter K with temperature seems to somewhat diminish 

the applicability of this methodology. 

 
4.6 Summary 

The influence of binder composition, activator concentration and temperature on 

the reaction kinetics of sodium silicate activated slag and fly ash-slag blends are 

discussed in this chapter. Optimal binder composition and n values are selected 

based on the initial setting time. The influence of binder composition, activator 

parameters (n and Ms) and temperature on the isothermal calorimetric response 

was reported. The waterglass activated slag systems showed a calorimetric 

response similar to those of OPC pastes with a marked induction period. Kinetic 

modeling was used to quantify the differences in reaction kinetics using two 

different modeling methods.  The constant K determined using the Knudsen 

method is considered as a rate determining parameter in the case of activated slag 

and cement (when the difference in the Qmax values are not very large with an 

increase in temperature) and can be used in calculating the apparent activation 

energy. However it cannot be considered as a rate determining parameter in the 

case of fly ash rich blends since the difference in the Qmax values are very large 

with increases in temperature (especially from 25°C to 35°C). The K values allow 

for the determination of the optimal curing parameters for desired reactivity and 

mechanical properties. The activation energy determined using rate constant 
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values (based on Arrhenius law) are found to be higher for activated slag (56.7 

KJ/mol) when compared to that of cement (46.8 KJ/mol). 
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5. INFLUENCE OF ACTIVATOR PARAMETERS ON THE STRENGTH 
AND REACTION PRODUCTS IN ALKALI SILICATE ACTIVATED 

SLAG AND FLY ASH – SLAG BLENDS 
 

In this chapter, the influence of curing duration, binder composition and activator 

characteristics on the compressive strength development of, and the reaction 

product formation in sodium silicate solution activated slag and fly ash-slag 

binder systems are examined. ATR-FTIR analysis was used to characterize the 

reaction product. The strength losses in highly alkaline mixtures are explained 

through quantification of leaching by performing electrical conductivity of the 

solutions in which the specimens were submerged in. The influence of curing 

conditions (open (dry), open (moist) and closed) on the compressive strength 

development of heat-cured fly ash mixtures and its ATR-FTIR analysis are also 

reported. 

5.1 Compressive Strength of Slag and Fly ash-Slag Binders 

5.1.1 Influence of curing duration, binder composition and activator 

characteristics on the compressive strength of slag mortars 

Compressive strengths of the waterglass activated slag mortar specimens that 

were moist-cured were determined at ages of 3, 14, and 28 days and are shown in 

Figures 5.1 (a), (b), and (c) respectively as a function of the n and Ms values. The 

mortars were prepared as explained in Chapter 3. Three different n values (0.03, 

0.05, and 0.075), and three Ms values (1.0, 1.5, and 2) are used. The compressive 

strength response of slag mortars is used here as a basis to which the properties of 



63 
 

the fly ash-slag blend can be compared to. The compressive strength of activated 

slag mortars increase with age as seen from Figure 5.1. From the three-

dimensional plots shown below, it is possible to identify the combination of n and 

Ms values that result in desirable compressive strengths.  The compressive 

strengths at all ages are found to increase when the n value is increased from 0.03 

to 0.05. Activation of slag by alkalis is dependent on the efficiency of the alkalis 

in solubilizing the silica and alumina from slag [Fernandez et al 1999, Song et al 

2000]. Higher alkalinity, i.e., the higher amounts of OH- ions in solution, results 

in increased dissociation of the Si along with the liberation of Ca, and thus 

increased potential for the formation of more amounts of strength imparting 

reaction products (C-(A)-S-H gel in this case). At a lower n value (0.03), the 

compressive strengths are quite independent of the Ms values of the activator. 

Additional Si from waterglass does not facilitate formation of more reaction 

products when the alkalinity is lower, leading to this observation. When the n 

value is increased from 0.05 to 0.075, there is a strength reduction that is 

observed, except for the mixtures with Ms of 1.0 (higher alkalinity). This can be 

attributed to the leaching of alkalis from the system, that leads to increased 

porosity, when the amount of alkalis present in the system is more than the 

optimal range which is reported to be 5.5% (n = 0.055) for pure slag [Wang et al. 

1994]. A qualitative evidence of leaching in such cases is presented later.  
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Figure 5.1: Compressive Strength of 100% Slag (a) 3d, (b) 14d and (c) 28d 

The impact of leaching and hence the strength loss is found to be generally higher 

for the mixtures made using a higher activator Ms and a higher n value [Garcia et 

al 2006]. This is because of the formation of a low Ca/Si ratio C-S-H gel as 

reported for alkali activated slag systems [Palacios and Puertas 2006, Fernández-

Jiménez et al. 2003] results in the excess silica and alkalis in higher Ms and higher 

n value mixtures leaching out under moist curing conditions. At lower Ms (lower 

SiO2 content), strength increases with increasing n values because the higher 
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alkalinity facilitates the faster formation of reaction products, and the available 

silica is incorporated into the reaction products.  For the higher Ms value (1.5 and 

2) mixtures, the results shown here also confirm the presence of an optimal value 

for n (0.05) as reported in [Wang et al. 1994] as far as compressive strength is 

concerned.   

5.1.2 Influence of moist curing, binder composition and activators on the 

compressive strength of fly ash-slag blended mortars 

Figure 5.2 shows that compressive strength decreases with an increase in the fly 

ash content for the blended mortars even with higher n values, which is 

attributable to the poor reactivity of fly ash under ambient conditions.  

 

 

 

 

 

 

Figure 5.2: Compressive strength of fly ash-slag blends (28d of moist curing) 
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The decrease in compressive strength with increase in fly ash content is mainly 

because of the presence of lower amounts of reactive glassy phases in fly ash as 

compared to slag [Garcia et al 2006, Paloma et al 1999, Van Jaarsveld et al 1997, 

Vargas et al 2011].  Higher temperature or highly alkaline solutions are required 

to dissolve the glassy phases in fly ash to form reaction products that provide 

acceptable compressive strengths.  The compressive strength development of 50% 

fly ash – 50% slag, and 70% fly ash – 30% slag blends are shown in Figure 5.3. 

The n and Ms values used to prepare these activated blends have been given 

earlier in Table 4.2.  

 

 

 
 
 
 
 
 
 
 
 

Figure 5.3: Compressive strength of fly ash-slag blends at different ages 

Figure 5.3 also shows that the compressive strength of 70% fly ash - 30% slag 

mortars is lower than those of the 50% fly ash - 50% slag mortars even when 

activated with 25% more alkalis. Some amount of strength imparting C-S-H gel is 

formed and some fly ash has reacted to provide a slightly higher increase in 

reaction product volume in the case of the 70% fly ash - 30% slag mixture. 
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However the amount of reaction products is lower than that in the 50% fly ash - 

50% slag system where a higher amount of slag results in more C-S-H gel 

formation even at a lower activator alkalinity. In the case of fly ash rich blends the 

alkali modulus must be kept preferably low (Ms = 1) to provide a sufficiently high 

pH and also to avoid rapid polymerization of the sodium silicate after the pH is 

reduced by the dissolution of the acidic species in fly ash.  If this condition is not 

satisfied, the matrix would densify before sufficient amounts of reaction products 

are formed [Garcia et al 2006]. Such initial reaction products would act as a 

barrier for further progress of the reaction and set the process into diffusion-

controlled mode too early. Hence the compressive strength of fly ash rich blends 

with selected n values is higher for mixtures with lower Ms after 28 days of moist 

curing.  50% fly ash-50% slag blends n value of 0.075 provides reasonable 

compressive strengths (>30 MPa) after 28 days of moist curing. The 70%fly ash-

30%Slag blends with an n value of 0.1 also provides reasonable strength (23 

MPa) for lower silicate modulus (Ms=1) after 28 days of moist curing. 

 
5.1.3 Influence of curing conditions on the compressive strength of slag mortars 

Optimal n value of 0.05 determined for the waterglass activated slag systems 

through the previous section is used to determine the influence of curing 

conditions on the compressive strength of activated slag systems. The study is 

conducted by considering two different curing conditions in addition to moist 

curing (during the entire curing period) that was previously determined. Mortars 
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were heat cured at 65°C for (a) 6h and (b) 12h in an oven. Once heat curing is 

completed the cubes were cooled to room temperature and then subjected to moist 

curing for 14 days and then tested for compressive strength. The compressive 

strength obtained using these methods are compared to the compressive strength 

of the cubes that were kept under moist curing for the entire curing period of 14 

days. Figure 5.4 shows the influence of curing conditions on the compressive 

strength of slag mortars. It is known that the early age strength is generally high 

under heat curing for alkali activated slag systems because of the increased 

tendency to form the reaction products. Hence the initial period is used for heat 

curing (6 hrs and 12 hrs). It is found that strength at 14 days of moist curing is 

higher than those initially exposed to heat (at 65°C). The structure of the reaction 

product (C-S-H with low Ca/Si ratio) formed due to initial heat curing undergoes 

modification when it is subjected to moisture thereby reducing its strength. 

 

 

 

 

 

 

 

 
Figure 5.4: Influence of curing conditions on the strength of slag mortars 

5.2 Quantification of Leaching through Electrical Solution Conductivity 

5.2.1 Effect of leaching on the electrical solution conductivity 
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Electrical conductivity measurements of the deionized water in which the alkali 

activated specimens were stored for several days were conducted in order to 

provide a qualitative indication of leaching. The reason behind conducting this 

experiment is to account for the strength reduction that is observed in the case of 

activated slag with higher alkali content. The mixes with n values higher than 

0.05 in the case of activated slag are more susceptible to leaching when the alkali 

content increases more than the optimal value as described before.  The results are 

shown in Figure 5.5 (a).  

Figure 5.5: (a) Influence of leaching (for n=0.075) on conductivity contributing to 
reduction in compressive strength of alkali activated slag specimens (b) Strength 
of 100% slag before subjected to moist curing shows higher strengths for high n 

and Ms values 

The specimens made using higher n and Ms valued solutions exhibited higher 

conductivities. The solution conductivity is primarily dependent on the 

concentration of OH- ions (equivalent conductivity of 198 cm2 S/mol), Na+ ions 

(equivalent conductivity of 50.1 cm2 S/mol) and aqueous SiO2 (equivalent 

conductivity of 70 cm2 S/mol) [Ravikumar and Neithalath 2012, Shebl et al 1987, 

Snyder et al 2003]. For a paste made using a given n value, the conductivities are 
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higher for the solutions with higher Ms values. This implies a higher amount of 

SiO2 in the solution (assuming that similar n values result in similar amount of 

Na+ and OH- ions). Leaching of silica with the solution could result in the removal 

of silica from the reaction products to achieve local equilibrium, thus contributing 

to the observed strength reduction at higher n and Ms values when moist cured. 

Figure 5.5 (b) presents the compressive strengths of these mixtures before they 

were subjected to moist curing, which shows that the higher n and Ms value 

mixtures have higher strengths. Though an accurate quantification of leaching 

cannot be obtained from these measurements, the reasons for the strength 

reduction in mixtures with higher n and Ms values, stored in high RH conditions, 

can be garnered from this observation.     

 
5.3 Reaction Product in Activated Slag and Fly ash – Slag Pastes 

The preceding sections have dealt with the analysis of the influence of the curing 

duration, binder composition and activator parameters (n and Ms) on the 

compressive strengths of activated slag and fly ash-slag mortars. Since the 

binders, alkali content and the composition of the activating agent influence the 

reaction product formation, a detailed analysis is attempted in this section. 

Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy (ATR-

FTIR) is used to obtain information about the reaction products. 
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5.3.1 FTIR Analysis of activated slag pastes  

It is observed that the type of activator plays an important role in the formation of 

reaction product in the case of alkali activated slag [Fernandez-Jimenez and 

Puertas 2003]. It is known that activation of slag with sodium silicate results in 

the formation of C-S-H and C-A-S-H gel as the major reaction product [Wang 

and Scrivener 1995, Yip et al. 2005, Song et al. 2000]. The discussions here are 

mostly limited to the stretching vibrations of Si-O-Si units since it can be used as 

a signature of the main reaction products. In general, for C-S-H and C-A-S-H 

systems, the Si-O-Si stretching bands are observed at a wavenumber of 950-1000 

cm-1 [Lodeiro et al. 2008, 2009, Bernal et al. 2011, Palomo et al. 2007]. Figure 

5.6 shows the ATR-FTIR spectra of the starting slag showing one broad 

component at 928 cm-1 recognized as (Si-O) stretching of SiO4 tetrahedra 

[Fernández-Jiménez and Puertas F 2003]. In the waterglass activated slag pastes 

the major bands representing the asymmetric stretching vibrations of the silica 

tetrahedral (Si-O) has been shifted towards higher values (940-960) cm-1. Figures 

5.7(a) and (b) represent the 3 and 28 day ATR-FTIR spectra of waterglass 

activated slag pastes with n values of 0.05 and 0.075 respectively, for Ms values 

of 1 and 2. The observed shifts can be ascribed to the formation of more 

condensed tetrahedral species. The FTIR spectra also display bands of calcite (C-

O) at 1370-1400 cm-1 at lower silicate modulus values. These bands are generally 

absent at higher silicate modulus indicating less carbonation. Stretching and 

bending modes of OH- groups existing in H2O and in the hydration products were 
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detected at 3320-3365cm-1 and also at 1630-1655 cm-1. Calcium hydroxide (CH) 

band (at ~3635 cm-1) is absent as CH cannot precipitate in these systems because 

of its higher solubility as compared to C-S-H and C-A-S-H. In general, a move to 

a higher wavenumber is interpreted as the influence of higher Si content in the C-

S-H gel (or a lower Ca/Si ratio) [Palacios and Puertas 2006]. Hence the pastes 

with a higher Ms value (in this case more SiO2 was present because more 

waterglass used to increase the Ms value) shows characteristic signatures shifting 

to higher wave numbers, as shown in Figure 5.6(b). This is more prominent with 

increase in reaction time. 

  

 

 

 

 
 
 
 

Figure 5.6: ATR-FTIR spectra of source slag 

The solubility of Si increases with increase in alkalinity whereas that of Ca 

decreases and hence the systems with a high silica concentration (higher Ms-value 

with increasing waterglass) will have a C-S-H gel with a lower Ca/Si ratio. 

Studies also show that in alkali activated systems containing NaOH the amount of 



73 
 

aluminium incorporated into the tetrahedral chains is high [Fernández-Jiménez et 

al. 2003], resulting in the Si-O-Si vibration band shifting to higher wavenumbers 

[Brough and Atkinson 2002] This can be interpreted to be the formation of a more 

polymerized gel structure [Ravikumar and Neithalath, 2012]. Higher Si content 

results in the production of Q3 silicon [Fernandez Jimenez et al. 2003], as opposed 

to the Q1 and Q2 units primarily found in C-S-H from OPC pastes [Schneider et 

al. 2001]. High presence of Q2 and Q3 silicates have been observed in the C-S-H 

formed in waterglass and NaOH activated slag systems [Puertas et al. 2004, 

Palacios and Puertas 2006,]. From the figures 5.8 (a) and (b) it can also be 

inferred that the observed shift in the stretching Si-O-Si band increases with 

curing duration (3 and 28 days), indicating high silica polymerization with curing 

time for n value of 0.05. However with an n value of 0.075 the wavenumber 

decreases with reaction time. This can be related to the increase in the Ca/Si ratio 

due to leaching of Si. (as seen from compressive strength and electrical solution 

conductivity results). 
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Figure 5.7: ATR-FTIR spectra of waterglass activated slag pastes at 3 and 28 
days: (a) n value of 0.05 and (b) n value of 0.075 

 
5.3.2 FTIR Analysis of activated fly ash-slag pastes  

The ATR-FTIR analysis of 50% fly ash–50% slag, and 70% fly ash–30% slag 

blends are shown in Figures 5.8 (a) and (b). The n values used to prepare these 

activated blends have been given earlier in Table 4.2 with two Ms values (1 and 
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2). The main Si-O stretching band occurs in the (945-975) cm-1 range. The high 

wave number is contributed by the reaction product having a much lower Ca/Si 

ratio when compared to that of activated slag paste. The alkaline activation of fly 

ashes leads to the formation of an alkaline aluminosilicate (N-A-S-H when NaOH 

is used) of amorphous nature and 3D network, of a zeolitic type.  
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Figure 5.8: ATR-FTIR spectra of waterglass activated fly ash-slag pastes at 3 and 

28 days: (a) 50% fly ash-50% slag (n value of 0.075) and (b) 70% fly ash-30% 
slag (n value of 0.1) 

The FTIR spectrum of the alkaline aluminosilicate has a band associated to (Si-O-

Si) at 997 cm-1 [Puertas et al, 2000] these are not observed in the IR spectra of 
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the fly ash–slag pastes studied. This shows the influence of calcium bearing slag 

in the reaction product (C-S-H) formation. A high silicate modulus of the 

activator (Ms) results in a shift to a higher wavenumber both at early (3 days) as 

well as later (28 days) ages. The calcite peak (C-O) which is predominant in slag 

pastes at 1400 cm-1 is absent in fly ash rich blends indicating reduced carbonation 

with increase in fly ash content. Stretching and bending modes of OH- groups 

existing in H2O and in the hydration products were detected at 3320-3365cm-1 and 

also at 1630-1655 cm-1 similar to slag pastes. 

5.3.3 Reaction products and compressive strength 

As a consequence of the alkaline activation of slag paste, a hydrated calcium 

silicate of the C-S-H gel type is formed as the main reaction product. This gel 

phase is differentiated from that formed in the hydration of Portland cement 

because of its lower Ca/Si molar ratio. The higher Na proportion in solution due 

to the addition of NaOH would favour the formation of C-S-H gel. Sodium will 

enter the structure in inter-layer spaces [Puertas et al, 2000] and acts as a catalyst 

for the formation of C-S-H. Hence the mixes made with high alkalinity (high n 

values) has high compressive strengths. NaOH added to modify the Ms value 

changes the number of network modifying Na atoms per Si atom [Ravikumar and 

Neithalath, 2012]. The structure of the silicate phases formed is modified by the 

presence of Na atoms [Dimas et al. 2009]. The Na ions will be incorporated in the 

C-S-H gel by replacing Ca ions. It acts as charge balancers for the negative charge 
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on the Al tetrahedral [Fernández-Jiménez et al. 2003, Shi et al. 2007, Ravikumar 

and Neithalath, 2012]. 

Higher silicate modulus leads to high silica polymerization. This is due to the 

formation of Q3 silicate structures with high silicate modulus resulting in 

decreased number of non-bridging oxygen sites [Dimas et al. 2009]. The 

formation of Q3 silicate structures results in higher wavenumber corresponds to 

the asymmetric stretching vibration of the silica tetrahedral. Hence for the slag 

pastes with optimal alkalinity (n=0.05) strengths are higher for mixes with high 

silicate modulus at later age (28 days).  

 
5.4 Influence of Curing Conditions on Heat Cured Fly Ash Mortars 

5.4.1 Compressive strength development 

As mentioned before the activation of fly ash with alkalis requires heat curing to 

gain reasonable mechanical properties because of the poor reactivity of the fly ash 

at ambient temperature. Given that our objective is to identify fly ash rich blends 

for moist curing it is important to identify the compressive strength development 

of the heat cured fly for comparison. Since fly ash mixes do not reach their initial 

set with a liquid-to-powder ratio of 0.5 a liquid-to-powder ratio of 0.4 is used to 

identify the compressive strength development of fly ash mixes with heat curing. 

The influence of curing conditions on the compressive strength improvement of 

heat cured fly ash mortars are studied by considering three different types of heat 

curing procedures. 
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Method 1: (Open dry condition): The mortar cubes were placed directly in an 

oven at 75°C. Method 2: (Open moist condition): The mortar cubes were placed 

in the oven at 75°C alongside a container containing water (relative humidity 40–

50%). Method 3:  (Closed condition):  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Figure 5.9: Influence of heat curing (at 75C) conditions on the compressive 
strength development of fly ash mixes after (a) 24 hours and (b) 48 hours 

 

The mortar cubes were sealed with aluminium foil. The cubes were then placed in 

an oven at 75°C. The compressive strength development shows that with an n 

(b) 
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value of 0.075, activated fly ash mixtures can attain appreciable strength (>20 

MPa) with a liquid-to-powder ratio of 0.4. Figure 5.9 (a) shows that after 24 hours 

the strength of fly ash mortar cubes cured by means of Method 2 (Open moist) is 

higher than that of Method 1 (Open Dry) and Method 3. However with time, the 

compressive strength of mortars cured using Method 1 and 2 (Open) decreases 

due to increased porosity with loss of water causing drying shrinkage over time. 

After 24 h, the Method 3 (closed) cured fly ash had a generally porous matrix and 

hence its strength is lesser when compared to that of the strength of mortars 

obtained using other curing methods (1 and 2). However the primary reaction 

product, N–A–S–H gel, enriches in silicon content over time and gains reasonable 

strength, as depicted in Figure 5.9 (b). Hence, with closed curing conditions, the 

curing time proved to be an essential factor in the acquisition of mechanical 

properties and favors the formation of small zeolitic crystals [Criado et al, 2010]. 

By means of closed curing, the excess amount of free water favors the dissolution 

of the vitreous component of the fly ash, stimulating the activation reaction and 

yielding a well developed material, with high strength over time. This suggests 

the influence of curing duration on the compressive strength development when 

cured using Method 3. Closed heat curing yields a dense, compact material, 

whose initially high aluminum content gives way to silicon uptake and good 

mechanical property development over time. Open heat curing with the pastes in 

direct contact with the atmosphere generates a granular, porous material. The 

aluminium-rich reaction products are very stable, with a chemical composition 
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that remains unchanged throughout the curing process, ultimately resulting in a 

weaker material. 

5.4.2 FTIR analysis of the activated fly ash pastes 

Figures 5.10 (a) and (b) shows the influence of heat curing conditions on the 

FTIR spectra of fly ash mixes. The main band in fly ash mixes are shifted to 

higher wavenumber (988-1008 cm-1) corresponding to alkaline alumino silicate 

band (N-A-S-H gel in this case) [Criado et al. 2010]. The stretching vibrations of 

Si-O-Si of closed cured mixes after 48 hours of heat curing shows a higher 

wavenumber compared to that of the pastes cured in open conditions. This is 

indicative of changes in the Si/Al ratio in the major reaction product. With closed 

curing, as the heat curing time increases, the amount of reaction product formed 

increases, resulting in a higher wavenumber as compared to open cured pastes. 

The width of the band observed is larger for closed cured specimens when 

compared to that of the open cured specimens. A wider distribution of vibrational 

energies increases the bandwidth in the FTIR spectrum [Ruben et al. 1995].  The 

broad band observed with closed curing can be interpreted as a change in the 

structure of the molecular structure during gelation. The additional water present 

in closed heat cured specimens tends to observe more heat, decreasing the 

molecular order thereby increasing its band width. 
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Figure 5.10: Influence of heat curing (at 75C) conditions on the ATR-FTIR 

spectra of fly ash mixes after 48 hours (a) Open and (b) Closed  
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5.5 Summary 

The influence of moist curing, binder composition and activator concentration on 

the compressive strength development and reaction product formation of sodium 

silicate solution activated slag and fly ash-slag blends are discussed in this 

chapter. An optimal n value of 0.05 is determined for slag mortars. At higher 

alkali content leaching of alkalis resulting in strength reduction for higher silicate 

modulus mixes. Electrical conductivity of solutions in which the specimens were 

stored shows higher conductivity values for high n and high Ms value pastes, 

which explains the strength reduction of slag mortars for n values of 0.075 at high 

moduli (1.5 and 2). FTIR analysis helps in determining the reaction products in 

slag and fly ash-slag blends. The influence of heat curing conditions on the 

compressive strength development and reaction product formation of fly ash 

mixes were also reported in this chapter. 
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6. CONCLUSIONS 

6.1 Early Age Response of Activated Slag and Fly ash – Slag Systems 

The major conclusions made based on the early age responses of sodium silicate 

activated slag and fly ash-slag blends are the following 

• The maximum fly ash content that can be used in fly ash-slag blends to obtain 

desirable setting is 70%. Higher n values are required when the amount of slag 

in the fly ash-slag blended mixtures is reduced.  

• The minimum n values at which desirable initial setting is obtained for the 

mixtures are 0.03 for 100% slag, 0.05 for 50%fly ash–50%Slag, and 0.1 for 

70%fly ash – 30%Slag. 

• In waterglass activated slag and fly ash-slag blends increase in activator Ms 

(from 1 to 2) results in a much larger impact on setting times. The mixtures 

with lower n and higher Ms values set faster than the mixtures with higher n 

and lower Ms values. This trend is observed irrespective of binder composition. 

• A comparative analysis of the reaction kinetics in waterglass activated slag and 

fly ash rich blended systems determined using isothermal calorimetry is 

presented. For the pastes activated using waterglass, the response was observed 

to be similar to that of OPC hydration. However the induction period in 

waterglass activated slag paste is found to be considerably longer than that of 

the OPC paste. The induction period can be shortened with increase in 

alkalinity (by increasing the n value or decreasing the Ms value). The 
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waterglass activated slag pastes also have a much smaller acceleration peak 

when compared to that of OPC. 

• The waterglass activated fly ash-slag systems show only one large peak that is 

generally observed within the first 2-3 hours. The only exception is the 50%fly 

ash-50%slag blend with Ms of 1 (higher alkalinity) that demonstrates a 

broader, low intensity peak after 20 hours. 

• The maximum cumulative heat release (at 40°C) after 72 hours in waterglass 

activated systems is observed for slag pastes (190 J/g). However it is lower 

than that of OPC (310 J/g) at the same temperature. 

• Increase in temperature has a profound effect on the heat release rates for the 

fly ash rich blends. Kinetic modeling of the alkali activation reaction of 

waterglass activated slag and fly ash-slag systems has been carried out to 

quantify the differences in reaction kinetics using exponential as well as 

Knudsen method. The constant K determined using the Knudsen method is 

considered as a rate determining parameter in the case of activated slag and 

cement (when the difference in the Qmax values are not very large with increase 

in temperature) however it cannot be considered as a rate determining 

parameter in the case of fly ash rich blends (since the difference in the Qmax 

values are very large with temperature especially from 25°C to 35°C). The 

activation energy determined using rate constant values (based on Arrhenius 

law) are found to be higher for activated slag (56.7 KJ/mol) when compared to 

that of cement (46.8 KJ/mol). 
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6.2  Compressive Strength and Reaction Products of Activated Slag and Fly ash – 

Slag Systems 

The main conclusions drawn based on the compressive strength and reaction 

product analysis of slag and fly ash-slag blends are the following 

• Very high compressive strengths are obtained both at early ages as well as later 

ages (more than 70 MPa) with waterglass activated slag mortars. 

• Optimal alkali content as expressed by the Na2O-to-source material ratio (n) in 

the case of waterglass activated slag mortars is found to be closed to 0.05 

based on the experiments. Beyond this ratio, compressive strength decreases 

for high silicate modulus mixes. This is due to leaching of alkalis from the 

system when the amount of alkalis present in the system is more than the 

optimal range, which leads to increased porosity.  

• A qualitative evidence of leaching is presented by conducting electrical 

solution conductivity. The impact of leaching and the strength loss is found to 

be generally higher for the mixtures made using a higher activator Ms and a 

higher n value.  

• Compressive strength decreases with the increase in the fly ash content. 

Increasing alkalinity of the activator facilitates production of moist cured fly 

ash rich blends with compressive strengths in the 20 MPa range. 

• Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) is used to obtain information about the reaction products. In the 

waterglass activated slag pastes the major bands representing the asymmetric 
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stretching vibrations of the silica tetrahedral (Si-O-Si) has been shifted towards 

higher values (940-960) cm-1 corresponding to C-S-H gel. Slag and fly ash-

slag pastes with a higher Ms value shows C-S-H peak shifting to higher wave 

numbers. The alkaline activation of fly ash-slag blends also shows only one 

peak but at a higher wavenumber representing the formation of an alkaline 

aluminosilicate (N-A-S-H when NaOH is used) of amorphous nature and 3D 

network, of a zeolitic type. The FTIR spectrum characteristic of the alkaline 

aluminosilicate (SiO) at 997 cm-1 [Puertas et al, 2000] are not observed in the 

IR spectra of the fly ash–slag pastes studied showing the influence of calcium 

bearing slag in the reaction product (C-S-H) formation of fly ash-slag blends. 

• Closed heat curing yields a dense, compact material, whose initially high-

aluminium content gives way to good mechanical development over time. 

Open heat curing with the pastes in direct contact with the atmosphere 

generates a granular, porous material.  

• The influences of heat curing conditions on the FTIR spectra of fly ash mixes 

were studied. The main band in fly ash mixes are shifted to higher 

wavenumber (988-1008) corresponding to alkaline alumino silicate band. The 

stretching vibrations of Si-O-Si of closed cured mixes after 48 hours of heat 

curing shows higher wavenumber compared to that of the pastes cured using in 

open conditions indicating the changes in the Si/Al ratio in the chief reaction 

product. 
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